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Foreword

Two outstanding computer scientists will soon reach their 70th birthdays:
Dines Bjørner was born on October 4, 1937 in Denmark and Zhou Chaochen
was born on November 1, in the same year in China. To celebrate their birth-
days, we present three LNCS volumes in their honour.

– Formal Methods and Hybrid Real-Time Systems. Essays in Honour of Dines
Bjørner and Zhou Chaochen on the Occasion of Their 70th Birthdays. Papers
presented at a Symposium held in Macao, China, September 24–25, 2007.
LNCS volume 4700. Springer 2007.

– Domain Modelling and the Duration Calculus. International Training School,
Shanghai, China, September 10–21, 2007. Advanced Lectures. LNCS volume
4710. Springer 2007.

– Theoretical Aspects of Computing - ICTAC 2007. 4th International Collo-
quium, Macao, China, September 26–28, 2007, Proceedings. LNCS volume
4711. Springer 2007.

Dines Bjørner is known for his many contributions to the theory and prac-
tice of formal methods for software engineering. He is particularly associated
with two formal methods, although his influence is far wider. He worked with
Cliff Jones and others on the Vienna Development Method (VDM), initially at
IBM in Vienna. Later, he was involved in producing the Rigorous Approach
to Industrial Software Engineering (RAISE) formal method with tool support.
His three-volume magnum opus on software engineering covers Abstraction and
Modelling, Specification of Systems and Languages, and Domains, Requirements,
and Software Design. He was a professor at the Technical University of Denmark
(DTU) in Lyngby, near Copenhagen. He was the founding director of the United
Nations University International Institute for Software Technology (UNU-IIST)
in Macao during the 1990s. He was a co-founder of VDM-Europe, which trans-
formed to become Formal Methods Europe, an organisation that promotes the
use of formal methods. Its 18 monthly symposia have become the leading aca-
demic events in formal methods. Dines Bjørner is a Knight of the Order of the
Dannebrog and was awarded the John von Neumann Medal in Budapest in 1994.
He received a Doctorate (honoris causa) from the Masaryk University in Brno
in 2004. He is a Fellow of both the IEEE and the ACM.

Zhou Chaochen is known for his seminal contributions to the theory and prac-
tice of timed and hybrid systems. His distinguished academic career started as
an undergraduate in mathematics and mechanics at Peking University (1954–58)
and as a postgraduate at the Institute for Computing Technology in the Chinese
Academy of Sciences (1963–67). He continued his career at Peking University
and the Chinese Academy, until he made an extended visit to Oxford University
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Computing Laboratory (1989–92) at the invitation of Sir Tony Hoare frs. Here
he was the prime instigator of Duration Calculus, an interval logic for real-time
systems, developed as part of a European ESPRIT project on Provably Cor-
rect Systems. He made further extended visits during the periods 1990–92 and
1995–96, as a visiting professor at the Technical University of Denmark, Lyngby,
at the invitation of Dines Bjørner. He was a Principal Research Fellow at UNU-
IIST during the period 1992–97, before becoming its director, an appointment
he held from 1997 to 2002. He is a member of the Chinese Academy of Sciences
and the Third World Academy of Sciences.

We thank both Dines Bjørner and Zhou Chaochen for their years of generous,
wise advice, to us and to their many other colleagues, students, and friends.
They have both been unfailingly inspiring, enthusiastic, and encouraging.

July 2007 J.C.P.W.
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Preface

This volume contains the papers presented at the Festschrift Symposium held
September 24–25, 2007 in Macao on the occasion of the 70th birthdays of Dines
Bjørner and Zhou Chaochen. It consists of 25 papers written by 59 authors.
Online conference management was provided by EasyChair.

It is now difficult to remember exactly when it came to us that we should organise
a celebration for the 70th birthdays of Dines Bjørner and Zhou Chaochen, which
happily coincide this year. But I do know that the idea was a popular one.
Zhiming Liu suggested that we should organise the symposium as part of the
International Colloquium on Theoretical Aspects of Computing, which seemed
perfect given that this series was founded by UNU/IIST. The event quickly
took shape as He Jifeng offered to host a Training School in Shanghai with the
assistance of Chris George, Geguang Pu, and Yong Zhou, and Cliff Jones agreed
to help with the academic organisation of the symposium and the colloquium.
Everything then just fell into place, thanks to the excellent help provided by the
local organisers in Macao and Shanghai.

The subjects for the lectures for the school were obvious to us all: two top-
ics pioneered by Dines Bjørner and Zhou Chaochen, both currently very active
research areas. For the Festschrift Symposium, authors were invited to write on
an original topic of their choosing. And for the colloquium, a general call-for-
papers resulted in a satisfying collection of rigorously reviewed papers in theo-
retical computer science, including automata theory, case studies, concurrency,
real-time systems, semantics and logics, and specification and verification.

So we have ended up with three volumes, one each for the school, symposium,
and colloquium, which collectively amount to some 1,300 pages. And still there
was not enough room for the many additional distinguished names we would
have liked to invite.

To Dines and Chaochen from all of us:

We hope that you enjoy reading these books.

Happy birthday to both of you!

June 2007 J.C.P.W.
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Models and Software Model Checking of

a Distributed File Replication System

Nikolaj Bjørner

Microsoft Research, One Microsoft Way, Redmond, WA, 98074, USA
nbjorner@microsoft.com

Abstract. With the Distributed File System Replication component,
DFS-R, as the central theme, we present selected protocol problems and
validation methods encountered during design and development. DFS-R
is currently deployed in various contexts; in Windows Server 2003-R2,
Windows Live Messenger (Sharing Folders), and Windows Vista (Meet-
ing spaces). The journey from an initial design sketch to a shipped prod-
uct required mainly the dedicated effort of several testers, developers,
program managers, and several others; but in some places cute problems
related to distributed consensus and software model-checking emerged.
This paper presents a few of these, including a distributed garbage col-
lection problem, distributed consensus problems for reconciling tree-like
data structures, using model-based test case generation, and the use of
software model checking in design and development process.

1 Introduction

Designing and building distributed systems is challenging, especially if they need
to scale, perform, satisfy customer functionality requirements, and, oh well, work.
An example of a particularly challenging distributed system is multi-master, op-
timistic, file replication. One of the distinguished factors making distributed file
replication hard is that file replication comes with a very substantial data com-
ponent: the protocols need to be sufficiently aware of file system semantics, such
as detecting and resolving name conflicting file creates and concurrent updates.
Such races are just the tip of the iceberg. In comparison, cache coherence proto-
cols that are known to be challenging to design, have a trivial data component,
but to be fair have stronger consistency requirements.

Subtle protocol bugs can go (and have indeed gone) undetected for years due
to the large number of interactions that are possible. With a sufficient number
of deployments they will be encountered in the field, have costly consequences,
and be extremely challenging to analyze. Our experience in developing DFS-
R from the bottom up, is used to demonstrate several complementary uses of
model-based techniques for system design and exploration. This paper provides
an experience report on these selected methods. Note that the material presented
here reflect only a very partial view of the design and test of DFS-R.

DFS-R was developed to address correctness, scale, and management chal-
lenges encountered with a predecessor file replication product. Thus, the original

C.B. Jones, Z. Liu, J. Woodcock (Eds.): Bjørner/Zhou Festschrift, LNCS 4700, pp. 1–23, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



2 N. Bjørner

impression was that we had the luxury of tackling a relatively well defined prob-
lem; to build a replication system specifically handling features of the file system
NTFS, for replicating files between globally dispersed branch offices of corpora-
tions. Later on, it would turn out that DFS-R could be embedded within other
scenarios, such as, in an instant messenger product. However, we consciously
avoided over-loading with features from the onset. It means that DFS-R, for in-
stance does not replicate files synchronously, only asynchronously (as it is meant
for wide area networks); does not replicate general directed acyclic graphs, only
tree-like structure; and does not maintain fine-grained tracking of operations,
only state. While several such problems are interesting in other contexts, they
did not fall into the scope of our original goals.

The organization of this paper follows the top-down design flow of DFS-R.
The DFS-R system was originally conceived as a strictly state-based file repli-
cation protocol. Section 2 elaborates on the differences between state-based and
operations-based replication systems. We developed a high-level state machine
specification of DFS-R by using a transition system presented as a collection of
guarded commands. The guarded commands were subsequently implemented as
an applicative program in OCaml. This paved the way for performing efficient
state space exploration on top of the design. Section 3 elaborates on the proto-
col, and Section 4 summarizes prototyping experiences. As the development took
place, several assumptions made in the abstract design turned out to be unreal-
istic, and we redid the high-level design using the AsmL tools that were built at
Microsoft for software modeling and test case generation. Section 5 elaborates
on the experiences from using AsmL. A number of well-separated distributed
protocol problems emerged during the development. Section 6 describes the dis-
tributed tree reconciliation problem, and how we used a model checker, Zing, to
expose bugs in both protocol proposals and legacy implementations. Section 7
describes the distributed tombstone garbage collection problem and a solution to
it. While one cannot expect to get anywhere without a high-level understanding
of the protocols involved in DFS-R, it is equally unrealistic to expect develop-
ing a production quality system without addressing systems problems. We were
thus faced with a potentially large gap between simplified protocol substrates
and the production code. Encouraged by the ability of the model-based state
space exploration to expose subtle interaction bugs we repeated the state space
exploration experiment on top of the production core. The resulting backtrack-
ing search tool may best be characterized as a hybrid software model checking,
run-time verification tool. It operates directly at the source code level. It uses
techniques, such as partial order reduction to prune search and custom allocation
routines to enable backtracking search. Section 8 describes the infrastructure we
developed and the experiments covering 1

2 trillion scenarios.

2 File Replication

The style of replication systems under which DFS-R falls into is surveyed ex-
tensively in [1]. We here summarize a few of the main concepts relevant for
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DFS-R. The problem that DFS-R solves is to maintain mirror copies of selected
directories across large networks of servers. The directories that are selected for
replication are called replicated folders. Files and directories within these di-
rectories may be created, modified, deleted, moved, or renamed at any of the
mirror sites. It is the job of DFS-R to distribute changes, detect and reconcile
conflicts automatically when they arise. Distributed replication systems can be
categorized according to what problems they solve and how they solve them.
Figure 1 summarizes some of the main design choices one has when designing a
replication system.

Multi master

Single master

Optimistic

Pessimistic

State transfer

Operations transfer

Fig. 1. Replication system ontologies

Multi Master Replication. DFS-R is a multi-master replication system. Any
machine may participate in changing resources, and their updates will have to be
reconciled with updates from any other machine. A (selective) single-master sys-
tem only replicates changes from a set of selected machines. All other machines
are expected to maintain a mirror copy of the masters. This would mean that
file system changes on non-masters would have to be reverted. If there is a des-
ignated master, one can even choose to maintain truth centrally. The challenge
there is managing fail-over and network disconnects.

Optimistic Replication. To support wide area networks (spanning the globe)
DFS-R supports optimistic updates to files. This means that any machine may
submit updates to resources without checking first whether the update is in
conflict with other updates. Pessimistic replication schemes avoid concurrent
update conflicts by serializing read and write operations using locking schemes.

State and Operation Transfer. A file system state is the result of the file
operations (create, update, delete, move) that are performed on it. This suggests
two approaches to realize file replication: intercept and replay the file operations,
called operation transfer, or capture the file system state and replicate it as it
is, called state transfer. DFS-R implements a state transfer protocol. There are
several hard challenges with operations-transfer based systems. One is merging
operations into a consistent serialization. Another, is space, as operations are
not necessarily amenable to garbage collection.

Perspective. There is no single choice of design parameters that handles all
customer scenarios. In some configurations, corporations wish to designate ma-
chines as read-only, and can manage the additional constraints this leaves on



4 N. Bjørner

network topologies. In other configurations there are reliable, but slow, wide-
area networks and there is a need for file locking. With state transfer only, it is
not possible to undo operations with arbitrary fine-grained control.

3 A State-Based File Replication System

In this Section we will outline the essence of a file replication system. While
highly simplified, it reflects some of the early protocol design maneuvers.

3.1 Components

Network. Abstractly, the problem at hand is to replicate files in a network of
connected machines. Each machine maintains a file system view and a database.
The network topology is indicated by a set of in-bound connections per machine.
We assume a well-formed network, comprising of a digraph without self-loops,
where each node is labeled by a unique machine identifier. A connected network
is furthermore desirable for convergence.

nw ∈ Network = MachineId m�→ Machine
mch ∈ Machine = FileSystem × DataBase × inbound
m ∈ MachineId = Globally unique identifier for a machine
in ∈ inbound = MachineId-set

File System. For our purposes, a file system is a collection of files each uniquely
identified by an identifier, which is unique per file system. In NTFS, such identi-
fiers are 64 bit numbers, called file reference numbers, on Unix-like file systems,
these are called inodes. Each file has a file name, a parent directory and file
data. One would typically expect a file system to be dictated as a tree-like struc-
ture comprising of files identified by file paths as strings, but this view turns
out to be unsuitable for several reasons. For example, such a view is open to
situations where files are moved around, such that the same path gets identified
with completely different files. Identifying a file with an identifier makes it eas-
ier to support efficient replication of renaming directories with a large number
of children, but makes it very hard to support merging contents from differ-
ent directories. A file system is well-formed when the ancestral relations form a
uniquely rooted connected tree (only the root has itself as a parent).

fs ∈ FileSystem = FileId m�→ FileRecord
file ∈ FileRecord = {name : Name, parent : FileId, data : Data}
fid ∈ FileId = Numeral

Database. The file system only maintains information that is local to the ma-
chine where the files reside. In order to realize a file replication system, one
needs to maintain information reflecting the shared state between machines. In
DFS-R, this state is a database consisting of version vector and a set of records,
one per replicated file.
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(vv, rs) ∈ DataBase = VersionVector × (UID m�→ IdRecord)
vv ∈ VersionVector = MachineId m�→ Numeral-set
r ∈ IdRecord = {fid : FileId, gvsn : GVSN, parent : UID,

clock : Numeral, name : Name, live : bool}
gvsn ∈GVSN = MachineId×Numeral Global version sequence number
uid ∈ UID = Globally unique identifier

Version Vectors. File replication systems typically use global version sequence
numbers, which are pairs (Unique Machine Identifier, Version Sequence Num-
ber), to identify a resource and its version globally. The version sequence num-
ber is a local time-stamp, which can be assumed monotonically increasing with
changes. A version vector is a map from machine identifiers to version sequence
numbers. They typically map a machine identifier to a single number, but in the
case of DFS-R we found that allowing the vectors to map to a set of numbers
(represented compactly as intervals of numerals) allowed handling, for instance,
synchronization disruptions. Version vectors are also known as vector clocks.
Version vectors are used to record a state of knowledge, as the vector indicates
a water-mark of versions that have been received from other machines.

We may think of a version vector as a set of GVSN pairs obtained by taking
{(m, v) | [m �→ vs] ∈ vv ∧ v ∈ vs}. Similarly, one can form a version vector from
a set of GVSN pairs. In the future we will switch between the set and map view
of version vectors depending on the context. Thus, vv[m] is defined for each m.
It is the empty set if m �∈ Dom(vv) as a map.

Database Records. A file (we will use file to also refer to a directory) is
identified globally through a unique identifier uid, while the per file system file
identifier is the fid. The set of database records may be indexed by a uid and
a fid. Each record stores a global version sequence number gvsn that tracks the
version of the file, a file name name, a reference to a parent directory parent,
and an indication whether the resource represents an existing file on the file
system. If live is false, we call the resulting record a tombstone. The clock field is
a Lamport clock [6], it gets incremented with every file update. Lamport clocks
are used to enforce causal ordering per record by assuming a total lexicographic
ordering on GVSN and define:

r < r′ iff r.clock < r′.clock ∨ (r.clock = r′.clock ∧ r.gvsn < r′.gvsn) (1)

We will later establish that property (5), which only uses version vectors, suffices
for detecting conflicts (absence of causality) among all replicated files. Neverthe-
less, this property is significant, as the number of replicated files in the context
of DFS-R is much larger than the number of replicating machines.

The records in DFS-R contain a number of additional fields, such as file hashes,
file creation time and file attributes.

Local and Global Consistency. We are now in a position where we can state
the main soundness properties that DFS-R aims to achieve:
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– Global consistency: Databases of machines connected in a network are equal
except for the contents of the fid fields.

– Local consistency: On each machine, the database records the content on
the file system.

A very substantial part of DFS-R consists in maintaining local consistency. DFS-
R uses the NTFS change journal, which for every file operation produces a record,
accessible from a special file. The change journal presents an incremental way to
obtain file changes. Since DFS-R only tracks files that are replicated, it further-
more needs to scan directories that are moved in and out of the replicated folders.
Also, the local consistency algorithms need to take into account that change jour-
nals wrap, that is, not all consecutive changes are available for DFS-R, and that
change journals are deleted, resized and/or re-created by administrators. We
will here concentrate only on global consistency as it illustrates the distributed
protocol problems later in this paper.

So for the rest of the discussion, we will use simplified definitions of machines
and database records. While this approach makes things look much simpler than
reality, it allows us to concentrate on the specific topics in this paper.

m ∈ Machine = VersionVector × (UID m�→ IdRecord) × inbound
r ∈ IdRecord = {gvsn : GVSN, parent : UID, clock : Numeral,

name : Name, live : bool}

3.2 Operations

The main operations relevant to file replication consist of local file system activity
and synchronization.

The file system operations called Create, Update, Rename and file Delete in
Fig. 2. cause the local version vector to be updated with a fresh version for the
machine that performs the change. The database records are also updated to
reflect the new file system state.

We assume an initial state consisting of an arbitrary network of machines all
sharing a single replicated root folder and no other files. We use tuples with mu-
table fields in the guarded commands, and we omit checks for whether elements
are in the domain of a map prior to accesses.

A direct way to synchronize two data-bases is by merging version vectors
and traversing all records on a sending machine m2; those records whose keys
do not exist on the receiving machine m1 are inserted. Records, that dominate
existing records on m1 are also inserted. Fig. 3. illustrates the proposed scheme.
The scheme implements a last-writer wins strategy, as later updates prevail
over earlier updates. We will later realize that the check v �∈ vv1[m] is in fact
redundant. Another property of this scheme is that each update is processed
independently. Notice that this is an implementation choice, which comes with
limitations. Conflict resolution that can only perform decisions based on a single
record cannot detect that a machine swapped the names of two files. Namely,
suppose machine m1 and m2 share two files named a and b. Then m2 renames a
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Create(nw, m, uid, parent, name) :
let (vv, rs, in) = nw[m], v = 1 + max(vv[m])
assume ∀[ �→ ( , rs′, )] ∈ nw . uid �∈ rs′ (uid is fresh in nw)

rs[parent].live ∧ name is fresh under parent
vv[m] := vv[m] ∪ {v}
rs[uid] := {gvsn = (m, v), parent, name, clock = v, live = true}

Update(nw, m, uid) :
let (vv, rs, in) = nw[m], v = 1 + max(vv[m]), clock = max(v, rs[uid].clock + 1)
assume rs[uid].live
vv[m] := vv[m] ∪ {v}
rs[uid] := rs[uid] with {clock, gvsn = (m, v)}

Rename(nw, m, uid, parent′, name′) :
let (vv, rs, in) = nw[m], v = 1 + max(vv[m]), clock = max(v, rs[uid].clock + 1)
assume rs[uid].live ∧ rs[parent′].live ∧ name′ is fresh under parent′

Rename maintains tree-shape of directory hierarchy
vv[m] := vv[m] ∪ {v}
rs[uid] := rs[uid] with {gvsn = (m,v), parent = parent′, clock, name = name′}

Delete(nw, m, uid) :
let (vv, rs, in) = nw[m], v = 1 + max(vv[m]), clock = max(v, rs[uid].clock + 1)
assume rs[uid].live ∧ (∀uid′ ∈ rs . rs[uid′].parent �= uid ∨ ¬rs[uid′].live)
vv[m] := vv[m] ∪ {v}
rs[uid] := rs[uid] with {gvsn = (m,v), clock, live = false}

Fig. 2. Basic file system operations

to c, b to a, then c to b. The names of the two files are swapped, but each record
is name conflicting with the configuration on m1. So when m1 synchronizes with
m2, it will be resolving two name conflicts instead of performing the swap.

Our first observation is that the resulting system maintains a basic invariant:
the versions of all records are tracked in the version vectors.

∀[ �→ (vv, rs, )] ∈ nw, [ �→ {gvsn = (m, v)}] ∈ rs . v ∈ vv[m] (2)

Thus, a more network efficient version of BasicSyncJoin proceeds by

1. The receiving machine m1 gets version vector vv2 from the sender m2.
2. It then subtracts vv1 from vv2, forming vvΔ := vv2 \ vv1.
3. The sending machine is asked for records whose versions are in vvΔ.
4. The database of m1 is updated as in BasicSyncJoin.

The more refined version of global consistency we seek can also be formulated in
terms of version vectors, namely, that databases coincide on all shared versions:

r1.gvsn �∈ vv2 ∨ rs2[u] = r1 ∨ rs2[u].gvsn �∈ vv1, (3)

for every m1, m2, such that (vv1, rs1, ) = nw[m1], (vv2, rs2, ) = nw[m2] and
[u �→ r1] ∈ rs1.
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BasicSyncJoin(nw, m1, m2)
let (vv1, rs1, in1) = nw[m1]
let (vv2, rs2, in2) = nw[m2]
assume m2 ∈ in1

for each [uid �→ r] ∈ rs2:
let (m, v) = r.gvsn
if v �∈ vv1[m] ∧ (uid �∈ rs1 ∨ rs1[uid] < r) then

rs1[uid] := r
vv1 := vv1 ∪ vv2

Fig. 3. Simplified synchronization

So far our transitions ensure that all versions in the version vectors are con-
secutive,

∀[m �→ vs] ∈ vv .vs = {1, . . . , max(vs)}. (4)

The second observation is a basic property of the system: concurrent updates
to the same resource may be detected by at least one machine during Basic-
SyncJoin. Suppose that m1 and m2, and uid are such that (vv1, rs1, ) = nw[m1],
(vv2, rs2, ) = nw[m2], and [uid �→ r1] ∈ rs1, [uid �→ r2] ∈ rs2. When m1 installs
r2 we would like to know whether r2 was derived from r1, or if r2 was obtained
concurrently with r1. The answer to whether r2 is concurrent with r1 turns out
to be simple; r2 is concurrent with r1 iff the version of r1 is not known to m2:

r1.gvsn �∈ vv2 (5)

To prove this property, we can add a history variable rsall to each machine.
The history variable rsall is a set of all records ever maintained by the machine.
If one prefers, one may view this as specifying the cone of causality. Every update
to the main set of records rs gets reflected by adding the updated record to rsall.
In the operation BasicSyncJoin, take the union of rs1

all and rs2
all. Now observe

that invariant (2) also holds for rsall.
Detection of concurrent update conflicts is useful when one wants to perform

conflict detection and resolution, either manually or automatically. DFS-R per-
forms the conflict resolution automatically, as replication is a continuous service,
but stores conflicting files in a designated folder. Conflict resolution is performed
on version vectors, so once a machine has performed conflict resolution and
merged version vectors, the conflict is no longer visible to other machines. A dif-
ferent scheme that works for detecting conflicts is by associating a hash-tree [7,8]
comprising of hashes of all the previous versions of a file. The size of the un-
rolled hash-tree is then proportional to the number of changes to the file, while
version vectors grow proportionally to the number of machines. If machines are
reasonably well synchronized, they do not need to unroll large hash trees from
remote peers.
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3.3 The Real Deal with Join

The use of BasicSyncJoin is insufficient for file replication. There are two funda-
mental flaws and limitations: First, it allows installing updates that conflict with
file system semantics: it may introduce orphaned files without parent directories,
mark non-empty directories as tombstones, create multiple files in the same di-
rectory with the same name, and introduce cyclic directory structures. Second,
BasicSyncJoin processes all updates in one atomic step. This is unrealistic in the
presence of network outages and continuous file system activity. DFS-R realizes
non-atomic joins by committing only versions from the processed records on
disconnects (instead of all of vv2). It also pipe-lines multiple joins should the
sending machine create new updates while (large) files from previous updates
are still being downloaded. A consequence of this relaxation is that condition
(5) is only a necessary, but not sufficient condition for conflict detection. Invari-
ant (4) does not hold either, but this is insignificant, as we introduced sets in
the range of version vectors to deal with partial synchronization. Fig.4. illus-
trates the additional refinements one needs to add to BasicSyncJoin in order to
address file system semantics. We have limited the iteration of database records
to vv2\vv1 to reflect invariant (2), which still holds. We abstain from illustrating
the non-atomic, pipe-lined version.

The refined SyncJoin mentions auxiliary functions conflict-winner, purge-losers,
and revert-update. The definition and analysis of these is the subject of Section 5,
but here, we will summarize some of their requirements.

SyncJoin(nw, m1, m2)
let (vv1, rs1, in1) = nw[m1]
let (vv2, rs2, in2) = nw[m2]
assume m2 ∈ in1

for each [uid �→ r] ∈ rs2 where r.gvsn ∈ vv2 \ vv1:
if uid �∈ rs1 ∨ rs1[uid] < r then

if conflict-winner(m1, r) then
purge-losers(m1, r)
rs1[uid] := r

else revert-update(m1, r)
vv1 := vv1 ∪ vv2

Fig. 4. Synchronized join

Non-interference. It is trivial to realize a convergent, consistent file replication
system that just deletes all files. So, obviously, we would like to ensure that
DFS-R does not touch the file system on its own. Requiring that DFS-R not
delete or move around any files is too restrictive, because a system that must
automatically resolve conflicts will have to handle creation of name conflicting
files and directories.



10 N. Bjørner

Re-animation. A basic (user) requirement for DFS-R was that directories
cannot be deleted if they contain files that have not been processed by the
deleting party. Thus, re-animation requires that files and even directories in a
transitive way get re-created. They are re-created to preserve content that was
created or modified independently of the (remote) deletion.

Convergence. A key property of replication is obviously that all replica mem-
bers should converge to the same mirror image when there are no independent
updates to the replica sets. In general one cannot check convergence as an invari-
ant. However, as our experience with Zing (Section 6) illustrates, it is possible
to find divergence bugs by checking invariants that imply convergence.

Feature Interaction. One of the hard problems with designing a distributed
application, like DFS-R, is taking feature interaction into account. Features that
are not directly related may interact in unpleasant ways when composed. An
illustrative example of two features that interact comprises of re-animation and
name-conflict resolution. Name conflict resolution has in DFS-R the side effect
of soft deletion. The name conflict loser gets moved to a conflict area, but from
the point of view of replication it is deleted. These two features do not compose:
a directory may lose a name conflict and be deleted, but a modification to a child
file may require the name conflicting directory to be re-animated. Consequently,
DFS-R has to take such conflicts into account.

4 Prototyping DFS-R with OCaml

Section 3 illustrated a simple file system model and replication protocol. As fea-
tures and requirements were added, the complexity of the problem rose, and we
could see that invariants were easily broken. We therefore found that an informal
design would be insufficient in convincing us and our peers to the soundness of
any protocol proposal, so we developed a prototype system in OCaml.

Of particular interest was that the OCaml prototype supported both a sim-
ulation and a realistic mode. In simulation mode, the replication system would
manipulate in-memory data structures for file systems, and data-bases. In real-
istic mode, the prototype accessed files on NTFS and updated a persistent store.
Neither mode was using a network, so all remote procedure calls would be per-
formed by local procedure calls, and multiple copies of DFS-R ran in the same
process. The simulation mode was furthermore applicative in all essential oper-
ations. This made implementing a backtracking search over the actions trivial.
Operations in simulation mode were several orders of magnitude faster. We also
added ad-hoc partial order reduction techniques, and performed massive simu-
lations on top of the synchronization core. Prior to starting the implementation
of DFS-R we thus covered some 120 billion scenarios each comprising of 16 file
and synchronization actions. Section 8 elaborates on similar methods used for
the production core.
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5 Modeling DFS-R with AsmL

The OCaml prototype soon diverged from the implementation, as constraints,
such as database layout changed. It was also inadequate for documenting the
protocol at an abstract, yet sufficiently faithful level. We therefore turned to
AsmL [9], developed at MSR, for describing the DFS-R protocol. The very read-
able format of AsmL and the integration with Microsoft Word was particularly
useful in our context, as we aimed at a specification which could be read by
newcomers to the DFS-R project. Today the AsmL specification serves as the
main high-level, executable, overview of DFS-R. We will not repeat the detailed
AsmL specification here, as it takes around 100 pages. To give the flavor, Fig.5.
summarizes the data types available per replicating machine.

The AsmL description follows the componentization and protocol design in a
top-down fashion. At the top-level, the design describes the main modules that
comprise synchronizing machines. For the case of DFS-R, this is encapsulated
by a Machine class, which contains the main components.

class Machine
machineId as MachineId // Unique identifier to distinguish machine
var fs as FileSystem // File system interface
var db as Database // Persistent database that DFS-R maintains
var uc as UsnConsumer // Consuming USN records from the NTFS journal
var dw as DirWalker // Walking directories to update the database
var inbound as Map of MachineId to InConnection
var outbound as Map of MachineId to OutConnection

class InConnection // State relevant for an incoming connection
class OutConnection // State relevant for an outgoing connection

Fig. 5. Replicating machine in AsmL

5.1 Protocol Description

The AsmL specification elaborates further on fleshing out the contents of the
machine components. The main reactive components that are modeled in de-
tail are the (1) consumption of file system events and their effect on the local
database, and (2) the main synchronization handshakes.

5.2 Test Case Generation

The resulting model is sufficiently detailed to describe the behavior of DFS-R
based on local file system events as well as distributed synchronization events.
This allows defining virtual networks of machines that can be composed and
simulated within AsmL. In particular, we hooked up the FSM generation tool of
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AsmL and generated test sequences. Lacking tight .NET integration with DFS-
R, we resorted to using the FSM generation tool generate test cases in an XML
file and implement a reader that interprets the traces within DFS-R.

6 Reconciling Trees
a b c

c

b

a

c

b

a

a b c

a

b

c

a

b

c

sync

move b under c

move a under b

move b under a

move c under b

?

Fig. 6. Concurrent conflicting moves

In this Section we illustrate the
use of a model-checker Zing [10]
for checking conflict resolution
strategies for concurrent moves.
Recall that one of the require-
ments for DFS-R was that it
replicate and maintain directory
hierarchies as tree-like struc-
tures. When machines are al-
lowed to move files around on
a network, it may however be
possible arriving at configura-
tions that cannot be reconciled
into a directory tree. Fig.6. illus-
trates an instance of this prob-
lem: two machines share direc-
tories a, b, and c. One machine
creates the tree a → b → c, the
other c → b → a. What should
b’s parent be?

We used Zing to check for
convergence of a proposed res-
olution method for concurrent
moves. Zing demonstrated that the proposal was open to divergence by pro-
ducing a counter-example along the lines of Fig.6. The counter-example found
by Zing, was subsequently tested against another shipped replication product
which failed to converge. This bug had gone undetected for several years.

6.1 Zing

Zing is a model checker for multi-process programs. Zing’s input language is
perhaps easiest compared with Promela [11]. The notion of process and atomic
statements are similar, while Zing appeals to an object oriented programming
style.

6.2 A Zing Encoding

Our Zing encoding of the tree reconciliation problem uses the absolute minimal
features necessary to emulate conflict resolution of concurrent moves. Thus, each
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machine maintains n(= 3) resources, each resource is identified by a number
0, . . . , n − 1, and a designated root folder is identified by the number −1. A
resource has a parent, which is a number −1, 0, . . . , n − 1, and a clock used to
impose a total ordering on resources. Resources can be updated by changing the
parent and clock, but only if the update does not introduce a self-loop. Fig.7.
contains the minimal amount of Zing declarations to define two machines each
with three resources all residing under a common root.

A model checker is well suited at specifying a set of possible configurations
implicitly by using non-deterministic choices. Thus, we arrive at a non-flat con-
figuration by first moving files around randomly on each machine, with each
move incrementing globalClock and using its value as the clock on the moved
resources.

class Node {
int parent;
int clock;

};
array Tree[3] Node;

class Machine {
Tree tree = new Tree{{-1,0},{-1,0},{-1,0}};

atomic bool cycle(int node, int parent) {
return (parent != -1) &&

(parent == node ‖ cycle(node, tree[parent].parent));
}

atomic void move(int node, int parent, int clock) {
assume(!cycle(node, parent));
tree[node].parent = parent;
tree[node].clock = clock;

}
};
array Machines[2] Machine;
static Machines machines;
static int globalClock = 0;

Fig. 7. Replicating machine in Zing

It remains to define synchronization in Zing. Our model for synchronization is
that machines send the state of a random node to a random machine. It requires
the recipient to determine the outcome based on the state of a single node. Thus,
traces can be identified as sequences of triples

〈node1, src1, dst1〉, 〈node2, src2, dst2〉, . . . ,
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where node is the index of a node, the content of the node on the source machine
is given by src, and dst is a machine that should reconcile the node. The syn-
chronization protocol will need to implement a function, sync, which based on a
triple, updates the state of dst. The problem is furthermore narrowed down as
we prescribe sync should use the clock numbers to implement a last writer wins-
by-default strategy. Unfortunately, the last writer cannot win unconditionally if
the update introduces a cycle, and the remaining problem is to find a routine
resolve, which applies the update, but does not introduce a cycle. We can check
whether an implementation of sync converges by setting a bound on globalClock
and systematically examining each possible trace.

class Sync {
static atomic void sync(int node, Node src, Machine dst) {

if (src.clock > dst.tree[node].clock) {
if (dst.cycle(node, src.parent)) {

Sync.resolve(node, src, dst);
} else {

dst.move(node, src.parent, src.clock);
}

}
}

static void synchronize() {
while (!Sync.allInSync()) {

assert(globalClock <= maxClock);
int src, dst = choose(0..1);
int node = choose(0..2);
assume(src != dst);
Sync.sync(node, machines[src].tree[node], machines[dst]);

}
}

atomic bool allInSync(); // true if the trees of all machines are equal

Fig. 8. Synchronization core in Zing

In the following we will examine a few proposals for resolve. We examined
several others, but the ones given here are sufficiently illustrative.

Priority inversion is a tempting solution. The clock on the destination ma-
chine is increased to dominate the clock of the source node.

static atomic void resolve(int node, Node src, Machine dst) {
dst.tree[node].version = ++globalClock;

}
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Not only is it not obvious whether this solution is correct, but it is also wrong.
Zing found a two-machine counter-example by searching 1.5 million states in 4-5
minutes (on a 2GHz, 512MB Dell Optiplex). The counter example essentially
consisted of the configuration from Fig.6. Divergence is exercised when the two
machines ping-pong the directory b to each other.

Intentional grounding moves conflicting nodes to the root.

static atomic void resolve(int node, Node src, Machine dst) {
dst.move(node, -1, ++globalClock);

}

This solution works (and works for Zing too), but it is overly pessimistic, as it
may move directories from deeply nested positions directly to the root. Within
the context of file systems, where directories have controlled access (using access
control lists, ACLs) this furthermore imposes security problems.

Permutation does not move conflicting nodes directly to the root, but moves
them beneath the immediate parent.

static atomic void resolve(int node, Node src, Machine dst) {
if (dst.tree[node].parent != -1) {

dst.move(node, dst.tree[dst.tree[node].parent].parent, ++globalClock);
}
else {

dst.tree[node].version = ++globalClock;
}

}

While less pessimistic, it also suffers from security problems with access control:
the scheme allows moving directories to places they have never been moved by
any replicating machine.

Parental Demotion. Another appealing approach is to accept the instruction
as is, but if the instruction introduces a directory cycle, then move the new
parent under the previous parent of the node.

static atomic void resolve(int node, Node src, Machine dst) {
dst.move(src.parent, dst.tree[node].parent, ++globalClock);
dst.move(node, src.parent, src.clock);

}

Unfortunately, we were able to find a configuration where this scheme diverges.
The smallest example we were able to find consists of 6 machines each with 3
directories. It requires a careful coordination between the machines to exercise
divergence. This time we had to find the counter-example manually. The state
space in this case proved larger than what Zing could handle.
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Fig. 9. Parental demotion

Suppose initially:
m1 : a → b → c, clocks =
{a �→ 0, b �→ 1, c �→ 2}. That
is, m1 has a under the repli-
cated folder root, b under a, and
c under b. The clock of b is set
to 1, and c’s clock is set to 2.
m2 : b → c → a, clocks =
{b �→ 0, c �→ 11, a �→ 3}.
m3 : c → a → b, clocks =
{c �→ 0, a �→ 4, b �→ 5}.
m4 : a → c → b, clocks =
{a �→ 0, c �→ 6, b �→ 7}.
m5 : c → b → a, clocks = {c �→ 0, b �→ 12, a �→ 8}.
m6 : b → a → c, clocks = {b �→ 0, a �→ 9, c �→ 10}.

m5 sends b to m1, m′
1 : a → c → b, clocks = {a �→ 0, b �→ 12, c �→ 13}

m2 sends c to m4: m′
4 : a → b → c, clocks = {a �→ 0, b �→ 14, c �→ 11}

m′
1 sends c to m2: m′

2 : b → a → c, clocks = {b �→ 0, c �→ 13, a �→ 15}
m′

4 sends b to m5: m′
5 : c → a → b, clocks = {c �→ 0, a �→ 16, b �→ 14}

m′
2 sends a to m3: m′

3 : c → b → a, clocks = {c �→ 0, b �→ 17, a �→ 15}
m′

5 sends a to m6: m′
6 : b → c → a, clocks = {b �→ 0, c �→ 18, a �→ 16}

That state is isomorphic to the starting state using the correspondence:

{m1 �→ m4
′, m2 �→ m6

′, m3 �→ m5
′, m4 �→ m1

′, m5 �→ m3
′, m6 �→ m2

′} (6)

At this point, m′
6 can take the role of m2, and m′

3 can take the role of m5 to
kick off another round.

6.3 A Mountain Too High for Zing?

An attempt was made to extract a more realistic Zing model of DFS-R by using
the AsmL specification, and perform comprehensive model checking of the full
synchronization core. The resulting 3400 line model was then exercised by Zing,
which checked the model for consistency. Unfortunately, the resulting state space
was vastly larger than what Zing could reasonably handle. The most effective
way we know of performing state space exploration of DFS-R therefore remains
the depth-bounded search presented in Section 8.

6.4 The Zing Experience

This Section illustrated the concurrent directory move problem in the context
of using a state-space exploration tool, Zing, for checking design proposals. The
concurrent move problem is interesting in its own right, but the main take-
away here is that state space exploration tools, such as Zing, are valuable for
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experimenting with design ideas on protocol substrates. Our take-away was to
remain using priority inversion as the conflict resolution mechanism in DFS-R.
To avoid divergence we imposed stronger restrictions on the order of processing
updates.

7 Distributed Garbage Collection

Our presentation of DFS-R has so far no mechanism to garbage collect data-
base records for deleted files. We need the database records so that file deletion
can be replicated in a timely manner, but when all replicating machines agree
that a file has been deleted, it should in principle be possible to remove the
tombstone. Prior solutions to detecting when to delete dead resources involve
two way commit protocols [12,13,14] to either agree on the when to add ma-
chines to a network, or when to safely collect resources marked for deletion.
Solutions in replication systems, such as, Clearinghouse [15], NTFRS and other
replications systems use a timeout based collection of tombstones: If a record
has been marked as tombstone for 30 or 60 days, simply delete it from the data-
base. Fig. 10 contains the corresponding transition that performs the garbage
collection non-deterministically.

GarbageCollect(nw, m, u) :
let (vv, rs, in) = nw[m], r = rs[u]
assume ¬r.live
rs := rs \ [u �→ r]

Fig. 10. Tombstone garbage collection

This solution does not address deleting content on machines that have been
disconnected beyond the timeout value of the tombstones. While this situation
reflects lack of consensus it also widens the likelihood that this content may
reappear in other machines if the offline machine later makes changes to this
content or if the machine has to recover from database loss.

It turns out that with synchronous joins we have a necessary and sufficient
basis for detecting tombstones. The key is, as in (2), that version vectors maintain
a trace of previously observed changes.

Let m1, m2 be machines, such that (vv1, rs1, ) = nw[m1], (vv2, rs2, ) =
nw[m2] and [u �→ r1] ∈ rs1. The resource r1 is subsumed by a tombstone if
we have:

r1.gvsn ∈ vv2 ∧
[
u �∈ rs2 ∨

(
∧ rs2[u].gvsn ∈ vv1

rs2[u].gvsn �= r1.gvsn

)]
(7)

The system with SyncJoin, GarbageCollect and the file system operations sat-
isfies the following invariant: Whenever (7) holds, then some time in the past,
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there is a machine m3, with a tombstone for u that dominates the resource r1;
or with notation, if (7), then previously

∃m3, rs3 . ( , rs3, ) = nw[m3] ∧ ¬rs3[u].live ∧ rs3[u] ≥ r1 (8)

Conversely, if (7) is false, then for [u �→ r1] either m2 does not know about r1, or
m2 has a resource that m1 does not know about. Regular synchronization takes
care of reconciling the state in these cases.

This property suggests a secondary protocol for asynchronous garbage col-
lection: periodically retrieve the version vector and all records from a partner
machine, then garbage collect live records whenever condition (7) holds. DFS-R
implements such a secondary protocol, but we observed that condition (7) in the
presence of non-atomic joins is no longer necessary and sufficient for detecting
missed tombstones. In general, condition (7) is only sufficient for detecting when
the standard join does not ensure convergence.

8 Implementation Checking

A common theme in the previous sections has been that we could take advantage
of somewhat subtle properties of a simple transition system to achieve goals,
such as garbage collection, conflict resolution, and reconciling concurrent rename
conflicts; but small modifications could break everything, and innocent looking
solutions could be broken in complicated ways.

In view of the complexity of the problem and the encouraging results with the
OCaml prototype we therefore decided to simulate the production version of the
synchronization core of DFS-R using model-checking techniques. This Section
describes the components that comprise the simulator. In summary, the simula-
tor works by exercising different combinations of file system operations followed
by synchronization steps in alternation, then it backtracks to visit different com-
binations. Some traces get pruned by partial order reduction techniques. This
drastically reduces redundancies in the search tree. Backtracking search requires
replacing the memory layer such that old state can easily be retrieved. To relieve
the simulator from suspending threads at arbitrary points we ensure that the
core makes use of suitable thread abstraction allowing it to single step through
large non-blocking atomic units. Finally, certain components are abstracted to
gain speed and control.

Thus, the main ingredients in our software model-checking experiment were:

1. Identifying a suitable vocabulary of actions to exercise.
2. Providing a memory layer that supports efficient backtracking.
3. Providing a threading layer that supports context switching and control of

which threads run.
4. Virtualize components that change device state.
5. Prune search using partial order reduction techniques.

Ideally, one would like a general framework to be able to handle simulating
systems, such as DFS-R. At the time we developed the framework, nothing
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suitable was available. Since then, efforts have been made to address problems
like ours [16] using general frameworks.

8.1 Vocabulary

The simulation layer executes tasks in all possible inter-leavings. We will describe
tasks in more detail below, as they are used as a thread layer. A task step
defines an atomic action. Simulating DFS-R requires providing a handle into
the atomic actions that a machine may perform, but of equal importance also
provide environment actions, such as file system operations. The actions that
are presented to the simulator are summarized as Laction. Finally, we can define
a simulation trace Strace as a sequence d of actions. In our experiments we set
d = 16, with the assumption that most bugs could be exercised with a few
number of operations.

Σfile = {a, b, c, d} vocabulary of files
Σdir = {p, q, r} directories
Σres = Σfile ∪ Σdir resources
Lfs = {share/, noshare/}(Σdir/)∗Σres file paths
Σm = {m1, m2, m3, m4} machines
Laction= rename(Σm, Lfs, Lfs) actions

∪ create(Σm, Lfs)
∪ update(Σm, Lfs)
∪ delete(Σm, Lfs)
∪ sync(Σm, Σm)
∪ read−journal(Σm, N ∪ {ω})

Strace = Ld
action simulation trace

The set of possible file system operations are generated using a finite alphabet
of file and directory names. They may take place on one of the machines listed
in Σm. The internal actions of DFS-R are split into two sets: (1) reading the
USN journal for 1, 2, 3, etc. steps or until reaching a fix-point (ω steps); (2)
synchronizing symmetrically between two machines. Paths starting with share
are replicated, paths starting with noshare are outside the replicated folder.

8.2 A Custom Memory Layer

Key to supporting efficient backtracking is to be able to save and restore state.
Our simulation does not backtrack over suspensions within stack frames. This
limitation allowed us to concentrate on tracking heap allocated memory only.
In summary, the simulation environment saves aside a copy of the heap when
entering a new backtracking point for the first time. When re-entering the back-
tracking point, it can dispense all memory allocated within the branch and re-
store the previous state. Unfortunately, not all heap-allocated memory can be
reclaimed at backtracking points. In particular, memory that is associated with
device state cannot just be overwritten on backtracking points. For instance,
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buffers that are allocated by procedures that print to files cannot be reclaimed
using a stack discipline. This led to a dual mode custom memory layer, one for
backtracking mode and one for non-backtracking mode.

8.3 Thread Layering

It is challenging in itself to model check multi-threaded programs faithfully. A
real software model checker would have to allow context switches at arbitrary
control locations. The first problem requires infrastructure; the model checker
will have to save and restore the stack. This amounts to mirroring thread context
switches. A more fundamental problem is the significant increase in the state
space as every program counter is potentially a backtracking point.

We bypassed these issues by implementing a thread abstraction that wrapped
around thread pools and timer queues. Both facilities are supported by operating
system APIs, but require the caller to maintain different context depending on
whether a job is spawned directly in a thread pool or delayed in a timer queue.

Our thread layer combines these two concepts into a single task entity, which
can be set to run immediately, or with a non-zero delay. To support simulation,
tasks support dual modes: one for running in a multi-threaded environment, and
another for running in a single-threaded simulation environment.

8.4 Virtualization

The interfaces to the on-disk database, the file system, and the network layer
had to be abstracted and re-coded for speed and control. The abstractions were
indispensable in making simulation practical. Creation time of a fresh on-disk
JET-blue database takes for instance 2 seconds (it creates several larger files,
including logs). Backtracking over such disk operations would slow down simu-
lation to a crawl.

Using abstractions also came with several limitations. Foremost, bugs inside
the physical modules were not exposed by simulation, as they were simply not
exercised. It was also limited what we found worth to reflect in an abstraction.
The database abstraction did thus not implement the ACID properties. This was
reasonable as all transactions in DFS-R are short lived, but this prevented us
identifying code paths that would lead to conflicting updates. Such errors were
only later exposed during stress runs.

8.5 Partial Order Reduction

The set of simulation traces introduced in Section 8.1 contain a large number of
essentially symmetric traces. For example, the order of creating files share/p/a
and share/p/b on the same machine is insignificant.

More precisely, let π, π′ ∈ Lfs be file paths, then we define π⊥π′ (read as π is
orthogonal to π′) as a binary relation on paths if neither path is a prefix of the
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other. Furthermore, let m, m′ be machines, op1, op2 ∈ {create, delete, update},
then we define the orthogonality relation ⊥ on actions by:

op1(m, π)⊥op2(m, π′) if π⊥π′

In general, actions are considered orthogonal if they reside on different machines,
thus:

op1(m, π)⊥op2(m′, π′) if m �= m′ ∧ op1, op2 ∈ {create, delete, update, rename}

We overload the use of ⊥ to also capture idem-potency of actions. Actions that
can be considered idempotent, such as two consecutive updates to the same file,
are added to the relation.

Partial order reduction, based on ⊥, is implemented by representing the vo-
cabulary of actions Laction = {a1, . . . , am} using an mapping por from {1, . . . , m}
into 2{1,...m} such that ai⊥aj , if and only if j ∈ por(i). The sets por(i) are imple-
mented as bit-vectors, as m is relatively small and of fixed size. Depth first search
then prunes action sequences containing the pair aiaj if ai⊥aj (that would be
j ∈ por(i)) and j ≤ i.

8.6 Experiments

We ran simulation relatively early in the development process. As the product
got more stable we ran a two week experiment, distributing the search over a
cluster of 200 machines each exploring a different portion of the search space.
This helped us covering slightly more than 1

2 trillion scenarios, for checking main
consistency properties.

Early on, simulation caught a large number of bugs that may have been caught
later in stress. On the other hand, simulation served as a pretty good regression
test as the implementation was evolving at a rapid pace. Some of the bugs found
during simulation had the traits of being extremely difficult for a stress test to
identify. For instance, the trace below exposed a corner case in the interplay
between the components that recycled unique identifiers and those that walked
directories.

create(m2, noshare/p)
rename(m2, noshare/p, share/p)
read−journal(m2, ω)
sync(m1, m2)
rename(m2, share/p, noshare/p)
rename(m2, noshare/p, share/p)
read−journal(m2, ω)
update(m1, share/p)
sync(m1, m2)

In comparison, the bugs found in stress were predominantly in the components
that are abstracted away during simulation. There were a couple of exceptions,
though. Stress exposed a divergence bug that simulation was blind to, it also
exposed a protocol error exposed by asynchronous message passing.
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9 Conclusions

This paper provided an experience report on the design and modeling used for
the development of DFS-R. We put emphasis on the use of research tools Zing
and AsmL from MSR, taking advantage of applicative features in garbage col-
lected functional languages, and experiences with software model checking. None
of these approaches are mainstream in product development, neither can it be
said that DFS-R is a mainstream product; but we feel that pieces and variants
of the approaches taken for DFS-R are benefitial for developing other distrib-
uted systems. The AsmL (now called SpecExplorer) and Zing tools are directly
available as general purpose tools. Today, SpecExplorer is mainly directed to-
wards model-based testing, while its use as a design tool is under-emphasized.
Our software model checker was built exclusively for DFS-R. I doubt much of
our simulation implementation can or should be re-used, as a custom simulation
layer is easiest developed by the component owner. There is a ray of hope in fu-
ture availability of general purpose tools for software model checking concurrent
and/or distributed systems, though the task of building these is huge.

It should be noted that modeling, model exploration and software model
checking are resource-wise minor activities in the larger picture of developing a
product. Far more prolific was stress testing, where multiple instances of DFS-R
are run against random file system operations. During development, each devel-
oper and tester ran stress sessions with up to 1-2 million file system operations
every night. Besides stress runs, BVT regression tests, interoperability testing
and bug-bashes each contributed in driving quality.
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Abstract. When engineering software intensive systems the quality of the 
resulting product depends strictly on the quality of the models used explicitly or 
implicitly in the engineering process. A rich family of such models has been 
developed in recent years. We discuss some of these models and describe the 
requirements for system modeling theories. 

1   Introduction 

There is a long way from early approaches to formal system modeling sometimes 
called “formal methods” such as denotational semantics, VDM, SADT, algebraic 
specification to model based system and software engineering as advocated in wide 
spread approaches such as UML, SysML, or MDA. We discuss this development and 
properties of the theory and methodology that we require. 

System and software development is today one of the most complex and powerful 
tasks in engineering. Modern software systems typically are embedded in technical or 
organizational processes, distributed, dynamic, and accessed concurrently by a variety 
of independent user interfaces. Just by formulating the right programs we obtain 
engineering artifacts that can calculate results, communicate messages, control 
systems, and illustrate and animate all kinds of information. Since programs are - 
implicitly or explicitly - based on models of system behavior and since well-chosen 
models are a successful way to understand software, modeling is an essential and 
crucial issue in software construction. 

In all scientific and engineering disciplines, models play a prominent role. For 
physics, mathematics has provided lots of models. The same holds for many 
engineering disciplines. Economy works with models; biology works more and more 
with models, chemistry works with models. Constructing, analyzing, and arguing in 
terms of models is at the heart of science.  

In informatics modeling is even more crucial. Developing software is more or less 
nothing than developing the right models finally represented in the appropriate 
notation such that they can be executed effectively and efficiently on today’s 
computing devices.  

Many different models are needed in the engineering of software intensive 
systems. To name a few of them: 

• Domain models: describing properties of the application domain that are 
relevant for the system under development (physical, technical, 
organizational, fiscal, legislation rules and laws), 
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• System models: describing the logical and technical behavior and 
structure of the system and software under development, 

• Quality models: describing quality aspects of the system and software 
under development or its development process (see [3]), 

• Cost models: calculating the cost and required budget for a development 
project, 

• Development process models: describing the structure of the development 
process (see [5]). 

These models are used as the basis for the engineering of software intensive 
systems. In particular, for the planning of a development project and in requirements 
engineering such models are indispensable. The formality of these models is only one 
aspect. Of course, if tool support is requested for the application of these models, 
formalization is inevitable. 

levelsofabstraction

hierarchicaldecomposition

propertyrefinement

 

Fig. 1. Three Dimensions of Software Development 

In the following we concentrate rather on the system modeling aspect. In the 
development of large complex software system it is simply impossible to provide one 
comprehensive model for the system in only one step. Rather we 

• specify a system or subsystem first in terms of its interface, 
• add stepwise details by refinement, 
• give several views, 
• decompose the hierarchically system into components, 
• construct a sequence of models on different levels of abstraction. 

Each step in these activities introduces models, refines them, or integrates them. 
Concentrating on the modeling issues we have to manage the following tasks: 

• selection of the appropriate model concept for an aspect, 
• identifying and documenting all the properties for a model, 
• integrating several views into an overall model, 
• decomposing a model hierarchically into components. 
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Finally software construction is also a modeling activity, which constructs 
operational models in terms of the canonical execution models of the programming 
language used. 

Fig. 1 shows three dimensions of system modeling in software development which 
will be explained in detail later on. 

2   Nature of Software Development  

Still we have the ongoing discussion in our scientific community what the essence of 
software development actually is. Is it an engineering task? Is it an art, a handicraft, or 
actually science? Of course, there are many views onto program development, more 
scientific ones or more pragmatic ones. We study and discuss two extreme views in 
the following:  

• Scientific view: Software development always means the construction of a 
formal/mathematical/logical model - therefore it is a formal activity. Software 
is a mathematical object, formally specifiable and verifiable. Software always 
implements explicitly or implicitly a (mathematical) model. 

• Pragmatic view: Software development is an art and a craft; it proceeds by 
esoteric lore, by stepwise improvement, by trial and error. Software needs to 
be changed and redesigned as well as tested over and over again. It is 
unreliable and hard to predict. Software is a description of a technical process 
performed on a computing machine. Thus, software is a technical artifact, 
complex, unreliable and unpredictable. 

Of course, both views are to the extreme and therefore hardly fully appropriate and 
correct. Nevertheless, both views provide relevant aspects and valuable insights into 
the nature of software development. We aim at integrating both views obtaining a 
realistic and respectable discipline of software engineering. Only if we manage to 
have a compromise between both these views in a smart way, software development 
can be improved into a scientifically well-founded, practically relevant engineering 
discipline. 

2.1   Models, Their Structures and Views 

In this section we define the concept of a model, the structure of models and define 
what a model view is. In software engineering the word ”model” is used in many 
different ways and contexts with many quite different meanings. Examples are terms 
like ”meta model”, ”process model”, or ”system model”. In the following we are 
interested in two variations and meanings of the usage of the word model. 

A model is and provides first of all an abstraction. Selecting a model for an entity 
means to focus on specific aspects of that entity. Models are typical chosen in 
engineering to serve a specific purpose. A model introduces via its abstraction a 
particular view or perspective onto an entity. 

A thought model (“Gedankenmodell”) is a presentation of particular aspects of an 
entity, such as a (software) system and its application context. It represents a way to 
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think about a problem, a system, a product, or a process. In essence, it provides an 
abstraction like any model. To find a good thought model is perhaps the most critical 
modeling task since the thought model determines the adequacy of the future 
development approach. 

To make a thought model useful we have to find ways to precisely document, 
communicate the model and to use it in analysis and design. A promising way to do 
this is to represent a model in terms of well known, well understood concepts and 
theories. Mathematics and logics is a good choice for that. 

A mathematical model of a system or some of its aspects is a mathematical 
structure, in general, an algebra, consisting of sets, functions, graphs, relations, and/or 
logical predicates. It represents a thought model in mathematical terms. A good 
mathematical model shows a number of properties such as modularity, flexibility and 
thus fulfils a number of essential logical and mathematical properties. We come back 
to this later. A mathematical model is an idealized abstraction that needs syntax to 
represent it directly. We need techniques to write down, to document, and to 
communicate mathematical and thought models. 

Formalization of models in terms of mathematics and logics is not good per se. 
However, if we are interested to reason about models in terms of well understood and 
well established techniques formalization is a promising way to go. In principle, 
formalization can be done by representing models in classical notation of mathematics 
and logics. However, for an engineer it might be quite difficult and too demanding to 
work out a mathematical model from scratch. Using standardized syntax and 
modeling concepts for the description of models can help. 

A description technique is a set of syntactic concepts (text, formula, graphs, or 
tables) for the description of a thought model. Mathematical models provide the 
semantic theory for description techniques. In essence, we use description techniques 
(syntax) to represent a mathematical model (semantic) that formalizes the thought 
model (abstraction and intention) for a particular development aspect. In the 
following, we are at the same time interested in thought modeling, in mathematical 
models and description techniques. 

2.2   Description Techniques, Their Structures and Views 

From what we have said about modeling it is obvious that model description 
techniques are more useful if they address typical modeling needs and patterns, if they 
provide support for reasoning about models, and if they support the purpose for which 
the model was selected. If models are deployed in an engineering process for the 
development, they have to support classical principles such as “divide an conquer”, 
“levels of abstraction”, “separation of concerns”, “modularity” etc. 

The description techniques and also the described models should therefore be 
modular to support the modular decomposition and composition in the design of 
systems and their description. This requirement induces a requirement on the 
system model: there we need composition operators to construct such modular 
systems. In addition, we are interested in an abstraction concept. Given a 
description of a system building block, we look for an abstraction function that 
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maps the description onto its interface behavior, such that we can calculate the 
interface behavior of the composed system from the abstractions of its sub-systems. 
The description techniques and also the described models should therefore be 
hierarchical to support the hierarchical decomposition and a hierarchical top down 
design of systems and their description.  

Often description techniques do not describe a comprehensive model directly, but 
rather complementary views and properties of it. We speak of a view-oriented 
description. Being interested in software engineering and its foundations we consider 
all three issues of conceptual and mathematical modeling and description techniques 
as interesting fields of scientific study. 

3   Formal Methods and Models in Software Engineering  

Our scientific community has invested lots of time and efforts into so called formal 
methods. In formal methods the idea is that the task of software development 
including specification, stepwise design, implementation and verification is carried 
out completely within a formal and thus logical and mathematical theory. This is a 
striking idea, full of interesting scientific challenges and leading to valuable insights. 
However, practitioners often consider formal methods inadequate, insufficient, too 
expensive, too difficult, and ”not at all practical”. 

Indeed the state of the art in pragmatic and practical software development is still 
far from being satisfactory. Practical software development is to a large extent “ad 
hoc”, ”immature”, unpredictable, uncontrollable, and ”not at all an engineering 
discipline”. 

Actually we have to find a good compromise between the rigorous scientific 
approach to programming and the pragmatic practical approach. One idea is the use of 
well-chosen, sufficiently formal models and their support by tractable theories, 
description techniques, methods, and tools. Programming means in any case using 
models explicitly or implicitly. We claim that it is important to identify the underlying 
models very explicitly and to exploit them for understanding and analysis. 
Appropriate formalization is of great practical advantage since finally formal methods 
provide a rich tool kit of development and validation methods. 

3.1   Models for Structure and Behavior in Software Engineering  

Systematic development of distributed interactive software systems needs basic 
system models that reduce the complexity and concentrate on particular aspects by 
simplifying abstractions. Description techniques are to provide specific views and 
abstractions such as: 

• data view,  
• interface view,  
• architecture, logical structure and distribution view,  
• process view,  
• interaction view,  
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• deployment view,  
• state transition view.  

All these views have to be captured by carefully chosen syntactic description 
methods leading to helpful thought models. The development of systems concentrates 
on working out these views leading step by step to an implementation.  

We give a mathematical model setting in the following providing abstract views 
onto a system. A system is based on an algebra A that describes its basic data types 
and elements as well as its characteristic operations. A system has an interface view 
(black box view) which describes its behavior for the user of a system. Each system 
has an implementation in terms of a state machine or a composed system. A system 
always has a state space and can be viewed as a state machine. System models can be 
refined. They describe systems at particular levels of abstraction. A system has a set 
of traces (processes, system runs) as its histories. Each view defines logical properties 
in terms of a mathematical model. 

4   System Model: A Meta Model Theory of Software 

In this section we introduce a meta model for software systems. We outline its 
essential views and how they are related. Later we give a concrete instance of this 
meta theory. 

4.1   Criteria for a Theory of Modeling  

For a scientifically and practically useful approach to modeling in software 
engineering we list in the following a number of criteria and essential ingredients.  

We need a system model, a mathematical model of a system, powerful enough to 
incorporate all envisaged views, supporting the concept of levels of abstraction, 
hierarchical decomposition, and modularity. In the following we identify and define 
these requirements more precisely. 

4.2   A System Meta Model 

In a system meta model we incorporate all the concepts needed to describe the 
different parts and views of a system. Formally we define a signature of an algebra, 
the algebra of system models, and state some algebraic properties. 

4.2.1   Data Model 
Data occur in systems everywhere. Typically today the data view is defined by a 
family of data types (or sorts) describing sets of data. In most cases, in addition, 
functions are introduced on the data sets. This leads to heterogeneous algebras. The 
theory of data algebras is very well understood by now. A data model is an algebra. 
DM denotes the set of all data models. It defines a signature, being a family of names 
for types, functions, and operations, together with axioms describing the properties or 
with an explicit model. 
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Fig. 2. Meta Model of the System Model 

Typical description techniques are axiomatic, algebraic specification (abstract data 
types, see [1]), Entity/Relationship-diagrams or class diagrams. 

4.2.2   State Model 
State machines give a basic view onto interactive systems. A state machine is 
described by a set of states called a state space, a subset of the state set called initial 
states, and a state transition function.  

Typical we work with state machines with labeled or with unlabelled transitions. 
As labels we use the elements of a given set of actions. Another class is state 
machines with input and output. We distinguish this the following classes of state 
transition functions: 

 Δ: State → ℘(State) unlabeled state transitions 

 Δ: Action → (State → ℘(State)) action labeled state transitions 

 Δ: State × Input → ℘(State  × Output) state transitions with input and output 

In the case of a state machine with input and output we may consider pairs of input 
and output as labels. The description of the state space and the label sets Action, Input 
and Output is again a data-modeling task. A simple and powerful way to define a state 
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space is the choice of a set of typed attributes such that each valuation of this 
attributes defines a state. 

Given initial states Λ ⊆ State and the pair (Δ, Λ) defines a system in terms of a 
state machine. By SM we denote the set of all state machines. 

4.2.3   Abstraction: The Interface Model 
In general, state machines provide a rather detailed model of a system. Often we are 
interested in more abstract views. In particular, from a user’s point of view we are 
often not interested in the concrete states of a system. For state machines with input 
and output or with labeled transitions the abstraction is quite obvious. If the labels 
describe the effects of the machine to the outside world we are only interested in the 
labels but not in the states.  

For unlabeled state transition systems we may divide the states into local and 
nonlocal parts. In the cases of state spaces defined by attributes we speak of local and 
nonlocal attributes. We may furthermore distinguish between attributes that can only 
be read or written by the machine and those that can only be read or written by the 
environment.  

To begin with, we introduce abstractions between state machines. Mathematically, 
an abstraction is a mapping of the form 

 αSM/SM: SM →  SM 

This is only a syntactic notion so far. Not every mapping between state machines is 
to be called an abstraction. Particular behavioral similarities are required that we will 
discuss in detail later. In fact, there are, in general, many abstraction mappings 
between state machines. 

To begin with we are interested in syntactic interfaces. A syntactic interface 
describes syntactic properties of a system that determine if it can be composed with 
another system (since they syntactically fit together) or if a system A can be replaced 
another one B in any context without running in any syntactic difficulties. Then B is 
called syntactically compatible for A and we write A >> B. We assume that the 
syntactic compatibility relation >> is partial preorder. If A >> B and A >> B then we 
write A ≈ B and say that A and B are mutually syntactically compatible. 

In the interface model we abstract from all details in the state machine model that 
are not relevant for working with a system. An interface view provides therefore an 
abstraction. By IF we denote the set of all interfaces. We assume that there is a 
canonical abstraction function called interface abstraction: 

 αSM/IF: SM →  IF interface abstraction 

We require for all we interface behaviors F ∈ IF 

 F ≈ αSM/IF (F)) 

The abstraction function maps a state machine onto its interface. The interface is 
also called black box view or observable behavior. In fact, we also define abstractions 
between interfaces: 

 αIF/IF: IF →  IF 

We require for all we interface behaviors F ∈ IF 
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 F ≈ αIF/IF(F)) syntactic compatibility of interface abstraction 

Clearly not every mapping between interfaces is to be called an abstraction. 
Particular behavioral properties are required. 

State machine abstraction is generally not an injective function: there are several 
state machines with the same interface abstraction. This shows that there does not 
exist an inverse function for αSM/IF, but we can require a canonical function 

 ρ IF/SM: IF →  SM 

such that for all we interface behaviors F ∈ IF get  

 αSM/IF(ρIF/SM(F)) = F reversibility of representation 

This implies that there is a state machine for each (consistent) interface specification. 

4.2.4   The Process Model 
A run of a system can always be understood as a family of events that are causally 
connected. Each such run is called a process. Every event in a process is the instance 
of an action. Which actions are considered in a process is again a question of the 
chosen view and level of abstraction. We can define interface processes or processes 
that reflect internal actions and internal events. A system behavior then is a set of 
processes. 

By PRC(Action) we denote the set of system descriptions by sets of processes over 
the set Action, by PRC the set of all system descriptions by sets of processes.  

Like for state machines and interfaces, we define abstractions between processes 
by mappings of the form:  

 αPRC/PRC: PRC →  PRC 

Again not every mapping between processes is called an abstraction. Particular 
behavioral properties are required. 

In fact the process view is closely related to the state view. Every state machine 
defines a set of processes and thus a system behavior in terms of processes. In 
essence, the process view is a mild abstraction of the state view.  

We assume, in particular, the existence of two specific abstraction functions. We 
assume a process abstraction for state machines:  

 αSM/PRC: SM →  PRC 

and a canonical interface abstraction mapping: 

 αPRC/IF: PRC →  IF 

In fact we expect that the composition of these two abstractions yields the state 
machine interface abstraction. For every state machine M in SM we assume:  

 αPRC/IF(αSM/PRC(M)) = αSM/IF(M)   

In other words a process abstraction of a state machine followed by an interface 
abstraction of the process yields the interface abstraction of a state machine. 

Any functional composition of abstraction functions should yield an abstraction. In 
other words, we require that the set of abstractions is closed under functional 
composition. 
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Given the canonical function ρIF/SM we define a canonical 

 ρ IF/PRC: IF →  PRC 

such that for all we interface behaviors f ∈ IF define  

 ρ IF/PRC(f) = αSM/ PRC(ρIF/SM (f)) 

This is, however, only one option to relate a canonical process to each interface. 

4.2.5   Composed Systems: Composition 
If we compose systems into larger ones out of given components we need an 
operation of composition. In principle, compositions are useful for all the views and 
models of systems described so far. To begin with we simply assume a binary 
composition operator for each system view. 

 ⊗IF: IF × IF →  IF 

 ⊗PRC: PRC × PRC →  PRC 

 ⊗SM: SM × SM →  SM 

Ideally ⊗ is commutative and associative. It may be a partial function, however. 
Only certain components can be composed meaningfully. For each of these operators 
we require: 

 A1 >> B1  ∧ A2 >> B2 ⇒ A1⊗A2 >> B1⊗B2 monotonicity of syntactic compatibility 

We furthermore expect that interface abstraction distributes over composition:  

 αSM/IF(M) ⊗IF αSM/IF(M') = αSM/IF(M⊗SMM') compositionality 

The same equation can be formulated for the process view. Due to the abstraction 
function we easily may compose infaces f with state machines M by: 

 αSM/IF(M) ⊗IF f  

or by 

  M ⊗SM ρIF/SM(f) 

It is easy to show due to compositionality that the abstraction of the later is 
identical to the first: 

 αSM/IF(M) ⊗IF f = αSM/IF(M ⊗SM ρIF/SM(f)) 

We require, in addition, that the refinement relation that we introduce later is 
compositional.  

4.2.6   Composed Systems: Architecture  
Assuming associativity and commutativity composition is easily generalized from 
pairs of systems to sets and families of systems. Then we work with the notion of 
component identifiers. A component is a system itself also called subsystem. Let IK 
be a set of component identifiers. Then a composed system with components modeled 
by their interfaces is defined by a mapping 

 νIF: IK →  IF 

that associates an interface with each component identifiers. We speak of system 
architectures. 
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Often we require additional syntactic properties for the components of a composed 
system that assure, in particular, that the composition of the components is well 
defined. The set of all composed system models with subsystems modeled by 
interfaces is denoted by CSIF.  

Similar mappings defining composed systems of components modeled by 
processes or state machines are easily defined by the following functions.  

 νPRC: IK →  PRC 

 νSM: IK →  SM  

This way we get systems structured into components modeled by processes or state 
machines respectively.  The sets of such composed system models with components 
modeled by processes or state machines are denoted by CSPRC and CSSM respectively. 
Due to the generalization of composition to we can consider architectures of the form 

 ν: IK →  SM ∪ IF ∪ PRC 

where the components of an architecture are represented by interfaces, state machines 
or processes. 

4.2.7   System Hierarchies 
So far we have only introduced concepts of flat, composed system models. Now we 
define inductively the set of hierarchical composed systems. Let HCS denote the set of 
all composed hierarchical systems. We define this set inductively by: 

(0)  HCS0 = SM ∪ IF ∪ PRC  

(1)  every function ν : IK →  HCSn is in HCSn+1 

We define 

 HCS = ∪ HCSn 

This allows us to define hierarchical (and by a more sophisticated construction - 
using ideas from domain theory - even recursive) systems. In most cases and also for 
our purpose, however, finite hierarchies are sufficient. We define in full generality 
that a hierarchical system is a mapping: 

 ν : IK →  HCS 

By the notion of component identifiers and hierarchical composed systems we 
introduce a new concept into our system model namely that of an instance. In 
particular, we include composed systems where one interface or one state machine is 
used several times by assigning it to different component identifiers.  

4.2.8   The Use Relation in a System Hierarchy 
In a large composed system we have generally many different constituents and 
components. Typically there is a kind of hierarchy in a system model expressed by the 
use-relation. We define functions such as 

 is_usedDM / IF : DM × IF →  IB 

 is_usedIF/HCS: IF × HCS →  IB 

 is_partIF/HCS: IF × HCS →  IB 
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Taking into account the idea of a component identifier, we can also establish the 
is_part relation between component identifiers that formalizes the component 
hierarchy. Note that a hierarchy of composed system defines a tree (an acyclic 
directed graph where each path is unique). It is called the component tree or the 
component hierarchy. 

4.2.9   Abstractions of Composed Systems 
Easily we define abstractions for composed systems: 

 αCS/IF: CSIF →  IF 

 αCS/PRC: CSPRC →  PRC 

 αCS/SM: CSSM →  SM 

The relationship between composition and composed system and their abstractions 
is defined as follows. Let ν be a composed system with components modeled by 
interfaces and with component identifiers 

 IK = {k1, ..., kn} 

We assume 

 αCS/IF(ν) = ν(k1) ⊗IF ... ⊗IF ν(kn)  architectural interface abstraction 

This definition essentially assumes that composition is associative and 
commutative. Composition is the key to hierarchical models. The inverse to 
composition is decomposition. A decomposition of a system described by an interface 
model into a family of components yields a composed system the abstraction of which 
yields the original interface model. 

Thus finally we get an interface abstraction for all kinds of systems represented by 
the mapping 

 αIF: HCS →  IF 

The idea of an interface abstraction is the basis for the composition and integration 
of all kinds of systems represented by state machines, processes, or composed 
systems. 

4.2.10   Time 
Time is a very essential aspect of a system and its behavior. Many systems interact in 
a time frame. This means that the time and the duration of the execution of actions are 
essential for the behavior of systems. We denote the set of all timed composed 
hierarchical systems by TCS and the set of nontimed composed systems by NCS. Again 
we assume an abstraction function 

 αT: TCS →  NCS 

Time is a concept that is orthogonal to all the concepts introduced so far. We may 
introduce a notion of time in all the model aspects introduced above. It is in particular 
interesting to relate system models with explicit time to system models without 
explicit time. 

Forgetting about timing aspects is again an abstraction. We may have timed system 
models as well as nontimed system models (see [4]). 
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4.3    A System Development Meta Model, Development Relations: Refinement 

The system meta model describes the building blocks of all system models. During 
system development, several system models are constructed that - in an ideal case - 
are formally related by refinement relations. 

We are not only interested in the system modeling elements, the system views, and 
how they fit together to a complete system description. We are also interested in 
relating the models as they are successively constructed in the development process. 
For this purpose we introduce refinement relations between models. We work with 
three levels of refinement: 
• Horizontal refinement also called property refinement; by property refinement we 

add properties that restrict the behavior of the system and thus make a system 
more deterministic. 

• Vertical refinement also called design or implementation; by a design or 
implementation step we replace an interface by a design. A design is given by a 
decomposition of a system into subsystems or a state machine. 

• Granularity refinement also called interaction refinement - levels of abstractions; 
by a refinement step changing the level of abstraction we replace system models 
by a more concrete ones, for instance, by systems with finer grained actions, state 
transitions, or messages. 

These refinements are mathematically relations between modeling elements. These 
relations form partial orderings. We assume that vertical refinements are special cases 
of horizontal refinement, which is in turn a special case of granularity refinement.  

4.3.1   Property Refinement 
During development we develop systems step by step adding more and more detail. 
We work with a refinement relation to relate models to those with more specific 
properties. Therefore we speak of property refinement or semantic compatibility. This 
relation can be introduced for all described system views: 

 ≈> : HCS × HCS →  IB 

If M ≈>  M' holds we say M refines to M' or M is refined by M'. Moreover we 
assume that refinement implies syntactic compatibility 

 A ≈> B ⇒ A >> B 

Each refinement relation is assumed to be a partial ordering. Of course this form of 
refinement should be compatible with the introduced notions of composition and 
abstraction.  

 M ≈>  M' ⇒ αIF(M) ≈> IF αIF(M') compatibility of refinement 

In mathematical terms, abstraction is monotonic for refinement (for X ∈ {IF,  SM, 
PRC}). 

 M ≈>  M' ∧ N ≈>  N' ⇒ M ⊗ N ≈>  M' ⊗ N' compositionality of refinement 

In mathematical terms, composition is monotonic for refinement. By refinement 
we can relate models and parts of models.  

4.3.2   Implementation as Refinement 
Complex systems are modeled during development at different levels of abstraction 
and granularity. We work with a refinement relation to relate models at different 
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levels of abstraction. One refinement direction in development is steps towards an 
implementation. Then we speak of an implementation relation. This relation can be 
introduced for all system views: 

 ≈>>IF/ SM: IF × SM →  IB 

We write 

 F ≈>>IF/ SM  M 

to express that the state machine M implements the interface. In particular, we 
assume  

 αSM/IF(M) ≈>> IF/SM M correctness of refinement 

for each state machine M.  
The implementation relation can also be introduced for the other system views 

such as the process and the state machine view:  

 ≈>> IF/PRC: IF × PRC →  IB 

 ≈>> PRC/SM: PRC  × SM →  IB 

In addition, we may introduce such an implementation refinement relation also for 
state machines or composed systems. 

Of course this form of refinement should be compatible with property refinement 
composition, and also abstraction.  

 F ≈>> IF/ SM M’ ⇒ F ≈>  α(M’) 

 F ≈>> IF/ SM M ∧ F’ ≈>> IF/ SM M’ ⇒ F ⊗IF F’ ≈>> IF M ⊗SM M’ 

In principle, we could work with only one refinement relation, which is a general 
implementation refinement relation on system models 

 ≈>> : HCS × HCS →  IB 

It formalizes the idea of implementation refinement for the set of all systems. 
Implementation refinement should be a special case of property refinement 

 M ≈>>  M' ⇒ M ≈>  M'  

In implementation refinement the internal structure of a system is maintained. 

4.3.3   Granularity Refinement: Levels of Abstractions 
To study systems at different levels of abstraction and granularity we work with a 
specific refinement relation. This relation can be introduced for all system views: 

 ~>IF: IF × IF →  IB 

 ~>PRC: PRC × PRC →  IB 

 ~> SM: SM × SM →  IB 

In granularity refinement we do not assume that from A ≈> B we may conclude 
that A >> B.  

We assume granularity abstraction functions α and representation functions ρ. 
These are assumed to be partial functions. The abstraction function maps a concrete 
behavior onto its abstraction: 
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 α, ρ: IF →  IF 

We require for all we interface behaviors F ∈ IF for which ρ(F) is defined 

 F = α(ρ(F)) 

Clearly not every mapping between interfaces is to be called an abstraction. 
Particular behavioral properties are required. We require for all we interface behaviors 
F ∈ IF 

 α(F) ~> IF F 

and that  

 F ~> IF F’ 

only holds if there is an granularity abstraction α with 

 F = α(F’) 

Nevertheless, this form of refinement should be compatible with composition and 
abstraction, too.  

 M ~> SM M' ⇒ α IF(M) ~> IF αIF(M') 

The following property can expected only for abstraction functions α1 and α2 that fit 
together: 

 α1(F1) ⊗IF α2(F2)  ~> IF F1 ⊗IF F2 

Property refinement should be a special case of granularity refinement 

 M ≈> SM M' ⇒ M ~> SM M'  

Note that implementation refinement is a special case of property refinement while 
granularity refinement is a generalization. In principle, we could work with only one 
refinement relation that is a generalization of all of the refinement relations 
introduced above.  However, the individual refinement relations are more appropriate 
to reflect the role of these relations in the development process. This allows us to 
characterize refinement steps.  

We assume a general granularity refinement relation on systems 

 ~> : HCS × HCS →  IB 

It formalizes the idea of granularity refinement for the set of all systems. It is based 
on  the idea of interface abstraction and granularity of interface abstraction: 

 M ~>  M' ≡ α IF(M) ~> IF α IF(M')  

For interfaces we assume that the mapping α is the identity. This way granularity 
interface refinement is used as a reference relation for granularity refinement for all 
kinds of systems. 

4.3.4   Deployment 
Typically composed software systems are distributed over a network of hardware 
units on which they are executed. Each software component is located on one 
particular hardware unit. We speak of deployment. It is one of the decisive steps in 
software development to determine the deployment of a system especially for 
distributed and embedded systems. 
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Deployment needs a more complex system model in which it can be expressed 
what it means that a software system is executed on a particular piece of hardware. 
However, our notion of a composed system and system hierarchy is already a concept 
that helps to express such a structure. We only have to characterize certain composed 
systems as hardware structures. Then we can express in our model that a number of 
subsystems is placed onto one (abstract) hardware unit. 

4.4   Observation and Degrees of Abstraction 

The critical parts of a system model are the interface abstraction functions. They 
determine the degree of abstraction that is provided by the concept of an interface. 
The better the abstraction is, the more helpful the method is. It is easy to introduce a 
partial ordering on abstractions. This allows us to speak about a greatest element and 
a least element in the family of abstractions.  

Without any restriction on the abstractions we are allowed to abstract away 
everything. But then all state machines are considered to be the same. It is more 
appropriate to fix a notion of interface observation, which is then the basis of an 
interface abstraction. In a simple case the observation abstraction provides an 
interface abstraction that is compositional. But this is not true, in general. In the ideal 
case the interface abstraction is identical to the interface observation. But, in general, 
the interface abstraction is too abstract to guarantee compositionality. Then additional 
information has to be added to achieve compositionality.  

Therefore given an observation abstraction we may look for an interface 
abstraction that contains all the information of the observation abstraction, but is 
compositional. The best (most radical) abstraction with this property is also called 
fully abstract. 

4.5   Software Development as Modeling Tasks 

From the very beginning, when analyzing and understanding a problem domain we 
start to work towards finding useful models. This goes on and on when we analyze 
use cases and their specifications, the software architecture, the modularization of the 
system and its implementation. Software development includes the modeling and 
description of various aspects, such as: 

• application domains, their data structures, laws, and processes, 
• software requirements, based on data models, functions, and processes, 
• software architectures, their structure and principles, 
• software components, their roles, interfaces, states, and behaviors, 
• programs and modules, their internal structure, their runs and their 

implementation, 
• test cases, their generality and usefulness. 

If models are so important in software and systems engineering, a central question 
of course is, what is a model in software engineering? 

• An annotated graph or diagram? 
• A collection of class names, attributes, and method names? 
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In engineering, a model is always represented and described by a collection of 
formulas, diagrams, and tables as well as text expressed in some notation with a well-
understood mathematical theory! In analogy, software engineering asks for 
mathematical modeling theories of digital systems – algebra, logic, model theory! 
Logic provides a unifying frame for that! 

4.6   Scientific Foundations of Modeling in Software Development  

As explained above in software development we perform the modeling (abstractions) 
by describing views in terms of description techniques at different levels of 
abstractions. In this activity we have to answer the following question: 

• What aspects and properties of a system does a view address exactly? 
• What is the meaning of a description technique? 
• Which views are helpful for what? 
• In which order should the views be worked out? 
• How are views related? 
• When are several views complimentary, redundant, or consistent? 
• How can we combine several views into one comprehensive model? 
• What are useful levels of abstraction? 
• How are different levels of abstraction related? 

These questions touch deep methodological and foundational issues. We 
concentrate in the sequel on more foundational topics. Our main concern in the 
following is a comprehensive setting of mathematical models and their integration, 
their relationships, and theory. 

5   The Role of Description Techniques 

In software development we could, in principle, use a plain mathematical notation. 
This is sometimes appropriate but often not very convenient, however, since 
notational conventions and fixed patterns of descriptions are helpful to keep model 
descriptions short and readable. Therefore description techniques are of major interest 
to the software engineer. In our case, where we depart from a system meta model, 
description techniques are a tuned notation for logical predicates that identify 
properties of a particular system in the class of all system models fixed by the meta 
model. 

Practical software engineers often prefer the use of diagrams to textual notation 
such as in formulas and programming languages. The reason is quite evident. 
Engineers believe that diagrams are more telling, easier to understand and better to 
grasp. Whether this holds actually true is not so obvious and leads into a long, 
controversial discussion.  

Nevertheless in some applications diagrams are certainly helpful. However, on the 
long run diagrams are only helpful if they are well based on a proper theory of 
understanding. Well-chosen models and their theories can provide such an 
understanding. Then the question whether to work with text, formula, tables, or 
diagram boils down to the mere question of syntactic presentation. 
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5.1   Practice Today: Diagrams 

In practice, today we find many diagrammatic methods and description techniques for 
modeling and specification (SA, SADT, SSADM, JSD, SDL, OMT, UML, ROOM, 
..., see [21], [11], [16], [2], [17]) in software and systems engineering. Especially 
UML has gained much attention.  

The idea of universal modeling languages is certainly a great one - a closer look 
shows, however, how ad hoc most of these ”methods” are especially those found in 
UML. At best, they reflect essential insights into the engineering of software 
applications. Never have these practical diagrammatic modeling techniques been 
justified on the basis of a comprehensive mathematical foundation. In contrast, only 
after the languages where published scientists work hard to define and explain the ad 
hoc constructs of modeling languages such as UML post mortem.  

As a result the description techniques remain vague and imprecise. A basis and 
theory for the integration of the different views is missing. 

5.2   Limitations of Diagrams 

By a look at the state of the art we see that a lot of diagrams are used without a proper 
theory and without good support for understanding. To underline this remark we 
mention three weak examples (see also [22]):  

1. UML and its statecharts dialect with its endless discussions about its 
semantics.  

2. Behavior specification of interfaces of classes and components in object 
oriented modeling techniques in the presence of callbacks.  

3. Concurrency and co-operation: Most of the practical methods especially 
in object orientation seem to live in the good old days of sequential 
programming and do not properly address the needs of highly distributed, 
mobile, asynchronously co-operating software systems. 

We need proper theories and methodological insights (see [18]) to overcome these 
shortcomings. And there is an inherent difficulty when dealing with diagrams. 
Theories can hardly be expressed solely by diagrams. 

5.3   From Logic to Modeling Languages and Back to Logic 

It is a disaster for academic informatics that it did not manage to design a modeling 
language that is used as widely as UML. The vision, however, remains – an academic, 
scientific view on modeling! How can we achieve that? We start from foundations: A 
tractable scientific basis, understanding, and theory for modeling, specifying, and 
refinement in programs, software and systems. On that basis we identify powerful 
models supporting levels of abstractions, multi-view modeling, and domain modeling. 
This leads to comprehensive description techniques properly based on scientific 
foundations. Thus we gain a family of justified engineering methods based on these 
foundations and finally a flexible development process model combining these 
methods. 

All these are the necessary prerequisites for a comprehensive tool support in 
software development including specification refinement, validation, consistency 



42 M. Broy 

checks, verification, and code generation by algorithms and methods justified by the 
theories. Finally we arrive at modeling and its theory as an integral part of software 
construction as an engineering discipline. 

5.4   Formal Description Techniques 

As said before in our approach each of the description techniques defines logical 
properties for the system under development. These may be a syntactical or a 
behavioral properties. 

5.4.1   Logic Based Description 
A straightforward way to write system descriptions is a direct use of a tuned logic. 
Examples are algebraic specifications (abstract data types), VDM, Z, or RAISE. Other 
examples are the many logic system models that work with structured operational 
semantics or with temporal logics.   

5.4.2   From Diagrams to Logic 
If diagrams fit well to a system model there is a straightforward translation of them 
into logic. This is useful for many reasons such as checking consistency and 
integration of description techniques. A simple and powerful approach is obtained by 
translating diagrammatic system descriptions schematically into logical formulas in 
terms of a system model. For that a system model is needed that is well chosen with 
respect to the spirit of the description technique. 

A second option is the introduction of a logical theory that supports the deduction 
of logical propositions. Then an axiomatisation of this theory is needed. 

6   Summary and Outlook 

Why did we present this setting of mathematical models and relations between them? 
First of all, we want to show how rich and flexible the tool kit of mathematical model 
is and how far we are in integrating and relating them. Perhaps, it should be 
emphasized that the we get first of all an integrated system model very close to 
practical approaches by SDL or UML where a system is a set or hierarchy of 
components. In this tree of components the leaves are state machines. In our case the 
usage of streams and stream processing function is the reason for the remarkable 
flexibility of our model toolkit and the simplicity of the integration. 

Software development is a difficult and complex engineering task. It would be very 
surprising if such a task could be carried out properly without a proper theoretical 
framework. It would at the same time be quite surprising if a purely scientifically 
theoretical framework would be the right approach for the practical engineer. The 
result has to be a compromise as we have argued between formal techniques and 
theory on one side and intuitive notations based on diagrams. Work is needed along 
those lines including experiments and feedback from practical applications. But as our 
example and experiment already show a lot is to be gained that way. 

Theory and practical understanding are the key to mature software development. 
To achieve that we need a much deeper and more intensive interaction between 
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researchers working on the foundations, the designers of practical engineering 
methods and tools, the programmers and engineers in charge of practical solutions, 
and application experts modeling application domains. Successful work and progress 
along the lines described above does not only require the interaction between these 
types of people - it also needs hybrid people that have a deep understanding in all 
three of these areas. 
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Abstract. We present a denotational semantics for a fully functional
subset of the Handel-C hardware compilation language [1], based on the
concept of typed assertion traces. We motivate the choice of semantic
domains by illustrating the complexities of the behaviour of the language,
paying particular attention to the prialt (priority-alternation) construct
of Handel-C. We then define the typed assertion traces over an abstract
notion of actions, which we then instantiate as state-transformers. The
denotational semantics is then given and some examples are discussed.
As is fitting given those honoured at the Festschrift of which this paper is
a part, we show how the work of both Dines Björner and Zhou Chaochen
act as inspiration, from the past, into the future for this research work.

1 Introduction

This paper describes a denotational semantics for Handel-C which gives a pro-
gram a meaning as a set of “Typed Assertion Traces”.

Handel-C1[1] is a language originally developed by the Hardware Compila-
tion Group at Oxford University Computing Laboratory, and now marketed by
Celoxica Ltd. It is a hybrid of CSP [2] and C, designed to target hardware
implementations, specifically field-programmable gate arrays (FPGAs) [3]. The
language has sequential and parallel constructs and global variable assignment
and channel communication. The language targets synchronous hardware with
multiple clock domains. All assignments and channel communication events take
one clock cycle. All expression and conditional evaluations, as well as priority
resolutions are deemed to be instantaneous, effectively being completed before
the current clock-cycle ends.

We see the final semantics of Handel-C as having four components: types;
priorities; synchronous cores; and the asynchronous environment. A detailed
description of these and their motivation is given in [4]. Here we simply stress that
this paper is primarily concerned with the semantics of the synchronous cores,
incorporating priorities. The topics of typing and the external asynchronous
interface are beyond the scope of this paper.

We first introduce the language, then describe prior and related work in this
area, before motivating and describing the domains used for our denotational
semantics.
1 Handel-C is the registered trademark of Celoxica Ltd (www.celoxica.com).

C.B. Jones, Z. Liu, J. Woodcock (Eds.): Bjørner/Zhou Festschrift, LNCS 4700, pp. 45–66, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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2 The Language

We introduce here the “mathematical” version of a stripped-down Handel-C,
which albeit simpler, has all the essential features of the full language.

2.1 Syntax

We have variables (x ∈ Var), and we assume the existence of an expression syn-
tax (e ∈ Exp) whose details need not concern us here. We also have identifiers
for channels (c ∈ Ch), and we consider all the above as having either boolean or
integer type, and occasionally use b to denote a boolean-valued expression. We
also have the notion of guards (g ∈ Grd), which denote the offering and accept-
ing of communication actions. Guards either denote a desire to perform output of
an expression’s value along a channel (c!e), to receive input via a channel into a
variable (c?x ), or a skip/default guard which always succeeds (!?).

g ∈ G ::= c?v | c!e | !?

A syntax of a process p : Proc is as follows:

p ::= 0 | 1 | x := e
| p1 ; p2 | p1 ‖ p2 | p1 �b� p2 | b ∗ p
| 〈gi → pi〉i∈1...n

The last clause is shorthand for a list of guard-process pairs.

2.2 Behaviour

We can briefly summarise the behaviour of a Handel-C process as follows: 0 does
nothing, in zero time; 1 does nothing, but takes one clock cycle to do it; x := e
assigns the value of e into x , taking one clock cycle; (p1 ; p2) first executes p1,
and once it has terminated immediately starts p2; (p1 ‖ p2) runs both p1 and
p2 in lock-step parallel, terminating when they have both finished; (p1 �b� p2)
evaluates b and executes p1 immediately if b is True, otherwise it runs p2; and
b ∗ P tests b and if True it runs P and then repeats, otherwise it terminates.

The 〈gi → pi〉 construct (“prialt”) is an ordered sequence of guard-process
pairs. Guards are either communication actions or a default guard to be activated
if no communication guard is active. The default guard, if present, must be last.
The sequence of guards in a prialt denotes that prialt’s priority preference,
considered as relative priority — i.e. it prefers its first guard to its second, its
second to its third, and so on.

Each guard is checked against the process environment to see if it is able to
execute. If no guards are so enabled, then the prialt blocks until the next clock
cycle when it tries again. If one or more guards are enabled, then the first such
in the list is executed, and then the corresponding process is executed. An input
guard (c?x ) is enabled if there is a corresponding output guard (c!e) in some
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other prialt executing at the same time, and vice versa. The default guard (!?) is
always enabled. The input (c?x ) and output (c!e) guards perform their actions
taking one clock-cycle, while the default guard (!?) acts in “zero-time”, so the
subsequent process starts execution immediately. It is this “instant” execution
of !? guards that so complicates the formal semantics of Handel-C, as discussed
extensively in [5].

2.3 Restrictions

We have a mix of parallel processes and global shared variables, so Handel-C
has a restriction which states that no variable should ever be assigned to by
two different processes during one clock cycle. It is allowable to have different
processes write to the same variable on different clock cycles. The Handel-C
language reference manual [1] states that different parallel processes generally
should not write to the same variable, but that if they do, the programmer has
a proof obligation to show that these writes never occur during the same clock
cycle.

This extends to disallowing the simultaneous writing of two different values
to the same channel — however having multiple readers of a channel at any one
time is permitted.

Another key restriction imposed by Handel-C is that during any clock-cycle,
all the relative priorities of all prialts executing during that cycle must be
consistent with one another in that no priority cycles are introduced when all
their preferences are merged.

3 Previous and Related Work

Early work on the formal semantics of Handel-C concentrated on a subset of the
language that did not contain the prialt construct [6,7]. The approach adopted
was in the style of the “Irish School” of the VDM [8] which drew its inspiration
from the pioneering work in VDM of Dines Björner and his colleagues [9].

However it soon became clear that prialt would have to be included. It
cannot be simulated using ordinary communication and switch statements, and
it has a number of effects on the overall semantics. Also, we viewed the task of
developing a formal semantics for Handel-C as being an true exercise in domain
modelling [10,11], as our intention was to model an existing artefact, warts and
all, rather than construct a nice simple well-behaved hardware process algebra.

A formal description of prialt resolution without consideration of default
clauses was presented in [12]. An initial denotational semantics was developed
[13] which incorporated this prialt resolution semantics. Then the prialt
model of [12] was then extended to handle default clauses properly and an op-
erational semantics for Handel-C incorporating this was developed [4,5]. The
operational semantics had to introduce a notion of prioritised transitions in or-
der to correctly capture the behaviour of default guards. This additional notion
of priority was completely different and orthogonal to the priorities expressed
by the prialt construct.
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Priority in concurrent processes is difficult to treat formally but many ex-
amples abound, in both the CSP setting [14,15,16,17]. and in the more general
process algebra areas [18,19,20]. The CSP treatment either fails to handle re-
cursion, or is too complex and general, while the more general process algebra
work is closer to what is required. Unfortunately, priority in Handel-C does
not fit neatly into the priority schemes that have been considered, as described
in [20]

Other work involving formal techniques and Handel-C has been reported,
and includes the use of the Ponder policy specification language [21] as a ba-
sis for implementing firewalls [22], as well as techniques for performing behav-
ioural transformations from Haskell programs into Handel-C implementations
[23]. Beyond the scope of Handel-C, there is considerable work on using formal
techniques to develop safety-critical embedded systems, of which the languages
Esterel [24,25,26] and Lustre [27,28] are two key examples.

4 Overview of prialt Semantics

We present here a brief overview of the prialt semantics presented in [5], with an
explanation of how it can be interfaced with the denotational semantics described
later on in this paper.

In any given clock cycle, there will be zero or more prialts commencing
execution. A guard is deemed to be potentially active if elsewhere there is a
complementary guard in some other prialt active during the same clock cy-
cle. The process of determining which guards, if any, become active, is called
Resolution.

In [12] resolution is viewed formally as a function Resolve that takes a set
of Prialt Requests (PriSet), and returns a pair called a Resolution (Resltn),
consisting of an Channel-Prialt Map (CPMap) and the set of prialts that have
remained blocked.

PriSet = PPrialt
CPMap = Ch → PriSet
Resltn = CPMap × PriSet

Resolve : PriSet → Resltn

A Prialt Request is simply modelled as a sequence of guards, i.e simply as the
corresponding prialt-statement with the continuation processes stripped out.
The Channel-Prialt Map identifies which channels are going to be active and
maps them to those prialts which will participate in communication over that
channel.

In order to model the semantics of prialt, we view a clock-cycle as being
composed of four phases: selection (sel); request (req); resolve (res); and action
(act). During the selection phase, flow of control decisions are taken by evaluat-
ing conditions for if-statements and while-loops. During the request phase, any
prialts which have been selected lodge their prioritised communication requests
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in a central location. Once all this has occurred, the resolve phase determines
which communication requests are going to be granted. In the action phase, all
the assignment statements selected earlier, and all the communication actions
just resolved, are carried out simultaneously. The clock tick signals the end of
the action phase.

The set of prialts that are input to Resolve are those lodged centrally during
the request phase. Conceptually, resolution occurs at the transition between the
request and resolution phases and results in the two outputs as mentioned above.
During the resolution phase, the resulting channel-map and blocked prialt-sets
are examined to determine what activities will occur.

Let us consider an example involving default clauses in that manner that
causes most semantic difficulty. This example has two prialts in parallel, with
the second having a default clause which itself contains a statement that subse-
quently invokes a prialt:

〈 c!66 → 0 〉 || 〈 d !99 → 0, !? → ( b ∗ P ; 〈c?x → 0〉 ) 〉

Let us consider the case where b happens to be false. Initially we have a situation
where there are no potentially active guards, so the first prialt blocks, while
the second immediately activates its default clause. The while-loop has a false
condition, so immediately terminates, and this introduces another prialt to the
mix. At this point the program has evolved to look like this:

〈 c!66 → 0 〉 || 〈 c?x → 0 〉

This requires us to lodge a new request, with the existing ones still in place,
and to re-perform the resolution step. As a result, channel c becomes active,
transferring value 66 across to variable x .

Prialts nested inside default clauses of other prialts may become active in the
same clock cycle as those enclosing prialts, which requires us to iterate the sel–
req–res loop several times, in any given clock cycle. Managing this micro-cycle
activity severely complicates the semantics2.

5 Semantic Framework

The “prialt-free” denotational semantics in [13], inspired by [29], was based on
the notion of “branching sequences” or trees, where non-branching sequences
denoted deterministic sequences of actions, and branching was used to model a
choice point, such as the conditions of a while-loop or if-statement.

However, this model becomes far too complex when faced with the need to
handle multiple choice points per clock-cycle, so the full semantics described here
is given in terms of sets of “typed assertion traces”. These are sets of sequences of
actions (state-transformers), each action typed according to the phase in which

2 Interestingly, the underlying hardware doesn’t iterate, as it computes what is to be
active in any given clock cycle using combinatorial logic.
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it occurs (sel,req,res,act), with an assertion that indicates the conditions under
which that action (and all subsequent) may proceed.

This switch also brings the semantics more in line with that of Circus [30]
and its slotted variants [31], fitting in with plans to give a complete account of
Handel-C and hardware compilation in the UTP framework [32].

5.1 Abstraction of Action, States and Predicates

We shall now present an abstract view of typed assertion traces, where actions
(a : Act) with an action merge operator ♦ form a commutative monoid, with
the “null” action nop as identity.

Mon(Act ,♦, nop)

We the introduce an abstract notion of a state (s ∈ St) as something which can
change as a result of actions, and denote the effect of action a on state s by
�[a](s). The null action, not unexpectedly, brings about no change of state:

� : Act → St → St �[nop](s) = s

We need predicates over states (assertions), with true and false denoting the
everywhere true and false predicates respectively:

p ∈ Pred = St → B

We are going to capture the linkage between assertions and actions by the con-
cept of a “guarded-action” (g), which is a predicate-action pair (p, e):

g, (p, a) ∈ GA = Pred × Act

We will frequently deal with cases where either the guard is true or the action
is nop, so we adopt the shorthands where a denotes (true, a) and p denotes
(p, nop). In particular we often refer to true as a null or void action.

We can extend the notion of action-merging to guarded actions in the obvious
way by merging the actions and taking the conjunction of the predicates:

(p1, a1) ♦ (p2, a2) =̂ (p1 ∧ p2, a1 ♦ a2)

These guarded actions are the basic building blocks for “assertion traces”, so
the next step is to describe the typing aspects.

5.2 Typed Assertion Traces

We shall view a trace as being a non-empty sequence of slots, were each slot
denotes the activity during one complete clock cycle. We allow traces to be
either finite or infinite, as this is required for the semantics of any of the loop
constructs.

τ ∈ Trc = Slot∗ ∪ Slotω
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The semantics of a Handel-C program is mapped to a set of these traces, which
conform to a set of healthiness conditions to be mentioned later.

Slots have internal structure, and are divided into two components: the de-
cision actions which occur early in the clock cycle to determine the course of
action to take; and the permanent state-change actions which all occur simul-
taneously at the end of the clock cycle. The former are modelled as sequences
of “microslots” (MS ), whilst the latter can simply be represented as a single
(merged) guarded action. We shall refer to the second component as the “final
action” of the slot

s , (μ, a) ∈ Slot = MS
∗

× GA

A microslot (m) captures the actions in one cycle of selection-request-response
and hence is is a triple of guarded actions (s , q, r), where the first (s) are of type
sel, the second (q) are of type req, and the last (r) are of type res:

m, (s , q, r) ∈ MS = GA3

We expect that any microslot has at least one non-null action present.
We need to be careful how traces and slots are interpreted: In essence, a slot

where the final action is null denotes the case were the clock-tick which ends the
slot has yet to happen. As a consequence of this interpretation, only the last slot
in a trace can be “tick-free” in this manner. T

We need to be able to identify a null slot, as one with no microslots, and a
null final-action:

nils : Slot
nils =̂ (〈〉, true)

A trace in which no actions, not even a clock-tick, have occurred, is denoted by a
singleton sequence consisting of one null slot. The reason for not admitting empty
trace sequences is that it introduces ambiguity over interpreting null traces, and
complicates the definition of various concatenation operators.

We also need to identify a slot whose only action is an final-action which
denotes a clock-tick — we overload the notation ‡ to denote both such a clock-
tick action, and the corresponding slot. We also expect that merging this action
with any non-null action will result in that non-null action:

‡ : Act ‡ ♦ a = a, a �= nop

‡ : Slot ‡ =̂ (〈〉, ‡)

Typing. The typing of actions in slots and microslots is implicitly given by the
actions’ position. We can extend the notion of typing to cover both microslots
and slots themselves.

Transition types fall into four categories, with an ordering as indicated:

t ∈ TType =̂ { sel, req, res, act }
sel < req < res < act
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We define the type of a microslot as the type of the least non-empty action
present:

ttypeMS : MS → TType

ttypeMS (true, true, ) =̂ res

ttypeMS (true, , ) =̂ req

ttypeMS ( , , ) =̂ sel

We define the type of a Slot as the type of the first of the microslots, if present,
otherwise it is act.

ttypeS : Slot → TType

ttypeS (〈〉, (p, )) =̂ act

ttypeS ((m : ), ) =̂ ttypeMS (m)

5.3 Trace Operators

We now describe a series of operators which can be used to build and join traces
and their building blocks.

Building with Single Actions. The first are a series of constructors that
construct slots of the various types from a single guarded action and accompa-
nying transition type. We shall refer to the combination of a transition type and
guarded action as a typed action.

Given a non-act, non-void action, we wish to build the corresponding mi-
croslot:

mkm : TType → GA → MS
mkmsel(g) =̂ (g, true, true)
mkmreq(g) =̂ (true, g, true)
mkmres(g) =̂ (true, true, g)

Given a typed action we wish to build the corresponding slot, where the action
can be null only if of type act:

mks : TType → GA → Slot
mksact(g) =̂ (〈〉, g)

mkst (g) =̂ (〈mkmt (g)〉, true)

Lifting Action Merging. We want to lift the action merge operators to work
with microslots.
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We will want to merge a single guarded non-act action into a pre-existing
microslot:

♦ : GA × TType × MS → MS
g ♦sel (s , q, r) =̂ (g ♦ s , q, r)
g ♦req (s , q, r) =̂ (s , g ♦ q, r)
g ♦res (s , q, r) =̂ (s , q, g ♦ r)

We describe the merging of two microslots later when the parallel construct is
discussed.

Typed Cons-ing. By “typed cons-ing” (:: or ::t ) we mean the process of placing
a typed action at the start of an existing list of actions, at the microslot, slot or
trace level. We first consider cons-ing a non-act, non-null action into a microslot
or slots. If the action has a type greater than that of the microslot, then we have
to create a new microslot immediately prior to the given one, containing the
action. This is because “consing” means pre-pending an earlier action, so if an
action of type res (say) is being placed in front of a microslot containing sel or
req actions, then it must have occurred in an earlier microslot. This is why the
signature of the function indicates that merging a typed action with a microslot
may result in more than one microslot as a result.

:: : GA → TType → MS → MS+

g ::t m =̂ if t > ttypeMS(m)
then 〈mkmt (g),m〉 else 〈g ♦t m〉

We can extend this to work with microslot sequences in the obvious way:

:: : GA → TType → MS
∗

→ MS
∗

g ::t 〈〉 =̂ 〈mkmt (g)〉
g ::t (m : μ) =̂ (g ::t m)� μ

We can now extend type-consing to slots and traces, in which case we can now
handle act-actions. Consing an act-action always creates a new slot at the front:

:: : GA → TType → Slot → Slot+

g ::act s =̂ 〈mkact(g), s〉
g ::t (μ, a) =̂ 〈(g ::t μ, a)〉

:: : GA → TType → Trc → Trc
g ::t (s : τ) =̂ (g ::t s) � τ

Concatenation for Microslots. We can now define a form of concatenation for
microslots (o

9) which merges the last microslot of the first sequence (ante-slot) with
the first microslot of the second (post-slot), if possible. This is possible when no
action in the ante-slot has a type greater than that of an action in the post-slot. We
first define an operator (�) taking a pair of micro-slots to a sequence of same:
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� : MS 2 → MS
∗

(s1, true, true)� (s2, q2, r2) =̂ 〈(s1 ♦ s2, q2, r2)〉
(s1, q1, true)� (true, q2, r2) =̂ 〈(s1, q1 ♦ q2, r2)〉
(s1, q1, r1)� (true, true, r2) =̂ 〈(s1, q1, r1 ♦ r2)〉

m1 �m2 =̂ 〈m1,m2〉

We then define microslot-sequence catenation using the binary merge-slot oper-
ator:

o
9 : MS

∗
× MS

∗
→ MS

∗

〈〉 o
9 μ2 =̂ μ2

μ1
o
9〈〉 =̂ μ1

〈m1〉 o
9 (m2 : μ2) =̂ (m1 �m2)� μ2

(m1 : μ1) o
9 μ2 =̂ m1 : (μ1

o
9 μ2)

Consing Slots onto Traces. We now consider the task of cons-ing a Slot onto
the start of a Trc in order to extend the Trc. Here, no type is specified, but
instead is inferred from the slot contents.

The only time this differs from ordinary list cons is when the trailing trace is
a singleton null slot or the slot is null or has no act action:

:: : Slot × Trc → Trc
s :: 〈nils〉 =̂ 〈s〉

nils :: τ =̂ τ

(μ, true) :: ((ν, a′) : τ) =̂ ((μ o
9ν), a′) : τ

s :: τ =̂ s : τ

Catenation of Traces. We can now define trace catenation in terms of slot-
consing:

o
9 : Trc × Trc → Trc

〈〉 o
9 τ2 =̂ τ2

〈s〉 o
9 τ2 =̂ s :: τ2

(s1 : τ1) o
9 τ2 =̂ s1 : (τ1 o

9 τ2)

Traces are non-empty, but the first clause is needed simply to handle a base
case properly for the definition of the operator. We want the null trace to be an
identity for trace catenation, and trace catenation to be associative.

5.4 Merging Traces in Parallel

Merging traces in parallel is straightforward — they are merged on a slot by
slot basis, with slots merged on a micro-slot by micro-slot basis. We overload
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the notation ‖ for all these forms of parallel merging, except trace parallel merge
which we denote by [][].

All these operators are associative and commutative, and the null-trace is
the identity for [][]. It is in order to get these properties that we require action
merging itself to be both associative and commutative.

Merging two microslots in parallel simply involves merging the corresponding
components:

‖ : MS × MS → MS
(s1, q1, r1) ‖ (s2, q2, r2) =̂ (s1 ♦ s2, q1 ♦ q2, r1 ♦ r2)

Merging microslot-sequences in parallel (‖) is done on a microslot by microslot
basis, but not by merging matching pairs starting at the front of both lists, but
rather by matching the ends of the lists together with the front of the longer list
simply being copied to the result:

‖ : MS
∗

× MS
∗

→ MS
∗

μ1 ‖μ2 =̂ rev((revμ1) mssaux (revμ2))
〈〉 mssaux μ2 =̂ μ2

μ1 mssaux 〈〉 =̂ μ1

(m1 : μ1) mssaux (m2 : μ2) =̂ (m1 ‖ m2) : (μ1 mssaux μ2)

This counterintuitive notion of parallel merge (“merge from the back”) was dis-
covered as part of work animating these semantics[33] by encoding them in
Haskell [34]. The reason for merging in this way is to ensure that all decisions
are made as late as they possibly can be made, in particular to ensure that all
the prialts involved in generating microcycles are complete before final commu-
nication resolution is done. Intuitively, this reflects how, in the real hardware
implementations of Handel-C, we are waiting for combinatorial logic to settle
before the clock edge marking the end of the cycle, and the occurrence of the
act-actions.

To parallel merge slots, we simply parallel-merge the microslots and action-
merge the actions:

‖ : Slot × Slot → Slot
(μ1, a1) ‖ (μ2, a2) =̂ (μ1 ‖μ2, a1 ♦ a2)

To merge a pair of traces we proceed on a slot-by-slot basis, and copy the longer
tail over if the traces are of different length.

[][] : Trc × Trc → Trc
〈〉 [][] τ2 =̂ τ2

τ1 [][] 〈〉 =̂ τ1

(s1 : τ1) [][] (s2 : τ2) =̂ (s1 ‖ s2) : (τ1 [][] τ2)
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Unlike the microslot-sequence case, here we do merge slot-sequences from the
front.

5.5 Framework Summary

We have defined a notion of guarded actions, and microslots capturing sequences
of sel, req and res actions, as well as slots which put these before a clock-cycle
terminating action action. We have defined traces as non-empty lists of such
slots, with all but the last slot obliged to have an action action, and defined
trace concatenation (o

9) and parallel merge ([][]) operators. Both have monoid
properties, with the null trace as identity, and [][] also being commutative.

6 Execution State

We now turn our attention to the actions of the previous section, and elaborate
how these are in fact state-transformers. To this end, we first need to understand
what is meant by the state of a Handel-C program.

6.1 Environments

We follow the classical approach for imperative languages in that the state is
an “environment”: a mapping from identifiers to values. We differ in that while
some identifiers denote program variables, others have special meaning and cor-
respond to internal processing carried out during a clock-cycle, largely to do
with processing prialt communication requests.

We define identifiers (Id) to be either variable names (Var) or one of four
special identifiers τ, �, γ or B , not present in Var . We define a value space (Val)
to contain integers, booleans and an error value (?), and then define a datum
type as being either a value, a function Fun, or one of the three types associated
with prialt resolution, namely Resltn, CPMap and PriSet :

i ∈ Id =̂ Var + { τ, �, γ,B }
Val =̂ Z + B + { ? }

f ∈ Fun =̂ Var → Val
d ∈ Datum =̂ Val + Fun + Resltn + CPMap + PriSet

Although we have used disjoint union or sum above, in the sequel we do not
explicitly show the relevant injections, so that we interpret a value x : Z as also
being a value x : Val , or even x : Datum, rather than writing the more pedantic
but verbose forms of inj1(x ) : Val and inj1(inj1(x )) : Datum.

We define an environment ρ as a mapping from identifiers to data, subject to
the proviso that variables map only to values, � maps only to Resltns, and γ
and B map respectively to the CPMap and PriGrp components of ρ(�):

ρ ∈ Env =̂ Id → Datum
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We denote the updating of a map ρ so that i now maps to d by ρ † {i → d}
The identifer τ is used to denote the clock-tick or clock-cycle count, so it is

best viewed as mapping to an integer—however the associated value and its type
is simply immaterial, as will become apparent later on.

Data items of type Fun do not form part of the state, but are used as a
technical device to capture the fact that expressions in channel output guards
are evaluated when that guard goes “live”, if ever.

Expression evaluation w.r.t an environment is defined in the normal way, and
returns a result of type Datum that is not itself of type Fun:

E : Exp → Env → Datum
E [[e]]ρ =̂ “standard” expression evaluation. . .

Note however, that the partial application E [[e]], where e denotes a value of type
Val , can be interpreted as a Datum value result of (sub-)type Fun.

6.2 Static State

The “static state” of a Handel-C program is that part of the state which persists
across clock-cycle boundaries, and its evolution over those time-slots is what
constitutes the observable behaviour of a Handel-C program.

For any Handel-C program, we simply identify all the variables used, in as-
signments, expressions, and channel inputs. We then tailor the environment so
that its domain contains precisely those variables.

6.3 Dynamic State

The dynamic state is that which only exists within one clock cycle, and is effec-
tively “zeroed” at every clock tick. It contains information about communica-
tion requests and is that part of the environment accessed by the identifiers �, γ
and B .

At the start of each clock cycle, these are initialised to be empty:

ρ(γ) = θ ρ(B) = ∅ ρ(�) = (θ, ∅)

6.4 Actions for Handel-C

We want our actions to be state-transformers, that is functions from state to
state, and we need to define the null action (nop), as well as explaining how
actions merge (♦).

Actions. Formally our actions are functions mapping environments into envi-
ronments, and the null action is simply the identity function on environments.
However, we want to capture the notion of actions that change part of the state,
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and to be able to merge these, and detect if they are both trying to modify the
same variable. With the action model as just described, this is hard to do, so
we adopt an alternative model, were we view an action as simply being a partial
environment which records the part that changes. The null action is simply the
null map (θ), and two actions are merged by simply merging the maps together.
Any variable conflict is recognised because the variable occurs in the domain of
both maps — in this case we map the value to ? to denote the (runtime) error.

Evt =̂ Env
nop =̂ θ

e1 ♦ e2 =̂ e1 ∪ e2,

if dom e1 ∩ dom e1 = ∅
{v → e1} ♦ {v → e2} = {v →?}

The one exception to map conflicts has to do with the way the communication
parts are treated (�, γ,B). Here we find that the basic action involves lodging
a prialt as a request, into the B component, which is a set of such prialts.
Multiple references to B are resolved by applying set union (remember that P1
and P2 are of type PriSet):

{B → P1} ♦ {B → P2} = {B → P1 ∪ P2}

The clock-tick action is simply represented by an environment where the sole
identifer in its domain is τ , and the datum to which it maps is immaterial:

‡ : Evt
‡ =̂ {τ →?}

State Change. We use such partial maps to change the state by simply over-
riding the state with a mapping in which any expressions (as Fun in Datum)
have been first evaluated w.r.t that state:

St =̂ Env
�(e1)ρ =̂ ρ † E ′

ρ(e1)
E ′

ρ{v → f } =̂ {v → f (ρ)}

It is this model of actions which motivated the particular form of the abstract
action model used when typed assertion traces where described previously, and
why in that model we used �, rather than simply viewing actions there directly
as state-transformers themselves.

State Predicates. Any boolean-valued expression in Handel-C provides us with
a predicate, simply by evaluating that expression against the state environment
in the usual way.
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Pred =̂ Exp, boolean-valued
e(ρ) =̂ E [[e]]ρ

6.5 Fixpoints

We define an ordering � on traces, with τ1 � τ2 if τ1 is a prefix of τ2. We note
that 〈nils〉 � τ for any τ . A set of traces has a least upper bound w.r.t � if all the
traces are prefixes of some single (longest) trace, which is the shortest possible
such trace. For typed assertion traces we say that τ1 � τ2 if there exists τ3 such
that τ1 o

9 τ3 = τ2.
We extend this to an ordering � over sets of traces by saying that S1 � S2

if for every τ1 in S1 there is a τ2 in S2 such that τ1 � τ2. The least element in
this ordering is the set { 〈nils〉 }. Again a notion of least upper bound (

⊔
) can

be defined w.r.t �.
Our semantic domain is therefore one of trace-sets, ordered by �, and our

semantic definitions produce directed sets. We therefore handle recursion by
taking the least fixed point w.r.t �, and we can compute this as

fixL • F (L) =
⊔
i∈N

{ F i{ 〈nils〉 } }

7 Handel-C Denotational Semantics

We are now in a position to give the denotational semantics of Handel-C. First we
need to introduce some shorthands to manage the complexity of the resulting
expressions. Given a binary operator ∗ over values s and t of some type we
assume the obvious extensions to act between sets S and T over the type, or
between elements and sets as follows:

S ∗ T =̂ { s ∗ t | s ∈ S ∧ t ∈ T }
s ∗ T =̂ { s ∗ t | t ∈ T }

The semantics of a Handel-C process is given as a set of typed assertion traces,
subject to the following healthiness conditions: (1) Traces are maximal: if a
trace is present, then none of its proper prefixes are; (2) Mutual Exclusivity: if
two traces differ, then the pair of guarded actions which first distinguish them
must have mutually exclusive predicates, i.e ones that are never true in the
same environment (3) Exhaustivness: given all traces in the set with a common
prefix, then all the guard predicates of the distinguishing actions must exhaust all
possibilities, ie. for any environment, at least one (and only one) will return true.
Conditions (2) and (3) are weakened slightly when we consider the semantics of
prialt later on.
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We can now describe the semantics of all constructs except prialt in a
straightforward manner as follows,

[[ ]] : Prog → PTrc
[[0]] =̂ { 〈nils〉 }
[[1]] =̂ { 〈‡〉 }

[[x := e]] =̂ { 〈(〈〉, {x → e})〉 }
[[p; q ]] =̂ [[p]] o

9 [[q]]
[[p ‖ q ]] =̂ [[p]] [][] [[q]]

[[p �b� q ]] =̂ (b ::sel [[p]]) ∪ (¬ b ::sel [[q]])
[[b ∗ p]] =̂ fixL • { 〈mksel(¬b)〉 } ∪ (b ::sel ([[p]] o

9 L))

0, 1 and assignment have a single singleton trace as semantics, being respectively
the empty, clock-tick and single-variable update slots. Sequential and parallel
composition simply combine all their traces with the appropriate trace operator.
The conditional construct prefixes the traces of the “then” outcome with the
condition as a guard predicate, while the traces of the “else” outcome have the
negation of that predicate prefixed instead. It is with this construct that multiple
traces are introduced, and were we ensure that the exclusivity and exhaustiveness
healthiness conditions are met. The while-loop is given a fixpoint semantics, as
is standard for such constructs. In effect it either immediately terminates, if the
guard is false, or else the guard is true, and it then behaves like the loop-body
sequentially composed with the loop itself. Just like the conditional construct,
it also ensures the exclusivity and exhaustiveness criteria are met.

7.1 Extending the Language

The semantics of prialt is best given by breaking the construct down into
simpler components, which mainly correspond to the various phases in which
prialt is active,namely req, res and act. We now introduce some extension to
the language to facilitate this —note that these extensions exists solely in order
to elucidate the semantics, and are not available for general use by the Handel-C
programmer.

We extend the expression syntax to include three special forms — a prialt-
waiting predicate (w〈gi〉), an active guard expression (a〈gi 〉), and a channel data
expression (δ(c)):

e ∈ Exp = . . . | w〈gi〉 | a〈gi 〉 | δ(c)

The waiting predicate takes a prialt-request (guard-list) as argument, and re-
turns true if resolution has determined that that prialt is blocked. It is evalu-
ated, after the req phase, by looking at the B component of the state:

E [[w〈gi 〉]]ρ =̂ 〈gi〉 ∈ ρ(B)
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The active guard expression takes a prialt-request as argument, and returns
the index (i ∈ 1 . . .n) of the guard which is going to be active in this clock-cycle.
It is only defined when w〈gi〉 is false, and looks up the channel-prialt map

E [[a〈gi 〉]]ρ =̂ min j
where ∃ c • 〈gi〉 ∈ ρ(γ)(c)

∧ channel(gj ) = c

Here channel returns the channel associated with a guard.
The channel data expression δ(c) returns the data expression associated with

an active channel — this information can be extracted from the channel-prialt
map component, as detailed in [5].

We extend the program syntax to include three new statements — a prialt-
request statement (rq〈gi 〉), a prialt-wait statement (wait〈gi 〉), and a multi-way
conditional branch (or case-statement):

p ∈ Prog ::= . . . | rq〈gi 〉 | wait〈gi 〉 | e � [pi ]

The prialt-request statement simply lodges its guard-list argument into the
input PriSet for resolution. In the semantics we use the B component of the
state to hold both the prialts input to resolution (during the req phase) and the
blocked-prialt result of resolution (available during the res and act phases).

The prialt-wait statement asks if its prialt argument is blocked. If it is, it
then waits one clock cycle, then re-submits the corresponding prialt-request,
before repeating itself. If the prialt is not blocked, it terminates immediately.

The case-statement e � [pi ] evaluates expression e, whose value must lie in
the range 1 . . .n. This value is used to select the process to execute.

We also define a function on guards which gives the underlying action as an
equivalent statement:

act() : Grd → Prog
act(c!e) =̂ 1

act(c?v) =̂ v := δ(c)
act(!?) =̂ 0

We give prialt 〈gi → pi〉 a semantics by translating it to:

rq〈gi〉; wait〈gi〉; a〈gi 〉 � [act(gi); pi ]

This captures the notion that a prialt acts in three stages: (i) it submits a
request (rq〈gi 〉); (ii) it waits until it becomes active, re-submitting the request
on every clock cycle (wait〈gi 〉); and (iii) once waiting is over, selects and executes
the active guard and corresponding process (a〈gi 〉 � [act(gi) ; pi ]).
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We can now give the semantics of the additional constructs:

[[rq〈gi 〉]] =̂ { 〈mkreq({B → { 〈gi〉 }})〉 }
[[wait〈gi 〉]] =̂ fixW • { 〈mkres(¬w〈gi 〉)〉 }

∪
(w〈gi 〉 ::act ([[rq〈gi 〉]] o

9 W )

[[a〈gi 〉 � [pi ]]] =̂
⋃
i

{ (a〈gi〉 = i) ::res [[pi ]] }

The request statement is simply an update of the state’s “B ’ component, tagged
as occurring during the req phase. The case-statement simply prepends a guarded
action asserting that e = i to the traces associated with process pi , such a choice
being made during the res phase.

The wait〈gi 〉 statement is a looping construct, so it has a fixpoint defini-
tion as expected. It would seem obvious that wait〈gi〉 should be the same as
w〈gi〉 ∗ (1; rq〈gi 〉), but it is necessary to keep it separate, because not only do
the true and false branches of the wait statement not occur in the sel phase, but
in fact they occur in different phases: the terminating guarded action (¬ w〈gi〉)
occurs during the res phase; while the continuation guarded action (w〈gi 〉) oc-
curs during the act phase.

The reason for this is the same as that encountered in the operational seman-
tics, namely that the decision to end waiting can be made as soon as a prialt
becomes unblocked (during some some res phase), but the decision to wait until
the next clock cycle to try again needs to be deferred until no more sel-req-res
micro-cycles can occur, i.e. once the act phase has been reached. This is because
a subsequent round of request and resolution, caused by a prialt in some default
guard, may cause a blocked prialt to become unblocked. The converse never
happens: once a prialt is unblocked in one microcycle, it can never become
blocked again subsequently.

This means that the Exhaustiveness and Exclusivity healthiness conditions
aren’t quite adhered to at this point, as the conditions ¬ w〈gi〉 and w〈gi〉 do
not occur at the same point in the traces. In fact the latter is delayed until the
act phase. The weakening that we allow is that this works because while the act
condition occurs later in the trace, no events of any significance occur in that
trace from the point in the res phase where w〈gi〉 could return false, up to the
act point where the predicate can return true.

7.2 Examples

We now present a few small examples simply to show the semantics at work.
In order to keep expressions readable and manageable, we introduce the fol-

lowing shorthand: (i) for (〈〉, x → e) we simply write {x → e}; (ii) and for
mksreq({B → { 〈gi〉 }}) we use req〈gi 〉. Rather than showing the slot and micro-
cycle structure explicitly, we simply list the actions separated by commas, and
use ‡ to to mark the slot boundaries (i.e clock ticks). So
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〈 (〈〉, y → f ), (〈((b), true, true)〉, x → e) 〉
becomes 〈{y → f } ‡ b, {x → e}〉

Assignment, Conditional and Sequential Composition. If we follow an
assignment by a conditional as follows:

x := y + z ; y := z �(x > 0)� z := y

then calculating this through with the semantics gives:

[[x := y + z ; y := z �(x > 0)� z := y ]]
= { 〈{x → y + z} ‡ x > 0, {y → z}〉,

〈{x → y + z} ‡ x ≤ 0, {z → y}〉 }
We see clearly the same starting action in both traces, and then a choice based
on the sign of x guarding the subsequent behaviour, each covered by one of the
two traces.

Parallel Assignment. We can swap two variables in one clock cycle:

[[x := y ‖ y := x ]] = { {x → y, y → x} }

This works because the expressions are evaluated first during the clock cycle,
and the variables are updated simultaneously as the clock ticks. However, if
we attempt to simultaneously assign two different values to one variable, the
semantics flags this as an error

[[x := e1 ‖ x := e2]] = { {x →?} }

While Loop. If we consider a simply busy waiting loop (b will hopefully even-
tually be set by some other process), then we calculate the semantics as:

[[b ∗ 1]] =
⊔

{ F i{ nils} | i ∈ N }
where F (L) = { 〈¬ b〉 } ∪ ( (b, ‡) :: L) )

Evaluating this leads to the result that the set of traces are of the form:

[[b ∗ 1]] = { 〈¬ b〉,
〈b, ‡; ¬ b〉,
〈b, ‡; b, ‡; ¬ b〉,
...
〈b, ‡; . . . ; b, ‡︸ ︷︷ ︸

i−1 times

; ¬ b〉,

...
〈b, ‡; . . . ; b, ‡ . . .︸ ︷︷ ︸

∞ times

〉 }
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We have finite traces which correspond to zero or more iterations before the
condition becomes true, and one infinite trace which captures the situation were
b is always false —this is why we need to admit infinite traces in our semantic
model.

8 Conclusions and Future Work

We have presented a denotational semantics for Handel-C as sets of typed asser-
tion traces, which captures all the key behaviour of the language, with particular
emphasis on the proper treatment of default clauses in prialt statements. We
need to show that all this semantics describes the same language as does the op-
erational semantics. The real goal is to use the denotational semantics to verify a
series of algebraic laws for Handel-C, which would form the basis for a practical
system for formal reasoning about such programs. We also intended to extend
this to cover the notion of refinement in a Handel-C setting, linking the language
to specification notations such as CSP [35] or Circus [30].

Recently we have also published a “hardware semantics” for Handel-C [36],
which will allow us to explore transformations that investigate the trade-off
between the number of clock-cycles required to complete a task, and the length
of each cycle, which depends on the complexity of the combinatorial logic that
is generated. It is here that the well-known work of Zhou Chaochen on duration
calculus [37] and his work on modelling synchronous circuits at switch level [38]
will provide useful tools and insight for this work.

Finally, we hope to explore the embedding of these results into the UTP
framework [32], as a variant of Circus [30]. This work is being funded as a three-
year project by Science Foundation Ireland.
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Abstract. This paper investigates how to apply the techniques on solving
semi-algebraic systems to invariant generation of polynomial programs.By
our approach, the generated invariants represented as a semi-algebraic sys-
tem are more expressive than those generated with the well-established ap-
proaches in the literature, which are normally represented as a conjunction
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1 Introduction

Loop invariant generation together with loop termination analysis of programs
plays a central role in program verification. Since the late sixties (or early sev-
enties) of the 20th century when the so-called Floyd-Hoare-Dijkstra inductive
assertion method, the dominant method on automatic verification of programs,
[11,14,9] was invented, there have been lots of attempts to handle the loop prob-
lems, e.g. [25,13,16,15], but only with a limited success.

Recently, due to the advance of computer algebra, several methods based on
symbolic computation have been applied successfully to invariant generation,
for example the techniques based on abstract interpretation [7,1,21,6], quantifier
elimination [5,17] and polynomial algebra [19,20,22,23,24].

The basic idea behind the abstract interpretation approaches is to perform
an approximate symbolic execution of a program until an assertion is reached
� This work is supported in part by NKBRPC-2002cb312200, NKBRPC-

2004CB318003, NSFC-60493200, NSFC-60421001, NSFC-60573007, and NKBRPC-
2005CB321902.

�� Corresponding author.
1 http://www.cs.usna.edu/~qepcad/B/QEPCAD.html

C.B. Jones, Z. Liu, J. Woodcock (Eds.): Bjørner/Zhou Festschrift, LNCS 4700, pp. 67–82, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



68 Y. Chen et al.

that remain unchanged by further executions of the program. However, in order
to guarantee termination, the method introduces imprecision by use of an ex-
trapolation operator called widening/narrowing. This operator often causes the
technique to produce weak invariants. Moreover, proposing widening/narrowing
operators with certain concerns of completeness is not easy and becomes a key
challenge for abstract interpretation based techniques [7,1].

In contrast, [19,20,22,23,24] exploited the theory of polynomial algebra to
discover invariants of polynomial programs. [19] applied the technique of linear
algebra to generate polynomial equations of bounded degree as invariants of pro-
grams with affine assignments. [22,23] first proved that the set of polynomials
serving as loop invariants has the algebraic structure of an ideal, then proposed
an invariant generation algorithm by using fixpoint computation, and finally
implemented the algorithm by the Gröbner bases and the elimination theory.
The approach is theoretically sound and complete in the sense that if there is
an invariant of the loop that can be expressed as a conjunction of polynomial
equations, applying the approach can indeed generate it. [24] presented a similar
approach to finding polynomial equation invariants whose form is priori deter-
mined (called templates) by using an extended Gröbner basis algorithm over
templates.

Compared with the polynomial algebraic approaches that can only gener-
ate invariants represented as polynomial equations, [5] proposed an approach to
generate linear inequalities as invariants for linear programs, based on Farkas’
Lemma and non-linear constraint solving. In addition, [17] proposed a very gen-
eral approach for automatic generation of more expressive invariants by exploit-
ing the technique of quantifier elimination, and applied the approach to Pres-
burger Arithmetic and quantifier-free theory of conjunctively closed polynomial
equations. Theoretically speaking, the approach can also be applied to the the-
ory of real closed fields, but [17] pointed out that this is impractical in reality
because of the high complexity of quantifier elimination, which is double expo-
nential [8]. To handle the problem, [6] exploited the techniques of parametric
abstraction, Lagrangian relaxation and semidefinite programming to generate
invariants as well as ranking functions of polynomial programs. Compared with
the approach of [17], [6]’s is more efficient, as first-order quantifier elimination
is not directly applied there. However, [6]’s approach is incomplete in the sense
that, for some program that may have ranking functions and invariants of the
predefined form, applying the approach may not be able to find them, as La-
grangian relaxation and over-approximation of the positive semi-definiteness of
a polynomial are used.

In this paper, we attack the problem raised in [17] on how to efficiently gen-
erate polynomial invariants of programs over real closed fields and present a
more practical and efficient approach to it by exploiting our results on solving
semi-algebraic systems (SASs). The outline of our approach is as follows: we first
reduce polynomial invariant generation problem to solving semi-algebraic sys-
tems; then apply our theories and tools on solving SASs, in particular, on root
classification of parametric SASs [30,31,32] and real root isolation of constant
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SASs [28,29], to produce some necessary and sufficient conditions; and finally
utilize the technique of quantifier elimination to handle the derived conditions
and obtain invariants with the predefined form.

Suppose an SAS S has s (> 0) polynomial equations and m inequations and
inequalities. All polynomials are in n = t + (n − t) indeterminates (i.e., u1, . . . , ut,

x1, . . . , xn−t ) and of degree at most d where t is the dimension of the ideal
generated by the s equations. According to [3,8], directly applying the technique
of quantifier elimination of real closed fields, the cost for solving S is doubly
exponential w.r.t. n. But using our approach, the cost for the first step is almost
nothing, and the second step to apply root classification and isolation costs
singly exponential w.r.t. n plus doubly exponential w.r.t. t. The cost for the last
step is also doubly exponential w.r.t. t. Therefore, as t < n, our approach is
more efficient than the approaches directly based on the techniques of quantifier
elimination and Gröbner basis, such as [17,24], in particular, when t is much
less than n. Moreover, our approach is still complete in the sense that whenever
there exist invariants of the predefined form, applying our approach can indeed
synthesize them, while [6]’s 2 is incomplete. On the other hand, similarly to
[17,6], invariants generated by our approach are more expressive, while applying
the approaches based on polynomial algebra can only produce conjunction of
polynomial equations as invariants.

The rest of this paper is organized as: Section 2 provides a brief review of
the theories and tools on solving SASs; Section 3 defines some basic notions,
including semi-algebraic transition systems, polynomial programs, invariants,
inductive properties and so on; Section 4 is devoted to illustrating our approach
in detail with a running example; We provide the complexity analysis of our
approach in Section 5; In Section 6, we compare the application of this approach
to invariant generating with the one to ranking function discovering; and Section
7 concludes the paper and discusses the future work in this direction.

2 Preliminaries: Theories on Semi-algebraic Systems

In this section, we introduce the cornerstone of our technique, i.e. theories and
tools on solving SASs, mainly the theories on root classification of parametric
SASs and the tool DISCOVERER.

2.1 Basic Notions

Let K[x1, ..., xn] be the ring of polynomials in n indeterminates, X = {x1, · · · , xn},
with coefficients in the field K. Let the variables be ordered as x1 ≺ x2 ≺ · · · ≺ xn.
Then, the leading variable (or main variable) of a polynomial p is the variable
with the biggest index which indeed occurs in p. If the leading variable of a poly-
nomial p is xk, p can be collected w.r.t. its leading variable as p = cmxm

k + · · · + c0

2 As far as efficiency is concerned, we believe that our approach could be at least as
good as [6]’s, as the complexity of the semi-definite programming adopted in [6] is
also very high.
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where m is the degree of p w.r.t. xk and cis are polynomials in K[x1, ..., xk−1]. We
call cmxm

k the leading term of p w.r.t. xk and cm the leading coefficient. For ex-
ample, let p(x1, . . . , x5) = x5

2 + x4
3x

2
4 + (2x2 + x1)x

3
4, so, its leading variable, term

and coefficient are x4, (2x2 + x1)x
3
4 and 2x2 + x1, respectively.

An atomic polynomial formula over K[x1, ..., xn] is of the form p(x1, . . . , xn) � 0,
where � ∈ {=, >, ≥, �=}, while a polynomial formula over K[x1, ..., xn] is constructed
from atomic polynomial formulae by applying the logical connectives. Conjunc-
tive polynomial formulae are those that are built from atomic polynomial formulae
with the logical operator ∧. We will denote by PF ({x1, . . . , xn}) the set of polyno-
mial formulae and by CPF ({x1, . . . , xn}) the set of conjunctive polynomial formu-
lae, respectively.

In what follows, we will use Q to stand for rationales and R for reals, and fix
K to be Q. In fact, all results discussed below can be applied to R.

In the following, the n indeterminates are divided into two groups: u =
(u1, ..., ut) and x = (x1, ..., xs), which are called parameters and variables, re-
spectively, and we sometimes use “,” to denote the conjunction of atomic for-
mulae for simplicity.

Definition 1. A semi-algebraic system is a conjunctive polynomial formula of
the following form: ����

���

p1(u,x) = 0, ..., pr(u,x) = 0,
g1(u,x) ≥ 0, ..., gk(u, x) ≥ 0,
gk+1(u,x) > 0, ..., gl(u,x) > 0,
h1(u,x) �= 0, ..., hm(u,x) �= 0,

‘ (1)

where r > 1, l ≥ k ≥ 0, m ≥ 0 and all pi’s, gi’s and hi’s are in Q[u, x] \ Q. An SAS
of the form (1) is called parametric if t �= 0, otherwise constant.

An SAS of the form (1) is usually denoted by a quadruple [P, G1, G2, H], where
P = [p1, ..., pr], G1 = [g1, ..., gk], G2 = [gk+1, ..., gl] and H = [h1, ..., hm].

For a constant SAS S, interesting questions are how to compute the number
of real solutions of S, and if the number is finite, how to compute these real
solutions. For a parametric SAS, the interesting problem is so-called real solution
classification, that is to determine the condition on the parameters such that the
system has the prescribed number of distinct real solutions, possibly infinite.

2.2 Theories on Real Solution Classification

In this subsection, we outline the theories for real root classification of parametric
SASs. For details, please be referred to [31,27].

For an SAS S of the form (1), the algorithm for real root classification consists
of three main steps. Firstly, transform the equations of S into some sets of
equations in triangular form. A set of equations T : [T1, ..., Tk] is said to be in
triangular form (or a triangular set) if the main variable of Ti is less in the
order than that of Tj if i < j. Roughly speaking, if we rename the variables, a
triangular set looks like
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T1 = T1(v, y1),

T2 = T2(v, y1, y2),

· · · · · ·
Tk = Tk(v, y1, · · · , yk),

where v are the indeterminates other than yi. It is obvious that we now only
need to consider triangular systems in the following form

�����
����

f1(u, x1) = 0,
...

fs(u, x1, ..., xs) = 0,
G1, G2, H.

(2)

Certainly, it can be proven that there exists a correspondence between the
solutions of these triangular sets and S’s so that we only need to consider the
solutions of these triangular sets in order to deal with S’s.

Example 1. Consider an SAS S : [P, G1, G2, H] in Q[b, x, y, z] with P = [p1, p2, p3],
G1 = ∅, G2 = [x, y, z, b, 2 − b], H = ∅, where

p1 = x2 + y2 − z2, p2 = (1 − x)2 − z2 + 1, p3 = (1 − y)2 − b2z2 + 1.

The equations P can be decomposed into two triangular sets in Q(b)[x, y, z]

T1 : [b4x2 − 2b2(b2 − 2)x + 2b4 − 8b2 + 4, −b2y + b2x + 2 − 2b2, b4z2 + 4b2x − 8b2 + 4],
T2 : [x2 − 2x + 2, y + x − 2, z],

with the relation
Zero(P) = Zero(T1/b)

�
Zero(T2)

where Zero() means the set of zeros and Zero(T1/b) = Zero(T1) \ Zero(b).

Second, compute a so-called border polynomial from the resulting triangular
systems, say [Ti, G1, G2, H]. We need to introduce some concepts. Suppose F and
G are polynomials in x with degrees m and l, respectively. Thus, they can be
written in the following forms

F = a0x
m + a1x

m−1 + · · · + am−1x + am, G = b0x
l + b1x

l−1 + · · · + bl−1x + bl.

The following (m + l) × (m + l) matrix (those entries except ai, bj are all zero)�
��������������

a0 a1 · · · am

a0 a1 · · · am

. . .
. . .

. . .

a0 a1 · · · am

b0 b1 · · · bl

b0 b1 · · · bl

. . .
. . .

. . .

b0 b1 · · · bl

	













�

���
���

l

���
���

m

,



72 Y. Chen et al.

is called the Sylvester matrix of F and G w.r.t. x. The determinant of the matrix
is called the Sylvester resultant or resultant of F and G w.r.t. x and is denoted
by res(F, G, x).

For system (2), we compute the resultant of fs and f ′
s w.r.t. xs and denote it

by dis(fs) (it has the leading coefficient and discriminant of fs as factors). Then
we compute the successive resultant of dis(fs) and the triangular set {fs−1, ..., f1}.
That is, we compute res(res(· · · res(res(dis(fs), fs−1, xs−1), fs−2, xs−2) · · · ), f1, x1)

and denote it by res(dis(fs); fs−1, ..., f1) or simply Rs. Similarly, for each
i (1 < i ≤ s), we compute Ri = res(dis(fi); fi−1, ..., f1) and R1 = dis(f1).

For each of those inequalities and inequations, we compute the successive
resultant of gj (or hj) w.r.t. the triangular set [f1, ..., fs] and denote it by Qj

(resp. Ql+j).

Definition 2. For an SAS T as defined by (2), the border polynomial of T is

BP =

s�
i=1

Ri

l+m�
j=1

Qj .

Sometimes, for brevity, we also abuse BP to denote the square-free part or the
set of square-free factors of BP .

Example 2. For the system S in Example 1, the border polynomial is

BP = b(b − 2)(b + 2)(b2 − 2)(b4 − 4b2 + 2)(2b4 − 2b2 + 1).

From the result in [31,27], we may assume BP �= 0. In fact, if any factor of BP is
a zero polynomial, we can further decompose the system into new systems with
such a property. For a parametric SAS, its border polynomial is a polynomial in
the parameters with the following property.

Theorem 1. Suppose S is a parametric SAS as defined by (2) and BP its border
polynomial. Then, in each connected component of the complement of BP = 0 in
parametric space R

d, the number of distinct real solutions of S is constant.

Third, BP = 0 decomposes the parametric space into a finite number of con-
nected region. We then choose sample points in each connected component of
the complement of BP = 0 and compute the number of distinct real solutions of
S at each sample point. Note that sample points can be obtained by the partial
cylindrical algebra decomposition (PCAD) algorithm [4].

Example 3. For the system S in Example 1, BP = 0 gives

b = 0, ± 2, ±
√

2, ±
�

2 ±
√

2.

The reals are divided into ten open intervals by these points. Because 0 < b < 2,
we only need to choose one point, for example, 1

2 , 1, 3
2 , 15

8 , from each of the four
intervals contained in (0, 2), respectively. Then, we substitute each of the four
values for b in the system, and compute the number of distinct real solutions of
the system, consequently obtain the system has respectively 0, 1, 0 and 0 distinct
real solutions.
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The above three steps constitute the main part of the algorithm in [31,34,27],
which, for any input SAS S, outputs the so-called border polynomial BP and a
quantifier-free formula Ψ in terms of polynomials in parameters u (and possible
some variables) such that, provided BP �= 0, Ψ is the necessary and sufficient
condition for S to have the given number (possibly infinite) of real solutions.
Since BP is a polynomial in parameters, BP = 0 can be viewed as a degenerated
condition. Therefore, the outputs of the above three steps can be read as “if
BP �= 0, the necessary and sufficient condition for S to have the given number
(possibly infinite) of real solutions is Ψ .”

Remark 1. If we want to discuss the case when parameters degenerate, i.e.,
BP = 0, we put BP = 0 (or some of its factors) into the system and apply
a similar procedure to handle the new SAS.

Example 4. By the steps described above, we obtain the necessary and sufficient
condition for S to have one distinct real solution is b2 − 2 < 0 ∧ b4 − 4b2 + 2 < 0

provided BP �= 0. Now, if b2 − 2 = 0, adding the equation into the system, we
obtain a new SAS: [ [b2 − 2, p1, p2, p3], [ ], G2, [ ] ]. By the algorithm in [28,29], we
know the system has no real solutions.

2.3 A Computer Algebra Tool: DISCOVERER

We have implemented the above algorithm and some other algorithms in Maple
as a computer algebra tool, named DISCOVERER. The reader can download the
tool for free via “http://www.is.pku.edu.cn/~xbc/discoverer.html”. The
prerequisite to run the package is Maple 7.0 or a later version of it.

The main features of DISCOVERER include

Real Solution Classification of Parametric Semi-algebraic Systems

For a parametric SAS T of the form (1) and an argument N , where N is one
of the following three forms:
– a non-negative integer b;
– a range b..c, where b, c are non-negative integers and b < c;
– a range b..w, where b is a non-negative integer and w is a name without

value, standing for +∞,
DISCOVERER can determine the conditions on u such that the number of
the distinct real solutions of T equals to N if N is an integer, otherwise falls
in the scope N . This is by calling

tofind([P], [G1], [G2], [H], [x1, ..., xs], [u1, ..., ut], N),

and results in the necessary and sufficient condition as well as the border
polynomial BP of T in u such that the number of the distinct real solutions
of T exactly equals to N or belongs to N provided BP �= 0. If T has infinite
real solutions for generic value of parameters, BP may have some variables.
Then, for the “boundaries” produced by “tofind”, i.e. BP = 0, we can call

Tofind([P, BP ], [G1], [G2], [H], [x1, ..., xs], [u1, ..., ut], N)

to obtain some further conditions on the parameters.
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Real Solution Isolation of Constant Semi-algebraic Systems

For a constant SAS T ( i.e., t = 0) of the form (1), if T has only a finite
number of real solutions, DISCOVERER can determine the number of dis-
tinct real solutions of T , say n, and moreover, can find out n disjoint cubes
with rational vertices in each of which there is only one solution. In addi-
tion, the width of the cubes can be less than any given positive real. The
two functions are realized through calling

nearsolve([P], [G1], [G2], [H], [x1, ..., xs]) and
realzeros([P], [G1], [G2], [H], [x1, ..., xs], w),

respectively, where w is optional and used to indicate the maximum size of
the output cubes.

3 Semi-algebraic Transition Systems and Invariants

In this section, we extend the notion of algebraic transition systems in [24] to
semi-algebraic transition systems (SATSs) to represent polynomial programs.
An Algebraic Transition System (ATS) is a special case of standard transition
system, in which the initial condition and all transitions are specified in terms
of polynomial equations; while in an SATS, each transition is equipped with
a conjunctive polynomial formula as guard, and its initial and loop conditions
possibly contain polynomial inequations and inequalities. It is easy to see that
ATS is a special case of SATS. Formally,

Definition 3. A semi-algebraic transition system is a quintuple 〈V, L, T, �0, Θ〉,
where V is a set of program variables, L is a set of locations, and T is a set of
transitions. Each transition τ ∈ T is a quadruple 〈�1, �2, ρτ , θτ 〉, where �1 and �2
are the pre- and post- locations of the transition, ρτ ∈ CPF (V, V ′) is the transition
relation, and θτ ∈ CPF(V ) is the guard of the transition. Only if θτ holds, the
transition can take place. Here, we use V ′ (variables with prime) to denote the
next-state variables. The location �0 is the initial location, and Θ ∈ CPF (V ) is
the initial condition.

If a transition τ changes nothing, i.e. ρτ ≡
�

v∈V v′ = v, we denote by skip ρτ .
Meanwhile, a transition τ = 〈l1, l2, ρτ , θτ 〉 is abbreviated as 〈l1, l2, ρτ 〉, if θτ is true.

Note that in the above definition, for simplicity, we require that each guard
should be a conjunctive polynomial formula. In fact, we can drop such a restric-
tion, as for any transition with a disjunctive guard we can split it into multiple
transitions with the same pre- and post- locations and transition relation, but
each of which takes a disjunct of the original guard as its guard.

A state is an evaluation of the variables in V and all states are denoted by
V al(V ). Without confusion we will use V to denote both the variable set and an
arbitrary state, and use F (V ) to mean the (truth) value of function (formula)
F under the state V . The semantics of SATSs can be explained through state
transitions as usual.

A transition is called separable if its transition relation is a conjunctive formula
of equations which define variables in V ′ equal to polynomial expressions over
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variables in V . It is easy to see that the composition of two separable transitions is
equivalent to a single separable one. An SATS is called separable if each transition
of the system is separable. In a separable system, the composition of transitions
along a path of the system is also equivalent to a single separable transition.
We will only concentrate on separable SATSs as any polynomial program can
easily be represented by a separable SATS (see [18]). Any SATS in the rest of
the paper is always assumed separable, unless otherwise stated.

Informally, an invariant of a program at a location is an assertion that is true
under any program state reaching the location. An invariant of a program can
be seen as a mapping to map each location to an assertion which has inductive
property, that is, initial and consecutive. Initial means that the image of the
mapping at the initial location holds on the loop entry, i.e. the invariant of the
initial location holds on the loop entry; whereas consecutive means that for any
transition the invariant at the pre-location together with the transition relation
and its guard implies the invariant at the post-location. In many cases, people
only consider an invariant at the initial location and do not care about invariants
at other locations. In this case, we can assume the invariants at other locations
are all true and therefore initial and consecutive mean that the invariant holds
on the entry, and is preserved under every cycle back to the initial location.

Definition 4 (Invariant at a Location). Let P = 〈V, L, T , l0, Θ〉 be an SATS.
An invariant at a location l ∈ L is a conjunctive polynomial formula φ ∈ PF (V ),
such that φ holds on all states that can be reached at location l.

Definition 5 (Invariant of a Program). An assertion map for an SATS
P = 〈V, L, T , l0, Θ〉 is a map η : L �→ PF (V ) that associates each location of P

with a formula of PF (V ). An assertion map of P is said to be an invariant of P

iff the following conditions hold:

Initial: Θ(V0) |= η(l0).
Consecutive: For each transition τ = 〈li, lj , ρτ , θτ 〉,

η(li)(V ) ∧ ρτ (V, V ′) ∧ θτ (V ) |= η(lj)(V ′).

4 Polynomial Invariants Generation

Similarly to [24], given an SATS S, we predetermine an invariant as a paramet-
ric SAS (PSAS for short) at each of the underlining locations (if no invariant
is predefined for a location, it is assumed that the mapping takes true as value
at the location) and therefore all these predefined PSASs form a parametric
invariant of S by the Definitions. Subsequently, according to the initial and con-
secutive conditions of the mapping, we can obtain a set of PSASs such that the
mapping is an invariant of the program iff each element the resulted set has no
real solution. Afterwards, we apply the algorithm on root classification of PSASs
to each of them and obtain a corresponding necessary and sufficient condition
on the parameters of the PSAS such that the PSAS has no real solution. Fi-
nally, applying quantifier elimination technique, we can get the instantiations of
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these parameters and therefore get an invariant for each underlining location by
replacing with the resulted instantiations the parameters of the predetermined
parametric PSAS. The above procedure are supported by the computer algebra
tools DISCOVERER and QEPCAD.

We will use the following example to demonstrate our approach in details.

Example 5. Consider a program shown in Fig.1 (a).

Integer (x, y) := (0, 0);

l0 : while x ≥ 0 ∧ y ≥ 0 do

(x, y) := (x + y2, y + 1);

end while

P = {
V = {x, y}
L = {l0}
T = {τ} }

where
τ = 〈l0, l0, x′ − x − y2 = 0 ∧ y′ − y − 1 = 0,

x ≥ 0 ∧ y ≥ 0〉
(a) (b)

Fig. 1.

Thus, the corresponding SATS can be represented as in Fig.1 (b).

In the following, we concretize the above idea and demonstrate with the toy
example.

Predefining Invariant. Predetermine a template of invariants at each of the
underlining location, which is a PSAS, i.e. the conjunction of a set of atomic
polynomial formula. All of these predefined PSASs form a parametric invari-
ant of the program. For example, we can assume a template of invariants of
P at l0 in Example 5 as

eq(x, y) = a1y
3 + a2y

2 + a3x − a4y = 0 (3)

ineq(x, y) = b1x + b2y
2 + b3y + b4 > 0, (4)

where a1, a2, a3, a4, b1, b2, b3, b4 are parameters. Therefore, η(l0) = (3) ∧ (4).
Note that theoretically speaking we can predefine a PSAS as an invariant at
each location like in the above example, but this will raise the complexity
dramatically as thus the number of parameters is so large (the reader will
see this point from the complexity analysis in the later). In practice, alter-
natively, we will split a complicated invariant to several simple invariants
such that the image of every of these simple invariants at each location is
just one of the atomic subformulae of the image of the complicated invariant
at the location. For example, in the above example, we can split η to η1 and
η2 by letting η1(l0) = (3) and η2(l0) = (4). It is easy to prove that a program
has a complicated invariant iff the corresponding simple invariant exist, for
instance, η exists iff η1 and η2 exist. This is because every invariant of a
program is determined by the program itself.

Deriving PSASs from Initial Condition and Solving. According to the
initial condition in Definition 5, we have Θ |= η(l0) which means that each
real solution of Θ must satisfy η(l0). In other words, Θ ∧ ¬η(l0) has no real



Generating Polynomial Invariants 77

solution. This implies that for each atomic polynomial formula φ in η(l0),
Θ ∧ ¬φ has no real solution. Note that η(l0) is the conjunction of a set of
atomic polynomials and Θ ∧ ¬φ is a PSAS according to the definition. Thus,
applying the tool DISCOVERER to the resulted PSAS Θ ∧ ¬φ, we get a nec-
essary and sufficient condition of the derived PSAS having no real solution.
The condition may contain the occurrences of some program variables. In
this case, the condition should hold for any instantiations of these variables.
Thus, by introducing universal quantifications of these variables (we usually
add a scope to each of these variables according to different situations) and
then applying QEPCAD, we can get a necessary and sufficient condition
only on the presumed parameters.
Repeatedly apply the procedure to each atomic polynomial formula of the
predefined invariant at l0 and then collect all the resulted conditions.

Example 6. In Example 5, Θ |= η1(l0) is equivalent to

x = 0, y = 0, eq(x, y) �= 0 (5)

has no real solution. By calling

tofind(([x, y], [ ], [ ], [eq(x, y)], [x, y], [a1, a2, a3, a4], 0)

we get that (5) has no real solution iff true.
Similarly, Θ |= η2(l0) is equivalent to

x = 0, y = 0, ineq(x, y) ≤ 0 (6)

has no real solution. Calling

tofind([x, y], [−ineq(x, y)], [ ], [ ], [x, y], [b1, b2, b3, b4], 0)

we get that (6) has no real solution iff

b4 > 0. (7)

Deriving PSASs from Consecutive Condition and Solving. From Defi-
nition 5, for each transition τ = 〈li, lj , ρτ , θτ 〉,

η(li) ∧ ρτ ∧ θτ |= η(lj)

so η(li) ∧ ρτ ∧ θτ ∧ ¬η(lj) has no real solution. This implies that for each
atomic polynomial formula φ

η(li) ∧ ρτ ∧ θτ ∧ ¬φ (8)

has no real solution. It is easy to see that (8) is a PSAS according to De-
finition 1, so applying the tool DISCOVERER, we obtain a necessary and
sufficient condition on the parameters such that (8) has no real solution.
Subsequently, similarly to Step 2, we may need to exploit the quantifier
elimination tool QEPCAD to reduce the resulted condition in order to get
a necessary and sufficient condition only on the presumed parameters.
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Example 7. In Example 5, for the invariant η1, we have

eq(x, y) = 0 ∧ x′ − x − y2 = 0 ∧ y′ − y − 1 = 0 |= eq(x′, y′) = 0. (9)

This is equivalent to

eq(x, y) = 0 ∧ x′ − x − y2 = 0 ∧ y′ − y − 1 = 0 ∧ eq(x′, y′) �= 0 (10)

has no real solution. Calling

tofind([x′ − x − y2, y′ − y − 1, eq(x, y)], [ ], [ ], [eq(x′, y′) ],

[x′, y′, x], [y, a1, a2, a3, a4], 0),

it follows that (10) has no real solution iff

a3y
2 + 3a1y

2 + 2ya2 + 3a1y − a4 + a2 + a1 = 0 ∧ (11)

a3(a1y
2 + ya2 − a4) ≤ 0. (12)

Further by Basic Algebraic Theorem and simplifying by QEPCAD, (11) ∧ (12)
holds for all y iff

− a4 + a2 + a1 = 0 ∧ 3a1 + 2a2 = 0 ∧ a3 + 3a1 = 0. (13)

Regarding the invariant η2, we have

ineq(x, y) > 0 ∧ x′ − x − y2 = 0 ∧ y′ − y − 1 = 0 |= ineq(x′, y′) > 0. (14)

This is equivalent to

ineq(x, y) > 0 ∧ x′ − x − y2 = 0 ∧ y′ − y − 1 = 0 ∧ ineq(x′, y′) ≤ 0 (15)

has no real solution. Calling

tofind([x′ − x − y2, y′ − y − 1], [−ineq(x′, y′)], [ineq(x, y)], [ ],

[x′, y′], [x, y, b1, b2, b3, b4], 0),

it follows that (15) has no real solution iff

b4 + b3 + b2 + 2b2y + b3y + b2y
2 + b1x + b1y

2 > 0. (16)

It is easy to see that (16) should hold for all y ≥ 0, and thus, by applying QEP-
CAD to eliminate the quantifiers ∀y ≥ 0 over (16), we get

b1 + b2 ≥ 0 ∧ b1 ≥ 0 ∧ b2 + b3 + b4 > 0 ∧
(b3 + 2b2 ≥ 0 ∨ (b1b2 + b2

2 ≥ 0 ∧ 4b2b4 + 4b1b4 + 4b1b3 + 4b1b2 − b2
3 > 0)) (17)

Generating Invariant. According to the results obtained from Steps 1, 2 and
3, we can get the final necessary and sufficient condition only on the parame-
ters of each of the invariant templates. If the condition is too complicated, we
can utilize the function of PCAD of DISCOVERER or QEPCAD to prove
if or not the condition is satisfied. If yes, the tool can produce the instantia-
tions of these parameters. Thus, we can get an invariant of the predetermined
form by replacing the parameters with the instantiations, respectively.
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Example 8. From Examples 6 & 7, it follows the necessary and sufficient con-
dition on the parameters of η1 is (13). By using DISCOVERER, we get an
instantiation

(a1, a2, a3, a4) = (−2, 3, 6, 1).

Thus, η1(l0) = −2y3 + 3y2 + 6x − y = 0. Also, the necessary and sufficient condi-
tion on the parameters of η2 is (7) ∧ (17). By PCAD of DISCOVERER, it results
the following instantiation

(b1, b2, b3, b4) = (1, −1, 2, 1)

that is, η2(l0) = x − y2 + 2y + 1 > 0. Totally, we get the following invariant for the
program P : �

−2y3 + 3y2 + 6x − y = 0,
x − y2 + 2y + 1 > 0

Note that the above procedure is complete in the sense that for any given pre-
defined parametric invariant, the procedure can always give you an answer, yes
or no. Therefore, we can conclude that our approach is also complete in the
sense that once the given polynomial program has a polynomial invariant, our
approach can indeed find it theoretically. This is because we can assume para-
metric invariants in program variables of different degrees, and repeatedly apply
the above procedure until we obtain a polynomial invariant.

5 Complexity Analysis

Assume given an SATS P = 〈V, L, T , l0, Θ〉, applying the above procedure, we
obtain k distinct PSASs so that the predefined parametric invariants form an
invariant of the program iff none of these k PSASs has any real solution. W.l.o.g.,
suppose each of these k PSASs has at most s polynomial equations, and m in-
equations and inequalities. All polynomials are in n indeterminates (i.e., variables
and parameters) and of degrees at most d.

For a PSAS S, by [3], CAD (cylindrical algebraic decomposition) based quan-
tifier elimination on S has complexity O((2d)2

2n+8
(s + m)2

n+6
), which is double

exponential w.r.t. n. Thus, the total cost is O(k(2d)2
2n+8

(s + m)2
n+6

) for directly
applying the technique of quantifier elimination to generate an invariant of a
program as advocated by Kapur [17].

In contrast, the cost of our approach includes two parts: one is for apply-
ing real solution classification to generate condition on the parameters possibly
together with some program variables; the other is for applying first-order quan-
tifier elimination to produce condition only on the parameters (if necessary) and
further exploiting PCAD to obtain the instantiations of these parameters.

The first part consists of three main steps. Firstly, we transform the equa-
tions in S into triangular sets (i.e., equations in triangular form) by Ritt-Wu’s
method. By [12], the complexity of computing the first characteristic set is
O(sO(n)(d + 1)O(n3)). Thus, the complexity of this step is O(snO(1)

(d + 1)nO(1)
),

which is usually called a singly exponential complexity w.r.t. n. Secondly, we
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compute a border polynomial (BP) from the triangularized systems through re-
sultant computation. Because the polynomials in the first computed characteris-
tic sets are of degree O(s(d + 1)O(n2)) by [12], the polynomials in the computed
triangular sets are of degree O(snO(1)

(d+1)nO(1)
). Thus, the complexity of com-

puting BP is at most (s + m)O(s3s+snO(1)
(d + 1)snO(1)

) because the complexity
of computing the resultant of two polynomials with degree d is at most O(d3).
Moreover, the degree of BP is at most D = O(sO(s2+s2nO(1))(d + 1)O(s2nO(1))).
Finally, we use a partial CAD algorithm with BP to obtain real solution clas-
sification. The complexity of this step is at most the complexity of performing
quantifier elimination on BP using CAD. Suppose the dimension of the ideal
generated by the s polynomial equations is t, then BP has at most t indetermi-
nates. Thus, by [3], the complexity of this step is at most O(2D22t+8

), which is
double exponential with respect to t. In a word, the cost for this part is singly
exponential in n and doubly exponential in t.

As the biggest degree of polynomials in the generated necessary and sufficient
condition from the above is at most D, the cost for the second part is O(2D22t+8

)

as well, which is doubly exponential in t, according to [3].
So, compared to directly applying quantifier elimination, our approach can

dramatically reduce the complexity, in particular when t is much less than n.

6 Generating Invariants vs. Discovering Ranking
Functions

In [2], we showed how to apply the approach to discovering non-linear ranking
functions. Although invariants and ranking functions both have inductive prop-
erties, the former is inductive w.r.t. a small step, i.e. each of single transitions of
the given program in contrast that the latter is inductive w.r.t. a big step, that
is each of circle transition at the initial location of the program. The difference
results that as far as invariant generation is concerned, our approach can be
simply applied to single loop programs as well as nested loop programs, without
any change; but regarding the discovery of ranking functions, we have to develop
the approach in order to handle nested loop programs, although it works well
for single loop programs.

7 Conclusions and Future Work

In this paper, we reduced the polynomial invariant generation of polynomial
programs to solving semi-algebraic systems, and theoretically analyzed why our
approach is more efficient and practical than that of [17] directly applying the
technique of first-order quantifier elimination. Compared to the well-established
approaches in this field, the invariants generated with our approach are more
expressive.

How to further improve the efficiency of our approach is still a big challenge
as well as our main future work, as the complexity is still single exponential



Generating Polynomial Invariants 81

w.r.t. the number of program variables and parameters, and doubly exponential
w.r.t. the number of parameters (at least). The high complexity restricts to scale
up our approach yet. Moreover, it deserves to investigate how to combine our
approach with other program verification techniques such as abstract interpre-
tation and Floyd-Hoare-Dijkstra’s inductive assertion method in order to resolve
complicated verification problems. In addition, implementing our approach in a
verification tool also makes so much senses in practice.
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19. Múller-Olm, M., Seidl, H.: Polynomial constants are decidable. In: Hermenegildo,
M.V., Puebla, G. (eds.) SAS 2002. LNCS, vol. 2477, pp. 4–19. Springer, Heidelberg
(2002)
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Abstract. Complexity of software development has to be dealt with
by dividing the different aspects and different views of the system and
separating different concerns in the design. This implies the need of dif-
ferent modelling notations and tools to support more and more phases
of the entire development process. To ensure the correctness of the mod-
els produced, the tools therefore need to integrate sophisticated checkers,
generators and transformations. A feasible approach to ensure high qual-
ity of such add-ins is to base them on sound formal foundations. This
paper reports our experience in the work on the Common Component
Modelling Example (CoCoME) and shows where such add-ins will fit. In
particular, we show how the formal techniques developed in rCOS can
be integrated into a component-based development process, and where
it can be integrated in and provide extension to an existing successful
commercial tool for adding formally supported checking, transformation
and generation modules.

Keywords: Software development tool, software process, formal meth-
ods, tool design.

1 Introduction

Software engineering is now facing two major challenges on

1. how to handle the huge complexity of system development, and
2. how to ensure the correctness and quality of the software

The complexity of software development is inherent due to many different aspects
of the system, including those of static structure, flow of control, interactions and
functionality, and different concerns of functionality correctness, concurrency,
distribution, mobility, security, timing, and so on. Large software development
� This work is partially supported by the projects HighQSoftD and HTTS funded

by Macao Science and Technology Development Fund, NSFC-60673114 and 863 of
China 2006AA01Z165.

�� I started working on separation and integration of models of different aspects and
concerns of systems when I started my study for my Master Degree [24] under the
supervision of Professor Zhou Chaochen.

C.B. Jones, Z. Liu, J. Woodcock (Eds.): Bjørner/Zhou Festschrift, LNCS 4700, pp. 83–114, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



84 Z. Chen et al.

requires a large team of people playing different roles and carrying out differ-
ent activities of design, construction, analysis, verification and validation. The
management of the development process is complex, too.

In practical software engineering nowadays, complexity is dealt with by a
component-based and model-driven development process [7,9] where

1. the different aspects and views of the system are described in a UML-like
multi-view and multi-notational language, and

2. separation of design and validation of different concerns is supported by
design patterns, object-oriented and component-based designs.

However, there are no rigorous unified theories and tools which support specifi-
cation, verification and validation of the models produced in such a process.

Rigorous verification and validation of a software system requires the ap-
plication of formal methods. This needs a formal version of the requirements
specification, and the establishment of a property to imply that the specified
requirement holds as long as the assumptions hold. The assumptions are specifi-
cations for or constraints on the behavior of environment and system elements.
In the past half a century, semantic foundations, formal notations and techniques
and tools of verification and validation have been developed, including testing,
static analysis, model checking, formal proof and theorem proving, and runtime
checking. They can be classified into the following frameworks:

– event-based models [29,15] are widely used for specification and verifica-
tion of interactions, and are supported by model checking and simulation
tools [30,2].

– pre-post conditions and Hoare logic are applied to specifications of function-
ality and static analysis. These are supported by tools of theorem proving,
runtime checking and testing [22,11,28].

– state transition systems and temporal logics are popular for specification and
verification of dynamic control behaviours. They are supported by model
checking tools [17,21].

However, each framework is researched mostly by a separate community, and
most of the research in verification has largely ignored the impact of design
methods on feasibility of formal verification. Therefore, the formal techniques
and tools are not good with regard to scalability and they are not easy to be
integrated into practical design and development processes. The notion of pro-
gram refinement [4] has obvious links to the practical design of programs with
the consideration of abstraction and correctness, but the existing refinement cal-
culi are shown to be effective only for small imperative programs. There is a lack
of a formal foundation for object-oriented and component-based model refine-
ment until the recent work on formal methods of component and object systems
[10,25,14,6].

The formalism, rCOS [14,6], that we have recently developed, is a rather rich
and mature formalism that models static and dynamic features for component



Harnessing rCOS for Tool Support—The CoCoME Experience 85

based systems. It is based on the UTP framework [16], and its accompanying
methodology of separation of concerns [7], have been applied in a case study
of a Point Of Sale terminal within the CoCoME (Common Component Mod-
elling Example) challenge [8]. In this paper, we discuss our experience on how
the construction of formal models and their verification and validation can be
integrated in a use case driven and component-based development process. In
particular, we will show with examples from the CoCoME case studies

1. what the models of the different aspects of the systems are at each stage of
the development, including the requirement elicitation, logic design, detailed
design, code generation,

2. how these models are constructed and derived by application of design pat-
terns that are proved to be a refinement in rCOS, and

3. how verification and validation tasks are identified for the models and what
are the effective tools for these tasks.

With regard to model construction and derivation, we focus on the aspects of
interactions, dynamic behaviour, and static functionality of the system and show
how the design and refinement of constraints on these aspects can be separated,
and how they can consistently form a whole model of the system. For verifica-
tion and validation, we look at consistency between interactions and dynamic
behaviour, component interaction protocols, static analysis and testing of func-
tionality. We discuss how the activities of model construction, transformations,
model verification and validation can be embedded into an existing commer-
cial software development tool, MasterCraft [31]. We have selected this tool,
because it has extensive coverage of the whole software development life-cycle,
from requirements gathering and analysis, through early design stages to imple-
mentation and testing, with support for deployment and maintenance. Finally,
it plays a major role that the producer of MasterCraft, Tata Research Develop-
ment and Design Centre (TRDDC), generously had permitted us to inspect the
tool in detail.

Overview. The following Section 2 gives an overview on the main ideas and
theme of our research on the rCOS methodology, and provides the formulation
of the main concepts of model-driven development. In Section 3, we demon-
strate, with our recent experience in the work on CoCoME case study, how the
formalization of the concepts, models and techniques developed in rCOS can
be integrated in a model-driven development process. The integration unifies
the different formal techniques of verification and validation with correctness by
design. We then discuss in Section 4 how we can enhance the industrial model-
driven tool, MasterCraft, for the support of the integration of formal design,
verification and validation into a practical engineering development process. Fi-
nally Section 5 summarizes our experience and discusses the plan for our future
work.
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2 The Basic Ideas Behind rCOS

The motivation of the research on rCOS is to provide a semantic foundation
for model driven development in the combined framework of object-oriented and
component-based software development. Practical software engineering shows
that this is a promising approach to heighten productivity in software develop-
ment while maintaining a high quality. It lets developers design systems at a
higher level of abstraction using models or specifications of components which
will be produced and integrated at a later implementation, assembly and de-
ployment stage.

2.1 rCOS Formulation of Software Concepts

A project using model driven development starts with a set of component spec-
ifications which may be given for previously developed components or be newly
introduced for components that are to be developed later. The designers then
proceed to

– build new components by applying component operators (connectors) to the
given ones,

– build new components by programming glue processes,
– define application work-flows as processes that use services from components,
– verification and validation are performed on components before and after

composition.

To provide formal support to such a development process, we formulate in rCOS
the key notions as mathematical structures and study the rules for manipula-
tion of these mathematical entities. These notions include interfaces, contracts
of interfaces, components, processes, compositions and refinement relations on
contracts, components and processes. In the next subsection, we give a brief
introduction to formulations.

Interfaces and Contracts. An interface I provides the syntactic type infor-
mation of an interaction point of a component. It consists of two parts, the data
declaration section denoted by I.FDec, that declares a set of variables with their
types, and the method declaration section, denoted by I.MDec, that defines a set
of method signatures each with the form m(T1 in;T2 out). Interfaces are used
for syntactic type checking. The current practical component technologies only
provide syntactical aspects of interfaces and leave the semantics of interfaces to
informal naming schemes. This is obviously not enough for rigorous verification
and validation. For example, a component with only syntactic interfaces shown
in Fig. 1 has no information about its functionality or behavior.

A contract is a specification of the semantic details for the interface. How-
ever, different usages of the component in different applications under different
environments may contain different details, and have different properties:
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Component

Buffer

put(T   in  ; ) get(;  T  out)

Fig. 1. A component with syntactic interface only

– An interface for a component in a sequential system is obviously different
from one in a communicating concurrent system. A contract for the former
only needs to specify the functionality of the methods, e.g. in terms of their
pre- and post-conditions. A contract for the later should include a description
of the communicating protocol, for example in terms of interaction traces.
The protocol specifies the order in which the interaction events happen.

– An interface for a component in a real-time application will need to provide
the real-time constraints of services, but an untimed application does not.

– Components in distributed, mobile or internet-based systems require their
interfaces to include information about their locations or addresses.

– An interface (component) should be stateless when the component is required
to be used dynamically and independently from other components.

– A service component has different features from a middleware component.

It is the contract of the interface that determines the external behavior and fea-
tures of the component and allows the component to be used as a black box.

Based on the above discussion, rCOS defines the notion of an interface con-
tract for a component as a description of what is needed for the component to be
used in building and maintaining software systems. The description of an inter-
face must contain information about all the viewpoints among, e.g., functionality,
behavior, protocols, safety, reliability, real-time, power, bandwidth, memory con-
sumption and communication mechanisms, that are needed for composing the
component in the given architecture for the application of the system. However,
this description can be incremental in the sense that newly required properties
or view points can be added when needed according to the application. Also, the
consistency of these viewpoints should be formalizable and checkable. For this,
rCOS is built on Hoare and He’s Unifying Theories of Programming [16].

The Minimal Use of UTP. In UTP, a sequential program (but possibly non-
deterministic) is represented by a design D = (α, P ), where

– α denotes the set of state variables (called observables) of the program
– P is a predicate p(x) � R(x, x′)

def
= (ok ∧ p(x)) ⇒ (ok′ ∧ R(x, x′)), meaning that

if the program is activated ok in a state where the precondition p(x) holds
the execution will terminate ok in a state where the postcondition holds that
post-state x′ and the initial state x are related by relation R.

It is proven in UTP that the set of designs is closed under the classical pro-
gramming constructs of sequential composition, conditional choice, nondetermin-
istic choice, and fixed point of iterations. Refinement between designs is defined
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as logical implications, and all the above operations on designs are monotonic
with regard to refinements (i.e. the order of implication). These fundamental
mathematical properties ensure that the domain of designs is a proper seman-
tic domain for sequential programming languages. There is a nice link from the
theory of designs to the theory of predicate transformers with the following
definition:

wp(p � R, q)
def
= p ∧ ¬(R; ¬q)

that defines the weakest precondition of a design for a post condition q.
Concurrent and reactive programs, such as those specified by Back’s action

systems [4] or Lamport’s Temporal Logic of Actions (TLA) [19], can be defined
by the notion of guarded designs, written as g&D and defined by

(α, if g then P else (true � wait′ ∧ v′ = v))

The domain of guarded designs enjoys the same closure properties as that do-
main. And refinement is defined as logical implication, too.

The basic UTP has no notions of objects, classes, inheritance, polymorphism,
and dynamic binding. For a combination of OO and component-based modelling,
we have extended UTP to object-oriented programming [14].

Contracts of Interfaces. In the current version of rCOS, we only consider
components in the application of concurrent and distributed systems, and a
contract Ctr = (I, Init,MSpec, Prot) specifies

– the allowable initial states by the initial condition Init,
– the synchronization condition g on each declared method and the function-

ality of the method by the specification function MSpec that assigns each
method to a guarded design g&D.

– Prot is called the protocol and is a set of sequences of call events; each is
of the form ?op1(x1), . . . , ?opk(xk). Notice a protocol can be specified by a
temporal logic or a trace logic.

For example, the component interface in Fig. 1 does not say the buffer is a one-
place buffer. A specification of a one-place buffer can be given by a contract B

for which

– The interface: B1.I = 〈q : Seq(int), put(item : int; ), get(; res : int)〉
– The initial condition: B1.Init = q =<>

– The specification:

B1.MSpec(put) = q =<> &true � q′ =< item >
B1.MSpec(get) = q �=<> &true � res′ = head(q) ∧ q′ =<>

– The protocol: B1.Prot is a set of traces that is a subset of

{e1, . . . , ek | ei is ?put() if i is odd and ?get() otherwise}.
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The formulation of contracts supports separation of views, but the different views
have to be consistent. A contract Ctr is consistent, indicated through a predicate
Cons(Ctr), if it will never enter a deadlock state if its environment interacts with
it according to its protocol, that is, for all 〈?op1(x1), . . . , ?opk(xk)〉 ∈ Ctr.Prot,

wp
�

Init;g1&D1[x1/in1]; . . . ; gk&Dk[xk/ink],
¬wait ∧ ∃op ∈ MDec•g(op)

�
= true

Note that this formalization takes both synchronization conditions and function-
alities into account, as an execution of a method with its precondition falsified
will diverge and a divergent state can cause deadlock too.

We have proven the following theorem of separation of concerns:

Theorem 1 (Separation of Concerns)

1. If Cons(I, Init,MSpec,Proti), then Cons(I, Init,MSpec,Prot1 ∪ Prot2), i ∈ {1, 2}
2. If Cons(I, Init,MSpec,Prot1) and Prot2 ⊆ Prot1, then Cons(I, Init,MSpec,Prot2)
3. If Cons(I, Init, MSpec,Prot) and MSpec � MSpec1, then Cons(I, Init,MSpec1,Prot)

This allows us to refine the specification and the protocol separately.
We are now current working on an extension to the model of contracts for

specification of the timing information of a component. An interesting and im-
portant point that we would like to make is that the notation for timing aspect
at the contract level should be different from that used for the model of the de-
sign of components. At the contract level, we propose the use of interval based
notation to describe the minimal time and maximal time [te, Te] that the envi-
ronment has to wait when calling an interface method (that is the worst case
execution time of the interface methods), and the minimal time and maximal
time [tw, Tw] that the component is willing to wait for a method to be invoked.
Zhou Chaochen’s Duration Calculus [32] is an obvious choice for reasoning about
these interval based timing properties. However, for the design and verification
of the implementation of a component, clocks or timers in the timed automata
model are more feasible. This indicates the use of different notations at differ-
ent levels of abstraction in system development. A challenge is to link the clock
time model for the design of components to the interval-based time model of its
contract. Initial results on this work can be found [26].

Contract Refinement. A contract Ctr has a denotational semantics in terms
of its failure set F(Ctr) and divergence set F(Ctr1), that is same as the failure-
divergence semantics for CSP (but we do not use the CSP language) [6]. Ctr1

is refined by contract Ctr2, denoted by Ctr1 � Ctr2, if the later offers the same
provided methods, Ctr1.MDec = Ctr2.MDec, is not more likely to diverge than
the former, D(Ctr1) ⊇ D(Ctr2), and not more likely to deadlock than the former,
F(Ctr1) ⊇ F(Ctr2). We have established a complete proof techniques of refine-
ment by simulation.

Theorem 2 (Refinement by Simulation)
Ctr1 � Ctr2 if there exists a total mapping ρ(u, v′) : FDec1 −→ FDec2 such that
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1. Init2 ⇒ (Init1; ρ)
2. ρ ⇒ (guard1(op) = guard2(op)) for all op ∈ MDec1.
3. for each op ∈ MDec1, MSpec1(op); ρ � ρ;MSpec2(op)

Similarly, contract refinement can also be proved by a surjective upward
simulation [6].

Theorem 3 (Completeness of Simulations)
If Ctr1 � Ctr2, there exists a Ctr such that

Ctr1 �up Ctr �down Ctr2 Ctr1 � Ctr � Ctr2

�up and �down denote upwards and downwards simulations, respectively.

Components. A component is an implementation of a contract. Formally
speaking, a component is tuple C = (I, Init, MCode,PriMDec, PriMCode, InMDec),
where

– MCode and PriMCode map a public method to a private method m to a
guarded command gm → cm,

– InMDec is the set of required methods in the code, called required interface.

The semantics [[C]] is a function that calculates a contract for the provided in-
terface for any given contract InCtr of the required interface

[[C]](InCtr)
def
= ((I, MSpec), Init,PriMDec, PriMSpec)

where the specification is calculated from the semantics of the code, following
the calculus established in UTP.

A component C1 is refined by another component C2, denoted by C1 � C2 if

1. the later provides the same services as the former, C1.MDec = C2.MDec
2. the later requires the same services as the former C1.InMDec = C2.InMDec,

and
3. for any given contract of the required interface, the resulting provided con-

tract of the later is a refinement of that of the former, C1(InCtr) � C2(InCtr),
holds for all input contracts InCtr.

Note that the notion of component refinement is used for both component cor-
rectness by design and component substitutability in maintenance. One of the
major objectives of rCOS is to prove design patterns as refinement rules, and
automate refinement rules as model transformations. We hope this will help to
reduce the amount of verification required.

Simple Connectors. To support the development activity, the semantic frame-
work also needs to define operators for connecting components, resulting in
new contracts, constructs for defining glue processes, and constructs for defin-
ing processes. In summary, the framework should be compositional and support
both functional and behavioral specification. In rCOS, simple connectors between
components are defined as component compositions. These include plugging (or
union), service hiding, service renaming, and feedback. These compositions are
shown in Figs. 2-4.
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Fig. 2. Plug Composition
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Fig. 3. Hiding after Chaining
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put1
put1

Fig. 4. Feedback

2.2 Coordination

From an external point of view, components provide a number of methods, but
do not themselves activate the functionality specified in the contracts; we need
active entities that implement a desired functionality by coordinating the se-
quences of method calls. In general, these active entities do not share the three
features of components [13].

In [6], we introduce processes into rCOS. Like a component, a process has an
interface declaring its own local state variables and methods, and its behavior is
specified by a process contract. Unlike a component that is passively waiting for
a client to call its provided services, a process is active and has its own control on
when to call out to required services or to wait for a call to its provided services.
For such an active process, we cannot have separate contracts for its provided
interface and required interface, because we cannot have separate specifications
of outgoing calls and incoming calls [13]. So a process only has an interface and its
associated contract (or code). For simplicity, but without losing expressiveness,
we assume a process like a Java thread does not provide services and only calls
methods provided by components. Therefore, processes can only communicate
via shared components. Of course, a component can also communicate with
another component via processes, but without knowing the component that it
is communicating with.
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Let C be the parallel composition of a number of disjoint components Ci,
i = 1 . . . k. A glue program for C is a process P that makes calls to a set of X of
provided methods of C. The composition C‖ [X]P of C and P is defined similarly
to the alphabetized parallel composition in CSP [30] with interleaving of events.
The gluing composition is defined by hiding the synchronized methods between
the component C and the process P. We have proven that (C‖ [X]P )\X is a
component, and studied the algebraic laws of the composition of processes and
components. The glue composition is illustrated in Fig. 5, where in Fig. 5(a)
C1 and C2 are two one-place buffers and P is a process that keeps getting the
item from C1 and putting it to C2. In Fig. 5(b), the get of C1 and put of C2

are synchronized into an atomic step by component M ; and M proves method
move(){get1(; y);put2(y; )}, that process P calls.

(a)

C1

put

C2

get

put1get1

P
(b)

                    move

C 1

put1
C 2

get2

put2get1

P

M

Fig. 5. (a) Gluing two one-place buffers forms a three-place Buffer, (b) Gluing two
One-place buffers forms a two-place buffer

An application program is a set of parallel processes that make use of the
services provided by components. As processes only interact with components
via the provided interfaces of the components, interoperability is thus supported
by the contracts which define the semantics of the common interface descrip-
tion language (IDL), even though components, glue programs and application
programs are not implemented in the same language. Analysis and verification
of an application program can be performed in the classical formal frameworks,
but at the level of contracts of components instead of implementations of com-
ponents. The analysis and verification can reuse any proved properties about
the components, such as divergence freedom and deadlock freedom without the
need to reprove them.

2.3 Object-Orientation in rCOS

The variables in the field declaration section can be of object types. This allows
us to apply OO techniques to the design and implementation of a component. In
our earlier work [14], we have extended UTP to formal treatment of OO program
and OO refinement. This is summarized as follows.
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Classes. In rCOS, we write a class specification in the following format:

class C [extends D]{
attr T1 x = d, . . . ,Tk x = d
meth m(T in;V return) {

pre: c ∨ . . . ∨ c
post: (R; . . . ; R) ∨ . . . ∨ (R; . . . ; R)

∧ . . . . . .
∧ (R; . . . ; R) ∨ . . . ∨ (R; . . . ; R) }

. . . . . .
meth m(T in;V return) {. . . . . . }

. . . . . .
invariant Inv }

The initial value of an attribute is optional, and an attribute is assumed to be
public unless it is tagged with reserved words private and protected. If no initial
value is declared it will default to null.

Each c in the precondition represents a condition to be checked; it is a con-
junction of primitive predicates.

A design p � R for a method is written as Pre p and Post R. An R in the
postcondition is of the form c ∧ (le′ = e), where c is a condition, le an assignable
expression and e an expression. An assignable le is either a primitive variable
x, or an attribute name a or le.a. An expression e can be a logically specified
expression such as the greatest common divisor of two given integers.

We allow the use of indexed conjunction ∀i ∈ I : R(i) and indexed disjunctions
∃i ∈ I : R(i) for a finite set I. These would be the quantifications if the index set
is infinite. The reader can see the influence of TLA+ [19], UNITY [5] and Java
on the above format.

OO Refinement. Doing an OO design is to design object interactions so that
objects interact with each other to realize the functionality specified in the class
declarations. In rCOS, we provide three levels of refinement:

1. Refinement of a whole object program. This may involve the change of any-
thing as long as the behavior of the main method with respect to the global
variables is preserved. It is an extension to the notion of data refinement
in imperative programming, with a semantic model dealing with object ref-
erences, method invocation, and polymorphism. In such a refinement, all
non-public attributes of the objects are treated as local (internal) variables.

2. Refinement of the class declaration section: Classes1 is a refinement of Classes
if Classes1 • main refines Classes • main for all main. This means that Classes1
supports at least as many services as Classes.

3. Refinement of a method of a class in Classes. Obviously, Classes1 refines
Classes if the public class names in Classes are all in Classes1 and for each
public method of each public class in Classes there is a refined method in the
corresponding class of Classes1.

Interesting results on completeness of the refinement calculus are available in [23].
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In an OO design there are mainly three kinds of refinement: Delegation of
functionality or responsibilities, attribute encapsulation, and class decomposition.

Delegation of Functionality. Assume that C and C1 are classes in Classes,
C1 o is an attribute of C and T x is an attribute of C1. Let m(){c(o.x′, o.x)} be a
method of C that directly accesses and/or modifies attribute x of C1. Then, if all
other variables in the method c are accessible in C1, we have Classes � Classes1,
where Classes1 is obtained from Classes by changing m(){c(o.x′, o.x)} to m(){o.n()}
in class C and adding a fresh method n(){c[x′/o.x′, x/o.x]}. This is also called the
expert pattern of responsibility assignment.

This rule and other refinement rules can prove big-step refinement rules, such
as the following expert pattern, that will be repeatedly used in the design of
the system.

Theorem 4 (Expert Pattern). Given a list of class declarations Classes and
its navigation paths r1. . . . .rf .x(denoted by le), {a11. . . . .a1k1 .x1, . . . , a�1. . . . .a�k�

.x�},
and {b11. . . . .b1j1 .y1, . . . , bt1. . . . .atjt .yt} starting from class C, let m() be a method
of C specified as

C :: m(){ c(a11. . . . .a1k1 .x1, . . . , a�1. . . . .a�k�
.x�)

∧ le′ = e(b11. . . . .b1s1 .y1, . . . , bts1. . . . .btst .yt) }

Then Classes can be refined by redefining m() in C and defining the following
fresh methods in the corresponding classes:

C :: check(){return′=c(a11.getπa11x1
(), . . . , a�1.getπa�1x�

())}
m(){if check() then r1.do-mπr1

(b11.getπb11y1
(), . . . , bs1.getπbs1ys

())}
T(aij) :: getπaij

xi
(){return′=aij+1.getπaij+1xi

()} (i : 1..�, j : 1..ki − 1)

T(aiki) :: getπaiki
xi

(){return′=xi} (i : 1..�)

T(ri) :: do-mπri
(d11, . . . , ds1){ri+1.do-mπri+1

(d11, . . . , ds1)} i : 1..f − 1

T(rf ) :: do-mπrf
(d11, . . . , ds1){x′ = e(d11, . . . , ds1)}

T(bij) :: getπbij
yi

(){return′=bij+1.getπbij+1yi
()} (i : 1..t, j : 1..si − 1)

T(bisi) :: getπbisi
yi

(){return′=yi} (i : 1..t)

where T(a) is the type name of attribute a and πvi denotes the remainder of the
corresponding navigation path v starting at position j.

This pattern informally represents the fact that a computation is realized by
obtaining the data that distributed in different objects via association links and
then delegating the computation tasks to the target object whose state is re-
quired to change.

If the paths {a11. . . . .a1k1 .x1, . . . , a�1. . . . .a�k�
.x�} have a common prefix, say

up to a1j, then class C can directly delegate the responsibility of getting the
x-attributes and checking the condition to T(aij) via the path a11. . . . , aij and
then follow the above rule from T(aij). The same rule can be applied to the
b-navigation paths.
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The expert pattern is the most often used refinement rule in OO design. One
feature of this rule is that it does not introduce more couplings by associations
between classes into the class structure. It also ensures that functional responsi-
bilities are allocated to the appropriate objects that knows the data needed for
the responsibilities assigned to them.

Encapsulation. The encapsulation rule says that if an attribute of a class C is
only referred directly in the specification (or code) of methods in C, this attribute
can be made a private attribute; and it can be made protected if it is only directly
referred in specifications of methods of C and its subclasses.

Class Decomposition. During an OO design, we often need to decompose a
class into a number of classes. For example, consider classes C1 :: D a1, C2 :: D a2,
and D :: T1 x,T2 y. If methods of C1 only call a method D :: m(){...} that only in-
volves x, and methods of C2 only call a method D :: n(){...} that only involves y, we
can decompose D into two D1 :: T1 x; m(){...} and D2 :: T2 y;n(){...}, and change
the type of a1 in C1 to D1 and the type of a2 in C2 to D2. There are other rules for
class decomposition in [14].

An important point here is that the expert pattern and the rule of encap-
sulation can be implemented by automated model transformations. In general,
transformations for structure refinement can be aided by transformations in
which changes are made on the structure model, such as the class diagram, with
a diagram editing tool and then automatic transformation can be derived for
the change in the specification of the functionality and object interactions. For
details, please see our work in [23].

3 Integrating rCOS Support into Model-Driven
Development Process

In a realistic project there are more activities than just design. These activi-
ties are performed by project team members in different roles, such as Admin-
istrator, Analysis Modeler, Architecture Modeler, Design Modeler, Construction
Manager, Construction Programmer, Model Manager, and Version Manager [31].
The concepts of activities and roles define at which point various models, that are
also informally called artifacts, are produced by which roles, and what different
analysis, manipulation, checking and verification are performed, with different
tools. The concept of roles is also useful for the control of the work flow in that
different roles are allowed to access and modify certain models in the devel-
opment environment. These concepts and ideas have been implemented in the
industrial tool, MasterCraft, for model transformation [31]. In this section, we
use the our experience with the in the recent work on the Common Compo-
nent Modelling Example (CoCoME) to show how the rCOS methodology can
be integrated into a model-driven development processes in supporting the de-
velopment activities. We first introduce the modelling example, that is followed
by a summary of the application of rCOS.
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3.1 POST—The Common Modelling Example

The point of sale terminal (POST) was originally used as a running example in
Larman’s book [20] to demonstrate the concepts, modeling and design of object-
oriented systems. An extended version is now being used as the case study in
the Common Component Modeling Contest (CoCoME) [8].

POST is a computerized system typically used in a retail store. It records
sales, handles both cash payments and credit card payments as well as inventory
update. Furthermore, the system deals with ordering goods and generates various
reports for management purposes. The system can be a small system, containing
only one terminal for checking out customers and one terminal for management,
or a large system that has a number of terminals for checking out in parallel, or
even a network of these large systems to support an enterprise of a chain of retail
stores. The whole system includes hardware components such as computers and
bar code scanners, card readers, and a software to run the system. To handle
credit card payments, orders and delivery of products, we assume a Bank and a
Supplier that a terminal can interact with.

The common modelling exercise requires each team to work on a common
informal description of the system, and carry out a component-based modelling
and design. Various aspects should be modelled and analysed, including func-
tionalities, interactions, middlewares, and extra-functionalities (also known as
non-functional requirements) such as timing. Also, code should be generated for
the implementation.

The problem description that we received is largely based on use case descrip-
tions. There can be many use cases for this system, depending on what business
processes the client of the system want the system to support. One of the main
use cases is processing sales, that is denoted by the use case UC1: Process sales.
An informal description can be given as follows.

This use case can perform either express checkout process for customers with
only a few items to purchase, or a normal checkout process. The main course of
interactions between the actors and the system is described as follows.

1. The cashier sets the checkout mode to express check out or for normal check
out. The system then sets the displaylight to green or yellow accordingly.

2. This use case starts when a customer comes to the checkout point with their
items to purchase.

3. The cashier indicates the system to handle a new sale.
4. The cashier enters all the items, either by typing or scanning in the bar code,

if there is more than one of the same item, the cashier can also enter the
quantity. The system records each item and its quantity and calculates the
subtotal.

In express checkout mode, only a purchase of a limited number of items
is allowed.

5. At the end of entering the items, the total of the sale is calculated. The
cashier tells the customer the total and asks her to pay.

6. The customer can pay by cash or a credit card:
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(a) If by cash, the cashier enters the amount received from the customer, and
the system records the cash payment amount and calculates the change.
The cashier gives the change to the customer.

(b) If the customer chooses to pay by a credit card, the cashier enters the
card information (manually or by the card reader). The system sends
the credit payment to the bank for authorization. The payment can only
be made if a positive authorization reply is received.

The inventory of the sold items is updated and the completed sale is logged
in the store.

7. The customer leaves with the items they purchased at the end of the process.

There are exceptional courses of interactions. For example, the entered bar code
is not known in the system, the customer does not have enough money for a
cash payment, or the authorization reply is negative. Systems need to provide
means of handling these exception cases, such as canceling the sale or changing
to another way of paying for the sale. At the requirements level, we capture these
exceptional conditions as preconditions.

Other use cases include UC2: Order products, that orders products from the
supplier; UC3: Manage inventory, that includes changing the amount of an
item (after receiving deliveries from the product supplier), changing the price
of a product, and adding a new product, and deleting a new product; UC4:
Produce monthly reports on sales that is to show the reports of all sales in the
last 30 days and information of profit and loss; and UC5: Produce stock reports,
that produces the reports on stock items.

3.2 Development of POST with rCOS

There has been a wide view that object-oriented and component-based design
should be bottom up. We in fact take a use-case driven, incremental and iterative
Rational Unified Development Process [18].

The Sketch of the Development Process. In each iteration, a number of use
cases are captured, modeled and analysed at the requirements stage. Each use
case is modeled as a contract of a component that provides services to the actors
of the use case. The fields of the contract declare the domain objects involved
in the realization of the use case. The classes of these objects are organized
as a class diagram representing the structural view of the data and objects of
the components. The contracts should be analyzed and the consistency of the
contracts should be checked.

The contracts of the use case components are then designed and organised into
bigger components to form the component-based architecture for the application
software components with identified object-oriented interfaces. We call this step
the logical design of the iteration. This involves object-oriented refinement of
each use case component, identifies interactions among objects in different com-
ponents, and composes components (i.e. use cases) by simple connectors. The
resulting model is the logical component model.
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Fig. 6. Sequence Diagram
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The model of logical design should be further refined by class decomposition,
data encapsulation and refactoring. We call this step the detailed design. The
detailed design also involves replacing the object-oriented interfaces with con-
crete and appropriate interaction mechanisms (or middlewares) such as RMI,
CORBA or shared event channels.Verification and validation, such as runtime
checking or testing (unit testing), can be applied to components before and after
introducing the concrete middlewares.

Code can be constructed for each component and static analysis, unit testing
and runtime checking can be done on the components.

Before or after coding, the design of the GUI, the software controller of the
hardware devices and their interactions with the application software compo-
nents can be modeled and designed. This is done in a purely event-based model
following the theory of embedded system design. The business components, GUI
components, hardware controllers and middlewares are integrated and deployed.

Requirements Modelling of POST. A use case is modelled as a contract
of a component, that corresponds the concepts of use case controller class in
our earlier object-oriented modelling [7]. To help practical software engineers to
understand the formal models, the protocol of a use case contract is illustrated
by a UML sequence diagram that defines all the possible traces of the interaction
between the actors and the system in the use case. The guarded design speci-
fication of each interface method is further divided into the guard, the control
state transition, and the data functionality. The guards and the control state
transitions are shown by a UML state diagram, and the data functionality of a
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method is specified as unguarded design. For such a style of modelling and their
formal integration, we refer to our paper [7]. The protocol of use case process a
sale UC1 is modelled by the sequence diagram in Fig. 6 and its state diagram
is given in Fig. 7.

The specification of the functions of the use case and the component invariant
are given as follows.

Use Case UC 1: Process Sale

Class Cashdesk
Method enableExpress()

pre: true
post: ExMode’ = true

Method disableExpress()
pre: true
post: ExMode’ = false

Method startSale()
pre: true
post: /* a new sale is created, and its line items initialized to empty,

and the date correctly recorded */
sale′ = Sale.New(false/complete, empty/lines, clock.date()/date)

Method enterItem(Barcode c, int qty)
pre: /* there exists a product with the input barcode c */
store.catalog.find(c) �= null
post: /* a new line is created with its barcode c and quantity qty */
line′ = LineItem.New(c/barcode,qty/quantity)
; line.subtotal′ = store.catalog.find(c).price × qty
; sale.lines.add(line)

Method finishSale()
pre: true
post: sale.complete′ = true
∧ sale.total′ = sum[[l.subtotal | l ∈ sale.lines]]

Method cashPay(double a; double c)
pre: a ≥ sale.total
post: sale.pay′ = CashPayment.New(a/amount, a-sale.total/change)

/* the completed sale is logged in store, and */
; store.sales.add(sale); /* the inventory is updated */

∀l ∈ sale.lines, p ∈ store.catalog • (if p.barcode = l.barcode then
p.amount′ = p.amount − l.quantity)

Method cardPay(Card c)
pre: Bank.authorize(c,sale.total)
post: sale.pay′ = CardPayment.New(c/card)
; store.sales.add(sale);

∀l ∈ sale.lines, p ∈ store.catalog • (if p.barcode = l.barcode then
p.amount′ = p.amount − l.quantity)

invariant store �= null ∧ store.catalog �= null
∧ (exmode = true ∨ exmode = false)

The structure of the data and classes of the objects are declared as class decla-
rations in rCOS and can be illustrated by a UML class diagram. Then the state
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space of the component is the set of the object diagrams and the class diagram.
Fig. 8 shows the class diagram of use case UC1 and Fig. 9 is an example of an
object diagram.

The execution of an invocation to an interface method changes from one
object diagram to another [14,23]. The behaviour of the use case components
(the methods used above) will be implemented in an abstract class, and the used
methods and arguments indicate its abstract interface:
public abstract class Cashdesk implements Sa l e sHand l e r In t e r f a c e {

protected boolean exmode ;
public abstract void enab leExpress ( ) ;
public abstract void d i sab l eExpr e s s ( )
public abstract void s t a r t S a l e ( ) ;
public abstract void ente r I tem( Barcode code , int qty ) ;
public abstract void f i n i s h S a l e ( ) ;
public abstract void cardPay (Card c ) ;
public abstract void cashPay (double a ; double c ) ;

}

Requirements Consistency. Static consistency between methods in the dia-
grams and the functional specification, their types, and navigation paths must
be consistent. This step is usually done by some tools like a compiler, but is done
manually in the case study due to a lack of machine readable specifications.

Dynamic consistency ensures that the separately specified behavior in the se-
quence diagram, the state diagram and the trace are consistent. Informally, the
consistency must ensure that whenever the actors follow the interaction protocol
defined by the sequence diagram, the interactions will not be blocked by the sys-
tem, i.e. no deadlock should occur. Formally speaking, this requires that the traces
are accepted by the state machine defined by the state diagram. Also, the sequence
diagramshould completely define the set of traces that can be accepted by the state
diagram. While, the sequence diagrams specifies the traces in a denotational man-
ner, the state diagram describes the flow of control in an operational semantics and
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thusmodel checking and simulation canbe easily applied.The state diagramallows
verification of both safety and liveness properties.

As all three specifications mechanisms are based on regular techniques and can
be interpreted as defining languages of traces, we translate them manually into
CSP specifications and use the FDR model checker to prove trace equivalence
of the sequence and the state diagram. Likewise, we can generate PROMELA
specifications for the SPIN model checker to check additional properties such as
certain liveness or application specific properties.

Logical Design. The logical design step has two kinds of activities. First each
use case contract is refined from its functional specification through application
of design patterns, the Expert Pattern [9] in particular. This step delegates the
functionality responsibilities to the internal domain objects (i.e. those of the
fields). This derives a refinement of the use case sequence diagram into a design
sequence diagram. For example, applying the expert pattern to the use case
operation of UC1 we can refine it to the design sequence diagram shown in
Fig. 10. We can specify the other use cases and refine them in the same way. For
the formal refinement of the use cases in rCOS, we refer the reader to the rCOS
solution to CoCoME [8].

After the initial object-oriented refinement we can identify further compo-
nents. For use case UC1, we single out the component � Clock � and � Bank �
from the component � SalesHandler �. We also compose the use cases for “or-
der products”, “manage inventory items”, “produce sales reports” and “pro-
duce stock reports” into one component called � Inventory �. From the design
sequence diagrams of the use cases (and formally the refined design of the use
case operations specified in rCOS), we can organize the interaction among ob-
jects from the different components into provided and required interfaces of the
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identified components. This then transforms the model of the use case contracts
into a logical component architecture as shown in Fig. 11. The rCOS specification
of the refined component � SalesHandler � can be given as
component SalesHandler required interface ClockIf { date() }
required interface BankIf { authorize(..) }
required interface StoreIf { update(..), find (..), addSale(..) }
provided interface SaleIf { startSale, enterItem, finishSale , cashPay, cardPay }
protocol { ( [ ?enableExpress ( ?startSale (?enterItem)(max) ? finishSale ?cashPay)∗

| ?disableExpress ( ?startSale (?enterItem)∗ ? finishSale
[ ?cardPay | ?cashPay ] )∗ ] )∗ }

class Cashdesk implements SaleIf

This notation thus combines aspects of an rCOS component (provided/required
interface and class implementing the provided methods) and contract (proto-
col). Call-ins in the protocol are indicated by a question mark. A process can be
recognized by a protocol which starts with a call-out, denoted by an exclama-
tion mark following the method name. Further decomposition of the component
� Inventory � into the three layer architecture consisting of � Application �,
data representation component � Store � and � Database � is shown in Fig. 12.

Notice that in the logical componentmodels, interfaces are object-oriented inter-
faces, meaning that the interactions are through direct object method invocations.

Detailed Design. In the detailed design, refinement translates the specifica-
tions in the logical design into an object-based programming language resembling
Java. In this step, class decomposition, refactoring [12] and data encapsulation,
that proved as refinement rules in the object-oriented rCOS [14], can be applied.
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Significant algorithms for specifications of methods of classes are designed.
Such a method usually does not need to call methods outside its owning class.
The specification of such a algorithms often uses quantifications over elements
of a multi-object (or a container object). In rCOS, this is resolved through stan-
dard patterns like iteration. The correctness of those patterns has been formally
proved in previous rCOS literature.

This representation allows almost direct translation into Java. We invite the
reader to observe the introduction of the intermediate classes which finally break
down the store.catalog.find() in class Cashdesk down to the set -implementation,
which is given again as a purely functional specification, under the assumption
that a corresponding data structure is available in the target language:

class Cashdesk:: enterItem(Barcode code, int qty) {
if find(code) �= null then {
line:=LineItem.New(code, qty);
line.setSubtotal(find(code).price × qty);
sale.addLine(line) }

else { throw exception e } }
find(Barcode code; Product r) {r:=store.find(code)}

class Store:: find(Barcode code; Product r) {r:=catalog.find(code)}
class set(Product):: find(Barcode code; Product returns)

Pre ∃p : Product • (p.barcode = code ∧ contains(p))
Post returns.barcode’ = code

class Sale:: addLine(LineItem l) {lines.add(l)}
class LineItem:: setSubtotal(double a) {subtotal :=a }

class Cashdesk:: finishSale() { sale.setComplete(); sale.setTotal() }
class Sale:: setComplete() { complete:=true }

setTotal() { total:=lines.sum() }
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Separately, the abstract interfaces have been refined with Java Modelling Lan-
guages (JML) annotations derived from the pre- and post-conditions. These can
be checked at runtime, and we plan to use them for further static analysis in
future work: the JML code snippet of the enterItem() design is shown on the left
of Fig. 13. Notice that the code in the dotted rectangle gives the specification of
the exception.

/*@ public normal_behaviour 

@  requires (\exists Object o; theStore.theProductList.contains(o); 
@          ((Product)o).theBarcode.equals(code)); … 

@  ensures  theLine != \old(theLine) && 

@   theLine.theBarcode.equals(code) &&… 

@ also 

@ public exceptional_behaviour 

@   requires !(\exists Object o; theStore.theProductList.contains(o); 

@          ((Product)o).theBarcode.equals(code)); 

@   signals_only Exception; 

@*/ 

public void enterItem(Barcode code, int qty) throws Exception; 
 

public void enterItem(Barcode code, int qty) 
 throws Exception{ 

if (find(code) != null) { 
line = new LineItem(code, qty); 
line.setSubtotal(find(code).price * qty); 
sale.addLine(line); 
t = true; 

} else { 
throw new Exception(); 

} 
} 

Fig. 13. JML Specification and Implementation

In the detailed design, some of the object-oriented interfaces are replaced by
appropriate interaction mechanisms and middlewares, for example

– We keep the interface StoreIf between the application layer and the data
representation layer as an oo interface.

– As all the SalesHandler instances share the same inventory, we can introduce
a connector by which that the cash desks get product information or request
the inventory to update information of a product by passing a product code.
This can be implemented asynchronously using an event channel.

– The interaction between the SalesHandler instances and Bank can be made
via RMI or CORBA.

– The interaction between the Inventory instance and the Supplier can be made
via RMI or CORBA.

Design of GUI and Controllers of Hardware Devices. In our approach,
we keep the design of an application independent from the design of the GUI,
so that we do not need to change the application. The GUI design is only con-
cerned about how to link methods of GUI objects to interface methods of the
application components to delegate the operation requested and to get the in-
formation that are needed to display on the GUI. In general, the application
components should not call methods of the GUI objects. Also, no references
should be passed between application components and GUI components (the
so called service-oriented interfaces should be used). This requires that all in-
formation that is displayed on the GUI should be provided by the application
components and corresponding interface operations should be provided by the
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application components to the GUI components. Existing GUI builders can be
used for the implementation.

Each SalesHandler instance is connected to a bar code scanner, a card reader,
a light, a cash box, and a printer. The hardware controllers also communicate
with the GUI objects. For example, when the cashier presses the startSale button
at his cash desk, the corresponding SalesHandler instance should react and the
printer controller should also react to start to print the header of the receipt. The
main communication can be done by using events which are sent through event
channels. An obvious solution is that each SalesHandler has its own event channel,
called checkOutChannel. This channel is used by the CheckOut instance to en-
able communication between all device controllers, such as LightDisplayController,
CardReaderController and the GUIs. The component, the device controllers and
the GUI components have to register at their checkOutChannel and event han-
dlers have to be implemented and a message middleware, such as JMS, is needed
to call the event handlers. The channels can be organized as a component called
EventBus. The component-based model of the system with the hardware compo-
nents is shown in Fig. 14.

After all the components discussed in the previous subsections are designed
and coded, the system is ready for deployment, that we leave out of this paper.

Service Component Architecture Based Implementation. Based on the
design of classes and components, additionally to the Java implementation of the
business log, we implemented the system using Service Component Architecture
(SCA) [3] and its supporting platform Tuscany Java SCA [1]. SCA provides
a language-independent way to define and compose service components in the
system, and it also supports different language-specific ways to implement the
components. The SCA component specification can be generated from rCOS
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component description. The component implementation can be coded with re-
spect to the component function features and the corresponding rCOS class
design. We have implemented a prototype CoCoME system that contains six
different distributed applications. The system components and their implemen-
tation and running information included in the sale process are shown in Fig.
15. The bold black rectangles represent the independent applications that can
be deployed and run on different machines. The Bank and Store components are
published as Web services, whose WSDL method description can be generated
from the method definitions in rCOS component description, and the SOAP pro-
tocol binding on HTTP is used for the communications between applications. In
addition, the Bank and Store components currently will create a new component
instance for handling each client request.

During the development process, from the rCOS design, the most appropriate
implementation technology can be used for different components, such as the
Ruby language for the Store component, and we can also build the application
based on the generated Java implementation from the rCOS design. The im-
plementation only took two days. This process also corresponds to the spirits
of Agile Software Development (Extreme Programming and Adaptive Software
Development) [27].

4 Enhance Industrial Tool Support: MasterCraft

MasterCraft [31] is developed by TRDCC to support efficient development of
software system. In MasterCraft, different activities at different stages of de-
velopment are performed by project participants in different roles. We see this
distinction as very important, as it allows us to define at which point in the
development process should various models (or informally called artifacts) be
produced, and different kinds of manipulation, analysis, checking and verification
be performed, with different tools. We make the particular roles responsible for
assuring the correctness of the resulting software system.
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4.1 Concepts in MasterCraft

MasterCraft introduces a body of concepts and a hierarchy of artifact reposito-
ries, designed to support team collaboration on development of the models and
code. Fig. 16 shows the relations among these concepts as a class diagram. At
the top-level of component repositories is the application workspace, representing
the whole modelling and development space of an application. The application
workspace is further partitioned into components. Different from conventional
component-based software development (CBSD) focusing on architecture, Mas-
terCraft is oriented towards organizing the development activities in the indi-
vidual components. Nevertheless, a component is characterized by its interface
(consisting however only of the component’s provided operations) and its depen-
dencies on other components.

As analysis and design models are created in the individual components of
the application workspace, stable versions of these models can be released into
the shared pool. This allows developers of other components, depending on the
components already released, to use stable versions of the models. In order to
preserve consistency, once the model has been released, it is “frozen” and any
subsequent change starts a new modelling cycle; this is also reflected by a change
in the version identifier of the new model.

The models in MasterCraft are created as instances of a metamodel based
on UML. Besides the modelling constructs already available in UML, Master-
Craft introduces a few technology-oriented concepts, such as database queries
(eventually translated into classes), and also several concepts for modelling the
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graphical user interface (GUI) of the application. The GUI interacts with the
application by invoking operations provided by a classes.

In parallel with the shared pool, the common pool is a repository of code
artifacts, where stable implementations of components are released. Such stable
releases can be used by developers of dependent components.

While a single programmer (a Construction Programmer, as the role will be
named later) works on the assigned tasks for a component (such as classes to be
coded), the development takes place in a separate development area called user
workspace. Only after the tasks are completed (including unit testing), the code
is committed into the application workspace.

4.2 Developing Software with Support of MasterCraft and rCOS

In MasterCraft, the members of the development team are assigned different roles
in the development process: Administrator, Analysis Modeler, Design Modeler,
Construction Manager, Construction Programmer, Model Manager, and Version
Manager. Each role gives different rights to access the project artifacts. We
describe the support of rCOS with respect to the different roles and their tasks
and activities in the project.

Support to Administrator. At the very beginning of the development, the
Administrator is responsible for creating user accounts and components, and
assigning roles to project participants for acting on the components they are in-
volved in. As the development of the application progresses, if a version control
system is in use, the Version Manager may store snapshots of the whole appli-
cation workspace (the models and code it contains) in the version control system
repository, and if needed, restore them as a separate application workspace for
parallel development.

The administrator starts by creating the components identified as groups of
related use cases, such as � SalesHandler � for use case UC1, � Inventory �
for use cases UC2-UC5, and component � Enterprise � for the use cases re-
lated to the whole enterprise management. Next, the administrator creates user
accounts, let’s say Alice and Brian, and assigns them roles. In this case, Alice may
become both Analysis Modeler and Design Modeler for � SalesHandler � and
� Inventory �, and Brian may be granted these roles for the � Enterprise �
component. Furthermore, we have Martin who is assigned the global role of
Model Manager.

Support to Analysis Modeler. An Analysis Modeler starts work on a com-
ponent by studying its textual requirements. Based on the textual requirements,
the Analysis Modeler creates a model of the requirements This model consists of
conceptual class diagrams, use case diagrams, and behavioral models, i.e. the use
case sequence diagrams and state diagrams, of the use cases, the specification
of the contracts of the use case handlers. For example, Alice has to create the
models in Figs. 6-9 and the rCOS specification of the contract. The Analysis



Harnessing rCOS for Tool Support—The CoCoME Experience 109

Modeler may iterate over this model, creating a new refined model based on
the original analysis model. The Analysis Modeler can declare a dependency on
another component and, if the component depends on other components, the
Analysis Modeler first fetches the models of these supplier components from the
shared pool. Upon completing the model, the Analysis Modeler is responsible
for verifying that the model is consistent, and validating that it realizes the re-
quirements. Prototyping can be done and run-time checking can be applied in
addition to the analysis of the requirements specification outlined in Section 3.2.

Note that for formal analysis and its automated tool support, MasterCraft must
be extended by adding translators of the UML diagrams into machine readable
textual specifications in rCOS. Formal verification and validation tools, such as
FDR, SPIN and JML or static checkers must be integrated into MasterCraft so
that these tools can be invoked by the analysis modeller. For this, programs for
converting rCOS specification to inputs of the tools should be implemented.

The Model Manager can afterwards release the model into the shared pool,
making it available for Analysis Modelers working on components depending
on this component. The release is not to simply drop the model there. The
Model Manager should check on the consistency of the model with the others
by removing redundancy and integrating identical modelling elements. After
being released into the shared pool, the model in the application workspace is
frozen, and any additional changes would start a new modelling cycle. Before
releasing the model into the shared pool, the model manager has to ensure that
the Analysis Modeler has validated the model.

Support to Design Modeller. A Design Modeler (e.g. Alice) fetches the
released model of requirements of a component (� SalesHandler � resp.) from
the shared pool assigned to her, and refines the analysis model into a logical
design model. This involves the application of the expert pattern for refining the
use case sequence diagram to a design sequence diagram. The conceptual classes
from the analysis model are also refined into design classes.

Then the Design Modeler decomposes a component into composition of in-
ternal components, and composes a number of components together to for a
component model. For example, the original design of � SalesHandler � is de-
signed into the composition of � SalesHandler �, � Clock � and � Bank �
and mark the latter two as components already implemented. The Design mod-
eller may also decide on which objects should be persistent, and defines database
mapping and primary keys for these classes. This is the case for the decomposi-
tion of the � Inventory � component into the three layer architecture in Fig. 12.
Further, the Design Modeler defines the component interface in terms of class
operations and queries provided, and may declare additional dependencies on
other components. This is the case for Alice. She has to declare that component
� SalesHandler � requires services from � Inventory � to get product descrip-
tions and to log a completed sales via interface CashDeskIf. It is the same for
� Inventory � that requires services from � Supplier � via interface SupplierIf.
Note that before commencing the work on the design model, the Design Modeler
needs to fetch models of the supplier components from the shared pool.
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The design modeller then transforms the logical design to a detailed by further
refinement rules and patterns, such as class decomposition, refactoring, data
encapsulation and synchronization on access to persistent data, and selection of
middlewares to replace the object-oriented interfaces in the logical design.

Just as the Analysis Modeler, the Design Modeler may also iterate over the
design model, refining it into a new version. Upon completing the work on the
design model, the Design Modeler is responsible for verifying its consistency, and
validating it with respect to the analysis model.

To have formal support from rCOS, MasterCraft should be extended with
model transformations that automate the design patterns and other refinement
and refactoring rules. Application of refinement rules and design patterns are
often constrained by conditions on the models before and after the transforma-
tion. Tools for checking these conditions on the models should be integrated into
the MasterCraft environment, too. In the current version, MasterCraft has au-
tomated transformations to generate code for database queries and for synchro-
nization control on access to shared data. We are now working on QVT imple-
mentations of the expert pattern, data encapsulation and transformation of an
object-oriented model to a component-based model.

Support in Construction Tasks. The Construction Manager is the key role
responsible for construction tasks. The Construction Manager starts by export-
ing the design model of a Component into an external representation, and invokes
code generation tools, which generate code templates for all the classes. The code
template of a class contains for each attribute of the class its declaration and ac-
cessor methods. For persistent classes, the code template also contains database
interaction methods for transferring the state of the class between its attributes
and a relational database. Further, the code template contains declarations of
all the operations declared for the class. However, implementations of the oper-
ations defined in the design model are missing. Subsequently, the Construction
Manager assigns coding of these operations (as well as coding of Queries) to
Construction Programmers by defining a User Workspace for each selected Con-
struction Programmer. A Construction Programmer starts work by fetching the
workspace. After coding and unit testing the assigned operations and Queries,
the Construction Programmer builds the workspace. Finally, the Construction
Manager accepts the code by synchronizing the workspace, and eventually dis-
solves the workspace. After receiving code for all the tasks assigned to different
Construction Programmers, the Construction Manager integrates the code to-
gether. After integration testing of the code of the Component, the Construction
Manager releases the compiled binary code of the component into the common
pool, making it available for development of other, dependent components.

Therefore, the current version of MasterCraft generates code templates, and
the sequence diagrams and state diagrams in the final design model are used as
an informal guide to the Construction Programmer to program the bodies of the
class methods.

With the model of detailed design defined in rCOS, we can enhance the Mas-
terCraft code generator to generate method invocations in the body of a class
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method with correct flow of control (i.e., the conditional choice and loop state-
ments). Furthermore, the model of the detailed design specifies class invariants
and the functionalities of each class method in terms of its precondition and
postcondition. This makes it possible for these conditions to be automatically in-
serted as assertions into the code generated. Therefore, code will have method
bodies with method invocations and assertions. We call such a code a probably
correct code. Static analysis techniques and tools such as ESCJava [11] can be
used for verification of correctness of the code against the design model.

The Construction Programmer can now work on the generated code with
method invocations and assertions, and produce executable code. However, the
assertions should not be removed and thus the result should be code with as-
sertions. Testing and static analysis again can be carried out with the aid of
tools such as ESCJava and JML. If the assertions are written in Spec# asser-
tion commands and the Construction Programmer code the program in Spec#,
the executable code could be a Spec# program. In this case, the Spec# compiler
takes care of the static analysis. We think it would be significant for Spec# to
be realistically useful as it is not feasible for a programmer to code the assertion
commands correctly. The assertions should be derived from the design models.

An important advantage of our proposed method would be that these assertions
would be already included in the code generated by the Construction Manager
from the model, and the Construction Programmer would be bound to follow and
aim to assure these assertions.

5 Conclusion

We have presented our experience in the application of a formal calculus to the
CoCoME case study.

Our experience shows the need of a semantic model that formalises the main
concepts and software entities in a model-driven development, and supports multi-
view modelling and separation of concerns in a complex software development.
rCOS provides these formalisations and support. Model-driven development must
also complemented with property-driven analysis techniques. Properties are spec-
ified in rCOS as logical formulas and algebraic properties of modelling elements
that are formulated as mathematical structures. The algebraic properties form
the foundation for model transformations. To ensure consistency and correctness,
both static and dynamic consistency of the specification must be checked, and
both abstraction and refinement techniques are needed for model transformation
and analysis. The work also shows that different models and tools are more effec-
tive on the design and analysis of some aspects than the others. Proved correct
model transformations should be carried out side by side with verification and
validation. Correct model transformations preserve properties, so that it is not
required to verify again, and verification and validation are used to check the con-
dition on when the transformations can be applied and extra properties required
for the transformed model. rCOS is a methodology that supports a consistent use
of different techniques and tools for modelling, design, verification and validation.
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We have analyzed the software development process in a commercially suc-
cessful tool (MasterCraft [31]) and identified where formal methods support can
be “plugged” into the tool to make software development more efficient. How-
ever, as discussed in Section 4, there is still a lot to implement to make the tool
powerful enough to support the proposed rCOS methodology effectively, and this
is part of my current and future work. This is challenging. Yet, our discussion
shows that this is feasible. For instance:

1. With the QVT engine that is being developed at TRDDC, we can program
the expert pattern, the rule for data encapsulation and structural refinement
rules that have been proved for rCOS in [23].

2. Automatic generation of executable code is challenging, however, with the
semantics of state diagrams, sequence diagrams and textual specifications,
it is possible to generate code with control structures, method invocations,
assertions, and class invariants.

3. With human interaction, transformations for decomposing components and
composing components in the design stage can be automated.

The current version of MasterCraft does not support the design of controllers of
hardware devices and their integration with the application software components
and GUI components. However, the discussion at the end of Section 3 shows, this
is purely event-based and can be done by following the techniques of embedded
systems modelling, design and verification.
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Abstract. We present a verification methodology for cooperating traffic
agents covering analysis of cooperation strategies, realization of strate-
gies through control, and implementation of control. For each layer, we
provide dedicated approaches to formal verification of safety and stability
properties of the design. The range of employed verification techniques
invoked to span this verification space includes application of pre-verified
design patterns, automatic synthesis of Lyapunov functions, constraint
generation for parameterized designs, model-checking in rich theories,
and abstraction refinement. We illustrate this approach with a variant
of the European Train Control System (ETCS), employing layer specific
verification techniques to layer specific views of an ETCS design.

1 Introduction

Our society at large depends on the transportation sector to meet the increased
demands on mobility required for achieving sustained economic growth. Major
initiatives such as ERTRAC1, eSAFETY2 and the car2car consortium in auto-
motive, ACARE3 in avionics, and ERRAC4, ETCS/ERMTS5 in rail drive stan-
dards for inter-vehicle and vehicle to infra-structure cooperation, are thriving to
push safety by enforcing cooperation principles between traffic agents.

Automatic collision avoidance systems form an integral part of such systems,
with domain specific variants ranging from fully automatic protection to partial
automation combined with warning/alerting, to warning combined with direc-
tives. For example, in the automotive domain, based on pre-crash sensing, close
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distance warnings are automatically displayed, and hydraulic pressure for the
braking system is built up, reducing the response time to a driver’s reaction to
such warnings. Full automation using brake-by-wire/steer-by-wire technology is
technically feasible, and has been demonstrated early in research vehicles, e.g.,
within the California Path project. Anticipated future traffic scenarios include
communication between cars and cars, and roadside infrastructure to guide co-
ordinated maneuvers for collision avoidance. We use as running example in this
paper a variant of the European Train Control System standard, which provides
collision avoidance through a fully automated coordinated movement of trains,
based on information obtained from track-side infrastructure called Radio Block
Centers (RBC). An RBC is responsible for monitoring the position of all trains in
its track segment, and provides authorities for trains to freely move ahead until
so-called End-of-Authority points (EoA) are reached. As soon as the on-board
Automatic Train Protection system ATP detects that a train risks to move be-
yond the current EoA, the ATP system takes control of the train’s speed and
enforces a braking curve leading to a complete stop of the train ahead of the
EoA. Under ETCS level 3, EoAs are moved ahead by the RBCs, as soon as it
has gained safe knowledge of the fact that the train ahead has reached a safe
distance to the successor train. This “moving block principle”, where each train
is protected by an envelope surrounding and moving with the train, contrasts
to classical interlocking principles, where tracks are partitioned statically into
blocks, and trains are guaranteed exclusive access to blocks by interlocking pro-
tocols. Our running application is an extension of the moving block principle to
include rail-road crossings, see Section 2 for more details.

In the avionics domain, the Traffic Alert and Collision Avoidance System
(TCAS) provides directives to pilots how to avoid a near-collision situation us-
ing combined ascend/descent maneuvers, or through recently investigated “go-
around” maneuvers, see [22].

This paper provides a formal verification methodology addressing such appli-
cation classes. Specifically, we provide dedicated verification methods for estab-
lishing safety and stability requirements for three key design layers:

1. The cooperation layer addresses inter-vehicle (and infrastructure) coopera-
tion, where traffic-agents and infrastructure elements negotiate and agree on
maneuvers executed jointly to enforce safety while optimizing throughput.

2. The control layer focuses on the design of control-laws implementing the suit
of maneuvers supported by a traffic agent.

3. The design layer focuses on the implementation of control-laws through dig-
ital controllers.

Jointly, the techniques presented here combine to a holistic system verification
approach, ensuring that system-level requirements are guaranteed by the imple-
mentation of control-laws supporting the maneuver capabilities of cooperating
traffic agents.

Technically, the verification methodology rests on techniques for the veri-
fication of hybrid systems developed by the large-scale foundational research
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project AVACS (www.avacs.org) on automatic verification and analysis of com-
plex systems. The range of employed verification techniques invoked to span
this verification space includes application of pre-verified design patterns, auto-
matic synthesis of Lyapunov functions, constraint generation for parameterized
designs, model-checking in rich theories, and abstraction refinement.

The verification of the correctness of collision avoidance system has been stud-
ied extensively, e. g., within the PATH project [36], by Leveson [31], Sastry et al.
[53], Lynch et al. [32], Clarke [47], and Damm et al. [14] for various versions of
the TCAS system, or by Peleska et al. [24] and Damm et al. [6] for train system
applications. Sastry et al. presents in [53] a general approach of developing such
distributed hybrid systems. More recently, R-Charon [30], a semi-conservative ex-
tension of Charon [1,2] has been proposed for modular specification and dynamic
reconfiguration of large distributed hybrid system based on hybrid automata.

This paper is structured as follows. We give a sufficiently detailed presenta-
tion of the variant of the ETCS level 3 protocol used as running example in
Section 2. As unifying underlying formal model we use communicating hybrid
automata presented in Appendix 8. Section 3 describes the overall verification
methodology as well as the underlying assumptions for each modelling layer.
Section 4 shows how a pre-verified design pattern for collision avoidance pro-
tocols can be instantiated for our ETCS application. The focus of Section 5 is
on generating constraints on design parameters for collision avoidance protocols
ensuring collision freedom. Sections 6 and 7 discuss automatic verification meth-
ods for proving stability and safety, respectively, using as running example the
drive train controller for maintaining the operator selected speed. Both sections
discuss the local control as well as the design layer. We finally wrap by pointing
out directions for further work in Section 8.

2 Extending ETCS Level 3 for Rail-Road Crossings

In this section we describe the model of a train system running under a variant
of the ETCS level 3 protocol. We have extended the protocol to deal with the
protection of track segments before a train gets access to enter this segment. As
an example of an unsafe element inside a track segment we have chosen a rail road
crossing. To be able to evaluate the different aspects of an embedded system we
have developed a dynamic system model extended with different control levels.
The system dynamics are modelled in Matlab-Simulink and the control parts of
the ETCS protocol are modelled in Stateflow. The model of the dynamics consists
of three parts. The first is the mechanical transmission, which converts the input
torque into the angular velocities of the wheels. The second part consists of
the outer conditions, used to produce the present train velocity. This velocity
depends on the angular velocity of the wheels, the present adhesion between
wheel and track, and other losses such as air resistance, rolling resistance etc.
The third part of the model contains the control part of the ETCS protocol and
communicates to the crossing station and to the radio control block.

www.avacs.org
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2.1 Mechanical Transmission

The mechanical transmission consists of the engine which is coupled directly
on the driven wheel where the dynamics of the shaft are neglected. The train
dynamic contains the engine dynamics, the brake dynamics and the block which
calculates the present velocity of the train as a function of the friction force and
the angular momentum between the wheel-track system. The block produces the
values of the present torque on a driven wheel Tw , the angular velocity of the
wheel ωw and the present velocity of the train v .

The angular momentum of the engine is modelled as a function of the drive
current (I ) as the controlled variable, and the present angular velocity of the
engine (ω). The is and ws are constants and the tn and ωmax are parameters.

Tw = min(is · ω + tn · I , ws · ω + ws · ωmax · I ) (1)

The drive current is driven by a PI controller with the desired velocity and
the present velocity as input.

I (v , vd ) = Pd · (vd − v) + Td ·
∫

(vd − v)dt (2)

To limit the maximum acceleration additional parts have been added. If the
current acceleration (a) exceeds the max acceleration (max acc) the difference
of them is multiplied by a scaling factor and then subtracted from the drive
current. Equation 2 can then be rewritten to:

I (v , vd ) =

�
Pd · (vd − v) + Td ·

�
(vd − v)dt : a ≤ amax

Pd · (vd − v) + Td ·
�
(vd − v)dt − (a − amax ) · alimit : a > amax

(3)

The dependency of the angular velocity ω and the toque is given by the
formula

ω =
∫ t

0

Tω − Rw · (Fe + Fb)
I

dt (4)

where I is the moment of inertia of the rotating mass of the engine and the driven
wheel, Fe is the resistance force of the environment, Rw denotes the radius of
the wheel and Fb describes the braking force. The present velocity is calculated
in the same way

v =
∫ t

0

Ft − Fe − Fb

m
dt (5)

where m is the mass of the train and Ft the traction force induced from the
wheel into the track. The traction force is calculated by

Ft =
Tw

Rw
· μa (6)

where μa denotes the adhesion coefficient between wheel and track.
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2.2 Outer Losses

The outer losses are summarized in the resistance force Fe based on air resistance
and roll resistance.

Fe = Fair + Fr + m · g · sin φ (7)

The term m · g · sin φ is the loss due to the lateral slope angle φ of the rail. The
roll resistance is described by the formula

Fr = m · cr (8)

where m is the total mass of the train and cr the velocity independent roll
resistance coefficient. The air resistance is described by

Fair = cair
1 · v2 + cair

2 · v (9)

The coefficient cair
1 depends on the density of air, the cross section of the train

and such things, the coefficient cair
2 describes aerodynamic phenomenon which

cannot be described as functions of v2.

2.3 Brake

The main goal of this brake model is to bring up the train model in a non-moving
state and not to study the brake behaviour in detail. For this reason the brake
model is very simple. The brake model consists of two kinds of brake systems:
an eddy current brake and an emergency brake. An eddy current brake consists
of an electromagnetic shoe where the electromagnetic force is controlled by the
brake current. The change of the magnetic field caused by the speed difference
between the brake and the adjacent rail induces an eddy current in the rail. This
eddy current leads to a resistance force which depends on the current and the
speed difference. In high speed region (v ≥ 20 m/s) the resistance force is nearly
linear to the speed difference. The resistance force tends to zero if the speed
difference becomes zero. Therefore we need an additional brake mechanism for
the low speed region. These two brake systems work as the service brake for
the train model. For the emergency case there exists an additional brake called
emergency brake. This brake is typically an electromagnetic rail brake. Both
brake types, the eddy current brake and the electromagnetic rail brake, work
directly between the train and the rail and do not depend on friction between
the wheels and the train. This simplifies the brake model. The brake force Fb is
modelled by

Fb = (Ib · v + (voffset − v)) · sbsc + ebc (10)

where Ib is the brake current to control the service brake, v is the present velocity
of the train and voffset is a constant to ensure brake force if the present velocity
is close to zero. The constant sbsc is a scaling factor for sufficient brake force.
The emergency brake is modelled as a constant and denoted by ebc . Deceleration
is controlled through setting a proper brake current using a PI controller. The
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input of this controller is the present deceleration of the train and the coefficient
for a comfortable deceleration of the service brake.

Ib = Pb · (d v
dt

− ad
sb) + Tb

∫ t

0

d v
dt

− ad
sb dt (11)

We have presented here a sufficient precise description of the dynamical sys-
tem. The equations are kept simple to get a linear system. The model can be
extended mostly and a more detailed description can be found in [54].

2.4 ETCS Control Part

We consider a train system which is under the control of a variant of the ETCS
level 3 protocol. The ETCS level 3 provides collision avoidance through a fully
automated, decentralized interlocking scheme where the trains are moving in
safe blocks. These blocks are controlled track-side by radio block centers (RBC)
which are control centers to supervise and control train movements in a terri-
tory with radio based train control. One RBC is responsible for a fixed number
of track segments and the trains currently on these track segments. The RBC
grants movement authorities for trains to freely move ahead until so called end
of movement authority (EoA) points. At each time there exist a certain EoA
for each train, which is typically the end of a track segment, the position of a
possibly unsafe point (e.g., a rail-road crossing), or the end of a train driving
ahead. The granted movement authority defines a safety block surrounding the
train. It is a moving block system which means that the signaling system will
clear the track behind a train continuously.

This protocol is completely modelled in Stateflow and consists mainly of four
states running in parallel. The rbc req state shown in detail in Fig. 1 is respon-
sible for the communication to the RBC. The rbc req state is entered in the init

rbc_send

get_n_seg{rbc_c_pos:=p;rbc_c_eoa:=rbc_eoa;rbc_t_id:=ml.t_id;}
/ev_rbc_req;

/ev_rbc_req;
after(ml.send_delay*10,time)[before(ml.max_send_delay*10,time)]

rbc_req

ev_rbc_ack[before(ml.send_delay*10,time)]/ev_calc;
rbc_wait

after(ml.max_send_delay*10,time)/ev_brake;

[mode==1]{rbc_c_pos:=p;,rbc_t_id:=ml.t_id;}/ev_rbc_req;

init

1

2 3 54

Fig. 1. RBC communication control part

state. This state will be left by taking the transition 1 only if the variable mode
is equal to 1 which means that this train is under the supervision of the ETCS.
After enabling this transition and before entering the destination state rbc send,
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the variables rbc c pos and rbc t id will be set to the current position p of the
train and to the specific id of the requesting train. By taking this transition a
request for a new EoA will be sent to the RBC and a timer will be started by en-
tering the rbc send state. After the time interval of a normal transmit action but
before the upper bound of transmit actions has been reached, the request will
be transmitted again. This behaviour is modelled in the transition on top 2 of
the rbc send state. If no message arrived before the maximum send delay period
is reached the service brake will be initialized by taking the transition 3 and
generating a brake event ev brake which will be consumed in the moved state in
Fig. 6. If an acknowledge arrived before the max send delay the transition 4 will
be enabled and an ev calc event is generated, leading to the destination rbc wait
state. This state will be left after consuming a get n seg event and enabling the
transition 5 to the rbc send state. This transition is a model of a request for
travelling to a new track segment after the current EoA which will be sent to the
RBC. The parameters of this request are the current train position rbc c pos,
the current EoA rbc eoa of the train and the train id t id. The RBC will then
calculate the new EoA with respect to the current train position of train t id,
the current EoA of this train and the current positions of possible other trains
moving ahead.

The second state is the com cross state (Fig. 2) containing the communication
model between the train and a rail-road crossing. If an ev com cross event is

init

x_com_point

safe

unsafe

ec_com_cross/ev_lock;
[p>x_c && safe==0]/ev_brake

[p<x_c && safe==1 &&c_m==0]{c_m:=1;}/get_n_seg;

[p>x_p]/ev_unlock;

com_cross

1

2 3 4

Fig. 2. Level crossing communication control part

consumed the transition 1 will be taken and a lock request will be sent to the
rail-road crossing. If the level crossing has transmitted the safe state message
before the train has reached the start-of-communication-point-to-rbc x c, the
transition 4 is taken, generating a request for a new EoA to the RBC. The
variable c m will be set to 1 which means that this train has already sent a
lock message to the rail-road crossing. The new state is the safe state. If the
train is behind the start-of-communication-to-rbc point and receives an unsafe
message from the rail-road crossing the transition 4 is enabled and the service
brake will be initiated by an ev brake event. The unsafe state will only be left
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by switching off the automatic mode of this train. The safe state will be left if
the train position is behind the position of the rail-road crossing and an unlock
message is sent to the rail-road crossing 2 . The new state is the init state and
this train is ready to initiate a new request to a rail-road crossing.

ev_calc/xcross:=ml.is_xcross(p):,
x_p:=ml.cross_p(p);,x_m:=0;,c_m:=0;

init

brake_point/
entry:x_b:=rbc_eoa−1.1*v^2/(2*ml.b);,
x_c:=x_b−2.1*max_send_delay*v;,
x_c_x:=x_c−2.1*(ml.x_time*v+ml.max_send_delay*v);

ev_halt

ev_reset/get_n_seg;
[xcross==1 && p>x_c_x && x_m==0]{x_m:=1}/ev_comm_cross;

[xcross==0 && p>=x_c && p<x_b && c_m==0]{c_m:=1}/get_n_seg;

[xcross==0 && p<x_b && p<x_c]/ev_drive

[xcross==1 && p<x_b && p<x_c && p<x_c_x]/ev_drive;

[p>=x_b]/ev_brake;

calc_brake_point

1

2

3

4

9

6

7

8

Fig. 3. Monitoring of safe motion

The main calculations to guarantee the safe motion of the train are done in
the third state calc brake point shown in Fig. 3. The three variables x b, x c and
x c x are updated every time the brake point state is entered. To guarantee that
the train stops before reaching the EoA, the train has to initialize the service
brake some distance in front of the EoA. This distance depends on the current
velocity of the train and the deceleration induced by the service brake. The point
to initialize the service brake (x b) is dynamically calculated every time step by

x b = EoA − 1.1 · v2

2 · b (12)

where v is the actual velocity of the train and b is the typical deceleration of
the service brake. The factor 1.1 guarantees a 10% safety margin. Typically, the
train should not stop at every EoA, so the train has to ask the RBC for a new
EoA before reaching the actual EoA. For comfort reason the new EoA should be
received before the train has switched to the braking mode so the request has
to be sent early enough in time before reaching the service brake initialization
point x b. The train will travel the distance p = v · t in time t with the velocity
v . The delay for the request of the new EoA is two times the maximal send delay
to the RBC plus the response time to serve this request. The point to initialize
the request for the new EoA can then be calculated by

x c = x b − 2.1 · max send delay · v (13)

In case that the EoA is a rail-road crossing the train has to lock the rail-road
crossing before the train will reach this point. The train has to initiate a lock
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request to the rail-road crossing and the rail-road crossing has to lock the crossing
and acknowledge the lock request. After receiving a safe message the train can
send a request for a new EoA to the RBC. The point to initialize a lock request
to a level crossing is calculated by

x c x = x c − 2.1 · (x time + max send delay) · v (14)

The time to set up the rail-road crossing in a safe state is stored in the x time
variable. These three points (x b, x c and x c x ) are updated every time the
brake point state is entered. A spatial view of this scenario is shown in Fig. 4, and

����������������

������������������

v

EoA

SB

Train

RBC

ST

x_c x_bp

CS afterCS

Fig. 4. Radio-based train control

a snapshot of the dynamical behaviour can be seen in Fig. 5. After explaining
the main ideas to guarantee a safe motion, we continue to discuss Fig. 3. The
transition 1 is enabled after receiving an end-of-authority message from the
RBC. By taking this transition the two variables which count the messages to
the RBC and to the rail-road crossing are initialized to 0. The variable xcross
picks up the information if a rail-road crossing is just in front of the current
position p of the train. The position of the rail-road crossing itself is stored in
the x p variable. The information of the rail-road crossing is read out of the track
data dictionary. If there is no rail-road crossing ahead and the current position
of the train is before the point to initialize the service brake and before the
point to initialize an EoA-request the transition 9 will be taken and an ev drive
event is generated to switch into the driving mode of the train. In case there is a
rail-road crossing ahead the transition 8 will be enabled. If the train has passed
the point to send an EoA-request to the RBC but in front of the x b point the
transition 3 will be taken and a get n seg event is generated to initialize the
request of a new EoA. If there is a rail-road crossing ahead and the train has
passed the x c x point a lock request is generated by the ev com cross event
released by the transition 4 . If the train has passed the x b point the transition
7 is enabled which leads to the service brake mode by the ev brake event. In
case of an emergency halt indicated by the ev halt event the brake point state
will be left by enabling the transition 6 to the halt state.
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Fig. 5. Snapshot of dynamic calculations

The supervision of the velocity of the train is modelled in the fourth state
labelled move (Fig. 6). The previous value of the desired speed is set to 0 on
entering the default init state and stored in the o v d variable. The drive mode
is switched on by receiving the ev drive event enabling the transition 1 and the
variable d c (for drive control) is set, the desired speed at the current position
of the train is read out of the track data dictionary and stored in v d and the
slope of the current track segment is stored in the variable slope. The destination
state is change.

– If the current desired speed is different from the previous value the transi-
tion 2 is enabled and this change is signalled through a reset on the c v d
variable, state switch and the transition 3 . The new value of the current
desired speed is stored in the move state.

– If there is no change in the desired speed, the transition 4 is enabled and
the move state is entered.

– If a brake event (ev brake) occurs in the change state, the transition 12 is
enabled, the drive mode is switched off (d c = 0), the service brake mode is
switched on (sb c = 1) and finally the init brake state is entered.

After reading the desired speed the current speed of the train is supervised in
the move state.



Automating Verification of Cooperation, Control, and Design 125

init/
entry:o_c_d:=0;

change

move/
entry:o_v_d:=v_d;

[c_v_d==0]
/c_v_d:=1;

[sb_c==1 && v>1.5*v_d]

/d_c:=0;,sb_c:=0;,eb_c:=0;

ev_drive
/v_d:=ml.req_speed(p);,
slope:=ml.req_slope(p);

init_brake/
during:v_s:=sqrt(1.1*rbc_eoa−p)*2*ml.b/1.1;

1 2

3

4

5

6

7

8

9

move

[o_v_d~=v_d]/c_v_d:=0;
switch

[o_v_d==v_d]

[v<v_d]/d_c:=1;,sb_c:=0;

[v>=v_d && v<1.05*v_d]/d_c:=0;

[v>1.1*v_d && sb_c==0]{d_c:=0;}/sb_c:=1;

cont

ev_brake{d_c:=0;}/sb_c:=1;

[v>1.1*v_s]{sb_c:=0;}
/eb_c:=1;ev_halt;

[v<=v_s]{sb_c:=0;}

ev_brake{d_c:=0;}/sb_c:=1;

slope:=ml.req_slope(p);
ev_drive{d_c:=1;}/v_d:ml.req_speed(p);,

10

11

12

13

halt

Fig. 6. Speed control

– If the current velocity of the train is below the desired value the transition
8 is enabled, the drive mode is set, and the service brake mode is switched
off.

– If the current velocity is equal or greater than the desired velocity but not
greater than 5% of the desired velocity the transition 7 is taken and the
drive mode is switched off.

– If the speed is greater than 10% of the desired speed and the service brake
mode is not active, the mode is switched from driving mode to the the service
brake mode by activating the transition 6 .
The destination state in all three cases is the cont state. This state is left
either by receiving an ev drive event taking the transition 13 to the change
state and updating the slope and the desired speed variable or receiving an
ev brake event 10 and switching to the init brake state.

– If in the move state the service break mode is active and the current speed
is greater than 50% of the desired speed, then the emergency brake mode is
switched on by taking the transition 5 to the halt state.
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While in the init brake state, the braking curve is supervised by updating the
speed v s at the current position. If the current speed is lower than this calculated
speed the service brake is switched off 11 and the speed is supervised in state
change. If the current speed is above the braking curve the emergency brake is
switched on 9 and the halt state is entered.

The monitoring of the current velocity and the monitoring of the current EoA
are done in parallel every time step.

3 A Verification Methodology for Cooperating Traffic
Agents

This section proposes a verification methodology supporting current industrial
practice in designing complex safety critical systems. We aim to exploit the typ-
ical layered structure in a model based design process of such systems to decom-
pose the overall verification problem of establishing collision freedom of traffic
agents into sub-verification problems which are within the range of automatic
verification tools for subclasses of hybrid systems. While jointly the different sec-
tions of this paper will demonstrate the feasibility of this approach, we do not
provide a consistent theory, but rather open a research direction which so far has
gained little attention: the challenge of bridging the gap between design layers
of safety critical systems. This gap is a direct consequence of the roles models of
cooperating systems situated at different layers play in design processes:

– Models at the cooperation layer are focusing on how agents agree in find-
ing strategies to resolve possible hazardous situations potentially leading to
a collision, and demonstrating that such strategies are indeed capable of
avoiding the collision. Strategies at this design level define trajectories to be
followed by traffic agents, such as circular go-around, changing lanes, decel-
erating until a safe distance is achieved. The realization of such strategies
is delegated to subsequent design steps – strategies are described directly in
terms of dynamic models assuming direct control of speed and acceleration,
and undisturbed immediate knowledge of location, speed, and acceleration.

– Models at the control layer provide a first step towards realization of strate-
gies, in separating between control and plant, identifying sensors and ac-
tuators, and developing control laws ensuring stability and safety of such
strategies. The focus at this stage is on getting the control laws right – typi-
cally assuming an ideal execution engine, which provides immediate visibility
of sensor changes and impact of actuator settings, in a dense time model.

– Models at the design layer must deal with the inherent limitations of digi-
tal implementations of controllers. This includes the limited observability of
the planned at defined sampling points, discretization errors, delayed impact
of actuator settings, physical distribution of sensors, controllers, and actu-
ators, as well as addressing diagnostic and fault-tolerance. Idealized control
laws must be made robust, in the sense that stability and safety must be
guaranteed in spite of such impurities.
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While such a layered approach is highly beneficial for a separation of concerns
in design processes, the inherent differences between models situated at different
layers make it a challenge to provide semantic bridges between these, as would
be required for a complete verification methodology spanning all three levels.

Indeed, models at the control layer would hardly be able to exactly realize
the trajectories prescribed by strategies at the cooperation layer. While highly
elaborated plant models are available, e.g., capturing car dynamics, control de-
signers typically work with simplified models which have been proven to be
practically sufficient for validating stability and safety. Such simplified models
ignore higher-order effects and use linear approximations whenever reasonably
possible, trading exactness for simulation speed. Similarly, the induced limita-
tions of digital control (cf. [3]) make it impossible for digital controllers to enforce
the plant dynamics of control models; rather, robustness is designed into digital
controllers to “sufficiently” approximate such dynamics.

Industrial design processes cater for these gaps, e.g., by enforcing design for
robustness, re-validating stability and safety at each layer, in particular ensur-
ing complete traceability of safety requirements throughout all design steps,
and by rapid prototyping. Extensions to Matlab-Simulink such as the Jitterbug
[10] allow for an early assessment of the impact of design level impurities on
control-strategies.

However, as argued in Section 8, theoretical approaches to cover multi-layered
designs, such as refinement and compositional reasoning, fail to provide semantic
bridges across this design space, due to their inability to support the degree of de-
viations between models tolerated by industrial design processes. We thus leave
the development of a theoretical approach building on compositional extensions
of robust refinement to future research, and focus in this paper on a verifica-
tion methodology which adds mathematical rigor to industrial approaches to
bridge the gap between design layers. Specifically, we enhance established prac-
tices of providing full traceability for safety requirements in offering techniques
of assigning responsibility of derived safety requirements jointly guaranteeing
collision freedom to subsystems, and provide formal verification techniques tai-
lored to the particularities of model classes at each level, to formally verify such
delegated safety requirements. Regarding stability of local control, as well as
stability of design models, we provide automated formal techniques establishing
various notions of stability. The remainder of this section outlines the overall
approach, which is then refined in individual sections.

Our verification methodology addresses the cooperation layer by formalizing
design patterns for collision avoidance as a proof rule reducing collision free-
dom to locally dischargeable safety requirements on individual subsystems of
the involved traffic agents. The design patterns builds on the following central
concepts (see Section 4):

– Each agents is seen enclosed in a safety envelope, which must not be entered
by other agents;
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– A criticality function measures for each configuration of the (physical) state
of involved agents its closeness to collisions;

– Thresholds of this function are chosen taking into account the dynamics of
traffic agents to initiate negotiations on agreeing on strategies, as well as on
their initiation;

– Strategies are reducing criticality of the agents state.

These design patterns have been proven to be expressive enough to cover rail,
automotive, as well as avionics applications. A key feature of our approach to the
verification of the coordination level is the capability to automate the generation
of candidate criticality functions for linear strategies, by using linear matrix
inequality (LMI) solvers to instantiate parameters in a suitably chosen quadratric
generic form for candidate criticality functions taking into account the dynamics
of the strategies. Moreover, the application of the design pattern generates safety
requirements for the subsystem of the traffic agents responsible for inter-agent
communication as well as strategy realization.

Such safety requirements are discharged at the control-level using symbolic
reachability analysis (see Section 7). We have tuned the verification algorithms
to cater for control models with non-trivial discrete control (e.g., resulting from
the interaction between inter-agent coordination and control). This calls for a
fully symbolic representation of the hybrid system state space in reachability
analysis – in contrast to the explicit representation of discrete states used in hy-
brid system verification tools such as PHAVer [21], Checkmate [49], HyperTech
[27]. The key to achieve this are recent results to lift techniques for compact
discrete state space representations based on And-Inverter Graphs to the theory
of linear arithmetic (Lin-AIGs) required to deal with hybrid system verifica-
tion. The current prototype of our verification engine [11] uses substitution in
backward image computation along jumps, providing for linear guards and lin-
ear expressions in assignments, and Loos-Weispfennig quantifier elimination for
backward image computations at flows, and redundancy elimination for sets of
linear-constraints, assuming linear hybrid automata. Future work will lift this
extension to include plant models supporting linear differential equations. To
cater for the transition to design models, we re-verify the safety requirements
allocated to this subsystem, now using an abstraction refinement approach ad-
dressing discrete time reachability analysis for models with linear dynamics [48].

Stability of control models is demonstrated using LMI based candidate genera-
tion for Lyapunov functions for hybrid systems with linear differential equations,
developed in [41]. As discussed in Section 6, we also show that stability can be
re-proven after discretizing the system model with a given sampling rate, result-
ing in a discrete-time hybrid system with linear difference equations. This allows
for the identification of safe sampling rates maintaining stability, which can in
turn be used for discrete-time reachability analysis.

Jointly, these techniques allow a formal verification of stability and safety
properties, with traceability of requirements from the coordination layer to de-
sign models.
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4 Verification of the Cooperation Layer

In [13] we proposed a rule that decomposes the proof of the global property
of collision avoidance of two traffic agents into simpler properties with the aim
that they can be automatically verified. In this section we give a summary of
this proof rule and show that an important ingredient of this rule, the criticality
function, can indeed be found automatically. This is illustrated with the train
case study.

4.1 A Design Pattern for Collision Avoidance

Proving the global safety property of collision freedom for a collection of traffic
agent is extremely difficult because each traffic agent is (modelled by) a hybrid
system with a number of (discrete) modes and a different continuous dynamics
in each mode. To break down the complexity of this verification task we exploit
that traffic agents typically cooperate using a certain pattern of operation modes
that can be described as a generic phase-transition diagram shown in Fig. 7.

RECOVERY

NEGOTIATING

FAR

CORRECTING

(1)

(3)

(2)

(4)

(5)

FAILSAFE

φ F

φ N

Fig. 7. Phase-transition diagram for proof rule

The phase FAR collects all controller modes that are not pertinent to collision
avoidance. The protocol may only be in phase FAR if it is known to the con-
troller that the two agents are “far apart”. Determining conditions for entering
and leaving phase FAR is thus safety critical. The NEGOTIATION phase is ini-
tiated as soon as the agents might evolve into a potentially hazardous situation.
Within the negotiation phase the two agents determine the set of maneuvers to
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be performed. The CORRECTING phase is entered when matching correcting
modes have been identified. During this phase, maneuvers associated with the
correcting modes will cause the distance between traffic agents to increase, even-
tually allowing them to reenter the FAR phase. For instance, TCAS distinguishes
maneuvers like “descent”, “maintain level”, and “climb” for aircrafts.

The cycle of transitions numbered (1) to (3) in the diagram thus characterizes
successful collision avoidance maneuvers. Other phases and transitions shown in
Fig. 7 increase the robustness of the protocol, by providing recovery actions in
case of failures (e.g., disturbed communication channels) in the NEGOTIATION
phase, and can only be offered by agents with fail-safe states (like trains). For
instance, in its RECOVERY phase a train may initiate a braking maneuver to
avoid a collision with a preceding train.

Stipulating the pattern in Fig. 7, we proposed a generic proof rule that de-
composes the global safety proof of collision freedom (for the case of two traffic
agents) into a number of simpler properties that involve only parts or limited
aspects of the agent system. The proof rules employs two key concepts: a safety
envelope surrounding each traffic agent and a criticality function providing an
abstract measure of the distance between the traffic agents. The rule states that
for all traffic agents A and all criticality functions cr satisfying the verification
conditions VC of the rule, collision freedom is guaranteed:

A |= VC ⇒ A |= ¬ collision

where cr may occur in VC but not in the collision predicate. In an application
we have to show that the verification conditions VC are satisfied by the concrete
traffic agents A0 and the concrete criticality function cr0 substituted for cr :

A0 |= VC[cr0/cr ]

Thus the proof rule, when instantiated with A0 and cr0, yields the desired prop-
erty of collision freedom:

A0 |= ¬ collision.

In Subsection 4.3 we show that criticality is a Lyapunov-like function and that
(for certain dynamics) the concrete function cr0 can be discovered automatically.

Formalization. Now we outline the formalisation of the approach as given in
[13]. A traffic agent A is represented as the parallel composition of a plant P and
a controller C , in symbols A = P || C . Each of these components is modelled
by a hybrid automaton H = (M,Var ,Rd ,Rc,m0, Θ) defining trajectories

π = ( M̂ , (X̂ )X∈Var )

where M̂ : Time → M and X̂ : Time → R for X ∈ Var . For details see Appendix
A and for an example see Fig. 9.

To specify behavioural properties over time of hybrid automata and state the
verification conditions of our proof rule for collision freedom, we use the State
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Transition Calculus [56], an extension of the Duration Calculus (DC) [57]. In DC,
real-time interval properties of system observables obs , which are interpreted as
functions obsI : Time → Data, can be expressed and proven. For example,

�(�M = NEG� ⇒ �acc = 0�)

expresses that in every interval (�) if the mode observable M has the value NEG
(for negotiating) throughout this interval (�M = NEG�) then the observable acc
(for acceleration) is zero throughout this interval (�acc = 0�).

The State Transition Calculus can additionally express properties of instan-
taneous transitions. For example, ↑ M = NEG is true at t ∈ Time if then the
truth value of the assertion M = NEG switches from false to true. In DC, this
can be expressed as �¬(M = NEG)�; �M = NEG� which is to hold in an in-
terval surrounding t . The chop operator ; is applied at time t and expresses the
concatenation of two intervals where �¬(M = NEG)� holds in the first one and
�M = NEG� in the second one.

It can be defined that a hybrid automaton H is a model of a formula F ,
abbreviated as H |= F .

Correcting Modes. For each controller Ci we stipulate a set COR(Ci) of
correcting maneuvers. Then we assume a relation

MATCH ⊆ COR(C1) × COR(C2)

of matching modes characterizing which pairs of maneuver are claimed to re-
solve hazardous states. For each pair (m1,m2) ∈ MATCH there is an activation
condition characterized by a state assertion Φ(m1,m2). Activation conditions of
maneuvers must observe the following constraints:

– timely activation: the activation of the maneuvers occurs early enough to
guide the traffic agents to a safe state using the associated control laws.

– completeness : for each possible approach to a hazardous state there is at
least one matching pair of correcting modes whose activation condition is
enabled in time.

For ground-based traffic agents like trains there is a special class of corrective
modes, enforcing a complete stop of the traffic agent, thus reaching a fail-safe
state. We refer to such corrective modes as recovery modes and assume that there
is a single matching pair (r1, r2) of recovery modes.

Let Φstart be the disjunction of all activation conditions of these modes:

Φstart ⇔ Φ(r1, r2) ∨
∨

(m1,m2)∈MATCH Φ(m1,m2).

Intuitively, if any of these conditions becomes true, a hazardous state has been
reached, which can compensated by the associated matching pair of correcting
modes. By completeness of the set of activation conditions, Φstart thus charac-
terizes all hazardous states.

The flexibility of having multiple matching correcting modes entails the need
for a negotiation phase, in which agents agree on which pair of maneuvers is to
be activated. The design of this phase has to address the following critical issues:
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– limited time window : the decision must be reached within a certain time
ΔN , catering for latencies occurred by inter-agent communication, as well
as local computation times to perform the selection.

– timely activation: the activation of the negotiation phase must be early
enough to guarantee timely activation of the chosen maneuvers.

– adequacy of selection: the negotiation phase may only choose among such
matching pairs whose activation condition is known to become activated.

We cater in our generic scheme for the latter two items by the concept of warnings
“announcing” that the activation condition for a matching pair will become true
in ΔC time units, with ΔN < ΔC . The warning ΦN causing the initiation of
the negotiation phase should thus be given as soon as it is known that the agent
will in ΔC time units hit one of these activation conditions. Formally, this is
expressed as follows: ΦN ⇔ pre(ΔC , Φstart ).

Safety Envelopes. We define collision freedom as maintaining disjointness of
safety envelopes associated with each traffic agent. A safety envelope of an agent
is a vicinity. Formally, safety envelopes are convex subspaces of R

3 surrounding
the current position, whose extent can depend on the valuation of plant variables.

Definition 1. The safety envelope of an agent A = P ‖C is a continuous piece-
wise differentiable function

SEA : R
Var(P) → P(R3),

which is a convex subset of R
3 including the current position. Given a run π,

and a point in time t, the current safety envelope is given by SE(π(t)).

Two traffic agents A1 and A2 are collision free if in all trajectories of the com-
posed traffic system A1 ‖A2 the safety envelopes associated with A1 = C1 ‖P1
and A2 = C2 ‖ P2 have an empty intersection.

Definition 2. Consider a run π of A1 ‖A2. The state assertion collision holds
in π at time t ∈ Time if SEA1(π(t)) ∩ SEA2(π(t)) �= ∅. The two-agent system
A1 ‖A2 is collision free if A1 ‖ A2 |= �¬collision�, i.e. if for all runs of A1 ‖ A2
and all intervals ¬collision holds.

Criticality. A central notion is that of criticality of plant states. Given valua-
tions σ1 and σ2 of the plant variables of P1 and P2, respectively, the criticality
cr(σ1, σ2) measures the “distance” of (σ1, σ2) from unsafe states. A key property
of such a criticality function is the separation of safe and unsafe states, in the
following sense: whenever the criticality of plant states is below a fixed threshold
csafe the plant state is safe.

Formally, a criticality measure for given traffic agents A1 = P1 ‖ C1 and A2 =
P2 ‖ C2 is a continuous piecewise differentiable function

cr : R
Var(P1) × R

Var(P2) → R≥0

satisfying the implication cr(σ1, σ2) < csafe ⇒ SEA1(σ1) ∩ SEA2(σ2) = ∅.
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A Proof Rule for Collision Freedom. For two cooperating traffic agents
A1 = C1 ‖P1 and A2 = C2 ‖P2 the proof rule of [13] has the form

(VC 1), . . . , (VC 18)
C1 ‖P1 ‖C2 ‖P2 |= �¬collision�

where the verification conditions (VC 1) . . . (VC 18) require only verification
tasks of the following types:

(A) off-line analysis of the dynamics of the plant in fixed modes,
(B) mode invariants for C1 ‖ C2,
(C) real-time properties for Cj ,
(D) local safety properties, i.e., hybrid verification tasks for Cj ‖ Pj .

In the following we give a flavour of these verification conditions.

Criticality and safety. Our approach to establishing collision freedom is to re-
duce this to an analysis of the criticality of the system. The criticality measure
separates safe from unsafe states: here a constant csafe of type R>0 represents the
level of criticality below which the two travel agents are safe, i.e., in no danger
of a collision. The following type A verification condition checks this property.

(VC 1) Safety

Th(R) |= cr < csafe ⇒ ¬ collision

This yields P1 ‖P2 |= �cr < csafe� ⇒ �¬ collision�.

Phase-transition diagram. It is straightforward to generate verification condi-
tions enforcing compliance of the concrete protocol to the phase-transition sys-
tem of Fig. 7. To this end, the phases far away, negotiating, correcting, recovery
and fail-safe of the controllers Ci are represented as disjoint subsets FAR(Ci),
NEG(Ci ), COR(Ci), REC (Ci ), FSA(Ci) ⊆ Mi of the set of modes. When spec-
ifying the behaviour of the controllers Ci in DC, we use FAR(Ci) as a shorthand
for M (Ci ) ∈ FAR(Ci) and analogously for the other phases. Then we check the
following simple type B verification condition.

(VC 2) Controllers observe phase-transition diagram. For i = 1, 2

Ci |=0 Φphase(Ci )

Thus the controllers satisfy the above phase constraints from the start. Here
Φphase(Ci) is a conjunction of formulae of the following type:

Initial phase: �� ∨ �FAR(Ci)�; true for i = 1, 2
Phase sequencing: �FAR(Ci)� −→ �FAR(Ci) ∨ NEG(Ci )� for i = 1, 2

. . . . . . . . . . . . . . . . . . etc . . . . . . . . . . . . . . .
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Warnings. The following type A verification condition checks that each trajec-
tory leading from a plant state without warning to a collision must cross an
activation condition of one of the correcting modes, i.e., it checks whether the
set of provided maneuvers is complete.

(VC 4) Completeness of maneuvers.

P1 ‖ P2 |= (�¬φN �; true) ∧ (�¬collision�; ↑ collision) ⇒ � ↑ Φstart

The activation conditions for maneuvers must be chosen in such a way that crit-
icality is below the critical threshold when maneuvers become enabled, leading
to the following type A verification condition.

(VC 5) During warning period criticality is still low.

Th(R) |= ∀ δ ≤ ΔC : (acc1 = acc2 = 0 ∧ ↑pre(δ, Φstart ) ⇒ cr < csafe)

This yields P1 ‖ P2 |= (�acc1 = acc2 = 0� ∧ 
 = ΔC ; ↑ Φstart ) ⇒ �cr < csafe�.
In particular, this ensures that maneuvers are not activated too late.

Negotiation phase. The negotiation phase must be initiated as soon as a first
warning occurs. Recall that this event is represented by ΦN becoming true. The
following type B verification condition checks this.

(VC 6) Initiating negotiating phase. For i = 1, 2

Ci ‖P1 ‖P2 |= �FAR(Ci)�
↑ΦN−−−→ �NEG(Ci )�

Note that both controllers enter their negotiating phase simultaneously when
the trigger ↑ φN occurs.

The following type D verification condition guarantees that pre(ΔC , Φstart ),
the warning to start maneuvers according to Φstart , was raised early enough. If
the traffic agents changed their speeds during negotiation and selection (sub-)
phase, the calculations of the warning would be wrong.

(VC 11) No acceleration during negotiation and selection. For i = 1, 2

Ci ‖Pi |= �NEG(Ci ) ∨ SEL(Ci)� ⇒ �acci = 0�

The last type C verification condition for the negotiation phase checks, that
indeed negotiation is completed within the given time window of length ΔN .

(VC 12) Negotiation completes in time.

C1 ‖ C2 |= �NEG(C1) ∨ NEG(C2)� ⇒ 
 ≤ ΔN

where ΔN < ΔC . Thus both controllers have left their negotiating phase after
at most ΔN time units.
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Adequacy. The following type A verification condition ensures that the critical-
ity does not increase when collision avoidance maneuvers are activated. Note
that these are part of the hybrid automata resulting from the restriction of the
controller to the selected correcting mode.

(VC 15) Adequacy of matching modes. For all (m1,m2) ∈ MATCH

C1 � m1 ‖P1 ‖C2 � m2 ‖P2 |=
↑ Φ(m1,m2); true ⇒ ∀ c ∈ R≤0 : �cr ≤ c� −→ �cr ≤ c�

For the recovery maneuver, a similar verification conditions additionally requires
that after a suitable braking time t depending on their speeds at the start of the
maneuver, the traffic agents have come to a complete halt.

Far away phase. The following type B verification conditions enforces that the
correcting phase can be left in favour of the phase far away only when there is
no warning that new correcting maneuvers have to start in ΔC time.

(VC 17) Termination of maneuvers. For i = 1, 2 and φF ⇔ ¬φN

Ci ‖P1 ‖P2 |= �COR(Ci )�
↑ΦF−−−→ �FAR(Ci)�

Fail-safe state. The following type B verification condition ensures that the
recovery maneuver is concluded by entering the fail-safe state, when the agent
has come to a complete stop. By (VC 2), each traffic agent stays in this state.
We require that in this state the traffic agent does not change its position, and
that the criticality does not increase.

(VC 18) Fail-safe state. For i = 1, 2

Ci ‖Pi |= �REC (Ci)�
↑(spdi=0)−−−−−−→ �FSA(Ci) ∧ spdi = 0�

Ci ‖P1 ‖ P2 |=
∀ c ∈ R≥0 : �FSA(Ci) ∧ spdi = 0 ∧ cr ≤ c� −→ �spdi = 0 ∧ cr ≤ c�.

In [13] the following was shown.

Theorem 1 (Soundness). The verification conditions (VC 1),. . . ,(VC 18)
together imply

C1 ‖ P1 ‖ C2 ‖P2 |= �¬collision� ,

i.e., the proof rule for collision freedom is sound.

4.2 Case Study: Movement Authority

Let us revisit the ETCS train control introduced in Subsection 2.4. However, in-
stead of using Matlab-Simulink and Stateflow as modelling techniques, we shall
now represent the scenario more abstractly by time-dependent observables and
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hybrid automata. We consider one train moving along a track and communi-
cating with a radio block center (RBC) that grants movement authorities to
the train. At each moment of time there is a certain end of movement authority
(EoA) for the train because after the EoA a critical section begins, which may be
a rail-road crossing or a track segment occupied by a preceding train (cf. Fig. 4).

We start from domains Position = R≥0 with typical element p for the position
of the train on the track, Speed = R≥0 with typical element v for the speed of
the train, and Acc = R with typical element a for the acceleration of the train.
Let vmax denote the maximal speed of the train and −b the braking force of the
train, represented as a negative acceleration, i.e., with −b < 0. The current end
of authority for the train is modelled by an observable

EoA : Time → Position

which is maintained by the RBC. We require

∀ t1, t2 ∈ T ime : t1 ≤ t2 ⇒ EoA(t1) ≤ EoA(t2).

The critical section CS behind the EoA is represented by an interval of positions

[CS .s ,CS .e] ⊆ Position

starting at CS .s and ending at CS .e, with a fixed positive length CS .e − CS .s .
A predicate describing all positions after the critical section is

afterCS : Position → B with ∀ p ∈ Position : afterCS (p) ⇔ CS .e ≤ p.

When the train approaches the current EoA it has to start talking to the RBC
to get permission to extend the EoA. The distance relative to EoA where start
talking has to be initiated is modelled by a function

ST : Speed × Time → Position

depending on the train’s speed, the maximal time delay needed to communicate
with the RBC, and implicitly on the fixed braking force −b. If the permission is
not granted by the RBC the train has to start braking with the braking force −b.
The distance relative to EoA where the braking has to be initiated is modelled
by a function

SB : Speed → Position

depending on the train’s speed and implicitly on the fixed braking force −b.
These positions and distances are illustrated in Fig. 4. We require

∀ v ∈ Speed , Δ ∈ Time : ST (v , Δ) ≥ SB(v).
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Safety. For the train’s safety envelope SETrain(p) we choose an extension around
its current front position p which encompasses the length of the train, indepen-
dent of mode and speed:

SETrain(p) = [p − LT , p] ⊆ Position

where LT is the length of the train. The critical section’s safety envelope depends
on the position of the EoA:

SECS =
{

∅ if CS .e < EoA
[CS .b,CS .e] otherwise

The choice of ∅ as the extension of the safety envelope caters for the case that
the RBC has granted an extension of the EoA beyond the critical section. This
permits the train to pass the critical section without safety violation.

We define inCS (p) ⇔ CS .s ≤ p ≤ CS .e + LT . The predicate inCS describes
all positions where the safety envelopes of the train and the critical section
overlap, i.e.,

SETrain(p) ∩ SECS �= ∅ ⇔ inCS (p) ∧ EoA ≤ CS .e.

Thus collision freedom is equivalent to inCS (p) ⇒ CS .e < EoA, i.e., whenever
the front position p is in the critical section, the EoA has been extended beyond
the critical section.

Traffic Agents. The scenario movement authority is modeled as a system MA
with two traffic agents:

MA = Train ‖RBC,

one train consisting of plant and controller interacting with an RBC consisting
of a controller only. Fig. 8 shows how these agents are represented by real-valued
variables pos (position), spd (speed), acc (acceleration) and EoA (end of author-
ity), and which (other) variables the four components share for communication
with each other.

We assume that the train plant has knowledge of its position on the track
and controls its speed depending on requests from the train controller. It will
react to speed control commands from the train controller. Thus we consider the
variables below. We do not distinguish between the (syntactic) variables of the
automaton and the corresponding trajectories in runs. So we take for the type
of a variable the type of its time-dependent trajectory, and we permit variables
with discrete ranges without explicitly coding them in reals.

Variables: Train plant

input sc : Time → {Keep,Brake} (speed control)

output pos : Time → Position (position of the train)

spd : Time → Speed (speed of the train)

acc : Time → Acc (acceleration of the train)
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Fig. 8. Communication between train and RBC

For the dynamics of the train we assume the continuous transition relations
pos• = spd and spd• = acc and the invariants −b ≤ acc and spd ≤ vmax . Here
we are interested only in the change of speed during braking:

acc =

{
0 if sc = Keep ∨ (sc = Brake ∧ spd = 0)

−b if sc = Brake ∧ spd > 0

The train controller monitors the position and speed of the train. When ap-
proaching the current end of authority EoA (guarding a critical section) it re-
quests for an extension from the RBC by sending an extEoA signal. If the RBC
sends a signal OK the controller requests the train plant to keep the (desired)
speed. If the RBC does not reply in time and instead the train passes the posi-
tion SB the controller forces the train plant to brake. Thus the train controller
has the following time dependent variables.

Variables: Train controller

input pos : Time → Position (position of the train)

spd : Time → Speed (speed of the train)

EoA : Time → Position (current EoA)

OK : Time → B (EoA is extended)

local CS .s : Time → Position (begin of critical section)

output extEoA : Time → B (request to extend EoA)

sc : Time → {Keep,Brake} (speed control)

Modes: Far, Appr, SafeAppr, Braking, FailSafe
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afterCS(pos) /

sc := Keep

OK

(spd=0)

Far

Braking

FailSafe

SafeAppr

sc = Brakesc = Keep

sc = Brake

sc = Keep
sc := Keep, extEoA := tt

true / sc := Keep,

Φ

sc := Brake

sc = Keep

Appr

CS.s := EoA

 /

ΦN  /

Fig. 9. Train controller

The dynamics of the train controller is described by the automaton in Fig. 9.
Initially, the controller is in the mode Far. When the predicate ΦN abbrevi-
ating pos ≥ EoA − ST (spd , ΔC ) becomes true the controller switches to the
mode Appr. On occurrence of a signal OK the controller switches to the mode
SafeAppr indicating that the train can safely approach the critical section. In
this mode the train continues to keep its speed. If the predicate Φ abbreviating
pos ≥ EoA−SB(spd) becomes true the controller switches to the mode Braking
where it forces the train to brake until a complete stop. If the train’s speed is
zero, the controller enters the mode FailSafe. In the terminology of Fig. 7, the
mode Appr is the phase NEGOTIATION , SafeAppr is CORRECTING , and
Braking is RECOVERY .

The RBC is modelled only as far as the communication concerning the exten-
sion of EoA is concerned. It outputs of current EoA to the train and if requested
to extend it by an extEoA signal may grant an OK signal. Thus the RBC con-
troller has the following time dependent variables.

Variables: RBC controller

input extEoA : Time → B (request to extend EoA)

local x : Time → Time (clock)

output EoA : Time → Position (current EoA)

OK : Time → B (EoA is extended)

Modes: Idle, Check, Unsafe
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The dynamics of this simplified RBC controller is described by the automaton
in Fig. 10. The expression update(EoA) abbreviates an assignment of a new,
larger value to the variable EoA. The clock x with upper bound ε in mode
Check models the maximum delay it takes for the RBC to answer the request
for extending the EoA.

���
�
�
�

��

true / OK := tt, update(EoA)
EoA = 0

true / OK := ff

= 0EoA

Idle
extEoA / OK := ff, x := 0

Unsafe

true / OK := ff

Check
x = 1

εx < 

Fig. 10. RBC controller

4.3 Automatic Discovery of the Criticality Functions

It is critical for a system according to Fig. 7 that a recovery maneuver will always
lead into a fail-safe state without violating any safety constraints. To ensure this,
recovery needs to be initiated in time, so that potentially hazardous situations
can be avoided. For the train example given in the previous sections, we will now
demonstrate how to determine states which lead to a safe recovery maneuver.
In this particular case we will ensure that the train will always come to a stop
before an end-of-authority point associated with a critical section. In particular,
we will construct a predicate Φ guaranteeing that the train system is safe in the
sense that no critical section can be passed, unless the RBC sent the signal OK
to the train passing it. In other words, once the train system enters the Braking
mode, the safety condition pos ≤ EoA will not be violated and the train will
come to a stop in the FailSafe mode — braking is always initiated in time.

We will now show that the criticality function in the verification conditions
from Subsection 4.1 can be seen of an instance from a generic class Lyapunov-
like functions. Methods for synthesis of Lyapunov functions can then be adapted
to automatically compute a suitable criticality function. Since contour lines of
the function can be used to separate reachable and non-reachable states, we call
this class Lyapunov-like boundary functions.

Definition 3. Let x (t) ∈ R
n be a hybrid system’s state vector (the vector of

the valuations of all variables 6) at time t. Given a set of initial states vectors
6 For the ease of mathematical treatment, the state of the system is represented as a

vector of real numbers, instead of a function σ : Var → R like in Subsection 4.1.
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S ⊆ R
n and a set of unsafe state vectors U ⊆ R

n , a Lyapunov-like boundary
function of the hybrid system is a function V : R

n → R, such that:

– for all runs of the system and all reachable states x ∈ R
n :

V •(x ) := dV
dx

dx
dt ≤ 0

– ∃ k ∈ R : (x ∈ S ⇒ V (x ) < k) ∧ (x ∈ U ⇒ V (x ) > k)

The function V has Lyapunov-like properties, as it will never increase through-
out the evolution of any trajectory due to the condition V •(x ) ≤ 0, which forces
the function’s time derivative to be non-positive. Furthermore, there exists a
contour line, given by the points x with V (x ) = k , such that the possible initial
states S lie on one side of this line, while the unsafe states U lie on the other (see
Fig. 11). Due to the Lyapunov-like property it is then impossible for a trajectory
beginning in the set of initial states to cross into the unsafe region, as this would
require an increase of V (x ).

S
U

V(x)<k

V(x)>k

Fig. 11. Criticality function contour line with initial set S and unsafe set U

Since such a Lyapunov-like criticality function is a variant of a Lyapunov func-
tion, computational approaches for Lyapunov function synthesis can be adapted
for this case. For instance, linear matrix inequalities can be employed to auto-
matically compute a suitable quadratic V , and then the maximal k such that
x ∈ U ⇒ V (x ) > k . The computation procedure is very similar to the one that
will be described in detail in Section 6.

Such a Lyapunov-like boundary function is a special case of a criticality func-
tion as described in Subsection 4.1. The function V can be used as criticality
function cr and the contour line value k represents the maximal admissible crit-
icality value csafe . Setting cr = V and csafe = k , the verification condition
(VC 1) is fulfilled since (x ∈ U ⇒ V (x ) > k) implies (x ∈ U ⇒ V (x ) ≥ k),
which is equivalent to (VC 1) by contraposition. For condition (VC 5), in
the case of δ = 0, the set S assumes the role of pre(0, Φstart ). The condition
x ∈ S means that x is an admissible state vector for initiating the maneuver,
which is equivalent to the requirement that the variables at time of initiation
fulfill pre(0, Φstart ). If δ > 0, a backward reachability computation is needed to
show that V (x ) < k for the entire negotiation period. Since verification condi-
tion (VC 5) requires an acceleration of zero during negotiation, this simplifies
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the computation. Condition (VC 15) is implied by the Lyapunov-like condition
V •(x ) ≤ 0 stating that V cannot increase over time.

Therefore, a criticality function as needed in (VC 1), (VC 5) and (VC 15)
can be computed automatically, using methods for Lyapunov function synthesis.
The dynamics for the given tuple of maneuvers is needed as an input, as is
the set of unsafe states. Condition (VC 4) needs to be checked separately,
since a Lyapunov-like function does not guarantee that the set {x | V (x ) < k}
is always entered before a trajectory can pass into the unsafe region U . It is
then possible to synthesize a Lyapunov-like boundary function (serving as the
criticality function) and a contour line value k (serving as the maximal admissible
criticality level) such that initiating the maneuver with criticality lower than k
guarantees safety. Each admissible set of initial state vectors S for the maneuver
corresponds to a possible safe condition for the maneuvers.

For the rail-road crossing case study, will now employ Lyapunov-like boundary
functions to identify a safe guard Φ, such that pos ≤ EoA is always guaranteed.
Therefore we put U = {pos > EoA}. As Φ is not given, but to be derived, we
define Φ := V (x ) < k . All states with this property are separated from U by
the contour line V (x ) = k .

Since a system can potentially have many admissible criticality functions,
this even holds for any state within a contour line of any criticality function
with respect to the same unsafe region U . Therefore, we are not restricted to
one function, but can use many. The predicate Φ is then the disjunction of the
predicates Vi(x ) < k for all such criticality functions Vi and associated contour
line values ki . Using many criticality functions instead of one can result in a
weaker, and therefore less conservative, predicate Φ.

For the case study, it was sufficient to use just one criticality function, as
the use of several functions brought no significant improvement. As a result we
obtained the following criticality function cr and boundary value csafe :

cr = 0.0014616 ∗ (pos − EoA + 2000)2 + spd2 (15)
csafe = 5846.445 (16)

Figure 12 shows the position of the train in meters before the EoA point
on the horizontal axis and its velocity in m/s on the vertical axis. The shaded
set of states is safe set {x | Vi(x ) < ki}. Initiating the braking within this
set guarantees that the unsafe region to the right of the vertical line cannot be
entered. For this particular example, where the speed is decreasing at a fixed rate,
this implies an eventual transition to the FailSafe phase, without breaching any
safety requirements. Furthermore, assuming a maximal speed vmax = 76.46m/s ,
condition (VC 4) is also fulfilled, since system trajectories could not enter the
unsafe region without first passing through the ellipsoid. Any predicate Φ which
evaluates to false everywhere outside this set is admissible as a guard for the
transition between the Appr and Braking modes.
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Fig. 12. Safe region for initiating the braking

5 Parameterized Verification of the Cooperation Layer

In this section, we present results for verifying parameterized instances of traffic
protocols. On the one hand, system safety in systems like ETCS crucially de-
pends on the right choice of parameter values. For instance, whether a train can
keep its speed safely depends on the relationship of EoA to the current veloc-
ity v and maximum braking power b. If these values are imbalanced then the
train protocol is no longer guaranteed to avoid crashes. Hence, it is utterly im-
portant to analyze and discover safety constraints between such parameters or
state variables and adjust design parameters in accordance with those parametric
constraints.

On the other hand, once those constraints have been discovered, all instances
of the traffic scenario that satisfy the parametric safety constraints can be veri-
fied at once. Generally, safety statements do not only hold for a particular setting
but generalise to a broader range of possibilities. For instance, train control is not
only safe for a particular initial speed v ≤ 10 and a specific braking force b = 0.1
with remaining EoA-distance of 5km. Instead, the system remains safe for all
choices of parameters that satisfy a corresponding constraint. Using our tech-
niques from [43,45,44,46], all such instances of the system can be verified at once,
and the required safety constraints on the free parameters can be discovered.

5.1 Parameterized Hybrid Systems

Parameters naturally arise from the degrees of freedom of how a part of the
system can be instantiated or how a controller can respond to input. They in-
clude both external system parameters like the braking force b of a train, and
design parameters of internal choice like SB , i.e., when to start braking before
approaching EoA in order to ensure that the train cannot possibly run into an
open gate or preceeding train.
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The major challenge in dealing with symbolic parameters is that they lead
to nonlinearities: Even comparably simple flow constraints like 2b(EoA − p) be-
come nonlinear when b is considered as a symbolic parameter rather than in-
stantiated with some specific value like 0.1.

To handle parameters, we follow a fully symbolic deductive approach. We
have introduced a logic, dL, for verifying hybrid systems with parameters and a
corresponding verification calculus [43]. It generalizes dynamic logic from the dis-
crete case [23] to hybrid systems. Our dL calculus can be used both for verifying
correctness statements about parametric hybrid systems and for deriving con-
straints on their free parameters that are required for safety [43]. Thus, with dL,
it is possible to zoom in to a subset of the system, typically at the coordination
layer, and find safety constraints for the parameters.

5.2 Technical Approach: Differential Logic

To illustrate how our techniques for parameterized hybrid systems work, we
provide a short survey of the dL principles. The full details of the theory behind
dL are reported in [43,45,44,46].

The logic dL provides modal formulae like [MA]φ, which express that all runs
of the parametric hybrid system MA (see Subsection 4.2) lead to states which
satisfy some safety constraint φ. Further, such formulae can be combined propo-
sitionally, by quantifiers, or modalities [β] about other automata β. With this,
safety of parametric hybrid systems can be stated as formulae in the logic dL,
for instance:

b > 0 ∧ ε ≥ 0 ⇒ [MA](p ≤ EoA) . (17)

This dL formula states that all runs of the hybrid system MA are such that the
train position p remains within the movement authority EoA, provided that the
braking force b is non-zero and the maximum reaction-cycle-time is some ε ≥ 0.
Both symbols, b and ε, are train model parameters and given externally. Their
values depend on the specific characteristics of the actual train and should be
handled symbolically for a thorough analysis of all trains. From the perspective of
a single train automaton, EoA can also be considered as an external parameter.
In the full system MA, which involves trains and RBCs, it can also be considered
as a state variable instead.

Using the dL calculus, such a formula can be analyzed systematically in order
to find out if it holds or under which parameter constraints the system is safe. For
instance, for the safety constraint (17), the dL calculus reveals that the system is
only safe when the initial velocity does not exceed the braking capabilities and
the control parameters are chosen in accordance with the movement authorities,
speed, and reaction times.

To make our calculus compositional and simplify its step-wise symbolic pro-
cessing principle, we use a textual notation of hybrid automata as hybrid pro-
grams [43]. As hybrid automata [25] can be embedded in hybrid programs by a
simple canonical construction [43], we identify hybrid automata and their cor-
responding program rendition, here. With this embedding, parametric safety
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statements can be easily expressed using dL formulae of the form (17) and ana-
lyzed in the dL calculus.

Given a safety statement like (17), the dL calculus performs a symbolic analy-
sis of the parametric hybrid system and identifies safety constraints on the free
parameters. Figure 13 contains a corresponding abbreviated proof outline for
a part of the system analysis in the dL calculus. At this point, we only want
to remark that the proof starts at the bottom with the full MA controller and
splits into sub-goals that symbolically analyze a part of the ETCS behavior each.
For instance, the left branch analyzes the train behavior in the recovery mode,
the right branch investigates acceleration cases, see [43] for details. The calculus
works by successive symbolic decomposition of the system, which can be under-
stood to follow a symbolic case analysis. As a basis, our implementation uses an
integration of the KeY prover [5,4] with quantifier elimination in Mathematica
for arithmetic reasoning about the continuous dynamics.

. . . � v2 ≤ 2b(EoA−p)

. . . � . . .
ψ, EoA−p<SB � [a := −b][drive]ψ
ψ, EoA−p<SB � [recover][drive]ψ

. . . � SB ≥ v2

2b + εv . . .
. . . � . . .

ψ, EoA−p≥SB � [a≤amax][drive]ψ
ψ, EoA−p≥SB � [accel][drive]ψ

ψ � [nego][drive]ψ
ψ � [MA]ψ

� ψ ⇒ [(MA)∗](p ≤ EoA)

Fig. 13. Proof outline for ETCS protocol in dL

5.3 Analysis of Parameters in ETCS Protocol Phases

In the dL calculus, we can derive constraints on the parameters for a safe opera-
tion of train control. These parameters are limits in the ideal-world model of the
coordination level, hence, general engineering principles advise using additional
safety margins to compensate for inaccuracies and disturbances.

From an analysis of the braking behavior in recovery mode, we can auto-
matically determine a controllability constraint for the train, see [43]. If the
following constraint is violated, no safe control of the train is possible at all,
because its speed exceeds the braking power b for the remaining movement au-
thority EoA − p:

v2 ≤ 2b(EoA − p) . (18)

Assuming that condition (18) holds, it remains to show that the particular train
control choices maintain safety. Especially, the controllers must maintain (18)
invariably during all possible driving behavior.

The two most crucial control parameters for the cooperation protocol MA in
ETCS are ST and SB . Both are design parameters of internal choice by the
controllers and, thus, need an adequate instantiation to ensure safety. The para-
meter ST determines when the train enters negotiation mode to ensure that it
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can get an EoA-extension from the RBC before reaching EoA. The control para-
meter SB is the safety distance at which the speed supervision needs to initiate
braking when no positive EoA extension has occurred yet (recovery mode). Both
parameters are formulated as points on the track in terms of distances from EoA
(see Fig. 4).

The parameter SB is a very important safety parameter that needs to be
chosen adequately such that the train can guarantee to remain within its move-
ment authority, regardless of the behavior of other traffic agents like preceeding
trains or gates at critical sections as mediated by the RBC agent. Especially,
if SB is chosen right, the system remains safe, whatever the outcome of the
RBC communication may be.

The safety constraint for parameter SB can be derived from an analysis of
the hybrid program rendition of the MA-automata using a proof of the form in
Fig. 13, see [43] for details. In addition, the underlying RBC and train models
bridge the gap from cooperation layer models to design layer models as they take
maximum controller response times into account. Similar to the notion of lazy
hybrid automata [51], we account for the fact that controller implementations
react with a processing delay and that the effect of actuators like brakes can be
delayed as well.

An acceleration a ≤ amax is permitted in case EoA−p ≥ SB , when adaptively
choosing SB depending on the current speed v and the parameters of maximum
braking force b and maximum speed supervision response time ε in accordance
with the following constraint:

SB ≥ v2

2b
+

(amax

b
+ 1

)(amax

2
ε2 + εv

)
. (19)

This constraint expresses that it is only safe to keep on driving when the control-
lability constraint (18) is maintained even after a maximal acceleration of amax
during a maximum period of ε time units. In particular, constraint (19) makes
the controllability constraint (18) inductive.

Observe that constraint (19) is a refined and parameterized version of the (12)
(remember that xb is the point on the track corresponding to the distance SB
from EoA). The actual symbolic constraints in (19) identify what needs to be
captured by the 10% safety margin in (12). It also clearly identifies under what
conditions a 10% safety margin is sufficient. Likewise, constraint (19) explains the
shape of the safety region given in Fig. 12 and gives insights about a systematic
symbolic generalization of the numerical criticality function in (15). It identifies
fully symbolic constraints as opposed to specific real numbers that only hold for
a particular scenario.

Parameter ST is a liveness parameter. Depending on the expected maximum
RBC communication latency L, which again is a parameter for the train analysis,
it ensures that the RBC can still respond in time before the train needs to
decelerate. That is, when the train enters negotiation at ST , it does not need
to brake unless an EoA extension cannot be granted by the RBC within L at
all. For instance, an RBC may not be able to grant an EoA extension despite
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an early request because other traffic agents occupy the track segment beyond
EoA.

Constraints on the parameter ST can be derived [45] from an analysis of a
single negotiation and correction phase. A proof yields the following necessary
constraint depending on the expected maximum RBC communication latency L:

ST ≥ Lv +
v2

2b
. (20)

Again, (20) corresponds to a version of (13) that has been synthesized from the
system model deductively.

The constraints (19) and (20) can be used to find out how dense a track can
be packed with trains in order to maximize throughput without endangering
safety, and how early a train needs to start negotiation in order to minimize the
risk of having to reduce speed when the MA is not extendable in time.

6 Proving Stability of Local Control and Design Models

Stability is a property of a dynamic system that subsumes its ability to with-
stand, and eventually compensate for, outside disturbances that affect a system.
For a local closed-loop control system, this is a very desirable property, be-
cause stability ensures that the controller is actually able to keep the controlled
parameter close to the desired value. Furthermore, if one requires asymptotic
stability, there cannot be any undamped oscillations or cyclic behavior in the
closed-loop system. For instance, one would expect from a speed controller for
a train, that it forces the speed to converge toward a desired value, without
producing needless cycles of acceleration and deceleration. Very little controller
activity should be needed, once the train is close to this desired speed. In this
section, we will apply methods based on the concept of Lyapunov-functions [35]
to the speed controller of the train model from Section 2. Lyapunov functions
are functions that map each system state onto a nonnegative real value. For
every run of the system, the sequence of values this function attains is required
to be decreasing, eventually converging to zero at the desired control point. If a
function with these properties is found, then the system is asymptotically stable.
We will detail how methods for automatic computation of these functions can
be applied to a model of a speed controller.

Definition 4. Consider a continuous-time dynamic system with state vector
x ∈ R

n . Let x (t), t ≥ 0, denote its state at time t during a run of the system.
The system is called globally asymptotically stable if the following two properties
hold for all possible runs:

a) ∀ ε > 0 ∃ δ > 0 ∀ t ≥ 0 : || x (0) ||< δ ⇒|| x (t) ||< ε (stability)
b) t → ∞ ⇒ x (t) → 0 (global attractivity)

If a) and b) hold only on a bounded set containing 0, the system is called locally
asymptotically stable.
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Without loss of generality we assume that the origin of the continuous state
space R

n is the equilibrium point all trajectories converge to. If one wants to
show asymptotic stability with respect to a different equilibrium – as is the case
in the drive train example – the state space of the hybrid system can simply be
“shifted” to move this point into the equilibrium.

Intuitively, the stability property guarantees that there is an upper bound on
how far the system can stray from the equilibrium point, depending on its initial
state. Moreover, the global attractivity property tells us that the system will
eventually converge to the equilibrium point. Together, this implies that there
is an upper bound on the temporary change of state a disturbance can cause,
relative to the size of the disturbance, and that eventually the system will have
compensated for the disturbance.

We will consider hybrid systems with a finite number of discrete modes. With
each mode m, we associate an affine differential equation x • = Amx + bm with
Am ∈ R

n×n , bn ∈ R
n for describing the continuous evolution of the system’s

state variables. A possible transition between a pair of modes m1 and m2 is given
as a quantifier-free first-order predicate over the continuous variables. No discrete
updates of continuous variables are allowed. We also allow for an invariant in
each mode, given by a quantifier-free first-order predicate7 on the continuous
variables. The system may only stay in a mode while its invariant is satisfied.
We assume that the system does not exhibit Zeno or blocking behavior, so that
all trajectories are continuous and unbounded in time (cf. Appendix 8).

Since the state space of such a hybrid system is R
n ×M, the cartesian product

of the continuous and discrete state (mode) space, one is usually interested in
local stability. The invariants specify which continuous states can be active with
which modes – combinations violating the invariants need not be considered.
Therefore the stability property is local as defined by the invariants. Further-
more, we only expect the continuous variables to converge, but for all permissible
initial hybrid states (x (0),m(0)).

For systems of this kind, local asymptotic stability can be shown with the
help of a common Lyapunov function. It is defined as follows (see [29,9]).

Definition 5. Consider a hybrid system with state vector x ∈ R
n and mode

m ∈ M, where M is the finite set of modes. Assume that the dynamics in mode
m are given as x • = fm (x ) and that the invariant belonging to mode m is the
predicate Im . A (common) Lyapunov function for this system is then a function
V : R

n → R such that:

a) V (x ) = 0 if x = 0 and V (x ) > 0 otherwise
b) for all m: V •

m(x ) := dV
dx (x )fm(x ) < 0 if 0 �= x � Im

c) 0 � Im ⇒ V •
m(0) = 0

d) V (x ) → ∞ when || x ||→ ∞
7 In principle, any quantifier-free predicate over the continuous variables is admissible

for mode transitions or invariants. If the resulting invariant set is not a convex poly-
hedron, it will need to be over-approximated for the actual computation, increasing
conservativeness.
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A Lyapunov function maps each state of the system onto a nonnegative real
number, such that the value of the function is decreasing at all times for all
possible trajectories, eventually converging to zero at the origin of the state
space. Condition a) enforces a global minimum of V at 0. Conditions b) and
c) imply that V is decreasing over time in every mode, whenever its invariant
is true, except at the equilibrium, where V •

m(0) = 0 for all applicable modes.
Condition d) is needed to enforce the stability property a) in Definition 4.

Theorem 2 ([9]). Consider a hybrid system as in Definition 5. The existence of
a common Lyapunov function for such a system implies local asymptotic stability
for all initial hybrid states that are covered by at least one invariant.

There are also refinements to the common Lyapunov function approach, using
piecewise continuous functions instead [9,28,42,16]. This allows the use of dif-
ferent functions for each mode. However, for the train controller application in
this paper, this extension was not necessary. Lyapunov functions can be found
automatically via numerical optimization [28,42,16]. We will demonstrate this
on the following example from the train control context.

6.1 The Drive Train Subsystem

The proof techniques outlined above will now be applied to the drive train part
of the train model from Section 2. The drive train is generally active in the
Far phase of the system when no full braking action is imminent. In this part
of the system, the actual velocity of the train should be kept in line with the
desired velocity, in the presence of outside disturbances. Furthermore, a change
of desired velocity should result in an adequate convergence of the actual velocity
towards this new value.

This is achieved by closed-loop control of the drive train via a PI-Controller,
i.e. a linear controller with proportional and integral part. This controller takes
the difference between current and desired velocity as an input and outputs a
current that is used to accelerate/decelerate the train.

In Equations 2-8, all constants and parameters have been instantiated with
sensible values, to represent a concrete drive train system. Braking force is as-
sumed constant, as is the environment force Fe . All these equations have then
been collapsed into a set of two differential equations per mode, through elim-
ination of superfluous variables and exploitation of variable dependency. The
functions f an g are therefore the representation of Equations 2-8 for these fixed
values. The three relevant unknowns that remain in the drive train model given
in Fig. 14 are the desired speed v0, the actual speed v and the integral value
in Equation 2, denoted as s . Since Equation 2 describes dynamics modelled as
the minimum of two affine functions (Equation 1), there are two correspond-
ing modes, Motor 1 and Motor 2, in the closed-loop hybrid system, each with
affine dynamics. The mode Max acceleration is used to model the cutoff at max-
imum acceleration in Equation 3. If the current speed is far beyond the desired
speed, we activate the brakes, which are assumed to produce constant negative
acceleration. This is represented by mode Brake.



150 W. Damm et al.

f(v,s,v0)<max_acc f(v,s,v0)<max_acc
and g(v,s,v0)>f(v,s,v0) and f(v,s,v0)>g(v,s,v0)

g(v,s,v0)>f(v,s,v0)
v−v0<k2*v0 and
f(v,s,v0)>g(v,s,v0)

f(v,s,v0)>g(v,s,v0)

g(v,s,v0)>f(v,s,v0)

v’=max_acc

s’=v−v0

v’=g(v,s,v0)

s’=v−v0s’=v−v0

v’=f(v,s,v0)

s’=v−v0

v’=brake_dec

Max_acceleration

Motor_2Motor_1

f(v,s,v0)=−1.679*(v−v0)
     −0.0008*s−0.307*v0 −0.000024*s−0.0015*v0

g(v,s,v0)=−0.1995*(v−v0)

f(v,s,v0)>max_acc
f(v,s,v0)>max_acc

v−v0>k1*v0

v−v0<k2*v0 and

Brake

v−v0>k1*v0

Fig. 14. Hybrid automaton of drive train subsystem

6.2 Synthesizing Lyapunov Functions

To compute a function V that fulfills the conditions in Definition 5, we use a
fixed parameterized function template: quadratic functions of the form V (x ) =
xTPx ,P ∈ R

n×n . In this representation, the parameters are isolated in the
symmetric matrix P . This means we have to compute matrix entries for P , such
that conditions a) to d) are satisfied.

As detailed in [28,42], this can be done with the help of linear matrix in-
equalities [8], as long as the differential equations for all modes are affine. Linear
matrix inequalities are optimization problems with constraints given as definite-
ness constraints on matrices. They will be formally defined in the following.
Phrasing the problem to find an adequate P as a linear matrix inequality allows
the use of convex optimization software like CSDP [7] to identify suitable matrix
entries.

Definition 6. A matrix P ∈ R
n×n is called positive semidefinite if xTPx ≥ 0

for all x ∈ R
n . This is also denoted P � 0. For given matrices M1, . . . ,Mj ∈

R
n×n , a linear matrix inequality is a problem of the form:

Find x1, . . . , xj ∈ R such that x1M1 + . . . + xjMj � 0.

Define I as the n×n identity matrix. The problem of finding a Lyapunov function
as in Definition 5 corresponds to the following linear matrix inequality [42]. Find
P , μ

i
m such that:
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P � α ∗ I
∀m ∈ M : AT

mP + PAm −
∑
i

μ
i
m Q i

m + I � 0

The matrices Q i
m ∈ R

n are the result of the so-called S-procedure [55]. They are
computed a priori from the invariants Im such that Im ⇒ xTQ i

mx ≥ 0 for all i .
The details of this computation, which only involves basic algebra in the case of
polytopic invariants, can be found in [42].

f(x)

x

(a) Convex function (b) Convex set

Fig. 15. Convex set and function

Intuitively, this linear matrix inequality can be visualized as follows.
Figure 15(b) shows an illustration of the parameter space of the Lyapunov func-
tion candidate. Note that the parameter space will generally be high-dimensional
(for example 10 dimensions in case of 4 continuous variables, plus the S-procedure
variables μi

m), so the parameter space for an actual system can not be represented
visually in a meaningful way. Each linear matrix inequality constraint bounds the
set of feasible Lyapunov functions with a convex (that is, “curving inward”, see
Fig. 15(a)) constraint, resulting in a convex solution set. Each point in this so-
lution set corresponds to one admissible Lyapunov function for the system, and
identifying one is a convex feasibility problem, which can be solved with standard
nonlinear optimization software [7]. Additionally, it is possible to identify an op-
timal feasible point, with respect to a convex constraint. This is for instance used
to maximize the volume of the ellipsoid or the value of k in Section 4. One can also
use this to obtain an estimate on the convergence rate of an asymptotically stable
system [42]. As opposed to linear optimization, the optimum will not generally lie
on the edge of the feasible set – therefore interior point algorithms [40] are used.
Here the convexity of the solution set can be exploited.

6.3 Stability of the Drive Train with Continuous-Time Controller

For the drive train with continuous controller, as described above, the solver
CSDP [7] gives the following solution
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P =
[
0.0021 0.0021
0.0021 8.4511

]
leading to a Lyapunov function

V (v − v0, s) = 0.0021 ∗ s2 + 0.0042 ∗ (v − v0) ∗ s + 8.4511 ∗ (v − v0)2.

The contour lines of V are visualized in Fig. 16. These contour lines are only
passed “outside-in” by all trajectories, resulting in convergence to the center,
which represents v − v0 = 0 and s = 0. Therefore, the velocity v will converge to
the desired velocity v0 and the integral value s of the PI-controller will converge
to 0.

The existence of this Lyapunov function is sufficient to prove global asymp-
totic stability for the drive train system. Using the YALMIP [33] frontend under
Matlab, this computation took around 0.65 seconds. The problem consists of 17
scalar constraints and 6 three-by-three matrix inequality constraints, on a total
of 23 scalar variables. Therefore, the convex search space visualized in Fig. 15(b)
is 23-dimensional and bounded by 17 + 6 = 23 constraint surfaces.
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Fig. 16. Lyapunov function contour lines

6.4 Stability of the Discretized Drive Train

For a time-discretized version of the drive train, stability can be shown in a very
similar manner. The discrete-time system is obtained by choosing an appropriate
sampling rate. Too slow sampling might destroy stability, while too fast sampling
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increases the computational cost for proving safety properties (see Section 7).
For linear/affine dynamics, the discretized system can then be computed through
the matrix exponential eAτ , where τ is the sampling rate and A the matrix
representing the dynamics (i.e., x • = Ax ).

For such a discrete-time hybrid system with dynamics given as difference
equations, asymptotic stability can be shown using the same methods as for the
continuous case [16]. Again a (slightly different) set of LMIs can be obtained
and solved through convex optimization. For instance, for a sampling rate of 0.1
seconds, the following Lyapunov function was obtained:

V (v − v0, s) = 0.0105 ∗ s2 + 0.0172 ∗ (v − v0) ∗ s + 6.0591 ∗ (v − v0)2

6.5 Stability of the Sampled-Data Drive Train

Stability analysis of discrete-time hybrid systems can also be used to shed light
on stability properties of sampled-data systems, that is control loops with con-
tinuous plant and discrete controller. In this case sensor measurements are sent
to the controller in periodic intervals. The actuators will also periodically receive
updates from the controller.

In case of linear plant dynamics, stability analysis can be conducted on a
purely discrete-time system which is obtained by also discretizing the plant via
zero-order-hold discretization. This procedure is lossless in case of a non-hybrid
linear plant because the state of the plant at each sampling instant can be
exactly computed from its state at the previous sampling instant and the current
controller output. If the plant is hybrid, but with linear dynamics, the dynamics
can still be discretized exactly, but the switches are possibly inexact. With the
absence of so-called “grazing switches” [15], it is usually possible to approximate
the sampled system closely enough.

For the drive train system, we have performed this kind of analysis for a fixed
sampling rate (0.1 seconds) and a discrete controller obtained by a textbook dis-
cretization method for linear systems (zero-pole matching transformation [17]).
The resulting sampled-data system consists of the continuous-time drive train
dynamics given in Subsection 2.1 and the discretized controller, and it can still
be proven stable by this method.

7 Proving Safety of Local Control and Design Models

In this section, we present our approach of model checking safety properties of
local control and design models of the example. We first outline our general
methods for verification of hybrid systems with non-trivial discrete behaviour
(Subsections 7.1 and 7.3); then we build both continuous-time and discrete-time
models of the system based on its Matlab-Simulink description and show model
checking results of these models (Subsections 7.2 and 7.4).
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7.1 Model Checking Hybrid Systems with Large Discrete State
Spaces

We have proposed an approach for verification of hybrid systems, which con-
tain large discrete state spaces and simple continuous dynamics given as con-
stants [11] (methods dealing with richer dynamics, e.g., given as differential
inclusions, are currently under development). Large discrete state space arise
naturally in industrial hybrid systems, due to the need to represent discrete in-
puts, counters, sanity-check bits, possibly multiple concurrent state machines
etc, which typically jointly with properties of sensor values determine the selec-
tion of relevant control laws. Thus this non-trivial discrete behavior cannot be
treated by considering discrete states one by one as in tools based on the notion
of hybrid automata. We have developed a model checker dealing with ACTL
properties for this application class.

...

...

...

...

dp

c1 cm

φ1 φk

q1 qj

d1

mapping between
first-order conditions
and bool. variables

boolean domain variables

continuous domain variables

Represented first-order
predicates

FO conditions

AIG

Fig. 17. The Lin-AIG structure

Representation of state-sets. In our setting, the state-sets of hybrid systems
consist of both discrete states, represented by Boolean formulas, and continuous
regions, represented by a Boolean combination of linear constraints. We use an
extension of And-Inverter-Graphs [39] with linear constraints (Lin-AIGs) as a
compact representation format (see Fig. 17). In Lin-AIGs Boolean formulas are
represented by Functionally Reduced And-Inverter Graphs (FRAIGs), which are
basically Boolean circuits consisting only of AND gates and inverters. In contrast
to BDDs, FRAIGs are not a canonical representation for Boolean functions, but
they are “semi-canonical” in the sense that every node in the FRAIG represents
a unique Boolean function. To be able to use FRAIGs to represent continuous
regions, we introduce a set of new (Boolean) constraint variables Q as encodings
for linear constraints, where each occurring linear constraint is represented by
some q� ∈ Q as illustrated in Fig. 17. Thus we arrive at state-sets encoded by
Boolean formulas over Boolean variables and Q , together with a mapping of Q
into linear constraints.
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Step computation. Our model checker can handle continuous-time models, which
contains both discrete transitions and continuous flows. Discrete transitions are
given in the form of guarded assignments, while continuous flows are given in the
form of modes, which define the evolution of continuous variables by constants.
For each mode there is a boundary condition, the mode is left as soon as the
boundary condition is satisfied.

For checking an invariance property, the model checker performs a symbolic
backward reachability analysis, to ensure that no state in the complement of the
property is reachable from the initial state set. The key achievement lies in the
capability of reducing this backward analysis to pure substitution. It can be done
easily for discrete transitions as detailed in [12]. The capability of representing
as well the effect of continuous flows through substitution rests on our ability
to perform pre-image computations for arbitrary Boolean combinations of linear
constraints using the Loos-Weispfenning quantifier elimination method [34]. In
contrast to other verification methods for hybrid systems, this allows us to handle
non-convex polyhedra directly [11]. Note that during each step computation new
linear constraints can be introduced, thus the set Q is dynamically updated.

Example 1 (Discrete transitions). Assume that we want to check an invariance
property ¬FAIL, stating that the failure state can never be reached. In the
model, one discrete transition can set the Boolean variable FAIL to true:

REC ∧ (v ≤ 0.0) ∧ (p > EoA) → FAIL := true;

The transition says that if currently the cooperation protocol is in the REC
phase, the train has come to a stop, and the position of the train is beyond
the end of authority point (EoA), then the system reports a failure. One back-
ward step computation of such transition leads to the following state-set (after
optimizations in Lin-AIGs): ¬FAIL ∧ ¬(REC ∧ v ≤ 0.0 ∧ ¬(p <= EoA)).

Example 2 (Continuous flows). The pre-image of the state-set in the previous
example under the mode with continuous evolution v• = 0.0 ∧ p• = vd and
boundary condition p < EoA − ST (start talking) will remain the same.

Fix-point detection. We need to perform subsumption checks to detect whether
a fixpoint has been reached during model checking. In our approach, since linear
constraints enter the state-set descriptions, one has to check implications between
two state-set representations. We use HySAT [18] for this purpose.

Optimizations. Using efficient methods for keeping the state-set representation
as compact as possible is the key point for our approach. This is achieved by
integration of different techniques, ranging from purely Boolean methods to (in-
creasingly) exploiting knowledge about linear constraints.

– We use inexpensive methods such as simulation, test-vector generation, de-
tection of implications between linear constraints, and propagation of learned
implications to simulation vectors to identify inequivalent Lin-AIG nodes.
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– We use HySAT [18] for reducing the size of the Lin-AIG representation by
detecting equivalent Lin-AIG nodes, which is applied only to candidates
obtained by inexpensive methods.

– We extract “don’t cares” from conflicts of calls of HySAT to remove re-
dundant linear constraints in the state set representations. This allows us
to restructure Lin-AIGs based on internal node equivalences modulo “don’t
cares”, and to achieve new compact representation as a Boolean combination
of a minimal subset of the original set of linear constraints.

We have demonstrated [12,11] that the tuned combination of these deeply inte-
grated methods leading to significant performance improvements.

7.2 Continuous-Time Models and Verification Results

The models of the system mainly consists of two parts: (1) a cooperation protocol
between the train and the rail-road crossing for collision avoidance, (2) a speed
supervision of the train. Compared to its original description in Matlab-Simulink,
we have made some simplifications.

The cooperation protocol. The protocol distinguishes a number of phases as
shown in Fig. 7. Additionally, we add one more transition from the RECOVERY
phase: If the train stops in front of the crossing, and the position of the train is
beyond the end of authority point (EoA), then a FAILURE phase is entered. The
safety property of collision freedom is equivalent to prove that this FAILURE
phase of the cooperation protocol can never be entered.

The speed supervision. Figure 6 gives an overview of the train speed control.
Here, we summarize the modes and the switching conditions between them in
our models, as derived from Fig. 6. For each segment of the track, there is a
pre-defined desired train speed. The modes for driving the train are decided by
the relation of the desired speed vd and the current speed v . In the NormalMove
mode (v < vd ≤ 1.05 · v), the train is driven under a PI controller. Once the
condition 1.05 · vd < v ≤ 1.1 · vd holds, the train switches to the mode MotorOff,
where the drive force for the train becomes zero, and the train decelerates on
a constant −0.05m/s2. From the MotorOff mode, the train can re-enter the
NormalMove mode as soon as v ≤ vd . If the difference between vd and v is large,
the mode EmergencyBraking (ServiceBraking) will be entered if v ≥ 1.5·vd , (v ≥
1.1 ·vd ∧ v ≤ 1.5 ·vd) from the NormalMove mode. In modes EmergencyBraking
and ServiceBraking, the train decelerates on constants −3.0m/s2 and −1.0m/s2,
respectively. During ServiceBraking, the mode NormalMove (MotorOff ) is re-
entered if v ≤ vd (1.05 · vd < v ≤ 1.1 · vd ). There is one special case when the
train enters the EmergencyBraking mode. Since the train is desired to stop, it
is not possible to re-enter the modes NormalMove and MotorOff. Constants in
the conditions are derived from the Matlab-Simulink model.
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Approximations. Currently, our model checker only supports models with dy-
namics given by constants. In the train example, the dynamics v• in mode Nor-
malMove (controlled by a PID controller) relies on the difference between vd and
v (see Fig. 6), and the evolution for the position p is normally defined as p• = v .
Therefore, both v• and p• are linear if v is a variable. So the train system cannot
be described and checked directly by our approach. We need to have an over-
approximation of the train’s behavior using the method developed in [26]. First,
the mode NormalMove is split into a set of sub-modes, we define accelerations
v• as constants, depending the relation between v and vd . Second, for each mode
defined in the previous section (together with sub-modes for NormalMove), we
divide the speed into several regions, and use this information to safely over-
approximate the evolution of the position p• by its possible maximal changing
rate. Therefore, the number of modes depends on the concrete approximation.
The constraints on the speed and the desired speed and the constraints whether
the train has reached the positions EoA−ST (start-talking) or EoA−SB (start-
braking), are treated as the boundary conditions for each mode. An appropriate
mode is selected depending the phase of the cooperation protocol, current ve-
locity v and its relation to vd . For instance, if vd ≥ 1.5 · v , 30.0 ≤ v ≤ 40.0, and
the cooperation protocol is in the FAR phase, then the speed controller of the
train will choose a mode with v• = 2.0 (a fast acceleration) and p• = 40.0 (the
maximal changing rate of p). The condition vd ≥ 1.5 · v and 30.0 ≤ v ≤ 40.0
will be part of the boundary condition for such mode. The condition whether the
crossing is secured is treated as a discrete input. The decisions in the cooperation
protocol constitute discrete transitions in the model.

Experimental results. The safety property for the models is that the FAIL phase
can never been entered, i.e., the train comes to a complete stop in front of the
crossing if it is not secured. For the continuous-time models, we have successfully
proven the given safety invariant for a model with 16 modes in 376 seconds. The
final state set representation contained 3906 Lin-AIG nodes with 2358 linear
constraints. During model checking, up to 7798 Lin-AIG nodes were used, 36683
HySAT calls occurred and 2582 redundant linear constraints were removed. Ex-
periments are performed on a PC with an AMD Opteron Processor with 2.6
GHz and 16 GB RAM.

7.3 Iterative Abstraction Refinement for Step-Discrete Linear
Hybrid Systems

Alternatively, an iterative abstraction refinement approach called ω-Cegar [48] is
being developed with the focus on open-loop systems, exploiting the characteris-
tics of huge discrete state spaces by ruling out comprehensive classes of spurious
counterexamples for subsequent iterations, so that counterexamples with com-
mon reasons of invalidity cannot occur again. With the incremental construction
of an omega-automaton and its parallel composition with a course abstraction
of the model, all runs containing already detected reasons of being invalid are
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excluded. Since the reasons are fully independent from the discrete behavior, the
approach converges fast also for huge discrete state spaces.

The implementation is currently restricted to step-discrete linear hybrid mod-
els being represented as a discrete transition graph where the transitions are
guarded by linear constraints (guard expressions) and extended with linear trans-
formations (computations) on the set of continuous variables. This corresponds
exactly to the semantics of linear reactive systems being modeled in industrial
contexts based on CASE-tools, where executable target code can be generated
from. Thanks to an appropriate compiler and the realization of the algorithm on
a symbolic representation level, the procedure can be applied to the generated
C code of such models even for very large systems.

Initial abstraction. To verify a property ϕ, the procedure starts by creating an
initial abstraction A0 of a hybrid automaton H by removing all guard expressions
and computations on continuous items, but fully preserving the discrete structure
of the model. This entails a translation of ϕ to a new property ϕ̂ to hold for
some corresponding states in A0.

Analysis phase. A0 can be analyzed by any finite state model checker being able
to generate a counterexample π̂. The counterexample π̂ consisting of a sequence
of discrete states is analyzed by projecting it to the hybrid automaton H to
retrieve the corresponding guard expressions and computations (regulation laws)
that have to be fulfilled or performed in H , respectively, for π̂ to be a valid
counterexample. For linear hybrid automata, this analysis consists of solving
conjunctions of linear constraints directly derived from the projected regulation
laws. The result of this analyzation is either a valid sequence of valuations of
continuous state variables or a generalized conflict (ρ1, ρ2, . . . , ρk ) consisting of
a minimized sequence of partial regulation laws for which no solution exists in
the corresponding conjunctive formula.

Since such conflicts are fully independent of the discrete state sequence they
occurred with, there is a high probability that they apply to many other frag-
ments of the discrete transition system as well, especially for huge discrete state
spaces combined with only few regulation laws exhibited by the model.

Construction of ω-automaton. Thus we follow a strategy of completely ruling
out generalized conflicts by constructing an ω-automaton AC that accepts all
runs not containing any known conflict as a subsequence. Considering partial
regulation laws as atomic characters and C as the set of all previously detected
generalized conflicts, the behavior of AC can be described by an LTL formula:

AC |= ¬F
∨

(ρ1,ρ2,...,ρk )∈C

(ρ1 ∧ X(ρ2 ∧ X(... ∧ Xρn))) (21)

Instead of using standard algorithms to translate LTL formulae to Büchi-auto-
mata, we apply an efficient automaton construction algorithm dedicated to the
structure of LTL formulae as presented above, resulting in rather small automata,
especially in comparison to general Büchi-automata construction algorithms [50].
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Abstraction refinement. A parallel composition A = A0 × AC ensures that any
(infinite) run not accepted by AC cannot be exhibited by A. With AC being
incrementally extended to not accept conflicts found in subsequent model check-
ing iterations, we get a sequence A1,A2, . . . ,An of refined abstract transition
systems, where the model checker can finally prove that either Ak |= ϕ̂ from
which can be concluded that H |= ϕ or that a counterexample π̂ violates ϕ with
π̂ having a valid projection to a path π in H as computed in the analysis phase.

Remarks. The finite state model checker used to verify the abstract system in
each iteration can be freely exchanged even in between iterations. Thus, advan-
tages of different technologies can be combined by

1. starting with (faster) bounded model checking (BMC) while counterexam-
ples within the given bound can be generated and

2. switching to unbounded model checking (e.g., CTL model checker) if no
counterexamples within a given bound k are found anymore.

This way computation times of iteration cycles can be kept short while being
able to prove if a property ϕ holds for a model (certification). However, since
the approach is a semi-decision one, affirmation of properties might fail even by
using unbounded model checkers.

The restriction to step-discrete linear hybrid models is due to the implementa-
tion only and does not follow from the approach. Currently, only safety properties
can be verified. An extension to CTL-formulae is possible with the limitation,
that valid infinite counterexamples cannot be confirmed as such.

7.4 Discrete-Time Modes and Verification Results

Our abstraction-refinement approach deals with step-discrete linear hybrid sys-
tems modelled as discrete transition graphs, in which assignments and transition
guards may use linear arithmetical expressions, this subsumes the capability to
describe the evolvement of plant variables by linear equations. Hence, the approx-
imations in Subsection 7.2 are not necessary. The discrete-time models of our ex-
ample can be derived from the Matlab-Simulink model with a given sampling rate
δ. The discrete transitions for the cooperation protocol and for mode-switchings
in the speed supervision are encoded exactly the same as in the continuous-time
models (see Subsection 7.2). In this part, we focus on time-discretization of the
plant behavior. Our main assumption is that the acceleration of the train during
a discrete time step keeps unchanged. If the train is in the modes of MotorOff,
EmergencyBraking and ServiceBraking, the velocity and position of the train
can be simply updated by v ′ = v + δ · a and p′ = p + v · δ + a · δ2/2, where
a is the constant deceleration for those modes. If the train is in the Normal-
Move mode, the formulas for computing acceleration are given in the form of
f and g in Fig. 14. Hence, we can calculate the train’s new acceleration using
a′ = c1 ·(v −vd)+c2 ·s+c3 ·vd at each discrete time step (c1, c2, c3 are constants
in Fig. 14). Updates of the velocity and position can be done in the same way
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Table 1. It shows: number of continuous dimensions (inputs+state-based), number
of exhibited regulation laws/generalized partial regulation laws, number of conflicts,
iterations, final path length, size of AC in terms of statebits, and total runtime.

Proof dimensions regulation laws conflicts iterations | π | AC time
¬(v = 0 ⇒ p ≤ EoA) 0+10 34 31 15 � 3 3 min

as for other modes. Here, s denotes the integration part of the PI controller (see
Equation (2)), and it is accumulated at each step by s ′ = s + (vd − v̄) · δ, where
v̄ = v + a · δ denotes the average velocity during the time interval δ.

Table 1 shows statistical data of the application of the ω-Cegar approach to
a central part of the train system presented in Section 2: to prove that the train
always stops before the crossing if it is not secured. The property was certified
within 3 minutes and only 15 iterations by first using BMC (Prover-CL V5.0.6)
for the iterations and switching to an unbounded model checker (VIS Version
2.0) to finally prove the unreachability on the refined model, which consisted of
16 state bits.

8 Conclusion and Future Work

Industrial design processes for cooperating traffic agents exploit a layered design
structure to separate concerns in addressing cooperation strategies, control de-
sign, and design implementation. We have provided a verification methodology
covering these design steps, where safety and stability properties resulting from
the overall safety objective of collision freedom are traced to design entities at
all levels, and have provided layer specific verification approaches to establish
such derived safety and stability requirements at each layer. The feasibility of
the approach has been established using a variation of the ETCS level 3 protocol
enforcing collision freedom of trains following the moving block principle.

Theoretical approaches to cover multi-layered designs, such as refinement and
compositional reasoning, fail to provide semantic bridges across this design space,
in particular due to their inability to support the degree of deviations between
models tolerated by industrial design processes. Horizontal composition theories
provide the semantic foundation for compositional verification, deducing prop-
erties of composed systems in terms of their constituents. Vertical composition
theories exploit the layered structure of designs, allowing to abstract from design
aspects manifest at lower levels when verifying safety properties such as collision
freedom for a “higher” level model.8 Vertical composition theories typically built
on refinement relations.

Of particular relevance to our application domain are approaches for refine-
ment and compositional verification of hybrid systems. Compositional verifica-
tion techniques for hybrid systems have only recently being investigated, e.g.,
8 We assume that the cooperation layer is “higher” than the local control layer, which

in turn is “higher” than the design layer.
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in [37,38]. Frehse [19] provides an assume-guarantee based approach for hybrid
systems which do not share variables. The restriction to event-based communi-
cation is reasonable for controller models; however, as soon as closed loop models
are considered, plant models will typically share system states; in particular, for
collision avoidance protocols, it is exactly the shared physical state space which
is subject to the analysis. The extension to shared variables provided in [20]
requires unique statically assigned owners of shared variables – only owners are
allowed to write on shared variables.

Frehse’s approach only addresses refinement of specifications. For hybrid sys-
tems with shared variables, the notions of refinements presented do not track
continuous evolutions, but only require matching continuous states at end-points
of continuous evolutions. Stauner [51,52] studies more general notions of refine-
ment, which in particular aim at bridging the gap between local control and
design models. The key concepts of using bounded perturbations to provide
room for discretization and inter-sampling errors in the transition to design mod-
els are promising. Systematic methods are proposed for constructing a discrete
time model refining the relaxed local control model under certain conditions are
provided. However, a general notion of refinement, applicable to design mod-
els not constructed using Stauner’s approach, is not given. Since design models
also must cater for additional aspects such as fault-tolerance and diagnosis, a
general theory for refinement between design models and local control models is
desirable. Additionally, a compositional extension of this framework is needed.

We plan to elaborate our research along multiple dimensions. First, we will
extend the model at the cooperation layer emphasizing the dynamic aspect of
traffic applications, in which traffic agents enter and leave “interaction areas”,
and lift the technique of reducing collision freedom to arguments on criticality
functions and local control properties to this richer semantic setting. Secondly,
while we demonstrated the scalability of our AIG based verification methods
to linear hybrid automata with large discrete state spaces (e.g., to a flap con-
troller with 220 discrete states [11]), future work will address support for plant
dynamics governed by linear differential equations. Thirdly, we plan to research
into robust refinement relations and non-standard semantics of hybrid automata
to extend compositional refinement techniques to a theory providing semantic
bridges across the layered design space of cooperating traffic agents.
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Appendix

A Communicating Hybrid Automata

For the sake of completeness, we include from [13] the description of communi-
cating hybrid automata which we use as a model for cooperating traffic agents
in this paper. We assume that the signature of the real numbers is given with
function and predicate symbols like 0, 1, +, ·, <, = interpreted on the domain R

in the usual way. (Real-valued) expressions, Boolean expressions, and first-order
formulas over this signature are defined as usual. By Th(R) we denote the theory
of the real numbers, i.e., the set of all first-order formulas that hold in R.

Definition 7 (Hybrid Automaton). A hybrid automaton is a tuple H =
(M,Var ,Rd ,Rc ,m0, Θ) where

1. M is a finite set of modes, with typical element m ∈ M and with a distin-
guished mode observable M ranging over M,

2. Var is a set of variables ranging over the set R of real numbers. Typical
elements of Var are X ,Y . Var is partitioned into disjoint sets of input, local
and output variables: Var = Var in ∪ Var loc ∪ Varout, where local variables
cannot be accessed by other hybrid automata in a parallel composition (see
Subsection 8),

3. m0 ∈ M is the initial mode,
4. Θ is a mapping that associates with each mode m ∈ M a local invariant

Θ(m), which is a quantifier-free first-order formula over Var,
5. Rd is the discrete transition relation with elements (m, ↑ Φ, A,m ′) called

transitions, which are graphically represented as m
↑Φ/A−−−→ m ′, where

– m,m ′ ∈ M,
– the trigger ↑Φ guarding the transition describes the event that a quantifier-

free formula Φ over Var becomes true,
– A is a (possibly empty) set of (disjoint) assignments of the form X := e

with X ∈ Var loc ∪ Varout and e an expression over Var.
6. Rc is the continuous transition relation, i.e., a mapping that associates with

each mode m ∈ M and each variable X ∈ Var loc ∪ Varout an expression
Rc(m)(X ) over Var, which is taken as the right-hand side of the differential
equation X • = Rc(m)(X ) describing the evolution of X over time while H
is in mode m.

Valuations or states of the variables in Var are given by functions σ : Var → R.
A valuation σ assigning to each variable X the value vX ∈ R is denoted by
σ = {X �→ vX | X ∈ Var}. For a valuation σ and a set of assignments A let
A(σ) : Var → R denote the update of σ according to A defined by

A(σ) = {X �→ σ(e) | ∃ e : X := e ∈ A} ∪ {X �→ σ(X ) | ¬ ∃ e : X := e ∈ A}.

For a valuation σ and a formula Φ let σ |= Φ denote that σ satisfies Φ.
We require of the discrete transition relation that the execution of one tran-

sition does not immediately enable a further transition.
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Definition 8 (Transition Separation). The discrete transitions in a hybrid
automaton H are separated, if for any two transitions (m1, ↑ Φ1, A1,m ′

1) and
(m2, ↑Φ2, A2,m ′

2) in Rd of H with m ′
1 = m2 the following condition holds:

∀ σ : Var → R : (σ |= Φ1 ⇒ A1(σ) �|= Φ2) .

Separation implies that at any given point in time during a run, at most one
discrete transition fires. Thus our models have dense time but not superdense
time, where a sequence of discrete transitions is permitted to fire at one instant
in time.

Discrete variables may be included into hybrid automata according to our
definition via an embedding of their value domain into the reals, and associating
a derivative of constantly zero to them (locals and outputs). Timeouts are easily
coded via explicit local timer variables with a derivative taken from {−1, 0, 1}.

Note that this general model subsumes both controller and plant models,
by choosing the set of variables appropriately and enforcing certain modeling
restrictions. For our plant models, we require the absence of discrete transitions.
This entails that plant variables only evolve continuously and cannot be changed
by discrete jumps. This is convenient for the formulation of our approach but
not essential.

Definition 9 (Restriction). For a hybrid automaton H and a mode m ∈ M

let the restriction H �m be defined as H, but with the mode fixed to m. Formally,
this is the following hybrid automaton:

H � m = ({m},Var ,Rd � m,Rc � m,m, Θ � m)

where Rd � m = {(m, ↑Φ, A,m ′) ∈ Rd | m = m ′} and Rc � m and Θ � m are the
restrictions of the mappings Rc and Θ to the singleton set {m}.

A.1 Behaviour

We will in the definition of runs of a hybrid automaton interpret all transitions
as urgent, i.e., a mode will be left as soon as the triggering event occurs. This
can either be the expiration of a time-out or a condition (e.g., on the plant
sensors) becoming true. Valid runs also avoid Zeno behavior and time-blocks,
i.e., each run provides a valuation for each positive point in time. We did not
take provisions to ensure the existence of such a run, nor the property that each
initial behavior segment can be extended to a full run. Such might be added via
adequate modeling guidelines (e.g., by including the negation of an invariant as
trigger condition on some transition leaving the mode). As these properties are
not essential to the purpose of this paper we left them out.

We now give the formal definition of runs of a hybrid automaton H capturing
the evolution of modes and the real-valued variables over time. To this end, we
consider the continuous time domain Time = R≥0 of non-negative reals, for the
mode observable M a function M̂ : Time → M, and for every variable X ∈ Var a
corresponding function X̂ : Time → R describing for each time point t ∈ Time
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the current mode M̂ (t) ∈ M and the current value X̂ (t) ∈ R, respectively.
Further on, for X̂ and 0 < t ∈ Time we define the previous value of X̂ at t by
prev(X̂ , t) = limu→t (X̂ (u)). Satisfaction of a condition containing prev entails
that the respective limes does exist.9

Definition 10 (Runs of a Hybrid Automaton). A run of a hybrid automa-
ton H= ( M, Var, Rd , Rc, m0, Θ) is a tuple of trajectories

π =
(
M̂ , (X̂ )X∈Var

)
,

with M̂ : Time → M and X̂ : Time → R for X ∈ Var, iff

∃ (τi)i∈N ∈ TimeN : τ0 = 0 ∧ ∀ i ∈ N : τi < τi+1,

a strictly increasing sequence of discrete switching times, satisfying the following
conditions:

1. non-Zeno: ∀ t ∈ Time ∃ i ∈ N : t ≤ τi
2. mode switching times: ∀ i ∈ N ∀ t ∈ [τi , τi+1) : M̂ (t) = M̂ (τi)
3. continuous evolution:

∀ i ∈ N ∀ t ′ ∈ [τi , τi+1) ∀X ∈ Var loc ∪ Varout : σ |= X • = Rc(M̂ (τi))(X )

where σ is the valuation σ = {X • �→ dX̂ (t)
dt (t ′)} ∪ {Y �→ Ŷ (t ′) | Y ∈ Var}.

Thus in σ the variable X • gets the value of the derivative of the function X̂
at t ′ and all other variables Y ∈ Var get the value of the function Ŷ at t ′.

4. invariants: ∀ t ∈ Time : {X �→ X̂ (t) | X ∈ Var} |= Θ(M̂ (t))
5. urgency:

∀ i ∈ N ∀ t ∈ [τi , τi+1) ∀ (m, ↑Φ, A,m ′) ∈ Rd we have that
M̂ (t) = m ⇒ {X �→ X̂ (t) | X ∈ Var} �|= Φ

6. discrete transition firing: ∀ i ∈ N we have that

(M̂ (τi+1) = M̂ (τi) ∧ ∀ X ∈ Var loc ∪ Varout : X̂ (τi+1) = prev(X̂ , τi+1) )
∨
(∃ (m, ↑Φ, A,m ′) ∈ Rd : M̂ (τi) = m ∧ M̂ (τi+1) = m ′ ∧

∃ σ ∈ Var → R : ∀ X ∈ Var loc ∪ Varout :

σ(X ) = prev(X̂ , τi+1) ∧ σ |= Φ

∧ ∀ X ∈ Var in : X̂ (τi+1) = σ(X )

∧ ∀ X ∈ Var loc ∪ Varout : X̂ (τi+1) = A(σ)(X ) )

9 In fact, our definition of a run implies that these limits do exist for all local and
output variables in any run.
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For a run π =
(
M̂ , (X̂ )X∈Var

)
of H and t ∈ Time let π(t) denote the state

π(t) = {M �→ M̂ (t)} ∪ {X �→ X̂ (t) | X ∈ Var}.

assigning to the mode observable M and the all variables X ∈ Var the values in
the run π at time t.

The time sequence (τi)i∈N identifies the points in time, at which mode-switches
may occur, which is expressed in Clause (2). Only at those points discrete transi-
tions (having a noticeable effect on the state) may be taken. On the other hand, it
is not required that any transition fires at some point τi , which permits to cover be-
haviors with a finite number of discrete switches within the framework above. Our
simple plant models with only one mode provide examples. As usual, we exclude
zeno behavior (in Clause (1)). As a consequence of the requirement of transition
separation, after each discrete transition some time must elapse before the next
one can fire. Clause (3) forces all local and output variables (whose dynamics is
constrained by the set of differential equations associated with this mode) to actu-
ally obey their respective equation. Clause (4) requires, for each mode, the valua-
tion of continuous variables to meet the local invariant while staying in this mode.
Clause (5) forces a discrete transition to fire when its trigger condition becomes
true. The effect of a discrete transition is described by Clause (6). Whenever a dis-
crete transition is taken, local and output variables may be assigned new values,
obtained by evaluating the right-hand side of the respective assignment using the
previous value of locals and outputs and the current values of the input. If there is
no such assignment, the variable maintains its previous value, which is determined
by taking the limit of the trajectory of the variable as t converges to the switching
time τi+1. Values of inputs may change arbitrarily. They are not restricted by the
clauses, other that they obey mode invariants and contribute to the satisfaction
of discrete transitions when those fire.

A.2 Parallel Composition

The parallel composition of two such hybrid automata H1 and H2 presupposes
the typical disjointness criteria for modes, local variables, and output variables.
Output variables of H1 which are at the same time input variables of H2, and
vice versa, establish communication channels with instantaneous communica-
tion. Those variables establishing communication channels become local vari-
ables of H1 ‖ H2 (in addition to the local variables of H1 and H2), for other
variable sets we simply take the union of those not involved in communication.
Modes of H1 ‖H2 are the pairs of modes of the component automata. One may
define the set of runs of H as those tuples of trajectories which project to runs
of H1 and H2, respectively. It is not always possible to give a hybrid automaton
for H1 ‖H2, because of problems with cycles of instantaneous communications.
Therefore, we impose the following additional condition on the composability of
hybrid automata.
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Definition 11 (Composable Hybrid Automata). Let two hybrid automata
Hi , i = 1, 2, with discrete transition relations Rd

i , i = 1, 2, be given. For a
pair of transitions si = (mi , ↑ Φi , Ai ,m ′

i) ∈ Rd
i , i = 1, 2, the transition s1 is

unaffected by s2, if each variable for which there is an assignment in A2 appears
neither in Φ1 nor in A1 (on any of the right-hand sides).

The two transition relations are composable, if for each pair of transitions
si ∈ Rd

i , i = 1, 2, either s1 is unaffected by s2 or vice versa.

Composability establishes essentially a direction on instantaneous communica-
tions – communications may have an immediate effect on the output and thus
the partner automaton, but they must not immediately influence the originator
of the information. Assuming composability, the rest of the construction of the
parallel composition automaton is rather standard.

For a mode (m1,m2), the associated invariant condition is the conjunction
of the invariance conditions associated with m1 and m2. Similarly, the set of
differential equations governing the continuous evolution while in mode (m1,m2)
is obtained by simply conjoining the set of differential equations attached to m1
and m2, respectively – note that the disjointness conditions on variables assure,
that this yields a consistent set of differential equations. Finally, the discrete
transition relation consists of the following transitions:

1. ((m1,m2), Φ1 ∧ A1(Φ2), A1 ∪ A1(A2), (m ′
1,m ′

2))
for each pair of transitions si = (mi , ↑Φi , Ai ,m ′

i) ∈ Rd
i , i = 1, 2 where s1 is

unaffected by s2,
2. ((m1,m2), Φ1

∧
{¬A1(Φ2) | Φ2 trigger in Rd

2 }, A1, (m ′
1,m2))

for each (m1, ↑Φ1, A1,m ′
1) ∈ Rd

1 , and
3. transitions of the forms (1) and (2) with the role of H1 and H2 interchanged,

where A(Φ) denotes the substitution into Φ of e for v for each assignment X :=
e ∈ A, and A1(A2) denotes the substitution of the assignments of A1 into the
right-hand terms of A2.

Composability ensures that the simultaneous transitions of Clause (1) indeed
capture the combined effect of both transitions. The separation of transitions in
the resulting automaton is inherited from separation in the component automata
by the way single-automata transitions (Clause (2)) are embedded.
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Abstract. Many extensions of Duration Calculus (DC) have been pro-
posed for handling different aspects of real-time systems. For each exten-
sion several different semantics are defined for different time structures
which are suitable for different applications and achieve low complexity
for the decidability of some properties. Hence, different proof systems
have to be developed for reasoning in different calculi. We demonstrate
that with temporal propositional letters, many useful time structures
and operators can be completely described in the original DC with con-
tinuous time. Hence, we can use the proof system for original DC and
the specification of the specific time structure to reason in that time
structure without the need of introducing a new calculus.

1 Introduction

Since it was introduced in 1992 by Zhou, Hoare and Ravn [3], Duration Calculus
(DC) has attracted a great deal of attentions. Details on DC are presented in
Zhou and Hansen’s monograph [2]. Many extensions of Duration Calculus have
been proposed for handling different aspects of real-time systems [15,5]. For
each extension several different semantics are defined for different time struc-
tures which are suitable for different applications and have low complexity for
the decidability of some properties [13,9]. Among the different time structures,
the abstract time domain makes the calculus complete when it is abstracted
away from dedicated properties of real numbers or natural numbers [6], and
the discrete time domain makes the calculus decidable, able to carry out model
checking, and suitable for the specification of digital systems [14,13,8]. When
proposing a new time domain, one has to give semantics and develop a proof
system for the calculus within the given semantics. This sometimes makes the
calculus inconvenient to use. We found that in most cases, the proof system for
the calculus on special domains is the original one with some small modification.
Therefore, it would be convenient if we can use the original calculus without any
modification for different applications which can still capture special aspects of
the application domains. From our earlier works on specification and reasoning
about real-time systems with Duration Calculus [10,11], we found that it is very
convenient to use temporal propositional letters with specific meaning to specify
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the properties of time intervals. In this paper, we demonstrate that we can use
this technique to model different time structures and time models. Then, reason-
ing in these time structures can be carried out using the original proof system
of DC and the specification of the structures in DC with continuous semantics.
We show that our technique works well for some case studies.

The paper is organised as follows. In the next section, we give a summary
of Duration Calculus. Our main technique for modelling time structures is de-
scribed in Section 3. Sections 4 demonstrates how our technique can be used for
describing data sampling and projection. In Section 5, we show how the tech-
nique is used in modeling and reasoning in the development of real-time systems
via the well-known case study “Biphase Mark Protocol”.

2 Summary of Duration Calculus

We give a brief summary of Duration Calculus in this section. Readers are re-
ferred to [2] for more details on DC. The version of Duration Calculus we present
here has several additional operators that are useful for the specification pur-
poses.

Time in DC is the set R
+ of the non-negative real numbers. For t, t′ ∈ R

+(t ≤
t′), [t, t′] denotes the time interval from t to t′. Let intv denote the set of all
time intervals.

2.1 Syntax of Duration Calculus

Assume that V = {P, Q, . . .} is a countable set of state variables, and T =
{X, R, . . .} is a set of temporal propositional letters. Let fn and An (n ≥ 0)
denote n-ary function and n-ary predicate names respectively. The syntax classes
state expressions, terms, and formulas will be then defined as follows.

State expressions: The set of state expressions is generated by the grammar

S =̂ 0 | 1 | P | ¬S | S ∧ S ,

where P stands for state names in the set V .

Terms: The set of terms is generated by

r =̂
∫

S | � |fn(r, . . . , r) ,

where S stands for state expressions.

Formulas: the set of formulas is generated by the grammar:

D =̂ An(r, . . . , r) | X | D�D | ¬D | D ∨ D |
D∗ | �P �0 | | �P � | ��P �

where A stands for atomic formulas, and X for temporal propositional letters.
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2.2 Semantics of Duration Calculus

Assume that each n-ary function name fn is associated with a total function
from R

n to R which is denoted by fn also, and each n-ary predicate name An

is associated with a total function from R
n to {tt,ff} which is also denoted by

An. In this paper, for simplicity we interpret the functions f as operators on
reals, e.g. +, ∗, and the relations A as comparative operators between reals, e.g.
<, ≤, =, >, ≥.

An interpretation I is a function I ∈ (V → (R+ → {0, 1})) ∪ (T → (intv →
{0, 1})), for which each I(P ), P ∈ V has at most finitely many discontinuity
points in any interval [a, b]. We shall use the abbreviation PI =̂ I(P ) for
P ∈ V and XI =̂ I(X) for X ∈ T . The semantics of state expression, terms,
and formulas in an interpretation I are then defined as follows.
Semantics of state expressions: The semantics of a state expression P in an
interpretation I is a function IP ∈ T ime → {0, 1} defined inductively on the
structure of state expressions by:

I0(t) =̂ 0,
I1(t) =̂ 1,
IP (t) =̂ PI(t),
I(¬S)(t) =̂ 1 − IS(t), and

I(S∨Q)(t) =̂
{

0 if IS(t) = 0 and IQ(t) = 0,
1 otherwise.

Semantics of terms: The semantics of a term r in an interpretation I is a
function Ir ∈ intv → R defined inductively on the structure of terms by:

I� P ([a, b]) =̂
∫ b

a IP (t)dt,

I�([a, b]) =̂ b − a, and
Ifn(r1,...,rn)([a, b]) =̂ fn(Ir1([a, b]), . . . , Irn([a, b])).

Semantics of formulas: The semantics of a formula D in an interpretation I is
a function ID ∈ intv → {tt ,ff } defined inductively on the structure of formulas
as follows. Using the following abbreviations:

I, [a, b] |= D =̂ ID([a, b]) = tt and
I, [a, b] �|= D =̂ ID([a, b]) = ff,

ID is defined by:

I, [a, b] |= An(r1, . . . , rn) iff An(Ir1([a, b]), . . . , Irn([a, b])) = tt,
I, [a, b] |= X iff XI = 1,
I, [a, b] |= (¬D) iff I, [a, b] �|= D
I, [a, b] |= (D1 ∨ D2) iff I, [a, b] |= D1 or I, [a, b] |= D2
I, [a, b] |= (D1

�D2) iff I, [a, m] |= D1 and I, [m, b] |= D2 for some m ∈ [a, b]
I, [a, b] |= D∗ iff either a = b or I, [mi, mi+1] |= D for some n ∈ N and

a = m0 < m1 < . . . < mn = b
I, [a, b] |= �P �0 iff a = b and PI(a) = 1
I, [a, b] |= �P � iff a < b and PI(t) = 1 for all a < t < b
I, [a, b] |= ��P � iff a < b and PI(t) = 1 for all a ≤ t < b
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A relatively complete proof system for Duration Calculus with no operator ∗

and 0 has been given in [2], and the complete proof system for Duration Calculus
with Iteration on the abstract time domain is given in [6].

3 Specifying Substructure of Time with Temporal
Propositional Letters

In this section we consider how Duration Calculus can specify some classes of
time models with temporal propositional letters. We show that different classes
of Duration Calculus time models can be expressed by sub-languages of Dura-
tion Calculus. Hence, there is no need to have different definitions of Duration
Calculus for different classes of time models. Using the original DC with the
sub-language of DC for a class of models as the assumption we can reason about
the validity in the model class.

3.1 Discrete Duration Calculus Models

Discrete models of Duration Calculus use the set of natural numbers N, which
is a subset of R

+, for time (we assume that 0 ∈ N). We can embed the dis-
crete time models into continuous time models by considering a state variable
in discrete DC models as a state in continuous models that can change its value
only at the integer points. For that purpose, we introduce several fresh tempo-
ral propositional letters and state variables with specific meaning. Let int be a
temporal propositional letter with the meaning that int is interpreted as 1 for
an interval if and only if the interval is from an integer to an integer, i.e. for
any interpretation I, intI([a, b]) = 1 iff a, b ∈ N. Let C be a state variable that
changes its value at each natural number which represents a tick of the real-time
clock, i.e. CI(t) = 1 iff t� is odd. The axioms to characterise the properties of
the temporal propositional letter int can be given as follows. First, the integer
intervals have integral endpoints, and remain integer intervals when extended
by 1 time unit:

int ⇒ ((int ∧ � = 0)�(int ∧ � = 1)∗) ∧
((int ∧ � = 1)∗�(int ∧ � = 0)) (1)

int�(� = 1) ⇒ int (2)

Second, int ∧ � = 1 should be a unique partition of the greatest integral subin-
terval of any interval with length 2 or more, i.e.

� ≥ 2 ⇒ � < 1�((int ∧ � = 1)∗ ∧ (3)
¬(true�(int ∧ � = 1)�¬(int ∧ � = 1)∗) ∧
¬(¬(int ∧ � = 1)∗�(int ∧ � = 1)�true))�

� < 1

Similarly to Lemma 3.2 in [4] we can show that the axiom 3 is equivalent to the
fact that any interval [b, e] that have the length 2 or longer has the unique set
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of time points b ≤ τ0 < τ1 < . . . < τm ≤ e such that I, [τi, τi+1] |= int ∧ � = 1,
τ0 − b < 1 and e − τm < 1, and [τi, τi+1] are the only subintervals of [b, e] that
that satisfy (int ∧ � = 1).

Let ID denote the set of these three axioms 1, 2 and 3. ID specifies all the
properties of integer intervals except that their endpoints are integer.

Proposition 1

1. Let I be an interpretation satisfying that intI([b, e]) = true iff [b, e] is an
integer interval. Then I, [b, e] |= D for any integer interval [b.e], and for any
formula D ∈ ID.

2. Let I be an interpretation satisfying that I, [b, e] |= D for any interval [b.e],
and for any formula D ∈ ID. Then, intI([0, 0]) = true implies that for
intI([b, e]) = true iff [b, e] is an integer interval.

Proof. The item 1 is obvious, and we only give a proof of Item 2 here. Let us
consider an interval [0, n] with n > 100. From the fact that I, [0, n] |= D where
D is the formula 3, we have that there are points 0 ≤ τ0 < τ1 < . . . < τm ≤ e
such that I, [τi, τi+i] |= int ∧ � = 1, τ0 < 1 and n − τm < 1, and

I, [τ0, τm] |= (¬(true�(int ∧ � = 1)�¬(int ∧ � = 1)∗)∧
¬(¬(int ∧ � = 1)∗�(int ∧ � = 1)�true))

If τ0 > 0, from the axiom 2, it follows that I, [0, k] |= int for all k ∈ N and
k ≤ n and k < τk < k + 1. Applying the axiom 1 for the interval [0, k] implies
that I, [k, k + 1] |= int ∧ � = 1. Consequently, I, [m − 1, τm] |= ¬(int ∧ � = 1)∗

and I, [m − 2, m1] |= (int ∧ � = 1). This is a contradiction to I, [τ0, τm] |=
¬(true�(int ∧ � = 1)�¬(int ∧ � = 1)∗). ��

Note that Item 2 of Proposition 1 can be generalised as

Let I be an interpretation satisfying that I, [b, e] |= D for any inter-
val [b.e], and for any formula D ∈ ID. Let h ∈ R+, h < 1. Then,
intI([h, h]) = true implies that for intI([b, e]) = true iff [b, e] is of the
form [h + n, h + m], m, n ∈ N and n ≤ m.

So, ID is a set of formulas specifying the set of intervals of a discrete time
obtained by shifting N by h time units (h < 1).

The state variable C can also express if an interval is an integer interval.
Namely, we have

(�C� ∨ �¬C�) ∧ � = 1 ⇒ int
int ∧ � = 1 ⇒ (�C� ∨ �¬C�)
�C���¬C� ⇒ true�int�true
�¬C���C� ⇒ true�int�true
(int ∧ � = 1)�(int ∧ � = 1) ⇒

((�C� ∧ � = 1)�(�¬C� ∧ � = 1))∨
((�¬C� ∧ � = 1)�(�C� ∧ � = 1))

Let CC denote the set of these formulas. CC specifies all the properties of the
special clock state variable C. Any interval satisfying int∧� > 0 can be expressed
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precisely via a DC formula with state variable C (without int). Perhaps int∧� =
0 is the only formula that cannot be expressed by a formula via state variable
C without int. CC can also be used as a means to define the variable C via int
and vice-versa. If we use CC to define int, the axioms for C simply are:

�C� ∨ �¬C� ⇒ � ≤ 1 (4)
((�C���¬C���C�) ∨ (�¬C���C���¬C�)) ⇒ � ≥ 1 (5)

The relationship between these axioms and the axioms for int presented earlier
is formulated as:

Proposition 2. Let interpretation I be such that the formulas in CC and axioms
(1) and (2) are satisfied by all intervals.

1. If the axioms (4) and (5) are satisfied by all intervals, the axiom (3) is
satisfied by all intervals.

2. If the axiom (3) is satisfied by all intervals then the axioms (4) and (5) are
satisfied by all intervals, too.

Proof.
Proof of Item 1. The axioms (4) and (5) implies that the formula

(�¬P ���P ���¬P �)) ⇒ (�¬P ��(�P � ∧ � = 1)��¬P �))

is satisfied for any interval when P is either C or ¬C. For any interval [b, e],
if e − b ≥ 2 then there are b = τ0 < . . . < τn = e such that [τi, τi+1] satisfies
�C� ∨ �¬C�, and τi, 0 < i < n are the points the state C changes its value.
Therefore, from (3), (4) and CC the formula int ∧ � = 1 is satisfied by [τi, τi+1]
when 0 < i < n − 1, and τ1 − τ0 < 1 and τn − τn−1 < 1. Furthermore, from
int ∧ � = 1 ⇒ (�C� ∨ �¬C�) it follows that [τi, τi+1], 0 < i < n − 1 are the only
intervals satisfying int ∧ � = 1. Hence, (3) is satisfied by [b, e].

Proof of Item 2. Let h > 0 be the first time point that state C changes its
value. From the axioms (1), (2) and (3) it follows that h ≤ 1 and int ∧ � = 1
is satisfied by and only by the intervals of the form [n + h, n + 1 + h], n ∈ N.
Hence, if CC is satisfied by all intervals, the axioms (4) and (5) are also satisfied
by all intervals. ��

So, with the assumption that 0 is an integer point, the axioms (4) and (5) are
equivalent to the axiom (3).

Let step be a temporal propositional letter that represents two consecutive
state changes of the system under consideration. When there are several state
changes at a time point t, step evaluates to 1 over interval [t, t]. When two
consecutive state changes are at t and t′ such that t �= t′, step is true for the
interval [t, t′], and for any state variable P , either �P � or �¬P � holds for the
interval [t, t′]. This is represented by:

step ∧ � > 0 ⇒ (�P � ∨ �¬P �) for any state variable P
step ∧ � > 0 ⇒ ¬((step ∧ � > 0)�(step ∧ � > 0))
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Let SC denote this class of formulas.
Now consider two kinds of Duration Calculus semantics which are different

from the original one defined earlier for continuous time, and called discrete
semantics and discrete step time semantics.

Discrete Duration Calculus semantics are defined in the same way as for con-
tinuous time semantics except that all intervals are integer intervals. So, a, b, m
and mi in the definition should be integers instead of reals, and an interpretation
I should assign to each state variable P a function from N to {0, 1}, and then
expanded to a function from R+ to {0, 1} by letting IP (t) = IP (t�) which is
right continuous, and could be discontinuous only at integer time points. Let us
use |=DDC to denote the modelling relation in these semantics.

Similarly, discrete step time Duration Calculus semantics are defined by re-
stricting the set of intervals to that of intervals between state change time points.
So, a, b, m and mi in the definition should be time points where states change,
and an interpretation I should assign to each state variable P a function from
S to {0, 1}, where S is a countable subset of R+ intended to be the set of
time points for state changes that includes the set N. IP is then expanded to
a function from R+ to {0, 1} by letting IP (t) = IP (ts), where t ∈ R+ and
ts = max{t′ ∈ S | t′ ≤ t}. Then IP (t) is also right continuous, and could be
discontinuous only at a point in S. Let us use |=SDC to denote the modelling
relation in this semantics.

To express that states are interpreted as right continuous functions, we can
use formula called RC

�P � ⇒ ��P � for any state variable P

In [14], Paritosh also proposed a semantics using only the intervals of the
form [0, t]. We can also specify this interval model with a temporal propositional
letter Pre. Pre is interpreted as true only for the interval of the form [0, t]. Pre
is specified by the set of formulas Pref defined as

Pre�true ⇒ Pre
¬(� > 0�Pre)
Pre ∧ D ⇒ (Pre ∧ � = 0)�D
Pre ∧ (D1�D2) ⇒ (Pre ∧ D1)�D2

Proposition 3. Let I be an interpretation that validates the set of formulas
Pref and I, [0, 0] |= Pre. Then, I, V , [a, b] |= Pre iff a = 0.

Proof. Straightforward ��

Then, a formula D is valid in the prefix time interval model if and only if Pre ⇒
D is a valid formula in the original model of time interval.

So far, we have introduced special temporal propositional letters int, step and
Pre together with DC formulas specifying their special features. We are going to
show that with these propositional letters we can provide a complete description
of many useful time models.
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Integer Time Model To specify that a state can only change at an integer time
point, we can use the formula IS:

step ⇒ int

Let DL be the union of SC, IS, ID, RC. DL forms a relative complete
specification for the discrete time structure. Let ϕ be a formula which does not
have any occurrence of temporal variables int ans step. Let intemb(ϕ) be a
formula that obtained from ϕ by replacing each proper subformula ψ of ϕ by
ψ ∧ int. For example intemb(φ�¬ψ) = (φ ∧ int)�(int ∧ ¬(ψ ∧ int).

Theorem 1. Let ϕ be a DC formula with no occurrence of temporal proposition
letters. Then, DL � int ⇒ intemb(ϕ) exactly when |=DDC ϕ.

Proof. Any discrete time model I, [a, b] can be extended to a model that satisfies
the formulas in DL in the obvious way, namely with the interpretation for int
and step with the intended meanings for them. By induction on the structure
of the formula ϕ, it is easy to prove that I, [a, b] |=DDC ϕ if and only I, [a, b] |=
intemb(ϕ).

Then, the “only if” part follows directly from the soundness of the proof of
the DC system that intemb(ϕ) is satisfied by any integer model that satisfies
DL.

The “if” part is proved as follows. From the above observation, if |=DDC

ϕ then int ⇒ intemb(ϕ) is a valid formula in DC with the assumption DL.
Consequently, from the relative completeness of DC, intemb(ϕ) is provable in
DC with the assumption DL. ��

Discrete Step Time Model. As it was said earlier, a discrete step time model
consists of all time points at which there is a the state change. Since we have
assumed that the special state variable C for the clock ticks is present in our
system that changes its value at every integer point, this model of time should
also include the set of natural numbers. This is the reason that we include N as
a subset of S. This time model was defined and used by Pandya et al in [14].
To represent a time point in this model, we introduce a temporal propositional
letter pt, pt holds for an interval [t, t′] iff t = t′ and t is a time point at which
there is a state change. pt should satisfy:

pt ⇒ � = 0
step ⇒ pt�true�pt
int ⇒ pt�true�pt
int ⇒ pt�step∗

Let DP denote this set of formulas. The last formula in this set expresses our
assumption that no Zeno computation is allowed, i.e. in any time interval, there
are only a finite number of state changes. Let us define a DC formula dis as

dis =̂ (pt�true�pt)
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dis represents an interval between two discrete points. When considering the
Discrete Step Time Models, the chop point should satisfy pt.

The sublanguage DSL, which is the union of SC, ID, CC, DP DC and RC,
forms a relatively complete specification for the discrete time structure.

Let disemb(ϕ) be a formula that is obtained from ϕ by replacing each proper
subformula ψ of ϕ by ψ ∧ dis. For example disemb(φ�¬ψ) = (φ ∧ dis)�(dis ∧
¬(ψ ∧ dis).

Theorem 2. Let ϕ be a DC formula with no occurrence of temporal proposition
letters. Then, DSL � dis ⇒ disemb(ϕ) exactly |=SDC ϕ.

Proof. The proof works in exactly the same way as the proof of Theorem 1.
Any discrete step time model I, [a, b] can be extended to a model that satisfies

formulas in DL in the obvious way, namely with the interpretation for int and
step with the intended meanings for them. By induction on the structure of
the formula ϕ, it is easy to prove that I, [a, b] |=SDC ϕ if and only I, [a, b] |=
intemb(ϕ).

Then, the “only if” part follows directly from the soundness of the proof of
the DC system that intemb(ϕ) is satisfied by any discrete step time model that
satisfies DL.

For the “if” part, notice that if |=SDC ϕ then dis ⇒ intemb(ϕ) is a valid
formula in DC with the assumption DL. Consequently, from the relative com-
pleteness of DC, disemb(ϕ) is provable in DC with the assumption DL. ��

Sampling Time Models. A sampling time model consists of the time points where
we sample the data. Assume that the samplings are frequent enough and that
any state change should be at a sampling point. To specify this time model, we
can use DSL and an additional assumption

step ⇒ � = 1/h

where h ∈ N, h > 0, i.e. 1/h is the sampling time step. Let SLh be the language
for the sampling time model with the sampling time step 1/h.

4 Specifying Sampling, Periodic Task Systems and
Projection to Discrete Time

4.1 Sampling

Sampling and specifying periodic task systems are immediate applications of the
results presented in the previous section.

We have built a language for sampling time models based on the continuous
time DC. Hence, we can use the proof system of DC to reason about validity of a
formula in that time and state model. How to relate the validity of a formula D
in that time and state model with the validity of a formula D′ in the original DC?
In our early work [9], we have considered that relation, but had to formulate the
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results in a natural meta language due to the use of different semantic models.
With the help from the time modeling language, we can also formulate the
relationship as formulas in DC.

Let P be a state variable. Let Ph be a state in the sampling time model with
the sampling time step 1/h such that Ph is interpreted the same as P at any
sampling time point, i.e. �(pt ⇒ (�P �0 ⇔ �Ph�0) (denoted by samp(P, Ph)),
and �(step ∧ � > 0 ⇒ (�Ph� ∨ �¬Ph�)) (denoted by dig(Ph)). Let stable(P, d)
denote the formula �((�¬P ���P ���¬P �) ⇒ � ≥ d).

Theorem 3. Let d > 1/h. The following formulas are valid in DC:

1. (stable(P, d) ∧ samp(P, Ph) ∧ dig(Ph)) ⇒
(
∫

P = m ⇒ |
∫

Ph − m| ≤ min{�, (�/d + 1)1/h}
2. (stable(P, d) ∧ samp(P, Ph) ∧ dig(Ph)) ⇒

(
∫

P = m ∧ dis) ⇒ |
∫

Ph − m| ≤ min{�, 1/h�/d}
3. (stable(P, d) ∧ samp(P, Ph) ∧ dig(Ph)) ⇒∫

Ph = m ⇒ |
∫

P − m| ≤ (�/d + 1)1/h
4. (stable(P, d) ∧ samp(P, Ph) ∧ dig(Ph)) ⇒∫

Ph < m ⇒
∫

P < m + 1/h(�/d + 1)
5. (stable(P, d) ∧ samp(P, Ph) ∧ dig(Ph)) ⇒∫

P < m ⇒
∫

Ph < m + 1/h(�/d + 1)
6. (stable(P, d) ∧ samp(P, Ph) ∧ dig(Ph)) ⇒∫

Ph > m ⇒
∫

P > m − 1/h(�/d + 1)
7. (stable(P, d) ∧ samp(P, Ph) ∧ dig(Ph)) ⇒∫

P > m ⇒
∫

Ph > m − 1/h(�/d + 1)
8. (stable(P, d) ∧ samp(P, Ph) ∧ dig(Ph)) ⇒

dis ⇒ (�Ph� ⇔ �P �)

Proof. This is just a reformulation of Theorem 1 in [9]. ��

This theorem is useful for deriving a valid formula in the original DC from
valid formulas in discrete time model. It can be used in approximate reasoning,
especially in model checking: to check if a system S satisfies a DC property D, we
can check a sampling system Sh of S whether it satisfies a discrete DC property
Dh. Dh is found such that Sh |= Dh implies S |= D. This technique has been
used in [14].

4.2 Periodic Task System

A periodic task system T consists of n processes {1, . . . , n}. Each process i
raises its request periodically with period Ti, and for each period it requests a
constant amount of processor time Ci. A specification of system T in DC has been
given in many works, see e.g [2], which assume that all the processes raise their
request at time 0. We can give a complete specification of the system without this
assumption using the same technique that was introduced for temporal variable
int in the previous section. To specify periodic behaviour of process i, we also
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use temporal variable dLine i as in [2] whose behavior is similar to temporal
variable int, and specified by:

dLine i ⇒ ((dLine i ∧ � = 0)�(dLine i ∧ � = Ti)∗) ∧ (6)
((dLine i ∧ � = Ti)∗�(dLine i ∧ � = 0))

dLine i�(� = Ti) ⇒ dLinei (7)
� ≥ 2Ti ⇒ � < Ti

�((dLine i ∧ � = Ti)∗ ∧ (8)
¬(true�(dLine i ∧ � = Ti)�¬(dLine i ∧ � = Ti)∗) ∧
¬(¬(dLine i ∧ � = Ti)∗�(dLine i ∧ � = Ti)�true))�

� < Ti

Let Runi be a state variable saying that process i is running on the processor, i.e.
Runi(t) = 1 if process i is running on the processor, and Runi(t) = 0 otherwise.
Let Standi be a state variable saying that the current request of process i has
not been fulfilled. The behaviour of process i is fully specified by:

dLine i ∧ � = Ti ⇒ (((
∫

Runi < Ci ⇔ �Standi�)�true)∧
(
∫

Runi = Ci
�� > 0 ⇒

∫
Runi = Ci

��¬Standi�))

The requirement of system T is simply specified by: for all i ≤ n,

dLine i ∧ � = Ti ⇒
∫

Runi = Ci

Formulas 6, 7 and 8 form a complete specification of temporal propositional
variables dLinei, i ≤ n, and are useful in proving the correctness of a scheduler
for system T . A priority-based scheduler S for system T with single processor
is characterised by state variables HiPriij (i, j ≤ n, i �= j) which specify the
dynamic priority among the processes defined by S, and the following state
formulas characterising its behaviour:

∧i�=j((Runi ∧ Standj) => HiPriij)
∧i≤n(Runi => Standi)
∧i�=j(HiPriij ⇒ ¬HiPriji)
∧i�=j¬(Runi ∧ Runj)
∨i≤nStandi ⇒ ∨i≤nRuni

A deadline driven scheduler is a priority-based scheduler that considers process
i to have a higher prioity than process j (i.e. the value of HiPriij at the current
time point is 1) iff the deadline for process i is nearer than the deadline for process
j. The deadline driven scheduler can be modelled in a much more convenient
way than in [2] with the additional formula specifying the behaviour of state
variables HiPriij (i, j ≤ n):

∧i�=j�HiPriij��� = Ti ⇒ (¬�dLinej)�dLinei
�true

The interesting thing here is that variables HiPriij can be defined in DC, with-
out any quantification on rigid variables, via temporal propositional variables
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dLinei (i ≤ n) which are completely specified by formulas 6, 7 and 8. With
defining HiPriij in this way, we don’t have to assume that all the processes
raise their request at time 0. Hence, reasoning about the correctness of the
scheduler for the general case can be done with the proof system of DC. We
believe that the general model for task scheduling presented in [1] can be clearer
and simplified a lot using this technique.

4.3 Hybrid States and Projection to Discrete Time

In [12], He Jifeng introduced the projection from continuous time to discrete time
to reason about hybrid systems where we have continuous state and temporal
variables. In that paper, intervals are either discrete or continuous. Discrete
intervals are embedded in continuous intervals. He introduced an operator for
projection \\ defined as: let F and G be a DC formula, then F\\G is also a
formula with the following semantics: I, [a, b] |= F\\G iff for for some n ∈ N and
a = m1 ≤ m2 ≤ . . . ≤ mn = b I, [m, mi+1] |= F and I, < m1, m2, . . . , mn >|= G,
where < m1, m2, . . . , mn > is a discrete interval. In [4], Guelev also showed
that F\\G can be expressed by a formula in the original DC with a temporal
propositional letter. In the framework of this paper, F\\G is described in DC
as follows. We assume two kinds of states in the system: continuous states and
discrete ones. Instead of forcing SC to be satisfied by any state, we enforce it to
be satisfied by discrete states only. So, F\\G is expressed by

((F ∧ step)∗ ∧ disemb(G[Ps/P ]))

where G[Ps/P ] is obtained from G by the substitution of discrete state Ps for
state P such that samp(P, Ps) for each state P occurred in G. Formula ((F ∧
step)∗∧disemb(G[Ps/P ])) says that the reference interval is discrete interval that
satisfies formula disemb(G[Ps/P ]), and each discrete step satisfies continuous
formula F . So, with using temporal propositional letters step, the projection \\
can be defined and reasoning in the original DC as well.

5 Modelling Communication Protocols with Digitizing in
DC

In this section, we show that with discrete time structure formalised, we can
model communication protocols using Duration Calculus (DC) in a very conve-
nient way without any extension for digitising. This model has been presented
in our earlier work [10,7]. Consider a model for communication at the physical
layer (see Fig. 1). A sender and a receiver are connected via a bus. Their clocks
are running at different rates. We refer to the clock of the receiver as the time
reference. The receiver receives signals by digitising. Since the signals sent by
the sender and the signals received by the receiver are functions from the set R

+

to {0, 1} (1 represents that the signal is high, and 0 represents that the signal is
low), we can model them as state variables in DC.
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Fig. 1. Communication Protocol Model

The communication protocols are modelled in DC as follows. The signal sent
by the sender is modelled by a state X . The signal received by the receiver by
sampling the signal on the bus is modelled by a state Y in the sampling time
model with the sampling time step 1. So, step ⇔ int ∧ � = 1. However, it is not
the case that samp(X, Y ) due to the fact that it takes a significant amount of
time to change the signal on the bus from high to low or vice-versa, and hence,
the signal on the bus cannot be represented by a Boolean function. Without loss
of generality, assume that the delay between the sender and the receiver is 0.
Assume also that when the signal on the bus is neither high nor low, the receiver
will choose an arbitrary value from {0, 1} for the value of Y . The phenomenon
is depicted in Fig. 2. Assume that it takes r (r is a natural number) receiver-
clock cycles for the sender to change the signal on the bus from high to low
or vice-versa. Then if the sender changes the signal from low to high or from
high to low, the receiver’s signal will be unreliable for r cycles starting from the
last tick of the receiver clock and during this period it can be any value chosen
nondeterministically from 0 and 1. Otherwise, the signal received by the receiver
is the same as the signal sent by the sender (see Figure 2). This relationship
between X and Y is formalised as

(�X� ∧ (� ≥ r + 1)) ⇒ (� ≤ r)�(�Y � ∧ int)�(� < 1) ,
(�¬X� ∧ (� ≥ r + 1)) ⇒ (� ≤ r)�(�¬Y � ∧ int)�(� < 1) .

Since the behaviour of a state can be specified by a DC formula, a commu-
nication protocol can be modelled as consisting of a coding function f , which
maps a sequence of bits to a DC formula expressing the behaviour of X , and a
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Fig. 2. Signal patterns

decoding function g, which maps a DC formula expressing the behaviour of Y
to a sequence of bits. The protocol is correct iff for any sequence w of bits, if
the sender puts the signal represented by f(w) on the bus then by digitising the
receiver must receive and receives only the signals represented by a DC formula
D for which g(D) = w.

5.1 Biphase Mark Protocols

In the Biphase Mark Protocols (BMP) the sender encodes a bit as a cell con-
sisting of a mark subcell of length b and a code subcell of length a. The sender
keeps the signal stable in each subcell (hence either �X� or �¬X� holds for the
interval representing a subcell). For a cell, if the signal in the mark subcell is
the same as the signal in the code subcell, the information carried by the cell is
0; otherwise, the information carried by the cell is 1. There is a phase reverse
between two consecutive cells. This means that, for a cell, the signal of the mark
subcell of the following cell is held as the negation of the signal of the code
subcell of the cell. The receiver, on detecting a state change (of Y ), knows that
it is the beginning of a cell, and skips d cycles (called the sampling distance)
and samples the signal. If the sampled signal is the same as the signal at the
beginning of the cell, it decodes the cell as 0; otherwise it decodes the cell as 1.

At the beginning of the transmission, the signal is low for a cycles (this means,
�¬X� holds for the interval of length a starting from the beginning). When the
sender finishes sending, it keeps the signal stable for cc time units which is longer
than the code subcell. We use HLS, LHS to denote the formulas representing
intervals consisting of the code subcell of a cell and the mark subcell of the next
one for the sender, and use HLR�(� = d), LHR�(� = d) to denote the formulas
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representing the intervals between the two consecutive sampling points (from the
time the receiver samples the signal of a code subcell to the next one. Formally,

HLS =̂ (�X� ∧ � = a)�(�¬X� ∧ � = b) ,
LHS =̂ (�¬X� ∧ � = a)�(�X� ∧ � = b) ,
HLR =̂ (�Y � ∧ int ∧ 1 ≤ � ≤ ρ)�(�¬Y � ∧ � = 1) ,
LHR =̂ (�¬Y � ∧ int ∧ 1 ≤ � ≤ ρ)�(�Y � ∧ � = 1) .

Now, we are ready to formalise the BMP in DC. What we have to do is write
down the encoding function f and the decoding function g. From the informal
description of the protocol, we can define f inductively as follows.

1. f(ε) =̂ (�¬X� ∧ � = c)
2. If f(w) = D�(�X� ∧ � = c), then

f(w0) =̂ D�HLS�(�¬X� ∧ � = c)
f(w1) =̂ D�HLS�(�X� ∧ � = c)

3. If f(w) = D�(�¬X� ∧ � = c), then

f(w0) =̂ D�LHS�(�X� ∧ � = c)
f(w1) =̂ D�LHS�(�¬X� ∧ � = c)

For example, f(1) = LHS�(�¬X� ∧ � = c), f(10) = LHS�LHS�(�X� ∧ � =
c), and f(101) = LHS�LHS�HLS�(�X� ∧ � = c).

Because the decoding function g is a partial function, we have to describe its
domain first, i.e. what kind of DC formulas on the state Y are detected (received)
by the receiver. According to the behaviour of the receiver, first it skips r cycles.
Then it begins to scan for an edge (HLR or LHR). When an edge is detected,
it skips d cycles and repeats this procedure until it detects that the transmission
has completed (Y is stable for more than ρ cycles). Thus, a DC formula D is
received by the receiver iff D is of the form A0

�A1
�. . . �An, n ≥ 1, where

– A0 = (1 ≥ � ∧ � > 0)�(int ∧ (� = r − 1)))
– and either An = (int ∧ �Y � ∧ (� > ρ))�(� < 1)),

or An = (int ∧ �¬Y � ∧ (� > ρ))�(� < 1))
– and for j = 1, . . . , n − 1 either Aj = LHR�(� = d) or Aj = HLR�(� = d)
– and if n = 1 then An = (int ∧ �¬Y � ∧ (� > ρ))�(� < 1)) and if n > 1 then

A1 = LHR�(� = d) (since at the beginning the signal is low).

Now, the decoding function g can be written as follows. Let D be a formula
received by the receiver.

– If D = (� ≤ 1 ∧ � > 0)�(int ∧ � = r − 1)�(�¬Y � ∧ � > ρ ∧ int)�� < 1 then
g(D) = ε.

– Let g(D) be defined.
• If D = D′�(�Y � ∧ int ∧ � ≥ ρ)�� < 1 then

g(D′�HLR�(� = d)�(�Y � ∧ int ∧ � ≥ ρ)�� < 1) = g(D)1 , and
g(D′�HLR�(� = d)�(�¬Y � ∧ int ∧ � ≥ ρ)�� < 1) = g(D)0 .
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• If D = D′�(�¬Y � ∧ int ∧ � ≥ ρ)�� < 1, then
g(D′�LHR�(� = d)�(�Y � ∧ int ∧ � ≥ ρ)�� < 1) = g(D)0 , and
g(D′�LHR�(� = d)�(�¬Y � ∧ int ∧ � ≥ ρ)�� < 1) = g(D)1.

For example, let D be (� ≤ 1∧� > 0)�(int∧� = r−1)�LHR�(� = d)�LHR�(� =
d)�HLR�(� = d)�(�Y � ∧ � > ρ ∧ int)�(� < 1)). Then,

g(D) = g((� ≤ 1 ∧ � > 0)�(int ∧ � = r − 1)�LHR�(� = d)
�LHR�(� = d)�(�Y � ∧ � > ρ ∧ int)�(� < 1)) 1

= g((� ≤ 1 ∧ � > 0)�(int ∧ � = r − 1)�LHR�(� = d)�

(�¬Y � ∧ � > ρ ∧ int)�(� < 1)) 01
= g((� ≤ 1 ∧ � > 0)�(int ∧ � = r − 1)

�(�¬Y � ∧ � > ρ ∧ int)�(� < 1)) 101
= ε101 .

5.2 Verification of BMP

As said earlier, we have to verify that for any sequence of bits w, if the sender
puts on the bus the signal represented by DC formula f(w), then the receiver
must receive and receives only the signals represented by a DC formula D for
which g(D) = w. We can only prove this requirement with some condition on
the values of the parameter r, a, b, c, ρ and d. The requirement is formalised as:

For all sequence of bits w,

– there exists a DC formula D received by the receiver such that f(w) ⇒ D,
and

– for all D receivable by the receiver, if f(w) ⇒ D then g(D) = w.

Since in BMP g is a deterministic function, for any sequence of bits w there is
no more than one receivable formula D for which f(w) ⇒ D. Thus we can have
a stronger requirement which is formalised as:

For all sequences of bits w there exists uniquely a receivable formula D such
that f(w) ⇒ D and g(D) = w.

Our verification is done by proving the following two theorems.

Theorem 4. For any receivable formulas D and D′, if D is different from D′

syntactically then |= ((D ∧ D′) ⇒ ff).

This theorem says that each time at most one receivable formula D is received
by the receiver.

Theorem 5. Assume that r ≥ 1, b ≥ r + 1, a ≥ r + 1, c ≥ ρ + a, d ≥ b + r,
d ≤ a + b − 3 − r, and ρ ≥ a + 1. Then for any sequence of bits w there exists a
receivable formula D for which f(w) ⇒ D and g(D) = w.

In [7] we proved these two theorems, with PVS proof checker, with the encoding
of the proof system for Duration Calculus.
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6 Conclusion

We have presented our approach to the specification and verification of real-
time hybrid systems using Duration Calculus. By using temporal propositional
letters we can specify many classes of time models that are suitable for our
applications. The properties of the introduced temporal propositional letters
are then specified by a class of Duration Calculus formulas. Using this class of
formulas and the proof system of the original Duration Calculus we can reason
about the behaviour of our real-time systems in different time domains without
any further efforts for developing a new proof system. We have shown that this
technique works well for reasoning about the relationship between real systems
and digitised systems. This enables us to use a proof checker of Duration Calculus
for different classes of applications.

By embedding discrete DC into the continuous ones, we can use the decid-
ability of the discrete DC to decide the falsifiability of a subclass of formulas in
DC. The technique demonstrated in this paper could be considered as an effort
for unifying different versions of DC.

References

1. Chan, P., Van Hung, D.: Duration Calculus Specification of Scheduling for Tasks
with Shared Resources. In: Kanchanasut, K., Levy, J.-J. (eds.) Algorithms, Concur-
rency and Knowledge. LNCS, vol. 1023, pp. 365–380. Springer, Heidelberg (1995)

2. Chaochen, Z., Hansen, M.R.: Duration Calculus. Springer, Heidelberg (2004)
3. Chaochen, Z., Hoare, C.A.R., Ravn, A.P.: A calculus of durations. Information

Processing Letters 40(5), 269–276 (1992)
4. Guelev, D.P.: A Complete Proof System for First Order Interval Temporal Logic

with Projection. Technical Report 202, UNU-IIST, P.O.Box 3058, Macau, June
2000. A revised version of this report was published in the Journal of Logic and
Computation 14(2), 215–249 (2004)

5. Guelev, D.P., Van Hung, D.: Prefix and projection onto state in duration calculus.
In: Asarin, O.M.E., Yovine, S. (eds.) Electronic Notes in Theoretical Computer
Science, vol. 65, Elsevier Science Publishers, Amsterdam (2002)

6. Guelev, D.P., Van Hung, D.: On the completeness and decidability of duration
calculus with iteration. Theor. Comput. Sci. 337(1-3), 278–304 (2005)

7. Van Hung, D.: Modelling and Verification of Biphase Mark Protocols in Duration
Calculus Using PVS/DC−. In: Research Report 103, UNU-IIST, P.O.Box 3058,
Macau, April 1997. Presented at and published in the Proceedings of the 1998 In-
ternational Conference on Application of Concurrency to System Design (CSD’98),
Aizu-wakamatsu, Fukushima, Japan, 23-26 March 1998, pp. 88–98. IEEE Com-
puter Society Press, Los Alamitos (1998)

8. Van Hung, D.: Real-time Systems Development with Duration Calculus: an
Overview. In: Aichernig, B.K., Maibaum, T.S.E. (eds.) Formal Methods at the
Crossroads. From Panacea to Foundational Support. LNCS, vol. 2757, pp. 81–96.
Springer, Heidelberg (2003)

9. Van Hung, D., Giang, P.H.: A sampling semantics of duration calculus. In: Jonsson,
B., Parrow, J. (eds.) Formal Techniques in Real-Time and Fault-Tolerant Systems.
LNCS, vol. 1135, pp. 188–207. Springer, Heidelberg (1996)



Specifying Various Time Models with Temporal Propositional Variables 187

10. Van Hung, D., Ko Kwang Il,: Verification via Digitized Model of Real-Time Sys-
tems. In: Research Report 54, UNU-IIST, P.O.Box 3058, Macau, February 1996.
Published in the Proceedings of Asia-Pacific Software Engineering Conference 1996
(APSEC’96), pp. 4–15. IEEE Computer Society Press, Los Alamitos (1996)

11. Van Huong, H., Van Hung, D.: Modelling Real-time Database Systems in Duration
Calculus. Technical Report 260, UNU-IIST, P.O. Box 3058, Macau, September
2002. Presented at and published in the proceedings of the IASTED International
Conference on Databases and Applications (DBA 2004). In: Hamza, M.H. (ed.)
Innsbruck, Austria, February 17 – 19, 2004, pp. 37–42. ACTA Press (2004)

12. Jifeng, H.: A behavioural Model for Co-design. In: Woodcock, J.C.P., Davies, J.,
Wing, J.M. (eds.) FM 1999. LNCS, vol. 1709, pp. 1420–1439. Springer, Heidelberg
(1999)

13. Martin, F.: Synthesizing Controllers of Duration Calculus. In: Jonsson, B., Par-
row, J. (eds.) Formal Techniques in Real-Time and Fault-Tolerant Systems. LNCS,
vol. 1135, pp. 168–187. Springer, Heidelberg (1996)

14. Pandya, P.K., Krishna, S.N., Loya, K.: On Sampling Abstraction of Continuous
Time Logic with Duration Calculus. Technical Report TIFR-PKP-GM-2006/1,
Tata Institute of Fundamental Research, India (2006)

15. Pandya, P.K., Ramakrishna, Y.: A Recursive Duration Calculus. Technical Report
CS-95/3, TIFR, Mumbai (1995)



Relating Domain Concepts Intensionally by
Ordering Connections
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Abstract. The present paper suggests a modelling method for relating
domain concepts intensionally. The method is based on modelling con-
cepts formally and establishing two ordering connections between objects
of the concepts. The former connection, we call the characteristics con-
nection. It is a Galois connection and states how objects of the two con-
cepts, describe each other. The latter connection, we call the information
flow connection. It is a connection between classifications of objects of
the two concepts. The connection states how specialization of one kind
of objects, cannot imply generalization of objects succeeding in an in-
formation flow. We put the method to work by modelling the domain
concepts of budgets and project plans, and we establish the two ordering
connections between the models of these. In doing so, we reveal inter-
esting domain knowledge. Hence, we believe that our contribution adds
clarity and transparency to the methodology of domain engineering and
conceptual modelling.

Keywords: Conceptual modelling, Domain Engineering, Intension, Ab-
stract Interpretation, Galois Connection, Classification, Formal Meth-
ods, The RAISE Specification Language (RSL).

1 Introduction

There are many things that can be said about a budget: what the number of fig-
ures is, what the total cost estimate is, etc. These are abstract properties of the
budget and the results of abstract interpretation. Also more complex properties
exist. An example is the property of financially covering the expenses for exe-
cuting a certain project plan. The formal predicate representing this property,
states the condition that project plans must satisfy in order to be executable
within the financial restrictions of the budget. In fact, the predicate states a du-
ality. With it, we can check whether a project plan can be executed within the
financial restrictions of a budget, and we can check whether a budget designates
the necessary expenses for executing a project plan. The reason for this duality
is that budgets describe and determine project plans and project plans describe
and determine budgets. Going either way can be understood as abstract inter-
pretation defined by either of two interpretation functions: one from budgets to
project plans, and one from project plans to budgets. The function pair defines
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a Galois connection similar to the Galois connection between sets of object and
sets of their common properties in Formal Concept Analysis [1].

In order to create a realistic project plan, a budget is needed and most often
budgeting is a stage preceding project planning because the budget determines
the financial scope of the project plan. If changes are made to a budget, corre-
sponding changes need to be made to the project plan in order for it to still fit
that scope. A general understanding of budgets is that they follow a so-called
work breakdown structure. The structure expresses that general budget figures
are broken down into more specific budget figures. Such a structure can be used
to express the phases, sub-phases, and parallel areas of work, financially. Break-
ing down budget figures or restricting to a sub-set of general figures, narrows
the financial scope of the budget. Hence, we shall say that doing so, special-
izes the budget. A similar perspective can be applied on project plans. Project
plans designate works to be done. Some works may be done in parallel whereas
other works need to be done in sequence. Removing parts of the project plan
narrows the result of executing it. Hence, we shall say that doing so, specializes
the project plan. It appears that specialization of budgets implies specialization
of project plans if the Galois connection between is to be maintained.

The above analysis indicates that there are two interesting aspects in a concept
relation between domain concepts like budgets and project plans. The former
is that budgets describe and determine project plans and vice versa. General-
ized, this is a connection between object sets of the two concepts. The latter
aspect is that budgets and project plans can be ordered respectively and that
specialization in the budget classification implies specialization in the project
plan classification, assuming the first aspect to be maintained.

The two aspects define separate dual connections. The former is a Galois
connection defined by two dually, monotonously, decreasing functions; one from
sets of budgets to sets of project plans, and one from sets of project plans to sets
of budgets. The latter connection is an order-preserving connection between two
classifications; one of budgets and one of project plans.

The two aspects are interesting from a concept modelling perspective for the
following reasons. The Galois connection is the foundation in conceptualizations
where characteristics of objects are modelled by designating their abstract prop-
erties. In our case, the abstract properties are special in the sense that they are
possessed by the objects in virtue of these standing in certain relations to other
objects. That is, the properties are extrinsic properties. We shall say that these
other objects are part of the intensions of the objects in question.

The order-preserving connection ensures consistent concretisation from bud-
gets to project plans. This means that the corresponding concept relation —
when introduced in a conceptual web of concepts related likewise — maintains
the systematics of concretising information from stage to stage in project devel-
opment. The connection adds intensional knowledge as it describes some of the
dynamical characteristics of objects; namely, what effect it has on objects of one
kind to change objects of another.
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In the cross-disciplinary areas between computer science and application do-
mains, modelling of domain concepts and defining their relations, is an essential
process for founding computerized management. Also, it is essential for reaching
a clarification of the domain in general. However, there is a lack of methods for
defining such relations. Consequently, the domain engineering approach may be
quite informal and implicit; or even given up.

In this paper, we outline a method for relating domain concepts based on
formalizations of these concepts. The method establishes concept relations on
(i) a Galois connection between object sets of the concepts, and (ii) an order-
preserving connection between classifications of objects of the concepts. In order
to put the method to work, we model the domain concepts of budgets and
projects plans formally, and we establish the Galois connection and the order-
preserving connection between these concepts1. Founding a concept relation on
the two ordering connections, we believe makes the concept relation more rigour
than a relation simply claimed to hold between two concept names. It is so, as
it includes the semantic aspects of characteristics and change effects. Hence, we
consider the utilization of the two kinds of ordering connection as a contribution
to the current debate on the methodology of domain engineering in computer
science. In essence it puts the semantic question of what it means for two domain
concepts to relate, on the agenda — a question which is present in almost any
development of software and IT systems.

Throughout the paper, we use The RAISE Specification Language (RSL) to
express the formal models, relations and conditions [4,5]. However, effort has
also been made to informally express the understanding and intuition behind
the models.

2 Domain Engineering

In the paper, we shall assume the following understandings of concept relations:

Definition 1 (Concept Relation). By a concept relation, we understand a
relation between two concept names, implicitly or explicitly stating the criteria
for objects of the concepts to relate.

Hence, when we talk about a concept relation, we also talk about a relation
between the objects of the concepts.

Definition 2 (Implicit Concept Relation). By an implicit concept relation,
we understand a concept relation for which the criteria are implicitly or infor-
mally expressed.

Definition 3 (Explicit Concept Relation). By an explicit concept relation,
we understand a concept relation for which the criteria are explicitly and formally
expressed.

1 Pre-studies have been done in [2] and [3].
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Concept relations are an important part of domain and requirements model.
Some concept relations define concept specialization and generalization. We shall
say that such relations stand between concepts of the same kind as they are kind-
of relations. Other concept relations hold between what we shall call concepts of
distinct kinds. That is, concept pairs which are not naturally related by kind-of
relations. The distinction has been treated further in [2] and [3].

Several domain and requirements acquisition methods provide notations for
expressing both kinds of concept relations. Basically, we can classify concept
relation approaches in four levels concerning rigidity and formality. On the first
level, we have graphical and other informal notations like UML. Such approaches
define implicit concept relations. Hence, it is not possible (without further for-
malization) to check nor justify that two arbitrarily chosen objects satisfy the
criteria of the concept relation. On the second level, we have modelling ap-
proaches which relate concepts by expressing simple criteria for distinct concept
objects to relate. When modelling databases, such criteria are expressed in join
structures. However, the criteria are merely that objects (here tuples) have iden-
tical values on certain fields. The concept relation is here explicit, but still very
simple as the objects are related based on having properties in common. Not all
domain concepts have that. Hence, there would be concepts that could not be
related this way. On the third level, we have approaches which offer a full math-
ematical range of expressions for formalizing the criteria. The approaches (as in
this paper) may include facilities for implicitly expressing the change effects on
objects. Relations on this level are explicit concept relations. On the fourth level
we have approaches which — in addition to what is on the third level — also
facilitate expressing how objects of one kind can be calculated explicitly from
objects of other concepts. However, this is certainly not be possible for objects
of all kinds of domain concepts. The approach taken in this paper belongs to the
third level; including the mentioned facilities.

3 Intensional Modelling: A Proposed Method

This section outlines a proposed method for relating domain concepts formally.
The method is motivated by the analysis from Sect. 1 and draws on the defi-
nitions from Sect. 2; namely (i) a Galois connection between sets of objects of
the two concepts considered, and (ii) an order-preserving connection between
classifications of objects of the two concepts. We shall refer to these as the char-
acteristics connection and the information flow connection, defined as follows:

Definition 4 (Characteristics Connection). By a characteristics connec-
tion, we understand a relation between objects and their common properties.
The connection is founded by a Galois connection. In Formal Concept Analysis,
a context relates objects to properties. The Galois connection is then utilized for
defining general concepts by clustering objects and properties [1].

In this paper, we shall consider the characteristics connection between objects
and the common properties these have in virtue of standing in a certain relation
to objects of another concept.
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Definition 5 (Information Flow Connection). By an information flow con-
nection, we understand a relation between domain concepts appearing in different
stages of an information flow. The connection states how one kind of information
serves as input to the creation and elaboration of other kinds of information.

In this paper, we shall consider the information flow connection between objects
representing the information on different stages of projects. However, the notion
is applicable in many other domains.

In the following, we shall consider the theoretical foundation of these two
kinds of connections.

3.1 Galois Connections and Abstract Interpretation

Formulated in RSL, the definition of Galois connections is:

Definition 6 (Galois Connection). A Galois connection is a dual pair of
mappings (F , G) between two ordered sets (P, ≤) and (Q, ≤). Most often the
ordering is based on set-inclusion (⊆) and this is also the version we shall use
here. The mappings must be monotonously decreasing2:

type
P, Q

value
F : P-set → Q-set
G: Q-set → P-set

axiom
∀ ps1, ps2:P-set, qs1, qs2:Q-set •

ps1 ⊆ ps2 ⇒ F ps2 ⊆ F ps1,
qs1 ⊆ qs2 ⇒ G qs2 ⊆ G qs1,
ps1 ⊆ G F ps1,
qs1 ⊆ F G qs1

In [1], the following Theorem is given on Galois connections (here omitting the
proof):

Theorem 1 (Galois Connection3). For every binary relation R ⊆ M × N , a
Galois connection (ϕR, ψR) between M and N is defined by

ϕRX := XR (= y ∈ N |xRy for all x ∈ X)
ϕRY := Y R (= x ∈ M |xRy for all y ∈ Y ).

2 Note, that there are in fact two different definitions of Galois connections in the
literature: the monotone Galois connection and the antitone Galois connection. We
follow Ganter and Wille by assuming the former [1].

3 In [1] this is named Theorem 2.
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The notion of Galois connections is a mathematical concepts which founds
a variety of applications. The application we shall consider here is the Galois
connection between of objects and their common properties; a central subject
in Formal Concept Analysis [1]. Consider the set of physical objects in a living
room. For each object — chair, picture, table, candlelight, etc. — we can observe
its properties like colour, weight, material, dimensions, length, etc. The notion
of properties is here a wide notion; any predication of an object will do. Pick
a subset of the objects and list the set of their common properties. That is,
the properties that all objects in this set have. If we extend this set with more
objects, we will either get a smaller set of common properties or have the same
set. Similarly, we may pick a subset of properties and list the set of objects
all having these properties. If we extend this set with more properties, we will
either get a smaller set of objects or have the same set. Between objects and
their common properties there is a Galois connection [1]. This connection is
fundamental in all conceptual modelling and classification.

Now, consider another kind of objects and another kind of properties. The
objects may be more abstract rather than physical. Examples of such kinds
of objects are (from the domain of project planning): Budgets, project plans,
resource allocations, plan executions, products, services, collaborations, etc.; ba-
sically any kind of thing or phenomena existing or potentially existing in the
domain. Similarly, the properties of these objects may be abstract. Just as we
can observe the colour and texture of a physical object, we can determine the
relations to which an object stand to other kinds of objects; i.e., the extrin-
sic properties in addition to the intrinsic properties. As an example, we may say
that a budget relates to the project plans that are executable within the financial
restrictions of the budget; and vice versa.

Defining a Galois connection between two domain concepts can be an im-
portant foundation for conceptual domain modelling as it defines the charac-
terisations of domain objects based on their relations to other objects. For this
reason we shall say that the concept connection is intensional. The connection is
a characteristics connection. Furthermore, a Galois connection provides a range
of theorems that are convenient in context of model checking or other kinds of
analysis of a domain model.

3.2 The Order of Information Flow

In order to carry out a project, a project plan is needed; and in order to produce a
project plan, a budget is needed. This exemplifies that some kinds of information
are input knowledge to the process of creating other kinds of information.

Now, consider a collection of domain concepts that are placed in a hierarchy
describing the order in which information is created and used through stages of
projects. If changes are made to one object (e.g. a budget is changed), it may
influence other objects (e.g. put or release restrictions to a project plan). In order
to formalize this, we shall consider changes to objects as either specializations
or generalizations within classifications of the objects for each domain concept.
For a budget, we may increase or decrease a budget figure, introduce a new or
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remove a figure, and break down figures. To maintain a consistent ordering in
the information flow, we require that specialization of one object cannot im-
ply generalization of succeeding objects if the characteristics connection is to
be maintained. Note, that we do not require similar for objects preceding the
changed object.

Formally, we express the above by defining classifications of the objects of the
concepts, and an axiom expressing the above implication. Furthermore, meet and
join operations are formalized. Meet takes two objects and gives the combined
object which is a specialization of both argument objects. Join takes two objects
and gives the combined object which is a generalization of both arguments.
Further order-theoretic considerations and arguments are outside the scope of
this paper.

In Sect. 10, we shall argue that characteristics connection and the information
flow connection are intimately related.

3.3 Steps

The method of relating domain concepts intensionally is a sequence of steps
towards concept models and establishing the characteristics connection and the
information flow connection. The method is based on modelling the so-called
intrinsics of domain concepts:

Definition 7 (Domain Intrinsics). By the intrinsics4 of a domain or a do-
main concept, we understand the very basics of the domain or domain concept.
That is, the characteristics, structure and understanding that cannot be removed
or abstracted from without undermining the understanding of the domain or do-
main concept in question.

The steps of the method are as follows:

Formally model the two concepts. We establish formal models of the con-
cepts, focusing on the intrinsics (i.e. the very basics) of the concepts. See
Sect. 4 and 6.

Define object classification. For each concept define a classification of object
by formally defining a partial order of objects. The partial orders are utilized
when defining the information flow connection. See Sect. 4 and 6.

Define object meet. For each concept define a function meet which expresses
what it means to combine two objects of the concept in question. The func-
tion is utilized in the definitions of the characteristics connection and the
information flow connection. See Sect. 4 and 6.

Formally model possible mediating ties. Some concept pairs can be re-
lated without considering additional concepts. However, this is not always
the case and we may then need to formalize additional domain concepts. We
call such additional domain concepts the mediating ties. See Sect. 7.

4 The notion of intrinsics and its role in formal domain engineering is also defined and
treated in [6].
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Define a Galois predicate. Quantifying over objects of the formalized do-
main concepts, we explicitly formalize the predicate stating the criteria that
objects of the concepts must satisfy in order to relate to each other.
We call this predicate the Galois predicate and it has the form:

value
φ: c1 × c2 → Bool

Assuming the mediating ties m1, . . ., mn, the form is:

value
φ: c1 × c2 → m1 × . . . × mn → Bool

The predicate must be explicitly defined; i.e. the function body must be
given. The predicate is utilized in the definition of two dual functions from
sets of objects of the one concepts to the sets of objects of the other, and
vice versa. The dual function pair defines a Galois connection. Thereby, the
characteristics connection is defined. See Sect. 8.

Define an order-preserving connection. Based on classifications of objects
of the two concepts, a connection between the two hierarchies is defined. This
connection shows that specialization of objects of the one concept, implies
specialization of objects of the other concept, if the characteristics connection
is to be maintained. Thereby, the information flow connection is defined.

4 Budgets

A budget is a financial instrument for structuring the works of a project finan-
cially, and for managing and adhering to estimates for the works to be done. By
structuring, we here understand that a budget may designate figures represent-
ing costs of phases, work areas, tasks as well as breaking down of such figures
into sub-phases, sub-work areas, sub-tasks, etc. That is, budgets often reflect a
so-called work breakdown structure.

4.1 Intrinsics

The intrinsics of a budget is that it is a hierarchical structure in the sense that
each figure can be broken down into a set of sub-figure. Each figure in the struc-
ture uniquely identifies a specific subject of expenses. However, figures having
sub-figures, are considered to cover the subjects constituted by the subjects of
the sub-figures.

We model budgets (b:B) as maps from budget figures (bf:BF) to pairs (cf:CF)
of which the first value is the cost (c:C) of the figure and the second is a sub-
budget. A sub-budget is a budget as well. A sub-budget may be empty which
means that the figure is not broken down. Each figure in a budget (including
sub-budgets) uniquely identifies a subject of expenses concerning work, mater-
ial, man-hour costs, etc. That is, it designates the maximum amount of money
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allowed or estimated to be spend on certain works. We assume that the same
figures may exist in different budgets so budgets can be compared. Costs are
modelled as non-negative reals.

From a budget, we can observe the list (obs_BFl_B) as well as the set
(obs_BFs_B) of budget figures. Furthermore, we can observe the cost and sub-
budget of a given figure (obs_CF_B), we can calculate the total cost of a budget
(totalcost), and we assume that we can scale the costs of a budget (scale).

A budget is well-formed (wf_B) if and only if each cost is equal to the sum of
costs in the corresponding sub-budget; if such one exists. Furthermore, budget
figures must be unique.

We define an ordering on budgets after the following intuition. If a budget
(b2:B) only has a subset of figure compared to another budget (b1:B), we con-
sider it a specialization of the other budget; written b2 ≤ b1. If a budget has
figures with lower costs compared to another budget with the same figures, the
former budget is a specialization of the latter. Furthermore, if a budget has a
figure which is broken down and a similar budget does not break down this
figure, the former budget is considered a specialization of the latter. Breaking
down a budget figure means that the figure having a cost aimed at a certain
range of applications, is restricted to a set of sub-figures having costs (in total)
aimed at a more narrow range of applications. Thereby, specialization of budgets
means narrowing the budget towards more specific applications. Generalization
is considered the opposite of specialization.

We define two operations meet and join for combining budgets. meet takes two
budgets and gives the combination which is a specialization of both argument
budgets. join takes two budgets and gives the combination which is a generaliza-
tion of both argument budgets. We shall not be concerned with whether the two
operations satisfy lattice criteria. In the definitions of the operations, we need
to consider that meet may take budgets without common figures. The result is,
however, not the empty map as we need the empty map to represent the most
general budget as well as sub-budgets for figures not broken down. Therefore, we
make a distinction between the most specialized budget (⊥B:B) and the most
generalized budget (	B:B). Only the latter is modelled as the empty map. The
meet operation is special in the sense that when combining two budgets with
this operation, a figure in the one budget may put restrictions on the same figure
in the other budget. In the resulting budget we handle this by possibly scaling
the sub-figures proportionally such that the resulting budget is the most gen-
eral specialization of both argument budgets. The operation join is included for
completeness on and is not used further in this paper.

4.2 Formalization

type
B′ = BF →m CF,
BF,
CF :: cost:C subbudget:B′,
C = {|c:Real • c ≥ 0.0|},
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B = {|b:B′ • wf_B(b)|}

value
[ instanses ]
	B : B = [ ],
⊥B : B,

[ observer functions ]
obs_BFl_B: B → BF∗,
obs_BFs_B: B → BF-set,
obs_CF_B: B × BF ∼→ CF

post obs_CF_B(b,bf) as cf
pre bf ∈ obs_BFs_B(b),

totalcost: B ∼→ C
totalcost(b) ≡

if b = 	B then 0.0
else let bf:BF • bf ∈ dom b in

cost(b(bf)) + totalcost(b \ {bf})
end

end
pre b �= ⊥B,

[ misc ]
scale: B × Real → B
scale(b,r) ≡

[ bf → mk_CF(c,bs) | bf:BF, c:C, bs:B •

bf ∈ dom b ∧
c = r∗cost(b(bf)) ∧
bs = scale(subbudget(b(bf)),r) ],

min: C × C → C
min(c1,c2) ≡ if c1 ≤ c2 then c1 else c2 end,

max: C × C → C
max(c1,c2) ≡ if c1 ≥ c2 then c1 else c2 end,

[ predicates ]
unique_BF: B → Bool
unique_BF(b) ≡

len obs_BFl_B(b) = card obs_BFs_B(b),

is_superior_BF: BF × BF × B → Bool,
is_subordinary_BF: BF × BF × B → Bool,
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is_sumfigure: BF × B → Bool
is_sumfigure(bf,b) ≡

(∃ bf′:BF •

bf′ ∈ obs_BFs_B(b) ∧ is_superior_BF(bf,bf′,b)),

wf_B: B → Bool
wf_B(b) ≡

unique_BF(b) ∧ checksubcost(b) ∧
(∀ bf:BF • bf ∈ dom b ⇒ wf_B(b)),

checksubcost: B → Bool
checksubcost(b) ≡

b �= ⊥B ∧
(∀ bf:BF • bf ∈ dom b ⇒

cost(b(bf)) = totalcost(subbudget(b(bf)))),

≤: B × B → Bool
b1 ≤ b2 ≡

b2 = 	B ∨
b1 = ⊥B ∨
(

b1 �= 	B ∧ dom(b1) ⊆ dom(b2) ∧
(∀ bf:BF • bf ∈ dom(b1) ⇒

cost(b1(bf)) ≤ cost(b2(bf)) ∧
subbudget(b1(bf)) ≤ subbudget(b2(bf)))

),

meet: B × B → B
meet(b1,b2) ≡

if b1 = 	B then
b2

elsif b2 = 	B then
b1

elsif dom b1 ∩ dom b2 = {} then
⊥B

else
[ bf → mk_CF(c,bs)| bf:BF, c:C, bs:B •

(bf ∈ dom b1 ∧ bf ∈ dom b2 ∧
(subbudget(b1(bf)) = 	B ∧ subbudget(b2(bf)) = 	B ⇒

bs = 	B ∧
c = min(cost(b1(bf)), cost(b2(bf)))) ∧

(subbudget(b1(bf)) = 	B ∧ subbudget(b2(bf)) �= 	B ∧
cost(b1(bf)) ≤ cost(b2(bf)) ⇒

bs = scale(subbudget(b2(bf)), cost(b1(bf))/cost(b2(bf))) ∧
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c = totalcost(bs)) ∧

(subbudget(b1(bf)) = 	B ∧ subbudget(b2(bf)) �= 	B ∧
cost(b1(bf)) > cost(b2(bf)) ⇒

bs = subbudget(b2(bf)) ∧
c = cost(b2(bf))) ∧

(subbudget(b1(bf)) �= 	B ∧ subbudget(b2(bf)) = 	B ∧
cost(b1(bf)) ≤ cost(b2(bf)) ⇒

bs = subbudget(b1(bf)) ∧
c = cost(b1(bf))) ∧

(subbudget(b1(bf)) �= 	B ∧ subbudget(b2(bf)) = 	B ∧
cost(b1(bf)) > cost(b2(bf)) ⇒

bs = scale(subbudget(b2(bf)), cost(b2(bf))/cost(b1(bf))) ∧
c = totalcost(bs)) ∧

(subbudget(b1(bf)) �= 	B ∧ subbudget(b2(bf)) �= 	B ∧
bs = meet(subbudget(b1(bf)), subbudget(b2(bf))) ∧
c = totalcost(bs))) ]

end,

join: B × B → B
join(b1,b2) ≡

if b1 = 	B ∨ b2 = 	B then
	B

else
[ bf → mk_CF(c,bs)| bf:BF, c:C, bs:B •

(bf ∈ dom b1 ∧ bf ∈ dom b2 ⇒
bs = join(subbudget(b1(bf)), subbudget(b2(bf))) ∧
c = totalcost(subbudget(b1(bf))),

+ totalcost(subbudget(b2(bf)))) ∧

(bf ∈ dom b1 ∧ bf �∈ dom b2 ⇒
bs = subbudget(b1(bf)) ∧
c = cost(b1(bf))) ∧

(bf �∈ dom b1 ∧ bf ∈ dom b2 ⇒
bs = subbudget(b2(bf)) ∧
c = cost(b2(bf))) ]

end

Let bfij..k range over values of type BF, and let cij..k range over values of type
C. Budgets then have a sub-structure of the following general form (here in one
of many schematic unfoldings):
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

bf1 → (c1, 	B)
...

bfm →

⎛
⎜⎜⎜⎜⎜⎜⎝

cm,

⎡
⎢⎢⎢⎢⎢⎢⎣

bfm1 → (cm1, 	B)
. . .

bfmn..1 → (cmn..1, 	B)
...

bfmn..r → (cmn..r, 	B)

⎤
⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

An example is the following:

Example 1. Consider an overall budget for a software project involving devel-
opment. Sub-figures are displayed indented according to their general figures;
thereby, indicating the hierarchical structure of the budget break down.

Pre-investigation 213000
Use cases 120000
Domain analysis 35000
Requirements acquisition 58000

Design 160000
Server enhancements 30000
GUI 65000
Web access 45000
Integration 20000

Programming 920000
Server enhancements 230000
GUI 400000
Web access 180000
Web services 50000
Framework 60000

Finalizing 910000
Verification 230000

Server enhancements 70000
GUI 50000
Web & Framework 110000

Testing 680000
Usability 340000
Automatic testing 140000
Internal system testing 200000

�

Figure 1 displays a few examples of meet and join of budgets. In the diamond struc-
tures, the upper node is the join of the two nodes in the middle, and the bottom
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node is the meet of these two nodes. In the figure, capital letters denote top-level
budget figures and small letters denote budget figures on the level below that.

5 Operations, Resources, and Object Aspects

Operations, resources and object aspects are domain concepts concerning the
execution of projects. Models of these concepts are prerequisite for modelling
the concept of project plans and defining the characteristics connection between
budgets and project plans.

5.1 Intrinsics

The intrinsics of work is a pair of two values. The former value is the type of
operation to be performed (on:On). The latter value is the context in which it is
applied. When executing a construction work like painting a wall, the painting
is a type of operation and the wall is the context. Several works may concern
the same context and in various ways. Hence, it is tempting to model work as a
function from input resources (e.g. including the wall to paint) to output prod-
ucts (e.g. including the painted wall). However, this approach would obstruct
some basic metaphysical/mereological understandings that we shall assume.

One obstruction is as follows. The same wall may be the subject to different
works. Each of these works should then take the wall as an input resource and
produce a modified version of it. This approach indicates that we can make a
distinction between the products at each stage of development — in the extreme,
for every single brush stroke that is or may be performed. However, this requires
as many resource types as there may be stages for products. Ontologically we
then commit to as many concepts as there are objects of these concepts. This
is violates the metaphysical principle of one-over-many claiming that concepts
cover classes of objects. The problem in this ontological commitment is in [7]
called the problem of flux. This philosophical problem has obstructed many ap-
proaches to apply a part–whole theory explicitly in practice [8].

Another obstruction is as follows. The same object may be involved in different
works, but in different ways. In work descriptions we may have references to
different parts of the object like the inner and outer side of a wall. If we want
to model e.g. physical resources and their compositions into products explicitly,
we run into the problem of being able to distinguish which parts that physically
overlap and which that do not as this depends on the current context. E.g.,
the hinges of a door may be part of the door in one context, and of the frame
in another as we usually can take off the door. This will provide infinite many
part-whole combinations if explicitly expressed.

What prominent extensional mereological theories aim at covering is, however,
more far reaching than what is often needed in order for sentences indicating
part-whole information to make sense. For this reason, we introduced the notion
of object aspects in [7]. The definition is as follows5:
5 We only state this definition for completeness. Understanding the philosophical terms

used is not necessary for a comprehension of this paper.
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Fig. 1. Meet and join of budgets
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Definition 8 (Object Aspect). By an object aspect (x:X), we understand a
proper part of an object existing in a possible world causally reachable from the
actual world6.

With object aspects we abstract from the actual elaboration of artefacts; elab-
orations which change the artefacts physically but not change the identity of
the artefacts. In the area of building construction, object aspects are the var-
ious parts of the building to be build and they are referred to in construction
specifications, budgets, project plans, and other documents. In the area of the
service and consulting sector, object aspects are the services to be provided and
these are likewise referred to in specifications, budgets, project plans, and other
documents.

Resource types (rn:Rn) denote the kinds of resources that are consumed by
operations in a construction works. In the area of building construction, resources
are building components like pre-cast concrete walls, materials like sand, etc.
They are also machines and personnel. In the area of the service and consulting
sector, resources are usually personnel, but can also be machines. Resources are
counted in quantities (q:Q) which may be considered discrete or continuous.
Resources constitute the entire input to works and are thus the subject for
expense calculation and estimation.

A mapping from resource types to natural numbers defines the quantities of
resources for each resource type. We define the operations meet and join for
combining such mappings. The operation meet gives the map where all resource
type are in both argument maps, and the quantities are the smallest from the
argument maps. The operation join gives the map where each resource type is
in either argument map, and the quantities for common resource types is the
sum.

We shall say that a map (rm:(Rn →m Nat)) is a sub-map of another map if
and only if all resource types of the former map is present in the other map and
quantities are either equal of less than in the other map.

We assume that resources consumed by operations concerning one object as-
pect are distinct from those consumed by operations concerning other object
aspects. That is, the cost of reusing a tool is distributed on the works in which it
is used. The types and quantities of resources may be the same but the physical
resources are not7.

5.2 Formalization

type
On,
X,
Rn,
Q = {|q:Real • q > 0.0|}

6 Note, that this definition does not commit ontologically to a concept for every object
aspect there may be.

7 Note, that we abstract from the physical resources in this paper.
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value
meet: (Rn →m Q) × (Rn →m Q) → (Rn →m Q)
meet(rm,rm′) ≡

[ rn → q|rn:Rn,q:Q •

rn ∈ dom rm ∧ rn ∈ dom rm′ ∧
q=min(rm(rn),rm′(rn)) ],

meets: (Rn →m Q)-set → (Rn →m Q)
meets(rms) ≡

if rms = {} then [ ]
else

let rm:(Rn →m Q) • rm ∈ rms in
meet(rm,meets(rms \ {rm}))

end
end,

min: Q × Q → Q
min(q1,q2) ≡ if q1 ≤ q2 then q1 else q2 end,

join: (Rn →m Q) × (Rn →m Q) → (Rn →m Q)
join(rm,rm′) ≡

[ rn → q|rn:Rn,q:Q •

(rn ∈ dom rm ∧ rn ∈ dom rm′ ∧ q=rm(rn)+rm′(rn)) ∨
(rn ∈ dom rm ∧ rn �∈ dom rm′ ∧ q=rm(rn)) ∨
(rn �∈ dom rm ∧ rn ∈ dom rm′ ∧ q=rm′(rn)) ],

joins: (Rn →m Q)-set → (Rn →m Q)
joins(rms) ≡

if rms = {} then [ ]
else

let rm:(Rn →m Q) • rm ∈ rms in
join(rm,joins(rms \ {rm}))

end
end,

≤: (Rn →m Q) × (Rn →m Q) → Bool
rm1 ≤ rm2 ≡

dom(rm1) ⊆ dom(rm2) ∧
(∀ rn:Rn • rn ∈ dom(rm1) ⇒ rm1(rn) ≤ rm2(rn))

6 Project Plans

A project plan is a planning instrument for structuring a collection of works to
be done and for stating the dependencies between and criteria of these works.
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6.1 Intrinsics

The intrinsics of a project plan is that it is a directed acyclic graph (a DAG)
of works to be done. The ordering of the DAG specifies that some works can be
done in parallel, whereas other works need to be done in sequence due to certain
dependencies. Such work dependencies may lie deeply in the nature of the works
and may not be possible to formalize explicitly. Certainly, project planning can
be much more than this. However, in this paper, we shall abstract from notions
like time, deadlines, milestones, follow-up specifications and other administrative
aspects. Such notions we consider additional and not intrinsic as we certainly
can have project plans without them.

We model a project plan (pp:PP) as a map from nodes (g:Γ ) to sets of nodes.
Nodes correspond to works, and the edges define a partial ordering of works.
The execution order follows the direction of the graph.

From a node in a project plan, we can observe the work to be performed; i.e.
the operation type (obs_On_Γ ) and the object aspects (obs_Xs_Γ ). We can
also observe the kinds of resources to be used (obs_Rn_Γ ). Here, we need two
definitions.

Definition 9 (Resource Usage). By a resource usage (re:Rn →m Q), we un-
derstand the resources which are consumed by an operation.

Definition 10 (Relevant Resource Usage). By a relevant resource usage,
we understand a resource usage which concerns a given object aspect.

From a node in a project plan, we can observe the resource usage of the work
to be done (obs_Rm_Γ ). Also, from a node and an object aspect of a project
plan, we can observe the relevant resource usage concerning the object aspect
(obs_rel_res). The relevant resource usage for a node in a project plan is given
by adding together (i.e. applying join; see Sect. 5.2) pair-wise on the resource
usage for each work concerning each object aspect involved in the operation.

A project plan is well-formed if and only if it satisfies the criteria of being a
directed, acyclic graph.

We define a partial ordering of project plans based on the idea that a project
plan is a sub-plan of another project plan if and only if its graph is a sub-
graph of the other project plan. Furthermore, for nodes existing in both graphs,
the resource usage of the sub-graph must be a sub-map (see Sect. 5.1). Thus,
specialization of project plans is based on the principle that restricting to a sub-
graph implies narrowing the scope of the total work. That is, the products or
services being the results of executing the project plan, are limited.

As for budgets, we assume that the same nodes may exist in different project
plans so project plans can be compared.

We define two operations meet and join for combining project plans. meet
takes two project plans and gives the combination which is a specialization of
both argument project plans. meet gives the project plan for which each node
is in both argument project plans. For each such node, the set of object aspects
is the intersection set and the resource usage maps the common resource types
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to the smallest quantity. join gives the project plan for which each node is in
either argument project plans. For each such node, the set of object aspects is
the union set and the resource usage maps resource types present in either nodes
to the largest quantity. join is included for completeness only and is not used
further in this paper. Due to the abstraction of using observer functions, the two
operations are defined implicitly.

6.2 Formalization

type
PP′ = Γ →m Γ -set,
PP = {|pp:PP′ • wf_PP(pp)|}
Γ ,

value
obs_On_Γ : Γ × PP ∼→ On

post obs_On_Γ (g,pp) as on
pre g ∈ dom pp,

obs_Xs_Γ : Γ × PP → X-set,
obs_Rn_Γ : Γ × PP → Rn-set,
obs_Rm_Γ : Γ × PP → (Rn →m Q),
obs_rel_res: Γ × X × PP → (Rn →m Q)

axiom ∀ g:Γ , pp:PP •

obs_Rn_Γ (g,pp) ≡ dom obs_Rm_Γ (g,pp),

obs_Rm_Γ (g,pp) ≡
meets({rm|rm:(Rn →m Q) •

(∃ x:X • x ∈ obs_Xs_Γ (g,pp) ⇒ rm=obs_rel_res(g,x,pp))})

value
wf_PP: PP → Bool
wf_PP(pp) ≡

(∀ gs:Γ -set • gs ∈ rng pp ⇒ gs ⊆ dom pp) ∧
(∀ g:Γ • g ∈ dom pp ⇒

g �∈ {g_succ|g_succ:Γ • is_before(g,g_succ)(pp)}),

is_before: Γ × Γ → PP → Bool
is_before(g,g′)(pp) ≡

g′ ∈ pp(g) ∨
(∃ g′′:Γ • g′′ ∈ pp(g) ∧ is_before(g′′,g′)(pp)),

meet: PP × PP → PP
meet(pp1, pp2) as pp

post pp = [ g →gs|g:Γ , gs:Γ -set •

g ∈ dom pp1 ∧ g ∈ dom pp2 ∧
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obs_Rm_Γ (g,pp) = meet(obs_Rm_Γ (g,pp1),
obs_Rm_Γ (g,pp2)) ],

join: PP × PP → PP
join(pp1, pp2) as pp

post (pp = [ g →gs|g:Γ , gs:Γ -set •

(g ∈ dom pp1 ∧ g �∈ dom pp2) ]
∧ obs_Rm_Γ (g,pp) = obs_Rm_Γ (g,pp1)) ∨

(pp = [ g →gs|g:Γ , gs:Γ -set •

(g �∈ dom pp1 ∧ g ∈ dom pp2) ]
∧ obs_Rm_Γ (g,pp) = obs_Rm_Γ (g,pp2)) ∨

(pp = [ g →gs|g:Γ , gs:Γ -set •

(g ∈ dom pp1 ∧ g ∈ dom pp2) ]
∧ obs_Rm_Γ (g,pp) = meet(obs_Rm_Γ (g,pp1),

obs_Rm_Γ (g,pp2))),

≤: PP × PP → Bool
pp1 ≤ pp2 •

dom(pp1) ⊆ dom(pp2) ∧
(∀ g:Γ • g ∈ dom pp1 ⇒

obs_Rm_Γ (g,pp1) ≤ obs_Rm_Γ (g,pp2))

Example 2. Figure 2 shows an overall project plan of a software development
project involving enhancements of server technology, a graphical user-interface
part (GUI) and web development.

In Ex. 2, the sub-plan concerned only with server enhancements, is a specializa-
tion of the whole project plan.

7 Mediating Ties

The mediating ties are the additional basic concepts necessary for establish-
ing an explicit concept relation between two domain concepts. Here, we need
to make a distinction between concepts that are necessary for establishing the
characteristics connection and the concepts considered important because they
are part of the context in which objects are understood and managed. E.g., it
may be claimed that in the area of building construction, the notion of a build-
ing model is essential for talking about construction budgets and construction
project plans. It is true that the notion is important as it defines the scope of
the budgets and the project plans. Hence, it is prerequisite knowledge for creat-
ing budgets and project plans. However, when considering the concept relation
between budgets and project plans isolated, it is irrelevant.

For relating the notions of budgets and project plans, we shall include the
mediating ties of work index and price index. A work index states the relation
between work to be performed and where the expenses for performing the work,
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Fig. 2. A software project plan

are designated in the budget. A price index states the costs of resources. These
two concepts appear to be necessary in order to establish a relation between
budgets and project plans.

7.1 Intrinsics

The intrinsics of a work index (wrkidx:WrkIdx) is that it is a map from works (an
operation type and an object aspect) to the budget figure designating the cost of
this work. The intrinsics of a price index (prcidx:PrcIdx) is that it is a map from
resource types to a unit cost function (ucm:UCF). A unit cost function maps
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quantities (q:Q) to their costs (c:C). We assume a distinction between budget
figures that have sub-figures and budget figures that do not. A work index only
considers budgets figures having no sub-figures.

We cannot, however, directly relate types of resources to budget figures as the
cost of the same type of resources may belong to different budget figures; e.g.
costs for painting different parts of a building. Neither can we relate operation
types directly to budget figures as the same type of operation may consume
resources belonging to different budget figures, when concerning different object
aspects. E.g. molding may be performed several distinct places for a building,
and the costs for these works may belong to different budget figures.

In the domain of project planning of construction projects, service-oriented
projects, etc., work indices are background (sometimes almost tacit) knowledge.
However, it often becomes explicit in contracts and other kinds of agreement or
planning documents. If we cannot express the intrinsics of such information, we
have no way of expressing how budgets and project plans relate. Work indices
are necessary in order to know what resources cost. Thus, the notion of work
index and price index are truly mediating ties required in the definition of a
characteristics connection between budgets and project plans.

7.2 Formalization

type
PrcIdx = Rn →m UCF,
UCF = Q →m C,
WrkIdx = (On × X) →m BF

A work index (wrkidx:WrkIdx) can be verified according to a budget (b:B).
All budget figures should be defined in the given work index. That is:

value
consistent: B × WrkIdx → Bool
consistent(b,wrkidx) ≡

(∀ bf:BF • bf ∈ obs_BFs_B(b) ⇒
is_sumfigures(bf,b) ∧ bf ∈ rng wrkidx)

Similar, we can verify a project plan according to a work index. For a project
plan, all observable works (an operation type and an object aspect) must be
present in the given work index. That is:

value
consistent: PP × WrkIdx → Bool
consistent(pp,wrkidx) ≡

(∀ g:Γ , on:On, x:X •

g ∈ dom pp ∧ on=obs_On_Γ (g) ∧ x ∈ obs_Xs_Γ (g) ⇒
(on,x) ∈ dom wrkidx)
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Price indices concern project plans. Consistency here means that the unit cost
function of the price index, is defined for all resource types referred to in the
project plan.

value
consistent: PP × PrcIdx → Bool
consistent(pp,prcidx) ≡

(∀ rn:Rn •

(∃ g:Γ • g ∈ dom pp ∧ rn ∈ obs_Rn_Γ (g,pp)) ⇒ rn ∈ dom prcidx)

We shall assume that the unit cost function is complete such that it (some
way or another) covers the quantities necessary. Also, we shall assume that any
quantity discount is handled by the price index itself.

8 The Characteristics Connection

In this section, we shall define the characteristics connection; i.e., a Galois con-
nection between budgets and project plans.

8.1 Identifying Abstract Properties

As a first step, we need to define the abstract properties of budgets. For doing
so, we need the following definition:

Definition 11 (Relevant Nodes). A node in a project plan is relevant with
respect to a given budget figure, if and only if there exists an object aspect of the
node such that the work given by the operation of the node and the object aspect,
is mapped to the budget figure in the work index.

Formally, we write:

value
rel_nds: PP × BF × WrkIdx → Γ -set
rel_nds(pp,bf,wrkidx) ≡

{g|g:Γ •

g ∈ dom pp ∧
(∃ x:X • x ∈ obs_Xs_Γ (g) ∧ bf=wrkidx(obs_On_Γ (g),x))}

The mapping from relevant nodes to relevant resource usage (see Sect. 10) is
defined as a variant of rel_nds:

value
rel_map: PP × BF × WrkIdx → (Γ →m (Rn →m Q))
rel_map(pp,bf,wrkidx) ≡

[ g → rm|g:Γ ,rm:(Rn →m Q) •

g ∈ rel_nds(pp,bf,wrkidx) ∧
(∃ x:X • x ∈ obs_Xs_Γ (g) ∧ bf=wrkidx(obs_On_Γ (g),x) ∧

rm=obs_rel_res(g,x)) ],
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8.2 Galois Predicate

We now define a predicate stating that a given budget and a given project
plan relate to each other. That is, the budget designates (at least) the necessary
expenses for executing the project plan; and the project plan is executable within
these restrictions. We call this predicate the Galois predicate, formally defined
as:

value
φ: B × PP → (PrcIdx × WrkIdx) ∼→ Bool
φ(b,pp)(prcidx,wrkidx) ≡

(∀ bf:BF • bf ∈ dom b ⇒
sumcost(rel_map(pp,bf,wrkidx),prcidx) ≤ cost(b(bf)) ∧
φ(subbudget(b(bf)),pp)(prcidx,wrkidx))

pre consistent(b,wrkidx) ∧ consistent(pp,wrkidx) ∧ consistent(pp,prcidx)

sumcost: (Γ →m (Rn →m Nat)) × PrcIdx ∼→ C
sumcost(gm,prcidx) ≡

if gm = [ ] then 0.0
else

let g:Γ • g ∈ dom gm in
sumcost′(gm(g),prcidx) + sumcost(gm \ {g},prcidx)

end
end

pre (∀ rn ∈ dom rm ⇒ rn ∈ dom prcidx),

sumcost′: (Rn →m Nat) × PrcIdx ∼→ C
sumcost′(rm,prcidx) ≡

if rm = [ ] then 0.0
else

let rn:Rn • rn ∈ dom rm in
prcidx(rn)(rm(rn)) + sumcost′(rm \ {rn},prcidx)

end
end

pre (∀ rn ∈ dom rm ⇒ rn ∈ dom prcidx)

The pre-condition is implied by the consistency predicates of φ. Note, that
the Galois predicate takes it origin in a quantification over budget figures. The
reason is due to the order in which budgets and project plans are created. That
is, usually it is the budget which restricts the project plans. Project plans are
made in a constructive way having budget knowledge in mind.

By means of the predicate φ, we can define the set of valid project plans, being
the project plans which each can be executed within a given budget; assuming
the mediating ties:



212 A. Eir

value
valid_plans: B × PrcIdx × WrkIdx ∼→ PP-infset
valid_plans(b,prcidx,wrkidx) ≡

{pp|pp:PP • φ(b,pp)(prcidx,wrkidx)}
pre consistent(b,wrkidx) ∧ consistent(pp,wrkidx) ∧ consistent(pp,prcidx)

Similarly, we can define the set of applicable budgets begin the budgets which
apply financially, given a project plan; assuming the mediating ties:

value
appl_budgets: PP × PrcIdx × WrkIdx ∼→ B-infset
appl_budgets(pp,prcidx,wrkidx) ≡

{b|b:B • φ(b,pp)(prcidx,wrkidx)}
pre consistent(b,wrkidx) ∧ consistent(pp,wrkidx) ∧ consistent(pp,prcidx)

Generalising these two functions, gives a pair of dual functions (F ,G) between
the power set of budgets and the power set of project plans; hence, between the
two concepts.

value
F : B-set → (PrcIdx × WrkIdx) ∼→ PP-infset
F(bs)(prcidx,wrkidx) ≡

{pp|pp:PP • (∀ b:B • b ∈ bs ⇒ φ(b,pp)(prcidx,wrkidx))}
pre consistent(b,wrkidx) ∧ consistent(pp,wrkidx) ∧ consistent(pp,prcidx),

G: PP-set → (PrcIdx × WrkIdx) ∼→ B-infset
G(pps)(prcidx,wrkidx) ≡

{b|b:B • (∀ pp:PP • pp ∈ pps ⇒ φ(b,pp)(prcidx,wrkidx))}
pre consistent(b,wrkidx) ∧ consistent(pp,wrkidx) ∧ consistent(pp,prcidx)

Theorem 2. The mapping pair (F ,G) is a Galois connection.

Proof. The proof is by inspection using Theorem 1. The functions F and G cor-
respond to ϕR and ψR, respectively. The binary relation R ⊆ M ×N is the binary
relation between budget values (b:B) and project plan values (pp:PP). The binary
relation is defined by the predicate φfp; assuming ∀-quantification over the me-
diating ties (prcidx:PrcIdx) and (wrkidx:WrkIdx). X and Y correspond to finite
sets of values having type B and type PP, respectively; x and y are values in
these sets. ��

The above shows that any predicate indicating a relation between objects of
two concepts, may be utilized in a definition of a Galois connection. What gives
substance to the Galois connection in this paper (and in the proposed method),
is expressed by the formal models of the two concepts.
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9 The Information Flow Connection

In this section, we shall define the information flow connection between the
classifications of budgets and project plans. As we consider budgets to precede
project plans in a flow of information, we require that changes done in a budget
are likewise reflected in a succeeding project plan.

Consider a budget and a project plan which satisfy the criteria of the charac-
terization connection. Changing the budget through specialization (see Sect. 4.2)
should imply that the corresponding project plan needs to be specialized likewise.
The reason is that when specializing the budget we are decreasing its financial
scope, meaning that the set of project plans executable within its restrictions,
cannot increase. Hence, the project plan of concern should be specialized in such
a way that it is still executable within the specialized version of the budget.
The implication is, however, not a bi-implication as specializing the project plan
does not put restrictions on the preceding budget. However, if the project plan
is generalized, it implies that the budget must be generalized likewise. Again,
this is not required in the other direction.

The above states that order must be preserved when specializing and gen-
eralizing budgets or project plans. This is a property of the definitions of the
partial orders and of the Galois predicate. We shall say that the connection is
order-preserving. If the above implication is satisfied, we shall say that we have
an information flow connection between the concepts. If this is not the case, it
is worth investigating the model as we may then have inconsistency in the way
specialization/generalization works together with the characteristics connection;
hence, inconsistency in the understanding and the model of the concept relation.

Theorem 3. The information flow connection between budgets and project plans
with respect to the Galois predicate, is order-preserving:

axiom
∀ b1, b2 : B, pp1, pp2 : PP •

b2 ≤ b1 ∧ φ(b1, pp1) ∧ φ(b2, pp2) ⇒ pp2 ≤ pp1

Proof. We can specialize a budget in two ways: (i) by reducing costs, and (ii) by
breaking down costs figures. We shall consider these cases separately.
Reducing costs:
Reducing a cost means subtracting this cost from the cost of the budget figure.
From the definition of φ, we have:

sumcost(rel_map(pp,bf,wrkidx),prcidx) ≤ cost(b(bf)) − c ≡
sumcost(rel_map(pp,bf,wrkidx),prcidx) + c ≤ cost(b(bf))

Let rm2 = sumcost(rel_map(pp2,bf,wrkidx),prcidx) + c
and let rm1 = sumcost(rel_map(pp1,bf,wrkidx),prcidx). As we cannot have neg-
ative costs, the only way of satisfying the above is for pp2 to designate less re-
sources than pp1. That is, pp2 must be a sub-graph of pp1 and the individual
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resource usage of nodes in pp2 cannot be larger than the individual resource us-
age of corresponding nodes in pp1. That is, pp2 ≤ pp1.
Breaking down cost figure:
This means that we compare a sub-budget b2x in the specialized budget b2 with
a corresponding sub-budget which is 	B in the budget b1. The cost of 	B is by
definition the largest cost. This means that for each budget figure bf2x in b2x, we
have: cost(b2x(bf2x)) ≤ 	B. This corresponds to a cost reduction of each figure
bf2x. Hence, the axiom holds; given the result of the above case. The cases of
generalization budgets, are dual to the above. ��

10 Relating the Two Connections

Even though the characteristics connection is monotonously decreasing and the
information flow connection is order-preserving, the two connections are inti-
mately connected. We shall argue this by taking origin in the characteristics
connection and show that this leads to the information flow connection.

Consider a set of budgets and a set of project plans. Assume that each project
plan is executable within the restrictions of each budget in the set. Thereby, it is
also executable within the restrictions of meet applied pair-wise on the budgets
in the set. This can easily be seen as follows. For budgets having distinct budget
figures satisfying all, is impossible. For budgets with overlapping budget figures,
satisfying these budgets means that the project plan should comply with only the
common budget figures; else it does not satisfy every budget. Hence, satisfying
all the budgets in the set, corresponds to satisfying meet applied pair-wise on the
budgets in the set. Budget meet is a specialization of both argument budgets;
in the above example, a specialization of each budget in the set.

According to the characteristics connection, extending the set of budgets can-
not extend the corresponding set of executable project plans. Hence, the special-
ization due to applying meet, cannot extend the corresponding set of executable
project plans. That is, meet applied pair-wise on a set of budgets is only satisfied
by a project plan which is a specialization of every project plan in the set. We can
see specialization of budgets as combining budgets and apply meet. Hence, spe-
cializing a budget means specialization of a corresponding project plan. Thereby,
we got from the characteristics connection to the information flow connection.

11 Conclusion

In this paper, we have proposed a modelling method for relating domain concepts
intensionally. The method suggests that domain concepts (formally modelled)
are related by two ordering connections. The former connection is called the
characteristics connection and is a Galois connection between objects of one
concept and objects of another concept. The connection adds intensional know-
ledge as it states how objects of one concept are part of the characteristics of
objects of another concept. The latter connection is called the information flow
connection and is an order-preserving connection between classifications of the
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objects of two concepts. The connection adds intensional knowledge as it de-
scribes what effect it has on objects of one kind to change objects of another.
We have defined the steps of the method and expressed the axioms of the two
connections.

In order to put the method to work, we have formally modelled the notions
of budgets and project plans. In addition, we have modelled the necessary medi-
ating ties which (as prescribed by the method) are the additional concepts that
are necessary in order to establish a formal relation between the two concepts
in question.

Furthermore, the two ordering connections have been defined for the models.
The characteristics connection between budgets and project plans, has been
defined such that project plans relate to budgets if and only if they are executable
within the financial restrictions of the budgets; and budgets relate to project
plans if and only if they (at least) designate the necessary expenses for executing
the project plans. We have shown that the connection is a Galois connection. The
information flow connection between budgets and project plans, has been defined
such that specialization of budgets cannot imply generalization (and vice versa)
of succeeding project plans if the characteristics connection is to be maintained.
Thereby, we have ensured that the concept relation between budgets and project
plans maintains the systematics of concretising information from budgeting to
project planning.

The axiom of the information flow connection — utilizing the characteristics
connection — shows that we are able to reason (to some extend) about the ra-
tionality of how the domain concepts have been modelled. Isolated, neither of
the two connection incorporate domain knowledge but are mathematical axioms
over domain models. This means that the predicate founding the Galois con-
nection might define other criteria for objects to relate. Similar considerations
may apply for the classification of objects. By putting the two connections to-
gether, however, we provide the kind of domain reason abilities that are often
missed when following an informal modelling approach. Future work is to focus
on strengthening the formal foundation on this area.
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Abstract. Electronic Government offers citizens and businesses a single
interface to all public services, implemented through cross-agency processes
and applications. This paper presents a fragment of a software infrastruc-
ture that enables agencies to collaborate in the delivery of public services,
responsible for automated, process-driven exchange of messages between
applications. In addition tobasicmessage exchange, the infrastructure sup-
ports high-level messaging through dynamically-enabled horizontal
(process independent) and vertical (process dependent) extensions. In par-
ticular, the paper presents a fragment of a semantic model to formalize the
process of specifying and implementing messaging extensions, and demon-
strates a prototype implementation of this model to underpin a reliable
delivery of government services.

Keywords: Electronic Government, Asynchronous Messaging, Messag-
ing Middleware, Domain Specific Languages, Software Specification.

1 Introduction

Responding to public demands, many governments around the world are en-
gaged in organizational transformation enabled by Electronic Government. Tra-
ditionally, the main objective underpinning such efforts has been to publish
government information online and to make public services available through
agency websites. However, with many initiatives restricting themselves to follow
hierarchical government structures, it was realized that technology-enabled im-
provements which are focusing on individual agencies are of limited value [8]. As
a result, the emphasis is currently shifting towards enabling collaboration and
networking between agencies, focusing on the delivery of seamless services.

Seamless services allow citizens or businesses to specify a certain need towards
their government, in terms of a life event or a business episode, and obtain a
service to fulfill this need without knowing which agency or level of government
should be contacted. Usually, several agencies at different levels of the govern-
ment may be involved without a citizen being even aware of this. The delivery
of such services is based on collaborations between organizations from various
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levels and functional areas of government and between public and private sec-
tors. However, this implementation faces various legal, budgetary, cultural and
- the focus of this work - organizational and technical challenges. For instance,
enabling collaborative relations between agencies at different level of the govern-
ment, between public and private sectors, and between different administrations
is a serious organizational challenge. The resulting technical challenges include
[6]: providing one-stop access to public services, coordinating processes that de-
liver such services across agency boundaries, enforcing policies that govern how
such services are delivered, integrating different agency systems that partici-
pate in various process steps, ensuring that such systems can interoperate both
technically and semantically, and delivering services through multiple channels.

While existing Message-Oriented Middleware (MOM) [2] could provide par-
tial solutions to many technical challenges, three issues make the application of
MOMs to Electronic Government less than ideal: reliability, extensibility and
genericity. First, in the absence of formal foundations that allow the underling
messaging services to be rigorously developed, the reliability of electronic public
services and the reputation of the providers of such services (governments) may
be affected. Second, MOMs typically offer a fixed set of services, such as logging
or validation of messages, while government applications face complex, evolving
communication needs. Third, generic messaging do not address the problems
peculiar to governments, such as accumulation of legacy systems, reliance on
regulations and policies to drive operational behaviour, high rate of changes to
such regulations and policies, and collaboration across agency boundaries.

The aim of this work is to build a foundation for programmable messaging, es-
pecially in the context of the delivery of seamless public services. A formal model
is developed to show how messaging services can be described at different levels
of abstraction, from specifications that capture observable effects of messag-
ing services, through design of communication structures to enable such effects,
to implementation of messaging behaviours along such structures. The under-
ling operational model is based on asynchronous exchange of messages between
registered members along dynamically created and subscribed communication
channels. On top of this core messaging, various extensions can be specified and
implemented, including extensions related to particular channels (horizontal)
and extensions related to particular processes (vertical). Just like channel-based
communication structures upon which they are build, the extensions can evolve
over time. The concept of programmable messaging for Electronic Government
was first introducted in [6] and the implementation was presented in [7].

The rest of the paper is organized as follows. Section 2 contains a brief intro-
duction to Electronic Government. Section 3 presents an example of a typical
Electronic Government Service - issuing business licenses - and describes the
communication requirements raised by this service. Section 4 presents a formal
foundation for the messaging infrastructure to fulfill such requirements, com-
prising models to express messaging behaviours at various levels of abstraction.
Section 5 presents the application of the infrastructure to Electronic Government
practice and justifies how the infrastructure can fulfill the requirements for the
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licensing service defined in Section 3. Section 6 describes the development and
operations of a prototype software infrastructure that implements the models.
Section 7 presents related work and explains the contribution of this work. The
final Section 8 presents conclusions and draws some directions for future work.

2 Electronic Government

Electronic Government refers to the use of ICT, particularly the Internet, as
a tool to achieve better government [8]. In particular, Electronic Government
aims to: provide customer-focused, efficient and reliable public services deliv-
ered through a variety of traditional and electronic channels; engage citizens
in two-ways interactions with their government; support internal government
operations; and enable one-stop access to all public services.

Based on the extent of ICT support for the underlying government processes,
Electronic Government enables the delivery of public services at different levels
of automation. A model by UNPAN - United Nations Public Administration
Network identifies the following five levels [18]:

1. Emerging - The entry level for online presence, it involves publishing static
information on agency websites including information about public services.

2. Enhanced - Expanded on-line presence, with regular content updates, search
services, and periodicals - publications, legislations and newsletters.

3. Interactive - Enabling two-way interaction - e-mail contacts with public of-
ficers, download and upload of forms, possibility to search databases, etc.

4. Transactional - Complete and secure transactions can be executed through
the website in order to: renew passports, apply for licenses, pay taxes, etc. A
user is able to complete the whole process, including payments electronically.

5. Seamless - Related services are offered across agency boundaries responding
to the needs of citizens (life events) or businesses (business episodes).

The UNPAN and other service maturity models [8][23] all recognize seamless
services as the highest level of service maturity. At this level, agencies share the
data provided by customers and cooperate in delivering public services through
the integration of operations across agency boundaries. For example, Section 3
presents a concrete business process for citizens to apply for business licenses,
with several agencies collaborating in the delivery of this service.

3 Example - Electronic License Service

Local governments LG are responsible for issuing various types of business li-
censes: for selling goods, for establishing food and beverage activities, for ad-
vertising in public places, and others. LG can offer these licensing services by
requesting government agencies to collaborate in the execution of the under-
lying business process: carry out inspections, provide technical opinions, and
check conformance to the relevant regulations. For instance, here is a five-stage
process to issue a license for establishing a food and beverage business, based on
the service provided by Macao Government [12]:
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1. Submission - This phase involves: submitting an application form and sup-
porting documents by the applicant through the government portal, and
forwarding the request to the licensing agency. The submission of support-
ing documents may involve several sessions. Supporting documents may in-
clude: location plans; technical plans for water, sewage and fire prevention;
declaration of responsibility by project engineer; and the insurance policy.

2. Completeness Assessment - This phase comprises: checking completeness of
the application form and supporting documents, and notifying the applicant
about missing documents, if any.

3. Evaluation - This phase involves: requesting an opinion from the Labour
Bureau LE about labour situation; requesting an opinion about infrastructure
from the Public Works Bureau PW; requesting building inspection to check
the state of fire prevention from the Fire Brigade FB; requesting an opinion
about heritage preservation from the Cultural Bureau CA; and requesting an
inspection to check sanitary conditions from the Health Bureau HB. Once
the requests are sent, the process waits to receive all replies. The replies
may include requests to coordinate inspections onsite with the applicant,
particularly from FB and HB. LG follows up by: coordinating inspection dates
and notifying FB and HB about the agreed dates. After both inspections are
carried out, LG collects the remaining opinions from FB and HB.

4. Decision-making - This phase involves deciding by the agency authority
about issuing or rejecting the application based on the opinions obtained.

5. Follow-up - The final phase includes notifying the applicant about the deci-
sion and upon positive outcome: issuing the license; informing the applicant
about collection of the license; and providing the license to the applicant.

Figure 1 depicts the overall process, as described above. The process also
illustrates how the applicant can track the progress of its application. Each time
a tracking request is issued, LG notifies the applicant about the current status.

4 Programmable Messaging - Foundations

This section presents a fragment of a foundation for the software infrastructure
enabling programmable messaging for Electronic Government. The foundation
comprises models at various levels of abstraction, from state and state-changing
operations, through messages, members and channels, to message exchange car-
ried out by members over channels.

The rest of the section is organized as follows. Section 4.1 presents a model
to underpin subsequent behavioural models, leading to the definition of a state.
Section 4.2 presents a set of generic state-changing operations, including expres-
sions to represent such operations syntactically, and their semantics. Section 4.3
defines the structure of messages using the state model in Section 4.1, while Sec-
tions 4.4 and 4.5 define member- and channel-related operations using the syntax
of state-changing operations in Section 4.2. The final Section 4.6 defines the oper-
ations for members to exchange messages along channels. The foundation is still
under development, and the current section represents work in progress.
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Fig. 1. Licensing food and beverage establishments - business process

4.1 State

The data model described here is the basis for expressing messaging behaviours
in subsequent sections. Essentially, the model defines the notion of a state - a set
of variables belonging to different members, and behavior models capture state
changes caused by sending and receipt of messages. Variables and messages have
the same internal structure - a set of parts of different categories, and a linear
ordering on the parts of the same category. A type hierarchy is also defined to
determine which parts are optional and which are mandatory inside a variable or
a message, with subtyping relation defined between pairs of types. The top-level
type requires all structures to contain three mandatory parts: an identifier to
uniquely represent a structure, a type to determine the required composition of
a structure, and a member to represent the owner of a variable or the sender
of a message. Every part has a category and a value, with pairs of symmetric
functions provided for each category to construct and deconstruct part values.
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Formally, we define three abstract types to represent: identifiers Id, values
Value and types Type, with initial value init, top-level type top and a subtype
relation sub defined between pairs of types. Several axioms are also defined to
constrain these values: sub is irreflexive, symmetric and transitive, and every
type is a subtype of top, except itself. Here is the self-explanatory model ex-
pressed in RSL - the RAISE Specification Language [21][22]:

type
Id, Value, Type

value
init: Value,
top: Type,
sub: Type × Type → Bool

axiom
(∀ t: Type • t �= top ⇒ sub(t, top)),
(∀ t, t′, t′′: Type •

∼sub(t, t) ∧
sub(t, t′) ∧ sub(t′, t) ⇒ t = t′ ∧
sub(t, t′) ∧ sub(t′, t′′) ⇒ sub(t, t′′))

Identifiers, types, messages, etc. can represent categories of parts, and can be
encoded as values, and back from values to original types. Here is the Cat type
with three values and a pair of symmetric functions for one of them:

type
Cat ==

idCat |
typeCat |
mesCat | ...

value
type2val: Type → Value,

val2type: Value
∼→ Type

axiom
(∀ t: Type • val2type(type2val(t)) = t)

Lets define a type NatI of natural numbers with infinity, a type Cats of maps
from Cat to NatI, and a function ≤ (is smaller) that compares two maps if every
category in the first is also in the second, and the corresponding values in the
first map are not greater than in the second; inf is greater than any number. We
also define functions must and may to return mandatory and optional categories
for a given type, such as: n(0) is not in the range of may, inf is not in the range
of must, must is smaller than may for any type, may is smaller for a subtype than
for a supertype, and must is smaller for a supertype than for a subtype.

type
NatI == inf | n(val: Nat),
Cats = Cat →m NatI

value
must, may: Type → Cats

axiom
(∀ t: Type • must(t) ≤ may(t) ∧

n(0) �∈ rng may(t) ∧ inf �∈ rng must(t)
),
(∀ t, t′: Type • sub(t, t′) ⇒

may(t) ≤ may(t′) ∧ must(t′) ≤ must(t)
)

value
≤: Cats × Cats → Bool
cs1 ≤ cs2 ≡

dom cs1 ⊆ dom cs2 ∧
(∀ c: Cat • c ∈ dom cs1 ⇒

case (cs1(c), cs2(c)) of
(inf, ) → cs2(c) = inf,
( , inf) → true,
(n(n1), n(n2)) → n1 ≤ n2

end
)

The top type permits all categories in its may map, no number restriction
imposed, and requires two must categories: typeCat - the required type of a
structure and idCat - the identifier. These are mandatory for all types.
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axiom
must(top) = [ typeCat �→ n(1), idCat �→ n(1) ],
may(top) = [ c �→ inf | c: Cat • true ]

Part is an abstract type with functions cat and val to return the category
and the value of a part. Parts contains lists of parts of the same category.

type
Part

value
cat: Part → Cat,
val: Part → Value

type
Parts = {| ps: Part∗ • iswf(ps) |}

value
iswf: Parts′ → Bool
iswf(ps) ≡

(∀ p1, p2: Part •

p1 ∈ elems ps ∧ p2 ∈ elems ps ⇒ cat(p1) = cat(p2))

A structure Struct is a map from the type Cat to Parts. A structure is well-
formed if and only if every part in the list has the category equal to the domain
element, contains a part of the category typeCat and is valid with respect to this
type: contains all optional categories and the number of parts for every category
is between the minimum and the maximum determimed by this type.

type
Struct′ = Cat →m Parts,
Struct = {| s: Struct′ • iswf(s) |}

value
iswf: Struct′ → Bool
iswf(s) ≡ typeCat ∈ dom s ∧ s(typeCat) �= 〈〉 ∧ isValid(s, sType(s)) ∧

(∀ c: Cat, p: Part • c ∈ dom s ∧ p ∈ elems s(c) ⇒ cat(p) = c),

sType: Struct′ ∼→ Type
sType(s) ≡ val2type(val(s(typeCat)(1)))

pre typeCat ∈ dom s ∧ s(typeCat) �= 〈〉
isValid: Struct × Type → Bool
isValid(s, t) ≡ dom s = dom may(t) ∧

(∀ c: Cat • c ∈ dom must(t) ⇒ len s(c) ≥ val(must(t)(c))) ∧
(∀ c: Cat • c ∈ dom s ⇒ may(t)(c) = inf ∨ len s(c) ≤ val(may(t)(c)))

Var is a structure that complies with the type vType, a subtype of top with an
additional id-category part to idenfity the owner of a variable. Finally, a state
is a map from identifiers to variables such that every variable has the value of
the first id-category part equal to the values of the domain element.

type
Var = {| s: Struct • sub(sType(s), vType) |},
State′ = Id →m Var,
State = {| s: State′ • iswf(s) |}

value
vType: Type •

must(vType) = must(top) † [ idCat �→ n(2) ] ∧ may(vType) = may(top),
iswf: State′ → Bool
iswf(s) ≡ (∀ id: Id • id ∈ dom s ⇒ val2id(val(s(id)(idCat)(1))) = id)
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4.2 State Changes

The initial state has no variables:

value
init: State = [ ]

A state is subsequently build and modified through a series of basic operations
to declare, undeclare and modify variables, as well as operations obtained from
them by sequencing, concurrency, choice, etc. The type StateX represents such
state-changing expressions and the function exec checks if a pair of states -
initial and final state - are a possible effect of executing a given expression.

type
StateX ==

decl(StructX) | undecl(Id) | change(Id, StructX) |
seq(StateX, StateX) | con(StateX, StateX) | test(BoolX, StateX, StateX)

value
exec: StateX × State × State

∼→ Bool
exec(sx, s, s′) ≡

case sx of
decl(tx) → decl(eval(tx, s), s, s′),
undecl(id) → undecl(id, s, s′),
change(id,tx) → change(id, eval(tx, s), s, s′),
seq(sx1, sx2) → (∃ s′′: State • exec(sx1, s, s′′) ∧ exec(sx2, s′′, s′)),
con(sx1, sx2) → exec(sx1, s, s′) ∧ exec(sx2, s, s′),
test(px, sx1, sx2) → if eval(px, s) then exec(sx1, s, s′) else exec(sx2, s, s′) end

end pre iswf(sx, s)

For instance, here is a function decl to declare a variable. Its pre-condition
canDecl checks if a given structure is a variable and its identifier is new.

value
decl: Struct × State × State

∼→ Bool
decl(v, s, s′) ≡ s′ = s ∪ [ val2id(val(v(idCat)(1))) �→ v ] pre eval(canDecl(v), s),
canDecl: Struct → BoolX
canDecl(v) ≡ and(hasType(v, vType), not(hasVar(v)))

StateX depends on external expressions like StructX or BoolX. Here is the
definition of StructX with operations to get, make and modify structures by
adding or deleting their parts (all parts with a given category and value).

type
StructX ==

get(Id) |
make(Struct) |
add(PartX, StructX) |
del(Cat, ValueX, StructX)

value
eval: StructX × State

∼→ Struct
eval(sx, s) ≡

case sx of
get(id) → s(id),
make(st) → make(st),
add(px, sx) → add(eval(px, s), eval(sx, s), s),
del(c, vx, sx) → del(c, eval(vx, s), eval(sx, s), s)

end pre iswf(sx, s)
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For example, here is a function to add a part to a structure, by appending
it at the end of its category list. Like canDecl, canAdd is expressed through a
generated boolean expression BoolX, evaluated on the current state.

value
add: Part × Struct × State

∼→ Struct
add(p, st, s) ≡ st † [ cat(p) �→ st(cat(p)) � 〈p〉 ] pre eval(canAdd(p, st), s),
canAdd: Part × Struct → BoolX
canAdd(p, st) ≡ and(

isMay(cat(p),make(st)),
isless(parts(make(st),cat(p)), may(make(st),cat(p))))

Similarly, we define types for other expressions. PartX includes operators to:
make a part from a category and a value expression, get a part from a structure
given a category and a number expression, and change the part value for given
value and part expressions. ValueX includes operators to: make values, get values
from parts, and obtain values from types, identifiers or messages. NatX includes
operators to: make numbers, get numbers from the state - number of variables,
number of categories in a structure, number of parts with a given category and
value, number of mandatory and permissible parts - add them, etc.

type
PartX ==

make(Cat, ValueX) |
get(StructX, Cat, NatX) |
change(ValueX, PartX)

type
ValueX ==

make(Value) |
get(PartX) |
id2val(Id) |
type2val(Type) |
mes2val(Mes)

type
NatX ==

make(NatI) | vars |
cats(StructX) |
parts(StructX, Cat) |
may(StructX, Cat) |
must(StructX, Cat) |
add(NatX, NatX)

Finally, the BoolX type contains a set of operators to make and combine
boolean values and to check: if a structure exists in the state; if a structure
contains parts of a given category; if a structure has a given type; if a given part is
contained in a structure; if the part contained in a structure has a given category
or value; if a value expression equals a given value; if a number expression equals
a given number; if one number expression is less than another; if one type is
a subtype of another; etc. We also present the signatures of eval functions for
PartX, ValueX, NatX and BoolX expressions.

type
BoolX ==

tt | not(BoolX) | and(BoolX, BoolX)
or(BoolX, BoolX)| hasParts(Cat, StructX) |
hasVar(StructX) | hasType(StructX, Type) |
hasPart(PartX, StructX) | hascVar(Id) |
hasCat(PartX, Cat) | hasVal(PartX, ValueX) |
isMay(Cat, StructX) | isMust(Cat, StructX) |
equal(ValueX, Value) | equal(NatX, NatI) |
isless(NatX, NatX) | issub(Type, Type)

value
eval: PartX × State

∼→ Part,

eval: ValueX × State
∼→ Value,

eval: NatX × State
∼→ NatI,

eval: BoolX × State
∼→ Bool
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4.3 Messages

Just like a variable which is a structure valid with respect to the vType type,
a message is a structure which is valid with respect to the mType type. mType
requires all messages to contain at least one type-category part and at least three
id-category parts: message identifier, sender identifier and variable identifier. The
following type Mes represents all messages.

type
Mes = {| s: Struct • sub(sType(s), mType) |}

value
mType: Type • may(mType) = may(top) ∧

must(mType) = must(top) † [ idCat �→ n(3) ]

The third required id-category part in a message identifies a variable that
contains the identities of all recipients of the message. These address variables
must have the type iType which requires precisely one type-category part and at
least two id-category parts: variable identifier, owner identifier and any number,
including zero, of member identifiers (recipients). If this number is zero, only the
owner (sender) will receive the message. In addition to iType, we also define the
type bType that requires zero or more parts of the mesCat category. Variables
of this type will hold lists of messages send and received by members.

value
iType: Type • may(iType) = [ typeCat �→ n(1), idCat �→ inf ] ...
bType: Type • may(bType) = [ typeCat �→ n(1), idCat �→ n(2), mesCat �→ inf ] ...

4.4 Members

Members are simply identified as the values of the type Id. Every variable in the
state must belong to exactly one member, identified through the value of the
second mandatory id-category part. A distinguished member, responsible among
others for registration of other members, is admin. admin owns the variable reg
that contains identities of all registered members. reg has the type iType just
like address variables. In addition, every member must have two bType-variables
to contain lists of incoming and outgoing messages for this member. Functions
inb and outb return the identifiers of these two message variables, uniquely
defined for every member identifier.

value
admin, reg: Id,
reg: Var •

val2id(val(reg(idCat)(1))) = reg ∧
val2id(val(reg(idCat)(2))) = admin ∧
sub(sType(reg), iType)

value
inb, outb: Id → Id

axiom
(∀ id: Id • inb(id) �= outb(id)) ∧
(∀ id, id′: Id • id �= id′ ⇒

inb(id) �= inb(id′) ∧
outb(id) �= outb(id′)

) ...



Programmable Messaging for Electronic Government 227

Below we define two functions to register and unregister members. Both func-
tions generate StateX expressions, with preconditions expressed at BoolX ex-
pressions, according to the definitions in Section 4.2. The execution of both
expressions is carried out through the corresponding eval functions.

1. register - The function carries out three operations concurrently: adding
a part to the reg variable to identify a new member and declaring two
bType-type variables - inbox and outbox - for the member. The precondition
requires that the identifier of the new member does not belong to reg.

value
register: Id × State

∼→ StateX
register(id, s) ≡

let
x1 = make(new(inb(id), bType, id)),
x2 = make(new(outb(id), bType, id)),
x3 = change(id, add(make(idCat, id2val(id)), get(reg)))

in con(x3, con(decl(x1), decl(x2))) end pre eval(canRegister(id), s),
canRegister: Id → BoolX
canRegister(id) ≡ not(hasPart(make(idCat, id2val(id)), get(reg)))

2. unregister - The function carries out three operations concurrently: unde-
clares two bType-type variables of the unregistered member, and deletes the
member’s id-category part from the reg variable. The precondition checks
that the reg variable contains the part that identifies the member, and the
two bType-type variables for the member exist in the state.

value
unregister: Id × State

∼→ StateX
unregister(id, s) ≡

let
x1 = con(undecl(inb(id)), undecl(outb(id))),
x2 = change(id, del(idCat, id2val(id), get(reg)))

in con(x1, x2) end pre eval(canUnregister(id), s),
canUnregister: Id → BoolX
canUnregister(id) ≡

let
x1 = hasPart(make(idCat, id2val(id)), get(reg)),
x2 = and(hasVar(get(inb(id))), hasVar(get(outb(id))))

in and(x1, x2) end

4.5 Channels

Channels are represented as variables of the iType type. That is, every channel
variable contains identities of all members who are subscribers to this channel.
The owner of the channel variable is also the owner of the channel itself, respon-
sible for keeping the record of all subscribers. Below we define four functions to
create and destroy channels, and subscribe and unsubscribe to channels.
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3. create - The function takes two identifiers and declares a new channel vari-
able (type iType) using the first identifier, to be owned by the member rep-
resented by the second identifier. The precondition requires that the member
is registered and the variable identifier does not exist in the state.

value
create: Id × Id × State

∼→ StateX
create(cid, mid, s) ≡

let x1 = make(new(cid, iType, mid)) in decl(x1) end
pre eval(canCreate(cid, mid), s),

canCreate: Id × Id → BoolX
canCreate(chid, id) ≡

let x = hasPart(make(idCat, id2val(id)), get(reg))
in and(x, not(hasVar(get(chid)))) end

4. destroy - The function takes two identifiers as arguments and undeclares
the variable represented by the first identifier. The precondition is that the
variable exists in the state, that the second identifier represents the owner
of the variable, and that the variable contains only two id-category parts -
its own identifier and the owner identifier.

value
destroy: Id × Id × State

∼→ StateX
destroy(cid, mid, s) ≡

undecl(cid) pre eval(canDestroy(cid, mid), s),
canDestroy: Id × Id → BoolX
canDestroy(cid, mid) ≡

let
x1 = hasVar(get(cid)),
x2 = equal(parts(get(cid), idCat), n(2)),
x3 = hasVal(get(get(cid), idCat, make(n(2))), id2val(mid))

in and(x1, and(x2, x3)) end

5. subscribe - The function takes two identifiers - channel variable and mem-
ber subscriber. It creates an id-category part with the new subscriber value,
and adds this part to the channel variable. The precondition is that sub-
scriber and channel exists, and channel variable does not contain such part.

value
subscribe: Id × Id × State

∼→ StateX
subscribe(cid, mid, s) ≡

change(cid, add(make(idCat, id2val(mid)), get(cid)))
pre eval(canSubscribe(cid, mid), s),

canSubscribe: Id × Id → BoolX
canSubscribe(cid, mid) ≡

let
x1 = hasVar(get(mid)),
x2 = hasVar(get(cid)),
x3 = hasPart(make(idCat, id2val(mid)), get(cid))

in and(x1, and(x2, not(x3))) end
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6. unsubscribe - The function takes two identifiers as arguments - a channel
variable and a subscriber to this channel, and removes the id-category part
with the subscriber value from the variable. The precondition says that the
variable exists in the state and it contains a part representing the subscriber.

value
unsubscribe: Id × Id × State

∼→ StateX
unsubscribe(cid, mid, s) ≡

change(cid, del(idCat, id2val(mid), get(cid)))
pre eval(canUnsubscribe(cid, mid), s),

canUnsubscribe: Id × Id → BoolX
canUnsubscribe(cid, mid) ≡

let
x1 = hasVar(get(cid)),
x2 = hasPart(make(idCat, id2val(mid)), get(cid))

in and(x1, x2) end

4.6 Messaging

Messaging takes place by registered members exchanging messages along dy-
namically created and subscribed channels. Below we define three functions to
send messages - a message is put into the inbox of the sender, receive message -
a message is removed from the outbox of the recipient, and deliver messages - a
message is moved from the inbox of the sender to the outbox of all recipients.

7. send - The function takes two arguments - the identifier of the sender and
the message to be sent, and adds the message to the inbox of the sender. To
this end, the message is first converted into a value throught the mes2value
function, then this value is inserted into the inbox variable as a new mesCat-
category part. The precondition check that the sender is properly recorded
inside the message structure (equals to the value of the second id-category
part), that the address variable (identified by the third id-category part)
exists in the state, and that the sender of the message is identified in one of
this variable’s id-category parts.

value
send: Id × Mes × State

∼→ StateX
send(mid, m, s) ≡

let x = make(mesCat, mes2val(m))
in change(inb(mid), add(x, get(inb(mid)))) end
pre eval(canSend(mid, m), s),

canSend: Id × Mes → BoolX
canSend(mid, m) ≡

let cid = val2id(val(m(idCat)(3)))
in and(hasVar(get(cid)), hasPart(make(idCat, id2val(mid)), get(cid))) end
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8. receive - The function takes the identifier of the recipient as an argument
and returns the message. It extracts the first message from the outbox of the
recipient, applying val2mes and make to convert the value into a message and
then into a structure. Subsequently, it removes the message from the outbox.
The precondition states that the recipient exists and its outbox variable is
non-empty.

receive: Id × State
∼→ StateX × StructX

receive(mid, s) as (s′, m) post
let mp = get(get(outb(mid)), mesCat, make(n(1)))
in m = make(val2mes(val(eval(mp, s)))) ∧

s′ = change(outb(mid), del(mesCat, get(mp), get(outb(mid)))) end
pre eval(canReceive(mid), s),

canReceive: Id → BoolX
canReceive(id) ≡

let
x1 = hasPart(make(idCat, id2val(id)), get(reg)),
x2 = hasParts(mesCat, get(outb(id)))

in and(x1, x2) end

9. deliver - The function takes two arguments - the identifier of the sender
and the message to be delivered. It removes the message from the inbox of
the sender, and it adds the message to the outbox of the recipients. Func-
tion recipients provides a list of member identifiers who must receive the
message on a given state. Recipients are calculated from the idCat parts of
the variable representing the channel. In the current version of the model,
we assume the list of recipients comprises only two members id1 and id2.
For adding the message into the outbox variables of the recipients, first the
message is converted into a value throught the mes2value function, then
this value is inserted as a new mesCat-category part. Function deliver is a
total function modeling internal behaviour of the messaging infrastructure.

value
deliver: Id × Mes × StateX → StateX
deliver(id, m, s) ≡

let
〈id1, id2〉 = recipients(m, s),
x = make(mesCat, mes2val(m)),
x1 = change(inb(id), del(mesCat, mes2val(m), get(inb(id)))),
x2 = change(outb(id1), add(x, get(outb(id1)))),
x3 = change(outb(id2), add(x, get(outb(id2))))

in con(x1, con(x2, x3))
end

In a future version of the model we plan to include a recursive function on
StateX providing an iterative behaviour. In particular, for delivering mes-
sages it will iterate over the list of recipients.
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5 Example Revisited - Electronic License Service

The business process for licensing food and beverage establishments, described
in Section 3, can be supported by the messaging services described in Section
4. However, basic messaging is insufficient to answer some concrete needs of
the process, such as Authentication of members or Auditing, Validation,
Encryption and Decryption of messages. Such needs can be addressed through
so-called horizontal extensions, typically related to concrete channels. In ad-
dition, specific requirements of the business process can also be supported as
so-called vertical extensions. For instance, assuring that the sequence of mes-
sages exchanged fulfills the definition of the process (Process-Enforcement),
that the status of the process can be tracked (Tracking), that communication
structures can be combined (Channel-Composition).

Figure 2 depicts the communication structures and some additional messag-
ing services supporting the business process from Section 3. The graphical no-
tation can be explained as follows: members are represented by ellipses labeled
with member names; channels are represented as rectangles labeled with channel
names; a solid line connects a channel with its owner; a dashed line connects a
channel with its subscriber. Horizontal extensions applied to channels are shown
within the box of the channel, identified with a special character: Logging by
α, Validation by ν, Encryption/Decryption by ε, and Authentication by σ.
Vertical extensions are typically build using additional members and channels,
all shown with different background colours.

Fig. 2. Licensing food and beverage establishments - communication structure
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Here is how messaging services support different stages of the process:
1. Submission - One member is registered for the one-stop portal (Portal) and

one for the front-office application providing services through it (FO). The
portal creates a channel (c1) to communicate with FO, and FO subscribes to
it. Given this structure, each service request submitted through the portal
is sent through the channel to the front-office application. The following
horizontal extensions can be provided for the messages exchanged through
c1: Logging to assess the number of applications submitted, Validation to
assure that the front-office receives valid data, and Encryption/Decryption
to protect the data transmitted through the net.

2. Completeness Assessment - The only communication required is notifica-
tion to applicants in the case of incomplete documentation. Once complete,
the application is forwarded to the back-office application. The FO member
creates the channel c2 for this purpose, and the back-office application regis-
ters a member BO who subscribes to this channel. In addition, the Auditing
service can be provided for c2 to keep track of the applications sent.

3. Evaluation - At this phase, collaborations from other agencies are required.
Each agency registers a member - PW, LE, CA, FB and HD, and LG representing
the licensing agency. BO creates the channels: c4 to communicate with PW; c5
to ask opinions from LE, CA, FB and HD; c6 to communicate with LG; and c7
to notify FB and HD about the inspection dates confirmed by the applicant
and to receive the inspection results. PW subscribes to c4; LE, CA, FB and
HD subscribe to c5; LG to c6; and FB and HD to c7. In addition, BO creates
the channel c3 to communicate the status of the process to Portal, who
subscribes to it. The Authentication extension is enabled for c3 to assure
that the messages are sent by the BO application. The information sent by
this channel is used when applicants track their applications.

4. Decision-making - No messaging service is required at this stage.
5. Follow-up - Notifications to applicants are the only communications taking

place. They are provided by the infrastructure.

In order to support the correct execution of the process, the following ver-
tical extensions are provided: Process-Enforcement to assure the sequence of
messages exchanged through channels c4 to c7 conforms to the business process;
Tracking, over the same channels, to enable BO to track the process execution; and
Channel-Composition to link c6 and c7. By enabling Process-Enforcement, a
new member process is registered who creates the channel p-4567. All channel
owners subscribe to p-4567 to forward the messages received through their chan-
nels to process. Thus, process can control if the messages are sent in the correct
sequence.By enabling Tracking, a newmembertrack is registeredwho creates the
channelt-4567. Thismember is subscribed to all tracked channels c4 throughc7 to
receive a copy of all messages exchanged through them, and therefore enable track-
ing. The extension is configured by specifying for each message exchanged what
is the corresponding business step. By enabling Channel-Composition, member
compose is registered and subscribed to c6 and c7, responsible for forwarding all
messages from c6 to c7.
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6 Programmable Messaging - Software

The concept of programmable messaging introduced in this paper was imple-
mented into a prototype called G-EEG - Government-Enterprise Ecosystem Gate-
way. Serving research and validation purposes, the development of G-EEG followed
a rigorous process relying on UML to express various development artifacts. For
instance, we used domain class diagrams to describe and relate domain concepts,
use case diagrams to depict functional requirements, and design class diagrams to
elaborate on the components of the system and their relationships. Figure 3 below
depicts the G-EEG design class diagram.

Fig. 3. G-EEG Design Class Diagram

The diagram shows a distributed architecture with four components in the
business layer - G-EEG-Admin, G-EEG-Core, G-EEG-Extend and G-EEG-Schemas,
and one in the persistence layer - G-EEG-Database, as follows:

1. G-EEG-Admin enables message exchange with the administrator.
2. G-EEG-Core provides basic messaging services. The component relies on the

interface I-Listener implemented by external applications to receive mes-
sages and send acknowledgements, and offers three interfaces to such appli-
cations: I-Visitor to register members and recover member structures after
restarting, I-Exchange to send and receive messages, and I-Configure to
create and modify communication structures. The following classes are in-
cluded in G-EEG-Core: Visitor and Member to implement the corresponding
interfaces; Owned and Subscribed to implement operations defined in the
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abstract class Channel; Message to compose and decompose messages; and
ServerSocket and ClientSocket to send and receive messages by members.

3. G-EEG-Extend provides extended messaging services through the interfaces
I-Vertical, I-Member and I-Channel to enable, configure, query and dis-
able the three types of extensions. The component contains the following
classes: VerticalManager, MemberManager and ChannelManager to man-
age these types of extensions, and abstract classes VerticalExtension,
ChannelExtension and MemberExtension to define abstract operations that
each extension must implement. Three channel-oriented extensions are cur-
rently implemented: Auditing, Transformation and Validation.

4. G-EEG-Schemas contains XML definitions for messages and parameter files,
and G-EEG-Database defines classes for object-relational mapping.

G-EEG is implemented in Java using open-source technologies. MySQL [16] is
used as a database engine. Hibernate [9] represents the object-relational map-
ping. Messages are written using XML [17] and are composed and decomposed
programmatically using XMLBeans [3]. The validation extension relies on XML
Schema [24] and the transformation extension applies XSLT [25] templates.

7 Related Work

The aim of the work presented here is to enable rigorous development of messag-
ing services, with particular view on Electronic Government as the application
domain. Such services are also provided by existing MOM solutions, both com-
mercial and open-source, enabling software applications to produce and consume
messages using MOM-supplied APIs, and to transfer them through messages
queues. Concrete implementations of MOM include JMS - Java Message Ser-
vice [19] which provides messaging services for Java applications with standard
API widely adopted by the industry. Other MOM products include Microsoft’s
MSMQ [5], IBM WebSphere [11] or WebMethods Enterprise [26], all offering pre-
defined functionality for authentication, encryption and routing of messages,
among others. The limitations of existing MOM solutions include reliability -
lack of formal models to enable rigorous development, extensibility - fixed func-
tionality offered, and genericity - inability to address the problems peculiar to
Electronic Government. These limitations were described in Section 1.

This work presents the formal model to serve as the foundation for messaging
services. At the specification level, we followed a state-based paradigm to specify
a set of basic operations to allow the definitions of syntax and semantics of
messaging services. At this level, state-based languages such as VDM [13], B [1]
or RSL [21] could be used; we opted for the last one. Our aim is to determine
how to build and evolve communication structures through messaging, focusing
on the expression of observables outcomes but ignoring implementation details.
One important detail ignored at this stage is the distributed nature of the state,
thus the inability for members to directly modify variables of other members.

At the implementation level, in contrast, remote state-changes can be only
carried out through sending messages and processing such messages locally. At
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this level, we have distributed members exchanging messages, with service provi-
sion involving several members and messages. The behaviours could be specified
following an action-based paradigm, making abstractions of the state changes
of individual members, and focusing on the sequence of messages that are ex-
changed and how they are concurrently processed. In addition, behavioral prop-
erties express the results of exchanging series of messages. Thus, we may consider
specification languages based on process algebras, particularly CSP [10] and CCS
[14]. However, both CSP and CCS assume a fixed set of communication channels,
which is incompatible with our approach. While pi-calculus [15] supports dynam-
ically created channels, it is less convenient to express multicasting behaviours
which are the cornerstone of our approach.

The main contribution of this work is the definition of a formal model con-
stituting a foundation (or more precisely its fragment) for specifying messaging
services. This foundation specifies a set of operations that can be later used as
primitive operators for defining messaging services at different levels of abstrac-
tion. In particular, we specified a refinement of the abstract model based on
communication channels, and defined an extensibility mechanism to build high-
level communication services. We also demonstrated how this mechanism can
address some requirements of the Electronic Government domain.

8 Conclusions

We presented the ongoing development of foundations to enable programmable
messaging for Electronic Government. The motivation, existing solutions and
their limitations were presented in Section 1, followed by a brief introduction to
Electronic Government in Section 2. Section 3 introduced an example business
process implementing cross-agency delivery of licensing services. The foundation
for programmable messaging was presented in Section 4, from abstract state and
state-changing operations, through messages, to concrete operations to register
and unregister members, create and destroy channels, subscribe and unsubscribe
to channels, and send and receive messages. The case study in Section 3 was
revisited in Section 5 to explain how the messaging services introduced in Section
4 can support communication needs of the licensing process. Section 6 presented
the design of prototype software implementing the concepts of programmable
messaging. Related work was discussed in Section 7.

Future work includes completing the definition of the model for core messaging
services, including the definition of iteration, specifying and implementing hor-
izontal and vertical extensions based on core services, and verifying behavioral
properties of such extensions and their compositions.
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Abstract. Our goal is to help the developers of computer-based systems to make
informed design decisions on the basis of insights gained from the rigorous analy-
sis of abstract system models. The early work on model-oriented specification
has inspired the development of numerous formalisms and tools supporting mod-
elling and analysis. There are also many stories of successful industrial applica-
tion, often driven by a few champions possessing deep a priori understanding of
formalisms. There are fewer cases of successful take-up or adoption of the tech-
nology in the long term. We argue that successful industrial adoption of this tech-
nology requires that potential users strike a balance between the effort expended
in producing and analysing a model and insight gained. In order to support this
balancing act, tools need to offer a range of levels of effort and insight. Further,
educators need to recognise that training in formal development techniques must
support this trade-off process.

1 Introduction

“Start by being systematic. Specify crucial facets — of your application do-
main, your requirements and your software designs — formally. Then program
(i.e., code) from there! . . .
. . . a few customers are willing to accept today’s rather high cost of formal
development”

Dines Bjørner [1]

Formal methods are not immune from commercial reality [2,3,4,5]. They must be ap-
plied in a cost-effective manner so that the effort invested in building precise and ab-
stract models yields insight that will “pay back” during system development [6]. We
share with Dines Bjørner the position that even a little rigour, carefully applied, can
bring substantial benefits. Yet, in order to give developers the option of applying “a
little rigour”, we must offer techniques and tools that are adaptable to lightweight or
heavyweight use, as the application and business demand.

A development engineer is faced with a wide range of formal techniques and tools.
Each demands a certain effort, by which we mean the combination of time and resources
required to use the technique or tool. Each also promises some insight into the ways a
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particular system may behave and the mental energy that must be released to produce
the final documented product. Generally, deeper insight demands greater effort; the skill
is to balance the two, defining a systematic approach that yields sufficient insight for the
task for a reasonable investment of effort. Beyond a certain level of effort, the gain in
insight may not be valuable for the application, and the engineer should not be forced
into unnecessary analysis or verification. The balance between effort and insight has
been central to our work supporting industry adoption of formal techniques by evolu-
tionary steps rather than revolutionary change. Although we are very positive about the
benefits of formalism, we do see the overt (or covert) forcing of formal approaches into
industrial practice as counterproductive [7].

In this paper, we examine a range of techniques and tools associated with model-
oriented specification of the kind pioneered by Bjørner and many others. In each case,
we review the effort/insight balance afforded by the technique and try to identify the
future developments that will allow developers the freedom to choose the appropriate
technology.

We have deliberately used the word uptake in the title of this paper in contrast to
application. There are numerous successful applications of formal methods in many
domains [8,9]. The approach with which we are most closely associated, VDM (the Vi-
enna Development Method) has also seen some significant and instructive applications
in recent years [10]. It is worth stressing that we are here interested in the long-term,
sustainable industrial adoption of formally-based techniques than their successful ap-
plication in isolated cases driven by specialist champions with deep a priori knowledge
of specific methods. We freely admit to having been involved in many applications but
few cases of take-up.

The formal methods community has developed a wide range of formalisms tailored
to rather specific application environments and built on distinct semantic foundations.
Our background is in model-oriented formalisms that emphasise precision obtained by
applying (usually discrete) mathematics and logic to the semantics of languages used
for expressing system models. The approach that we have developed, based on VDM,
emphasises the use of abstract and rigorous models to help developers manage com-
plexity and explore the consequences of alternative design decisions in early stages of
the life cycle. Thus, abstraction and rigour in modelling have been more significant for
us than code verification.

A good model guides your thinking, a bad one warps it.

Brian Marick

Tools, Techniques, People and Processes
Successful systems development businesses need to recruit the right people, employ an
appropriate development process and make use of the tools and techniques that fit the
development challenge at hand. It is very hard to find companies that excel in all three
areas at the same time. Typically, small specialist companies with a niche market can
place an emphasis on special techniques, including formal ones. In such organisations,
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Fig. 1. The People, Process and Tools/Techniques Triangle

the focus is on the tools/techniques themselves and the highly skilled individuals who
are needed to apply them. Medium sized software companies, where the distance from
the bottom to the top of the corporate ladder is short, focus primarily on processes and
the people. Very large software companies often focus on process and tools/techniques
but from a long-term strategic perspective in which the dependence on small numbers
of very highly skilled individuals is diminished. These are three rather independent
dimensions are illustrated in Figure 1.

Formal methods form a part of the tools/techniques area of the picture, employed
by good developers when it makes business sense to do so. Indeed, the proponents of
formal methods may have concentrated too much of their efforts on tools and techniques
at the expense of people (making methods accessible to the majority of professionals)
and processes (integrating the technology with existing practice). Formal techniques
may not always be the right choice for essential parts of systems, so it is important to
have a good understanding of the interaction between a formally developed component
and parts that are developed using other means. In addition entire systems are seldom
developed from scratch. In many projects large legacy components form a part of the
solution and so it is important to be able to easily understand how such legacy parts fit
with a formal model.

In this paper, we consider this balance between effort and insight, especially as it
has been found in model-oriented specification and in VDM. We first review our own
involvement by giving a brief account of VDM and developments in the formalism
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in recent years (Section 2). In Section 3, we consider the range of tool features now
becoming available. For each, we discuss the insights to be gained and the effort to be
invested in using them. In Section 4 we discuss the consequences for education and
training if future generations of engineers and research scientists are to take advantage
of the full range of formalisms and tools becoming available now. Finally in Section 5
we give a few concluding remarks.

2 Background: VDM

We have been active in the use of the Vienna Development Method (VDM), one of
the longest established model-oriented formalisms. We studied under Dines Bjørner
and Cliff Jones1. Larsen studied in “the Danish School” of VDM, which emphasised
explicit specification of functionality, leading to the possibility of executable models.
Fitzgerald was rooted in “the British School” which gave greater prominence to the
need for proof and, where possible, implicit specification by postconditions denoting
relations on inputs, results and persistent state variables. The Danish School empha-
sised large-scale systems and compiler technology; the British School was focussed on
validation through proof and refinement-based development. Jones provides an inter-
esting account of the scientific development of VDM [11]. Our collaboration has, so
some extent, been the story of an accommodation between these two schools.

We worked together briefly on the BSI/ISO standardisation panel of VDM’s specifi-
cation language (VDM-SL) [12,13]. Larsen took a leading role in completing the deno-
tational semantics of the full language [14]. He went on to pioneer the development of
industry-strength tool support for VDM-SL in IFAD. Fitzgerald was meanwhile work-
ing on the interaction between modular structuring mechanisms and user-guided proof
in the typed Logic of Partial Functions [15] and started work with the British Aerospace
Dependable Computing Systems Centre at Newcastle University.

Our first close collaboration was on the ConForm project funded under the Euro-
pean Systems and Software Initiative and conducted at British Aerospace Systems and
Equipment (as it then was) in Plymouth. The project involved the concurrent devel-
opment of a security-related software component using, in one stream, current best
practice and, in the other stream, model-oriented specification. The specification was
developed in VDM-SL by BAe engineers, with the IFAD tools and several ad hoc tools
to integrate the formal model with structured methods already in use in the company. A
study of the two parallel developments, while far from being a controlled experiment,
indicated how formally-based tools might be used in practice. As a consequence of our
logging all queries raised against the requirements documents, the study also provided
evidence of the kinds of insight that arise when formal models are constructed [16].

The ConForm experience led us to develop a lightweight and tool-supported ap-
proach to formal modelling that we first presented in 1998 [17]. Subsequently both of
us have used VDM with many different industrial users in various application domains.
Some of the work has been reported in public, e.g. [18,19,20,21].

1 Variously referred to as “the VDM twins” and, with Peter Lucas, as “the Ancient Greeks” be-
hind the original VDM, latterly FME and FM, Symposia! Both of them frequently emphasise
the crucial contributions of Lucas, Bekic̆ and many others to the foundations of VDM.
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Fitzgerald spent most of the following ten years in academia working with the
aerospace industry and, for a couple of years, in a start-up company, Transitive. Larsen,
by contrast, spent most of his time in industry at IFAD and Systematic, recently joining
academia at the Engineering College of Aarhus. IFAD, the company that developed the
original VDM tools [22], sold the technology on to the major Japanese company CSK
[23]. The tools remain under very active support and development today. The new Over-
ture initiative [24] is developing an open-source tools platform and plug-ins to deliver
at least the same functionality as the rather more monolithic VDMTools.

VDM today is a well-established formal method based on the ISO standardised
specification language VDM-SL [12] and its object-oriented extension VDM++ [25].
Further extensions have provided facilities for description and analysis of distributed
real-time embedded systems [26,27,28], including explicit modelling of alternative sys-
tem architectures and deployment of functionality to computation and communication
resources.

We have reported elsewhere on the current state of VDM’s tools and given data on
industrial applications [10]. However, it is worth briefly reviewing a leading current
application as an indication of how VDM is used today. FeliCa Networks Inc.2 has
been developing a next generation mobile integrated circuit chip, based on a contactless
card technology developed and promoted by Sony [29]. The specification development
process was carried out in three phases:

1. Writing an informal definition of the requirements in Japanese (383 pages).
2. Creating UML diagrams based on this document.
3. Modelling the system in VDM++ with over 100kLOC of VDM++ (677 pages).

Validation of the VDM++ model involved over 10 million tests. During phases 1 and 2
reviews found only 93 contradictions and faults in requirements and specifications in
total. In phase 3, 162 faults were found through the process of writing and reviewing
the VDM++ model. In addition 116 faults were found by executing the formal model in
VDMTools. Finally, an extra 69 faults were found by combining the evaluation team and
the specification writing teams in reviews. The discovery of these faults are all examples
of insight gained by the formulation of the abstract model and the analysis on it. No
refinement or formal verification has taken place, but the use of formal modelling has
been viewed by the company as a considerable success, so balance of effort and insight
seems to have been appropriate. The FeliCa development team included more than 50
people and the three year project has been completed on time, which is remarkable in
itself. The product is produced in high volume, with potentially high recall costs in case
of defects. By the end of November 2006 more than one million chips had been shipped.

3 A Tools Viewpoint

Developing and maintaining good industry-strength tool support is extremely time con-
suming. The formal methods community has spread its effort over many different for-
malisms. For the developers of the large number of specialised tools, integration with

2 www.felicanetworks.co.jp
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industrial users, tools and processes has not been of great importance. Thus, it is rare
to find a level of tool support that is comparable with the standards for the industrial
leading software development tools [30].

Tools have a strong influence on modelling style [31]. Interestingly model-oriented
formalisms with similar semantic foundations such as VDM, Z [32] and B [33] have
very different tool support. For VDM emphasis has been placed on the provision of an
executable subset of the modelling language and, consequently, on validation of abstract
models using testing techniques [34,35,36]. For Z the focus has been to a greater extent
on proof support [37,38,39]. For B effort has been directed at providing automated proof
support for refinement and code generation [40,41]. These approaches strike different
balances between insight and effort, and between insight and concrete results such as
code. In this section we review the different kinds of feature that can be included in a
tool to support formal modelling and analysis, commenting on the balance for each of
these.

3.1 Static Analysis Features

Very good tools now exist for efficiently developing parsers for formal languages. Once
the conformance of a formal model to the language grammar has been confirmed, a
variety of static checks can be performed. Probably the best known static analyser from
the programming world is Lint [42] which performs simple static tests that identify
potential code defects. The popularity of Lint and tools like it is partly down to the ex-
cellent balance between insight and effort. The effort is limited to running the analyser
and subsequently examining the suspicious constructs ‘flagged’ by the tool. Provided
the number of false positives is tolerable, the insight gained in spotting these defects
is valuable. Similar ‘push-button’ technology has been advocated for formal methods
tools for some time and is now becoming a reality [43,44,45,46].

The availability of a formal semantics for the modelling language enables a wide
range of automatic or semi-automatic static analysis tools:

Type checkers: This kind of feature is a pure push-button technology where all the
errors reported must be fixed by the user [47]. This kind of feature is always worth-
while because the cost of the analysis is low and the results identify genuine de-
fects. The level of insight gained is rather shallow: a type correct model is a long
way short of being validated! In languages like VDM++, in which type member-
ship may be restricted by arbitrarily complex invariants, the full type-checking task
involves the generation of proof obligations.

Proof obligation generators: In order to ensure internal consistency of a formal
model it is typically possible to formulate a collection of “proof obligations” that in-
dicate potential defects in a formal model [48]. Many of these surround the potential
mis-application of partial operators (a kind of ‘run-time error’). More subtle proof
obligations also arise such as the necessity to prove that defined operations denote
non-empty relations. Assuming that all of these obligations can be discharged the
formal model is guaranteed to be internally consistent, i.e. it has a meaning. How-
ever, this is no guarantee that it is describing the “right” thing. The current VDM-
Tools technology stops at this level, but push-button proof of obligations has been
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demonstrated and the technology to support this, using HOL, is once again under
active development. Proof obligation generation is automatic and hence low-cost.
Discharging of obligations can not be completely automated; tools that use this ap-
proach must provide a form of interactive prover unless unproved obligations are
to be left for inspection. The level of insight gained is correspondingly higher in
that failure to discharge an obligation may suggest a more subtle defect than can be
identified by type checking alone.

Assertions in program code: In-line specification of contracts (including VDM-like
invariants, preconditions and postconditions) provides an opportunity for enhanced
static checks on program code. This kind of approach has a long history [49] and
current initiatives around Java look particularly promising [50,51]. The strength of
these features are that, by spending the effort in developing the assertions, the static
analysis can typically provide deeper insight into subtle errors in the code that can
then easily be fixed.

Model checkers: The model-checking concept is general and applies to many logics
and models. Its particular benefit is the production of a counterexample in the case
where a checked property is not satisfied. A simple model-checking problem is
testing whether a given formula in the propositional logic is satisfied by a given
model [52,53]. This very powerful technique is fully automated and so has potential
for giving a very good balance between effort and insight. However, formulating
the model in order to support efficient checking may require high effort. There
are many stand-alone model checkers and increasing interest in combining them
with other analysis tools. More recently small but powerful combinations of model-
checking techniques have been applied in Alloy [54], so far on relatively small
examples.

3.2 Dynamic Analysis of Formal Models

Models are not necessarily executable [55] but formal semantics for modelling lan-
guages make their symbolic execution [56] possible, albeit at high cost. It is possible to
define executable subsets within which dynamic behaviour can be explored. The dan-
ger of restriction to an executable subset is that the model’s abstraction level gets too
low, hampering the insight gained from analysis. Our experience is that the use of an
executable subset can still provide many benefits to a user with a training in abstrac-
tion [57]. Indeed, the borderline of executablity is not as clear as one might expect [58].

Dynamic analysis of formal models comes in several forms:

Interpreters: Interpreters are available for executable subsets of several modelling lan-
guages, including VDM [34]. Some of these tools also provide debugging capabil-
ities similar to those provided by programming environments already familiar to
software developers. The non-exhaustive testing supported by an interpreter helps
a user to step into the evaluation of an unexpected result. Typically an interpreter
feature is easy to use and gives deep insight into the subtleties of a formal model
so although one must manually produce the test arguments to exercise there is nor-
mally a good balance between effort and insight here.



244 J. Fitzgerald and P.G. Larsen

Test case generation: Where the use of an executable subset enables testing of models,
it can also be valuable to automate the testing process in different ways. Automatic
generation of test cases [59,60] can produce entire test suites [61]. Considering the
balance between effort and insight, this kind of enhancement to the automation of
testing is almost always favourable, particularly when the generated test cases can
be used for testing the final implementation.

Test analysis support: In order to provide further insight into the quality of the test
set used on a model, it is possible to display the coverage of the tests carried out,
for example by using colour in ways similar to those used for programming lan-
guages [62]. Alternatively graphical overviews of executions can be used to give
the user a deeper understanding for what is going on [27]. Depending upon the
time that must be spent creating this kind of feature, it is typically worth the low
effort required to monitor the coverage of tests on a model. The insight into the
functional characteristics of the model is very limited, but it may lead to improved
test sets that themselves prove worthwhile.

3.3 Verification of Formal Models

The expressiveness of formal modelling languages places limits on the extent to which
analyses can be automated. For realistic industrial applications one must normally settle
for as much automation as possible and then provide support for manual analysis [63].
In the area of formal verification one can divide features into those that support formal
refinement and those that support formal proof:

Formal refinement support: Many formal modelling languages have an associated
notion of refinement enabling the description of successively more concrete mod-
els, with a formal relationship between each of them [64]. Many different tools
are able to support this process [65]. Typical approaches involve the definition of
a refinement relation [66,67] between concrete and abstract models. The balance
between effort and insight gained here is problematic from an industrial perspec-
tive unless either there is substantial automation or the correctness of the appli-
cation is sufficiently important to warrant the extra cost in such a fully formal
development [33,68]. However, there is also work towards automated support for
refinement [69].

Theorem provers: The ultimate advantage of using a formal over an informal model
is the ability to verify its properties to a high level of rigour [70], even for infinite
state systems. Given our concern to balance effort and insight, some degree of au-
tomation is required here [71]. A complete reliance on proof automation may lead
to the use of a notation that lacks expressiveness [72]. In reality, for many formal
modelling applications, we would not wish to compromise the accessibility of the
modelling language in order to support a certain level of automated analysis. The
balance between the formalism and the extent of automation is crucial. It depends
on the projects needs: are these to ensure internal consistency by discharging as
many consistency proof obligations as possible, or are they to prove system-level
properties (we have used the term validation conjectures)? In the former case a high
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level of automation may be desirable. In the latter the real insight gained by guiding
a proof may help understanding of the rest of the model, in particular detecting and
eliminating defects [73,74].

Until recently, we have not seen a strong enough industrial case for bringing proof
support into VDMTools because of the computational overheads and also the possibility
of having to build an interface for user guidance of the specialised proof process. Our
experience with manual proof support for the proof theory of VDM-SL [15] indicated
that many proof obligations are generated by even a simple model and it is vital to be
able to discharge as many of these as possible without user guidance. In the PROSPER
project [75], it was possible to discharge the vast majority of generated proof obligations
automatically (up to 90 % for a railway application [76]) and we are now working
on reproducing this for VDM++ using HOL4. We leave undischarged obligations for
inspection, but view the development of good human-guided but machine-assisted proof
tools (based on an appreciation of the cognitive aspects of proof) as an essential research
goal.

3.4 Connection to the Development Environment

Modelling and analysis techniques based on formal notations will rarely be used for the
development of an entire system, so their products should fit with the results of apply-
ing other techniques, as well as with the processes employed in the development team.
In order to balance the effort spent on producing the formal models with the insight
gained this is clearly one of the areas with potential for payback in terms of minimising
the time that needs to be spent in the final implementation phases. Supporting this for
VDMTools meant spending major efforts on tasks that formalists might find uninter-
esting, but which are essential for deployment. For example, we have had to develop
interfaces to proprietary WYSIWYG document editors, use ASCII syntax, build code
generators, application programmer interfaces and even links to UML tools! Here we
list some of the features that we consider particularly significant in connecting our tools
to people and processes in the development environment.

Code generators: If a formal modelling language has an executable subset, there is
also potential for automating a part of the coding process. This adds value to the
formal models being produced and thus affects the balance between the effort spent
producing the model and its value as a basis for an implementation. Generated
code will rarely be as efficient as a hand-coded implementation. However, given a
reliable code generator, there is some confidence that the generated code accurately
reflects the properties of the model. Critical applications demand the use of certified
code generators [77]. The use of code generation for production code comes at a
price in terms of the degree of abstraction that can be permitted in the model.

Combination with other notations: It is essential for industrial uptake that a tool for
formal modelling is able to support whatever standards for processes and other
tools are being used. It is even better if users are able to move back and forth
between the various models and notations that are used, seeing updates in model
reflected consistently in others. Considerable work has gone into developing appro-
priate couplings between formal methods tools and UML, the de-facto standard in
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large parts of the industry [78]. Such a bi-directional link with developed for VDM-
Tools to support interaction with the Rose UML tool. The effort/insight balance is
improved by linkage between informal and formal tools. However the links do not
simply have to be with classical software design tools. For example, integration
with a continuous time simulator is a promising vehicle for collaboration between
systems and software engineers [79], both working in different, but both formal,
spheres.

Combination with Development Environments: Companies have development en-
vironments that must be used for for integrating the final system. It is also likely
that the implementation derived from a formal model will need to be integrated
with code that is developed differently (e.g. for existing GUI or legacy code). Here
the effort/insight balance is affected by the ease of doing this kind of integration.
Features for combining existing code with a formal model may prove valuable [80],
as may facilities for combining with a GUI interface [81].

3.5 Past and Future for Formal Methods Tools

Tools for formal modelling and analysis have come a long way since work began on
VDM-SL parsers, but competition with conventional tools is hard. In the 1980s tools
for formal specification were mainly limited to basic static checks for syntax- and type-
correctness. At that time it was even possible to write PhD thesis about general formal
methods tool support [82]. The 1990s saw an increase in the range of tools exploiting
more of the formal semantics, in particular interpreters, code generators, test case gener-
ators, model checking and proof support. In addition many of the tools had support for
combining formal models with informal, usually graphical, notations. At present, we
conjecture that none of the formal methods tools are as highly featured as the leading
industrial software development tools.

Open source platforms with potentially closed-source plug-ins offer a promising ap-
proach for delivering tools with the capabilities that we have discussed [83,24]. If this
can be achieved tool builders will not have to start from scratch whenever tool support
is to be developed for a new notation. Ideally, different views or parts of a system could
be described in different formalisms and verification of properties could be performed
by a variety of theorem provers in a compositional way. However, before this becomes
a reality there are major theoretical challenges on semantic integration that must be
addressed.

Our own experience with VDMTools and the Overture initiative leads us to want to
address several areas:

– Co-simulation as an extension of executable specification and the use of interpreters
for control applications in embedded real-time systems.

– Modelling faults and experimenting with alternative fault detection and tolerance
mechanisms inside formal models.

– User-guided proof for gaining deep insight at a higher level than conventional the-
orem provers.
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4 An Educational Viewpoint

A fool with a tool is still a fool.

Grady Booch

We have argued that successful industry adoption of formal techniques requires the bal-
ancing of effort and insight, and that tools and development environments should sup-
port this trade-off. No matter how advanced the tools, they can only achieve a measure
of industry credibility if graduate engineers possess skills in abstraction and rigorous
thinking, and are open to selecting the right techniques for the job. It therefore seems
appropriate to ask how this should affect the aims, content and delivery of formal meth-
ods education.

We should not expect our students to share our motivations. In our experience, many
students are driven by the need to develop skills that will be useful in pursuing a career
and many are also driven by the satisfaction of building a working computer system and
seeing it run. If we care about the industry uptake of formal techniques, we should care
about all our students and not just the potential PhDs.

4.1 Aims

We suggest that the overriding aims of formal methods advocates in education should
be: (i) to help students develop transferable skills of abstraction and rigorous modelling
and analysis; and (ii) to develop the knowledge and skill needed to select tools and tech-
niques on the basis of cost and potential effectiveness. These are not impossibly vague
goals: Sobel’s study [84], albeit the subject of a debate on experimental design [85,86],
was a first attempt to assess whether a training in formal techniques may improve stu-
dents’ general analytic and problem solving skills [87]. In our teaching [88], with its
origins in industrial courses, we have been led to ask whether we really know what
skills we want to help our students develop and how we could establish whether our
current courses are achieving this. Kramer has recently argued that abstraction skills
are core to computing and that we should try to monitor the development of such skills
through students’ development [89]. It has been pointed out that the sorts of test we
need are lacking, as most relevant tests focus on logical reasoning.

At a more practical level, we would like typical graduates, not only the most acad-
emically gifted, to at least know that next generation Integrated Development Environ-
ments will provide a higher static analysis capability than at present and will support
expressive annotation-based languages in the manner of JML [50] and Spec# [90], al-
lowing them to identify hitherto hard-to-detect errors in their code. We want them to
be surprised when such technology is not deployed in the companies where they work
and we would even like them to use it to get the edge on their fellow programmers!
In that way we hope that they will be able to find an appropriate balance in the use of
abstraction and rigour in their own work.

4.2 Content

Giving students a sense of the effort/insight trade-off means exposing them to a range
of analysis techniques as well as offering them experiences that help them to see the
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insights that come from a range of analytic techniques, from manual to automated. In
our own teaching experience [88], we apply a “lightweight” approach using VDM++.
We emphasise practical applications, teaching through a range of examples derived
from industry application. A strength of the approach is the relative familiarity of the
structure of VDM++ to undergraduates already versed in object-oriented programming.
However, analysis is so far limited to specification testing and proof obligation genera-
tion. Advanced techniques including proof and model checking, are taught separately.
Practical experience, discussions centered around formal models and sharing of insights
are central to the approach if we are to help students move from superficial and atomistic
learning to a deeper appreciation of the costs and benefits of abstraction and rigour.

In a revision to its undergraduate curriculum in formal techniques, Newcastle is look-
ing at beginning with JML (because Java is taught extensively in the first part of the cur-
riculum), raising students’ expectations about the forms of push-button analysis that can
be applied to their programs. Similar concepts (pre-/post specification, use of invariants
etc.) can then be lifted to the design level by teaching model-oriented specification in
VDM++ with tool support and introducing validation through structured argument. At
the final level, aimed at software engineering specialists who may well become tools
developers themselves, we will introduce proof and model-checking as the technology
that underpins the advanced analysis of both programs and design models.

4.3 Delivery

There has been much debate around the placing of formal methods in the wider com-
puting curriculum. Should they be treated as a distinct discipline or should they be fully
integrated with other material? van Lamsweerde [63] argues for the integration of for-
mal methods into normal development activities. This surely suggests that training in
formal techniques should be, to a large extent, part of the normal components of com-
puter science and software engineering curricula. Wing’s suggested approach [91] is
to teach common elements (state machines, invariants, abstraction mappings, composi-
tion, induction, specification and verification) and to use tools to reinforce theory. She
identifies the difficulty of winning fellow faculty members round as a real impediment
to this [92].

Recent work [93] suggests that students’ performance improves when they are pro-
vided with Integrated Development Environments encompassing specification support
tools, static analysers and provers. It remains to be seen if this level of tooling deepens
students’ understanding of the models that they are creating and the formalism used.
However, it may be seen as a step in the right direction by freeing students to concen-
trate on the meaning of a model rather than automatically checkable characteristics.

5 Concluding Remarks

Will formal methods remain niche technology with localised use dependent on energetic
champions? We believe that some major changes are required to help the mainstream
get the benefits of abstraction and rigour in system modelling and analysis. Tools are
vital and, we have argued, a full range of tools have to be offered in a way that allows
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their gradual adoption into processes and by people already in place. This means much
more collaboration between tools developers, very likely via open platforms, in order
to give users the flexibility to balance effort and insight.

From a teaching perspective, we ought to be liberal in our use of a range of for-
malisms supported by tools in order to encourage the breadth of experience that will
allow graduate engineers to select appropriate technology. We should not expect every-
one to be interested in how we express formal semantics, but we should adopt course
content and delivery styles that help them to feel the benefits of a little abstraction and
rigour.

Formal approaches have been widely, but often quietly, adopted in modern pro-
gramming languages and development environments. Industry-leading programming
notations now include possibilities for increased abstraction through of abstract types
such as sets, sequences and mappings and use of concepts such as invariants, pre and
post-conditions formulated using predicates. None of these advances will be known as
‘formal methods’. Dines Bjørner, Zhou Chaochen and so many others have worked to
create technology so fundamental that it disappears into the fabric of software and sys-
tems engineering. Surely this is an achievement to be proud of.
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applied this to the JML type system and the Java HashMap class from the
Java Collections Framework. We present and discuss the issues behind a
more general strategy for translation in both directions between Z and
JML. This work is a contribution to the Verified Software Repository,
part of the Grand Challenge in Verified Software.

Keywords: Grand Challenge in Verified Software, JML, Java Collec-
tions Framework, Java HashMap class, Java Modeling Language, formal
specification, linking theories, mechanical theorem proving, software ver-
ification, Verified Software Repository, Z, Z/Eves.

Ontheoccasionof the 70thbirthdays ofDinesBjørner andZhouChaochen.

1 On Linking Z and JML

The Java Modeling Language (JML) [3] is a language used to specify more
clearly than informal documentation the behaviour of Java programs [12] by
using annotations as Java comments. These annotations not only document the
code, but also enable static checking, run-time assertion checking, and other
verification tasks to be performed on the target code, such as loop invariant
detection [16,4]. The JML toolset contains a number of other tools, such as an
annotation parser and typechecker, an HTML (JavaDOC-style) documentation
generator for JML annotations, an automatic unit test set generator, and so on.
In various syntactic forms, JML annotations are predicates specifying declara-
tive behaviour, such as pre- and postconditions, class and instance invariants,
modifiable-variable frames, concurrent and real-time behaviour, resource alloca-
tion in terms of memory and computational time, and so on [24]. JML supports
a lightweight style of specification, where annotations start as quite trivial pred-
icates, and are then enriched over time by adding extra constraints.

The Z notation [34] is a formal specification method that has enjoyed a cer-
tain acceptance amongst academic and industrial practitioners for more than
two decades [36,42,18], and was standardised by ISO in 2002 [20]. Z is useful for
specifying abstract data types and their corresponding operations, as well as for
proving data refinement from an abstract specification to a concrete implemen-
tation [41], at which point a refinement calculus [1,25,6] can be used to reach a
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language of guarded commands [7] that is close to actual code in general-purpose
programming languages.

In this paper we demonstrate the benefits of a link with Z that goes beyond
using pure JML. We do this: (i) by using a mechanical theorem prover to verify
some properties of a JML specification expressed in Z; and (ii) by pinpointing
the issues for the definition of a more systematic translation strategy between Z
and JML, and vice versa. The JML annotation syntax is divided into different
language levels; lower levels are mandatory, but higher levels are optional [24,
Sect. 2.9]. Starting from these lower levels, we concentrate on JML’s specification
of abstract data types, leaving out other important aspects of JML annotations
as future work.

In [10], we formally specified in Z a hash map data type, an extension of the
work originally done in [11]. The Z hash map was used as a concrete refinement
for an abstract specification of the Unix filing system in [26]. We chose hash maps
because they provide constant-time performance for most operations, including
search and insertion. Although the Z hash map was tailored to the needs of the
filing system, we based it on the requirements from the Java documentation and
the JML specification. We took into account the essential properties hash maps
ought to have, such as strategies for resolving clashes of hash keys. The choice
for HashMap here remains an interesting proposition since it is widely used in
Java programs, and is among one of the most complex data structures within
the Java Collections Framework.1

Some other classes have been subjected to this kind of scrutiny before. Huis-
man [17] has shown that the Java Set implementation (version 1.3) is not
guarded against Russell’s paradox [31]). Earlier work verified the vector class
[15] and aspects of the JavaCard API [29,39]. Our translation is similar in spirit
to those between Z and BON/Eiffel [28] and BON and Object-Z [27].

2 JML Specifications

In this section, we give a brief overview of JML to help explain the HashMap spec-
ification. Suppose P, Q, and R are boolean JML expressions (i.e., Java expressions
with bounded quantifiers and mathematical sets), L is a list of locations (i.e., ob-
ject attribute names, or an abstract collection of names), and E is some checked
Java Exception (i.e., those exceptions that are part of a method signature).
The JML specification for a method m() is given as

/*@ assignable L;
@ requires P;
@ ensures Q;
@ signals (E) R; */

public void m() throws E { ... };

JML annotations are like Java comments but with an added “@” sign. Apart
from the signals clause, this specification is like a specification statement in

1 See java.sun.com/docs/books/tutorial/collections.

java.sun.com/docs/books/tutorial/collections


Proving Theorems About JML Classes 257

Morgan’s refinement calculus [25] (i.e., L : [ P, Q ]). The list of locations L is the
frame; the precondition P is a predicate on the before-state; the postcondition Q
is a predicate on both the before and the after-states. Both conditions can refer
to attributes outside the frame, but the postcondition cannot change them. A
before-variable x in L appearing in Q is represented as \old(x) where an after-
variable is just x. In the signals clause, R represents the postcondition whenever
m() throws the exception E. This enables the specification of error cases much
like that in Z, where schema disjunction is used to combine error-free behaviour
with error handling (see the Disjoin Errors Z specification pattern in [37, p. 63]).

Default values are widely used in the case where some of JML clauses are
absent. In this way, no matter how minimal the given specification is, there is
always a version of it that JML tools can infer; this transformation of the various
syntaxes is known in the JML literature as “desugaring” [30]. We see the link
with Z as “sweetening” JML with (“calorie free”) results from proven theorems.

2.1 JML Type System

JML annotations include all expressions available in Java together with bounded
quantifiers. This includes reference to object attributes and some methods and
constructors, important since JML annotations were tailored for the Java pro-
grammer. Evaluating such expressions must not change the underlying object
state; otherwise they would compromise the Java code they are supposed to
specify. To help write side-effect free predicates, JML provides a meta-type sys-
tem with useful side-effect free data types defined as Java classes. This is based
on the JMLType class, which is the superclass of all meta-type systems. This
makes it possible to have sets, sequences, bags, and other mathematical objects
within JML annotations and quantifiers, just like one would expect to find in
other formal notations, such as Z’s mathematical toolkit [34, Chap. 4].

One concern JML needs to address is how the various forms of object equality
in Java relate to the set-theoretic notion of equality. The two most important
notions of equality in Java are object identity equality (i.e., o1 == o2), which is
like Leibniz’s equality, and structural type equality (i.e., o1.equals(o2)), where
the former is usually stronger than the latter (o1 == o2 ⇒ o1.equals(o2)).
Other notions of equality are also important, such as serial (marshalled) equality
when object instances are represented as binary data files implementing the
Serializable interface, but we are not concerned with this for now. Structural
equality should be both symmetric and side-effect free, but this may not be the
case. A structural equality test may inadvertently cause side effects on the object
state; an alarming thought, since multiple consecutive calls to equals ought to
produce the same result.

The JML type system provides implementations that use both forms of equal-
ity. These facilities are essential in order to extend Java expressions with quan-
tifiers and set comprehension. Among these implementations, there are also
versions of sets that are “mathematical sets”, as opposed to a “collection of
objects”. That is, the JML type system offers for each meta-type, say a set,
four different implementations: collections of Object elements compared using
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identity (==) equality (named JMLObjectSet), or structural (equals) equality
(named JMLEqualsSet); and mathematical sets of JMLType elements compared
with structural equality (named JMLValueSet). The collection of objects uses
aliasing for the elements, whereas the mathematical set uses cloned (shallow
copied) versions of the elements. The JMLValueSet class is used as a JML meta-
specification for extending JML’s type system, whereas the JMLEqualsSet and
JMLObjectSet are aimed at JML specifications from practical users, where the
same applies for other mathematical entities like sequences and bags. These in-
ternal JML classes also contain JML annotations. As the JML annotated version
of Java HashMap uses JMLEqualsSet, we give some more detail on it in Sect. 2.

A final concern when implementing equals is its relationship with the Java
“int hashCode()” method, which provides a unique hash code for object in-
stances. The Java documentation states that structurally equivalent objects must
have the same hash code.

o1.equals(o2) ⇒ o1.hashCode() = o2.hashCode()

The reverse is not required, but is desirable since it improves the performance of
HashMap implementations. Ideal implementations of these two methods are avail-
able for the unaware programmer, such as the EqualsBuilder and HashCode-
Builder classes of the Jakarta Commons Apache library,2 which provide
adequate solutions as suggested in [2].

2.2 Abstraction Mechanisms

JML allows specification abstraction through the definition of model fields and
methods. These are specification devices that exist only as JML annotations and
do not have a direct counterpart in Java code, but can be used as part of the
annotations specifying concrete Java methods. For instance, the Object class
specification has one model field representing the (abstract) object state

1 //@ public model non_null JMLDataGroup objectState;

This model field is a placeholder to represent whatever attributes derived classes
might have. A JMLDataGroup is an abstraction device representing a set of lo-
cations that can appear in assignable clauses. Data groups are particularly
useful in allowing different visibilities among model fields: it is possible to state
that private and protected instance fields used to compute public model fields
are assignable. The Object class also has an example of a model method that
raises our interest

1 // The value produced by hashCode() but without any side effects.
2 //@ ensures (\forall Object o; this.equals(o)
3 // ==> \result == o.hashValue());
4 //@ public pure model int hashValue();

The hashValue() model method is a side-effect free version of the hashCode()
method that obeys the Java documentation requirement that structurally equiv-
alent objects must have the same hash code. For clarity of presentation, we add
2 See jakarta.apache.org/commons.

jakarta.apache.org/commons
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to the left-hand side of JML specifications line numbers, which are often re-
ferred to within the text. We also follow the convention to use arabic numerals
for the specifications copied from the JML distribution, and roman numerals for
specifications resulting from our experiments with Z.

2.3 Equational Theory

JML type system classes use an equational theory specified as a model method.
The equational theory for JMLEqualsSet specifies seventeen properties, which
are essentially some restricted forms or known set-theoretical laws [34, Chap. 4],
such as cardinality of empty sets (S = ∅ ⇔ #S = 0) or set containment over
set union (e ∈ S1 ∪ S2 ⇔ e ∈ S1 ∨ e ∈ S2). We pay careful attention to this
equational theory for such JML sets since they are often used as model fields of
actual JML specifications, such as the one for HashMap.

1 //@ public model instance non_null JMLEqualsSet theMap;
2 //@ in objectState;

This model field (abstractly) represents the map as a set of Object instances
structurally equated with equals, which belongs to the data group of the general
Object state. By understanding how JML sets interpret equality, it is possible
to relate JML sets with the set-theoretical data types and notion of equality in
Z, as shown below for Z hash maps (see Sect. 3).

2.4 Nullability and Instance Cloning

Another concern within JML is the “nullability” of method parameters and
results, and object attribute initialisations. The JML type system provides fa-
cilities to handle null objects so that equality tests on sets (and other data
structures) containing null objects are well defined and do not throw excep-
tions, such as in the JMLNullSafe class. We assume in this paper that no hash
key or associated value within the Z hash map will ever be null. The effect of
relaxing this assumption is a more verbose and laborious specification, without
much insight or novelty added. Thus, we have traded the treatment of null for
the investigation of additional properties of hash maps and automation mecha-
nisation rules, as present in Sect. 3.4.

JML addresses object cloning via the specification of the clone() method for
the Object class. It specifies how cloned object instances preserve the original
class type, general (attribute) structure, and produce no side effects. In Java,
only objects that implement the Cloneable interface can be cloned. In general,
for any Object that implements the Cloneable interface, clone() is side-effect
free, and has a non-null result of the same dynamic type as the cloned object.

1 /*@ protected normal_behavior
2 @ requires this instanceof Cloneable;
3 @ assignable \nothing;
4 @ ensures \result != null && \typeof(\result) == \typeof(this);
5 @ ensures (* \result is a clone of this *);
6 @*/
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The normal behaviour keyword is for exception-free postconditions. Cloned
arrays must preserve all elements: all cloned array elements have the same object
identity, and clone is specified as a shallow copy.

7 /*@ ...
8 @ requires this.getClass().isArray();
9 @ ensures (\forall int i; 0 <= i && i < ((Object[])this).length;

10 @ ((Object[])\result )[i] == ((Object[])this)[i]);
11 @*/
12 protected /*@non_null*/ Object clone() throws ...;

A similar specification is added for other primitive array types. As Object itself
does not implement Cloneable, this specification lays the foundation but cannot
be used yet. Derived classes that implement Cloneable usually add a further
(standard) postcondition, like the one below for HashMap, which strengthens
dynamic typechecking (line (4)), guarantees structural equality (but not object
equality) with this (line (5)), and is side-effect free (line (3)).

1 /*@ also
2 @ public normal_behavior
3 @ assignable \nothing;
4 @ ensures \result instanceof Map && \fresh(\result)
5 @ && ((Map)\result).equals(this);
6 @ ensures_redundantly \result != this;
7 @*/
8 public Object clone();

The also keyword conjoins this specification for HashMap with the one inherited
from Object. The ensures redundantly clause (line (6)) states a direct conse-
quence of the previous postcondition that is useful for automatic tools that might
not be able to deduce this directly. As object cloning is a low-level implemen-
tation issue, it does not quite have a direct correspondence in a Z specification,
unless one is concerned with memory management. As our focus is to investigate
the HashMap functionality, we do not consider cloning any further.

2.5 JML Invariants

JML also provides instance or class (static) invariants. These are predicates
that always hold for visible object states [24, Sect. 8.2]. In JML’s terminology [24,
p. 50–51], invariants can be assumed, established, or preserved. For each method
and constructor, class invariants can be assumed by the class type at visible pre-
states and are established at visible post-states. Instance invariants are similar.
Invariants that are both assumed and established are preserved.

For instance, Java models HashMap as an array of Entry objects as key-value
pairs, where the following instance invariants about type consistency among
Entry in theMap model field holds.

1 // only standard JML tools understand *+@ annotations
2 /*+@ public instance invariant
3 @ (\forall Object o; theMap.has(o); o instanceof Map.Entry);
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4 @*/
5 /*+@ public instance invariant
6 @ (\forall Object o1, o2; theMap.has(o1) && theMap.has(o2);
7 @ o2!=o1 ==> !JMLNullSafe.equals(o2,o1));
8 @*/

It specifies that theMap elements are a subtype of Entry (lines (2–4)), and that
different Entry elements (by object identity) within theMap cannot be struc-
turally equivalent (lines (5–8)), bearing in mind the treatment of equality among
null objects through the JMLNullSafe class. As the specification of equals for
Entry below relies on the implementation of equals for the key and the value,
this second class invariant is more interesting: it enforces that key-value pairs
within different entries properly implement their structural equivalence algo-
rithm (in lines (4–6) below); and that they are side-effect free (with pure keyword
in line (9)); the keyword pure is an abbreviation for assignable \nothing.

1 /*+@ also
2 @ public normal_behavior
3 @ requires o instanceof Entry;
4 @ ensures \result ==
5 @ (JMLNullSafe.equals(((Entry)o).abstractKey, abstractKey)
6 @ && JMLNullSafe.equals(((Entry)o).abstractValue,
7 @ abstractValue) );
8 @+*/
9 /*@ pure @*/ public boolean equals(/*@ nullable @*/ Object o);

The specification for equality between map entries relies on the structural equal-
ity of the array of Entry as the key-value pairs it represents. This care with
structural equality is needed since the equational theory used in the JML spec-
ification of theMap model field is the one from the JMLEqualsSet class. JML
also allows the declaration of class axioms. The JML tools within the standard
distribution usually ignore these axioms [3], but theorem provers within some
more powerful JML tools [16,4] assume them as lemmas.

3 Formalising Java HashMaps in Z

With this basic introduction to JML, we start linking the JML specification of
Java’s HashMap with an extended Z hash map from [8,11]. The JML specification
for HashMap encompasses the specifications of its inheritance tree: the Object,
AbstractMap, and HashMap classes; and the Map, Cloneable, and Serializable
interfaces. As mentioned above, we are not interested for now in object cloning or
serialisation, and hence we concentrate on the other classes and interfaces. We are
also not concerned here with specification for nullability or exception handling,
and hence we omit them. Some of the JML specifications for Object and Map were
already introduced in the previous section. The other JML elements we consider
are detailed below together with their corresponding Z counterparts. They are
the invariants, assignable variables, method preconditions, and exception-free
method postconditions (i.e., ensures rather than signals clauses).
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In presenting the Z material, we follow the bottom-up style of the Z/Eves the-
orem prover [32] that we use to define the Z hash map. All material presented
here has been mechanically verified, and the conjectures proved as theorems.
We point out opportunities for completing the JML annotations, either with
theorems developed in Z, or directly with definitions drawn from the Java docu-
mentation. These are merely suggestions, since we have not yet established how
to formally link Z and JML (see discussion in Sect. 4), but we find them useful.

3.1 Java HashMap Design in Z

In Java, a HashMap represents Object keys mapped to Object values, where
the key’s hashCode() method is used to uniquely index entries of key-value
pairs into an underlying array-like data structure. This array of Entry objects
within the map is functional (i.e., Key �→ Value). The map has two parameters
allowing trade-off between operations performance: an initial capacity and a load
factor. The capacity is the length of the array of entries, whereas the load factor
measures how full the map may get before its capacity is automatically increased.

This design provides constant-time performance for basic query and insert op-
erations, assuming the hash function disperses the elements properly. Iteration
over the map requires time proportional to the capacity (the initial array size),
plus the number of actual key-value pairs. When the number of map entries
exceeds the product of these parameters, the array is rehashed to allow room
for further entries. In this way, these two parameters can be used to trade-off
performance between get/put and iteration operations. As Object instances are
given as map keys, care must be taken if their structure (the result of their
equals method) could change whilst within the map. Map keys are not im-
mutable and may suffer from side effects, in which case the behaviour of the
map is not specified. Thus, maps themselves should never be keys, and if they
are values in Entry, the equals and hashCode methods of the map would no
longer be well-defined.

Hash Code Values. The hash code integer (Z) from a map key (o1) is nor-
malised to a strictly positive integer (N1) via a hashing function (hf ), taking
into account the map’s capacity.

i.e., map.put(o1, v1) � (hf (o1.hashCode(), capacity) �→ v1)

As map keys are Object instances, we need to consider the Object JML speci-
fication for hashCode()

1 // for subclasses with benevolent side effects
2 /*@ public behavior
3 @ assignable objectState;
4 @ ensures (* \result is a hash code for this object *);
5 @ //ensures \result == hashValue();
6 @*/
7 /*+@ also
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8 @ public code normal_behavior
9 @ assignable \nothing;

10 @+*/
11 public int hashCode();

This is a loose specification that permits the hash code calculation to have
“benevolent side effects” on the objectStatemodel field, and should rely on the
hashValue()model method (see Sect. 2.2). The ensures clause (line (4)) is sim-
ply informal text, as meta-comments just evaluate to true. Although it not quite
clear what it means for side effects to be “benevolent”, one could argue that they
would be related to unobservable by external clients, such as caching schemes. It
is also not quite clear what the motivations were for not enforcing in the postcon-
dition the invariant (line (5)) as defined by the hashValue() model method (see
Sect. 2.2). There are two problems with this under-specification: (i) hashCode is
not side-effect free, since the second behaviour (lines (7–10)) has no postcondi-
tion; and (ii) even if one agrees that there is a case for “benevolent side effects”,
nothing is given to enforce the invariant between hashCode and equals (see
Sect. 2.1). Perhaps, this choice is based on some undisclosed technicality, or is
still under development. We think a more intuitive specification would be:

i /*@ public behavior
ii @ assignable \nothing;
iii @ ensures (* \result is a hash code for this object *);
iv @ ensures \result == hashValue();
v @*/

vi /*@ pure @*/ public int hashCode();

As the map implementation is modelled as an array of Entry, its hash code
specification is also important. Despite this fact, there is no JML specification
for it. The Java documentation says that provided the key-value is not null
(which in our case we assume to always be true), then the hash code of an
Entry e is the bitwise exclusive or (xor) integer operator between the hashCode
of key and value (lines (v–vi)). So, a candidate JML specification would be

i /*@ also
ii @ public normal_behaviour
iii @ assignable \nothing;
iv @ requires getKey() != null && getValue() != null;
v @ ensures (\result == getKey().hashValue() ^

vi @ getValue().hashValue());
vii @*/
viii /*@ pure @*/ public int hashCode();

We inherit the specification from Object with also (line (i)), and add the ex-
pected side-effect free (in line (iii)) postcondition (line (v)), provided the Entry
has non-null elements (line (iv)). This keeps the equals/hashCode invariant
among any Entry within the map implementation. If hashCode was specified as
pure in Object, we could have used getKey().hashCode() instead.

Handling Clashes. Clashes can happen either when there are more entries
than room available, in which case the map could expand (and be rehashed), or
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when badly programmed hash codes provide duplicates for different keys, and
so compromise the hash function. In both cases, Java’s robust solution is to
have a linked list at the points of clash, so that in the worst case one gets a
“spiked” map, where the clashing entries grow outwards as linked lists. So, from
the previous insertion example, in the case of a clash with another value,

o1 != o2 && hf(o1.hashCode(), capacity) = hf(o2.hashCode(), capacity)

an update would become

map.put(o2, v2) � (hf (o2.hashCode(), capacity) �→ 〈v1, v2〉)

Thus, a HashMap is like an injection from hash codes (generated by hf from
hashCode() considering the map capacity) into a sequence of abstractly defined
VALUE s, as roughly drafted in Z below

[VALUE ]

“HashMap == hf hashCode � seq VALUE ”

We need to model in Z the Java hashing and clashing mechanisms described
above. We start defining the auxiliary structures that are the basis of a Z hash
map. This mechanised specification grew out of the original work done in [10,11],
and is slightly modified here for ease of presentation. Moreover, we assume maps
are neither keys nor values within other maps, as these would be special cases
(see Sect. 3.1). Nevertheless, they can be modularly handled later following some
Z specification patterns, as in [37].

A candidate hash function is trivially defined using integer division remainder,
bearing in mind the strictly positive capacity of the map involved.

hf : Z × N1 → N

〈〈 disabled rule dHashFcn 〉〉
∀ hck : Z; n : N1 •

hf (hck ,n) = if (hck ≥ 0) then (hck mod n) else −(hck mod n)

This provides separation of concerns, so that different implementations can pro-
vide more efficient hashing mechanisms without changing the clashing mecha-
nism and other mapping operations.

As most objects that are meant to be map keys have individual hashCode()
implementations, it is beside the point to specify them here. Instead, we abstract
hash code key generation below with the HashAlgo schema.

[OID ,VID ]

HashAlgo =̂ [ algo : OID � Z ]

We define the given set OID as an abstract representation of object identifiers
that are meant to be map keys. Those identifiers are either immutable objects or
do not structurally change (i.e., keep the results of equals) whilst being a map
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key. Equality between elements of this given set is interpreted as Java structural
equality

(o1 ∈ OID ∧ o2 ∈ OID ∧ o1 = o2) ⇔ o1.equals(o2)

Similarly, the given set VID is an abstract representation of object identifiers
that are mapped values, where we use the same interpretation of equality as OID .
These interpretations are important since the model field representing the array
of Entry in HashMap (theMap) is an instance of JMLEqualsSet (see Sects 2.1
and 2.3 above).

The schema HashCode represents the abstraction of the hashCode() algo-
rithm as an injection from the object instance (OID) to the corresponding hash
code value. It abstractly defines the behaviour of the hashCode() method in Z.

HashCode
HashAlgo; this? : OID ; result ! : Z

result ! = algo this?

From a given object instance this?, the hash code result ! is output as the hash
value of the algorithm for that instance (i.e., result ! = this?.hashCode()). With
the abstract specification of algo as an injection, we can further refine it to
particular concrete implementations as needed, by coming back from generated
hash codes to the object instances that generated them.

Next, we model the underlying Entry for key-value pairs considering the clash-
ing mechanisms described above as

Entry ==
{ s : iseq (OID × VID) |

∀ o : OID ; v1, v2 : VID | o �→ v1 ∈ ran s ∧ o �→ v2 ∈ ran s • v1 = v2 }

Whenever two different object ids o1 and o2 have the same normalised hash
code, a clash will happen and an entry may grow like in the example above.
In such cases, this “spiked” Entry specification enforces that: (i) no key-value
pairs are repeated in the list (iseq); and (ii) no clashes on different values can
happen for the same key object instance, the clashed pairs of Entry are func-
tional on the keys. The first property is defined in JML as an axiom, and we
have proved it as a trivial theorem based on our definition. In both cases, this
theorem/axiom is used to avoid a key being associated with different values.
The second property not only follows the HashMap contract, but it also enforces
that Entry keys properly implement hashCode by keeping hash keys immutable.
It also serves as a soundness invariant for the hashCode() of entries, whenever
they are values in other maps themselves. Also, the sequences s of Entry that
are entries represent ordering for clashes, where the injectivity (uniqueness) is
an optimisation for storage. This (uniqueness) restriction is indirectly enforced
in JML by the equational theory used in theMap model field. This model also
captures the efficiency concerns for Java HashMap lifted from its JML specifi-
cation. As Entry is the most fundamental data structure to build a hash map,
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we see the finding and interpretation of such invariants as very useful. But they
didn’t appear by magic: they were discovered by using the theorem prover in
the refutatory style advocated in the classical style [23, p.127], in order to reach
an elegant specification that is amenable for mechanisation.

The JML axiom about the functionality of entries is given in the specification
of the Map interface that HashMap implements in terms of the contains model
methods, as transcribed below

1 /*@ public normal_behavior
3 @ requires e != null;
4 @ ensures \result <==> contains(e.getKey(),e.getValue());
5 @ public pure model boolean contains(Entry e);
7 @
8 @ public pure model boolean contains(Object key, Object value);
9 @

10 @ axiom (\forall Map m; (\forall Object k, v, vv;
11 @ (m.contains(k,v) && m.contains(k,vv)) ==>
12 @ JMLNullSafe.equals(v,vv)));
13 @*/

The model method in line (8) is important since its use is propagated throughout
most of the HashMap specification. Despite this fact, it has no explicit specifica-
tion, which means it has just the trivial postcondition true, whatever the given
Entry. As theMap model field used to represent the array of entries implements
an equational theory for structural equality (i.e., JMLEqualsSet), we were sur-
prised it was not linked with contains. This link was hinted at as one of the class
invariant examples mentioned earlier (see Sect. 2.5), since the has() method is
defined in terms of the right equational theory.

1 /*+@ public instance invariant
2 @ (\forall Object o1, o2; theMap.has(o1) && theMap.has(o2);
3 @ o2!=o1 ==> !JMLNullSafe.equals(o2,o1));
4 @*/

We are not certain if this would enforce the right specification for containment.
We suggest to explicitly add a link between theMap and contains, as

i /*@ public normal_behavior
ii @ requires e != null;
iii @ ensures \result <==> theMap.has(e) ;
iv @ public pure model boolean contains(Entry e);
v @

vi @ public normal_behaviour
vii @ requires key != null && value != null;
viii @ ensures \result <==> contains(e.getKey(), e.getValue());
ix @ public pure model boolean contains(Object key, Object value);
x @*/

For JML, the restriction on non-null key/value could be relaxed or generalised
to handle null.
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Z State Schema and Initialisation. The state schema HM for Java HashMap
in Z is given below.

HM
hm : N �→ Entry ; HashAlgo
idx , size : N; capacity, loadfactor : N1

dom hm = 0 . . capacity − 1
size ≤ capacity ∗ (loadfactor div 100)
idx ∈ dom hm
∀ o : OID ; i : N | i ∈ dom hm • i = hf (algo o, capacity)

It uniquely maps indexes into the entries array as the partial function hm, where
all such indexes are valid within the map’s capacity. Indexes are the result of
the hashing function (hf ), which uses the object instance (o) hash code result
(from algo o) modulo the initial capacity of the map. This establishes the link
between hash code indexes within the map (i ∈ dom hm), and object instances
(o) whose hashCode() algorithm we are interested in. The hm injection is rep-
resenting theMap JML model field in our Z model. It also represents the design
from the Map interface as an array of entries. Furthermore, idx defines the current
allocation position some mapping operations require. The loadfactor is useful to
balance the performance of the map for query, insertion, or iteration operations
adequately. In Java, loadfactor is given as a floating-point number supposed
to represent a percentage, but Z/Eves does not have floats. To accommodate
this, we normalise its value with integer division by 100, where the discrepancies
should be minor, since one usually uses whole integer percentages (e.g., the de-
fault value is 75%). The few extra class invariants about capacity and loadfactor
that we have not mentioned already are given below.

1 //@ public model int initialCapacity;
2
3 // loadFactor is spec_public below
4 //@ public invariant initialCapacity >= 0;
5 //@ public invariant loadFactor > 0;

We are puzzled by the JML invariant for initial capacity allowing zero capacity
maps. Although the Java documentation says that the capacity should be a
power of 2 (and zero certainly is), we think it is of little use to specify a map
that can never hold any element. Also, to avoid rehashing, we add an invariant
that the maximum size (or number of elements) the map can take is smaller
than the capacity multiplied by the (normalised) loadfactor . As size is loosely
defined, it follows the Java documentation suggestion that “if many mappings are
to be stored in a HashMap, creating it with a sufficiently large capacity will allow
the mappings to be stored more efficiently than letting it perform automatic
rehashing as needed to grow”. Thus we changed the range of capacity in HM ,
and the relationship between size, capacity, and loadfactor accordingly.

In JML, initialisation takes place at class constructors. In our case, we need
to consider the constructors for Object and HashMap, as AbstractMap and the
implemented interfaces have no constructor specification. The default/implicit
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constructor from Object is trivial. Like a Ξ schema in Z, it just states no at-
tributes are modified.

1 /*@ public normal_behavior
2 @ assignable \nothing;
3 @*/
4 public /*@ pure @*/ Object();

HashMap has various constructors, which could all be related to one single version
that we transcribe below.

1 /*@ public normal_behavior
2 @ requires initialCapacity >= 0;
3 @ assignable theMap, this.initialCapacity, this.loadFactor;
4 @ ensures theMap != null && theMap.isEmpty();
5 @ ensures this.initialCapacity == initialCapacity
6 @ && this.loadFactor == loadFactor;
7 @*/
8 public HashMap(int initialCapacity, float loadFactor);

It just initialises the capacity and loadfactor , and guarantees that theMap model
field is non-null and empty. For the Z state schema, initialisation is also trivial,
but slightly different.

InitHM
HM ′; c?, l? : N1

algo′ �= ∅ ∧ hm ′ = ∅

capacity ′ = c? ∧ loadfactor ′ = l?
size ′ = idx ′ = 0

We must also ensure that there is always an algorithm to go from an OID to its
corresponding hashCode() (i.e., algo′ �= ∅), which is trivially true, since algo is
total, and we can assume OID to be a non-empty type.

3.2 Map Operations

Now we can define the map operations in Z from the JML specification of
HashMap methods. We define some useful schemas shared among the operations.

HashOp =̂ [ ΔHM ; key? : OID ; result ! : Z | HashCode[key?/this?] ]

KeyQueryOp =̂ (HashOp ∧ Ξ HM )

ValQueryOp =̂ [ Ξ HM ; val? : VID ]

The HashOp schema represents all operations involving hash keys (key?), where
the resulting hashCode() value is calculated via the HashCode schema, and is
output in result !. Query (Ξ) operations in Z are those that do not change the
state. We define one for keys (KeyQueryOp) and one for values (ValQueryOp),
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where the former requires a key and produces a hash code, whereas the latter
requires an object identifier for mapped values (val?). This reuse via schema
inclusion is useful in simplifying proofs from unrelated predicates, and it keeps
the specification modular.

Next, we specify HashMap containment queries for keys and values within the
map. Key containment is a query operation that ascertains that there exists an
entry in theMap model field such that the given key is structurally equivalent to
the given key. This operation is specified in the Map interface as

1 /*+@ public normal_behavior
2 @ ensures \result <==>
3 @ (\exists Map.Entry e; theMap.has(e) && e != null;
4 @ JMLNullSafe.equals(e.abstractKey, key));
5 @+*/
6 /*@ pure @*/ boolean containsKey(/*@ nullable @*/ Object key);

The Z equivalent is a bit different from the JML version. Instead of having an
existential postcondition being equivalent to a boolean value (i.e., a false result
could still be a true postcondition), it explicitly mentions the key containment
condition within the hash map. We make sure this difference is harmless by
proving the ensures clause above as a theorem in Sect. 3.4. The next schema
specifies the hash key containment query operation.

ContainsKey =̂ [KeyQueryOp | key? ∈ dom(ran (hm idx )) ]

It has the signature of KeyQueryOp, where the input key? is within the ap-
propriate projection in theMap (represented by hm). The universally quantified
invariant in HM allows us to link hash map (array) indexes (idx ), in this case
calculated from key?, with the hash code algorithm (algo), in this case stored
in result !. When we apply idx to hm, we get an Entry, which is an injective
sequence where the range is (OID × VID) pairs. From these pairs, we check
whether the given key? is present in the map or not using dom. The JML speci-
fication for value containment is very similar, and we omit it here. The Z schema
is also very similar and is given below.

ContainsValue
ValQueryOp

val? ∈ ran (ran (hm idx ))

The same principle applies, but now we are interested in projecting the values
(val?) from the (OID × VID) pairs from the Entry at idx in hm. Thus, we just
use ran instead of dom.

The emptiness operation does not produce side effects and relates the hash
map array hm with size. If the array is empty, then size must be zero. Yet if
the size is zero, the Java documentation does not insist the array should be
initialised as empty.

IsMapEmpty =̂ [ ΞHM | hm = ∅ ⇒ size = 0 ]
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The JML specification is similar.

1 /*+@ public normal_behavior
2 @ ensures \result <==> theMap.isEmpty();
3 @ implies_that
4 @+*/
5 /*@ public normal_behavior
6 @ ensures \result <==> (size() == 0);
7 @*/
8 /*@ pure @*/ boolean isEmpty();

Unfortunately, the implies that keyword is not documented in [24] or [30].
Another query operation retrieves the mapped value associated with a given

key?, provided the key is contained in the map. The actual value (val !) is the
result of applying the key? to the Entry injective sequence returned by the map
at the given index. As the pairs within ran s are functional, where s ∈ Entry,
we can apply it to key? to retrieve the associated value. This creates interesting
(and possibly general) proof obligations about the result of ran, which is defined
as a relation, to be functional, so that application to key? is well-defined.

GetValue
KeyQueryOp; val ! : VID

ContainsKey
val ! = (ran (hm idx )) key?

Its JML specification is similar to the containment operations, but with the extra
requirement for key containment.

1 /*+@
2 @ public normal_behavior
3 @ requires containsKey(key);
4 @ ensures (\exists Entry e; theMap.has(e); e != null
5 @ && JMLNullSafe.equals(e.abstractKey, key)
6 @ && \result.equals(e.abstractValue));
7 @*/
8 /*@ pure @*/ Object get(/*@ nullable @*/ Object key);

The obvious difference is that now there is an extra equality condition (line (6))
about the method result (val !) being the mapped value. As we are not consid-
ering null keys, we omit that part of the specification. Like in the key-value
containment operations, it is not quite clear why the ensures clause needs the
existential quantifier for a non-boolean method. We believe that is because there
was no specification for the model method containsmentioned above. We would
still need to investigate further with the JML community to clarify this precisely.

Similarly as before, we define general schemas now for insertion operations
with the MapOp schema.
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MapOp
HashOp

idx ′ < capacity
capacity ′ = capacity
loadfactor ′ = loadfactor

This states that the map parameters cannot change and that the current in-
dex being modified is within the map capacity, since we insist in no rehashing.
Operations also require a value (val?) with which to associate a key (key?):

ValMapOp =̂ [MapOp; val?, val ! : VID ]

To associate a value with a key, we define the Put operation below. An Entry is
added into the map, hence it must be able to increase, and the current index is
the result of the hashing function on the given key?.

Put
ValMapOp

idx ′ = hf ((algo key?), capacity)
hm ′ = hm ⊕ { (idx ′, (hm idx ′ � 〈(key?, val?)〉) ) }
size ′ = size + 1

The effect is to update the map at the given index with the given (key?, val?)
pair. This operation is more complex than it seems. There are at least three easy
cases to explain: (i) when key is not in any Entry in the map; (ii) when a key?
with a consistent hash code and its mapping is being updated (i.e., change of an
available mapping within an Entry); and (iii) when a clash happens due to a key?
that generates an inconsistent hash code, which leads to a “spiked” Entry in the
map. A further hidden complexity is about the injectivity of hm and its entries.
That creates an opportunity for general laws associating relational overriding (⊕)
for injective functions, as well as injective sequence concatenation (�), where the
range of such a sequence has key-value pairs that are functional. This leads to
quite complex proof obligations and precondition calculation. As for Java, the
HM invariant on size should be relaxed to allow rehashing, so that clashes could
also happen whenever the map’s capacity is exceeded.

The JML specification for the put method from the Map interface without
considering exceptional postconditions is given as

1 /*+@ public behavior
2 @ assignable objectState;
3 @ ensures (\exists Entry e; theMap.has(e); e != null
4 @ && JMLNullSafe.equals(e.abstractKey, key)
5 @ && JMLNullSafe.equals(e.abstractValue, value));
6 @ also
7 @+*/
8 /*@ public behavior
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9 @ assignable objectState;
10 @ ensures (\exists Entry e; contains(e);
11 @ nullequals(e.abstractKey, key)
12 @ && nullequals(e.abstractValue, value));
13 @ ensures (\forall Entry e; \old(contains(e)) ==> contains(e));
14 @ ensures (\forall Entry e; contains(e) ==>
16 (\old(contains(e)) || (e.getKey() == key &&
17 e.getValue() == value)));
18 @ ensures \result == \old(get(key));
19 @*/
20 public Object put(/*@ nullable @*/ Object key,
21 /*@ nullable @*/ Object value);

As the theMap model field is contained within the data group of the more general
objectState model field, the assignable clause is simply saying other fields from
the object could be modified as a result of changing the map. Although this is
reasonable for a general implementation, as JML allows heterogeneous frames,
we could not follow precisely why it is that theMap was not used directly, instead.
Again the use of an existential quantifier, and the has method of theMap, instead
of the contains model method as a precondition (lines (3–5)) was surprising.
The postcondition specifies (line (13)) that all old entries be still in the map. In
lines (14–17), the specification states that known entries either did not change,
or were modified according to the new given key-value mapping parameters.
These two postconditions are consistent with the use of relational overriding
(⊕) in the Z model. Still, as the contains model method specification is empty,
these two postconditions on old entry containment are meaningless. The last
postcondition (line (18)) states that the result is the old value stored under
the given key. If there were no mappings for the key, or if the key is null,
the result is null. Otherwise, the result is the previous value stored under the
given key. Furthermore, it seems that JML does not specify any concern with
respect to the two levels of injectivity that hm and Entry capture from the Java
documentation. As it involves handling null objects, this is the only place where
the Z model does not enforce one of the JML postconditions. Despite this fact,
we could easily add this with an additional predicate in the Put schema, such as

ContainsKey ⇒ GetValue

provided we added an additional val ! ∈ VID output variable to the Put decla-
ration list.

3.3 Operation Preconditions

The preconditions for operations are summarised in Table 1 below. Apart from
initialisation, the map operations rely on the HM invariant holding as part of
their precondition. That is, if the HashMap can be instantiated at all, then those
are the preconditions for the operations. The interesting and less obvious pre-
condition is for the hash map initialisation. It requires the existence of a map
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Table 1. Operations precondition table

InitHM (∃ m : N �� Entry ; a : OID � Z; c? : N1

• dom m = 0 . . c? − 1 ∧ a �= ∅

∧ (∀ o : OID ; i : dom m •
i = hf ((a o), c?)) )

ContainsKey key? ∈ dom (ran (hm idx))

ContainsValue val? ∈ ran (ran (hm idx))

IsEmpty true
GetValue pre ContainsKey
Put size < capacity ∗ (loadfactor div 100)

(m) instantiated with enough room for the given (strictly positive) capacity (c?),
as well as a valid hashCode() algorithm (a �= ∅) mapping object instances (o)
spread across the HashMap array indexes (i ∈ dom m). The strictly positive ca-
pacity and hashCode() algorithm availability are trivially true in practice, since
a boundary check (c? ≥ 1) is made at instantiation time, and all Java Object
instances have a default hashCode() implementation as their (unique) object
address in memory. Nevertheless, this default value might not always be the
best one from an implementation point of view, as hashCode() implementations
ought to be consistent with respect to equals. It is also nice to confirm that
the precondition for GetValue was indeed what the JML requires clause says
it is: the precondition for ContainsKey.

Not surprisingly, the most complex proof was the one for the Put operation.
That is because there are far too many cases to consider: when the key is within
the map or when it is a new one; when clashes happen; and so on. Also, relational
overriding and sequence concatenation over injections require a great deal of
machinery and ingenuity in order to finish the proof. Thanks to previous work
done for a similar operation on injections in Mondex [42], the work here was
considerably reduced. That is both because of general proof strategies that have
been reused, and because additional Z toolkit laws for injections and injective
sequences were added. This is positive and encouraging evidence of what can be
generally achieved with the pilot project verification experiments, and verified
components: reusable toolkit laws and proof strategies.

As the JML specifications for the boolean operations were given as existen-
tially quantified postconditions over a key-value pair in an Entry within the
map, we decided to prove additional theorems to show that such a specification
is as good as the one we found. This is defined in the next two theorems

theorem tContainsKeyPRE2
∀HM ; key? : OID | (∃ val : VID • (key?, val) ∈ ran (hm idx ) ) •

pre ContainsKey

theorem tContainsValuePRE2
∀HM ; val? : FILE | (∃ key : OID • (key, val?) ∈ ran (hm idx ) ) •

pre ContainsValue
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They specify that on the assumption of an initialised (instantiated) map (HM )
and an appropriate key?/val?, the JML (postcondition) specification of the corre-
sponding boolean operation holds, provided there exists a counterpart identifier
within the map at a known Entrye index.

3.4 Theorems and Automation Rules

In order to make sure our Z specification indeed meets the expected JML post-
conditions, we prove their ensures clauses as Z theorems. The JML ensures
clause for the containsKey method is

1 @ ensures \result <==>
2 @ (\exists Map.Entry e; theMap.has(e) && e != null;
3 @ JMLNullSafe.equals(e.abstractKey, key));

where the Z theorem showing that it holds is given next.

theorem tContainsKeyEnsures
∀ContainsKey • ∃ val : VID • (key?, val) ∈ ran (hm idx )

That is, if the ContainsKey operation is successful, then that means there must
exist some value val for which the contained key? is within the map hm at the
index idx calculated via algo in HM . Similarly, the JML specification for the
get method postcondition is

1 @ ensures (\exists Entry e; theMap.has(e); e != null
2 @ && JMLNullSafe.equals(e.abstractKey, key)
3 @ && \result.equals(e.abstractValue));

where the Z theorem ensuring that for the given key?, the result (val !) is indeed
a mapping within the map (hm) is given as.

theorem tGetValueEnsures
∀GetValue • (key?, val !) ∈ ran (hm idx )

One can carry on doing this for the other operations until the complete set of
ensures clauses have been proved. For class invariants that have not already
been given as definitions, we would need to prove a theorem for every operation,
where we could assume the operation and we needed to show that the invari-
ant holds. Fortunately, as the Map axiom about functionality of key-value pairs
is given in the definition of Entry, and the other class invariants are related
to equality and type consistency, we have proved all the theorems about map
instance invariants.

The successful mechanisation of a JML-inspired Z hash map heavily depends
on a good set of automation rules that are tailor-made to the complexity of the
data structure being manipulated, in this case an injective map of Entry. For
instance, the maximal type of hm ∈ N �� Entry is as follows

hm ∈ P (Z × P (Z × (OID × VID)))

During proofs, it often happens that one gets different versions of this type as
proof obligations, such as
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(a) hm ∈ Z ↔ P (Z × (OID × VID))
(b) hm ∈ N �� (Z �→ (OID × VID))

These proof obligations depend on the nature of the Z toolkit operators and laws
that have been used. For instance, when applying relational overriding to hm in
the Put operation the proof obligation (a) is generated, or when applying some
laws on injections, such as

∀ f : X �� Y • ∀ x : dom f • f ∼ (f x ) = x

another proof obligation (b) is generated. Other examples of proof obligations
that are not related to type checking are what in Z/Eves is known as forward
rules. They expose some important property P of a schema S , which is usually
easy to prove, without requiring further proofs involving S and assuming P to
expand S , hence cluttering the goal with unnecessary detail. For instance, this
happens often with state schemas, where the state invariant is needed to finish
some proof about an operation over the map. Again, this is a general lesson
previously learned from earlier work [42].

It is through these and other kinds of proof obligations arising whilst ma-
nipulating goals that we found problems in the original design, as well as inter-
esting/reusable lemmas for similar problems. This is the major benefit of such
mechanisation efforts: they produce reusable general theories that can benefit
other future verification experiments and verified components. For the experi-
ment explained in this paper, we relied on around 85–95 of these lemmas and
rules, from which around 8–10 could be generally reused in any context, and
many more that could be reused whenever injections and injective sequences
are involved. Fortunately, most of this essential machinery was already avail-
able. From [42], we got most of the general material on injections and sequences.
In [11], most of the specific rules for Entry and HM were provided. Thus, we
reused quite a large number of lemmas, resulting in a much lower burden of
proof. In this particular case, that low burden is because the work in [11] was
already targeted at hash maps. Obviously, in general the reuse is not always
that high, yet as the number of experiments grows, the richer the set of general
theories becomes, hence the greater the chances of having higher reuse rates.

4 Conclusions

There are many opportunities for profitable interaction between JML and dif-
ferent mechanised formalisms: this paper describes just the tip of the iceberg.

4.1 Verifying the JML Type System

JML and its tools rely on the correctness of annotations, which in turn rely on the
underlying JML meta-type system to provide functionalities, such as side-effect
free bounded predicates and varied equational theories. So subjecting the type
system to the scrutiny of mechanical theorem proving is likely to be beneficial.
And JML already goes in this direction: there are quite detailed annotations
within the meta-type system.
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4.2 Strengthening JML Annotations

We can use the same approach to the JML specifications available for the Java
libraries. What we did here with HashMap and part of the JML type system could
be done again for other parts of the Java Development Kit (JDK), and this has
already been done before for AbstractCollection with positive results [17].
The research community can now take the opportunity to systematically verify
the JML specification of the entire JDK, and the same could be said for the
JML specifications of other frameworks, such as the Java cards API [29,39].

Another interesting point about linking Z and JML in this way is that we
can draw inspiration from concrete implementations specified in JML up to Z
specifications of similar concepts. That is exactly what happened in the work
done in [11,10]. We started by mechanising a well-known abstract specification
of a filing system given in [26], assumed that a hash map would be a good imple-
mentation candidate and started doing the concrete specification. At this point,
when we needed to think how to model a hash map in Z, we drew inspiration
from the available JML specification for the Java HashMap class. This was also
helpful in finding the right retrieve relation to prove the refinement between ab-
stract and concrete Z specifications. The same route could be repeated for other
important data types.

4.3 JML to Z

A step forward beyond verification of class libraries and frameworks would be
the verification of the JML semantics itself. This would provide a basis for a logic
for reasoning about JML specifications. For that we need more than what Z of-
fers: the specification of abstract data types. JML has specification facilities for
real-time, concurrency, and resource allocation, which could be captured within
Hoare and He’s Unifying Theories of Programming [14]. As mentioned above,
JML is divided into language levels [24, Sect. 2.9], where there are minimum,
desirable, and “exocentric” language features to be considered. The behavioural
part that Z can capture is definitely the very basic/core part of JML, hence the
most obvious place to start. The next step would be to combine JML concur-
rency features with Java models for CSP, which are also already available. The
obvious path is the to add a systematic formal translation from JML to these
different formalisms. Although this is a more ambitious project, it is a feasible
(and promising one) nevertheless.

4.4 Z to JML

The other way round, from concrete Z specifications down to JML specifications,
would also be very interesting. It would enable the prototyping of Z specifications
in Java, which we believe will be attractive. There is already ongoing work in
this direction in Community Z Tools (CZT).3 Another interesting possibility

3 See czt.sourceforge.net.

czt.sourceforge.net
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is to have JML as a target language for the refinement calculus [25] (or even
the Z refinement calculus [6]). As there are available refinement tools for the
refinement calculus that have other target languages rather than Java, we think
this is also a profitable way forward.

This is a more modest endeavour than going from JML to Z, yet there are
still interesting issues to tackle. One example is the treatment of undefined ex-
pressions in JML. Moreover, some of the quite powerful abstraction mechanisms
available in Z would be difficult to directly translate to JML, like given sets and
loosely defined paragraphs. Like in [37], we would obviously need to adhere to
some Z specification patterns prior to translation to JML.

An important issue still to be considered in such a development is how to
tackle the object-oriented features of JML. One could argue that Object-Z [33]
would be a better candidate to aim for. Nevertheless, as there is no agreeable
notion of refinement for Object-Z, we would rather prefer to stick to Z itself,
perhaps using the solutions already described in [38].

4.5 Finally

In this paper we emphasise the benefits of proving theorems about JML specifi-
cations using the Z notation. We focus on the specification of the Java HashMap
class, and parts of the JML meta-type system classes. This reveals interest-
ing opportunities to improve JML specifications, uncovering some problems and
strengthening the JML specifications with theorems from Z.

In linking Z and JML, we are paving the way towards providing formally
documented components for the Verified Software Repository that others will
find useful. Java’s HashMap architect Joshua Bloch once said [2]

Writing reusable software components is a bit like being a plumber. It’s
a critical but largely thankless task. No one says, “Gosh, your plumbing
is really great!” But you can bet they would complain if it leaked.
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Abstract. The success of model-based testing, in automating the testing of an
implementation given its state-based (or model-based) specification, raises the
question of how best the specification can be tweaked in order to facilitate that
process. This paper discusses several answers. Motivated by an example from
web-based systems, and taking account of the restriction imposed by the testing
interface, it considers both functional and non-functional properties. The former
include laws, implicit system invariants and other consistency conditions whilst
the latter include security leaks. It concludes that because of the importance of
the link between specification and implementation in the testing process, there is
a trade-off between genuinely useful testing information and the incorporation of
some degree of information about the link, not normally regarded as part of the
specification.

1 Introduction

(Formal) specifications and implementations are normally viewed as being poles apart.
After all, a specification captures requirements by expressing what a system should
achieve, whilst the purpose of an implementation is to be executed and so it contains
much detail whose concern is computational efficiency; the connection is of course that
the implementation conforms to the specification—ideally! They might also be viewed
as being poles apart because, after all, much of the process of system development lies
between a specification and an implementation.

Because that conformance is only ideal, testing is required. All testing presupposes
a priori, an oracle, knowledge for interpreting test outcomes: of which tests pass and
which fail. That knowledge constitutes, for any system of realistic size, only partial
information about the specification. But it demonstrates an unbreakable link between
specification and testing.

The advent of the important area of model-based testing, MBT, [7,9,26] forges an
even stronger link. Its primary importance is the complete automation of validation
testing, subject to control by the test engineer of those features of the system being
tested, of coverage criteria and so on. As pointed out by Utting [25], MBT relies on
redundancy between the test specification and the implementation; and then it is equally
likely to reveal errors in each.

Over the past couple of decades, considerable experience has been gained in specifi-
cation. The cost of the time spent on specification during the critical early stages of the
development cycle can be partly amortized over the later activity of testing using MBT.
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However the precise difference between a (standard) specification and one that serves
as a model for MBT is still unclear. That is the topic of this paper. More specifically, its
purpose is to consider the following question, particularly in the context of web-based
systems:

What can a specifier do, when constructing a (state-based, or model-based)
specification, to facilitate the subsequent task of testing, particularly by auto-
mated techniques like MBT?

The nature of testing has changed as a result of specification. One of the benefits of
specification is that it provides notation and a place in the development cycle to make
precise conditions that once were routinely incorrect in code; then they were picked
up only by testing. Perhaps the best examples of that nature are boundary conditions:
indices out of bounds, loops iterating too many or too few times, etc. Of course the
specifier might still get those details wrong, but with MBT the mistake is likely to be
picked up in the model rather than in the implementation.

One of the strengths of MBT is that the model and tests generated from it can be
reused even when the implementation changes. This means that MBT is useful in black-
box testing, whose focus is on the properties of the system rather than the low-level
coding details. This facilitates the development of a model that is abstract and is de-
rived only from observable behaviour. This is not to say that MBT cannot be used in
whitebox testing. But the more the details of the implementation are exposed, the less
abstract the model—and hence the less reusable—it becomes.

In this paper, however, it is argued that some implementation details have to be ex-
posed for certain types of property. The properties addressed include standard ‘func-
tional’ properties like laws between operations, system invariants, confidence conditions
(like pre- and postcondition analysis), boundary analysis; and they include ‘nonfunc-
tional’ properties like security leaks.

For MBT to be really useful, the tests generated from the model must be linked to the
implementation. The link must provide sufficient information to automate the process of
testing the implementation from the model. It acts as an ‘action refinement’, translating
test sequences obtained from the model into suitable test sequences for the implemen-
tation. The action word approach [6,5] has been proposed as a simple way to establish
the link. This approach applies naturally to models which are labelled transition sys-
tems whose labels represent aspects of functionality that are to be tested. The link then
associates code, which actually performs the testing, to the label. For example, if the
link associates the code ca to the label a and cb to the label b, then the test sequence
ab results in execution of the code ca o

9 cb . Usually the oracle is built into the code.

1.1 Related Work and Outline

The study of the interplay between specifications and testing is far from new. Of the
many contributions which predate MBT, a large number can with hindsight be seen as
precursors. Specification-based testing is a term that has for long been used to describe
the ‘generation’ of tests from a (formal) specification.

Some work has focused on the animation of specifications, either by choice of speci-
fication notation [7,13,14,15,18] or by translating the specification into executable form
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[11,12,19]. Incorporation of the notion of testing into the framework of Formal Meth-
ods, and the refinement calculus in particular, has been accomplished by Aichernig [1].
Testing the kind of system considered here, specifically to reactive systems, has been
the subject of a Dagstuhl meeting [4].

In outline, the paper proceeds as follows. In Section 2 a case study is presented of
a web-based network-management system, and in Section 3 the manner in which it
is linked to an implementation is discussed. Then three kinds of functional property
are considered for the generation of extra-specification tests, in Sections 4, 5 and 6.
In Section 7 a non-functional property, security, is considered. The case study is used
illustratively throughout.

2 Case Study

This section describes a web-based network-management system that helps to illustrate
the key issues discussed in this paper. The system is based on a real web application,
whose testability has been determined by the interface available.

First, a brief informal overview of the system behaviour is given (Section 2.1)
and supplemented (in Section 2.2) with a formalisation in ObjectZ. Then follows (in
Section 3) a discussion of those issues in the model that are relevant to testing; that is
followed (in Section 3.5) by a brief discussion of problems related to testability.

2.1 Overview

The system consists of a simple web-based system for managing a network of machines
remotely. It is based on a network of clients and their users. There are two special
kinds of user: administrators and managers. Although both are users, no user is both an
administrator and a manager.

The system requires users to authenticate themselves by logging on in the usual man-
ner. For security purposes, three consecutive unsuccessful logins result in the user’s ac-
count being locked; this level of abstraction overlooks the details of how that is undone
by a manager or administrator). A user can log on to only one client at a time.

An administrator (and only an administrator) can create a client, provided it is not
already present and provided that a manager is assigned to it. An administrator can re-
move a client, provided there are no users logged on there. An administrator can select
a client and see its details, consisting of the client’s manager and the users currently
logged on there. An administrator can also see the details of a user, consisting of its
password, whether it is logged on and if so where, how many consecutive unsuccessful
attempts it has currently made, and email it has sent and received. Finally, an admin-
istrator can broadcast mail to all users, and can send mail to a specific user as if from
another specific user.

A manager (and only a manager) can create a user account, provided the user is not
already registered. A manager can remove a user, provided it is not logged on, is not
itself a manager or administrator, and provided mail it has received is also removed.
After an administrator or manager logs out the functionality associated with its roles
cannot be invoked.
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Other users have very limited capabilities (at this level of abstraction). They can log
in on any client, read their messages and send messages to other users and log out. But
they cannot manage users or clients.

Initially there is at least one administrator and at least one manager (just because this
level of abstraction abstracts the actions that change those sets), there are no other users,
no user is logged in nor has tried to log in, and there is no post. It is arbitrary where the
administrators and managers are initially logged in.

2.2 Model: Webbo

The model of that web-based network-management system is called Webbo. The speci-
fication below is approximately ObjectZ [8] but uses dependent types in order to shorten
schema invariants and uses C � D to stand for the disjoint union of C and D (i.e. the
union in which the invariant C ∩D = {} holds).

These generic types are assumed: Users for the set of possible users; Clients for the
set of possible clients; Mess for the set of email messages; and Pass for the set of all
possible passwords, both valid and invalid (thus Pass might well consist of the set of all
character strings constrained in some way by length; but such detail is ignored at this
level of abstraction).

These schemas are required and defined in the specification. Loginfo provides for
each user: the number no of putative logins in the current sequence of attempts by that
user; the user’s password pd; a Boolean in which is true iff the user is currently logged
in; the client at at which, if in is true, the user is logged in; and a Boolean lock which is
true iff the user’s account is locked (thus lock is a redundant observable, equivalent to
(no = 3)).

State is described by sets: U of users, A of system administrators, M of managers
of clients, C of clients; by a function mng which assigns a manager to each client (so
is a total function), a function log which assigns Loginfo to each user, and a relation
post between a sender-receiver pair and messages that is in general many-to-many. See
Figure 1.

An administrator can create a client, with operation CreateClient, only if logged
in, the client is not already in the network, and by assigning a manager to the client.
Removal of a client, by operation RemoveClient, is similar, except that for a client to be
removed it must have no users logged in there. See Figure 2.

With operation AdminClient, an administrator a? can receive information about the
manager man! of a client c? and about which users, users!, are logged in there. With
operation AdminUser an administrator can receive information about a user u?. See
Figure 3.

An administrator a? sends post either by broadcasting a message p? to all users from
itself, with operation AdminPostAll, or by sending it to just a single recipient r? from
user u?, with operation AdminPostOne. See Figure 4.

The ‘management’ of users extends that of clients, because when a user is removed
by a manager, its email is also removed; the user must not be logged in, and must not
be an administrator or manager. This description abstracts the initial choice of a client’s
password. See Figure 5.
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WebboState
Loginfo
no : N

pd : Pass
at : C
in, lock : B

no ≤ 3
in ⇒ (no = 0)
lock ⇔ (no = 3)

State
U,A,M : PUsers
C : PClients
mng : C → M
log : U → Loginfo
post : U×U ↔ Mess

A�M ⊆ U

Init
State

A 
= {}
M 
= {}
U = A∪M
∀u : U · log(u).no = 0 ∧ ¬log(u).in
post = {}

Fig. 1. State for the model Webbo

ClientManagement
CreateClient
Δ(C,mng)
a? : A
c? : Clients
m? : M

log(a?).in
C′ = C �{c?}
mng′ = mng⊕{(c?,m?)}

RemoveClient
Δ(C,mng)
a? : A
c? : C

log(a?).in
¬∃u : U · log(u).at = c? ∧ log(u).in
C = C′ �{c?}
mng′ = {c?}−� mng

Fig. 2. Client management in Webbo

A user u? who is logged in may send a message, with operation UserPost, to a named
user r?; or may read mail without deleting it (an easy modification updates the state to
remove read post), by outputting the mail in the set ms! of messages. Reading mail
does not change the system state; sending it updates only the state component post. See
Figure 6.

But the most subtle action is that of logging in. A user may (attempt to) log in only
if not already logged in. The attempt fails if the input password id? is wrong; on the
third consecutive failed attempt the user is locked out, but otherwise another attempt is
permitted. A successful attempt returns the count no to 0 and changes the status of the
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AdminClient
Ξ
a? : A
c? : C
man! : M
users! : PU

log(a?).in
man! = mgr(c?)

users! = {u : U |
(

log(u).at = c?
log(u).in

)
}

AdminUser
Ξ
a? : A
u? : U
info! : Loginfo
sent!,rec! : PMess

log(a?).in
info! = log(u?)
sent! = {m : M | ∃v : U · post(u?,v,m)}
rec! = {m : M | ∃v : U · post(v,u?,m)}

Fig. 3. Administrative information in Webbo

AdminMail
AdminPostAll
Δ(post)
a? : A
p? : Mess

log(a?).in
post′ = post ⊕ ({a?}×U×{p?})

AdminPostOne
Δ(post)
a? : A
u?,r? : U
p? : Mess

log(a?).in
post′ = post ⊕{(u?,r?,p?)}

Fig. 4. Administrative posting in Webbo

UserManagement
CreateUser
Δ(U, log)
m? : M
u? : Users

log(m?).in
∀v : U · v 
= u? ⇒ log(v)′ = log(v)
U′ = U �{u?}
¬log(u?).in′

log(u?).no′ = 0

RemoveUser
Δ(U, log,post)
m? : M
u? : U

log(m?).in
u? 
∈ A∪M
¬log(u?).in
U = U′ �{u?}
log′ = {u?}−� log
post′ = {(v,w,p) : post | w 
= u?}

Fig. 5. User management in Webbo
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UserMail
UserPost
Δ(post)
u?,r? : U
m? : Mess

log(u?).in
post′ = post ⊕{(u?,r?,m?)}

UserRead
Ξ
u? : U
ms! : PMess

log(u?).in
ms! = {m : Mess | ∃s : U · (s,u?,m) ∈ post}

Fig. 6. Sending and reading post in Webbo

LoggingIn
OK
Δ(log)
u? : U
c? : C
ack! : ok | fail

log(u?).no′ = 0
log(u?).in′

log(u?).at′ = c?
ack! = ok

Fail
Δ(log)
u? : U
ack! : ok | fail

¬log(u?).in′

log(u?).no′ = log(u?).no+1
ack! = fail

Login
Δ(log)
u? : U
c? : C
id? : Pass
ack! : ok | fail

¬log(u?).in
log(u?).no < 3
log(u?).pd′ = log(u?).pd
log(u?).pd = id? ⇒ OK
log(u?).pd 
= id? ⇒ Fail
∀v : U · v 
= u? ⇒ log(v)′ = log(v)

Fig. 7. Logging on in Webbo

user to being logged in. A successful login returns an ok acknowledgement whilst an
unsuccessful one returns fail. Operation Login is described in Figure 7.
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Logout
Δ(log)
u? : U

log(u?).in
¬log(u?).in′

log(u?).pd′ = log(u?).pd
log(u?).no = log(u?).no′

∀v : U · v 
= u? ⇒ log(v)′ = log(v)

Fig. 8. Logging out in Webbo

Webbo
WebboState
ClientManagement
AdminClient
AdminUser
AdminMail
UserManagement
UserMail
LoggingIn
Logout

Fig. 9. The overall system Webbo

Logging out is straightforward and is described in Figure 8. User u? is logged in
before the operation but not after it; its password remains unchanged as does its number
of unsuccessful login attempts (at 0); however log(u?).at is left arbitrary.

Overall Webbo is specified with a class that combines the previous descriptions; see
Figure 9.

3 Linking Model to Implementation

This section outlines how the link between the model and the implementation can be
developed for the purposes of testing. Several examples are presented to illustrate the
main issues, since a complete description lies beyond the scope of this paper.

3.1 Testing Language

General purpose programming languages are in general used to test systems (e.g., Java
is used in the Korat framework [3] and Ruby/Watir is used for testing web based sys-
tems [16]). This ensures that the expressive power of the tester is not restricted. But the
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implementation must provide sufficient information to the tester otherwise the expres-
sive power of the testing language cannot be utilised.

For example, the Ruby/Watir framework uses the Internet Explorer’s Component
Object Model (COM) interface to access objects of interest. However if the HTML
does not name the objects it is often difficult to pick the right object [16] and verify
its state. In object-oriented approaches information hiding can restrict the ability of a
tester to control and observe the state of the computation [2]. The implementation must
provide an interface which can be used to inspect the values of relevant variables in the
testing process.

In the present paper no particular testing language is assumed, though the constraints
just mentioned will play a deciding role.

3.2 Action Words

The approach taken here to linking the specification and implementation is that of ‘ac-
tion words’ due to Buwalda and Kasdorp [5,6]. It may be described, in the current
context, as follows.

The atomic input action pd? : Pass is interpreted in the implementation as a succes-
sion of keyboard inputs, via a web page, as defined by a finite automaton. The automa-
ton ensures that the password has length within an allowable range and so is legal.

Whilst the abstract event is atomic its concrete translation is not, since it now has
several states (to reflect the length of legal passwords) and the possibility of being inter-
rupted. Nonetheless the result is a bijective representation of Pass, that forms the link
which is animated by code.

Before providing examples, the appropriate notion of oracle must be defined.

3.3 Oracle

An operation applied inside its precondition and producing a result within its post-
condition is thought of as forming a ‘positive’ transition whilst one applied outside its
precondition or producing a result outside its postcondition is ‘negative’. Extending that
idea to sequences of operations defines the oracle, which provides the required notion
of a test that passes (all components in the trace are positive) and one that fails (at least
one is negative).

For example, the (positive) transition login(u,up) indicates that one can log in
as u with password up. For this, the initial web page must be at starting page and the
result must be the page that is displayed after a successful login. As indicated above, the
link between the model and the implementation translates the user name u and putative
password up to appropriate text fields and the process of logging in involves clicking
the button. It also links input of up to a succession of keystrokes (and perhaps to an
acknowledging output, audible and visible). For this link to be useful in test automation,
methods to access the text fields and buttons are assumed to be made available by the
COM structure.

The model also contains (negative) transitions of the form loginFail(i,p) which
indicate that the user i with putative password p fails the login. While the link for
the process of logging in is the same as for login, the linking of the results is quite
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different. When login succeeds, the web page has the menu item with the appropriate
functionality; whilst if the login fails, the web page does not have the menu item but
goes back to the retry page (that is, until the user is locked out). This again assumes
availability of the appropriate methods to inspect the resulting web page.

3.4 Link Issues for Testing

The model exhibits the behaviour that three consecutive loginFail(i,_) result in
locking the user’s account. To build the oracle into the action word, one might use
loginLock(i,p). Again the link has to translate the login process as before, but with
a different check on the outcome.

The implementation may have state variables such as Booleans auth and lock
which may not be directly accessible from the web page. In this particular case the
implementation generates output on the web page by setting the title to “Not Logged
in” or “Logged in”.

If the link has only a method to examine the title, it is not possible to determine if
the account is locked. That is, both loginFail(i,p) and loginLock(i,p) may be
forced by the link into checking the title to “Not Logged in”.

Either the title has to change or a method to examine locked is essential. If there
were a message displaying ‘locked’ then the web page can be tested by checking its
contents.

Sometimes there are popups (say created by Javascript) that require confirmation. In
the model there are transitions of the form clickOK. They need to be translated into
a number of operations—getting a handle of the javascript window, clicking the okay
button there, waiting for that window to disappear and the main window to go to the
desired page.

Usually all, or anyway most, of the methods are available or can be made available
but if the web page does not provide that information, testing fails.

3.5 Problems with Test Automation

The purpose of this section is to show that developing a model and a link from the
model to the implementation cannot automate all aspects of testing. The standard black
box testing approach to web systems is thus not sufficient.

The first problem arises since an administrator can send, with operation AdminPos-
tOne, a message on behalf of a user. The precondition for this operation is that the user
posting the message should be an administrator and the message should be addressed
to an existing user from an existing user. The model also defines the expected result of
the operation: the message should be added to the pool of messages (various designs
for which are discussed in Section 5.6).

Assume that an administrator a posts a message on behalf of the user u to r. After
posting the message the system returns a to the web page from where the messages can
be managed. Administrator a has no direct way of verifying that the message has been
added to the post. That is, it is not possible to define a link using the methods made
available by the web system.
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The link needs to include steps such as logging out from administrator a’s account,
logging in to user u’s account, opening the post and then viewing the message. Those
steps assume that the tester (or the test execution engine) knows the password of r’s
account. If this assumption is false, the situation cannot be tested. If the password is not
known, the test case for the CreateMessage function can define a series of preparatory
steps that includes the creation of a specific dummy user for whom the tester should
record the password to be used later. Administrator a then creates a message for this
dummy user. However, the testing is restricted to just that dummy user.

A similar situation exists while creating a client. The implementation does not pro-
vide any actual information about the status of the operation. There is no way way of
verifying that the client has indeed been created and users for it can be created. The
link must try to add a user to the client and then delete the user. If this succeeds the
client has been created. In this case the person creating the client is an administrator
and does not have the right to create a user. Hence the test script needs to logout and
login as manager to test the creation of a client. The system must allow this process for
the testing to be automated.

Such situations are now examined in a more systematic fashion and it is shown how
these problems lead to a tradeoff between specification and implementation.

4 Laws

State-based specifications and algebraic specifications feature quite different styles of
requirements capture. Nonetheless the state-based specifier is typically aware of laws
relating the operations being described in the state-based notation. For example, a
‘do’ operation is often accompanied in a system by an ‘undo’, in which case their
composition—perhaps under some assumption, or by abstracting some components of
state—leaves state unchanged. The following examples demonstrate those ideas using
Webbo.

4.1 Laws in Webbo

Creation of a client followed by its removal leaves the state of Webbo unchanged.
Conversely, removal of a client followed by its creation may not leave state invariant
because the manager assigned during client creation may not coincide with that just
deleted in client removal; but other state components are unchanged.

For this some notation is required. Suppose that (state) schema S includes an observ-
able a : A. Then the schema with that observable abstracted, and its identity function,
are defined:

Statea = ∃a : A · State
id[Statea] = λs : Statea · s .

(In practice it may be simpler to list, as subscripts there, the state components that are
present rather than those that are not; but this notation is more convenient in theory.)

Now the previous laws can be expressed:

CreateClient o
9 RemoveClient = id

RemoveClient o
9 CreateClient = id[WebboStatemng] .
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Creation followed immediately by removal of a user does not change the system
state. But conversely, removal followed by creation of a user may result in a different
password log(u?).pd and a different log(u?).at. Continuing the subscript convention,
that is expressed

CreateUser o
9 RemoveUser = id

RemoveUser o
9 CreateUser = id[WebboStatepd,at] .

Further laws in Webbo follow from the following observations. The action of a user
posting mail to another does not have the same effect as that of an administrator per-
forming an analogous AdminPostOne. For it is a precondition of the former but not the
latter that sender u? be logged in, and a precondition of the latter but not the former that
administrator a? be logged in; but otherwise the effects are the same.

From a fresh start, log(u?).no = 0, three unsuccessful logins of user u? leave the
system in a state in which all components are the same except that log(u?).no = 3,
log(u?).lock holds and log(u?).at is arbitrary.

A successful login of a user followed by its logout thus leaves state unchanged except
for the log(u?).at component. However a logout followed immediately by a login of the
same user leaves state unchanged only if u? was originally logged in and at the same
client as the login.

All provide opportunities, subject to the qualification above about implementation
detail, for testing; and all suggest information that can be provided by the specifier.

4.2 Reality Check

However in real systems the check for identity requires the checking of all system com-
ponents. For example, it requires checking that the database has all and only the in-
formation that was present at the start of the operations. Expense precludes this from
being part of the testing process. But worse, such simple identities are almost never
true. Databases and other applications (such as the authentication engine) keep log files
for rollback and forensics. As these log files do not affect the functionality they rarely
feature in specifications.

Thus for testing purposes it is essential to specify explicitly the components that are
used (or not used) for the calculation of the identity relation; hence our use of the nota-
tion above. In practice that requires a combination of knowledge of both specification
(to determine which components to observe) and link (how they are represented in the
implementation).

5 Testing Consistency

Different (state-based) specification notations employ slightly different styles and hence
place emphasis on slightly different concepts. A state invariant in Z (like the three ex-
plicit predicates that constrain Loginfo1 or the single explicit predicate that constrains

1 The statement at : C provides an implicit constraint since it expands to the type statement
at : Client with explicit constraint at ∈ C.
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State) constitutes a sub-type in RAISE. Because of their importance in testing, both
approaches are considered here.

5.1 Invariants

System invariants can be thought of as generalising algebraic laws. They are strictly
more general: a property may hold after an operation is invoked even though it may not
be captured in a law. As has just been seen, Webbo contains both explicit and implicit
invariants. A further type of implicit invariant holds not from the expansion of a depen-
dent type but from a property that holds initially and is maintained by all operations. An
example is the nonemptiness of A. In principle each invariant provides an important test
(if it can be achieved in the web-based implementation). This is something the specifier
is in a position to provide, and will typically have considered either making explicit in
the specification, or proving is a consequence of it.

An example of a restriction on testing imposed by the web-based interface is in
testing the (explicit) invariant

∀u : U · log(u).no ≤ 3 .

That cannot be tested directly without access to the internal variable that records the
number of consecutive failed logins (something the web-based interface does not al-
low). For instance, in most applications we cannot directly test if log(u).no has the
value 2 after two unsuccessful logins. Thus the invariant must be changed, to incorpo-
rate

log(u).lock ⇒ LoginFail(u,_).

This can be tested at the state where the lock is first set (when log(u).no equals 3). At
this point any attempt to invoke Login on that user account should fail. The fact that the
account is locked can be obtained in most implementations.

Another kind of invariant is that subtypes are used in a consistent manner: if an
operation with inputs or states in a subtype is supposed to preserve that subtype (in the
sense that outputs or state after also lie in the subtype), then it actually does so.

Less comprehensive invariants, nonetheless important for testing, are typically
conveniently expressed in temporal logic. It has been shown [17] that in some circum-
stances such temporal formulae can replace the model-based specification for the pur-
poses of testing. But in general just as a state-based specification can be complemented
by algebraic laws—or refinements, i.e. one-sided laws—so too it can be complemented
by temporal properties that the specifier is in a position to posit.

5.2 Confidence Conditions

Confidence conditions2 are certain kinds of condition on a specification whose failure,
it has been found by experience, often indicate error. They need be neither necessary

2 The term was coined in the RAISE project [20,21].
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nor sufficient for consistency3, but their truth provides a degree of confidence in the
specification.

Confidence conditions therefore provide some opportunities for verification activi-
ties. The RAISE tools, for example, allow them to be generated and inspected, to be
generated and proved (in PVS), to be model checked (in SAL), and to be included in
executable code produced by translators. Confidence conditions are used in two ways:
to look for inconsistencies in the specification and also as hints for possible extra code
in the implementation, to be switched on during testing and possibly also to aid in de-
bugging. In this paper it is the second usage that is of particular interest.

In (sequential) RSL the main confidence conditions are:

– subtypes are not empty
– arguments to functions are in subtypes
– results of functions are in subtypes
– assignments to variables are in subtypes
– preconditions of functions are satisfied by invocations
– postconditions of functions are satisfied by invocations
– case expressions are complete.

Here ‘functions’ include built-in functions and operators, like division (perhaps by zero)
or taking the head of a list (perhaps empty).

Although those conditions might be expressed slightly differently in Z (schemas are
satisfiable, and functions and expressions are well defined at both their points of def-
inition and of use) they are equally important. The same ideas can be applied to any
specification language, but the possibilities will change with the language. In general,
there is a tendency for Z specifications to involve less redundancy than RSL ones, and
so the possibility for generating confidence conditions may be reduced. The next section
applies the idea of confidence conditions to Webbo.

5.3 Confidence Conditions in Webbo

Loginfo, with its three-predicate invariant, forms an RSL subtype. The State definition
has an invariant consisting of one explicit and one implicit predicate (the implicit pred-
icate mng : C → M expands to the type statement mng : Clients �→ M with an explicit
constraint dom(mng) = C), and so also forms an RSL subtype. Thus obvious checks
are

– Operations generate states consistent with the State predicate (which includes the
Loginfo predicates on each value in the range of log)

– Outputs of type Loginfo satisfy the Loginfo predicates.

The specification Webbo is written in a largely implicit style. Thus in RemoveClient,
the condition C = C′ �{c?} defines C′ implicitly whereas the equivalent C′ = C \{c?}

3 Lack of sufficiency is obvious. They need not be necessary because of limitations in the static
analysis that generates them; for example the (low-level, but consistent) expression ‘if false
then 1/0 else 1 fi’ might generate the confidence condition that the divisor 0 is not 0, which
fails to hold.
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does so explicitly (but by violating the symmetry with CreateClient). Implicit descrip-
tions are typically more abstract and aimed at establishing properties (for which purpose
symmetry is helpful), whilst explicit descriptions are typically closer to code; most
specification notations permit both styles, for use as appropriate in the development
cycle.

Since an implementation models all the predicates in its specification, it is difficult
to see, of an implicit-style specification, where possible inconsistencies come from: if
a function is defined by a postcondition the confidence condition becomes an assertion
that a result satisfying the postcondition, plus any relevant subtype condition, exists.
This does not tend to be very helpful in discovering errors. But when an explicit style
is used then a test can be run to check that a result lies in the appropriate subtype.

In a notation (like RSL) whose explicit functions may also have postconditions, the
redundancy permits a much stronger confidence condition to be generated. Similarly
with explicit preconditions (like RSL, VDM or the refinement calculus), which permit
a check that the explicit precondition is strong enough to ensure the preconditions of
functions and operators used in the definition. (The calculation of preconditions in Z
provides no redundancy, although it may introduce mistakes in the specification—an
inconsistency4 between the calculated precondition and the implicit one—to be picked
up in testing [25].)

So it is seen that in Webbo the subtype checks are not so useful as checks on the
specification, although they do provide checks to be included in the implementation.
The checks will probably need to be optional, as some will be computationally expen-
sive, but they can be used in testing and debugging.

5.4 Partial Operators

The appearance of disjoint union, �, in Webbo exhibits the use that can be made of
partiality. It appears in several operations in the form

S′ = S �T

from which follows the precondition that S and T are disjoint. It also appears in the
form

S = S′ �T

from which follows the postcondition that S′ and T are disjoint, though that is subsumed
in the more general postcondition which is the whole equality.

5.5 Are Equalities Assignments?

When a specifier in ObjectZ writes

e0 = e1

4 Typically because the specifier does not do the calculation carefully enough, relying on intu-
ition for the answer.
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where e0 and e1 are general expressions, then the confidence condition that one might
generate is that there is a non-empty intersection between the possible sets of values for
e0 and e1. But when the left-hand side of the equality is x! or x′, where x is a variable
whose type is a subtype, the equality can be regarded as an explicit specification of an
assignment in the implementation, in which case the stronger check can be introduced
that the value of the expression on the right-hand side lies within the variable’s subtype.

5.6 Guide to Implementers

A number of checks can therefore be generated to apply as optional code in the final
implementation. However their execution requires:

– Equality functions on all types are needed. Since, as mentioned elsewhere, the fi-
nally implemented types are typically richer, an abstract equality needs to be im-
plemented which is obviously defined in terms of the (abstract) equalities on the
components

– In general, the constituents of the specification need to be implemented, or some
means found to express the conditions in terms of the implementation.
For example, the relation post is unlikely to be held as a set: it will be calculable (in
theory) as such a relation from, perhaps, individual mail boxes for recipients like
one which associates to each receiver a set consisting of pairs comprising a sender
and a message

postbox : U → P(U×Mess)

subject to the coupling invariant

post = {(u,r,m) : U×U×Mess | u ∈ U ∧ (r,m) ∈ postbox(u)} .

Then the assertion that a message exists with someone as recipient is easy to imple-
ment. The assertion that some message exists with a given sender would be harder
(unless the implementation followed a design in which each user kept an analogous
outbox of sent post).

– Following from the previous point, it is clear that the code used to implement these
checks will often break properties such as security that need to be imposed on
user-accessible functions. How to deal with this is unclear. For example one user
ought not to be able to access another’s post (except perhaps the sender, if the
outbox design is used). Yet to test the operations of AdminPost and UserMail, just
such probing is necessary. However this treatment has stopped short of security and
other such properties.

6 Boundaries

Boundary value testing is an important technique that has been adopted in MBT [24]:
each operation is tested at each state that is (reachable and) extreme in a sense defined
by the tester. In Webbo, boundary testing focuses on the extreme values of the Loginfo



296 C. George et al.

observable no = 0,3, on both values of any Boolean variable, on the initial values of the
set State observables, on the empty and full cases of post, and so on.

The specifier is in a position to define appropriate boundary functions, which the
tester might not think of. For that purpose it is sometimes easier (compared with the
method used in [24]) to define an order (like set inclusion or ordering on integers) and
to identify a boundary with its extreme points. That yields all the examples mentioned
above.

One interesting, less systematic, example already considered is identification of a
dummy user to include as a boundary point, as discussed in Section 3.5. But this is
information a specifier has only if familiar with the test constraints.

Another example is provided by the important operation of logging in. There are
potentially infinitely many ways in which the login operation can yield Fail. Of course
in testing, a suitable subset of inputs must be found to trigger that behaviour. However,
the model does not explicitly state which inputs to consider. Again, it is appropriate for
the specifier to augment the specification with information to aid testing. For instance,
a suitable function f can be defined with the property that if Login(u?,id?) succeeds
then Login(u?,f(id?)) should fail.

Similarly, tests Login(ux,idx) can be generated where ux is not a valid user, by
specifying rules for ux. Such tests should of course fail for any value of idx, and
rules for choice of idx can be specified. An alternative is to specify sets Uinvalid and
Pinvalid and generate all tests for

(ux, idx) : Uinvalid × Pinvalid .

7 Intermediate States

So far only functional properties, like those exemplified by Webbo, have been consid-
ered. But it is important for a specifier, and tester, to take account of so-called ‘non-
functional’ properties like security, non-interference, distribution and even efficiency.
This section considers one common situation that is typically a source of insecurity in
the sense of exposing information that ought to remain concealed.

7.1 Sequential Components

The linking of the code to the model implicitly involves different levels of atomicity.
It may be convenient, for example, to implement an operation op with a sequential
composition op = op0 o

9 op1 where op0 is responsible for some of the I/O and op1 for
the others. However such a factorisation may result in a security leak.

For example, the login operation of Webbo assumes that the system responds, atom-
ically, only after both the user name and password have been input and the login button
has been clicked. But in some implementations, login could be achieved as the se-
quential composition of two ‘sub’-operations the first of which provides the user with
information about the success of part of the process. If that information ought to be
secure, then this factorisation of login should be flagged as a security hazard.

More explicitly, login may be expressed as a check that the user identified by input
u? is valid, i.e. u? ∈ U, (with no output but with a Boolean variable to record (u? ∈ U)
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for use by the second sub-operation) followed by a check that if so then the password
provided is correct, i.e. log(u?).pd = p?, (with appropriate change of state and output
ack!) then an opportunity is provided for a malicious user to obtain information about
U by probing with the first sub-operation.

Assume that loginFail(u?,p?) is linked to

enter_text(:name,u?);
enter_text(:password,p?);
login.click();
check-not-logged-in();

with the assumption only that the user u? and the password p? do not tally. It is desired
also to check that if u? is not a valid user, no message is returned. To simplify the
specification of the link, loginFail(u?,p?) is split into a sequential composition

loginFailName(u?) ; loginFailPassword(p?).

The code that links the action word loginFailName(u?) to the system is

enter_text(:name,u?);
check-no-message();

and the code that links the action word loginFailPassword(p?) to the system is

enter_text(:password,u?);
login.click();
check-not-logged-in();

An alternative solution to this problem is to have another action word
loginFailNoUser. But that complicates the specification of the model and the link
between the model and code.

7.2 Principle

In general if the code associated with an action word a is of the form b0;b1 ,

a � b0;b1 ,

where b0 represents a desired behaviour in itself, it is better to split a into a0;a1 and
associate a0 with b0 and a1 with b1

a = a0;a1 , where a0 � b0 and a1 � b1 .

Similarly, if the code associated with an action word a is of the form b0;b1 where
b1 is associated with another action word b, it is better to associate a with only b0 and
change the model by replacing the a transitions with a;b transitions.
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8 Conclusion and Further Work

A model, in the form of a (state-based) specification, together with a link is able to gen-
erate tests of a putative implementation. It has been seen that, roughly, the more detailed
a test is, the more information the tester needs to have of the link. Thus laws concerning
the operations may involve little information beyond the specification; but they might
require knowledge of how the link represents the system state in the implementation.
The trade-off between specification and implementation knowledge has already been
revealed by Stocks [22,23], so it is not surprising that it has reappeared here.

A specifier might ask the question: what extra functional information am I in a posi-
tion to provide about the system that yields the kind of redundancy necessary for test-
ing? Various answers have been discussed here, including: system invariants (explicit
or implicit), further confidence conditions, partiality of operators, boundary testing and
‘nonfunctional’ properties like security.

The specifier is well placed to augment the specification with various pieces of
information—along those lines—to generate tests. But the more detailed the test, the
more information is required beyond mere specification information. For otherwise the
result might be a test which is not able to be executed due to restrictions on the test-
ing interface. That is particularly true of web-based systems of the kind represented by
Webbo.

This paper represents work very much in progress. It is hoped to continue it by for-
malising the action-word approach to linking specification with implementation (using
the concepts of data simulation and process algebra), automating the ideas contained
here, applying them to Webbo to determine the nature of the tests generated, and iden-
tifying conditions sufficient for a test interface to execute a given family of tests.
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Abstract. In this paper we consider a high-level hardware description
language Gezel, from which hardware can be synthesized through a trans-
lation to VHDL. The language is equipped with a simulator and supports
exploration of hardware designs. The language has no semantics and it
is difficult to get a deep understanding of many of the constructions.
We therefore give a semantic domain for Gezel. Aiming at automated
verification we relate this domain to the timed-automata model and we
have experimented with verification of Gezel-specifications using the Up-
paal system. In particular, we have proven the correctness of a hardware
specification of the Simplified DES algorithm. We have also used Uppaal
for small experiments of verifying resource usage.

Keywords: Hardware descriptions, semantics, verification, model-
checking.

1 Introduction

As the complexity of chips grows, the methodology to build chips has to evolve.
Today, chips are largely synthesized from high-level architectural descriptions
which hide low-level details such as the physical characteristics of a transis-
tor or how to build a flip-flop. This applies to chips ranging from small scale,
specialized chips to be produced in modest quantities to highly complex ones of
general computers for mass production. Today, the majority of hardware designs
are done using the most common hardware description languages, VHDL [18]
or Verilog [16]. Both languages support high-level architectural descriptions, but
allow hardware designers to incorporate low-level details in order to optimize
for a particular hardware technology. Although this makes it possible to pro-
duce highly optimized chips it also ties the hardware description to a particular
technology or set of technologies.

It is possible to synthesize chips directly from VHDL and Verilog using a
restricted subset of the languages. However, chips may also be synthesized from
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software based models in much the same way as compilers produce executable
code. Examples of such languages are Esterel, Lustre and Signal, see e.g. [2].

In this paper, we will use Gezel [12,15] as our choice of language for hard-
ware models. It depends on reasonably few, simple and clean concepts, and it
strikes a balance between software and hardware concerns that we believe suits
the needs for a modern top-down approach to hardware design. Gezel is based
on an execution model which resembles the synchronous model of Esterel, but
unlike Esterel, the language of Gezel contains constructs for hardware design.
Compared to VHDL and Verilog, Gezel may be considered to be at a higher
abstraction level without any explicit timing constructs. This allows Gezel to be
truly independent of any implementation technology.

The advantage of Gezel is that the language has simple parts with a clear
hardware meaning, e.g. registers, controllers, synchronous execution. There are
simulators for Gezel, and, furthermore, the language is designed so that it can
be mapped to a synthesizable subset of VHDL. But the language has no formal
semantics, and it is difficult to get a clear understanding of some of the more
advanced constructs.

In this paper, we will give a semantics domain which can be used for hard-
ware design languages like Gezel. With this semantics, we believe, that a new
Gezel-like language could be defined, where the syntax reflects the semantics in
a direct manner. We also show how the semantics can be used in connection
with verification by relating the semantical domain to timed-automata [1]. We
have experimented with verification of some examples, e.g. the Simplified Data
Encryption Standard Algorithm [11], using the Uppaal system [4].

2 Gezel Specifications

The specification language Gezel [13,14] is used to express models of hardware.
It comes with an interpreter as well as a translator with VHDL as its target
language. The interpreter provides means for simulation and debugging. The
language does not have a formal semantics, and there is no tool for the verifica-
tion of Gezel specifications.

A Gezel specification describes a number of components and their intercon-
nections. A Gezel component consists of a datapath providing a set of named
actions, called signal flow graphs (sfg), and a controller expressed as a finite
state machine which may execute one or more actions in each state transition.
This model is called finite state machine with datapath [8], or FSMD in short.
Fig. 1 shows the elements and structure of an FSMD, while Fig. 2 shows the
pattern for the most essential parts of a Gezel specification.

A Gezel component models a piece of hardware which is always active. Such
components operate in parallel and do not depend on resource allocations. The
expressiveness of the FSMD model allows any type of digital hardware architec-
ture to be modelled, from dedicated hardware devices to full micro processors.
The execution semantics of Gezel is that of complete synchrony, i.e. every FSMD
of a Gezel specification makes exactly one transition in every clock cycle.
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control input

control output

data input

data output

command

status

FSM Datapath

Gezel-component

control computation

Fig. 1. The FSMD model

(Datapath:
dp Name0(port list ) {

local register and signal declarations
sfg name1 { (non-branching) actions }
sfg name2 { (non-branching) actions }
...

}

+
Control: ) ... + Composition:
fsm controller_name (Name0) {

initial state declaration
auxiliary state declarations
@state0 transition0

@state1 transition1

...
}

system id {
Name0(n0,0,n0,1,... );
Name1(n1,0,n1,1,... );
...

}

Composition in terms of nets
(implicitly introduced ni,j)

Fig. 2. Pattern for a Gezel program

The FSMD model in which control and computation are separated as illus-
trated in Fig. 1, is a powerful abstraction which allows translation of programs
into FSMD models and further into assembly code or synchronous hardware.
Furthermore, it supports systematic testing and formal verification.
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2.1 Extracting FSMD from Programs

An imperative program may be split into basic blocks, i.e. a maximal sequence
of assignments (without any control statement), and its control flow. A program
may then be represented as a graph, with edges mapping into basic blocks and
nodes into control points, typically conditional jumps. Such a graph corresponds
to a finite state machine of Mealy type. This graph is translated to the FSMD
model as follows: each basic block forms an action of the datapath and the finite
state machine becomes the controller of the FSMD, which executes exactly one
basic block in each transition.

Fig. 3 shows the pseudo-code for a greatest common divisor (gcd) algorithm
and its corresponding Gezel specification. Five basic blocks, named bb0 to bb4,
are extracted from the gcd-program and the controller consists of 4 states and
6 transitions. Using Gezel all outputs must be given well-defined values in every
transition. This is captured by the action update, which makes sure that the
output c is always given the value of res. Registers, declared as reg, store values

gcd(a,b) =
while a!=b
do {

if a<b
then b:=b-a;
else a:=a-b;

};
c:=a;

dp gcd(in a,b: ns(8);
out c: ns(8)) {

reg x, y, res: ns(8);
reg xlessy, xneqy: ns(1);

sfg bb0{ x=a; y=b; xneqy=(a!=b); }
sfg bb1{ xlessy=(x<y); }
sfg bb2{ y=y-x; xneqy=(x!=y-x); }
sfg bb3{ x=x-y; xneqy=(x-y!=y); }
sfg bb4{ res=x; }
sfg update{ c=res; }

}

fsm gcd_ctl(gcd) {
initial s0;
state s1, s2, s3;

@s0 (bb0, update) -> s1;
@s1 if (xneqy)

then (bb1, update) -> s2;
else (bb4, update) -> s3;

@s2 if (xlessy)
then (bb2, update) -> s1;
else (bb3, update) -> s1;

@s3 (bb4, update) -> s3;
}

Fig. 3. An imperative program for gcd and a corresponding Gezel program for a 8-bit
version of the gcd
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between transitions. They are the only way for the controller to test conditions
and make branching transitions.

2.2 Constructing Hardware from an FSMD

The translation of an FSMD model into hardware is done by translating the con-
troller part into its hardware representation, and creating the hardware datapath
as a parallel composition of all basic blocks, where in each basic block all operators
are implemented by a hardware component. Finally, the components of the hard-
ware datapath and the hardware controller are connected by appropriate signals.

Although this translation may seem straightforward, several optimizations
may be applied in order to arrive at a more efficient hardware implementation:
– As only one transition is taken in any given cycle, hardware resources may

be shared between different transitions.
– The number of operators may be reduced further by splitting a transition

into a sequence of transitions as explained below.
The actual execution time of a program depends on the number of cycles to

be executed and the time taken to execute a single cycle. The minimum cycle
time is determined by the longest path through the hardware of any of the basic
blocks. There is, therefore, a tradeoff between few transitions and long cycle
time and many transitions with faster cycle time. By splitting a basic block with
a long path through the hardware over two or more transitions, more resource
sharing may be obtained, resulting in less area requirements, while the overall
system performance may be the same if, for instance, the number of cycles have
been doubled while the cycle time has been halved.

Program text Basic blocks Mealy graph

int n, f0, f1;
n := N;
f0 := 0; f1 := 1;
while (n>0) do
f1 := f0+f1;
f0 := f1-f0;
n := n-1;

od
output f1;

A: n := N;
f0 := 0;
f1 := 1;
n>0

B: f1 := f0+f1;
f0 := f1-f0;
n := n-1;
n>0

C: output f1;

A

B

C

Fig. 4. From a program text to a state transition graph

Fig. 4 shows an example of a program where the basic blocks form a set of
parallel assignments. Fig. 5 shows two possible schedules of the computation in
basic block B from Fig. 4. The left schedule computes in one cycle but then
requires two arithmetic units (ALU’s), while the right schedule requires two
cycles but only one ALU as the two operations (Add and Sub) are executed in
different cycles and hence may share the same resource.
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f0f1

f1 f0

f1 f0

f0

f1

f1

f0

Sub

register

operation

B_2

Add

B

B_1 Add

Sub

control boundary

Fig. 5. Scheduling operations in the datapath

3 The Module Concept

In this section we will present the semantics domain for Gezel, where the aim is
to make it clear in which way this domain extends the theory of automata. To
this end we introduce the concept a module.

Modules shall constitute the building blocks for systems, and the module
concept is defined to facilitate hierarchical constructions. In terms of Gezel, a
basic module is constructed from a component of a controller and a datapath,
and modules can be combined in parallel using a single assignment program to
describe the combinatorial circuit connecting the ports of the modules.

We will not aim at a semantics for full Gezel. In particular, in Gezel a variety of
shorthand notations are introduced with the consequence that it is difficult to get
a clear semantical understanding of the language. Examples of such constructs
are hardwired controllers, sequencer controllers, and the use-construct. We will
not address these constructs. Furthermore, we will not address a type discipline
(as in Gezel, where a type could be unsigned of length 64). A type discipline is
important, but adding types to our framework will not be difficult.

We suppose that a set V of values is given. V can be thought of as a set of
bit-vectors. We assume that 0 ∈ V and that every bit-vector with 0’s only is a
representation of 0. Furthermore, we suppose that a set of variables Var is given
comprising input and output ports, signals, and registers. A value assignment σ
is a partial function:

σ : Var ∼−→ V ,

which associates values to a finite subset of the variables. Let VA denote the set
of all value assignments.
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A module M is an tuple (̄i, ō,Conf , conf 0, p, out ,next), where
– ī is a finite set of input ports,
– ō is a finite set of output ports,
– Conf is a finite set of configurations,
– conf 0 ∈ Conf is the initial configuration,
– p : Conf → (VA → VA) is a function. For a configuration conf and value

assignment σ, p(conf ) σ is an extension of σ (or is identical to σ),
– out : Conf × (̄i → V ) → (ō → V ) is a function which, for a given con-

figuration and a given value assignment to the input ports, gives the value
assignment for the output ports, and

– next : Conf × (̄i → V ) → Conf is a function, which for a given configuration
and a given value assignment to the input ports, gives the next configuration.

The set of values V is a finite set for a given system, i.e. there is a finite number
of value assignments to the ports. Therefore, the components for a module ex-
cluding p are the components of a standard Mealy automaton. The function p is,
as we shall see later, needed in order to describe parallel composition of modules,
where values to some input ports may be computed by other components.

3.1 Top-Level Modules

A “running module” M = (̄i, ō,Conf , conf 0, p, out ,next), also called a top-level
module, will be given a semantics in terms of a transition system. We shall
describe the computations of M by a transition system, TS , with initial configu-
ration conf 0, where

TS ⊆ Conf × (̄i → V ) × (ō → V ) × Conf .

We use conf
σī,σō−→M conf ′ as an abbreviation for (conf , σī, σō, conf ′) ∈ TS , and

we define that conf
σī,σō−→M conf ′, if and only if,

next(conf , σī) = conf ′ and out(conf , σī) = σō .

4 Basic Modules

A basic module will be defined as a pair consisting of a controller and a datapath.
The controller is basically a finite state machine, and the datapath consists of
input ports, output ports, signals, registers, and a set of actions. We will not
go into a concrete syntactical level like that of Gezel specifications; rather the
presentation with be based on an abstract syntax, on which we can address
well-formedness conditions such as freeness from combinatorial loops.

4.1 Abstract Syntax of Datapaths

A variable signature for a datapath consists of
– a finite set r̄ of registers,
– a finite set ī of input ports,
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– a finite set ō of output ports, and
– a finite set s̄ of local signals.
Registers are special in the sense that they keep their values throughout a

clock cycle, and a register will keep its value from one cycle to the next if the
register is not changed. Therefore, we introduce a new variable r′ for the next
value of every register r ∈ r̄. Let r̄′ = {r′|r ∈ r̄} be the set of these “primed
variables”.

These five sets are assumed to be mutually exclusive, and we shall use the
term variable for an element of one of these sets:

Var =̂ r̄ ∪ r̄′ ∪ ī ∪ ō ∪ s̄ .

Let C ⊆ V be a set of constants, and F a set of function symbols equipped
with arities. Then, the set of expressions e ∈ Expr is generated from constants
and variables using functions and a kind of McCarthy conditional, as expressed
in the following abstract grammar:

e ::= c | x | fn(e1, . . . , en) | e?e1, e2 ,

where c ∈ C, x ∈ Var/r̄′, and fn ∈ F is an n-ary function symbol. Notice that
primed registers cannot occur in expressions.

For a given variable signature, an action is a pair (an , p), where an is the
name of the action and p is a single assignment program, where registers, output
ports and signals only can be assigned a value. We shall model p as a partial
mapping from r̄ ∪ ō ∪ s̄ to Expr :

p ∈ (r̄ ∪ ō ∪ s̄) ∼−→ Expr .

We shall consider p a set of equations, which defines values for output ports,
signals and next values for registers on the basis of values for input ports and
previous values for registers.

If p(x) = e, then the associated equation is x = e if x is not a register, x′ = e
if x is a register. Let eqsp be the set of equations associated with p. We shall
occasionally omit the subscript p when it is easily derivable from the context.

We shall now define the dependency graph of variables in a single-assignment
program p in order to formalize a well-formedness condition expressing that there
is no circular definition of variables in p. Intuitively, y depends on x, if the value
of x is must be computed in the computation of a value for y. The dependency
graph for p, denoted by ≺p or just ≺, is a subset of (̄i ∪ ō ∪ s̄) × (r̄′ ∪ ō ∪ s̄) and
it is defined as the set of pairs (x, y) for which:

y = e ∈ eqsp and x occurs in e .

We shall write x ≺ y if (x, y) ∈≺.
Constants do not occur the in the graph (their values are always present),

neither do the variables for the previous values of registers (i.e. those occurring
at the right-hand sides of equations), because these values are always known.
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An action (an , p) (and a single assignment program p) is called well-formed if
the dependency graph ≺p is acyclic, and has input ports only as its sources. All
variables of ≺p, which are not input ports, are called assigned variables. We call
such dependency graphs for well-formed.

A datapath consists of a finite set Act = {(an1, p1), . . . , (ann, pn)} of well-
formed actions with unique names, i.e. ani = anj implies i = j.

By the signature for the actions we understand an association of the appro-
priate dependency graph:

graph(ani) = ≺pi ,

with every action name.
We shall call a subset as ⊆ {an1, . . . , ann} of action names for consistent,

if the corresponding dependency graphs have disjoint sets of assigned variables.
For a consistent set of action names, the single assignment program obtained
by joining all single assignment programs of the elements, will be a well-formed
single assignment program.

Furthermore, as is called complete if every output port is an assigned variable
of some dependency graph of an element in as .

4.2 Semantics of Datapaths

In order to define the meaning of a datapath, we must define the meaning of
variables, expressions and actions.

We assume that F is an assignment of a function:

fn ∈ V n → V ,

with every n-ary function symbol fn ∈ F . Furthermore, let V⊥ =̂ V ∪{⊥}, where
⊥ is a special element denoting undefined.

Semantics of Expressions: The semantics of an expression e is a function:
E [[e]] ∈ VA → V⊥, defined inductively as follows:

E [[c]]σ = c

E [[x]]σ =
{

σ(x) if x ∈ dom σ
⊥ otherwise

E [[fn(e1, . . . , en)]]σ =
{

fn(v1, . . . , vn) if ⊥ �= vi = E [[ei]]σ, for i = 1, . . . n
⊥ otherwise

E [[e?e1, e2]]σ =

⎧⎨
⎩

E [[e2]]σ if 0 = E [[e]]σ
E [[e1]]σ if 0 �= E [[e]]σ ∈ V
⊥ otherwise.

Semantics of Single Assignment Programs and Actions: A view of a
well-formed single-assignment program p is that it maps value assignments for
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input ports to value assignments for the assigned variables. We shall, however,
take a more general approach which will be useful when we consider parallel
composition: p denotes a function on consistent value assignments.

An assignment σ is consistent wrt. a single assignment program p, if for every
equation x = e in eqsp, we have that E [[x]]σ = E [[e]]σ, when x and e are both
defined for σ.

The idea behind the semantics of p is simple: extend a value assignment by one
iteration through the equations and add a binding for every assigned variable,
where a value has been computed. This process is repeated until no further
binding is obtained. The number of iterations needed is bounded by the depth
of the dependency graph for p.

This idea is formalized by two function:

I[[eqsp]] ∈ VA → VA
P [[p]] ∈ VA → VA ,

where we assume that σ is consistent with p in I[[eqsp]]σ and P [[p]]σ. The func-
tions are defined below such that they preserve this consistency.

The function I is defined as follows:

I[[{ }]]σ = [ ]

I[[{x = e}]]σ =
{

[ ] if x ∈ domσ or E [[e]]σ = ⊥
[x 	→ E [[e]]σ] otherwise

I[[{x1 = e1, . . . , xn = en}]]σ = I[[{x1 = e1}]]σ + · · · + I[[{xn = en}]]σ ,

where + is the override function on maps. Observe that the resulting value as-
signment is consistent because the x1, x2, . . . , xn are mutually distinct variables.

The function P is defined by:

P [[p]]σ =
d⋃

i=0

I[[eqsp]]
iσ ,

where d is the depth of the dependency graph for p and gj(x) denotes the j-fold
iteration of the function g, i.e. g0(x) = x and gj+1(x) = g(gj(x)).

If we order the equations eqsp into a sequence according to the dependency
graph ≺p, so that x = e1 comes before y = e2 whenever y depends on x, i.e.
x ≺p y, then one iteration through the equations will suffice, as the dependency
graph is acyclic.

For every well-formed action (an , p), let an denote the function P [[p]]. Fur-
thermore, a consistent set of actions as denotes the function as = P [[as ]], which
is defined element-wise by:

P [[as ]]σ = ana(σ) + · · · + ank(σ) ,

for as = {ana, . . . ank}.
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4.3 Abstract Syntax for Controllers

The abstract syntax for a controller is defined on the basis of a given datapath.
The controller is essentially a deterministic finite state automaton, where a con-
sistent and complete set of actions from the datapath is executed on a transition.
Since actions are described by single assignment programs, i.e. without use of
a construct for unbounded iterations, a finite set of actions is a convenient ab-
straction for an operation which can be performed in a bounded amount of time,
such as during a clock cycle.

Each transition is guarded by a condition on the registers of the datapath. We
let Cond denote the subset of Expr which is generated from registers (excluding
the primed ones) and constants only, using functions and the conditional e?e1, e2,
i.e. input and output ports and signals cannot occur in conditions. A condition
with value v (for a given value assignment to registers) is considered false if
v = 0, and true otherwise.

A controller is defined by
– a finite set of states S,
– an initial state s0 ∈ S, and
– a set of transitions T ⊆ S ×Cond × 2Act ×S, where Act is the set of actions

from the datapath.
We shall require that a controller is deterministic, i.e. for every state s, the set

of conditions on transitions leaving s are mutually exclusive and complete. Thus,
for any state and any value assignment to the registers, there is precisely one
enabled transition with true condition leaving that state. For Gezel specifications
this comes for free due to the if-then-else construction used in connection with
conditional transitions.

Furthermore, for any (s, c, as , s′) ∈ T , we require that as is a consistent and
complete set of actions, i.e. every output port is assigned a value when the
transition is taken.

4.4 Semantics of Basic Modules

The semantics of a basic module B, i.e. a well-formed controller with datapath
as defined in the previous two sections, can now be defined. To this end, let r0
be the value assignment where every register has the value 0.

The semantics of B is the tuple (̄i, ō,Conf , conf 0, p, out ,next), where
– Conf = S × (r̄ → V ),
– conf 0 = (s0, r0), and
– the functions next, out and p are defined as follows: Consider an arbitrary

configuration (s, σr̄) and let (s, e, as , s′) ∈ T be the uniquely determined
transition which is enabled in that configuration, i.e. where E [[e]]σr̄ �∈ {0, ⊥}.
Then

p(s, σr̄)σ = as(σr̄ + σ)
out((s, σr̄), σī) = (p(s, σr̄)σī) | ō
next((s, σr̄), σī) = (s′, update(σr̄, p(s, σr̄)σī)
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where σ | A denotes the value assignment obtained from σ by restricting its
domain to the set A, and update(σr̄ , σ) ∈ r̄ → V is the value assignment to
registers which is defined by:

update(σr̄, σ) r =
{

σ(r′) if r′ ∈ dom σ
σr̄(r) otherwise,

for r ∈ r̄.

5 Composition of Modules

We shall now describe how modules can be combined in parallel (thereby forming
new modules) using single assignment programs to connect their ports.

5.1 Abstract Syntax for Composition of Modules

Assume that a composition M of modules is given by:

– sets of input ports ī, output ports ō, signals s̄, and registers r̄,
– a single assignment program p ∈ (ō ∪ s̄ ∪ r̄) ∼−→ Expr, and
– a finite collection of modules m1, . . . mk, where module mj , for 1 ≤ j ≤ k,

is given by mj = (̄ij , ōj ,Conf j , conf 0j , pj
, out j ,nextj).

In order to express the well-formedness of M , we associate the trivial depen-
dency graph graph(mj) = triv j with every module mj , where (i, o) ∈ triv j , for
every i ∈ īj and o ∈ ōj , i.e. we consider a module a black-box and assume as
little as possible, i.e. that an output port depends on every input port.

The composition M is well-formed, if the following conditions hold:

– no output port of mj is an assigned variable of p, i.e. ōj ∩ dom p = ∅, for
1 ≤ j ≤ k,

– the modules m1, . . . , mk have disjoint sets of output ports, i.e. ōj ∩ ōl = ∅,
for i �= l, and

– the dependency graph of M , denoted graph(M) =≺p ∪
⋃k

j=1 graph(mj), is
acyclic, has ī only as its sources, and ō is included in the nodes of the graph.

These conditions are sufficient to exclude what often is called combinatorial
loops.

5.2 Semantics for Composition of Modules

The semantics for M is defined by (a kind) of product automata construction.
It is the module (̄i, ō,Conf M , conf 0M , p

M
, outM ,nextM ), where

– Conf M = Conf 1 × · · · × Conf k × (r̄ → V ),
– conf 0M = (conf 01, . . . , conf 0k, r0),
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– the function p
M

: Conf M → (VA → VA) is defined by:

p
M

(conf )σ =
⋃d

i=1 I(conf )i σ, where
I(conf )σ = p

1
(conf 1)σ + · · · + p

k
(conf k)σ + p(σr̄ + σ) ,

conf = (conf 1, . . . , conf k, σr̄) ,

and d is the depth of graph(M),
– the function outM : Conf M × (̄i → V ) → (ō → V ) is defined by:

outM (conf , σī) = (p
M

(conf )σī) | ō , and

– the function nextM : Conf M × (̄i → V ) → Conf M is defined by:

nextM (conf , σī) = (next1(conf 1, σī), . . . ,nextk(conf k, σī), update(σr̄ , σ
′)) ,

where conf = (conf 1, . . . , conf k, σr̄) and σ′ = p
M

(conf )σī.

6 Representing Modules in Uppaal

In this section we will consider automated verification of modules. Since modules
basically are finite automata, there are many ways to address this problem. In
an initial study we experimented with using monadic second-order logics [6,7]
for expressing the semantics and using the MONA tool [10] for verification. For
the semantical part the experiment was promising, and it has the nice property
that second-order quantification can be used to express hiding and refinement
of modules can be expressed by implication. For the verification part we did,
however, only succeed with very small examples. The problem is that n second-
order variables are necessary to model an n-bit Gezel variable.

In the next experiments Uppaal [4] was used. Uppaal is a model-checking
tool based on timed automata [1]. Even though we have no real-time notions
in modules, there was several reasons for experimenting with Uppaal: In other
discrete models for embedded systems [5,9] Uppaal has proven to be a powerful
tool. Furthermore, a timed-automata based approach to verification of modules
would prepare for later real-time extensions.

6.1 Main Idea of the Uppaal Representation

In the Uppaal model of timed automata, a system consists of a parallel com-
position of n ≥ 1 timed automata. These timed automata can communicate by
synchronous communication over channels and by using shared variables. Tran-
sitions of a timed automaton can be guarded by a Boolean expression, and a
statement of a simple imperative programming language can be executed when
a transition is taken. Furthermore, real-valued clocks are used to express real-
time properties. For further introduction to Uppaal we refer to [4].
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Consider a module M = (̄i, ō,Conf , conf 0, p, out ,next). We shall construct an
Uppaal model for M such that a transition

conf 1
σī,σō−→M conf 2

of M is simulated by a sequence of transitions:

c1
input?−→ c′1

progress?−→ c′2
progress?−→ · · · progress?−→ c′n

sync?−→ c2 ,

in the timed-automata model, where the Uppaal states c1 and c2 correspond
to conf 1 and conf 2, respectively, and the broadcast channels input?, progress?
and sync? have the following roles:

– All component modules synchronize on input? to initiate the start of a clock
cycle simultaneously.

– Each component module, which has not yet definitions for all its assigned
variables, synchronizes on progress?. Each such synchronization initiates
an attempt to compute values for undefined variables. Hence, p(conf1)σī is
computed in the n steps from c1 to c′n.

– All component modules synchronize on sync? to complete a clock cycle si-
multaneously.

We shall sketch the timed-automata construction for basic modules and com-
position of modules below. These timed automata run in parallel with a top-level
timed automaton Top shown in Fig. 6, which controls the synchronization in the
system.

done()
sync!
update()

!done()
progress!

input!
reset()

Fig. 6. The Timed Automaton Top

The three procedures reset, done and update have the following
explanations:

– The function reset has type void and it sets a status field for every assigned
variable in the system to undefined.

– The Boolean function done is true when all component modules have defin-
itions for their assigned variables.

– The function update has type void and updates the register values as defined
by the function update in the definition of next in Sect. 4.4.
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6.2 Construction for Basic Modules — a Sketch

Consider a basic module B as described in Sect. 4. We shall assume that there
is a declaration of a global Uppaal variable for every variable in the signature
for the datapath including the primed register variables. Furthermore, for every
primed register, output port and signal (i.e. the assignable variables) there is a
status field describing whether or not the variable is defined.

For every expression e occurring as a guard in a transition of the controller
there is corresponding local Boolean Uppaal function Ge implementing E [[e]], and
for every set of actions as occurring in a transition of the controller, there is a
local Uppaal function Pas of type void, which corresponds to the function as ,
i.e. it can compute values for assigned variables whenever this is possible.

Every state s of the controller corresponds to a location (also called s) of the
timed automaton, and for every transition (s1, e, as , s2) of the controller, a fresh
timed-automaton location s′ is introduced as shown in Fig. 7.

s2s’s1

progress?
P_as()

sync?
G_e()
input?
P_as()

Fig. 7. Timed-automaton representation of the transition (s1, e, as , s2)

6.3 Construction for Composition of Modules — A Sketch

Consider a composition M of k modules m1, . . . , mk using a single assignment
program p as described in Sect. 5. Assume that T1, . . . , Tk are timed-automata
representations of m1, . . . , mk, respectively. The timed automaton for M is given
by the parallel composition:

T1 ‖ · · · ‖ Tk ‖ Tp ,

progress?
P()

sync?

input?
P()

Fig. 8. Timed-automaton representation of the single assignment program p
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where Tp is the timed automaton for the single assignment program p presented
in Fig. 8. The local procedure P corresponds to the function p

M
in Sect. 5.2.

Actually, this automaton is just a special case of the transition shown in Fig. 7,
where the is no guard on the transition and s1 = s2.

7 Examples: Verification of Gezel Specification

In this section we will provide verification examples of high-level hardware de-
signs. The specifications were described as modules and translated into Uppaal
as shown in Sect. 6. We neither give the modules nor the timed automata.

The three examples are specifications of two different greatest common divisor
(gcd) algorithms and a specification of a simplified DES (SDES) algorithm [11].
The aim of the verification is to guarantee certain properties of the underlying
algorithm, e.g. a correct output for every input, an upper bound for the number
of clock cycles needed to compute the output, and an upper bound on the changes
of register values before the algorithm can provide an output — the last being
an indicator of the energy consumption.

7.1 First gcd-Algorithm

This first gcd-algorithm is a simple algorithm based in repeated subtraction as
shown in the following pseudo-code:

while a != b
do { if a < b then b := b-a; else a := a-b };
c := a;

where a and b are the input ports and c is the output port. A Gezel specification
is found in Fig 3.

7.2 Second gcd-Algorithm

This second gcd-algorithm, in Fig. 9, is a recursive version, see [17], where
even(x) is true iff x is even. A Gezel specification is found in Appendix A.

7.3 Verification of gcd-Specifications

The hardware specifications for the two gcd-algorithms were translated (by hand)
to the Uppaal models, following the principle from Sect. 6. Each timed-automata
model was put in parallel with a timed automaton for the environment, where
the environment automata provides the input for gcd on the first input syn-
chronization. In Uppaal, the input from the environment is chosen by the use
of a select statement, which for verification purposes means that any input is
attempted.

A query for verifying that for all combinations of inputs an output is generated
(i.e. the automaton gcd reaches a final state final) is as follows:
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GCD(a,b) =
if even(a) & even(b)
then 2 * GCD(a/2, b/2)
else if even(a) & !even(b)

then GCD(a/2, b)
else if !even(a) & even(b)

then GCD(a, b/2)
else if a > b (* a and b are both odd *)

then GCD(a-b,b)
else GCD(a,b-a)

Fig. 9. Recursive gcd-algorithm

A<>gcd.final

which reads: “for all (A) paths, there exists a state (<>) where the gcd automaton
is in state final.

Verifying that correct output is produced for any input combination is done
by comparing the result with that of a proven correct implementation (igcd) of
the greatest common divisor. This query is specified as follows:

A[]gcd.final imply (igcd(a,b)==c)

where [] reads “for all states on a path”.

Two extra variables (regUpdate and cycle) are added to the specifications to
keep track of the number of changes in register values and the number of clock
cycles. Examples of queries are:

A<>gcd.final && regUpdate <= r

A<>gcd.final && cycle <= x

where r and x are upper-bound candidates for the number of register changes
and the number of clock cycles needed, respectively.

7.4 Verification of SDES Specification

We have also verified a Gezel specification for the Simplified DES algorithm
(SDES) [11]. The Gezel specification is too elaborate to give here, as the encryp-
tion controller, for example, has 10 states and 9 actions. Encryption takes an
8 bit plaintext and a 10 bit key and produces an 8 bit ciphertext. Decryption
takes the 8 bit ciphertext and the same 10 bit key and produces the original 8
bit plaintext.

Verifying that the hardware design is correct is done in two steps. First, it is
verified that for all input combinations the final state (final) of the decryption
automaton is reached:
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A<>decryption.final

Second, it is verified that the input to the encryption automaton is the same
as the output of the decryption automaton:

A[]decryption.final imply encryption.input == decryption.output

7.5 Results and Analysis of Verification

The examples provided in this section have all been verified using Uppaal. One
verification showed that the specification of the first gcd-algorithm did not work
when one of the inputs were zero. In that case, the controller loops without
reaching the state final.

Verification of the upper bound on the number of clock cycles and changes
in register values showed that for 8 bit inputs the first algorithm maximally
uses 511 clock cycles and 261 register value changes to calculate the greatest
common divisor, the second algorithm maximally uses 26 clock cycles and 25
register value changes to calculate greatest common divisor. All these upper
bounds are actually least upper bounds, as, for example, 25 clock cycles are
shown, using Uppaal, not to be an upper bound for the number of clock cycles
for the second gcd-algorithm.

Verification of the SDES algorithm showed that for all combinations of plain-
texts and keys, an encryption followed by a decryption yields the original plain-
text. However, it was also verified that not all combinations of plaintexts and
keys had a changed ciphertext after encryption (e.g. plaintext 7 and key 0 gives
ciphertext 7). This of course is a property of the algorithm.

Each of the aforementioned Gezel specifications (i.e. the two different gcd-
and the SDES specifications) has been verified in less than 25 minutes on a SUN
Fire 3800 with 1.2GHz CPUs running Solaris 10. We have not yet done anything
particular to tune the verification.

8 Conclusion

We have clarified the semantical domain for the hardware specification language
Gezel. Besides giving a much better understanding of the language itself, a clear
semantical model allows for a seamless transition into automated verification of
hardware specifications. In this way we have related the semantical domain of
Gezel to the timed-automata model and we have experimented with the Up-
paal system, showing the correctness of small, but interesting Gezel examples.
Although functional correctness is of primary importance, we have also consid-
ered the analysis of resource usage which for instance may guide the hardware
designer in choosing the most power efficient algorithm among a set of possible
algorithmic implementations of a given specification.

We are currently using Gezel as a way to introduce software engineering stu-
dents to hardware design and, in particular, to combined hardware/software
codesign needed to deal with the challenges of embedded systems. Clarifying the
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semantical domain of Gezel have pointed to issues which are difficult for stu-
dents to comprehend. Hence, a next step is to redefine the language so that the
semantical concepts are reflected in the language in a direct manner. This may
also provide a more elegant translation into the synthesizable subset of VHDL.

Although the initial results of automated verification are promising, verifying
large hardware specifications is still a major challenge which most likely will
require a compositional approach. The clear semantical model gives us some
indications of how to approach this problem and this is currently one of our
primary research objectives.
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A Gezel Specification of a gcd-Algorithm

dp gcd(in a, b : ns(8);
out c : ns(8)) {

reg x, y, factor : ns(8);
reg done : ns(1);

sfg init { x = a; y = b; factor = 0; done = 0; c = 0; }
sfg shiftx { x = m >> 1; }
sfg shifty { y = n >> 1; }
sfg reduce { x = (x >= y) ? x - y : x;

y = (y > x) ? y - x : y; }
sfg shiftf { factor = factor + 1; }
sfg outidle { c = 0; done = ((x == 0) | (y == 0)); }
sfg complete{ c = ((x > y) ? x : y) << factor; }

}

fsm gcd_ctl(gcd) {
initial s0;
state s1, final;

@s0 (init, outidle) -> s1;
@s1 if (done) then (complete) -> final;

else if ( x[0] & y[0]) then (reduce, outidle) -> s1;
else if ( x[0] & ~y[0]) then (shifty, outidle) -> s1;
else if (~x[0] & y[0]) then (shiftx, outidle) -> s1;

else (shifty, shiftx,
shiftf, outidle) -> s1;

@final (outidle) -> final;
}

http://rijndael.ece.vt.edu/gezel2/index.php/Main_Page
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Abstract. This paper describes a complete model-based development
and verification approach for railway control systems. For each control
system to be generated, the user makes a description of the application-
specific parameters in a domain-specific language. This description is
automatically transformed into an executable control system model ex-
pressed in SystemC. This model is then compiled into object code. Veri-
fication is performed using four main methods applied to different levels:
(0) The domain-specific description is validated wrt. internal consistency
by static analysis. (1) The crucial safety properties are verified for the
SystemC model by means of bounded model checking. (2) The object
code is verified to be I/O behavioural equivalent to the SystemC model
from which it was compiled. (3) The correctness of the hardware/software
integration is checked by automated testing.
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1 Introduction

Motivation. The development of modern railway and tramway control systems
represents a considerable challenge to both systems and software engineers: The
goal to increase the traffic throughput while at the same time increasing the
availability and reliability of railway operations leads to a demand for more
elaborate safety mechanisms in order to keep the risk at the same low level
that has been established for European railways until today. The challenge is
further increased by the demand for shorter time-to-market periods and higher
competition among suppliers of the railway domain; both factors resulting in
a demand for a higher degree of automation for the development, verification,
validation and test phases of projects, without impairing the thoroughness of
safety-related quality measures and certification activities. Motivated by these
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considerations, this paper describes an approach for the construction, verification
and validation of railway control systems which has been elaborated by the
authors and their collaborators during the last decade.

Two Problem Categories. A closer analysis shows that the problems to be
solved can be structured according to two main categories: (1) The design of
novel generic control algorithms is stimulated by the availability of innovative
technologies offering new possibilities for safe and reliable train control mech-
anisms. In this category the objective is to elaborate generic theories, that is,
collections of theorems whose assumptions and implications are universally quan-
tified over, say, railway networks of a certain type. As an example, we mention
the investigation of distributed train control algorithms stimulated by the advent
of mobile communication technologies, now allowing to develop alternatives to
the centralised interlocking paradigm. For the verification of these algorithms
mechanised (first-order or higher-order logic) proof support is desirable.

(2) The development and verification of concrete system configurations ad-
dresses a problem frequently arising in conventional developments: Typically,
railway control systems are nowadays constructed following the principles of
object orientation and generics: The system is designed as a generic collection
of classes, structured according to certain design patterns, collaborations and
frameworks enforcing proven design principles and facilitating the utilisation of
specific hardware technology. Concrete systems are instantiated from the generic
collection using configuration data specifying the network to be controlled, avail-
able track elements (signals, sensors, points) etc. In spite of the elegance of this
approach, it suffers from the flaw that – when conventionally tested for a limited
number of different configurations – some software bugs are only revealed when
new configuration variants are used. Additionally, the verification of configura-
tion data requires a considerable effort, often necessitating customised verifica-
tion tool sets which in turn have to be qualified. As a consequence, also minor
configuration changes, induced, for example, by construction work on certain
track sections, require complex verification processes. The solution to these prob-
lems would be an automated verification suite allowing to verify each concrete
system instance together with its configuration. Here, automation is a crucial
requirement, since the conventional verification process currently only exercised
once on generic system level would be far too time-consuming and expensive to
be repeated on every concrete system instance. In this problem category, verifica-
tion does not involve universal quantification, since all configuration aspects are
completely determined. As a consequence, model-based development combined
with model or property checking, validated compilers or object code verifiers are
the technical means of choice for the development and verification process.

In this article,we focus on the secondproblemcategory, for adetaileddescription
of the first, the reader is referred to [21] and further references listed there.

Domain-specific Approach. In recent years, domain-specific methods for
software development have gained wide interest. One of the main objectives ad-
dressed by these techniques is the possibility for a given domain to reuse various
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assets when developing software, e.g. to develop a generic system from which one
can instantiate concrete systems. Additionally, the use of domain-specific lan-
guages (DSLs) as front-ends for development tools is advocated. In contrast to
general-purpose specification and programming languages, DSLs facilitate their
utilisation by domain experts who are not specialists in the field of information
technology, because they use the terminology of the application domain.

Inspired by these considerations, we have suggested an approach for effi-
cient construction of a family of similar tramway or railway control systems
in [23,24] and exemplified it for a class of route-based tramway control systems.
The idea is to provide a framework consisting of (1) a generic control system
that can be instantiated with configuration data, (2) a DSL front-end for spec-
ifying application-specific parameters and (3) a generator from domain-specific
descriptions into configuration data and instantiation rules for the concrete sys-
tem. Hence, for each control system to be developed, application-specific para-
meters are described in the domain-specific language and from this specification
a control system can automatically be generated. An advantage of the front-end
consists in the fact that it is much simpler to specify the parameters of a sys-
tem in the domain-specific language and then apply the generator, than it is
to program the configuration data directly. This speeds up the production time
and reduces the risk of errors; furthermore, it can be done by domain experts
without requiring the assistance of programming specialists.

While this approach clearly offers advantages, it requires careful work to de-
velop such a language, generator and generic control system and to automatically
verify that generated control systems are safe. For this purpose we use formal
methods.

Automated Verification Approach. As “programming” language for the
control systems we have chosen SystemC [19] that allows for formal reasoning
based on an operational transition system semantics. SystemC serves both as
a compilation target from semi-formal DSL descriptions to semantically well-
founded formal specifications and as high-level programming language which
can be compiled into executable code. Our development approach prescribes
that each time a SystemC control system model is generated and compiled into
object code, verification shall be performed at two levels: (1) The SystemC con-
trol system model is verified to be safe by means of bounded model checking
combined with an inductive proof strategy, and (2) the object code is verified
to be a correct implementation of the SystemC control system model. For this
purpose, the framework provides support tools: a proof obligation generator and
an object code verifier.

Development of Languages and Tools. For the development of a domain-
specific language and support tools our suggestion is to follow the TripTych
dogma by Dines Bjørner (see for instance [9]) making a domain model describ-
ing the concepts of the application domain prior to the actual development of
applications. Apart from separating the concern of describing what there is from
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the concern of describing what there should be (the applications), this ensures
that different applications are based on the same conceptual understanding.
Then from the domain-model one can establish a model of domain-specific de-
scriptions and their static semantics, a model of the application generators and
a model of the code verifier. For the case study we have formulated such models
in the formal RAISE Specification Language, RSL, [33].

Related Work. The overview given in this paper is based on results pub-
lished in [21,26,28,22,23,25,24,17,20,29,3,30]. Our work has been inspired by
Dines Bjørner’s TripTych dogma and formal techniques for software develop-
ment described in [7,8,9,4,10,11].

The domain model used in our case study only includes aspects needed for our
development framework. For domain models capturing a much broader collection
of aspects for railways we consider Dines Bjørner’s formal railway domain models
(see e.g. [6,12]) as very promising candidates.

Object code verification has been investigated by several authors, see [32]
for an approach that has influenced our work in a considerable way. While our
results have a similar formal basis – for example, our notion of I/O-equivalence
is a specialisation of the “correct implementation relation” defined in [32] – we
exploit the specific restrictions of our model-based development framework in
order to simplify the equivalence proofs in a considerable way.

For other complementary and competing approaches for the development and
verification of railway control systems the reader is referred to the contributions
in [37,35,36,15], and for a survey of new results and current trends the reader is
referred to the paper [5].

Paper Overview. First, in Sections 2–3, we give an overview of our approach
and informally describe a case study used to illustrate our approach. Then, in
Section 4, we outline how a domain-specific description language for our case
study can be formally developed from a static domain model. Next, in Section 5,
we outline the development of application generators. In Section 6, we explain
how the safety requirements can be verified. After that, in Section 7, we outline
our approach for object code verification and we sketch how an associated code
verifier can be formally developed. Finally, in Section 8, we discuss the work
presented in this paper.

2 Method and Toolchain – Overview

Our approach requires a domain-specific language DSL and tools supporting the
language. The main tool components required are:

1. A data collector for producing syntactically correct DSL text documents.
2. A static semantics checker for DSL documents.
3. Generators parsing DSL documents in order to create (1) executable con-

troller models with transition system semantics (expressed in SystemC), (2)
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behavioural physical domain models with transition system semantics (Sys-
temC), and (3) safety conditions for the concurrent composition of these two
models.

4. A bounded model checker capable of verifying properties of composed con-
troller and physical domain models written in SystemC.

5. A compiler for translating SystemC models into assembler code (since Sys-
temC is embedded into C++, conventional compilers can be used for this
task).

6. An object code verifier which, given a SystemC controller model and associ-
ated assembler code, verifies that the latter is a correct implementation of
the former.

To create and verify a new control system users should apply these tools to
go through the following steps illustrated in Fig. 1:

1. The railway specialists use the data collector to produce a syntactically well-
formed DSL description D of domain-specific details of the system to be
developed.

2. The static semantics checker checks that D is statically well-formed.
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3. The generators automatically transform the domain-specific description D
into a behavioural controller model M, a behavioural physical domain model
P (describing how uncontrolled physical devices are behaving) and a set of
verification obligations Φ (safety properties as, for example, the requirement
that trains should never meet within a track segment or on a point).

4. It is proved that the controller model M in concurrent combination with
the physical model P satisfies the obligations Φ. This is done by means of
an inductive proof strategy, where the induction step is performed using
bounded model checking techniques.

5. The controller model M is compiled into object code and data with conven-
tional C/C++ compilers. This results in an assembler “model” A.

6. The assembler “model” A is verified to be behaviourally equivalent to the
controller model M using the object code verifier.

7. Finally the correctness of the hardware/software integration is automatically
tested, following the concepts described in [2].

3 A Case Study

In a case study we have applied our approach to construct and verify a family
of route-based tramway control systems. In particular we designed a domain-
specific language and a SystemC model generator. In later sections we explain
how these were developed. Below, we first informally explain the required behav-
iour of the generated control systems and the contents of domain-specific descrip-
tions, and then we outline the SystemC models that the generator
produces.

3.1 Domain-Specific Description

The basic requirements for avoiding tram collisions are that trams must only
drive on predefined routes previously reserved and that two conflicting (over-
lapping) routes must not be reserved at the same time. As a consequence, con-
trollers built to enforce these requirements depend on the railway network to be
controlled and on a selection of predefined routes through that network. This
implies that the associated domain-specific description should include network
specifications and interlocking tables describing the routes.

Fig. 2 shows a DSL representation of a sample network, consisting of the
following track components:

– sensors: G20.0,. . . ,G25.1
– controllable points: W100, W102, W118
– non controllable points: W120, W121, W122
– signals: S20, S21, S22
– track segments: (G20.0,G20.1), (G20.1,G20.2), . . . , shown as solid lines be-

tween two sensors
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The interlocking tables, which are also part of the DSL, comprise four items:
(1) a route definition table specifying admissible routes through the network, (2)
a route conflict table describing the routes not to be simultaneously allocated
(because they overlap in one of two ways1 ), (3) a point position table describing
for each route how points should be set for its traversal, and (4) a signal setting
table specifying for each route the name of its entry signal and the aspect it
should be set to, in order to indicate that a tram is allowed to enter the route.
In Fig. 3 the graphical representation of some sample interlocking tables for the
network given in Fig. 2 are shown.

3.2 Generated SystemC Models

The generator creates SystemC models from DSL descriptions as depicted in
Fig. 2 and 3, together with the associated interface specifications and safety-
related proof obligations Φ. For this purpose, the generator utilises a library of
design patterns, so that architectural aspects, physical model, controller model
and proof obligations are elaborated according to pre-defined schemes.

Interfaces. Interfaces are modelled according to the shared variable paradigm,
to be realised using DMA or dual-ported RAM technology on all hardware in-
terfaces (Fig. 4). Signal and point interfaces, for example, consist of three data
fields: The requested state (controller → signal/point), the actual state (con-
troller ← signal/point) and the switching deadline used to detect failed track
elements.

SAFETY CONTROL LAYER

DRIVERS / HW−CONTROLLERS

ACTUAL
STATESTATE

REQUESTED SWITCHING
DEADLINE

DRIVER INTERFACES FOR SIGNALS AND POINTS

DEADLINE
STABLISATION

STATE
SENSOR

DRIVER INTERFACES FOR SENSORS

TIMETICK

CLOCK INTERFACE

HARDWARE INTERFACE

DRIVER INTERFACE LAYER − DMA / DUAL PORTED RAM

Fig. 4. Layered architecture and interfaces

SystemC Model for Controller. The basic behavioural patterns of a control
system generated for such a network and collection of routes are as follows: When
a tram approaches the network, a route is requested to be reserved. The control
system makes a reservation for that route if no conflicting route has already
been reserved. Then it allocates the route by requesting points to be switched
1 For a description of this, see [23].
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into positions that allow traversal of the chosen route (as described by the point
position table), and when the points have been switched it requests the entry
signal to show a GO aspect (as described by the signal setting table) indicating
that the tram may enter the route. As soon as the tram has passed the entry
signal, the signal is requested to show STOP, and when the tram has left the
route, the route is deallocated by removing its reservation.

Each control system is implemented using a main loop, so that each execution
cycle has four phases: In the input phase all current values of input interfaces
(actual states) are copied to (global) shadow variables, in the processing phase in-
terfaces are neither read nor updated, but global or local variables are processed.
In the wait phase the system “spins” in an active wait loop without side effects
(this is to ensure constant loop frequency), and in the output phase the states
of global variables shadowing outputs are copied to the corresponding output
interfaces (requested states).

SystemC Model for Physical Domain. For each signal S there is a transition
rule instantiated from the following pattern:

1 if ( ((t >= reqsigtm[S] + delta_s) || (nondet_signal[S]))

2 && (reqsig[S] != actsig[S20]) ) {

3 actsig[S] = reqsig[S];

4 }

It states that the signal actsig[S] (“actual state”) has to switch to the new
state reqsig[S] (“requested state”) issued by the controller (line 3). A signal
without failures has to switch within the specified switching deadline delta s.
To determine whether delta s time units have elapsed, the time of the request
reqsigtm[S] for this signal is compared to the time t of the tram control system
(line 1). In line 1 an auxiliary state component (nondet signal[S]) is used to
model nondeterminism: It is set with an arbitrary value in each execution cycle
and enables a state transition at arbitrary time ticks between the time of the
request and the time limit for the transition. Of course, state transitions for
the signals are only necessary if the actual state actsig[S] differs from the
requested state reqsig[S] (line2).

For points the transition rules are similar to the rules for signals.
For each sensor G, there are two rules, one for transitions from LOW to HIGH

and one for transitions from HIGH to LOW. The HIGH to LOW rule has the following
form:

1 if ( (sen[G] == SEN_HIGH) && (t>=delta_l + sentm_G) ) {

2 sen[G] = SEN_LOW;

3 }

It states that the sensor has to be stable in state HIGH for exactly delta l time
units (line 1) (so that the controller is able to recognise the HIGH state) before
going from state HIGH to state LOW.

The conditions in the LOW to HIGH rule depend on the sensor location. We do
not report all these conditions here.
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4 From Static Domain Model to Domain-Specific
Language

In this section we explain how a domain-specific description language for our
case study can be formally developed from a static domain model using RSL.
At the end of this development process, the RSL model obtained represents the
abstract syntax and static semantics of the DSL under construction. It then
only remains to associate the abstract syntactic elements with concrete syntax,
in order to complete the DSL definition: The behavioural semantics is defined in
a transformational way by means of the generator translating DSL specifications
into SystemC.

4.1 RSL Static Domain Model

We start by describing how a domain model can be established. The domain
model covers the concepts of railway networks and routes. More general models
would typically cover further aspects like time tables, but here we only present
those concepts that are relevant for the development of the application consid-
ered in this paper. The model of each concept is generic (algebraic) in the sense
that it defines which properties any concrete instance of the concept should have.
The generic model can be instantiated to produce a concrete one defining what
the specific properties are for that specific instance.

Generic Network Model. Any concrete network model should describe the
topology of a railway network consisting of the physical components: segments,
sensors, signals and points.

In the generic model, for each kind of component, an abstract type of identi-
fiers for its components is declared:

type Sensor, Point, Signal, Segment

Furthermore, signatures for functions that describe the relationship between the
components are given. For instance, the following function gives the sensor at
which a given signal is placed:

value sensor of : Signal → Sensor

Finally, a number of axioms express requirements to these functions, i.e. impose
restrictions on which network topologies are allowed. For instance, the following
axiom requires that any two distinct signals are placed at distinct sensors:

∀ s1, s2 : Signal • s1 �= s2 ⇒ sensor of(s1) �= sensor of(s2)

To describe a concrete network, the elements of the types should be specified
and the functions should be explicitly defined in such a way that the axioms are
satisfied.
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Generic Route Model. An abstract type of identifiers for routes is declared:

type Route

We state the signature for a function that for a given route returns a list of those
sensors which have to be passed in the stated order when travelling along the
route:

value sensors of : Route → Sensor∗

A number of axioms express requirements to this function, i.e. impose restrictions
on what is an allowed route. For instance, there must be a signal at the first
sensor of any route:

∀ r : Route • ∃ s : Signal • sensor of(s) = hd sensors of(r)

4.2 Domain-Specific Language

RSL Specification. The domain model is now extended with value declarations
for each element to be part of a domain description. For each kind of physical
component there is an element (all together providing a network description):

value
sensors : Id-set,
points : Id →m ...,
signals : Id →m Sensor,
segments : Id →m ...

and for each kind of interlocking table there is an element2:

value
rdt : Id →m Sensor∗,
rct : Route → Route-set × Route-set,
ppt : Route → Point →m PointPosition,
sst : Route → Signal × SignalSetting

We chose identifiers to be texts:

type Id = Text

The declarations give each element a name and a model-oriented type and hence
provide an abstract syntax for the elements. As an example, the abstract syntax
for the signals element is Id →m Sensor, and the intension is that a signals
element should map any signal identifier to the identifier of that sensor at which
it is placed.

Now, the Signal type can be explicitly defined as containing the identifiers of
the domain of the signals element:

type Signal = {| id : Id • id ∈ dom signals |}

The Sensor, Point, Segment and Route types can be defined in a similar way.
2

rdt for route definition table, rct for route conflict table, ppt for point position table,
and sst for signal setting table.
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All functions from the domain model can now be explicitly defined in terms
of the element values. In this way the axioms (that refer to these functions) from
the domain model now impose well-formedness conditions on the elements of a
language description. Additional axioms that impose well-formedness conditions
on the rct, ppt and sst values are added, so that these axioms provide a static
semantics for the DSL.

Concrete Syntax and Data Collector Implementation. Two alternative
solutions to the implementation of the concrete DSL have been made using the
Extensible Markup Language XML [39] and the Unified Modelling Language
UML [34], respectively. Below we outline the XML solution that is documented
in [14]. In [3] it is described how the DSL is defined by a UML 2.0 profile in the
second solution.

The concrete syntax of the language has been defined by an XML document
type definition (DTD). For the elements of the RSL abstract syntax, correspond-
ing XML elements are defined. The static semantics has been implemented using
the extensible style sheet language XSL [40]. In a systematic way each RSL axiom
expressing a well-formedness requirement has been transformed into a template
that tests whether the requirement is fulfilled.

A GUI based data collector for creating DSL descriptions in the required XML
syntax has been developed using XForms [38].

For the convenience of users, a graphical representation of DSL descriptions
(XML documents) has been developed. This was done using XSLT and HTML.
In Fig. 3 the graphical representation of some sample interlocking tables for the
network given in Fig. 2 are shown.

5 Generating Applications from Domain-Specific
Descriptions

According to our method three generators taking a statically well-formed DSL
description D as argument are required (Fig. 1). The primary one is the gen-
erator producing a control system model M. The second generator produces
the behavioural model P of the physical environment and the third one gener-
ates the safety properties Φ, to be checked to hold for the concurrent composition
of the control system model M and the physical model P . In this section we
outline the basic concepts of the generator for M. The other generators are
developed in a similar way.

Components of the Controller Model Generator. The implemented gen-
erator for controller models consists of two parts:

1. A configurable library of generic code that is re-usable for all control sys-
tems to be generated: The code comprises generic versions of the control
algorithms, the data structures carrying dynamic state information needed
for performing control decisions, and the static configuration data structures.
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2. A parser that takes a domain-specific description as input and returns con-
crete configuration data and instantiation parameters for the generic algo-
rithms.

We have selected SystemC [19] as the target language for the generators,
since it is associated with a formal transition system semantics and can be di-
rectly compiled into executable code [29,3]. As a consequence, the original DSL
descriptions “inherit” formal behavioural semantics from the transformations
performed by the generators.

Generic Configurable Library. Since the SystemC code is automatically
generated, the emphasis of the coding structure – whose layout is already fixed
in the configurable library – lies on easy verifiability and efficient executability:
Configuration data is encoded in global arrays of integers, and the control struc-
tures of the algorithms are in one-one-correspondence with the safety properties
Φ, while controlling signal and point states: For example, if allocation of route
ri excludes simultaneous allocation of routes r� and requires point states pj(r)
and signal states sk(r), then the allocation is guarded by code structures like

bool mayAllocate = true;
for (int l = 0; l < m1; l++)

mayAllocate = mayAllocate and not allocated(r[i][l]);
for (int j = 0; j < m2; j++)

mayAllocate = mayAllocate and p[i][j];
for (int k = 0; k < m3; k++)

mayAllocate = mayAllocate and s[i][k];
if ( mayAllocate )

allocate(i);

This also ensures a close relationship between SystemC and assembler code
which facilitates the object code verification in a considerable way.

The generic parameters referenced in the control algorithms of the library are
of a very simple nature: They comprise number parameters, specifying the con-
crete quantities of sensors, signals, points and routes to be fixed for each system
and offset parameters used for looking up specific routes and track elements in
the static configuration data or in the dynamic control states.

The most important aspect of the static configuration data is the description
of available track elements and route specifications. Routes are represented as
sequences of index references to track elements, together with information about
the required signal and point states to be enforced when allocating a route to
a tram. An additional integer array is used for specifying the conflict relations
between routes.

DSL → SystemC Parser. The parser for producing concrete SystemC code
from DSL descriptions proceeds in two passes: First, the number parameters
are determined from the DSL and represented as C constant declarations. As a
result the dimensions of all arrays used for storing static configuration data and
dynamic state information are fixed.
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In the second pass the parser generates constant C array assignments carrying
the configuration data and auxiliary offset information for looking up routes and
track elements.

6 Safety Requirements and Their Verification

Verification Objectives. Our verification strategy is driven by the following
boundary conditions:

– DSL specifications inherit their formal behavioural semantics from the Sys-
temC models which are automatically generated. As a consequence, no re-
finement proofs are required to ensure consistency between internal SystemC
models and high-level DSL descriptions.

– No assumptions about the correctness of the generators are made.
– No assumptions about the correctness of interlocking tables are made.
– It is assumed that the railway network description (Fig. 2) is complete and

correct.
– The rules how trains can move in the uncontrolled network (physical model

P) are complete and correct.
– The safety conditions Φ are complete and correct.
– Trains stop at signals in HALT state.

Under these assumptions our verification objective is to show that all possible P
executions, when controlled by the model M executed in parallel, respect safety
conditions Φ.

Observe further that, since we are not assuming that generators and interlock-
ing tables are correct, an universal “once-and-for-all” verification is impossible:
Each system instance has to be verified with its concrete configuration data. As
a consequence, it is desirable to elaborate a verification strategy which can be
executed in an automated way.

Verification Method. With respect to full automation the property checking
approach for (P ‖ M) sat Φ seems attractive. It is well known, however, that
conventional model checking would lead to state explosions for train control tasks
of realistic size. As a consequence, we have adopted a bounded model checking
strategy combined with inductive reasoning: Instead of elaborating a complete
system model ((P ‖ M) in our case), bounded model checking starts in an
arbitrary system state s which may be additionally restricted by some auxiliary
property Ψ , and unwinds the model, thereby obtaining all possible transitions
emanating from s for a bounded number of n > 0 discrete time steps. The
property Φ is checked in each state reachable by means of this unwinding.

For the verification task at hand, auxiliary property Ψ mainly states rela-
tionships between sensor events and associated updates of internal counters per-
formed within the controller M. We prove that Φ∧Ψ holds in the initial state of
(P ‖ M). Next it is shown that, provided Φ∧Ψ holds in some state s, it will also
hold for the next n > 0 discrete time steps. As property specification language
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we use a subset of the widely known industrial standard PSL from Accellera [1]
and the property checker [13]. A detailed explanation of how the case study has
been model checked using this approach can be found in [29,31].

7 Object Code Verification

In this section we outline our approach for object code verification that is de-
scribed in detail in [30], and we sketch how an associated code verifier can be
formally developed.

7.1 Motivation

Automated object code verification for safety-critical control systems is moti-
vated by the fact that applicable standards for these safety-critical applications,
e.g. for railways [16], require a substantial justification with respect to the con-
sistency between high-level software code and the object code generated by the
applied compilers.

7.2 Approach

The conventional approach for this is compiler validation: “Once-and-for-all” it is
validated that the compiler for any input produces object code that is a correct
implementation of that input. However, such an approach is very time-consuming,
especially if it should be done formally (see e.g. [18] for techniques for that), and
furthermore it has to be performed again whenever modifications of the compiler
have been performed. An alternative to compiler validation is object code valida-
tion: Each time object code is generated (by an arbitrary compiler), the generated
object code is verified to be a correct implementation of the high-level software
code. Object code verification has the advantage that it is independent of changes
in the compiler and it can be fully automated and reasonably fast, if the compiled
code originates from high-level programs strictly adhering to certain programming
patterns as it is the case for our generated SystemC models.

Our specific approach to object code verification is as follows: To prove that an
assembler program (object code) A is a correct implementation of the SystemC
controller model M from which it is generated, one should map (see Section 7.5)
A and M to their behavioural models T (A) and T (M) given in terms of some
common semantic foundations (I/O-Safe Transition Systems to be explained in
Section 7.3) and then prove that T (A) and T (M) are I/O equivalent (modulo
a variable renaming) by applying transformations that have been proved “once-
and-for-all” to preserve I/O behaviour (see Section 7.4).

7.3 Common Semantic Foundations: I/O-Safe Transitions Systems

In this section we introduce our notion of I/O-safe transitions systems (IOTS)
and our notion of I/O equivalence between IOTS’es.

I/O-safe transitions systems remind about usual transitions diagrams (as de-
fined e.g. in [27]) consisting of (1) a set of variables for which initial values are
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given by an initial state, (2) a set of locations one of which is designated as
the initial location l0, and, (3) a set of transition rules. Variables are classified
into input, output and processing variables. A transition rule from one location
l1 to another location l2 is specified by a guard that is a quantifier-free predi-
cate over the variables and by a multiple assignment (v1, . . . , vn) := (e1, . . . , en),
where v1, . . . , vn are variables and e1, . . . , en are expressions over the given set
of variables. However, as a new thing, for an IOTS we also divide the locations
into pairwise disjoint sets of input, output and processing locations, and we put
further constraints on the allowed use of variables in guards and expressions in
an IOTS: guards must only use processing variables, for transitions into input
locations the assignments must only read input variables and make assignment
to processing variables, for transitions into processing locations the assignments
must only read processing variables and make assignment to processing vari-
ables, and, for transitions into output locations the assignments must only read
processing variables and make assignment to output variables.

One can obviously specify an abstract syntax of IOTS’es in RSL :

type
IOTS ::

vars : Var-set
initstate : State
locs : Loc-set
initloc : Loc
trans : TransitionRel-set,

TransitionRel = Loc × Guard × Assign × Loc,
Assign :: al : (Var × Expr)∗,
Expr ==

mk Const(i : Int) | mk Var(v : Var) | mk Sum(e1 : Expr, e2 : Expr) | ...,
Guard == TRUE | ...,

where Guard and Expr are the abstract syntaxes of guards and expressions,
respectively, for space reasons not completely specified here.

For variables and locations two abstract types are used, each having an ob-
server function mode that informs about the mode (input, output or processing)
of variables and locations, respectively:

type Var, Loc
value mode : Var → Mode, mode : Loc → Mode,
type Mode == IN | OUT | PROC

We also introduce a well-formedness predicate for IOTS’es formalising all the
conditions on the use of variables and locations stated informally above:

value
is wff : IOTS → Bool
is wff(iots) ≡

dom initstate(iots) = vars(iots) ∧ initloc(iots) ∈ locs(iots) ∧ ...
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For instance, the predicate checks that the initial state of an IOTS gives initial
values to the variables in its variable set and that the initial location is in its
location set.

We are now going to define a notion of I/O equivalence of IOTS’es. In order to
do that, first we need a to define an operational semantics of IOTS’es involving
states. A state σ for an IOTS is a valuation of its variables.

type State = Var →m Int

Each transition relation specification of an IOTS denotes a state transformer:

value
eval : TransitionRel → (State → State)
eval(l, g, a, l′)(σ) ≡

if eval(g)(σ) then eval(a)(σ) else σ end

Here eval(g)(σ) and eval(a)(σ) are the standard extensions of the valuation σ
to guards g and assignments a.

The semantics of an IOTS is the set of its possible runs. A possible run of an
IOTS is a non-empty sequence of pairs of locations and states such that the first
location is its initial location, the first state is its initial state, and that for each
consecutive pairs in the list there is a transition relation in the IOTS from the
location of the first pair to the location of the second pair so that the associated
state transformer maps the state of the first pair to the state of the second pair:

type Run = (Loc × State)∗

value
eval : IOTS → Run-set
eval(iots) ≡

{ r | r : Run •

len r > 0 ∧
let (l0, σ0) = hd r in

l0 = initloc(iots) ∧ σ0 = initstate(iots)
end ∧
(∀ i : Int • i > 0 ∧ i < len r ⇒

let
(l i, σ i) = r(i), (l i′, σ i′) = r(i+1)

in
(∃ (l, g, a, l′) : TransitionRel •

(l, g, a, l′) ∈ trans(iots) ∧
l = l i ∧ l′ = l i′ ∧
eval(l, g, a, l′)(σ i) = σ i′)

end
)

}
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An I/O restriction of a run is the restriction of the run to pairs where the lo-
cation is an input or output location, and for these pairs the states are restricted
to input and output variables only:

IOrestrict : Run → Run
IOrestrict(r) ≡

〈 (l, σ / { v | v : Var • mode(v) ∈ {IN,OUT} }) |
(l,σ) in r • mode(l) ∈ {IN,OUT} 〉,

An I/O map ρ is a bijective, mode preserving variable mapping between I/O
variables:

type IOMap = {| ρ : Var →m Var • bijective(ρ) ∧ IOmodepreserving(ρ) |}
value

bijective : (Var →m Var) → Bool
bijective(ρ) ≡

(∀ v2 : Var • v2 ∈ rng ρ ⇒ (∃! v1 : Var • v1 ∈ dom ρ ∧ ρ(v1) = v2)),

IOmodepreserving : (Var →m Var) → Bool
IOmodepreserving(ρ) ≡

(∀ v : Var • v ∈ dom ρ ⇒
IOmode(ρ(v)) = mode(v) ∧ mode(v) ∈ {IN,OUT})

Two runs are I/O equivalent wrt. an I/O map if their I/O restrictions have
(1) the same length, (2) the same order of input locations and output locations,
and (3) their states agree on input variables and output variables modulo the
I/O map:

equiv : Run × Run × IOMap → Bool
equiv(r1, r2, ρ) ≡

let r1 io = IOrestrict(r1), r2 io = IOrestrict(r2) in
len r1 io = len r2 io ∧
(∀ j : Int • j > 0 ∧ j ≤ len r1 io ⇒

let (l1, σ1) = r1 io(j), (l2, σ2) = r2 io(j) in
mode(l1) = mode(l2) ∧
σ1 = σ2 ◦ ρ

end
)

end,

Finally, we can define two IOTS’es to be I/O behavioural equivalent wrt. an
I/O map, if there is a bijection γ between I/O equivalent runs of the two IOTS’es:

equiv : IOTS × IOTS × IOMap ∼→ Bool
equiv(iots1, iots2, ρ) ≡

(∃ γ : Run →m Run •

dom γ = eval(iots1) ∧ rng γ = eval(iots2) ∧
(∀ r1, r2 : Run • r1 �= r2 ⇒ γ(r1) �= γ(r2)) ∧
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(∀ r : Run • equiv(γ(r), r, ρ))
)

pre dom ρ = iovars(iots1) ∧ rng ρ = iovars(iots2),

iovars : IOTS → Var-set
iovars(iots) ≡ {v | v : Var • v ∈ vars(iots) ∧ mode(v) ∈ {IN,OUT}},

For the identity variable mappings id we just write equiv(iots1, iots2) rather
than equiv(iots1, iots2, id).

7.4 IOTS Transformation Rules

We have developed a collection (see [30]) of transformation rules between IOTS
patterns and proved by hand that any instance of the rules gives rise to a transfor-
mation that preserves I/O behaviour. The RSL formulation of the IOTS concepts
in previous section now makes it possible to make the proofs formal.

l3

l0 l0

l1

l2

l3

x := y

g / y := x

y := y+1

g / x := x+1 <=>

Fig. 5. A transformation rule

As an example, there is a rule stating that an IOTS iots1 can be transformed
into an equivalent IOTS iots2 by replacing the transition shown on the left hand
side of Fig. 5 with the three transitions shown on the right hand side of Fig. 5,
or vice versa, provided that (1) l1 and l2 are not locations of iots1, x and y are
local variables, and (2) in any path emanating from location l3, the variable y
is assigned before read. The rule is generic in locations l0, l1, l2, l3, variables x
and y, and, guard g.

Proving this rule correct, amounts to prove:

∀ iots1, iots2 : IOTS, l0, l1, l2, l3 : Loc, g : Guard, x, y : Var •

{x, y} ⊆ vars(iots1) ∧ mode(x) = PROC ∧ mode(y) = PROC ∧
{l0, l3} ⊆ locs(iots1) ∧ l1 �∈ locs(iots1) ∧ l2 �∈ locs(iots1) ∧
(l0, g, mk Assign(〈(x, mk Sum(mk Var(x), mk Const(1)))〉), l3)

∈ trans(iots1) ∧
vars(iots2) = vars(iots1) ∧
initstate(iots2) = initstate(iots1) ∧
locs(iots2) = locs(iots1) ∪ {l1, l2} ∧



A Domain-Oriented, Model-Based Approach 339

initloc(iots2) = initloc(iots1) ∧
trans(iots2) =

trans(iots1) \
{(l0, g, mk Assign(〈(x, mk Sum(mk Var(x), mk Const(1)))〉), l3)}

∪
{(l0, g, mk Assign(〈(y, mk Var(x))〉), l1),
(l1, TRUE, mk Assign(〈(y, mk Sum(mk Var(y), mk Const(1)))〉), l2),
(l2, TRUE, mk Assign(〈(x, mk Var(y))〉), l3)

} ∧
assigned before read(iots1, l3, y)

⇒

equiv(iots1, iots2)

l0 l0

l1

l2

l3

l4

l4

 x[i] := y[i]

aux2 := i

 aux1 := i

aux2 := y[aux2]

    x[aux1] := aux2

<=>

Fig. 6. Another transformation rule

Another example of a transformation rule is one stating that an IOTS iots1
can be transformed into an equivalent IOTS iots2 by replacing the transition
shown on the left hand side of Fig. 6 with the four transitions shown on the
right hand side of Fig. 6, or vice versa, provided that (1) l1, l2 and l3 are
not locations of iots1, aux1 and aux2 are local variables, and (2) in any path
emanating from location l4, the variables aux1 and aux2 are assigned before
read. The rule is generic in locations l0, l1, l2, l3 and l4, and variables aux1,
aux2, x and y.

7.5 IOTS Semantics of the Source and Target Languages

In [30] it is explained how to derive the IOTS semantics for generated SystemC
models and assembler code. This can be formalised in RSL by defining abstract
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syntaxes Ccode and AssemblerCode for the generated SystemC models and As-
semblerCode, respectively, and defining evaluation functions T :

type Ccode = ...
type AssemblerCode = ...

value T : Ccode → IOTS ...
value T : AssemblerCode → IOTS ...

7.6 Abstraction Mappings

When a SystemC model M is compiled into an assembler program A, there
is a 1-1 correspondence between SystemC variable symbols and assembler vari-
able symbols (e.g. for each SystemC array element x[n] there is a corresponding
assembler array element x(, n, 4)), except that A contains additional local vari-
ables: flags, registers and stack addresses.

We define a SystemC model M+ that extends M with local variable symbols
corresponding to the additional flags, registers and stack addresses in A. E.g. we
add eax corresponding to the flag %eax.

Then one can obviously define a bijective map αM from the variables in A
to the variables in M+. This map will also serve as a map between the variable
sets in T (A) and T (M+).

For the detailed definitions, see [30].

7.7 Implementation of a Code Verifier

Currently the code verifier is being implemented in C++. The implementation
consists of the following major components:
– an implementation of the two T functions yielding IOTS generators for Sys-

temC and assembler code, respectively,
– a library of transformation rules, and
– an IOTS transformer that given an IOTS and a transformation rule is able

to apply the transformation rule.

A mechanised proof of the equivalence between an assembler program A and
the SystemC controller model M from which it is generated is automatically
performed according to the following procedure: The SystemC controller model
M is now mapped to its behavioural IOTS model T (M), and A is mapped
to its model T (A) as well, using the semantic rules for SystemC and assem-
bler statements, respectively. Next, the symbols of T (A) are changed to C-style
notation according to mapping αM defined above – this results in T 1. Also,
the variable symbol space of T (M) is extended to T (M+), so that T 1 and
T (M+) can be directly compared with respect to their variable symbols. Then
the mechanised proof generator analyses T 1 with respect to applicable patterns
in the transformation rules. Each pattern application results in a I/O-equivalent
transformation T 1 �→ T 2 �→ . . . until the last transformation results in T (M+),
whereupon the proof generator terminates.
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7.8 Example

We illustrate the mechanised proof procedure explained above using a fragment
of the SystemC controller code from our case study. Here global shadow variables
reqsigNext[i] (the new state required for signal i) and reqptNext[j] (the
new state required for point j are copied to output signals reqsig[i] (set-
state request to signal i) and reqpt[j] (set-state request to point j) during the
output phase of a main loop cycle. Consider the following fragment from the
output phase of a SystemC controller M:
for ( int i=0; i<NUM_SIGNALS; i++)
reqsig[i] = reqsigNext[i];

for ( int j=0; j<NUM_POINTS; j++)
reqpt[j] = reqptNext[j];

The concrete configuration data for this controller instance defines NUM POINTS=3
and NUM SIGNALS=3. From that the compiler3 generates the following assembler
fragment of A:
movl $0, i
jmp .L103

.L104:
movl i, %edx
movl i, %eax
movl reqsigNext(,%eax,4), %eax
movl %eax, reqsig(,%edx,4)
movl i, %eax
incl %eax
movl %eax, i

.L103:
movl i, %eax
cmpl $2, %eax
jle .L104
movl $0, j
jmp .L106

.L107:
movl j, %edx
movl j, %eax
movl reqptNext(,%eax,4), %eax
movl %eax, reqpt(,%edx,4)
movl j, %eax
incl %eax
movl %eax, j

.L106:
movl j, %eax
cmpl $2, %eax
jle .L107

3 We have used gcc 4.0.2 for this example.
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eax := i

.L103

i := 0

S11

(ZF, SF ) :=

eax := i

i := eax

j := 0

eax := j

S12

.L107

(ZF, SF ) :=

eax := j

j := eax

(2 = eax,
2 > eax)

.L106

[¬(ZF ∨ SF )]
.L104

eax := eax + 1

[ZF ∨ SF ]

[ZF ∨ SF ]

(2 = eax, 2 > eax)

eax := eax + 1

edx := j

.L107

eax := j

eax := reqptNext[eax]

reqpt[edx] := eax

S12

T 1

edx := i

.L104

eax := i

eax := reqsigNext[eax]

reqsig[edx] := eax

S11

[¬(ZF ∨ SF )]

Fig. 7. IOTS T 1 associated with A after renaming of variables

Now the mechanised equivalence proof is constructed as follows: (1) the be-
havioural IOTS model T (A) of A is constructed by using the semantic rules
for assembler instructions. After changing the names of assembler variables to
C-style notation according to mapping αM explained above, this results in an
IOTS T 1 which is depicted in Fig. 7. (2) Applying the transformation rule shown
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eax := i

.L103

i := 0

(ZF, SF ) :=

eax := i

i := eax

j := 0

eax := j

.L107

(ZF, SF ) :=

eax := j

j := eax

.L106

[¬(ZF ∨ SF )]
.L104

eax := eax + 1

[ZF ∨ SF ]

[ZF ∨ SF ]

eax := eax + 1 λ12

λ11

λ11 =def reqsig[i] := reqsigNext[i]
λ12 =def reqpt[j] := reqptNext[j]

(2 = eax, 2 > eax)

(2 = eax, 2 > eax)

[¬(ZF ∨ SF )]

T 2

Fig. 8. T 1 �→ T 2: I/O-equivalent transformation

in Fig. 6 to the regions S11 and S12 of T 1 results is an I/O-equivalent IOTS
T 2 depicted in Fig. 8. (3) Twofold application of other transformation rules
on T 2 results in I/O-equivalent IOTS T 3 shown on the left-hand side of Fig. 9.
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i := 0

[i > 2]

[i ≤ 2]

i := i + 1
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i := 0
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λ11 =def reqsig[i] := reqsigNext[i]
λ12 =def reqpt[j] := reqptNext[j]

T 3 T (M+)

Fig. 9. T 3 �→ T (M+): I/O-equivalent guard transformation

Finally, a valuation-preserving change of guard conditions ([i ≤ 2] �→ [i < 3], [i >
2] �→ [i ≥ 3] etc.) yields T (M+) which completes the proof, as far as the code
fragments shown here for illustration purposes are concerned.

8 Conclusion

In this paper we have given an overview of a complete model-driven development
and verification approach for railway and tram control systems. The approach
provides a framework consisting of

1. a domain-specific language,
2. a collection of tools, including (a) syntax and static semantics checkers for the

language, (b) generators producing executable models of the control system
and its physical environment as well as proof obligations, (c) a bounded
model checker and (d) an object code verifier,
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3. a method for using these tools to construct and verify a family of similar
control systems.

For each control system to be generated, the user makes a description of the
application-specific parameters in the domain-specific language and checks the
description by means of the syntax and static semantics checker. Then from this
description the generators produce models of the control system and its physical
environment, together with the safety requirements which are automatically ver-
ified using the bounded model checker in combination with an inductive proof
strategy. Finally – since the formal controller model can be directly compiled –
object code is generated by a conventional compiler, and it is checked by the ob-
ject code verifier that the object code is behaviourally equivalent to the control
system model. In this way it is ensured that the safety properties established for
the control system model also hold for the object code.

The development of the framework was formalised by using the RAISE for-
mal method, thereby providing complete and precise specifications of the tools
as well as the domain-specific language. This provides a sound basis for tool
implementation and allows for formal verification of algorithms.
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Abstract. Transaction-based services are increasingly being applied in
solving many universal interoperability problems. Compensation is one
typical feature for long-running transactions. This paper presents a de-
sign matrix model for specifying the behaviour of compensable programs
and provides new healthiness conditions to capture these new program-
ming features. The new model for handling exception and compensation
is built as conservative extension of the standard relational model in the
sense that the algebraic laws presented in [14] remain valid. The paper
also shows that the design matrix model is a retract of the design model.

1 Introduction

With the development of Internet technology, web services and web-based appli-
cations play an important role to information systems. The aim of web services
is to achieve the universal interoperability between different web-based appli-
cations. Due to the provided interface, web services can be invoked across the
Internet. In recent years, in order to develop web-based information systems
and describe the infrastructure for carrying out business transactions, various
business modelling languages have been introduced, such as XLANG, WSFL,
BPEL4WS (BPEL) and StAC [24,15,9,7].

Compensation is one typical feature for long-running transactions. Butler
et al. have investigated the compensation feature in the style of process al-
gebra CSP [6,7,8], namely compensating CSP. The operational semantics and
trace semantics have been studied [8]. The compensation is expressed as P ÷ Q,
where P is the forward process and Q is its associated compensation behaviour.
StAC (Structured Activity Compensation) [6] is a business process modelling
language, where compensation acts as one of its main features. Its operational
semantics has also been studied in [7]. Meanwhile, the combination of StAC and
B method has been explored, which can provide the precise description of busi-
ness transactions. Further, Bruni et al. have studied the transaction calculi for
StAC programs. The long-running transactions were discussed, and a process
calculi was provided in the form of Java API, namely Java Transactional Web
Services [4]. Qiu et al. have provided a deep formal analysis of the fault be-
haviour for BPEL-like processes [22]. Pu et al. have formalized the operational
semantics for BPEL [21], where bisimulation has been considered.
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The π-calculus has been applied in describing various compensable program
models. Lucchi and Mazzara formalised the semantics of BPEL within the frame-
work of the π-calculus [18]. Laneve and Zavattaro explored the application of the
π-calculus in the formalisation of the compensable programs and the standard
pattern of compisition [16].

This paper is an attempt at taking a step forward to gain some perspectives
on compensable programs within the design calculus [14] as well as to identify
the links among various models for the following language features

– Exception handling
– Compensation mechanism

Our contributions include

– providing a conservative extension of the standard relational model to deal
with fault handling and compensation, which can be characterised by addi-
tional halthiness conditions.

– exploring the algebraic system for exception handling and compensation.
– constructing a Galois connection (retract) to link the new model with the

design model.

The paper is organised as follows: Section 2 defines the merge combinator of de-
signs, which is used later to construct design matrix in describing the dynamic
behaviour of compensable programs. It also investigates the algebraic proper-
ties of the merge operator. Section 3 presents the new healthiness conditions to
capture the exception handling and compensation features of compensable pro-
grams, and introduces a new notion design matrix. It also explores the Galois
link between the design model with the design matrix model. Section 4 gives an
observation-oriented semantics to compensable programs. We explore the alge-
braic properties of exception handler and compensation mechanism in Section 5.
The paper concludes with a short discussion on the linking theories.

2 Preliminaries

This section introduces some notations which will be used in constructing design
matrix in the next section.

Definition 2.1 (Merge)

Let P and Q be designs. The notation P ⊕Q denotes the program which merges
the outcomes of P and Q.

P ⊕ Q =df if (pre.P → P, pre.Q → Q)fi

where pre.P stands for the precondition of Design P :

pre.P =df ¬P [true, false/ok, ok′]

Theorem 2.1. (b � S) ⊕ (c � T ) =df (b ∨ c) � (b ∧ S ∨ c ∧ T )
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The merge operator is idempotent, symmetric and associative. It distributes over
both nondeterministic choice and conditional.

Theorem 2.2

(1) P � (Q ⊕ R) = (P � Q) ⊕ (P � R)

(2) (P � b � Q) ⊕ R = (P ⊕ R) � b � (Q ⊕ R)

(3) (P ⊕ Q) � b � R = (P � b � R) ⊕ (Q � b � R)

Proof. Let P =df (b � S) and Q =df (c � T ) and R =df (d � U).

(1) LHS {Def of ⊕}
= P � (c ∨ d) � (c ∧ T ∨ d ∧ U) {def of �}
= (b ∧ (c ∨ d)) � (b ∧ S) ∨ (c ∧ T ) ∨ (d ∧ U) {Ordering of designs}
= b ∧ (c ∨ d) �

(b ∧ (c ∨ d) ∧ S ∨ (b ∧ c) ∧ T ∨ b ∧ d ∧ U) {Def of ⊕}
= (b ∧ c) � (S ∨ T ) ⊕ (b ∧ d) � (S ∨ U) {def of �}
= RHS

Definition 2.2 (Strong refinement)

Design D1 = b � S is a strong refinement of design D2 = c � T , denoted by
D1 ≥ D2, if

[c ⇒ (b ∧ (S ≡ T ))]

Example. Let F (X) =df (P ; X) � b � skip. Then

Fn+1(true) ≥ Fn(true)

⊕ plays the same role as the angelic choice in the refinement ordering.

Theorem 2.3. D1 ≥ D2 iff D1 � D2 and D1 ⊕ D2 = D1

Proof. Let D1 = (b � S) and D2 = (c � T )

D1 ≥ D2 {Def 2.2}
≡ [c ⇒ b] and [c ⇒ (S ≡ T )] {predicate calculus}
⇒ [c ⇒ b] and [(c ∧ S) ⇒ T )] and [(c ∧ T ) ⇒ S] {Def of ⊕}
⇒ (D1 � D2) and (D1 ⊕ D2 = D1) {Def of ⊕}
⇒ [c ⇒ b] and [(c ∧ S) ⇒ T )] and

[(b ∧ S ∨ c ∧ T ) ≡ (b ∧ S)] {Def of ≥}
⇒ D1 ≥ D2

Definition 2.3

Designs D1 and D2 are domain-disjoint if

pre.D1 ∧ pre.D2 = false
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Theorem 2.4

If P and Q are domain-disjoint, then

(1) P ⊕ Q = P � Q

(2) (P ⊕ Q); R = (P ; R) ⊕ (Q; R)

Proof
(1) RHS {refinement calculus}
= (b ∨ c) � ((b ⇒ S) ∧ (c ⇒ T )) {ordering of designs}
= b ∨ c � (b ∨ c) ∧ (¬c ∧ S ∨ ¬b ∧ T ) {b ∧ c = false}
= LHS

(2) LHS {def of ⊕}
= (b ∨ c) � (b ∧ S ∨ c ∧ T ) ; R {refinement calculus}
= (b ∨ c) ∧ ¬((b ∧ S ∨ c ∧ T ); ¬d) � (b ∧ S ∨ c ∧ T ); U {b ∧ c = false}
= b ∧ (¬(b ∧ S); ¬d) ∨ c ∧ ¬((c ∧ T ); ¬d) �

(b ∧ S ∨ c ∧ T ); U {def of ⊕}
= b ∧ ¬((b ∧ S); ¬d) � (b ∧ S); U ⊕

c ∧ ¬(c ∧ T ); ¬d)) � (c ∧ T ); U {refinement calculus}
= RHS

Theorem 2.5

If R = true � U , then (P ⊕ Q); R = (P ; R) ⊕ (Q; R).

3 Design Matrix

In this section we work towards a precise characterisation of the class of designs
[14] that are most useful in exception handling and compensation.

A subclass of designs may be defined in a variety of ways. Sometimes it is
done by a syntactic property. Sometimes the definition requires satisfaction of
a particular collection of algebraic laws. In general, the most useful definitions
are these that are given in many different forms, together with a proof that all
of them are equivalent.

To handling exception requires a more explicit analysis of the phenomena of
program execution. We therefore introduce into the alphabet of our designs a
pair of Boolean variables to denote the relevant observations.

Definition 3.1 (eflag and eflag′)
eflag records the observation that the program is asked to start when the exe-
cution of its predcessor halts due to an exception.

eflag′ records the observation that an exception occurs during the execution
of the program.
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The introduction of error states has implication for sequential composition: all
the exception cases of program P are of course also the exception cases of P ; Q.
Rather than change the definition of sequential composition given in [14], we
enforce these rules by means a healthiness condition. If the program Q is asked
to start in an exception case of its predecessor, it leaves the state unchanged

Definition 3.2 (Healthiness Condition)

(Req1) Q = II � eflag � Q

when the design II adopts the following definition

II =df true � (s′ = s)

where s denotes all the state variables in the alphabet of Q.

A design is Req1-healthy if it satisfies the healthiness condition Req1. Define

H1 =df λQ • (II � eflag � Q)

Clearly Q is Req1 healthy if and only if Q lies in the range of H1.

The following theorem indicates Req1-healthy designs are closed under conven-
tional programming combinators.

Theorem 3.1

(1) H1(P � Q) = H1(P ) � H1(Q)

(2) H1(P � b � Q) = H1(P ) � b � H1(Q)

(3) H1(P ; H1(Q)) = H1(P ); H1(Q)

The basic concept of a Req1-healthy design deserves a notation of its own.

Definition 3.3 (Design Matrix)

Let D1 = (b1 � R1) and D2 = (b2 � R2) be designs of the same alphabet which
contains neither eflag nor eflag′. Define(

D1

D2

)
=df H1((D1 ; succ1) ⊕ (D2 ; error1))

where

succ1 =df true � (v′ = v ∧ ¬eflag′)

error1 =df true � (v′ = v ∧ eflag′)

where v and v′ are the variables in the alphabet of D1 and D2.

This definition states that

– if the program starts in a state satisfying b1, it will terminate successfully
on states satisying R1.

– if it is activated in a state satisfying b2, an exception case may occur during
its execution and R2 will hold when the program halts.
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To equip a program with compensation mechanism, it is necessary to characterise
the cases when the control has to be passed to the compensation components.
Following the line adopted by the fault handling model, we introduce a new
logical variable forward to describe the status of control flow of the execution
of a program:

– forward′ = true indicates successful termination of the execution of the
forward activity of a program. In this case, its successor will carry on with
the initial state set up by the program.

– forward′ = false indicates it is required to undo the effect caused by the
execution of the forward activity. In this case, the installed compensation
module will be invoked.

As a result, when a program Q is asked to start in a state where forward =
false, it has to meet the following healthiness condition:

Definition 3.4 (Healthiness Condition)

(Req2) Q = II � ¬forward � Q

This condition can be identified by the following mapping

H2(Q) =df II � ¬forward � Q

in the sense that a program satisfies Req2 iff it is a fixed point of H2

Theorem 3.2

H2 ◦ H1 = H1 ◦ H2 where ◦ denotes functional composition.

Proof. From the fact that

H1(H2(Q)) = II � eflag ∨ ¬foward � Q = H2(H1(Q))

Define
H =df H1 ◦ H2

Theorem 3.3

A design satisfies both Req1 and Req2 iff it is a fixed point of H.

Like the mapping H1, H is also a homomorphism.

Theorem 3.4

(1) H(P � Q) = H(P ) � H(Q)

(2) H(P � b � Q) = H(P ) � b � H(Q)

(3) H(P ; H(Q)) = H(P ); H(Q)

Definition 3.5 (Design Matrix for exception and rollback)

Define ⎛
⎜⎝

D1

D2

D3

⎞
⎟⎠ =df H((D1; succ) ⊕ (D2; error) ⊕ (D3; rollback))
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where

succ =df (succ1 ‖ (true � forward′))

error =df (error1 ‖ (true � forward′))

rollback =df true � ((v′ = v) ∧ ¬forward′)

where ‖ stands for the disjoint parallel operator [14]

(b � R) ‖ (c � S) =df (b ∧ c) � (R ∧ S)

We introduce the following mappings to link the design matrix model with the
design model. For any design D and design matrix Q, define

G(D) =df H(D ; succ)

F(Q) =df Q[true, false/forward, eflag]; ((forward ∧ ¬eflag) � (v′ = v))

Theorem 3.5

(1) G(b � R) =

⎛
⎜⎝

b � (R ∧ ¬eflag′ ∧ forward′)

true

true

⎞
⎟⎠

(2) F

⎛
⎜⎝

c1 � S1

c2 � S2

c3 � S3

⎞
⎟⎠ = (c1 ∧ ¬c2 ∧ ¬c3) � S1

G distributes over the standard programming combinators.

Theorem 3.6 (Homomorphism)

(1) G(D1; D2) = G(D1); G(D2)

(2) G(D1 � D2) = G(D1) � G(D2)

(3) G(D1 � b � D2) = G(D1) � b � G(D2) provided that b is well-defined.

Proof G(D1 � b � D2) {Def of G}
= H((D1 � b � D2) ; succ) {; distributes over � b�}
= H((D1; succ) � b � (D2; succ)) {Theorem 3.4}
= G(D1) � b � G(D2)

F and G form a retraction

Theorem 3.7 (Retraction)

(F , G) is a Galois connection, satisfying

(1) F(G(D)) = D

(2) G(F(Q) � Q
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4 Compensable Programs

The ability to declare compensation logic alongside forware-working logic is
the underpinning of the application-controlled error-handling framework of WS-
BPEL. This section will provide a model for compensable programs which consist
of forward activity (for application task), backward activity (for compensation)
and exception handling component.

A compensable program will be identified as a healthy design with the al-
phabet containing the following variables to record the status of the holder of
compensation program and the values of program variables:

1. x and x′: to stand for the initial value and the final value of variable x
respectively.

2. Cseq: to keep the compensation programs installed so far.
3. Cpens: to record the named compensation programs. It is a mapping from

the scope names to their corresponding compensation programs.

4.1 Primitive Commands

The chaotic program ⊥ is defined as usual

beh(⊥) =df

⎛
⎜⎝

true

true

true

⎞
⎟⎠

The execution of skip terminates successfully, leaving both the contents of the
holder of compensation programs and the values of program variables and target
lables unchanged.

beh(skip) =df

⎛
⎜⎝

true � Identity

true

true

⎞
⎟⎠

where the binary relation Identity is defined by

Identity =df (v′ = v) ∧ (Cpens′ = Cpens) ∧ (Cseq′ = Cseq)

The program fail stops the execution indicating the failure of the forward
activity.

beh(fail) =df

⎛
⎜⎜⎝

true

true

true � Identity

⎞
⎟⎟⎠

There is a class of programs which never end the execution with a meaningful
outcome. The assignment x := 1/0 belongs to this category. We use the notation
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halt to denote the program which always throws an exception case, and leaves
all variables unchanged.

beh(halt) =df

⎛
⎜⎝

true

true � Identity

true

⎞
⎟⎠

The definition of the assignment needs to take into account the possibility that
evalation of the expression is undefined..

For each expression e of a reasonable programming language, it is possible to
calculate a condition D(e), which is true in just those circumstances in which e
can be successfully evaluated [20]. For example

D(17) = true

D(true) = D(false) = true

D(b ∨ c) = D(b) ∧ D(c)

D(x) = true

D(e + f) = D(e) ∧ D(f)

D(e/f) = D(e) ∧ D(f) ∧ f �= 0

D(e � b � f) = (b ⇒ D(e)) ∧ (¬b ⇒ D(f)) if b is well-defined

For any expression e, D(e) is a well-defined Boolean expressuion.

Successful execution of an assignment relies on the assumption that the expres-
sion will be successfully evaluated. So we formulate our definition of assignment

beh(x := e) =df

⎛
⎜⎝

D(e) � Identity[v ⊕ {x �→ e}/v]

¬D(e) � Identity

true

⎞
⎟⎠

Expressed in words, this definition states that

– Either the initial values of the variables are such that evaluation of e fails
(¬D(e)), and the execution halts with all variables unchanged.

– or the program terminates successfully, and the value of x′ is e, and the final
values of all the other variables are the same as their initial values.

4.2 Programming Combinators

The nonderterminic choice and sequential composition have exactly the same
meaning as operators on the single predicates defined in [14].

beh(P ; Q) =df beh(P );beh(Q)

beh(P � Q) =df beh(P ) ∨ beh(Q)
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The definition of conditional takes the well-definedness of its Boolean test into
account

beh(P � b � Q) =df

(
D(b) ⇒ (b ∧ beh(P ) ∨ ¬b ∧ beh(Q))∧
¬D(b) ⇒ beh(halt)

)

Let {bi | 1 ≤ i ≤ n} be a set of boolean expressions, and {Pi | 1 ≤ i ≤ n} a set of
programs. The guarded choice construct if b1 → P1, .., bn → Pn fi is defined by

beh(if b1 → P1, .., bn → Pn fi) =df

⎛
⎜⎝

∨
i(bi ∧ D(b) ∧ beh(Pi)) ∨

(
∧

i ¬bi) ∧ D(b) ∧ beh(⊥) ∨
¬D(b) ∧ beh(halt)

⎞
⎟⎠

The following theorem enables us to focus on the guarded choices with well-
defined boolean guards in the rest of this section.

Theorem 4.1

if(b1 → P1, ..., bn → Pn)fi =

if((b1 � D(b) � false) → P1, .., (bn � D(b) � false) → Pn, ¬D(b) → halt)fi

where b =df

∨
i bi.

Definition 4.1 (Total assignment)

An assignment is a total one if all the variables of the program appear on the
left hand side in some standard order

x, y, .., z := e, f, .., g

and all the expressions on the right hand side are well-defined.

We can transform an assignment into a total one by using guarded choice.

Theorem 4.2

x := e = if

(
D(e) → x := (e � D(e) � x),

¬D(e) → halt

)
fi

Total assignments satisfy the algebraic laws given in [14], for example

(1) skip = (v := v)

(2) (v := e ; v := f) = (v := f(e))

(3) v := e; if

⎛
⎜⎝

b1(v) → P1,

..,

bn(v) → Pn

⎞
⎟⎠fi = if

⎛
⎜⎝

b1(e) → (v := e; P1),

...,

bn(e) → (v := e; Pn)

⎞
⎟⎠fi

4.3 Scope

Let A, C and F be programns, and let n be a name. The named scope {A? C, F}n

has n as its name, and A, C and F as its forward activity, backward activity



Compensable Programs 359

and exception handler. It runs A first. If A terminates successfully, it installs
program C that can later be invoked by a undo command to compensate the
effect caused by the execution of A. Otherwise it passes the control to F to deal
with the exception case.

beh({A? C, F}n) =df H

⎛
⎜⎜⎜⎜⎝

beh(A);

install(C);

set(n, C);

exception(F )

⎞
⎟⎟⎟⎟⎠

where

install(C) =df

⎛
⎜⎜⎜⎝

true �
(

v′ = v ∧ Cpens′ = Cpens ∧
Cseq′ = (Cseq· < C > �C �= ε � Cseq)

)

true

true

⎞
⎟⎟⎟⎠

set(n, C) =df

⎛
⎜⎜⎜⎝

true �
(

v′ = v ∧ Cseq′ = Cseq ∧
Cpens′ = Cpens ⊕ {n �→ C}

)

true

true

⎞
⎟⎟⎟⎠

exception(F ) =df ((beh(F )[false/eflag];beh(halt)) � eflag � beh(skip))

where ε stands for the empty text.

The unnamed scope {A?, C, F} behaves the same as the named scope except
that it does not install a named compensation.

beh({A? C, F}) =df H

⎛
⎜⎝

beh(A);

install(C);

exception(F )

⎞
⎟⎠

4.4 Compensation

compensate(n) activates the compensation program associated with the scope
n.

The execition of the command undo switches the direction of control flow by in-
voking the compensation program stored in Cseq.

beh(undo) =df beh(Cseq);beh(fail)

Let P be a program. The notation undo � P represents the program which runs
P first, then behaves like undo.

undo � P =df beh(P );beh(undo)
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5 Algebraic Properties

The model we provide for compensable programs can be seen as a conservative
extension of the design model for the imperative language discussed in [14].
In particular, sequential composition, conditional and nondeterministic choice
satisfy the same laws as given in [14]. This section will investigate the algebraic
properties of the new features of compensable programs.

5.1 Composition

Sequential composition has undo and halt as its left zeroes.

(seq-1) undo ; Q = undo

(seq-2) halt ; Q = halt

5.2 Exception Handler

The exception handler E is defined as a binary operator of programs.

P E F =df {P ? ε, F}

E distributes leftward over all programming combinators.

(E − 1) (P1 � P2) E F = (P1 E F ) � (P2 E F )

(E − 2) (P1 ; P2) E F = (P1 E F ) ; (P2 E F )

(E − 3) If the Boolean expression b is well-defined, then

(P1 � b � P2) E F = (P1 E F ) � b � (P2 E F )

It is also disjunctive on its right operand.

(E − 4) P E (F1 � F2) = (P E F1) � (P E F2)

E has skip and throw as its right units.

(E − 5)

(1) P E skip = P

(2) P E halt = P

The following laws enable us to merge the consecutive exception handlers.

(E − 6) (P E halt) E F = P E F

(E − 7) (P E ⊥) E F = P E ⊥
E can be eliminated using the following laws.

(E − 8) halt E F = F ; halt

(E − 9) skip E F = skip

(E − 10) ⊥ E F = ⊥
(E − 11) undoE F = undo
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A named scope can be converted into an exception handler.

(E − 12) {A? C, F}n = (A; {C}n) E F , where

{C}n =df {skip? C, halt}n

Similar to unnamed scope we adopt the following notation for a unnamed com-
pensation program.

{C} =df {skip? C, halt}

No exception occurs during the execution of a total assignment, or installation
of a compensation program.

(E − 13) (v := e; P ) E F = (v := e); (P E F )

(E − 14) ({C}n; P ) E F = {C}n; (P E F )

(E − 15) ({C}; P ) E F = {C}; (P E F )

5.3 Compensation

Installation of a compensation program can be postponed.

(cpens-1)

(1) {C}n; (v := e) = (v := e); {C}n

(2) {C}; (v := e) = (v := e); {C}
(cpens-2) If b is well-defined, then

(1) {C}n; (P � b � Q) = ({C}n; P ) � b � ({C}n; Q)

(2) {C}; (P � b � Q) = ({C}; P ) � b � ({C}; Q)

It becomes void to install a compensation program before a undo command.

(cpens-3)

(1) {C}n; (undo � P ) = undo � (P ; C)

(2) {C}; (undo � P ) = undo � (P ; C)

Consecutive unnamed compensations can be merged.

(cpens–4) {C}; {D} = {D; C}

6 Conclusion

A theory of programming is intended to support the practice of programming by
relating each program to the specification of what it is intended to achieve. An
unifying theory is one that is applicable to a general paradigm of computing, sup-
porting the classification of many programming languages as correct instances
ofthe paradigm. This paper indicates that the UTP approach is effective in the
following aspects
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– a new model can be built by adding healthiness conditions:
1. the model of designs is characterised by the left zero law ⊥; P = ⊥ and

the unit laws skip; P = P = P ; skip
2. the model of Req1-healthy designs is captured as a subset of designs

that meet the new left zero law halt; P = halt
3. the model in dealing with compensation is seen as a submodel of the

Req1-healthy designs which satisfies the left zero law fail ; P = P .
– the model extension is ecnomical since the original algebraic laws remain

valid.
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Abstract. Well understood methods exist for developing programs from
formal specifications. Not only do such methods offer a precise check
that certain sorts of deviations from their specifications are absent from
implementations but they can also increase the productivity of the devel-
opment process by careful use of layers of abstraction and refinement in
design. These methods, however, presuppose a specification from which
to begin the development. For tasks that are fully described in terms
of the symbolic values within a machine, inventing a specification is not
difficult but there is an increasing demand for systems in which pro-
grams interact with an external physical world. Here, the task of fixing
the specification for the “silicon package” can be more challenging than
the development itself. Such applications include control programs that
attempt to bring about changes in the physical world via actuators and
measure things in that external (to the silicon package) world via sen-
sors. Furthermore, most systems of this class must tolerate failures in
the physical components outside the computer: it then becomes even
harder to achieve confidence that the specification is appropriate. This
paper offers a systematic way to derive the specification of a control pro-
gram. Furthermore, our approach leads to recording assumptions about
the physical world. We also discuss separating the detection and man-
agement of faults from system operation in the absence of faults. This
discussion is linked to the distinction between “normal” and “radical”
design.

1 Introduction

This paper is intended to contribute to the formal development of computer
systems by showing how one might obtain the starting specification for an im-
portant class of problems. The applications of interest are those whose function
is best understood by describing behaviour in the physical world. Of course,
computers can only receive and transmit signals; they cannot directly affect

C.B. Jones, Z. Liu, J. Woodcock (Eds.): Bjørner/Zhou Festschrift, LNCS 4700, pp. 364–390, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Deriving Specifications for Systems 365

their external world. What connects the signals from (what we call) the “sili-
con package” to the physical world is a collection of sensors and actuators. We
show how it is possible to derive a specification of the silicon package from a
description of the desired behaviour of the overall system in the physical world.
We do this without building a complete model of the external components; the
method does however leave a clear record of assumptions which are crucial to
safe deployment.

As computers become cheaper and smaller, they are increasingly connected
to devices that sense and affect the physical world. Such applications of general
purpose digital computers include “control programs”. We do not restrict what
we have to say to control programs in the narrow sense; but they furnish an im-
portant –and convenient– example of systems connected to the physical world.1

The broad class of “open systems”, which receive input from the physical world
via sensors and influence it via actuators, is both large and important. Such
open systems are often deployed in safety-critical environments.2

It is often difficult to develop the specification of an open system because the
devices to which it is connected are themselves complex. The task of developing
an appropriate specification is further complicated by the fact that the physi-
cal devices are subject to failure. We outline our approach to deriving formal
specification of control systems and argue that it extends to more general open
systems.3

Notice that the observations above affect any specification whether it is formal
or informal. It is expected that –as with other formal methods– the ideas will
inspire less formal approaches as well.

This paper develops the ideas presented in our earlier paper [HJJ03]. As there,
our ideas are presented using the example of a controller for an irrigation sluice
gate. Section 2 begins with the overall requirement for an ideally reliable sluice
gate and develops a specification for its controller. In Section 3 we consider
faults in the problem world. This is one area where our thinking has developed
since the earlier paper. Another development is our more explicit recognition
of the influence of the distinction between “normal” and “radical” design (see
Section 3.8).

1 In fact, we hope to extend (see Section 4.2) our area of application to systems where
humans play a significant part. We have, for example, studied advisory systems,
which are in some respects similar to the control systems we discuss here, but whose
purpose is to provide advice to a human operator who makes final decisions.

2 The most common argument used for replacing custom designed control hardware
with software running in a general purpose processor is that flexibility for change is
offered; it is not the intention here to argue whether or not the claims justify the
use of software-controlled systems.

3 There is a considerable literature on the development of control systems in partic-
ular (more generally, “hybrid systems”); representative publications are cited and
compared in Section 4.1. It is important to understand that our interest here is in
obtaining the initial specification of the silicon package. In some senses, the work on
ISAC [Lan73,BB87] is a closer pre-cursor to our work than the research on developing
reactive systems.
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1.1 Outline of Our Method

Our method is conceptually simple: we ground our view of a desired computer
system (or “silicon package”) in the external physical world. This is the problem
world whose phenomena are to be measured and influenced by the overall system.
Having agreed with the customer the desired behaviour in the problem world,
we record –and again obtain conformation of acceptability– assumptions about
the physical components outside the computer itself. Only then do we derive the
specification of the software to run in the computer.

To some developers, it may seem surprising to begin by discussing external
physical phenomena most of which the program can influence only indirectly.
Programs can only receive and send signals: they do not directly experience
or control any other phenomena of the problem world. So our message can be
stated negatively: the method discourages designers from jumping too early into
writing a specification of the control software.

To use our method a number of technical issues have had to be settled. How
these are resolved is discussed in Section 1.3.

As indicated, our proposed approach is first to specify the requirements of the
overall system in the physical (problem) world; then to determine –and record
as rely conditions– necessary assumptions about components of that physical
world; and only then to derive a specification of the computational part of the
control system (the symbolic world). See Figure 1.

Physical 
World

Control 
System

}Rely
Conditions

Fig. 1. A representation of the overall method

Most open systems must be designed to tolerate failures in the physical com-
ponents — both in the sensors and actuators, and in other components not
directly interfaced to the computer. This requirement for fault-tolerance com-
plicates the problem of deriving a specification by introducing conflicting needs
into the development process. On the one hand, it is necessary to understand
and capture enough of the complexity of the possible problem world behaviours
to accommodate a sufficient class of faults to achieve the desired degree of fault-
tolerance. On the other hand, it is important to maintain clarity in the set of
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assumptions that underpins the specification of control program behaviour in
normal fault-free operation. This conflict cannot be conveniently resolved in a
unitary top down development process in which a single specification of problem
properties is elaborated to accommodate both faulty and fault-free operation.
Our approach is to treat faulty and fault-free operation as distinct subproblems,
to be solved separately and subsequently combined. We address a number of
issues relating to the treatment of faults in Section 3 and return to the problem
of relating fault-tolerant behaviour to normal and radical design in Section 3.8.
This is one area where our understanding has progressed substantially beyond
the ideas in [HJJ03] but as we explain in Section 4.3 there is more work required
in this area and we are looking at the connection with the “Time Bands” ideas
in [BHBF05].

There are two key advantages of starting with a specification that describes
problem world phenomena more generally (rather than restricting it to those
phenomena which cross the interface to the computer as input or output signals):

– the problem world requirements are meaningful to the customer, and so are
likely to be better understood; and

– the process forces the developer to articulate and record clear assumptions
about the problem world properties, which must be checked before any de-
ployment of the control software.

Of course, we make no claim that systems can be made perfectly safe; we aim
only to offer a method that will make it easier to identify the assumptions about
the physical components of the system and to ensure that they are formally
documented.

There is a problem with this wider view: it would be unreasonable to ask
system developers to build models of all of the physical components of a system.
In particular, components which have extremely complex behaviour –for exam-
ple, airflow over an aircraft wing– might defy adequate formal description. Our
approach here is to record only the assumptions (which we record as rely con-
ditions) on which the development is based. These assumptions will often hold
for a range of possible devices, enlarging the range of environments in which the
developed control software can be deployed.

It might be useful to contrast our approach with Dines Bjørner’s notion of
“domain modelling”. In [Bjø06, Chapter 10], he uses formal specification tech-
niques to describe the physical world in which the silicon package will be embed-
ded. Our purpose is rather to see “how little can one say”; our rely-conditions
provide a “separation of concerns” without modelling the whole of the physical
system. Crucially, our approach does leave a record of assumptions which have
been made. An instructive experiment would be to compare a fully worked out
version of [Bjø06, Example 10.4] (which addresses RADAR inaccuracy) with our
approach. It might well be the case that general properties of the domain are
useful to build an overall picture but that our approach would put clearer bounds
on the concerns relevant to specific systems.
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1.2 A Micro Example

A simple illustration of the envisaged method can be given for a room heating
system [MH91a]. We argue that one should not jump at once into a specification
of the control program — stating what corrective action should follow when the
value read from the temperature sensor indicates that some limit value has been
exceeded. Instead one should first specify the desired relationship between the
actual room temperature and the target temperature set on the control knob:
this is the requirement in the problem world.

A control program cannot detect the actual temperature so a realisable specifi-
cation must record, in rely conditions, the properties of those components which
link the control system to the physical world: that is, the assumptions made
about the accuracy of the sensors and about the causal chain connection be-
tween sending signals to the heating equipment and changes in the actual room
temperature. Proceeding in this way is likely to pinpoint assumptions about the
extremes and rate of change of external temperature. Once these assumptions
have been recorded and authorised, it is possible to derive the specification of
the control program.

Perhaps most importantly, the assumptions are recorded for anyone who is
considering deploying the control system.

1.3 Technical Tools

In clarifying the understanding of a system, one essential tool is the use of
problem diagrams [Jac00]. A problem diagram shows the customer’s requirement,
the problem world, the computer (which we refer to as the machine), and the
interfaces among them. A problem diagram represents these elements explicitly
and so helps to provide a firm basis both for exploring the problem scope and
for identifying the parts of the problem world that must be specified and the
phenomena that must be related by those specifications. A simple example of a
problem diagram is given in Figure 3.

We are of the firm opinion that handling complex systems requires formal
notation. We do not rehearse the arguments for formal methods here beyond
saying that reasoning requires formal notation.

A number of methods exist for developing sequential programs from formal
specifications; two which embrace the “posit and prove” idea are [Jon90,Abr96]. A
posit and prove method identifies proof obligations to be discharged at each devel-
opment step: if all such proof obligations are satisfied, one class of error has been
excluded from the final program. Notice that we are not claiming that the sys-
tem will perform, in some sense, perfectly. For one thing, any reasoning about the
text of a program is done with respect to assumptions about faithful implementa-
tion of the assumed semantics. There are also the questions of “clean termination”
discussed in [Sit74]. For the current concerns however, the crucial gap is that the
specification (however formal) might not accord with the real needs of a system
— proving that a program satisfies a specification in no way guarantees that the
specification itself is perfect (cf. [Jon90, Postscript]). It is against this last doubt
that the current paper tries to offer some way to gain reassurance.
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Although such formal methods are not universally practised, their existence
shows that a class of errors can be eliminated from program design. Methods
which use a posit and prove approach are particularly useful because they com-
bine the predisposition of an engineer to introduce decisions one at a time with
the possibility to verify one design decision before moving on to base further
work on that decision. Such approaches use the essential ideas of redundancy
and diversity and thus minimise the amount of scrap and rework.

A development method that can scale up to deal with realistic problems must
be compositional in the sense that the specification of a subsystem is a complete
statement of its required properties. For sequential programs, various forms of pre-
condition andpostcondition specifications satisfy this requirement. For concurrent
programs, the task of finding tractable compositional methods has proved more
challenging; but even here, techniques like rely and guarantee specifications (see
[Jon96, further references therein] and [MH92,BS01]) offer compositionalmethods.

It is worth emphasising the difference in nature between rely and guarantee
conditions because it clarifies their use in our approach. Guarantee conditions are
obligations on the code that is to be created: the program is obliged to behave in
a certain way. Rely conditions give permission to the developer to ignore possible
uses: the program is under no obligation if it is used in an environment in which
the rely condition is not true. There is of course an exact correspondence here
with preconditions and postconditions: the precondition on a square root function
tells the developer that –since the input can be assumed to be positive– imaginary
number results are outside the scope; but for positive numbers, the bounds on the
accuracy of the result must be respected by any valid implementation.

Since, in general, a program cannot directly monitor or control all the phe-
nomena of interest in the problem world, satisfaction of the customer’s require-
ment must be achieved indirectly, relying on causal properties of the problem
world. We therefore use rely and guarantee conditions in the following way. The
machine and the problem world are related by mutual rely and guarantee condi-
tions: each one guarantees to satisfy certain conditions provided that it can rely
on the guarantees of its partner. On this basis we can prove that the parallel
composition of the machine with the problem world satisfies the specification
of the whole system. The rely and guarantee conditions remain explicit in the
specification documents as a reminder and a warning: they must be checked for
safe deployment.

Properties of a control system must, in general, be specified over time inter-
vals: in particular, the time interval, and its subintervals, over which the system
operates. In addition, properties may relate behaviour in one subinterval to be-
haviour in an adjoining interval. We follow the approach of explicitly quantifying
over such intervals [MH91b,MH92] (the notation is similar to the Duration Cal-
culus [CHR91]).

1.4 Fault Tolerance

Armed with the technical ideas of the previous section, it is possible to undertake
the approach of deriving specifications of the silicon package from a description
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of the required behaviour of the overall system. This process is illustrated in
Section 2.

The approach to describing fault-tolerant behaviour is less firm but a number
of ideas are explored in Section 3. Our basic hope is to be able to formalise a
notion of layered specifications in which one can for example state the behav-
iour desired in the absence of component failures (with one set of rely/guarantee
predicates) separately from a description of (presumably) more restricted behav-
iour in the presence of faults. (There might of course be several layers of such
fault-tolerance.) The motivation here is very like that for VDM’s “error condi-
tions” (see [Daw91]) but we discuss in Section 4.3 why the notion of changing
from the well-behaved to the fault-tolerant phase is difficult (and the direction
in which we are seeking a resolution of the difficulty.)

2 The Sluice Gate Example

The example considered in detail in this paper concerns a sluice gate (as in-
troduced in [Jac00]) designed to control the flow of water in a farm irrigation
channel. The gate is pictured in Figure 2; it consists of a barrier sliding in ver-
tical guides and positioned across the flow of water in the irrigation channel.
The barrier is raised and lowered by a reversible motor which drives a rack-and-
pinion mechanism engaging with the guide at each side. When the barrier is fully
raised it is open and the flow of water is unimpeded; when the barrier is fully
down it is closed and the flow of water is blocked. The guides are equipped with
stops that prevent the barrier from moving beyond the guide limits. There are
top and bottom sensors which should be set on when the barrier is fully raised
or fully down respectively.

The idea outlined in Section 1.1 is to write an initial specification based on a
wide view of a system, including both the machine and the problem world. The
machine is the computer, executing the control program to be developed. The
problem world is that part of physical reality in which the problem resides and
in which the effects of the system, once installed and set in operation, will be
evaluated.

✹ ✹

Top &
Bottom
Sensors

Motor Gate

Mechanism Water

Fig. 2. A representation of a sluice gate
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Drawing the boundaries of the problem world demands a judgment based on
the responsibilities and the scope of authority of the customer for the system
(we return to this topic in Section 2.1).

One view is that it is the customer’s responsibilities that bound the effects
to be evaluated in the problem world, while the customer’s scope of authority
bounds the freedom of the developers in aiming to achieve those effects.

The customer’s requirement is that the gate should be open or closed accord-
ing to a certain regime intended to ensure appropriate irrigation of the fields.
The problem is to develop the controller that will impose this regime. The prob-
lem is depicted in the problem diagram in Figure 3. The two rectangles represent
the two physical domains of this problem. One is the Control Machine, which is
the computer executing the control program that we are to develop. It is marked
with a double stripe; this indicates that it is the machine domain in the problem.
The other is the Sluice Gate with its sensors and drive motor, the plain rectangle
indicating that it is a problem domain, which in the software development we
regard as given.4

Fig. 3. The machine, the problem world and the requirement

In this diagram there is only one problem domain; it is frequently the case
that there are two or more, interacting with each other and with the machine
domain. We refer to the problem domains collectively as the problem world,
distinguishing them from the machine. The requirement is represented by the
dashed ellipse; the requirement is to impose the desired regime on the gate. The
requirement phenomena –that is the phenomena in terms of which the require-
ment is expressed– are represented by the arrow marked a, and listed in the text
below the diagram. The specification phenomena –that is, the shared phenomena
of the interaction between the machine and the problem world — are represented
by the line marked b, and listed in the text below the diagram. The notations
“CM!” and “SG!” indicate that the Control Machine and Sluice Gate respec-
tively control the annotated phenomena: the machine can switch the motor on
and off and set its direction, while the top and bottom sensors are controlled by
the sluice gate. The requirement phenomenon is expressed in terms of periods
in which the gate is either open or closed.
4 It is important that we are concerned with software development, and that we regard

the problem domain as given: that is, we are not free to replace the sluice gate
equipment with different equipment better suited to our needs. We must develop a
control program for the sluice gate with which our customer presents us.
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2.1 The Scope of the Problem

By drawing the problem diagram as we have done we have identified the scope of
the problem: it is restricted to operation of the sluice gate. We might instead have
broadened the scope to include the irrigation channel. The diagram would then
have shown the Irrigation Channel as an additional domain of the problem world,
interacting with the Sluice Gate; and the requirement would have been expressed
in terms of a required flow of water in the channel. Any broadening or narrowing
of the problem world will, of course, be reflected in a change in the requirement
phenomena, and vice versa. A further broadening would include the fields and
their crops as a part of the problem world. Each of these expansions would give
rise to new assumptions (expressed as rely-conditions) about those things which
are beyond the control of the silicon package. Drawing the boundaries of the
problem world in this way demands an inescapable judgment: the whole universe
cannot be encompassed in a single problem. This judgment must be based on
an understanding of the responsibilities and scope of authority of the customer
for the system. The customer’s responsibilities place an upper bound on the
requirement, while the scope of authority bounds the freedom of the developers
in aiming to satisfy that requirement. Here we limit our consideration to the
sluice gate and its operation, as shown in the problem diagram.

For the chosen scope, Section 2.5 indicates a set of assumptions which are
made on the environment. For each of the alternative scopes discussed here, one
would end up making different assumptions on the environment (cf. Section 4.2).

2.2 Formalising the Problem Requirement

The requirement is that –over the whole time of system operation– the time
when the gate is fully closed should be in a certain ratio to the time when it is
fully open.5 Specifically, the ratio between the time the gate is in its closed : open
states should approximate 5 : 1 over any substantial period of time. Evidently
we must make this requirement more formal and more precise.

To formalise the requirement we begin by recognising that the gate is not
always open or closed: it can sometimes be in intermediate positions. Let the
variable pos denote the position of the gate. This variable is of type Height :

pos : Height

where Height is defined as6

Height =̂ closed | neither | open.

The position is determined by the Sluice Gate, interacting with the Control
Machine. We initially focus on the trace of pos values over time. Hence, in
5 Remember that this initial specification is about an idealised world in which fault-

tolerant issues are postponed.
6 It is worth observing here that this definition –with only three distinct positions of

the gate– may prove to be too abstract. We return to this point in Section 2.5, when
we discuss the physical properties of the sluice gate.
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predicates, pos will be treated as a function of time: that is, pos(t) gives the
position of the gate at time t . A timed predicate of the form P over I states
that the predicate P holds for every instant of time in the interval I . For example,

(pos = open) over I

is equivalent to (∀ t : I • pos(t) = open). The operator over binds more
tightly than binary logical operators. The operator ‘#’ gives the size of an in-
terval. The integral of a predicate over an interval I , such as

∫
I (pos = open),

treats the predicate, pos = open, as a function of time (because pos is a func-
tion of time); it treats a true value as 1 and a false value as 0 (as in the
Duration Calculus [CHR91]). In short, the two integrals in the formalisation
SluiceGateRequirement below give the total time in the interval I for which the
variable pos is equal to closed and open respectively. The notation Interval(T )
stands for the set of all contiguous finite non-empty intervals that are subsets of
the time interval T . The parameter T should be thought of as the time interval
over which the system is operating.

Informally, it is stated above that the ratio of closed to open times should be
“approximately 5 : 1”. Specifying this precisely requires some care. One must
remember to allow for the time the gate is in movement and thus in neither
stable position. Furthermore there is a risk that the pattern is too rigidly fixed
because all intervals of time are considered. The specification must obviously be
agreed with the customer and it is likely that the most intuitive way to convey
this is to have some reasonable period of several hours and to introduce specific
numbers.7 The notation x ±e stands for the set of times from x −e to x +e. The
range for the error bounds below are given as a fraction, error, of the interval
size. The constants max open and max closed allow for the end effects of
the interval I only containing part of an open/closed cycle. Suitable values for
max open, max closed and error might be 15 minutes, 75 minutes, and 0.05
(i.e. a 5% cumulative error).

SluiceGateRequirement =̂
λT : Interval(Time) •

∀ I : Interval(T ) • #I ≥ 6hours ⇒∫
I (pos = open) ∈ 1

6 ∗ #I ± (max open + #I ∗ Error) ∧∫
I (pos = closed) ∈ 5

6 ∗ #I ± (max closed + #I ∗ Error)

This requirement suffices for the discussion which follows but it is clear that
some issues may arise at this point, demanding early resolution. In particular,
the requirement describes a behaviour over time of the sluice gate, but the sluice
gate may perhaps not be capable of this behaviour. For example, if the sluice
gate position cannot change between open and closed without dwelling for 200
minutes in the neither position, then the requirement will not be satisfiable.
This issue clearly depends on the physical properties of the sluice gate and we
return to this topic in Section 2.5.
7 See Section 4 for an alternative approach using timebands.
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2.3 Initial Combined System Specification

The specification of the whole system, consisting of the Control Machine and the
Sluice Gate connected together and operating in parallel, is that it must satisfy
the requirement above:

CMSGSystem =̂ system
output pos : Height
rely true
guarSluiceGateRequirement

We regard the subject of each specification of this kind as a system. The sys-
tem CMSGSystem specifies the requirement on the combined system. A system
specification explicitly lists its inputs and outputs, any assumptions on which it
relies about its environment and the conditions it guarantees to establish. In this
case there are no assumptions and there are no inputs: the overall specification
is concerned only with the gate position, which is an output.

Evidently, the combined system can satisfy its specification only if the Sluice
Gate and the Control Machine satisfy appropriate conditions. In the case of
the Control Machine, which is the machine in the problem diagram shown in
Figure 3, our assumptions describe the properties with which the machine must
be endowed by virtue of the software it will be executing. In the case of the
Sluice Gate, by contrast, our specification describes the properties with which
the sluice gate is assumed to be endowed by virtue of its physical construction.
The description does not however attempt to describe everything that could be
known about the gate in question; we attempt to determine a minimal set of
assumptions in Section 2.5.

The assumptions on the Sluice Gate specification must be developed first;
the specification of the Control Machine, which is to be built, will be derived
from it. Even here there can be a degree of iteration in the development. The
problem world may offer a rich set of properties from which the developer may
be able to select different subsets as sufficient assumptions for developing the
machine. In making this selection it may be reasonable to pay some attention to
considerations of program specification and design.

2.4 The Shape of the Specification of the Control System

The next objective is to arrive at a specification of the control system. It would
obviously be possible to jump straight to an outline algorithm which indicated,
say, that each hour the control system should open the sluice gate; pause 9
minutes; then move the gate down; pause for about 45 minutes; etc. Any temp-
tation to specify the control system in this way should be resisted. One argument
is that many other patterns (e.g. a 5/23 minute pattern each half hour) would
satisfy the user’s requirements as documented.

The aim here is to derive an implicit specification of the control system from
an understanding of the components. This identifies the assumptions clearly and
ensures that they are recorded. Our approach is to look at the consequences of
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putting the onus for meeting the system specification on the control system. We
could specify the Control Machine as a system:

Controller =̂ system
external pos : Height
input top, bot : Boolean
outputmotor : on | off, dir : up | down
rely ??
guar SluiceGateRequirement

It is of course clear that the Controller cannot achieve this guarantee condi-
tion unless its developer can make assumptions: to give just one example, the
Controller cannot directly cause pos to change because it is in the physical world.

The next section explores assumptions which need to be made to ensure that
the above outline can be completed to a realisable specification.

2.5 Assumptions About the Problem World

The Control Machine’s inputs are the states of the sensors, its outputs are signals
to the motor controls. To achieve the overall specification, the control program
relies on the sensors and the motor working correctly (the question of which sorts
of faults can be tolerated is considered in Section 3). The first set of assumptions
needs to relate pos being closed or open with the inputs to the Controller
(sensor values top and bot).

At the interface b in Figure 3, the Sluice Gate controls the states of the sensors
top and bot , while the Control Machine can set the motor direction control, dir ,
to either up or down and can switch the motor by setting motor to either on
or off. We describe the phenomena of the interface more precisely as follows:

Control Machine ! {dir : up | down; motor : on | off}
Sluice Gate ! {top, bot : Boolean}

The states of the two sensors, top and bot , can be formalised as Boolean
functions of time. The sensors detect when the gate is open (top) or closed
(bot). We formalise this property in the following definition SensorProp. In the
definition, T is the whole time interval over which the system operates.

SensorProp =̂
λT : Interval(Time) •

(((pos = open) ⇔ top) ∧ ((pos = closed) ⇔ bot)) over T

As shown in Figure 2, the sluice gate is driven by a motor that raises or lowers
the gate through a pair of mechanisms. At the interface b, the Control Machine
(see Figure 3) can send signals that are intended to switch the motor on or off, and
can set the dir signal. To achieve our specification we need to make assumptions
about what changes arise in the problem world when these signals are sent.

To capture these assumptions about the motor’s effect on the gate, we begin
by introducing some derived properties that indicate when the gate is being lifted
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or lowered by the motor and when the gate is moved . These derived properties
will form our vocabulary for discussing motor properties. They can be used
throughout the specification to simplify its presentation. The property that the
gate is moved includes the time motor decel over which it is decelerated when
the motor is turned off.

lifted =̂ λ t : Time • motor(t) = on ∧ dir(t) = up
lowered =̂ λ t : Time • motor(t) = on ∧ dir(t) = down
moved =̂ λ t : Time • (∃ J : Interval(Time) •

sup(J ) = t ∧ #J ≤ motor decel ∧ (motor = on) in J )

The supremum, sup(J ), of a set of times J is the least upper bound of J , and the
infimum, inf (J ), is the greatest lower bound. A predicate, P , holds within a set
of times J , written P in J , if there exists a time within J at which P holds. We
also introduce an ordering, lower , on the gate position and its reflexive transitive
closure, lower∗. This allows us to express the property that the gate is either
rising (monotonically upwards) or falling (monotonically downwards).

lower =̂ {closed �→ neither,neither �→ open}
monotonic up =̂ λ I : Interval(Time) •

∀ t1, t2 : I • t1 ≤ t2 ⇒ lower∗(pos(t1), pos(t2))
monotonic down =̂ λ I : Interval(Time) •

∀ t1, t2 : I • t1 ≤ t2 ⇒ lower∗(pos(t2), pos(t1))

If the motor has been on in the direction up for at least some constant uptime, the
gate will have reached the open position. A similar condition applies for downward
travel.8 The gate remains stationary after the motor has been turned off for time
motor decel. After the motor has been turned off the gate can only continue
its travel in the direction in which it was going (for at most motor decel). In
the definition, an interval I adjoins an interval J , written I adjoins J , if the
supremum of I is equal to the infimum of J , i.e. sup(I ) = inf (J ). Infix relations,
such as adjoins, bind more tightly than binary logical operators.

MotorOperation =̂ λ T : Interval(Time) •
∀ I : Interval(T ) •

((lifted ∧ pos = open) over I ⇒ #I ≤ uptime) ∧
((lowered ∧ pos = closed) over I ⇒ #I ≤ downtime) ∧
(((¬ moved) over I ) ⇒ (∃ p : Height • (pos = p) over I ))

∧
∀ I , J : Interval(T ) • I adjoins J ⇒

(lifted over I ∧ (motor = off) over J ⇒
monotonic up(I ∪ J ))

(lowered over I ∧ (motor = off) over J ⇒
monotonic down(I ∪ J ))

8 Because we chose to describe pos as having only three values, rather than giving it a
numeric value, we now naturally describe the gate’s speed of movement only in terms
of the travel time between the extreme positions.
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At this point we can fill in the rely condition in the specification outlined in
Section 2.4.

Controller =̂ system
external pos : Height
input top, bot : Boolean
outputmotor : on | off, dir : up | down
rely SensorProp ∧ MotorOperation
guar SluiceGateRequirement

Both SensorProp and MotorOperation are predicates parameterised by the time
interval over which the system operates; in SensorProp ∧ MotorOperation the
operator “∧” is a lifted conjunction, that is, it means

λT : Interval(Time) • SensorProp(T ) ∧ MotorOperation(T )

However, this specification is still not complete because we need to review a
general concern (that of assumptions on equipment to avoid breakage); we have
used this to illustrate the symmetric way in which assumptions are made.

2.6 Avoiding Breakage

The properties that are important in the problem world are not yet complete.
The sluice gate does exhibit the properties we have described here, but only if
certain restrictions are observed on its operation. In a control problem such as
we are discussing here, it is necessary to ensure that the machine itself does not
cause failure of any part of the problem domain by ignoring known restrictions
on its use. This is the breakage concern of [Jac00]. For example, checking the
motor equipment manual, we might learn that the motor will be damaged if it
is switched between directions without being brought to rest in between: for any
period over which the gate is moved, the direction must be constant. Recall that
the definition of moved above includes periods when the motor is on as well as
periods when it has been on recently (within motor decel).

MotorDirectionStable =̂ λ T : Interval(Time) •
∀ I : Interval(T ) •

(moved over I ⇒ ((dir = up) over I ∨ (dir = down) over I ))

Note that, because this condition involves only the variables motor and dir , the
controller can satisfy this requirement without relying on any properties of the
sluice gate. Hence the rely condition associated with this condition is just true.
By requiring that the controller always maintain this property, even if the sluice
gate is not working correctly, we ensure the controller won’t break the motor by
switching direction while the motor is turned on or shortly after a period where
it has been on. Of course if the sluice gate is broken in a manner that means the
the motor is actually running even when turned off by the controller, the change
of direction can still damage the motor/gears.
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A second restriction applies when the motor has driven the gate to the open
or closed position. It must then be switched off soon enough to avoid straining
the motor and mechanism when the gate reaches the end of its vertical travel
and further movement is impossible; motor limit is the maximum time the
motor can be on with the direction up (down) when the gate has reached the
open (closed) position.

MotorOffAtLimit =̂ λT : Interval(Time) •
∀ I : Interval(T ) •

((pos = open) over I ⇒∫
I (motor = on ∧ dir = up) ≤ motor limit) ∧

((pos = closed) over I ⇒∫
I (motor = on ∧ dir = down) ≤ motor limit)

As this condition refers to the gate position (pos), the controller needs to assume
that the sensors are operating correctly in order to satisfy this requirement.
Hence the rely condition associated with this condition is SensorProp.

Only if it respects both MotorDirectionStable and MotorOffAtLimit can the
Control machine rely on the behaviour described in MotorOperation.

2.7 Derived Specification of the Control Machine

As we made clear in Section 2.4, it is the purpose of the Control Machine to
satisfy SluiceGateRequirement ; and this is, essentially, its specification. The pre-
vious two sections have recorded enough about the problem world to enable us
to write a realisable specification.

We can specify the Control Machine as a system:

Controller1 =̂ system
external pos : Height
input top, bot : Boolean
outputmotor : on | off, dir : up | down
rely SensorProp ∧ MotorOperation
guarSluiceGateRequirement
rely SensorProp
guarMotorOffAtLimit
rely true
guarMotorDirectionStable

An implementation of Controller1 is required to simultaneously satisfy all
three rely/guarantee pairs. If the sluice gate satisfies both SensorProp and
MotorOperation then the controller must ensure SluiceGateRequirement but,
even if the sluice gate does not satisfy these properties, the controller must al-
ways ensure MotorDirectionStable and it must ensure MotorOffAtLimit while
SensorProp holds, even if MotorOperation doesn’t hold.
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The use of separate pairs of rely/guarantee conditions is a change from our
earlier paper [HJJ03] in which there was a single rely/guarantee pair with the
rely and guarantee consisting of the conjunction of the above relies and the
conjunction of the above guarantees, respectively. This is a subtle but signifi-
cant difference in approach, especially when specifying safety-critical systems.
Wherever possible, the controller should avoid unsafe modes of operating the
equipment, regardless of whether the equipment is working correctly. In some
cases (e.g. MotorDirectionStable) this is possible irrespective of the behaviour of
the equipment, while in other cases (e.g. MotorOffAtLimit) the rely condition
to ensure safe operation may be weaker than that required for normal opera-
tion. Overall the new approach leads to a stronger and safer specification of the
controller.

2.8 Taking Stock

At this stage one could implement the above controller specification, provided
the equipment satisfies the rely conditions. It is important to note that the
specification is still an implicit specification: it does not give an explicit algo-
rithm to be executed by the Control Machine but leaves the programmer to
devise an algorithm that will satisfy the specification. We consider this an im-
portant characteristic of the specification, retaining all the well-known advan-
tages of implicit over explicit specification. In MotorOperation, MotorOffAtLimit
and MotorDirectionStable the specification embodies just those problem domain
properties on which we expect the programmer to rely in the further refinement
to a program text of the Control Machine. A control program derived from this
specification could be used with a different sluice gate, provided only that this
different sluice gate offered the same interface to the Control Machine and ex-
hibited the physical properties specified in MotorOperation, MotorOffAtLimit
and MotorDirectionStable.

To make the observation clear, there is nothing above which prevents connect-
ing the signals going out from the control program to indicator lights to which
a human operator reacts to achieve the gate adjustments by manually moving
the gate; the operator would finally push the top button when the alloted task
was complete. Perhaps less fancifully, the control program could be connected
to a simulator which fully exercised its function in a world without sluice gates
(in this case pos has to be reinterpreted as the simulated position).

In developing our specification we have made and exploited more assumptions
than are embodied in its final form Controller1. We know more, so to speak,
about the problem world than we have chosen to convey to the programmer. One
example is the whole set of assumptions on which we based our original prob-
lem domain specification MotorOperation. In effect, we have assumed that the
sluice gate mechanism is sufficiently reliable (subject to MotorOffAtLimit and
MotorDirectionStable) to satisfy SensorProp and MotorOperation, and hence to
allow SluiceGateRequirement to be satisfied by the Control Machine we have
finally specified. Because the sluice gate is a physical device that may fail, such
an assumption would be unwise.
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3 Addressing Component Failures

In a critical system –or any system in which it is important to limit the pos-
sible damage to the equipment– all assumptions must be systematically ques-
tioned. Potential faults must be identified and the software must deal with them
appropriately.

It is pointed out in Section 1.4 that it is desirable to layer a specification by
separating the behaviour under different sets of assumptions: the most optimistic
(no faults in external components) through to minimal behaviour which might
involve setting off alarms.

One way to undertake such a division is to treat the separate systems as
different problems and to look at their combination with programming combi-
nators. In the world of “normal design” such decompositions might be standard
and the choice of components be so accepted that one could indeed just use the
techniques presented so far to specify the individual problems.

Computer technology has however developed so fast that many problems fall
into the “radical design” category. We should in any case like to be able to
deduce properties of an overall system. The source of the difficulty with which
we have struggled is the continuous time specifications which our applications
have forced us to employ. It is not difficult to describe normal behaviour as in
Section 2; describing fault-tolerant behaviour uses similar notation plus the ideas
in this section. The key issue is how to describe the handover between the normal
and fault-tolerant phases of operation. Our ideas for this will appear elsewhere
but an indication of the approach is given in Section 4.3.

3.1 Faults in the Sluice Gate System

In our treatment of the sluice gate example so far, we have focused on the
situation where all of the (physical) components operate faultlessly. We now
consider what sorts of issues arise when trying to cope with component failure.

In the sluice gate problem, components like sensors can fail; for example, they
can become stuck false or they can become stuck true. Moreover, the motor
could burn out and no longer be able to move the gate when power is applied to
it. Such component failures are faults in the larger system and a useful control
program will limit their impact even if it cannot meet the original requirements.

In [Jac00] this obligation is called the reliability concern. If a faulty component
is detected, the Control Machine should, perhaps, switch off the motor and turn
on an alarm to indicate that the system needs attention from the maintenance
engineer and that the irrigation requirement is no longer being satisfied.

It will become clear that it is more difficult to maintain our isolation from
details of the physical world when we examine fault-tolerance but we will examine
ways in which such considerations can be brought in gradually.

It would be possible to follow the method described above with weaker as-
sumptions about the physical components (and additional requirements with
respect to alarms) but the resulting specification might become opaque because
it would lack structure. One would like to achieve a structure which preserved
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the distinction between normal and abnormal operation in the specification. Sec-
tions 3.2–3.6 explore various forms of fault-tolerant behaviour and how it might
be specified; we discuss the problems of structuring in Section 3.7 but concede
that further research is required here; the question of implementation is touched
on in Section 4.3.

3.2 Making the System More Robust

It is clear that one needs to understand more about the external equipment in
order to discuss fault tolerance than to describe healthy behaviour; but it is also
advantageous to identify any general tactics which come from a formal analysis
rather than specific instances. This section and the next indicate two ideas which
appear to work in general.

It is known from work on the (formal) specification of sequential (closed)
programs that a system can be made more “robust” by widening its precondition;
the same holds, mutatis mutandis, for the weakening of rely conditions. Just as
with widened preconditions, the process of making a program more robust might
result in different obligations.

Returning our attention to the sluice gate example, the case of not getting
an expected signal that a sensor has become true after the expected traversal
time fits the category of something suggested by looking at MotorOperation
(cf. Section 2.5). But there are several physical problems that might give rise to
this rely condition not being satisfied:

– the sensor in question becomes stuck false and fails to signal the arrival of
the gate at its extremity;

– the gate becomes jammed (perhaps –in the downward direction– because a
log has become wedged under it); or

– the motor has burned out and is not driving the gate; or
– a blown fuse is preventing power getting to the motor;
– etc.

Given the paucity of the equipment envisaged in the sluice gate system of Sec-
tion 2, these different physical problems cannot be distinguished. This is precisely
why one might wish to add new equipment.

For brevity we do not present the full formalisation of the conditions under
which the sluice-gate/sensors/motor is faulty. Given suitable declarations of du-
ration constants for the criteria of fault-free operation in the domain we obtain
a definition of the faulty state. Here we consider the situations where the gate
fails to rise (fall) when driven up (down). Recognition of the state is triggered
by an interval J in which a fault condition is detected.

Faulty GSM =̂ λ J : Interval(Time) •
∃ I : Interval(Time) • I adjoins J ∧(

(motor = on) over I ∧ (dir = up) over (I ∪ J ) ∧
#I > healthy rise time ∧ (¬ top) over J

)
∨(

(motor = on) over I ∧ (dir = down) over (I ∪ J ) ∧
#I > healthy fall time ∧ (¬ bot) over J

)
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Here healthy rise time (healthy fall time) represents the maximum time
that the sluice should take to rise (fall). We require that a healthy sluice gate
should satisfy the condition MotorOperation given in Section 2.5, and hence,
for example, that healthy rise time < uptime. The choice of the constant
healthy rise time may depend on the particular equipment being used,
whereas uptime is a requirement on any equipment.

The general point here is that one class of potential enhancements toward
a fault-tolerant system can be motivated by a formal analysis of the idealised
specification. Systematically looking at rely conditions to see what behaviour
might be achieved when clauses fail looks like a useful heuristic for developing
specifications of fault-tolerant systems.

3.3 New Equipment/Requirements

In many cases, fault spotting and warning will be associated with extra equip-
ment. Such new equipment clearly changes the problem and requires a new
problem diagram and new requirements. In the sluice gate system, one could for
example consider adding a temperature sensor to the motor. This would require
a revision of the problem diagram in Figure 3 and a description of what would
constitute “overheat” and the action required;9 this would probably involve sig-
nalling an alarm.

For the purposes of this paper, we stick to our resolve that no such new sensors
are available and confine the discussion to what can be done with the existing
equipment.

3.4 Looking for “Drift”

The idea of finding “patterns” for extensions to the specification for a system by
formal means without having to delve into details of the external equipment is
attractive because it can lead to heuristics which apply to a class of problems.
Another idea which works on the sluice gate example and appears to be general
is to look for “drift” toward unacceptable behaviour.

For the sluice gate, for example, if the time to raise the gate is getting longer
on each use, this might suggest that the moment is approaching (but has not
yet arrived) when the rely condition will not be satisfied. Physically, some mal-
function is getting closer in time and a warning could be issued. Care should
however be exercised in distinguishing cyclic patterns (e.g. the grease getting
more viscous in lower night-time temperatures) from long-term decay. We do
not present the formulae for this example.

3.5 Looking at the External Equipment

Just formal analysis of the specification is not sufficient for locating problems
with the equipment. One also needs to analyse the way the equipment operates.
Examples are:

9 See also the discussion of transience in Section 3.6.
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– it is clear from understanding its function that the state of the bottom sensor
should become false after the motor has been set to drive the gate upward
for some (short) period of time;

– again from the physical components, one can see that the state of the target
sensor should not become true too quickly after starting a traversal in the
direction of the target sensor from the opposite extreme.

Such cases are extra requirements and give rise to new specifications. One would
want to askwhat reaction is expected (and this would likely involve extra alarms—
see Section 3.3). It would also be necessary to think about how far one would go and
differentanswers are likely in the sluice gate systemandanuclear reactorprotection
system.10 The objective of this section is just to make the point that some forms of
fault tolerance can only be sorted out by looking at the physical environment.

To give one example in formulae, consider raising a warning if the gate is slow
leaving the closed position or the bottom sensor is faulty.

Slow Leaving Closed =̂ λ I : Interval(Time) •
(lifted ∧ bot) over I ∧ #I > rise depart time

3.6 Transient Errors

There is another generic question which has come up in our study of fault-
tolerant behaviour and that is transience. Since there is a useful way of specifying
such issues, it is worth describing it here. We take as a representative example,
from the sluice gate system, the issue of checking that “both sensors should not
be on simultaneously”. If this situation occurred for an extremely short period
of time (and then rectified itself), a control program might sense it and be in
a position to set whatever alarm was required to be triggered. Such transient
errors do occur within physical systems and, if the period of time is extremely
short, the execution cycle for checking might well fail to detect the event. There
will, however, be a notion (in any particular case) of a problem becoming a “hard
fault” if it has persisted for at least some stated period of time. In this case, one
would presumably require that the control program detect the situation. Thus
we might say

(∀ long : Interval(T ) •
#long ≥ response ∧ Faulty GSM (long) ⇒

(∀ I : Interval(T ) • sup(long) ≤ inf (I ) ⇒ ErrorIndicated(I )))

but prevent this being met by always turning on the error indication by adding

∀ I : Interval(T ) •
ErrorIndicated(I ) ⇒

(∃ short : Interval(Time) • sup(short) ≤ inf (I ) ∧
Faulty GSM (short))

10 It was precisely the worry about abstraction levels that discouraged one of the authors
from publishing earlier work on rely conditions for ISAT [SW89].
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In fact, the question of transience is even more delicate because the same
reasoning that causes us to recognise transience as an issue means that “si-
multaneous” actually means “within a small time interval”. It is issues like
these which have prompted the second author of this paper to consider “time
bands” [BHBF05] — see further discussion in Section 4.3.

3.7 Combining Specifications

In [Jac00], the reliability concern is normally handled by introducing new sub-
problems. The way in which such subproblems can be specified is indicated in
Sections 3.3–3.6 and within “normal design” one might use a standard pattern for
combining solutions to the subproblems. Thus the notation described in Section 2
would suffice. But one would also wish to draw conclusions about combinations
of machine descriptions. In the same spirit, there are issues concerning “phases”
of operation (one example of which is the special problems that arise during
system initialisation) which prompt us to want to reason about combinations of
machine descriptions.

Thus the desire to specify a fault-tolerant system in a structured way ne-
cessitates a semantics for combinators over machine specifications. This applies
even if we consider the problem of detecting faults as a separate issue from the
“healthy” behaviour. Consider a single machine description and recall the com-
ment in Section 1.2 about the conceptual distinction between rely and guarantee
conditions (the former are to be viewed as permissions to the designer to ignore
certain potential deployments; the latter are obligations on the code created by
the designer). We should not therefore expect to find code in the program de-
veloped from this specification that will check on the truth of the rely condition.
Instead, the created program must not be deployed in contexts where the rely
condition is not satisfied. We are then obliged either to use Controller1 only in
situations where its inputs satisfy the rely condition or, perhaps, to ignore its
outputs where they do not.

It is however clear that, if we wish to detect faults, there might have to be
code in another subproblem which monitors the rely condition. The argument
in Section 3.2 is that the closer the rely condition of an overall system can be
made to true the more robust a system will be. Furthermore, the extra code
that is required is more complicated than the case with a simple precondition
where one only needs check a parameter: the truth of a rely condition can only
be determined over a period of time. It is the need to combine machines (de-
veloped with simple rely conditions) with machines which monitor for a healthy
environment that points to the need to be able to reason about combinations
of machine descriptions and this introduces some technical issues which require
further research (the authors are working on a further paper on this topic).

3.8 Normal and Radical Design

An aspect of system development that is less often discussed than it should be
is what Vincenti [Vin90] calls normal design. Normal design is what an engineer
does when designing a product for which there are well established standards



Deriving Specifications for Systems 385

and norms, both in the design process and in the product’s structure and im-
plementation. In Vincenti’s words:

. . . the engineer knows at the outset how the device in question works,
what are its customary features, and that, if properly designed along such
lines, it has a good likelihood of accomplishing the desired task.

Normal design is contrasted with radical design, in which:

. . . how the device should be arranged or even how it works is largely
unknown. The designer has never seen such a device before and has no
presumption of success. The problem is to design something that will
function well enough to warrant further development.

Normal design is specialised to each class of system, or product, or device, and
evolves over a long period in a community of designers or engineers who specialise
in the class in question. The design of cars, for example, has evolved over 120
years since Karl Benz’s first model of 1886. Many features have now become
standard that were unknown and even unimaginable to Benz: front wheel brakes,
unitary body, and automatic gearbox are just three of a huge number of features
that make modern cars safe, convenient, and reliable. Normal design allows such
inventions to be evaluated by experience, and the results of experience to be
shared and exploited by all members of the particular design community.

Even more important is the effect of a normal design discipline on less obvious
aspects of development. Specification of any system or product is inevitably par-
tial, even for a product as small as an integer function. Specifying the function
value in terms of its arguments may be straightforward, but this specifies only
the abstraction. In constructing the real program to satisfy the abstraction, a
perverse programmer can easily frustrate the specifier’s intentions: by devising
a novel algorithm that causes arithmetic overflow in an intermediate result; by
using a memo-style design that can demand an impossibly large amount of stor-
age; by starting a new thread; by gratuitously accessing the web; and in many
other ways. Normal design excludes such perverse choices, because it allows the
specification of a normal device or product to imply an additional set of unstated
conditions.

For a software-intensive system, where the computer interacts with the phys-
ical world, the importance of normal design is even greater. The physical world
has an unbounded capacity for unexpected failures, and only experience can
teach which failures are more likely, and therefore more necessary to handle.
For example, Section 3 discussed the treatment of certain equipment faults, and
pointed out that many faults demand not only an analysis of the rely-condition
of fault-free operation, but also a careful examination of the equipment itself
and of the many ways in which it can fail.

The impact of normal design –or, rather, its lack– can be seen also in the
formalisation of the SluiceGateRequirement . The informally stated requirement
was that the gate should be closed for approximately five sixths of the time over
any substantial period. The formalisation makes this precise in a certain sense.
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It states a necessary condition for acceptability of the developed system, but
inevitably omits other important conditions that are left implicit. For example,
the gate should be opened and closed often enough to ensure that the humid-
ity gradient in the irrigated soil is reasonably smooth, but seldom enough to
avoid unnecessary wear and tear in the equipment. In the absence of a normal
design discipline it is not easy to make these judgments at the outset of devel-
opment. The “posit and prove” approach, mentioned earlier in connection with
program development to meet formal specifications, applies equally to system
development to meet implicit criteria of acceptability.

The relationship of the non-formal aspects of normal design disciplines to the
formal development of software-intensive systems is a topic that merits further
investigation. The dependability that we seek for critical systems must be a
product of their marriage, not of either one alone, divorced from the other.

4 Conclusions

This section looks at what remains to be done and compares our approach to
related publications.

4.1 Related Research

There are many excellent papers on notations for writing specifications of “hy-
brid” or “reactive systems” and a considerable literature on development from
such specifications. Here we list a short but representative sample before con-
trasting with our objectives [LL95,SR96,Hoo91,CZ97,BS01].

As is mentioned above, what distinguishes our objectives from most of this
line of research is that we are interested in deriving the initial specification of the
“silicon package”. In fact, one of the earliest reactions against just starting with a
specification was when one of the authors heard Anders Ravn present the ProCoS
Boiler example: a treatment more in our style is available as [Col06]. Another
example which has been influential because it has been tackled in many notations
is the “Production Cell” (cf. [LL95]): again, our approach to this problem takes
a wider view; in particular we seek to distinguish more clearly –than in for
example [MC00]– the assumptions on the equipment and the requirements on
the control program.

Closer in the spirit of our approach are the papers by Fred Schneider and col-
leagues [MSB91,FS94a,FS94b]; these publications have also considered systems
which are similar to those that we hope to encompass. We find their approach
interesting and somewhat different from ours. One point of difference is that
they place variables corresponding to physical phenomena in the program state
so that they can use a (combined) state invariant where we use rely conditions.
They can then play the real world forward in time by showing the rates of
change. Our task has been to look at ways of “deriving” specifications of con-
trol systems. Their operations need to discuss how “reality” changes; our rely
conditions might provide a more natural description. Similar comments on the
overall direction could be applied to Parnas’s “Four Variable model” [PM95].
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4.2 How General Is Our Approach?

One way to look at the generality of the idea of starting with a description of
the required phenomena and then deriving the specification of the inner system
is to reconsider the scope of the sluice gate system.

Sections 2 and 3 above focus on a requirement restricted to the gate position.
This view could be broadened:

– If the requirement were to deliver a certain flow of water, we would have to
make assumptions about the available water flow.11

– A yet wider system might be concerned with the humidity of the soil in
the fields being irrigated, leading to assumptions about the weather, plant
physiology and the effects of irrigation.

– A requirement to maximise farm profits would lead to assumptions about
a wide range of factors including prices and even (in Europe) the Common
Agricultural Policy.

The responsibilities and authority of the customer were both assumed to be
bounded by the sluice gate itself and its stipulated operation. The effects of the
irrigation schedule on the crops and and the farm profits were firmly outside
our scope.12 But the ability to force attention on the assumptions being made
appears to be a major advantage of our method.

The Sluice Gate problem has proved to be stimulating and we have tried to
expose the issues it has thrown up rather than modify the problem to fit our
evolving method. For example, the third author has on occasions played the
role of our customer and has always refused requests to acquire new sensors to
simplify the task of specifying and implementing the system.

There are, of course, many other dependability issues which could be consid-
ered. Examples include: the power supply to the motor; the maximum load of
the motor; and the running state revolutions per minute. While we believe that
such points do not bring in fundamentally different technical requirements, they
should be categorised as an indication that nothing has been hidden.

Outside the sluice gate system we (and others) have already experimented
with this technique on other examples (e.g. [Col06]). The “Dependability IRC”
project (see www.dirc.org.uk) considers computer-based systems whose depend-
ability relies critically on human (as well as the mechanical) components. A first
indication of extensions in this direction was given by one of the current authors
in an invited talk to the DSVIS-05 event in July 2005.

One of the referees of [HJJ03] raised the interesting point of the “evolvability”
of a system. The authors agree that this is an important issue; evolution is in fact
a major strand of work within the Dependability IRC (see [BGJ06, Chapter 3]).

11 This would, furthermore, force us to record assumptions about the flow of water
while the gate is moving.

12 There is also a technical argument for narrowing, rather than widening, the scope
of the system to be considered: one might question any set of assumptions which
referred to widely disparate phenomena.
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In the current paper, the reliance on rely conditions about equipment, rather
than a detailed description of the characteristics of particular equipment allows
for the replacement of the equipment, provided the new equipment meets the rely
conditions. On the other hand, monitoring of the healthiness of the equipment
may well (and probably should) be dependent on the detailed characteristics of
the particular equipment. By factoring out this aspect in the specification, the
specification can be more easily revised. A study of the contribution of other
research on “evolvability” to the issues of this paper will be undertaken in the
future. We wonder if there might be a way of using layers of rely conditions
where one set expresses things whose change would be disastrous while another
level is “anticipated evolutions”.

4.3 Further Developments

Our research contributes to the creation of specifications but it is informative to
look at how such specifications might be implemented. We know from sequential
programs that combining clauses of postconditions with and and not logical
operators provides a valuable way of recording “what” is required without saying
“how” it should be done. For example, the postcondition for a Sort routine can
be elegantly expressed as a conjunction of InputPermutation and Ordered . From
the discussion in Section 3.7 above, it looks as though one needs the full power of
a conventional programming language in order to “combine the machines” from
the various subproblems. One wonders whether new programming paradigms
could offer more natural “combinators” for such situations. (Another issue is
whether conventional programming languages like Ada or Java are ideal for
combining the sort of monitoring implied by the discussion in Section 3.6).

The research on “time bands” in [BB06,BHBF05] is extremely interesting
and we are already looking at ways in which time bands might help to achieve
a better structure for our specifications.

Another major avenue which we hope to pursue with our DIRC collabora-
tors Bloomfield, Littlewood and Strigini is handling stochastic assumptions and
requirements.
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1 Inter Alia

Fifteen years ago, it would have been hard to predict just how large a role the software
industry would play in the life of a developing country. True, the sale of PC’s had started
to grow and access to the Internet was slowly spreading but these were trends in the
developed world, far remote from the cities, towns and villages of developing countries.
It was in this world of promise and uncertainty that a few pioneers set out on their
mission to create for the developing world an Institute that would provide them with
knowledge, training and experience. It was not an attempt to transfer trade information
on the use of this or that software package or even to train people in programming skills,
both of which would certainly have found ready acceptance. Instead, it was to share the
conviction that a mathematical understanding and definition of what a program was
to achieve would be the way of the future, bringing abstractness and precision to a
field that was otherwise distinguished more by the scale and detail of how a program
performed its tasks.

Most of the software systems developed at that time (and indeed many developed
even later) have become part of the unwieldy heritage that the industry struggles to
‘modernize’ today. By comparison, the work of this Institute has acquired even greater
importance today than in the past. Formal techniques, whose propagation in developing
countries has been the major mission of this Institute, have come of age with routine use
in many application areas. Few people would today design a chip or build onboard soft-
ware for a car without using tools that unobtrusively help them to perform the complex
mathematical reasoning that gives them the assurance that the programs they are con-
structing will meet their objectives. From cautious and curious scientific exploration,
formal techniques have now become a widening part of an engineering discipline.

This Festschrifft for Dines Bjorner and Zhou Chaochen is also an apt celebration of
the International Institute for Software Technology that they helped to found and which
has made a place for itself in the software techniques community. Both of them had
long and illustrious careers before coming to Macau but perhaps it will be for what they
achieved here that they will be most remembered.

The informal paper that follows is a reminder that a great deal still remains to be
done. Some of the problems in constructing correct and reliable embedded systems have
been solved but many still remain. In fact, there are strong arguments (e.g. [Lee 2005]
[Henzinger & Sifakis 2006]) that solving the remaining problems will need some major
breakthroughs.

C.B. Jones, Z. Liu, J. Woodcock (Eds.): Bjørner/Zhou Festschrift, LNCS 4700, pp. 391–398, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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The problems discussed in this paper are related to two of the long term interests of
Dines Bjørner, on domain specific languages, and Zhou Chouchen on real-time specifi-
cation and timing logics.

2 Embedded Real-Time Systems

Embedded systems are in such widespread use, often hidden in controllers for a wide
variety of devices or providing the interface for controlling a device, that they are now
taken for granted. Few people will know just how many embedded systems there are
in the cars that they drive or the washing machines they use. Yet, the extent of their
use should not hide the fact that embedded systems are complex and hard to reason
about; they may need to combine the control of discrete and continuous systems and
their performance depends on the allocation and use of physical resources. They are
also remarkably hard to design and build correctly (some evidence suggests that more
embedded software projects fail than any other kind of software projects).

There has been a great deal of progress in constructing embedded systems. De-
velopment environments like Scade, Rhapsody/StateMate and MATLAB/Simulink are
widely used in industry and help to separate the specification, design and program con-
struction phases. There have been major advances in computer science relating to real-
time and embedded systems: timed specification techniques are well understood and
there are many different timed semantic models. There is much better understanding
of hybrid systems and advances in model-checking have made it possible to verify the
properties of large and complex designs.

The problems start to emerge because formal analysis, reasoning and design stop at
some level of abstraction. The next step is often dismissed as ‘an implementation prob-
lem’. So, for example, mapping programming operations to compact and verified code,
proving that timing properties are satisfied by the code and proving that execution of the
code of each operation in the program will terminate while the execution of the whole
program will continue endlessly are not problems that are solved at the specification
level.

It is here that major difficulties arise: the model used when reasoning about the spec-
ification will usually differ from the implementation: further,

– The code model will differ from the design model,
– Timings used in the specification may not correspond exactly with machine level

execution timings,
– The operating system and run-time operations such as garbage collection may cause

variations in the execution timing of the program, and
– The properties of the platform (e.g. the use of pipe-lining, cache memories, etc.)

may add further to the uncertainties in timing.

Advances in processor speed will not make these problems insignificant. Improve-
ments in performance are invariably overtaken by the competitive pressures to incorpo-
rate new features into embedded devices. And the problems are compounded for mixed
continuous and discrete control with the lack of a common framework for reasoning.
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3 Abstractions and Reality

An idealized view of the development of a real-time program would consist of the
following steps:

1. Requirements engineering: formalization of the properties and operations of the
system in a domain specific language,

2. Transformation of the requirements definition into a program specification,
3. Refinement of the program specification into a program expressed in a real-time

programming language, and
4. Implementation and testing of the real-time program.

However, none of these steps can actually be carried out completely with rigour and
precision. Domain-specific languages and methods of reasoning are, at best, available
in very limited forms. There is no method by which a domain-specific requirements
definition can be transformed into a timed program specification, and no method to
convert the specification into a real-time program.

Semantic models for real-time programs (e.g. [Henzinger et al 1991]) are usually
constructed to simplify analysis and reasoning; they are chosen to be appropriate for
representing the problems to be solved and they provide an abstraction over the hard-
ware platform. There is no suggestion that the models are suitable for mapping directly
to the hardware: the logic for specifying and reasoning over real-time programs applies
over the abstract semantic model.

Real-time programming languages typically do not provide features for explicit tim-
ing or for controlling the allocation and release of physical resources. They provide a
level of ‘platform independence’ but this means that timing and resource control can
only be done at the level of the platform, perhaps by an operating system or real-time
executive. Finally, as Lee points out ([Lee 2005]), the execution time of an operation
of a program is often determined by the actual interleaving of executions of the pro-
gram processes as this will determine what information is in the cache memory (and
hence available for quick access) and what has to be retrieved from slower memories;
processor pipelining can further affect execution times. And the interleaving of process
executions may be controlled by their relative priorities, which may be fixed or variable.

Given the difficulty in computing such basic data as the execution times of a program
operation, it is surprising that so many real-time embedded systems work as well as
they do. A lot of this apparent reliability may be because (a) systems are designed
very conservatively and make minimal use of advanced processor features, (b) much
of the code for an embedded application is derived from existing code, and (c) there
is extensive testing, both before release and in the field: when millions of copies of a
system are in widespread use (e.g. as with mobile telephones), the chances of design
and coding errors being detected and eventually corrected are high, though at a price.

4 Requirements

There is increasing evidence that errors in defining requirements continue to be the
largest cause of software errors. [Marasco 2006] shows that while other causes of errors
are reducing, errors due to incorrect requirements remain steady at 50% of the total.
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Much of this could be addressed by developing better domain specific languages. In
fact, development systems such as MATLAB/Simulink are remarkably effective where
they apply and [Henzinger et al 2003] have shown how to add timing control to such
programs. However, where there is mixed continuous and discrete control, as in many
practical applications, this is insufficient. [Henzinger & Sifakis 2006] describe this as
the problem of combining equational and abstract computational reasoning.

Even where there is just discrete control, there are difficulties with ensuring that re-
quirements are consistent and as complete as possible. [Sukumaran et al 2006] describe
a relatively simple but very effective method of checking requirements formally by ver-
ifying that system invariants are preserved over all operations. Their method is capable
of handling practical data models in an object oriented framework. They show how to
produce visual representations of scenarios and to create prototypes that can be checked
to reveal problems.

An important part of any successful requirements definition method is the ability to
incrementally handle changes which will take place right through the design cycle of
a system. Minimizing the cost of checking that changes preserve system properties is
crucial to having the method used in practice.

Equally important is the capability to handle product lines, as most embedded sys-
tems not only incorporate code from previous versions and models but are also part of
a family of related products; changes made for one version may need to be integrated
into all versions of the product.

5 Requirements, Program Specification and Design

However well requirements are defined and checked, there remains the crucial steps
of transforming requirements into program specifications and elaborating this into a
design. These are all difficult steps and very little work has been done to formalize any
of them for a program of practical size.

It is here especially that formalizing combined discrete and continuous control poses
basic problems. While the models used for control will differ, so will the methods of
reasoning: equational and quantitative in one case and in terms of a programming logic
in the other. Henzinger and Sifakis ([Henzinger & Sifakis 2006]) describle the difficul-
ties and point out that solving them will need basic advances in computer science.

Recent work ([Sharma et al 2006, Chakravorty & Pandya 2003, Pandya et al 2007],
[Agrawal et al 2006, Agrawal & Thiagarajan 2005]) suggests that discrete sampling of
continuous systems may provide a sufficient approximation for the precise control of
mixed systems. Incorporating such techniques into a specification method will make it
possible to consider their use for practical applications.

6 Progress: Termination

A real-time program is usually designed to execute without termination. The program
will consist of a number of concurrent operations that perform different functions. So
while the program as a whole should be non-terminating, each operation of the program
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is expected to terminate within a specified time time bound (thus enabling the program
to meet its timing constraints. Using automated methods for proving termination of such
operations (and non-termination of the main program) is difficult; informal arguments
have usually been made and supported by extensive testing.

Cook et al have shown ([Cook et al 2006]) how termination can be proved for parts
of concurrent programs. They use an automated technique which both constructs a num-
ber of possible termination conditions by simple path analysis of the execution and
checks that they compute a function that monotonically decreases on every execution.
This is done for all finite execution sequences. Using this technique, they have proved
termination conditions for a number of device drivers in the Windows operating system.
In later work ([Cook et al 2007]), they have extended the results for proving termination
of threads.

There are strong similarities between devices drivers and the processes that perform
the operations of a real-time program: both of them usually interface with physical
devices and are part of a concurrent program. It should be possible to use very similar
techniques for proving the termination of code used for the operations.

7 Implementation

7.1 Priorities

For many decades, the use of hardware-arbitrated priorities has been a feature of real-
time systems: the classic work by Liu & Layland ([Liu & Layland 1973]) contains an
analysis of the use of such priority mechanisms, providing the starting point for a great
deal of subsequent work in the area (e.g. [Joseph & Pandya 1986]).

The basic assumption is that the real-time program is divided into N concurrent
processes, or tasks, each of which is executed at a unique priority level. During ex-
ecution, the processor is allocated to the executable (i.e. non-blocked) process of the
highest priority. Such priority mechanisms effectively impose an N-way partition over
the execution of the program. The major advantage of fixed priority allocation is that it
permits the schedulability of the program to be statically analyzed before execution.

Using a fixed N-way partition is practical for some applications (e.g. multi-channel
analyzers) which are used for applications like data-logging where each channel may
have an independent process and there is no inter-process communication. But most
real-time programs require communication between its processes and this will impose
another order over the execution. Conflicts may then occur, e.g. resulting in deadlock,
or priority inversion (where a lower priority process may block the execution of an
unblocked higher priority process).

A solution to this conflict is to restrict communication and synchronisation between
processes so that the order they impose conforms to the order resulting from the hard-
ware priority arbitration mechanism: the use of the priority ceiling protocol is one such
solution.

The major advantage of such restrictions is that the schedulability of a program can
be analyzed statically. However, the limitations in the possible program structures may
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make such techniques unsuitable for many applications. Moreover, the analysis requires
use of the worst-case timing for operations, which is pessimistic and often inapplicable.
Further, the method is not suitable for handling the dynamic changes which are often
required, e.g. for changes in the operating conditions for different modes of execution,
or for fault-tolerance.

It has long been known that dynamic allocation of priorities is better suited for han-
dling changes in the operating environment. The disadvantage is that schedulability can
no longer be analyzed statically.

Recent studies ([Gossler & Sifakis 2000]) have shown how to combine proof of
timed program properties with the use of dynamic priorities. There are still a num-
ber of questions about efficient implementation of dynamic priorities and under what
conditions schedulability analysis will still be possible.

8 A New Generation

The embedded systems described here so far are the ‘traditional’ ones where there is
centralized or distributed control of an application. In this, control is intended to be
precise and provided by software executing on a reliable hardware system. This re-
quires the use of relatively complex processors with a large complement of supporting
hardware.

Two directions of development throw open a whole new range of problems that re-
quire radically different techniques for analysis. The first is an evolution of the current
mobile technology for large-scale data analysis and control ([Stankovic et al 2005]) on
a geographic level. The second relates to recent work on devices such as the Berkeley
Mote ([Warneke et al 2002]) which are intended for large-scale distribution.

In both cases, single nodes are not expected to be fully reliable or to have long life-
times; in fact, the Berkeley Mote has inherent limitations of power that mean that each
node will cease operation in a relatively short time. Single nodes have very simple func-
tionality yet the ensemble of nodes as a whole must be capable of computing accurate
results. A great deal of work will be needed for the analysis of such systems and very
little of the existing methods of analysis for embedded systems is likely to be of use here.

9 Testing

There is an inevitability about testing which transcends any disapprobation from the
formal techniques community. All systems must be tested because there is no other
way of discovering remnant errors during the development cycle, from the requirement
to the coding stage. This is even more so of embedded systems because it is only by
testing them in situ that it is possible to exercise the code in a realistic environment.

However, such operational testing will be inherently limited: the more realistic the
testing environment, the less control and repeatability there will be and therefore the
harder to discover the causes of errors. So any reduction in the need for operational
testing is of major importance.
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Much work has been done on the use of program analysis for static testing of pro-
grams. While a great deal of progress has been made on static testing, especially for
unit testing, such methods are inherently limited:

1. Unit testing requires a test harness to be created to substitute for the actual execu-
tion environment of the unit;

2. Representative test values need to be computed to ensure that all control paths in
the unit are traversed.

Both of these are time-consuming, even if done using a test generation tool. There is
therefore a strong temptation to do perfunctory unit test, or to skip the stage altogether.

Unit testing must be followed by module and system testing, where new test data
must be generated. This is altogether more difficult because it involves testing the func-
tionality of the program as execution passes through various modules and units. Sys-
tematic test may attempt to be comprehensive but still fail to perform the boundary tests
(the corner cases) which are often the cause of errors.

[Godefroid et al 2005] show how dynamic testing can be used for testing software.
The method automatically generates a test harness for the program, randomly generates
test values and analyses the results to be able to generate new values that will exercise
the program in different ways. Later work ([Godefroid 2007]) extends the results to
allow testing to be done compositionally, by testing a unit in a test environment that
makes use of the results of the tests of the other units in the program. This makes
testing truly scalable, since it allows testing of new or modified units without re-testing
of all the units with which it interfaces.

Godefroid’s techniques for random testing could be used to develop an effective
method for testing an embedded program statically, before it is integrated into a system
and tested.

10 Conclusions

The field of embedded systems has grown enormously over the past two decades with
a wide variety of applications. Programming techniques have also developed but there
are several areas where formal analysis is still very difficult or not possible at all using
current methods. There are numerous problems that need further study, ranging from
requirements validation to processor design.

It would be an apt tribute to the work initiated here by Dines Bjørner and Zhou
Chaochen to embark on an investigation of these problems.
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Abstract. Design Verification Patterns are formal specifications that
define the semantics of design patterns. For each design pattern, the cor-
responding verification pattern give a set of proof obligations. They must
be discharged for a correct implementation of the pattern. Additionally
there is a set of properties that may be used in the design and verification
of applications that employ the pattern. The concept is illustrated by ex-
amples from general software engineering and more specialised properties
for embedded software.

1 Introduction

Engineers design; thus software engineering is a discipline that systematizes
knowledge about procedures for designing software. This is evident from the
structure of Dines Bjørner’s volume on the subject [2]: After a careful analy-
sis of the application domain and a systematic elicitation of requirements, the
remaining task is design with implementation. Like in any other engineering dis-
cipline software design is based on reuse of patterns and well known components.
However, unlike other disciplines, software engineering does not systematically
use the patterns and components to analyse properties of the resulting system.
Software is generally built without systematic analyses. Throughout the Pro-
CoS project [8,14] it was the ambition to improve on this state of affairs, and
through numerous case studies, we demonstrated that is was feasible, see for
instance [24,23].

Yet, application of formal techniques have not spread dramatically, and it is
rather clear that it is so difficult that it will remain a specialist activity even
with better integrated notations like those developed in Oldenburg [21,13] and
at UNU/IIST [9,16]. Perhaps a remark from control engineering colleagues helps
to clarify, how difficult it is to work rigorously from basics: ”Either you choose
a PID controller or you have to get a PhD-controller.” Yet, we cannot expect
every engineer to have skills at a PhD level, therefore we must rely on standard
components that we know well, and where there are standard procedures for
tuning them and checking their properties. Design Verification Patterns is an
attempt at defining properties for the standard design patterns for software
engineering.

C.B. Jones, Z. Liu, J. Woodcock (Eds.): Bjørner/Zhou Festschrift, LNCS 4700, pp. 399–413, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



400 J. Knudsen, A.P. Ravn, and A. Skou

The idea is rather natural, and one may wonder why it has not been done
already. Here it helps to look at history: In the 1990ies, software was coded
using languages like c, and systematic designs were very hard to discover in
the programs that resulted from this activity. Components were statements,
and analysis would be at a similar low level; it would focus on programming
language semantics and the corresponding program correctness theories as for
instance consolidated in Hoare and He’s ”Unified Theory of Programming” [11].

Since then, the demand for more software to increasingly efficient computers
that find applications in the most diverse areas - ubiquitous computing - means
that the level of abstraction is lifted. There is increased use of object oriented
languages and design notations like UML [25,7], beginning experiments with
reuse of components [28], and concern for architecture [1]. These ideas are com-
bined with formal techniques and gains increasing popularity through efforts of
Meyer [19], which are continued in tool developments like JML [3].

Thus, modern software relies on datatypes and common functions as embod-
ied in the standard class libraries of objected oriented programming languages.
A corresponding level of structuring constructs comes with the practical use of
design patterns [15,6]. They may be the ”PID”s for the practicing software en-
gineer, but what are their properties, and how may these properties be used to
analyze applications?

A Design Verification Pattern. As an introduction to properties of design
patterns, we may look at the ancestor to all design patterns: The procedure
pattern. A (side-effect free) procedure p has an input or value parameter x and
computes an output or result y:

p(value x ; result y)

With axiomatic semantics, we know that it may be fully specified in terms of
two predicates, a pre- and a post-condition: p.pre(x ) and p.post(x , y), where
the pre-condition specifies the domain of the procedure, and the post-condition
specifies the effect in the form of an input-output relation.

Analysing Properties. It is also clear that an implementer of p has an oblig-
ation to guarantee the post-condition, but only when one can rely on the pre-
condition. This is the basis for verifying correctness of the component p. From
our point of view, it is also the design verification pattern. The lemmas that can
be used in an application. Just before a call p(e, r), the application must assert
that the the procedure can relay on the pre-condition with e for x , p.pre[e/x ].
Then, after the call, it is legitimate to assume the post-condition with a similar
substitution,p.post [e/x , r/y], and use it in an analysis of application properties.

Much research in verification has focused on the obligations of the implemen-
tors. We are less concerned with this, because with increasing reuse, components
are developed by specialists - the PhDs, who should be able to deal with the
task. In contrast, the components are used in many contexts, so the lemmas for-
mulated in the assert and assume conditions are a higher level start for verifying
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applications. They may form the basis for harnessing theories for tool support
[17], a point we will return to in the concluding Section 4.related work.

Beyond Functional Aspects. In the more complex setting of objects or com-
ponents, the verification must go beyond pure functional properties as expressed
in the pre- post-condition paradigm. There is a state component as well that
enters in the post-condition and which satisfies some invariant. Furthermore,
many applications are reactive systems where the properties are protocols, that
is constraints on behaviours of concurrent processes. An additional aspect occurs
with embedded systems where real-time properties are important. In Section 2
we will introduce suitable notation for expressing such non-functional aspects,
before we exemplify in Section 3 with conventional design patterns and extends
it with a discussion of timing properties which are important for embedded soft-
ware systems.

2 Background

In the following we introduce verification patterns more formally after defin-
ing the notations that are used to define properties. Settling on notation is a
matter of preference, but it is important that the chosen notation conveniently
can express what is required and that it is well established so that it is easily
understood. The most widely used notation for design patterns today is UML
[25] so UML class diagrams are the syntax in the following. To enable formal
specification and reasoning, the UML diagrams must be given semantics. The
formalism chosen to serve this purpose is the CSP-OZ-DC combination of Olden-
burg [12,21,20] as elaborated in Hoenicke’s dissertation [13]. The CSP [10] part
hereof allows specification of processes, Object Z (OZ) [26] allows specification of
functional aspects for operations on objects, and Duration Calculus (DC) [31,30]
enables reasoning about time aspects.

OZ. Here, we are not going to go into syntactical and semantical details of OZ,
but just note that a class C corresponds to a Z schema, a method m to an
operation on the schema, and that an object o of the class C is a reference to a
value of the schema.

CSP. The communication events are elaborated such that a channel is associ-
ated with each public method and thereby with the corresponding schema oper-
ation. A method call to an object, say with input parameter x , actual argument
e, and output parameter y of type T , is written o.m!(x == e)?(y : T ), cf. [13].
Otherwise, we have the usual syntax for CSP processes which syntactically are
added as constraints to OZ schemas, or in UML as constraints in a responsibility
part of a class or object. For convenience, we list the CSP operators:

P ::= STOP | SKIP | ce → P | P�P | P � P | P‖P | P ; P
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where STOP is the deadlocked process, SKIP is the terminating process, ce → P
communicates event ce and continues as P , P�P is external choice, P � P is
non-deterministic choice, P‖P is parallel composition, and P ; P is sequential
composition. As usual, recursive definition of processes is allowed.

Duration Calculus. Duration Calculus formalizes dynamic systems properties.
The basis is the well-known time-domain model, where a system is described by a
collection of states which are functions of time (the non-negative real numbers).
The state names are here the variables in a given schema, which clearly vary
over time.

A behaviour of a system is thus an assignment of state functions to the names
of elementary states, An observation of a behavior is a restriction of such an
assignment to a bounded interval; it can be illustrated by a timing diagram.
Boolean values and thus the value of state predicates are by convention repre-
sented by 0 (false) and 1 (true).

For a given observation interval [b, e] of a predicate P , the duration, denoted∫
P is simply the integral

∫ e
b P(t)dt ; it measures the fraction of time P holds in

the interval.
Duration terms are built from durations, logical variables and real numbers

and closed under arithmetic operators and arithmetic relations. Duration for-
mulas D are built from duration terms of Boolean type and closed under propo-
sitional connectives, the Interval Temporal Logic [22] ”chop” connective, and
quantification over rigid variables and variables of duration terms.

A duration formula D holds in [b, e] if it evaluates to true. For the predicate
P , it is obvious that it holds (almost everywhere) in the interval, just when the
duration

∫
P is equal to the length of the interval. The length is the duration of

the constant function 1 (
∫

1). This duration is often used, so it is abbreviated
(�), pronounced ‘the length’. The property that P holds is thus given by the
atomic formula

∫
P = �. This holds trivially for a point interval, so we consider

proper intervals of a positive length. These two properties are combined in the
abbreviation

�P� == (
∫

P = �) ∧ (� > 0)

read as ‘P holds’.
Given formulas D and E , the binary ”chop” connective can combine them to

D ; E which holds on [b, e] when there exists a m such that D holds on [b,m] and
E holds on [m, e]. A simple example is the valid equivalence �P� = �P� ; �P�.

With CSP, we include event based reasoning by defining that for an event ce,
the formula ↑ ce holds exactly when the event occurs at the beginning of the
interval. Thus we can specify an interval where ce does not occur in the open
interval by the counterexample formula

ce == ¬(� > 0 ; (↑ ce) ; � > 0))
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2.1 Verification of Design Patters

In describing the relation between the syntactic language of UML and the se-
mantics of the formal description language package from Oldenburg, the CSP-
OZ-DC it is now possible to illustrate the idea of using verification patterns in
the software development process graphically, as seen in Figure 1.

Rely/Guarantee

Design
Pattern

Assert/Assume

Verification
Pattern

Application

Component

Application
Validator

Component
Validator

11

*

**

*

1

**

11

11

Design and Implementation Validation and Verification

Fig. 1. The framework of Component Based Development using Design Patterns and
Verification Patters

Figure 1 represents the framework for Component Based Development using
Design Patterns and Verification Patterns. The framework extend what is con-
sidered ordinary software development efforts by explicitly emphasising the use
of design patterns and by illustrating the associated validation possibilities that
verification patterns offer.

Design patterns are usually applied in a context similar to the one illustrated
in the Design and Implementation part of Figure 1. Design patterns provides
guides on how to develop good designs to well known design challenges and
components that must address one or more of these challenges can then be
designed using the respective design patterns. That the component is designed
and implemented using certain design patterns can be useful for the system
developer that later will embed the component in a system design. Most design
patterns, however, contains more useful information that can be exploited, as
illustrated in the Validation and Verification part of Figure 1. For each design
pattern a verification pattern, which is a range of rely/guarantee pairs, can be
specified reflecting the different aspects of the pattern. The specification can
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be used either as test and verification of the component, or in a test driven
applicaition development process model as assert/assume pairs for verification,
monitoring or for developing tests.

2.2 Related Work

There is a rich literature on verification, and patterns are implicit in many proof
rules, yet the idea of combining architectural patterns with verification occurs, to
our knowledge for the first time in [4,5]. It develops application specific pattern
for collision avoidance. A somewhat similar idea is to develop refinement rules
or conditions for design patterns; this is explored in [18]. Finally we mention [27]
which approaches design patterns with the same mission to delimit the responsi-
bilities of the developer and define the rewards for the application programmer.
Their proposal for formalization, however, does not distinguish between aspects
and thus require coding behavioural properties as state invariants.

3 Patterns

We begin with one of the most used and most simple design patterns; the Single-
ton pattern. A good example of its application is the control module for a ship’s
rudders. A modern ship is controlled from several stations, but it is essential
that the rudders have one and only one common interface, such that clients that
needs access to the rudders access the same software unit. If different clients
have or create their own representation of the rudders, the representations are
hard, if not impossible to keep consistent. A correct instantiation of a Singleton
pattern eliminates such behaviour.

3.1 Singleton Pattern

The intent of the Singleton pattern is to ensure that there can only be one
instance of the Singleton class and to provide global access to this instance [6].

Singleton
− instance

� Singleton()
+ Instance()

Fig. 2. The Singleton pattern as an UML class diagram

Figure 2 shows the UML class diagram for the Singleton pattern. Note that
the instance attribute has a − prefix, indicating that it is private to the class,
i.e. only accessible through methods/operations of the class. For the Singleton
class a protected constructor operation, � Singleton(), is given and the public
operation + Instance().



Design Verification Patterns 405

The pattern description provide information that can be very useful in veri-
fying that an actual design or implementation actually is in accordance with the
intent of the pattern.

Implementation: A Singleton is usually implemented as a class with a protected
constructor as the only constructor. This should prevent external use of new to
generate more instances. The instance of the Singleton is created first time the
Instance() method is called. This call looks up the private instance attribute to
see if it exists, and if it is not an instance is created, assigned and returned to
the caller. For future calls the instance is returned.

Functional Verification Conditions: The Singleton pattern is a creational pat-
tern, where there as such is not much to verify. There is an invariant stating
that the instance reference is valid and that it is not changed unless it is null by
the Instance operation. The pre-condition for the Instance operation is trivially
true and the post-condition states that the result of the operations is a copy of
the reference to this instance.

Behavioural Verification Conditions: There is one specified behaviour

main == s .Instance!(y == s .instance) → main

When applying a singleton pattern with class s , we do not have to take any
special precautions, the assert is trivially true. At any point, we can assume
that there is at most one instance of the class and that this instance remains the
same, i.e. it is not overwritten. Thus combining the functional and behavioural
condition, we can prove that an application satisfies the property that

(s .Instance?y : Singleton → P(y))‖((s .Instance?y : Singleton → Q(y))

is equivalent with

(s .Instance?y : Singleton → (P(y))‖Q(y))

Thus, we can eliminate or introduce (using CSP laws) multiple calls of Instance.
The idea of exploiting a design using design patterns to extract verification

lemmas is in Example 1 made less abstract as the use of a Singleton patterns is
embedded in a design.

Example 1. On a modern ship the rudder can be manipulated and monitored
from various stations on the ship. Here it is relevant to consider the rudder
controller as a Singleton. In this example the rudder can be manipulated from
the ship bridge and from the machine room.

In Figure 3 the UML diagram illustrates a design where the classes Bridge
and Machine both have a RudderSingleton object. Although UML allows
specification of the arity between objects by annotating the edges between them,
in Figure 3 by 1’s at the RudderSingleton class, this only states that one Bridge
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Bridge

RudderSingleton
− instance

� RudderSingleton()
+ Instance()

Machine
Command

Fig. 3. UML class diagram showing a rudder control design

object has one RudderSingleton and one Machine object should have one Rud-
derSingleton and not that it should be the same object. However, the verification
pattern allows us to deduce that.

Also, depending on the structure of the application, it may show us that the
Machine and the Bridge has simultaneous access to the rudders, and that may
lead to some conflicts about who controls the ship; but such a source conflict
is not handled by the Singleton pattern. It only ensures that there is a single
control object with atomic operations.

Timing Verification Condition: In embedded applications, the only timing con-
dition we can think of in connection with the Singleton pattern is the (worst
case) execution time for the method. It produces a rely condition, which is an
invariant that the application has to satisfy:

(↑ Instance ∧ � > 0) ; (↑ Instance) ⇒
∫

Active(p) ≥ WCETInstance

here, Active is for each process a state variable which is true exactly when
the process is executing. A naive formulation would use � for

∫
Active(p) but

that would assume a dedicated processor for each process. The Active variable
is manipulated by scheduling mechanisms which may be specified by duration
formulas [29].

3.2 Observer Pattern

A more intricate example is the Observer pattern. It is often used in embedded
systems to signal changes in an environment.

Intent: The intent of the observer pattern is to define a one to many dependency
on objects, so that when one object changes state, all its dependents are notified.

Motivation: Partitioning leads to a need to maintain consistency between objects
without tight coupling for reusability. Observers are updated when the subject
changes state. The key objects in the Observer pattern are observer and subject.
A subject may have any number of dependant observers, where all observers are
notified when the subject has changed state. The subject sends its notifications
without knowing its observers.
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Subject

+ attach(in : Observer)
+ detach(in : Observer)
+ notify()

Observer

+ update()

ConcreteSubject
− subjectState

+ setState()
+ getState()

ConcreteObserver
− observerState

+ update()

for all o in observers
{o->Update()}

return subjectState
observerState =
subject->getState()

observers *

1 subject

Fig. 4. A UML class diagram of the Observer pattern

Structure: The class structure of the Observer pattern is illustrated by the class
diagram in Figure 4. The Observer pattern is modeled with the above mentioned
classes Subject and Observer as abstract classes with a directed association from
Subject to Observer, indicating that the subject is capable of calling the Update
operation on observer objects.The two abstract classes each have a concrete
counterpart, ConcreteSubject and ConcreteObserver, that inherit from the re-
spective abstract classes. Between the ConcreteSubject and ConcreteObserver
classes a directed association towards the ConcreteSubject lets concrete observer
objects call the getState operation on concrete subjects to get its state.

Participants: Subject knows its observers. Any number of observers can observe
a subject. Observer defines an updating interface for objects that should be
notified of changes in a subject. ConcreteSubject stores the state of interest to
the ConcreteObserver and sends a notification to its observers when the state is
changed. The ConcreteObserver maintains a reference to a ConcreteSubject ob-
ject and stores the state of it to stay consistent. A sequence diagram illustrating
interactions of the participants is given in Figure 5.

Verification Conditions for the Observer pattern: The structure of the
Observer pattern, as given in Figure 4, imply a CSP-OZ translation as in Figure
6 which gives the functional verification conditions. The Observer and Subject
classes are both specified as abstract classes with an association that is navigable
form Subject to Observer. The association implies a data structure in a Subject
object containing Observer objects. This is to register the objects that attach
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cs:ConcreteSubject o1:Observer o2:Observer

setState()

notify()

update()

update()

getState()

getState()

Fig. 5. Interactions between the participants in the Observer pattern

themselves as observers. As the classes are declared abstract this is not really
going to be the case, but the concrete ”children” objects, objects of the classes
that inherit from the respective abstract classes have to posses these properties.

The classes ConcreteSubject and ConcreteObserver are the classes that in-
herit from respectively the Subject and Observer classes. The ConcreteObserver
is related to the ConcreteSubject by an association that is navigable towards
the ConcreteSubject. This means that a ConcreteObserver object will have an
attribute of type ConcreteSubject, which store the object to which it is attached.

In [6] the notify operation has a note which says that the operation should
implement a sequential call of the update operation on all attached observers.
The update operation in the Observer class has no attached specification, and do
as such only specify an interface to the concrete observer. Perhaps a use of the
UML interface class to represent the observer would have been more appropriate,
as the update operation is declared as abstract, leaving it to the inheriting classes
to implement the operation body.

Behavioural Verification Condition The original specification of the Observer
pattern do not provide any information on the events of a process encapsulating
the pattern. The behaviour that is guaranteed is

main
c= Subject .setState → Subject .Notify → (‖x : o • x .Update → SKIP); main

The purpose of the observer pattern is as stated to notify observers of state
changes to some subject. This assumption can be analyzed by investigating
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Subject

method attach, detach[o? : Observer ]

chan update

local chan notify

observers : P Observer

Init

observers = ∅

com attach

Δ (observers)

o? : Observer

observers ′ = observers ∪ o?

com detach

Δ (observers)

o? : Observer

observers ′ = observers\{o?}

effect notify

Δ()

observers : P Observer

∀ x ∈ observers • update.x

Observer

method update

ConcreteSubject

inherit Subject

method setState[s? : O]

method getState[s! : O]

subjectState : O

com setState

Δ (subjectState)

s? : O

subjectState ′ = s?

com getState

Δ()

s! : O

s!′ = subjectState

enable notify

s?

s? �= subjectState

ConcreteObserver

inherit Observer

chan getState[s? : O]

subject : ConcreteSubject

observerState : O

com update

Δ(observerState)

subject : ConcreteSubject

observerState ′ = getState.subject

Fig. 6. The structure of the observer pattern as CSP-OZ schemata

possible method call sequences. For observers o1, . . . , on and a concrete subject
object cs a state change must be recognized as following sequence:

cs .Attach(o1); cs .Attach(o3); . . . ;
cs .setState(); cs .Notify(); o1.Update(); o2.Update(); . . . .
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Popular descriptions of the pattern indirectly let readers assume that the
consistency is guaranteed by the proposed design and the design pattern is mo-
tivated by a need to keep observer states consistent with subject states. Yet, the
design pattern description puts no constraints on observers’ getState() calls on
the subject. This may lead to inconsistency. If os is a slow observer attached
to cs , a concrete subject and os as a data logger must register all states of the
subject, the following possible sequence shows that os is not dependable:

. . . ; cs .setState(); cs .Notify(); os .Update(); . . . ; cs .setState(); cs .getState()

As observed in the above sequence, it is possible that the state of the subject
changes before the observers have finished updating. The description and struc-
ture of the observer pattern as stated above has data pull characteristics, where
for i.e. embedded systems and control systems data push characteristics might
be more relevant.

The problem of data push versus data pull of the observer pattern was already
addressed in [6], where it is noted that modifying the Update() method to take
the subject state as parameter actually would convert the pull characteristics to
push characteristics. Such a change to the pattern allow a stronger assumption
on the relation between subject state and observer state. We have the sequence
after interested objects have been attached:

. . . ; cs .setState(); cs .Notify(); o1.Update(subjectState);
o2.Update (subjectState); . . .

and
cs .subjectState = o1.observerState = . . . = on .observerState

Timing Verification Conditions The observer pattern corresponds to an aperi-
odic task in a hard-real time setting, and it is well known that no guarantees
can be given for handling all events of such a task. One has to assume that it is
sporadic, that is the application has to guarantee a minimum interarrival time
T , as formulated in the invariant:

(↑ setState ∧ � > 0) ; (↑ setState) ⇒ � ≥ T

Furthermore, the worst case execution time for Update leads to a further as-
sumption on the application analogous with the one for the Singleton Pattern,
and finally, the number of attached tasks must be used to define an assumption
linking T and the worst case execution time for the set of Updates.

If the ConcreteObserver is designed according to the data pull variant of the
Observer Pattern, following constraint must hold to ensure consistency between
a concrete subject and concrete observers:

(↑ Update ∧ � = 0) ; (Update ∧ getState) ; (↑ getState ∧ � = 0) ⇒ � ≤ T

It says that the elapsed time between two consecutive Update, getState events
is less than mimnimum interarrival time.
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3.3 Summary

We have illustrated that it is feasible to specify both functional, behavioural and
timing conditions that form design verification patterns. A few other patterns
have been investigated and give similar reasonably succinct conditions. Yet, there
is much more work to do. Some particularly interesting questions are to what
extent the verification patterns can be made complete for a given design pattern,
that is they give a precise characterization of the pattern. For the functional and
behavioural properties, we think they can be made complete, however, we are
not sure that that can be done for the timing properties, because these are
dependent on the underlying execution platforms.

4 Conclusion

We have developed the concept of a verification pattern, the semantic twin to
syntactic design patterns. They are based on conventional rely-guarantee con-
ditions for an implementation which are used as assert-assume lemmas for the
application that uses them. The concept has been illustrated with functional,
behavioural and timing specifications for conventional patterns.

Discussion. The application of Design Patterns in practical design of embed-
ded systems is still at a early stage but as the complexity increase and the object
oriented paradigm gains ground in this field, so will the application of technolo-
gies known from this field. A substantial part of the research in Design Patterns
has focus on efficient solutions to architectural design challenges, and although
designers of embedded systems are faced with such challenges also, more ef-
fort on researching Design Patterns for the special challenges that characterise
embedded systems is needed.

In a case study of control software for marine diesel engines, that spurred our
research of Verification Design Patterns, we encountered behavioral challenges
typically encountered in control engineering that could be candidates for Design
Patterns and Verification Design Patterns in embedded software systems.

One such challenge was the modelling of the JetAssist, a system that assist a
turbo charger in optimizing the the fuel consumption and reduce CO2 emission
levels. For the JetAssist the specification explicitly stated that the system should
have a hysteresis behaviour, i.e. the behavior of the system must by increasing
and decreasing temperature, in respective overlapping intervals displaying differ-
ent temperatures. That is, by measuring the temperature alone, is is not possible
to predict the behavior of the JetAssist. Hysteresis is known from a variety of
control and processing systems. Around this hysteresis pattern we found a num-
ber of well-known conventional patterns, exemplified by those described in this
paper. It was clear to us that if we are to prove proerties of the JetAssist in a way
that is comprehensible to engineers, we would have to structure the arguments
- thus the patterns.
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Abstract. Appearance of computing machines dates back to the 1940s
and their corresponding scientific disciplines, computer science resp. in-
formatics, have arisen in the 1960s. Nevertheless, fighting for appropri-
ate programming and specification languages has not yet come to an
end: The Java-programming language and the Abstract State Machines
ASM are new and representative specimens which have arisen recently.
These languages are even advancing and improving themselves: Original
Java 1996, a flat language language without class nestings, towards more
modern Java 2000 with nested classes, and Basic ASM resp. Evolving
Algebras 1988/91 towards Turbo ASM 2003 where machines and rules
show new features like naming, parameterizing, local states and recursive
calls. These transitions inside Java resp. ASM remind at a much earlier
transition from Fortran and Algol 58 to Algol 60 with its block concept
and nested, parameterized, recursive and formal procedures. Aim of the
present essay is to show that many of those new concepts incorporated
in new Java and Turbo ASM were already available in Algol60.

Keywords: Programming language, Algol, Java, block concept, formal
procedure, class, object, structural simulation, specification language,
Abstract State Machine ASM, recursive procedure and rule, semantics,
verification.

1 Introduction

Appearance of electronic universal computing machines dates back to the 1940s
and their corresponding scientific disciplines, computer science resp. informa-
tics, have arisen in the 1960s. Nevertheless, fighting for appropriate program-
ming and specification languages has not yet come to an end. On the contrary:
The Java-programming language and the Abstract State Machines ASM are
new and representative specimens which have arisen just recently in the 1990s.
And we realize that these languages are advancing and improving: Original Java
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1996 [GJS96] which is a flat language without class nestings towards more mod-
ern Java 2000 [GJSB00] with nested classes, and Basic ASM resp. Evolving Al-
gebras 1988/91 [Gur88,Gur91] towards Turbo ASM 2003 [BoB03,FrS03,BoS03]
where machines and rules show new features like naming, parameterizing, local
states, return values and recursive calls of rules. These transitions inside Java
resp. ASM remind at a much earlier transition from programming languages like
Fortran [Bac57] and Algol58 [Sam57,PeS59] to Algol60 [SaB59,Nau60] with its
block concept (vigorously promoted by committee member K. Samelson [Lan02])
and its nested, parameterized and recursive procedures, especially with formal
procedure identifiers as parameters and with possible return values.

Aim of our present essay is to show that many of those new concepts which
have been incorporated in new Java 2000 and in Turbo ASM 2003 were already
available in Algol60, a language designed 40 years earlier. This fact is well doc-
umented in the literature, but is often unaware because Algol60 has not found
enough industrial support.

Our essay is firstly, in section 2, dealing with programming language Java. We
are reasoning on the concept of formal Algol-procedures versus classes and ob-
jects. Object orientation does not generate better intelligible program structures
than formal procedures do, contrary to K.Nygaard’s apodictic opinion. In sec-
tion 3 the essay is dealing with ASMs where the authors of Turbo ASM [BoS03]
are stating: “We extend Basic ASMs by parameterized submachines which may
recursively call themselves and thus genuinely enrich the notational macro-
shorthand”. The authors of Fortran [Bac57] and of Algol58 [PeS59] in the 1950s
saw their functions resp. procedures in a similar manner only as comfortable
shorthand notations for macro-expanded programs which have no (function)
procedures. We see that ASM is taking over aspects of VDM’s specification
style [BjJ78,Jon89].

2 Formal Procedures Versus Classes and Objects

2.1 Introduction to the Problem

O.-J. Dahl and K. Nygaard are the great initiators of object orientation in pro-
gramming. In 1967 they invented the object oriented programming language
Simula67 [DaN67,Dah01] and they created important notions like class, object
and inheritance. In 2002 O.-J. Dahl died, unfortunately. After his burial the
author of this essay had a long conversation with K. Nygaard on the latter’s
scientific motivations. 1 A main motivation to introduce the concept of objects
was the
Thesis 1 of K. Nygaard: Algol60’s concept of formal procedures [Nau60] as
a means of program structuring is not intelligible and not communicable as
compared to object orientation.
1 The author would like to mention that Dines Bjørner and he himself attended Ole-

Johan Dahl’s burial ceremony in Asker near Oslo. Since Kristen Nygaard died only
a few weeks later the author is remembering the conversation so intensively.
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Nygaard’s thesis is a harsh critics towards Algol and a praise of object oriented
languages among which Java [GJSB00] is a prototypical and most widely used
one today. The statement seems to be apodictic, but is rather informal and
intuitive. Good scientific tradition obliges surviving colleagues to make the thesis
more precise and more formal such that a convincing, rigorous proof or disproof
of Nygaard’s thesis is possible.

In [Goe05] W. Goerigk came up with a theorem which can be considered to
be a disproof :
Theorem 2: Algol60-programs, even with nested and formal procedures, can be
simulated by object oriented Java-programs in a structurally equivalent manner.
In other words: For every well-formed Algol60-program there can be constructed
a well-formed Java-program with an essentially equal formal execution (call)
tree. The latter notion was introduced in [Lan73a,Lan73b,Lan74,Old79,LaO80,
Old81a,Old81b] in order to prove structural equivalence of Algol-like programs
with procedures and of correctness and relative completeness of Hoare-like proof
calculi [Hoa69]. With some care the notion can be extended to Java-like pro-
grams. Structurally equivalent programs are especially functionally equivalent
(have the same input-output behaviour) independently of the interpretation of
data constants and data operators, even for non-constructive data and opera-
tions. There is no Gödel-numbering used, there is not employed any Java-written
interpreter which interprets Algol60-programs.

Since Algol60 is an untyped language, whereas Java is typed, we have to
require that well-formedness (static semantical correctness) of Algol60-programs
is slightly more stringent than the Algol60-report demands. The programs have
to be typable in the sense of Algol68 [Wij+69] , i.e. the system of type equations
associated to procedure declarations and calls has to be solvable.

Goerigk’s strutural simulation allows to formulate the following
Counterthesis 3 to K.Nygaard: The structure of object oriented programs is
not at all more intelligible than the structure of procedure oriented programs.

Every structural complication (which, by definition, is representing itself in
formal execution trees), especially if generated by use of formal Algol-procedures
and of formal global variables, transfers also to Java with its object orientation.
Thus object orientation does not lower down the complications. The unpleasant
structure properties of Algol60 in Nygaard’s sense are straight forwardly trans-
ferred to Java by Goerigk’s structural simulation; object orientation does not
prevent the unpleasanties.

From [Lan73b] we know that Algol60-programs can simulate Turing-machines
without employment of data like numbers and of conditional statements and ex-
pressions although Algol60-procedures have no functional results as we have
them in λ-calculus [CuF68], Lisp [McC65,Ste84], Algol68 or StandardML
[MTH90]. This simulation is performed purely by procedure declarations, their
nestings, non-formal and formal procedure calls and their call-by-name parame-
ter transmissions. So formal termination (finiteness of formal execution trees)
of Algol60-programs is algorithmically undecidable. It is merely semi-decidable,
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i.e. formal non-termination is not recursively enumerable. In other words: If we
would try to decide e.g. formal termination using the techniques of abstract inter-
pretation [CoC77], then for full Algol with nested procedures and global formal
variables we are not able to define an appropriate abstract domain, whereas for
unnested (flat) C-like programs we are.

We do not say that we consider the mentioned properties of Algol60-programs
and of their simulating Java-programs (which form a sublanguage of Java) only
as unpleasant. The properties demonstrate a surprisingly high computational
power of Algol60. Steering (controlling) of Algol60-computations can be done
both by (general recursive) arithmetics, but also by equivalently powerful pro-
cedure parameter transmissions [Lan73a]. The specific field of application de-
cides which (mixture) of both techniques is yielding most efficient and adequate
programs.

To the best knowledge of the author, before [Goe05]’s structural simulation
there seems to be no work which shows: It is possible to write Java-programs
which generate non-regular, general recursive execution paths and trees without
employment of any arithmetics, just by class instantiations, method invocations
and parameter transmissions.

We should remind the reader that Algol60’s structural power is due to the
so called static scoping or binding of identifiers which is subjected to the fol-
lowing defining phrases inside section “4.7.3. Semantics” of the Algol60-report
[Nau60,Nau63]:
“4.7.3.2. Name replacement (call by name). · · · Possible conflicts between iden-
tifiers inserted through this process and other identifiers already present within
the procedure body will be avoided by suitable systematic changes of the formal
or local identifiers involved.”
4.7.3.3. Body replacement and execution. · · · If the procedure is called from a
place outside the scope of any non-local quantity of the procedure body [a so
called global parameter] the conflicts between the identifiers inserted through this
process of body replacement [copying] and the identifiers whose declarations are
valid at the place of the procedure statement [procedure call] or function designa-
tor [function procedure call] will be avoided through suitable systematic changes
of the latter identifiers.”

Note that the meaning of a procedure call is defined by a copy of the cor-
responding procedure body. The above phrases explain how to avoid so called
local binding errors when actual parameters (arguments), i.e. identifiers or ex-
pressions, are substituting applied occurrences of corresponding formal parame-
ters and how to avoid so called global binding errors when a modified procedure
body substitutes a procedure call.

In the past several programming language researchers have overlooked these
two phrases or have (unwillingly) misunderstood them. Maybe the researchers
have thought that just one initial renaming is sufficient so that no further re-
namings are necessary during runs of computations. Before Algol60 came up
continued renamings were known in λ-calculus derivations (α- and β-reductions).
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But if we don’t do any renamings, i.e. if we perform so called dynamic scoping
and binding of identifiers, we would arrive at a semantics of Algol60-programs
which is different from Algol60’s static scope semantics defined in the report.
Every dynamic scope formal execution tree is regular [Old81b], whereas static
scope formal execution trees may be irregular [Lan74, Old81b]. Consequence:
Algol60 with dynamic scope semantics has a correct and relatively complete
Hoare-like proof calculus, whereas there does not exist any such calculus for the
full static scope Algol60-language [Lan73b,Cla79,LaO80]. In case of static scop-
ing we have such calculi only for certain sublanguages, e.g. of those programs
with regular formal execution trees [Old81a, Old81b], especially of those pro-
grams sufficing the so called formal “most recent”-property [Kan74], or of those
programs with finite procedure types (Pascal-like) if the latter have only simple
sideeffects [Old84,Lan85,CGH83,Hun90].

C [KeR78] and Ada [Ich80] do not support procedure nesting. From a software
engineering viewpoint, though, nesting (with static scoping) is a key technique
for information hiding: It reduces the number of global dependencies and helps to
encapsulate and to handle implementation decisions more abstractly. It is well-
known that object oriented programs can be simulated by imperative languages.
Late binding can either be implemented by generic procedures, which perform a
runtime dispatch on the type of message receiver objects [Goe93], or by procedure
variables (formal procedures) as part of the receiver’s class object [Bla03]. Thus
Algol-like programs are sufficiently expressive to support simulation of object
oriented programs.

Note that, in the present essay, we are interested in the opposite direction of
simulation.

2.2 On Reasons Why Proper Understanding of Formal
Algol60-Procedures and Their Static Scope Semantics Has
Been so Intricate

After a discussion of Bauer, Dijkstra, Paul and Samelson in Copenhagen in 1959,
Dijkstra [Dij60] extended operator and number cellar (Operator- und Zahlkeller)
of Bauer and Samelson [SaB59] towards a runtime stack with procedure activa-
tion records (procedure stack frames) as information units which contain

• local and auxiliary variables,
• intermediate results,
• local parameters (arguments),
• return address,
• dynamic pointer DV to the frame of the most recently called and not yet

completed procedure,
• static pointer SV to a certain frame of the statically (lexicographically) en-

closing procedure in order to have access to global parameters.

The latter three entries form the so called procedure link of a frame (An-
schlussteil in [SaB59]). The special parameter “Beginn freier Speicher” in [SaB59]
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is exactly the administrative quantity “stack pointer” in [Dij60] which always
points to the first free place in the memory reserved for the stack. 2

The notion static pointer is due to Algol60’s new language feature, namely the
block (nesting) concept. Dijkstra formulated a statement in [Dij60] to determine
the static pointer SV:

“SV points to the most recent, not yet completed, activation of the first block
that lexicographically encloses the block of the subroutine called in.”

In [KaL74, Kan74] this statement is called the “most recent”-property of an
Algol-program. But: Is this property really a logical consequence constituted by
Algol60’s static scope copy rule semantics for all programs?

McGowan [McG72] contradicts this consequence and speaks of Dijkstra’s
“most recent”-error. In [GHL67] there is a first example π1 of an Algol60-
program which does not meet the “most recent”-property. Nevertheless, Dijk-
stra’s claim has been around for a long time. E.g. in the book on compiler
construction [WiM92] we find the following statement together with a so called
proof of assurance (Sicherstellungsbeweis) which is obviously incorrect:

“(Invariant ISV) In every stack frame provided for the incarnation of a proce-
dure p the static pointer SV is pointing to the stack frame of the most recent, still
living incarnation of that program unit which is directly enclosing p” (translated
from German).

The program example π1 in [GHL67], page 108/109, which does not satisfy
the “most recent”-property has the following substructure:

proc P(F, G) {
proc Q(R, S) {

. . . } end Q
. . .
F(Q, F)
. . . } end P

. . .
P(P, P)
. . .

The “most recent”-error shows up already in that linear subtree inside the for-
mal execution tree which is generated by this substructure. In the following
we show a simplified example π2 [Goe05] (compare the simplified examples
in [KaL74,Kan74])

proc p(f,g) {
proc q(r,s) { print(g) }
f(q,false) }

p(p,true)

2 Already in [Sam57] K. Samelson discribes how to execute closed parameterized sub-
routines by help of the fixed variable “Anfang (=Beginn) freier Speicher” where
repeatedly called subroutines are to be provided with parameters, return informa-
tions and auxiliary storage places before earlier calls have been completely executed.
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with its associated (linear) formal execution tree generated by successive appli-
cations of the static scope copy rule:

|
{ proc q’(r’, s’) { print(true) }

p(q’, false) }
|
|

{ proc q’’(r’’,s’’) {print(false)}
q’(q’’, false) }

|
|

{print(true)}

We use primes ’ , ’’, ... to indicate the necessary renamings of identifiers. This
formal execution tree consists of four incarnations constituting the nodes of the
tree (the main program’s incarnation is contributing also). The final call q’(q’’,
false)which generates the fourth incarnation is bound to the procedure declara-
tion q’ in the second incarnation; the primes of q’, q’’ are indicating static point-
ers SV. If program π2 would really satisfy the “most recent”-property, as Dijkstra
claims, then q’ should be bound to procedure q’’ in the third incarnation.

If we would apply the copy rule without any renamings we would perform so
called dynamic binding or scoping. Then in fact the final call q(q, false) would
be bound to the most recent procedure declaration q in the third incarnation.
Then false would be printed, which is quite different from the static scope
result true.

The type τp, τq, τf and τr of p, q, f and r is an infinite procedure type, solves
the type equation

τ = proc(τ, bool)
and is equal to

proc(proc(...,bool),bool)

whereas τq and τs are equal to bool. But infinity of procedure types is by no
means the source of the “most recent”-error. Look at the following Pascal-like
program π3

proc p(f,g) {
proc q(s) { print(g) }
if g
then p(q, false)
else f(false)
fi }

proc h(i) {}
p(h, true)
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where τp is proc(proc(bool),bool), τq, τf and τh are proc(bool) and τi, τs

and τg are bool. Static scoping yields the result true as intended by the Algol60-
and Pascal-reports [Nau60,Nau63, JeW75] whereas dynamic scoping yields the
different result false.

Wilhelm’s and Maurer’s runtime system described in [WiM92] is working
correctly in the sense of Algol60’s static scoping. The same seems to hold for
the Dijkstra/Zonneveld Algol60-compiler on the Electrologica X1-machine as
F.E.J. Kruseman Aretz has found out by emulation [KrA06]. Our impression
is that the “most-recent”-property of static pointers has grown out of a wishful
thinking of the authors of [Dij60,WiM92] towards a simple formula, similar to
number theorists who are lenging for a simple formula to determine the n-th
prime number.

2.3 On Another Misunderstanding of Static Binding Towards
Dynamic Binding

In 1965 McCarthy published his Lisp1.5-Programmer’s Manual [McC65]. Lisp1.5
is a functional programming language, an extension of the applied λ-calculus
[CuF68]. What was new? Lisp’s semantics was defined by an interpreter formu-
lated in Lisp itself. In fact there were two interpreters, one on page 13 for Lisp1.5
without functional arguments, one on page 70/71 for Lisp1.5 with functional ar-
guments.

A language semantics defined by an interpreter written in the same language is
absurd in general. But not in Lisp1.5’s case. The two interpreters were formulated
as systems of non-nested recursive function definitions for which a semantics can
be defined independently [LoS84].

The Lisp1.5-manual shows the following curiosity: Bound renaming of iden-
tifiers in given Lisp-programs might lead to deviating results, a fact which is
in strict opposition to bound renaming in λ-calculus expressions. Round about
1983 (as C.A.R.Hoare reported to H.Langmaack [Hoa90]) McCarthy apologized:
The interpreters had just a few simple programmer’s errors.

In his lectures on Higher Programming Languages in 1971 at the University
of the Saarland the author of this essay repaired McCarthy’s interpreters in
the spirit of Algol60 and called the modified semantics Lisp’s natural semantics
[LKK76]. In his book “Common Lisp - The Language” [Ste84] G.L.Steele jr.
changed Lisp’s semantics towards static scoping. During the years 1965 to 84
there were presented many conference lectures to overcome the difficulties and
inefficiencies in shallow binding as prescribed by Lisp1.5’s interpreters. Searching
for most recent entries requires searching processes which are not necessary for
static scoping.

Inconsistencies between Algol60’s static scope semantics and several Algol60-
implementations which obeyed Dijkstra’s dynamic scope advice how to deter-
mine the static pointer SV had unfortunate consequences for the progress of
programming language developments. Ichbiah [Ich80] disallowed procedures as
parameters and formal procedure calls in Ada. He considered formal procedures
to be a too difficult concept as G. Goos reported to the author of this essay.
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Kernighan and Ritchie [KeR78] disallowed nestings of function declarations in
C. Both decisions lead to language restrictions of full Algol60. Static and dy-
namic scope semantics coincide in these sublanguages [Old81a,Old81b].

2.4 Structural Simulation of Algol60-Programs with Nested and
Formal Procedures by Object Oriented Java-Programs

This essay is not the right place to present a full explicit definition of a transfor-
mation [Goe05] from Algol60-programs π to Java-programs π′ which shows up
the desired structural simulation.

In a way we may say that a transformed Algol60-program π′ is a macro-
expanded Java-program which is done by a moderate syntactic sugaring. Java’s
new language specification [GJSB00] with its nested (inner) classes makes that
possible. Java’s old and original specification [GJS96] has no nested (no inner)
classes. So the transformation π′

2 of our program example π2 looks as follows:

interface tau { public void call ( tau f , boolean g ) ; }
class p { tau f ; boolean g ;

class q { tau r ; boolean s ;
public q ( tau r , boolean s ) {

this.r = r ; this.s = s ;
System.out.println ( ∇ g ) ; }}

class %q implements tau {
public void call ( tau r , boolean s ) {

∇ new q ( r , s ) ; }}
public p ( tau f , boolean g ) {

this.f = f ; this.g = g ;
f .call ( ∇ new %q ( ) , false ) ; }}

class %p implements tau {
public void call ( tau f , boolean g ) {

new p ( f , g) ; }}
class π′

2 {
public static void main ( String[ ] args ) {

new p ( new %p ( ) , true ) ; }}

A few comments:
1. The interface is realizing the recursive type equation τ = proc (τ, bool).
2. The extra classes %p and %q are required to simulate formal calls of

procedure p and procedure q.
3. ∇ denotes a free place which later is filled by so called elaboration ε prior

to compilation to a Java-program without nested classes.
We abstain from explicit proving that π and π′ have essentially equal formal

execution trees, i.e. that π and π′ are structurally equivalent. We should mention
that, due to [IgP02], nested Java-programs are to be elaborated before proper
semantics definition can be done. The elaboration ε refines program π′ towards
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π′ε and, in essence, adds Dijkstra’s display vector components explicitly, an
Algol60-implementation idea not mentioned in [GJSB00] nor in [IgP02].

Instead of semantics we shall study the preprocessor of the new Java-compiler
as described by [IgP02]. The preprocessor performs a denesting | | of Java-
programs πJ . πJ and | πJ | have essentially equal formal execution trees; work
in [IgP02] may be considered as (or may be modified towards) a proof of this
fact. If we look closer at a denested Java-program | π′ε | we see that | π′ε |
is essentially a description of how an Algol60-runtime system as in [GHL67]
or [WiM92] is executing an implemented Algol60-program π . This implies that
π and | π′ε | have essentially equal formal execution trees, i.e. that | π′ε | is
structurally simulating π. A closer discussion is following:

2.5 On Denesting of Algol60-Procedures and Java-Classes

The preprocessor’s denesting of Java is quite surprising compared to experiences
in Algol60. For Algol60 we have

Theorem 4: Algol60 with non-nested procedures has regular formal execution
trees only. Algol60 in general has also irregular ones [Lan73b,Lan74,Old81b].

Consequence: In Algol60 there is no denesting of procedures possible such that
the formal execution trees are essentially equal, i.e. such that original and den-
ested programs are structurally simulating each other. Reason: Algol60 has no
functional results of procedures, there is no partial evaluation, such that den-
ested programs could structurally simulate all programs. [Lan73b,Lan74] define
a slightly generalized language, Algol60-G, which allows partial evaluation in a
restricted form and therefore facilitates denesting (modularizing). Look at pro-
gram example π2 as a denested program π2G and at the associated formal call
tree generated by generalized copy rule applications and ending up with four
nodes as for π2 earlier:

proc p ( f , g ) {
f ( q < g > , false ) }

proc q < g > ( r , s ) {
print ( g ) }

p ( p , true )
|
|

{ p ( q < true > , false ) }
|
|

{ q < true > ( q < false > , false ) }
|
|

{ print ( true ) }

Observe the clarity of acting of Algol60-G even in comparison to Algol60.
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The preprocessor’s transformation from Java to non-nested Java as described
in [IgP02] has two steps, first a so called elaboration ε as mentioned above, and
then a compilation | | .

In this paper we need not talk about elaboration of types since our Java-
programs π′ originate from distinguished Algol60-programs π. Inheritance is
trivial here, the only superclass is Object which needs not be mentioned explic-
itly. So, if an applied occurrence of a field or formal parameter f is declared
non-locally in an enclosing class named pe then

f is elaborated to pe.this.f .
If a method m in a method call m( is declared in a class named pe then

m( is elaborated to pe.this.m( .
If a class p in an instantiation new p( is an inner class and is declared in its
enclosing class named pe then

new p( is elaborated to pe.this.new p( .
See [IgP02] for a more complete system of elaboration rules.

We illustrate the effect of elaboration in our Java-program example π′
2 : The

three free places (indicated by ∇) in front of g , new q( and new %q( are
to be filled by p.this. . Variables like p.this inside (inner) classes like q or
%q denote components of the display vector (resp. of the static chain) of q
or %q [Dij60, GHL67]. It is a crucial problem how the runtime system has to
determine the values of these components in a right way. See the indications
after Theorem 5.

For a description of the preprocessor’s compilation | | we restrict to Java-
program constructs which are resulting from Goerigk’s transformation ′ in sub-
section 2.4 and from Igarashi’s and Pierce’s elaboration ε above.

For illustration we show the transformed | π′ε
2 | of our Algol60-program ex-

ample π2:

interface tau {
public void call ( tau f , boolean g ) ; }

class p {
tau f ; boolean g ;
public p ( tau f , boolean g ) {

this.f = f ; this.g = g ;
f.call ( new %q (this),false); }}

class %p implements tau {
public void call ( tau f , boolean g ) {

new p ( f , g ) ; }}
class q {

tau r ; boolean s ;
p this$$q ;
public q ( tau r , boolean s , p this$$q ) {

this.r = r ; this.s = s ;
this.this$$q = this$$q
System.out.println ( this.this$$q.g ); }}
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class %q implements tau {
p this$$q ;
public void call ( tau r , boolean s ) {

new q ( r , s , this.this$$%q ) ; }
public %q ( p this$$%q ) {

this.this$$%q = this$$%q ; }}
class | π′ε

2 | {
public static void main ( String[] args ) {

new p ( new %p ( ) , true ) ; }}

The formal execution tree of | π′ε
2 | is a collection of addressed stack frames

which represent instances of classes p , %p , q and %q and activation records
of method invocations call and println.

0: main program stack frame
| \
| 1: %p ( )

2: p ( 1 , true)
| \
| 3: %q ( 2 )

4: call1 ( 3 , false)
|

5: p ( 3 , false)
| \
| 6: %q ( 5 )

7: call3 ( 6 , false )
|

8: q ( 6 , false , 2 )
|

9: System.out.println (true)

The stack frames form four groups 0, 1 to 2, 3 to 5 and 6 to 9 which correspond
to the four execution tree nodes of π2 and π2G before. The pointers 2, 1, 5, 3, 2
are the associated static pointers SV of the entries 3:%q(2), 4:call1(3,false),
6:%q(5), 7:call3(6,false), 8:q(6,false,2). Observe that the static pointer 2
(third actual parameter) in 8:q(6,false,2) is pointing to 2:p(1,true) (as q’ in
the formal execution tree of π2 does), a non-most recent activation record of p !
5:p(3,false) would be the most recent one. This again demonstrates Dijkstra’s
“most recent”-error.

After elaboration and denesting the resulting unnested Java-program | π′ε
2 |

implements the Algol60-program π2 in a very detailed manner: In fact, the ac-
tions of an Algol60-static scoping runtime system are explicitly incorporated as
macros. This is an indication of a proof of
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Theorem 5: New Java with nested classes as presented in [GJSB00] instantiates
and executes its classes due to the Algol60-like static scope strategy. Methods
remain executed due to the dynamic scope strategy.
In order to achieve a static scope implementation it is crucial to generate appro-
priate actual parameter information when a non-formal inner procedure identifier
is occurring as an actual parameter. In our program example π2 it is q inside
call f(q,false). The actual parameter information for q is generated by new
%q(this) which yields a coupling of the identifier q and of a reference to an
instance of the enclosing procedure (class) p. So 3 in 5: p(3,false) is pointing
to 3:%q(2) and 6 in 8:q(6,false,2) to 6:%q(5).

If we compare to results on denesting of Algol60-programs it seems surprising
that Java’s classes can be denested and that the original Java of 1996 is in a
way as powerful as the new Java of 2000. On the other hand, one should not
forget that methods are declared inside classes. So, honestly, original Java has
a nesting level 2, in a sense. This corresponds to a result in [LiS73] which says
that Algol60-programs of any nesting level can be denested towards level 2 in a
structurally equivalent manner (but not lower down to level 1 due to [Lan74]).

There is another interesting situation where Java-researchers could have learnt
from investigations on Algol. Apt’s and Olderog’s ingenious soundness definition
[Apt79, Old79] of Hoare’s proof rule for recursive procedure calls [Hoa71] was
reinvented by A. Poetzsch-Heffter and P. Müller [PHM99] when they developed
a programming logic for sequential Java. See also the later subsection 3.2.

3 Algol60 and Turbo ASM

3.1 Corresponding Notions and Phrases

We have realized that the modern extension [GJSB00] of original Java [GJS96]
has adopted essential language concepts and implementation techniques from
Algol60 (without explicit mentioning, perhaps unconsciously). We see a similar
phenomenon at the specification language ASM, especially at the transition from
Basic ASM to Turbo ASM. There are a good few corresponding notions and
phrases which sound differently, but mean the same concepts:

Turbo ASM Algol60
1. 0-ary static function standard constant
2. n ≥ 1-ary static function standard function
3. 0-ary dynamic function simple variable
4. n ≥ 1-ary dynamic function n ≥ 1-dimensional array
5. location simple or subscripted variable
6. skip rule dummy statement
7. update rule assignment statement
8. conditional rule conditional statement
9. sequence rule compound statement

10. let rule block as a procedure body with
call-by-value parameters
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11. local rule with local named block with local procedures,
rules and functions simple variables and arrays

12. named rule with formal procedure declaration with formal
parameters call-by-name parameters

13. body as right hand side procedure body
of a named rule

14. call rule procedure statement or call
15. formal call rule formal procedure statement or call
16. actual parameter actual call-by-name parameter

These language constructs, cum grano salis, are already available in Basic ASM,
but Turbo ASM has a considerably richer semantics. Namely, Basic ASM does
not allow that submachines (named rules) may call themselves recursively.
I.e. submachines and phrases 11. to 16. are used only as a notational macro-
shorthand in Basic ASM.

The syntax of an abstract state machine M consists of three components, 1. a
signature (vocabulary) ΣM , 2. a set (an environment) EM of named rule declara-
tions and 3. a distinguished 0-ary main rule name rM . Static semantics requires
that every free function name is used due to its classification in ΣM and that
there are no free logical variables (let-variables etc.). In order to demonstrate
close neighbourhood of Algol60 and Turbo ASM we present the Algol60-program
example π2 of section 2.2 in the shape of two named rules in EMπ2

:
p(f,g) = {

local q(r,s) = { print(g) }
f(q,false) }

rMπ2
= {p(p,true)}

We interprete the transition from Basic ASM to Turbo ASM with its named
recursive rules as a clear indication that ASM has taken over aspects of VDM’s
specification style, see [BjJ78,Jon89].

3.2 Dynamic Semantics

The informal semantics and execution explanation of procedures and their calls
in Algol60 (see the copy rule sections 4.7.3.2 and 4.7.3.3 in [Nau60,Nau63] and
in subsection 2.1 of this essay) and of named rules and their calls (see pages 73
and 170 in [BoS03]) are very similar although there is no explicit mentioning of
the Algol60-report in [BoS03]. On page 73 we read:

“Rules [ r(x1, . . . , xn) = P ] are called by name. This means that in a call
r(t1, . . . , tn) the [ free occurrences of the ] variables x1, . . . , xn are [textually]
replaced in the body P by the parameters t1, . . . , tn . The parameters are not
evaluated in the state where the rule is called, but only later when they are
used in the body . . . . In the extension of ASMs each formal parameter of a
rule declaration is either a logical variable . . . or a location variable or a rule
variable.”
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On page 170 we read:
“We assume that there are no name clashes for local functions [plus local

named rules] between different incarnations of the same rule (i.e. each rule in-
carnation has its own local dynamic functions [and local named rules]).”

Börger and Stärk [BoS03] present an inductive definition of the dynamic se-
mantics of Turbo ASM rules in the manner of a derivation calculus for the so
called yields-relation

yields(E | Q, A, ζ, U )
where E is an environment of named rules, Q is an unnamed rule, E | Q is
a rule unit, A is a state, i.e. an assignment of values to all locations given by
a signature Σ, ζ is an assignment to logical variables and U is an update set.
The copy rule of Algol60 with its implicit bound renamings is turned into the
following derivation rule for Turbo ASM’s call rule (please, be carefull and differ
between “ASM rule” and “derivation rule”):

yields(E | P t1
x1

... tn
xn

, A, ζ, U )

yields(E | r(t1, . . . , tn), A, ζ, U )

– where r(x1, . . . , xn) = P is a named Turbo ASM-rule from the environment
E in which all rule names r are assumed to be pairwisely different,

– where name clashes in the substituted P t1
x1

... tn
xn

are avoided by implicit

bound renamings of names (identifiers) which are declared and bound
inside P .
In case we have a program-like abstract state machine M , i.e. one where the

environment does not interfere internal states of M , then dynamic semantics of
M is defined as follows: If

yields(EM | rM , A, ∅, U)
with a consistent update set U is derivable then a run of M , applied to initial
state A, is called successfully (regularly) terminating in resulting state A + U .
Since logical variables in the named rules of EM are not free ζ is allowed to be
the empty assignment ∅.

A Turbo ASM’s macro- and micro-computation steps have their analoga in
Algol-implementation. N.G.Fruja and R.F.Stärk do an interesting investigation
[FrS03] on the hidden computation steps of Turbo ASMs by the help of so
called PAR/SEQ-trees. So the specification language Turbo ASM has not only a
natural big step operational semantics, defined by the yields-relation, there is also
an equivalent small step structural operational semantics [Plo81]. An Algol60-
program corresponds to a purely sequential Turbo ASM. Such a program has
PAR/SEQ-trees as well. They are tail constituents of runtime stack contents of
nested procedure incarnations as we find them in the program’s formal execution
tree [Lan73a,Old81a,Lan04].

Furtheron, there is a connecting view of big step operational and denotational
semantics of Algol-programs and Turbo ASMs [Sco70,MiSt76,Bak80]. The de-
notational style to define semantics of a given program or machine M with
recursive procedures or named rules is to search for a continuous functional Φ
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such that its least fixed point μΦ is the essence of dynamic semantics of M
with its components ΣM , EM and rM , i.e. μΦ ((EM | rM , ΣM , ∅)) is the
state-update function [[EM | rM ]] ( [[E | Q]]Aζ � U is a notational variant of
yields(E | Q, A, ζ, U) [BoS03]).

3.3 Verification

Denotational semantics, especially its fixed point theorem μΦ =
⊔

ν≥0 Φν(⊥)
with its approximating semantics Φν(⊥), is showing a way towards logic and
verification of ASMs in an area where ASM-literature is sparse, but where look-
ing at Algol-like programming might be helpful. ASM-logic is similar to dy-
namic logic [Har79] or algorithmic logic [Sal70, MiSa87]. Completeness results
in [BoS03] are presented only for hierarchical ASMs, i.e. ASMs without recur-
sions where call graphs have no cycles. The machines’ analoga in Algol are so
called macro-programs the formal execution trees of which are finite.

In order to prove Algol-like programs with recursive procedures partially cor-
rect C.A.R.Hoare presented his proof rule for recursive procedures [Hoa71]. The
rule has, beside a conclusion and a premis, also a so called assumptions set.
It took quite a while until soundness and completeness results on Hoare’s ex-
tended calculus came up. E.M.Clarke [Cla79] gave an intricate soundness proof
of Hoare’s calculus, Clarke had not yet available an appropriate definition of
soundness of Hoare’s proof rules with the decisive property: If all proof rules in
the calculus are sound then the whole calculus is sound.

1979 K.Apt and E.-R.Olderog [Apt79, Old79] independently came up with
the same idea how to define soundness of proof rules by help of approximating
semantics Φν(⊥), specifically in the shape of a syntactical representation. It is
holding

[[EM | rM ]]ν = Φν(⊥)((EM | rM , ΣM , ∅))
= [[R(Cstat

ν (local EM rM ))]].

Cstat
ν (local EM rM ) is forming the formal execution tree (or a congruent version)

of local EM rM up to level ν. This means: Apply the copying process Cstat in
a simultaneous parallel manner ν-times to all rule calls outside any rule body
in a static scope manner, i.e. by avoiding name clashes by appropriate bound
renamings. In a next step R reduces the resulting tree by erazing all named
rules and replacing all remaining rule calls by abort. E | abort “yields′′ the
bottom (undefined) update set which originates in ⊥ mentioned in the fixed point
theorem. ⊥ interpretes every rule call E | r(t1, . . . , tn) by the totally undefined
state-update function.

Apt’s and Olderog’s inductive soundness proof of Hoare’s proof rule for recur-
sive calls is a highlight in any course on program verification. We have mentioned
already in subsection 2.1 that there is no sound and relatively complete proof
calculus for the full static scope Algol60-language. This is holding for full Turbo
ASM as well. We have seen that such calculi are available only for certain sublan-
guages. It would be very illuminating to investigate how completeness results of
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the kind above and those from algorithmic logic [MiSa87] transfer to ASM-logic.
Furtheron: Parallel and concurrent executions are not yet integrated in the above
mentioned completeness results. See [Lan04] for more detailed expositions.

4 Conclusion

It is the systematic usage of the block concept with its far reaching consequences
for nested, recursive and formal procedures what is distinguishing Algol60 as
compared to its language predecessors Fortran and Algol58. Algol60’s progress
was so dramatic that later language developers in the 1970s to 1990s were very
hesitant to allow an unrestricted block concept. We see this attitude even in
the 1990s with the authors of original Java [GJS96] and of Basic ASM [Gur88,
Gur91]. After several years of experience both Java- and ASM-researchers found
out that they should allow the block concept together with recursion at any
reasonable place of a program or specification. The researchers could have had
an easier and more continuous approach to semantics definitions, implementation
techniques and verification methods if they would have respected more closely
all the experiences with Algol in the 1960s and 1970s. Nevertheless revival of
Algol-concepts demonstrates their inherant importance.

The author of this essay would like to thank for being invited to contribute
to the Festschrift to honour our colleagues Dines Bjørner and Zhou Chaochen.
Furtheron the author would like to thank Annemarie Langmaack for typesetting
of this essay.
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Abstract. We have been engaged over the past few years in studying and for-
malizing software architecture concepts such as hierarchical design, dynamic 
reconfiguration and the application of the concept of aspects to software archi-
tecture descriptions. Our attention has focused on the language CommUnity, 
developed by Fiadeiro and Maibaum, and an extension that we call DynaComm 
that incorporates support for dynamic reconfiguration, hierarchical design, a 
general notion of connector and other supporting mechanisms. In applying Dy-
naComm, we have found that the relationships normally used in CommUnity, 
i.e., regulative superposition (used to regulate the behaviour of a component) 
and refinement (used to instantiate a role in a higher order connector) are not 
sufficient for dealing with some required changes to a software architecture or a 
component that we would like to be able to affect. To this end, we have defined 
the concept of extension morphism between two components. Such morphisms 
do not preserve encapsulation of components, as do regulative superpositions 
and refinements, but they do give us substitutability, in the sense of object-
oriented systems, and, hence, a basis of predictability about its application  
to designs. In this paper, we describe the nature of extension morphisms and  
illustrate their use by means of a non trivial example. 

1   Introduction 

1.1   Motivation and Background 

Software architecture research is directed at addressing the high-level decomposition 
and organization of systems, where component interactions are incorporated into the 
notion of connectors and identified as first-class design entities. Architecture descrip-
tion languages (ADLs) have been proposed to provide formal modelling notations, 
analysis and development tools to support architecture-based development, which 
focuses on the system’s high-level structure rather than the implementation details of 
any specific modules [33].  

There has been some work in surveying ADLs providing broad comparisons. The 
survey in [33] compared ADLs with respect to their ability to model components, 
connectors and configurations, as well as their tool support for analysis and refine-
ment. The survey in [13] focused on the characteristics of different ADLs supporting 
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self-managing architectures, which not only implement the concept of dynamic 
change, but also initiate, select and assess the change itself without the assistance of 
an external user. We are currently interested in ADLs with support for dynamic soft-
ware architectures and that also support the essential engineering concept of hierar-
chical design. Examples of ADLs, which support such a view, are Dynamic Wright 
[11], Darwin [31] and Dynamic Acme [19][38]. An assessment of these languages 
can be found in [13] and a more thorough review of their language constructs, associ-
ated styles of specification and mechanisms to achieve dynamic reconfiguration can 
be found in [27]. However, these ADLs have important shortcomings in relation to 
their support for hierarchical design and having a formal semantics that enable us to 
perform useful analyses. 

CommUnity [15, 29, 30] was designed to study the problem of the ‘magic step’ 
from specification to program, in the context of component based design using tempo-
ral and multi modal logics for component specification. It is always the case that the 
languages used for specifications and programs are ontologically very different. 
Specifications are about properties, whilst programs are about operational behaviour, 
even if this behaviour is described abstractly. For one thing, a programming language 
has no facility to express properties of programs; a meta language of properties is 
required for this. So, programs and specifications occupy different conceptual worlds 
and there is not a simple notion of homomorphism or refinement that relates them 
directly: hence the reference to the ‘magic step’ above. What is the relationship be-
tween specifications and programs and how can one remove the magic? We cannot 
talk about the program being a refinement of a specification, as refinement is an inter-
nal notion in the language of component specifications. We might introduce a notion 
of realization, which relates a program to its specification by assigning to the program 
a minimal (not unique and minimum) specification, which is a refinement of the 
specification.  

CommUnity explored this space and addressed the important issue of composition-
ality in this context: when can we say that a program constructed from parts, where 
each part is a correct realization as a program of the corresponding specification part, 
is correct with respect to the specification constructed from the component specifica-
tions in a way that mimics the construction of the program? Not too surprisingly, 
compositionality in this sense is not an easy property to achieve. Given an arbitrary 
specification language and some programming language, not every program con-
structed from parts is correct with respect to the corresponding specification. This is 
not surprising, as the structural properties of the specification category may not mimic 
that of the category of programs, or vice versa.  

We have been extending CommUnity to encompass features we regard as essential 
for architecture based design, namely hierarchical organization of subsystems and 
dynamic reconfiguration [26]. However, in this paper the new features of DynaComm 
are not essential for the presentation, so, for the sake of clarity, we avoid the presenta-
tion of its extra details and features. 

Recently, we have been exploring the issue of ‘early aspects’ [39], attempting to 
see if these ideas can be rationalized, based on traditional software engineering prin-
ciples of modularity and hierarchy, by analyzing them at the architectural level. After 
numerous case studies, we have come to the conclusion that aspects are just the soft 
goals or non functional requirements traditionally found in requirements engineering, 
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and that they can be handled uniformly at the architectural level by formalizing a 
specific aspect as an architectural pattern used to replace an existing pattern in the 
underlying architecture (by means of, for example, a graph transformation). Then, 
aspect weaving is achieved by the colimit construction used to obtain the semantics of 
any architectural configuration, the latter being defined as a categorical diagram of 
component objects and relationships between them. Aspect composition then be-
comes the sequential application of different transformations, corresponding to the 
different aspects, to the underlying diagram depicting the original architecture. As 
with features, there may be (unforeseen) interactions between different aspects and 
the order of application is crucial to achieving the right system. Many aspects require 
the replacement of a component in the original architecture by another, closely re-
lated, component that is a subtype of the original component, in the sense of object-
oriented design. This requires a formal relationship between components that involves 
breaking encapsulation of the original component in the design. We have developed 
the notion of extension as a realization of this controlled breaking of encapsulation. 
The application of extension morphisms in the construction of software architectures 
is the aim of this paper. 

1.2   Introducing CommUnity 

CommUnity was developed to explore the relationships between specifications and 
programs in a component based development setting. José Fiadeiro and his (former) 
students developed the language extensively in the interim [18,29,30], making of 
CommUnity a (proto) ADL. A review of CommUnity and its semantics are given, 
and, in particular, we rehearse the idea that the notion of superposition can be formal-
ized as a morphism between designs in CommUnity. The concept of superposition is 
defined as a structure preserving transformation on designs through the extension of 
their state space and control activity while preserving their properties [29,30]. So, a 
regulative superposition morphism is proposed in CommUnity as a means of aug-
menting an existing component by superposing a regulator over it while preserving its 
functionality, thus supporting a layered approach to system design. In addition, sev-
eral different kinds of morphisms (other than regulative superposition morphisms) 
between designs as well as their relationships are also investigated to explain the 
language’s well-founded support for compositionality, reusability, and enforcement of 
design principles. 

The syntax of a CommUnity design is: 
 

design component P 
out out(V) 
in in(V) 
prv prv(V) 
init I 
do 
 [prv] g[D(g)] : L(g), U(g) -> R(g) 
endofdesign 
 

A fixed collection of data types (say S) is assumed to be given by a first-order alge-
braic specification and the design is defined over such data types. Because data types 
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chosen in the design determine the nature of the elementary computations that can be 
performed locally by the components, the emphasis in the language is put on the co-
ordination mechanisms between system components rather than data refinement, 
which focuses on computational aspects. As a result, CommUnity does not support 
polymorphism directly.  

In the above example, V is the set of channels in the design P. Each channel v is 
typed with a sort from S. in(V) represents input channels, which read data from the 
environment of the component and the component has no control over them. out(V) 
and prv(V) are output channels and private channels, respectively. They are controlled 
locally by the component. Output channels allow the environment to read data pro-
duced by the component, while private channels support internal activity that does not 
involve the environment. We use loc(V) to represent out(V) ∪ prv(V). The formula I 
constrains potential initial states of the corresponding program. I is a formula in first-
order logic over the channels of the design. 

For any action g, D(g) is a subset of loc(V) consisting of the local channels that can 
be written to by action g (we call it the write frame of g). U(g) is a progress condition, 
which establishes the upper bound for enabledness and L(g) indicates the lower 
bound. In a program, L(g) = U(g), so the guards in a design define the “interval” 
within which the guard of the action in a program implementing the design must lie. 
R(g) is a condition on V and D(g)’, where by D(g)’ we mean the set of primed chan-
nels from D(g). Primed channels account for references to the values of channels after 
the execution of an action. The condition is a first-order logic formula built from V 
and D(g)’. Usually, we define it as a conjunction of implications of the form pre ⇒ 
post, which corresponds to a pre/post condition specification in the sense of Hoare 
and where pre does not contain primed channels. Using this form, the number of con-
juncts in the formula will correspond to the number of channels in the write frame of 
g, so that we can understand the meaning of the action fairly easily. Moreover, it will 
be convenient for us to calculate the colimit of the diagram if we have put all the 
designs in this form. 

In order to study the relationship between designs, we need the formal definition 
for designs as follows: 

Definition 1. A design signature is a tuple (V, Γ, tv, ta, D) where:  

• V is the set of channels, which is an S-indexed family of mutually disjoint 
sets. The channel is typed with sorts in S, which is a fixed set of data types 
specified as usual via a first-order specification. 

• Γ is a finite set of actions.  
• tv is a total function from V to {prv, in, out}, which partitions V into three 

disjoint sets of channels, namely private, input and output channels, respec-
tively. Loc(V) represents the union of private and output channels. 

• ta is a total function from Γ to {sh, prv}, which divides Γ into private and 
shared actions. Only shared actions can serve as the synchronization points 
with other designs. 

• D is total function from Γ to 2loc(V). The write frame of action g is repre-
sented by D(g). 
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All these sets of symbols are assumed to be finite and mutually disjoint. Channels are 
used as atoms in the definition of terms: 

Definition 2. Given a design signature θ=(V, Γ, tv, ta, D), the language of terms is 
defined as follows: for every sort s ∈ S, 

• ts ::= a , where a ∈ V and of type s 
• ts ::= c, where c is a constant with sort s 
• ts ::= f(t1,…,tn), where t1: s1,…, tn: sn and f:s1× … × sn → s 

The language of propositions is defined as follows: 

• φ :: = (t1s ps t2s) | φ1 ⇒ φ2 | φ1 ∧ φ2 | ¬φ 

where ps is a binary predicate defined on sort s. The set of predicates defined on sort s 
must contain = s. 

Having defined the signature of designs and given the language of terms and 
propositions, we can formalize the notion of designs as follows: 

Definition 3. A design is a pair (θ, Λ), where θ = (V, Γ, tv, ta, D) and Λ is (I, R, L, U) 
where: 

• I is a proposition defined on θ, which constrains the values of the channels 
when the program is initialized. 

• R assigns to every action g ∈ Γ an expression R(g). 
• For every action g ∈ Γ, L(g) assigns the enabling guard to it and U(g) as-

signs the progress guard. 
• For every action g ∈ Γ, for any a ∈ D(g), tv(a) ∈ {prv, out}. 

Recall that R(g) specifies the effect of action g on its write frame. For any channel a ∈ 
D(g), we will use R(g,a) to denote the expression that represents the effect of action g 
on channel a. 

Before we define the semantic structures for a design, a model for the abstract data 
type specification (S) needs to be introduced. The model is given by a Σ-algebra U, 
i.e., a set sU

 is assigned to each sort symbol s ∈� S, a value in sU(cU) is assigned to 
each constant symbol c of sort s, a (total) function fU

 : s1
U

 × …×sn
U 

 → sU
 is assigned to 

each function symbol f in S, and a relation ps
U

 ⊆ s × s is assigned to each binary 
predicate ps defined on sort s. 

The semantic interpretation of designs is given in terms of transition systems: 

Definition 4. A transition system (W, w0, E, →) consists of: 

• a non-empty set W of states or possible worlds 
• w0 ∈ W, the initial state 
• a non-empty set E of events 

• an E-indexed set of partial functions → on W, W → (E → W), defines the 
state transition performed by each event. 

Having transition systems to represent the state transitions of a design, we can inter-
pret the signature of a design with the following structure: 
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Definition 5. A θ-interpretation structure for a signature θ=(V, Γ, tv, ta, D) is a triple 
(T, A, G) where: 

 

• T is a transition system (W, w0, E, →) 
• A is an S-indexed family of maps As: Vs → (W → sU

 ). 
• G: Γ → 2E. 

That is to say, A interprets attribute symbols as functions that return the value that 
each attribute takes in each state, and G interprets the action symbols as sets of events 
-- the set of the events during which the action occurs. 

It is possible that no action will take place during an event. Such events correspond 
to environment steps, which means steps performed by the other components in the 
system. Interpretation structures are intended to capture the behavior of a design in 
the context of a system of which it is a component. Because environment steps are 
taken into account, state encapsulation techniques can be formalized through particu-
lar classes of interpretation structures. 

Definition 6. A θ-interpretation structure (T, A, G) for a signature θ=(V, Γ, tv, ta, D) 
is called a locus iff, for every a ∈ loc(V) and w, w’� ∈ W, if (w, e, w’) is in →, and 
for any g ∈ D(a), e ∉ G(g), then A(a)(w’) = A(a)(w).  

This means a locus is an interpretation structure in which the values of the program 
variables remain unchanged during events in which no action occurs that contains 
them in their write frame.  

Having defined the interpretation structures for designs and the model for the ab-
stract data type specification (S), we are able to give the semantics of the terms and 
propositions in the language given by the design signature. 

Definition 7. Given a signature θ = (V, Γ, tv, ta, D) and a θ-interpretation structure 
S= (T, A, G), the semantics of terms (for every sort s, term t of sort s and w ∈ W, 
[t]s(w) ∈ sU, the value taken by t in the world w, is defined as follows: 

• if t is a ∈ As, [a]s(w) = A(a)(w) 
• if t is a constant c, [c]s(w) = cU 
• if t is fU

 : s1
U

 ×…× sn
U 

 → sU, [f(t1,t2,…,tn)]
s(w) = fU([t1]

s(w), [t2]
s(w), …, 

[tn]
s(w)) 

The semantics of propositions is defined as: 

• (S,w) t (t1 =s t2) iff [t1]
s(w) = [t2]

s(w) 
• (S,w) t (t1 ps t2) iff [t1]

s(w) ps
U [t2]

s(w) 
• (S,w) t φ1 ⇒ φ2, iff (S,w) t φ1 implies (S,w) t φ2 
• (S,w) t (¬φ) iff ¬((S,w) t φ) 

Now on the semantic level, we can represent whether a proposition (in a signature) 
is true or valid in the interpretation structure of the signature: 

Definition 8. A θ-proposition φ is true in an θ-interpretation structure S, written S t 
φ, iff (S,w) t φ at every state w. A proposition φ is valid, written t φ, iff it is true in 
every interpretation structure. 

Having introduced the above concepts, we can now define when an interpretation 
structure is a model of a design. 
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Definition 9. Given a design (θ, Λ), where θ = (V, Γ, tv, ta, D) and Λ is a triple (I, R, 
L, U), a model of (θ, Λ) is an interpretation structure S=(T, A, G) for θ, such that: 

• (S,w0) t I 
• for every g ∈ Γ, a ∈ D(g), e ∈ G(g) , and (w, e, w’) ∈ →, then A(a)(w’)= 

[R(g,a)]s(w)  
• for every w ∈ W and g ∈ Γ, if e ∈ G(g) and for some w’ ∈ W , (w, e, w’) ∈ 

→, then (S,w) t L(g). 

That is to say, a model of a design is an interpretation structure for its signature that 
enforces the assignments, only permits actions to occur when their enabling guards 
are true, and for which the initial state satisfies the initialization constraint.  

A model is said to be a locus if it is a locus as an interpretation structure, which en-
forces the encapsulation of local attributes.  

This classification of models reflects the existence of different levels of semantics 
for the same design (taken as a set of models), depending on which subset of the set 
of its models is considered. These different semantics are associated with different 
notions of superposition (design morphism) that have been used in the literature, 
namely regulative, invasive and spectative. This means that there is no absolute no-
tion of semantics for designs: it is always relative to the use one makes of designs. 
This corresponds to the categorical way of capturing the “meaning” of objects 
through the relationships (morphisms) that can be defined between them. 

1.3   The Morphisms Between Designs 

The concept of superposition has been proposed and used as a structuring mechanism 
for the design of parallel programs and distributed systems. Structure preserving 
transformations are usually formalized in terms of morphisms between the objects 
concerned, thus justifying the formalization of superposition in terms of morphisms of 
designs in CommUnity. 

Having defined designs over signatures in the above section, we first introduce 
signature morphisms as a means of relating the “syntax” of two designs.  

Definition 10. A signature morphism σ from a signature θ
1
=(V

1
, Γ

1
, tv

1
, ta

1
, D

1
) to 

θ
2
=(V

2
, Γ

2
, tv

2
, ta

2
, D

2
) consists of a total functions σα: V1 → V2, and a partial map-

ping σγ: Γ2 → Γ1 such that: 

• For every v ∈ V1 , σα(v) has the same type as v. 
• For every o ∈ out(V1), σα(o) ∈ out(V2). 
• For every p ∈ prv(V1), σα(p) ∈ prv(V2). 
• For every i ∈ in(V1), σα(i) ∈ out(V2) ∪ in(V2). 

For every g ∈ Γ2 , such that σγ (g) is defined: 

• g ∈ sh(Γ2), then σγ (g) ∈ sh(Γ1). 
• g ∈ prv(Γ2), then σγ (g) ∈ prv(Γ1). 

• σα(D1(σγ (g)) ⊆ D2(g). 
A signature morphism maps attributes of a design to attributes of the system of which 
it is a component, and the direction of the mapping is reversed for actions. The first 
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condition enforces the preservation of the type of each attribute by the morphism. 
Output and private attributes of the component should keep their classification in the 
system, while input attributes may be turned into output attributes, when they are 
synchronized with output channels of other components and thus represented as out-
put channels of the system. The restriction over action domains means that the type of 
each action is preserved by the morphism. In other words, the images of the write 
frame of an action in the source program must be contained in the write frame of the 
corresponding action in the target program. Notice that more attributes may be in-
cluded in the domain of the target program’s action via a morphism. This is intuitive 
because an action of a component may be shared with other components within a 
system and, hence, has a larger domain.  

Signature morphisms provide us with the means for relating a design with its su-
perpositions. However, superposition is more than just a relationship between signa-
tures on the level of syntax. To capture its semantics, we need a way of relating the 
models of the two designs as well as the terms and propositions that are used to build 
them. 

Signature morphisms define translations between the languages associated with 
each signature in the obvious way: 

Definition 11. Given a signature morphism σ: θ1 → θ2, we can define translations 
between the languages associated with each signature: 

• if t is a term: 
σ(t) ::=  σ(a) if t is a variable a    

 c if t is a constant c   
 f(σ(t1),…, σ(tn )) if t= f(t1,…, tn) 

• if φ is a proposition: 
σ(φ) ::=  σ(t1) = σ(t2) if φ is t1 = t2 

 σ(t1) ps σ(t2) if φ is t1 ps t2 

 σ(φ1) ⇒ σ(φ2) if φ is φ1 ⇒ φ2 
 σ(φ1) ∧ σ(φ2) if φ is φ1 ∧ φ2  
 ¬σ(φ’) if φ is ¬φ’ 

Definition 12. Given a signature morphism σ: θ1 → θ2 and a θ2–interpretation struc-
ture S = (T, A, G), its σ-reduct, S|σ, is the θ1–interpretation structure (T, A|σ ,G|σ), 
where A|σ(a) = A(σ(a)), G|σ(g) = ∪ G(σ-1(g)). 

That is, we take the same transition system of the target design and interpret attrib-
ute symbols of the source design in the same way as their images under σ, and action 
symbols of the source design as the union of their images under σ-1. Reducts provide 
us with the means for relating the behavior of a design with that of the superposed 
one. The following proposition establishes that properties of reducts are characterized 
by translation of properties. 

Proposition 1. Given a θ1 proposition φ and a θ2–interpretation structure S=(T, A, G), 
we have for every w ∈ W: (S, w) t σ(φ) iff (S|σ, w) t φ. 

Superposition morphisms that preserve locality are called regulative superposition 
morphisms and are defined as follows: 
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Definition 13. A regulative superposition morphism σ from a design (θ1, Λ1) to an-
other design (θ2, Λ2) is a signature morphism σ: θ1 → θ2 such that: 

0 t (I2 ⇒ σ( I1) ). 
1 If v ∈ loc(V1), g ∈ Γ2 and σα(v) ∈ D2(g), then g is mapped to an action 

σγ(g) and v ∈ D1(σγ(g)).  

For every g ∈ Γ2 for which σγ(g) is defined,  

3 If v ∈ loc(V1) and g ∈ D2(σα (v)), then t (R2(g, σα (v)) ⇔ σα(R1(σγ (g), 
v))).   

4 t (L2(g) ⇒ σ(L1(σγ (g)))). 
5 t (U2(g) ⇒ σ(U1(σγ (g)))). 

Notice that we do not require σα to be injective, and two channels of the same 
category (output/private/input) in the source design can be mapped to one channel of 
the target design. Because we only consider the actions in the target design mapped to 
the source design, σγ does not need to be surjective. 

The second condition implies that actions of the system in which a component C is 
not involved cannot have local channels of the component C in their write frame, 
which corresponds to the locality condition: new actions cannot be added to the do-
mains of attributes of the source program. The justification is as follows: suppose 
system action g has σα(v) in its write frame, v ∈ loc(V1), then σγ(g) must be defined, 
and σγ(g) ∈ D1(v). Therefore, component C is involved in the system action. 

Regulative superposition morphisms require that the functionality of the base de-
sign in terms of its variables be preserved (the underspecification cannot be reduced) 
and allows for the enabling and progress conditions of its actions to be strengthened. 
Strengthening of the lower bound reflects the fact that all the components that partici-
pate in the execution of a joint action have to give their permission for the action to 
occur. On the other hand, the progress of a joint action can only be guaranteed when 
the involved components can locally guarantee so. Regulative superpositions preserve 
encapsulation and do not change the actions themselves, as far as they relate to the 
basic variables. 

Proposition 2. Let σ: (θ1, Λ1) → (θ2, Λ2) be a regulative superposition morphism. 
Then the reduct of every model of (θ2, Λ2) is also a model of (θ1, Λ1). 
We find that in the proof of proposition 2.2, we do not use condition 2 of regulative 
superposition morphism, which means this proposition will hold without enforcing 
the encapsulation principle. When we consider condition 2 and the definition of signa-
ture morphism, we will have the following assertion: 

Proposition 3. If v ∈ loc(V1), then D1(v) = σγ(D2(σα(v))). 
This result implies the following property: 

Proposition 4. Let σ: (θ1, Λ1) → (θ2, Λ2) be a regulative superposition morphism; 
then the reduct of every locus of (θ2, Λ2) is also a locus of (θ1, Λ1). 
The reason is that through regulative superposition, the domains of the attributes  
remain the same up to translation, as stated above. Therefore, it will prevent “old 
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attributes” from being changed by “new actions”, i.e., actions of the target design not 
mapped to the source design. 

Now we will introduce the notion of extension morphism, related to ideas of 
model-expansiveness. The motivation for extension morphisms originated from the 
substitutability principle from object oriented program design, which says if a com-
ponent P2 extends another component P1, then we can replace P1 by P2 and the “cli-
ents” of P1 must not perceive the difference. This principle cannot be characterized by 
regulative superpositions or refinement morphisms, as we may want to extend the 
component by breaking encapsulation. This controlled breaking of encapsulation is 
necessary when dealing with many aspects. 

Definition 14.An extension morphism σ from a design (θ1, Λ1) to another design (θ2, 
Λ2) is a signature morphism σ such that: 

1 σγ is surjective. 
2 σα is injective. 
3 There exists a formula β, which contains only channels from (V2 − σα(V1)), 

such that β is satisfiable and t I2 ⇔ σ(I1) ∧ β.  

For every g ∈ Γ2 for which σγ (g) is defined,  

4 If v ∈ loc(V1) and g ∈ D2(σα(v)), then there exists a formula β, which con-
tains only primed channels from (V2’ − σα(V1)’), and β is satisfiable and 
such that t σ (L1(σγ(g))) ⇒ (R2(g, σα(v)) ⇔ σα(R1(σγ(g), v)) ∧ β). 

5 If v ∈ loc(V1), g ∈ D2(σα(v)), then v ∈ D1(σγ(g)).  
6 t (σ(L1(σγ(g))) ⇒ L2(g)). 
7 t (σ(U1(σγ(g))) ⇒ U2(g)). 

This definition of extension morphism was first given [8]. Because we expect that the 
extended design can replace the original design in a system and the clients of the 
original component should not perceive any difference, the first two conditions ensure 
the preservation of its interface. The initialization condition of the original design can 
be strengthened in its extended version, while respecting the initialization of the 
channels of the original component, as required in the third condition. The fourth 
condition indicates that the actions corresponding to those of the original design 
should preserve the assignments to old channels and the assignments to new channels 
must be realisable, when the safety guards of their image actions in the original design 
are satisfied. The fifth condition establishes that for each action of the extended de-
sign that is mapped to an action of the original design, it can only modify old channels 
that have been modified by the corresponding action of the original design. The last 
two conditions indicate that both the enabling and progress guards can be weakened, 
but not strengthened. 

Because an extension morphism relaxes the enabling guard of the source design, 
the reduct of a model of the target design may not be a model of the source design. 
However, the model-expansive property holds for extension morphism [8], which 
means the extended design can replace the source design and the clients of the origi-
nal design will not perceive the difference. 
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Proposition 5. Let σ be an extension morphism from a design (θ1, Λ1) to another 
design (θ2, Λ2). Then, every model of (θ1, Λ1) can be expanded to a corresponding 
model of (θ2, Λ2). 

The rationale behind the definition of extension morphisms is the characterization of 
the substitutability principle (a property that can be shown to fail for invasive super-
position, a more general and less predictable way of breaking encapsulation, as de-
fined in [15]). The above result shows that, if there exists an extension morphism σ 
between two designs (θ1, Λ1) and (θ2, Λ2) (and this extension is realisable), then all 
behaviours exhibited by (θ1, Λ1) are also exhibited by (θ2, Λ2). Since superposition 
morphisms, used as a representation of “clientship” (strictly, the existence of a super-
position morphism between two designs indicates that the first is part of the second, 
as a component is part of a system when the first is used by the system), restrict the 
behaviours of superposed components, it is guaranteed that all behaviours exhibited 
by a component when this becomes part of a system will also be exhibited by an ex-
tension of this component, if replaced by the first one in the system. Of course, one 
can also obtain more behaviours, and this is the intention behind the definition of 
extension morphisms,  resulting from the explicit use of new actions of the compo-
nent. But if none of the new actions are used, then the extended component behaves 
exactly as the original one did. 

Now we introduce the relationship of refinement between two components, which 
we need to enable us to use the architectural concept of connector. 

Definition 15. A refinement morphism σ from a design (θ1, Λ1) to another design (θ2, 
Λ2) is a signature morphism σ: θ1 → θ2 such that: 

1 For every i ∈ in(V1), σα(i) ∈ in(V2). 
2 σα is injective on input and output channels. 
3 σγ is surjective on shared actions in Γ1. 
4 t (I2 ⇒ σ(I1)). 
5 If v ∈ loc(V1), g ∈ Γ2 and σα(v) ∈ D2(g), then g is mapped to an action 

σγ(g) and v ∈ D1(σγ(g)).  

For every g ∈ Γ2 where σγ(g) is defined,  

6 If v ∈ loc(V1) and g ∈ D2(σα(v)), then t (R2(g, σα(v)) ⇒ σα(R1(σγ(g), v))).  
7 t (L2(g) ⇒ σ(L1(σγ(g)))). 

For every shared action g ∈ Γ1,  

8 t (σ(U1(g)) ⇒ ∧ U2(σγ 
-1(g))). 

A refinement morphism identifies a way in which design (θ1, Λ1) is refined by a more 
concrete design (θ2, Λ2). The first three conditions must be established to ensure that 
refinement does not change the interface between the system and its environment. 
Notice that we do not require σγ to be injective because the set of actions in the target 
design that are mapped to action g of the source design can be viewed as a menu of  
 



446 X. Ling, T. Maibaum, and N. Aguirre 

refinements that is made available for implementing g. Different choices can be made 
at different states to take advantage of the structures available at the more concrete 
level.  

As for the “old actions”, the last two conditions in the refinement morphism defini-
tion require that the interval defined by their enabling and progress conditions must be 
preserved or reduced. This is intuitive because refinement should reduce underspeci-
fication, so the enabling condition of any implementation must lie in the “old inter-
val”: the lower bound cannot be weakened and the upper bound cannot be strength-
ened. This is also the reason why the underspecification regarding the effects of the 
actions of the more abstract design are intended to be reduced. 

Proposition 6. The structure composed of CommUnity designs and superposi-
tion/refinement/extension morphisms constitutes a category SUP/REF/EXT, respec-
tively, where the composition of two morphisms σ1 and σ2 is defined in terms of the 
composition of the corresponding channel and action mappings of σ1 and σ2. 

So, we can build superpositions/refinements/extensions incrementally. Most im-
portantly, SUP has finite colimits, i.e., we can compute the system corresponding to a 
configuration of CommUnity designs whose channels and actions are synchronized 
via cables and superposition morphisms. So called higher order connectors [29] are 
defined in CommUnity to enable designers to use complex connectors between com-
ponents, in the style of software architecture approaches. These higher order connec-
tors are just CommUnity designs in which some components play a designated role, 
namely stating minimum requirements of actual components to be connected by the 
connector in question. One can instantiate a role with a ‘real’ component by defining 
a refinement from the role to the component. Thus, when designing a system using 
components and connectors, we may end up with a configuration in which we see 
both regulative superpositions and refinements. In order to calculate the intended 
system form this configuration, we must eliminate the refinements and thus get a 
configuration in SUP.  

Luckily, we have the following crucial result about the joint use of refinement and 
superposition morphisms. If we restrict the kinds of components used to interconnect 
components to so called cables, we can combine superposition morphisms from such 
a cable with a refinement. A cable is a design containing only input channels and its 
actions having the following form g: true -> skip. We only expect input 
channels in the cable, which can be used to interconnect designs, because output 
channels cannot be used to connect the input channel of one design with the output 
channel of another design, and it will make no sense to interconnect output channels 
of different designs. Also we set the enabling guard and progress guard of each ac-
tion in the cable to true and set R(g) to skip (by skip we mean this action has no 
effects on the local channels of the design), which is good enough to synchronize the 
actions. 

Proposition 7. Suppose m is a regulative superposition morphism from cable θ to 
design Ci and n is a refinement morphism from design Ci to design Ei; there exists a 
regulative superposition morphism n’ from cable θ to design Ei such that n’=n•m. 
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Fig. 1. Combining regulative superposition and refinement morphisms 

2   CommUnity and Extension Morophisms 

It has been shown in [5] that higher-order connectors provide a very convenient basis 
for enhancing the behavior of an architecture of component designs, by the superim-
position of aspects, such as fault tolerance, security, monitoring, compression, etc. 
Owing to the coordination mechanism of CommUnity, which externalizes completely 
the definition of interaction between components, the coupling between the compo-
nents has been reduced to a minimum so that we can superimpose aspects on existing 
systems through replacement, superposition and refinement of components. However, 
higher-order connectors are not powerful enough for defining various kinds of as-
pects, because some of them require extensions of the components and connectors [8], 
which break encapsulation of the extended component, though in a controlled and 
predictable way. (The usual relationships used in CommUnity, i.e., regulative super-
position and refinement, preserve encapsulation: channels (attributes) of the original 
component are not modified by new actions of the new component and actions of the 
original component can only have their enabling guards and effects strengthened in 
the new component.) Hence, we defined an extension morphism as a mechanism for 
modifying/adapting components, in a way that satisfies the notion of substitutability 
arising in the context of object oriented design and programming [8], enables us to 
predict properties of extended components in a safe manner and enables the design of 
various aspects [8].  

This means that in a well-formed configuration diagram we should be able to re-
place component C by its valid extension, component C’, and preserve the well form-
edness (our ability to compute the colimit) of the diagram. We prove this property in 
the next section. To illustrate the application of this principle in designing systems 
with the CommUnity language, a vending machine system example will be discussed 
below to show how we can combine regulative superpositions with extension mor-
phims to derive an “augmented” version of the original system, where the modified 
system is not simply a refinement of the original, nor is it a regulated version of the 
original obtained by the use of regulative superpositions (the usual structuring rela-
tionship in CommUnity). 

2.1   Combining Regulative Superpositions with Extension Morphisms 

In this section we will consider the case where, in a well-formed configuration dia-
gram, one component is extended by a design through an extension morphism. Since 
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we know that, in a well formed configuration diagram, all the components are inter-
connected by cables through regulative superposition morphisms, the component to 
be replaced by the extended design is connected to a cable by the regulative superpo-
sition morphism, as shown in Figure 2. We will show that the regulative superposition 
can be combined with the extension morphism to obtain a new regulative superposi-
tion from the cable to the extended component. This then allows us to apply the 
mechanisms of CommUnity to obtain the semantics of the extended configuration 
diagram, the colimit, which again consists of components connected through cables 
and superposition morphisms. Again, it is crucial to have the notion of cables to inter-
connect the components, to ensure that the composition of regulative superposition 
and extension morphism will give a new regulative superposition. 

 

Fig. 2. Combining regulative superposition and extension morphisms 

Proposition 8. Suppose m is a regulative superposition morphism from cable θ to 
design Ci and n is an extension morphism from design Ci to design Ei; there exists a 
regulative superposition morphism n’ from cable θ to design Ei such that n’=n•m. 
Proof 
The morphism n’ is defined as follows: 

• n’α is a total function: for every channel v in θ , n’α (v) = nα (mα (v)). 
• n’γ is a partial mapping: for every action g in Ei , if nγ(g) is defined and mγ(nγ 

(g)) is also defined, n’γ (g) = mγ(nγ (g)); otherwise, it is undefined.  

Since an extension morphism is also a signature morphism, we know n’ is a signature 
morphism. To check if n’ is a regulative superposition morphism, we need to check 
the following conditions: 

• IEi ⇒ n’(Iθ ). 

Because n is an extension morphism, there exists a formula α, using only channels 

contained in (∨Ei−nα(VCi )), and α is satisfiable, t IEi ⇔ n(I Ci )∧α. 
We have IEi ⇒ n(ICi ), ICi ⇒ m(Iθ ), so n(ICi ) ⇒ n(m(Iθ )) ⇔ n’(Iθ ), and IEi ⇒ n’(Iθ ). 

• If v ∈ loc(θ), g ∈ ΓEi and n’α(v) ∈ DEi(g), then g is mapped to an action 
n’γ(g) and v∈ Dθ(n’γ(g)). 

• For every g ∈ ΓEi where n’γ(g) is defined, if v ∈ loc(θ) and g ∈ DEi(n’α(v)), 
then REi(g, n’α(v)) ⇔ n’α(R θ(n’γ(g),v)). 

Because θ only contains input channels, loc(θ) is empty, so these two conditions hold. 
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• L Ei(g) ⇒ n’(Lθ(n’γ(g))). 
• UEi(g) ⇒ n’(Uθ (n’γ(g))). 

From our definition of “middle” design, Lθ(n’γ(g)) ⇔ true, Uθ(n’γ(g)) ⇔ true, so these 
two conditions hold. 

With this property, in a well-formed configuration diagram, we are able to replace 
a component by its extension component, by combining the regulative superposition 
from the cable to the old component with the extension morphism between the old 
component and its extension, to obtain a new regulative superposition from the cable 
to the extended component. If we build several extensions, each built on top of the 
previous one, then the fact that extensions compose in the category of CommUnity 
designs and extension morphisms guarantees that this composition is an extension. 
Hence, the above result still applies when we build extensions incrementally. There-
fore, we reach the conclusion that in a well-formed configuration diagram of a  
system, we can extend any subcomponents of the system (through extension mor-
phisms), and thus obtain an updated well-formed configuration diagram only con-
taining regulative superpositions, through which the semantics of the new system  
can be derived from its colimit. Moreover, it can be shown that the colimit of the 
new configuration diagram is an extension of the colimit of the old configuration  
diagram [8]. 

By examining the proof of proposition 8, we can see that, if θi is not a cable, the 
composition of a regulative superposition and an extension morphism may not give a 
regulative superposition. Therefore, it is necessary to enforce designs to be intercon-
nected by cables in a well-formed configuration diagram, so that the colimit will exist 
after extending any of the designs in the diagram through extension morphisms. (This 
result mimics the properties of refinements in the context of cables and regulative 
superpositions.) 

3   An Example Vending Machine System 

Now we want to model a system consisting of a customer and a vending machine with 
the DynaComm language, to illustrate the use of hierarchical design and then to illus-
trate the use of extension morphisms to enable us to modify our design in a way not 
allowed by refinements and regulative superpositions. The requirement of this system 
is described as follows: The vending machine maintains a list of items, along with the 
price and amount of each item. The customer can place an order by inputting the 
name of the item and the payment to the vending machine. Initially, we only allow the 
customer to order one item in a transaction; this will be extended later. The vending 
machine will check the price of the item and decide if the order is accepted. If so, it 
will deliver the item along with the change to the customer; otherwise, the payment is 
returned to the customer. Initially, the vending machine will only accept payment 
comprised of nickels, dimes, quarters and loonies (Canadian single dollars using the 
image of a local bird), so it will refuse the order if the customer puts a one cent piece 
in the payment slot. Meanwhile, if the vending machine is not able to make the 
change, it will also refuse the order and return the payment. 
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3.1   The Design of the Customer 

We consider the machine’s interface, operated by the customer, as the simulation of 
the customer’s behavior. To make the system simple and general at first, the interface 
is divided into two parts: the buttons and the slot. The names of different items label 
the corresponding item buttons, and after the customer presses one of them, other item 
buttons will be disabled, so that he can only choose one item in an order. Then the 
customer can choose the “confirm” button to continue the order, where the slot will 
indicate to him to put the coins in and the complete order will be sent to the vending 
machine. If the customer chooses the “cancel” button, all the item buttons will be 
enabled and he can start another order.   

The vending machine will check the price of this order and whether the ordered 
item is still available in its storage. If so, it will ask the slot to make the change. Then 
the vending machine will deliver the product to the slot and enable the item buttons, if 
the change can be made. Otherwise, the order will be refused and the payment is re-
turned to the customer. 

3.1.1   The Interface Controller  
According to the above requirement, the customer places his order of an item through 
the buttons (including the item buttons and the command buttons: confirm and cancel) 
on the machine’s interface, so we design an interface controller to model these but-
tons, as well as the customer’s interaction with the interface of the machine. A finite 
set of actions for the item buttons and “confirm”, “cancel” buttons are specified in the 
following design. The slot_get and slot_ret actions are designed to interact with  
the slot component to obtain the payment from the customer. Meanwhile, we use the 
order action to send the complete order to the vending machine, and after the order 
has been processed by the vending machine, the order_ret action will be called to 
reset the controller. 

 
design component controller 
in // the customer’s payment in the slot 

i_pay: int 
prv b_item: array(int); 

bt_g: bool;  //guard for item buttons 
bt_confirm: bool;  //guard for confirm/cancel buttons 
slot_g: bool;  // guard for slot get action 
s_req: bool; 
ord_g: bool;  // guard for order action 
o_req: bool 

out // order to vending machine 
c_item: list (int); 
c_pay: int 

init ord_g = false ∧ o_req = false ∧ bt_g = true ∧ bt_confirm 
= false ∧ slot_g = false ∧ s_req = false ∧ c_item = NULL 

actions 
button_select(id: int)[bt_g,c_item,bt_confirm]: bt_g, 
false ->  
bt_g’ = false ∧ c_item’ = c_item * b_item [id] ∧ 
bt_confirm’ = true 
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[] button_confirm[bt_confirm,slot_g]: bt_confirm, false ->  
bt_confirm’ = false ∧ slot_g’ = true 

[] button_cancel[bt_confirm,bt_g,c_item]: bt_confirm, false 
-> bt_g’ = true ∧ bt_confirm’ = false ∧ c_item’ = NULL 

[] slot_get[slot_g,s_req]: slot_g, false ->  
slot_g’ = false ∧ s_req’ = true 

[] slot_ret[c_pay, s_req, ord_g]: s_req, false ->  
c_pay’ = i_pay ∧ s_req’ = false ∧ ord_g’ = true 

[] order[o_req,ord_g]: ¬o_req ∧ ord_g, false ->  
o_req’ = true ∧ ord_g’ = false 
// enable all the item buttons 

[] order_ret[o_req, bt_g, c_item]: o_req, false ->  
o_req’ = false ∧ bt_g’ = true ∧ c_item’ = NULL 

endofdesign 

 
The input channel i_pay indicates the payment received from the customer. A fi-

nite set of item button actions (button_select) are defined, which correspond to the 
sequence of item buttons on the machine’s interface. These actions are examples of 
schema actions indexed by the id (in the above sequence) of the item buttons. Such 
schema actions may be used to describe succinctly a finite set of related actions, dis-
tinguishable by means of some index set. See [27] for a full explanation of such fami-
lies of actions and their precise semantics. We use a fixed size array b_item to store 
the item’s index in the storage of the vending machine, and the index of array b_item 
will correspond to the id of the item button, e.g., the second item button b_item[2] 
may correspond to the item index 6 in the item list of the vending machine’s storage.  

The workflow of the controller component is described as follows. After one item 
button is selected, the guard bt_g is set to false to disable all the item buttons, so that 
the customer can only choose buttons confirm or cancel (as the enabling guards of 
other actions are disabled). If he chooses the confirm button, the guard slot_g is en-
abled and the slot_get action will be executed to request the customer’s payment in 
the slot component. If the cancel option is selected, the controller will enable all the 
item buttons and wait for the customer’s input of a new transaction. After the payment 
is obtained from the slot, the order action will be called and it will send the order  
 

 
Fig. 3. Graphical representation of the controller component 
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(c_item, c_pay) to the vending machine, then wait for the result of the order. After the 
vending machine processes the order and indicates the result to the order_ret action of 
the controller, the order_ret action will reset the item buttons and the c_item list, to be 
ready to accept another order. The graphical notation for the (syntax of the) controller 
component is shown in Figure 3 (we suppress private channels and actions): 

Notice that we use a number of guards to control the sequence of actions in the 
controller, and the correctness of our design can be ensured by maintaining the right 
workflow of the component through the appropriate use of these guards. We also use 
the list data structure to record the ordered items, although currently only one item is 
allowed in the order. The reason is that in the different kinds of design morphisms we 
have discussed so far, the mapping of channels requires the types of channels to be 
preserved. (Refinement morphisms do not support data refinement, so a refinement 
solution to get around this problem is not available.) If we use one channel of integer 
type to record the ordered item now and there is a new requirement to allow the cus-
tomer to select multiple items in an order, we have to add new channels to the com-
ponent and modify the corresponding actions as well, which seems awkward. There-
fore, we choose the list data structure for the ordered items and the corresponding 
actions are designed to process the list of items. 

We have also designed a pattern for a pair of actions of one component (e.g. 
slot_get and slot_ret), which sends a request to another component and waits for its 
response to proceed. The trick is to assign a guard (initialized to be false) to the call-
back action to make sure that it will not be called arbitrarily in an unexpected situa-
tion, and it will only be enabled in the request action.  

3.1.2   The Slot 
The slot component takes care of the acceptance of the customer’s payment and de-
cides if the correct change can be made depending on its current store of coins. When 
the interface controller requests the payment from the customer, the slot will distin-
guish the various kinds of coins and it will refuse the payment and indicate this event 
to the controller if there exists an illegal coin in the customer’s input. Otherwise, it 
will store the coins and send the payment amount to the controller. Regarding the 
function for making the change, the slot is able to compute the composition of coins 
for the amount of change requested by the vending machine, based on its current 
store. If the computation is not successful, the vending machine will refuse the order 
and inform the slot to return the payment, which can certainly be made. 

In the following design of component slot, a set of input channels such as i_dollar, 
i_quarter, etc. represents the payment from the customer, a set of private channels is 
included as the coin store of the slot, and we also use output channels o_nickel, 
o_dime, o_quarter and o_dollar to represent the change made by the slot. The get_pay 
action stores the coins in the payment and the send_pay action puts the amount of 
payment in the output channel o_pay. According to the amount of change that should 
be made in the input channel r_change, the comp_change action will compute the 
composition of coins, and the send_change action will send the result of the computa-
tion (change_res) and update the storage of coins if needed. While the ordered item is 
accepted by the action rec_item, and the rec_return action receives the returned pay-
ment amount and returns the coins to the customer. 
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design component slot 
in  // input coins from customer 

i_cent: int; 
i_nickle: int; 
i_dime: int; 
i_quarter: int; 
i_dollar: int; 
// received change amount and items from vending machine 
r_change : int;  
r_item: list(ITEM) 

prv // coins storage 
s_nickle: int; 
s_dime: int; 
s_quarter: int; 
s_dollar: int; 
// guards for action sequence 
get_g: bool;   
change_g:bool; 
item_g: bool 

out // changes made by the slot 
o_nickle: int; 
o_dime: int; 
o_quarter: int; 
o_dollar: int; 
s_item: list (ITEM);  // items to slot 
o_pay: int; // payment amount to the controller 
change_res: bool 

init get_g = true ∧ change_g = true ∧ change_res = false ∧ 
item_g = false  

actions 
get_pay[get_g, s_nickle, s_dime, s_quarter, s_dollar]: 
get_g ∧ i_cent = 0, false ->  
get_g’ = false ∧ s_nickle’ = s_nickle + i_nickle ∧ 
s_dime’ = s_dime + i_dime ∧ s_quarter’ = s_quarter + 
i_quarter ∧ s_dollar’ = s_dollar + i_dollar 

[] send_pay[get_g, o_pay]: ¬ get_g, false ->  
get_g’ = true ∧ o_pay’ = 100*i_dollar + 25*i_quarter + 
10*i_dime + 5*i_nickle 

[] comp_change[change_g, change_res]: change_g, false ->  
get_changed ∧ change_g’ = false 

[] send_change[change_g]: ¬change_g, false ->  
change_g’ = true ∧ (change_res = true ⇒  item_g’ = true ∧ 
s_nickle’ = s_nickle - o_nickle ∧ s_dime’ = s_dime -  
o_dime ∧ s_quarter’ = s_quarter - o_quarter ∧ s_dollar’ = 
s_dollar - o_dollar) 

[] rec_item[s_item, item_g]: item_g, false ->  
s_item’ = r_item ∧ item_g’ = false 

[] rec_return[ret_g, s_item,]: true, false ->  
s_item’ = NULL ∧ get_changed 

endofdesign 
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In the above design, we assume the function to compute the composition of 
change, namely get_change, has already been defined, which takes r_change as input 
and computes the number of nickels, dimes, quarters and dollars. If the computation is 
successful, it will set change_res to be true and the output channels for the change. 
Otherwise, change_res is set to false and this event is sent to the vending machine. 
Actually, get_change solves a linear programming problem, which takes s_nickel, 
s_dime, s_quarter, s_dollar and r_change as parameters. To simplify the specification 
of the slot component, we do not describe the detailed procedure here.  

The workflow of the slot component is described as below. When the interface 
controller requests the payment from the customer, the get_pay and send_pay actions 
will be executed to provide the payment amount to the controller. After the vending 
machine receives the order and recognizes that the payment is enough, it will ask the 
slot to compute the change. So, the comp_change action is called and the result of 
computation (change_res) is sent to the vending machine by the send_change action. 
If the result is successful, the change is given to the customer by the slot and the 
vending machine will send the product to the slot by means of the rec_item action. 
Otherwise, the rec_return action will get the amount of payment from the vending 
machine and give it back to the customer by calling the get_change function. The 
graphical notation for the slot component is as follows, where we again suppress the 
private channels and actions. 

 
Fig. 4. Graphical representation of the slot component 

3.2   The Design of the Vending Machine 

Based on the functional requirement of the vending machine, we will divide it into 
two components: vender and inventory, where the vender is in charge of the interac-
tion with the customer interface (controller and slot), and the inventory serves as a 
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database for storing the actual products (items) and maintaining the price and amount 
of each item. 

3.2.1   The Vender 
The job of the vender is to accept the order from the customer (the accept action), ask 
the inventory to check the price and amount of the ordered item(s) (actions check_inv 
and check_ret), send the amount of change to the slot and ask if the change can be 
made (actions change and change_ret), request the item(s) from the inventory (actions 
req_item and req_return), deliver the item(s) to the customer (the delivery action) or 
return the payment (the return_ord action), and inform the interface controller to be 
reset to start a new order (the reset_controller action). The design of the vender com-
ponent is as follows, the meaning of the channels being explained in the comments. 
 
design component vender 
in // the ordered item(s) and payment from the controller 

in_item: list(int); 
in_pay: int; 
// the price of the ordered item(s) from the inventory 
inv_price: int;  
inv_item: list(ITEM); 
// the result of checking whether the change can be made 
from the slot 
chg_res: bool 

prv // the set of guards to control the sequence of actions 
ac: bool; 
ck: bool; 
cg: bool; 
rt: bool; 
rq:bool; 
rc: bool; 
dl:bool; 
// stores the requested item(s) from the inventory 
v_item: list(ITEM); 
// stores the order and payment from the customer 
ord_item: list(int); 
ord_pay: int 

out // the order and payment to be sent to the inventory 
ck_item: list(int); 
ck_pay: int; 
// the amount of change to be sent to the slot 
chg_amt: int; 
// the ordered item(s) sent to the customer 
out_item: list(ITEM); 
// the returned amount of payment to be sent to the slot 
ret_amt: int 

init ac’ = false ∧ ck’ = false ∧ cg’ = false ∧ rt’ = false ∧ 
dl’ = false ∧ rq’ = false ∧ rc’ =false 

actions 
       [ac, ord_item, ord_pay, ck]: ¬ac, false ->  

ac’ = true ∧ ord_item’ = in_item ∧ ord_pay’ = in_pay ∧ ck’ 
= true 
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[]  check_inv[ck, ck_item, ck_pay]: ck, false ->  
ck_item’ = ord_item ∧ ck_pay’ = ord_pay ∧ ck’ = false 

[]  check_ret[cg, rt, v_item]: true, false ->  
(inv_price >= 0 ⇒ cg’ = true) ∨(inv_price = 0 ⇒ rt’ = 
true) 

[]  change[cg, chg_amt]: cg, false ->  
chg_amt’ = ord_pay － inv_price ∧ cg’ = false 

[]  change_ret[rq, rt ]: true, false ->  
(chg_res = true ⇒ rq’ = true) ∨(chg_res = false ⇒ rt’ 
= true) 

[]  req_item[rq, ck_item]: rq, false ->  
ck_item’ = ord_item ∧ rq’ = false 

[]  req_return[v_item, dl]:true, false ->  
v_item’ = inv_item ∧ dl’ = true 

[]  return_ord[rt, ret_amt, out_item, ac, rc]: rt, false ->  
rt’ = false ∧ ret_amt’ = ord_pay ∧ out_item’ = NULL ∧ 
rc’ = true 

[]  delivery[dl, ac, out_item]: dl, false ->  
dl’ = false ∧ out_item’ = v_item ∧ rc’ = true 

    // inform the controller to accept another order 
[]  reset_controller[rc]: rc, false ->  

rc’ = false ∧ ac’ = false 
endofdesign 

 
According to the initialization condition of this design, only the accept action is 

enabled and it is synchronized with the order action of controller to accept the order 
of the customer. It also sets the guard ck to be true, so that the check_inv action will 
be executed to ask the inventory to check the price and amount of the ordered item(s). 
The check_ret action waits for the response from the inventory: if inv_price>=0, it 
means that the transaction can continue and this action sets the guard cg to be true, to 
call the slot to check if the change can be made; otherwise, it enables the guard rt to 
call the return_ord action, if any item is not available or the payment is not enough.  

If the order can continue, the change action is synchronized with the comp_change 
action of the slot to make the appropriate change to the customer. Then the change_ret 
action will wait for the response from the slot indicated by the input channel chg_res: 
if the change can be made, the vender will request the item from the inventory using 
the req_item action, which is synchronized with the rec_req action of the inventory; 
otherwise, the return_ord action is called to return the payment. After the vender re-
ceives the requested item from the inventory using the req_return action, the delivery 
action will be called, which is synchronized with the rec_item action of the slot to 
deliver the item. Otherwise, the action return_ord will be executed and the slot’s ac-
tion rec_return will be synchronized to return the payment to the customer. Finally, 
the vender will call the reset_controller action to synchronize with the order_ret  
action of the controller to inform it that the next order can now be taken. 

The graphical notation for the vender component is depicted in Figure 5 below (we 
ignore private channels and actions). 
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Fig. 5. Graphical representation of the vender component 

Again, we use a set of guards to control the sequence of actions in the vender com-
ponent, and, in the above explanation of the component’s work mechanism, we are 
able to control the right workflow of the design through the appropriate use of these 
guards, so that the correctness of our design can be ensured. 

3.2.2   The Inventory 
The inventory component maintains a list of items along with their price and remain-
ing amount: (item_id:int, item:ITEM, price:int, amount:int), where item_id is the 
item’s index in the storage and item represents the real item product. We use an array 
db (with a fixed size) to store this list of items, and the index of this array corresponds 
to item_id. Meanwhile, we assume functions first, second and third have been defined 
to return the first, second and third member of db, respectively. 

The private action count_item calculates the amount of each ordered item and 
stores it in the channel s_item. It also computes the total price of the order. The 
check_price action goes through the inventory database and compares the amount of 
each ordered item with the amount of that item in the storage. If the storage is not 
enough or the payment is less than the price of the order, the output channel will be 
set to 0; otherwise, it will set to the value in p_price. The get_item action will retrieve 
the items from the storage according to the order and update the db channel. The 
specification of the inventory component is as follows: 
 
design component inventory 
in // the ordered item(s) and payment from the vender 

i_item: list (int); 
i_pay: int 
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prv // stores the ordered item(s) 
p_item: list (int); 
r_item: list (int); 
p_price: int; 
// array index is item id 
db: array (ITEM, int, int); 
// stores the amount of each ordered item, all the en-
tries are initialized to be 0. 
s_item: array (int);  
j :int; 
// the guards to control the sequence of actions 
price_g: bool; 
amt_g: bool; 
ret_g: bool; 
send_g : bool 

out o_item: list (ITEM); 
// the price of the order sent to the vender 
o_price: int 

init p_item = NULL ∧  price_g = false ∧ amt_g = false ∧ ret_g 
= false ∧ o_price = 0 ∧ o_item = NULL ∧ r_item = NULL ∧ 
send_g = false 

actions 
check[]: true, false -> p_item’ = i_item 

[] prv count_item[]: p_item != NULL, false ->  

s_item[head(p_item)]’ = s_item[head(p_item)] + 1 ∧ 
p_price’ = p_price + second(db[head(p_item)]) ∧ p_item’ = 
tail(p_item) ∧ (tail(p_item) = NULL ⇒ price_g’ = true) 

[] prv check_price[: price_g, false ->  
price_g’ = false ∧ ((i_pay >= p_price ⇒ amt_g’ = true ∧ j’ 
= 1) ∨(i_pay < p_price ⇒ ret_g’ = true ∧ o_price’ = 0)) 

[] prv check_amt[]: amt_g ∧ (j <= sizeof(db)) , false -> 
((s_item[j] <= third(db[j]) ⇒ j’ = j + 1 ∧ (j =sizeof(db) 
⇒ ret_g’ = true ∧ o_price’ = p_price)) ∨(s_item[j] > 
third(db[j]) ⇒ amt_g’ = false ∧ o_price’ = 0 ∧ ret_g’ = 
true)) 

[] inv_ret[]: ret_g, false -> ret_g’ = false 
[] rec_req[]: true, false -> r_item’ = i_item 
[] prv get_item[]: r_item != NULL, false -> o_item ’ = 

o_item * first(db[head(r_item)]) ∧ 
third(db[head(r_item)])’ = third(db[head(r_item)])-1 ∧ 
r_item’ = tail(r_item) ∧ (tail(r_item) = NULL ⇒ send_g’ 
= true) 

[] send_item[]: send_g, false -> send_g’ = false 
endofdesign 
 

The workflow of this component is as follows. First, the check action is called to 
enable the guard of the count_item action. Then the action check_price is called to 
decide if the total price is less than ck_pay. If so, the inv_ret action will be enabled to 
return the result (inv_price) to the vender. Otherwise, the check_amt action is exe-
cuted to check if the amount of each ordered item in the inventory is greater than the 
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number of this item requested in the order. If so, it will call action inv_ret to return 
inv_price > 0 (the total price of the items in ck_item); otherwise, it will return 
inv_price = 0 in the inv_ret action. After the vender verifies that the change can be 
made, it will call the req_item action, which is synchronized with the rec_req action 
of the inventory, to get the ordered items and update the storage, and the inventory 
has the send_item action to send the ordered items back to the vender. 

Notice that in the count_item action we use the guard p_item != NULL to iterate 
through the list of ordered items. It can be generalized as a mechanism to implement 
the loop structures in the DynaComm language. (See future work.)   

3.2.3   The Vending Machine Subsystem 
According to our design of the vender and inventory components and the discussion 
of their interactions, we can put them together by interconnecting the vender and the 
inventory through a cable. The CommUnity Workbench like notation of Figure 5 
describes the configuration diagram of the vending machine subsystem. The solid 
circles attached to a component description represent elements of the interface of that 
component. A line connecting two such interface elements, say sync1 of cable and 
chaeck_inv of Vender, indicate that in the categorical diagram corresponding to that 
of Figure 5, the regulative superposition from cable to Vender maps the action sunc1 
to the action check_inv. So, this configuration diagram corresponds exactly to a well 
defined and well formed diagram in the category of CommUnity designs and regula-
tive superposition morphisms. The colimit of this categorical diagram is the intended 
semantics of the configuration. 

The specification of the vending machine subsystem can be obtained easily from 
the above configuration diagram and we do not describe it in detail here. We can also 
determine the interface of this subsystem by looking at the left part interface of the 
vender component in the diagram, which will interact with the interface controller and 
the slot.  

 

 

Fig. 6. Configuration diagram of the vending machine subsystem 
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Now we can put the vending machine subsystem together with the interface part 
(the controller and slot) to obtain the required vending machine system, which satis-
fies the design requirements, and the morphims between them are described in the 
configuration diagram depicted in Figure 6. 

The interface of the vending machine system is shown in the left interface section 
of the controller component and the right interface section of the slot component, in 
which the controller provides the buttons for the customer to select his favorite item 
and confirm or cancel the order, and the slot indicates to the customer to put the coins 
in and to get his ordered item and change. 

3.3   The Extended Vending Machine System 

Now we want to add more behaviors to the vending machine system to improve the 
quality of its service. There are two extensions to be made, one for allowing a cus-
tomer to order more than one item in a single transaction and the other to allow more 
kinds of coins to be used in payments, and we will show that they can only be 
achieved by the usage of extension morphisms. 

3.3.1   The Extension Allowing Multiple Items in an Order 
One extension we want to make is to allow the customer to select more than one item 
in an order, which should be done in the controller component. We must modify the 
actions of item buttons to achieve this effect. First, we will extend the controller com-
ponent and show there is an extension morphism from the old controller to this ex-
tended new component. Then a proof is given to justify that it is impossible to regu-
late or refine the controller to obtain the required functionality and the extension mor-
phism is necessary for our purpose.   

We introduce a new channel ac: bool (initialized to be true) and weaken the guards 
of item buttons actions by taking the disjunction of ac with bt_g. The modified actions 
of the controller are as follows: 

 

init ord_g = false ∧ o_req = false ∧ bt_g = true ∧ bt_confirm 
= false ∧ slot_g = false ∧ s_req = false ∧ c_item = NULL 
∧ ac = true 

actions 
button_select(id: int) [bt_g,c_item,bt_confirm] :  
bt_g ∨ ac, false -> bt_g’ = false ∧ c_item’ = c_item * 
b_item [id] ∧ bt_confirm’ = true 

[} button_confirm[bt_confirm,slot_g,ac] : bt_confirm, false 
-> bt_confirm’ = false ∧ slot_g’ = true ∧ ac’ = false 

[] button_cancel[bt_confirm,ac,bt_g,c_item] : bt_confirm, 
false -> bt_g’ = true ∧ ac’ = true ∧ bt_confirm’ = false ∧ 
c_item’ = NULL 

[] order_ret[o_req,bt_g,c_item,ac]: o_req, false -> o_req’ = 
false ∧ bt_g’ = true ∧ c_item’ = NULL ∧ ac’ = true 

 

We call the extended version of the controller component controller’. It is easy to 
determine that controller’ satisfies the new requirement. After the customer selects an 
item button, the enabling guards of button_select actions will remain true because ac  
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Fig. 7. Configuration diagram of the vending machine system 

is true. They will not be disabled until the customer selects the confirm button, and 
after the vending machine subsystem informs the controller that the order has been 
processed by calling the order_ret action, all the item buttons will be reset. 

We need to show that there exists an extension morphism from the old controller 
component (say P1) to controller’ (say P2). The morphism σ is defined as follows: the 
mapping of the channels σα will map each channels of P1 to the identical channel of 
P2, and σγ defines the mapping of actions from each action in P2, to the identical ac-
tion in P1.  

Lemma 1. σ is an extension morphism from P1 to P2.  

Proof  
First we will show that σ is a signature morphism. Since the mappings of channels 
and actions are the identity, it is easy to see that all the conditions of a signature mor-
phism are satisfied, except possibly for the condition σα(D1(σγ(g)) ⊆ D2(g). Since the 
actions in P2 keep the effect of assignment to the mapped channels of P1, this condi-
tion also holds. Therefore, σ is a signature morphism. 
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Then we will check the conditions of extension morphisms according to definition 14: 

• Obviously σγ  is surjective and σα is injective. 
• There exists a formula α, which contains only channels from (V2  − σα(V1)), 

and α is satisfiable, t I2 ⇔ σ(I1) ∧ α.  As α ⇔ ac = true, this condition 
holds.  

For every g ∈ Γ2 where σγ (g) is defined,  

• If v ∈ loc(V1) and g ∈ D2(σα(v)), then there exists a formula α, which con-
tains only primed channels from (V2’ − σα(V1)’), and α is satisfiable, t σ 
(L1(σγ (g))) ⇒ (R2(g, σα(v)) ⇔ σα(R1(σγ (g), v)) ∧ α) . 

o For action button_confirm, α ⇔ ac’ = false, this condition holds. 
o For action button_cancel, α ⇔ ac’ = true, this condition holds. 
o For action order_ret, α ⇔ ac’ = true, this condition holds. 

• If v ∈ loc(V1), g ∈ D2(σα(v)), then v ∈ D1(σγ(g)). Since the mappings of 
channels and actions are the identity and the actions in P2 maintain the effect 
of assignments to the mapped channels of P1, this condition will hold. 

t (σ(L1(σγ (g))) ⇒ L2(g)). For each action button_select(id: int), bt_g ⇒ bt_g ∨ ac. 
t (σ(U1(σγ (g))) ⇒ U2(g)). The progress guards of each mapped action are the same. 

Lemma 2. The new functional requirement cannot be achieved by regulating or refin-
ing the controller component. 

Proof  
The enabling guards of these button_select actions cannot be strengthened because, in 
that case, all the buttons will be disabled after the customer selects one item button. 
The justification for this statement is as follows: 

Suppose we have regulated or refined the controller component, then, in the target 
component, the enabling guards of the button_select actions will be strengthened; say 
one of the actions is g, its enabling guard is f and f ⇒ σ(bt_g) (bt_g must be trans-
lated). According to the definition of regulative superposition and refinement mor-
phism, we have R2(g, σ(bt_g)) ⇒ σ(R1(σγ(g), bt_g)). Since bt_g is set to false after 
the button_select action is called in the old controller, we know that σ(bt_g) should 
also be set to false after the execution of g in the extended controller. Because we 
have f ⇒ σ(bt_g) and it should hold all the time, if σ(bt_g)’ is false, we know f’ must 
be false. Therefore, after the button_select action is executed in the target component, 
this action will be blocked, which means this item button is disabled. 

3.3.2   The Extension of Payment Options 
We expect that instead of only accepting payment consisting of nickels, dimes, quar-
ters and loonies, the vending machine system can also accept payment including one 
cent pieces and make the correct change. It is clear that we cannot refine or regulate 
component slot to achieve this goal, because we must modify its action get_pay and 
relax its enabling guard, which is not allowed in regulative superpositions and refine-
ment morphisms. Therefore, we have to apply an extension morphism to the slot by 
modifying the get_pay action as follows and obtain the extended slot component. 
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get_pay [get_g, s_nickle, s_dime, s_quarter, s_dollar, s_cent]:  
get_g, false -> get_g’ = false ∧ s_nickle’ = s_nickle + i_nickle 
∧ s_dime’ = s_dime + i_dime ∧ s_quarter’ = s_quarter + i_quarter 
∧ s_dollar’ = s_dollar + i_dollar ∧ s_cent’ = s_cent + i_cent 
Notice that we need to add a new channel s_cent into the slot component to store 

the cents and make the corresponding assignment to this channel. However, based on 
the definition of extension morphism, there will exist an extension morphism from the 
old component to this extended component (the proof is similar to the case above). 
For the same reason, we can modify the following actions of the slot component as 
well (and add the channel o_cent): 

 

send_pay [get_g, o_pay]:  
¬ get_g , false -> get_g’ = true ∧ o_pay’ = 100*i_dollar + 
25*i_quarter + 10*i_dime + 5*i_nickel + i_cent 
 
send_change [change_g]:  
¬change_g, false -> change_g’ = true ∧ ( change_res = true ⇒  
item_g’ = true ∧ s_nickle’ = s_nickle - o_nickle ∧ s_dime’ = 
s_dime - o_dime ∧ s_quarter’ = s_quarter - o_quarter ∧ 
s_dollar’ = s_dollar - o_dollar ∧ s_cent’ = s_cent – o_cent)  

Since we have divided the functionality of the system in an appropriate way, we 
can simply reuse the vending machine subsystem and the controller component. 

4   Conclusions 

Extension morphisms were originally motivated by their use in the application of 
aspects [8]. The examples developed in [8] were related to the application of a moni-
toring and a performance aspect to an unreliable communication system. We would 
like to impose behaviour on the existing architecture of an unreliable medium be-
tween a sender and receiver, to make the communication reliable by implementing a 
reset in the communication when packets are lost. The mechanism we used was very 
simple, and required a “reset” operation in the sender, which can be achieved by 
component extension. In order to complete the enhanced architecture to implement 
the reset acknowledgement mechanism, we need a monitor that, if it detects a missing 
packet, issues a call for reset. The idea is that, if a message is not what the monitor 
expected, then it will go to a “reset” cycle, and wait to see if the expected packet ar-
rives. If the expected packet arrives, then the component will start waiting for the next 
packet. (Note that, since the superposed monitor is spectative, i.e., it has no effect on 
the underlying component – simply “observing” it.) Because of the properties of ex-
tension, we can guarantee that, if the augmented system works without the need for 
reset in the communication, i.e., no messages are lost, then its behaviour is exactly the 
same as the one of the original architecture with unreliable communication. 

As we hope to have demonstrated in this paper, extension morphisms have a life of 
their own, independently of their usefulness in defining some aspects. They provide 
an interesting and predictable mechanism for software architects interested in change 
and evolution of their designs. 



464 X. Ling, T. Maibaum, and N. Aguirre 

We have said very little about the new features of DynaComm, as this was unnec-
essary to talk about extensions. However, many aspects cannot be dealt with without 
hierarchical designs incorporating subsystem specific dynamic reconfigurability. This 
is what DynaComm sets out to provide. It also offers mechanisms to make design of 
architectures easier, such as the idea of indexed actions: a family of actions that “do 
the same thing” but to different elements, which can be indexed via a finite set of 
names. We are developing a DynaComm Workbench on the basis of experience with 
the CommUnity Workbench [37]. We are also putting together a catalogue of aspects 
and methods for developing formalizations of them. In particular, we are interested in 
reasoning about the applications of aspects to architectures to provide analyses for 
systems built in this way. 
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Abstract. A temporal logic with constrained event modallities, TLCE,
is proposed to represent test purposes for testing concurrent programs.
The logic is capable can express not only temporal relationships among
input and output events, but also data dependencies between event
parameters. A TLCE-based test generation algorithm is developed to
automatically derive symbolic test cases that incorporate given data de-
pendency constraints as verdict conditions. The advantage of the ap-
proach is demonstrated with a case study on a cache coherence protocol.

1 Introduction

The symbolic test generation method was proposed for the conformance testing
of reactive systems, where the models, test purposes and test cases are all rep-
resented as symbolic transition systems [RdBJ00, CJRZ02, RMJ04]. However,
only the temporal relationships among input/output (I/O) events are concerned
therein. This would result in less precise test cases, where the relevancy among
event parameteres are ignored. [JJRZ05] improved the method with an approx-
imate analysis on reachability/co-reachability. But in practice, it is still tedious
and error-prone to represent test purposes as transition systems.

A predicate sequencing constraint logic (PSCL) was proposed in [WL05] as
an alternative way to represent test purposes concerning data dependencies be-
tween event parameters. A PSCL-based symbolic test generation algorithm was
also developed there. The approach allows automated test generation based on
first-order temporal properties, and releases the effort in constructing transition
systems for test purposes.

This paper presents a temporal logic with constrained events (TLCE) which
refines PSCL, so that test purposes can be described in a simpler and more
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natural manner. Moreover, we revise the algorithm of [WL05] to work for TLCE-
based symbolic test generation, and present experimental results to demonstrate
the effectiveness of our approach.

The rest of the paper is organized as follows. Section 2 presents TLCE with
its syntax and semantics. The TLCE-based symbolic test generation algorithm
is introduced in Section 3. Section 4 illustrates a case study on a cache coherence
protocol. The paper is concluded with Section 5.

2 A Temporal Logic with Constrained Events

We presuppose the following syntactic categories: Val is a set of values ranged
over by v; Var is a set of variables ranged over by x, y, z; a valuation is a total
mapping from Var to Val , denoted by ρ; a substitution v̄/z̄ maps z̄ to v̄. Let b
range over boolean expressions over Val ∪ Var , and c over channel names. The
syntax of TLCE is given by the following BNF-definition:

β ::= c?z̄ | c!z̄
η ::= Gϕ | ϕUϕ
ϕ ::= tt | ¬ ϕ | ϕ ∧ ϕ | Eη | Aη | 〈β : b〉ϕ | [β : b]ϕ

TLCE can be seen as a first-order extension of CTL [CGP99]. The operators
〈β : b〉 and [β : b] are constrained input/output modalities. Intuitively, 〈c?z̄ : b〉
specifies an input event on channel c such that the received values, to be stored
in the variables z̄, satisfy b; similarly, 〈c!z̄ : b〉 says an output event must occur
on channel c such that the output values, stored in the variables z̄, satisfying b.

The semantics of TLCE is defined over a labeled transition system as follows:

s �M
ρ 〈c?z̄ : b〉ϕ There exists a s′ ∈ S such that for any v̄ ∈ V al|z̄|

(ρ{v̄/z̄} � b), s
c?v̄−−→ s′ and s′ �M

ρ{v̄/z̄} ϕ.
s �M

ρ 〈c!z̄ : b〉ϕ There exist s′ ∈ S and v̄ ∈ V al|z̄| (ρ{v̄/z̄} � b) such
that s

c!v̄−−→ s′ and s′ �M
ρ{v̄/z̄} ϕ.

s �M
ρ [c?z̄ : b]ϕ For any s′ ∈ S, v̄ ∈ V al|z̄| (ρ{v̄/z̄} � b), if s

c?v̄−−→ s′, then
s′ �M

ρ{v̄/z̄} ϕ.
s �M

ρ [c!z̄ : b]ϕ For any s′ ∈ S, if there exists v̄ ∈ V al|z̄| (ρ{v̄/z̄} � b)
such that s

c!v̄−−→ s′, then s′ �M
ρ{v̄/z̄} ϕ.

s �M
ρ ¬ ϕ s �

M
ρ ϕ.

s �M
ρ ϕ1 ∧ ϕ2 s �M

ρ ϕ1 and s �M
ρ ϕ2.

s �M
ρ E[G ϕ] There exists a path π from s such that for all j ≥ 0,

sj �M
ρ ϕ.

s �M
ρ A[G ϕ] For every path π from s and all j ≥ 0, sj �M

ρ ϕ.
s �M

ρ E[ϕ1 U ϕ2] There exists a path π from s and a k ≥ 0 such that
sk �M

ρ ϕ2 and for all 0 ≤ j < k, sj �M
ρ ϕ1

s �M
ρ A[ϕ1 U ϕ2] For every path π from s, there exists a k ≥ 0 such that

sk �M
ρ ϕ2 and for all 0 ≤ j < k, sj �M

ρ ϕ1
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where s �M
ρ ϕ means that ϕ holds at state s of labeled transition system M ,

under valuation ρ.

3 Symbolic Test Generation

In this section, we briefly introduce the TLCE-based symbolic test generation
algorithm with a running example [JJRZ05], depicted in Fig. 1(a). The related
details can be referred to [WL05].

Given a system model and a test purpose in TLCE, the workflow of our
approach is as follows: (1) Make the system model deterministic by eliminating
internal transitions and resolving conflict I/O transitions; (2) Slice the resulting
model according to the specified temporal relationship in the test purpose; (3)
Customize the resulting model slice as a symbolic test case according to the
specified data dependency constraints in the test purpose.

The test purpose represented as a transition system in Fig. 2 of [JJRZ05] can
be directly described as a TLCE formula EF(〈a?x : x ≤ 3〉EF(〈ok!p : p ==
3〉tt)), where EF(ϕ) = E(tt U ϕ). The corresponding model slice is shown in
Fig. 1(b). Such a model slice can then be customized by setting the data de-
pendency constraints as verdict conditions. The resulting symbolic test case is
shown in Fig. 1(c), where δ represents the absence of the expected events, Trap
indicates that some unexpected event or δ happens, and $ marks the end of
testing with some verdict (PASS, FAIL, INCONClusive) assigned.

Idle

RecX

RecY

Cmp

End
start?end!

x 0,
a?y

a?xx<0,
error!x

y<0,
error!y

y 0
-2 y-x 2,
p:=y-x,
ok!p

y 0
(y-x >2
y-x < 2),
nok!(x,y)

(a) Model

Idle

RecX

RecY

Cmp

start?

x 0,
a?y

a?x

y 0
-2 y-x 2,
p:=y-x,
ok!p

RecX

(b) Slice

Idle

RecX

RecY

Cmp

start?

x 3,
a?y

a?x

2
p:=y-x,
ok!p

y x

RecX

$

p==2,
verdict!PASS

p!=2,
verdict!FAIL

Trap

verdict!FAIL

y!=x+2,
verdict!INCO

x<3,
verdict!INCO

End
end!

verdict!INCO
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Fig. 1. Symbolic Test Generation
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Table 1. Test Results

TorX TorX
No. FD(%) S

FD(%) S
No. FD(%) S

FD(%) S

1 64.79 11.39 99.50 9.42 8 6.03 12.55 - -
2 64.79 11.39 97.00 10.10 9 10.82 14.19 39.50 18.63
3 13.42 8.41 - - 10 1.23 7.44 19.50 16.95
4 22.19 5.08 - - 11 20.00 29.30 - -
5 0.14 2.00 - - 12 0.68 19.10 30.00 21.53
6 37.53 11.96 40.50 19.98 13 38.36 4.00 - -
7 0.27 4.50 14.00 19.54 14 0.96 14.92 29.50 19.97

4 Case Study

We revise the symbolic test generation algorithm in [WL05] to adapt the syn-
tax and semantics of TLCE. The TorX tool environment [TB02] is used as the
execution engine for test campaigns.

A cache coherence protocol [GG04] is considered for a case study. The pro-
tocol aims to maintain the cache coherence among multi-processors with shared
memory. We construct a system model with 3 processes, based on the formal
description of the protocol presented in [PLL06], and design 6 test purposes in
TLCE, concerning the features defined in the protocol specification.

In total 730 test cases are derived by our tool, of which the state and transi-
tion coverage are both 100%. 14 erroneous mutants of the protocol are tested to
evaluate the effectiveness of these test cases. Table 1 illustrates the test results,
where FD stands for fault detection ratio [WST+05], column S shows the av-
erage number of steps that TorX has run to detect a mutant, and column TorX
shows the test results with 300 random test cases generated by TorX.

In our experiment, TorX is configured to run randomly no more than 35 steps.
It can be seen that the symbolic test cases result in a better mutation score
(100%) than random testing by TorX itself (57.14%). Moreover, most mutants
can be detected by the symbolic test cases within a fairly small number of steps.

In addition, for those mutants that can be detected by both methods, the
FDs of the symbolic test cases are less than those of the random test cases. This
actually conforms to the observation on accurate test cases stated in [JJRZ05].
A random test case, which is not correspondent to any test purpose, would
drive the system under test to exhibit non-conformance more possibly; while a
symbolic test case, which can reflect accurately the guiding test purpose, would
show less capability of detecting errors that are not related to that test purpose.

5 Conclusion

We have proposed a temporal logic with constrained events to express test pur-
poses involving data dependencies between event parameters, and correspond-
ingly developed a symbolic test generation algorithm. Case studies have shown
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the effectiveness and efficiency of our approach. As future work, we would like
to investigate ways to embed our approach into the symbolic testing framework
presented in [JJRZ05].
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Abstract. Through the notion of expansive-bisimulation, in this paper
we give a finite characterization of bisimulation equivalence for context-
free processes, i.e. we show that two context-free processes are bisimula-
tion equivalent if and only if there is a finite expansive-bisimulation which
contains them. This immediately suggests the set of finite expansive-
bisimulation as a complete class of verifiable evidence for bisimulation
equality of context-free processes. Compared with the well known re-
sult that two context-free processes are bisimulation equivalent if and
only if there is a finite self-bisimulation which relates them, the new re-
sult made improvement in the sense that whether a finite relation is an
expansive-bisimulation is decidable while whether a finite relation is a
self-bisimulation is only semi-decidable.

1 Motivation

Decidability results for bisimulation equivalence between context-free processes
have been flourishing since Baeten, Bergstra and Klop [BBK87] first proved
that bisimulation equivalence is decidable for normed BPA processes, a class
of context-free processes. The same fact has been proved by a series of sim-
pler proofs later by Caucal [Cau90], Hüttel and Stirling [HS91], and Groote
[Gro91]. Also algorithms and various complexity results for deciding bisimilarity
of normed context-free processes have been obtained by Huynh and Tian [DT94],
Hirshfeld,Jerrum, and Moller [HJM96]. Finally, Christensen, Hüttel and Stirling
[CHS92] demonstrated that bisimilarity is decidable not only for normed context-
free processes but also for all context-free processes, and Burkart, Caucal and
Steffen [BCS95] demonstrated an elementary decision procedure. There results
were summarized in the survey article by Burkart, Caucal, Moller and Steffen in
[BPS01]. Also Srba keeps an up-to-date summary of equivalence checking results
for infinite-state systems [Srb].

However most of the above mentioned works put emphasis on checking bisim-
ilarity. Works about a closely related problem, the problem of proving bisimilar-
ity of context-free processes, seem to attract much less attention with relatively
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fewer results. Nevertheless this problem is also important. The decidability re-
sults for context-free processes settled the foundation for automatic tools to test
if two context free processes are bisimulation equivalent. However, in general we
want more than just a “YES” or “NO” answer from such an automatic tool. In
particular, when told that two processes are equivalent we want to be convinced
by some verifiable evidence. For finite state processes there are satisfactory so-
lutions. For two finite state processes, if they are bisimulation equivalent then

1. a proof of their equality can be constructed in Milner’s equational proof
system for regular processes [Mil82]; and also

2. a finite bisimulation relation can be constructed which contains the pair of
processes in question.

Clearly both a proof in Milner’s equational proof system and a finite bisimula-
tion can qualify as verifiable evidences. The situation for context-free processes
is very different. First, no equational proof systems for context-free processes
have been reported so far. Second, for two bisimulation equivalent context-free
processes, there may not exist a finite bisimulation relation which contains them.
Here it is important that we put emphasis on finiteness. If the relation is infi-
nite, it can hardly be taken as an evidence because we do not have a general
procedure to verify infinite bisimulation relations. So far, main results for prov-
ing bisimilarity of context-free processes include Hüttel and Stirling’s tableau
proof method and a sequent style proof system for normed context-free processes
[HS91]. For the full class of context-free processes to the best of our knowledge
no similar result is known. In [Cau90] Caucal first introduced the useful notion
of self-bisimulation and showed that if two normed context-free processes are
bisimilar then there is a finite self-bisimulation containing the two processes.
Christensen, Hüttel and Stirling showed in [CHS92] that this also holds for ar-
bitrary context-free processes. Unfortunately since checking whether a finite re-
lation is a self-bisimulation is only semi-decidable, finite self-bisimulation falls
short of a verifiable evidance.

In this paper we propose a notion of expansive-bisimulation, and with it we
give a finite characterization of bisimulation equivalence for arbitrary context-
free processes. More precisely, we show that two context-free processes are bisim-
ulation equivalent if and only if there is a finite expansive-bisimulation which
contains them. This immediately suggests a complete proof method for bisimi-
larity of context-free processes: in order to prove equality of two processes we just
need to construct a finite expansive-bisimulation which contains the processes
in question.

The paper is organized as follows. In section 2 we present the syntax and oper-
ational semantics of context-free processes, and study some important finiteness
properties of such processes. Our presentation of this part is in a more direct
approach compared with previous works. Section 3 contains the main technical
contribution, where we study expansive-bisimulation. We conclude in section 4
with some discussions and possible future directions.
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2 BPA Processes and Operational Semantics

Assume a set of variables V and a set of actions Act, we consider the set of BPA
expressions E given by the following syntax; we shall use E, F, . . . as metavari-
ables over E .

E ::= a (action, a ∈ Act)

| X (variable, X ∈ V)

| Σi∈IEi (summation, I is a finite set)

| E1; E2 (sequential composition)

| μX.E (recursion, X ∈ V).

We shall use fv(E) to stand for the set of variables occurring free (i.e., not
bounded by μ) in E. We shall write E{F/X} for the result of substituting F
for each free occurrence of X in E, renaming bound variables as necessary. BPA
processes are closed BPA expressions, i.e. those E ∈ E with fv(E) = ∅. Moreover
(bound) variables in BPA processes must be guarded by action prefixing.

Table 1. Transition rules

act a
a−→ ε

sum Ej
a−→ α

Σi∈IEi
a−→ α

j ∈ I seq E
a−→ α

E; F
a−→ αF

rec E{μX.E/X} a−→ α

μX.E
a−→ α

state E
a−→ α

Eβ
a−→ αβ

The operational semantics of processes can be described by a labelled transi-
tion system

〈S, Act, −→〉
where the state space S consists of finite sequences of BPA processes, and the
transition relation

−→⊆ S × Act × S
is generated by the rules in Table 1, in which (as also later) we use Greek
letters α, β, . . . as meta variables ranging over elements of S, write ε for empty
sequence, write Eα for the state starting with E and followed by α, write αβ
for the state obtained by concatenating the sequences α and β, write α

a−→ β
for (α, a, β) ∈−→. We will write α

a1...an−→ β if α
a1−→ α1, α1

a2−→ . . .
an−→ β, and

say β is reachable from α.
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Definition 1. A binary relation R ⊆ S ×S is a bisimulation if for all (α, β) ∈ R
the following hold:

1. α = ε if and only if β = ε;
2. whenever α

a−→ α′, then β
a−→ β′ for some β′ with (α′, β′) ∈ R;

3. whenever β
a−→ β′, then α

a−→ α′ for some α′ with (α′, β′) ∈ R.

Two states α and β are said to be bisimulation equivalent, written α ∼ β, if
there is a bisimulation R such that (α, β) ∈ R.

It is well know that ∼ is an equivalence relation between processes. Moreover it
is a congruence with respect to concatenation of sequences of processes.

Note that in general clause 1. of Definition 1 is necessary. Since here we use
the general summation notation Σ to write expressions, and when the index set
is empty, Σi∈∅Ei is the inactive process which should not be equated with ε.
Otherwise the congruence property of ∼ would fail. With clause 1. in Definition
1 this cannot happen.

An important notion in the study of bisimulation of context-free processes is
that of self-bisimulation proposed by Caucal [Cau90].

Definition 2. For any binary relation R on S, we denote by R→ the least
precongruence wrt sequential composition containing R, denote by R↔ the
symmetric closure of R→, denote by R↔∗ the reflexive and transitive closure
of R↔.

Definition 3. A binary relation B ⊆ S × S is a self-bisimulation if for all
(α, β) ∈ B, α = ε just in case β = ε and moreover the following hold:

1. whenever α
a−→ α′, then β

a−→ β′ for some β′ with (α′, β′) ∈ B↔∗;
2. whenever β

a−→ β′, then α
a−→ α′ for some α′ with (α′, β′) ∈ B↔∗.

Note that for a finite relation, checking if it is a self-bisimulation is in general only
semi-decidable since one needs to check membership of its congruence closure.

Proposition 1. [Cau90] If B is a self-bisimulation then B↔∗ ⊆∼.

Obviously B ⊆ B↔∗. Thus if (α, β) is contained in a self-bisimulation than
α ∼ β.

For the process system 〈S, Act, −→〉, an important finiteness property which
forms the base of our discussion in the paper is that, although the number
of reachable states from an arbitrary state α ∈ S can be infinite, the processes
(closed expressions) that can occur in those reachable states must be from a finite
set. Another important finiteness property of 〈S, Act, −→〉 is finite branching,
which says that for any α ∈ S, the set

B(α) = {β | a ∈ Act, α
a−→ β}



476 X. Liu

is a finite set. In previous works, for example in [CHS92], these properties are
guaranteed by using results from [BBK87] that every BPA process is bisimulation
equivalent to a process which is a solution to an equation system in Greibach
Normal Form. Here we take a more direct approach to prove the properties
directly for the labelled transition system.

For E ∈ E , the closure set of E, written cl(E), is inductively defined on the
structure of E as follows:

cl(a) = cl(X) = ∅,

cl(Σi∈IEi) =
⋃

i∈I cl(Ei),

cl(E; F ) = cl(E) ∪ cl(F ) ∪ {F},

cl(μX.E) = {E′{μX.E/X} | E′ ∈ cl(E)}.

The following two lemmas are easily proved by direct structural induction.

Lemma 1. Let E ∈ E , then cl(E) is a finite set.

Lemma 2. Let E, F ∈ E . If E ∈ cl(F ) then fv(E) ⊆ fv(F ).

For α ∈ E∗, its closure, also written cl(α) (a harmless misuse of notation), is
defined such that cl(ε) = ∅ and cl(Eα) = cl(E) ∪ cl(α). Now the finiteness
property which we need to show is that if E occurs in the sequence β which is
reachable from α, then either E occurs in α or E ∈ cl(α). Thus such E must
be from a finite set, since obviously by Lemma 1 cl(α) is a finite set, and the
number of processes that occur in α is also finite.

Lemma 3. cl(E{μX.E/X}) ⊆ cl(μX.E).

Proof: We prove by induction on the structure of F the following inclusion:

cl(F{μX.E/X}) ⊆ {F ′{μX.E/X} | F ′ ∈ cl(F )} ∪ cl(μX.E).

Then take F to be E we obtain the inclusion relation we want.
When F ≡ F1; F2 we have the following sequence of inclusions:

cl(F{μX.E/X})

= cl(F1{μX.E/X}; F2{μX.E/X})

= cl(F1{μX.E/X}) ∪ cl(F2{μX.E/X}) ∪ {F2{μX.E/X}} def. of cl

⊆ {F ′{μX.E/X} | F ′ ∈ cl(F1)} ∪ {F ′{μX.E/X} | F ′ ∈ cl(F2)}
∪ cl(μX.E) ∪ {F2{μX.E/X}} ind. hyp.

= {F ′{μX.E/X} | F ′ ∈ cl(F1; F2)} ∪ cl(μX.E). def. of cl

When F ≡ Σi∈IEi the calculation is similar to the case for F1; F2.
The key case is when F ≡ μY.F1, and without loss of generality we can assume

that Y does not occur free in μX.E. We calculate as follows:
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cl(F{μX.E/X})

= cl(μY.F1{μX.E/X})

= {F ′{μY.F1{μX.E/X}/Y } | F ′ ∈ cl(F1{μX.E/X})} def. of cl

⊆ {F ′{μY.F1{μX.E/X}/Y }|
F ′ ∈ {F ′

1{μX.E/X} | F ′
1 ∈ cl(F1)} ∪ cl(μX.E)} ind. hyp.

= {F ′
1{μX.E/X}{μY.F1{μX.E/X}/Y } | F ′

1 ∈ cl(F1)}
∪ {F ′{μY.F1{μX.E/X}/Y }| F ′ ∈ cl(μX.E)}

= {F ′
1{μY.F1/Y }{μX.E/X} | F ′

1 ∈ cl(F1)}
∪ {F ′ | F ′ ∈ cl(μX.E)} ∗∗

= {F ′{μX.E/X} | F ′ ∈ {F ′
1{μY.F1/Y } | F ′

1 ∈ cl(F1)}}
∪ cl(μX.E)

= {F ′{μX.E/X} | F ′ ∈ cl(μY.F1)} ∪ cl(μX.E) def. of cl
Here we explain the step marked ∗∗ above, keep in mind that Y does not occur
free in μX.E. With such condition on variable, first by the well known substitu-
tion lemma in this case we have

F ′
1{μY.F1/Y }{μX.E/X} = F ′

1{μX.E/X}{μY.F1{μX.E/X}/Y }.

Second, for F ′ ∈ cl(μX.E) by Lemma 2 fv(F ′) ⊆ fv(μX.E), thus Y does not
occur free in F ′, so F ′{μY.F1{μX.E/X}/Y } = F ′.

Other cases are trivial. �
When confusion is unlikely, for α ∈ S we will also write α to mean the set of
expressions which occur in α.

Lemma 4. If α
a−→ β then β ∪ cl(β) ⊆ α ∪ cl(α).

Proof: First, we have the fact: if E
a−→ β then β ∪ cl(β) ⊆ cl(E). This can be

proved by induction on the rules of Table 2, where for rule rec we need to use
Lemma 3.

Suppose α
a−→ β, then by the rules of Table 2 it must be that α = Eα′,

β = β′α′, and E
a−→ β′ for some E, α′, β′. By the fact above β′ ∪ cl(β′) ⊆ cl(E),

thus β ∪ cl(β) = β′ ∪ α′ ∪ cl(β′) ∪ cl(α′) ⊆ cl(E) ∪ α′ ∪ cl(α′) ⊆ α ∪ cl(α). �
With this lemma, by transitivity it is easy to see that if β is reachable from α
then β∪cl(β) ⊆ α∪cl(α), and in particular we have the following theorem which
we aimed at from the beginning.

Theorem 1. If β is reachable from α then β ⊆ α ∪ cl(α).

With this theorem, when we discuss bisimulation equivalence of two states α, β ∈
S we know that the reachable state space is the part consisting of states in which
only processes from a finite set α ∪ β ∪ cl(α) ∪ cl(β) can occur. Thus, in the
discussion of the next section we can assume that the relevant state space S is
of this kind. That is there is a finite process set P such that S ⊆ P∗.
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Let E be an expression and F1, F2 be two subexpressions occuring in E.
We say that the occurrence of F1 is before the occurrence of F2 if there is a
subexpression of the form E1; E2 in E such that the occurrence of F1 is in E1
and the occurrence of F2 is in E2. We say that the occurrence of F1 is unguarded
if there is no subexpression which occurs before F1, otherwise the occurrence
of F1 is called guarded. If F occurs unguarded in E, the nesting depth of the
occurrence is the number of subexpressions of the form E1; E2 where E1 contains
the occurrence.

Lemma 5. If E
a−→ α, then there is an unguarded occurrence of a in E such

that the length of α equals to the nesting depth of the occurrence.

Proof: Induction on the rules in Table 2. �

Theorem 2. Every α ∈ S is finite branching.

Proof: We need to show that the set B(α) = {β | a ∈ Act, α
a−→ β} is finite.

If α = ε then it holds trivially. If α = Eα′, then by the rules of Table 2 B(α)
has the same number of elements as B(E) = {γ | a ∈ Act, E

a−→ γ}. Now by
Theorem 1 if E

a−→ γ then the processes which can occur in γ is from a finite
set. Moreover by the previous lemma the length of γ is bounded, thus B(E)
must be finite. �

3 Expansive-Bisimulation

This section contains the main result of the paper, where we study expansive-
bisimulation which gives a finite characterization of bisimilar BPA processes.

Definition 4. A state α ∈ S is said to be normed if there exists a finite sequence
of transitions from α to ε. The norm of a process α is the length of the shortest
transition sequence from α to ε. We denote by N (α) the norm of α.

It is easy to see that for normed processes α, β we have the following facts:

1. N (α) = 0 iff α = ε.
2. Norm is additive: N (αβ) = N (α) + N (β).
3. ∼ preserves norms: If α ∼ β then N (α) = N (β).

Clearly α is normed if and only if each process occurring in it is normed. We
define a function �: S → S such that for α ∈ S, if α is normed then α�= α, if
α is un-normed then α� is the least prefix of α which ends with an un-normed
process. And we will call the part of α after α� its tail. Thus the tail of any
normed state is always ε. We say that α is standard if α = α�. In other words,
a state is standard just in case its tail is ε.

A straightforward consequence of the definition of having a norm is that if α
is un-normed then αβ ∼ α holds for any β ∈ S.
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Definition 5. A binary relation R ⊆ S × S is an expansive-bisimulation if for
all (α, β) ∈ R it holds that either α = β, or α�= Eα1, β�= Fβ1 and there exist
α2, β2, γ ∈ S such that (α1, α2γ) ∈ R, (β2γ, β1) ∈ R, and moreover the following
hold:

1. if Eα2
a−→ α′, then Fβ2

a−→ β′ for some β′ such that (α′, β′) ∈ R;

2. if Fβ2
a−→ β′, then Eα2

a−→ α′ for some α′ such that (α′, β′) ∈ R.

It is not difficult to see that for a finite relation, whether it is an expansive-
bisimulation is decidable.

Proposition 2. If R is an expansive-bisimulation, then R ⊆∼.

Proof: Suppose R is an expansive-bisimulation, then it is easy to check that
R ∪ {(α, β) | α, β ∈ S, α�= β�} is a self-bisimulation. Thus R is included in a
self-bisimulation, and then by Proposition 1 R ⊆∼. �

Definition 6. When Eα ∼ Fβ we say that the pair (Eα, Fβ) is decomposable
if E, F are normed and there is a γ such that

• α ∼ γβ and Eγ ∼ F if N (E) ≤ N (F ),
• γα ∼ β and E ∼ Fγ if N (F ) ≤ N (E).

Theorem 3. Let α, β ∈ S, then α ∼ β if and only if there exists a finite
expansive-bisimulation which contains (α, β).

Proof: The soundness part easily follows from Proposition 2.
Now suppose α0 ∼ β0, to show the completeness we will construct a finite

expansive-bisimulation R which contains (α0, β0). In order to construct such R,
we rely on the following fact which was first proved in [CHS92] in the process of
showing the existence of a complete finite self-bisimulation:

There exists a finite relation R0 ⊆ S × S such that if (α, β) ∈ R0 then
α ∼ β and moreover if Eα, Fβ are standard and Eα ∼ Fβ is not de-
composable, then there exists (Eα′, Fβ′) ∈ R0 such that α ∼ α′ and
β ∼ β′.

With this fact, our construction of R is based on such R0 as follows. Let

S0 = {α0, β0} ∪ {γ | ∃α.(α, γ) ∈ R0 or (γ, α) ∈ R0}
∪{γ | ∃(α, β) ∈ R0, a ∈ Act.α

a−→ γ or β
a−→ γ}.

Since R0 is finite and every state is finite branching, S0 is a finite set. Choose
n such that whenever γ0 is a normed prefix of some γ ∈ S0 then N (γ0) ≤ n,
obviously such n exists as S0 is finite. Let S1 consists of those states γ ∈ S of
which the norm of its maximal normed prefix is less than or equal to n, and
its tail is a tail of some γ′ ∈ S0. Then it is not difficult to see that S0 ⊆ S1.
Moreover, note that the states in S only contain processes from a finite set P ,
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S1 must be finite since for each element in it, the norm of the maximum normed
prefix is bounded, and the tail is also from a finite set. Now construct

R = {(α, β) | α, β ∈ S1, α ∼ β},

then R is finite. The rest of the proof is to show that R is an expansive-
bisimulation, then since α0, β0 ∈ S1 and α0 ∼ β0, thus (α0, β0) ∈ R so we
can conclude the completeness proof.

To show that R is an expansive-bisimulation, take any (α, β) ∈ R, and suppose
α �= β, we will show that α�= Eα1, β�= Fβ1 and there exist α2, β2, γ such that
(α1, α2γ) ∈ R and (β2γ, β1) ∈ R and moreover

1. if Eα2
a−→ α′ then Fβ2

a−→ β′ for some β′ such that (α′, β′) ∈ R;
2. if Fβ2

a−→ β′ then Eα2
a−→ α′ for some α′ such that (α′, β′) ∈ R.

Since α ∼ β and α �= β, then it must be the case that neither of α, β is ε, so
α�= Eα1, β�= Fβ1 for some E, F, α1, β1, and obviously Eα1, Fβ1 are standard.
If Eα1 ∼ Fβ1 is not decomposable, then according to the property of R0 there
exists (Eα2, Fβ2) ∈ R0 such that α1 ∼ α2, β1 ∼ β2, and now take γ = ε we
can show that α2, β2, γ are just what we want. For that we need to show that
(α1, α2γ) ∈ R, (β2γ, β1) ∈ R, and moreover requirements 1. and 2. above are
satisfied. To see (α1, α2γ) ∈ R, just note that Eα1, Eα2 ∈ S1 which implies
α1, α2 ∈ S1, and moreover α1 ∼ α2, so (α1, α2γ) = (α1, α2) ∈ R. For the same
reason (β2γ, β1) ∈ R. To see requirement 1. is satisfied, note that Eα2 ∼ Fβ2,
so for Eα2

a−→ α′ there must exist β′ such that Fβ2
a−→ β′ and α′ ∼ β′.

According to the construction in this case α′, β′ ∈ S1, so (α′, β′) ∈ R. In the same
way we can show that 2. is also satisfied. Now if Eα1 ∼ Fβ1 is decomposable,
then both E and F are normed and there exists δ such that A: E ∼ Fδ and
δα1 ∼ β1, or B: Eδ ∼ F and α1 ∼ δβ1. If it is case A, then since E ∼ Fδ is not
decomposable, there is (Eξ, Fη) ∈ R0 such that ε ∼ ξ, δ ∼ η. Now we can take
α2 = ε, β2 = η, γ = α1, and we will show that (α1, α2γ) ∈ R, (β2γ, β1) ∈ R, and
moreover requirements 1. and 2. above are satisfied. To see (α1, α2γ) ∈ R, note
that α1 ∈ S1 and α2γ = α1, thus α2γ ∈ S1 and α1 ∼ α2γ thus (α1, α2γ) ∈ R.
To see (β2γ, β1) ∈ R, note that β2γ = ηα1 ∼ δα1 ∼ β1, Fβ1 ∈ S1 thus β1 ∈ S1,
Eα1 ∈ S1, E ∼ Fδ ∼ Fη and E is normed, so N (E) = N (Fη) and Fηα1 ∈ S1
thus ηα1 ∈ S1, we have β2γ = ηα1 ∈ S1, so (β2γ, β1) ∈ R. To see 1. is satisfied,
note that (Eα2, Fβ2) ∈ R0, so Eα2 ∼ Fβ2, and the reasoning is as in the
previous case for non-decomposable Eα1 ∼ Fβ1. The case B can be checked in
the same way. �
In proving decidability of bisimilarity of context-free processes [CHS92], Chris-
tensen, Hüttel, and Stirling proved that two context-free processes are bisimula-
tion equivalent if and only if they can be generated by a finite (full)
self-bisimulation. Based on their work, the last theorem gives a finite char-
acterization of bisimulation equivalence for context-free processes in terms of
expansive-bisimulation. In [BCS95], Burkart, Caucal and Steffen presented an
elementary time algorithm that can compute a (full) self-bisimulation which can
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generate a given pair of bisimulation equivalent context-free processes. Compar-
ing the results, note that whether a finite relation is an expansive-bisimulation
is decidable while whether a finite relation is a self-bisimulation is only semi-
decidable, thus our characterization result based on expansive-bisimulation im-
plies a complete proof method in that in order to show bisimilarity of two
context-free processes we can just present a finite expansive-bisimulation. In
this respect it is an obvious advantage to the characterization result based on
self-bisimulation.

Also from this characterization result semi-decidability of checking bisimilarity
of arbitrary context-free processes is easily obtained. In this case one just need
to enumerate all finite relations on S and check if there is one which contains
the pair of processes in question and which at the same time is an expansive
bisimulation. Thus the dovetailing technique used in the proof in [CHS92] can
be avoided.

4 Conclusion

In this paper we proposed a notion of expansive-bisimulation which is defined
so that checking whether a finite relation is an expansive-bisimulation is de-
cidable. We proved that for equivalent context-free processes finite expansive-
bisimulations always exist. Thus expansive-bisimulation can also be considered as
providing a witness or proof for bisimulation equivalence of two BPA processes.

To the best of our knowledge no other complete proof method for bisimulation
of context-free processes is published. An ideal framework for such kind of proof
method would be in the style of Milner’s equational proof system for regular
processes [Mil82]. However this is not been done even for normed context-free
processes, and this could be a result to expect. For normed context-free processes
there are Hüttel and Stirling’s tableau proof method and a sequent style proof
system. One can also seek to extend their results to deal with arbitrary context-
free processes.
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Abstract. Although VDM semantic descriptions of programming lan-
guage are denotational, they can be read quite operationally. After re-
calling the main features of denotational semantics, this paper examines
the combinators of the VDM specification language, and relates them to
the use of monads in the monadic style of denotational semantics. It also
provides an overview of published VDM semantic descriptions of major
programming languages. Familiarity is assumed with the basic concepts
of formal specification.

1 Introduction

The Vienna Development Method, VDM, is a major framework for the formal
specification and rigorous development of software systems. In this paper, we
focus on the use of VDM for semantic description of programming languages,
which was the original motivation for the framework.

VDM evolved from the operational semantics framework known as VDL, the
Vienna Definition Language [1], in the early 1970s [2]. The main change in the
transition from VDL to VDM was the adoption of the fundamental principles
of denotational semantics, which had already been established by Scott and
Strachey [3]. One of the innovations in the VDM style of denotational semantics
was the introduction of a number of combinators having a fixed operational
interpretation. We shall see that these combinators are closely related to the
operations that later formed the basis for the monadic style of denotational
semantics.

The rest of the paper proceeds as follows: Section 2 recalls the fundamen-
tal principles of denotational semantics. Section 3 illustrates the original style
adopted in denotational descriptions at Oxford, both before and after the intro-
duction of continuations. Section 4 illustrates the VDM style, and explains the
main differences between it and the Oxford style. Section 5 presents the concepts
and notation used in the monadic style of denotational semantics, and examines
the claim that VDM is actually based on monads. Section 6 gives an overview
of published VDM semantic descriptions of major programming languages, and
proposes to establish an online repository for semantic descriptions of program-
ming languages in all frameworks. A concluding section summarises the main
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points, and acknowledges the major contributions to formal semantics of Dines
Bjørner and his colleagues over more than three decades.

2 Denotational Semantics

Denotational semantics was initiated by Christopher Strachey in the 1960s [4,5].
Originally it was based on mapping phrases of programs to the untyped λ-
calculus.1 At the time, it was conjectured that there was no mathematical model
of self-applicable functions, which were allowed by the untyped λ-calculus and
used to define the so-called paradoxical combinator Y (needed by Strachey for
expressing the semantics of loops and recursive procedures). In 1969, Dana Scott
discovered how to construct the missing model, and developed a theory of do-
mains, providing solid foundations for denotational descriptions [3,7].

This section recalls the fundamental principles of denotational semantics. De-
tails specific to the original Oxford style, and the differences between the VDM
and Oxford styles, are covered in the following two sections.

A denotational semantics of a programming language maps each phrase of
the language to its denotation. The denotation represents the contribution of
the phrase to the overall behaviour of any complete program that contains it; in
particular, the denotation of a complete program represents its entire behaviour
when run with particular input. The denotation of a phrase is composed from
the denotations of its subphrases, and is independent of its context.

A programming language is essentially just a set of strings (the texts of the
syntactically legal programs) together with some criteria for implementations of
the language to be regarded as conforming. A language can have many different
denotational semantics, depending on the choice of:

– phrase structure: how programs can be uniquely decomposed into phrases;
– program behaviour: when programs are regarded as equivalent; and
– denotations: how contributions to behaviour are represented by abstract

entities.

The above differences concern the semantic function that maps phrases to de-
notations, and are independent of the framework used to specify that function.
Let us consider them in a bit more detail.

Phrase structure: A set of strings can have many different phrase structures. The
choice of a particular phrase structure determines the compositional structure of
denotations, which may in turn affect the possibilities for choosing denotations.

For example, consider the set of binary numerals: a string of 0s and 1s could be
grouped to the left or to the right (or even both ways). Suppose that the leftmost
digit of a binary numeral is the most significant, and that the ‘behaviour’ of a
numeral is its numerical value; then grouping to the left is the obvious choice

1 Peter Landin’s approach [6] was superficially similar, but involved an extended λ-
calculus with imperative features.
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(since the value of a compound numeral such as 100 can then be computed by
doubling the value of 10, whereas with grouping to the right the value of 100
depends on the length of 00 as well as on its value, so denotations would then
be pairs of numbers).

Phrase structure for use in denotational semantics is specified by some form
of context-free grammar, together with a correspondence relating program texts
uniquely to derivation trees according to the grammar. The grammar could
be an unambiguous concrete grammar, involving the symbols used in program
texts; but usually it is an abstract grammar, defining a set of abstract syntax
trees whose structure is significantly simpler than that of derivation trees for a
concrete grammar. The relationship between program texts and abstract syntax
trees is generally left to be inferred from the use of suggestive symbols in the
abstract grammar, augmented by some informal explanations.

Semantic functions, mapping phrases to their denotations, are defined on ab-
stract syntax trees. The semantic function for a particular language is specified
inductively, by giving for each production of the abstract grammar a semantic
equation of the form:

M[[· · · V1 · · ·Vn · · ·]] = f(M[[V1]], . . . , M[[Vn]]) (1)

where V1, . . . , Vn are metavariables ranging over sets of abstract syntax trees,
and f expresses how the denotations M[[V1]], . . . , M[[Vn]] of the subphrases are
composed to give the denotation of the phrase ‘· · · V1 · · · Vn · · ·’. The double
brackets ‘[[. . .]]’ enclose the notation expressing syntactic phrases of the described
programming language, separating it from the notation used for expressing the
mathematical entities used as denotations.

Program behaviour: Program behaviour is an abstract representation of what is
supposed to be observable when programs are compiled and run. It corresponds
to the behaviour exhibited by conforming implementations of the programming
language.

Compilation usually involves checking for consistency between declaration
and use of identifiers throughout the program; the abstract behaviour might
then include a list of error messages, or merely a boolean value.

When running the program, its input and output are regarded as observable,
so its abstract behaviour always has to represent the input-output relationship.
In contrast, potentially observable properties such as how long it takes to run the
program (when it terminates), how much memory is required, which machine is
used, etc., are generally regarded as irrelevant to the conformance of implemen-
tations, and therefore not included in the abstract behaviour of programs.

Denotations: After a phrase structure has been chosen, the denotations of phrases
can be specified, subject only to the following constraints:

– the denotation of each phrase is composed from the denotations of its sub-
phrases, and

– the abstract behaviour of each program is determined by its denotation.
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Denotations are elements of domains. The mathematical nature of domains as
partially-ordered sets is of much theoretical interest, but does not substantially
affect how denotational semantic descriptions are formulated in practice. The
crucial properties provided by Scott’s domain theory [3,7] are that both domains
and elements of domains can be defined recursively as the least solutions of
systems of equations:

– Domain equations involve domain constructors (e.g., domains of continuous
functions, tuples, tagged values) and given domains (truth values, integers,
etc.). The least solution of a system of domain equations can be understood
as the limit of a series of approximations, starting from trivial domains. Re-
cursive domain equations are needed for denotations of phrases involving self-
applicable procedures (which are found not only in the untyped λ-calculus,
but also in many imperative programming languages).

– Element equations are expressed using λ-notation. The least solution of an
element equation x = f(x) in a domain D is a fixed point of the function f on
D, and can be understood as the limit of the approximations fn(⊥D), where
⊥D is the least element of D, representing nontermination or undefinedness.
The function Y mapping each function f on D to its least fixed point Y (f)
corresponds to the paradoxical combinator used in Strachey’s early work, and
is needed for expressing the denotations of loops and recursive procedures.

Two phrases (of the same sort) are interchangeable when replacing one of
them by the other in any program does not affect the overall program behaviour.
Clearly, phrases that have the same denotation are necessarily interchangeable.
In the other direction, denotations are said to be fully abstract when two in-
terchangeable phrases always have the same denotation. When denotations are
less than fully abstract, two phrases with different denotations may in fact be
interchangeable. Although full abstraction is desirable, it can be difficult (some-
times even impossible) to obtain using standard frameworks for specifying de-
notations,2 and lack of full abstraction does not prevent the use of denotational
semantics for defining the class of conforming implementations of a language.

The denotation of a phrase is generally a function of an environment ρ ∈ Env
that represents the bindings created by the context of the phrase. Environments
are themselves functions, mapping identifiers to the entities to which they are
bound. Landin and Strachey’s original approach in the 1960s was to map pro-
gram identifiers to bound variables in the λ-calculus, and to map blocks with
local declarations to applications of λ-abstractions; Scott suggested to use ex-
plicit environments in 1969, and they were introduced and illustrated in his
seminal joint paper with Strachey in 1971 [3].

In the semantics of imperative languages, the denotation of a phrase is more-
over a function of a store σ ∈ S that represents the effects of assignments to
variables. Stores generally include functions mapping each (currently allocated)
location α ∈ L to the value β ∈ V last stored in it. Simple variable declara-
tions compute environments in which variable identifiers are bound to locations;
2 Fully abstract denotations can always be defined as equivalence classes of phrases.
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inspecting the value of a simple variable involves looking up the location to which
the identifier is bound in the environment, then looking up the current value of
that location in the store.

3 The Oxford Style

Strachey established the Programming Research Group in Oxford in 1965. He
was already developing his own approach to semantics [4] (see also [5, Sect. 3.3]).
Following Scott’s discovery of a model for the untyped λ-calculus [7] while on sab-
batical at Oxford in 1969, and Strachey’s subsequent collaboration with Scott
in the early 1970s [3], the development of denotational semantics accelerated
rapidly. The group led by Strachey shared his firm conviction that the deno-
tational approach would now do for semantics what BNF had done for syntax
(as witnessed by the Algol 60 Report [8]) and that within a few years, all major
programming languages should have been given a denotational semantics.

The distinctive Oxford style of denotational semantics (often referred to sim-
ply as Scott-Strachey semantics) is particularly concise, and has been followed
in many textbooks and articles on semantics, e.g. [9,10,11,12]. The conciseness
facilitates (pencil and paper) proofs about semantic properties and is strongly
favoured by many theoreticians – but unfortunately, it does not appeal much
to practitioners such as compiler writers and programmers. Let us look at some
simple examples, which have been selected to illustrate the use of combinators
in the Oxford style.

3.1 Abstract Syntax

Recall that abstract syntax trees are essentially derivation trees for an abstract
context-free grammar. The Oxford style of specifying abstract syntax, illustrated
in Fig. 1, is to give a simplified BNF-like grammar using the same terminal sym-
bols as in concrete syntax: reserved words, mathematical signs, and separators.
This makes the intended mapping from program texts to abstract syntax trees
rather easy to imagine, even though there is usually some grouping ambiguity.

The nonterminal symbols of the grammar are written as metavariables ranging
over the corresponding sets of abstract syntax trees; metavariables over the same
set are distinguished by subscripts and/or primes. The style of the metavariables
themselves varies considerably: Scott and Strachey [3] used lowercase Greek let-
ters, Bob Tennent [12] and Joe Stoy [11] used uppercase Greek letters, Mike

γ ∈ Cmd commands

ε ∈ Exp expressions

γ ::= dummy | γ0;γ1 | ε->γ0,γ1 | ε0:=ε1 | . . .

ε ::= . . .

Fig. 1. Abstract syntax fragment, Oxford style
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Gordon [13] and Dave Schmidt [10] used uppercase Roman letters, and other
authors (including myself) have used abbreviated English words.

3.2 Domains and Operations

The domain constructors used in the Oxford style include:

– A × B: product domain containing tuples 〈a, b〉;
– A + B: sum domain containing elements injected from A and B;
– A → B: function domain with elements expressed by λ-abstractions λa.b.

Note that A → B → C groups as A → (B → C), and A → B × C groups as
A → (B × C).

The above domains are equipped with some natural operations. Scott and Stra-
chey used the following:

– pairing and projection for product domains D = A × B:
P : A → B → D, M0 : D → A, M1 : D → B

– injection and projection for sum domains D = A + B:
|A : D → A, |B : D → B, in D : A → D, inD : B → D

– least fixed points of functions on any domain D:
Y : (D → D) → D; and

– identity function on any domain D:
I : D → D.

They also introduced a couple of combinators simply as abbreviations:

– composition f ◦ g = λa.f(g(a)):
f ◦ g : A → C when f : B → C and g : A → B;

– composition f ∗ g = λa.(λb.f(M0b)(M1b))(g(a)):
f ∗ g : A → C when f : B0 → B1 → C and g : A → B0 × B1.

Finally, they introduced some operations in connection with the given domain
T of truth values and the (loosely specified) domain S of stores:

– Cond(a0, a1) mapping true to a0 and false to a1:
Cond : A × A → T → A;

– Contents(α) mapping σ to the value stored in it at location α:
Contents : L → S → V ;

– Assign(α, β) mapping σ to σ′ such that the value stored at α in σ′ is β:
Assign : L × V → S → S.

(The definition of the domain V of values returned by evaluating expressions
depends on the language being described [14]; for the examples give here, we
shall assume that it includes L and T as summands.) Later papers by other
authors introduced considerably more auxiliary notation, mainly to improve
the readability of the λ-expressions arising in the equations used to define
denotations.
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3.3 Denotations

Let us first recall how Scott and Strachey defined denotations in their joint paper
in 1971 [3], before reviewing the more commonly-used continuation passing style.

Direct Semantics. Scott and Strachey’s choice of denotations is called direct
semantics. The basic idea is that denotations of commands are functions from
environments to store transformers. The semantic function C maps commands
to their denotations:

C : Cmd → Env → S → S (2)

Similarly, the denotations of expressions (whose evaluations might have side-
effects) should be functions from environments to value-returning store trans-
formers. The semantic function E maps expressions to their denotations:

E : Exp → Env → S → V × S (3)

Thanks to the use of combinators, the denotations of various commands and
expressions can be defined without explicit reference to the store σ:

C[[γ0;γ1]] = λρ. C[[γ1]](ρ) ◦ C[[γ0]](ρ) (4)

C[[ε->γ0,γ1]] = λρ. (λβ.Cond(C[[γ0]](ρ), C[[γ1]](ρ)(β|T )) ∗ E [[ε]](ρ) (5)

However, Scott and Strachey were apparently not satisfied with the relatively
complicated notation required for expressing the denotations of assignment com-
mands, and resorted to an informal explanation of the steps involved. Here is
how they could have written the formal definition:3

C[[ε0:=ε1]] = λρ.(λβ0.(λβ1.Assign(β0|L, β1)) ∗ E [[ε1]](ρ)) ∗ E [[ε0]](ρ) (6)

Reading the above equation operationally involves associating the values com-
puted by the expressions ε0 and ε1 with the λ-abstractions on β0 and β1, which
is not immediately obvious without close inspection of the grouping of the term.

Suppose, however, that we were to use variants ◦̂ and ∗̂ of the combinators ◦
and ∗, taking their operands in the reverse order:

– reverse composition f ◦̂ g = λa.g(f(a)):
f ◦̂ g : A → C when f : A → B and g : B → C;

– reverse composition f ∗̂ g = λa.(λb.g(M0b)(M1b))(f(a)):
f ∗̂ g : A → C when f : A → B0 × B1 and g : B0 → B1 → C.

The above definitions of denotations can now be written thus:

C[[γ0;γ1]] = λρ. C[[γ0]](ρ) ◦̂ C[[γ1]](ρ) (7)

C[[ε->γ0,γ1]] = λρ. E [[ε]](ρ) ∗̂ λβ.Cond(C[[γ0]](ρ), C[[γ1]](ρ))(β|T ) (8)
3 Let us assume here that any implicit dereferencing of variables is made explicit in

the abstract syntax of expressions, in order to simplify the examples a bit.



490 P.D. Mosses

C[[ε0:=ε1]] = λρ. E [[ε0]](ρ) ∗̂ λβ0.E [[ε1]](ρ) ∗̂ λβ1.Assign(β0|L, β1) (9)

This minor change of notation allows the terms to be read more operationally,
from left to right, with the λ-abstractions simply naming the values computed
by the preceding terms. (It also substantially reduces the number of required
parentheses.) In Sect. 5 we shall compare the above formulation with the monadic
style.

Continuation Semantics. Scott and Strachey’s original denotations for com-
mands and expressions, based on store transformers, can represent both normal
termination and nonterminating behaviour. To represent abrupt termination,
due to escapes (such as break or return) and jumps to labels, the denotations
need to be enriched. The standard technique in the Oxford style (often used
also for languages that do not involve abrupt termination) is to replace store
transformers by continuation transformers, where continuations are themselves
some kind of store transformers [15]. The semantics of abrupt termination in-
volves ignoring the argument continuation and applying a different one. As we
shall see in the next section, the VDM style avoids the use of continuations by
letting store transformers return extra values that indicate whether termination
is normal or abrupt, and by introducing combinators to propagate and detect
the extra values; see [16] for a detailed comparison of the two techniques.

Any ordinary store transformer θ can be converted to a continuation trans-
former which, given a continuation θ′, returns the continuation that maps any
store σ to the result of θ′(θ(σ)). This continuation transformer can be expressed
by λθ′.θ′ ◦ θ. The original store transformer can be retrieved from the continua-
tion transformer by applying it to the identity continuation.

Denotations of commands map environments to continuation transformers:

C : Cmd → Env → C → C (10)

where the domain C of command continuations θ can be defined as C = S → S.
The denotation of command sequencing using continuations is defined as follows:

C[[γ0;γ1]] = λρ.λθ. C[[γ0]](ρ){C[[γ1]](ρ){θ}}
= λρ. C[[γ0]](ρ) ◦ C[[γ1]](ρ) (11)

The domain of expression continuations κ is defined as K = V → C: the
continuation is to be applied to the value of the expression. Denotations of
expressions are given by the semantic function:

E : Exp → Env → K → C (12)

The continuation semantics of conditional commands is defined by:

C[[ε->γ0,γ1]] = λρ.λθ. E [[ε]](ρ){λβ.Cond(C[[γ0]](ρ), C[[γ1]](ρ))(β|T ){θ}}
= λρ. E [[ε]](ρ) ◦ λβ.Cond(C[[γ0]](ρ), C[[γ1]](ρ))(β|T ) (13)

and that of assignment commands by:

C[[ε0:=ε1]] =
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λρ.λθ. E [[ε0]](ρ){λβ0.E [[ε1]](ρ){λβ1.Assign′(β0|L, β1)}}
= λρ. E [[ε0]](ρ) ◦ λβ0.E [[ε1]](ρ) ◦ λβ1.Assign′(β0|L, β1) (14)

where Assign ′ : L × V → C → C is the continuation-passing version of Assign.
An alternative to the use of ◦ for avoiding deeply-nested braces is to introduce

an infix combinator corresponding to application, but grouping to the right.
Tennent [12] and Gordon [13] used semicolons for this purpose, writing e.g.:

C[[γ0;γ1]] = λρ.λθ. C[[γ0]](ρ); C[[γ1]](ρ); θ (15)

4 The VDM Style

This section focusses on the distinctive features of the VDM style of denotational
semantics, which was already quite stable by 1974 [17]. The illustrations and ex-
planations given here are based primarily on the presentation of VDM in the
book by Dines Bjørner and Cliff Jones from 1982 [18], since it is essentially that
version of the VDM specification language, known as Meta-IV, which has been
used for almost all published VDM semantic descriptions of major programming
languages (see Sect. 6 for references). A subsequent version, VDM-SL, was stan-
dardised by ISO in 1996 [19], and was used for defining the formal semantics
of Modula-2 in its ISO standard [20]. Although there may be some significant
differences between Meta-IV and VDM-SL, the combinators provided appear to
be very similar. Caveat: The author has not followed the development of VDM
at all closely since the end of the 1980s, and the explanations below should
definitely not be regarded as authoritative.

In contrast to the Oxford style of denotational semantics, illustrated in the
previous section, the VDM style is quite verbose, generally using (abbreviated)
English words rather than single letters and mathematical signs. Another styl-
istic difference is that in VDM, the notation used for abstract syntax (inherited
from VDL) does not involve the concrete symbols of the described language.
The VDM style is clearly more appropriate than the Oxford style for describing
larger programming languages.

4.1 Abstract Syntax

The VDM style of specifying abstract syntax is illustrated in Fig. 2. The absence
of terminal symbols from the concrete syntax of the described language makes
the mapping from program texts to abstract syntax trees somewhat less obvious
than in the Oxford style, but the words used as nonterminal symbols in the
abstract syntax are usually quite suggestive, and in practice it is not difficult to
imagine the exact relationship to a concrete syntax.

Another difference from the Oxford style is that the nonterminal symbols
of the abstract grammar are the names of the sets of abstract syntax trees
themselves, rather than metavariables over those sets. Moreover, VDM requires
a separate nonterminal to be introduced for each kind of statement, expression,
etc. A grammar rule of the form N = N1 |... | Nm defines N to be the union
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Stmt = Compound | If | Assign | ...
Expr = ...

Compound :: Stmt*

If :: Expr Stmt Stmt
Assign :: Expr Expr

Fig. 2. Abstract syntax fragment, VDM style

of N1, . . . , Nm ; in contrast, a rule of the form N :: N1...Nm defines N to be the
set of trees constructed by terms of the form mk-N(t1,...,tm) – essentially,
the nodes of the trees are labelled by N.

Clearly, VDM grammars for abstract syntax correspond closely to algebraic
data type definitions in functional programming languages such as Standard ML
and Haskell. The use of Stmt* in the abstract grammar is reminiscent of regular
expressions in concrete syntax, but it is interpreted as the set of tuples of Stmt
trees, so the trees in the set Compound are constructed by terms of the form
mk-Compound(s1,...,sn) for all n≥0.

An interesting feature of the VDM treatment of abstract syntax (not illus-
trated here) is that it allows trees to have sets and maps as components, as well
as tuples. Sets, specified by N-set, are used when the order of the components of
a node is (semantically) irrelevant; maps are specified by N1 →

m
N2, and can be

used to reflect that declarations or formal parameters bind distinct identifiers.

4.2 Domains and Operations

The domain constructions available in VDM include:

– A × B : product domain containing tuples <a,b> ;
– A | B : union domain;
– [A ]: optional domain, containing the elements of A and the special value

nil (which is used to indicate the absence of an optional value);
– D :: A1 ... An : domain of trees, containing elements mk-D(a1,...,an) ;
– A → B and A →̃ B : total and partial function domains, containing elements

expressed by λ-abstractions λa.b ;
– A →

m
B : domain of finite maps, with elements [a1 
→b1,...,an 
→bn]; and

– A-set : domain of finite subsets of A, with elements {a1,...,an}.

VDM also provides the usual domains of boolean truth-values and integers.
A distinctive feature of VDM is its imperative combinators, which are used

for expressing state transformations, i.e. functions from STATE to STATE (where
STATE generally includes STORE, mapping locations to their assigned values, as
a component). Continuations are not normally used in VDM semantics [16].

A significant difference between these combinators and those introduced by
Scott and Strachey for use in the Oxford style is that each combinator pro-
vided by VDM has a fixed operational interpretation, whereas its definition in
λ-notation varies according to what kind of transformations are to be composed.
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In contrast, each combinator used in the Oxford style has a fixed definition, but
its operational interpretation varies. For example, the VDM combinator writ-
ten ‘s1;s2 ’ always represents sequential composition of state transformations,
(starting from s1, and continuing with s2 when s1 terminates normally) and
its definition depends on that of the domain of state transformations; in the
Oxford style, the combinator f ◦ g is defined as an abbreviation for λx.f(g(x)),
and what it represents operationally varies, as illustrated in Sect. 3.3.

The abbreviation ‘=> ’ in VDM stands for the domain of pure transformations,
and ‘=>R ’ stands for the domain of transformations that return values in R.
The domain of functions from D to => is written D=> ; similarly, the domain of
functions from D to =>R is written D=>R. Below, assume s is in =>, e is in =>V,
and f is in V=> or V=>R.

The main imperative combinators used in the VDM style of denotational
semantics are as follows:

– sequencing ‘def x: e; f(x) ’ applies the transformation e, followed by the
transformation obtained by applying f to the value x returned by e ;

– ‘return v ’ simply returns the value v without transforming the state;
– ‘I’ is the identity transformation on states;
– assignment ‘r:=e ’ first applies e, then replaces the component of the state

selected by r by the value returned by e ;
– contents ‘c r ’ returns the component of the state selected by r without

transforming the state;
– sequencing ‘s1; s2 ’ applies s2 to the state obtained by applying s1 ;
– conditional ‘if b then s1 else s2 ’ applies s1 or s2, depending on whether

the boolean value b is true or false;
– iteration ‘for i = m to n do s(i) ’ abbreviates ‘sm;...;sn ’.

Some further combinators are used in connection with abrupt termination:

– ‘exit v ’ terminates abruptly, returning a non-nil abnormal value v ;
– ‘trap x with f(x) in s ’ handles abrupt termination of s with the trans-

formation obtained by applying f to the abnormal value x returned by s ;
– ‘tixe m in s ’ handles abrupt termination of s by applying the transforma-

tion to which the abnormal value returned by s is mapped by m (repeatedly),
propagating the abrupt termination if the value is not in the domain of m ;

– ‘always s2 in s1 ’ applies s1, then applies s2, regardless of whether ter-
mination of s1 was normal or abnormal (s2 is not supposed to terminate
abnormally).

All the above combinators are defined by translation to λ-notation, making
the state explicit. In the absence of abrupt termination, ‘=> ’ and ‘=>V ’ are:

=> = STATE →̃ STATE
=>V = STATE →̃ STATE × V

When the possibility of abrupt termination is introduced, ‘=> ’ is redefined as:

=> = STATE →̃ STATE × [ABNORMAL]
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In the PL/I semantics [17], ‘=>V ’ is redefined using a disjoint union:

=>V = STATE →̃ STATE × (res V | abn ABNORMAL)

In [18], however, ‘=>V ’ is redefined somewhat differently:

=>V = STATE →̃ STATE × [ABNORMAL] × V

Redefining ‘=> ’ and ‘=>V ’ requires redefinition of all the combinators, but their
operational interpretation and usage in the semantic equations does not change.

In Sect. 5, we shall see that some of the combinators in VDM are closely
related to standard operations of the monads used in the monadic style of deno-
tational semantics. Moreover, the redefinitions required when abrupt termination
is introduced correspond to the so-called lifting of operations when applying the
standard monad transformer for exception-handling (at least with the definition
of ‘=>V ’ used in the PL/I semantics [17]). Thus it appears that VDM, right
from the start in the early 1970s, was already using significant elements of the
monadic style that was developed by Eugenio Moggi in the late 1980s [21]. We
shall examine this aspect of VDM further in Sect. 5.

4.3 Denotations

The following examples illustrate the use of the most basic VDM combinators
for defining the denotations of the syntactic constructs shown in Fig. 2, which
correspond directly to those used to illustrate the Oxford style in Sect. 3.

As in the Oxford style, denotations of statements (i.e. commands) are func-
tions of environments. The semantic function M maps statements to their
denotations:

M : Stmt -> ENV =>

The same semantic function also maps expressions to their denotations:

M : Expr -> ENV => VALUE

The abbreviations ‘=> ’ and ‘=> VALUE ’ indicate that both statements and ex-
pressions are modelled as state transformations. Whether these transformations
involve the possibility of abnormal termination does not need to be specified
until later, since it does not affect how denotations are expressed. However, to
specify the denotations of assignment statements, we shall need to know how
to select the store from a state. This is specified by indicating the name of the
selector function next to the store component of the state:

STATE :: STR:STORE ...

(The elided further components might support input and output.)
The denotation of a compound statement involves combining the denotations

of an arbitrary number of sub-statements, which can be expressed using the
VDM combinator corresponding to a definite iteration:

M[mk-Compound(sl)](env) = for i = 1 to len sl do M[sl](env)
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The following is a special case of the above, and is directly comparable with
defining binary statement sequencing in the Oxford style, as illustrated in the
previous section:

M[mk-Compound(<s1,s2>)](env) = M[s1](env); M[s2](env)

Also the VDM definition of the denotations of conditional statements is rather
similar to the corresponding definition in the Oxford style:

M[mk-If(e,th,el)] =
def b: M[e](env);
if b then M[th](env) else M[el](env)

Our final illustration of the VDM style of denotational semantics is the assign-
ment statement:

M[mk-Assign(lrs,rhs)](env) =
def l: M[lhs](env);
def v: M[rhs](env);
STR := c STR + [l 
→ v ]

5 The Monadic Style

This style of denotational semantics was introduced by Eugenio Moggi at the
end of the 1980s [21]. His original motivation was to generalise the categorical
semantics of partiality to “other notions of computation”; he subsequently re-
alised that it also allows a much higher degree of modularity and extensibility
in semantic descriptions.

The main technical innovations were to let denotations be elements of monads,
and to construct monads incrementally using monad transformers. Monads and
monad transformers provide various combinators, which are closely related to
some of those used by Scott and Strachey [3], and even more closely to some
of those provided by VDM [18]. Like the latter, the monadic combinators have
a simple operational reading. The monadic style of denotational semantics has
been exploited in several theoretical studies, but it appears that, despite its clear
mathematical foundations and advantages regarding modularity, it has not yet
been used to describe any major programming language.

5.1 Domains and Operations

The monads used in the monadic style of denotational semantics provide the de-
notations of phrases of programs, and are generally defined in terms of domains.

Monads. A monad consists of a domain constructor T , mapping value domains
D to computation domains T (D), together with two polymorphic operations:

– Return : D → T (D);
– >>= : T (A) × (A → T (B)) → T (B)
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The trivial computation Return(d) simply returns the value d as its result. When
the computation e computes a value a and f is a function mapping values to
computations, e >>= f follows the computation e with the computation f(a).
(The symbol ‘>>=’, pronounced ‘bind’, is from the notation for monads pro-
vided by the language Haskell, which also allows e1 >>= λx.e2 to be written as
‘x ← e1; e2’.) The operations Return and >>= are required to satisfy three laws:

(Return(d) >>= f) = f(d) (16)
(e >>= Return) = e (17)

((e >>= f) >>= g) = (e >>= λx.(f(x) >>= g)) (18)

where x must not be free in f or g in the last law above.
The simplest possible example of a monad is the identity monad, where

T (D) = D, Return(d) = d, and e >>= f = f(e).
Particular kinds of monads provide further operations. Such monads can of-

ten be constructed by applying standard monad transformers [21] to existing
monads.

Side-Effect Monads: Given domains L of locations and V of values, a side-effect
monad provides the operations:

– Update : L × V → T ()
– Inspect : L → T (V )

Environment Monads: Given a domain Env, an environment monad provides:

– GetEnv : T (Env)
– UseEnv : Env → T (D) → T (D)

Exception Monads: Given a domain A of exception identifiers, an exception
monad provides:

– Raise : A → T (D)
– Handle : A × T (D) × T (D) → T (D)

All the above operations satisfy some equational axioms, which allow algebraic
reasoning about equivalence (and can even be used to define the respective mon-
ads [22]). In fact we have already seen some examples corresponding closely to
such monads:

Oxford style, direct semantics: For an example of a side-effect monad, let
T (D) = S → D × S, then define Return(d) = λσ.〈d, σ〉 and e >>= f =
(λ〈a, σ〉.f(a)(σ)) ◦ e. Scott and Strachey’s combinators P and ∗ are special
cases of Return and >>= (the latter with the arguments reversed). Defining
Update(l, v) = λσ.〈〈〉,Assign(l, v)(σ)〉 and Inspect(l) = λσ.〈Contents(l), σ〉
provides the required operations, and shows their close relationship to Scott
and Strachey’s combinators.
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For an example of both an environment monad and a side-effect monad,
take T (D) = Env → S → D×S with Return(d) = λρ.λσ.〈d, σ〉 and e>>=f =
λρ.(λ〈a, σ〉.f(a)(ρ)(σ))◦e(ρ). Then define GetEnv = P and UseEnv(ρ′)(e) =
λρ.e(ρ′). Notice that T (V ) is the domain of expression denotations in direct
semantics, and T () is isomorphic to the domain of statement denotations.
However, Scott and Strachey did not introduce combinators in connection
with environments, preferring to exhibit the propagation of environments.

Oxford style, continuation semantics: A further example of both an envi-
ronment monad and a side-effect monad is provided by T (D) = Env →
(D → C) → C (where C = S → S) with Return(d) = λρ.λκ.κ(d) and
e >>= f = λρ.λκ.e(ρ)(λa.f(a)(ρ)(κ)). (It could presumably be made into an
exception monad by adding continuations corresponding to handlers to the
environment.)

VDM style, normal termination: Let T (D) be =>D, which, in the absence
of abnormal termination, is STATE →̃ STATE × D. Let Return be the VDM
combinator return, and let e >>= f be defined as def x: e; f(x). This
provides a monad. Assuming that the store component of the state is selected
by STR, Update(l, v) can be defined to be STR := (c STR)+ [l 
→ v ], and
Inspect(l) to be return((c STR)(l)). This gives a side-effect monad, which
has been used in VDM since the early 1970s. It would be straightforward
to make Env=>D into an environment monad as well, but VDM does not
provide combinators corresponding to GetEnv and UseEnv.

VDM style, abnormal termination: The redefinition of =>D to allow abrupt
termination given in the PL/I semantics [17] is:

=>V = STATE →̃ STATE × (res V | abn ABNORMAL)

where values are tagged with res or abn to distinguish between normal and
abrupt termination. The redefined combinators return and def still provide
a monad: this is essentially an instance of applying a monad transformer,
and all the original combinators are ‘lifted’ to the new domains. Moreover,
the resulting monad is easily made into an exception monad: define Raise(a)
to be exit a, and Handle(a, b, c) as trap a with b in c. It is remarkable
that VDM was already using these monads more than 15 years before the
monadic style of denotational semantics was explicitly introduced.
However, it appears that the alternative redefinition of =>D in Meta-IV [18]

=>V = STATE →̃ STATE × [ABNORMAL] × V

does not allow the combinators return and def to be redefined as a monad.4

The problem is that e>>=f needs to be defined for all e in =>A and f in A=>B,
where A and B are generally different domains; in the case corresponding to
abrupt termination of e, the third component of the resulting tuple needs to
be mapped from A to B. Simply mapping all elements of A to the bottom
element of B would violate one of the laws for monads (equation 17 above).

4 Thanks to Eugenio Moggi for drawing attention to this point.
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5.2 Denotations

Let us conclude this section by showing how simple it can be to define the
denotations of our illustrative phrases in the monadic style. We shall not bother
to define the monad T , since the details of the definition do not affect how
denotations are expressed, nor their operational understanding. We do however
assume that T is both a side-effect monad and an environment monad.

The semantic function C maps commands to their denotations in T (), since
commands do not compute values (which is represented by computing the null
value).

C : Cmd → T () (19)

The semantic function E maps expressions to their denotations in T (V ), where
V is a domain of values whose definition depends on the language being de-
scribed, but is here assumed to include both L (locations) and T (truth values)
as summands.

E : Exp → T (V ) (20)

Thanks to the use of monadic notation, the denotations of various commands
and expressions can be defined without notational clutter regarding appropri-
ate propagation of the environment ρ and the store σ (not to mention details
concerning the representation of abnormal termination):

C[[γ0;γ1]] = C[[γ0]] >>= λ(). C[[γ1]] (21)

C[[ε->γ0,γ1]] = E [[ε]] >>= λβ. Cond(C[[γ0]], C[[γ1]])(β|T ) (22)

C[[ε0:=ε1]] = E [[ε0]] >>= λβ0. E [[ε1]] >>= λβ1. Update(β0|L, β1) (23)

The reader is invited to compare the above semantic equations with those given
in the Oxford style (Sect. 3) and in the VDM style (Sect. 4). The basic monadic
combinators provided in both those early styles allowed them to get close to
the simplicity of the monadic style. VDM has the advantage of a fixed opera-
tional interpretation for its combinators, and originally used what is essentially
a monad transformer when adding the possibility of abnormal termination.

6 Published VDM Semantic Descriptions

VDM was originally developed for giving a formal definition of PL/I and pro-
viding a formal basis for the development of a compiler [2]. Other major pro-
gramming languages that have been described using VDM include Algol 60,
Pascal, Ada, and Modula-2. The aim here is merely to give a general overview of
the cited descriptions. In general, the descriptions are out of print; this section
concludes by proposing the establishment of an online repository for semantic
descriptions, so that these major contributions can be preserved and made more
easily accessible to the research community.
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PL/I: The technical report A Formal Definition of a PL/I Subset by Hans Bekič,
Dines Bjørner, Wolfgang Henhapl, Cliff Jones, and Peter Lucas was published by
the IBM Laboratory in Vienna in 1974 [17]. Covering 201 pages, its length was
modest compared to the size of the language described (and to that of the earlier
definition of PL/I given in the operational VDL framework). The described
subset is essentially the version of PL/I described in the ECMA/ANSI standard
(which does not include tasking) but omitting Input/Output. Section 4 of the
chapter on Notation introduces and defines the VDM combinators concerned
with state transformations, imperative variables, exit, and arbitrary ordering.

Although the original technical report is out of print, 61 pages from it were
reprinted in a volume of LNCS containing a selection of papers by Hans Bekič,
and is available online in pdf [17]. The development of a compiler based on the
semantic description stopped in 1975, when IBM cancelled the project to build
the intended target machine [2].

Algol 60: A VDM semantics for Algol 60 by Wolfgang Henhapl and Cliff Jones
was published as Chapter 6 of the book Formal Specification and Software De-
velopment in 1982 [23]; it is a revision of a previous paper by the same authors
published in the 1978 LNCS volume on VDM [24]. In 33 pages it specifies the
abstract syntax and semantics of the language described in the 1975 Modified
Report on Algol 60, and provides a list of abbreviations as well as an index of
object and function definitions. The specifications of the abstract syntax, static
semantics and dynamic semantics are interleaved, so that the static and dynamic
semantics for the same construct are given close to each other.

The definition of the arbitrary order of evaluation allowed by Algol 60 is delib-
erately not addressed; a few other minor deviations from the intended semantics
of Algol 60 are indicated in comments. Neither the concrete syntax nor its trans-
lation to the abstract syntax are given, although some of the comments refer to
various expansions made by “the translator”.

Pascal: A VDM semantics for Pascal by Derek Andrews and Wolfgang Henhapl
was published as Chapter 7 of the book Formal Specification and Software De-
velopment in 1982 [25]. As with the VDM semantics for Algol 60 that it follows,
it is a revision of a previous paper published in the 1978 LNCS volume on VDM
[24]. After an introduction commenting on various aspects of the VDM seman-
tics of Pascal, it takes 60 pages to specify the abstract syntax and semantics of
the language described in the BSI/ISO Standard for Pascal.

In contrast to the VDM semantics of Algol 60, the specifications of the abstract
syntax, static semantics, and dynamic semantics of Pascal are not interleaved.
The abstract syntax was chosen to be “fairly close” to the concrete syntax of Pas-
cal, making their relationship “more obvious”. The specification of the abstract
syntax is about 6 pages, including some detailed notes about the intended con-
crete to abstract translation (which involves the introduction of fresh identifiers
“not used elsewhere”). The static semantics takes 22 pages, and the dynamic
semantics 30 pages.
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Ada: A VDM semantics for full Ada was initially developed by Dines Bjørner and
several MSc students under his supervision at the Danish Technical University,
and published as a volume of LNCS with the title Towards a Formal Description
of Ada in 1980 [26]. This description was subsequently revised and finalised
in a series of technical reports, published by Dansk Datamatik Center (DDC)
in 1981–2, which provided the basis for the rigorous development of an Ada
compiler [27]. The compiler was released in 1983, and became renowned not
only for its quality, but also as commercially successful. The unqualified success
of this application of VDM was a clear vindication of Dines Bjørner’s trust in
the suitability of the VDM specification language for describing the semantics of
large languages such as Ada, as well as a welcome, highly visible demonstration
of the potential usefulness of research in formal semantics.

VDM was later used also in the official Draft Formal Definition of Ada, but
only for the static semantics [28]. The dynamic semantics [29,30] was specified
using SMoLCS [31], which uses a “VDM-like” style of denotational semantics to
map Ada programs into a semantic algebra, where behaviour (including concur-
rency) is specified using a combination of labelled transition rules and algebraic
axioms. The semantic algebra includes the combinators used in VDM.

Modula-2: VDM was used, along with English text, for defining the semantics
of Modula-2 in the ISO/IEC base standard, which was developed from 1987 to
1996. The formal definition and the English text are regarded as having equal
importance. According to an article about the process of producing the standard
[20], it contains about “200 type definitions, 1800 function and operation defin-
itions and some 20,000 lines of VDM-SL code”. All the VDM-SL specifications
were “tested for syntactical accuracy and semantic constraints” using a front
end for VDM-SL developed at Delft University of Technology. ISO/IEC did not
allow publication of the standard on the web [32], although a draft version is
available.5

Online access: The VDM Portal6 provides online access to many VDM docu-
ments, including examples of specifications in VDM-SL and VDM++. However,
it appears that only two VDM semantic descriptions of programming languages
are currently available through the portal: one for a language called NewSpeak
from 1994, the other for a tutorial-style example of static and dynamic semantics
of a simple programming language.

One problem with providing online access to the VDM semantic descriptions
cited above is that they are generally available only in printed form, and would
need scanning to pdf (fortunately, this has already been done for parts of the
PL/I semantics [17] – although it is frustrating not to have access to the rest
of it at present – and for the semantics of Algol 60 and Pascal in [18]). It is
conceivable that the original sources of some of the documents have been archived
electronically, in which case it might be feasible to retrieve them and use them
to generate searchable pdfs.
5 ftp://ftp.mathematik.uni-ulm.de/pub/soft/modula/standard/draft4/
6 http://www.vdmportal.org/

http://ftp://ftp.mathematik.uni-ulm.de/pub/soft/modula/standard/draft4/
http://http://www.vdmportal.org/
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A different and more general problem with providing online access to large
VDM specifications is to allow efficient searching for particular items of interest.
For semantic descriptions of programming languages, it would be useful to search
for the parts concerning particular (concrete or abstract) constructs. Searching
for mathematical formulae is inherently difficult, and addressed on the web by
using special markup languages such as MathML; but this would not help with
existing, older documents. A possible solution might be to add bookmarks to
pdfs, identifying the pages concerned with particular constructs.

There is also the issue of copyright. Presumably all authors of semantic de-
scriptions would be happy to see their work made accessible online, but some
publishers are unlikely to agree to free access. A compromise might be to provide
free access only to summary information about semantic descriptions, sufficient
to support searching for descriptions of particular constructs, but require login
as a registered user to see the pdf of the description itself.

The author is currently investigating the possibility of establishing a repos-
itory for semantic descriptions of programming languages in all major frame-
works; VDM would be among the first to be covered. Readers who have copies
of significant semantic descriptions of programming languages (in any format)
are kindly requested to contact the author, indicating what they could provide,
and who holds the copyright.

7 Conclusion

The fundamental principles of denotational semantics were established by Scott
and Strachey at Oxford in the early 1970s. VDM adopted these principles, but
also introduced some innovations: in particular, VDM made much greater use
of combinators than was usual in the original Oxford style. Significantly, each
combinator in VDM has a fixed operational interpretation, whereas its definition
in λ-notation can vary; see also [33]. We have seen that some of the VDM
combinators introduced in the early 1970s correspond directly to operations
provided in the monadic style of denotational semantics, which was developed
at the end of the 1980s; moreover, the way their definitions vary corresponded
to the lifting of operations by particular monad transformers.

VDM semantic descriptions of some major programming languages have been
published, including PL/I, Algol 60, Pascal, Ada, and Modula-2. They are valu-
able sources of examples of how to describe a wide range of programming con-
structs using VDM, and deserve to be much more easily accessible to researchers
and students than at present; including them in the proposed online repository
of semantic descriptions would not only make them electronically available, but
should also allow searching for descriptions of particular kinds of constructs.

Acknowledgement. Thanks to Cliff Jones and Eugenio Moggi for helpful com-
ments on drafts of this paper, and to the organisers for the invitation to give a
presentation at the symposium.

This paper was written in celebration of Dines Bjørner’s 70th birthday. As one
of the originators of VDM, through his many articles and books about VDM,
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and by his use of VDM in major projects such as the formal descriptions of PL/I
and Ada, Dines has had a profound influence on the development and practical
application of denotational semantics. Personally, I have benefited immensely
from contact with him since we first met in the early 1970s. In particular, Dines
arranged for me to be involved as an observer in DDC’s project to develop an
Ada compiler from its VDM semantics, and he helped me become a member
of IFIP Working Group 2.2 (on Formal Description of Programming Concepts).
His expertise, friendship and hospitality have always seemed limitless.

Hjertelig tillykke med de 70 år, Dines!
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Abstract. This paper names railway applications, where the basis of
stable, underlying railway formal domain models can be successfully
used. It is done with big care of a uniform treatment of two diverse issues
of railway system: Allocation & Scheduling and Monitoring & Control
applications. This uniform treatment allows us later on better, easier and
deeper integrations of these applications.
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1 Introduction

The problem which this paper addresses is that of understanding the railway
application domain. One can use a basic core of such railway application domain
to model various application from two different aspects of any railway system:

– Allocation & Scheduling and
– Monitoring & Control

The goal of the paper is to show that mathematically precise specification
techniques allow a uniform treatment of these two diverse issues on the basis of
stable, underlying models.

There are already papers on formal description of railway domain, see [14,
15, 16, 17, 18, 19, 21, 22, 23]. One can also find railway domain descriptions in
PRaCoSy project [33, 103,104,105,106,107,108,109,110,116].

2 Issues of Scheduling and Allocation

2.1 Introduction

In this section we would like to provide a brief informal description of several
issues of railway allocation & scheduling tasks. Each subsection in this paper
gives a short railway application description and then a reference to formal
solution to bibliography.

C.B. Jones, Z. Liu, J. Woodcock (Eds.): Bjørner/Zhou Festschrift, LNCS 4700, pp. 504–520, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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2.2 Rail Net Development

The Rail Net Development System takes care of the rail net management. That
is for instance insertion or removal of lines and stations, changing parameters
(like speed) of lines, etc.

Chapter 8 in [118] shows how to generate optimum railway net layout and its
timetable as an indivisible pair.

The problem can be also solved by Petri nets, see [12]. Formal representation
of track topologies can be found in [68, 95]. For graphical systems for the visual
simulation and control of railway network, see [27, 127].

2.3 Timetable Generation

Timetables belong to the most important entities in railway system from both
the operator’s and passenger’s point of view. There are several different ways
how to present timetable. From the operator’s point of view the most important
form of timetable is called ‘running map’ [13, 46, 131,117,111].

From the passenger’s point of view timetable can be seen as a printed book,
set of all departures/arrivers at stations, web-based travel planning application,
train or lines booklets, etc.

Section 4.2.1 of the [118] gives a general formal model (data structure), from
which all other forms can be easily derived. Also many others papers deals with
timetabling from the formal point of view. We refer to some of them [45,47, 67,
69, 70, 83, 102,115,129].

2.4 Scheduling and Rescheduling

One can talk about a traffic being on schedule or not. In particular one can talk
about traffic being delayed. For a traffic to be on schedule, the traffic must be
one of the traffics allowed by the schedule.

The whole chapter 15 in [118] deals with the rescheduling problem. Scheduling
and rescheduling of trains from the formal point of view is also described in [20].
Usage of genetic algorithms in train scheduling problem can be found in [29]. A
duration Model for Railway scheduling is shown in [34].

2.5 Other Resource Planning

Staff, monies, and auxiliary resources need also be managed.
Among auxiliary resources we include: car and wagon cleaning etc.; car and

wagon maintenance and repair equipment; freight loading & unloading trucks; etc.
Their physical and temporal availability, i.e. allocation and scheduling, subject

to various rules and regulations, is part of station management.
We refer to chapter 8 in [118] and to [28,35] for more details about this topic.

2.6 Maintenance Planning

By maintenance we do not mean only regular check of all systems (assemblies,
etc.) in the depot, but we present maintenance in a more general sense. We
understand maintenance as a set of all activities, which must be done with
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rolling stock, regularly according to some rules, and which should be planned in
advance except for the operation of rolling stock itself. Therefore we also include
outside and inside cleaning of carriages, refueling diesel engines, refilling supplies
into restaurant carriages, water and oil refilling, etc.

In the [118] whole chapter 9 deals with this task. We also refer to [64] that
deals with application of genetic techniques to the planning of railway track
maintenance work. Fuzzy neural networks for machine maintenance in mass
transit railway systems are shown in [91].

2.7 Optimum Train Length

A determination of the train composition is another optimisation problem of
railway allocation and scheduling. It deals with the maximum usage of available
rolling-stock. The problem to be tackled is as follows: trains travel from station to
station. Trains are composed of carriages. At stations trains may have carriages
added (composed) to, or removed (decomposed) from the train. Station tracks
may restrict train additions and removals to occur only at either the front, or at
the back of a train. Given the requirements for trains to provide suitable load
(for example passenger) capacity along a journey with such demands varying,
the problem is now to plan that trains, during their journeys, have suitable
assemblies added to or removed from the train.

The costs of coupling and decoupling have to be taken into account. There
can be found graphical tools [38] that help dealing this task. We also refer to [52,
62, 78, 101].

2.8 Station Track Assignment

Track may be blocked for several trains. The planning and actual setting (i.e.
signalling) of the corresponding unit states is an essential function of station
management. Station management also involves determination of train positions.

Complexity issues of routing trains through railway stations can be found
in [87]. A case study of railway station management from the formal approach
is described in [50, 122].

2.9 Delay Train Management

In the everyday operation of a railroad, it is unfortunately not uncommon for
a train to arrive at a station with a delay. In such a situation, some of the
trains passengers may miss a connecting train, resulting in an even larger delay
for them since they have to wait for the next train. If, on the other hand, the
connecting train waits, then it is delayed itself, and so are all the passengers it is
carrying. Delay management consists of deciding which connecting trains should
wait for what delayed feeder trains, usually with the objective of minimizing the
overall discomfort faced by the passengers. Although railway optimization and
scheduling problems have been studied quite intensely over the past decade, the
management of delayed trains has received much less attention.

Scheduling and rescheduling of trains from the formal point of view can be
found in [20, 102].
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2.10 Hub Location Problem

Hub location problems are likely to occur in any kind of logistic system. A hub
is a special type of facility, which collects the flow from a set of other facilities,
transfers it to other hub facilities and distributes it to its final destination.

A hub location problem consists of a location part, in which the locations of
the hub nodes are selected, and an allocation part, in which every non-hub node
is assigned to one ore more hub nodes [38, 49].

The hub center problem is to locate appropriate numbers of hubs and to allo-
cate nonhub nodes to hub nodes so that the maximum travel time (or distance)
between any origin-destination pair is minimized.

2.11 Automatic Train Control

State-of-the-art information and communication technologies allow for an au-
tomated driverless operation of insular mass transit systems. In the long term
such options exist for railway operation in general. Energy efficiency effects can
be achieved through general optimisation of driving style and traffic flows.

Finding the optimum energy-saving train run-curve is one of the issues. The
optimisation is made by changing the speed-position profile with keeping the
same running time. Analysis of the optimum ‘energy-saving’ train run-curve is
one of the difficult research topics of train operation.

2.12 Train Dispatch

The Train Dispatch System handles the scheduling of train traffic. This in-
cludes the arrival and departure of trains from stations and may also include
information on which lines to use when traveling between stations. We refer
to [30, 71, 87, 115] for more details on distributed train dispatching system and
its complexity issues.

2.13 Shunting and Marshalling

Given description of the status (whereabouts, availability, etc.) of rolling stock,
including train bodies waiting to be decomposed, and given description of train
bodies to be composed, shunting and marshalling implies both the planning for,
and the execution of, plans of shunting and marshalling.

Shunting and marshalling involves route planning and signalling: i.e. the set-
ting of unit states. Shunting and marshalling also involves determination of train
body, car and wagon positions.

More information about this topic can be found in [21, 50, 87].

2.14 Passenger and Freighter Information

The main subject of railway information systems is a real-time dissemination of
the time and other status of all incoming, arrived or departed trains, whether
passenger or freight trains, and if the latter, what freight has been received or
passed on, and then to where.

Passenger & freighter information systems are not the subject of the Thesis,
instead we refer to [52, 77].
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2.15 Line Capacity

Improving railway line capacity (the maximum number of trains which can be
moved in each direction over a specified line in a 24 hour period) is another
optimisation problem that can be solved with a significant help of computer
calculation power.

This topic is also not a part of the Thesis, instead we refer to [1, 37, 84].

3 Issues of Train Monitoring and Control

3.1 Introduction

Railway monitor and control systems are systems used on railways to control
traffic safely, for example, to prevent trains from colliding. Trains are uniquely
susceptible to collision because, running on fixed rails, they are not capable of
avoiding a collision by steering away, as can a road vehicle; furthermore, trains
cannot decelerate rapidly, and are frequently operating at speeds where by the
time the driver/engineer can see an obstacle, the train cannot stop in time to
avoid colliding with it.

Most forms of train control involve messages being passed from those in charge
of the rail network or portions of it (e.g., a stationmaster) to the train crew;
these are known as ‘signals’ and from this the topic of train control is known as
‘signalling’.

This chapter shows several examples of railway monitoring and control tasks
with cross–references to other places in the Thesis and to bibliography. Formal
verification of safety critical properties of railway monitoring and control issues
can be found in [4, 6, 8, 39, 66, 85, 113].

3.2 Line Direction Agreement Device

Each line connects exactly two stations. At any point in time, the line can be
open in at most one direction. This is a safety requirement to protect head-on
train crashes on the line.

Formal models and verification of interlocking systems for railway lines can
be found in [24, 63, 125]. In the Thesis whole chapter 13 in [118] describes line
direction agreement devices in detail.

3.3 Station Interlocking

In railway signaling, an interlocking is an arrangement of signal apparatus that
prevents conflicting movements through an arrangement of tracks such as junc-
tions, crossings, and so forth. The signaling appliances and tracks are sometimes
collectively referred to as an interlocking plant. An interlocking is designed so
that it is impossible to give clear signals to trains unless the route to be used is
proved to be safe.
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A typical railroad definition of interlocking is “an arrangement of signals and
signal appliances so interconnected that their movements must succeed each
other in proper sequence.”

The minimum interlocking consists of signals, but usually includes additional
appliances like switches, derails, crossings at grade and movable bridges. Some
of the fundamental principles of interlocking include:

– Signals may not be operated to permit conflicting train movements to take
place at the same time.

– Switches and other appliances in the route must be properly ‘set’ (in posi-
tion) before a signal may allow train movements to enter that route.

– Once a route is set and a train is given a signal to proceed over that route,
all switches and other movable appliances in the route are locked in position
until either the train passes out of the portion of the route affected, or the
signal to proceed is withdrawn and sufficient time has passed to ensure that
a train approaching that signal has had opportunity to come to a stop before
passing the signal.

To cover that topic formally interlocking specification languages (ExSpect,
EURIS, etc.) have been introduced [7, 11, 25, 54, 55, 56, 59, 60]. We also refer to
other work concerning formal specification and modeling of railway interlocking
systems [31,53,55,58,61,73,74,75,82,98,90,119]. In the [118] in chapter 14 and
in [128] the usage of Petri nets for modeling of station interlocking is shown.

3.4 Signalling

The purpose of signalling is to inform the train driver when it is safe to proceed
on the line ahead. In early days the signalman was responsible for ensuring any
switch was set correctly before allowing a train to proceed. Mistakes were made
and accidents occurred, sometimes with fatalities. The concept of interlocking
of points, signals, and other appliances was introduced to improve safety. Inter-
locking prevents the signalman from operating appliances in an unsafe sequence,
such as setting the signal to clear while one or more points in the route the signal
governs are improperly set. Early interlocking systems used mechanical devices
both to operate the signalling appliances and ensure their safe operation, but the
contemporary interlocking systems operate using complex electronic circuitry.

Application of formal methods to railway signalling on lines can be found
in [41, 42, 43, 44, 51, 76].

Dwarf Signals. Dwarf Signals are station signals and can be located almost
anywhere on a station, where a signal for switching or for flank protection is
required. Dwarf Signal proceed aspects are only valid for switching, not for trains
proceeding outside the station area.

Formal specification of the control process for a Dwarf signal can be found
in [97, 96]. Dwarf signal controller was also formally specified in WDM [88], in
B-method [89] and in RAISE [112]. A CSP Model of the Alcatel Dwarf signal can
be found in [130].
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Signalling on Lines. On the lines, automatic block signals (ABS) are commonly
used. ABS systems consist of a series of signals that govern blocks of track
between the signals. The signals are automatically activated by the conditions
of the block beyond the signal. If a train is currently occupying a block, that
block’s signal will not allow a train in the previous block to proceed into the
block, or will only allow it to proceed at a speed which allows the train to stop
before colliding with the train or another object (also known as restricted speed).

Automatic block signals also detect the status of a following signal. If a signal
is displaying a stop indication, the preceding signal will display an aspect that
warns the train crew that the following signal may require the train to stop.

ABS systems detect track occupancy by passing a low-voltage current through
the track between the signals and detecting whether the circuit is closed, open,
or shorted. A train’s metal wheels and axles will pass current from one rail to the
other, thereby shorting the circuit. If the ABS system detects that the circuit
is shorted between two signals, it understands that a train is occupying that
block and will “drop” the signals (display a stop indication) on either side of
that block to prevent another train from entering. ABS system electronics are
also able to detect breaks in the rail or improperly-lined switches, which result
in an open circuit. These will also cause the signal’s aspect to drop, preventing
any trains from entering the block and running the risk of bending, breaking,
or overturning the rail and derailing or running through an improperly-lined
switch.

In the Thesis the whole chapter 12 in [118] shows formal statechart model for
ABS system. Usage of Petri nets in the railway signalling can be found in [92].

3.5 Level Railway Crossing

The term level railway crossing is a crossing on one level (“at-grade intersection”)
without recourse to a bridge or tunnel of a railway line by a road, path, or
another railroad.

Early level crossings had a flagman in a nearby booth who would, on the
approach of a train, wave a red flag or lantern to stop all traffic and clear the
tracks. Manual or electrical closable gates that barricaded the roadway were
later introduced. With the appearance of motor vehicles, this barrier became
less and less effective. Many countries therefore substituted the gated crossings
with less strong but highly visible barriers and relied upon road users following
the associated warning signals to stop.

The consensus in contemporary railway design is to avoid the use of level cross-
ings. The use of level crossings contributes the greatest potential for catastrophic
risk on the railways. Bridges and tunnels are now favoured.

There are several papers that deal with the level crossing in a formal way [48,
72, 99, 100,126].

3.6 Interlocking Safety and Reliability

Railway monitoring and control system are safety-critical systems. It means that
their failure could result in loss of life, significant property damage, or damage
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to the environment. The degree of safety is hard to identify. Computers are
increasingly being embedded within safety systems [2, 4, 5, 40, 80]. That means
that one has to compute probability of a failure of such system.

Using Z-specification for railway interlocking safety can be found in [3]. Formal
verification process and proving safety can be found in [10,36,79,81,94,114,120,
121, 123, 124]. Examples of practical usage of formal methods in interlocking
safety are shown in [32, 65, 93].

3.7 Automatic Train Control

An automatic train control system (ATC) is when the train receives data at all
times in order to maintain the correct speed and prevent trains from passing
stop signals if the driver should fail to react. Modelling and Simulation of train
control systems can be done with Petri nets [132]. Using Prolog for a railway
control system is shown in [9]. Other papers like [15, 26, 24] tackle automatic
train control also formally. New generation of microcomputer-based operations
control systems for high-speed rail TRANSRAPID can be found in [86].

3.8 European Rail Traffic Management System (ERTMS)

Over the past decade, industrial giants and European governments have strived
to attain rail interoperability, so that trains can cross borders without stopping.
Today, each country still has its own rail “language” for managing the movement
of the trains on its network.

In order to redress these incompatibilities, the European Rail Traffic Man-
agement System project has been set up to create unique signaling standards
throughout Europe called ETCS.

The ERTMS is the new signaling and management system for Europe, en-
abling interoperability throughout the European Rail network.

4 Discussion

We have tried to list several issues (not all) that need to be solved when one
should take care about scheduling & allocation problems and about monitoring
& control issues on railways. For each listed issue there is a reference solution
done by formal way.

In the 2nd section there are many interesting operation researchers’ problems.
The most difficult issues are the complexity (most of shown application are MP-
hard) and definition of appropriate optimisation function.

In the 3rd section we have listed several basic topics, that must be solved when
one takes care about monitoring and control of railways. Not all possible railway
applications were mentioned there. Several more could be covered, like break-
ing systems, door opening systems, train integrity control, telecommunications,
detection of train position, etc.

Most of the issues can be covered by others formal methods like Petri net,
statecharts or live sequence charts.
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Abstract. The recent success of service-oriented architectures gives rise
to some fundamental questions: To what extent do services constitute a
new paradigm of computation? What are the elementary ingredients of
this paradigm? What are adequate notions of semantics, composition,
equivalence? How can services be modeled and analyzed? This paper
addresses and answers those questions, thus preparing the ground for
forthcoming software design techniques.
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1 The Demand for a New Paradigm of Computation

1.1 Shortcomings of the Classical Paradigm

The classical paradigm of computation characterizes the behavior of an infor-
mation processing system as a function, f : A user of the system supplies an
argument x and expects to eventually receive the result f(x) from the system.

Experience with distributed and reactive systems reveals the need for a more
comprehensive paradigm. Among the many arguments for a new paradigm, the
following may be the most striking one: A computation of a system does not nec-
essarily receive all its input in the initial state, nor does it withheld all its output
until it reaches a final state. Rather, a computation may start running with no
or a first portion of input, and it may provide output whenever generated. In
short, a computation may exchange messages with the systems’ environment
during its course. Examples of such systems include operating systems, any kind
of technical control systems, and many forms of co-operating business processes.
It is not too difficult to capture this kind of behavior in the framework of con-
ventional programming, establishing communication of a program P with its
environment by help of special input and output procedures, variables shared
by P and its environment, and remote procedure calls. It took decades to ac-
knowledge that this property of computations is not just a minor aspect, but
that it affects (among other aspects, to be discussed elsewhere) our fundamental
understanding of computation.
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1.2 Proposals to Adjust the Classical Paradigm

Church‘s thesis has dominated the discussion on the limits of computation since
this kind of discussion has started in the 1950ies. It is overwhelmingly agreed
that this thesis is most convincing when it comes to the computation of functions
over sequences of symbols (for more details on this discussion we refer to [1]).

Nevertheless, it has frequently been argued that the classical paradigm of
computable functions does not comprise all important aspects of the expres-
sive power of information technology. We have discussed one such aspect above
already. Here we survey a number of system models, all contributing to the
non-standard aspects of communication, synchronization, and reactivity.

Petri nets : With his seminal Ph.D. thesis “Communication with Automata” [2],
Carl Adam Petri pointed at the fundamental role of asynchronous, communicat-
ing processes, already in the early 1960ies. This led to the development of Petri
nets as a technique to model concurrent behavior.

The decisive aspect of Petri nets in this context is the local character of its
transitions. A behavior then is not a sequence of global states and steps, but a set
of transition occurrences partially ordered by the relation of causality. This per-
ception brought new insights into the fundamental notions of nondeterminism,
fairness, scenarios, and others.

Omega-automata: ω-Automata [3] capture sequential, infinite computation in
the late 1960ies already, laying ground for infinite, reactive computations.

Stream processing functions : The first proposals to model systems consisting of
interacting components conceive a system component as a stream processing
function (or, in the nondeterministic case, as a relation). This dates back to the
early 1970ies already. As a typical example we refer to [4]. Streams (i.e. finite
or infinite sequences) of data on the input ports of a stream processing function
f are transformed into streams of data on the output ports of f . One system’s
output stream may be an other system’s input stream. The FOCUS formalism [5]
pursues this line of research. Stream processing functions are most adequate to
describe a single system’s semantics in isolation. The formalism properly reflects
that a system’s intermediate output can affect later input, via cooperation with
the environment.

Process algebras : First suggested by Robin Milner in the late 1970ies [6] process al-
gebras capture synchronous communication. The fundamental question of equiv-
alence between system models gave rise to the notion of simulation and bisimula-
tion. It has been a matter of surprise that those notions can not be simply captured
in terms of formal language containment or equality.

Interface variables and remote calls: In the framework of programming lan-
guages, reactive behaviour can easily be represented by help of variables, shared
by the program and its environment. This has been done since the late 1960ies. It
has later been adapted by specification techniques such as Lamport’s Temporal
Logic of Actions [7], as well as Gurevich’s Abstract State Machines [8]. Fairly
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more expressive than shared variables is the technique of remote procedure calls,
which is a fundamental principle of middleware systems, in particular CORBA.
Misra and Cook in their ORC language recently generalized this principle, re-
placing the call of procedures by the call of services [9].

Interacting and communicating systems: Peter Wegner’s contributions of the late
1990ies ([10,11]) boosted the awareness of a greater public, that interaction and
communication was indeed a decisive argument to search for a new paradigm of
computation. Many authors took up his arguments (as, e.g. in the volume [12]).
Some authors extend the classical models, in particular Turing Machines (exam-
ples include [13] and [14]).

We follow this line in the sequel, too. To this end, we discuss some elementary
aspects of the new paradigm in the next section, and pose some fundamental
questions.

1.3 Aspects of the New Paradigm

The above described aspects models and representation techniques for informa-
tion processing systems share a couple of aspects. Here, we focus just two of
them.

Firstly, in the classical setting, non-termination of a computation denotes fail-
ure, as no output is generated in this case. Two different non-terminating com-
putations cannot and need not to be distinguished in any respect. In contrast,
in the new paradigm, a computation is in general not envisaged to terminate.
Infinite computations are of utmost interest. Two different infinite computations
in general very well exhibit different input/output behaviour. Interaction of ser-
vices is usually split into finite slices: An instance of interaction is intended to
terminate in a “reasonable” state. But a service is assumed “always on”, capable
to engage in interaction ad infinitum.

The second consequence of the new paradigm is related to the composition of
systems. The classical setting offers sequential composition A;B of two systems A
and B as the only choice: A’s output is B’s input. In contrast, the new paradigm
permits composed systems A and B to exchange data at any time during a
computation.

Though we have identified only two aspects of the new paradigm, it is obvious
that fundamentally new problems arise that cannot be identified, let alone be
solved, in the framework of classical system models. Typical problems of systems
that follow the new paradigm include:

– What kind of properties are important for such systems?
– Is there a canonical notion of equivalence for such systems?
– Can any two such systems be composed, at least syntactically, resulting in

a (may be, futile) system?
– What, precisely, is refinement and abstraction, and which properties should

refinement and abstraction preserve?
– How can the effect of such systems be abstractly described (in analogy to a

function f in the classical case)?
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– What kind of formal representations of such systems are reasonable?
– How can the expressive power of formal description techniques of such sys-

tems be compared?
– Is there a “most general” class of “representable” such systems, in analogy

to the class of computable functions in the classical setting?

2 Service-Oriented Computing and Service-Oriented
Architectures

The above discussion focused communicating agents as a basic construct of the
new paradigm. We suggest services as an adequate concretion for such agents.
Services provide viable means to implement communicating agents. Furthermore,
there exists a rich theory to handle services, and to answer the above questions.
Details will be given in the next sections.

2.1 The New Paradigm in Practical Applications

Governed by practical needs, and not caring too much about theoretical aspects,
systems following the new paradigm have been implemented for decades. Exam-
ples include operating systems, technical control systems, workflows etc. But only
nowadays such systems are conceived as following a new paradigm. This may
be due to the emerging problems that arise in the course of automatic composi-
tion of such systems, as required for computer based interorganizational business
processes and new software architectures, such as “programming-in-the-world”
or “programming on demand”.

In this context, systems that fit into the new paradigm are usually denoted as
services. Their implementation in the framework of existing technologies evoked
the concepts of service-oriented computing (SOC) and, as a principle of using
SOC, the term of service-oriented architectures (SOA). We expand on those
aspects in the sequel.

2.2 Service-Oriented Computing

Trying to identify what many different views, descriptions and definitions for
services have in common, we can conclude that a service is a well defined,
self-contained module that provides some concrete functionality to its environ-
ment. Consequently, the minimal requirements of a service include an inter-
face and an internal control. An interface can usually be conceived as a set of
ports, with each port capable to store messages. The internal control triggers
the actions of the service. An action either sends a messages to a port or re-
ceives one from a port or operates locally. Hence, asynchronous communication
is the usual communication mode of services. But other modes may be sup-
ported as well, such as synchronous (handshake) communication or lock step
communication.
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2.3 Web Services

Currently, the most prominent kind of services are Web services. A Web service is
a functionality (e.g., a standard business function) provided at a unique network
address, given as a URI. This functionality is described in a standard definition
language, and available via various transport protocols, formats and profiles for
quality of service. Today’s implemented Web Services rely on highly distributable
communication- and integration backbones (sometimes called “the Big Basic
Bus”, BBB). Each Web Service is addressed by its unique URI and is usable by
other services along its – publically known – interface. A Web Service is assumed
as “always on”: A user does not have to create it, nor to care about destruction,
etc. Several instances of a Web Service may exist concurrently, mimicking for
each user exclusive access to the service. The language WS-BPEL established
itself as a quasi-standard for the implementation of Web services.

2.4 Service-Oriented Architectures

Though independent of other services, a service is typically constructed with
respect to other services: Purpose and use of a service is its communication
with other services. Partners to communicate with may reside anywhere in the
real world. For a Web service, any service on the web is a potential candidate
to serve as a partner. A fundamental problem then is service discovery, i.e.
for a service P the problem to identify proper communication partners, and
to establish communication with those partners. A service-oriented architecture
(SOA) solves this problem by help of a scenario that assumes

– agents called providers : A provider offers services to the public, to be used by
(i.e., to be composed with) other services. To this end, a provider publishes
information about the services he offers.

– agents called requesters : A requester requests services, i.e. wants to find
services it can use, as they are published by providers.

– agents called brokers : A broker collects information about the services pro-
vided by providers and the services wanted by requesters. Upon detecting
services that would properly fit, the broker informs the requester about the
provider, such that they can directly bind their services. In more elaborated
variants, a broker may itself compose two or more provider services, and
offer the composed service to a requester. Even more, a broker may observe
that a provider service only “almost” fits to a requester service. In this case
the broker may construct an adapter service to bridge the gap. Figure 1
shows the conventional outline of SOA, indicating the three agents and their
pairwise activities.

SOC and SOA can be conceived as virtualization, viz. abstraction, from tech-
nical implementation details of services. SOA is an architectural style to realize
SOC. This can be conceived an analogy to the client/server architectural style
that realizes distributed computing.
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broker

provider 
services

requester
services

publishfind

bind

Fig. 1. The SOA triangle

The above described agents (provider, requester, and broker) may be likewise
virtual. Usually there are no corresponding physical or implemented compo-
nents in an SOA. It is the services themselves, that play the role of providers,
requesters, and even brokers.

3 An Algebraic View on Services

Both, the foundational considerations of Sect. 1 and the applied aspects of Sect. 2
jointly establish principles of services. Here we introduce fundamental notions
and their properties, as a nucleus for a rich conceptualization of “services as a
paradigm of computation”, to blossom in the sequel of this paper.

3.1 Composition of Services and “Reasonable” Services

As outlined in Sect. 2, a core aspect of services is their composition: Any two
services P and R may be composed, resulting in a service P ⊕R. Of course, P ⊕R
is not always a very reasonable service, given “any” P and R. In particular,
P ⊕ R may deadlock or livelock; sent messages may remain in a buffer forever,
etc. Conceiving P ⊕ R as a transition system T with initial and final states,
a typical requirement for P ⊕ R to be “reasonable” is weak termination of T :
Each computation s0s1 . . . sk starting from an initial state s0, can be extended
to a computation s0 . . . sk . . . sn with a final state sn. A final state does not
necessarily deadlock; it may just indicate that one “round” of computation is
finished and the service is prepared to launch into a new round. Instead of weak
termination, any other predicate may characterize “reasonable” services. Typical
examples are fair termination or strong termination, i.e. each (fair) computation
eventually will reach a terminal state.

Formulated in an abstract setting, on the set S of all services under consid-
eration we assume a binary, symmetrical operator

⊕ : S × S → S

to compose services, and a distinguished predicate

τ ⊆ S
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to discriminate “reasonable” (e.g., terminating) services. ⊕ and τ lay the ground
for a canonical, rich theory of services, covering a wealth of important notions,
questions and properties, as they are particularly important in the framework
of SOA.

3.2 The Strategies of a Service

One of the central ideas of SOA is the assumption of a provider agent, offering
a service P to the public. P is intended to be engaged by requester agents. To
engage P means to follow a strategy to interact with P in order to reach the
requester’s goal. In technical terms, a strategy of P is an other service, R, such
that the composition P ⊕R of P and R is “reasonable”, i.e. P ⊕R ∈ τ . So, from
the requester perspective, the most important aspect of P is the set

Strat(P ) =def {R ∈ S | P ⊕ R ∈ τ}

of all strategies of P . This set may be conceived as the semantics of P .

3.3 Simulation and Equivalence

The strategies of a service P yield a canonical generalization relation

≤ ⊆ S × S

on services: A service P ′ generalizes P if P ′ preserves all strategies of P :

P ≤ P ′ iff Strat(P ) ⊆ Strat(P ′).

A typical scenario including this relation is the provider of P wanting to exchange
P by a service P ′ without bothering the so-far users of P .

Consequently, two services P and P ′ are equivalent iff they generalize each
other:

P ∼ P ′ iff Strat(P ) = Strat(P ′).

This equivalence is in fact the canonical counterpart of functional equivalence
in the classical setting: Two systems are equivalent iff their environment cannot
distinguish them.

3.4 Brokering of Services

The handling of services includes ways to find an adequate provider services P
for given requester services, R. This basic problem gives rise to a lot of derived
questions, including efficient decision procedures and construction algorithms.
Many of them can be posed in the general framework as developed so far. More
precisely, a given provider service P rises the quest of

– Controllability: Does P have a strategy at all, i.e. Strat(P ) �= ∅?
– Compatibility: For a given service R, is R a strategy for P , i.e. R ∈ Strat(P )?
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– Public view : The provider of the service P may want to hide internal de-
tails of P , and describe only communication capabilities of P , i.e. an ab-
stract version of P . Technically, we search to derive a canonical P ′ such that
Strat(P ′) = Strat(P ).

– Operating guideline: A requester of P is usually interested in all potential
strategies of P . Technically we search for a concise description of Strat(P ).

A given requester service R rises a couple of questions at the broker’s job,
including

– Efficient search: The broker may administer a large provider repository P of
provider services. Efficient algorithms are mandatory to find a service P ∈ P
that is compatible with R. Such algorithms of course depend on the kind of
information available to the broker about both R and P , as well as on the
organization of P .

– Adaption: For a given provider service P , the composition P ⊕ R may only
be “almost reasonable”. The broker may (automatically) construct a service
A (“adapter”) such that R is a strategy for P ⊕A. In technical terms we are
behind a solution X of the problem

R ∈ Strat(P ⊕ X).

This is equivalent to the problem

(R ⊕ X) ∈ Strat(P ).

– Composed adaption: As a special case of the general adaption problem, an
adapter may be just some other service in the depository. Even more, the
broker may compose two or more services P1, . . . , Pn such that P1 ⊕ . . .⊕Pn

is compatible to R. Formulated differently, the repository R may be virtually
extended by the n-fold composition of all its services.

A concrete modeling technique for services should provide efficient algorithms
to answer the above questions and to construct corresponding services.

4 Service Nets

Above we compiled a number of requirements at a proper framework for the no-
tion of services. Here we strive for a more concrete, operational model that would
meet those requirements. To this end we suggest open workflow nets (oWFN ) as
a staring point to model services. Before launching into details, we justify and
motivate this approach.

4.1 The Motivation for Open Workflow Nets

As outlined in Sect. 2.2 already, the essential components of a service are its
interface and its internal control. Here we stick to those two aspects:
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Modelling interfaces with oWFN : Open workflow nets represent asynchro-
nous communication, along message ports, with the order of sent messages not
necessarily preserved upon their arrival: A message port contains an unordered
set of messages (just as your home letter box). Even more, two different messages
may have identical content, i.e., cannot be distinguished in any respect. The
messages in a port thus constitute a bag (i.e. a finite multiset). This is the most
liberal and general form of asynchronous communication, and the most common
form in the world of business processes.

Modeling internal control with oWFN : An open workflow net is not confined
to sequential control, but may very well exhibit concurrent control flow. This is
most useful: Firstly, composition of two oWFNs results in an oWFN again, with
the previous components’ two flows of control merged into internal concurrent
control of flow of the composed system.

Secondly, languages such as WS-BPEL anyway exhibit concurrent control
flow. This can adequately be modeled in the framework of oWFN.

4.2 The Formal Framework of Open Workflow Nets

Technically, an open workflow net N is a conventional Petri net with distin-
guished input and output places to store input and output messages during
computation. Consequently, an input place has no ingoing arcs in N , and an
output place no outgoing arcs. Furthermore, an oWFN has an initial marking
m0 and a set Ω of final markings. Summing up, an oWFN can be written as

N = (P, T, F, in, out, m0, Ω),

with in, out ⊆ P , •in = out• = ∅, a marking m0 and a set Ω of markings.1

Graphically we extend the classical Petri net representation by an encompass-
ing dotted line. The input and output places are located on the line’s surface.
The initial marking is explicitly represented. The final markings have to be de-
scribed elsewhere. Figure 2 shows an example.

According to the usual notions of Petri nets, a step

m
t−→ m′

of an oWFN N transforms a marking m into a marking m′, following the well-
known occurrence rule for transitions t. A run of N is a sequence

m0
t1−→ m1

t2−→ . . .
tk−→ mk

with m0 the initial marking, mk a final marking, and mi−1
ti−→ mi a step of N

(i = 1, . . . , k).

1 We assume the reader’s familiarity with elementary notions of Petri nets. The ap-
pendix provides formal details.
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coin

“tea!”

“coffee!“

beverage

Fig. 2. Example of an oWFN: A beverage service A

The pragmatic idea of oWFNs is obvious: An oWFN N describes a set of
runs, starting at the initial marking.

According to the above described pragmatic idea of oWFNs, termination is a
crucial issue. An isolated oWFN rarely terminates; usually a partner is required,
such that the composed system would terminate. We consider the weakest version
of termination in the sequel: An oWFN N is weakly terminating if each sequence
m0

t1−→ m1
t2−→ . . .

tk−→ mk of steps mi−1
ti−→ mi (i = 1, . . . , k) is a prefix of a run

of N (i.e. can be extended to eventually reach a final state).
A sequence of steps may fail to be extensible to a run due to a wrong number

of tokens at input or output places.
We occasionally want to abstract from input and output and concentrate on

the inner subnet :
For an oWFN N , the set

I =def in ∪ out

is the interface of N , and

J =def P \ I

is the set of inner places of N . Furthermore,

inner(N) = (J, T, F ′, m′
0, Ω

′)

is the inner subnet of N , generated by the restriction to the inner places of N ,
the transitions of N , and the corresponding restriction of F, m0 and Ω to J and
T . As an example, Fig. 3 shows the inner subnet of the oWFN in Fig. 2.

N is apparently ill designed in case inner(N) is not weakly terminating.
Historically, the term “open Workflow Nets” has been derived from workflow

nets [15]. A workflow net is a formal model of the process logic of a workflow.
Conceptually, a service extends workflows with an explicit interface to enable
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Fig. 3. inner(A)

communication with other services. Technically, the inner subnet inner(N) can
be conceived as a representation of workflows. A workflow net N additionally
requires special properties of initial and final markings.

4.3 Composition of Open Workflow Nets

As outlined in the introduction, composition of services is a major concern of
SOC. Consequently, composition of service models should be as general and as
simple as possible.

We can always assume that two oWFNs M and N don’t share inner elements,
but only interface places. Then the composition M ⊕N of two oWFNs M and N
is just the (sorted) union of their elements. Figure 4 shows an example. Appendix
A2 provides formal details.

coin

“coffee!”

beverage

coin

“coffee!”

beverage

“tea!”

oWFN B oWFN A ⊕ B

Fig. 4. Composition of services
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In particular, if p is an output place of M as well as an input place of N , then
p turns into an inner place of M ⊕N . It is important to observe for two oWFNs
M and N :

M ⊕ N is an oWFN.

The above definition of oWFN immediately implies for two oWFNs M and N

M ⊕ N = N ⊕ M.

Furthermore, for three oWFNs L, M , and N that all three have no element in
common, composition is associative, viz.

L ⊕ (M ⊕ N) = (L ⊕ M) ⊕ N.

4.4 Partners and Fellows

In real applications, two oWFNs M and N to be composed are mostly partners,
i.e. they communicate along interface places, but do not share input or output
places:

inM ∩ inN = outM ∩ outN = ∅.

The left oWFN B of Fig. 4 shows a partner, to the oWFN A of Fig. 2. The two
oWFNs depicted in Fig. 5 are no partners.

A

B

A

B

Fig. 5. No partners

Likewise interesting is the special case of M and N joining input or output
places, and not communicating at all: M and N are fellows iff

inM ∩ outN = outM ∩ inN = ∅.

The interface of the composition M ⊕N of two fellows M and N is the union
of the interfaces of M and N . Figure 6 shows an example. The two oWFNs of
Fig. 5 are neither partners nor fellows.
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A

B

D

A

C

D

B

A

C

D

Fig. 6. Two fellows and their composition

If L, M and N are pairwise partners, then L ⊕ M is a partner of N and ⊕ is
associative i.e. (L ⊕ M) ⊕ N = L ⊕ (M ⊕ N).

Likewise, if L, M and N are pairwise fellows, then L ⊕ M is a fellow of N ,
and ⊕ is associative, as described above.

4.5 Open Workflow Nets with Ports

Experience shows that the composition of services requires more flexibility than
offered by oWFN as defined above.

As an example, the composition A ⊕ B of the beverage service A and its
strategy B of Fig. 4 remains with a fairly unintuitive input place, tea!. Intu-
itively, A and B fit perfectly and consequently their composition A ⊕ B should
be a “closed” net, i.e. a net with empty interface. More flexibility is also re-
quired when the issue of refinement and abstraction is taken into account in the
sequel.

A fairly simple idea suffices to provide oWFNs with the required degree of
flexible composition: The interface places are grouped into ports such that each
interface place belongs to exactly one port. The ports are decorated with (pair-
wise different) names. As an example, Fig. 7 equips the beverage service A of
Fig. 2 with three ports. One of them, “select”, contains two input places “cof-
fee” and “tea”. The other two, “pay” and “offer”, contain one element each.
The graphical representation is obvious. Correspondingly, Fig. 7 identifies three
ports for the strategy B of Fig. 4 one for each place.

Composition of two oWFNs with ports, M and N , say, then follows a simple
rule: Just glue ports of M and N with identical names. Gluing the ports of
M and N with name α then means to identify a place p of the α-port of M
with a place q of the α-port of N if and only if p = q, described in Sect. 4.3.
As an example, Fig. 8 shows the composition of the port equipped oWFN of
Fig. 7.
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Fig. 7. Beverage service and a strategy, equipped with ports

coin

“coffee!”

beverage

“tea!”

Fig. 8. Composition of the port equipped oWFNs of Fig. 7

4.6 Hierarchical Open Workflow Nets

Abstraction and refinement are fundamental construction principles for com-
plex systems: Only a hierarchical design process makes complexity tractable.
oWFN allow for a simple, canonical notion of refinement. The basic idea is the
replacement in N of a transition t by an other oWFN M , written (as usual for
replacement operators)

N [M \ t]

(“in N , replace M for t”). This is possible whenever the interface of M coincides
with the environment •t ∪ t• of t.

As an additional technicality, the addition m + m′ of markings m and m′ of
oWFN N and N ′, respectively, is defined for each p ∈ PN ∪ PN ′ , by

(m + m′)(p) = m(p) + m′(p),
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with m(p) = m′(p′) = 0 if p ∈ P ′ \ P and p′ ∈ P \ P ′. Furthermore, for two sets
Ω and Ω′ of markings, let

(Ω + Ω′) = {m + m′ | m ∈ Ω and m′ ∈ Ω′}.

With this in mind, we define refinements of two oWFNs N = (P, T, F, in, out, m0,
Ω) and N ′ = (P ′, T ′, F ′, in′, out′, m′

0, Ω
′) as follows:

i A transition t ∈ T coincides with the interface of N ′ iff •t = in′ and t• =
out′.

ii Let arcs(t) =def (•t × {t}) ∪ ({t} × t•) (“the arcs of t”).
iii Let t coincide with the interface of N . Then N [N ′ \ t] =def

(P ∪ P ′, (T \ {t} ∪ T ′, (F \ arcs(t)) ∪ F ′, in, out, m0 + m′
0, Ω + Ω′)

is the refinement of t in N by N’.

Refinement in fact meets all properties one would expect. Firstly, refinement
of t by N ′ in N is independent of the context of N :

(N ⊕ M)[N ′ \ t] = N [N ′ \ t] ⊕ M.

Secondly, the order of refining t by N and t′ by N ′ in M is irrelevant:

(M [N \ t])[N ′ \ t′] = (M [N ′ \ t′])[N \ t].

Finally, weak termination is preserved: If N and N ′ weakly terminate, then
N [N ′ \ t] weakly terminates, too.

4.7 Analysis Techniques for Open Workflow Nets

Open workflow nets are generell enough to capture decisive properties of services,
and are simple enough to allow for formal analysis techniques. Due to the struc-
ture of oWFN it should come without surprise that most analysis techniques are
based on variants of automata.

The most important kind of automata to analyze an oWFN N is its operating
guideline, OG(N). This automaton describes Strat(N), viz. the set of all strate-
gies of N . OG(N) is essentially a finite state automaton, inscribed by Boolean
expressions, built from the interface of N . Details are given in [16]. Most of the
questions discussed in Sect. 3.4 can efficiently be answered for any oWFN N by
help of OG(N). Corresponding algorithms have been implemented in the Petri
net analysis tool Fiona, and successfully been used to analyze Petri net models
of realistic BPEL processes. Details can be found in [17].

5 Conclusion

Models of interactive computation have been constructed since the early days of
computing. In recent years, started as a smart combination of existing middle-
ware techniques, services achieved prominence as a general, albeit variable soft-
ware architecture model. We suggest to establish this model as a standard model
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of asynchronous interactive computation, complementing process algebras as a
standard model for synchronous computation. Open workflow nets are a most
useful starting point as a representation technique for asynchronous interactive
computation, as they provide a lot of techniques to effectively analyze the most
important properties of asynchronous interactive systems. In their given form,
open workflow nets stick to control flow of services. Data and data dependent
behavior can easily be incorporated, extending the formalism as usual in high
level Petri nets.
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A General Notions and Notations

Definition 1 (Net)
Let P and T be finite, disjoint sets.
Let F ⊆ (P × T ) ∪ (T × P ).
Then N = (P, T, F ) is a net.

The elements of P , T and F are places, transitions and arcs, graphically depicted
as circles, boxes and arrows, respectively.

In the rest of this Appendix A we assume a net N = (P, T, F ).

Definition 2 (Pre-set, Post-set)
For x ∈ P ∪ T , let
•x =def {y | (y, x) ∈ F} is the pre-set of x
x• =def {y | (x, y) ∈ F} is the post-set of x.

Definition 3 (Marking)
A marking of N is a mapping m : P → �.

Graphically, a marking m is depicted by m(p) black dots (“tokens”) at each
place p ∈ P .

For two markings m1 and m2 of N , let m1 +m2 be the marking of N , defined
for each p ∈ P by (m1 + m2)(p) =def m1(p) + m2(p).

For a marking m of N and a set Q ⊇ P , extend m canonically to m : Q → �

for each q ∈ Q \ P by m(q) = 0

Definition 4 (Enabling, Step)
Let t ∈ T ,
and let m be a marking of N .

1. m enables t if for each p ∈ •t holds: m(p) ≥ 1.
2. Let m enable t and let the marking n be defined by

n(p) =def m(p) − 1 if p ∈ •t \ t•

n(p) =def m(p) + 1 if p ∈ t• \• t
n(p) =def m(p), otherwise.
Then (m, t, n) is a step of N , frequently written m

t−→ n.

Definition 5 (Run)
A finite or infinite sequence m0t1m1t2 . . . is a run of N if (mi−1, ti, mi) is a step
of N for i = 1, 2, . . ..
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B Open Workflow Nets

Definition 6 (Open Workflow Net, oWFN)
Let (P, T, F ) be a net,
let in, out ⊆ P with •in = out• = ∅,
let m0 be a marking of N ,
let Ω be a set of markings of N .
Then N = (P, T, F, in, out, m0, Ω) is an open workflow net (oWFN for short).

in and out contain the input and output places, I =def in ∪ out is the interface,
J =def P \ I contains the inner places of N respectively. Whenever N is not
obvious from the context, we affix the index N , as in PN , TN , FN , m0N , ΩN , inN ,
outN , IN , JN .

Definition 7 (Inner(N))
Let N be an oWFN. Then
inner(N) =def (JN , TN , FN ∩ ((JN × TN ) ∪ (TN × JN ))),
is the inner subnet of N .

Definition 8 (Internally disjoint oWFNs)
Two oWFNs M and N are internally disjoint iff (PM ∪ TM ) ∩ (PN ∪ TN ) ⊆
(IM ∩ IN ).

Remark 1. Two oWFNs can canonically be made internally disjoint: Each shared
internal element is replicated.

General assumption: Two oWFNs M and N will always be assumed as internally
disjoint.

Definition 9 (Composition of oWFNs)
The composition M ⊕ N of two (internally disjoint) oWFNs M and N is the
oWFN

M ⊕ N =def (PM ∪ PN , TM ∪ TN , FM ∪ FN ), with
inM⊕N =def (inm \ outN ) ∪ (inN \ outM ),
outM⊕N =def (outm \ inN ) ∪ (outN \ inM ),
m0M⊕N =def m0M + m0N ,
ΩM⊕N =def {m + n | m ∈ ΩM and n ∈ ΩN}.

Definition 10 (Partners)
Two oWFNs M and N are partners iff outM ∩ outN = inM ∩ inN = ∅.

Definition 11 (Fellows)
Two oWFNs M and N are fellows iff outM ∩ inN = outN ∩ inM = ∅.
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