
A Framework for Automated Generation of
Architectural Feedback from Software Performance

Analysis�

Vittorio Cortellessa and Laurento Frittella

Dipartimento di Informatica
Università dell’Aquila

Via Vetoio, 1, Coppito (AQ), 67010 Italy
cortelle@di.univaq.it,

laurento.frittella@gmail.com

Abstract. A rather complex task in the performance analysis of software archi-
tectures has always been the interpretation of the analysis results and the gen-
eration of feedback that may help developers to improve their architecture with
alternative "better performing" solutions. This is due, on one side, to the fact that
performance analysis results may be rather complex to interpret (e.g., they are
often collections of different indices) and, on the other side, to the problem of
coupling the "right" architectural alternatives to results, that are the alternatives
that allow to improve the performance by resolving critical issues in the architec-
ture. In this paper we propose a framework to interpret the performance analysis
results and to propose alternatives to developers that improve their architectural
designs. The interpretation of results is based on the ability to automatically rec-
ognize performance anti-patterns in the software architecture. The whole process
of result interpretation and generation of architectural alternatives is supported by
a tool based on the Layered Queueing Network notation.

Keywords: Software Performance, Layered Queueing Networks, Architectural
feedback, Performance indices.

1 Introduction

The validation of software performance often finds obstacles to be accepted as a daily
practice in the software development processes for many reasons. One of the major
drawback is the lack of automated support. The performance validation activity can be
summarized in four main steps: generation of a performance model from a software
model, performance model analysis, interpretation of analysis results, generation of
feedback on the software model.

Among the above steps, the analysis of a performance model (e.g. a Petri Net) is the
one that has been studied since more time and for which well assessed techniques exist
[6]. In the last few years many efforts have been devoted to introduce automation in the
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first step, that is the performance model generation. Several methodologies and tools
have been introduced to transform a software model (e.g., a set of UML diagrams) into
a performance model (e.g. a Queueing Network) [1].

However, in order to close the 4-steps loop described above, automation shall be
introduced in the last few steps that represent the reverse path from the performance
model to the software model. What obviously software developers expect from perfor-
mance analysis is not a repository of values and curves that represent different indices
(such as throughput, utilization, etc.) at different level of granularity, and that are very
hard to decipher even by performance experts. They would expect to receive an inter-
pretation of these results in terms of directives, suggestions, architectural alternatives
that can drive their development process towards a software product able to meet the
performance requirements.

With the support of automated tool their decision about the software architecture
(and later decisions) could be driven even by performance issues that, instead, are often
discovered at the end of the process when changes are much more expensive to be made.

Goal of this paper is to introduce a process that can drive the performance result
interpretation and the generation of architectural feedback. The rationale of our pro-
cess founds on three main considerations: (i) performance analysis is a hierarchical
task that, in order to produce feedback, often must investigate tiny details of the system
architecture; for this reason, each iteration of our process lays on a zooming approach
that, from system-level performance indices, drives down to resource/component-level
indices; (ii) only a structured and integrated knowledge may lead to produce signifi-
cant feedback; for this reason, the core data used in our process have been organized
in matrices that are shared by the interpretation and the generation phases; (iii) for a
hierarchical investigation, it plays a crucial role the capability to recognize architec-
tural patterns that may adversely affect the system performance; for this reason, we
have classified and solved a set of patterns that can be recognized with simple pattern
matching techniques.

Few related works can be found in literature that deal with the interpretation of per-
formance results and the generation of architectural feedback. Most of them are based
on monitoring techniques and therefore are conceived to only applied after software
deployment for tuning its performance. We are instead interested to model-based ap-
proaches that can be applied all along the software lifecycle to support development
decisions.

In [13] the PASA (Performance Analysis of Software Architecture) approach has
been introduced that aims at achieving good performance results through a deep under-
standing of the architectural features. This is the approach that better define the concept
of antipattern that will be widely used in our approach. However, this approach is based
on the interactions between software architects and performance experts, therefore its
level of automation is quite poor.

A simulation based approach has been introduced in [9], where the model simulation
produces data on the system states that, once processed, can offer useful suggestions
about the maximum performance achievable with the current system configuration.

The Arcade tool, introduced in [2], is also based on a simulation model. Heuristic
algorithms, in presence of detected system bottlenecks, are able to provide alternative
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solutions that practically remove the bottlenecks. The heuristics are based on architec-
tural metrics that help to compare different solutions.

A quite interesting work has been introduced in [4], where “bad smells" are de-
fined as structures that suggest possible problems in the system in terms of functional
and non-functional aspects. Refactoring operations are suggested in presence of “bad
smells". Rules for refactoring are formally defined.

The paper is organized as follows: in Section 2 we illustrate our approach along with
the structures and the entities that represent its core; in Section 3 we step-by-step apply
our approach to a case study, and finally in Section 4 we provide conclusive remarks
and future work.

2 Automated Generation of Feedback

In this section we illustrate our approach for the interpretation of performance results
and the automated generation of architectural alternatives. The approach goes through
two fundamental phases:

– an identification phase (or interpretation phase), where the analysis of the perfor-
mance results brings to identify particular scenarios that affect performance;

– a construction phase (or generation phase), where several architectural alternatives
are constructed, basing on the information collected in the previous phase.

Even though these two phases are conceptually separate, and they are executed in se-
quence, in Section 2.3 we show how they need to share common knowledge on the
system structure and its performance.

2.1 Software Performance Granularity: System, Subsystem, Resource

Software performance analysis can be conducted at different granularity levels. Indices
like throughput, response time and utilization can be obtained from the performance
analysis at the system level down to the single resource level.

A system can be logically split into several parts, and a detailed performance analysis
restricted to the most critical partes can be conducted to better identify the adversary
issues in a specific system’s area as soon as possible. Software architectures are by
definition made of subsystems and components, therefore this "zooming" approach to
the performance analysis finely applies to them.

In order to define a structural approach to the analysis of performance results, we
have identified three granularity levels at which a software architecture can be analyzed,
that are: System level, Subsystem level, Resource level.

System level - This is the highest abstraction level for conducting a performance anal-
ysis experiment; only global indices can be obtained by a system level analysis of the
architecture, such as end-to-end response time (i.e. from the input to the output), system
throughput, etc.

Subsystem level - This is an intermediate abstraction level where the system’s compo-
nents and their interactions can be analyzed. In our approach this level does not have
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a fixed granularity, because any assembly of basic elements can be considered as a
subsystem. We leave this definition as general as possible, so that the approach can be
applied to multiple definitions of subsystems.

Zooming into architectural details (i.e. subsystem mechanism) can be driven by dif-
ferent strategy that aim at splitting the system following different criteria. Since our
goal is to support the validation of a certain architecture vs a performance requirement,
we devise two criteria for architecture splitting that depend on the type of performance
requirement imposed on the system, as follows:

– flat requirement, i.e. one or more performance requirement are imposed on the
whole system, no matter what is the service that the system will execute. An exam-
ple of such requirement can be "The web server must be able to show a web page
on the client side within 8 seconds from the request". In fact, this requirement must
hold on the whole system, as it does not detail on the type of pages to show. To
investigate such requirement, the system can be partitioned in subsystems that are
clusters of components heavily coupled to perform a certain task. In this case the
subsystems can be considered as path-crossing vs the path followed through the
whole software architecture to satisfy a certain service request. In the remainder
of the paper, the subsystems obtained with this type of splitting will belong to the
type1 category.

– service oriented requirement, i.e. one or more performance requirement are im-
posed on a specific system service. An example of such requirement can be "The
web server must be able to show the catalog web page on the client side within 8
seconds from the request". This requirement holds only on a specific system ser-
vice, that is a catalog request. To investigate such requirement, the system can be
partitioned in subsystems such that each subsystem contains the components in-
volved in a specific service provision. One of the major advantage in this type
of splitting is that the performance requirements at the system-level can be easily
associated with the subsystem that implements the service undergoing a require-
ment. The subsystems obtained with this type of splitting will belong to the type2
category.

Note, however, that in both the above cases we do not exclude that two subsystems
overlap each other, i.e. that a component can belong to more than one subsystem. This
situation is more frequent in case of type2 partitioning, as it will be seen later.

Resource level - It represents the finest grain level for conducting a performance analy-
sis. Indices that can be obtained at this level are associated to a specific component. We
assume here a general definition of component, that is: an atomic part of a system (soft-
ware or hardware), that has an internal behavior and an external interface, and cannot
be further split. At this level of granularity, the major difference between the two re-
source types resides in the changes that can be made on them to satisfy the performance
constraints. For example, a hardware resource like a CPU can be duplicated to improve
the throughput, whereas the duplication of a software component might improve the
performance only if the two instances can be allocated on separate machines. For an
overloaded software component, it is rather better to split the services that it provides
among other unoccupied components.
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Fig. 1. Results interpretation and feedback generation process

2.2 Using Feedback for Architectural Refinements: A Thorough Process

Figure 1 shows an activity diagram representing the main flow of the whole process for
interpretation of results and feedback generation. The iterative nature of the process is
obviously related to the progressive refinements that are brought on the system archi-
tecture while the interpretation of performance indices progresses. The refinement steps
are driven by the suggestions defined in special data structures that we call interpreta-
tion matrices and that will be described in more details in Section 2.3. One or more
interpretation matrices are associated to each granularity level. In order to produce such
suggestions the process also lays on the ability to recognize antipatterns in the archi-
tectural design. The concept of antipattern within the performance domain and some
examples of them are provided in Section 2.4.

Our assumption is that one or more performance requirements have been formulated
for the whole system. If any requirements only refers to a specific portion of the system,
then this process can be applied only to that portion by considering the latter as a whole
system.

A first performance model is built for the whole system. After results are obtained
from the solution of the system-level performance model solution (i.e. topmost block in
Figure 1), the first step consists in the interpretation of these results (i.e. SYSTEM level
block in Figure 1). If all the requirements are satisfied then the process successfully stop
without suggesting any change in the architecture. If some of the given requirements
are not satisfied, then it is suggested to move to a lower granularity level that is, in this
case, the subsystem level. The set of identified subsystems have to be sorted following a
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certain criterion that may depend on the application domain1. The performance indices
of the various subsystems are observed, and the focus is given to the worst one.

Subsystems are examined in a certain order (i.e. the loop on the subsystem level
interpretation in Figure 1 represents this iteration) and if changes can be made without
ambiguity on some subsystem (with the support of the interpretation matrices) then the
process goes back to the first step and the updated performance model has to be solved.
Otherwise, a further move to a lower granularity level is suggested: in this case, the
resource level.

Analogous behavior of the process occurs at the resource level. After this interpre-
tation step in any case the process brings back to the performance model solution to
check whether the performance requirements are met or not.

2.3 The Interpretation Matrices

In our approach, the identification and construction phases share a structured knowledge
about the system that we have organized in so-called interpretation matrices. Such ma-
trices have a 2 × 2 format. The matrix rows represent interval of values for a certain
performance index, and matrix columns do the same. In a (i, j) cell we describe the
performance scenario that is characterized from the corresponding interval of indices
values. If it is needed, we also define in a cell the actions that should be taken to find
alternative scenarios.

We have devised matrices for different levels of granularity, different splitting strate-
gies of subsystems, and different types of components.

Figure 2 shows the matrix that we have built for system-level analysis (in [3] we
present the other four matrices that we have defined). We assume that performance
requirements at the system level must be formulated in terms of system throughput
and response time (2). On the matrix rows we split the range of the system throughput
in two intervals: the throughput values higher than the value Req_X specified in the
requirement are associated to the upmost row of the matrix, whereas the lower values
are associated to the bottommost row. On the matrix columns we represent the range
of the system response time in two intervals: the values higher than the value Req_R
specified in the requirement are associated to the leftmost column of the matrix, whereas
the lower values are associated to the rightmost column.

In each cell of the matrix in Figure 2 we identify the performance scenario (in plain
text), and we specify the next step (in italic text) to find an alternative scenario, if
needed. For example, the lower leftmost cell represents the case of a low system-level
throughput associated to a high response time. The matrix entry suggests to investigate
at the subsystem level, and the designer has to choose one of the splitting strategies
illustrated in Section 2.1. As opposite, the upper rightmost cell represents the case of
a high system-level throughput associated to a low response time. The matrix entry

1 The identification of subsystem is still a step that requires some human support, especially in
case of flat requirement.

2 We do not deal here with requirements on the utilization index, as it is quite rare to have such
a requirement at the system and subsystem level. Utilization enters however in the picture at
resource level of granularity.
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Fig. 2. System Level Interpretation Matrix

suggests to stop the analysis because all the system requirements have been satisfied
(recall that we assume all requirements at the system level).

2.4 Supporting Structures: Some Classified Antipatterns

A quite crucial role in the interpretation matrices is played by antipatterns. Indeed,
almost always at the subsystem level (and sometimes at the resource level) the action to
be taken for result interpretation and to find alternative scenarios consists of searching
in the subsystem for an antipattern, that we define here below.

A design pattern is a standard solution for a known problem. An antipattern is in
practice a negative pattern, in that it is a pattern whose presence into a design has neg-
ative effects that should be avoided. In our case we consider performance antipatterns
[10] that produce effects on the system performance. For each known performance an-
tipattern a refactoring mechanism can be provided to overcome it. The refactoring con-
sists of a sequence of transformations, from the original architectural model to a target
model, that improve system performance while preserving the system functionalities 3.

Many antipatterns have been classified in literature [10,11,12]. In our work we have
considered the ones that can feasibly applied, with appropriate tailoring, to software
architectures for performance goals. In this section we provide evidence of two antipat-
terns that will be used in the example provided in Section 3. However, other classified
antipatterns are available in [8].

The Blob antipattern reveals itself if a particular resource does the majority of the
work in a software architecture while banishing the other ones to minor support roles.
This situation is often easy to recognize looking at the performance results, because the
“blobbing resource", that embeds many of the functionalities provided by the system,
presents a very high utilization if compared to resources in its neighborhood. The left
side of Figure 3 shows an example of such antipattern.

The density of lines within each resource indicates the intensity of the resource load.
A poor distribution of the system intelligence evidently appears in Figure 3. In the right
side of Figure 3 a refactoring has been made on the system by distributing the system
logics over all the resources. A better performing pattern can be thus obtained.

3 In the remainder of the paper we will call software performance antipatterns simply as antipat-
terns, with few exceptions where differently specified.
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Fig. 3. An example of Blob antipattern

Fig. 4. An example of Unbalanced Extensive Processing antipattern

In the left side of Figure 4 the Unbalanced Extensive Processing antipattern is shown.
It characterizes the scenario in which a specific class of requests generates a pattern of
execution within the system that tends to overload a particular resource (or a set of
resources). In other words the overloaded resource (i.e. typically the slowest one) will
be executing a certain type of job very often, thus in practice damaging other classes
of jobs that will experience very long waiting times and, in addition, leaving quite idle
the following resources in the pattern. This scenario has negative effects on the mean
response time of the whole system, especially for the requests that do not belong to the
considered class, as well as on the whole system throughput.

The Unbalanced Extensive Processing antipattern can be recognized by observing
the utilization of the resources along the pattern and the classes of jobs that they pro-
cess. This antipattern can be refactored by introducing specific fast-paths for the service
requests that do not overload the considered resource and/or that need a particularly fast
service, as shown in the right side of Figure 4.

Obviously the positive effects of this refactoring will be more pronounced for the re-
quests that will use the fast-path, while the positive effects on the whole system depend
on the percentage of this request type overall the served requests.

3 Applying Our Approach

Our approach is not intended to be specific for a particular performance model, but
for sake of experimental validation we need to choose a notation to instantiate the
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methodology and use it on a case of study. We have chosen the Layered Queued Net-
works [7,14].

The Layered Queuing Network (LQN) model is a canonical form for extended
queueing networks with a layered structure. The layered structure arises from servers
at one level making requests to servers at lower levels as a consequence of a request
from a higher level. LQN was developed for modeling software systems, but it applies
to any extended queueing network with multiple resource possession, in which multiple
resources are held in a nested fashion.

The case study on which we have applied our approach represents a software archi-
tecture used for a small robot that can interact with the environment where it works and
learns from its past experiences. The robot consists of three fundamental parts:

– sensor machinery - the robot makes use of sensors for visual perception, for mea-
suring the environmental temperature and for communicating with other robots via
wireless;

– servosystems - they enable the robot to move around and to interact, and possibly
avoid, objects on its path;

– computational engine - this includes the intelligent and reactive components.

The main activity of the robot is to explore the whole environment around it and acquire
knowledge for classifying events and sharing information with other robot-friends.

When an event happens either it is pointed out by the devices in the sensor machin-
ery, or it is reported by one or more robot-friends that collaborate with the considered
robot. The computational engine, using the acquired knowledge, establishes whether it
is a potentially dangerous event or not and, in the latter case, it can be used to acquire
new knowledge. The knowledge might also be acquired using the servosystems, for ex-
ample by interacting with some objects on the ground. If an event is instead classified
as dangerous, then the robot must quickly react by making suitable remarks and stop-
ping itself before running into danger. An UML Sequence Diagram of a generic regular
event handling is shown in [3].

We have modeled such system architecture in LQN, as shown in Figure 5. The En-
vironment and OtherROBOTS tasks of Figure 5 are used only as request sources to
generate the system workload and do not belong to the analyzed system.

Following the previous classification, the LQN tasks can be subdivided as:

– sensor machinery: Sensors, NetRX, NetTX;
– servosystems: Arms, Motors, MoveController;
– computational engine: StorageMemory, VolatileMemory, AI, Handler.

We assume that the number of sensors is fixed at 2 (i.e. visual and temperature input
sensors) and the robot-friends number can instead vary from 1 up to 13. Besides, we
defined the following performance requirements:

1. the robot must react in no more than 4.5 seconds from the moment in which an
event is classified as dangerous;

2. the mean processing and reaction time for an event, from the moment in which it
starts its path from the computational engine, must not exceed 11 seconds.
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Environment
λ=0.0889,μ=2

Events
22.5

OtherROBOTS
λ=0.0387,μ=1

Friends
25.8

P1
μ=0.000638

Sensors
λ=0.0889,μ=1.82

getEvent
20.5

NetRX
λ=0.0387,μ=0.806

receiveAlert
20.8

AI
λ=0.128,μ=1.59

checkEvent
12.5

whichType
0

endElab
0.0205

memElab
0.0782

memGetElab
0.041

memPutElab
0.0115

isRegular
14.9

+

+

isDangerous
6.36

Handler
λ=0.128,μ=0.862

handleDangerous
0.792

handleRegular
9.3

MoveController
λ=0.351,μ=0.657

haltHere
0.66

goThere
2.34

takeThat
1.78

NetTX
λ=0.0383,μ=0.0566

sendAlert
1.48

StorageMemory
λ=0.744,μ=0.0157

getInfo
0.0204

storeInfo
0.0229

VolatileMemory
λ=1.39,μ=0.0216

exec
0.0155

Motors
λ=0.78,μ=0.318

motorStatus
0.0829

setSpeed
0.531

setDirection
1.53

Arms
λ=1.16,μ=0.296

armStatus
0.0829

moveDX
0.531

moveSX
0.531

P2
μ=0.211

Fig. 5. The LQN model for the robot case study
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Table 1. Requirements and Performance Results - Iteration0

Target Value Current Value
isDangerous (req1) ≤ 4, 5 ≈ 9, 25
checkEvent (req2) ≤ 11 ≈ 15, 5

We associate the first requirement, in the LQN model, to the mean service time of the
isDangerous entry. The second requirement is associated to the mean service time of
the checkEvent entry. Both entries belong to the AI task.

In [3] all the parameters used for the initial LQN model are shown. The performance
analysis of the initial model produces the results reported in Table 1. It is evident that the
initial architecture does not satisfy the performance requirements. Our approach, basing
on the system-level interpretation matrix of Figure 2, suggests to identify subsystems,
in one of the previously described ways, for a finer grain performance analysis. In this
case study we have both types of requirements, as classified in Section 2.1. The first
one is service specific whereas the second one is related to the whole system (i.e. a
flat requirement). At this point we have chosen to adopt a type2 system splitting, even
though type1 could be used as well. Of course, depending on the type of splitting, the
appropriate interpretation matrix has to be used in the next step.

SubS_dangerous is the first analyzed subsystem, and it is composed by all the system
tasks with the exception of the Arms task.

The subsystem type2 interpretation matrix [3] has to be referred for actions to take.
In this case, high mean response time and a good throughput level (4) suggest to

search for any known antipattern in the considered subsystem.
By observing the Handler task and the type of requests that run over the system, the

“Unbalanced Extensive Processing” antipattern can be retrieved on it (see left side of
Figure 6. In fact the considered task has a sufficiently high utilization level (i.e. about
86.2%) and it receives two different request types: one relates to the regular events
processing (and consequently with potentially heavy environmental interactions), and
the other one relates with the dangerous events which need a faster processing.

By applying the suggested solution to the retrieved antipattern, the refactored archi-
tecture, as shown in the right side of Figure 6, achieves the performance levels summa-
rized in Table 2. Indices have been improved, the first requirement has been satisfied
but the second one has still not been met.

The analysis should proceed with the goal of reducing the mean system response
time for a generic event while considering that, in accordance with performance model
parameters, the 70% of the captured events are classified as regular. Thus we will an-
alyze the SubS_regular subsystem because its performance affects the global system
performance more than the other subsystems.

In the new considered model the Handler2 task belongs to the SubS_dangerous sub-
system but the Handler task, that now does not offer any service for the dangerous
events processing, only belongs to the SubS_regular subsystem, as shown in table 3.

4 Note that no requirement has been imposed on the throughput, hence any value can be consid-
ered as feasible.
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Fig. 6. Unbalanced Extensive Processing antipattern in robot system

Table 2. Requirements and Performance Results - Iteration1

Target Value Current Value
distance from the
previous iteration

isDangerous (req1) ≤ 4, 5 ≈ 3, 3 −64, 32%
checkEvent (req2) ≤ 11 ≈ 13, 75 −11, 29%

The subsystem type2 interpretation matrix used with the SubS_regular subsystem
suggests to search for antipatterns in this case as well. Here the interactions among the
tasks MoveController, Motors and Arms announce for a “Blob" antipattern, as shown
in the left side of Figure 7.

The refactoring of the system due to the latter antipattern identification does not
modify the model structure, but only the distribution of load, as shown in the right side
of Figure 7.

This allows the software architecture to achieve the performance values summarized
in Table 4.

The second requirement is still slightly over the desired level, so the analysis should
make one more step. Now the subsystems do not contain any known antipattern, and
the interpretation matrix suggests to go for a lower level of granularity and use the
“software resource” interpretation matrix.

Fig. 7. Blob antipattern in robot system
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Table 3. SubSystems - Iteration2

Software Resources
SubSystem

SubS_dangerous
SubSystem

SubS_regular

Sensors
√ √

NetRX
√ √

NetTX
√

StorageMemory
√ √

VolatileMemory
√ √

AI
√ √

Handler
√

Handler2
√

MoveController
√ √

Motors
√ √

Arms
√

SubSystem
performance target

R ≤ 4,5
(on isDangerous)

—

System
performance target

R ≤ 11 (on checkEvent)

Table 4. Requirements and Performance Results - Iteration2

Target Value Current Value
distance from the
previous iteration

isDangerous (req1) ≤ 4, 5 ≈ 3, 15 −4, 54%
checkEvent (req2) ≤ 11 ≈ 12 −12, 73%

The first analysis consists of examining the utilization level for the resources be-
longing to the considered subsystem to find the one in the worst state. As shown in
the left side of Figure 8, the Handler resource has the highest utilization value and the
“software resource” interpretation matrix suggests to clone it. Thus we have raised its
resource multiplicity in the LQN model.

This change has positive effects on the generic event processing performance al-
though it is not enough to satisfy the requirements. Thus we can consider the AI re-
source that is the current most used resource in the SubS_regular subsystem, as shown
in the right side of Figure 8. However, the raise of its multiplicity has negative effects,
very likely because the number of requests in the queues of other system resources
becomes too high. For this reason, we did not apply this change.

Handler is the second highly used resource in the subsystem and its utilization level
is over 80%, as shown in the right side of Figure 8. Raising its multiplicity, as suggested
by the proper interpretation matrix, is in this case useless because the performance
levels remain unchanged, so we did not apply this change either.

At this point, considering that the hardware (like CPU and memories) which is di-
rectly used by the software components can support the current workload with medium
utilization levels, we can try to improve the hardware related with the servosystems, i.e.
the Motors and Arms tasks that are the slowest components of the whole robot system.
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Table 5. Requirements Summary - Iteration3

Target Value Current Value
distance from the
previous iteration

isDangerous (req1) ≤ 4, 5 ≈ 4 +26, 98%
checkEvent (req2) ≤ 11 ≈ 10, 3 −14, 17%

Thus, basing on the hardware resource interpretation matrix, we decided to drop the
delay of each servosystems activity by 0.1 seconds. This leads to a considerable perfor-
mance increase. In fact, at the end of the process the performance goals are achieved,
as shown in table 5.

4 Conclusions

We have presented an approach to interpret performance analysis results and generate
architectural feedback on the basis of result interpretation. Using our approach, guide-
lines for interpretation and a thorough process can be followed to break the adversary
design choices that negatively affect the system performance.

Although we have implemented a prototyped tool that may guide the developers
along the whole process, it is still necessary some human experience in several steps.
For example, the detection of antipatterns in a subsystem is a task whose complexity
heavily depends on the structure of the subsystem and the definition of the antipattern
itself. However, at the best of our knowledge, this is the first work that embeds in the
same process the interpretation of performance results and the formulation of architec-
tural alternatives. In addition, we have given a first (still preliminary) contribution to
structuring the knowledge necessary for such task.

As future work we mainly intend to consolidate the antipattern definitions and re-
trieving. Consequently, we can improve the tool support to the whole process. Inter-
pretation matrices are still too informal, thus more effort shall be dedicated to their
refinement in order to apply our approach to more complex case studies. Besides, we
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plan to extend our approach by considering possible architectural constraints that may
prevent from applying suggested changes (e.g. a certain load cannot be distributed on
other components due to "narrow" connectors). The whole approach does not depend
on the notation adopted to represent the performance model, however it will be inter-
esting to experiment on other notations such as Petri Nets. As a long-term goal, we plan
to introduce cost issues in the choice of architectural alternatives, exactly like CBAM
process suggests [5].
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