

Lecture Notes in Computer Science 4748
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Katinka Wolter (Ed.)

Formal Methods
and Stochastic Models
for Performance Evaluation

Fourth European Performance Engineering Workshop, EPEW 2007
Berlin, Germany, September 2007
Proceedings

13

Volume Editor

Katinka Wolter
Humboldt Universität Berlin
Institut für Informatik
Unter den Linden 6, 10099 Berlin, Germany
E-mail: wolter@informatik.hu-berlin.de

Library of Congress Control Number: 2007935135

CR Subject Classification (1998): D.2.4, C.2.4, F.3, D.4, C.4

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-75210-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-75210-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12164042 06/3180 5 4 3 2 1 0

Preface

This volume contains the papers presented at the 4th European Performance
Engineering Workshop held during September 27–28 in Berlin.

There were 53 submissions. Each submission was reviewed by at least three
Programme Committee members. From these, the committee decided to accept
20 papers.

We were very happy to have Isi Mitrani from Newcastle University give a
keynote lecture on his recent work and future challenges in applied queueing
theory.

The submitted papers cover all areas of performance engineering. We were
able to compose an interesting program in six sessions, including sessions on
theoretical work in performance engineering techniques as well as sessions pre-
senting applications of performance engineering techniques. The final workshop
program, as well as this volume, comprises the thematic sessions:

– Markov Chains
– Process Algebra
– Wireless Networks
– Queueing Theory and Applications of Queueing
– Benchmarking and Bounding
– Grid and Peer-to-Peer Systems

The volume includes very theoretical papers on topics such as bounds in stochas-
tic ordering, canonical representation of phase-type-distributions and algorithms
to solve closed queueing networks. Some papers study properties of numerical so-
lution algorithms, other contributions evaluate hardware or software design and
propose benchmarks. On the application side there are, furthermore, evaluations
of wireless protocols, simulation studies of distributed systems and performance
evaluation of system monitoring tools. We hope that this volume will provide a
reference for fundamental work in performance engineering.

The success of the workshop is due to many helping hands. First of all, the
members of the Program Committee were very cooperative, spent much time on
reading and evaluating the submitted papers and gave advice where needed. Luck-
ily, Miklos Telek passed on his experience after organizing last year’s workshop.

Thanks to Levente Bodrog from Budapest the workshop had a professionally
designed Web site. The EasyChair conference management software eased the
administration of the PC meeting and composition of this volume. We thank the
publisher for his support and continuity.

Last, but not least, I would like to thank the local organizers Johannes Za-
potoczky and Steffen Tschirpke. Philipp Reinecke derserves special thanks for
his help at all times.

July 2007 Katinka Wolter

Conference Organization

Programme Chair

Katinka Wolter

Programme Committee

Jeremy Bradley Imperial College, London (UK)
Mario Bravetti University of Bologna (Italy)
Lucy Cherkasova HP Labs (USA)
Lucia Cloth University of Twente (Netherlands)
Michel Cukier University of Maryland (USA)
Tadeusz Czachorski IITiS PAN, Gliwice (Poland)
Jean-Michel Fourneau Université de Versailles (France)
Stephen Gilmore University of Edinburgh (UK)
Armin Heindl University of Erlangen-Nürnberg (Germany)
András Horváth University of Torino (Italy)
Carlos Juiz University Illes Balears (Spain)
Tomáš Kalibera Charles University in Prague (Czech Republic)
Helen Karatza Aristotle University of Thessaloniki (Greece)
Lëıla Kloul Université de Versailles (France)
Kim G. Larsen University of Aalborg (Denmark)
Hermann de Meer Passau University (Germany)
Aad van Moorsel Newcastle University (UK)
Manuel Nunez University Complutense de Madrid (Spain)
Fernando L. Pelayo University Castilla-La Mancha (Spain)
Brigitte Plateau Polytechnical Institute of Grenoble, LIG,

(France)
Rob Pooley Heriot-Watt University, Edinburgh (UK)
Marina Ribaudo University of Genova (Italy)
Marco Scarpa University of Messina (Italy)
Markus Siegle University of the Federal Armed Forces,

Munich (Germany)
Mark Squillante IBM T.J. Watson Research Center, NY (USA)
Ann Tai IA Tech, Inc. (USA)
Miklós Telek Technical University of Budapest (Hungary)
Nigel Thomas Newcastle University (UK)
Lisa Wells University of Aarhus (Denmark)
Katinka Wolter Humboldt University Berlin (Germany)
Armin Zimmermann Technical University Berlin (Germany)
Wlodek M. Zuberek Memorial University (Canada)

VIII Organization

Local Organization

Steffen Tschirpke
Philipp Reinecke
Johannes Zapotoczky

External Reviewers

Ashok Argent-Katwala
Leonardo Brenner
Matteo Dell’Amico
Salvatore Distefano
Marco Ferrante
David de Frutos Escrig
Gabor Horvath
Douglas de Jager
Mehdi Khouja
Harini Kulatunga
Luis Llana
Natalia Lopez

Mercedes G. Merayo
Nihal Pekergin
Antonio Puliafito
Philipp Reinecke
Martin Riedl
Afonso Sales
Pere P. Sancho
Johann Schuster
Giuseppe Scionti
Antonio Sola
Valentin Valero
Maria Vigliotti

Table of Contents

Keynote

Optimization Problems in Service Provisioning Systems 1
Isi Mitrani

Markov Chains

Untold Horrors About Steady-State Probabilities: What Reward-Based
Measures Won’t Tell About the Equilibrium Distribution 2

Alexander Bell and Boudewijn R. Haverkort

Compositionality for Markov Reward Chains with Fast Transitions 18
Jasen Markovski, Ana Sokolova, Nikola Trčka, and Erik P. de Vink

Closed Form Absorption Time Bounds . 33
Ana Bušić and Nihal Pekergin

A Canonical Representation of Order 3 Phase Type Distributions 48
Gábor Horváth and Miklós Telek

Process Algebras and State Machines

SPAMR: Extending PAMR with Stochastic Time . 63
Natalia López, Manuel Núñez, and Ismael Rodŕıguez

Faster SPDL Model Checking Through Property-Driven State Space
Generation . 80

Matthias Kuntz and Boudewijn R. Haverkort

Testing Finite State Machines Presenting Stochastic Time and
Timeouts . 97

Mercedes G. Merayo, Manuel Núñez, and Ismael Rodŕıguez

Grid and Peer-to-Peer Systems

Evaluation of P2P Search Algorithms for Discovering Trust Paths 112
Emerson Ribeiro de Mello, Aad van Moorsel, and Joni da Silva Fraga

Building Online Performance Models of Grid Middleware with
Fine-Grained Load-Balancing: A Globus Toolkit Case Study 125

Ramon Nou, Samuel Kounev, and Jordi Torres

X Table of Contents

Performance Measuring Framework for Grid Market Middleware 141
Felix Freitag, Pablo Chacin, Isaac Chao, Rene Brunner,
Leandro Navarro, and Oscar Ardaiz

Queueing Theory and Applications of Queueing

A Fixed-Point Algorithm for Closed Queueing Networks 154
Ramin Sadre, Boudewijn R. Haverkort, and Patrick Reinelt

A Framework for Automated Generation of Architectural Feedback
from Software Performance Analysis . 171

Vittorio Cortellessa and Laurento Frittella

Optimal Dynamic Server Allocation in Systems with On/Off Sources . . . 186
Joris Slegers, Isi Mitrani, and Nigel Thomas

Towards an Automatic Modeling Tool for Observed System Behavior . . . 200
Thomas Begin, Alexandre Brandwajn,
Bruno Baynat, Bernd E. Wolfinger, and Serge Fdida

Benchmarking and Bounding

Censoring Markov Chains and Stochastic Bounds . 213
Jean-Michel Fourneau, Nihal Pekergin, and Sana Younès

Workload Characterization of the SPECjms2007 Benchmark 228
Kai Sachs, Samuel Kounev, Jean Bacon, and Alejandro Buchmann

Resource Sharing in Performance Models . 245
Vlastimil Babka, Martin Děcký, and Petr T̊uma

Exploiting Commodity Hard-Disk Geometry to Efficiently Preserve
Data Consistency . 260

Alessandro Di Marco

Wireless Networks

An Efficient Counter-Based Broadcast Scheme for Mobile Ad Hoc
Networks . 275

Aminu Mohammed, Mohamed Ould-Khaoua, and Lewis Mackenzie

The Effect of Mobility on Local Service Discovery in the Ahoy Ad-Hoc
Network System . 284

Patrick Goering, Geert Heijenk, Boudewijn Haverkort, and
Robbert Haarman

Author Index . 301

Optimization Problems in Service Provisioning

Systems

Isi Mitrani

School of Computing Science
Newcastle University
Newcastle upon Tyne

United Kingdom
isi.mitrani@ncl.ac.uk

A service provisioning system typically contains a number of servers which may
be distributed, heterogeneous and intermittently unavailable. They are used by
the host in order to offer different services to a community of users. There may or
may not be Service-Level Agreements involving Quality of Service constraints. In
this context, there are several areas where dynamic optimisation problems arise
quite naturally. These are (a) Routing and load-balancing: Where should an in-
coming request be sent for execution? If some queues grow large while others are
short, can something be gained by transferring jobs among them? (b) Resource
allocation: If different servers are dedicated to different types of service, how
many should be assigned to each? When should a server be switched from one
type of service to another? (c) Revenue maximisation: How are resource alloca-
tion and job admission policies affected by economic considerations? In partic-
ular, if service-level agreements specify payments for serving jobs and penalties
for failing to provide a given quality of service, how many servers should be
assigned to each type of service and when should jobs of that type be accepted?

The talk will describe models that address the above problems and will dis-
cuss routing, allocation and admission policies that may be adopted in practical
systems.

K. Wolter (Ed.): EPEW 2007, LNCS 4748, p. 1, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Untold Horrors About Steady-State Probabilities:
What Reward-Based Measures Won’t Tell About

the Equilibrium Distribution�

Alexander Bell and Boudewijn R. Haverkort

University of Twente
Dept. Electrical Engineering, Mathematics and Computer Science

P.O. Box 217, 7500 AE Enschede, the Netherlands
a.bell@math.utwente.nl, brh@cs.utwente.nl

Abstract. These days, parallel and distributed state-space generation
algorithms allow us to generate Markov chains with hundreds of millions
of states. In order to solve such Markov chains for their steady-state be-
haviour, we typically use iterative algorithms, either on a single machine,
or on a cluster of workstations. When dealing with such huge Markov
chains, the accuracy of the computed probability vectors becomes a crit-
ical issue.

In this paper we report on experimental studies of, among others, the
impact of different iterative solution techniques, erratic and stagnating
convergence, the impact of the state-space ordering, the influence of the
processor architecture chosen and the accuracy of the measure of interest,
in relation to the accuracy of the individual state probabilities.

To say the least, the paper shows that the results from analysing
extremely large Markov chains should be “appreciated with care”, and,
in fact, questions the feasibility of the ambitious “5 nines programs” that
some companies have recently started.

1 Introduction

With the advent of high-level description languages for Markovian models, such
as those based on stochastic Petri nets or stochastic process algebras, it has be-
come easy to specify extremely large Markovian models. Also, the deployment
of structured and symbolic approaches towards state space generation, such as
those using Kronecker algebra and those based on, for instance, multi-terminal
binary decision diagrams, has made Markovian models with thousands of mil-
lions of states a reality. However, describing and generating state spaces is one
thing, solving the Markov chains associated with these enormous state spaces
is another issue. The largest Markovian models we are aware of that have been
solved numerically have close to a billion states [2] (using an explicit state space
representation and a disk-based parallel solver). Clearly, currently the solution
step is lagging behind.
� The title of this paper has been inspired by [11].

K. Wolter (Ed.): EPEW 2007, LNCS 4748, pp. 2–17, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Untold Horrors About Steady-State Probabilities 3

In this paper we address the question of 1 how much confidence one actually
can have in performance and dependability measures derived from numerical
steady-state solutions of such extremely large Markov chains. What can we ac-
tually say about the accuracy of the computed probabilities? When we have
so many states, can we still compute the state probabilities accurately enough?
And how do the numerical algorithms “react” on such very small probabilities?
Furthermore, if we employ parallel algorithms for the solution of the steady-state
probabilities, does the way in which we distribute the state space over the nodes
or the timing of information-exchange between the nodes (non-determinism) af-
fect the accuracy of the measures we compute?

In order to illustrate our thoughts with experimental data, we present re-
sults for a generalised stochastic Petri net (GSPN) that has been used by many
researchers in the past, the Flexible Manufacturing System (FMS) model [3].
This choice also gives us the ability to compare results computed at four dif-
ferent sites, i.e., at the RWTH Aachen, at the College of William and Mary, at
Imperial College, and, most recently, at the University of Twente.

The result of our paper is not so much a recipe for obtaining steady-state
probabilities that are always accurate enough. Instead, the aim of the paper
merely is to show how difficult it is to actually obtain accurate results, and shows
pitfalls and problems that will be all around. In doing so, it actually shows that
determining very accurate performance and dependability measures, like needed
in the “5 nines programs” of some industrial research laboratories (implying to
determine, in a model-based fashion, that the system long-term availability is
at least equal to 0.99999, which coincides with a downtime of, roughly, only 5
minutes per year), is far from trivial. In fact, the practical feasibility of such
endeavours must be seriously questioned.

The rest of this paper is organised as follows. Section 2 addresses specific issues
related to the employed numerical algorithms, and in Section 3 we present exper-
imental results based on our computations and compare them to other published
results. Finally, Section 4 concludes the paper with a summary and outlook.

2 Iterative Solvers for Markov Chains

For the solution of very large Markov chains, only iterative solutions can be em-
ployed; their background is rehearsed in Section 2.1 (for more details on iterative
methods for Markov chains, see [10]). Since these iterative methods only pro-
duce approximations of the solution, we discuss in Section 2.2 how to make sure
that a certain accuracy has been achieved. Section 2.3 gives background on the
usually employed floating point number representation. Because the computed
state probabilities often differ by several orders of magnitude, we address the
problem caused by summing large numbers of such values in Section 2.4.

2.1 Background

During the computation of the steady-state distribution for a CTMC with gener-
ator matrix Q iterative linear equation solvers compute a sequence of

4 A. Bell and B.R. Haverkort

approximations π(0), π(1), π(2), · · · for the solution vector π of the linear sys-
tem 0 = πQ (which we may rewrite as QTπT = 0 to correspond to the more
general representation of linear systems Ax = b). Any iterative solver computes
the next approximation π(i+1) by the iteration π(i+1) = H · π(i) + c, where H is
called the iteration matrix. Clearly, one iteration step “costs” one matrix-vector
product (MVP). The number of iterations k required for an accuracy ε can be
approximated from the spectral radius ρ of the iteration matrix H as k = log ε

log ρ

(see: [1,10]). Instead of the spectral radius the magnitude of the sub-dominant
eigenvalue can be used. Although this result looks very attractive it is of little
use in practice as the computation of the eigenvalues of H requires approxi-
mately the same effort as the computation of the steady-state solution. Hence,
other methods to detect convergence and hence to limit the number of iterations
k have to be used, as will be discussed below.

An important issue to address is the number of solution vectors that needs to
be stored at any point in time during the iterative solution process. Using double
precision floating point numbers, a single solution vector (which is non-sparse)
costs 8 megabyte per 1 million states. On a machine with 1 gigabyte of main
memory, roughly speaking, the solution vector for a Markov chain with 100 mil-
lion states can be stored, provided only a single iteration vector is required, such
as is the case for Gauss-Seidel. For the Jacobi method, already two vectors are
required, thus limiting the number of states to roughly 50 million. For Conjugate
Gradient Squared (CGS), even more vectors are required. In all these cases, it
is assumed that the matrix Q is either stored very compactly, recomputed on
the fly, or stored on disk. We note that whereas for the serial solution of the
steady-state probabilities methods like Gauss-Seidel, SOR, Jacobi and the CGS
can be employed, parallel implementations tend to use only the Jacobi and CGS
method as they can be parallelised more easily and efficiently.

2.2 Stopping Criteria

The simplest properties that can be used as stopping criteria are either to limit
the maximum number of iterations or the time spent computing them. This
surely limits the iteration count k but can not guarantee that the remaining er-
ror e(k) = π(k) −π is smaller than some chosen limit. Better, but still traditional
stopping criteria are based on the norm of the difference of successive iterates
e(k) = ||π(k) − π(k−1)||, cf. [10], where the iteration is stopped if this norm falls
below δ > 0. Although any norm will do, the most popular choice is the maxi-
mum norm ||x||∞ = maxi |xi|, as it requires the fewest floating point operations
to perform and no underflows or overflows can occur with it. This consideration
applies to all norms we will use in this section. This approach has several prob-
lems, though. First of all, it does not take into account the magnitude of the
(largest) elements of the solution vector, which, indeed, may all be very small
if the probability vectors consist of several hundreds of millions of entries. This
problem can be overcome by either scaling π(k) in a way that the largest element

Untold Horrors About Steady-State Probabilities 5

of π(k) equals 1 or by using the criterion e(k) = maxi

(
|π(k)

i −π
(k−1)
i |

|π(k)
i |

)
≤ δ, which

computes the relative error between two successive approximations.
Secondly, it may falsely detect convergence if the iteration process converges

very slowly, hence, the difference between two successive approximations is smaller
then δ, even though an appropriate solution would require far more iterations.
Stewart [10] suggests to check the differences of non-successive approximations

resulting in a stopping criterion e(k) = maxi

(
|π(k)

i −π
(k−m)
i |

|π(k)
i |

)
≤ δ, where approx-

imations lying m iterations apart are compared. Note that m is not required to
be constant, but may be chosen as a function of the convergence rate or the itera-
tion count. An obvious disadvantage of this criterion is the fact that an additional
old approximation has to be stored whereas the comparison of two successive
approximations can be done on-the-fly even for a Gauss-Seidel iteration using only
a single vector.

The stopping criteria discussed above can only be used if the successive ap-
proximations get better during each iteration step. If the method exhibits so-
called erratic convergence (see the example in Section 3.3 for the CGS method
[9]), then no conclusions about the achieved accuracy can be drawn from the
comparison of two successive (or m-step apart) approximations. Hence, stop-
ping criteria based on the residual r(k) = π(k)Q should be used in conjunction
with the CGS method [2,6]. Of course, these can also be applied in combination
with the methods of Jacobi and Gauss-Seidel. The quality of an approximation
is better the closer the residual is to zero. Note that the standard definition of
the residual of a linear system Ax = b is r = Ax(k) − b. As before, the absolute
magnitude of the entries in the residual vector can only be interpreted mean-
ingfully if we compare them to the magnitude of the (sought for) elements in
the solution vector. Hence, the most common stopping criterion based on the
residual is e(k) = ||r(k)||

||π(k)|| ≤ δ. Again, any norm will do, but the maximum norm
is the most common choice. If we use it and rewrite the stopping criterion as
||r(k)||∞ ≤ δ||π(k)||∞ we see that the largest entry in the residual, which should
be as close to zero as possible, is at most δ times the largest entry in the ap-
proximation vector π(k). For the rest of this paper, if not mentioned otherwise,
we will use this relative residual criterion as the stopping criterion. Note that
the residual can be computed at no additional cost during Jacobi and CGS
iterations [7].

A stopping criterion not based on the achieved accuracy but on the speed
of convergence can be applied to methods like Jacobi and Gauss-Seidel that
typically exhibit nearly monotone linear convergence up to a certain accuracy. If
this accuracy is achieved, often no further progress will be made. One can observe
this point by analysing the fraction of two successive error approximations e(k−1)

e(k) .
An example where this point is reached will be given in Section 3.2. Note that
this criterion can also be used for approximations that are more than just one
iteration apart without the need to store the iteration vectors.

6 A. Bell and B.R. Haverkort

2.3 The IEEE 754 Floating-Point Standard

During the computation of performance measures for a system modelled as a
GSPN, errors can arise at several stages. Often forgotten is the fact that com-
puters work with floating-point numbers which can only represent real numbers
up to a certain precision. Today the IEEE 754 floating point standard [5] is most
commonly used. It defines floating point number codes for single (32 bit), dou-
ble (64 bit), and double-extended (79 bit) precision, where the latter is typically
used for processor-internal computations and not employed for the storage of
data. Only single and double precision are currently supported by the majority
of processors on the hardware side, and by programming languages on the soft-
ware side. The standard does not only cover the representation of floating-point
numbers but also the handling of underflows, overflows and other exceptional
conditions. As we will see later, single precision is not an option for our prob-
lems, therefore we will focus on the double precision here.

A double precision floating point number x is represented in the form xs =
(−1)S ·2E−1023 · (1.M), where S is the sign bit (1 bit), E is the exponent (11 bit,
stored in excess-1023 code) and M is the mantissa (52 bit, always normalised)
Adding two floating point numbers is typically done by adjusting the exponent
and the mantissa of the smaller number to match the exponent of the larger
number (resulting in a non-normalised floating point number) and then adding
the mantissas. Obviously, accuracy of the smaller number might be lost as the
rightmost digits of its mantissa are lost. The machine precision, ε, is the smallest
number that, if added to 1.0, produces a number different from 1.0. The IEEE
floating-point representation induces machine precisions of εd = 2−52 = 2.22 ·
10−16 for double precision and εs = 2−23 = 1.19 · 10−7 for single precision
arithmetic. Hence, double precision offers 15 significant decimal digits whereas
single precision only features 6. Note that the machine precision is not the same
as the smallest number that can be represented using that format, as this number
depends on the size of the exponent.

2.4 Summation Problems

Once the steady-state probabilities π have been computed, measures of inter-
est are typically computed as a weighted sum over a subset of states, e.g.,
measure =

∑
i ρiπi, where πi is the steady-state probability for state i and ρi is

a reward) associated with that same state. Due to the fact that the probabilities
might differ by several orders of magnitude, which might be aggravated by the
multiplication with the rewards, performing the summation might induce severe
round-off error. As we saw in Section 2.3, a number that is smaller by a factor of
the machine precision εm will have no impact when added to a larger number.

Even worse, the addition of floating point numbers is not even associative.
Consider the case where we add several thousands of numbers in the magnitude
of the machine precision εm one after the other to a larger number. This results in
a different sum than in case we first sum all the small numbers and subsequently
add the result to the larger number.

Untold Horrors About Steady-State Probabilities 7

One possibility to overcome this problem is to sort the numbers to be added
by their magnitude and add them, starting from the smallest. In practice the
computational effort for a complete sorting cannot be justified, however, one
could add the numbers in groups, that is, by using “sub-sums” for different ranges
of values to be added. For example, if we have to add numbers in the range of
10−24 to 10−4, we can compute the overall sum using five groups, summing the
numbers smaller than 10−20, 10−16, 10−12 and 10−8, respectively, and finally all
up to 10−4.

Another problem is the fact that all errors sum up. If we compute the sum of a
vector comprising N entries, each entry has a round-off error of the magnitude of
the machine precision. If these errors follow a Normal distribution to both smaller
and larger results, the overall error will be

√
N ·εm [8]. However, in the worst case,

if all errors tend to the same direction, we obtain an error of N · εm [8].
Considering the largest Markov chain we solved (consisting of 724 million

states) using double precision floating-point numbers with a machine precision
of εd = 2.22 · 10−16, the sum of a solution vector will have an error of 5.9 · 10−12

for normally distributed roundoff errors and an error of 1.6 · 10−7 in the worst
case. This means that even if we computed the steady-state solution as precisely
as possible, a performance measure can only be accurate up to 10−12 and might
have an error up to 10−7 produced only by the summation. If the individual
state probabilities differ in their order of magnitude, not even this accuracy can
be achieved.

In the above example, if we use single precision arithmetic, the errors would
lie in the range of 3.2 · 10−3 and 8.6 · 10, respectively! From this example, it
becomes obvious that single precision floating point arithmetic is of no use for
large Markov chains and even the accuracy of double precision floating points
can be a problem, depending on the measures of interest.

3 Experiments

In this section we report on our experiments. In Section 3.1 we present the
employed model and the measure of interest, followed by a discussion on stag-
nating convergence and erratic convergence in Section 3.2 and Section 3.3, re-
spectively. We then discuss a special phenomenon we have observed when using
CGS in Section 3.4, and compare various solution techniques and their impact
on accuracy in Section 3.5. We present results on different state-space order-
ings in Section 3.6, on different system architectures (hardware) in Section 3.7.
Section 3.8 discusses the accuracy of the obtained measure, in contrast to the
accuracy of the obtained steady-state probabilities. Finally, Section 3.9 discusses
the influence of the number of processors on the accuracy obtained when using
a parallel/distributed algorithm.

3.1 Model and Measure of Interest

We present experimental results for the well-known flexible manufacturing sys-
tem (FMS) model, cf. [3]. The model describes a production line comprising

8 A. Bell and B.R. Haverkort

Table 1. Statistics for the FMS-model

k n a
√

n · εd n · εd

1 54 155 1.616 · 10−15 1.188 · 10−14

2 810 3 699 6.261 · 10−15 1.782 · 10−13

3 6 520 37 394 1.776 · 10−14 1.434 · 10−12

4 35 910 237 120 4.168 · 10−14 7.900 · 10−12

5 152 712 1 111 482 8.597 · 10−14 3.357 · 10−11

6 537 768 4 205 670 1.613 · 10−13 1.183 · 10−10

7 1 639 440 13 552 968 2.816 · 10−13 3.607 · 10−10

8 4 459 455 38 533 968 4.645 · 10−13 9.811 · 10−10

9 11 058 190 99 075 405 7.315 · 10−13 2.433 · 10−9

10 25 397 658 234 523 289 1.108 · 10−12 5.587 · 10−9

11 54 682 992 518 030 370 1.626 · 10−12 1.203 · 10−8

12 111 414 940 1 078 917 632 2.322 · 10−12 2.451 · 10−8

13 216 427 680 2 611 411 257 3.236 · 10−12 4.761 · 10−8

14 403 259 040 4 980 958 020 4.417 · 10−12 8.872 · 10−8

15 724 284 864 9 134 355 680 5.920 · 10−12 1.593 · 10−7

20 8 831 321 730 — 2.067 · 10−11 1.943 · 10−6

25 65 075 507 406 — 5.612 · 10−11 1.432 · 10−5

three machines, which process different kinds of work items that are transported
through the system on pallets. The capacity of the overall system depends on the
number of pallets that is used to transport the work items between the machines.
The number of available pallets is modelled by a parameter k.

Table 1 illustrates the growth of the state space and the reachability graph as
a function of k, which is given in the first column. Column two lists the resulting
number of reachable tangible markings n and the number of non-zeroes a in
the generator matrix of the underlying CTMC. State space sizes for k = 20
and 25 are just given to illustrate the further growth of the state space; we are
currently not aware of any numerical solution for models that size. The expected
magnitude of the errors induced by summing n entries using double precision
arithmetic is given in columns 4 and 5 for normally distributed errors and worst
case errors, respectively (see Section 2.4).

In addition to the results we computed using the PARSECS tool [2,4] for
k = 1, . . . , 15, we use results published by Ciardo [3] for k = 1, . . . , 5, and by
Knottenbelt [6] for k = 1, . . . , 11. In each case the measure of interest is the
so-called productivity ψ of the FMS, expressed as a reward-based measure in [3]
as ψ = 400φ1 + 600φ2 + 100φ3 + 1100φ12, where φl indicates the throughput of
transition tPl. Whenever we refer to some accuracy criterion in this section we use
the residual criterion ||r||∞/||π||∞. The same criterion was used by Knottenbelt,
whereas Ciardo does not comment on which criterion was used.

3.2 Stagnating Convergence

During our experiments we faced the effect of stagnating convergence, i.e., the
fact that the solution converged nearly linearly up to a certain δ (measured by
some convergence criterion) and after that, no real progress was made.

Untold Horrors About Steady-State Probabilities 9

As an example of this, we present the convergence behaviour for different
numerical methods (Jacobi (J), Gauss-Seidel (GS), and Conjugate Gradient
Squared (CGS)) of the FMS model with k = 8 in Figure 1(a). The figure shows
the reached accuracy, measured by the residual criterion ||r||∞/||π||∞, as a func-
tion of the required number of matrix-vector products (MVPs) for the solution.
The data presented in this subsection was computed using the serial version of
the PARSECS solver. Note that each CGS step requires two MVPs (this has
been accounted for in the figure) and that the y-axis is logarithmically scaled.
For the CGS method we mark the points at which a certain accuracy is achieved
for the first time; in contrast to the Jacobi and Gauss-Seidel methods the con-
vergence for CGS is not as smooth as suggested by the connecting lines (see also
the next section).

1e-14

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

0 500 1000 1500 2000 2500

ep
s

MVPs

’CGS’
’GS’

’J’

(a) Varying the numerical method

11.01

1.05

1.1

1.2

1.5

0 500 1000 1500 2000 2500

s

Jacobi iterations

’conv-speed’

(b) Speed of convergence, Jacobi
method

Fig. 1. Convergence behaviour, FMS model k = 8

For the method of Jacobi we computed up to 5000 iterations and no better
accuracy than ||r||∞

||π||∞ = 6.16·10−10 was reached. A possible approach to detect the
point where the convergence stagnates is the analysis of the speed of convergence
s = e(i−l)

e(i) , where e(i) indicates the accuracy reached at iteration i and l is a
parameter that decides how many iterations the compared accuracies lie apart
(l for “lag”). Figure 1(b) shows the speed of convergence s = e(i−10)

e(i) as a function
of the number of Jacobi iterations. Note that the y-axis is logarithmically scaled.
One can identify 4 phases: during the first 50 iterations the speed of convergence
is irregular, after that there are roughly 200 iterations during which the speed
of convergence decreases rapidly. Between iterations 250 and 1700 the speed of
convergence s lies between 1.1 and 1.01, hence the convergence behaviour can
be considered nearly linear. After that, the speed of convergence decreases again
and reaches 1.0001 at iteration count 2200. After that no real progress is made.
Actually, after roughly 3100 iterations the speed of convergence s drops below
1.0 frequently and after 4160 iterations it is constantly 1.0 (within the limits of
the machine precision).

10 A. Bell and B.R. Haverkort

3.3 Erratic Convergence

Whereas classical iterative methods normally generate better approximations in
every step, i.e., the measure used as the convergence criterion gets smaller after
every iteration step, this is not generally true for Krylov subspace based meth-
ods and hence, especially not for the CGS method. In Figure 2(a) we show the
development of the residual criterion ||r||∞

||π||∞ (denoted as |r|/|x| on the logarith-
mically scaled y-axis) during the solution of the FMS model for k = 8 using 16
processors up to an accuracy of 6 · 10−16, which lies in the order of magnitude
of the machine precision. Figure 2(b) zooms in on the first 200 iterations.

1e-16

1e-14

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

0 200 400 600 800 1000 1200 1400 1600

|r
|/|

x|

CGS iterations

’CGS-residuum’

(a)

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

10

0 50 100 150 200

|r
|/|

x|

CGS iterations

’CGS-residuum’

(b)

Fig. 2. Development of the residual criterion, FMS model k = 8, 16 processors

From these figures it is quite evident that a comparison of successive approxi-
mation vectors (or approximations lying l iterations apart) does not make sense,
hence, it is also not possible to detect effects like stagnating convergence as
discussed in the previous section.

3.4 Negative Elements in CGS Solutions

A numerical anomaly we experienced when using the CGS method was the
appearance of negative elements in the solution vector. Whereas these cannot
appear using the methods of Jacobi or Gauss-Seidel, the CGS-method computes
a result which minimises the residual norm. For the FMS model with k = 8
(4459455 states) we found 763562 entries (or 17%!) of the entries of the solution
vector to be negative for an accuracy (residual criterion) of δ = 10−15. Figure 3
shows an histogram of the magnitude of the positive and negative values of the
solution vector, where a box for the value m on the x-axis shows the number
of positive and negative values which lie in the interval [10−(m+1), 10−m] and
[−10−m,−(10−(m+1))], respectively.

As one can observe, the first negative entries are smaller by several orders
of magnitude (the largest by magnitude start at 10−7), but nevertheless an-
noying. Our approach to deal with these negative entries is to set them to zero.

Untold Horrors About Steady-State Probabilities 11

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 0 5 10 15 20

nu
m

be
r

of
 v

al
ue

s

-log_10 of value

’positive’
’negative’

Fig. 3. Histogram of positive and negative entries in the solution vector, FMS, k = 8

We denote results for which we did so as being computed by the “CGS-corrected”
method. It is important to note that by doing so we cannot expect our results to
have more (correct) significant digits than the difference in order of magnitude
between the largest positive and negative entries.

We also experimented with two other strategies to post-process the results
obtained from the CGS solver:

– Obviously, negative elements are not valid in a probability vector. If we set
them to zero we accept to ignore values smaller than mini xi. This leads to
the idea to ignore all values for which |xi| < |minj xj |, i.e., to also set all
positive entries which are smaller than the absolute value of the smallest
negative entry to zero. Of course, we renormalised the result afterwards.

– We did some Jacobi iterations on the result obtained via CGS including the
negative elements and on the vector in which we set them to zero. For the
first variant the negative elements vanished after 10–50 iterations, for the
second, as expected, no negative elements were noticed.

For both approaches the results differ at the 6th or 7th significant digit, but no
clear preference for either of these two post-processing options seems to be justi-
fiable. Sometimes the results are further away from the Jacobi results, sometimes
they approach them.

3.5 Different Solution Methods

Table 2 shows results for the productivity ψ computed using different numerical
methods, as well as results published by others. All results are of course depen-
dent on the parameter k given in the first column. In the second column we
give the results published by Ciardo [3], which were computed using the SOR
method. Results from Knottenbelt [6] are given in column 3. These results were
computed using the CGS method with an accuracy of δ = 10−10. Results from

12 A. Bell and B.R. Haverkort

Table 2. Productivity ψ when using different methods, for k = 1, · · · , 9

PARSECS
k ψCiardo ψKnottenbelt ψJacobi ψCGS ψCGS-corrected #negative
1 13.853148 13.867015 13.853125 13.853128861270 13.853128861270 0
2 29.154731 29.154690 29.154702 29.154700488191 29.154700488191 0
3 44.443713 44.444877 44.443676 44.443668700805 44.443668700805 0
4 59.551361 59.551291 59.551301 59.551285826171 59.551285826171 0
5 74.373573 74.374123 74.373499 74.373476540306 74.373476612305 160
6 — 88.851914 88.851925 88.8519184712736 88.8519362140353 17169
7 — 102.944053 102.943746 102.943383547317 102.943811015488 118052
8 — 116.624587 116.624599 116.624678593358 116.656218658967 763562
9 — 129.876031 129.875824 129.875799826211 129.87583212267 1176422

the serial version of the PARSECS tool are given in the remaining columns,
where we used Jacobi (column 4) and CGS (column 5 and 6) for the solution of
the linear system. The achieved accuracy was δ = 10−9 for Jacobi and δ = 10−15

for CGS. The number of actually occurring negative elements in the solution is
given in column 7.

Although these results agree to some degree, one observes several discrep-
ancies. First of all, we note that, except for k = 1, the results coincide for at
least 4 significant digits. While Knottenbelt, who also compared his results to
those of Ciardo attributes this poor agreement to the low accuracy used by Cia-
rdo, this argument does not hold for the results calculated using PARSECS.
The differences might be influenced by the chosen state-space ordering, a theory
supported by the fact that the PARSECS results for different state space gener-
ation orderings show a better agreement; we will discuss this point in the next
section. Perhaps the differences are hardware dependent, but this is a specula-
tion inspired by the fact that Knottenbelt used SPARC processors, whereas the
PARSECS results were computed using Pentium processors; see Section 3.7 for
details on this issue.

Another important point to mention is the fact that the “CGS-corrected”
results are worse than the uncorrected results when compared to the results
calculated using the Jacobi method. Thus, the fact that CGS-generated negative
entries cannot be ignored and should be further investigated.

3.6 Different State Space Orderings

In contrast to the method of Jacobi, results calculated with the CGS method
depend on the ordering of states, even given exact arithmetic. Using floating
point numbers, results may also vary for the Jacobi method when a different
state space ordering is used, as floating point operations are not associative. In
this section we compare two state space orderings resulting from different search
strategies during the state space generation process, namely breadth-first and
depth-first search [4], for the Jacobi as well as for the CGS method. Table 3
shows the obtained results, where the first column is the parameter k of the

Untold Horrors About Steady-State Probabilities 13

Table 3. Comparison of different state space orderings

Jacobi CGS
k depth first breadth first depth first breadth first
3 44.4436760978369 44.4436760978368 44.4436687008048 44.4436763915087
4 59.5513008017580 59.5513008017581 59.5512858261705 59.5512869588266
5 74.3734986181677 74.3734986181672 74.3734765403062 74.3734824461310
6 88.8519252150780 88.8519252150777 88.8519521810466 88.8518434238192
7 102.943746367005 102.943746367010 102.943383547317 102.943719597266
8 116.624599210045 116.624599210081 116.624678593358 116.624569675295
9 129.875824499348 129.875824499685 129.875799826211 129.875805550217

FMS model. Columns two and three show the productivity computed using the
Jacobi method up to an accuracy of 10−9 using either depth-first or breadth-first
search during the state space generation. The corresponding results for the CGS
method can be found in columns four and five where the used accuracy was set
to 10−15. All results were obtained using the serial version of the PARSECS
state space generator and solvers.

As expected, the results for the method of Jacobi only differ in the very last
digits; e.g., digit 14 and 15 differ for the case k = 8. Notice that we can not
expect a better agreement in this case due to the summation problem discussed
in Section 2.4. In fact, if we compute the one-norm of the (already normalised)
solution vector the result is 0.999999999999818 which lies in the expected order
of magnitude for normally distributed errors (see Table 1). Re-normalising the
solution vector a second time results in a productivity of 116.624599210102.

Looking at the results for the CGS method, one observes significant differences
for the computed productivity of the FMS model. In case k = 6, for example, the
obtained performance measures only coincide for the first five significant digits, a
discrepancy that cannot be accounted for by summation problems; the expected
range of error due to summation problems would guarantee at least 9 correct
significant digits, even for the worst case estimate (cf. Table 1, last column, row
“k = 6”). On the other hand the observed differences lie in the range of the
differences found at different sites (see Table 2).

From these results we conclude that, for the Jacobi method, the ordering of
states has no impact on the obtained results (other than the expected deviations
introduced by the order of summation). For the CGS method, the state space
ordering has a non-negligible influence on the computed measures. Comparing
both results one observes that as far as the significant digits obtained for the
different state space orderings using the CGS method coincide, they also do so
compared to the Jacobi results. How far one can trust results obtained using the
CGS method has to be investigated in the future.

3.7 Varying the Processor Architecture

In this section we compare results obtained using the PARSECS tool on different
processor architectures, namely for the Intel Pentium III (32 Bit) and the Intel

14 A. Bell and B.R. Haverkort

Itanium 2 (64 Bit). All performance measures were computed serially using bi-
naries compiled from the same source code. The steady state distributions were
calculated up to an accuracy of 10−9 for the Jacobi method and 10−15 for the
CGS method. Table 4 shows the resulting productivity of the FMS model where
the first column gives the cycling number of pallets in the system, columns two
and three show the results calculated on the Pentium III for the Jacobi and CGS
method, and columns four and five present these for an Itanium 2 based system.

Table 4. Productivity ψ when using different processors, for k = 1, · · · , 9

Pentium III Itanium 2
k ψJacobi ψCGS ψJacobi ψCGS

1 13.8531254 13.853128861270 13.8531249 13.853129279525
2 29.1547023 29.154700488191 29.1547460 29.154698779308
3 44.4436761 44.443668700805 44.4437592 44.443654932162
4 59.5513080 59.551285826171 59.5514280 59.551253901135
5 74.3734986 74.373476540306 74.3736730 74.373480164208
6 88.8519225 88.851918471274 88.8521326 88.851904272438
7 102.9437464 102.943383547317 102.9439671 102.94370328374
8 116.6245992 116.624678593358 116.6248367 116.62462174883
9 129.8758245 129.875799826211 129.8759381 129.87579235691

A quick look at this table reveals that the used processor has a larger im-
pact on the performance measure than the chosen state space ordering. For the
method of Jacobi we experience differences at the 5th digit for k = 6. These
differences cannot be attributed to summation problems and require further in-
vestigation. We note that the observed differences between the two processor
architectures lie in the same order of magnitude as those observed when com-
paring to Knottenbelt’s results in Section 3.5.

3.8 Measure of Interest in Dependence of Accuracy

In this section we present the value for the productivity ψ as a function of the
chosen accuracy. The first experiments were done for k = 5 (152712 states)
and we used the methods of Jacobi and CGS as before. The results computed
serially using the PARSECS tool are given in Table 5. The first column lists
the accuracy δ, whereas columns two to four list the computed productivity for
Jacobi, CGS, and CGS-corrected. The last column gives the number of negative
elements in the solution vector. The smallest δ that produced reasonable results
was 10−2. We only give 6 digits of the solution here, as higher accuracies will
rarely make sense for the chosen measure of interests (as we saw previously, the
6th digit already differs for the values published by Knottenbelt and Ciardo).
For δ = 10−9 all three values coincide. Note that the value of ψCGS, rounded to 6
significant digits, does not change any more even if we compute up to δ = 10−15

(cf. Table 2). If we were content with just 4 significant digits, even an accuracy
of δ = 10−7 would suffice.

Untold Horrors About Steady-State Probabilities 15

Table 5. Measure of interest as a function of the chosen accuracy

δ ψJacobi ψCGS ψCGS-corrected #negative
10−2 76.1147 76.2969 81.0329 37952
10−3 80.1650 74.4024 76.7539 40677
10−4 75.7882 74.3778 74.3829 10543
10−5 74.5597 74.3735 74.3742 7359
10−6 74.3927 74.3735 74.3735 719
10−7 74.3754 74.3734 74.3734 10
10−8 74.3736 74.3735 74.3735 4
10−9 74.3735 74.3735 74.3735 0

The largest example for which we have a result from the literature is k = 11,
corresponding to 54 million states. Knottenbelt published a productivity ψ =
155.046937 for this case using an accuracy of δ = 10−10. Figure 4 shows the
development of the productivity as a function of δ; these values were computed
in parallel using the CGS method on 16 processors. Note that the x-axis is loga-
rithmically scaled and that the y-axis comprises only the interval [154.9, 155.1].
The topmost grid-line corresponds to the result given by Knottenbelt. The most
useful insight this figure gives, is the fact that for accuracies smaller than 10−6,
that is, from 10−6 to the left, a change in the measure of interest can not visually
be recognised despite the narrow interval depicted on the y-axis.

3.9 Varying the Number of Processors

Finally, Figure 5 shows the influence of different number of processors on the
computed productivity. The x-axis shows the number of employed processors,
where one processor corresponds to the serial solution. In all cases the achieved
accuracy (according to the used residual criterion) was 10−15. We note that for
this accuracy no negative entries were observed in the CGS solution vectors. As
one can observe, the number of processors influences the 6th most significant

154.9

155

155.047

155.1

1e-16 1e-14 1e-12 1e-10 1e-08 1e-06 0.0001 0.01

accuracy

’productivity’

Fig. 4. Development of the net produc-
tivity as a function of the chosen accu-
racy, FMS model k = 11, 16 processors

0 5 10 15 20 25

pr
od

uc
tiv

ity

Number of processors

’productivity’

74.37335

74.37345

74.37355

74.37330

74.37340

74.37350

74.37360

Fig. 5. Varying the used number of
processors, FMS model k = 5 using
CGS, δ = 10−15

16 A. Bell and B.R. Haverkort

digit. Although most results are in the interval [74.37345, 74.37355], the results
for 2 and 20 processors differ noticeably.

4 Conclusion

In this paper we discussed the influence of a variety of factors on the accuracy of
performance and dependability measures computed from the steady-state solu-
tion of extremely large CTMCs. After discussing a number of issues that should
be done very carefully in this context, we report on numerical experiments from
which a number of “mini conclusions” can be drawn.

First of all, we saw that changing the numerical solver and/or the number of
processors in a parallel setting can result in only 5 matching significant digits,
even though the steady-state solution was computed up to a convergence crite-
rion of 10−15. On the other hand, for the FMS example, an accuracy of 10−6

was enough to yield 4 significant digits for the measure of interest. >From this
point of view one could argue that having a stopping criterion that takes into
account the measure of interest could be very effective.

Secondly, our paper also sheds light on the use of different stopping crite-
ria; especially for the CGS method, residual-based stopping criteria seem to
be preferable, in order to avoid problems due to erratic convergence. The CGS
method also seems to be particularly sensitive towards the state space ordering.

Stated differently, for the extremely large Markov chains we addressed, it
seems that we do need not to compute the steady-state solution using an accu-
racy better than about 10−6 or 10−7, since other factors, such as the fact that we
computed reward-based performance measures using very long additive series,
dominate the accuracy for the derived performance measures.

It might be argued that the differences between the measures computed with
the various methods are too minor to be taken seriously. This is, however, not
true in general. For dependability type of measures, the measures of interest
lie in the order of 0.99999, for which our considerations are important. In fact,
our findings questions the feasibility of ambitious “5 nines programs” that some
companies have recently started.

References

1. Barrett, R., Berry, M., Chan, T.F., Demmel, J., Donato, J.M., Dongarra, J., Ei-
jkhout, V., Pozo, R., Romine, C., van der Vorst, H.: Templates for the Solution
of Linear Systems: Building Blocks for Iterative Methods. Philadalphia: Society
for Industrial and Applied Mathematics (1994), Also available as postscript file on
http://www.netlib.org/templates/Templates.html

2. Bell, A., Haverkort, B.R.: Serial and parallel out-of-core solution of linear systems
arising from generalised stochastic Petri net models. In: Tentner, A. (ed.) Proceed-
ings High Performance Computing Symposium — HPC 2001. Society for Computer
Simulation, pp. 242–247 (2001)

3. Ciardo, G., Trivedi, K.S.: A decomposition approach for stochastic reward net
models. Performance Evaluation 18(3), 37–59 (1993)

http://www.netlib.org/templates/Templates.html

Untold Horrors About Steady-State Probabilities 17

4. Haverkort, B.R., Bell, A., Bohnenkamp, H.: On the efficient sequential and dis-
tributed generation of very large Markov chains from stochastic Petri nets. In:
Proceedings of the 8th International Workshop on Petri Nets and Performance
Models, pp. 12–21. IEEE Computer Society Press, Los Alamitos (1999)

5. IEEE standard 754: http://grouper.ieee.org/groups/754/
6. Knottenbelt, W.J.: Parallel Performance Analysis of Large Markov Models. PhD

thesis, University of London, Imperial College of Science, Technology and Medicine
(1999)

7. Knottenbelt, W.J., Harrison, P.G.: Distributed disk-based solution techniques for
large Markov models. In: Proceedings of the 3rd International Meeting on the
Numerical Solution of Markov Chains, September 1999, pp. 58–75 (1999)

8. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes
in C. Cambridge University Press, Cambridge (1993)

9. Sonneveld, P.: CGS, a fast lanczos-type solver for nonsymmetric linear systems.
SIAM Journal on Scientific and Statistical Computing 10(1), 36–52 (1989)

10. Stewart, W.J.: Introduction to the Numerical Solution of Markov Chains. Princeton
University Press (1994)

11. Whitt, W.: Untold horrors of the waiting room: What the equilibrium distribution
will never tell about the queue-length process. Management Science 29(4), 395–408
(1983)

http://grouper.ieee.org/groups/754/

Compositionality for

Markov Reward Chains with Fast Transitions

J. Markovski1,�, A. Sokolova2,��, N. Trčka1,� � �, and E.P. de Vink1

1 Technische Universiteit Eindhoven, Formal Methods Group
Den Dolech 2, 5612 AZ, Eindhoven, The Netherlands

j.markovski@tue.nl
2 University of Salzburg, Computational Systems Group

Jakob-Haringer-Straße 2, 5020 Salzburg, Austria

Abstract. A parallel composition is defined for Markov reward chains
with fast transitions and for discontinuous Markov reward chains. In
this setting, compositionality with respect to the relevant aggregation
preorders is established. For Markov reward chains with fast transitions
the preorders are τ -lumping and τ -reduction. Discontinuous Markov re-
ward chains are ‘limits’ of Markov reward chains with fast transitions,
and have related notions of lumping and reduction. In total, four compo-
sitionality results are shown. In addition, the two parallel operators are
related by a continuity property.

Keywords: discontinuous Markov reward chains, Markov reward chains
with fast transitions, parallel composition, compositionality, lumpability,
reduction, Kronecker product and sum.

1 Introduction

Compositionality is a central issue in the theory of concurrent processes. Dis-
cussing compositionality requires three ingredients: (1) a class of processes or
models; (2) a composition operation on the processes; and (3) a notion of be-
haviour, usually given by a semantic preorder or equivalence relation on the class
of processes. For the purpose of this paper, we will have semantic preorders and
the parallel composition as operation. Therefore, the compositionality result can
be stated as:

P1 ≥ P1, P2 ≥ P2 =⇒ P1 ‖ P2 ≥ P1 ‖ P2

where P1, P2, P1 and P2 are arbitrary processes, ‖ and ≥ denote their parallel
composition and the semantic preorder relation. Hence, compositionality enables
the narrowing of a parallel composition by composing simplifications of its com-
ponents, thus avoiding the construction of the actual parallel system. In this
paper, we study compositionality for augmented types of Markov chains.

�
Corresponding author., Supported by Bsik-project BRICKS AFM 3.2.

��
Supported by the Austrian Science Fund (FWF) project P18913.

� � �
Supported by the Netherlands Organization for Scientific Research (NWO) project 612.064.205.

K. Wolter (Ed.): EPEW 2007, LNCS 4748, pp. 18–32, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Compositionality for Markov Reward Chains with Fast Transitions 19

Homogeneous continuous-time Markov chains, Markov chains for short, are
among the most important and wide-spread analytical performance models.
A Markov chain is given by a graph with nodes representing states and outgoing
arrows determining the stochastic behavior of each state. An initial probabil-
ity vector indicates which states may act as starting ones. Markov chains often
come equipped with rewards that are used to measure their performance (e.g.,
throughput, utilization, etc.) [1]. In this paper, we focus on state rewards only,
and we refer to a Markov Chain with rewards as a Markov Reward Chain.

To cope with the ever growing complexity of the systems, several perfor-
mance modeling techniques have been developed to support the compositional
generation of Markov Reward Chains. Such are stochastic process algebras [2,3],
(generalized) stochastic Petri nets [4,5], probabilistic I/O automata [6], stochas-
tic automata networks [7], etc. The compositional modeling enables composing
a bigger system from several smaller components. The size of the state space
of the resulting system is in the range of the product of the sizes of the con-
stituent state spaces. Hence, compositional modeling usually suffers from state
space explosion.

In the process of compositional modeling, performance evaluation techniques
produce intermediate constructs that are typically extensions of Markov Chains
featuring transitions with communication labels. In the final modeling phase,
all labels are discarded and communication transitions are assigned instanta-
neous behavior. Previous work [8,9,10] gave an account of handling these models
by using Markov chains with fast transitions, which present extension of the
standard Markov Reward Chains with transitions decorated with a real-valued
linear parameter. To capture the intuition that the labeled transitions are in-
stantaneous, a limit for the parameter to infinity is taken. The resulting process
is a generalization of the standard Markov chain that can perform infinitely
many transitions in a finite amount of time. This model was initially studied
in [11,12] without rewards, and is called a Discontinuous Markov Reward Chain.
The process exhibits stochastic discontinuity and it is often considered as patho-
logical. However, as shown in [12,13,5], it proves very useful for explanation of
results. Here, we consider Discontinuous Markov Reward Chains and Markov
Reward Chains with Fast Transitions. These two models are intimately related:
Markov Reward Chains with Fast Transitions are used for modeling, but the no-
tions for these processes are expressed asymptotically in terms of Discontinuous
Markov Reward Chains. We define parallel composition of both models in vein
of standard Markov Reward Chains [14] using Kronecker products and sums.

As already mentioned, compositional modeling may lead to state space explo-
sion.Current analyticalandnumericalmethods canhandleMarkovRewardChains
with millions of states efficiently. However, they only alleviate the problem and
many real world problems still cannot be feasibly solved. Several aggregation tech-
niques have been proposed to reduce the state space of Markov Reward Chains.
Ordinary lumping is the most prominent one [15,14]. The method partitions the
state space into partition classes. In each class, the states exhibit equivalent behav-
ior for transiting to other classes, i.e. the cumulative probability of transiting to

20 J. Markovski et al.

another class is the same for every state of the class. If non-trivial lumping exists,
i.e. at least one partition contains more than one state, then the method produces a
smaller Markov Chain that retains the performance characteristics of the original
one. For example, the total reward gained in a given amount of time is the same for
the original as for the reduced, so-called lumped, process. Another lumping-based
method is exact lumping [14]. This method requires that each partition class of
states has the same cumulative probability of transiting to every state of another
class and also each state in the class has the same initial probability. The gain of
exact lumping is that the probabilities of the original process can be computed for
a special class of initial probability vectors by using the lumped Markov Reward
Chain only.

A preliminary treatment of relational properties of lumping-based aggrega-
tions of Markov chains has been given in [16]. It has been shown that the notion
of exact lumping is not transitive, i.e., there are processes which have exactly
lumped versions that can be non-trivially exactly lumped again, but the original
process cannot be exactly lumped directly to the resulting process. On the other
hand, ordinary lumping of Markov Reward Chains is transitive and, moreover,
it has a property of strict confluence. Strict confluence means that whenever a
process can be lumped using two different partitions, there is always a smaller
process to which the lumped processes can lump to. Coming back to our models
of interest, ordinary lumping is defined for Discontinuous Markov Reward Chains
in [8,9,10]. Also, so-called τ -lumping is proposed for Markov Reward Chains with
Fast Transitions in [8,9,10]. The situation can be pictured as follows:

Markov Reward Chain
with Fast Transitions

limit

��

τ -lumping
��

τ -lumped
Markov Reward Chain
with Fast Transitions

limit
��

Discontinuous
Markov Reward Chain

ordinary
lumping

��
lumped

Discontinuous
Markov Reward Chain

In addition, the same papers [9,10] provide an aggregation method by reduction
that eliminates the stochastic discontinuity and reduces a Discontinuous Markov
Reward Chain to a Markov Reward Chain. The reduction method is an extension
of the method described in [17]. It is based on the elimination of stochastic dis-
continuity that arises in the context of instantaneous probabilistic transitions.
The method is well-known in perturbation theory. Its advantage is the abil-
ity to split states. The lumping method, in contrast, provides more flexibility:
also states that do not exhibit discontinuous behavior can be aggregated. The
reduction-based aggregation straightforwardly extends to τ -reduction of Markov
Reward Chains with Fast Transitions. Therefore, we have the following situation.

Compositionality for Markov Reward Chains with Fast Transitions 21

Markov reward chain
with fast transitions

limit
��

τ -reduction

�����������������������������

discontinuous
Markov reward chain

reduction �� Markov reward chain.

Both the lumping aggregation method and the reduction method induce seman-
tic preorders. Namely, for two processes P and P we say that P ≥ P if P is an
aggregated version of P. The compositionality is very important as it allows us to
aggregate the smaller parallel components first, and then combine them into the
aggregated complete system. We show that the relations induced by the lump-
ing and reduction methods indeed define preorders, i.e., reflexive and transitive
relations. Having all the ingredients in place, we show the compositionality of
the aggregation preorders with respect to the defined parallel composition(s).
We also show continuity of the parallel composition(s). In short, the parallel
operators preserve the two diagrams above.

The structure of the rest of the paper is as follows. We start by defining the
first model, discontinuous Markov reward chains, in Section 2, together with
its notions of lumping and reduction. Section 3 focuses on the second model,
Markov reward chains with fast transitions, and introduces τ -lumping and τ -
reduction. In Section 4, we show that the aggregation methods define preorders
on the models. Section 5 contains the main results of the paper, compositionality
of the new parallel operator for each type of Markov chains with respect to both
aggregation preorders. Section 6 wraps-up with conclusions.

Notation. All vectors are column vectors if not indicated otherwise. By 1n we
denote the vector of n 1’s; by 0n×m the n × m zero matrix; by In the n × n
identity matrix. We omit the dimensions n and m when they are clear from the
context. By A[i, j] we denote an element of the matrix A ∈ IRm×n assuming
1 ≤ i ≤ m and 1 ≤ j ≤ n. We write A ≥ 0 when all elements of A are non-
negative. The matrix A is called stochastic if A ≥ 0 and A · 1 = 1. By AT we
denote the transpose of A.

Let S be a set. A set P = {S1, . . . , SN} of N subsets of S is called a partition
of S if S = S1 ∪ . . . ∪ SN , Si 	= ∅ and Si ∩ Sj = ∅ for all i, j, with i 	= j.
The partitions P =

{
S
}

and P =
{
{i} | i ∈ S

}
are the trivial partitions.

Let P1 = {S1, . . . , SN} be a partition of S and P2 = {T1, . . . , TM}, in turn, a
partition of P1. The composition P1◦P2 of the partitions P1 and P2 is a partition
of S given by P1 ◦ P2 = {U1, . . . , UM }, where Ui =

⋃
C∈Ti

C.

2 Discontinuous Markov Reward Chains

In the standard theory (cf. [18,19,1]) Markov chains are assumed to be stochas-
tically continuous. This means that when t → 0, the probability of the process
occupying at time t the same state as at time 0 is 1. As we include instantaneous

22 J. Markovski et al.

transitions in our theory [12], this requirement must be dropped. Therefore, we
work in the more general setting of Discontinuous Markov Chains [11].

A Discontinuous Markov Reward Chain is a time-homogeneous finite-state
stochastic process with an associated (state) reward structure that satisfies the
Markov property. It is completely determined by: (1) a stochastic row initial
probability vector that gives the starting probabilities of the process for each
state, (2) a transition matrix function P (t) that defines the stochastic behavior
of the transitions, at time t > 0, and (3) a state reward vector that associates a
number to each state representing the gain of the process while spending time
in the state. The transition matrix function gives a stochastic matrix P (t) at
any time t > 0, and has the property P (t + s) = P (t) · P (s) [18,19]. It has
a convenient characterization independent of time [12,20], which allows for the
following equivalent definition.

Definition 1. A discontinuous Markov reward chain P is a quadruple P =
(σ,Π,Q, ρ) where σ is a stochastic row initial probability vector, ρ is a state re-
ward vector and Π ∈ IRn×n and Q ∈ IRn×n satisfy the following six conditions:
(1) Π ≥ 0, (2) Π · 1 = 1, (3) Π2 = Π, (4) ΠQ = QΠ = Q, (5) Q · 1 = 0, and
(6) Q+ cΠ ≥ 0, for some c ≥ 0.

The matrix function P (t) = ΠeQt is the transition matrix of a discontinuous
Markov chain P = (σ,Π,Q, ρ). It is continuous at zero if and only if Π = I. In
this case, Q is a standard generator matrix [12,8]. Otherwise, the matrix Q might
contain negative non-diagonal entries. We note that, unlike for standard Markov
Reward Chains, a meaningful graphical representation of Discontinuous Markov
Reward Chains when Π 	= I is not possible. The intuition behind the matrix Π
is that Π [i, j] denotes the probability that a process occupies two states via an
instantaneous transition. Therefore, in case of no instantaneous transitions, i.e.,
when Π = I, we get a standard (continuous) Markov chain.

For every Discontinuous Markov Chain P = (σ,Π,Q, ρ), Π gets the following
‘ergodic’ form after a suitable renumbering of the states [12]:

Π =

⎛
⎜⎜⎜⎜⎜⎝

Π1 0 . . . 0 0
0 Π2 . . . 0 0
...

...
. . .

...
...

0 0 . . . ΠM 0
Π1Π2 . . . ΠM 0

⎞
⎟⎟⎟⎟⎟⎠

L =

⎛
⎜⎜⎜⎝
μ1 0 . . . 0 0
0 μ2 . . . 0 0
...

...
. . .

...
...

0 0 . . . μM 0

⎞
⎟⎟⎟⎠ R =

⎛
⎜⎜⎜⎜⎜⎝

1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1
δ1 δ2 . . . δM

⎞
⎟⎟⎟⎟⎟⎠

where for all 1 ≤ k ≤M , Πk = 1 · μk and Πk = δk · μk for a row vector μk > 0
such that μk · 1 = 1 and a vector δk ≥ 0 such that

∑m
k=1 δk = 1. Then the pair

of matrices (L,R) depicted above forms a canonical product decomposition of Π
(cf. Section 2.1 below), needed for the definition of the reduction-based method
of aggregation.

The new numbering induces a partition E = {E1, . . . , EM , T } of the state
set S = {1, . . . , n}, where E1, . . . , EM are the ergodic classes, determined by

Compositionality for Markov Reward Chains with Fast Transitions 23

Π1, . . . , ΠM , respectively, and T is the class of transient states, determined by
any Πi, 1 ≤ i ≤ M . The partition E is called the ergodic partition. For every
ergodic class Ek, the vector μk is the vector of ergodic probabilities. If an ergodic
class Ek contains exactly one state, then μk = (1) and the state is called regular.
The vector δk contains the trapping probabilities from transient states to the
ergodic class Ek.

We are now able to explain the behavior of a Discontinuous Markov Reward
Chain P = (σ,Π,Q, ρ). It starts in a state with a probability given by the initial
probability vector σ. In an ergodic class with multiple states the process spends
a non-zero amount of time switching rapidly (infinitely many times) among the
states. The probability that it is found in a specific state of the class is given by
the vector of ergodic probabilities. The time the process spends in the class is
exponentially distributed and determined by the matrix Q. In an ergodic class
with a single state the row of Q corresponding to that state has the form of a
row in a generator matrix, and Q[i, j] for i 	= j is interpreted as the rate from i
to j. In a transient state the process spends no time (with probability one) and
goes to some ergodic class, where it is trapped for some amount of time. Note
that δk[i] > 0 iff i ∈ T can be trapped in the ergodic class Ek.

The total reward gained by the process up to time t > 0, notation R(t), is
calculated as R(t) = σP (t)ρ. We have that the total reward remains unchanged
if the reward vector ρ is replaced by Πρ. To see this, note that P (t) = P (t)Π
(cf. [12]), so σP (t)Πρ = σP (t)ρ = R(t). Intuitively, the reward in a transient
state can be replaced by the sum of the rewards of the ergodic states that it can
get trapped in as the process gains no reward while ‘residing’ in transient states.
The reward of an ergodic state is the sum of the rewards of all states inside its
ergodic class weighted according to their ergodic probabilities.

2.1 Aggregation Methods

In this section we recall the definitions and the main properties of the aggregation
methods for Discontinuous Markov Reward Chains [8,9,10].

Ordinary Lumping. We define ordinary lumping in terms of matrices. Every
partition P = {C1, . . . , CN} of S = {1, . . . , n} can be associated with a so-called
collector matrix V ∈ IRn×N defined as V [i, k] = 0 if i /∈ Ck, V [i, k] = 1 if i ∈ Ck,
and vice versa. The k-th column of V has 1’s for elements corresponding to
states in Ck and has 0’s otherwise. Note that V · 1 = 1. A distributor matrix
U ∈ IRN×n for P is defined as a matrix U ≥ 0, such that UV = IN . To satisfy
these conditions, the elements of the k-th row of U , which correspond to states
in the class Ck, sum up to one, whereas the other elements of the row are 0.

An ordinary lumping is a partition of the state space into classes such that
the states that are lumped together have equivalent behavior for transiting to
other classes and additionally they have the same reward.

Definition 2. A partition L of {1, . . . , n} is an ordinary lumping, or lumping
for short, of a Discontinuous Markov Reward Chain P = (σ,Π,Q, ρ) iff the

24 J. Markovski et al.

following holds: (1) V UΠV = ΠV , (2) V UQV = QV and (3) V Uρ = ρ, where
V is the collector matrix and U is any distributor matrix for L.

The lumping conditions only require that the rows of ΠV (resp. QV and ρ) that
correspond to the states of the same partition class are equal. The following
property [8,9,10] holds.

Proposition 1. Let P = (σ,Π,Q, ρ) be a Discontinuous Markov Reward Chain
and let L = {C1, . . . , CN} be an ordinary lumping. Define (1) σ = σV , (2) Π =
UΠV , (3) Q = UQV and (4) ρ = Uρ, for the collector matrix V of L and any
distributor U. Then P = (σ,Π,Q, ρ) is a Discontinuous Markov Reward Chain.

��

Definition 3. If the conditions of Proposition 1 hold, then P = (σ,Π,Q, ρ)
lumps to P = (σ,Π,Q, ρ), called the lumped Discontinuous Markov Reward
Chain, with respect to L. We write P L→ P .

It can readily be seen that neither the definition of a lumping, nor the definition
of the lumped process depends on the choice of a distributor matrix U . In the
continuous case when Π = I we have Π = I, so Q is a generator matrix and our
notion of ordinary lumping coincides with the standard definition [15,21]. The
total reward is preserved by ordinary lumping: The lumped process has the same
reward R(t) as the one of the original process R(t), i.e., R̄(t) = σV UP (t)V Uρ =
σP (t)V Uρ = σP (t)ρ = R(t).

Reduction. The reduction-based aggregation method masks the stochastic dis-
continuity of a Discontinuous Markov Reward Chain P = (σ,Π,Q, ρ) and trans-
forms it into a Markov Reward Chain [17,12,9,10]. The idea of the method is
to abstract away from the behavior of individual states in an ergodic class. It is
based on the notion of a canonical product decomposition.

Definition 4. Let P = (σ,Π,Q, ρ) and assume that rank(Π) = M , i.e., that
there are M ergodic classes. A canonical product decomposition of Π is a pair
of matrices (L,R) with L ∈ IRM×n and R ∈ IRn×M such that L ≥ 0, R ≥ 0,
rank(L) = rank(R) = M , L · 1 = 1, and Π = RL.

A canonical product decomposition always exists and can be constructed from
the ergodic form of Π (see page 22). Moreover, it can be shown that any other
canonical product decomposition is permutation equivalent to this one. Since a
canonical product decomposition (L,R) of Π is a full-rank decomposition, and
since Π is idempotent, we also have that LR = IM . Note that R · 1 = 1. Also,
we have LΠ = LRL = L and ΠR = RLR = R. Now we can define the reduction
method.

Definition 5. For a Discontinuous Markov Reward Chain P = (σ,Π,Q, ρ), the
reduced Discontinuous Markov Reward Chain P = (σ, I,Q, ρ) is given by σ =
σR, Q = LQR and ρ = Lρ, where (L,R) is a canonical product decomposition.
We write P →r P.

Compositionality for Markov Reward Chains with Fast Transitions 25

The reduced process is unique up to a permutation of the states, since so is the
canonical product decomposition. The states of the reduced process are given by
the ergodic classes of the original process, the transient states are ‘ignored’. Intu-
itively, the transient states are split probabilistically between the ergodic classes
according to their trapping probabilities. In case a transient state is also an ini-
tial state, its initial probability is split according to its trapping probabilities.
The reward is calculated as the sum of the individual rewards of the states of the
ergodic class weighted by their ergodic probabilities. Like lumping, the reduction
also preserves the total reward: R(t) = σRLP (t)RLρ = σΠP (t)Πρ = R(t). In
case the original process has no stochastic discontinuity, i.e., Π = I, the reduced
process is equal to the original.

3 Markov Reward Chains with Fast Transitions

A Markov Reward Chain with Fast Transitions is obtained by adding parame-
terized, so-called fast, transitions to a standard Markov reward chain. The re-
maining standard transitions are referred to as slow. The behavior of a Markov
Reward Chain with Fast Transitions is determined by two generator matrices
Qs and Qf , which represent the rates of the slow transitions and the speeds of
the fast transitions, respectively.

Definition 6. A Markov Reward Chain with Fast Transitions P = (σ,Qs, Qf , ρ)
is a function assigning to each τ > 0, the Markov Reward Chain

Pτ = (σ, I,Qs + τQf , ρ)

where σ ∈ IR1×n is an initial probability vector, Qs, Qf ∈ IRn×n are two generator
matrices, and ρ ∈ IRn×1 is the reward vector.

By taking the limit when τ → ∞, fast transitions become instantaneous. Then, a
Markov Reward Chain with Fast Transitions behaves as a Discontinuous Markov
Reward Chain [12].

Definition 7. Let P = (σ,Qs, Qf , ρ) be a Markov Reward Chain with Fast Tran-
sitions. The Discontinuous Markov Chain Q = (σ,Π,Q,Πρ) is the limit of P ,
where the matrix Π is the so-called ergodic projection at zero of Qf , that is
Π = limt→∞ eQf t, and Q = ΠQsΠ. If Q is the limit of P, we write P →∞ Q.

The initial probability vector and the reward vector are not affected by the
limit construction. Below we motivate the choice of using the reward vector Πρ
instead of just ρ.

3.1 Aggregation Methods

Next, we recall the aggregation methods for Markov reward chains with fast
transitions.

26 J. Markovski et al.

τ -Lumping. The notion of τ -lumping is based on ordinary lumping for Discon-
tinuous Markov Reward Chains.

Definition 8. A partition L of the state space of a Markov Reward Chain with
Fast Transitions P is called a τ-lumping, if it is an ordinary lumping of its
limiting Discontinuous Markov Reward Chain Q, i.e. P →∞ Q.

Note that since we defined the reward of the limit by Πρ, a τ -lumping may
identify states with different rewards.

Like for ordinary lumping, we define the τ -lumped process by multiplying
σ, Qs, Qf and ρ with a collector matrix and a distributor matrix. However,
unlike for ordinary lumping, not all distributors are allowed. Following [8,9,10],
we provide a class of special distributors, called τ -distributors, that yield a τ -
lumped process.

Definition 9. Let P = (σ,Π,Q, ρ) be a Discontinuous Markov Reward Chain.
Let V be a collector matrix for this chain. A matrix W is a τ-distributor for V
iff it is a distributor for V , i.e. ΠVWΠ = ΠVW , and the entries of W for the
transient states that lump only with other transient states are positive.

An alternative, explicit definition of the τ -distributors can be found in [8,9,10].
Having defined τ -distributors, we can define a τ -lumped process.

Definition 10. Let P = (σ,Qs, Qf , ρ) and let L be a lumping with a collec-
tor matrix V , and a corresponding τ-distributor W . The τ-lumped Markov Re-
ward Chain with Fast Transitions P = (σ,Qs, Qf , ρ) is defined as σ = σV, Qs =

WQsV, Qf =WQfV, ρ = Wρ. We say that P τ-lumps to P and write P L� P.

In general, for a lumping with collector V and distributor U , UQsV and UQfV
are not uniquely determined, i.e., they depend on the choice of the distribu-
tor. The restriction to τ -distributors does not change this. Subsequently, the
τ -lumped process depends on the choice of the τ -distributor. The motivation for
restricting to τ -distributors is that all τ -lumped processes are then equivalent in
the limit. This is shown in the following proposition that, in addition, gives the
exact connection between lumping and τ -lumping [8].

Proposition 2. The following diagram commutes

P
L ����������������

∞ ��

P

∞��
Q L �� Q

that is, if P L� P →∞ Q and if P →∞ Q L→ Q
′
, then Q = Q

′
, for P and

P Markov Reward Chains with Fast Transitions, and Q, Q, Q
′

the respective
limiting Discontinuous Markov Reward Chains. ��

Moreover, the τ -lumped processes that originate from the same Markov reward
chain with fast transitions become exactly the same once all fast transitions are
eliminated [9,10].

Compositionality for Markov Reward Chains with Fast Transitions 27

Proposition 3. Let P be a Markov Reward Chain with Fast Transitions. Sup-
pose P L� P and P has no fast transitions, i.e., its speed matrix is the zero matrix.
Then, whenever P L� P

′
for any (other) τ-distributor, it holds that P = P

′
. ��

τ -Reduction. We now define a reduction-based aggregation method called
τ -reduction. It aggregates a Markov Reward Chain with Fast Transitions to
an asymptotically equivalent Markov Reward Chain.

Definition 11. A Markov Reward Chain with Fast Transitions P = (σ,Qs, Qf , ρ)
τ-reduces to the Markov Reward Chain R = (σ, I,Q, ρ), given by (1) σ = σR,
(2) Q = LQsR, and (3) ρ = Lρ, where P →∞ (σ,Π,Q,Πρ) and (L,R) is a
canonical product decomposition of Π. When P τ-reduces to R, we write P �r R.

The following simple property relates τ -reduction to reduction. It holds since
LQR = LQsR and LΠρ = Lρ.

Proposition 4. The following diagram commutes

P

r ������������������

∞ ��
Q r

�� R

that is, if P �r R and P →∞ Q →r R′, then R = R′, for P a Markov Reward
Chain with Fast Transitions, Q a Discontinuous Markov Reward Chain and R,R′

(continuous) Markov reward chains. ��

4 Relational Properties

We investigate the relational properties of ordinary lumping for Discontinuous
Markov Reward Chains and τ -lumping for Markov Reward Chains with Fast
Transitions. The combination of transitivity and strong confluence ensures that
iterative application of ordinary lumping yields a uniquely determined process.
In the case of τ -lumping, by Proposition 2 and Proposition 3, only the limit of
the final reduced process is uniquely determined, unless the final process contains
no fast transitions.

There is no need to investigate the relational properties of reduction and τ -
reduction, since they act in one step (no iteration is possible), in a unique way,
between different types of models. Proofs of the results of this section can be
found in [22].

The following result gives the transitivity of ordinary lumping. Actually, we
show the transitivity of the relation ≥ on Discontinuous Markov Reward Chains
defined by

P1 ≥ P2 ⇐⇒ (∃L)P1
L→ P2 .

Transitivity enables replacement of repeated application of ordinary lumping
by a single application using an ordinary lumping that is a composition of the
individual lumpings.

28 J. Markovski et al.

Theorem 1. Let P L→ P and let P L→ P. Then P L◦L→ P. ��

The above relation is clearly reflexive, since the trivial partition is always a
lumping, i.e., we have P Δ→P where Δ is the trivial partition in which every class
is a singleton. Transitivity of τ -lumping also holds, i.e. the relation ≥ defined by

P1 ≥ P2 ⇐⇒ (∃L)P1
L� P2

is transitive. This relation is reflexive as well, via the trivial lumping Δ.

Theorem 2. Let P L� P and let P L� P. Then P L◦L� P. ��

Lumping and τ -lumping also have the strict confluence property. In case of
lumping this means that if P L1→ P1 and P L2→ P2, then there exist two partitions

L1 and L2 such that P1
L1◦L1→ P and P2

L2◦L2→ P. One can prove the strict confluence
property by adapting the proof for Markov reward chains, from [16] for example.

5 Parallel Composition and Compositionality

In this section we define the parallel composition for each of the models, and prove
the compositionality results. The definitions of parallel composition are based on
Kronecker products and sums, as for standard Markov reward chains [14]. The
intuition behind this is that the Kronecker sum represents interleaving whereas
the Kronecker product represents synchronization. Let us first recall the definition
of Kronecker product and sum.

Definition 12. Let A ∈ IRn1×n2 and B ∈ IRm1×m2 . The Kronecker product of
A and B is a matrix (A⊗B) ∈ IRn1m1×n2m2 defined by

(A⊗B)[(i− 1)m1 + k, (j − 1)m2 + �] = A[i, j]B[k, �]

for 1 ≤ i ≤ n1, 1 ≤ j ≤ n2, 1 ≤ k ≤ m1 and 1 ≤ � ≤ m2.
The Kronecker sum of two square matrices A ∈ IRn×n and B ∈ IRm×m is a

matrix (A⊕B) ∈ IRnm×nm defined as A⊕B = A⊗ Im + In ⊗B.

We also need the notion of a Kronecker product of two partitions. Let L1 and L2

be two partitions with corresponding collector matrices V1 and V2, respectively.
Then L1⊗L2 denotes the partition corresponding to the collector matrix V1⊗V2.
In this section we present our results without proofs. Proof outlines are given
in [22].

5.1 Composing Discontinuous Markov Reward Chains

First, we present the definition of parallel composition of Discontinuous Markov
Reward Chains. The intuition is that ‘rates’ interleave, and the probabilities of
the instantaneous transitions synchronize, i.e., are independent.

Compositionality for Markov Reward Chains with Fast Transitions 29

Definition 13. Let P1 = (σ1, Π1, Q1, ρ1) and P2 = (σ2, Π2, Q2, ρ2) be two Dis-
continuous Markov Reward Chains. Their parallel composition is defined as:

P1 ‖ P2 = (σ1 ⊗ σ2, Π1 ⊗Π2, Q1 ⊗Π2 +Π1 ⊗Q2, ρ1 ⊗ 1|ρ2| + 1|ρ1| ⊗ ρ2).

The following theorem shows that the parallel composition of two Discontinuous
Markov Reward Chains is well defined.

Theorem 3. Let P1 and P2 be two Discontinuous Markov Reward Chains. Then
P1 ‖ P2 is a Discontinuous Markov Reward Chain. ��

In the special case, when both Discontinuous Markov Reward Chains are con-
tinuous, their parallel composition is again a Markov Reward Chain as defined
in [14]. Moreover, the following property shows that the parallel composition of
two Discontinuous Markov Reward Chains has a transition matrix that is the
Kronecker product of the individual transition matrices, corresponding to the
intuition that the Kronecker product represents synchronization. It justifies the
definition of the parallel composition.

Theorem 4. Let P1 and P2 be Discontinuous Markov Reward Chains. If P1(t)
is the transition matrix of P1 and P2(t) is the transition matrix of P2, then the
transition matrix of P1 ‖ P2 is given by P1(t) ⊗ P2(t). ��

It is easy to see that the total reward of the parallel composition is the sum
of the total rewards of the components. The following theorem shows that both
lumping and reduction are compositional with respect to the parallel composition
of Discontinuous Markov Reward Chains.

Theorem 5. If P1
L1→ P1 and P2

L2→ P2, then P1 ‖ P2
L1⊗L2→ P1 ‖ P2. Also, if

P1 →r P1 and P2 →r P2, then P1 ‖ P2 →r P1 ‖ P2. ��

5.2 Composing Markov Reward Chains with Fast Transitions

We now present the definition of the parallel composition of Markov Reward
Chains with Fast Transitions. It comprises a Kronecker sum of the generator
matrices, i.e. interleaving of the rates for both slow and fast transitions.

Definition 14. Let P1 = (σ1, Qs,1, Qf,1, ρ1) and P2 = (σ2, Qs,2, Qf,2, ρ2) be
two Markov Reward Chains with Fast Transitions. Then their parallel composi-
tion is defined as:

P1 ‖ P2 = (σ1 ⊗ σ2, Qs,1 ⊕Qs,2, Qf,1 ⊕Qf,2, ρ1 ⊗ 1 + 1 ⊗ ρ2).

It is not difficult to see that the parallel composition of Markov Reward Chains
with Fast Transitions is well defined. In Fig. 1 we present an example of parallel
composition of two Markov Reward Chains with Fast Transitions: 1c) is the
parallel composition of 1a) and 1b). The initial probabilities are depicted left

30 J. Markovski et al.

a) �������	1
1 r0

aτ

��

λ

��
�������	2

r1

μ

���������	3
r2ν

		

b) �������	1

bτ

��

π r3

�������	2
1−π r4

cτ

ξ

��
�������	3

0

c) �������	1

bτ

��

π

aτ

��

λ

��
�������	4

bτ

��

μ

���������	7

bτ

��

ν
		

�������	2

ξ

��

cτ

1−π

aτ

��

λ

��
�������	5

ξ

��

cτ

μ

���������	8

ξ

��

cτ

ν
		

�������	3
aτ

��

λ

��
�������	6

μ

���������	9

ν
		

Fig. 1. Parallel composition of Markov Reward Chains with Fast Transitions

a) �������	1
1 r1

μ

��
�������	2

r2

ν

b) �������	1

1 πr3+(1−π)r4

b
b+c

ξ

��
�������	2

0

c) �������	1

b
b+c

ξ

��

1 r1 + πr3 +
(1−π)r4

μ

���������	3

b
b+c

ξ

��

r2 + πr3 +
(1−π)r4

ν

�������	2
r1

μ

���������	4
r2

ν

		

Fig. 2. Aggregated Markov Reward Chains with Fast Transitions

above each state, and the reward values right above. An exception is 1c) where
for readability the rewards are omitted. They are given by the vector

(r0 + r3, r0 + r4, r0, r1 + r3, r1 + r4, r1, r2 + r3, r2 + r4, r2) .

Next we show that τ -lumping and τ -reduction are also compositional, with respect
to the parallel composition of Markov Reward Chains with Fast Transitions.

Theorem 6. If P1
L1� P1 and P2

L2� P2, then P1 ‖ P2
L1⊗L2� P1 ‖ P2. Also, if

P1 →r P1 and P2 →r P2, then P1 ‖ P2 →r P1 ‖ P2. ��

Fig. 2 presents the aggregated versions of the Markov Reward Chains with
Fast Transitions from Fig. 1. The Markov Reward Chain with Fast Transi-
tions in 2c) is the parallel composition of the Markov Reward Chains with
Fast Transitions in 2a) and 2b). Remarkably, the aggregated versions 2a), 2b)
and 2c) can be obtained from 1a), 1b), 1c), respectively, by either applying τ -
reduction or τ -lumping. The τ -lumpings used are {{1, 2}, {3}} for 1a) and 1b),
and {{1, 2, 4, 5}, {3, 6}, {7, 8}, {9}} for 1c). By Theorem 6, we have that the chain
in 1c), in fact, is the parallel composition of the chains in 1a) and 1b).

Compositionality for Markov Reward Chains with Fast Transitions 31

P1
L1 ����������

∞ ��

P1

∞��

P2
L2 ����������

∞ ��

P2

∞��
=⇒

P1 ‖ P2
L1⊗L2 ����������

∞ ��

P1 ‖ P2

∞��
Q1

L1 �� Q1 Q2
L2 �� Q2 Q1 ‖ Q2

L1⊗L2 �� Q1 ‖ Q2

P1

r ����������

∞ ��

P2

r ����������

∞ ��
=⇒

P1 ‖ P2

r ����������

∞ ��
Q1 r

�� R1 Q2 r
�� R2 Q1 ‖ Q2 r

�� R1 ‖ R2

Fig. 3. Summary compositionality results

Having defined parallel composition for both models, we show how they are
related: the limit of the parallel composition of two Markov Reward Chains with
Fast Transitions is the parallel composition of the limits of the components (that
are Discontinuous Markov Reward Chains). Hence, a continuity property of the
parallel composition holds as stated in the next theorem.

Theorem 7. Let P1 →∞ Q1 and P2 →∞ Q2. Then P1 ‖ P2 →∞ Q1 ‖ Q2. ��

6 Conclusion

We considered two types of performance models: discontinuous Markov reward
chains and Markov reward chains with fast transitions. The former models repre-
sent the limit behavior of the later ones. For both types of models, we presented
two aggregation methods: lumping and reduction for Discontinuous Markov Re-
ward Chains, respectively, τ -lumping and τ -reduction for Markov Reward Chains
with Fast Transitions. In short, the contributions of the paper are:

– A definition of parallel composition of Discontinuous Markov Reward Chains
and of Markov Reward Chains with Fast Transitions, allowing for composi-
tional modeling.

– Identification of preorder properties of the aggregation methods for both
types of models.

– Compositionality theorems for each type of models and each corresponding
aggregation preorder, and continuity property of the parallel compositions.

The results on compositionality are summarized by Fig. 3. In words, the parallel
composition for Markov reward chains with fast transitions and the parallel
composition for discontinuous Markov reward chains preserve the diagrams from
Proposition 2 and Proposition 4. Fig. 3 is justified by the Theorems 1–6, as well
as by Proposition 2 and Proposition 4.

For future work we schedule the analysis of extensions of Markov reward chains
with fast and silent transitions to model both probabilistic and nondeterministic
behavior. Our aim is to extend the compositionality results to that setting, as
well as to add action labeled transitions so that in addition to interleaving,
synchronization can also be expressed.

32 J. Markovski et al.

References

1. Howard, R.A.: Semi-Markov and Decision Processes. Wiley, Chichester (1971)
2. Hermanns, H. (ed.): Interactive Markov Chains. LNCS, vol. 2428. Springer, Hei-

delberg (2002)
3. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge

University Press, Cambridge (1996)
4. Ajmone Marsan, M., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.: Mod-

elling with Generalized Stochastic Petri Nets. Wiley, Chichester (1995)
5. Ciardo, G., Muppala, J., Trivedi, K.S.: On the solution of GSPN reward models.

Performance Evaluation 12, 237–253 (1991)
6. Wu, S.-H., Smolka, S., Stark, E.: Composition and behaviors of probabilistic I/O

automata. Theoretical Computer Science 176(1–2), 1–38 (1997)
7. Plateau, B., Atif, K.: Stochastic automata network of modeling parallel systems.

IEEE Transactions on Software Engineering 17(10), 1093–1108 (1991)
8. Markovski, J., Trčka, N.: Lumping Markov chains with silent steps. In: QEST’06,

Riverside, pp. 221–230. IEEE Computer Society Press, Los Alamitos (2006)
9. Markovski, J., Trčka, N.: Aggregation methods for Markov reward chains with

fast and silent transitions. Technical Report CS 07/08, Technische Universiteit
Eindhoven (2007)

10. Trčka, N.: Silent Steps in Transition Systems and Markov Chains. PhD thesis,
Eindhoven University of Technology (2007)

11. Doeblin, W.: Sur l’équation Matricielle A(t + s) = A(t) · A(s) et ses Applications
aux Probabilités en Chaine. Bull. Sci. Math. 62, 21–32 (1938)

12. Coderch, M., Willsky, A., Sastry, S., Castanon, D.: Hierarchical aggregation of
singularly perturbed finite state Markov processes. Stochastics 8, 259–289 (1983)

13. Ammar, H., Huang, Y., Liu, R.: Hierarchical models for systems reliability, main-
tainability, and availability. IEEE Transactions on Circuits and Systems 34(6),
629–638 (1987)

14. Buchholz, P.: Markovian process algebra: composition and equivalence. In: Proc.
PAPM 94, Erlangen, Universität Erlangen-Nürnberg, pp. 11–30 (1994)

15. Kemeny, J., Snell, J.: Finite Markov chains. Springer, Heidelberg (1976)
16. Sokolova, A., de Vink, E.: On relational properties of lumpability. In: Proc. 4th

PROGRESS symposium on Embedded Systems, Utrecht (2003)
17. Delebecque, F., Quadrat, J.: Optimal control of Markov chains admitting strong

and weak interactions. Automatica 17, 281–296 (1981)
18. Doob, J.: Stochastic Processes. Wiley, Chichester (1953)
19. Chung, K.: Markov Chains with Stationary Probabilities. Springer, Heidelberg

(1967)
20. Hille, E., Phillips, R.: Functional Analysis and Semi-Groups. AMS, Washington,

DC (1957)
21. Nicola, V.: Lumping in Markov reward processes. IBM Research Report RC 14719,

IBM (1989)
22. Markovski, J., Sokolova, A., Trčka, N.: de Vink, E.: Compositionality for Markov

chains with fast transitions. Technical Report CS 07/17, Technische Universiteit
Eindhoven (2007)

Closed Form Absorption Time Bounds�

Ana Bušić1 and Nihal Pekergin1,2,3

1 PRiSM, Université de Versailles-St-Quentin,
45, Av. des Etats-Unis, 78035 Versailles, France

2 Laboratory Marin Mersenne, Université Paris 1, 75013 Paris, France
3 LACL, Université Paris 12, 61, Av. Général de Gaulle, 94010 Créteil, France

Abstract. We consider a class of Markov chains known for its closed
form transient and steady-state distributions. We show that some ab-
sorbing chains can be also seen as members of this class and we provide
the closed form solution for their absorption time distributions. By con-
structing upper and lower bounding chains that belong to this particular
class one can easily compute both lower and upper bounds for absorption
time distribution of an arbitrary absorbing Markov chain. We provide a
new algorithm for the construction of bounding chains from this class
and we show a possible application of these bounds.

1 Introduction

Markov chains are widely used to model complex systems due to their simplicity
to represent in an intuitive manner the studied system behavior. Various high-
level formalisms such as Stochastic Petri Nets, Stochastic Automata Networks
or PEPA nets have been proposed making the modeling task more efficient since
one needs only to specify different components of the system, their local be-
haviors and their interactions. The generation of the underlying Markov chain
and the computation of different performance or reliability measures of interest
behavior of a can then be derived by one of many existing tools, depending on
the formalism used. However, most of the resolution techniques for transient
or steady-state distributions of Markov chains depend on the size of the entire
state space, which is often near to the product of the number of states of each
component of the system.

In order to overcome the state space explosion problem various approximation
methods have been proposed which ignore or simplify the complicating aspects
of the underlying models. However, only some of those methods estimate the
error committed by the approximation or guarantee that the approximate value
of measure of interest is smaller (resp. greater) than the exact one. Different
bounding methods have been proposed for the steady-state analysis. Most of
them use linear algebra arguments and resume the steady-state analysis to the
solution of a linear system. The advantage of stochastic comparison techniques

� This work was supported by SMS, ANR-05-BLAN-009-02 and Checkbound, ANR-
06-SETI-002.

K. Wolter (Ed.): EPEW 2007, LNCS 4748, pp. 33–47, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

34 A. Bušić and N. Pekergin

is that they use probabilistic arguments, allowing thus both steady-state and
transient analysis of the system.

Stochastic orderings have been largely studied in different areas of applied
probability [12]. Various stochastic orders have been proposed and the most well
known is certainly the strong stochastic order defined through the comparison
of expectations of all increasing rewards. Different bounding methods have been
proposed by using this stochastic order. The main idea behind all these methods
is to modify the transitions of the original chain in order to simplify its analysis,
yet preserving the comparison of both steady-state and transient distributions.
The proof of this comparison can be established by different techniques such
as sample-path arguments or the stochastic monotonicity. While the first one is
specific to the strong stochastic order, construction of monotone bounding chains
can be used with different stochastic orders such as for instance increasing convex
order allowing to compare the variability of two Markov chains. Moreover, it
is possible to construct algorithmically a bounding monotone chain using both
strong stochastic ordering [1] or increasing convex stochastic ordering [3]. Finally,
the simplification of the model can consist in a special structure adapted to some
special numerical resolution methods [10], in construction of lumpable bounding
models reducing thus the size of the model [15] or in construction of the bounding
models having known closed-form solutions that will be considered in this paper.

In [5,6] a class of Markov chains having closed-form solution for the steady-
state distribution has been introduced by Ben Mamoun and Pekergin: class C
chains. The same authors showed that the chains from this class have also closed-
form solutions for their transient distributions [7]. A generalization of this class
to a larger CG class of Markov chains has been recently proposed in [4]. This
larger class allows one more degree of freedom and permits thus to obtain more
precise bounds. We show in this paper that this additional degree of freedom
allows also simple construction of bounding matrices that belong to this new
class. Class CG structures can be imposed as the bounding matrices, in the algo-
rithmic stochastic comparison approach [6,4]. Thus, bounds on distributions can
be computed by means of closed-form solutions of class CG matrices leading to
important numerical complexity reductions. For instance, in [8], class C bounds
have been applied to perform a first step rapid model checking.

Several two-level resolution methods which consist in analyzing several smaller
sub-models separately and then finding the global solution by combining sub-
solutions have been proposed. In [9], the cycle time of PEPA model where each
component is a PEPA sub-model is considered. Holding times of sub-models
which are continuous Phase distributions are bounded by exponential random
variables, providing thus a far simpler precedence PEPA model that can be
then analyzed by classical numerical techniques. In reliability studies, bounding
schemes have been proposed by dividing large state spaces in several macro-
states. One macro-state is taken into account explicitly while the others are
reduced to single states. The transition rates for these states are obtained by
computing bounds on the underlying sub-models [13,11]. Class CG bounds may
be useful to compute bounds of sub-models. To illustrate the applicability of this

Closed Form Absorption Time Bounds 35

approach, we consider in this work a task graph where task execution times are
given by discrete time Phase distributions. We first compute CG class bounds for
task execution times and then incorporate them in the considered task graph
which is the high-level model.

We present briefly in Section 2 the generalized class C matrices and their basic
properties: closed-form solutions for transient and steady-state distributions. We
show that some absorbing chains also belong to this class and we give the closed
form solution for their absorption times. This class of matrices can therefore be
used to compute simple lower or upper absorption time bounds. In Section 3 we
provide a new algorithm for construction of bounds that belong to this class.
This new algorithm presents different advantages compared to the algorithm
presented in [4]. The most important is certainly its simplicity and the possibility
of computing both upper and lower class CG bounds. Finally, we show in Section
4 how this new algorithm can be used to obtain rapid closed form bounds for
PH distributions modeling service times in a multi-level model.

2 Class CG Matrices

The CG class of stochastic matrices has been introduced recently in [4] as the
generalization of the C class introduced in [5,6]. We give first the definition of the
CG class and the closed form solution for transient and steady-state distributions
for transition matrices that belong to this class. Further details and proofs can
be found in [4].

2.1 Definition and Basic Properties

Throughout this paper we will denote the vectors and the matrices with boldface
letters. All the vectors are row vectors and xt will denote column vector obtained
by transposing vector x. When comparing vectors or matrices x ≤ y stands for
the usual component-wise comparison: x ≤ y ⇔ xi ≤ yi, ∀i.

Definition 1 (Class CG). A stochastic matrix P of size n belongs to CG if there
are three vectors v, c and r in R

n such that:

P = 1tv + rtc,

where 1 denotes the row-vector having all the components equal to 1 and vectors
v and c satisfy:

– v is a probability vector (vi ≥ 0, ∀i, v1t =
∑n

i=1 vi = 1),
– c1t =

∑n
i=1 ci = 0.

For vector r such that ri = i−1, ∀i we obtain the class C Markov chains defined
in [5]. Thus the class CG is larger than the class C.

36 A. Bušić and N. Pekergin

Certainly one of most important properties of class CG matrices is that they
have closed form solution for transient distributions:

Theorem 1 (Transient distributions). [4, Theorem 2] Let {Xk, k ≥ 0} be
a discrete time Markov chain with probability transition matrix P that belongs
to the class CG, such that P = 1tv + rtc, and let νk be the distribution vector
of Xk. Let α, β and γ be the following constants:

α = crt, β = vrt and γ = ν0rt.

Then for all k ≥ 0,
νk = v + akc, (1)

where ak is the constant defined as:

ak = β
k−2∑
i=0

αi + γαk−1 =

{
β (1−αk−1)

1−α + γ αk−1, α 	= 1
β (k − 1) + γ, α = 1.

The following corollary gives now the closed-form form for the steady-state
distribution:

Corollary 1 (Steady-state distribution). [4, Corollary 1] Let {Xk, k ≥ 0}
be a discrete time Markov chain with probability transition matrix P ∈ CG such
that P = 1tv + rtc and let α = crt. If |α| < 1, then {Xk, k ≥ 0} has a
steady-state distribution given by:

π = v +Rc, (2)

where R is a constant defined as: R = vrt

1−crt .

2.2 Closed Form Solution for Absorption Time Distribution

Note that one can easily construct absorbing transition matrices that belong to
the class CG . Indeed, take an arbitrary probability vector v and define vector c
as follows:

ci = −vi, i < n, cn = 1 − vn.
Then obviously c1t = 0. Then for an arbitrary vector r satisfying:

0 ≤ ri ≤ 1, ∀i,
rn = 1,

the matrix is clearly stochastic, thus P ∈ CG . Furthermore, we have P n,∗ =
(0, 0, . . . , 0, 1), so state n is absorbing.

Example 1. Let v = (0.1 0.3 0.6). Thus c = (−0.1 − 0.3 0.4). By taking
r = (0.1 0.2 1), matrix P = 1tv + rtc is defined as follows:

⎛
⎝1

1
1

⎞
⎠(

0.1 0.3 0.6
)

+

⎛
⎝0.1

0.2
1

⎞
⎠(

−0.1 −0.3 0.4
)

=

⎛
⎝0.09 0.27 0.64

0.08 0.24 0.68
0 0 1

⎞
⎠

Closed Form Absorption Time Bounds 37

Suppose now that we have an absorbing discrete time Markov chain {Xk, k ≥ 0}
such that the unique absorbing state is the last state (state n). Denote by P the
transition matrix of this chain. We show now that class CG matrices have also
the closed form solution for the absorption time.

Proposition 1. Let T denote the absorption time of an absorbing discrete time
Markov chain {Xk, k ≥ 0} such that the unique absorbing state is the last
state (state n). Denote by t ∈ N

∞ the probability distribution vector of T . If the
transition matrix P ∈ CG (P = 1tv + rtc), then vector t satisfies:

t0 = ν0
n,

t1 = vn + γcn − ν0
n,

tk = αk−2(β + γ(α− 1))cn, k ≥ 2,

Proof. Note first that for each k, P (T ≤ k) = P (Xk = n). Thus t0 = P (T =
0) = ν0

n and

tk = P (T = k) = P (T ≤ k) − P (T ≤ k − 1) = νk
n − νk−1

n , ∀k > 0,

where νk denotes the distribution of Xk. From Theorem 1 we have

t1 = vn + γcn − ν0
n,

tk = (v + akc)n − (v + ak−1c)n = (ak − ak−1) cn
= βαk−2 + γ(αk−1 − αk−2)cn = αk−2(β + γ(α− 1))cn, k ≥ 2.

��

Corollary 2. If |α| < 1 then the mean absorption time E[T] is finite and equals
to:

E[T] = vn +
[
γ + (β + γ(α− 1))

2 − α
(1 − α)2

]
cn.

Proof. From Proposition 1 we have :

E[T] = vn + γcn +
∞∑

k=2

ktk = vn + γcn + (β + γ(α− 1))cn
∞∑

k=2

kαk−2

= vn + γcn + (β + γ(α− 1))cn

(
2

∞∑
i=0

αi +
∞∑

i=0

iαi

)

= vn + γcn + (β + γ(α− 1))cn

(
2

1 − α +
α

(1 − α)2

)
=

= vn +
[
γ + (β + γ(α− 1))

2 − α
(1 − α)2

]
cn.

��

38 A. Bušić and N. Pekergin

3 Algorithmic Construction of Bounding Matrices

The closed-form solutions to compute transient distributions and absorption
time distribution make class CG matrices interesting to construct bounding
chains. These bounds can be derived by means of stochastic comparison tech-
niques. We first state the basic definitions and theorems of this approach and
refer to [12] for further details.

3.1 Stochastic Comparison

Let denote by Fst the class of all increasing real functions on E and by Ficx

the class of all increasing and convex real functions on E . We denote by �F the
stochastic order relation, where F can be replaced by st or icx to be associated
respectively to the class of functions Fst or Ficx.

Definition 2. Let X and Y be two random variables taking values on a totally
ordered state space E.

X �F Y ⇐⇒ Ef(X) ≤ Ef(Y), ∀f ∈ F

whenever the expectations exist.

In the sequel, we consider E = {1, . . . , n} with the usual total order ≤. Stochastic
orders �st and �icx can be also defined through matrices. We give here Kst and
Kicx matrices related respectively to the �st and �icx orders. In the sequel KF
denotes the matrix related to the �F order, F ∈ {st, icx}.

Kst =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0
1 1 0 . . . 0
1 1 1 . . . 0
...

...
...

. . .
...

1 1 1 . . . 1

⎞
⎟⎟⎟⎟⎟⎠

Kicx =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0
2 1 0 . . . 0
3 2 1 . . . 0
...

...
...

. . .
...

n n − 1 n − 2 . . . 1

⎞
⎟⎟⎟⎟⎟⎠

Notice that for discrete random variables X and Y with probability vectors p
and q, the notations p �F q and X �F Y are used interchangeably. Moreover,
we have the following characterization [12]:

Property 1. X �F Y if and only if pKF ≤ qKF .

It is shown in Theorem 5.2.11 of [12, p.186] that monotonicity and comparability
of the probability transition matrices of time-homogeneous Markov chains yield
sufficient conditions to compare stochastically the underlying chains. We first
define the monotonicity and the comparability of stochastic matrices and then
state this theorem.

Definition 3. Let P be a stochastic matrix. P is said to be stochastically �F -
monotone if for any probability vectors p and q,

p ≤F q =⇒ pP ≤F qP .

Closed Form Absorption Time Bounds 39

Definition 4. Let P and Q be two stochastic matrices. Q is said to be an upper
bounding matrix of P in the sense of the �F order (P �F Q) if

P KF ≤ Q KF .

Note that this is equivalent to saying that P �F Q, if P i,∗ �F Qi,∗, ∀i ∈
{1, . . . , n}, where P i,∗ denotes the ith row of matrix P .

Theorem 2. Let P (resp. Q) be the probability transition matrix of the time-
homogeneous Markov chain {Xk, k ≥ 0} (resp. {Yk, k ≥ 0}). If

– X0 �F Y0,
– at least one of the probability transition matrices is monotone, that is, either

P or Q is �F -monotone,
– the transition matrices are comparable, that is, P �F Q,

then
Xk �F Yk ∀k.

Let X = {Xk, k ≥ 0} and Y = {Yk, k ≥ 0} be now two Markov chains with an
absorbing state n. Then under the same conditions as in the above theorem we
have also the �st-comparison of absorption times to n. We will denote by TX

(resp. by T Y) the absorption time to n of chain X (resp. Y).

Corollary 3. [3, Proposition 2.9] Let P and Q be the transition matrices of two
Markov chains X = {Xk, k ≥ 0} and Y = {Yk, k ≥ 0} with an absorbing state
n. If X0 �F Y0, P or Q is �F -monotone, and P �F Q, then

T Y �st T
X .

Note that we obtain the �st-comparison of absorption times even if the two
chains are comparable only in the increasing convex ordering sense. Indeed,
the above result is even more general and the ordering relation needs only to
allow the comparison of the probabilities of being in state n (see [3] for further
details). Note also that the absorption time is �st-larger for a smaller chain in
the �F -ordering sense. This might seem strange at a first sight. Intuitively, as
we consider the absorption time to the last state, the larger chain goes faster to
this state and its absorption time is thus smaller.

Monotonicity Properties of CG Matrices. The sufficient conditions for the
monotonicity of class CG matrices are given in terms of vectors c and r.

Proposition 2. [4, Proposition 2] A matrix P ∈ CG, P = 1tv + rtc such that:

cKF ≥ 0 and r ∈ F

is �F -monotone.

40 A. Bušić and N. Pekergin

3.2 Algorithms for Upper and Lower Bounding Class CG Monotone
Matrices

In [4] an algorithm for construction of upper bounding monotone CG matrices has
been proposed for �st and �icx-orders. The proposed algorithm takes as input
an arbitrary stochastic matrix P and a non-negative vector r ∈ F (F denotes
either st or icx), and it returns vectors c and v such that Q = 1tv + rtc ∈ CG ,
P �F Q and Q is �F -monotone. Some heuristics for choosing a vector r by
using some information from the original matrix P have also been proposed.
However, the algorithm proposed in [4] is far from being intuitive and it cannot
be easily modified to compute lower bounds. Note that this is not a problem in
the case of the �st order: due to the symmetry properties of this order, lower
�st-bounds can be obtained by inversing the order on the states of the chain and
then computing an upper bound. In the case of class C or CG bounds, �icx order
provides often considerably more precise results [6,4]. Unfortunately, this order
is not symmetric thus the algorithms that compute upper �icx-bounds cannot
be used to derive lower bounds by inversing the order of states. The algorithm
proposed in [4] is a direct generalization of algorithms proposed in [5,6] to CG

class of matrices. We propose here a far more intuitive algorithm, more adapted
to the CG structure. Furthermore, we propose the algorithms for both upper and
lower bounds.

Let P be an arbitrary stochastic matrix. We take the first row of matrix P
as vector v. In order to find a vector c, we compute first a probability vector x
that is greater in the �F -ordering sense than all the rows of matrix P . We will
discuss this step of the algorithm more in details after presenting the general
structure of the algorithm, since this step depends on the considered stochastic
order. We would like to obtain a bounding matrix Q such that Q1,∗ = v and
Qn,∗ = x. In order to assure this, we can take Q = 1t v + htc, where h1 = 0,
hn = 1. Then Qn,∗ = v + c = x defines completely vector c:

c = x − v.

Notice that we have cKF ≥ 0, as v �F x by the construction of vectors x and
v. In order to satisfy P �F Q we need to compute a vector h such that:

P i,∗ �F v + hic = Qi,∗,

i.e. vKF +hicKF ≥ P i,∗KF . In the sequel, we will use the following notations:
w = vKF , A = PKF , and z = cKF . Since z ≥ 0, we can take:

hi = max
j | zj>0

Ai,j − wj

zj
.

We obtain a vector h ≤ 1 as z = w+y, where y ≥ Ai,∗, , ∀1 ≤ i ≤ n. It remains
us to satisfy the monotonicity constraints for matrix Q. If vector h ∈ F , then
Proposition 2 and cKF ≥ 0 imply that Q is �F -monotone. Unfortunately, we
do not always have h ∈ F . However, note that we can modify the entries of

Closed Form Absorption Time Bounds 41

vector h as long as they stay smaller than 1. Indeed, for a vector r such that
h ≤ r ≤ 1, matrix Q̃ = 1t v+rtc is also a stochastic matrix such that P �F Q̃.
Thus we need to find a vector r satisfying:

– r ∈ F ,
– h ≤ r ≤ 1 .

The construction of such a vector for the case of strong stochastic order and in-
creasing convex order will be discussed later. The construction of upper bound-
ing, �F -monotone, CG matrix is given in Algorithm 1. The following theorem
states the properties of the output matrix obtained from this algorithm. The
proof follows directly from the above discussion.

Theorem 3. The matrix Q obtained by Algorithm 1 is a stochastic matrix that
belongs to the class CG. Moreover, matrix Q is �F -monotone and P �F Q.

Algorithm 1. Construction of an �F -monotone class CG upper bound
Set v = P 1,∗ and set w = v KF .1

Find a probability vector x such that P i,∗ �F x, ∀1 ≤ i ≤ n. Set y = xKF .2

Compute z = y − w and c = z K−1
F .3

Let A = P KF . Compute vector h = (h1, . . . , hn):4

hi = max
j | zj>0

Ai,j − wj

zj
.

Note that we have always h1 = 0.
Find a vector r such that h ≤ r ≤ 1 (component-wise) and r ∈ F .5

Set Q = 1t v + rtc.6

A lower-bounding �F -monotone matrix Q ∈ CG can be obtained by a similar
algorithm. Here we preserve the last row of the original matrix and we compute
a probability vector v that is smaller in the �F -sense than all the rows in the
original matrix P :

v �F P i,∗.

In order to obtain a bounding matrix Q such that Q1,∗ = v and Qn,∗ = P n,∗
we can take Q = 1t v + htc, where h1 = 0, hn = 1 and c = P n,∗ − v. As
v �F P n,∗, we have cKF = P n,∗ − vKF ≥ 0. To guarantee the comparison of
matrices P and Q we compute a vector h such that:

Qi,∗ = v + hic �F P i,∗,

i.e. vKF + hicKF ≤ P i,∗KF . Let us denote by w = vKF and A = P KF .
Since z = cKF ≥ 0, we can take:

hi = min
j | zj>0

Ai,j − wj

zj
.

42 A. Bušić and N. Pekergin

Note that by the construction of vector v as a vector that is smaller than all
the rows of matrix P , we clearly have: h ≥ 0 and hn = 1. If vector h ∈ F ,
then Proposition 2 and cKF ≥ 0 imply that matrix Q is �F -monotone. As
unfortunately this is not always the case, we need to modify this vector and,
in order to preserve the comparison of matrices P and Q and the stochastic
property of matrix Q, we can only decrease the entries of vector h. Thus, in
order to satisfy the monotonicity constraints for matrix Q we need to compute
a vector r such that:

– r ∈ F ,
– 0 ≤ r ≤ h.

We resume the construction of a lower bounding monotone CG matrix in Algo-
rithm 2 and we give its properties in the following theorem. The proof follows
from the above discussion.

Theorem 4. The matrix Q obtained by Algorithm 2 is a stochastic matrix that
belongs to the class CG. Moreover, matrix Q is �F -monotone and Q �F P .

Algorithm 2. Construction of an �F -monotone class CG lower bound
Find a probability vector v such that v �F P i,∗, ∀1 ≤ i ≤ n., Set w = vKF .1

Compute c = P n,∗ − v, z = cKF .2

A Let A = P KF . Compute vector h = (h1, . . . , hn):3

hi = min
j | zj>0

Ai,j − wj

zj
.

Note that we have always hn = 1.
Find a vector r such that 0 ≤ r ≤ h (component-wise) and r ∈ F .4

Set Q = 1t v + rtc.5

Computation of an Upper or Lower Bounding Vector for All the Rows
of the Original Matrix. We discuss now the construction of an upper bound-
ing vector x (resp. a lower bounding vector v) for all the rows of the original
matrix P in line 2 of Algorithm 1 (resp. line 1 of Algorithm 2) for the strong
stochastic order and increasing convex order. The construction is similar for both
orders, thus we will denote by KF the corresponding matrix KF = Kst (resp.
KF = Kicx). Let A = PKF . Then the upper bounding vector x:

P i, ∗ �F x,

can be obtained as x = yK−1
F , where:

yj = max
1≤i≤n

Ai,j , ∀j.

We have clearly P i, ∗ �F x. It remains us to show that vector x is stochastic.
We will show first that

∑n
i=1 xi = 1. For the strong stochastic order this is trivial

Closed Form Absorption Time Bounds 43

since
∑n

i=1 xi = y1 = max1≤i≤n Ai,1 = 1, as Ai,1 = 1, ∀i. For the increasing
convex order notice that Ai,1 = Ai,2 +1, ∀i, thus

∑n
i=1 xi = y1−y2 = 1. Finally,

we need to show that xi ≥ 0, ∀i. For the strong stochastic order we have clearly
1 = y1 ≥ y2 ≥ . . . ≥ yn ≥ 0, thus xn = yn ≥ 0 and xj = yj − yj+1 ≥ 0, j < n.
For the increasing convex order the proof is slightly more complex. Note that
for an arbitrary vector a we have

(aKicx)j = (aKst)j + (aKicx)j+1, j < n, (3)

Let z = xKst. Note that we have also:

z = yKst
−1.

By using (3) it is now easy to show that vector z satisfies:

1 = z1 ≥ z2 ≥ . . . ≥ zn ≥ 0.

Therefore, xj ≥ 0, ∀j and vector x is stochastic. Note that this vector x is the
smallest upper bounding vector for all the rows of matrix P .

Similarly, a lower bounding vector v can be obtained as v = wKF where:

wj = min
1≤i≤n

Ai,j , ∀j.

The vector v is the greatest lower bounding vector for rows of matrix P . The
proof that vector v is a stochastic vector is similar to the proof for the upper
bounding case.

Computation of Monotone Bounding Vectors. It remains us to show how
to compute the upper or lower bounding monotone vectors in line 5 of Algorithm
1 and line 4 of Algorithm 2. We consider again the strong stochastic and the
increasing convex order.

Strong Stochastic Order. In the upper bound case we need to find an increasing
vector r such that h ≤ r ≤ 1. Additionally, we know that h1 = 0 and hi ≤ 1, ∀i
by the construction of vector h. Therefore vector r, defined as ri = maxk≤ihi, ∀i
and computed by:

r1 = h1, ri = max{hi, ri−1}, i > 0,

satisfies clearly h ≤ r ≤ 1.
Similarly, in the case of a lower bound we have hn = 1 and h ≥ 0 and a vector

r such that 0 ≤ r ≤ h can be obtained by taking ri = mink≤ihi, ∀i, i.e.

rn = hn, ri = min{hi, ri+1}, i < n.

44 A. Bušić and N. Pekergin

Increasing Convex Order. Consider first the upper bounding case. We will sup-
pose that vector h is increasing. Note that if this is not the case, then an in-
creasing vector h′ such that h ≤ h′ ≤ 1 should be first computed as described
in the strong stochastic upper bound case described above. Then we need to find
a vector r such that h′ ≤ r ≤ 1. For an increasing vector h, an increasing and
convex vector r such that h ≤ r ≤ 1 can then be easily obtained as follows:

rn = hn, rn−1 = hn−1, ri = max{hi, 2ri+1 − ri+2}, i ≤ n− 2.

Let us now consider the lower bound computation. We need to find a vector
r that is increasing and convex and that 0 ≤ r ≤ h. Similarly as in the upper
bounding case, we can suppose that vector h is increasing. If this is not the case,
we can find an increasing vector h′ such that 0 ≤ h′ ≤ h as described in the
lower bound computation case for the strong stochastic order. For an increasing
vector h, an increasing and convex vector r such that 0 ≤ r ≤ h can be find by
Algorithm 3. We illustrate this Algorithm on an example in Figure 1.

Algorithm 3. Computation of lower bounding increasing convex vector
Notation : We will denote by 1 < s1 < s2 < . . . < sm ≤ n the indexes for which

vector h strictly increases. Then we define z0 = 1, and for i such
that 1 ≤ i ≤ m we define zi as the last index just before vector h
strictly increases: zi = si − 1, 1 ≤ i ≤ m. Finally, if zm < n then we
define zm+1 = n. For example for (0.1, 0.3, 0.3, 0.5, 0.6) we have:
s1 = 2, s2 = 4, s3 = 5 and z0 = 1, z1 = 1, z2 = 3, z3 = 4, z5 = 5.

i = 0, r1 = h11

while (zi < n) do2

a = minj>i
hzj

−hzi

zj−zi
, k = arg minj>i

hzj
−hzi

zj−zi3

for (u = zi + 1 to zk) do ru = a u + rzi4

i = k5

end6

Remark 1 (Complexity of Algorithms 1 and 2). The complexity of Algorithms
1 and 2 is quadratic with the size of the state space in the case of the full

������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������

������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������

�������
�������
�������
�������

�������
�������
�������
�������������������

������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������

����
����
����

����
����
����

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��

���� ����
��
��
��

��
��
��
��
����

�
�
�
�

�
�
�
�

����

Fig. 1. Computation of the lower bounding increasing convex vector by Algorithm 3.
The bounding vector is constructed per intervals, by taking the smallest slope at each
step.

Closed Form Absorption Time Bounds 45

Table 1. Class CG bounds for mean absorption time

exact st-inf (new) st-inf [4] st-sup icx-inf (new) icx-inf [4] icx-sup

A 3.3333 2.3243 2.3243 3.3333 3.2386 2.5556 3.3333

B 1.8182 1.4704 1.7544 16.6667 1.7544 1.7544 3.4379

matrix implementation. Indeed, we used a matrix notation in both algorithms
to simplify the presentation. Note that for instance (PKst)i,j can be sim-
ply obtained as (PKst)i,j+1 + Pi,j , j < n where (PKst)i,n = Pi,n. PKicx

can be easily computed using the fact that Kicx = Kst
2. In a similar way,

(AK−1
F)i,j can be easily computed by applying the inverse transformation. For

�st: (AKst
−1)i,j = Ai,j − Ai,j+1, j < n, where (AKst

−1)i,n = Ai,n.

Example 2. We illustrate here the CG absorption time bounds for mean absorp-
tion time (Corollary 2). Note however that Algorithms 1 and 2 can also be used to
compute both transient and steady-state bounds. We consider a very simple ex-
ample of an absorbing chain with n states, where state n is absorbing. We suppose
that the initial state is 1 and for each state i < n we have the following transitions:

– with probability ai the system goes directly to the absorbing state n,
– with probability bi the system goes to the next state (i+ 1),
– with probability ci = 1 − ai − bi the system returns to state 1.

Although the class CG bounds become interesting only for huge chains for which
we cannot directly compute the absorption times using the classical numerical
methods, we will consider here a small state space in order to easily compare
the bounds with the exact values. In Table 1 we give the exact values and the
bounds for the following parameters (p = 0.6, n = 20):

– Case A: ai = p
2 , bi = 1 − p, ci = p

2 , ∀i < n.
– Case B: ai = pi

n , bi = 1 − p, ci = p(n−i)
n , ∀i < n.

We can see from this example that it is not possible to compare the accuracy
of the new upper bounds (providing lower bounds for absorption time) with
those of [4]: they may be better or worse depending on the parameter values.
We can see also that for this example �icx bounds are more accurate than the
�st bounds as it is usually the case with class C or CG bounds.

4 Bounding PH-Distributions Modeling Service Times

We consider a task graph with n nodes representing tasks where arcs represent
synchronization constraints. The task execution (service) times are defined by
discrete time PHase (PH) distributions. Let di (resp. ti) be the execution time
(resp. the completion) time of task (node) i and Preced(i) be the set of immedi-
ate predecessors of i. Since task i can start its execution once all the predecessors
have completed, task i terminates its execution at time ti :

ti = di +maxj∈Preced(i)tj

46 A. Bušić and N. Pekergin

Without loss of generality, we assume that task 1 has no predecessor and task
n has no successor. Therefore t1 = d1 and tn is the completion time of the task
graph which is the measure of interest.

The absorbing chains representing discrete PH distributions constitute the
low-level formalism while the task graph formalism is the high level formalism.
Let us remark here that high level formalism can be extended to any (max,+)
formalism [2].

The state space size of the Markov chain to compute the completion time
grows exponentially with the number of tasks even for exponential (geometric)
execution times. The stochastic bounds on the execution times of acyclic task
graphs have been proposed in [14]. These bounds are based on the compatibility
of the �icx order with the max and the + operators. It has been proven that if
dinf

i �icx di �icx d
sup
i ∀i, then the completion time of the same task graph by

considering bounding execution times, provides bounds on the completion time:
tinf
n �icx tn �icx t

sup
n . Thus we propose to compute class CG �icx bounds on

di which can be computed by the close-form solution of absorbing time given in
section 2.2.

In the high-level model, bounds are provided by considering specific distribu-
tions with the same mean for task execution times. Lower bounds are computed
by deterministic random variables while upper bounds are computed by geomet-
ric random variables. We do not give the proof here but refer to [14] for bounds
on task graphs. The lower bound is well-known as folk theorem: deterministic
minimizes the randomness [2]. The upper bound is established for a family of
distributions used in reliability [12]. An integer valued X is called Discrete New
Better than Used (DNBU), if [X− t|X > t] �st X, ∀t; X is called DNBUE if this
is satisfied for the expectations: E[X − t|X > t] ≤ E[X], ∀t. Geometric distribu-
tions are the maximal distributions for DNBUE distributions: If X is DNBUE of
mean m, then X is smaller in the �icx sense than geometric distributed random
variable of mean m (X �icx Geom(m)). In [3], it has been shown that monotone
PH distributions belong to DNBU distributions. Therefore dsup

i can be replaced
by geometric distributions with the same means to provide upper bounds.

5 Conclusion

We have shown in this paper that the class CG matrices can be used to derive
rapid bounds for absorption times. We proposed simple numerical algorithms
to construct both lower and upper �st-(resp. �icx-)monotone bounds that be-
long to this class. To the best of our knowledge this is the first algorithm for
lower �icx-monotone bound computation. For the simplicity of presentation,
we consider here only discrete Markov chains. Similar results can be obtained
for uniformizable continuous time Markov chains by applying the Algorithms
1 and 2 to the uniformized chain.

Closed Form Absorption Time Bounds 47

References

1. Abu-Amsha, O., Vincent, J.-M.: An algorithm to bound functionals of markov
chains with large state space. In: 4th INFORMS Conference on Telecommunica-
tions, Boca Raton, FL (1998)

2. Baccelli, F., Cohen, G., Olsder, G.J., Quadrat, J.-P.: Synchronization and Linear-
ity: An Algebra for Discrete Event Systems. Willey, New York (1992)

3. Ben Mamoun, M., Busic, A., Fourneau, J.M., Pekergin, N.: Increasing convex
monotone markov chains: Theory, algorithm and applications. In: MAM 2006:
Markov Anniversary Meeting, Raleigh, North Carolina, USA, pp. 189–210 (2006)

4. Ben Mamoun, M., Busic, A., Pekergin, N.: Generalized class C Markov chains and
computation of closed-form bounding distributions. Probability in the Engineering
and Informational Sciences 21(2), 235–260 (2007)

5. Ben Mamoun, M., Pekergin, N.: Computing closed-form stochastic bounds on the
stationary distribution of Markov chains. In: Mathematics and Computer Sci-
ence: Algorithms, Trees, Combinatorics and Probabilities, Basel, pp. 197–209.
Birkhauser (2000)

6. Ben Mamoun, M., Pekergin, N.: Closed-form stochastic bounds on the stationary
distribution of Markov chains. Probability in the Engineering and Informational
Sciences 16(4), 403–426 (2002)

7. Ben Mamoun, M., Pekergin, N.: Computing closed-form stochastic bounds on tran-
sient distributions of Markov chains. In: SAINT-W ’05: Proceedings of the 2005
Symposium on Applications and the Internet Workshops (SAINT 2005 Work-
shops), pp. 260–263. IEEE Computer Society Press, Washington, DC, USA (2005)

8. Ben Mamoun, M., Pekergin, N., Younès, S.: Model checking of continuous-time
Markov chains by closed-form bounding distributions. In: QEST, pp. 189–198.
IEEE Computer Society Press, Los Alamitos (2006)

9. Fourneau, J.-M., Kloul, L.: A precedence pepa model for performance and reliabil-
ity analysis. In: Horváth, A., Telek, M. (eds.) EPEW 2006. LNCS, vol. 4054, pp.
1–15. Springer, Heidelberg (2006)

10. Fourneau, J.-M., Pekergin, N.: An algorithmic approach to stochastic bounds. In:
Performance Evaluation of Complex Systems: Techniques and Tools, Performance
2002, Tutorial Lectures, pp. 64–88. Springer, London (2002)

11. Mahevas, S., Rubino, G.: Bound computation of dependability and performance
measures. IEEE Trans. Comput. 50(5), 399–413 (2001)

12. Muller, A., Stoyan, D.: Comparison Methods for Stochastic Models and Risks.
Wiley, New York (2002)

13. Muntz, R.R., de Souza e Silva, E., Goyal, A.: Bounding availability of repairable
computer systems. IEEE Trans. on Computers 38(12), 1714–1723 (1989)

14. Pekergin, N., Vincent, J.-M.: Stochastic bounds on execution times of parallel
programs. IEEE Trans. Softw. Eng. 17(10), 1005–1012 (1991)

15. Truffet, L.: Reduction technique for discrete time Markov chains on totally ordered
state space using stochastic comparisons. Journal of Applied Probability 37(3),
795–806 (2000)

A Canonical Representation of Order 3 Phase

Type Distributions�

Gábor Horváth and Miklós Telek

Department of Telecommunications
Budapest University of Technology and Economics

1521 Budapest, Hungary

Abstract. The characterization and the canonical representation of or-
der n phase type distributions (PH(n)) is an open research problem.

This problem is solved for n = 2, since the equivalence of the acyclic
and the general PH distributions has been proven for a long time. How-
ever, no canonical representations have been introduced for the general
PH distribution class so far for n > 2. In this paper we summarize the
related results for n = 3. Starting from these results we recommend a
canonical representation of the PH(3) class and present a transformation
procedure to obtain the canonical representation based on any (not only
Markovian) vector-matrix representation of the distribution.

Using this canonical transformation method we evaluate the moment
bounds of the PH(3) distribution set and present the results of our nu-
merical investigations.

Keywords: Phase Type Distribution, Canonical Form, Moment Bounds.

1 Introduction

The Markovian structures are efficiently applied in various fields of stochastic
modeling because of their computability and numerical stability. Phase type dis-
tributions are non-negative distributions with Markovian structure [10,7]. They
are widely used in distribution approximation due to their computational ad-
vantages and easy integration in complex stochastic models.

The most common representation of a Phase type distribution is the definition
of its initial probability vector α, and generator matrix A. This representation
is known to be non-unique and non-minimal, thus there might be a vector α′

and a matrix A′, which define the same distribution. Furthermore, the number
of parameters (non-determined elements) of this representation is n2 + n − 1
when the cardinality of vector α′ and square matrix A′ is n (since A has n2

elements and α has n−1 assuming no probability mass at zero), while the Laplace
transform of PH(n) distributions – that uniquely determines the distribution –
has 2n− 1 roots and zeros.
� This work is partially supported by the Italian-Hungarian R&D project 9/2003 and

by the OTKA K61709 grant.

K. Wolter (Ed.): EPEW 2007, LNCS 4748, pp. 48–62, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Canonical Representation of Order 3 Phase Type Distributions 49

To overcome these drawbacks a unique, minimal representation is required
which is commonly referred to as canonical representation. A canonical repre-
sentation is available for any order acyclic phase type distributions by Cumani
[4], and it is also known that any PH(2) distribution can be transformed to
an acyclic form [3] and this way the same canonical form is applicable of
PH(2).

The canonical representation of PH(n) distributions is not known for n ≥ 4
and we present a proposal for the canonical representation of the PH(3) class
in this paper. The proposed representation has a special α vector and A matrix
such that it has exactly 2n − 1 = 5 parameters and it is proved to exist for
all PH(3) distributions. We also provide a procedure for transforming any (not
only Markovian) vector-matrix representation of the distribution to the canonical
form. The transformation procedure is composed of explicit computational steps,
whose most complex element is the evaluation of the eigenvalues of the generator
matrix (finding the roots of an order 3 polynomial, for which symbolic solution
is available).

Our results are very much based on the results of [5], where the unicyclic
representation of PH(3) distributions is proved. Indeed, the presented canonical
representation is unicyclic, but it extends the results of [5] with the careful
analysis of the initial probability vector of the canonical representation, which is
not taken into consideration in [5], because it aims to solve a different problem.

With the help of this transformation procedure, which fails only when the
input vector-matrix pair cannot be transformed into a valid PH(3) representa-
tion, we investigate also the moments bounds of the PH(3) class. Some results
on the bounds of the first 3 moments of PH(3) distributions are provided in [2],
but the behaviour of the 4th and 5th moments are unknown to the best of our
knowledge.

The rest of the paper is organized as follows. Section 2 gives the definition
and the basic properties of PH(3) distributions. The unicyclic transformation
of PH(3) distributions is summarized in Section 3 and the proposed canonical
representation is presented in Section 4. Section 5 lists some applications of the
canonical form and the associated transformation method and Section 6 demon-
strates the behaviour of the parameters used in the transformation procedure.
The paper is concluded in Section 7.

2 PH(3) Distributions

Let X be a continuous non-negative random variable with cumulative distribu-
tion function

F (t) = Pr(X < t) = 1 − veHt1I ,

where the row vector v is referred to as the initial vector, square matrix H as
the generator and 1I as the closing vector. Without loss of generality [8], we as-
sume that the closing vector, 1I, is a column vector of ones, i.e., 1I = [1, 1, . . . , 1]T .

50 G. Horváth and M. Telek

Since X is a continuous random variable, it has no probability mass at zero, i.e.,
v1I = 1. The density, the Laplace transform and the moments of X are

f(t) = veHt(−H)1I , (1)

f∗(s) = E(e−sX) = v(sI − H)−1(−H)1I , (2)

μn = E(Xn) = n!v(−H)−n1I . (3)

When the cardinality of vector v and of square matrix H is 3, we have the
following cases:

– If f(t) ≥ 0 and
∫∞
0 f(t)dt = 1, then X has an order 3 matrix exponen-

tial (ME(3)) distribution. The elements of v and H may be arbitrary real
numbers.

– If v is a probability vector and H is a transient Markovian generator ma-
trix (i.e., the generator matrix of a transient continuous-time Markov chain
(CTMC)), then X has a PH(3) distribution. (The set of PH(3) distributions
form a true subset of the ME(3) set.)

Vector v is a probability vector when vi ≥ 0, v1I = 1 and matrix H is a
transient Markovian generator when H ii < 0, H ij ≥ 0 for i 	= j, H1I ≤ 0,
H1I 	= 0. Scalars like Hij denote the ijth element of matrix H.

Definition 1. The (v,H) representation is a Markovian representation, if v is
a probability vector and H is a transient Markovian generator matrix.

In general it is not easy to check whether an f(t) in (1) corresponding to a (v,H)
pair is a density function. We have the following necessary conditions (those that
we use in the sequel, [9]):

– the eigenvalues of H have negative real part,
– the largest eigenvalue of H is real, and
– the initial value of the density function is non-negative:

f(0) = −vH1I ≥ 0 . (4)

Definition 2. Assuming B is a non-singular matrix such that B1I = 1I then
the vector-matrix pair vB, B−1HB define a similarity transform of the vector-
matrix pair v, H.

Note that the vector-matrix pairs v, H and vB, B−1HB represent the same
distribution, since

F̂ (t) = 1 − vBeB
−1HBt1I = 1 − vBB−1eHtB1I = 1 − veHt1I = F (t) .

Example 1.

v =
[
0.1 0.5 0.4

]
, H =

⎡
⎣−5 2 1

1 −2 1
1 0 −4

⎤
⎦

A Canonical Representation of Order 3 Phase Type Distributions 51

and

z =
[
−1.1 2.5 −0.4

]
, G =

⎡
⎣−11 10 −1
−6.6 6 −1
−15 20 −6

⎤
⎦

represent the same distribution, since z = vB and G = B−1HB with B =⎡
⎣ 1 0 0
−4 5 0
2 0 −1

⎤
⎦. (z,G) is a non-Markovian representation of this PH(3) distribution.

Now, we can refine the above definition of PH(3) distributions with the help
of similarity transform.

Definition 3. The random variable, X , with density function (1), is PH(3)
distributed if there is a non-singular matrix B, such that B1I = 1I, and
(vB,B−1HB) is a Markovian representation.

Note that this definition implies that f(t) ≥ 0.
One of the main goals of this paper is to decide if such similarity transform ex-

ists for a given non-Markovian vector-matrix pair, since the definition is obvious
when the vector-matrix pair is Markovian.

3 Unicyclic Representation of PH(3) Distributions

The results of this paper are based on the unicyclic transformation of PH(3)
distributions presented in [5]. We summarize the related results, in a bit modified
way, for completeness.

Theorem 1. [5] If (v,H) is a Markovian representation of a PH(3) distribu-
tion then it can be similarity transformed to the following unicyclic Markovian
representation

π =
[
π1 π2 π3

]
, A =

⎡
⎣−x1 0 x13

x2 −x2 0
0 x3 −x3

⎤
⎦ , (5)

where x1 ≥ x2 ≥ x3 > 0, 0 ≤ x13 ≤ x1, 0 ≤ π1, π2, π3, π1 + π2 + π3 = 1 and the
procedure in Figure 2 generates this unicyclic representation.

The structure of the resulting unicyclic PH distribution is depicted in Figure 1.

π 3 π 2 π 1

x3 x2 −x13x1

x13

Fig. 1. The structure of the considered unicyclic PH(3) distribution

52 G. Horváth and M. Telek

function PH(3)–to–unicyclic PH(3)
input: v, H (Markovian)
output: π, A (unicyclic)

begin
λ1, λ2, λ3 = decreasingly ordered eigenvalues of −H ,
a0 = λ1 λ2 λ3, a1 = λ1 λ2 + λ1 λ3 + λ2 λ3, a2 = λ1 + λ2 + λ3,
γu = 1

3 (a2 + 2
√

a2
2 − 3 a1), γ0 = 1

3 (a2 +
√

a2
2 − 3 a1),

γ� =

{
λ1 if λ1 ∈ real,
γ0 if λ1 ∈ complex,

φ = max {−H1,1, −H2,2, −H3,3},
x1 = max {φ, γ�},
x13 = x1 − a0 / (x2

1 − a2 x1 + a1),
x2 = 1

2

(
a2 − x1 +

√
(a2 − x1)2 − 4 (x2

1 − a2 x1 + a1)
)
,

x3 = 1
2

(
a2 − x1 −

√
(a2 − x1)2 − 4 (x2

1 − a2 x1 + a1)
)
,

π1 = v H 1I / (x13 − x1),
π2 = v (x1 I + H) H 1I / (x13 − x1)x2,
π3 = v (x2 I + H) (x1 I + H) H 1I / (x13 − x1)x2 x3,

return π =
[
π1 π2 π3

]
, A =

⎡
⎣−x1 0 x13

x2 −x2 0
0 x3 −x3

⎤
⎦ ,

end

Fig. 2. Unicyclic transformation of PH(3) distributions

The main difference between Theorem 1 ([5]) and the goal of this paper is that
Theorem 1 assumes that (v,H) is Markovian, while we look for a transformation
which is applicable for any non-Markovian (v,H) representation. For example
the procedure of Figure 2 gives a proper unicyclic representation when it is called
with the (v,H) pair of Example 1, but it gives complex results when it is called
with the (z,G) representation of the same PH(3) distribution.

Let λ1, λ2, λ3 denote the eigenvalues of −H which are ordered such that
Re(λ1) ≥ Re(λ2) ≥ Re(λ3) and a0, a1, a2 the coefficients of the characteristic
polynomial of −H, i.e.,

a0 = λ1λ2λ3, a1 = λ1λ2 + λ1λ3 + λ2λ3, a2 = λ1 + λ2 + λ3. (6)

A simple interpretation of Theorem 1 is that the similarity transform with matrix
B makes the transformed matrix to be unicyclic if B is composed by the column
vectors {b1, b2, b3} where

b1 =
1

x13 − x1
H1I,

b2 =
1

(x13 − x1)x2
(x1I + H)H1I,

b3 =
1

(x13 − x1)x2x3
(x2I + H)(x1I + H)H1I,

(7)

A Canonical Representation of Order 3 Phase Type Distributions 53

and

x13 = x1 −
a0

x2
1 − a2x1 + a1

,

x2 =
a2 − x1 +

√
(a2 − x1)2 − 4(x2

1 − a2x1 + a1)
2

,

x3 =
a2 − x1 −

√
(a2 − x1)2 − 4(x2

1 − a2x1 + a1)
2

.

(8)

These expressions are obtained from the fact that the resulting generator A has
the same characteristic polynomial as the original H, i.e., the parameters are
obtained from the solution of the equations

a0 = (x1 − x13)x2x3, a1 = x1x2 + x2x3 + x3x1, a2 = x1 + x2 + x3. (9)

The transformation matrix B and the transformed unicyclic representation
A depend on the choice of x1. [5] showed the following properties of PH(3)
distributions and this similarity transform.

P1) When H is a Markovian generator then

γu =
a2 + 2

√
a2
2 − 3a1

3
, (10)

γ0 =
a2 +

√
a2
2 − 3a1

3
, (11)

γ	 =
{
λ1, if λ1 is real,
γ0, if λ1 is complex (12)

are real and positive such that γ	 ≤ γu.
P2) When γ	 ≤ x1 ≤ γu then the transformed generator matrix, A = B−1HB

is Markovian such that x1 ≥ x2 ≥ x3 > 0.

Indeed, property P2 holds also for all non-Markovian matrix H if its eigen-
values satisfies the requirements of PH(3) distributions:

– λ3 is real and positive,
– a2

2 − 3a1 ≥ 0.

Due to the fact that the similarity transform leaves the eigenvalues un-
changed, this generalization of property P2 is a consequence of property P1 and
Theorem 1.

We can summarize the results of [5] as follows. It defines a similarity transfor-
mation of PH(3) distributions to a unicyclic representation. This transformation
depends on a parameter, x1. [5] also defines the range of parameter x1, (γ	, γu),
where the transformed generator matrix is Markovian. The problem which re-
mains open is how to set parameter x1 such the initial vector is Markovian, i.e.,
is a proper probability vector.

In the procedure in Figure 2 parameter φ is used to ensure the positivity of
the initial vector. Unfortunately that approach is not sufficient when we have a

54 G. Horváth and M. Telek

non-Markovian (v,H) representation, as it is the case with the non-Markovian
representation of Example 1. The next section investigates the range of x1 where
the initial vector is Markovian.

4 Canonical Representation of PH(3) Distributions

Using the similarity matrix defined in (7) the elements of the initial vector π =
vB are:

π1 =
−vH1I
x1 − x13

=
d1

x1 − x13
, (13)

π2 =
−v(x1I + H)H1I

(x1 − x13)x2
=

x1d1 + d2
(x1 − x13)x2

, (14)

π3 =
−v(x2I + H)(x1I + H)H1I

(x1 − x13)x2x3
=
x1x2d1 + (x1 + x2)d2 + d3

(x1 − x13)x2x3
, (15)

where di = −vHi1I, i = 1, 2, 3. The derivatives of the density function at 0
are closely related with these parameters since f (i)(0) = di+1 = −vHi+11I.
Consequently, for a Markovian (v,H) pair

P3) d1 > 0, or d1 = 0 and d2 ≥ 0,

must hold for having a non-negative density around zero.
The canonical form we propose in this paper is based on the following theorem.

Theorem 2. If (v,H) has a Markovian representation, then the similarity
transform with matrix B, defined in (7), with parameter

x1 =
{

max{γ2, γ	}, if vH 1I < 0,
γ	, if vH 1I = 0, (16)

γ2 = −vH
21I

vH1I
, (17)

provides a Markovian representation.

Proof Due to Theorem 1 and B1I = 1I it is enough to prove that π1, π2, π3 ≥ 0
in (13), (14), (15), for some x1 in the [γ	, γu] interval, where x1 − x13, x2, x3 are
positive and [γ	, γu] is not empty.
π1 ≥ 0 follows immediately from (4), since if (v,H) has a Markovian repre-

sentation, then its density is non-negative at 0.
When vH1I = 0, π2 must be non-negative according to property P3. When

vH1I < 0, we can re-write (14) as:

π2 =
−vH1I

(x1 − x13)x2
(x1 − γ2). (18)

A Canonical Representation of Order 3 Phase Type Distributions 55

The first term of (18) is positive and the second term is non-negative when
x1 = max{γ2, γ	} according to (16).

For the analysis of π3 we re-write (15) as

π3 =
1

(x1 − x13)x2x3
(x1x2d1 + (x1 + x2)d2 + d3)︸ ︷︷ ︸

g(x1)

(19)

The first term is positive again, thus it remains to prove that g(x1) > 0 if x1 is
according to (16). The first derivative of g(x1) has two roots:

d

dx1
g(x1) = 0 ⇔ x1 =

a2 ±
√
a2
2 − 3a1

3
. (20)

The larger root equals to γ0, hence g(x1) is a monotone function when x1 > γ0.
In the x1 > γ0 region the increasing/decreasing behaviour of g(x1) is determined
by the sign of the second derivative at x1 = γ0:

d2

dx2
1

g(x1)|x1=γ0 =
−2(a2d1 + 4d1

√
a2
2 − 3a1 + 3d2)

3
√
a2
2 − 3a1 (21)

When d1 = −vH1I = 0, then the second derivative is non-positive due to prop-
erty P1 and P3 and when d1 = −vH1I > 0 we have

d2

dx2
1

g(x1)|x1=γ0 =
−2(a2 + 4

√
a2
2 − 3a1 − 3γ2)

3d1
√
a2
2 − 3a1

= − 2
3d1

√
a2
2 − 3a1︸ ︷︷ ︸

≥0

⎡
⎢⎣3 (γu − γ2)︸ ︷︷ ︸

≥0

+ (3γu − a2)︸ ︷︷ ︸
≥0

⎤
⎥⎦ ≤ 0,

(22)

where the non-negativity of the first under-braced term follows from property
P1, the non-negativity of the second term must hold since (v,H) is Markovian
and according to Theorem 1 it must have a unicyclic representation (x1 ≤ γu)
with a non-negative π2 (x1 ≥ γ2). The non-negativity of the third under-braced
term follows from Re(λ1) ≤ γu and the fact that Re(λ1) ≥ Re(λ2) ≥ Re(λ3).

If the second derivative in (22) equals to 0 it means that there is only a single
x1 value, x1 = γu, which results in a Markovian representation.

If the second derivative in (22) is negative then g(x1) has a local maximum
at x1 = γ0, and it is monotone decreasing function at x1 > γ0. To obtain a
valid generator x1 > γ	 must hold as well, and since γ	 ≥ γ0, the largest feasible
π3 value is obtained at x1 = γ	. Since (v,H) has a unicyclic representation
according to Theorem 1, π3 is non-negative in this point.

56 G. Horváth and M. Telek

We demonstrate the numerical behaviour of π2 and π3 as a function of x1 in
Section 6.

4.1 The Canonical Transformation Procedure

The transformation procedure is presented in Figure 3. If the procedure exits
with one of the error messages then the input does not represent a PH(3) dis-
tribution. If the procedure completes, it gives back the canonical representation
of the given PH(3) distribution, which is Markovian, minimal and unique as it
is discussed in the next subsection.

function Canonical–PH(3)–transformation
input: v, H (any matrix representation)
output: π, A (Canonical representation if v, H is a PH(3))

begin
if v1 + v2 + v3 �= 1

error ”Probability mass at 0”,
λ1, λ2, λ3 = decreasingly ordered eigenvalues of −H ,
if λ3 < 0 or λ3 ∈ C or v H 1I < 0

error ”Invalid eigenvalues”,
a0 = λ1 λ2 λ3, a1 = λ1 λ2 + λ1 λ3 + λ2 λ3, a2 = λ1 + λ2 + λ3

if a2
2 − 3 a1 < 0
error ”Invalid characteristic polynomial”,

γu = 1
3 (a2 + 2

√
a2
2 − 3 a1), γ0 = 1

3 (a2 +
√

a2
2 − 3 a1),

γ� =

{
λ1 if λ1 ∈ real,
γ0 if λ1 ∈ complex,

if v H 1I > 0 or (v H 1I == 0 and v H2 1I > 0)
error ”Negative density around 0”,

γ2 =

{
−v H2 1I / v H 1I if v H 1I < 0,
0 if v H 1I == 0,

if γ2 > γu

error ”π2 is negative”,
x1 = max {γ2, γ�},
x13 = x1 − a0 / (x2

1 − a2 x1 + a1),

x2 = 1
2

(
a2 − x1 +

√
(a2 − x1)2 − 4 (x2

1 − a2 x1 + a1)
)
,

x3 = 1
2

(
a2 − x1 −

√
(a2 − x1)2 − 4 (x2

1 − a2 x1 + a1)
)
,

π1 = v H 1I / (x13 − x1),
π2 = v (x1 I + H) H 1I / (x13 − x1)x2,
π3 = v (x2 I + H) (x1 I + H) H 1I / (x13 − x1) x2 x3,
if π3 < 0

error ”π3 is negative”,

return π =
[
π1 π2 π3

]
, A =

⎡
⎣−x1 0 x13

x2 −x2 0
0 x3 −x3

⎤
⎦,

end

Fig. 3. Canonical transformation of PH(3) distributions

A Canonical Representation of Order 3 Phase Type Distributions 57

4.2 Properties of the Proposed Canonical Form

If v is an arbitrary vector and H is an arbitrary matrix of cardinality 3 such that
(v,H) represents an order 3 phase type distribution, then (π,A) is a Markovian
representation of this PH(3) distribution.

(π,A) is unique, in the sense that for any (v,H) representation of a PH(3)
distribution the procedure provides the same (π,A) pair.

The PH(3) distributions are known to be determined by 5 parameters.
E.g., the first 5 moments, or the 5 coefficients of the Laplace rational trans-
form uniquely determines a PH(3) distribution. Although not obvious from
the first sight, the presented canonical form is also determined by exactly
5 independent parameters. In the unicyclic form [5] there are 6 parameters
(x1, x2, x3, x13, π1, π2) and in the transformation procedure presented in this pa-
per one of these parameters is additionally set to a special value. The following
constraint decreases the number of parameters to 5:

f1) λ1 real, γ2 < γ	 → x13 = 0,
f2) λ1 complex, γ2 < γ	 → x1 = x2,
f3) γ	 < γ2 → π2 = 0.

Indeed, these cases represent three different forms of the canonical representation.
It is an additional nice feature of the proposed canonical form that it is

compatible with the widely used canonical representation of acyclic phase type
distributions [4], since when (v,H) represents an order 3 acyclic phase type
distribution, then form f1 gives the Cumani’s canonical representation of that
distribution.

5 Practical Application of the Canonical form and the
Transformation Procedure

5.1 Phase Type Fitting

The currently available PH(3) fitting methods are either restricted to the acyclic
subclass of PH(3) distributions (e.g., [6]) or they are not restricted, but their
performance is limited by the fact that they optimize too many parameters
(e.g., [1]). The canonical representation allows to eliminate the weakness of the
second type of fitting methods. Using the 3 potential forms of the canonical
representation one can compose 3 fitting methods (for form f1, f2 and f3) with
minimal number of parameters and the best of the 3 gives the best fit over the
whole PH(3) class.

5.2 Moment Matching with PH(3)

The presented transformation procedure is also applicable for moment matching
with PH(3) distributions. For a given set of {μ1, . . . μ5} moments we can generate
a PH(3) distribution, whose first five moments are the same. This moments
fitting procedure is composed by the following 2 steps.

58 G. Horváth and M. Telek

– The first step is to compute a vector and matrix pair, v,H, for which
i!v(−H)−i1I = μi, i = 1, . . . , 5. The procedure of Appie van de Liefvoort
in [12] produces such v,H pair with a proper transformation of the closing
vector1.

– Starting from v,H the canonical PH(3) transformation procedure gener-
ates the Markovian representation of the PH(3) distribution, whose first 5
moments are {μ1, . . . μ5}.

Example 2. For example, when the first 5 moments are
{1.85111, 5.45136, 22.2838, 118.094, 774.513} the procedure of [12] gives

v =
[
1/3 1/3 1/3

]
, H =

⎡
⎣ −2.92628 44.7789 −40.8522
−0.398989 −3.56926 3.0189
−0.267678 2.9026 −3.68557

⎤
⎦ ,

and the canonical transformation procedure gives

π =
[
0.0865519 0.124609 0.788839

]
, A =

⎡
⎣−4.20997 0 0.360255

4.20997 −4.20997 0
0 1.76118 −1.76118

⎤
⎦ .

5.3 Moments Bounds of the PH(3) Class

The presented transformation procedure is also applicable for evaluating the
borders of the PH(3) distribution class. Indeed the above described moment
fitting procedure terminates properly only when {μ1, . . . μ5} are the moments of
a PH(3) distribution and the moment matching method aborts with some error
if there is no PH(3) distribution whose moments are {μ1, . . . μ5}.

To demonstrate the moment bounds of the PH(3) distribution set we first in-
troduce the normalized moments ni = μi

μ1μi−1
. The normalized moments are time

unit independent “normalized” quantities, which carry the structural information
of the moments apart of a time unit dependent scaling factor. n2 is closely asso-
ciated with the squared coefficient of variation, c2v. n2 = c2v + 1. The second and
third normalized moments of APH(n) distributions are studied in [2,11].

Example 3. We study the fourth and fifth normalized moments of PH(3) distri-
butions with two pairs of second and third normalized moments.

The first point, n2 = 1.6 and n3 = 2.3, is taken in the n2 < 2 range, where
the coefficient of variation is less than 1, while the second point, n2 = 2.018
and n3 = 3.036, is taken in the n2 > 2 range. The feasible range of normalized
moment n4 and n5 are depicted in Figure 4 and 5, respectively. It is interesting
to see that the fifth normalized moment, n5, is both upper and lower bounded
as well in the first case, while it is only lower bounded in the second case.

1 In [12] the initial and the closing vector are {1, 0, 0, . . . , 0}. In our case the closing
vector is {1, 1, . . . , 1}, hence a similarity transformation is required.

A Canonical Representation of Order 3 Phase Type Distributions 59

3.25 3.5 3.75 4 4.25 4.5

5

7.5

10

12.5

15

17.5

20

Fig. 4. Legal n4, n5 normalized moments
of PH(3) distributions when n2 = 1.6 and
n3 = 2.3

4.04 4.06 4.08 4.1 4.12 4.14 4.16 4.18

5

5.5

6

6.5

7

Fig. 5. Legal n4, n5 normalized moments
of PH(3) distributions when n2 = 2.018
and n3 = 3.036

The presented canonical transformation procedure gives a tool for the numer-
ical investigation of the moments bounds, but the detailed qualitative investiga-
tion of these moments bounds is out of the scope of this paper.

6 Numerical Examples

6.1 Dependence of Bounding Quantities on the Matrix Elements

We demonstrate the dependence of the bounding quantities of the canonical
representation, γ0, γ	, γ2, γu, on the elements of the PH representation through
some numerical examples.

We study the dependence of the bounding quantities on the initial distribution

using the following representation, v =
[
x 0.8 − x 0.2

]
and H =

⎡
⎣−3 0 2.5

2 −2 0
0 1 −1

⎤
⎦.

The result is presented in Figure 6. In this case all quantities which are associ-
ated with the Markovian representation of the generator matrix (the coefficients
of the characteristic polynomial, a0, a1, a2, the eigenvalues, λ1, λ2, λ3 and the
associated bounding quantities, γ0 = 2.57735, γ	 = 2.57735, γu = 3.1547) remain
constant and only γ2 changes which is associated with the Markovian repre-
sentation of the initial vector. The x1 value of the canonical representation is
determined by γ	 if x < 0.660434 and it is determined by γ2 for larger x values.

The dependence on the feedback element, x13, is investigated using v =

[
0.62 0.246 0.134

]
and H =

⎡
⎣−3 0 x

2 −2 0
0 1 −1

⎤
⎦. The curves in Figure 7 indicates

60 G. Horváth and M. Telek

another behaviour. γ2 = 2.20645 is independent of the feedback element, but in
this case some other, generator matrix related quantities, are constant as well.
The a1 and the a2 coefficients of the characteristic polynomial are constant. As
a consequence γ0 = 2.57735 and γu = 3.1547 are independent on x1. Only the
a0 coefficient of the characteristic polynomial changes with x, which makes the
eigenvalues depend on x as well. In the x ∈ {0, 0.2} range the λ1 eigenvalue is
real and it determines the x1 value of the canonical representation. When x is
greater γ0 determines the x1 value.

The most complicated behaviour has been obtained when the intensity of

a transition is changing. For v =
[
0.62 0.246 0.134

]
and H =

⎡
⎣−3 0 1
x −x 0
0 1 −1

⎤
⎦

the bounding quantities are depicted in Figure 8. In this case γ2 has a lin-
early decreasing behaviour starting from 3, the γu function has a minimum at
x = 1, the λ1 eigenvalue is real and equals to γ	 while x < 1.1 and it is com-
plex and γ	 = γ0 when x > 1.1. γ0 is an increasing function of x starting
from 2.21525. The x1 value equals to γ2 when x < 2.01 and it equals to γ0 for
larger x.

0.2 0.4 0.6 0.8
x

�0.5

0.5

1

1.5

2

2.5

3

Γ0,Γl,Γ2,Γu

↖ γ0 = γ�

↖ γ2

↙ γu

Fig. 6. Dependence of bounding quanti-
ties on the initial vector

0.2 0.4 0.6 0.8 1
x

2.2

2.4

2.6

2.8

3

3.2
Γ0, Γl, Γ2, Γu

↙λ1 = γ�

↙ γ0 = γ�

↖ γ0
↙

γ2

↙ γu

Fig. 7. Dependence of bounding quanti-
ties on the feedback element

0.5 1 1.5 2 2.5
x

2.2
2.4
2.6
2.8

3.2
3.4
3.6

Γ0, Γl, Γ2, Γu

λ1=γ�
↗

↖ γ0 =γ�

γ0↘
↙ γ2

↙ γu

Fig. 8. Dependence of bounding quanti-
ties on a transition rate

2.5 2.6 2.7 2.8 2.9 3 3.1
x1

0.05

0.1

0.15

0.2

0.25

Π2, Π3

π2 ↘

↙π3

Fig. 9. The function of π2 π3 as a func-
tion of x1

A Canonical Representation of Order 3 Phase Type Distributions 61

6.2 Dependence of the Unicyclic Representation on x1

In the majority of the cases γ	 and/or γu allows a Markovian representation. The

case when v =
[
0.72 0.146 0.134

]
and H =

⎡
⎣−3 0 2.025

2 −2 0
0 1 −1

⎤
⎦, is different, since in

this case γ2 = 2.59444 > γ	 = γ0 = 2.57735 and γu = 3.1547 > γz = 3.15186,
i.e., none of γ	 and γu results in a Markovian representation. The behaviours of
π2 and π3 are depicted in Figure 9. The y axis is set to γ	 = γ0 and the grid line
to γu. It is also visible that π3 has a maximum at γ0.

7 Conclusion

In a number of practical applications it is very efficient using the canonical rep-
resentation of PH distributions that have as few parameters as possible. The
problem of canonical representation of high order PH distributions is still open,
but in this paper we presented a canonical representation for order 3 PH dis-
tributions. This canonical representation uses the unicyclic structure of He and
Zhang and additionally ensures that the initial vector is positive.

We demonstrated potential applications of the canonical form and the associ-
ated transformation method through the analysis of the moments bounds of the
PH(3) class.

Acknowledgement

The authors thank the effort of Laura Fábián whose numerical investigations led
to the basic idea of this paper.

References

1. Asmussen, S., Nerman, O.: Fitting Phase-type distributions via the EM algorithm.
In: Proceedings: Symposium i Advent Statistik, Copenhagen, pp. 335–346 (1991)

2. Bobbio, A., Horváth, A., Telek, M.: Matching three moments with minimal acyclic
phase-type distributions. Stochastic Models 21(2-3), 303–323 (2005)

3. Cox, D.R.: A use of complex probabilities in the theory of stochastic processes.
Proc. Cambridge Phil. Soc. 51, 313–319 (1955)

4. Cumani, A.: On the canonical representation of homogeneous Markov processes
modelling failure-time distributions. Microelectronics and Reliability 22, 583–602
(1982)

5. Qi-Ming, H., Hanqin, Z.: A note on unicyclic representation of ph-distributions.
Stochastic Models 21, 465–483 (2005)

6. Horváth, A., Telek, M.: PhFit: A general purpose phase type fitting tool. In: Field,
T., Harrison, P.G., Bradley, J., Harder, U. (eds.) TOOLS 2002. LNCS, vol. 2324,
pp. 82–91. Springer, Heidelberg (2002)

7. Latouche, G., Ramaswami, V.: Introduction to Matrix-Analytic Methods in
Stochastic Modeling. Series on statistics and applied probability. ASA-SIAM (1999)

62 G. Horváth and M. Telek

8. Lipsky, L.: Queueing Theory: A linear algebraic approach. MacMillan, New York
(1992)

9. Mocanu, S., Commault, C.: Sparse representations of phase-type distributions.
Commun. Stat., Stochastic Models 15(4), 759–778 (1999)

10. Neuts, M.: Matrix-Geometric Solutions in Stochastic Models. John Hopkins Uni-
versity Press, Baltimore, MD, USA (1981)

11. Osogami, T., Harchol-Balter, M.: A closed form solution for mapping general distri-
butions to minimal ph distributions. In: Kemper, P., Sanders, W.H. (eds.) TOOLS
2003. LNCS, vol. 2794, pp. 200–217. Springer, Heidelberg (2003)

12. van de Liefvoort, A.: The moment problem for continuous distributions. Technical
report, University of Missouri, WP-CM-1990-02, Kansas City (1990)

SPAMR: Extending PAMR with Stochastic Time�

Natalia López, Manuel Núñez, and Ismael Rodŕıguez

Dept. Sistemas Informáticos y Computación
Universidad Complutense de Madrid, E-28040 Madrid. Spain

{natalia,mn,isrodrig}@sip.ucm.es

Abstract. In this paper we introduce time information in PAMR (Process
Algebra for the Management of Resources). PAMR is a process algebra
that simplifies the task of specifying processes whose behavior strongly
depend on the resources that they have. One of the drawbacks of PAMR
is that there is not an appropriate notion of time. In this paper we will
consider that the duration of actions is controlled by a random variable.
These random variables will take values, according to some probability
distribution functions, that may depend, in particular, on the available
resources. We present two examples showing the main features of our
stochastic version of PAMR.

1 Introduction

The process algebra PAMR [18], as well as its adaptions/extensions [20,21], rep-
resents a formalism to specify systems where resources play a fundamental role.
The main advantage of PAMR consists in the separation between the behavior
of processes (specified in a usual process algebra) and the management of the
resources that a process can make use of. By doing so, specifications get clearer
as many details can be encoded in the resources part. Let us show the main
advantages by using a simple example. Let us consider the classical five dining
philosophers example. If we try to specify this problem in a CCS-like language,
we have to consider that forks are usual processes. Besides, the philosophers must
also include some actions indicating communication with the forks. In PAMR we
may separate between real processes (the philosophers) and available resources
(the forks). In our case, a philosopher is simply defined as

philosopheri ::= think ; eat ; philosopheri

We consider that the philosopher i needs no resources to think. Besides, he needs
forks i and (imod 5) + 1 to perform the action eat.

Another interesting feature of PAMR allows processes to exchange resources
among them. By doing so, processes will improve their performances. For exam-
ple, consider a system where two processes are running. One of them is making
intensive use of RAM while the other one is mainly sending packets through a
� Research partially supported by the Spanish MEC project WEST/FAST TIN2006-

15578-C02-01 and the Marie Curie RTN TAROT (MRTN-CT-2003-505121).

K. Wolter (Ed.): EPEW 2007, LNCS 4748, pp. 63–79, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

64 N. López, M. Núñez, and I. Rodŕıguez

LAN. So, the first process should have a big amount of memory (and a limited
access to the local bus) while the situation should be the opposite for the other
process. Besides, let us suppose that this situation may change as time passes
(for example, the first process may eventually become an I/O-bound process).
In order to model such a situation, we could consider a centralizer allocating the
available resources to processes. Nevertheless, in PAMR no centralizer is needed.
Processes will exchange resources according both to some predefined policy and
to some information about their preferences towards resources. So, an exchange
is allowed if it is profitable with respect to the chosen policy, for example, if
some processes improve and no one deteriorates. This first policy is equivalent
to consider that processes are the real owners of resources. Another possibility
is that exchanges are allowed only if the whole system improves. The results of
this policy are similar to consider a centralizer who looks for an improvement of
the global behavior of the system.

Even though PAMR has been already applied to different fields (from concurrent
systems to a variant of e-commerce [20] or to the specification of autonomous
agents [21,17]) we think that there is (at least) an aspect that could be more
satisfactorily covered: The modeling of time. In PAMR, a primitive notion of time
could be introduced by using the necessity function. In short, each process has
a function n : Act× IRn

+ −→ IR+ ∪ {∞}. A value n(a, x̄) = ∞ indicates that the
amount of resources owned by the process (that is, x̄) is not enough to perform
the action a. If n(a, x̄) = r ∈ IR+, the value r could be considered as the time
that the process needs to perform a, given the resources x̄. In fact, this approach
was somehow implemented in [19]. However, it presents some problems. First,
in PAMR there is no notion of concurrent passing of time. In other words, if we
have a parallel composition of several processes, the passage of time in one of the
processes could not be reflected in the other ones. Second, this notion of time
would be completely deterministic, that is, for any n, a, and x̄ the time that
the process needs to perform a is fixed. It seems more interesting to consider a
stochastic approach where the necessity function returns a random variable.So,
we may consider that n(a, x̄) = ξ indicates that, if the process may use the
resources x̄, then it will perform the action a before time t with probability
equal to Fξ(t), where Fξ is the probability distribution function associated with
ξ. For example, we could have that ξ is uniformly distributed over the interval
[0, 1∑

xi
].

In order to include our notion of time, we profit from the study in the field
of stochastic process algebras (e.g. [8,1,11,3,10]). Even though most of the mod-
els that were originally proposed were restricted to only use exponential distri-
butions, there are already several proposals for stochastic models with general
distributions (e.g. [9,13,5,15,4,14,6,7]). The restriction to Markovian models sim-
plifies several of the problems that appear when considering general distribu-
tions. In particular, some quantities of interest, like reachability probabilities
or steady-state probabilities, can be efficiently calculated by using well known
methods on Markov chains. Besides, the (operational) definition of the language
is usually simpler than the one for languages allowing general distributions.

SPAMR: Extending PAMR with Stochastic Time 65

Nevertheless, this restriction does not allow to properly specify systems where
time distributions are not exponential. Moreover, the main weakness of non-
exponential models, that is the analysis of properties, can be (partially) over-
come by restricting the class of distributions. A good candidate are phase-type
distributions, where the analysis of performance measures can be efficiently done
in some general cases. There are other proposals dealing with these limitations in
a different way. For example, [12,22] show how model checking can be extended
to semi-Markov Chains while [15] presents a framework for translating specifi-
cations with general distributions into a functional language where simulations
can be performed.

In order to cope with the usual problem of general distributions in the scope of
parallel compositions, actions are split into two events: start and termination. A
similar mechanism is used in [5,15]. Nevertheless, in those approaches stochastic
and action transitions are separated (already in the syntax on the corresponding
languages). In our case, transitions must contain both information about the
action and the associated random variable. Besides, processes engaged in the
execution of an action (that is, they have performed a start event but they
did not perform the corresponding termination event) will have some trading
limitations. For example, they will not be able to trade resources that they need
to perform the corresponding action. These two facts complicate the operational
rules for the definition of systems.

The rest of the paper is structured as follows. In Section 2 we present our
language, that we call SPAMR and its operational semantics. In Section 3 we
present two examples showing the main features of SPAMR. Finally, in Section 4
we present our conclusions and some lines for future work.

2 The Language SPAMR

In this section we present the syntax and operational semantics of our language.
In SPAMR, as well as in PAMR, systems are defined in two steps. First, we introduce
the notion of process. A process consists of a behavior (expressed in a LOTOS-
like language) together with some information about resources (the amounts
that it owns, how they are consumed/produced after performing actions, etc). A
system is defined as the parallel composition of several processes. These processes
may perform exchanges of resources so that they improve with respect to a given
policy. Once no more exchanges can be made, indicating that a (somehow) good
distribution of resources has been reached, processes may perform actions (possi-
bly by synchronizing with other processes). Next we introduce some preliminary
notations.

Definition 1. We consider IR+ = {x ∈ IR | x ≥ 0}. For any r ∈ IR+, we have
that trunc(r) denotes the natural number resulting from discarding the decimal
part of the real r.

We will usually denote vectors in IRn (for n ≥ 2) by x, y, . . . Given x ∈ IRn,
xi denotes its i-th component. Let x, y ∈ IRn. We define the addition of x and y

66 N. López, M. Núñez, and I. Rodŕıguez

as the vector x+ y = (x1 + y1, . . . , xn + yn). We write x ≤ y if we have xi ≤ yi

for all 1 ≤ i ≤ n.
Let A be a set and n,m ≥ 1. We denote by An×m the matrices of dimension

n×m of elements of A (we use calligraphic letters E , E1 . . . to range over An×m).
��

Stochastic information is introduced by means of random variables. We will
consider that the sample space (that is, the domain of random variables) is the
set of real numbers IR and that random variables take positive values only in IR+,
that is, given a random variable ξ we have Fξ(t) = 0 for all t < 0. The reason
for this restriction is that random variables will always be associated with time
distributions.

Definition 2. We denote by V the set of random variables. We will extend
this set with a special symbol ξ∞ 	∈ V . It will be used to represent the case
when an action cannot be performed (because the process does not own enough
resources). We consider V∗ = V ∪ {ξ∞} (ξ, ψ, . . . to range over V∗).

Let ξ be a random variable. Its probability distribution function, denoted by
Fξ, is the function Fξ : IR → [0, 1] such that Fξ(x) = P(ξ ≤ x), where P(ξ ≤ x)
is the probability that ξ assumes values less than or equal to x.

We consider a distinguished random variable. By unit we denote a random
variable such that Funit (x) = 1 for all x ≥ 0, that is, unit is distributed as the
Dirac distribution in 0.

Let ξ1 and ξ2 be independent random variables with probability distribution
functions Fξ1 and Fξ2 , respectively. We define the combined addition of ξ1 and
ξ2, denoted by ξ1 ⊕ ξ2, as the random variable with probability distribution
function defined as Fξ1⊕ξ2(x) = Fξ1 (x) + Fξ2(x) − Fξ1(x) · Fξ2 (x). This opera-
tor can be generalized to an arbitrary (finite) number of random variables. Let
Ψ = {ξi}i∈I be a non-empty finite set of independent random variables. We
define the combined addition of the variables in Ψ , denoted by ⊕Ψ , as the ran-
dom variable with probability distribution function defined, for any x ∈ IR, as
F⊕Ψ (x) =

∑
∅⊂Φ⊆Ψ (−1)(|Φ|+1)F⊗Φ(x) where F⊗Ψ (x) = Π i∈I Fξi(x). Note that

for singleton sets of random variables, Ψ = {ξ}, we have ⊕Ψ = ξ. We consider,
for convenience, F⊕∅(x) = 0 for all x ∈ IR.

Let ξ and φ be two random variables. We say that ξ and φ are identically
distributed, denoted by ξ � φ, if for any t ≥ 0, we have that Fξ(t) = Fφ(t). ��

The operator ⊕ can be used when random variables are combined. Let us note
that this operator does not correspond with the usual definition of addition
of random variables (we will denote that addition of random variables by +).
Actually, it is easy to show that F⊕Ψ computes the probability distribution
function associated with the random variable min(Ψ). Finally, let us remark
that if we consider the addition of random variables, for all random variable ξ
we have that ξ + unit = ξ.

SPAMR: Extending PAMR with Stochastic Time 67

Example 1. Let us show some examples of random variables and the probability
distribution functions governing their behavior. Let us consider the following
probability distribution functions:

F1(x) =

⎧⎨
⎩

0 if x ≤ 0
x
3 if 0 < x < 3
1 if x ≥ 3

F2(x) =
{

0 if x < 4
1 if x ≥ 4

F3(x) =
{

1 − e−3·x if x ≥ 0
0 if x < 0

If a random variable ξ1 has as associated probability distribution function F1

then we say that ξ1 is uniformly distributed in the interval [0, 3]. Uniform dis-
tributions allow us to keep compatibility with time intervals in (non-stochastic)
timed models in the sense that the same weight is assigned to all the times in
the interval. If ξ2 has as associated probability distribution function F2 then we
say that ξ2 follows a Dirac distribution in 4. The idea is that the corresponding
delay will be equal to 4 time units. Dirac distributions allow us to simulate de-
terministic delays appearing in timed models. If ξ3 has as associated probability
distribution function F3 then we say that ξ3 is exponentially distributed with
parameter 3. ��

One of the components of a process will be given by its behavior. These behav-
iors will be specified in a LOTOS-like processes algebra, but any other similar
formalism could be used. We consider a fixed set of visible actions Act (a, b, . . .
to range over Act). We assume the existence of a special action τ 	∈ Act which
represents the internal behavior of a process. We also consider the set of internal
actions Actτ such that τ ∈ Actτ , Actτ ∩ Act = ∅, and there exists a bijection
f : Act −→ (Actτ −{τ}) such that for all a ∈ Act, we will denote f(a) by τa. We
denote by ACT the set of actions, that is, ACT = Act ∪ Actτ (α, α′, . . . to range
over ACT). Let us note that we do not consider a unique internal action, even
though an external observer will not be able to distinguish them. The difference
among them comes from the fact that they will need different resources to be
performed. So, if a process needs a set of resources x to perform a visible action
a, and this action is hidden, the resulting action, that is τa, needs the same
amount of resources x to be performed. Sets of internal actions appear in other
models for concurrent processes (for example, for I/O automata [16]). Finally,
we consider a set of process variables Id.

Definition 3. The set of basic processes, denoted by B, is given by the following
BNF-expression B ::= stop |X | α ;B |B +B |B ‖A B | hide A in B |X := B,
where α ∈ ACT, A ⊆ Act, and X ∈ Id. ��

The term stop defines the process that performs no actions. The process α ; B
performs the action α and, after that, it behaves like B. Choice is represented by

68 N. López, M. Núñez, and I. Rodŕıguez

(Pre)
α;B

α−−→B
(Rec)

B{X:=B/X} α−−→B′

X:=B
α−−→B′

(Cho1)
B1

α−−→B′
1

B1+B2
α−−→B′

1

(Cho2)
B2

α−−→B′
2

B1+B2
α−−→B′

2

(Par1)
B1

α−−→B′
1 ∧ α/∈A

B1‖AB2
α−−→B′

1‖AB2
(Par2)

B2
α−−→B′

2 ∧ α/∈A

B1‖AB2
α−−→B1‖AB′

2

(Par3)
B1

a−−→B′
1 ∧ B2

a−−→B′
2 ∧ a∈A

B1‖AB2
a−−→B′

1‖AB′
2

(Hid1)
B1

α−−→B′
1 ∧ α/∈A

hide A in B1
α−−→hide A in B′

1

(Hid2)
B1

a−−→B′
1 ∧ a∈A

hide A in B1
τa−−→hide A in B′

1

Fig. 1. Operational Semantics for the Base Language

B+B′, and the process will behave either likeB or likeB′. The expressionB‖AB
′

represents the parallel composition ofB andB′ (with synchronization setA). The
term hide A in B will perform any action that B performs if the action is not in
A; an action a ∈ A will be hidden, becoming τa. The term X := B represents
a (possibly) recursive definition of a process. In Figure 1 the operational seman-
tics for behaviors is presented. The rules are quite standard. Let us remind that
B{B′/X} represents the replacement of the free occurrences of the variable X in
B by the term B′. Let us also remark that, in rule (Hid2), the result of hiding a
visible action a is not τ but τa. Let us also note that the parallel operator works in
an interleaving way. Concurrent execution of actions (by several processes) is con-
sidered only in the scope of a system. The following definition is given to compute
the actions that a basic process may immediately perform.

Definition 4. Let B ∈ B. We define its set of immediate actions, denoted by
Imm(B), as Imm(B) = {α ∈ ACT | ∃ B′ ∈ B : B α−−→ B′}. ��

As we have already commented, a process consists of its basic behavior (previ-
ously defined), a set of assigned resources, and some information relating both
resources and behavior.

Definition 5. Let us consider that there exists a number m > 0 of different
resources. A process is a tuple P = (B, x, u, n, c), where B ∈ B (the basic process
defining its behavior), x = (x1, . . . xm) ∈ IRm

+ (the amounts of resources), u :
P(ACT) × IRm

+ −→ IR (the utility function), n : ACT × IRm
+ −→ V∗ (the necessity

function), and c : ACT × IRm
+ −→ IRm (the consumption of resources function).

We denote by P the set of processes.
Given a process Pi, we will usually consider Pi = (Bi, xi, ui, ni, ci), that is,

indices will denote the process to which B, x, . . . are related. ��

SPAMR: Extending PAMR with Stochastic Time 69

Next we briefly explain the components of a process. If P = (B, x, u, n, c) is a
process then x indicates that P owns xi units of the i-th resource. The utility
function u contains preferences between baskets of resources. This function is
applied to the set of actions that B can immediately perform and to a set of
resources. It returns a real value. If we have that u(A, x) < u(A, y) then P
would prefer the basket y to the basket x, considering that A = Imm(B). Given
the fact that the utility function is only applied to sets of immediate actions, we
suppose u(∅, x) = 0. That is, a deadlocked process does not need any resource,
so they will be shared with the rest of the processes. The utility function plays
a fundamental role in the exchange of resources as it allows to decide whether a
new basket would improve the situation of the process.

The necessity function n relates the resources and the speed of execution of
actions. Thus, if n(α, x) = ξ 	= ξ∞ then the action α will be performed by P ,
that owns the resources x, following the probability distribution function Fξ.
In other words, α will be performed before time t with probability Fξ(t). If
n(α, x) = ξ∞ then we have that the owned resources are not enough to perform
α. It is important to note that, usually, random variables will depend on the
resources the process owns. Finally, we assume n(a, x) = n(τa, x).

The consumption of resources function indicates the consumed/produced re-
sources after performing an action. That is, c(α, x̄) = ȳ means that, after per-
forming α, the set of resources of the process varies from x̄ to ȳ. A necessary
condition for a process to perform an action α is c(α, x̄) ≥ 0̄. We do not al-
low debts, even transient ones, because they could generate inconsistencies. For
example, such debts could produce that two processes simultaneously use a
printer.

Systems will perform transitions according to the possible transitions of pro-
cesses. These transitions are defined by the following operational rule:

B α−−→ B′ ∧ n(α, x) = ξ ∈ V ∧ c(α, x) ≥ 0

P
(α,ξ)−−−−→ P ′

where P = (B, x, u, n, c) and P ′ = (B′, c(α, x), u, n, c). Intuitively, a process may
perform an action if its corresponding behavior can, it has enough resources to
perform it, and this performance does not produce any debts.

A system will be the parallel composition of several processes. We allow m
among n synchronization. Let us consider the compositions of the processes
P1, . . . , Pn. Each process has a synchronization set Ai. The process Pi is allowed
to asynchronously perform any action in ACT − Ai; if Pi is able to perform an
action a ∈ Ai then Pi has to synchronize with the rest of processes Pj such that
a ∈ Aj . In order to deal with the usual semantic problems of general distributions
in the scope of a parallel operator, we have chosen an approach inspired in [5,15].
That is, actions are split into start (belonging to the set ACT+ = {α+ | α ∈
ACT}) and termination (belonging to the set ACT− = {α− | α ∈ ACT}). So, labels
appearing in the forthcoming operational semantics for systems may contain
elements from ACT+ ∪ ACT−.

70 N. López, M. Núñez, and I. Rodŕıguez

valid(S, E) ∧ allowed(S, E)

S
E�

M
‖Ai

n P ′

i

[
∀ 1 ≤ i ≤ n : P ′

i = (Bi, xi −
∑

j
Eij +

∑
j
Eji, ui, ni, ci)

]

S �� ∧ Pj
(α,ξ)
−−−−→ P ′

j ∧ α /∈ Aj ∧ j �∈ Ind(M)

S
(α+,ξ){j}

−−−−−−−−−→
M1

‖Ai
n P ′′

i

[
∀ 1 ≤ i ≤ n, P ′′

i =

{
P ′

j if i = j
Pi if i �= j

]

S �� ∧ S � Act
+

−−−−−→ ∧ (j, α, ξ, x̄) ∈ M ∧ α �∈ Aj

S
(α−,ξ){j}

−−−−−−−−−→
M2

‖Ai
n Pi

S �� ∧ Pj
(a,ξ)
−−−−→ P ′

j ∧ a ∈ Aj ∧ ∀ k ∈ B(a) : (k �∈ Ind(M) ∧ ∃ P ′

k : Pk
(a,ξk)

−−−−−→ P ′

k)

S
(a+,ψ)B(a)
−−−−−−−−−→

M3
‖Ai

n P ′′
i

[
∀ 1 ≤ i ≤ n, P ′′

i =

{
P ′

i if a ∈ Ai

Pi if a /∈ Ai

]

S �� ∧ S � Act
+

−−−−−→ ∧ (j, a, ψ, x̄) ∈ M ∧ a ∈ Aj ∧ ∀k ∈ B(a) : (∃ xk : (k, a,ψ, xk) ∈ M)

S
(a−,ψ)B(a)
−−−−−−−−−→

M4
‖Ai

n Pi

where

S =
M
‖Ai

n Pi, Pi = (Bi, xi, ui, ni, ci) Ind(M) = {j | ∃ α, ξ, x̄ : (j, α, ξ, x̄) ∈ M}

M1 = M ∪ {(j, α, ξ, Blocked(Pj , α))} M2 = M − {(j, α, ξ, x̄)}

B(a) = {k | 1 ≤ k ≤ n ∧ a ∈ Ak} ψ = max{nk(a, xk) | k ∈ B(a)}

M3 = M ∪ {(k, a, ψ, Blocked(Pk, a)) | k ∈ B(a)} M4 = M − {(k, a, ψ, xk) | k ∈ B(a)}

Fig. 2. Operational Semantics for Systems

Definition 6. Let A1, . . . An ⊆ Act. A system S is a parallel composition of
n processes P1, . . . Pn synchronizing, respectively, in the set Ai. We denote the
system S by

M
‖Ai

n Pi, where M ⊆ {1, . . . , n}× ACT×V × IRm. We denote the set
of systems by S. ��

The set M will store information about which processes are performing ac-
tions, that is, they started an action but they did not finish it. Any element
(i, α, ξ, ȳ) ∈ M represents that the i-th process is currently performing α, with
respect to the random variable ξ, and it is using the resources given by ȳ. We
will always assume that M is initially empty. In Figure 2 we present the oper-
ational semantics for systems. The first rule indicates a exchange of resources.
The predicate valid(S, E) controls that processes are not giving resources that
they do not own or that they are currently using/producing/consuming. The
predicate allowed(S, E) detects whether the exchange is correct with respect
to the chosen policy. We will formally define these two predicates later. As a
consequence of the exchange, Pi gives to Pj the quantities of resources indicated
by Eij , while Pi receives from Pj the quantities given by Eji. We will denote by
�∗ the reflexive and transitive closure of �. Once we have a situation where

SPAMR: Extending PAMR with Stochastic Time 71

no exchange can be performed (that is, S 	�) the processes will perform usual
transitions. Let us remark that S 	� indicates that the resources have been
(somehow) well distributed. The second rule indicates that a process may start
the performance of a non-synchronizing action if it is not currently performing
another action (i.e. j 	∈ Ind(M)). In this case, we need to include information
about this performance in the set M (see the definition of M1 at the bottom
of Figure 2). In particular, we need to indicate which resources will be blocked
while performing that action (we will formally introduce this concept after this
explanation). The fourth rule is similar but considering synchronizing actions.
Let us remark that processes may perform the same action at different speeds
(in particular, depending on the resources that they own). We take the slowest,
that is, we consider a random variable distributed as the maximum of the cor-
responding random variables (see the definition of ψ at the bottom of Figure 2).
The remaining rules deal with termination of actions. The third rule says that
if a process Pj may terminate an action (that is, a tuple with index j belongs

to M) and no other process may start an action immediately (i.e. S 	 Act
+

−−−−−→)

then the system can terminate this action. Let us note that S 	 Act
+

−−−−−→ holds
iff Ind(M) ∪ {j | Pj −−	→} = {1, . . . , n}. In this case, the corresponding tuple is
removed from M . A similar situation appears in the last rule.

Next we define the remaining predicates. If a process is performing an ac-
tion then there will be resources that it cannot exchange. These resources are
those created/consumed during the performance of the action and the ones that
the process is using (those adding utility for that particular action). So, these
resources will be blocked for possible exchanges.

Definition 7. Let P = (B, x, u, n, c) be a process. We say that P depends on
the resource j to perform an action α ∈ ACT, denoted by Depends(P, j, α), if
there exist x′, x′′ ≤ x̄ such that x′′ = (x′1, x

′
2, . . . , x

′
j + ε, . . . , x′m), for some ε > 0,

and u({α}, x′) < u({α}, x′′).
The tuple of blocked resources for P while performing and action α ∈ ACT,

denoted by Blocked(P, α), is defined as c(α, x)− x̄+ ȳ, where for all 1 ≤ j ≤ m
we have yj = xj if Depends(P, j, α) and yj = 0 otherwise. ��

Let us note that P will perform exchanges by taking into account that it will
own (after performing α) the resources given by c(α, x). This is so because the
operational rule for processes updates the set of owned resources. However, the
net creation/consumption of resources, that is c(α, x)−x̄, cannot be used in these
exchanges. In addition, the resources that the process is using for performing α
are also excluded. All these resources are liberated when the action is finished
(by removing the corresponding information fromM). Let us also remark that a
process may receive (after future exchanges, before completing the performance
of α) new quantities of the blocked resources. Nevertheless, these resources will
neither improve the performance of the action being performed nor will be added
to the set of blocked resources.

72 N. López, M. Núñez, and I. Rodŕıguez

The valid(S, E) predicate controls that a exchange is possible. It holds if the
processes do not give resources that they do not own and the diagonal of the
matrix is filled with 0̄. In addition, blocked resources (that is, those included in
the set M) cannot be exchanged.

Definition 8. Let S =
M
‖Ai

n Pi be a system, where for all 1 ≤ i ≤ n we
have Pi = (Bi, xi, ui, ni, ci). We say that E ∈ (IRm

+)n∗n is a valid exchange
matrix for S, denoted by valid(S, E), if for all 1 ≤ i ≤ n we have Eii = 0̄, and∑

j Eij ≤ xi − x if there exists α, ξ : (i, α, ξ, x) ∈M , and
∑

j Eij ≤ xi otherwise.
��

The allowed(S, E) predicate detects whether an exchange conforms the chosen
policy. In [18] two different policies were introduced, but others could be de-
fined.1 In this paper we will only consider the preserving utility policy. Under
this assumption, exchanges are allowed only if, after the exchange, at least one
process improves and no process gets worse. Intuitively, processes are the own-
ers of the resources and they will not give them up if they do not receive a
compensation.

Definition 9. For all 1 ≤ i ≤ n let Pi = (Bi, xi, ui, ni, ci), let S =
M
‖Ai

n Pi

be a system, and E ∈ (IRm
+)n×n be such that valid(S, E). The allowed(S, E)

predicate holds if for all 1 ≤ i ≤ n we have ui(Imm(Bi), xi) ≤ ui(Imm(Bi), xi −∑
j Eij +

∑
j Eji) and there exists 1 ≤ k ≤ n such that we have uk(Imm(Bk), xk) <

uk(Imm(Bk), xk −
∑

j Ekj +
∑

j Ejk). ��

3 Examples

In this section we will show how SPAMR can be used to specify and analyze con-
current systems where both resources and actions taking time to be performed
play an important role. First, we present a classic and simple example: The
readers/writers problem. Next, we give a more elaborated example where three
researchers share some hardware in a laboratory.

During the rest of the section we assume that an undefined value of the utility,
necessity, or consumption functions is set to an arbitrary value. Actually, these
cases will not be possible because they will correspond to an action (or a set of
actions for the utility function) not reachable by the corresponding processes.
For the sake of simplicity in the presentation, we will use probability distribution
functions instead of random variables. We will consider that U(t1, t2) denotes
a random variable uniformly distributed on the interval [t1, t2]; E(λ) denotes a
random variable exponentially distributed with parameter λ; δ(t) denotes a Dirac
distribution in t. Let us remember that a Dirac distribution models deterministic
time, that is, δ(t) indicates a delay of t time units.
1 The choice of a good policy is not a trivial task. Actually, it is impossible to choose

a perfect policy because this problem is related with the social welfare aggregator
problem. Arrow’s impossibility theorem [2] shows that there does not exist such an
aggregator fulfilling a certain set of desirable properties.

SPAMR: Extending PAMR with Stochastic Time 73

3.1 The Readers and Writers Problem

We suppose n readers and m writers which may access a file. Any number of
readers may simultaneously read from the file, but when a writer holds access to
the file, neither readers nor other writers are allowed to access it. The behaviors
for readers and writers are given by:

Reader := read ; other tasks ; Reader
Writer := write ; other tasks ; Writer

We consider that there is only one resource, the access to the file, and that
there are n units of it. We initially assign a unit of the resource to each reader.
For any process, its utility function is defined as:

u({read}, x̄) =
{
K1 if trunc(x) ≥ 1
0 otherwise

u({write}, x̄) =
{
K2 if x = n
0 otherwise

u({other tasks}, x̄) = K3

where K1,K2 > 0, and K3 ≥ 0. Let us comment on the way the access of a
writer forbids the access of any reader or any other writer. For a writer to access
the file, it must own all the access resources of the system. Also note that if
a reader desires to read, it needs at least one unit of the resource; additional
units do not increase utility. Regarding necessity functions, they can be defined
as follows:

n(read , x̄) =
{
U(K4,K5) if trunc(x) ≥ 1
ξ∞ otherwise

n(write , x̄) =
{
U(K6,K7) if x = n
ξ∞ otherwise

n(other tasks , x̄) = E(K8)

where 0 ≤ K4 < K5, 0 ≤ K6 < K7, and K8 > 0. Note that resources are neither
consumed nor created. So, c(α, x̄) = x̄. Finally, the system is:

Readers Writers = ∅‖
Ai
n+m Pi

where, for all 1 ≤ i ≤ n we have Pi = (Reader , 1, u, n, c), and for all 1 ≤ i ≤ m
we have Pn+i = (Writer , 0, u, n, c). Besides, for all 1 ≤ i ≤ n + m we have
Ai = ∅. The following result shows that this system cannot get deadlocked. Let
us remark that the definition of the utility functions plays an important role in
this absence of deadlocks. The proof follows from the fact that if a local equi-
librium is reached then there exists (at least) a process such that either it is
willing to perform other tasks (no resources are needed to perform this action)
or it has utility greater than zero. Let us remark that no process gets utility by

74 N. López, M. Núñez, and I. Rodŕıguez

Fig. 3. Three Researchers in a Laboratory

having less number of accesses that the ones it needs. In both cases, this process
will be able to perform its corresponding action.

Lemma 1. (Absence of Deadlocks for Readers Writers). Let us consider a sys-
tem S such that

Readers Writers �∗S1

(α1,ξ1)B1−−−−−−−−−→ S′
1 �∗S2 · · ·

(αk,ξk)Bk−−−−−−−−−→ S′
n �∗S

where for all 1 ≤ i ≤ k we have αi ∈ ACT− ∪ ACT+ and Bi ⊆ {1, . . . , n+m}. If
S is not a local equilibrium then there exist S′, E such that S E� S′; otherwise,

there exist S′, α, ξ, B such that S
(α,ξ)B−−−−−→ S′. ��

3.2 The Three Researchers

We present a more complex example that shows most of the characteristics
of the language. We consider the situation depicted in Figure 3. We have a
laboratory where three (female) researchers, that we call R1, R2, and R3, are
making some experiments. Each researcher is placed in front of a computer. One
of the computers has a very powerful processor that allows to make complex
computations. The second computer has a mechanism that allows to make some
experiments to confirm the analysis given by the previous computations. Finally,
the third computer has a printer. Each researcher can access directly the resource
(processor, mechanism or printer) placed in her computer; the other resources
are accessed remotely. So, in this example we have four resources: processor,
mechanism, printer and network.

SPAMR: Extending PAMR with Stochastic Time 75

The behavior of a researcher is defined as follows. First, she thinks and dis-
cusses with the other researchers via electronic chat until an idea comes out.

Researcher i := brain storming ; Computing i

Afterwards, she tries to access the first computer. If she is R1 and she has enough
quantity of the processor, she will be able to perform the computations on her
computer. Afterwards, she will analyze the results. If the results confirm her
hypothesis, she will try to perform an experiment; otherwise, she will start to
think on another idea. The process is similar for the second and third researchers.
The only difference is that they must send her data through the channel, then
the computations will be done, and then they will receive the results through
the channel.

Computing1 := comp1 ; analize comp1 ;

⎛
⎝ good ; Experimenting1

+
bad ; Researcher1

⎞
⎠

Computing i := send data compi ; compi;
[i∈{2,3}] rec data compi ; analize compi ;

⎛
⎝good ; Experimentingi

+
bad ; Researcher i

⎞
⎠

In the case of the experimenting process, R2 does not need the channel to per-
form the experiment, while the other two researchers need it. Nevertheless, this
fact will not be reflected in the specification of the behaviors, but in the utility
and necessity functions: They will not depend on the amount of the channel that
the second researcher has, while they will for the other two researchers. After
performing the experiment, if the results confirm their hypothesis then they will
print; otherwise, they will discard the idea.

Experimenting i := experiment i ; analyze expi ;

⎛
⎝ good ; Printing i

+
bad ; Researcher i

⎞
⎠

[i∈{1,2,3}]

Finally, R3 will print the results, and will start to think on another idea. The
other two researchers need to send the data to the printer through the channel.
Note that in this case the printer will not send back any results.

Printing3 := print3 ; Researcher3

Printing i := send data print i ; print i ; Researcher i

[i∈{2,3}]

Next we define the rest of the components of the processes. We suppose that
each researcher initially owns her local resource, and that they have the same

76 N. López, M. Núñez, and I. Rodŕıguez

amount of broad-band. Without losing generality, we consider that both the total
amount of processor and of broadband are equal to 1. That is, x1 = (1, 0, 0, 1

3),
x2 = (0, 1, 0, 1

3), x3 = (0, 0, 1, 1
3). Regarding utility functions we have:

ui({brain storming}, z̄) =
{
z4 if z4 < 1

3
1
3 otherwise

[i∈{1,2,3}]
ui({compi}, z̄) = Ci · z1
[i∈{1,2,3}]
u2({experiment2}, z̄) = E2 · trunc(z2)
ui({experiment i}, z̄) = Ei · trunc(z2) · z24
[i∈{1,3}]
ui({print i}, z̄) = Pi · trunc(z3)
[i∈{1,2,3}]
u1({send data print1}, z̄)= z4
u2({c}, z̄) = z4
[c∈{send data comp2,rec data comp2,send data print2}]
u3({c}, z̄) = z4
[c∈{send data comp3,rec data comp3,}]
ui(Ai, z̄) = 0
[i∈{1,2,3} ∧ Ai∈{{good,bad},{analize compi}}]

Let us comment on the previous definitions. If the researchers are willing
to perform a brainstorm, then they will need the broadband to use the chat
application. Due to the three researchers are committed to chat together, a limit
in the utility of the broadband must be imposed to avoid any researcher to keep
the whole resource. After a new idea comes out, each researcher will be willing to
perform a computation. In this case, their utility depends only on the amount of
(time) processor that they own. The additional constant (i.e. Ci > 0) measures
the propensity of the researcher i to make computations. A similar situation
appears for the case of printing. On the contrary, the utility when trying to
perform an experiment does not depend only on the amount of the mechanism;
in the case of R1 and R3, it will also depend on the amount of broadband that
they own because they are supposed to interact with the mechanism. Let us note
that in these last two cases, researchers get no utility if they do not exclusively
own the mechanism or the printer, respectively (this is indicated by using the
truncate function). In the case of the processor and the network, a fraction of
the whole amount reports utility greater than zero. If the researchers try to send
data, their utilities depend only on the amount of broadband that they have.
Finally, no resources are needed to perform the rest of the actions. In this case,
the utility is given by a constant.

The execution time will sometimes depend only on the amount of resources
(e.g. compi) and sometimes will also depend on a constant indicating the skills
of the researcher (e.g. experiment i).

SPAMR: Extending PAMR with Stochastic Time 77

ni(compi, z̄) =
{
E(C · z1) if z1 > 0
ξ∞ otherwise

[i∈{1,2,3}]

n2(experiment2, z̄) =
{
E(E2) if trunc(z2) ≥ 1
ξ∞ otherwise

ni(experiment i, z̄) =
{
E(Ei · z24) if trunc(z2) ≥ 1 ∧ z4 > 0
ξ∞ otherwise[i∈{1,3}]

ni(print i, z̄) =
{
U(P1, P2) if trunc(z3) ≥ 1
ξ∞ otherwise

[i∈{1,2,3}]

n1(c, z̄) = ξ
[c∈{send data print1}]
n2(c, z̄) = ξ
[c∈{send data comp2,rec data comp2,send data print2}]
n3(c, z̄) = ξ
[c∈{send data comp3,rec data comp3}]
ni(good , z̄) = ni(bad , z̄) = δ(BG)
[i∈{1,2,3}]

ni(brain storming , z̄) =
{
E(Ti · z4) if z4 > 0
ξ∞ otherwise[i∈{1,2,3}]

ni(analize compi, z̄) = E(ACi)
[i∈{1,2,3}]
ni(analyze expi, z̄) = E(AEi)
[i∈{1,2,3}]

where

ξ =
{
U(K1

z4
, K2

z4
) if z4 > 0

ξ∞ otherwise

Let us note that the delay associated with choosing whether a result is good
or bad is deterministic as the (random) time for the analysis is consumed by the
previous actions (analize compi and analyze expi). In this system, resources are
neither created nor consumed. So, ci(α, z̄) = z̄. The laboratory is defined as:

Laboratory = ∅‖
Ai
3 Pi

where for all 1 ≤ i ≤ 3 we havePi = (Bi, xi, ui, ni, ci) andAi = {brain storming}.
The proof of deadlock-freedom is a little bit more involved in this case because

there are more possibilities. Nevertheless, the technique is exactly the same as
in Lemma 1. First, let us remark that all the resources where the truncate
function is applied have one full unit of them. After reaching a local equilibrium
S, if all the processes have zero utility then we get a contradiction; otherwise,
because of the relation between utility and necessity functions, a process will be
able to perform one of its immediate actions.

78 N. López, M. Núñez, and I. Rodŕıguez

Lemma 2. (Absence of Deadlocks for Laboratory). Let us consider a system S
such that

Laboratory �∗S1

(α1,ξ1)B1−−−−−−−−−→ S′
1 �∗S2 · · ·

(αn,ξn)Bn−−−−−−−−−→ S′
n �∗S

where for all 1 ≤ i ≤ n we have αi ∈ ACT− ∪ ACT+ and Bi ⊆ {1, 2, 3}. If S is
not a local equilibrium then there exist S′, E such that S E� S′; otherwise, there

exist S′, α, ξ, B such that S
(α,ξ)B−−−−−→ S′. ��

Besides, it is guaranteed that the system is starvation-free. This is so because
the three researchers are forced to synchronize when brainstorming, so that their
progress can help their partners when looking for new ideas. This fact disallows
a researcher to advance forever in her research while the other ones are stopped.

4 Conclusions and Future Work

In this paper we have introduced an stochastic version of PAMR where random
variables have been associated with the performance of actions. We have defined
an operational semantics for the new language. Since we do not restrict the prob-
ability distribution functions associated with random variables, we need to use
complex technicalities to define this semantics. In order to show the usefulness
of our language, we have given two examples showing most of its features.

As future work we plan to define semantic frameworks for our language. We
have already developed a notion of (strong) bisimulation and two trace-based
semantics. The difference between the alternative trace semantics comes from
the point of observation: Whether we check only visible events or also internal
ones. In addition, we plan to consider a testing semantics for our language in
the line of [13] and a stochastic weak bisimulation following [14].

References

1. Marsan, M.A., Bianco, A., Ciminiera, L., Sisto, R., Valenzano, A.: A LOTOS exten-
sion for the performance analysis of distributed systems. IEEE/ACM Transactions
on Networking 2(2), 151–165 (1994)

2. Arrow, K.J.: Social Choice and Individual Values, 2nd edn. Wiley, Chichester
(1963)

3. Bernardo, M., Gorrieri, R.: A tutorial on EMPA: A theory of concurrent processes
with nondeterminism, priorities, probabilities and time. Theoretical Computer Sci-
ence 202(1-2), 1–54 (1998)

4. Bravetti, M., D’Argenio, P.R.: Tutte le algebre insieme: Concepts, discussions and
relations of stochastic process algebras with general distributions. In: Baier, C.,
Haverkort, B., Hermanns, H., Katoen, J.-P., Siegle, M. (eds.) Validation of Stochas-
tic Systems. LNCS, vol. 2925, pp. 44–88. Springer, Heidelberg (2004)

5. Bravetti, M., Gorrieri, R.: The theory of interactive generalized semi-Markov pro-
cesses. Theoretical Computer Science 282(1), 5–32 (2002)

SPAMR: Extending PAMR with Stochastic Time 79

6. D’Argenio, P.R., Katoen, J.-P.: A theory of stochastic systems part I: Stochastic
automata. Information and Computation 203(1), 1–38 (2005)

7. D’Argenio, P.R., Katoen, J.-P.: A theory of stochastic systems part II: Process
algebra. Information and Computation 203(1), 39–74 (2005)

8. Götz, N., Herzog, U., Rettelbach, M.: Multiprocessor and distributed system de-
sign: The integration of functional specification and performance analysis using
stochastic process algebras. In: Donatiello, L., Nelson, R. (eds.) SIGMETRICS
1993 and Performance 1993. LNCS, vol. 729, pp. 121–146. Springer, Heidelberg
(1993)

9. Harrison, P.G., Strulo, B.: SPADES – a process algebra for discrete event simula-
tion. Journal of Logic Computation 10(1), 3–42 (2000)

10. Hermanns, H., Herzog, U., Katoen, J.-P.: Process algebra for performance evalua-
tion. Theoretical Computer Science 274(1-2), 43–87 (2002)

11. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge
University Press, Cambridge (1996)

12. Infante López, G.G., Hermanns, H., Katoen, J.-P.: Beyond memoryless distribu-
tions: Model checking semi-Markov chains. In: de Luca, L., Gilmore, S.T. (eds.)
PROBMIV 2001, PAPM-PROBMIV 2001, and PAPM 2001. LNCS, vol. 2165, pp.
57–70. Springer, Heidelberg (2001)

13. López, N., Núñez, M.: A testing theory for generally distributed stochastic pro-
cesses. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp.
321–335. Springer, Heidelberg (2001)

14. López, N., Núñez, M.: Weak stochastic bisimulation for non-markovian processes.
In: Van Hung, D., Wirsing, M. (eds.) ICTAC 2005. LNCS, vol. 3722, pp. 454–468.
Springer, Heidelberg (2005)

15. López, N., Núñez, M., Rubio, F.: An integrated framework for the analysis of asyn-
chronous communicating stochastic processes. Formal Aspects of Computing 16(3),
238–262 (2004)

16. Lynch, N.A., Tuttle, M.R.: Hierarchical correctness proofs for distributed algo-
rithms. In: 6th ACM Symp. on Principles of Distributed Computing, PODC’87,
pp. 137–151. ACM Press, New York (1987)

17. Merayo, M.G., Núñez, M., Rodŕıguez, I.: Formal specification of multi-agent sys-
tems by using EUSMs. In: FSEN’07. 2nd IPM Int. Symposium on Fundamentals
of Software Engineering. LNCS (to appear, 2007)

18. Núñez, M., Rodŕıguez, I.: PAMR: A process algebra for the management of re-
sources in concurrent systems. In: FORTE’01. 21st IFIP WG 6.1 Int. Conf. on
Formal Techniques for Networked and Distributed Systems, pp. 169–185. Kluwer
Academic Publishers, Dordrecht (2001)

19. Núñez, M., Rodŕıguez, I.: Encoding PAMR into (timed) EFSMs. In: Peled, D.A.,
Vardi, M.Y. (eds.) FORTE 2002. LNCS, vol. 2529, pp. 1–16. Springer, Heidelberg
(2002)

20. Núñez, M., Rodŕıguez, I., Rubio, F.: Formal specification of multi-agent e-barter
systems. Science of Computer Programming 57(2), 187–216 (2005)

21. Núñez, M., Rodŕıguez, I., Rubio, F.: Specification and testing of autonomous agents
in e-commerce systems. Software Testing, Verification and Reliability 15(4), 211–
233 (2005)

22. Sen, K., Viswanathan, M., Agha, G.: On statistical model checking of stochastic
games. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp.
266–280. Springer, Heidelberg (2005)

Faster SPDL Model Checking Through

Property-Driven State Space Generation

Matthias Kuntz and Boudewijn R. Haverkort

University of Twente,
Faculty for Electrical Engineering, Mathematics and Computer Science

Abstract. In this paper we describe how both, memory and time re-
quirements for stochastic model checking of SPDL (stochastic propo-
sitional dynamic logic) formulae can significantly be reduced. SPDL is
the stochastic extension of the multi-modal program logic PDL. SPDL
provides means to specify path-based properties with or without timing
restrictions. Paths can be characterised by so-called programs, essentially
regular expressions, where the executability can be made dependent on
the validity of test formulae. For model-checking SPDL path formulae
it is necessary to build a product transition system (PTS) between the
system model and the program automaton belonging to the path formula
that is to be verified. In many cases, this PTS can be drastically reduced
during the model checking procedure, as the program restricts the num-
ber of potentially satisfying paths. Therefore, we propose an approach
that directly generates the reduced PTS from a given SPA specification
and an SPDL path formula. The feasibility of this approach is shown
through a selection of case studies, which show enormous state space
reductions, at no increase in generation time.

1 Introduction

It is extremely important to develop techniques that allow the construction and
analysis of distributed computer and communication systems. These systems
must work correctly and meet high performance and dependability requirements.
Using stochastic model checking it is possible to perform a combined analysis
of both qualitative (correctness) and quantitative (performance and dependabil-
ity) aspects of a system model. Models that incorporate both qualitative and
quantitative aspects of system behaviour can be modelled by various high-level
formalisms, such as stochastic process algebras [12,11], stochastic Petri nets [1],
stochastic activity networks [17] (SANs), etc.

In order to do model checking of stochastic systems, over the last years a
number of stochastic extensions of the logic CTL [8] have been devised. The most
notable extension is the logic CSL [4] (continuous stochastic logic). More recently,
in [14,3], action-based extensions of CSL were introduced. These logics allow for
the specification of desired system behaviour by means of action sequences. This
makes them very well suited for modelling formalisms in which the actual system

K. Wolter (Ed.): EPEW 2007, LNCS 4748, pp. 80–96, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Faster SPDL Model Checking 81

behaviour is specified as a sequence of actions or transitions, as is the case for
SPAs, SPNs and SANs.

The applicability of stochastic model checking is limited by the complexity,
i.e., the size of system models that are to be verified. At the heart of stochastic
model checking lies the solution process of huge sparse sets of linear (differential)
equations. This limits the size of systems that are practically analysable to some
108 states.

To overcome these limitations we can think of several approaches. One stan-
dard approach is the use of some notion of Markovian bisimulation. This ap-
proach has the following drawbacks. Computing the bisimulation quotient of a
system is computationally expensive, and before reduction takes place the entire
system has to be generated. Furthermore, depending on the system, the reduc-
tion in size may not be very large, and finally, due to reasons that are related
to numerical analysis, the verification of the reduced system may be slower than
that of the original system (cf. [13]).

We propose a different approach, which reduces the system size in many cases
already during the state space generation, by exploiting the SPDL path formula
that is to be verified.

Related Work. For stochastic model checking we are not aware of any approach
that generates the state space in a way which depends on the formula that is to
be verified. For CSL model checking, in [4] an approach is described that makes
states absorbing that do not functionally satisfy a given until-formula, but this
state space reduction is performed only after the state space was generated. Fol-
lowing this proposal, in [14] model checking algorithms for SPDL path formulae
were implemented. For CSL model checking this was done in [13]. For CTL
model checking in [2] an approach is reported, where for interacting finite state
machines equivalence relations are computed, depending on the CTL formula
that is to be verified.

The paper is further organised as follows. In Section 2 we briefly introduce
the syntax and semantics of SPDL; we will explain in an informal style the
traditional approach to the model checking of SPDL path formulae. In Sec-
tion 3 we then describe the stochastic process algebra YAMPA, on which our
property-driven state space generation approach relies. Section 4 is devoted to a
denotational, symbolic property-driven semantics of YAMPA. In Section 5 we
will show the feasibility of our approach via some experimental results. Finally,
Section 6 concludes the paper with a short summary and some pointers to future
work.

2 SPDL - Syntax, Semantics and Model Checking

The logic SPDL is the stochastic extension of the logic PDL [9], a multi-modal
program logic. PDL enriches the standard modal operator (“possibly”) with so-
called programs, which are essentially regular expressions and tests (cf. Def. 1).
In PDL, the formula < ρ > Φ means, that it is possible to execute program

82 M. Kuntz and B.R. Haverkort

ρ and end in a state that satisfies Φ. SPDL adds the following extensions to
PDL: The operator < ρ > is replaced by the time-bounded path operator [ρ]I , a
probability operator P��p to reason about the transient system behaviour, and a
steady state operator S��p to reason about system behaviour, once stationarity
has been reached. In what follows, we discuss the syntax, semantics, and a model
checking procedure for SPDL.

2.1 Syntax of SPDL

Definition 1 (Syntax of SPDL). Let p be a probability value in [0, 1], q ∈ AP
an atomic proposition, where AP is the set of atomic propositions, and ��∈ {≤
, <,≥, >} a comparison operator. The state formulae Φ of SPDL are defined as:

Φ := q
∣∣Φ ∨ Φ

∣∣¬Φ∣∣P��p(φ)
∣∣S��p(Φ)

∣∣(Φ)

Path formulae are defined as:

φ := Φ[ρ]IΦ,

where I is the closed interval [t, t′], Φ is assumed not to possess sub-formulae con-
taining the steady state operator S��p.1 Programs ρ are described by the grammar
given in Def. 2.

Definition 2 (Programs). Let Act be a set of actions, which are also called
atomic programs, and TEST be a set of SPDL state formulae, again not con-
taining the steady state operator S��p. A program ρ is defined by the following
grammar:

ρ := ε
∣∣Φ?; a

∣∣ρ; ρ∣∣ρ ∪ ρ∣∣ρ∗∣∣Φ?; ρ
∣∣(ρ)

where ε 	∈ Act is the empty program, a ∈ Act and Φ ∈ TEST.

Sequence (;), choice (∪), and Kleene-star (∗) have their usual meaning as known
from the theory of regular expressions. The operator Φ? is the so-called test
operator. Informally speaking, it tests whether Φ holds in the current state of the
model. If this is the case, then execute program ρ, otherwise ρ is not executable.
Following language theory, we can derive words from a program ρ (here also
called program instances) according to the rules of regular expressions. The set
of all these program instances is called a language.

Example 1. Throughout this paper, we use the example of a fault-tolerant packet
collector, which has the following repeating behaviour. Arrivals can either be
error-free (upper transition arr, rate λ) or erroneous (lower transition error,
rate μ). If a data packet contains an error, this error can be correctable (co) non-
correctable (nco). In case of a correctable error, the error is corrected (transition
co) and more data packets can be received. If the error is non-correctable, the
data packet has to be retransmitted (transition rt). In Fig. 1, the SLTS M
for the packet collector is shown, where we assume that the number n of data

Faster SPDL Model Checking 83

s1 s2 s3 s4 s5

s6 s7 s8 s9

s10 s11 s12 s13

arr, λ arr, λarr, λarr, λ

error, μerror, μerror, μerror, μ

corr, γcorr, γcorr, γ corr, γ

rt, κ rt, κ rt, κ rt, κ

prc, ω

ncorr, δncorr, δncorr, δ ncorr, δ

Fig. 1. Fault tolerant packet collector for n = 4 packets

packets that are to be processed is equal to four. The system has the following
state labels:

L(s5) = {full}, L(s6) = ... = L(s9) = {error},
L(s10) = = L(s13) = {waitrt}, L(s14) = ... = L(s17) = {waitcor}

The set of actions is given as follows:

Act := {arr, error, rt, corr, ncorr, prc}

Using SPDL, we can easily express the following properties:

– Φ1 := P��p((¬full)[arr∗][0,t](full)): Is the probability to receiveN data packets
without error within t time units greater or less than p?

– Φ2 := P��p(¬full[arr; TEST1?; error; rt; arr∗ ∪ arr∗][0,t]full): Is the proba-
bility to receive N data packets without error or with at most one non-
correctable error within t time units greater or less than p, given that this
non-correctable error appears in the first data packet? The test formula
TEST1 defines those states, in which it holds that 1 packet has arrived.

– Φ3 := P��p(true[arr∗; TEST2?; arr; corr][0,t]full): Is the probability that the
buffer is full after at most t time units and that the Nth packet contains a
correctable error, given that all preceeding packets were error free, within
the probability bounds given by �� p? The test formula TEST2 describes
those states, in which it holds that N − 1 packets have arrived.

2.2 Semantics of SPDL

We will now show, both the model over which SPDL formulae are interpreted
and the semantics of SPDL formulae.2

1 Mixing formulae that express transient behaviour (P
�p) with formulae expressing
steady state behaviour (S
�p) is considered less meaningful.

2 The stochastic process algebra from Sections 3 and 4 and SPDL share the same
semantic model.

84 M. Kuntz and B.R. Haverkort

The semantic model of SPDL is a so-called stochastic labelled transition sys-
tem, defined as follows.

Definition 3 (Stochastic labelled transition system (SLTS)). An SLTS
M is a six-tuple (s, S,Act, L,R,AP), where

– s is the unique initial state,
– S is a finite set of states,
– Act is a finite set of action names,
– L is the state labelling function: S → 2AP ,
– R is the state transition relation : R ⊆ S × (Act × IR>0) × S,
– AP is the set of atomic propositions.

Definition 4 (Semantics of SPDL)

– The semantics of propositional logic formulae ¬Φ and Φ ∨ Ψ is defined the
usual way.

– S��p(Φ) asserts that the steady state probability of the Φ-states, i.e., the prob-
ability to reside in a Φ-state once the system has reached stationarity satisfies
the probability bounds as given by �� p.

– P��p(φ) asserts that the probability measure of all paths that satisfy φ lies
within the bounds as imposed by �� p.

– Φ[ρ]IΨ asserts that a path that satisfies this formula reaches a Ψ -state within
at least t time units, but after at most t′ time units. All preceeding states must
satisfy Φ. Alternatively, a Φ ∧ Ψ -state can be reached before the passage of t
time units, but not left before at least t time units have passed. Additionally,
the action sequence on the path to the Ψ -state must correspond to the action
sequence of a word from the language induced by program ρ. All test formulae
that are part of ρ must be satisfied by corresponding states of the path.

2.3 Model Checking SPDL

The overall model checking algorithm of SPDL is similar to that of CTL, in the
sense that it starts with the verification of atomic properties and then proceeds
with the checking of ever more complex sub-formulae until the overall formula
has been checked.

Model Checking SPDL

– Propositional formulae ¬Φ and Φ ∨ Ψ are checked as in the CTL case.
– Steady state formulae S��p(Φ) can be checked as for CSL [4].
– Model checking formulae with a leading P��p operator is more involved. We

assume, we want to check whether in an SLTS M a state s satisfies P��p(φ),
with φ = Φ[ρ]IΨ . The basic idea is to reduce the model checking problem
of SPDL to one of CSL, which consists of deciding whether a continuous
time Markov chain (CTMC) M× (to be constructed) and a state s× in M×

satisfies the CSL formula P��p(FI succ). A path satisfies FI succ, if within time

Faster SPDL Model Checking 85

interval I a state is reached that satisfies the atomic property succ. To reach
this goal, we proceed as follows:

1. From the program ρ we derive a deterministic program automaton Aρ,
which is a variant of deterministic finite automata.3

2. Using the given SLTS M and the program automaton Aρ we build a
product Markov chain. M×. The state space of M× is the product of
M and Aρ, i.e., its states are of the form (si, zi), where si is a state of
M and zi a state of Aρ. Additionally, M× possesses one new, absorbing
state: the state FAIL.
In M× a transition (si, zi)

λ−→ (sj , zj) is kept, where λ is the rate of the
transition from si to sj , iff the following two constraints are satisfied:
• (si, zi) must satisfy Φ, this is the case iff si satisfies Φ.
• Both si and zi must be capable to perform the same action, and if

the current action is associated with a test, then si must also satisfy
this test.

If one of these two constraints is violated, we have to introduce a tran-
sition (si, zi)

λ−→ FAIL and delete transition (si, zi)
λ−→ (sj , zj).

3. Finally, to compute the probability measure of the paths that satisfy φ we
proceed as follows. All states (sj , zj) of M× for which sj is a Ψ -state and
zj is an accepting state of Aρ are replaced by the newly introduced ab-
sorbing success state SUCC, labelled with the special, newly introduced
atomic state formula succ, thereby redirecting all incoming transitions
from the old states to the new SUCC state.

4. At this point, it is possible to check, whether P��p(Φ[ρ][t,t
′]Ψ) is function-

ally satisfiable: If inM× a path to a succ state exists, thenP��p(Φ[ρ][t,t
′]Ψ)

can be satisfied at least on the functional level.
5. On M× (which was transformed as described in step 3) we can com-

pute the probability measure of all paths satisfying the CSL formula
P��p(F[t,t′]succ), which is equal to the probability measure of the paths
satisfying the original formula P��p(Φ[ρ][t,t

′]Ψ) in the original model M.

3 Stochastic Process Algebras

In the past 15 years, a number of stochastic process algebras have been devised,
such as PEPA [12] and TIPP [11]. Here, we use the stochastic process algebra
YAMPA (yet another Markovian process algebra), that is used in the tool
CASPA [16], which we use for our empirical studies. Instead of giving a formal
account of YAMPA, we will introduce its most important operators by means
of a small example.

3 For the derivation of Aρ from program ρ we refer to [14] for a thorough discussion
of this issue. As such this issue does not play a crucial role in understanding this
paper.

86 M. Kuntz and B.R. Haverkort

(1) int max = 15000;

(2) System := Arr(0)|[error, corr,ncorr]| Errorhandler
(3) Arr(i [max]) := [i=0] -> (arr, lambda);Arr(i+1) +
(4) (error, mu);((corr, 1);Arr(i+1) + (ncorr,1);(rt,kappa);Arr(0))

(5) [i<max, i > 0] -> (arr, lambda);Arr(i+1) + (error, mu);((corr, 1);Arr(i+1) +
(6) (ncorr,1);(rt,kappa);Arr(i-1))

(7) [i=max] -> (prc, omega);Arr(0)
(8) Errorhandler := (error, 1);((corr, gamma);Errorhandler + (ncorr, delta);Errorhandler)

Fig. 2. Example YAMPA specification

Example 2. In fig. 2 we list the YAMPA specification of the fault tolerant
packet collector of example 1. In line (1) we can specify the maximum number
of packets that must arrive, before processing starts. We see in this specification
some “syntactic sugar” that eases the concise specification of complex systems,
e.g., guarded choice in line (3). In lines (2) and (3) we find that process Arr is
parameterised with parameter i, that can take the maximum value max. This
parameter records the number of packets that arrived. In line (2) we see that
Arr is initialised with i = 0, i.e., zero packets arrived in the beginning.

The overall system consists of the processes Arr and Errorhandler that are
composed in parallel and that have to synchronise over the actions error,
corr, ncorr, i.e., these actions must be performed by both processes at the
same time. For all other actions, the processes can evolve independently. (arr,
lambda);Arr(i+1) (line (3)) is an example of prefix: After an exponentially
distributed delay time, which is governed by rate lambda, action arr can be
taken. In line (4) we find an example of choice: This process can either be-
have as (arr, lambda);Arr(i+1) or (error, mu);((corr, 1);Arr(i+1) +
(ncorr,1);(rt,kappa);Arr(0)). In line (3) to (7) we see examples of guarded
choice: Depending on the actual value of i different branches of the specification
in lines (3) to (7) can be taken. In line (3), this branch of the specification can
only be taken, if the value of parameter i is equal to zero. Process Arr(i [max])
possesses cyclic (recursive) behaviour, as, after arr it can again behave as Arr.

4 A Property-Driven Symbolic Semantics for YAMPA

In this section we introduce the new property-driven semantics for YAMPA. In
Sec. 4.1 we will give the general idea of this semantics. Sec. 4.2 introduces multi-
terminal binary decision diagrams (MTBDDs) as data structure to represent
SLTSs. In Sec. 4.3 the semantics rules is introduced by means of a small example,
and in Sec 4.4 their formal definition is given.

4.1 General Idea

In Section 2.3 we have presented a straight-forward model checking procedure
for SPDL path formulae. The size of the product CTMC, before it is reduced is
the product of the sizes of the original model M and the program automaton Aρ.
During the model checking procedure, many states are merged into the states

Faster SPDL Model Checking 87

FAIL resp. SUCC. This means, we needlessly generate a state space that is
much larger than actually required, which is both a waste of memory space and
time.

To overcome this weakness in the usual model checking procedure we propose
an approach that generates only those states that are actually needed to verify
the property at hand. In order to reach this goal, we introduce a property-
driven semantics for the stochastic process algebra YAMPA, that uses the path
formula that is to be verified to direct the state space generation process. This
new semantics cuts off state space generation as soon as it becomes clear a path
is either not satisfying, i.e., it leads to a FAIL state, or satisfying, i.e., leads to
a SUCC state. This significantly reduces the number of states and transitions
that are generated.

We will use the symbolic semantics of [15] as a basis for our new SPA se-
mantics. Like in [15], the property-driven semantics maps the SPA specification
directly to the MTBDD representation of its underlying SLTS. The semantics
proceeds in a compositional manner, according to the syntactic structure of the
process term at hand. Additionally to [15], the new semantics takes, as already
said, during generation of the SLTS the SPDL property that is to be verified
into account. We chose MTBDDs as data structures for the SLTS representation
as it was shown convincingly [18] that MTBDDs allow a compact representation
of even huge state spaces.

4.2 Multi-terminal Binary Decision Diagrams Encode SLTSs

MTBDDs [10] are an extension of BDDs [6] for the graph-based representation
of pseudo-Boolean functions, i.e., functions of type IBn "→ IR. Informally spoken,
MTBDDs are collapsed binary decision trees, i.e., each non-terminal nodes has
exactly two outgoing edges.

They are collapsed in the sense that structural properties of the binary trees
are used to reduce the size of the graph.

MTBDDs are very well suited for the representation of the semantic model of
SPAs. We will demonstrate that by means of a small example.

Example 3. Consider Fig. 1 from Example 1. To represent this SLTS as an
MTBDD we have to find ways to represent its “ingredients” in an appropri-
ate way. That means we have to find representations for: the actions, the states,
and the transition relation. All these can be encoded binarily resp. by means of
pseudo-Boolean functions:

– Actions: The system has six actions: arr, error, corr, ncorr, rt, and prc,
therefore, we need three variables a1, a2, a3 to encode them:

EncAct(arr) = ¬a3 ∧ ¬a2 ∧ ¬a1 = 000,
EncAct(error) = 001 EncAct(corr) = 010 EncAct(ncorr) = 011
EncAct(rt) = 100 EncAct(prc) = 101

88 M. Kuntz and B.R. Haverkort

– States: The system has 13 states, i.e., we need 4 Boolean variables z1 to z4
to encode them:

Encs(s1) = ¬z4 ∧ ¬z3 ∧ ¬z2 ∧ ¬z1 = 0000,
Encs(s1) = 0001 · · · Encs(s13) = 1011

– Transition relation: A single transition s
a,λ−−→ s′ can be encoded as pseudo-

Boolean function: TR(s, a, λ, s′). TR(s, a, λ, s′) is the conjunction of the bi-
nary variables that encode the source state s, target state s′ and action a.
For source and target states we need two disjoint sets of Boolean variables,
respectively denoted zi and ti. The pseudo-Boolean function obtained so, has
as function value rate λ. Transition relation R is than the disjunction over
all possible TR(s, a, λ, s′). For example TR(s1, arr, λ, s2) can be encoded as
follows:

TR(s1, arr, λ, s2) =
¬z4 ∧ ¬z3 ∧ ¬z2 ∧ ¬z1︸ ︷︷ ︸

s1

∧¬a3 ∧ ¬a2 ∧ ¬a1︸ ︷︷ ︸
arr

∧¬t4 ∧ ¬t3 ∧ ¬t2 ∧ t1︸ ︷︷ ︸
s2

In terms of MTBDDs, the variables that encode states and actions are the
non-terminal nodes and the transition rates are the values of the leaf nodes.
In Fig. 3 we show the MTBDD representation of two transitions of the SLTS:
s1

arr,λ−−−→ s2 and s1
error,μ−−−−−→ s6. Note, that we put the action variables on top

of the MTBDD, as this yields smaller MTBDDs.4

0

z4 z3 z2 z1 t4 t3 t2 t1a3 a2 a1

λ

μ

Fig. 3. MTBDD encoding transitions TR(s1, arr, λ, s2) and TR(s1, error, μ, s6)

4.3 Property-Driven Symbolic Semantics - Introduction and
Example

Here, we present the general idea behind our semantics and introduce in greater
detail the semantic rules for the operators of YAMPA. Due to limited space we
will not give the formal description of semantic rules for all operators. Generally,
we want to encode the transitions of a given process algebraic description P
by an MTBDD. The symbolic representation [[P]] is built from P ’s parse tree
and the transition relation of the deterministic program automaton Aρ that is

4 In practice further optimisations are possible, but not important here.

Faster SPDL Model Checking 89

attached to the path formula we want to verify. The parse tree is traversed in a
depth-first manner, thereby constructing [[P]] inductively from smaller portions
of the overall specification. Finally, we obtain the MTBDD representation of P ’s
transitional behaviour, taking the restrictions imposed by the path formula at
hand into account.

Definition 5. The symbolic representation [[P]] of a process algebra term P con-
sists of the following parts:

– The MTBDD B(P), encoding the transition relation,
– a list of encodings of process variables X, that appear in P , denoted
EncS(X),

– the encoding of the initial state of P , denoted EncS(sDS
P),

– the transition relation δAρ for Aρ,
– the current state of Aρ.

Before we list the formal rules for the property-driven semantics, we will give
another example.

Example 4. We want to generate the SLTS for the specification from Example 2,
with max = 2. and SPDL formula Φ1 := P��p((¬full)[arr∗][0,t](full)) from Exam-
ple 1. We assume, that the actions and their encodings are globally known, i.e.,
we know the number of Boolean variables required for their encoding, which
is three (like in Example 3). As we derive the MTBDD representation of the
SLTS directly from the given specification we do not know in advance the size
of the state space and therefore the number of Boolean variables to encode the
states and the transition relation. Therefore, we take in the beginning as small a
number as possible, and extend the number of variables, if required. The initial
state of the specification Arr(0)|[error, corr,ncorr]| Errorhandler can be
encoded by one Boolean variable EncS(s1) = ¬z1 = 0. Given Φ1, we check if
¬full is satisfied, which is the case, then we check whether a transition labelled
with arr is possible, which is the case, i.e., we add EncS(s2) = z1 = 1. As for
s2 the condition full is not satisfied, s2 	= SUCC. The MTBDD encodes at this
point the transition relation R consisting of TR(s0, arr, λ, s1). In s1 a second
transition, labelled by error is possible, we see from Φ1 that err does not belong
to the actions that yield a satisfying path, i.e., we have to introduce a transition
to the failure state FAIL, which has no encoding up to now. To do so, we have
to extend the number of Boolean variables that encode states, i.e., the states s1
and s2 are re-encoded:

EncS(s1) = ¬z2 ∧ z1 = 00 EncS(s2) = ¬z2 ∧ z1 = 01
EncS(FAIL) = z2 ∧ ¬z1 = 10

Now, we can introduce a new transition encoding: TR(s1, error, μ, FAIL). The
overall transition relation R is now the disjunction of TR(s0, arr, λ, s1) and
TR(s1, error, μ, FAIL)

The state s2 corresponds to Arr(1)|[error, corr,ncorr]| Errorhandler,
i.e., ¬full is satisfied, and again arr and error transitions are possible, due to the

90 M. Kuntz and B.R. Haverkort

0

t1t2z1z2a3 a2 a1

λ

μ

Fig. 4. MTBDD representation of the fault-tolerant packet collector’s SLTS for max =
2 and Φ1

(1) if not first appearance of X within present seq. component then
(2) skip /* do nothing */
(3) if no free encodings available then /* need to extend the set of possible encodings */
(4) Extend the number of Boolean variables
(5) Extend all existing encodings
(6) B(X) := 0 /*In case of stop: B(stop) := ...

Fig. 5. Algorithm for process variable X and stop

restrictions imposed by the path formula, error leads to the FAIL state, i.e., we
introduce a new transition: TR(s2, error, μ, FAIL). For arr we add a new tran-
sition from s2 to s3, as s3 satisfies full, s3 = SUCC, and TR(s2, arr, λ, SUCC),
where EncS(s3) = 11. In Fig. 4 we find the MTBDD encoding the transition
relation of this SLTS.

4.4 Property-Driven Symbolic Semantics - Formal Definition

Process Variables. A process variable X specifies a reference state within a
surrounding recX operator. Therefore, process variables are encoded in a similar
fashion as states. Within each sequential component5 process variables having
the same name get the same encoding. Upon first appearance of a process vari-
able X , the MTBDD associated with X is the 0-MTBDD (cf. Fig. 5). The stop
process is a special case of a process variable (a process constant).

Prefix P := (a, λ); Q. For a given formula Ψ := P��p(Φ1[ρ]IΦ2), we want to
generate the symbolic representation of P , [[P]]. To construct B(P) we have to
distinguish the following cases:

1. If the current state sDS
P satisfies Φ1 and in Aρ’s current state z an a-labelled

transition to a state z′ is possible, sDS
P satisfies the test formula Ξ, possibly

attached to Aρ’s a-transition, then, we can introduce a transition from sDS
P

to the encoding of Q’s initial state.
5 A sequential component is a process term which does not include the parallel com-

position operator.

Faster SPDL Model Checking 91

Case 1:
(1) if ((sDS

P |= Φ1) ∧ (z
a−→Aρ z′ ∧ sDS

P |= Ξ))
(2) B(P) := TR(sDS

P , a, λ, sDS
Q)

Case 2:
(3) if ((sDS

P |= Φ1) ∧ (sDS
Q |= Φ2) ∧ (z

a−→Aρ z′ ∧ sDS
P |= Ξ))

(4) B(P) := TR(sDS
P , a, λ, SUCC)

Case 3:
(5) if ((sDS

P |= Φ1) ∧ (z � a−→Aρ z′ ∧ sDS
P |= Ξ))

(6) B(P) := TR(sDS
P , a, λ, FAIL)

Fig. 6. Algorithm for prefix P := (a, λ); Q

2. If, additionally to case 1, the target state of Aρ is an accepting state and
sDS

Q satisfies Φ2, then a transition from the encoding of sDS
P to the encoding

of state SUCC6 is introduced.
3. If the state sDS

P satisfies Φ1, but no transition labelling in Aρ’s current state
matches a, then we have to introduce a transition from the encoding of P
to the encoding of the error state FAIL.

4. If state sDS
P does not satisfy Φ1, then we have to introduce a transition from

the encoding of P to the encoding of the error state FAIL.
5. If state sDS

P does not satisfy the test formula, attached to Aρ’s a transition,
then we have to introduce a transition from the encoding of P to the encoding
of the error state FAIL.

In Fig. 6 we give the formal description of the prefix algorithm.7 We only give
the first, second, and third case from above, the remaining cases can be treated
similarly.

Choice P := Q + R. Here, we can assume that [[Q]] and [[R]] are already
available. To derive [[P]] from [[Q]] and [[R]] we have to proceed as follows: A new
initial state is introduced for Q+ R. All transitions emanating from the initial
states of the subprocesses Q and R have to be copied, as they may also take
place in the initial state of the overall process.

Recursion P = recX : Q. When constructing [[P]] = [[recX : Q]] from [[Q]] we
can distinguish the following cases:

1. X does not appear (unbound) in Q: In this case we simply identify the
symbolic representation of recX : Q with that of Q.

2. X appears in Q and sDS
Q satisfies Φ2 and the current state in Aρ is an

accepting state, then the process variable X is identified/replaced by the
process constant SUCC.

6 SUCC can be handled like stop.
7 In this and the following algorithm we omit details on choosing fresh Boolean vari-

ables and possibly extending encodings.

92 M. Kuntz and B.R. Haverkort

Case 1:
(1) if (a �∈ L ∧ (sDS

Q |= Φ1) ∧ (z
a
−→Aρ z′ ∧ sDS

Q |= Ξ))
/*with Ξ being a test formula attached to the current transition of Aρ. */
(2) B(Q′) := TR(EncS(Q) ◦ EncS(R), a, λ, EncS(Q′) ◦ EncS(R))
(3) B(P) := B(P) + B(Q′)
Case 2:
(4) if (a �∈ L ∧ (sDS

Q |= Φ1) ∧ (z �
a
−→Aρ z′ ∧ sDS

Q |= Ξ))
(5) B(Q′) := TR(EncS(Q) ◦ EncS(R), a, λ, FAIL)
(6) B(P) := B(P) + B(Q′)
Case 3:
(7) if (a ∈ L ∧ (sDS

Q |= Φ1) ∧ (z
a
−→Aρ z′ ∧ sDS

Q |= Ξ) ∧ (sDS
R |= Φ1) ∧ (sDS

R |= Ξ))
(8) B(Q′) := TR(EncS(Q) ◦ EncS(R), a, λ, EncS(Q′) ◦ EncS(R′))
(9) B(P) := B(P) + B(Q′)
Case 4:
(10) if (a ∈ L ∧ (sDS

Q |= Φ1) ∧ (sDS
Q′ |= Φ2) ∧ (z

a
−→Aρ z′ ∧ sDS

Q |= Ξ) ∧ (sDS
R |= Φ1) ∧ (sDS

R′ |= Φ2) ∧ (sDS
R |= Ξ))

(11) B(Q′) := TR(EncS(Q) ◦ EncS(R), a, λ, SUCC)
(12) B(P) := B(P) + B(Q′)

Fig. 7. Algorithm for parallel composition P := Q|[L]|R

3. X appears in Q and either sDS
Q does not satisfy Φ2 or the current state in

Aρ is not an accepting state: In this case the process variable X is identified
with the encoding of the initial state of Q.

Parallel Composition P := Q|[L]|R. To derive [[P]] from P and Φ =
P��p(Φ1[ρ]IΦ2), we must not assume that [[Q]] resp. [[R]] are already available.
Instead, we have to derive [[P]] from Q and R step by step, by respecting the
same conditions as for the prefix operator, i.e., depending on the current state
of sDS

P of P , and z of Aρ, we add transitions either to a “regular” successor of
sDS

P or to FAIL, resp. SUCC.
In Fig. 7 the algorithm for the derivation of [[P]] from Q and R for a single

transition is given. We list only a few of the possible cases. This procedure has to
be repeated, until all potential transitions that are possible are generated. This
can be done using standard depth- or breadth-first search applied to P ’s parse
tree.

5 Empirical Results

For our case studies we have employed the symbolic stochastic model checker
CASPA. All results have been computed on a standard PC with Pentium IV 3.2
GHz processor, 1 GB RAM, running the operating system SuSe Linux 10.0.

5.1 Fault-Tolerant Packet Collector

Let us consider the system from Example 1. We will check the SPDL path for-
mulae presented there. In Table 1 we find the model sizes for these formulae. In
columns three to five, we list the maximum size of the product CTMC that is
generated for model checking SPDL without property-driven state space gener-
ation, which is the product of the size of the automaton and the system model.

Faster SPDL Model Checking 93

In columns six to eight we list the state space sizes as they are generated when
using the property-driven approach proposed in this paper, and on which model
checking is actually carried out. We see, that we can avoid the generation of
many states, thereby reducing the memory requirements for SPDL model check-
ing. We see in Table 2 that for both formulae the property-driven state space
generation also requires less time than the traditional approach.

Table 1. State space sizes for Φ1 to Φ3 (Packet collector)

max State space size Not Property-driven Property-driven

Φ1 Φ2 Φ3 Φ1 Φ2 Φ3

5,000 15,001 15,001 60,004 45,003 5,002 20,003 10,003

15,000 45,001 45,001 180,004 135,003 15,002 60,003 30,003

30,000 90,001 90,001 360,004 270,003 30,002 120,003 60,003

50,000 150,001 150,001 600,004 450,003 50,002 200,003 100,003

5.2 Kanban System

The Kanban manufacturing system was first described as a stochastic Petri net
in [7]. We consider a Kanban system with four cells, a single type of Kanban
cards and the possibility that some workpieces may need to be reworked. We
will check the following properties:

– Φ1: Is the requirement, that within t time units exactly three reworks are
required in station 1 satisfied with a probability that is at most p?

– Φ2 :: Is the probability that a single job needs at most t time units to go
through all 4 stations greater than p percent?

– Φ3: Is the probability to reach station 4, within t time units, given in station
1 are no reworks required and in stations 2 and 3 in total exactly 2 reworks
are necessary within �� p?

From Table 3 we observe that for the formulae Φ1 to Φ3 the state space of the
product CTMC is dramatically smaller than that of the original system, which
stems from the fact that for all three formulae only very specific paths in the
system are of interest. We can observe that for Φ2 the size of the product CTMC
is independent of the number of Kanban cards, which is not surprising, as we
consider a specific card that goes through the system. In the second column we
find the size of the original state space, in columns three to five we show the
maximum size of the state space for the traditional approach, and in columns
six through eight we list the final state space on which model checking actual is
performed. We see in Table 4 for all three formulae that property-driven state
space generation requires less time than the traditional approach. This is not
surprising, as billions of states and even more important, billions of transitions
of the original model do not to be explored in the property-driven approach.

94 M. Kuntz and B.R. Haverkort

Table 2. State space generation times for Φ1 to Φ3 (Packet collector)

max Not Property-driven Property-driven

Φ1 Φ2 Φ3 Φ1 Φ2 Φ3

5,000 2.9 sec. 3.3 sec. 3.1 sec. 2.0 sec. 2.8 sec. 2.9 sec.

15,000 10.00 sec. 10.8 sec. 11.2 sec. 6.9 sec. 9.0 sec. 9.0 sec.

30,000 21.4 sec. 22.7 sec. 22.5 sec. 17.8 sec. 18.9 sec. 19.6 sec.

50,000 37.9 sec. 45.3 sec. 44.4 sec. 33.6 sec. 40.4 sec. 32.8 sec.

Table 3. State space sizes for Φ1 and Φ2 (Kanban)

n State space size Not Property-driven Property-driven

Φ1 Φ2 Φ3 Φ1 Φ2 Φ3

5 2,546,432 22,917,888 33,103,616 43,289,344 83 13 159

8 133,865,325 1,204,787,925 1,740,249,225 2275710525 189 13 240

10 1,005,927,208 9,053,344,872 13,077,053,704 17,100,762,536 276 13 294

12 5,519,907,575 49,679,168,175 71,758,798,475 93,838,428,775 364 13 348

15 46,998,779,904 - - - 496 13 411

Table 4. State space generation times for Φ1 and Φ2 (Kanban)

n Not Property-driven Property-driven

Φ1 Φ2 Φ3 Φ1 Φ2 Φ3

5 0.8 sec. 0.7 sec. 0.7 sec. 0.1 sec. 0.1 sec. 0.1 sec.

8 4.7 sec. 4.2 sec. 4.5 sec. 0.2 sec. 0.2 sec. 0.2 sec.

10 11.4 sec. 10.8 sec. 11.0 sec. 0.5 sec. 0.5 sec. 0.5 sec.

12 21.7 sec. 21.5 sec. 22.1 sec. 0.8 sec. 0.7 sec. 0.7 sec.

15 - - - 1.6 sec. 1.5 sec. 1.5 sec.

5.3 Fault-Tolerant Multiprocessor System

This example is based on [17]. The original model consists of N computers each
of which has the following components: Memory modules, CPUs, I/O ports, and
error handlers. Each of these computer components consists of several subcom-
ponents, that can fail, leading to the failure of one computer. The overall system
is operational if at least one computer is operational.

We have generated the CTMC for three different configurations: C1 is the
configuration consisting of two computers with three memory modules each; C1
has about 750,000 reachable states. C2 consists of 3 computers, with one memory
module each. C3 comprises 3 computers and 3 memory modules each.

We will check the following formula Φ1: Does the probability that computer
failures and subsequently a system failure is only due to memory failures lie
within the bounds as given by �� p, given that the maximum time to reach a
system failure state is at most t?

Faster SPDL Model Checking 95

Table 5. State space generation times for Φ1 (fault-tolerant multi-processor)

Conf State space size Not Property-driven Property-driven

Φ1 Φ1

C1 753,664 2,260,992 53,306

C2 123,760 371,280 1,475

C3 381,681,664 1,145,044,992 6,554,329

In Table 5 we show the model sizes for the above formulae. In column three,
we list the maximum size of the product CTMC that is generated for model
checking SPDL without property-driven state space generation, which is the
product of the size of the automaton and the system model. In column 4 we
give the model size, when applying the property-driven state space generator.
We do not list the model generation times here, which are below 0.1 sec. for all
configurations, in both the property-driven and the non-property-driven case.

6 Conclusions

In this paper we have introduced a property-driven symbolic semantics for the
stochastic process algebra YAMPA. We have shown its usage of a property-
driven semantics for model checking probabilistic SPDL path formulae reduces
both time and memory requirements. These savings can be considerable, as
shown for the Kanban system, where an overhead of several billion states could
be avoided. The numerical algorithms for stochastic model checking have a time
complexity at least linear in state space size, so that an enormous overall time
gain can be expected.

Generally, when doing numerical analysis of CTMCs with a huge state space
some caution is required. As reported in [5], the accuracy of the numerical analysis
depends on many factors, e.g. state space ordering, the actual iterative solution
method, etc. But it must be stressed, that this is a problem that applies to all
approaches that rely on numerical analysis. In fact, the probability masses on both
the model, generated using property-driven state space generation, and the model
using the “traditional” approach are identical. The experiments we conducted, on
both the reduced and non-reduced model did not yield any differences.

In the future we plan to combine this property-driven semantics with some no-
tion of bisimulation reduction in order to obtain further state-space reductions and
to investigate the possibilities to transfer the results from [2] to the stochastic case.

References

1. Marsan, M.A., Balbo, G., Conte, G.: A Class of Generalized Stochastic Petri Nets
for the Performance Evaluation of Multiprocessor Systems. ACM Transactions on
Computer Systems 2(2), 93–122 (1984)

2. Aziz, A., Shiple, T., Singhal, V., Brayton, R., Sangiovanni-Vincentelli, A.: Formula-
Dependent Equivalence for Compositional CTL Model Checking. Form. Methods
Syst. Des. 21(2), 193–224 (2002)

96 M. Kuntz and B.R. Haverkort

3. Baier, C., Cloth, L., Haverkort, B.R., Kuntz, M., Siegle, M.: Model Checking
Markov Chains with Actions and State Labels. IEEE Transactions on Software
Engineering 33(4), 209–224 (2007)

4. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.P.: Model-Checking Algorithms
for Continuous-Time Markov Chains. IEEE Trans. Software Eng. 29(7), 1–18
(2003)

5. Bell, A.: Distributed Evaluation of Stochastic Petri Nets. PhD thesis, RWTH
Aachen, Fakultät für Mathematik, Informatik und Naturwissenschaften (2003)

6. Bryant, R.E.: Graph-based Algorithms for Boolean Function Manipulation. IEEE
Transactions on Computers C-35(8), 677–691 (1986)

7. Ciardo, G., Tilgner, M.: On the use of Kronecker operators for the solution of
generalized stochastic Petri nets. Technical Report 96-35, ICASE (1996)

8. Clarke, E.M., Emerson, E.A., Sistla, A.: Automatic verification of finite state con-
current systems using temporal logic specifications: A practical approach. In: 10th
ACM Annual Symp. on Principles of Programming Languages, pp. 117–126. ACM
Press, New York (1983)

9. Fischer, M., Ladner, R.: Propositional dynamic logic of regular programs. J. Com-
put. System Sci. 18, 194–211 (1979)

10. Fujita, M., McGeer, P., Yang, J.C.-Y.: Multi-terminal Binary Decision Diagrams:
An efficient data structure for matrix representation. Formal Methods in System
Design 10(2/3), 149–169 (1997)

11. Hermanns, H., Herzog, U., Katoen, J.-P.: Process Algebra for Performance Evalu-
ation. Theoretical Computer Science 274(1-2), 43–87 (2002)

12. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge
University Press, Cambridge (1996)

13. Katoen, J.-P., Kemna, T., Zapreev, I., Jansen, D.: Bisimulation minimisation
mostly speeds up probabilistic model checking. In: TACAS 2007. LNCS, vol. 4424,
pp. 76–92. Springer, Heidelberg (2007)

14. Kuntz, M.: Symbolic Semantics and Verification of Stochastic Process Algebras.
PhD thesis, Universität Erlangen-Nürnberg, Institut für Informatik 7 (2006)

15. Kuntz, M., Siegle, M.: Deriving symbolic representations from stochastic process
algebras. In: Hermanns, H., Segala, R. (eds.) PROBMIV 2002, PAPM-PROBMIV
2002, and PAPM 2002. LNCS, vol. 2399, pp. 188–206. Springer, Heidelberg (2002)

16. Kuntz, M., Siegle, M., Werner, E.: CASPA - A Tool for Symbolic Performance and
Dependability Evaluation. In: Núñez, M., Maamar, Z., Pelayo, F.L., Pousttchi, K.,
Rubio, F. (eds.) FORTE 2004. LNCS, vol. 3236, p. 293. Springer, Heidelberg (2004)

17. Sanders, W.H., Malhis, L.M.: Dependability Evaluation Using Composed SAN-
Based Reward Models. Journal of Parallel and Distributed Computing 15(3), 238–
254 (1992)

18. Siegle, M.: Advances in model representation. In: de Alfaro, L., Gilmore, S. (eds.)
PROBMIV 2001, PAPM-PROBMIV 2001, and PAPM 2001. LNCS, vol. 2165, pp.
1–22. Springer, Heidelberg (2001)

Testing Finite State Machines Presenting

Stochastic Time and Timeouts�

Mercedes G. Merayo, Manuel Núñez, and Ismael Rodŕıguez

Dept. Sistemas Informáticos y Programación
Universidad Complutense de Madrid, 28040 Madrid, Spain

mgmerayo@fdi.ucm.es,{mn,isrodrig}@sip.ucm.es

Abstract. In this paper we define a formal framework to test imple-
mentations that can be represented by the class of finite state machines
introduced in [10]. First, we introduce an appropriate notion of test.
Next, we provide an algorithm to derive test suites from specifications
such that the constructed test suites are sound and complete with re-
spect to two of the conformance relations introduced in [10]. In fact, the
current paper together with [10] constitute a complete formal theory to
specify and test the class of systems covered by the before mentioned
stochastic finite state machines.

1 Introduction

The scale and heterogeneity of current systems make impossible for developers to
have an overall view of them. Thus, it is difficult to foresee those errors that are
either critical or more probable. In this line, formal testing techniques [8,14,3,15]
allow to test the correctness of a system with respect to a specification. Formal
testing originally targeted the functional behavior of systems, such as determin-
ing whether the tested system can, on the one hand, perform certain actions and,
on the other hand, does not perform some non-expected ones. While the relevant
aspects of some systems only concern what they do, in some other systems it
is equally relevant how they do what they do. Thus, after the initial consoli-
dation stage, formal testing techniques started also to deal with non-functional
properties. In fact, there are already several proposals for timed testing (e.g.
[9,4,16,5,11,12,7,6,2,13]). In these papers, with the only exception of [12], time
is considered to be deterministic, that is, time requirements follow the form “af-
ter/before t time units...” In fact, in most of the cases time is introduced by
means of clocks following [1]. Even though the inclusion of time allows to give
a more precise description of the system to be implemented, there are frequent
situations that cannot be accurately described by using this notion of determin-
istic time. For example, we may desire to specify a system where a message is
expected to be received with probability 1

2 in the interval (0, 1], with probability
1
4 in (1, 2], and so on.

� Research partially supported by the Spanish MEC project WEST/FAST (TIN2006-
15578-C02-01) and the Marie Curie project TAROT (MRTN-CT-2003-505121).

K. Wolter (Ed.): EPEW 2007, LNCS 4748, pp. 97–111, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

98 M.G. Merayo, M. Núñez, and I. Rodŕıguez

In order to use a formal technique, we need that the systems under study
can be expressed in terms of a formal language. A suitable representation of the
temporal behavior is critical for constructing useful models of real-time systems.
A language to represent these systems should enable the definition of temporal
conditions that may direct the system behavior, as well as the time consumed
by the execution of tasks. In this line, the time consumed during the execution
of a system falls into one of the following categories:

(a) The system consumes time while it performs its operations. This time may
depend on the values of certain parameters of the system, such as the avail-
able resources.

(b) The time passes while the system waits for a reaction from the environment.
In particular, the system can change its internal state if an interaction is not
received before a certain amount of time.

A language focussing on temporal issues should allow the specifier to define how
the system behavior is affected by both kinds of temporal aspects. Even though
there exists a myriad of timed extensions of classical frameworks, most of them
specialize only in one of the previous variants: Time is either associated with
actions or associated with delays/timeouts. In this paper we use the formalism
introduced in [10] that allows to specify in a natural way both time aspects. In
our framework, timeouts are specified by using fix amounts of time. In contrast,
the duration of actions will be given by random variables. That is, we will have
expressions such as “with probability p the action o will be performed before
t units of time”. We will consider a suitable extension of finite state machines
where (stochastic) time information will be included. Intuitively, we will con-
sider that the time consumed between the input is applied and the output is
received is given by a random variable ξ. An appropriate notation for stochas-

tic transitions could be s
i/o−−−−→ ξ s

′, meaning that “if the machine is in state
s and receives an input i then it will produce the output o before time t with
probability P (ξ ≤ t) and it will change its state to s′”. The definition of con-
formance testing relations is more difficult than usually. In particular, even in
the absence of non-determinism, the same sequence of actions may take different
time values to be performed in different runs of the system. While the definition
of the new language is not difficult, mixing these temporal requirements strongly
complicates the posterior theoretical analysis.

As we have already indicated, this paper represents a continuation of the work
initiated in [10]. In that paper we proposed several stochastic-temporal confor-
mance relations: An implementation is correct with respect to a specification if
it does not show any behavior that is forbidden by the specification, where both
the functional behavior and the temporal behavior are considered (and, implic-
itly, how they affect each other). In this paper we introduce a notion of test and
how to test implementations that can be represented by using our notion of finite
state machine. In addition, we provide an algorithm that derives test suites from
specifications. The main result of our paper indicates that these test suites have
the same distinguishing power as the two most interesting conformance relations

Testing Finite State Machines Presenting Stochastic Time and Timeouts 99

presented in [10] in the sense that an implementation successfully passes a test
suite iff it is conforming to the specification.

The rest of the paper is structured as follows. In the next two sections we remind
our notion of stochastic finite state machine and the two most interesting imple-
mentation relations introduced in [10]. In Section 4 we formally define a notion of
test, as well as the application of tests to implementations and two notions of suc-
cessfully passing a test suite. In Section 5 we present an algorithm to derive test
suites and show that the derived test suites appropriately capture the relations
introduced in Section 3. Finally, in Section 6 we present our conclusions.

2 SFSM: A Stochastic Extension of the FSM Model

In this section we introduce our notion of finite state machines with stochastic
time. We use random variables to model the (stochastic) time output actions
take to be executed. Thus, we need to introduce some basic concepts on random
variables. We will consider that the sample space, that is, the domain of random
variables, is a set of numeric time values Time. Since this is a generic time do-
main, the specifier can choose whether the system will use a discrete/continuous
time domain. We simply assume that 0 ∈ Time. Regarding passing of time, we
will also consider that machines can evolve by raising timeouts. Intuitively, if
after a given time, depending on the current state, we do not receive any input
action then the machine will change its current state.

During the rest of the paper we will use the following notation. Tuples of
elements (e1, e2 . . . , en) will be denoted by ē. â denotes an interval of elements
[a1, a2), with a1, a2 ∈ Time and a1 < a2. We will use the projection function πi

such that given a tuple t̄ = (t1, . . . , tn), for all 1 ≤ i ≤ n we have πi(t̄) = ti. Let
t̄ = (t1, . . . , tn) and t̄′ = (t′1, . . . , t

′
n). We denote by

∑
t̄ the addition of all the

elements belonging to the tuple t̄, that is,
∑n

j=1 tj . The number of elements of
the tuple will be represented by |t̄|. Finally, if t̄ = (t1 . . . tn), p̄ = (t̂1 . . . t̂n) and
for all 1 ≤ j ≤ n we have tj ∈ t̂j , we write t̄ ∈ p̄.

Definition 1. We denote by V the set of random variables (ξ, ψ, . . . range over
V). Let ξ be a random variable. We define its probability distribution function as
the function Fξ : Time −→ [0, 1] such that Fξ(x) = P (ξ ≤ x), where P (ξ ≤ x)
is the probability that ξ assumes values less than or equal to x.

Given two random variables ξ and ψ we consider that ξ+ψ denotes a random
variable distributed as the addition of the two random variables ξ and ψ.

We will use the delimiters {| and |} to denote multisets. Given a set E, we
denote by ℘(E) the multisets of elements belonging to E. Given the multiset H
over E, for all r ∈ E we have that H(r) denotes the multiplicity of r in H . Given
two multisets H1 and H2 over E, H1 #H2 denotes the union of H1 and H2, and
it is formally defined as (H1 #H2)(r) = H1(r) +H2(r) for all r ∈ E.

We will call sample to any multiset of elements belonging to Time. Let ξ be
a random variable and J be a sample. We denote by γ(ξ, J) the confidence of ξ
on J . ��

100 M.G. Merayo, M. Núñez, and I. Rodŕıguez

s1 s2

s4 s3

a/0/ξ3

a/1/ξ3

a/0/ξ1

b/2/ξ2

a/0/ξ3

b/1/ξ2

b/0/ξ1b/1/ξ2

a/2/ξ1

4

2

Fξ1(x) =

⎧⎨
⎩

0 if x ≤ 0
x
5 if 0 < x < 5
1 if x ≥ 5

Fξ2(x) =

{
0 if x < 4
1 if x ≥ 4

Fξ3(x) =

{
1 − e−2·x if x ≥ 0

0 if x < 0

Fig. 1. Example of Stochastic Finite State Machine

In our setting, samples will be associated with the time values that implemen-
tations take to perform sequences of actions. We have that γ(ξ, J) takes values in
the interval [0, 1]. Intuitively, bigger values of γ(ξ, J) indicate that the observed
sample J is more likely to be produced by the random variable ξ. That is, this
function decides how similar the probability distribution function generated by
J and the one corresponding to the random variable ξ are.

In the appendix of [10] we show one of the possibilities to formally define the
notion of confidence by means of a hypothesis contrast.

Definition 2. A Stochastic Finite State Machine, in short SFSM, is a tuple
M = (S, I,O, δ, TO, sin) where S is the set of states, with sin ∈ S being the
initial state, I and O denote the sets of input and output actions, respectively,
δ is the set of transitions, and TO : S −→ S× (Time∪{∞}) is the timeout func-
tion. Each transition belonging to δ is a tuple (s, i, o, ξ, s′) where s, s′ ∈ S are the
initial and final states, i ∈ I and o ∈ O are the input and output actions, and
ξ ∈ V is the random variable defining the time associated with the transition.

Let M = (S, I,O, δ, TO, sin) be a SFSM. We say that M is input-enabled if for
all state s ∈ S and input i ∈ I there exist s′, o, ξ, such that (s, i, o, ξ, s′) ∈ δ.
We say that M is deterministically observable if for all s, i, o there do not exist
two different transitions (s, i, o, ξ1, s1), (s, i, o, ξ2, s2) ∈ δ. ��

Intuitively, a transition (s, i, o, ξ, s′) indicates that if the machine is in state s
and receives the input i then the machine emits the output o before time t with
probability Fξ(t) and the machine changes its current state to s′.

For each state s ∈ S, the application of the timeout function TO(s) returns a
pair (s′, t) indicating the time that the machine can remain at the state s waiting
for an input action and the state to which the machine evolves if no input is
received on time. We indicate the absence of a timeout in a given state by setting
the corresponding time value to ∞. In addition, we assume that TO(s) = (s′, t)
implies s 	= s′, that is, timeouts always produce a change of the state. In fact, let

Testing Finite State Machines Presenting Stochastic Time and Timeouts 101

us note that a definition such as TO(s) = (s, t) is equivalent to set the timeout
for the state s to infinite.

Example 1. Let us consider the machine depicted in Figure 1 in which the initial
state is s1. Each transition has an associated random variable. In the following
we explain how these random variables are distributed. We consider that ξ1 is
uniformly distributed in the interval [0, 5]. Uniform distributions assign equal
probability to all the times in the interval. The random variable ξ2 follows a
Dirac distribution in 4. The idea is that the corresponding delay will be equal
to 4 time units. Finally, ξ3 is exponentially distributed with parameter 2. Let
us consider the transition (s4, (b, 0, ξ1), s1). Intuitively, if the machine is in state
s4 and it receives the input b then it will produce the output 0 after a time
given by ξ1. For example, we know that this time will be less than 1 time unit
with probability 1

5 , it will be less than 3 time units with probability 3
5 , and so

on. Finally, once 5 time units have passed we know that the output 0 has been
performed (that is, we have probability 1). Regarding the timeout function we
have TO(s1) = (s2, 4). In this case, if the machine is in state s1 and no input is
received before 4 units of time then the state is changed to s2.

Definition 3. Let M = (S, I,O, δ, TO, sin) be a SFSM. We say that a tuple
(s0, s, i/o, t̂, ξ) is a step for the state s0 ofM if there exist k states s1, . . . , sk ∈ S,
with k ≥ 0, such that t̂ =

[∑k−1
j=0 π2(TO(sj)),

∑k
j=0 π2(TO(sj))

)
and there

exists a transition (sk, i, o, ξ, s) ∈ δ.
We say that (t̂1/i1/ξ1/o1, . . . , t̂r/ir/ξr/or) is a stochastic evolution of M if

there exist r steps of M (sin, s1, i1/o1, t̂1, ξ1), . . . , (sr−1, sr, ir/or, t̂r, ξr) for the
states sin . . . sr−1, respectively. We denote by SEvol(M) the set of stochastic
evolutions of M . In addition, we say that (t̂1/i1/o1, . . . , t̂r/ir/or) is a functional
evolution of M . We denote by FEvol(M) the set of functional evolutions of M .
We will use the shortenings (σ, p̄) and (σ, p̄, ξ̄) to denote a functional and a
stochastic evolution, respectively, where σ = (i1/o1 . . . ir/or), p̄ = (t̂1 . . . t̂r) and
ξ̄ = (ξ1 . . . ξr). ��

Intuitively, a step is a sequence of transitions that contains an action transition
preceded by zero or more timeouts. The interval t̂ indicates the time values where
the transition could be performed. In particular, if the sequence of timeouts is
empty then we have the interval t̂ = [0, TO(s0)). An evolution is a sequence of
inputs/outputs corresponding to the transitions of a chain of steps, where the
first one begins with the initial state of the machine. In addition, stochastic evo-
lutions also include time information which inform us about possible timeouts
(indicated by the intervals t̂j) and random variables associated to the execu-
tion of each output after receiving each input in each step of the evolution. In
the following definition we introduce the concept of instanced evolution. Intu-
itively, instanced evolutions are constructed from evolutions by instantiating to
a concrete value each timeout, given by an interval, of the evolution.

Definition 4. Let M = (S, I,O, δ, TO, sin) be a SFSM and let us consider a
stochastic evolution e = (t̂1/i1/ξ1/o1, . . . , t̂r/ir/ξr/or). We say that the tuple

102 M.G. Merayo, M. Núñez, and I. Rodŕıguez

(t1/i1/ξ1/o1, . . . , tr/ir/ξr/or) is an instanced stochastic evolution of e if for all
1 ≤ j ≤ r we have tj ∈ t̂j . Besides, we say that the tuple (t1/i1/o1, . . . , tr/ir/or)
is an instanced functional evolution of e.

We denote by InsSEvol(M) the set of instanced stochastic evolutions of M
and by InsFEvol(M) the set of instanced functional evolutions of M . ��

Example 2. Let us consider the SFSM depicted in Figure 1. Next, we give some
of the steps that the machine can generate. For example, (s1, s2, a/0, [0, 4), ξ3)
represents the transition from the state s1 to the state s2 when no timeouts
precede it. The input a can be accepted before 4 time units pass (this is indicated
by the interval [0, 4)). In addition, the output 0 takes t time units to be performed
with probability Fξ3(t). The second one, (s2, s3, b/1, [2,∞), ξ2), is built from the
timeout transition associated to the state s2 and the transition outgoing the
state s3 to the state s3. This step represents that if after 2 time units no input
is received, the timeout transition associated with the state s2 will be triggered
and the state will change to s3. After this, the machine can accept the input
b. So, during the time interval [2,∞), if the machine receives an input b it will
emit an output 1 and the machine remains at state s3.

Now, we present an example of a stochastic evolution built from these steps
and assuming that s1 is the initial state: ([0, 4)/a/ξ3/0, [2,∞)/b/ξ2/1). ��

3 Implementation Relations

In this section we remind two of the implementation relations introduced in [10].
First, we give an implementation relation to deal with functional aspects. It fol-
lows the pattern borrowed from confnt [11]: An implementation I conforms to a
specification S if for all possible evolution of S the outputs that the implementa-
tion I may perform after a given input are a subset of those for the specification.
In addition we require that the implementation always complies with the time-
outs established by the specification. Besides the non-stochastic conformance of
the implementation, we require other additional conditions, related to stochastic
time, to hold.

We consider that specifications and implementations are given by means of
SFSMs. We will consider that both of them are deterministically observable. Be-
sides, we assume that input actions are always enabled in any state of the imple-
mentation, that is, implementations are input-enabled according to Definition 2.
This is a usual condition to assure that the implementation will react (somehow)
to any input appearing in the specification. First, we introduce the implemen-
tation relation conff , where only functional aspects of the system (i.e., which
outputs are allowed/forbidden and how timeouts are defined) are considered
while the performance of the system (i.e., how fast outputs are executed) is ig-
nored. Let us note that the time spent by a system waiting for the environment
to react has the capability of affecting the set of available outputs of the system.
This is because this time may trigger a change of the state. So, a relation focus-
ing on functional aspects must explicitly take into account the maximal time the
system may stay in each state. This time is given by the timeout of each state.

Testing Finite State Machines Presenting Stochastic Time and Timeouts 103

Definition 5. Let S and I be SFSMs. We say that I functionally conforms to
S, denoted by I conff S, if for each functional evolution e ∈ FEvol(S), with
e = (t̂1/i1/o1, . . . , t̂r/ir/or) and r ≥ 1, we have that for all t1 ∈ t̂1, . . . , tr ∈ t̂r
and o′r, e

′ = (t1/i1/o1, . . . , tr/ir/o′r) ∈ InsFEvol(I) implies e′ ∈ InsFEvol(S).
��

Intuitively, the idea underlying the definition of the functional conformance re-
lation I conff S is that the implementation I does not invent anything for
those sequences of inputs that are specified in the specification S. Let us note
that if the specification has also the property of input-enabled then we may
remove the condition “for each functional evolution e ∈ FEvol(S), with e =
(t̂t1/i1/o1, . . . , t̂tr/ir/or) and r ≥ 1”.

In addition to requiring this notion of functional conformance, we have to ask
for some conditions on delays. A first approach would be to require that the ran-
dom variables associated with evolutions of the implementation are identically
distributed as the ones corresponding to the specification. However, the fact that
we assume a black-box testing framework disallows us to check whether these
random variables are indeed identically distributed. Thus, we have to give more
realistic implementation relations based on finite sets of observations. Next, we
present two implementation relations that are less accurate but that are check-
able. These relations take into account the observations that we may get from the
implementation. We will collect a sample of time values and we will compare this
sample with the random variables appearing in the specification. By compari-
son we mean that we will apply a contrast to decide, with a certain confidence,
whether the sample could be generated by the corresponding random variable.

Definition 6. Let I be a SFSM. We say that (σ, t̄, t̄′), with σ = i1/o1, . . . , in/on,
t̄ = (t1 . . . tn), and t̄′ = (t′1 . . . t′n), is an observed time execution of I, or simply
time execution, if the observation of I shows that for all 1 ≤ j ≤ n we have that
the time elapsed between the acceptance of the input ij and the observation of
the output oj is t′j units of time, being the input ij accepted tj units of time
after the last output was observed.

Let Φ = {(σ1, t̄1), . . . , (σm, t̄m)} and let H = {|(σ′1, t̄d1, t̄o1), . . . , (σ′n, t̄dn, t̄on)|}
be a multiset of timed executions. We say that Samplingk

(H,Φ) : Φ −→ ℘(Time) is
a k-sampling application of H for Φ if Samplingk

(H,Φ)(σ, t̄) = {|πk(t̄o) | (σ, t̄, t̄o) ∈
H ∧ |σ| ≥ k|}, for all (σ, t̄) ∈ Φ. We say that Sampling(H,Φ) : Φ −→ ℘(Time) is a
sampling application of H for Φ if Sampling(H,Φ)(σ, t̄)) = {|

∑
t̄o | (σ, t̄, t̄o) ∈ H |},

for all (σ, t̄) ∈ Φ. ��

Regarding the definition of k-sampling applications, we just associate with each
subtrace of length k the observed time of each transition of the execution at
length k. In the definition of sampling applications, we assign to each trace the
total observed time corresponding to the whole execution.

Definition 7. Let I and S be SFSMs, H be a multiset of timed executions of I,
0 ≤ α ≤ 1, Φ = {(σ, t̄) | ∃ t̄o : (σ, t̄, t̄o) ∈ H} ∩ InsFEvol(S), and let us consider
Sampling(H,Φ) and Samplingk

(H,Φ), for all 1 ≤ k ≤ max{|σ| | (σ, t̄) ∈ Φ}.

104 M.G. Merayo, M. Núñez, and I. Rodŕıguez

We say that I (α,H)−weak stochastically conforms to S, and we denote it by
I confs

(α,H)
w S, if I conff S and for all (σ, t̄) ∈ Φ we have

(σ, t̄, ξ̄) ∈ InsSEvol(S) =⇒ γ
(∑

ξ̄, Sampling(H,Φ)(σ, t̄)
)
> α

We say that I (α,H)−strong stochastically conforms to S, and we denote it by
I confs

(α,H)
s S, if I conff S and for all (σ, t̄) ∈ Φ we have

(σ, t̄, ξ̄) ∈ InsSEvol(S) =⇒ ∀ 1 ≤ j ≤ |σ| : γ(πj(ξ̄), Sampling
j
(H,Φ)(σ, t̄)) > α

��

The idea underlying the new relations is that the implementation must conform
to the specification in the usual way (that is, I conff S). Besides, for all ob-
servation of the implementation that can be performed by the specification, the
observed execution time values fit the random variable indicated by the specifi-
cation. This notion of fitting is given by the function γ that it is formally defined
in the appendix of [10]. While the weak notion only compares the total time,
the strong notion checks that the time values are appropiate for each performed
output.

4 Tests Cases for Stochastic Systems

We consider that tests represent sequences of inputs applied to an IUT. Once
an output is received, the tester checks whether it belongs to the set of expected
ones or not. In the latter case, a fail signal is produced. In the former case,
either a pass signal is emitted (indicating successful termination) or the testing
process continues by applying another input. If we are testing an implementation
with input and output sets I and O, respectively, tests are deterministic acyclic
I/O labelled transition systems (i.e. trees) with a strict alternation between an
input action and the set of output actions. After an output action we may find
either a leaf or another input action. Leaves can be labelled either by pass or
by fail. In addition to check the functional behavior of the IUT, test have also
to detect whether wrong timed behaviors appear. Thus, tests have to include
capabilities to deal with the two ways of specifying time. On the one hand, we
will include random variables. The idea is that we will record the time that
the implementation takes to arrive to the leaves of the test labelled with pass.
We will collect a sample of times for each test execution and we will compare
this sample with the random variable associated to the leaf reached in the test.
By comparison we mean that we will apply a contrast to decide, with a certain
confidence, whether the sample could be generated by the corresponding random
variable. On the second hand, tests will include delays before offering input
actions. The idea is that delays in tests will induce timeouts in IUTs. Thus,
we may indirectly check whether the timeouts imposed by the specification are
reflected in the IUT by offering input actions after a specific delay.

Testing Finite State Machines Presenting Stochastic Time and Timeouts 105

Definition 8. A test case is a tuple T = (S, I,O, λ, s0, SI , SO, SF , SP , ζ,D)
where S is the set of states, I and O, with I ∩ O = ∅ are the sets of input and
output actions, respectively, λ ⊆ S × I ∪O× S is the transition relation, s0 ∈ S
is the initial state, and the sets SI , SO, SF , SP ⊆ S are a partition of S. The
transition relation and the sets of states fulfill the following conditions:

– SI is the set of input states. We have that s0 ∈ SI . For all input state s ∈ SI

there exists a unique outgoing transition (s, a, s′) ∈ λ. For this transition we
have that a ∈ I and s′ ∈ SO.

– SO is the set of output states. For all output state s ∈ SO we have that for
all o ∈ O there exists a unique state s′ such that (s, o, s′) ∈ λ. In this case,
s′ /∈ SO. Moreover, there do not exist i ∈ I, s′ ∈ S such that (s, i, s′) ∈ λ.

– SF and SP are the sets of fail and pass states, respectively. We say that these
states are terminal. Thus, for all state s ∈ SF ∪ SP we have that there do
not exist a ∈ I ∪O and s′ ∈ S such that (s, a, s′) ∈ λ.

Finally, we have two timed functions. ζ : SP −→
⋃∞

j=1 Vj is a function asso-
ciating random variables, to compare with the time that the implementation
took to perform the outputs, with passing states. D : SI −→ Time is a function
associating delays with input states.

We say that a test case T is valid if the graph induced by T is a tree with
root at the initial state s0. We say that a set of tests Tst = {T1, . . . , Tn} is a test
suite.

Let σ = i1/o1, . . . , ir/or. We write T σ=⇒ sT if sT ∈ SF ∪ SP and there exist
states s12, s21, s22, . . . sr1, sr2 ∈ S such that {(s0, i1, s12), (sr2, or, s

T)} ⊆ λ, for
all 2 ≤ j ≤ r we have (sj1, ij , sj2) ∈ λ, and for all 1 ≤ j ≤ r − 1 we have
(sj2, oj , s(j+1)1) ∈ λ.

Let T be a valid test, σ = i1/o1, . . . , ir/or, sT be a state of T , and t =
(t1, . . . , tr) ∈ Timer. We write T σ=⇒t s

T if T σ=⇒ sT , t1 = D(s0), and for all
1 < j ≤ r we have tj = D(sj1). ��

Let us remark that T σ=⇒ sT , and its variant T σ=⇒t s
T , imply that sT is a ter-

minal state. Next we define the application of a test suite to an implementation.
We say that the test suite Tst is passed if for all test the terminal states reached
by the composition of implementation and test are pass states. Besides, we give
different timing conditions in a similar way to what we did for implementation
relations.

Definition 9. Let I be SFSM and T = (St, I, O, δT , s0, SI , SO, SF , SP , ζ,D) be
a valid test, σ = i1/o1, . . . , ir/or, sT be a state of T , t = (t1, . . . , tr), and
t̄o = (to1, . . . , tor). We write I ‖T σ=⇒t̄ s

T if T σ=⇒t̄ s
T and (σ, t̄) ∈ InsFEvol(I).

We write I ‖ T σ=⇒t,t̄o
sT if I ‖ T σ=⇒t s

T and (σ, t̄, t̄o) is a observed timed
execution of I. In this case we say that (σ, t̄, t̄o) is a test execution of I and T .

We say that I passes the test suite Tst, denoted by pass(I, Tst), if for all test
T ∈ Tst there do not exist (σ, t) ∈ InsFEvol(I), sT ∈ S such that I ‖ T σ=⇒t s

T

and sT ∈ SF . ��

106 M.G. Merayo, M. Núñez, and I. Rodŕıguez

Let us remark that since we are assuming that implementations are input-
enabled, the testing process will conclude only when the test reaches either a fail
or a pass state.

In addition to this notion of passing tests, we will have different time condi-
tions. We apply the time conditions to the set of observed timed executions, not
to stochastic evolutions of the implementations, due to the fact that stochastic
evolutions do not have a single time value that we can directly compare with the
time stamp attached to the pass state. In fact, we need a set of test executions
associated to each evolution to evaluate if they match the distribution function
associated to the random variable indicated by the corresponding state of the
test. In order to increase the degree of reliability, we will not take the classical
approach where passing a test suite is defined according only to the results for
each test. In our approach, we will put together all the observations, for each
test, so that we have more samples for each evolution. In particular, some obser-
vations will be used several times. In other words, an observation from a given
test may be used to check the validity of another test sharing the same observed
sequence.

Definition 10. Let I be a SFSM and Tst = {T1, . . . , Tn} be a test suite. Let
H1, . . . , Hn be multisets of test executions of I and T1, . . . , Tn, respectively. Let
H =

⊎n
i=1Hi, Φ = {(σ, t̄) | ∃ t̄o : (σ, t̄, t̄o) ∈ H}, 0 ≤ α ≤ 1 and let us consider

Sampling(H,Φ) and Samplingk
(H,Φ), for all 1 ≤ k ≤ max{|σ| | (σ, t̄) ∈ Φ}.

Let e = (σ, t) ∈ Φ. We define the set Test(e, Tst) = {T | T ∈ Tst ∧ I ‖ T σ=⇒t

sT }.
We say that the implementation I weakly (α,H)−passes the test suite Tst if

pass(I, Tst) and for all e = (σ, t̄) ∈ Φ we have that for all T ∈ Test(e, Tst) such
that I ‖ T σ=⇒t s

T it holds γ(
∑
ζ(sT), Sampling(H,Φ)(σ, t̄)) > α.

We say that the implementation I strongly (α,H)−passes the test suite Tst if
pass(I, Tst) and for all e = (σ, t̄) ∈ Φ we have that for all T ∈ Test(e, Tst) such
that I ‖T σ=⇒t s

T it holds ∀ 1 ≤ j ≤ |σ| : γ(πj(ζ(sT)), Samplingj
(H,Φ)(σ, t̄)) > α.

��

Let us note that an observed timed execution does not return the random vari-
able associated with performing the evolution (that is, the addition of all the
random variables corresponding to each transition of the implementation) but
the time that it took to perform the evolution. Intuitively, an implementation
passes a test if there does not exist an evolution leading to a fail state. Once we
know that the functional behavior of the implementation is correct with respect
to the test, we need to check time conditions. The set H corresponds to the ob-
servations of the (several) applications of the tests belonging to the test suite Tst

to I. Thus, we have to decide whether, for each evolution e, the observed time
values (that is, Sampling(H,Φ)(e)) match the definition of the random variables
appearing in the successful state of the tests corresponding to the execution of
that evolution (that is, ζ(sT)). As we commented previously, we assume a func-
tion γ, formally defined in the appendix of [10], that can perform this hypothesis
contrast.

Testing Finite State Machines Presenting Stochastic Time and Timeouts 107

5 Test Derivation: Soundness and Completeness

In this section we present an algorithm to derive test cases from specifications
and we show that the derived test suites are sound and complete with respect
to the two implementation relations presented in Section 3. As usual, the idea
underlying our algorithm consists in traversing the specification in order to get
all the possible traces in an appropriate way. First, we introduce some additional
notation.

Definition 11. LetM = (S, I,O, δ, TO, sin) be a SFSM. We consider the follow-
ing sets:

out(s, i) = {o | ∃ s′, ξ : (s, i, o, s′, ξ) ∈ δ}

afterTO(s, t) =

⎧⎨
⎩

s if π2(TO(s)) > t

afterTO(π1(TO(s)), t − π2(TO(s))) otherwise

after(s, i, o, ξ̄) =

{
(s′, ξ̄′) if ∃ ξ : (s, i, o, s′, ξ) ∈ δ

error otherwise

where if ξ̄ = (ξ1, . . . , ξn) then ξ̄′ = (ξ1, . . . , ξn, ξ) ��

The function out(s, i) computes the set of output actions associated with those
transitions that can be executed from s after receiving the input i. The next
function, afterTO(s, t) returns the state that would be reached by the system
if we start in the state s and t time units elapsed without receiving an input.
The last function, after(s, i, o, ξ̄), computes the state reached from a state s
after receiving the input i, producing the output o, supposing that ξ̄ denotes
the random variables associated to the transitions previously performed. In ad-
dition, it returns the new tuple of random variables associated to the transitions
performed since the system started its performance. Let us also remark that
due to the assumption that SFSMs are observable we have that after(s, i, o, ξ̄)
is uniquely determined. Besides, we will apply this function only when the side
condition holds, that is, we will never receive error as result of applying after.

The algorithm to derive tests from a specification is given in Figure 2. It
is a non-deterministic algorithm that returns a single test. By considering the
possible available choices in the algorithm we extract a full test suite from the
specification (this set will be infinite in general). For a given specification M , we
denote this set of tests by tests(M). Next we explain how the algorithm works.
A set of pending situations Saux keeps those triplets denoting the possible states
and the tuple of random variables that could appear in a state of the test whose
definition, that is, its outgoing transitions, has not been completed yet. A triplet
(sM , ξ̄, sT) ∈ Saux indicates that we did not complete the state sT of the test,
the tuple of random variables ξ̄ associated to the transitions of the specification
that have been traversed from the initial state, and the current state in the
transversal of the specification is sM .

108 M.G. Merayo, M. Núñez, and I. Rodŕıguez

Input: A specification M = (S, I,O, δ, TO, T r, sin).
Output: A test case T = (S′, I, O ∪ {null}, λ, s0, SI , SO, SF , SP , ζ, D).

Initialization:

– S′ := {s0}, δ := SI := SO := SF := SP := ζ := D := ∅.
– Saux := {(sin, null, s0)}.

Inductive Cases: Choose one of the following two options until Saux = ∅.

1. If (sM , ξ̄, sT) ∈ Saux then perform the following steps:
(a) Saux := Saux − {(sM , ξ̄, sT)}.
(b) SP := SP ∪ {sT }; ζ(sT) := ξ̄.

2. If Saux = {(sM , ξ̄, sT)} and ∃ td ∈ Time, i ∈ I such that
out(afterTO(sM , td), i) �= ∅ then perform:
(a) Choose td ∈ Time and i ∈ I fulfilling the previous conditions.
(b) sM = afterTO(sM , td); Saux := ∅.
(c) Consider a fresh state s′ /∈ S′ and let S′ := S′ ∪ {s′}.
(d) SI := SI ∪ {sT }; SO := SO ∪ {s′}; λ := λ ∪ {(sT , i, s′)}.
(e) D(sT) := td.
(f) For all o /∈ out(sM , i) do {null is in this case}

– Consider a fresh state s′′ /∈ S′ and let S′ := S′ ∪ {s′′}.
– SF := SF ∪ {s′′}; λ := λ ∪ {(s′, o, s′′)}.

(g) For all o ∈ out(sM , i) do
– Consider a fresh state s′′ /∈ S′ and let S′ := S′ ∪ {s′′}.
– λ := λ ∪ {(s′, o, s′′)}.
– (sM

1 , ξ̄′) := after(sM , i, o, ξ̄).
– Saux := Saux ∪ {(sM

1 , ξ̄′, s′′)}.

Fig. 2. Derivation of test cases from a specification

Let us consider the steps of the algorithm. The set Saux initially contains a
tuple with the initial states (of both the specification and the test) and the initial
tuple of random variables (that is, empty tuple of random variables). For each
tuple belonging to Saux we may choose one possibility between two choices. It
is important to remark that the second choice can be taken only when the set
Saux becomes singleton. So, our derived tests correspond to valid tests as given
in Definition 8. The first possibility simply indicates that the state of the test
becomes a passing state. The second possibility takes an input and generates
a transition in the test labelled by this input. At this step, we choose a delay
for the next input state. We select a time value and replace the states of the
pending situation by the situation that can be reached if we apply as delay for
accepting a new input, the time value selected. This is because, during the delay,
the timeout transition associated to the state sM can be triggered, so a change
of state will be prompted by this fact. That fact allow us to consider sequences of

Testing Finite State Machines Presenting Stochastic Time and Timeouts 109

3
T1

b

fail

0

2

1

b

pass, (ξ2, ξ1)

0

fail

1

pass, (ξ2, ξ2)

2

fail

2

2
T2

a

pass, (ξ3)

0

6

1

b

pass, (ξ3, ξ1)

0

fail

1

pass, (ξ3, ξ2)

2

fail

2

5
T3

a

fail

1

pass, (ξ3)

0

fail

2

Fig. 3. Examples of Tests

timeout transitions, that is, traces where those transitions are triggered because
no input action is received by the system.

Then, the whole sets of outputs is considered. If the output is not expected
by the implementation (step 2.(f) of the algorithm) then a transition leading to
a failing state is created. This could be simulated by a single branch in the test,
labelled by else, leading to a failing state (in the algorithm we suppose that all
the possible outputs appear in the test). For the expected outputs (step 2.(g) of
the algorithm) we create a transition with the corresponding output action and
add the appropriate tuple to the set Saux.

Finally, let us remark that finite test cases are constructed simply by con-
sidering a step where the second inductive case is not applied. Finally, let us
comment on the finiteness of our algorithm. If we do not impose any restriction
on the implementation (e.g., a bound on the number of states) we cannot de-
termine some important information such as the maximal length of the traces
that the implementation can perform. In other words, we would need a coverage
criterium to generate a finite test suite. Since we do not assume, by default, any
criteria, all we can do is to say that this is the, in general, infinite test suite that
would allow to prove completeness. Obviously, one can impose restrictions such
as ”generate n tests” or “generate all the tests with m inputs” and completeness
will be obtained up to that coverage criterium.

Example 3. In Figure 3 we present some examples of test cases. These tests are
derived from the specification presented in Figure 1. In the test T1 we consider
a delay of 3 time units in the step 2.(a) of the algorithm as well as the input
b. A transition labelled by this input is generated in the test. Next, all outputs
are considered. Due to the fact that the specification only accepts the output
1, two transitions leading to a fail state are created for the outputs 0 and 2 re-
spectively (step 2.(f) of the algorithm). Moreover, we create a transition for the
output 1 (step 2.(g) of the algorithm). After this, we select again the input b and
establish a delay of 2 time units for this input. The corresponding transitions
are created in the test. Finally, we apply the step 1 of the algorithm in order
to conclude the generation of this test. The pass states contain some random

110 M.G. Merayo, M. Núñez, and I. Rodŕıguez

variables, extracted from the specification, that will be used to compare the time
values that the implementation takes to perform outputs with the ones that are
presented in the specification. For instance, the tuple (ξ2, ξ1) that appears in the

pass state of the left branch of T1 is extracted from the transitions s1
b/1−−−−→ξ2 s4

and s4
b/0−−−−→ξ1 s1. Regarding the test T2, let us note that the number of random

variables associated with the pass states varies depending on the level in which
it is derived. That is because we generate a tuple of random variables that
presents so many elements as pairs of input/outputs have been transversed in the
specification. The tests T2 and T3 consider the same input in the first transition
a. The difference lies in the delays we consider for each of them, 2 and 5 time
units, respectively. This fact makes that for the test T2 the output 1 is accepted.
However, in the test T3 it leads to a fail state, because in this case the timeout
associated to the initial state should be triggered after 4 time units and the
machine would change its state to s2, where the output 1 is not accepted for the
input a. ��

Finally, we present the result that relates, for a specification S and an imple-
mentation I, implementation relations and application of test suites.

Theorem 1. Let S, I be SFSMs. Let H be a multiset of test executions of I,
0 ≤ α ≤ 1, and Φ = {(σ, t̄) | ∃ t̄o : (σ, t̄, t̄o) ∈ H} ∩ InsFEvol(S). We have that:

– I confs
(α,H)
w S iff I weakly (α,H)−passes tests(S).

– I confs
(α,H)
s S iff I strongly (α,H)−passes tests(S).

��

6 Concluding Remarks

This paper concludes the work initiated in [10]. There, we presented a new no-
tion of finite state machine to specify, in an easy way, both the passing of time
due to timeouts and the time due to the performance of actions. In addition, we
presented several implementation relations based on the notion of conformance.
These relations shared a common pattern: The implementation must conform to
the specification regarding functional aspects. In this paper we introduce a notion
of test, how to apply a test suite to an implementation, and what is the meaning
of successfully passing a test suite. Even though implementation relations and
passing of test suites are, apparently, unrelated concepts, we provide a link be-
tween them: We give an algorithm to derive test suites from specifications in such
a way that a test suite is successfully passed iff the implementation conforms
to the specification. This result, usually known as soundness and completeness,
allows a user that in order to check the correctness of an implementation, it
is the same to consider an implementation relation or to apply a derived test
suite.

Testing Finite State Machines Presenting Stochastic Time and Timeouts 111

References

1. Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer Science 126,
183–235 (1994)

2. Brandán, L., Brinksma, E.: Testing real-time multi input-output systems. In: Lau,
K.-K., Banach, R. (eds.) ICFEM 2005. LNCS, vol. 3785, pp. 264–279. Springer,
Heidelberg (2005)

3. Brinksma, E., Tretmans, J.: Testing transition systems: An annotated bibliogra-
phy. In: Cassez, F., Jard, C., Rozoy, B., Dermot, M. (eds.) MOVEP 2000. LNCS,
vol. 2067, pp. 187–195. Springer, Heidelberg (2001)

4. Clarke, D., Lee, I.: Automatic generation of tests for timing constraints from re-
quirements. In: 3rd Workshop on Object-Oriented Real-Time Dependable Systems,
WORDS’97, pp. 199–206. IEEE Computer Society Press, Los Alamitos (1997)

5. En-Nouaary, A., Dssouli, R., Khendek, F.: Timed Wp-method: Testing real time
systems. IEEE Transactions on Software Engineering 28(11), 1024–1039 (2002)

6. Krichen, M., Tripakis, S.: An expressive and implementable formal framework for
testing real-time systems. In: Khendek, F., Dssouli, R. (eds.) TestCom 2005. LNCS,
vol. 3502, pp. 209–225. Springer, Heidelberg (2005)

7. Larsen, K.G., Mikucionis, M., Nielsen, B.: Online testing of real-time systems using
Uppaal. In: Grabowski, J., Nielsen, B. (eds.) FATES 2004. LNCS, vol. 3395, pp.
79–94. Springer, Heidelberg (2005)

8. Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines:
A survey. Proceedings of the IEEE 84(8), 1090–1123 (1996)

9. Mandrioli, D., Morasca, S., Morzenti, A.: Generating test cases for real time sys-
tems from logic specifications. ACM Transactions on Computer Systems 13(4),
356–398 (1995)

10. Merayo, M.G., Núñez, M., Rodŕıguez, I.: Implementation relations for stochas-
tic finite state machines. In: Horváth, A., Telek, M. (eds.) EPEW 2006. LNCS,
vol. 4054, pp. 123–137. Springer, Heidelberg (2006)

11. Núñez, M., Rodŕıguez, I.: Encoding PAMR into (timed) EFSMs. In: Peled, D.A.,
Vardi, M.Y. (eds.) FORTE 2002. LNCS, vol. 2529, pp. 1–16. Springer, Heidelberg
(2002)

12. Núñez, M., Rodŕıguez, I.: Towards testing stochastic timed systems. In: König, H.,
Heiner, M., Wolisz, A. (eds.) FORTE 2003. LNCS, vol. 2767, pp. 335–350. Springer,
Heidelberg (2003)

13. Núñez, M., Rodŕıguez, I.: Conformance testing relations for timed systems. In:
Grieskamp, W., Weise, C. (eds.) FATES 2005. LNCS, vol. 3997, pp. 103–117.
Springer, Heidelberg (2006)

14. Petrenko, A.: Fault model-driven test derivation from finite state models: Anno-
tated bibliography. In: Cassez, F., Jard, C., Rozoy, B., Dermot, M. (eds.) MOVEP
2000. LNCS, vol. 2067, pp. 196–205. Springer, Heidelberg (2001)

15. Rodŕıguez, I., Merayo, M.G., Núñez, M.: HOTL: Hypotheses and observa-
tions testing logic. In: Journal of Logic and Algebraic Programming (2007),
http://dx.doi.org/10.1016/j.jlap.2007.03.002

16. Springintveld, J., Vaandrager, F., D’Argenio, P.R.: Testing timed automata. The-
oretical Computer Science, 254(1-2):225–257, 2001. Previously appeared as Tech-
nical Report CTIT-97-17, University of Twente (1997)

http://dx.doi.org/10.1016/j.jlap.2007.03.002

Evaluation of P2P Search Algorithms for

Discovering Trust Paths

Emerson Ribeiro de Mello1,�, Aad van Moorsel2,��, and Joni da Silva Fraga1

1 Department of Automation and Systems
Federal University of Santa Catarina

Florianópolis, SC - Brazil
emerson@das.ufsc.br,fraga@das.ufsc.br

2 School of Computing Science
Newcastle University

Newcastle upon Tyne, UK
aad.vanmoorsel@newcastle.ac.uk

Abstract. Distributed security models based on a ‘web of trust’ elimi-
nate single points of failure and alleviate performance bottlenecks. How-
ever, such distributed approaches rely on the ability to find trust paths
between participants, which introduces performance overhead. It is there-
fore of importance to develop trust path discovery algorithms that min-
imize such overhead. Since peer-to-peer (P2P) networks share various
characteristics with the web of trust, P2P search algorithms can poten-
tially be exploited to find trust paths. In this paper we systematically
evaluate the application of P2P search algorithms to the trust path dis-
covery problem. We consider the number of iterations required (as ex-
pressed by the TTL parameter) as well as the messaging overhead, for
discovery of single as well as multiple trust paths. Since trust path discov-
ery does not allow for resource replication (usual in P2P applications), we
observe that trust path discovery is very sensitive to parameter choices
in selective forwarding algorithms (such as K-walker), but is relatively
fast when the underlying network topology is scale-free.

Keywords: Peer-to-Peer, Web of Trust, Trust Paths.

1 Introduction

The effectiveness and efficiency of any commercial interaction depends strongly
on the level of trust that exists between involved parties. Trust determines if
parties are willing to depend on each other, even if negative consequences are
� Supported by CNPq. This work was conducted while the first author was in the

School of Computing Science at Newcastle University, UK. This work has been
developed within the scope of the “Security Infrastructure for Service Oriented Dis-
tributed Applications” project (CNPq 550114/2005-0).

�� Supported in part by EPSRC grant EP/C009797/1 “Dynamic Operating Policies
for Commercial Hosting Environments” and EU Network of Excellence grant 026764
“Resilience for Survivability in IST”.

K. Wolter (Ed.): EPEW 2007, LNCS 4748, pp. 112–124, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Evaluation of P2P Search Algorithms for Discovering Trust Paths 113

possible [1], and without it, commercial transactions will be inefficient because of
doubts about payments, ability to deliver a service, etc. Trust establishment in
real life is usually a complex and subjective process, and in electronic commerce,
trust establishment arguably becomes even more challenging [1]. The absence
of human interaction and the frequency and speed with which new electronic
commerce interactions can be established contribute to this challenge.

Several automated trust solutions have been proposed in the literature and
some are in common use, such as, X.509 [2], PGP [3] and SPKI/SDSI [4,5]. These
solutions provide ways of determining and assuring that information is being
exchanged with a trusted source. Of particular interest in large scale deployment
of trust solutions is the notion of a web of trust. In a web of trust each party has
the ability to express their trust in entities and communicate this to other parties
(by signing messages). By association, these other parties may decide to trust the
entities as well. Web of trust solutions are in contrast to the traditional model
that relies on the trust in central entities, namely the Certification Authorities
(CA).

The literature discusses trust relation creation and management extensively
[6,7,8,9], and the PGP and SPKI/SDSI standard proposals discuss the concept
of trust paths as well. Recently, various authors have proposed algorithms for
discovering trust paths [10,11,12] to fill the void left by the standards (which
purposely do not specify how trust paths should be discovered), but no experi-
mental or simulation results have been presented to study the effectiveness and
performance of the algorithms.

Trust path discovery is equivalent to finding paths in graphs (we make this
precise in Section 2). To be of practical value, a trust path discovery algorithm
must take into account that participants are only aware of their direct neigh-
bours. This immediately suggests that P2P search algorithms may be applicable
to this domain, as also realized in [10,11,12]. After all, in P2P networks each
node keeps track of a partial index with a subset of all nodes of the network.
In this paper we therefore evaluate how existing P2P algorithms perform when
applied to the trust path discovery problem.

There exist important differences between traditional P2P applications and
the web of trust. In particular, in a typical P2P application (such as file sharing),
files will be replicated across peers, thus allowing for tremendous scaling. In the
web of trust, however, a trust relationship will be present only in the two nodes
that compose the trust relationship. Replication is possible in some settings (as
we will explain in Section 2), but will be far less prevalent and straightforward
than in traditional P2P applications. As a consequence, our simulation results
will show that an underlying scale-free network topology performs relatively
well for the trust path discovery problem compared to resource discovery in
traditional P2P applications (as reported in [13,14,15]). Furthermore, we will see
that the performance of the search algorithms is extremely sensitive to parameter
choices in modified flooding algorithms that limit the amount of forwarding (such
as selective querying and K-walker).

114 E.R. de Mello, A. van Moorsel, and J. da Silva Fraga

2 Trust Path Discovery Problem

In abstract terms, the web of trust can be seen as a graph, where the nodes
are participants and the arcs denote trust (an arc from A to B denotes that
A trusts B). In terms of PGP, one can restate this as nodes being keys and
arcs being signatures that signify trust, e.g., [16]. Arcs can be uni-directional
or bi-directional, since the trust relationship could be one-way or two-way. For
instance, in the X.509 model the users trust in the Certificate Authorities but
the inverse is not true. Thus, in this case we have a one-way trust relationship. In
PGP and SPKI model each principal can be the issuer or the subject of a trust
relationship, amounting to a two-way trust relationship. Such two-way relations
can be implemented through various mechanisms, for example through exchange
of two signed certificates. In this paper we assume the PGP and SPKI model, in
which trust relations are bi-directional, i.e., the underlying graph is undirected.

In a web of trust, if there is no trust relation between two parties A and C,
they can still trust each other if there exists at least one path between A and C
in the graph (we will call A the origin, and C the target in what follows). That
is, we exploit the fact that trust can be said to be transitive [17,18]: if A trusts
B, and B trusts C, then A trusts C. The trust path discovery problem then is
to find at least one trust path between two given principals. Discovering such a
path is complicated because each node has only knowledge about its own trust
relations. This suggests, however, that unstructured P2P search algorithms are
natural candidates to solve the trust path discovery problem.

2.1 P2P Networks

There are two categories of decentralized P2P networks: unstructured, such as
Gnutella [19], and structured, such as those based on a distributed hash table
[20,21]. We will discuss trust path discovery only for unstructured approach,
since we found that the mapping of a web of trust on a structured P2P network
does not seem to provide any benefits for discovering trust paths. In traditional
P2P networks, one would search for ‘resources’. When searching trust paths
the ‘resources’ a node contains are the trust relationships it knows about. In the
default setting, each node only knows about its own trust relationships, and thus
in the underlying P2P network each node is connected to the nodes it trusts.
Discovering a trust path between A and B then is identical to A querying for a
resource that is only present at B.

To find resources (such as files) in unstructured P2P networks, each query
is propagated through the network by flooding. For instance, in the original
version of Gnutella [19] a node receiving or generating a query forwards it to
a fixed number of neighbours (typically four). These neighbours forward it to
their neighbours, and so on until the message time to live (TTL) threshold
(typically seven) has been exceeded. Flooding can directly be applied to the
problem of discovering trust paths. If existing, trust paths will be discovered
using exhaustive flooding.

Evaluation of P2P Search Algorithms for Discovering Trust Paths 115

Flooding has an obvious disadvantage, namely that many query messages may
be needed to find a resource. When establishing trust paths, this problem is mag-
nified by the fact that there is no replication of resources (i.e., trust relationships)
across multiple nodes. Several variations and modifications of straightforward
flooding have been proposed for traditional P2P networks. Depth-first search
was used in [13,14,22], and breadth-first search with incrementing message time
to live values was proposed and analysed in [15,23,24]. In the Kazaa network [25]
the concept of super-nodes (or ultra-peers) was introduced to create a hierar-
chical structure in the network, where queries are propagated on a super-nodes
overlay that acts like shortcuts between distant principals. An improvement im-
portant for the problem of trust path discovery is that of caching ‘hits’. In these
solutions a “queryHit” message is created when a desired trust path is found, and
this message is propagated in the reverse path. Subsequent queries then can im-
mediately use the cached result. This approach is very beneficial for discovering
trust paths, and we will evaluate it below.

 1

 10

 100

 1000

 10000

 1 10 100

N
um

be
r

of
 n

od
es

Number of links

Random Graph

(a) random topology

 1

 10

 100

 1000

 10000

 1 10 100 1000

N
um

be
r

of
 n

od
es

Number of links

Scale Free - Power Law

(b) scale-free topology

Fig. 1. Distribution of trust relations (‘links’) per node in different network topologies

3 Experiment Setup

3.1 Trust Path Discovery Algorithms

We will compare the following trust path discovery algorithms, which all are
variations of flooding in unstructured P2P networks. For the evaluation of these
approaches in the context of file sharing and similar applications, we refer to,
e.g., [13,14,15,22,23].

K-walker. In K-walker every node propagates the query to K randomly se-
lected neighbour nodes, resulting in a variation of breadth-first search.

Selective querying. Selective querying works like K-walker, but a query
will be propagated through the K best nodes according to some specific
criterion, for instance, location, bandwidth, number of neighbours, results in

116 E.R. de Mello, A. van Moorsel, and J. da Silva Fraga

previous queries, etc. In trust path discovery, it seems logical to select nodes
with the most neighbours, since this implies these nodes contain more trust
relationships.

Expanding ring. The expanding ring approach repeatedly increments the
message time to live (TTL) until the trust path is found. Initially the search
starts with a small value of TTL (expressed in terms of the number of hops)
and if the search does not succeed the TTL value will be increased and the
same query will be sent. This process repeats itself until some pre-defined
maximum value for TTL is reached. The reasoning behind the expanding
ring approach is that it avoids the problem that if a resource is found but
TTL has not been reached, unnecessary messages continue to be forwarded.

Ultra-peers. The ultra-peer approach introduces a hierarchy between nodes.
When a leaf node joins the network it associates itself with one or more ultra-
peers (super-nodes). In the context of trust paths, each ultra-peer stores
information about trust relationships of its leaf nodes. The search started by
a leaf node will be propagated only in the ultra-peer layer, since these nodes
already know about the trust relations the leaf nodes provide. It is important
to note that introducing a node hierarchy is against the philosophy of the
web of trust, in which all nodes are equal. However, one can imagine cases
in which ultra-peers naturally arise (for instance in the shape of CAs), and
we therefore study the ultra-peer performance and efficiency as well.

Cache table. In the cache table approach, each node in the network has a
cache table that stores references about previous successful searches. If the
same target is used again, the path will be found faster. The cache table can
be used with any of the above algorithms, but in our experiments we only
study it in combination with Gnutella-like flooding.

3.2 Topologies

The topology of a P2P network heavily influences the effectiveness of various
algorithms. The topology is determined by the number of neighbours each node
knows about (the degree of a node), and in our study we consider two classes of
topologies: the random graph and the scale free or power law graph [26].

There exist different variations of random graphs and various approaches to
generating random graphs. We use one of the standard approaches provided by
Peersim (see below), namely one that generates for each node a fixed number d
of edges, and then connects these edges with d randomly selected neighbouring
nodes. Since our simulations use undirected graphs, this results in an average de-
gree of 2d for each node. Figure 1(a) shows (using logarithmic scale) the number
of nodes with a certain degree, where the average degree for a node is 4. In the
simulation, we generated random graphs with up to 20,000 nodes, and average
degree 4.

Scale free graphs follow the power law distribution where many nodes have
few connections and few nodes have many connections. This kind of distribution
represents the small world concept [27] observed in several different areas, in-
cluding in the web of trust [28] and traditional P2P file-sharing applications [29].

Evaluation of P2P Search Algorithms for Discovering Trust Paths 117

We use the Barabasi-Albert approach [26] to generate scale free graphs (using
the implementation provided in Peersim, see below). Again, we set the average
degree to 4. An example of the degree of nodes in the resulting graph is given in
Figure 1(b).

Peersim - A P2P Simulator. We used the P2P network simulator Peer-
sim [30] to carry out the discrete-event simulations. Peersim is implemented in
Java; it generates networks according to several possible topology classes (in-
cluding random and scale-free topologies) and has a discrete-event simulator.
The simulation execution scales very well when using Peersim’s ‘cycle-based’
approach, which ignores certain transport layer elements and concurrency, as
recommended in [31]. Peersim also provide a way to create independent repli-
cas of experiments based on a pseudo random generator, which we used to gain
confidence in our simulation results. Using Peersim’s Java API, various P2P al-
gorithms can be very quickly implemented and evaluated. The simulation runs
for which we present results in the next section typically lasted on the order of
(tens of) seconds.

4 Results

There are a number of metrics one may want to consider when establishing
the quality of a trust path discovery algorithm. In this section, we will first
discuss the cost of establishing a single trust path, and then multiple trust paths.
(The latter may be important because the existence of multiple trust paths
may increase the trust level the origin associates with the target.) The cost
we consider is the number of messages passed over the network to find the
trust path(s). We will also analyse the sensitivity of the results with respect
to the TTL value, which is a critical parameter that needs to be set in all
algorithms. Moreover, in absence of a notion of time in our simulation, the
minimum required TTL may also be used as an indicator of the time it will
take to find the trust paths. As we mentioned above, the simulation is based on
graphs with 20,000 nodes for both the random and scale free graph topology,
with average node degree 4. We ran simulations with three different distances
from the (arbitrary chosen) origin node: closest (that is, two hops), average and
farthest node from the origin node. For the random topology, the distances were
as follows: average is 7 hops and farthest is 10 hops; for the scale free topology:
average is 4 hops and farthest is 6 hops. In our simulations, for all algorithms,
TTL was incremented from 2 until 7, and sometimes increased higher to observe
specific phenomena. For the algorithms selective querying and K-walker we chose
three different values for the number of neighbours to which the query will be
propagated: 10%, 50% and 70%. In the ultra-peers algorithm the number of
super-nodes in the network was chosen randomly, selecting the most connected
nodes. The amount of nodes selected to be ultra peers was chose by the integer
part of the square root of network size.

118 E.R. de Mello, A. van Moorsel, and J. da Silva Fraga

Table 1. Number of trust paths found for random graph topology for different TTL
values. Target is 7 hops away. The last three lines indicate required TTL value to find
at least one path but even with big TTL values “Selective 10%” did not find any path.

TTL Gnutella K-walker Selective Ultra-peers
original cacheTable 10% 50% 70% 10% 50% 70%

5 0 0 0 0 0 0 0 0 0

6 2 2 0 0 2 0 0 1 2

7 3 3 0 0 2 0 0 1 3

10 first hit

11 first hit

32 first hit

Discovery of the first trust path. Table 1 and Table 2 show the number
of trust paths found, for different values of TTL, for the random and scale-free
topology, respectively. The graphs in Figure 2 and Figure 3 show the number of
messages propagated through the network for each algorithm, for different values
of TTL. We can see in Figure 2 and Figure 3 that both the network topology and
the specific algorithm have an important influence on the number of messages
propagated. In scale free networks some nodes have a high number of neighbours,
resulting in more messages in the network when flooding techniques are used.
Moreover, these messages can be redundant, because they forward a query to a
node that earlier received that same query (see [14] for an in-depth discussion).
However, Table 1 and Table 2 demonstrate the benefit of this higher number of
messages in the scale-free topology: the trust path is found within only a few
hops for all algorithms. More precisely, the trust path is found in the minimum
number of hops (TTL=3 for a target 4 hops away), except for K-walker with
10% forwarding. In the random graph, trust paths are not always found for low
values of TTL. The minimum possible value of the TTL is 6 for a target at the
average distance of 7 hops, but algorithms that do not forward to a high number
of neighbours require higher TTL values. Table 1 shows this number in the three
last rows: to find the first trust path K-walker with 50% requires a TTL value of
11, and K-walker wit 10% needs TTL value 32. Moreover, selective forwarding
with 10% never reaches the target, as indicated in Table 1.

If one is interested in the number of messages used to find the first trust path,
one combines the above-mentioned figures and tables. For the scale free topology,
the Selective and K-walker algorithms with only 10% forwarding work best, using
only 178 and 425 messages, respectively. For comparison, the original flooding
(Gnutella) method would generate close to 4000 messages before it finds the first
path. For the random graph, Selective and K-walker still outperform flooding,
but only if the forwarding is at a high level (70%). To illustrate this, flooding uses
about 2700 message to find the first trust path, and K-walker with 10% and 50%
require as many or more: 2200 and 9000, respectively (the latter numbers are
not visible in Figure 2 because they require higher values of TTL than displayed
there). However, K-walker with 70% and Selective with 50 and 70% require less

Evaluation of P2P Search Algorithms for Discovering Trust Paths 119

Table 2. Number of trust paths found for scale free topology for different TTL values.
Target is 4 hops away.

TTL Gnutella K-walker Selective Ultra-peers
original cache 10% 50% 70% 10% 50% 70%

2 0 0 0 0 0 0 0 0 1

3 1 2 0 1 1 1 1 1 3

4 4 19 0 3 2 1 2 3 7

5 4 95 0 3 3 1 2 3 9

6 5 138 1 4 4 1 3 3 10

7 5 180 1 5 5 1 3 3 11

 1

 10

 100

 1000

 10000

 2 3 4 5 6 7

N
um

be
r

of
 m

es
sa

ge
s

TTL

Gnutella
Gnutella+Cache

Ultrapeer
K-walkers=70%
Selective=70%

K-walkers=50%
Selective=50%

K-walkers=10%
Selective=10%

Fig. 2. Number of messages under different TTL values: Random graph topology –
Distance = 7 hops

than 1000 messages. In other words, we notice extreme sensitivity to the chosen
amount of forwarding in the K-walker as well as Selective querying algorithm.

If we compare the above findings with for instance [14], where networks of
similar size were simulated, we note that the main difference is the lack of repli-
cation of the target in our setting. Hence, the conclusion drawn in [14] that
scale-free topologies should be avoided does not necessarily hold for discovering
trust paths. We find that the amount of messages needed to find the first trust
path is similar for both topologies, and is very sensitive to specific parameter
choices such as the K value in K-walker. However, trust paths can be found
for low values of TTL in scale-free topologies–this indicates that the time it

120 E.R. de Mello, A. van Moorsel, and J. da Silva Fraga

 10

 100

 1000

 10000

 100000

 2 3 4 5 6 7

N
um

be
r

of
 m

es
sa

ge
s

TTL

Gnutella
K-walkers=70%
Gnutella+Cache
Selective=70%

K-walkers=50%
Selective=50%

Ultrapeers
Selective=10%

K-walkers=10%

Fig. 3. Number of messages under different TTL values: Scale free topology – Distance
= 4 hops

takes to discover a trust path will be less for the scale-free topology, and this
also indicates that the expanding ring approach will work well for the scale-free
topology.

Performance of individual algorithms. The distributed flooding algorithm
(labelled ‘Gnutella’ in figures and tables) is known to be expensive in terms
of the amount of messages used, and certainly for the scale-free topology our
results confirm this insight. Instead, it is better to limit the number of forwarded
messages using selective or K-walker with values as low as 10% (as long as the
topology is scale-free). Flooding with caching (‘Gnutella + Cache’) did not differ
much from Gnutella, except in terms of the number of paths found, a result we
discuss in more detail below. We obtained the results for the caching algorithm
as follows. We conducted several consecutives searches using the same origin
and target nodes. The values obtained with the first search were cached. In the
second search each node that has the trust path to the target in its cache will
reply with this answer. The same query was repeated until every neighbour of
the source node obtained cached results. In our test environment we needed four
consecutive queries, at which moment we obtained the results presented in the
tables and figures.

As we mentioned above, selective querying or K-walker algorithms are natural
alternatives for flooding, typically outperforming it. However, selective querying
proves a more stable solution, in that K-walker can lead to very poor and hard
to predict results in terms of the number of messages needed. To find one trust

Evaluation of P2P Search Algorithms for Discovering Trust Paths 121

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 2 4 6 8 10 12 14 16 18 20

Gnutella
Gnutella+Cache
K-walkers=10%
K-walkers=50%
K-walkers=70%
Selective=10%
Selective=50%
Selective=70%

Ultrapeer

Fig. 4. Number of messages for different number of discovered trust paths: Scale-free
graph topology – Distance = 4 hops

path with K = 50% in the random graph topology leads to a worst case scenario
(9000 messages, quadruple the number needed by Gnutella). In our simulation,
selective querying forwards to the nodes with the higher number of neighbours
(as opposed to the randomly selected neighbours in K-walker), and that pays off
in the random graph topology as well.

The ultra-peers algorithm in the random graph topology uses an amount of
message very similar to the Gnutella protocol. However, in scale free graphs this
algorithm got superior results, with trust paths found in as little as 15 messages.
The reason for this is that we select the nodes with the highest number of
neighbours as ultra peers, a fact that hardly helps if the topology is random, but
works very well in the scale-free case.

In a practical implementation one needs a mechanism to increase the TTL
value using expanding rings (or use one of the more advanced suggestions in
[14]). The results for expanding ring are the sum of the results for individual
TTL values. Therefore, it is important that an algorithm finds the trust path
for a low value of TTL. In that respect, the results for the scale-free topology
compare favourably to those for the random topology. So, even though selective
forwarding to 50% of the neighbours in the random topology, with TTL equal to
32 may require as little as 200 messages, following the expanding ring approach
the search would have to be repeated for increasing TTL values, thus proving
costly after all. The scale-free topology, on the other hand, requires only few
iterations in the expanding ring approach because the TTL needed is low.

122 E.R. de Mello, A. van Moorsel, and J. da Silva Fraga

Discovery of multiple trust paths. One can argue that if multiple trust
paths to the target are known, one can place more trust in the target. How to
quantify trust as a function of the number of paths is beyond the scope of this
paper, but it is of interest to study the performance of the various algorithms
when multiple paths should be found. Figure 4 shows for the scale-free topology
the number of messages needed to discover multiple paths. We see that the
algorithms differ little except for the cached and ultra-peer variants. It seems
that when multiple paths need to be found, we come closer to a situation of
exhaustive search throughout the network, at which time the chosen algorithm
becomes unimportant. It therefore seems inevitable that hierarchical or caching
solutions are implemented if the objective is to find more than one trust path to
targets.

5 Conclusions

P2P search algorithms are obvious candidates for discovering trust paths in dis-
tributed versions of the web of trust, and we therefore present in this paper a
performance comparison of P2P search algorithms when applied to the trust
path discovery problem. From our experiments we conclude that the algorithms
perform relatively well for a scale-free network topology, especially when com-
pared to traditional file sharing applications, and we argued that the reason for
this is that replication of resources has no counterpart in trust path discovery.
We also saw that in trust path discovery the performance of restrictive forward-
ing algorithms such as K-walker can be extremely sensitive to the value of K,
the amount of nodes to which a query is forwarded. Furthermore, we obtained
results that indicate that when one is interested in discovering multiple trust
paths, most algorithms become prohibitively expensive and instead ultra-peer
or caching alternatives need to be explored.

References

1. Patil, V., Shyamasundar, R.: Trust management for e-transactions. Sadhana 30(2-
3), 141–158 (2005)

2. Housley, R., Polk, W., Ford, W., Solo, D.: Internet X. 509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL) Profile. IETF RFC 3280 (April
2002)

3. Zimmerman, P.: PGP User’s Guide. Massachusetts Institute of Technology (May
1994)

4. Ellison, C.M., Frantz, B., Lampson, B., Rivest, R., Thomas, B.M., Ylonen, T.:
SPKI Certificate Theory. Internet Engineering Task Force RFC 2693 (September
1999)

5. Rivest, R.L., Lampson, B.: SDSI – A simple distributed security infrastructure. In:
Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, Springer, Heidelberg (1996)

6. Jøsang, A., Keser, C., Dimitrakos, T.: Can we manage trust? In: Herrmann, P.,
Issarny, V., Shiu, S.C.K. (eds.) iTrust 2005. LNCS, vol. 3477, pp. 93–107. Springer,
Heidelberg (2005)

Evaluation of P2P Search Algorithms for Discovering Trust Paths 123

7. Skogsrud, H., Benatallah, B., Casati, F.: Model-driven trust negotiation for web
services. In: IEEE Internet Computing, pp. 45–52. IEEE Computer Society Press,
Los Alamitos (2003)

8. Spantzel, A.B., Squicciarini, A.C., Bertino, E.: Integrating federated identity man-
agement and trust negotiation. Technical Report 2005-46, CERIAS – Purdue Uni-
versity (2005)

9. Winslett, M., Yu, T., Seamons, K.E., Hess, A., Jacobson, J., Jarvis, R., Smith,
B., Yu, L.: Negotiating trust on the web. In: IEEE Internet Computing. 6(6), pp.
30–37. IEEE Computer Society Press, Los Alamitos (2002)

10. Atif, Y.: Building trust in E-commerce. IEEE Internet Computing 6(1), 18–24
(2002)

11. de Mello, E.R., da Silva Fraga, J., Santin, A.O.: O uso do spki/sdsi em redes p2p.
In: I Workshop sobre Redes Peer-to-Peer (WP2P’05), Fortaleza, CE - Brasil, XXIII
Simpósio Brasileiro de Redes de Computadores (SBRC’05) (2005)

12. Santin, A.O., da Silva Fraga, J., Siqueira, F., de Mello, E.R.: Federation web:
A scheme to compound authorization chains on large-scale distributed systems.
In: 22nd Symposium on Reliable Distributed Systems (SRDS’03), Florence - Italy
(2003)

13. Gkantsidis, C., Mihail, M., Saberi, A.: Random walks in peer-to-peer networks. In:
INFOCOM (2004)

14. Lv, Q., Cao, P., Cohen, E., Li, K., Shenker, S.: Search and replication in unstruc-
tured peer-to-peer networks. In: Proceedings of the 16th international conference
on Supercomputing, pp. 84–95 (2002)

15. Zhuang, Z., Liu, Y., Xiao, L., Ni, L.M.: Hybrid periodical flooding in unstructured
peer-to-peer networks. In: ICPP, pp. 171–178. IEEE Computer Society Press, Los
Alamitos (2003)

16. Penning, H.P.: Analysis of the strong set in the pgp web of trust (2006),
http://www.cs.uu.nl/people/henkp/henkp/pgp/pathfinder/plot/

17. Burrows, M., Abadi, M., Needham, R.: A logic of authentication. ACM Trans. on
Computer Sys. 8(1), 18 (1990)

18. Jøsang, A., Pope, S.: Semantic Constraints for Trust Transitivity. In: Research and
Practice in Information Technology, vol. 43, ACS, Newcastle, Australia (2005)

19. Gnutella: The Gnutella Protocol Specification v0.4. Clip2 (2001)
20. Rowstron, A., Druschel, P.: Pastry: scalable, decentraized object location and rout-

ing for large-scale peer-to-peer systems. In: Proceedings of the 18th IFIP/ACM In-
ternational Conference on Distributed Systems Platforms (Middleware), November
2001 (2001)

21. Stoica, I., Morris, R., Liben-Nowell, D., Karger, D.R., Kaashoek, M.F., Dabek,
F., Balakrishnan, H.: Chord: a scalable peer-to-peer lookup protocol for internet
applications. IEEE/ACM Trans. Netw 11(1), 17–32 (2003)

22. Chawathe, Y., Ratnasamy, S., Breslau, L., Lanham, N., Shenker, S.: Making
gnutella-like P2P systems scalable. In: Proceedings of the ACM SIGCOMM 2003
Conference on Applications, Technologies, Architectures, and Protocols for Com-
puter Communication, pp. 407–418. ACM Press, New York (2003)

23. Jiang, H., Jin, S.: Exploiting dynamic querying like flooding techniques in un-
structured peer-to-peer networks. In: ICNP, pp. 122–131. IEEE Computer Society
Press, Los Alamitos (2005)

24. Yang, B., Garcia-Molina, H.: Improving search in peer-to-peer networks. In:
ICDCS, pp. 5–14 (2002)

25. Kazaa media desktop (2001), http://www.kazaa.com

http://www.cs.uu.nl/people/henkp/henkp/pgp/pathfinder/plot/
http://www.kazaa.com

124 E.R. de Mello, A. van Moorsel, and J. da Silva Fraga

26. Albert, R., Barabási, A.L: Statistical mechanics of complex networks. Reviews of
Modern Physics 74, 47 (2002)

27. Milgram, S.: The small world problem. Psychology Today 1, 61 (1967)
28. Capkun, S., Buttyan, L., Hubaux, J.P.: Small worlds in security systems: an

analysis of the PGP certificate graph. In: Proceedings of the 2002 New Security
Paradigms Workshop, September 2002, pp. 28–35 (2002)

29. Gnumap project (2002), http://home.comcast.net/∼gregory.bray
30. Peersim p2p simulator (2004), http://peersim.sourceforge.net
31. Jesi, G.P.: Peersim howto: Build a new protocol for the peersim 1.0 simulator

(December 2005)

http://home.comcast.net/~gregory.bray
http://peersim.sourceforge.net

Building Online Performance Models of Grid
Middleware with Fine-Grained Load-Balancing:

A Globus Toolkit Case Study

Ramon Nou1, Samuel Kounev2, and Jordi Torres1

1 Barcelona Supercomputing Center (BSC), Technical University of Catalonia (UPC)
Barcelona Spain

{rnou,torres}@ac.upc.edu
2 University of Cambridge Computer Laboratory, Cambridge, CB3 0FD UK

skounev@acm.org

Abstract. As Grid computing increasingly enters the commercial domain, per-
formance and Quality of Service (QoS) issues are becoming a major concern. To
guarantee that QoS requirements are continuously satisfied, the Grid middleware
must be capable of predicting the application performance on the fly when de-
ciding how to distribute the workload among the available resources. One way
to achieve this is by using online performance models that get generated and an-
alyzed on the fly. In this paper, we present a novel case study with the Globus
Toolkit in which we show how performance models can be generated dynam-
ically and used to provide online performance prediction capabilities. We have
augmented the Grid middleware with an online performance prediction compo-
nent that can be called at any time during operation to predict the Grid perfor-
mance for a given resource allocation and load-balancing strategy. We evaluate
the quality of our performance prediction mechanism and present some experi-
mental results that demonstrate its effectiveness and practicality. The framework
we propose can be used to design intelligent QoS-aware resource allocation and
admission control mechanisms.

1 Introduction

Having established itself as a major computing paradigm for advanced science and en-
gineering, Grid computing is now promising to become the future computing paradigm
for enterprise computing and distributed system integration [1,2]. By enabling flexible,
secure and coordinated sharing of resources and services among dynamic collections of
disparate organizations and parties, Grid computing provides a number of advantages
to businesses, for example faster response to changing business needs, better utiliza-
tion and service level performance, and lower IT operating costs [2]. However, as Grid
computing increasingly enters the commercial domain, performance and QoS (Quality
of Service) aspects, such as customer observed response times and throughput, are be-
coming a major concern. The inherent complexity, heterogeneity and dynamics of Grid
computing environments pose some challenges in managing their capacity to ensure
that QoS requirements are continuously met.

K. Wolter (Ed.): EPEW 2007, LNCS 4748, pp. 125–140, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

126 R. Nou, S. Kounev, and J. Torres

Enterprise grids are typically composed of heterogeneous components deployed in
disjoint administrative domains, in highly distributed and dynamic environments. The
resource allocation and job scheduling mechanisms used at the global and local level
play a critical role for the performance and availability of Grid applications [3]. To
prevent resource congestion and unavailability, it is essential that admission control
mechanisms are employed by local resource managers. Furthermore, to achieve max-
imum performance, the Grid middleware must be smart enough to schedule tasks in
such a way that the workload is load-balanced among the available resources and they
are all roughly equally utilized. However, in order to guarantee that QoS requirements
are satisfied, the Grid middleware must be capable of predicting the application perfor-
mance when deciding how to distribute the workload among the available resources.
Prediction capabilities are prerequisite to implementing intelligent QoS-aware resource
allocation and admission control mechanisms.

Performance prediction in the context of traditional enterprise systems is typically
done by means of performance models that capture the major aspects of system behav-
ior under load [4]. Numerous performance prediction and capacity planning techniques
for conventional distributed systems, most of them based on analytic or simulation mod-
els, have been developed and used in the industry. However, these techniques generally
assume that the system is static and that dedicated resources are used. To address the
need for performance prediction in Grid environments, new techniques are needed that
use performance models generated on the fly to reflect changes in the environment. The
term online performance models was recently coined for this type of models [5]. The
online use of performance models defers from their traditional use in capacity plan-
ning in that configurations and workloads are analyzed that reflect the real system over
relatively short periods of time. Since performance analysis is carried out on the fly,
it is essential that the process of generating and analyzing the models is completely
automated.

In this paper, we present a case study with the Globus Toolkit [6], the world’s leading
open-source framework for building Grid infrastructures. We have augmented the Grid
middleware with an online performance prediction component that can be called at any
time during operation to predict the Grid performance for a given resource allocation
and load-balancing strategy. The case study shows how performance models can be
generated dynamically and used to provide online performance prediction capabilities.
We employ hierarchical queueing Petri net models that are dynamically composed to
reflect the system configuration and workload. Queueing Petri nets make it possible to
accurately model the behavior of our resource allocation and load balancing mechanism
which combines hardware and software aspects of system behavior. Moreover, queue-
ing Petri nets have been shown to lend themselves very well to modeling distributed
component-based systems [7] which are commonly used as building blocks of Grid in-
frastructures [8]. We have evaluated the quality of our online performance prediction
mechanism and present some results that demonstrate its effectiveness and practicality.
The framework presented in this paper can be used as a basis to implement intelligent
mechanisms for QoS-aware resource allocation, load-balancing and admission control.
Finally, although our approach is targeted at Grid computing environments, it is not in

Building Online Performance Models of Grid Middleware 127

any way limited to such environments and can be readily applied in the context of more
general Service-Oriented Architectures (SOA).

The paper is structured as follows. We start by introducing the Globus Toolkit and
discussing some of our previous work related to the paper in Section 2. Section 3
presents our approach to online performance prediction. In Section 4, we present our
case study and the experimental evaluation of our performance prediction mechanism.
Finally, in Section 5 we present some concluding remarks and discuss our future work.

2 The Globus Toolkit

The Globus Toolkit (GT) is a community-based, open-architecture, open-source set of
services and software libraries that support Grids and Grid applications [6]. The toolkit
addresses issues of security, information discovery, resource management, data man-
agement, communication, fault detection, and portability. Globus Toolkit mechanisms
are in use at hundreds of sites and by dozens of major Grid projects worldwide.

RunQueues

Job prep
are

d

Returns

Client StageOut

Start

StageIn

Submit

Waiting

Active

CleanUp

FileCleanUp

CacheClearUp

Done

...

Globus Toolkit Node

SSL/SOAP

SSL/SOAP

Service Threads

G
row

s

Submit

Finish

Fig. 1. Job Workflow in Globus Toolkit 4

Unfortunately, despite its popularity and success, the current implementation of the
Globus Toolkit (GT4) exhibits very poor performance and reliability when the Grid
middleware is overloaded. In our previous work [9,10], we have studied the behavior
of Globus under heavy load and proposed enhancing the Grid middleware with a self-
management layer to improve its performance and reliability under load [11]. In this
paper, we show how the Grid middleware can be further enhanced with online perfor-
mance prediction capabilities that are required in order to implement intelligent QoS

128 R. Nou, S. Kounev, and J. Torres

control mechanisms. We plan to use the online performance prediction framework pro-
posed in this paper to extend our self-management layer with some more sophisticated
QoS-aware resource allocation and admission control mechanisms.

We now take a brief look at the internal flow of control in Globus when processing
jobs. Figure 1 shows the workflow of a job executed by Globus. When a client submits
a job to a Globus server (using the globusrun-ws interface in its non-batch working
mode), the job is picked by a ServiceThread which performs an SSL handshake. After
the handshake, the SOAP request is parsed preparing the job for execution. The job is
then started and proceeds through several stages as shown in Figure 1. At each stage the
job is placed in a RunQueue and processed by a pool of threads. The most important
stage is when the job is executed at the OS level. This is done by a separate OS pro-
cess forked by Globus. After the job execution finishes, it goes through several clean
up stages (RunQueues) and finally a ServiceThread generates the SOAP response and
sends it back to the client.

3 Modeling Approach

Formally, a Grid environment based on the Globus Toolkit can be represented as a
4-tuple G = (S,V,F,C) where:

S = {s1,s2, ...,sm} is the set of Grid servers,
V = {v1,v2, ...,vn} is the overall set of services offered by the Grid servers,
F ∈ [S −→ 2V]1 is a function assigning a set of services to each Grid server. Since Grids

are typically heterogeneous in nature, we assume that, depending on the platform
they are running on, Grid servers might offer different subsets of the overall set of
services,

C = {c1,c2, ...,cl} is the set of currently active client sessions. Each session c ∈C is a
tuple (v,λ) where v ∈V is the service used and λ is the rate at which requests for
the service arrive.

3.1 Scheduling Mechanism

We have implemented a configurable service request dispatcher that provides a flexible
scheduling and load-balancing mechanism for service requests. It is assumed that for
each client session, a given number of threads (from 0 to unlimited) is allocated on
each Grid server offering the respective service. Incoming service requests are then
load-balanced across the servers according to thread availability. Threads serve to limit
the concurrent requests executed on each server, so that different scheduling strategies
can be enforced.

A scheduling strategy can be represented by a function T ∈ [C×S −→N0 ∪{∞}]
which will be referred to as thread allocation function. The service request dispatcher
queues incoming service requests (as part of a client session) and schedules them for
service at the Grid servers as threads become available. Note that threads are used here

1 2V denotes the set of all possible subsets of V , i.e. the power set.

Building Online Performance Models of Grid Middleware 129

as a logical entity to enforce the desired concurrency level on each server. Thread man-
agement is done entirely by the service request dispatcher and there is no need for Grid
servers to know anything about the client sessions and how many threads are allocated
to each of them. While the service request dispatcher might use a separate physical
thread for each logical thread allocated to a session, this is not required by the archi-
tecture and there are many ways to avoid doing this in the interest of performance. For
maximum scalability, multiple service request dispatchers can be instantiated and they
can be distributed across multiple machines if needed.

Service request dispatchers completely decouple the Grid clients from the Grid
servers which provides some important advantages that are especially relevant to com-
mercial Grid environments. First of all, the decoupling enables us to introduce fine-
grained load-balancing at the service request level, as opposed to the session level.
Second, service request dispatchers make it possible to load-balance requests across
heterogeneous server resources without relying on any platform-specific scheduling
or load-balancing mechanisms. Finally, since clients do not interact with the servers
directly, it is possible to adjust the resource allocation and load-balancing strategies
dynamically.

3.2 Online Performance Prediction

In order to enhance the Grid middleware with online performance prediction capabili-
ties, we have developed an online performance prediction component that can be called
at any time during operation to predict the Grid performance for a given scheduling
strategy represented by a thread allocation function T . Performance prediction is car-
ried out by means of an online performance model generated and analyzed on the fly.
The online performance prediction component can be used to find an optimal schedul-
ing strategy that satisfies the client SLAs under given resource utilization constraints.
Based on this, intelligent QoS-aware admission control mechanisms can be developed.
For example, when a client sends a request to start a new session, the scheduler can
reject the request if it is not able to find a scheduling strategy that satisfies the client
SLAs. The design of intelligent mechanisms for QoS control is outside the scope of
this paper. In the following, we focus on the performance prediction component and
evaluate its effectiveness in the context of a real-life Globus deployment.

The performance prediction component is made of two subcomponents - model gen-
erator and model solver. The model generator automatically constructs a performance
model based on the active client sessions and the available Grid servers. The model
solver is used to analyze the model either analytically or through simulation. Differ-
ent types of performance models can be used to implement the performance predic-
tion component. In this paper, we use Queueing Petri Nets (QPNs) which provide
greater modeling power and expressiveness than conventional modeling formalisms
like queueing networks, extended queueing networks and generalized stochastic Petri
nets [12,13,14]. In [7], it was shown that QPN models lend themselves very well to
modeling distributed component-based systems and provide a number of important
benefits such as improved modeling accuracy and representativeness. The expressive-
ness that QPNs models offer makes it possible to model the logical threads used in
our scheduling mechanism accurately. Depending on the size of QPN models, different

130 R. Nou, S. Kounev, and J. Torres

Client Service
Queue

Grid Server 1

Grid Server N

Server 1
Thread Pool

Server N
Thread Pool

t1 t2 t3

Service Request Dispatcher

Fig. 2. High-level QPN model of the Grid environment

methods can be used for their analysis, from product-form analytical solution meth-
ods [15] to highly optimized simulation techniques [16].

Figure 2 shows a hierarchical QPN model of a set of Grid servers accessed through
our service request dispatcher. The Grid servers are modeled with nested QPNs repre-
sented as subnet places. The Client place contains a G/G/∞/IS queue which models the
arrival of service requests sent by clients. Service requests are modeled using tokens of
different colors, each color representing a client session. For each active session, there
is always one token in the Client place. When the token leaves the Client queue, tran-
sition t1 fires moving the token to place Service Queue (representing the arrival of a
service request) and depositing a new copy of it in the Client queue. This new token
represents the next service request which is delayed in the Client queue for the request
interarrival time. An arbitrary request interarrival time distribution can be used. For each
Grid server, the service request dispatcher has a Server Thread Pool place containing
tokens representing the logical threads on this server allocated to the different sessions
(using colors to distinguish between them). An arriving service request is queued at
place Service Queue and waits until a thread for its session becomes available. When
this happens, the request is sent to the subnet place representing the respective Grid
server. After the request is processed, the logical service thread is returned back to
the thread pool from where it was taken. By encapsulating the internal details of Grid
servers in separate nested QPNs, we decouple them from the high-level performance
model. Different servers can be modeled at different level of detail depending on the
complexity of the services they offer.

At each point in time, the online performance prediction component keeps track of
the active client sessions and the currently available Grid servers. It is assumed that
when servers are added to the Grid, for every server a performance model is provided
in the form of a nested QPN that captures the server capacity and its internal behavior
when processing service requests. When invoked, the performance prediction compo-
nent uses the models of the Grid servers to dynamically construct an up-to-date model

Building Online Performance Models of Grid Middleware 131

of the Grid environment that reflects the current workload (in terms of active client
sessions) and the currently available server resources. The model is constructed by in-
tegrating the Grid server models into the high-level QPN model discussed above. The
model generation and analysis is completely automated and happens on the fly.

4 Case Study

In this section, we present our case study of a deployment of GT4 which we have
enhanced with online performance prediction functionality as described in the previous
section. We evaluate the quality of our performance prediction mechanism and present
some experimental results that demonstrate its effectiveness. Our testing environment
depicted in Figure 3 consists of two heterogeneous Grid servers, the first one 2-way
Pentium Xeon at 2.4 GHz with 2 GB of memory and the second one 4-way Pentium
Xeon at 1.4 GHz with 4 GB of memory. Both servers run Globus Toolkit 4.0.3 (with
the latest patches) on a Sun 1.5.0 06 JVM. The Grid clients are emulated on a separate
machine with identical hardware as the first Grid server. The machines communicate
over a Gigabit network.

1Gb Ethernet Switch

4-way Pentium Xeon 1.4GHz
4 GB RAM

Globus Toolkit 4.0.3

2-way Pentium Xeon 2.4GHz
2 GB RAM

Globus Toolkit 4.0.3

2-way Pentium Xeon 2.4GHz
2 GB RAM

Client Emulator
Service Request Dispatcher

Fig. 3. High-level view of our testing environment

4.1 Workload Characterization

As a basis for our experiments, we use several sample jobs each executing some busi-
ness logic requiring a given amount of CPU time. Some of the jobs include calls to
external (third-party) service providers that are not part of the Grid environment. In
order to build performance models of the two Grid servers, we must first characterize
their workload in terms of the service demands of the jobs they execute.

There are several approaches to determining the CPU service demands. The most
reliable method is to use a Globus profiler to measure the CPU service times directly.
We can use the BSC Monitoring Framework (BSC-MF) [9] developed at the Barcelona
Supercomputing Center in conjunction with the Paraver performance analysis tool [17].
Another approach which does not require profiling Globus is to estimate the service

132 R. Nou, S. Kounev, and J. Torres

times based on measured CPU utilization and job throughput data. This approach is
very general and does not require any profiling tools. For each job type, an experiment
is run injecting jobs of the respective type. Based on the utilization law [18], we can
then compute the average job service demand D as the ratio of the measured CPU
utilization U to the job throughput X . In certain cases, techniques can be employed
that help to estimate the service demands without the need to do any measurements on
the system [19]. Such techniques are based on analyzing the business logic that jobs
execute at the source code level.

Table 1 shows the service demands of the sample jobs we analyzed. For each job
type, the internal job processing CPU time is shown, the time waited for external ser-
vice providers, the measured total job CPU service demand and the job management
overhead introduced by Globus. The overhead is consistently around 1 second across
the seven job types.

Table 1. Estimated job service demands and Globus processing overhead (sec)

Job A B C D E F G

Internal job processing CPU time 20.00 10.00 6.00 5.00 4.00 1.00 0.50
External service provider time 5.00 0.00 2.00 0.00 3.00 0.20 0.00
Job CPU service demand 21.00 11.00 6.89 5.84 4.79 1.93 1.54
Globus management overhead 1.00 1.00 0.89 0.84 0.79 0.93 1.04

In the rest of the case study, we concentrate on the middle three jobs (C, D and E),
which we analyze in more detail. We assume that these jobs are exposed as three sep-
arate services offered by the Grid servers. Table 2 shows the service demands of the
three services at the two Grid servers.

Table 2. Service demands of workload services (sec)

Service Service 1
(Job C)

Service 2
(Job E)

Service 3
(Job D)

CPU service demand on the 2-way server 6.89 4.79 5.84
CPU service demand on the 4-way server 7.72 5.68 6.49
External service provider time 2.00 3.00 0.00

4.2 Grid Server Models

We assume that when Grid servers join the Grid they first register with the online
performance prediction component responsible for the local environment. Each server
provides a performance model in the form of a nested QPN that captures its internal
behavior when processing service requests. When invoked, the performance prediction
component dynamically constructs an up-to-date model of the Grid environment by
integrating the Grid server models into the high-level model presented in Section 3.2
(see Figure 2). The two servers used in our case study were each modeled using a

Building Online Performance Models of Grid Middleware 133

nested QPN as shown in Figure 4. Service requests arriving at a Grid server circulate
between queueing place Server CPUs and queueing place Service Providers, which
model the time spent using the server CPUs and the time spent waiting for external ser-
vice providers, respectively. Place Server CPUs contains a G/M/m/PS queue where m
is the number of CPUs, whereas place Service Providers contains a G/M/∞/IS queue.
The service times of service requests at these queues are set according to the mea-
sured service demands shown on Table 2. For simplicity, we assume that the service
times at the server CPUs, the request interarrival times and the times spent waiting for
external service providers are all exponentially distributed. In the general case this is
not required. The firing weights of transition t2 are set in such a way that place Ser-
vice Providers is visited one time for Services 1 and 2 and it is not visited for Ser-
vice 3. The model solver component of the performance prediction component was
implemented using SimQPN - our highly optimized simulation engine for QPNs [16].

�������
��	��
���

�
��� ������������
����

���
�������

�
�

�
�

�
�

��������

����������

�

Fig. 4. Grid server QPN model

Before the Grid server models can be used for performance prediction they must
be validated. This is normally done by comparing the model predictions against mea-
surements on the real system. Our initial attempts to validate the model revealed that
predictions were accurate in scenarios with no limitation on the number of concurrently
scheduled requests and much less accurate in scenarios with limited number of threads
allocated to client sessions (see Section 3.1). Table 3 shows four of the scenarios we
considered. Given that for some scenarios the error was higher than 15%, the models
could not pass our initial validation attempt. To investigate the problem, we analyzed
the internal behavior of Globus when processing service requests. Figure 5 shows the
stages and the CPU usage during the processing of a request for Service 3 (job D) in
isolation. This view was obtained from a trace generated by BSC-MF [9] and processed
using Paraver [17]. The black zones show periods when a CPU was used and the zones
in between, marked with red horizontal lines, correspond to periods during which all
CPUs were idle (in total about 1 sec). The idle CPU periods were occurring during job

134 R. Nou, S. Kounev, and J. Torres

state transitions. Note that the service was executed in single user mode and therefore
the idle CPU periods were not being caused by contention for software or hardware re-
sources, neither were they being caused by I/O, since the disk utilization was negligible.
Taking these “hidden internal delays” introduced by Globus into account helped us to
understand why the model predictions were much less accurate in the case with limited
concurrency. Indeed in this case, given that there are limited threads available and client
requests have to wait at the service request dispatcher to obtain a thread, a difference
of 1 sec in the time spent by jobs on the server obviously would have a much bigger
impact on the overall response time than in the case with unlimited threads. Monitoring
Globus under load with multiple concurrent requests revealed that the idle CPU periods
during service execution were pretty much constant and were not affected much by the
workload intensity or transaction mix. Having concluded this, we decided to calibrate
our models by introducing an additional 1 sec delay during service execution. For sim-
plicity, we added this delay to the time waited in place Service Providers. After this
calibration, the discrepancy between the model predictions and measurements on the
real system disappeared.

Table 3. Model predictions before calibration

Services No of threads
allocated

Request interarrival
time (sec)

Request
response time (sec)

Error (%)

measured predicted
2 unlimited 4 11.43 10.47±0.033 8.3%
1—3 unlimited 8 / 8 13.66 / 12.91 12.21±0.019 / 11.17±0.031 11% / 13%
3 5 2.5 10.93 8.14±0.030 25%
1—3 2/2 8 / 8 18.15 / 9.79 15.58±0.23 / 7.8±0.05 14.1% / 20.3%

Fig. 5. Paraver view of a job execution inside Globus

An alternative approach to model the Grid environment is to use a general purpose
simulation system such as OMNeT++ [20] which is based on message-passing. We
have used OMNeT++ successfully to model a Tomcat Web server [21] with software
admission control. Figure 6 compares the precision of interval estimates provided by
SimQPN and OMNeT++ when simulating a model of our Grid environment described
above with several concurrent client sessions. The precision is measured in terms of
the maximum width of 95% confidence intervals for job response times. For run times
below 1 second, SimQPN provided slightly wider confidence intervals than OMNeT++,
however, there was hardly any difference for run times greater than 1 second. At the
same time, while OMNeT++ results were limited to job response times, SimQPN results
were more comprehensive and included estimates of job throughputs, server utilization,

Building Online Performance Models of Grid Middleware 135

 0

 50

 100

 150

 200

 250

 300

 350

 1 10 100

P
re

ci
si

on
 (

m
ax

 c
.i.

 w
id

th
)

CPU Time

SimQPN OMNeT++

Fig. 6. Precision of interval estimates provided by SimQPN and OMNeT++ for a given simulation
run time (sec)

queue lengths, etc. Moreover, QPN models have the advantage that they are much easier
to build and, as discussed in Section 3.2, they can be hierarchically composed which
facilitates the dynamic model construction. The hierarchical composition is essential
since it introduces a clear separation of the high-level system model from the individual
Grid server models. The latter can be developed independantly without knowing in
which environment they will be used.

4.3 Experimental Results

We now evaluate the quality of our online performance prediction mechanism in the
context of the scenario described above. We have developed a client emulator frame-
work that emulates client sessions sending requests to the Grid environment. The user
can configure the target session mix specifying for each session the service used and
the time between successive service requests (the interarrival time). Client requests are
received by the service request dispatcher and forwarded to the Grid servers according
to the configured scheduling strategy as described in Section 3.1. Figure 7 illustrates
the flow of control when processing service requests.

Whenever the online performance prediction component is invoked, it uses the QPN
models of the Grid servers to dynamically construct a QPN model of the Grid environ-
ment that reflects the current workload in terms of active client sessions and the selected
scheduling strategy. The generated model is then analyzed by means of simulation us-
ing SimQPN. The method of non-overlapping batch means was used with a batch size
of 300 and the simulation was configured to run sequentially until the half-widths of
95% confidence intervals for response times dropped below half a second.

We used the online performance prediction component to predict the Grid perfor-
mance under a number of different workload and configuration scenarios varying the

136 R. Nou, S. Kounev, and J. Torres

Service Request
Dispatcher

Enforces configured concurrency
level for session n

Enforces configured concurrency
level for session m

Thread Pool for
session n

Thread Pool for
session m

GLOBUS
server 1

Service returns
and response

time is computed

Service returns
and response

time is computed

Service request queue
for session n

Service request queue
for session m

GLOBUS
server 2

Client Emulator

Session n emulator thread

Generates service requests with a
specified interarrival time

Session m emulator thread

Generates service requests with a
specified interarrival time

Fig. 7. Flow of control when processing service requests

session mix, the scheduling strategy and the number of servers available. Table 4
presents the results from an experiment in which the workload evolved through five
different stages each one with different session mix and duration between 1200 and
3600 seconds. In the beginning of each stage, the scheduling strategy was modified dy-
namically and the online performance prediction component was called to predict the
system performance on the fly. The average time needed to predict the system perfor-
mance (including model generation and analysis) was 6.12 seconds, the maximum was
12 seconds. Performance predictions were recorded and were later compared against
the actual performance measured during the run. The experiment was repeated multiple
times and exhibited negligible variation in the measured performance metrics. Table 4
shows the results from comparing the model predictions against the measurements on
the system. 95% confidence intervals for response times are provided. The mean mod-
eling error was only 7.9% (with standard deviation 6.08) and it did not exceed 22.5%
across all scenarios. We conducted a similar experiment for a number of different work-
load and configuration scenarios. The results from the analysis were of similar accuracy

Building Online Performance Models of Grid Middleware 137

Table 4. Comparison of model predictions against measurements on the real system

Services No of threads
allocated

Request
interarrival
time (sec)

Request
response time (sec)

Error (sec) Avg. CPU utilization

server 1 server 2 measured predicted measured predicted
1 3 2 12.5 13.86 13.23±0.591 +0.63 0.66 0.65
1 5 3 13 14.57 13.41±0.622 +1.16
2 2 4 11 11.36 10.63±0.432 +0.73
2 1 2 12 11.07 10.49±0.452 +0.58
2 5 4 15 12.49 10.99±0.453 +1.5
3 1 5 13 9.37 8.36±0.331 +1.01
3 1 2 16 9.41 8.53±0.363 +0.88
3 4 4 16 10.17 9.79±0.520 +0.38

1 1 10 12.5 11.61 11.13±0.597 +0.48 0.56 0.58
1 4 7 15 11.95 12.57±0.736 -0.62
2 8 6 15 12.20 10.45±0.567 +1.75
2 4 6 9 10.67 10.45±0.466 +0.22
2 3 8 15.5 10.59 10.39±0.542 +0.2
3 7 3 16 10.90 8.93±0.577 +1.97
3 10 2 12 11.67 9.01±0.508 +2.66

1 5 2 12.5 13.81 13.81±0.669 +0 0.64 0.66
1 2 1 13 13.76 14.19±0.750 -0.43
2 1 4 11 10.4 10.2±0.532 +0.2
2 1 5 12 10.3 10.18±0.507 +0.12
2 4 1 15 13.45 11.80±0.479 +1.65
3 1 1 13 9.61 9.7±0.504 -0.09
3 3 2 16 10.9 9.82±0.627 +1.08
3 2 2 16 9.51 9.57±0.617 -0.06

1 1 1 14.5 12.36 14.28±0.443 -1.92 0.61 0.63
1 3 2 17 13.40 13.2±0.393 +0.2
1 5 3 18 15.51 13.2±0.438 +2.31
2 5 1 15 13.19 11.5±0.336 +1.69
2 4 3 25 11.88 11.16±0.405 +0.72
2 1 3 15 10.29 10.13±0.302 +0.16
2 5 2 25.5 13.3 11.11±0.412 +2.19
3 4 4 16 9.48 9.66±0.317 -0.18
3 1 4 16 8.25 8.38±0.234 -0.13
3 3 3 25 8.65 9.56±0.340 -0.91

1 4 2 18.5 13.35 14.77±0.623 -1.42 0.64 0.65
1 4 5 15 12.05 14.56±0.618 -2.51
1 4 4 16 12.58 14.50±0.673 -1.91
2 1 2 15 10.67 10.78±0.460 -0.11
2 5 1 17 11.86 12.59±0.534 -0.73
2 2 2 19 11.09 11.51±0.492 -0.42
2 4 2 15.5 11.53 11.99±0.528 -0.46
3 2 5 16 9.42 10.1±0.475 -0.68
3 1 4 19 8.98 9.14±0.413 -0.16
3 3 5 23 8.92 10.57±0.535 -1.65

as the ones presented here and demonstrated the effectiveness of our performance pre-
diction mechanism. The computational overhead of the online performance prediction
component was measured to be less than 60 sec for scenarios with up to 40 Grid servers
and 80 concurrent sessions.

138 R. Nou, S. Kounev, and J. Torres

5 Conclusions and Future Work

In this paper, we presented a novel case study with the Globus Toolkit, the world’s lead-
ing open-source framework for building Grid infrastructures, in which we showed how
performance models can be generated dynamically and used to provide online perfor-
mance prediction capabilities. We have augmented the Grid middleware with an online
performance prediction component that can be called at any time during operation to
predict the Grid performance for a given resource allocation and load-balancing strat-
egy. The quality of our performance prediction mechanism has been evaluated under
a number of different workload and configuration scenarios varying the session mix,
the scheduling strategy and the number of servers available. We presented some exper-
imental results that demonstrated the effectiveness, practicality and performance of our
approach. The modeling error of predicted response times was only 7.9% on average
(with standard deviation of 6.08) and it did not exceed 22.5% across all considered sce-
narios. The framework we propose provides a basis for designing intelligent QoS-aware
resource allocation and admission control mechanisms.

Our performance prediction mechanism is based on hierarchical queueing Petri net
models that are dynamically composed to reflect the system configuration and work-
load. Using queueing Petri nets we could accurately model the resource allocation and
load balancing mechanism which combines hardware and software aspects of system
behavior. Moreover, queueing Petri nets provide great flexibility in choosing the level
of detail and accuracy at which system components are modeled. To the best of our
knowledge, this is the first application of queueing Petri nets as online performance
models.

The area considered in this paper has many different facets that will be subject
of future work. We are currently working on extending the Globus Toolkit with on-
line QoS control functionality. Based on the online performance prediction mechanism
proposed in this paper, we are building a framework for QoS-aware resource alloca-
tion and admission control. The framework includes an intelligent QoS broker com-
ponent that negotiates QoS goals and SLAs with Grid clients before making a com-
mitment. Taken collectively these enhancements will not only provide sophisticated
QoS control capabilities but can also be exploited to make the Grid middleware self-
configurable and adaptable to changes in the system environment and workload. An-
other aspect we intend to investigate is how our framework can be extended to take
into account the costs associated with using the Grid resources when negotiating QoS
targets.

Acknowledgments

This work was supported by the Spanish Ministry of Science and Technology, the
European Union under contract TIN2004-07739-C02-01, and the German Research
Foundation under grant KO 3445/1-1. We acknowledge the support of our colleague
Ferran Julià from the Technical University of Catalonia in resolving many technical
issues.

Building Online Performance Models of Grid Middleware 139

References

1. Foster, I., Kesselman, C., Nick, J.M., Tuecke, S.: Grid Services for Distributed System Inte-
gration. Computer 35(6), 37–46 (2002)

2. OGF: Open Grid Forum, http://www.ogf.org
3. Menascé, D., Casalicchio, E.: A Framework for Resource Allocation in Grid Computing. In:

Proceedings of the The IEEE Computer Society’s 12th Annual International Symposium on
Modeling, Analysis, and Simulation of Computer and Telecommunications Systems, IEEE
Computer Society Press, Los Alamitos (2004)

4. Menascé, D.A., Almeida, V.A.F., Dowdy, L.W.: Performance by Design. Prentice-Hall, En-
glewood Cliffs (2004)

5. Menascé, D., Bennani, M., Ruan, H.: On the Use of Online Analytic Performance Models
in Self-Managing and Self-Organizing Computer Systems. In: Babaoğlu, Ö., Jelasity, M.,
Montresor, A., Fetzer, C., Leonardi, S., van Moorsel, A.P.A., van Steen, M. (eds.) SELF-
STAR 2004. LNCS, vol. 3460, Springer, Heidelberg (2005)

6. Foster, I.T.: Globus Toolkit Version 4: Software for Service-Oriented Systems. In: Proceed-
ings of the 2005 IFIP International Conference on Network and Parallel Computing, pp. 2–13
(2005)

7. Kounev, S.: Performance Modeling and Evaluation of Distributed Component-Based Sys-
tems using Queueing Petri Nets. IEEE Transactions on Software Engineering 32(7), 486–502
(2006)

8. Foster, I., Kesselman, C.: The Grid 2: Blueprint for a New Computing Infrastructure. Morgan
Kaufmann, San Francisco (2003)

9. Nou, R., Julia, F., Carrera, D., Hogan, K., Caubet, J., Labarta, J., Torres, J.: Monitoring and
analysis framework for grid middleware. In: PDP, pp. 129–133. IEEE Computer Society, Los
Alamitos (2007)

10. Nou, R., Juliá, F., Torres, J.: Should the grid middleware look to self-managing capabilities?
In: The 8th International Symposium on Autonomous Decentralized Systems (ISADS 2007),
Sedona, Arizona (2007)

11. Nou, R., Juliá, F., Torres, J.: The need for self-managed access nodes in grid environments.
In: 4th IEEE Workshop on Engineering of Autonomic and Autonomous Systems (EASe
2007), IEEE Computer Society Press, Los Alamitos (2007)

12. Bause, F.: ”QN + PN = QPN” - Combining Queueing Networks and Petri Nets. Technical
report no.461, Department of CS, University of Dortmund, Germany (1993)

13. Bause, F., Buchholz, P., Kemper, P.: Integrating Software and Hardware Performance Models
Using Hierarchical Queueing Petri Nets. In: Proc. of the 9. ITG / GI - Fachtagung Messung,
Modellierung und Bewertung von Rechen- und Kommunikationssystemen (1997)

14. Kounev, S., Buchmann, A.: Performance modelling of distributed e-business applications us-
ing queuing petri nets. In: Proc. of the 2003 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS’03), mar 2003, IEEE Computer Society Press,
Los Alamitos (2003)

15. Bause, F., Buchholz, P.: Queueing Petri Nets with Product Form Solution. Performance Eval-
uation 32(4), 265–299 (1998)

16. Kounev, S., Buchmann, A.: SimQPN - a tool and methodology for analyzing queueing Petri
net models by means of simulation. Performance Evaluation 63(4-5), 364–394 (2006)

17. Jost, G., Jin, H., Labarta, J., Gimenez, J., Caubet, J.: Performance analysis of multilevel
parallel applications on shared memory architectures. International Parallel and Distributed
Processing Symposium (IPDPS), Nice, France (2003)

http://www.ogf.org

140 R. Nou, S. Kounev, and J. Torres

18. Denning, P.J., Buzen, J.P.: The Operational Analysis of Queueing Network Models. ACM
Computing Surveys 10(3), 225–261 (1978)

19. Menascé, D., Gomaa, H.: A Method for Desigh and Performance Modeling of Client/Server
Systems. IEEE Transactions on Software Engineering 26(11) (2000)

20. Varga, A.: The OMNeT++ discrete event simulation system. In: European Simulation Mul-
ticonference (ESM’2001) (June 2001)

21. Nou, R., Guitart, J., Torres, J.: Simulating and modeling secure web applications. In: Alexan-
drov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J.J. (eds.) ICCS 2006. LNCS,
vol. 3991, pp. 84–91. Springer, Heidelberg (2006)

K. Wolter (Ed.): EPEW 2007, LNCS 4748, pp. 141–153, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Performance Measuring Framework for Grid Market
Middleware

Felix Freitag1, Pablo Chacin1, Isaac Chao1, Rene Brunner1, Leandro Navarro1,
and Oscar Ardaiz2

1 Computer Architecture Department, Polytechnic University of Catalonia, Spain
{felix,pchacin,ichao,rbrunner,leandro}@ac.upc.edu

2 Department of Mathematics and Informatics, Public University of Navarra, Spain
oscar.ardaiz@unavarra.es

Abstract. Current implementations of Grid infrastructures provide frameworks
which aim at achieve on-demand computing. In such a scenario, contribution
and use of resources will be governed by business models. The challenge is to
provide multi-level performance information which enables the participation of
the different actors in such a system. In this paper we describe the performance
measuring framework developed for Grid Market Middleware, a middleware
which supports economic-model based selection of service-oriented Grid
applications. This middleware is a distributed infrastructure, which we have
implemented for providing a market of services and resources to be assigned to
Grid applications. The objectives of the performance measuring framework is
first to assess the behaviour of the middleware and the used economic models in
a deployed system, and secondly allow the provision of metrics for the
components of the middleware itself. We describe the design of the
performance measuring framework, its implementation and show its capability
and usefulness for our objectives by experiments.

Keywords: Multi-layer Performance Measurement, e-service Platforms, Grid
Middleware Architecture.

1 Introduction

In an on-demand scenario of service-oriented Grid applications, these applications
will need service and resource providers to participate in a distributed software
infrastructure. Clients will issue requests for Grid applications. The applications will
be built on the fly din terms of complex services executing a sequence of basic
services. Request for basic services are given to service providers and are executed on
contracted resources.

There is a need for platforms that support such an on-demand infrastructures,
where complex e-services can be assigned and executed. The resources need to be
dynamically obtained to satisfy the requirement of changing application requirements.
There is a need for technical openness and clear interfaces to the application level. At
the same time, there is a need for performance data that allows the participants
making an economic evaluation of their participation.

142 F. Freitag et al.

In this paper we describe the performance measuring framework implemented in
the Grid Market Middleware (GMM) [6] aiming at two objectives: 1) To obtain multi-
level performance data from the deployed system, and 2) to show that the data
obtained is useful for obtaining information about the system behaviour and its
economic models used. The context in which we are interested to make our evaluation
is that of the deployed middleware.

We have developed the Grid Market Middleware to support economic model based
selection of service-oriented Grid applications. This middleware is a distributed
infrastructure, which provides a market of services and resources to be assigned to
Grid applications. The implemented market structure applies decentralized economic
models based on bargaining [3]. The Grid Market Middleware offers an agent-based
framework for dynamic location and management of Grid services based on economic
criteria. It provides mechanisms to locate and manage the registered resources,
services and applications, locate other trading agents, engage agents in negotiations,
learn and adapt to changing conditions. Furthermore, the middleware offers a set of
generic negotiation mechanism, on which specialized strategies and policies can be
dynamically plugged in.

The presented performance measuring infrastructure for this middleware makes the
following contribution: 1) Its functionality is shown by achieving the goal of
detecting interesting behavior, such as load balancing. 2) It is a prototype that
implements an approach to obtain multi-level performance data provided by the
different layers of a distributed system, including application, middleware and base
platform.

The remaining sections of this paper are organized as follows. Section 2 presents
the Grid Market Middleware and the performance measuring goals. In section 3 we
describe the design of the implemented performance measuring framework. Section 4
shows experimental results obtained with the implemented performance measuring
infrastructure on the deployed middleware. Section 5 describes performance
measurement frameworks of related domains. Finally, section 6 presents our
conclusions.

2 Grid Market Middleware

2.1 Application Interaction with Grid Market Middleware

Grid Market Middleware as a software infrastructure, on which this performance
measuring framework targets, contains an application level and the middleware.
Figure 1 illustrates the interaction of the components on the application level with the
middleware. When a client issues a request, an application component determines
which Grid services are required to fulfill it. These Grid services represent both
software services (e.g. a mathematical algorithm) and computational resources. The
application service translates these requirements into a WS-Agreement format [16],
which is submitted to the Grid Market Middleware.

Once a request is received by the middleware, it searches among the available
service providers. When a suitable service provider is found, agents within the
middleware negotiate the application requirements. These agents act in behalf of the

 Performance Measuring Framework for Grid Market Middleware 143

Application

Grid Market Middleware

Service
Register

Service
Provider 1Request

Service allocation
(WS-Agreement)

Grid Service
description

Client

Service reference

Service
Provider n

Response

Access
Point

NegotiationAgent Agent

Service invocation

Service
instantiation

Fig. 1. Interaction between application and middleware

service providers as sellers and from the application perspective as buyers. Once an
agreement is reached between the trading agents, a Grid service instance is created
and a reference is returned to the application, which invokes it.

The middleware is designed in a layered architecture with the five layers shown in
figure 2. The application layer is for the domain specific end user application. The
applications interact with the Grid Market Middleware in order to obtain the Grid
services required. The Grid Market Middleware itself consists of three layers. Within
the Market Middleware, the economics algorithms layer implements the high level
economic behavior like negotiation and agent strategies. The economics framework
layer isolates these economic algorithms from the lower level technical details. The
P2P Agent layer provides decentralized resource discovery and network topology
maintenance. The base platform supports the application providing the hosting
environment for the Grid services. A detailed description of the middleware
architecture can be found in [1].

2.2 Middleware Implementation

The implementation of the middleware builds on the use of different middleware
toolkits, namely the DIET agent platform [2], JXTA [10] and the WSRF/OGSA

Applications

Base Platform

Grid Market Middleware
Economic Algorithms
Economic Framework

P2P Agents

Fig. 2. Layered middleware architecture

144 F. Freitag et al.

implementation offered by the Globus Toolkit 4 [5]. DIET provides a modular,
lightweight and scalable execution platform, JXTA offers a rich P2P networking
environment and GT4 provides full support for resource management in different
scenarios. The components of the middleware architecture have been implemented
and an application, which uses this middleware, has been adapted [9].

3 Performance Measuring Framework

The development of the performance measuring framework follows the following
approach. We define the goals and the metrics which should be obtained. We identify
the measurement points given the developed middleware infrastructure. We proceed
with the instrumentation and local data collection. Then, collecting and obtaining the
data at a central point is the next step. The evaluation of the data is the final step of
the process.

3.1 Goals of the Performance Measuring Framework

The framework should be able to provide a large number of diverse metrics: The
measurement should allow obtaining metrics both from the application, the
middleware, and the physical level (base platform). In addition, there is a need for
both technical and economic metrics. The economic metrics should be calculated
from the technical metrics obtained by the framework and should assist the decision
makers residing in the users (or applications). The framework should allow by means
of mainly technical parameters evaluating the infrastructure itself.

The instrumentation of the middleware and application needs to be done at
different levels. User agent related data is obtained at the application level. Technical
parameters concerning the middleware performance will need to be instrumented at
the corresponding levels of the middleware architecture. Finally, the monitoring of the
physical resources is done by accessing the base platform.

The component of the metrics framework at the node level should locally gather
the metrics obtained from the components working at the same node but at different
layers of the infrastructure. The metrics collection should be done centrally, aiming to
allow evaluating the prototype at this stage. Nevertheless, it is noted that the software
infrastructure should run in a distributed manner on physically different devices and
at a later stage with a potentially large number of nodes. For the prototype evaluation,
however, although it is distributed, the number of nodes is small, such that a
centralized approach for metrics collection at this stage appears acceptable.

The evaluation of these metrics, which are collected from the different nodes of the
middleware, is done at a central point. The analysis and evaluation of the middleware
is done off-line with external tools that provide the needed mathematical functions.
Especially the higher-level economic metrics [15], see also appendix for the metrics
pyramid, are computed off-line taking the raw data obtained from the performance
measuring infrastructure. The metrics, which the agents need to take decisions, should
be processed on-line by the agents themselves.

 Performance Measuring Framework for Grid Market Middleware 145

3.2 Metrics Definition

We assign metrics to the layers of the software infrastructure. Beginning with the
application layer (see also figure 1), there are a number of parameters to be measured
in the client (which represents the end user) and the application. The client and the
application perceive technical parameters, like the service provision rate, the ratio
between the number of requests and accepts, and the service provision time, the
duration for obtaining an accept. The client as end user will need to transform these
technical parameters into economic ones, consider the benefits and the efforts, in
order to determine the utility obtained by participating in this infrastructure. The
application will calculate economic parameters from the technical data, if a business
model for this component is defined.

Related to different levels of the middleware there are the following technical pa-
rameters: The discovery time refers to the time the middleware needs to find other
agents to negotiate with. The negotiation time indicates the duration of the negotiation
process. The negotiation process takes place in both the service and the resource mar-
ket. Each negotiation consists of several messages according to the bargaining strat-
egy. The message size is a parameter, which allows better describing the communi-
cation cost. The number of messages is another parameter concerning this cost. Load
balancing is a metrics that should assess the efficiency of the resource assignment
obtained with the Grid Market Middleware.

Concerning the base platform, the resource usage is measured. Initially, we focus
on cpu usage.

In Table 1 some of the metrics classified into layers are summarized.

Table 1. Summary of metrics in different layers

Layer Metrics
Application layer service provision rate

ratio between the number of requests and accepts
duration for obtaining an accept

Middleware layer discovery time
negotiation time
message size
number of messages

Base Platform layer resource usage

3.3 Instrumentation and Local Data Collector

In our approach, we took the design decision that data from one node should be
locally collected. This way, we obtain at each node an event trace, which includes the
metrics from the different middleware layers. Provision of these metrics is through
agents (figure 3). The event trace contains the time stamps of the events, the metrics
itself and a number of attributes like the agent number, transaction number, and
others, in order to allow a detailed analysis of the behavior. The local data collector
manages this data structure. In terms of implementation, a circular structure is used
such that its size is controlled.

146 F. Freitag et al.

Fig. 3. Local metrics collector

Access to this data structure is given in two ways. One hand, the data can be
written to a file (log file), and on the other hand the local data collector can send it
regularly to a global metrics collector located on a particular node.

3.4 Global Metrics Collector

The data obtained at the different nodes is send to the global metrics collector, which
resides on a particular node of the system. Data is send terms of a push mode: local
data collectors initiate the sending to the global collector according to a configured
behavior. The global metrics collector then processes and organizes the data into a
format suitable for external packages. For our purpose we use Matlab for the
evaluation of the data. We note that for larger scale usage beyond the current
experimental environment, the automation of the clock synchronization between the
nodes and the global metrics collector needs to be addressed.

4 Experimental Results

Given the developed prototype and the implemented measurement infrastructure, we
have carried out a number of experiments. These experiments aim to assure that the
components work correctly, that multi-level performance data can effectively be
obtained, and that this data is actually useful for the evaluation of the behaviour of the
middleware.

4.1 Setup of the Experiments

The particular goal of the experiment setting is to allow making an initial assessment
on the load balancing behavior of the GMM by means of the implemented
performance measuring framework.

The middleware uses as economic agents an implementation of the ZIP (Zero
Intelligence Plus) agents [13]. Clients initiate negotiations with a price lower than the

 Performance Measuring Framework for Grid Market Middleware 147

available budget. If they are not able to buy at that price, they increase their bids until
either they win or reach the budget limit.

Services start selling the resources at a price, which is influenced by the node's
utilization. Then, the pricing model is combined with the demand. If a service agent
sells its resources, it will increase the price to test to what extend the market is willing
to pay. When it no longer sells, it will lower the price until it becomes competitive
again or it reaches a minimum price defined by the current utilization of the resource.

We have deployed the Grid Market Middleware in a Linux server farm. Each
server has 2 Xeon processors and 2GB of memory. The machines in the server farm
are connected by an internal Ethernet network at 100Mbps.

Three basic services (BS) are deployed on three servers (BS-74 on node 74, BS-75
on node 75, BS-79 on node 79, respectively), and two complex services (CS) are
launched on two other servers (CS-72 on node 72, CS-73 on node 73, respectively).
On each machine with a BS we also deploy a web service representing the
application, which performs a CPU intensive calculation. These web services are
exposed in a Tomcat server. Access to execute these web services is what is
negotiated between complex services (buyer) and basic services (seller).

We run an artificial background load on two of the nodes (node 79, node 75)
configured for 50% and 100% CPU usage to simulate background activity. This is
chosen since in such a setting the behaviour of the agents should lead to load
balancing of the web service executions.

The experiments consist in launching 2 clients (represented by complex services
CS-72 and CS-73) concurrently as clients. Each client performs 50 requests in
intervals of 15 seconds. Whenever a client wins a bid with a service, it invokes the
web service in the selected node. The data obtained from the experiment with the
performance measuring infrastructure has been the following:

1. allocation: an entry by each successful negotiation with a basic service, reported
by the complex service

2. price: a periodic report of the price of the basic services
3. utilization: a periodic report of the CPU utilization given by the resource agents
4. negotiation.time: time needed to negotiate with a basic service, reported by the

complex service (transaction-based)
5. execution.time: time needed to actually execute the service, reported by the

somplex service (transaction-based)

We mention that the data used is mixed in nature in the sense that some metrics are

collected periodically (priceψand utilization), others are recorded after each
successful transaction (execution.time, negotiation.timeψand allocation).

4.2 Experimental Results

Figure 4 shows the load (% cpu usage) on the three nodes (74, 75, 76). A background
load of 50% and 100% in nodes 79 and 75, respectively, can be observed. The up-
going spikes which can be seen in the load of node 79 and node 74 correspond to the
execution of the negotiated web services on these nodes.

148 F. Freitag et al.

Fig. 4. Load on nodes 74, 75, and 79. Node 79 and node 75 are with 50% and 100%
background load, respectively

Figure 5 shows a zoom on the price of the basic services. It can be observed that
the price calculation of the agents takes into account the success of past negotiations,
where the price rise is made after a successful sale. The configured buyer price is 100
money units.

Fig. 5. Zoom on the price evolution of the basic services in nodes 74, 75, and 79

 Performance Measuring Framework for Grid Market Middleware 149

The next figure 6 is to assess the expected load balancing behavior, which we
should obtain with this setting. It can be seen that effectively the BS-74, which runs
on the least loaded node, makes most of the sales. And the BS-75, which runs on the
node with the highest background load, makes less sells than the other two basic
services. We can see that the performance measuring framework achieves one of our
goals which was revealing such behavior.

Fig. 6. Percentage of sales of the three basic services. BS-74 which resides on the least loaded
node, makes most of the sells.

Finally, in figure 7 we observe two metrics together: the successful sales by BS-74
and the execution of the sold service when invocated by the clients (the web service is
executed on the same node 74). Successful sales by the BS-74 are indicted with a star
symbol and are normalized here to the value 30 for easier visualization. It can be seen
that on each successful sale an execution of the web service follows. It can be seen
that the duration of the execution is approximately 4 seconds.

The experimental results demonstrate the two contributions we want to emphasize:
First, the measurement framework achieves obtaining multi-level performance data of
the distributed application. The data shown in the experiment is taken from the three
main levels of the architecture: The time of the web service execution is measured at the
application level. The evolution of prices is taken at the economics algorithm layer of
the middleware. Finally, the load at each node is taken from the base platform layer.
Secondly, the obtained data is useful for the analysis of the middleware and application
(the setting was deliberately chosen to force load balancing behavior). We have seen
that with the obtained data the expected behavior can effectively be observed.

150 F. Freitag et al.

Fig. 7. Successful sells of BS-74 and web service execution on node 74

4.3 Discussion

In this performance measuring framework one of the challenges is to obtain metrics
from all layers of the system. As such, this framework needs to go beyond existing
monitoring toolkits which mainly focus on the physical resources. For our purpose we
also need to include application and middleware data. The results obtained from the
implemented measuring framework experimental show that this has been achieved.

Another challenge relates to the usage of the metrics by the middleware (agents)
itself, such that there will be different destinations for some of these metrics. In this
sense, there is the central metrics collection point, to which (currently for evaluation
purpose) most of the data is sent and where the data is a posteriori analyzed and
evaluated. On the other hand, there are the participants (the applications) as
destination of metrics, since they need application layer metrics in order to take
decisions and evaluate their performance. This second challenge, to route data to
particular groups, has not been implemented yet in our framework. Our view on this
is to apply publish/subscribe mechanisms in order to assign metrics to groups.

Anther issue, which has already become important when we measured particular
agent strategies, is the scalability of the performance evaluation framework towards
the quantity of the measured data, since large amounts of data are already obtained.
This scalability problem affects the number of parameters which can be monitored,
and may require in the future additional solutions such as shown in [4] to tackle the
size of the traces obtained.

 Performance Measuring Framework for Grid Market Middleware 151

5 Related Work

Related work can be found in multi-agent systems (MAS), high-performance
computing and generic monitoring toolkits. Here we describe system from these
three domains which also target on the performance evaluation of distributed
systems.

In [7] the performance measuring system built into the Cougaar agent architecture
is described. Cougaar belongs to distributed multi-agent systems (MAS). Like the
GMM, it has been implemented 100% in Java. For performance measurement of
Cougaar the authors decided to develop a custom-made performance measuring
system which has been built into the system architecture. Cougaar also considers
multiple data categories which are accessed via channels. The need for flexibility with
respect to where to carry out the data processing, the access by semantics to
categories, and dynamic plug-ins for changing needs has been taken into account in
Cougaar. Similar to this approach, we have also decided to develop our own
performance measuring framework directly fitting to our measurement needs, instead
of adapting an exiting toolkit.

There are a number of measurement toolkits mainly with origin in high-
performance computing, such as DiPerF [14] and NetLogger [7]. DiPerF aims to
provide automatic performance measurement of networked services. It particularly
targets on deployed services (such as a particular Grid service) and has been used in
real testbeds such as PlanetLab [12]. DiPerF offers besides a set of preconfigured
ones the possibility to include user specific metrics. NetLogger is oriented to anomaly
detection and is presented as a service which can be activated for Grid applications.
Its main purpose is monitoring and addressing the instrumentation level in running
Grid processes, as part of a Grid monitoring system. Compared to our purpose, these
toolkits focus on the executed application. In our case, however, we are particularly
interested in measuring what happens before execution, i.e. within the middleware
and the economic models used for allocating services and resources, before finally the
application (service) becomes executed.

Ganglia [11] is a fairly generic measurement toolkit. It is devised to be a scalable
distributed monitoring system for high performance computing systems such as
clusters and Grids. It is deployed in PlanetLab [12] and has also been used with
Globus [5]. The Ganglia implementation consists of the gmond deamon, which runs
on every node of the system. This deamon interacts with a client in a listen/announce
protocol, such that it responds to a client request by returning an XML representation
of the monitored data. The metrics which gmond handles are of two types: built-in
metrics and user-defined. The built-in metrics relate to the physical resources of the
node. User-defined metrics could include application specific data. Due to this second
possibility, Ganglia has been a candidate considered for being used with the GMM.
Ganglia, however, relates machines with physical IP addresses, while some of the
components we measure in the GMM cannot be identified this way, they are
addressed, for instance, by identifiers from an overlay network.

152 F. Freitag et al.

6 Conclusions

Platforms, which support the execution of complex services, are needed in order to
make real an on-demand scenario. In order to attract a large user and industrial
community, these platforms need to have the capability to give performance feedback
to users and providers.

Our performance measuring framework goes beyond the monitoring of physical
resources and includes middleware and application layer metrics. These multi-level
metrics are necessary, since the technical metrics from all those layers can finally be
interpreted in economic terms. Such an economic evaluation of the participation in the
system is needed for operating with business models.

We have shown that the implementation of such a multi-level performance
measuring framework is feasible. We have applied the measuring framework to
obtain performance data form several layers of the deployed middleware. We have
also shown that this data is useful for observing the behavior of the system. As
example for this we have shown how the balancing capacity of the system can be
confirmed.

Acknowledgments. This work was supported in part by the European Union under
Contract CATNETS EU IST-FP6-003769 and in part by the Ministry of Education
and Science of Spain under Contract TIN2006-5614-C03-01.

References

1. 1. Ardaiz, P., Chacin, I., Chao, F., Freitag, L.: Navarro: An Architecture for Incorporating
Decentralized Economic Models in Application Layer Networks. International Journal on
Multiagent and Grid Systems. Special Issue on Smart Grid Technologies 1(4), 287–295
(2005)

2. Diet Agents Platform (February 2007), http://diet-agents.sourceforge.net/
3. Eymann, T., Reinicke, M., Freitag, F., Navarro, L., Ardaiz, O., Artigas, P.: A hayekian

self-organizing approach to service allocation in computing systems. Advanced
Engineering Informatics 19(3), 223–233 (2005)

4. Freitag, F., Caubet, J., Labarta, J.: On the Scalablitiy of Tracing Mechanisms, Euro-Par,
Paderborn, Germany (August 2002)

5. Globus Toolkit (February 2007), http://www.globus.org/
6. Grid Market Middleware (GMM). http://recerca.ac.upc.edu/gmm/
7. Gunter, D., Tierney, B.: NetLogger: A Toolkit for Distributed System Performance Tuning

and Debugging. Integrated Network Management, 97–100 (2003)
8. Helsinger, A., Lazarus, R., Wright, W., Zinky, J.: Tools and techniques for performance

measurement of large distributed multiagent systems. In: Second International Joint
conference on Autonomous agents and multiagent systems (AAMAS), Melbourne,
Australia, pp. 843–850 (2003)

9. Joita, L., Rana, O.F., Chacin, P., Chao, I., Freitag, F., Navarro, L., Ardaiz, O.: Application
Deployment on Catallactic Grid Middleware. IEEE Distributed Systems Onlin 7(12)
(2006) art. no. 0612-oz001

10. Project JXTA (February 2007) http://www.jxta.org/

 Performance Measuring Framework for Grid Market Middleware 153

11. Massie, M.L., Chun, B.N., Culler, D.E.: The Ganglia Distributed Monitoring System:
Design, Implementation, and Experience. Parallel Comput-ing 30(7) (July 2004)

12. PlanetLab. http://www.planet-lab.org/
13. Preist, C., van Tol, M.: Adaptive agents in a persistent shout double auction. In:

Proceedings of the First international Conference on Information and Computation
Economies (IEC), Charleston, South Carolina, United States (1998)

14. Raicu, I., Dumitrescu, C., Ripeanu, M., Foste, I.: The Design, Performance, and Use of
DiPerF: An automated DIstributed PERformance evaluation Framework. Journal of Grid
Computing 4(3) (September 2006)

15. Reinicke, M., Streitberger, W., Eymann, T., Catalano, M., Giulioni, G.: Economic
Evaluation Framework of Resource Allocation Methods in Service-Oriented Architectures.
In: Proceedings of the 8th Conference on E-Commerce Technology (CEC06), San
Francisco (2006)

16. Web Services Agreement Specification (WS-Agreement) (2005/2009),
 http:// www.gridforum.org/ Public_Comment_Docs/Documents/
 Oct-2005/WS-AgreementSpecificationDraft050920.pdf

Appendix: Metrics Pyramid [15]

Social Utility

EffortBenefit

Infrastructure
Costs

On Demand
Availability

A
ve

ra
ge

D
is

ta
nc

e
be

tw
ee

n
C

on
tr

ac
t

P
ar

tn
er

s

Risk
S

ta
nd

ar
d

D
ev

ia
tio

n

A
vg

. R
es

ou
rc

e
A

cc
es

s
T

im
e

Messages

Hops Message Size

Negotiation Time

Discovery Time

A
ve

ra
ge

A
llo

ca
tio

n
R

at
e

A
ve

ra
ge

S
er

vi
ce

U

sa
ge

A
vg

er
ag

e
Jo

b
E

xe
cu

tio
n

O
ve

rh
ea

d
T

im
e

A
ve

ra
ge

N
eg

ot
ia

tio
n

N
et

w
or

k
U

sa
ge

Service / Resource Usage and Idle Time

A
ve

ra
ge

A
ge

nt
‘s

S
at

is
fa

ct
io

n

Service Provisioning Time

A
ve

ra
ge

R
es

ou
rc

e
U

sa
ge

A
vg

. S
er

vi
ce

A

cc
es

s
T

im
e

Message Latency

Requests

Accepts

Agent‘s
Satisfaction

A Fixed-Point Algorithm for Closed Queueing

Networks

Ramin Sadre, Boudewijn R. Haverkort, and Patrick Reinelt

University of Twente
Dept. Electrical Engineering, Mathematics and Computer Science

P.O. Box 217, 7500 AE Enschede, The Netherlands
r.sadre@cs.utwente.nl, brh@cs.utwente.nl

Abstract. In this paper we propose a new efficient iterative scheme
for solving closed queueing networks with phase-type service time dis-
tributions. The method is especially efficient and accurate in case of
large numbers of nodes and large customer populations. We present the
method, put it in perspective, and validate it through a large number of
test scenarios. In most cases, the method provides accuracies within 5%
relative error (in comparison to discrete-event simulation).

1 Introduction

Queueing networks (QNs) have been used widely since the early 1970’s for the
analysis of performance problems in computer and communication systems. For
many classes of queueing networks elegant and efficient solution methods exist.

In case the QNs under study are open (“OQNs”) and contain queueing sta-
tions with infinite capacity, i.e., when the number of customers is not a priori
restricted, product-form results exist, such as those for Jackson networks [17].
A disadvantage of these results is that they are only valid under a number of
restrictions: the service times need to be exponentially distributed when com-
bined with FCFS scheduling, the stations have unbounded buffer capacity, and
all arrival processes are Poissonian. These restrictions have led researchers to
search for extensions and approximations.

Queueing network models with either finite customer number or with finite
buffers, and, hence, with customer losses, can be analyzed via the numerical
solution of the underlying CTMC. However, this method is sensitive to the
well-known phenomenon called state-space explosion. One way to handle this
problem for open queueing networks is a decomposition approach. It has been
motivated by the approximate solution method of large open queueing networks
with infinite-buffer stations and FCFS scheduling, as proposed by Kühn [19] and
later extended by Whitt [31,32]. The decomposition is done at queueing station
level, i.e., the queueing stations are analyzed as separate models. These methods
have been extended and refined lately in the context of the tool FiFiQueues.
During the analysis, traffic descriptors are “exchanged between the stations”,
thus representing the streams of jobs flowing between them. We will elaborate
on this in Section 2.

K. Wolter (Ed.): EPEW 2007, LNCS 4748, pp. 154–170, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Fixed-Point Algorithm for Closed Queueing Networks 155

In case the QNs under study are closed (“CQNs”), i.e., when a finite fixed
population of customers is present in the network, and when some other re-
strictions apply, Gordon and Newell first described a product-form for closed
queueing networks [12], which was later extended by Baskett et al. to the now
well-known class of BCMP networks [2]. Buzen developed an elegant solution
strategy to compute the normalizing constant [8], and later, using the arrival the-
orem, Reiser and Lavenberg developed the now-widely used mean-value analysis
approach [24]. Various extensions to these algorithms and model class have been
developed, cf. textbooks like [10]. Apart from a number of modeling restrictions,
such as negative exponential service times in combination with FCFS scheduling,
all of the developed algorithms suffer from increasing (above linear) complexity
when the number of stations, the number of customers, or the number of model
classes (or routing chains) grow.

It is for the above reasons, that we have sought to come up with an alternative
method for analyzing large closed queueing networks. Although little work has
been reported on this so far, we found some of our inspiration in the fixed-
point approach developed by Bolch et al. [6] (as also described in [16, Chapter
11.5]). Our approach consists of elevating the fixed-point algorithms that have
been developed and successfully applied for open queueing networks to closed
queueing networks. In doing so, we have encountered a number of problems,
that we, however, have been able to deal with, after having experimented with
the new method. In comparison to other approaches, our work is more generally
applicable, and also less costly than previously reported approaches. We will
discuss related work in a separate section.

The rest of this paper is structured in the following way. Section 2 is devoted
to a fixed-point method for open queueing networks, as this approach forms
the basis of our new method for closed queueing networks, that is described in
Section 3. After that, we report experimental results on a variety of networks in
Section 4. Section 5 presents directly related work, whereas Section 6 concludes
the paper.

2 Fixed-Point Analysis of OQNs

Fixed-point iteration methods have been employed successfully to evaluate large
open queueing networks with non-Poissonian arrivals and non-exponential ser-
vice time distributions, with or without job losses (bounded buffers). The idea
has been to compute, iteratively, the traffic arriving at each queueing station in
such a queueing network, such that individual queueing stations can, in essence,
be analyzed in isolation [13, 14, 15, 30]. The main algorithm is outlined in Fig-
ure 1. The traffic from station i to station j in the queueing network is described
by a traffic descriptor desci,j . Note that we do, at this point, not make the
form of this traffic descriptor explicit; in practice, it will contain such quanti-
ties as the traffic rate and, possibly, the variance. The external traffic arriving
at a station j is denoted as descext,j . In each step, a new set of traffic de-
scriptors desc(l) = {desc(l)i,j |i, j} is computed. The algorithm stops when the

156 R. Sadre, B.R. Haverkort, and P. Reinelt

1 initialize all traffic descriptors desc
(0)
i,j :

2 set desc
(0)
i,j to the null value if i �= ext

3 set desc
(0)
i,j to the specified value if i = ext

4 l := 0
5 do
6 l := l + 1
7 analyze each queueing station i

8 and compute desc
(l)
i,j for all nodes j

9 while dist(desc(l), desc(l−1)) > ε

Fig. 1. Decomposition-based analysis procedure for open queueing networks

distance dist(desc(l−1), desc(l)) (l ≥ 1) between two successive sets of descrip-
tors is smaller or equal than a given threshold ε. Descriptors set to the null
value in line 2 are ignored in line 7; the null value indicates that only informa-
tion about the external arriving traffic (line 3) is available when the algorithm
starts. In general, it is not known whether a fixed point is unique or can/will be
found. However, in our experiments with the FiFiQueues network analyzer the
algorithm always terminated; furthermore, in [25] the existence of a fixed-point
is proven.

The approach as described above, was developed in the mid 1990’s [13, 14, 15,
30], essentially as an extension of Whitt’s QNA approach [31] by replacing the
core of his analysis: the analysis of the queueing stations themselves (the “service
operation”). Unlike QNA, this new approach (called QNAUT) does not use the
descriptor of the arrival traffic directly to compute the departure traffic descriptor,
but assumes that the arrival traffic descriptor can be used to construct a phase-
type (PH) renewal process which approximates the “real” underlying arrival pro-
cess. This allows for the inclusion of finite-buffer queueing stations as well as for
the analysis of the queueing stations by matrix-geometric and general Markovian
techniques, instead of the approximations used originally in QNA.

Around the turn of the century, we extended the QNAUT-approach, in that we
removed a few approximate steps and enhanced the model class [26,28,27]. This
approach, as well as the analysis tool developed from it, is named FiFiQueues
(Fixpoint-based analysis of networks with Finite Queues). In FiFiQueues an
open queueing network model is specified by the following parameters:

1. The number of queueing stations n.
2. The description of each queueing station. The queueing stations can have fi-

nite or infinite capacity and are analyzed as PH|PH|1(|K) queues. The service
processes can be arbitrary phase-type renewal processes. A PH|PH|1(|K)
queue is analyzed by means of the CTMC underlying the corresponding
Quasi-Birth-and-Death process.

3. A routing matrix R = (ri,j) of size n × n for the Markovian routing where
ri,j specifies the routing probability from station i to station j.

4. The descriptors of the external arrival traffic for each station.

A Fixed-Point Algorithm for Closed Queueing Networks 157

Open networkClosed network

arr dep

Fig. 2. CQN and the corresponding cut OQN

As in QNA, the external arrival processes as well as the inter-node traffic streams
are described by the first and second moment of the inter-arrival times. The
traffic descriptor

〈
λ, c2a

〉
contains the arrival rate λ and the squared coefficient

of variation c2a of the inter-arrival time distribution. In order to obtain the arrival
process for a PH|PH|1(|K) station, a PH renewal process has to be fitted to the
arrival traffic descriptor

〈
λ, c2a

〉
. Traffic descriptors with c2a ≤ 1 are mapped to

modified Erlang-distributions. In case c2a > 1, a hyper-exponential distribution
with two phases and so-called balanced means is used. In the following sections,
we use the same fitting procedure for the service processes, too, i.e., we specify
a service process by the service rate μ and the squared coefficient of variation c2s
of the service time distribution.

Finally, FiFiQueues comprises two post-processing steps that are performed
after the fixed-point iteration. They allow for the computation of additional
performance measures and yield (i) node-specific results, e.g., the mean queue
length E[Ni] for each station i, and (ii) network-wide results, e.g., the total
network throughput.

3 Fixed-Point Analysis of CQNs

We first describe in general terms an iterative approach for CQNs in Section 3.1.
Before we make this approach more specific, we discuss the issue of bottleneck
identification and its impact on performance measures in CQNs in Section 3.2.
We then proceed with our actual algorithm in Section 3.3 and discuss complexity
issues in Section 3.4.

3.1 General Procedure

The decomposition approach for OQNs cannot be directly applied to CQNs be-
cause the bounded number of customers in a closed system prevents an intuitive
decomposition. Hence, we transform a CQN into an OQN by cutting one of its
connections. This is shown for an example network in Figure 2. For this OQN
we have to find an external arrival traffic descriptor arr such that

1. the external arrival descriptor arr is equal to the (resulting) descriptor dep
of the traffic that leaves the network;

2. the number of jobs in the network is equal to the fixed population q of the
CQN.

158 R. Sadre, B.R. Haverkort, and P. Reinelt

1 cut CQN to obtain OQN
2 initialize arr
3 loop
4 analyze OQN and obtain departure dep
5 if err(arr, dep) > δ1 or err’ (

∑n
i=1 E[Ni], q) > δ2 then

6 choose new arr based on the analysis results
7 else
8 stop iteration
9 endif

10 endloop

Fig. 3. Iterative procedure to solve CQNs

We aim to find arr by applying the iteration procedure shown in Figure 3 to
the CQN. The functions err and err’ are appropriate error functions and δ1
resp. δ2 the corresponding error bounds. To implement this procedure we have
to address three issues:

1. the location of the cut in order to obtain an open network (line 1);
2. the analysis of the open queueing network (line 4);
3. the computation of a new arrival descriptor inside the iteration (line 6).

These issues are discussed in detail in Section 3.3 but we can already make the
following observations:

– (Back) blocking at the queues is not allowed if we the analyze the open
queueing network by a decomposition-based method. This would require that
information about free queueing capacities is exchanged between queues,
which is not supported by the decomposition approach for OQN in which
individual stations are analyzed in isolation. Hence, we will assume in the
following that all queues have infinite capacity.

– Although the sketched procedure looks very simple, its implementation is
critical for complex network classes and traffic descriptors. It is yet unknown
whether the iteration procedure always terminates and whether more than
one correct solution exist for a given CQN. However, in our experiments (see
below) it always terminated with satisfying results.

– The stopping condition err’(
∑n

i=1 E[Ni], q) ≤ δ2 provides only an approxi-
mation to the original condition that the number of jobs in the CQN is q.
Indeed, variations in the number of customers present due to the stochastic
nature of the arrival and service processes causes the number of jobs in the
OQN to vary around q, which is clearly not the case in a true closed QN.

3.2 Characteristics of the Bottleneck

Before we present the implementation of the analysis procedure for CQNs in
detail in Section 3.3, we discuss some important characteristics of the so-called

A Fixed-Point Algorithm for Closed Queueing Networks 159

0.05

5

μ=1.0

2

μ=1.25

3

μ=0.5

4

μ=0.1

1

μ=1.5

0.25

0.7

Fig. 4. Example Gordon-Newell QN

bottleneck in a CQN. We will use results from bottleneck analysis in the further
development of our algorithm.

The (relative) throughput of the queueing stations in a CQN is limited by
the bottleneck which can be determined by solving the (first-order) traffic equa-
tions [16]:

Vj =
n∑

i=1

Viri,j = V1r1,j +
n∑

i=2

Viri,j = r1,j +
n∑

i=2

Viri,j , with V1 = 1,

where the so-called visit ratios Vj = Xj/X1 express the throughput of station
j relative to node 1. The ratio Di = Vi/μi, for each station i, is the so-called
service demand (per passage) at station i; the bottleneck is the node i with the
highest value of Di.

The bottleneck does not only influence the throughput of the queueing stations
but also their queue length distribution. We illustrate this with the CQN shown
in Figure 4. It is a Gordon-Newell queueing network (GNQN), i.e., all stations are
of M|M|1-type. The figure shows the routing probabilities and the service rates of
each node. A quick computation reveals that D1 = 2

3 , D2 = 14
25 , D3 = 1

2 , D4 = 1
2

and D5 = 1. Clearly, station 5 is the bottleneck. Given a large population,
we can expect a large number of customers to reside in station 5, always, so
that its utilization will approach 100%. A (discrete-event) simulation of the
network with population q = 50 yields for each station the utilization ρ (note
that ρi = Di/D5 = Di), the mean E[N] and the squared coefficient of variation
c2N of the queue length distribution. The results (with relative 95%-confidence
intervals smaller than 3%) are shown in the column titled “sim” of Table 1. The
fact that station 5 is a rather distinct bottleneck, leads to a very deterministic
queue length distribution for that station (its c2N is very close to 0), i.e., almost
all of the time, almost all jobs are waiting in the bottleneck queue.

3.3 CQN Analysis with FiFiQueues

We now describe how the general iteration scheme for CQNs can be “imple-
mented” using FiFiQueues (see Section 2) as analysis method for the generated

160 R. Sadre, B.R. Haverkort, and P. Reinelt

Table 1. Numerical results for the example GNQN (q = 50)

node decomp sim relerr node decomp sim relerr

ρ 0.67 0.67 0.0% ρ 0.50 0.50 0.0%
1 E[N] 2.00 2.00 0.0% 4 E[N] 1.00 1.00 0.0%

c2
N 1.50 1.51 -0.7% c2

N 2.00 1.96 2.0%

ρ 0.56 0.56 0.0% ρ 1.00 1.00 0.0%
2 E[N] 1.27 1.27 0.0% 5 E[N] 44.7 44.7 0.0%

c2
N 1.79 1.80 0.6% c2

N 0.02 0.01 100%

ρ 0.50 0.50 0.0%
3 E[N] 1.00 1.00 0.0%

c2
N 2.00 2.03 -1.5%

1 Determine bottleneck node b of closed network
2 Cut connection to b and obtain open network
3 Limit capacity of b to q
4 λarr,low := 0 ; λarr,high := h
5 c2

dep := 1
6 do
7 λarr := 1

2 · (λarr,high + λarr,low) ; c2
arr := c2

dep

8 call FiFiQueues to obtain dept. descriptor (λdep, c2
dep)

9 if
∑n

i=1 E[Ni] > q or network is unstable then
10 λarr,high := λarr

11 else
12 λarr,low := λarr

13 endif
14 while err(λarr,low, λarr,high) > δ1 or err′(

∑n
i=1 E[Ni], q) > δ2

Fig. 5. Analysis procedure for CQNs based on FiFiQueues

OQNs. We have called the resulting analysis method FiFiQueues Non-Blocking
Closed (FiFiQueues-NBC) [23]. Its model class is the model class of the original
FiFiQueues adapted to CQNs, that is, without external arrivals and departures.

The analysis procedure for CQNs using FiFiQueues is shown in Figure 5. The
outer iteration uses an interval splitting technique to determine an appropriate
value λarr. The algorithm is based on two assumptions.

First, we assume that the number of jobs in the network q can be reached by an
interval splitting method for the arrival rate λarr. The argument is similar to the
one used in the functional approximation approach for closed BCMP networks,
cf. [6]. The initial value h in line 4 has to be set to an appropriate large value (a
too large initial value only slows down the convergence — overloaded networks
are avoided by the test in line 9). Note that we do not need to test λarr and λdep

for equality since this is always fulfilled in networks without losses.
The second assumption concerns the squared coefficient of variation c2. We

have observed in the past that large queueing networks tend to “emboss” a

A Fixed-Point Algorithm for Closed Queueing Networks 161

network specific value for c2 to the traffic stream. This means that the c2 value
of a traffic stream seems to depend only on the service processes and not on the
c2 value of the external arrival streams, whenever the traffic passes through a
sufficiently large number of queueing stations, provided that the utilization of
the queueing stations is reasonably high. This is the reason why we have chosen
an arbitrary initial value for c2dep in line 5 and simply assign c2dep to c2arr in line 7.

The lines 1–3 of the algorithm are due to our observations in Section 3.2
concerning the bottleneck. In order to approach the situation in which there is
a deterministic queue length distribution at the bottleneck station, we proceed
the following way. We cut the CQN directly in front of the bottleneck (lines
1–2) and transform the bottleneck station into a queueing station with finite
capacity q (line 3). When the bottleneck station experiences a high load and,
hence, most of the jobs are waiting in the queue of the bottleneck node, this
finite capacity limits the maximum number of jobs in the network and leads to a
more deterministic queue length distribution at the bottleneck. Our experiments
have shown that we can select an arbitrary connection to the bottleneck for the
cut if more than one connection exists. Similarly, if more than one bottleneck
exists, an arbitrary one is selected as finite capacity station.

Note that the initial value h of λarr,high (line 4) must be sufficiently high in
order to obtain a load of 100% at the bottleneck station. If the bottleneck has
only one incoming edge, hmust be at least twice the service rate of the bottleneck
due to the factor of 1

2 in line 7. Our experiments suggest to use a slightly larger
factor of 2.5 in order to compensate for the losses at the bottleneck station.

The numerical results for the Gordon-Newell queueing network shown in Fig-
ure 4 with q = 50 are displayed in the column labeled “decomp” in Table 1. The
right column titled “relerr” gives the error between the decomposition approach
and the simulation, relative to the latter. Note that the large relative error of
node 5’s c2N is caused by the fact that the absolute numbers themselves are very
small. The other relative errors are within the 95%-confidence intervals of the
simulation.

3.4 Complexity

The proposed iterative CQN algorithm consists of two iterations of which the
step count is usually not known in advance. The inner iteration is part of the
FiFiQueues algorithm for OQNs. In each inner iteration all queueing stations are
analyzed. Note that only the bottleneck station is modeled as a finite queueing
station (of size q) and, hence, the time complexity of its analysis depends on
the population q. Concerning the outer iteration, we have observed that there
is no direct dependency on the population q (see Section 4.3 for a detailed
example). Our experiments have shown that even for complex networks with
large populations, the required number of inner and outer iterations usually
stays below 15, resp. 30.

In addition to the iterations, the algorithm has to identify the bottleneck of
the network. The solution of the system of traffic equations has a time complexity
of O(n3) if a direct solution method like Gaussian elimination is employed, but

162 R. Sadre, B.R. Haverkort, and P. Reinelt

3μ2μ1μ

1 2 3

Fig. 6. Cyclic three-queue CQN

Table 2. Results for cyclic three-queue CQN for different rates μi and q = 20

One distinct bottleneck:
μ1 = μ3 = 1, μ2 = 0.5

node decomp sim relerr

1 ρ 0.5 0.5 0.0%
E[N] 1.5 1.55 -3.2%

2 ρ 1.0 1.0 0.0%
E[N] 17.0 17.0 0.0%

3 ρ 0.5 0.5 0.0%
E[N] 1.5 1.49 0.7%

One bottleneck:
μ1 = 1, μ2 = 2, μ3 = 1.1

node decomp sim relerr

1 ρ 0.95 0.95 0.0%
E[N] 11.90 11.17 6.5%

2 ρ 0.48 0.47 2.1%
E[N] 1.34 1.32 1.5%

3 ρ 0.84 0.86 -2.3%
E[N] 7.76 7.51 3.3%

Three bottlenecks:
μ1 = μ2 = μ3 = 1

node decomp sim relerr

1 ρ 0.81 0.85 -4.7%
E[N] 5.98 6.64 -9.9%

2 ρ 0.86 0.85 1.2%
E[N] 7.45 6.66 11.9%

3 ρ 0.83 0.85 -2.4%
E[N] 6.57 6.69 -1.8%

Two bottlenecks:
μ1 = μ3 = 1, μ2 = 2

node decomp sim relerr

1 ρ 0.88 0.91 -3.3%
E[N] 8.25 9.36 -11.9%

2 ρ 0.44 0.45 -2.2%
E[N] 1.12 1.22 -8.2%

3 ρ 0.93 0.91 -1.1%
E[N] 10.63 9.42 12.8%

reduces to O(c · n) in practice when sparse storage and an iterative solver such
as Gauss-Seidel are used (where c is the average number of outgoing connections
per station).

4 Validation

In this section we examine the performance of the new decomposition-based
method for CQNs, using four typical examples: a cyclic CQN (Section 4.1), two
CQNs with merging and splitting of traffic streams (Section 4.2) and a more
general complex CQN (Section 4.3).

4.1 A Cyclic Three-Queue CQN

The first model is a simple CQN that consists of three queues in series as shown in
Figure 6. All service times are hyper-exponentially distributed with c2service = 2.

A Fixed-Point Algorithm for Closed Queueing Networks 163

Table 3. Results for cyclic three-queue CQN for various population sizes

q = 5

node decomp sim relerr

1 ρ 0.41 0.44 -6.8%
E[N] 0.84 0.93 -9.7%

2 ρ 0.89 0.89 0.0%
E[N] 3.27 3.14 4.1%

3 ρ 0.43 0.44 -2.3%
E[N] 0.89 0.92 -3.3%

q = 10

node decomp sim relerr

1 ρ 0.48 0.49 -2.0%
E[N] 1.28 1.35 -5.2%

2 ρ 0.97 0.97 0.0%
E[N] 7.42 7.34 1.1%

3 ρ 0.48 0.49 -2.0%
E[N] 1.30 1.31 -0.8%

q = 30

node decomp sim relerr

1 ρ 0.5 0.5 0.0%
E[N] 1.50 1.57 -4.5%

2 ρ 1.0 1.0 0.0%
E[N] 27.0 26.9 0.4%

3 ρ 0.5 0.5 0.0%
E[N] 1.50 1.50 0.0%

q = 60

node decomp sim relerr

1 ρ 0.5 0.5 0.0%
E[N] 1.50 1.57 -4.5%

2 ρ 1.0 1.0 0.0%
E[N] 57.0 56.9 0.2%

3 ρ 0.5 0.5 0.0%
E[N] 1.51 1.50 0.7%

This network does not require any traffic merging or splitting, so that the cor-
responding open network can be analyzed by FiFiQueues almost without any
error.

Table 2 gives the results of the decomposition method in comparison to sim-
ulation for three different service rates. The population size was set to 20. The
last column gives the relative errors. All relative 95%-confidence intervals of the
simulation were below 1%.

Table 2 shows that the algorithm does best when one distinct bottleneck is
present in the network, i.e., in case μ1 = μ3, μ2 = 0.5. Then our “trick” with
the finite queue provides very good results. Even when two stations have similar
service rates (μ1 = 1, μ2 = 2, μ3 = 1.1), still good results are obtained. The errors
are, however, slightly larger in cases where more than one bottleneck exist. Since
the algorithm can select only one node as bottleneck it is not able to distribute
the jobs evenly over all nodes in case all service rates are equal (μ1 = μ2 = μ3 =
1). The worst (but still okay!) results are obtained when the network consists
of two bottlenecks and one fast service station (μ1 = μ3 = 1, μ2 = 2); again,
the algorithm can select only one node as bottleneck which results in different
average queue lengths for node 1 and node 3 whereas the simulation indicates
that both queue lengths should be equal.

The next experiment uses the same queueing network but this time μ2 = 0.5,
μ1 = μ3 = 1, and the population is varied between 5 and 60. The results are
shown in Table 3. As can be seen, the relative errors are larger for small popula-
tion sizes. Similar results have been obtained for other CQNs. The explanation
for this behavior is that the small number of jobs in the CQN causes correlations
between the queue lengths. This fact contradicts with FiFiQueues’ assumptions
about the network, hence, slightly worse results are obtained.

164 R. Sadre, B.R. Haverkort, and P. Reinelt

c²=2.0

μ=1.0
c²=0.5
μ=0.8

41

c²=0.5

0.5

0.5

2

3

μ=0.3

μ=0.75

c²=2.0

node decomp sim relerr

1 E[N] 1.20 1.17 2.6%
2 E[N] 15.30 14.73 3.9%
3 E[N] 0.76 0.76 0.0%
4 E[N] 2.78 3.34 -16.8%

Fig. 7. CQN 1 with merging and splitting

2

μ=1.0

1

c²=4.0

c²=0.25

μ=1.0

c²=1.0
μ=1.9

3

0.5

0.5 node decomp sim relerr

1 E[N] 6.91 7.35 -6.0%
2 E[N] 4.33 4.39 -1.4%
3 E[N] 8.77 8.26 6.2%

Fig. 8. CQN 2 with merging and splitting

4.2 CQNs with Merging and Splitting

With these two CQNs we specifically evaluate how well our new algorithm han-
dles queueing network topologies in which traffic streams are merged and split.
The two networks and the obtained results for q = 20 are shown in Figure 7
(CQN 1), respectively Figure 8 (CQN 2). Table 4 shows the results for CQN 2
when the negative-exponential service time distribution of node 3 has been re-
placed by a hyper-exponential distribution with c2 = 10.

These examples illustrate that the algorithm for CQNs can only be as good
as the underlying method for the open networks. Although q is not very small
here, the errors are larger than in the case of three queues in series (see previ-
ous section) because FiFiQueues employs approximations to perform the traffic
merging and splitting. Still, we judge these results very good.

Table 4. Results for CQN 2 with c2 = 10 at the third node

node decomp sim relerr

1 E[N] 6.03 6.62 -8.9%
2 E[N] 5.08 5.39 -5.8%
3 E[N] 8.89 7.99 11.3%

A Fixed-Point Algorithm for Closed Queueing Networks 165

32

μ=1.0

6

μ=0.5
c²=1.0

4

μ=1.0
c²=0.5

0.4

0.6

c²=0.5

1

μ=1.3

0.3

0.7
μ=1.5
c²=2.0

5

c²=2.0
μ=1.0

c²=2.0

Fig. 9. A larger CQN

4.3 A Larger CQN

We finally consider a larger and more complex CQN, as shown in Figure 9. The
evaluation results for populations q between 5 and 60 can be found in Table 5.
As observed before, the relative errors are largest for the smallest populations.

In general, it is worth to emphasize the fact that our new algorithm provides
the best results for large populations. These are exactly the most interesting
cases, as for these cases the overall underlying continuous-time Markov chain
(CTMC) would be the largest as well. The number of states NoS of a CTMC

underlying a Gordon-Newell network is given by NoS =
(
n+ q − 1
n− 1

)
, where n

is the number of queueing stations and q is the population size [16]. For networks
with phase-type service time distributions, the number of states for large q is

approximately given by NoS ≈
(
n+ q − 1
n− 1

)
·
∏n

i=1mi, wheremi is the number of

phases of the service time distribution of station i. Hence, the underlying CTMC
of the CQN of Figure 9 with n = 6 and q = 30 would comprise approximately
2 · 108 states, whereas the largest CTMC constructed by FiFiQueues during the
analysis of the same network has around 240 states only.

We finally comment on the convergence behavior of our new algorithm. For
that purpose, Figure 10 shows for q = 30 how the algorithm modifies the arrival
rate for the open network in each (outer) iteration step in order to reach the
preset number of jobs. The interval splitting algorithm first lowers the arrival
rate to a fourth of the initial value, then the arrival rate is slowly increased
(until iteration 6). In this example the stopping criterion is met after 17 steps,
however, we see that a good approximation is already reached after about 10
steps. The “dip” in the curves can easily be explained. The algorithms starts
with a value for λ ≈ 1.22, which clearly is too high. This value is then averaged
with a value 0, leading to the second value of approximately 0.62. Again this
value is too large, leading to the third value slightly above 0.3 (note: the left
Y -axis starts at 0.3). Then the value for the arrival rate regains itself to a value
around 0.55. The clear dip, hence, is an artifact of the interval splitting method;

166 R. Sadre, B.R. Haverkort, and P. Reinelt

Table 5. Results for the larger CQN for various population sizes

q = 5

node decomp sim relerr

1 ρ 0.65 0.69 -5.8%
E[N] 1.28 1.27 0.8%

2 ρ 0.34 0.36 -5.6%
E[N] 0.54 0.57 -5.3%

3 ρ 0.33 0.36 -8.3%
E[N] 0.56 0.59 -5.1%

4 ρ 0.71 0.74 -4.1%
E[N] 1.65 1.57 5.1%

5 ρ 0.34 0.36 -5.6%
E[N] 0.54 0.56 -3.6%

6 ρ 0.30 0.33 -9.1%
E[N] 0.43 0.45 -4.4%

q = 10

node decomp sim relerr

1 ρ 0.82 0.85 -3.5%
E[N] 2.69 2.71 -0.7%

2 ρ 0.42 0.44 -4.5%
E[N] 0.84 0.87 -3.4%

3 ρ 0.42 0.44 -4.5%
E[N] 0.90 0.94 -4.2%

4 ρ 0.88 0.91 -3.2%
E[N] 4.14 3.98 4.0%

5 ρ 0.43 0.44 -2.3%
E[N] 0.82 0.85 -3.5%

6 ρ 0.38 0.40 -5.0%
E[N] 0.62 0.65 -4.6%

q = 30

node decomp sim relerr

1 ρ 0.93 0.93 0.0%
E[N] 6.87 7.11 -3.4%

2 ρ 0.48 0.49 -2.0%
E[N] 1.07 1.10 -2.7%

3 ρ 0.48 0.49 -2.0%
E[N] 1.18 1.21 -2.5%

4 ρ 0.99 1.00 -1.0%
E[N] 19.10 18.76 -1.8%

5 ρ 0.48 0.47 -2.1%
E[N] 1.04 1.05 -1.0%

6 ρ 0.43 0.44 -2.3%
E[N] 0.77 0.77 0.0%

q = 60

node decomp sim relerr

1 ρ 0.94 0.94 0.0%
E[N] 8.47 8.32 1.8%

2 ρ 0.49 0.49 0.0%
E[N] 1.10 1.10 0.0%

3 ρ 0.49 0.49 0.0%
E[N] 1.22 1.23 -0.8%

4 ρ 1.00 1.00 0.0%
E[N] 47.36 47.48 -0.3%

5 ρ 0.49 0.49 0.0%
E[N] 1.07 1.07 0.0%

6 ρ 0.44 0.44 0.0%
E[N] 0.79 0.79 0.0%

a more advanced method could probably avoid it. In total, our implementation
takes three seconds to analyze the network for q = 30.

Finally, Figure 11 shows the number of jobs as function of the iteration step
count, for four different populations. No direct dependency between the popula-
tion and the number of required iterations can be observed. We again see a clear
dip in the curves, for which the explanation as above holds as well.

5 Related Work

Over the last decades, several other proposals to solve general closed queueing
networks have been proposed. We discuss these below and indicate how these
methods differ from ours.

Of course, the simplest way to approximate the type of CQN we address
is by just ignoring the second moment and do as if the service times follow

A Fixed-Point Algorithm for Closed Queueing Networks 167

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 2 4 6 8 10 12 14
 0

 5

 10

 15

 20

 25

 30

 35

 40

 45
arrival rate

number of jobs

Fig. 10. Arrival rate (left Y -axis) and
number of jobs (right Y -axis) in the CQN
as function of the step number (q = 30)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 2 4 6 8 10 12 14 16

q=5
q=10
q=30
q=60

Fig. 11. Number of jobs in the CQN as
function of the step number, for four dif-
ferent populations

a negative exponential distribution. Although good results have been reported
for the overall network throughput with this approach (cf. [7, Chapter 10.1.4],
esp. in case of squared coefficients of variation below 1 and large populations),
in general, one cannot say that this approach yields good results for per-queue
performance measures.

Kouvatsos and Xenios [18] have proposed a method for the analysis of ar-
bitrary queueing networks with multiple servers and repetitive-service blocking
using the Maximum Entropy Method (MEM). The idea of MEM is to find the
solution of the model that maximizes the entropy of the system under the con-
dition that only the information given by the model specification is used. The
analyzed network may be open or closed and consists of n finite multiple-server
queues of type GE|GE|m|K ′;K where jobs can only leave the queue if the num-
ber of jobs in the queueing station is larger than K ′. The complexity of the
method is quite high. The solution algorithm consists of two stages that use
iterative procedures. Stage 1 has a time order of about O(c1 · n6) in case all
queues may block, i.e., their queueing capacity is smaller than the population
size q. The complexity of stage 2 is O(c2 ·n2q2), where c1 and c2 are the numbers
of iterations in the successive stages.

The method put forward by Marie [20] also describes an approximation pro-
cedure for closed queueing networks with FCFS service stations and service time
distributions described via the first two moments. In the original paper, only two
small-scale examples have been presented. It appears that “Marie’s method” is
especially suitable for small models, with multiple-server stations, a class our
method does not aim at. Instead, we aim at larger models with single-sever
nodes.

Dallery et al. report on a number of variations and extensions of Marie’s
method. In particular, [11] presents an alternative way (“operational analy-
sis”) to derive a number of well-known results, among others, Marie’s method.
[5] addresses a multiclass extension of Marie’s work, however, the use of non-
exponential services is not specifically addressed. [4] unifies the method of Marie

168 R. Sadre, B.R. Haverkort, and P. Reinelt

and another decomposition/aggregation-based method in the sense that they are
both variants of the same (higher-level) principle of “summarizing” the environ-
ment of a single server via load-dependent arrival and service rates. Finally, [3]
extends Marie’s work in the sense that population constraints are posed over
subnetworks.

Many other methods have been developed for the analysis of some special
CQNs containing finite queues. They only support very restricted network
topologies, like two-queue tandem networks, etc., or are restricted to the BCMP
model class. We refer to [22] for an overview paper, as well as to the cita-
tions in [1]. Furthermore, approximate mean-value algorithms like the Bard-
Schweizer [29] or the SCAT algorithm [21] do not apply, as our starting point is
not a product-form queueing network. The decomposition methods proposed for
stochastic Petri nets, e.g. [9], do not apply here, as they rely on the solution of
non-structured sub-CTMCs, and do refer to a completely different model class.

6 Summary and Conclusions

In this paper we have proposed a new and efficient decomposition-based method
for the analysis of closed queueing networks. It is especially attractive because
it is based on existing analysis methods for open queueing networks. A vari-
ety of evaluations, based on an implementation in the context of FiFiQueues,
shows that the method is able to provide accurate results for a broad class of
CQNs. Additionally, the method is very fast even for larger networks with large
populations. However, the experiments have also shown that the method is less
accurate when the CQN contains more than one bottleneck, which can be the
case, for example, in load-balanced systems.

Naturally, our new method for CQN can only be as good as the method
employed for the analysis of the employed underlying OQNs. Although we are
quite satisfied with the performance of FiFiQueues for OQNs, improvements can
still be made, e.g., one could think of using more sophisticated traffic descriptors
like MAPs (Markovian arrival processes) than the two-moments descriptors of
FiFiQueues. More research has to be done in this area, but it is to be expected
that this requires a much more complex procedure for the estimation of the
traffic descriptor than the one employed here; some recent research results in
this field can be found in [25].

References

1. Balbo, G., Serazzi, G.: A symptotic analysis of multiclass closed queueing networks:
Multiple bottlenecks. Performance Evaluation 30, 52–115 (1997)

2. Baskett, F., Chandy, K.M., Muntz, R.R., Palacios, F.: Open, closed, and mixed
networks of queues with different classes of customers. Journal of the ACM 22(2),
248–260 (1975)

3. Baynat, B., Dallery, Y.: Approximate techniques for general closed queueing net-
works with subnetworks having population constraints. European Journal on Op-
erations research 69, 250–264 (1993)

A Fixed-Point Algorithm for Closed Queueing Networks 169

4. Baynat, B., Dallery, Y.: A unified view of product-form approximation techniques
for general closed queueing networks. Performance Evaluation 18(3), 205–224
(1993)

5. Baynat, B., Dallery, Y.: A product-form approximation method for general closed
queueing networks with several classes of customers. Performance Evaluation 24(3),
165–188 (1996)

6. Bolch, G., Fleischmann, G., Schreppel, R.: Ein funktionales Konzept zur Analyse
von Warteschlangennetzen und Optimierung von Leistungsgrößen. In: Messung,
Modellierung und Bewertung von Rechensystemen (MMB), Proceedings, vol. 154,
pp. 327–342. Springer, Heidelberg (1987)

7. Bolch, G., Greiner, S., de Meer, H., Trivedi, K.S.: Queueing Networks and Markov
Chains. John Wiley & Sons, Chichester (1998)

8. Buzen, J.P.: Computational algorithms for closed queueing networks with expo-
nential servers. Communications of the ACM 16(9), 527–531 (1973)

9. Ciardo, G., Trivedi, K.S.: A decomposition approach for stochastic reward net
models. Performance Evaluation 18(3), 37–59 (1993)

10. Conway, A.E., Georganas, N.D.: Queueing Networks: Exact Computational Algo-
rithms. MIT Press, Cambridge (1989)

11. Dallery, Y., Cao, X.-R.: Operational analysis of stochastic closed queueing net-
works. Performance Evaluation 14(1), 43–61 (1992)

12. Gordon, W.J., Newell, G.J.: Closed queueing systems with exponential servers.
Operations Research 15, 254–265 (1967)

13. Haverkort, B.R.: Approximate analysis of networks of PH|PH|1|K queues: Theory
& tool support. In: Beilner, H., Bause, F. (eds.) MMB 1995 and TOOLS 1995.
LNCS, vol. 977, pp. 239–253. Springer, Heidelberg (1995)

14. Haverkort, B.R.: QNAUT: Approximately analyzing networks of PH|PH|1|K
queues. In: Proceedings of the 1996 International Computer Performance and De-
pendability Symposium, p. 57 (1996)

15. Haverkort, B.R.: Approximate analysis of networks of PH|PH|1|K queues with
customer losses: Test results. Annals of Operations Research 79, 271–291 (1998)

16. Haverkort, B.R.: Performance of Computer Communication Systems—A Model-
Based Approach. John Wiley & Sons, Chichester (1998)

17. Jackson, J.R.: Networks of waiting lines. Operations Research 5, 518–521 (1957)
18. Kouvatsos, D.D., Xenios, N.P.: MEM for arbitrary queueing networks with multiple

general servers and repetitive-service blocking. Performance Evaluation 10, 169–
195 (1989)

19. Kühn, P.J.: Approximate analysis of general queueing networks by decomposition.
IEEE Transactions on Communications 27(1), 113–126 (1979)

20. Marie, R.A.: An approximate analytical mathod for general queueing networks.
IEEE Transactions on Software Engineering 5(5), 530–538 (1979)

21. Neuse, D., Chandy, K.M.: SCAT: A heuristic algorithm for queueing network
models of computing systems. ACM Performance Evaluation Review 10(3), 59–
79 (1981)

22. Onvural, R.O.: Survey of closed queueing networks with blocking. ACM Computing
Surveys 22(2), 83–121 (1990)

23. Reinelt, P.: Erweiterung des fixpunktbasierten Analyseverfahrens von FiFiQueues
auf geschlossene Warteschlangennetze. Diploma thesis, Distributed Systems group,
RWTH Aachen (2001)

24. Reiser, M., Lavenberg, S.S.: Mean value analysis of closed multichain queueing
networks. Journal of the ACM 22(4), 313–322 (1980)

170 R. Sadre, B.R. Haverkort, and P. Reinelt

25. Sadre, R.: Decomposition-Based Analysis of Queueing Networks. PhD thesis, Uni-
versity of Twente (2006)

26. Sadre, R., Haverkort, B.R.: FiFiQueues: fixed-point analysis of queueing networks
with finite-buffer stations. In: MMB (Kurzvorträge), vol. 99-16, pp. 77–80. Univer-
sität Trier (1999)

27. Sadre, R., Haverkort, B.R., Ost, A.: An efficient and accurate decomposition
method for open finite- and infinite-buffer queueing networks. In: Stewart, W.,
Plateau, B. (eds.) Proc. 3rd Int. Workshop on Numerical Solution of Markov
Chains, pp. 1–20. Zaragosa University Press (1999)

28. Sadre, R., Haverkort, B.R.: FiFiQueues: fixed-point analysis of queueing networks
with finite-buffer stations. In: Haverkort, B., Bohnenkamp, H.C., Smith, C.U. (eds.)
TOOLS 2000. LNCS, vol. 1786, pp. 324–327. Springer, Heidelberg (2000)

29. Schweitzer, P.: Approximate analysis of multichain closed queueing networks. In:
Proceedings of the International Conference on Stochastic Control and Optimiza-
tion (1979)

30. Weerstra, A.J.: Using matrix-geometric methods to enhance the QNA method for
solving large queueing networks. Diploma thesis, Department of Computer Science,
University of Twente (1994)

31. Whitt, W.: The Queueing Network Analyzer. The Bell System Technical Jour-
nal 62(9), 2779–2815 (1983)

32. Whitt, W.: Performance of The Queueing Network Analyzer. The Bell System
Technical Journal 62(9), 2817–2843 (1983)

A Framework for Automated Generation of
Architectural Feedback from Software Performance

Analysis�

Vittorio Cortellessa and Laurento Frittella

Dipartimento di Informatica
Università dell’Aquila

Via Vetoio, 1, Coppito (AQ), 67010 Italy
cortelle@di.univaq.it,

laurento.frittella@gmail.com

Abstract. A rather complex task in the performance analysis of software archi-
tectures has always been the interpretation of the analysis results and the gen-
eration of feedback that may help developers to improve their architecture with
alternative "better performing" solutions. This is due, on one side, to the fact that
performance analysis results may be rather complex to interpret (e.g., they are
often collections of different indices) and, on the other side, to the problem of
coupling the "right" architectural alternatives to results, that are the alternatives
that allow to improve the performance by resolving critical issues in the architec-
ture. In this paper we propose a framework to interpret the performance analysis
results and to propose alternatives to developers that improve their architectural
designs. The interpretation of results is based on the ability to automatically rec-
ognize performance anti-patterns in the software architecture. The whole process
of result interpretation and generation of architectural alternatives is supported by
a tool based on the Layered Queueing Network notation.

Keywords: Software Performance, Layered Queueing Networks, Architectural
feedback, Performance indices.

1 Introduction

The validation of software performance often finds obstacles to be accepted as a daily
practice in the software development processes for many reasons. One of the major
drawback is the lack of automated support. The performance validation activity can be
summarized in four main steps: generation of a performance model from a software
model, performance model analysis, interpretation of analysis results, generation of
feedback on the software model.

Among the above steps, the analysis of a performance model (e.g. a Petri Net) is the
one that has been studied since more time and for which well assessed techniques exist
[6]. In the last few years many efforts have been devoted to introduce automation in the

� This work has been partially supported by the PLASTIC project: Providing Lightweight
and Adaptable Service Technology for pervasive Information and Communication. EC - 6th
Framework Programme. http://www.ist-plastic.org

K. Wolter (Ed.): EPEW 2007, LNCS 4748, pp. 171–185, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

172 V. Cortellessa and L. Frittella

first step, that is the performance model generation. Several methodologies and tools
have been introduced to transform a software model (e.g., a set of UML diagrams) into
a performance model (e.g. a Queueing Network) [1].

However, in order to close the 4-steps loop described above, automation shall be
introduced in the last few steps that represent the reverse path from the performance
model to the software model. What obviously software developers expect from perfor-
mance analysis is not a repository of values and curves that represent different indices
(such as throughput, utilization, etc.) at different level of granularity, and that are very
hard to decipher even by performance experts. They would expect to receive an inter-
pretation of these results in terms of directives, suggestions, architectural alternatives
that can drive their development process towards a software product able to meet the
performance requirements.

With the support of automated tool their decision about the software architecture
(and later decisions) could be driven even by performance issues that, instead, are often
discovered at the end of the process when changes are much more expensive to be made.

Goal of this paper is to introduce a process that can drive the performance result
interpretation and the generation of architectural feedback. The rationale of our pro-
cess founds on three main considerations: (i) performance analysis is a hierarchical
task that, in order to produce feedback, often must investigate tiny details of the system
architecture; for this reason, each iteration of our process lays on a zooming approach
that, from system-level performance indices, drives down to resource/component-level
indices; (ii) only a structured and integrated knowledge may lead to produce signifi-
cant feedback; for this reason, the core data used in our process have been organized
in matrices that are shared by the interpretation and the generation phases; (iii) for a
hierarchical investigation, it plays a crucial role the capability to recognize architec-
tural patterns that may adversely affect the system performance; for this reason, we
have classified and solved a set of patterns that can be recognized with simple pattern
matching techniques.

Few related works can be found in literature that deal with the interpretation of per-
formance results and the generation of architectural feedback. Most of them are based
on monitoring techniques and therefore are conceived to only applied after software
deployment for tuning its performance. We are instead interested to model-based ap-
proaches that can be applied all along the software lifecycle to support development
decisions.

In [13] the PASA (Performance Analysis of Software Architecture) approach has
been introduced that aims at achieving good performance results through a deep under-
standing of the architectural features. This is the approach that better define the concept
of antipattern that will be widely used in our approach. However, this approach is based
on the interactions between software architects and performance experts, therefore its
level of automation is quite poor.

A simulation based approach has been introduced in [9], where the model simulation
produces data on the system states that, once processed, can offer useful suggestions
about the maximum performance achievable with the current system configuration.

The Arcade tool, introduced in [2], is also based on a simulation model. Heuristic
algorithms, in presence of detected system bottlenecks, are able to provide alternative

A Framework for Automated Generation of Architectural Feedback 173

solutions that practically remove the bottlenecks. The heuristics are based on architec-
tural metrics that help to compare different solutions.

A quite interesting work has been introduced in [4], where “bad smells" are de-
fined as structures that suggest possible problems in the system in terms of functional
and non-functional aspects. Refactoring operations are suggested in presence of “bad
smells". Rules for refactoring are formally defined.

The paper is organized as follows: in Section 2 we illustrate our approach along with
the structures and the entities that represent its core; in Section 3 we step-by-step apply
our approach to a case study, and finally in Section 4 we provide conclusive remarks
and future work.

2 Automated Generation of Feedback

In this section we illustrate our approach for the interpretation of performance results
and the automated generation of architectural alternatives. The approach goes through
two fundamental phases:

– an identification phase (or interpretation phase), where the analysis of the perfor-
mance results brings to identify particular scenarios that affect performance;

– a construction phase (or generation phase), where several architectural alternatives
are constructed, basing on the information collected in the previous phase.

Even though these two phases are conceptually separate, and they are executed in se-
quence, in Section 2.3 we show how they need to share common knowledge on the
system structure and its performance.

2.1 Software Performance Granularity: System, Subsystem, Resource

Software performance analysis can be conducted at different granularity levels. Indices
like throughput, response time and utilization can be obtained from the performance
analysis at the system level down to the single resource level.

A system can be logically split into several parts, and a detailed performance analysis
restricted to the most critical partes can be conducted to better identify the adversary
issues in a specific system’s area as soon as possible. Software architectures are by
definition made of subsystems and components, therefore this "zooming" approach to
the performance analysis finely applies to them.

In order to define a structural approach to the analysis of performance results, we
have identified three granularity levels at which a software architecture can be analyzed,
that are: System level, Subsystem level, Resource level.

System level - This is the highest abstraction level for conducting a performance anal-
ysis experiment; only global indices can be obtained by a system level analysis of the
architecture, such as end-to-end response time (i.e. from the input to the output), system
throughput, etc.

Subsystem level - This is an intermediate abstraction level where the system’s compo-
nents and their interactions can be analyzed. In our approach this level does not have

174 V. Cortellessa and L. Frittella

a fixed granularity, because any assembly of basic elements can be considered as a
subsystem. We leave this definition as general as possible, so that the approach can be
applied to multiple definitions of subsystems.

Zooming into architectural details (i.e. subsystem mechanism) can be driven by dif-
ferent strategy that aim at splitting the system following different criteria. Since our
goal is to support the validation of a certain architecture vs a performance requirement,
we devise two criteria for architecture splitting that depend on the type of performance
requirement imposed on the system, as follows:

– flat requirement, i.e. one or more performance requirement are imposed on the
whole system, no matter what is the service that the system will execute. An exam-
ple of such requirement can be "The web server must be able to show a web page
on the client side within 8 seconds from the request". In fact, this requirement must
hold on the whole system, as it does not detail on the type of pages to show. To
investigate such requirement, the system can be partitioned in subsystems that are
clusters of components heavily coupled to perform a certain task. In this case the
subsystems can be considered as path-crossing vs the path followed through the
whole software architecture to satisfy a certain service request. In the remainder
of the paper, the subsystems obtained with this type of splitting will belong to the
type1 category.

– service oriented requirement, i.e. one or more performance requirement are im-
posed on a specific system service. An example of such requirement can be "The
web server must be able to show the catalog web page on the client side within 8
seconds from the request". This requirement holds only on a specific system ser-
vice, that is a catalog request. To investigate such requirement, the system can be
partitioned in subsystems such that each subsystem contains the components in-
volved in a specific service provision. One of the major advantage in this type
of splitting is that the performance requirements at the system-level can be easily
associated with the subsystem that implements the service undergoing a require-
ment. The subsystems obtained with this type of splitting will belong to the type2
category.

Note, however, that in both the above cases we do not exclude that two subsystems
overlap each other, i.e. that a component can belong to more than one subsystem. This
situation is more frequent in case of type2 partitioning, as it will be seen later.

Resource level - It represents the finest grain level for conducting a performance analy-
sis. Indices that can be obtained at this level are associated to a specific component. We
assume here a general definition of component, that is: an atomic part of a system (soft-
ware or hardware), that has an internal behavior and an external interface, and cannot
be further split. At this level of granularity, the major difference between the two re-
source types resides in the changes that can be made on them to satisfy the performance
constraints. For example, a hardware resource like a CPU can be duplicated to improve
the throughput, whereas the duplication of a software component might improve the
performance only if the two instances can be allocated on separate machines. For an
overloaded software component, it is rather better to split the services that it provides
among other unoccupied components.

A Framework for Automated Generation of Architectural Feedback 175

Fig. 1. Results interpretation and feedback generation process

2.2 Using Feedback for Architectural Refinements: A Thorough Process

Figure 1 shows an activity diagram representing the main flow of the whole process for
interpretation of results and feedback generation. The iterative nature of the process is
obviously related to the progressive refinements that are brought on the system archi-
tecture while the interpretation of performance indices progresses. The refinement steps
are driven by the suggestions defined in special data structures that we call interpreta-
tion matrices and that will be described in more details in Section 2.3. One or more
interpretation matrices are associated to each granularity level. In order to produce such
suggestions the process also lays on the ability to recognize antipatterns in the archi-
tectural design. The concept of antipattern within the performance domain and some
examples of them are provided in Section 2.4.

Our assumption is that one or more performance requirements have been formulated
for the whole system. If any requirements only refers to a specific portion of the system,
then this process can be applied only to that portion by considering the latter as a whole
system.

A first performance model is built for the whole system. After results are obtained
from the solution of the system-level performance model solution (i.e. topmost block in
Figure 1), the first step consists in the interpretation of these results (i.e. SYSTEM level
block in Figure 1). If all the requirements are satisfied then the process successfully stop
without suggesting any change in the architecture. If some of the given requirements
are not satisfied, then it is suggested to move to a lower granularity level that is, in this
case, the subsystem level. The set of identified subsystems have to be sorted following a

176 V. Cortellessa and L. Frittella

certain criterion that may depend on the application domain1. The performance indices
of the various subsystems are observed, and the focus is given to the worst one.

Subsystems are examined in a certain order (i.e. the loop on the subsystem level
interpretation in Figure 1 represents this iteration) and if changes can be made without
ambiguity on some subsystem (with the support of the interpretation matrices) then the
process goes back to the first step and the updated performance model has to be solved.
Otherwise, a further move to a lower granularity level is suggested: in this case, the
resource level.

Analogous behavior of the process occurs at the resource level. After this interpre-
tation step in any case the process brings back to the performance model solution to
check whether the performance requirements are met or not.

2.3 The Interpretation Matrices

In our approach, the identification and construction phases share a structured knowledge
about the system that we have organized in so-called interpretation matrices. Such ma-
trices have a 2 × 2 format. The matrix rows represent interval of values for a certain
performance index, and matrix columns do the same. In a (i, j) cell we describe the
performance scenario that is characterized from the corresponding interval of indices
values. If it is needed, we also define in a cell the actions that should be taken to find
alternative scenarios.

We have devised matrices for different levels of granularity, different splitting strate-
gies of subsystems, and different types of components.

Figure 2 shows the matrix that we have built for system-level analysis (in [3] we
present the other four matrices that we have defined). We assume that performance
requirements at the system level must be formulated in terms of system throughput
and response time (2). On the matrix rows we split the range of the system throughput
in two intervals: the throughput values higher than the value Req_X specified in the
requirement are associated to the upmost row of the matrix, whereas the lower values
are associated to the bottommost row. On the matrix columns we represent the range
of the system response time in two intervals: the values higher than the value Req_R
specified in the requirement are associated to the leftmost column of the matrix, whereas
the lower values are associated to the rightmost column.

In each cell of the matrix in Figure 2 we identify the performance scenario (in plain
text), and we specify the next step (in italic text) to find an alternative scenario, if
needed. For example, the lower leftmost cell represents the case of a low system-level
throughput associated to a high response time. The matrix entry suggests to investigate
at the subsystem level, and the designer has to choose one of the splitting strategies
illustrated in Section 2.1. As opposite, the upper rightmost cell represents the case of
a high system-level throughput associated to a low response time. The matrix entry

1 The identification of subsystem is still a step that requires some human support, especially in
case of flat requirement.

2 We do not deal here with requirements on the utilization index, as it is quite rare to have such
a requirement at the system and subsystem level. Utilization enters however in the picture at
resource level of granularity.

A Framework for Automated Generation of Architectural Feedback 177

Fig. 2. System Level Interpretation Matrix

suggests to stop the analysis because all the system requirements have been satisfied
(recall that we assume all requirements at the system level).

2.4 Supporting Structures: Some Classified Antipatterns

A quite crucial role in the interpretation matrices is played by antipatterns. Indeed,
almost always at the subsystem level (and sometimes at the resource level) the action to
be taken for result interpretation and to find alternative scenarios consists of searching
in the subsystem for an antipattern, that we define here below.

A design pattern is a standard solution for a known problem. An antipattern is in
practice a negative pattern, in that it is a pattern whose presence into a design has neg-
ative effects that should be avoided. In our case we consider performance antipatterns
[10] that produce effects on the system performance. For each known performance an-
tipattern a refactoring mechanism can be provided to overcome it. The refactoring con-
sists of a sequence of transformations, from the original architectural model to a target
model, that improve system performance while preserving the system functionalities 3.

Many antipatterns have been classified in literature [10,11,12]. In our work we have
considered the ones that can feasibly applied, with appropriate tailoring, to software
architectures for performance goals. In this section we provide evidence of two antipat-
terns that will be used in the example provided in Section 3. However, other classified
antipatterns are available in [8].

The Blob antipattern reveals itself if a particular resource does the majority of the
work in a software architecture while banishing the other ones to minor support roles.
This situation is often easy to recognize looking at the performance results, because the
“blobbing resource", that embeds many of the functionalities provided by the system,
presents a very high utilization if compared to resources in its neighborhood. The left
side of Figure 3 shows an example of such antipattern.

The density of lines within each resource indicates the intensity of the resource load.
A poor distribution of the system intelligence evidently appears in Figure 3. In the right
side of Figure 3 a refactoring has been made on the system by distributing the system
logics over all the resources. A better performing pattern can be thus obtained.

3 In the remainder of the paper we will call software performance antipatterns simply as antipat-
terns, with few exceptions where differently specified.

178 V. Cortellessa and L. Frittella

Fig. 3. An example of Blob antipattern

Fig. 4. An example of Unbalanced Extensive Processing antipattern

In the left side of Figure 4 the Unbalanced Extensive Processing antipattern is shown.
It characterizes the scenario in which a specific class of requests generates a pattern of
execution within the system that tends to overload a particular resource (or a set of
resources). In other words the overloaded resource (i.e. typically the slowest one) will
be executing a certain type of job very often, thus in practice damaging other classes
of jobs that will experience very long waiting times and, in addition, leaving quite idle
the following resources in the pattern. This scenario has negative effects on the mean
response time of the whole system, especially for the requests that do not belong to the
considered class, as well as on the whole system throughput.

The Unbalanced Extensive Processing antipattern can be recognized by observing
the utilization of the resources along the pattern and the classes of jobs that they pro-
cess. This antipattern can be refactored by introducing specific fast-paths for the service
requests that do not overload the considered resource and/or that need a particularly fast
service, as shown in the right side of Figure 4.

Obviously the positive effects of this refactoring will be more pronounced for the re-
quests that will use the fast-path, while the positive effects on the whole system depend
on the percentage of this request type overall the served requests.

3 Applying Our Approach

Our approach is not intended to be specific for a particular performance model, but
for sake of experimental validation we need to choose a notation to instantiate the

A Framework for Automated Generation of Architectural Feedback 179

methodology and use it on a case of study. We have chosen the Layered Queued Net-
works [7,14].

The Layered Queuing Network (LQN) model is a canonical form for extended
queueing networks with a layered structure. The layered structure arises from servers
at one level making requests to servers at lower levels as a consequence of a request
from a higher level. LQN was developed for modeling software systems, but it applies
to any extended queueing network with multiple resource possession, in which multiple
resources are held in a nested fashion.

The case study on which we have applied our approach represents a software archi-
tecture used for a small robot that can interact with the environment where it works and
learns from its past experiences. The robot consists of three fundamental parts:

– sensor machinery - the robot makes use of sensors for visual perception, for mea-
suring the environmental temperature and for communicating with other robots via
wireless;

– servosystems - they enable the robot to move around and to interact, and possibly
avoid, objects on its path;

– computational engine - this includes the intelligent and reactive components.

The main activity of the robot is to explore the whole environment around it and acquire
knowledge for classifying events and sharing information with other robot-friends.

When an event happens either it is pointed out by the devices in the sensor machin-
ery, or it is reported by one or more robot-friends that collaborate with the considered
robot. The computational engine, using the acquired knowledge, establishes whether it
is a potentially dangerous event or not and, in the latter case, it can be used to acquire
new knowledge. The knowledge might also be acquired using the servosystems, for ex-
ample by interacting with some objects on the ground. If an event is instead classified
as dangerous, then the robot must quickly react by making suitable remarks and stop-
ping itself before running into danger. An UML Sequence Diagram of a generic regular
event handling is shown in [3].

We have modeled such system architecture in LQN, as shown in Figure 5. The En-
vironment and OtherROBOTS tasks of Figure 5 are used only as request sources to
generate the system workload and do not belong to the analyzed system.

Following the previous classification, the LQN tasks can be subdivided as:

– sensor machinery: Sensors, NetRX, NetTX;
– servosystems: Arms, Motors, MoveController;
– computational engine: StorageMemory, VolatileMemory, AI, Handler.

We assume that the number of sensors is fixed at 2 (i.e. visual and temperature input
sensors) and the robot-friends number can instead vary from 1 up to 13. Besides, we
defined the following performance requirements:

1. the robot must react in no more than 4.5 seconds from the moment in which an
event is classified as dangerous;

2. the mean processing and reaction time for an event, from the moment in which it
starts its path from the computational engine, must not exceed 11 seconds.

180 V. Cortellessa and L. Frittella

Environment
λ=0.0889,μ=2

Events
22.5

OtherROBOTS
λ=0.0387,μ=1

Friends
25.8

P1
μ=0.000638

Sensors
λ=0.0889,μ=1.82

getEvent
20.5

NetRX
λ=0.0387,μ=0.806

receiveAlert
20.8

AI
λ=0.128,μ=1.59

checkEvent
12.5

whichType
0

endElab
0.0205

memElab
0.0782

memGetElab
0.041

memPutElab
0.0115

isRegular
14.9

+

+

isDangerous
6.36

Handler
λ=0.128,μ=0.862

handleDangerous
0.792

handleRegular
9.3

MoveController
λ=0.351,μ=0.657

haltHere
0.66

goThere
2.34

takeThat
1.78

NetTX
λ=0.0383,μ=0.0566

sendAlert
1.48

StorageMemory
λ=0.744,μ=0.0157

getInfo
0.0204

storeInfo
0.0229

VolatileMemory
λ=1.39,μ=0.0216

exec
0.0155

Motors
λ=0.78,μ=0.318

motorStatus
0.0829

setSpeed
0.531

setDirection
1.53

Arms
λ=1.16,μ=0.296

armStatus
0.0829

moveDX
0.531

moveSX
0.531

P2
μ=0.211

Fig. 5. The LQN model for the robot case study

A Framework for Automated Generation of Architectural Feedback 181

Table 1. Requirements and Performance Results - Iteration0

Target Value Current Value
isDangerous (req1) ≤ 4, 5 ≈ 9, 25

checkEvent (req2) ≤ 11 ≈ 15, 5

We associate the first requirement, in the LQN model, to the mean service time of the
isDangerous entry. The second requirement is associated to the mean service time of
the checkEvent entry. Both entries belong to the AI task.

In [3] all the parameters used for the initial LQN model are shown. The performance
analysis of the initial model produces the results reported in Table 1. It is evident that the
initial architecture does not satisfy the performance requirements. Our approach, basing
on the system-level interpretation matrix of Figure 2, suggests to identify subsystems,
in one of the previously described ways, for a finer grain performance analysis. In this
case study we have both types of requirements, as classified in Section 2.1. The first
one is service specific whereas the second one is related to the whole system (i.e. a
flat requirement). At this point we have chosen to adopt a type2 system splitting, even
though type1 could be used as well. Of course, depending on the type of splitting, the
appropriate interpretation matrix has to be used in the next step.

SubS_dangerous is the first analyzed subsystem, and it is composed by all the system
tasks with the exception of the Arms task.

The subsystem type2 interpretation matrix [3] has to be referred for actions to take.
In this case, high mean response time and a good throughput level (4) suggest to

search for any known antipattern in the considered subsystem.
By observing the Handler task and the type of requests that run over the system, the

“Unbalanced Extensive Processing” antipattern can be retrieved on it (see left side of
Figure 6. In fact the considered task has a sufficiently high utilization level (i.e. about
86.2%) and it receives two different request types: one relates to the regular events
processing (and consequently with potentially heavy environmental interactions), and
the other one relates with the dangerous events which need a faster processing.

By applying the suggested solution to the retrieved antipattern, the refactored archi-
tecture, as shown in the right side of Figure 6, achieves the performance levels summa-
rized in Table 2. Indices have been improved, the first requirement has been satisfied
but the second one has still not been met.

The analysis should proceed with the goal of reducing the mean system response
time for a generic event while considering that, in accordance with performance model
parameters, the 70% of the captured events are classified as regular. Thus we will an-
alyze the SubS_regular subsystem because its performance affects the global system
performance more than the other subsystems.

In the new considered model the Handler2 task belongs to the SubS_dangerous sub-
system but the Handler task, that now does not offer any service for the dangerous
events processing, only belongs to the SubS_regular subsystem, as shown in table 3.

4 Note that no requirement has been imposed on the throughput, hence any value can be consid-
ered as feasible.

182 V. Cortellessa and L. Frittella

Fig. 6. Unbalanced Extensive Processing antipattern in robot system

Table 2. Requirements and Performance Results - Iteration1

Target Value Current Value
distance from the
previous iteration

isDangerous (req1) ≤ 4, 5 ≈ 3, 3 −64, 32%

checkEvent (req2) ≤ 11 ≈ 13, 75 −11, 29%

The subsystem type2 interpretation matrix used with the SubS_regular subsystem
suggests to search for antipatterns in this case as well. Here the interactions among the
tasks MoveController, Motors and Arms announce for a “Blob" antipattern, as shown
in the left side of Figure 7.

The refactoring of the system due to the latter antipattern identification does not
modify the model structure, but only the distribution of load, as shown in the right side
of Figure 7.

This allows the software architecture to achieve the performance values summarized
in Table 4.

The second requirement is still slightly over the desired level, so the analysis should
make one more step. Now the subsystems do not contain any known antipattern, and
the interpretation matrix suggests to go for a lower level of granularity and use the
“software resource” interpretation matrix.

Fig. 7. Blob antipattern in robot system

A Framework for Automated Generation of Architectural Feedback 183

Table 3. SubSystems - Iteration2

Software Resources
SubSystem

SubS_dangerous
SubSystem

SubS_regular

Sensors
√ √

NetRX
√ √

NetTX
√

StorageMemory
√ √

VolatileMemory
√ √

AI
√ √

Handler
√

Handler2
√

MoveController
√ √

Motors
√ √

Arms
√

SubSystem
performance target

R ≤ 4,5
(on isDangerous)

—

System
performance target

R ≤ 11 (on checkEvent)

Table 4. Requirements and Performance Results - Iteration2

Target Value Current Value
distance from the
previous iteration

isDangerous (req1) ≤ 4, 5 ≈ 3, 15 −4, 54%

checkEvent (req2) ≤ 11 ≈ 12 −12, 73%

The first analysis consists of examining the utilization level for the resources be-
longing to the considered subsystem to find the one in the worst state. As shown in
the left side of Figure 8, the Handler resource has the highest utilization value and the
“software resource” interpretation matrix suggests to clone it. Thus we have raised its
resource multiplicity in the LQN model.

This change has positive effects on the generic event processing performance al-
though it is not enough to satisfy the requirements. Thus we can consider the AI re-
source that is the current most used resource in the SubS_regular subsystem, as shown
in the right side of Figure 8. However, the raise of its multiplicity has negative effects,
very likely because the number of requests in the queues of other system resources
becomes too high. For this reason, we did not apply this change.

Handler is the second highly used resource in the subsystem and its utilization level
is over 80%, as shown in the right side of Figure 8. Raising its multiplicity, as suggested
by the proper interpretation matrix, is in this case useless because the performance
levels remain unchanged, so we did not apply this change either.

At this point, considering that the hardware (like CPU and memories) which is di-
rectly used by the software components can support the current workload with medium
utilization levels, we can try to improve the hardware related with the servosystems, i.e.
the Motors and Arms tasks that are the slowest components of the whole robot system.

184 V. Cortellessa and L. Frittella

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 2 4 6 8 10 12 14

U
til

iz
at

io
n

Robot-friends number

AI (2)
Handler

MoveController
 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 2 4 6 8 10 12 14

U
til

iz
at

io
n

Robot-friends number

AI (2)
Handler (2)

MoveController

Fig. 8. Resource Utilization Graphs

Table 5. Requirements Summary - Iteration3

Target Value Current Value
distance from the
previous iteration

isDangerous (req1) ≤ 4, 5 ≈ 4 +26, 98%

checkEvent (req2) ≤ 11 ≈ 10, 3 −14, 17%

Thus, basing on the hardware resource interpretation matrix, we decided to drop the
delay of each servosystems activity by 0.1 seconds. This leads to a considerable perfor-
mance increase. In fact, at the end of the process the performance goals are achieved,
as shown in table 5.

4 Conclusions

We have presented an approach to interpret performance analysis results and generate
architectural feedback on the basis of result interpretation. Using our approach, guide-
lines for interpretation and a thorough process can be followed to break the adversary
design choices that negatively affect the system performance.

Although we have implemented a prototyped tool that may guide the developers
along the whole process, it is still necessary some human experience in several steps.
For example, the detection of antipatterns in a subsystem is a task whose complexity
heavily depends on the structure of the subsystem and the definition of the antipattern
itself. However, at the best of our knowledge, this is the first work that embeds in the
same process the interpretation of performance results and the formulation of architec-
tural alternatives. In addition, we have given a first (still preliminary) contribution to
structuring the knowledge necessary for such task.

As future work we mainly intend to consolidate the antipattern definitions and re-
trieving. Consequently, we can improve the tool support to the whole process. Inter-
pretation matrices are still too informal, thus more effort shall be dedicated to their
refinement in order to apply our approach to more complex case studies. Besides, we

A Framework for Automated Generation of Architectural Feedback 185

plan to extend our approach by considering possible architectural constraints that may
prevent from applying suggested changes (e.g. a certain load cannot be distributed on
other components due to "narrow" connectors). The whole approach does not depend
on the notation adopted to represent the performance model, however it will be inter-
esting to experiment on other notations such as Petri Nets. As a long-term goal, we plan
to introduce cost issues in the choice of architectural alternatives, exactly like CBAM
process suggests [5].

References

1. Balsamo, S., Di Marco, A., Inverardi, P., Simeoni, M.: Model-based Performance Prediction
in Software Development: A Survey. IEEE Trans. on Soft. Eng. 30(5), 295–331 (2004)

2. Barber, S., Graser, T., Holt, J.: Enabling Iterative Software Architecture Derivation Using
Early Non-Functional Property Evaluation. In: Proc. of the 17th IEEE ASE conference. IEEE
Computer Society Press, Los Alamitos (2002)

3. Cortellessa, V., Frittella, L.: A framework for automated generation of architectural feed-
back from software performance analysis, TRCS 007-2007, Technical Report, Diparti-
mento di Informatica, University of L’Aquila (2007), http://www.di.univaq.it/
cortelle/docs/feedbackreport.pdf

4. Dobrzanski, L., Kuzniarz, L.: An Approach to Refactoring of Executable UML Models. In:
Proc. of ACM SAC. ACM Press, New York (2006)

5. Kazman, R., et al.: Quantifying the Costs and Benefits of Architectural Decisions. In: Proc.
of ICSE01 (2001)

6. Lazowska, E., et al.: Quantitative System Performance - Computer System Analysis Using
Queueing Network Models. Prentice-Hall Inc., Englewood Cliffs (1984)

7. Franks, G., et al.: Layered Queueing Network Solver and Simulator User Manual. Tech.
Report, Department of Systems and Computer Engineering, Carleton University (2005),
http://www.sce.carleton.ca/rads

8. Frittella, L.: Feedback Architetturale Basato su Sistematica Interpretazione di Software
Performance Analysis (in italian). Master Thesis, Universitá degli Studi dell’Aquila, Italy
(2006), http://www.di.univaq.it/cortelle/docs/TesiLaurento.pdf

9. Sancho, P., Juiz, C., Puigjaner, R.: Automatic Performance Evaluation and Feedback for
MASCOT designs. In: Proc. of the 5th ACM WOSP. ACM Press, New York (2005)

10. Smith, C., Williams, L.: Software Performance AntiPatterns. In: Proc. of 2nd ACM WOSP.
ACM Press, New York (2000)

11. Smith, C., Williams, L.: New Software Performance AntiPatterns: More Way to Shoot Your-
self in the Foot. In: Proc. of CMG international conference (2002)

12. Smith, C., Williams, L.: More New Software Performance AntiPatterns: Even More Ways to
Shoot Yourself in the Foot. In: Proc. of CMG international conference (2003)

13. Williams, L., Smith, C.: PASA: An Architectural Approach to Fixing Software Performance
Problems. In: Proc. of CMG international conference (2002)

14. Woodside, M., Franks, G.: Tutorial Introduction to Layered Modeling of Software Perfor-
mance, Tech. Report, Department of Systems and Computer Engineering, Carleton Univer-
sity (2005), http://www.sce.carleton.ca/rads

http://www.di.univaq.it/cortelle/docs/feedbackreport.pdf
http://www.di.univaq.it/cortelle/docs/feedbackreport.pdf
http://www.sce.carleton.ca/rads
http://www.di.univaq.it/cortelle/docs/TesiLaurento.pdf
http://www.sce.carleton.ca/rads

Optimal Dynamic Server Allocation in Systems

with On/Off Sources

Joris Slegers, Isi Mitrani, and Nigel Thomas

School of Computing Science, Newcastle University, NE1 7RU
{j.a.l.slegers,isi.mitrani,nigel.thomas}@ncl.ac.uk

Abstract. A system consisting of several servers, where demands of
different types arrive in bursts, is examined. The servers can be dynam-
ically reallocated to deal with the different requests, but these switches
take time and incur a cost. The problem is to find the optimal dynamic
allocation policy. To this end a Markov decision process is solved, using
two different techniques. The effects of different solution methods and
modeling decisions on the resulting solution are examined.

Keywords: Resource allocation, dynamic optimization, bursty arrival
sources.

1 Introduction

Recent developments in distributed and grid computing allow the hosting of
services on clusters of computers. The users of such a system do not have to
specify the server on which their requests (or ‘jobs’) are going to be executed. The
jobs are submitted to a central dispatcher which chooses an available server to
execute them. These job streams tend to be bursty, i.e. they consist of alternating
‘on’ and ‘off’ periods, during which jobs of the corresponding type do and do
not arrive.

The flexibility of the job execution can be combined with reallocation and
reconfiguration of the available servers by the provider. This can be done in a
reasonable (although in general non-zero) amount of time, allowing the provider
to use his servers for several different services (or ‘job types’) by reconfiguring
them when desirable. Finding a policy that efficiently decides when to reallocate
(or ‘switch’) servers from one job type to another is non-trivial. The main benefit
of switching servers from one job type to another is the increased efficiency with
which the servers are used, particularly in the presence of bursty job arrivals.
The main downside is the unavailability of servers during such a switch and the
possible other costs incurred by this decision. An efficient policy should balance
these issues carefully.

Earlier work examined the case without on/off periods (see [3]) or focussed
on finding both the optimal static policy, i.e. the optimal policy when switching
is not possible, as well as heuristics for the dynamic policy, where switching of
servers is possible (see [4] and [5]). This paper takes the natural next step which
is to look at the optimal dynamic policy. Computing this policy involves solving

K. Wolter (Ed.): EPEW 2007, LNCS 4748, pp. 186–199, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Optimal Dynamic Server Allocation in Systems with On/Off Sources 187

a continuous time Markov Decision Process (MDP). To make this tractable, we
examined the equivalent discrete time MDP and limited the allowed queue size.
This enabled the calculation of a solution which should be very close to optimal
for some cases. The focus here is on comparing various methods of calculating
this solution and comparing them for performance and closeness to optimality.

2 The Model

The system we examine is illustrated in Figure 1 and more formally described
as follows. The system contains N servers, each of which may be allocated to
the service of any of M job types. There is a separate unbounded queue for
each type. Jobs of type i arrive according to an independent interrupted Poisson
process with on-periods distributed exponentially with mean 1/ξi, off-periods
distributed exponentially with mean 1/ηi and arrival rate during on-periods λi

(i = 1, 2, ...,M). The required service times for type i are distributed exponen-
tially with mean 1/μi.

�
�
�

���� ��

��������

�

�
���� ��

Fig. 1. Heterogeneous clusters with on/off sources

Any of queue i’s servers may at any time be switched to queue j; the re-
configuration period, during which the server cannot serve jobs, is distributed
exponentially with mean 1/ζi,j . If a service is preempted by the switch, it is
eventually resumed from the point of interruption.

We denote the queue of job type i by ji, the on/off state of job type i by
li = 0 for a job type that is off and li = 1 for a job type that is on. The number
of servers currently assigned to a job type is denoted by ki and the number of
servers currently being switched from type i to type j is denoted mij .

Using this notation we can describe the state S of the system as:

S = (j, l,k,m) , (1)

188 J. Slegers, I. Mitrani, and N. Thomas

where j, l and k are vectors of size M , and m is an M ×M matrix. If no action
is taken, the instantaneous transition rate r(S, S′) from state S to state S′ is
given by:

r(S, S′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

liλi if j′ = j + ei

min(ki, ji)μi if j′ = j − ei

mijζij if k′ = k + ei

and m′
i,j = mi,j − 1

liξi if l′i = 0
|1 − li|ηi if l′i = 1

, (2)

where ei is the vector whose i-th element is 1 and all others are 0.
The above Markov process becomes a ‘Markov decision process’ by associating

with each state, S, a set of actions, {a}, that may be taken in that state. An
allowable action, a, consists of choosing a particular pair of job types, i and j,
and switching a number of servers from type i to type j. If that number is k,
then state S changes immediately to state Sa, where

ka
i = ki − k ; ma

ij = mij + k ; k = 0, 1, . . . , ki . (3)

The case k = 0 corresponds to the action ‘do nothing’.
These immediate state changes are not part of the Markov transition struc-

ture. We say that Sa is the ‘resulting’ state of action a in state S. The transition
rate of the Markov decision process from state S to state S′, given that action a
is taken in state S, is denoted ra(S, S′). By definition, it is equal to the transition
rate (2) from the resulting state Sa to state S′:

ra(S, S′) = r(Sa, S′) . (4)

In order to apply existing Markov decision theory, it is convenient to transform
the continuous time process into an equivalent discrete time one. This is done
by means of a mechanism called ‘uniformization’ (see e.g. [6]), which introduces
fictitious transitions from a state to itself, so that the average interval between
consecutive transitions no longer depends on the state. A Markov chain is then
embedded at these transition instants.

For this we need a uniformization constant, Λ, which is an upper bound for
the transition rate out of each state, under all possible actions. Although the
tightness of the bound does not matter in principle, the numerical properties of
the solution are improved if the bound is tight. The uniformization constant we
use is given by

Λ =
M∑
i=1

λi +N max
i
μi +N max

i,j
ζi,j +

M∑
i=1

max(ξi, ηi) . (5)

Optimal Dynamic Server Allocation in Systems with On/Off Sources 189

The one-step transition probabilities of the embedded Markov chain, in the
absence of any actions, are denoted by q(S, S′) and are given by

q(S, S′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

liλi/Λ if j′ = j + ei

min(ki, ji)μi/Λ if j′ = j− ei

mi,jζi,j/Λ if k′ = k + ei

and m′
i,j = mi,j − 1

liξi/Λ if l′i = 0
|1 − li|ηi/Λ if l′i = 1
1 −

∑
S′ �=S

q(S, S′) if S′ = S

. (6)

Again, this Markov chain becomes a discrete time Markov decision process
by associating actions a with state S. The one-step transition probability of
that process from state S to state S′, given that action a is taken in state S, is
denoted by qa(S, S′). By definition, it is equal to the transition probability (6)
from the resulting state Sa to state S′:

qa(S, S′) = q(Sa, S′) . (7)

An optimization problem is associated with the Markov decision process. Let
ci be the cost of keeping a type i job in the system per unit time (i = 1, 2, ...,M).
These ‘holding’ costs reflect the relative importance, or willingness to wait, of
the M job types. In addition, there may be a cost, ca, associated with carrying
out action a (this represents the monetary cost of switching servers from one job
type to another). Then the total one-step cost, ca(S), incurred when the system
is in state S and action a is taken, is given by:

ca(S) = ca +
M∑
i=1

ciji . (8)

The special case of ca = 0 represents cost-free, but not necessarily instantaneous,
switching.

A mapping, f , from states S to actions a is called a ‘policy’. Moreover, f
is said to be a ‘stationary policy’ if the action taken in state S is unique and
depends only on S, not on the process history prior to entering that state.

Consider the average long-term cost incurred per step, when a stationary
policy f is in operation. Denote by Qf the one-step transition probability matrix
of the Markov decision process under policy f . The elements of Qf are given by
(7), with actions specified by f . Then the nth power of Qf , Qn

f , contains the
n-step transition probabilities of the process under policy f . By definition, Q0

f

is the identity matrix.
Suppose that the process starts in state S and proceeds for n steps under

policy f . The total average cost incurred over that period, Vf,n(S), is equal to

Vf,n(S) =
n−1∑
t=0

∑
S′

qtf (S, S′)cf (S′) , (9)

190 J. Slegers, I. Mitrani, and N. Thomas

where qtf (S, S′) is the (S, S′) element of Qt
f , i.e. the t-step transition probability

from state S to state S′; cf (S′) is the one-step cost (8) incurred in state S′ with
action specified by f .

The long-term average cost incurred per step under policy f , gf , is defined as
the limit

gf = lim
n→∞

1
n
Vf,n(S) . (10)

For an irreducible process (which is our case), the right-hand side of (10) does
not depend on the starting state S.

The optimization problem can now be stated as that of determining the min-
imum achievable average cost, g = minf{gf}, together with a stationary policy,
f , that achieves it. For this problem to be numerically tractable, the infinite-
state Markov decision process must be truncated to a finite-state one. This is
done by imposing bounds, ji,max, on all queue sizes. In other words, all one-step
transition probabilities qa(S, S′) where S′ contains a queue size exceeding its
bound, are set to 0. This will be referred to as the ‘truncated model’. There are
obvious trade-offs in setting the queue size bounds: the larger they are, the more
accurate the truncated model, but also the more expensive to solve.

There is also a second way of looking for an optimal policy. Instead of aiming
for the average cost criterion, one could try to minimize the total discounted
cost over an infinite horizon. Using a discount factor 0 < α < 1, the n-step cost
(9) becomes

Vf,n(S) =
n−1∑
t=0

αt
∑
S′

qtf (S, S′)cf (S′) , (11)

and Vf,∞(S) is finite. It then makes sense to look for a policy f that, for each
state S, minimizes the total future cost incurred when starting in that state. The
advantage of discounted optimization is that the factor α speeds up numerical
convergence. The disadvantage is that an optimal policy under a discounted cost
criterion is not necessarily optimal under an average cost one (except in the limit
α → 1, where the numerical advantage of α is lost). This second approach to
finding an optimal solution will also be used in this paper.

A known result in Markov decision theory (see [7]) states that if there exist
a set of numbers, {vS} (one for each state), and a number g, such that for
every S,

vS = min
a∈A(S)

{ca(S) − g +
∑
S′

qa(S, S′)vS′} , (12)

where A(S) is the set of all possible actions in state S, then

1. The actions achieving the minima in the right-hand side of (12) constitute
an optimal stationary policy.

2. The long-term average cost achieved by that policy is g.

The numbers vS are not actual incurred costs in various states, but may be
thought of as ‘relative costs’. Note that if a set of relative costs provides a
solution to (12), then adding any fixed constant to all of them would also produce

Optimal Dynamic Server Allocation in Systems with On/Off Sources 191

a solution. Hence, one of the relative costs can be fixed arbitrarily, e.g. vS = 0
for some particular S.

3 Solution Method

There are two standard ways of solving (12) and computing the optimal policy:
value iteration and policy improvement. Value iteration is quite straightforward
but has some rather unappealing convergence properties. It lacks, for example, a
stopping criterion that is guaranteed to give an optimal solution. Policy improve-
ment on the other hand, has nice convergence properties but requires the solving
of a large set of simultaneous equations, which is computationally expensive. We
will first discuss the policy improvement algorithm and then address the value
iteration algorithm. Both of these are discussed first in their discounted form
and then in their undiscounted form.

3.1 Policy Improvement

The policy improvement algorithm is due to Howard [2] and has four steps.

Step 1. Choose an initial policy, f , i.e. allocate to every state S, an action a to
be taken in it. For example, one could choose the policy that ‘does nothing’ in
all states. Also, select the state whose relative cost will be 0.
Step 2. For the policy f , calculate the relative costs, vS , and the average cost,
g. This requires the solution of the set of simultaneous linear equations:

vS = cf (S) − g +
∑
S′

qf (S, S′)vS′ . (13)

There are as many equations here as unknowns, since we also set one of the vS
to 0.
Step 3. Find, for every state, the action a that achieves the minimum in

min
a∈A(S)

{ca(S) − g +
∑
S′

qa(S, S′)vS′} , (14)

using the relative costs and g computed in step 2. This set of actions defines a
policy, f ′, which is at least as good as f and possibly better.
Step 4. If f ′ and f are identical, terminate the algorithm and return f and g
as the optimal policy and the minimal average cost. Otherwise set f = f ′ and
go to step 2.

The computational complexity of this algorithm tends to be dominated by
step 2. It is convenient to rewrite this step in matrix and vector form:

V = cf +AfV , (15)

where V = (v, g) is the vector of relative costs vS and the average cost g;
Af = [Qf ,−1] is the one-step transition probability matrix under policy f ,

192 J. Slegers, I. Mitrani, and N. Thomas

extended with a column of (-1)s; the last equation (15) is the condition vS , for
the chosen S.

This equation can be rewritten in the standard form

(I −Af)V = cf . (16)

There are many numerical methods for solving this type of equation. We have
used the direct solution method provided by Matlab (and inherited from LA-
PACK). This can sometimes suffer from numerical instabilities; it turns out to
be better to solve yet another form of equations (16), namely:

(I −Af)∗(I −Af)V = (I −Af)∗cf , (17)

where B∗ denotes the transpose of matrix B. This equivalent equation is more
convenient, because for any non-singular matrix B, the matrix B∗B is positive
definite. This greatly helps the numerical stability of most procedures, including
the ones used by Matlab. The form (17) was therefore adopted.

This undiscounted policy improvement algorithm can easily be adapted to
solve the discounted cost problem (11). We simply replace the equations (13)
and (14) by their discounted forms:

vS = cf (S) − g +
∑
S′

αqf (S, S′)vS′ , (18)

and
min

a∈A(S)
{ca(S) − g +

∑
S′

qa(S, S′)vS′} . (19)

As mentioned before, this discounted problem has better convergence properties.
The reason for this can be found in linear algebra. It is know (see e.g. [1]) that
iterative solutions of the linear equations of the form Ax = b converge at a
geometric rate if the spectral radius ρ(A) < 1. Since A is a stochastic matrix,
ρ(A) = 1. So if we use a discount factor 0 < α < 1, it is guaranteed that
ρ(αA) < 1 and we get geometric convergence. For ρ(A) = 1 the convergence is
much more complicated in general but an exception can be made for matrices
that are positive definite. This is the reason why we used form (17) over (16).

3.2 Value Iteration

The value iteration algorithm is due to White [8]. It too has four steps.
Step 1. Initialize the cost V0 at step 0 of each state S to some value. Here we
used the obvious choice of the holding cost as the selected starting cost:

V0(S) =
M∑
i=1

ciji . (20)

Also initialize some termination accuracy ε.

Optimal Dynamic Server Allocation in Systems with On/Off Sources 193

Step 2. Choose a state S∗. Calculate the cost in that state as:

gn = min
a∈A

[ca(S∗) +
∑
S′

qa(S∗, S′)Vn−1(S′)] . (21)

We use this as our normalizing cost.
Step 3. Given the n− 1 step cost Vn−1 for each state, calculate the n step cost
Vn(S) and n step optimal decision a(S) in each state. We do this by finding the
decision a that minimizes:

Vn(S) = min
a∈A

[ca(S) − gn +
∑
S′

qa(S, S′)Vn−1(S′)] . (22)

and the cost Vn(S) that results from this decision.
Step 4. Calculate the maximum Mn and minimum mn change in cost as:

Mn = maxS[Vn(S) − Vn−1(S)] and mn = minS[Vn(S) − Vn−1(S)] . (23)

If the termination criterion:

Mn −mn ≤ εmn , (24)

is satisfied, we terminate with the decisions a(S) as output. Otherwise we go to
step 2.

Again this algorithm can be converted to solve the discounted cost problem
(11). This can be done by just introducing the discount factor α in the relevant
equations. But a more efficient method is to remove step 2 from the algorithm.
This step was only introduced to counter the problems of the costs Vn tending
to infinity in the undiscounted case. Having removed step 2, we replace equation
(22) by:

Vn(S) = min
a∈A

[ca(S) + α
∑
S′

qa(S, S′)Vn−1(S′)] . (25)

The rest of the algorithm is left unchanged.

4 Results

We used the two algorithms mentioned above, policy improvement and value
iteration, to calculate the optimal solution for a set of systems. We varied both
the truncation level and the discount factor, including setting it to 1, i.e. using
the full cost. We then compared the different methods in terms of performance
achieved (in terms of achieved cost) and time required to compute.

4.1 Example 1: Lightly Loaded System

The first case considers a system with just two job types and two servers, i.e.
N = 2 and M = 2. The system is symmetrical in both job types, lightly loaded
and each job type is ‘on’ half of the time. In terms of the parameters: λ1 = λ2 =

194 J. Slegers, I. Mitrani, and N. Thomas

0.047, μ1 = μ2 = 0.113 and η1 = η2 = ξ1 = ξ2 = 0.01. The two job types are not
symmetrical in cost assigned to them. The holding cost for job type 2 is twice
that of job type 1, c1 = 1, c2 = 2. And finally switching is free but takes an
average of one completion time to finish, i.e. Csw = 0 and ζ1,2 = ζ2,1 = 0.113.
We examine the effect of the chosen discount factor on this system for the policy
improvement algorithm and fix the truncation levels of our system at queue
length 20. The effect of the truncation level will be discussed in more detail later
on and in other examples. Results generated by the value iteration algorithm
will also be discussed in a later example.

Table 1 shows some of the actions the optimal policy makes, given various
discount factors. An optimal policy is of course defined for every state and the
table here only shows the actions made when one server is assigned to each of
the two job types and both job types are in an ‘on’ period.

Table 1. Optimal actions for example 1 with various discount factors: (α = 0.9,
α = 0.99, α = 0.999). 1 denotes switching a server from job type 1 to job type 2 and
−1 denotes the converse switch.

j1 j2 0 1 2 3 4 5 6 7 8 9 10

0 1,0,0 1,1,1 1,1,1 1,1,1 1,1,1 1,1,1 1,1,1 1,1,1 1,1,1
1 1,1,1 1,1,1 1,1,1 1,1,1
2 1,0,0 1,1,1 1,1,1 1,1,1
3 1,0,0 1,1,0 1,1,1 1,1,1
4 1,0,0 1,1,0 1,1,1 1,1,1
5 -1,-1,-1 1,0,0 1,0,0 1,1,1 1,1,1
6 -1,-1,-1 1,0,0 1,0,0 1,1,0 1,1,1
7 -1,-1,-1 1,0,0 1,0,0 1,1,0 1,1,1
8 -1,-1,-1 1,0,0 1,0,0 1,1,1
9 -1,-1,-1 1,0,0 1,0,0 1,1,0
10 -1,-1,-1 1,0,0 1,0,0 1,1,0

In the table the actions for queue lengths up to 10 are displayed. The first
number denotes the action made by the optimal policy calculated with a discount
factor of 0.9, the second for a discount factor of 0.99 and the third one for a
discount factor of 0.999. Here 1 denotes the decision to switch a server from job
type 1 to job type 2, −1 denotes the decision to switch a server from job type 2
to job type 1 and 0 denotes the decision not to switch. Where the table is left
blank, all three optimal policies made the decision not to make any switch.

Recall that the job types are symmetrical but that job type 2 is twice as
expensive. This explains the much higher willingness of all the optimal solution
to switch a server to job type 2, rather than the other way round. The optimal
solution is also less willing to switch when the discount factor is closer to 1,
i.e. when future costs are discounted less. The explanation seems to be that
although there is a short term benefit in reducing the current queue length by
switching a server to a (relatively) heavily loaded system, there is also a longer-
term disadvantage since the system is taken out of a stable state. This means

Optimal Dynamic Server Allocation in Systems with On/Off Sources 195

that the other queue length will grow and the server will have to switched back
at some point. Systems with a discount factor closer to 1 should penalize this
behavior more heavily. Not shown in the table are the actions of the optimal
policy when there is no discount, i.e. α = 1. For the states in the table, these
actions are identical to those generated by the α = 0.999 discounted policy. In
fact, the action is different in just 48 of the 17640 states considered here.

The next obvious question is how these different decisions affect the system
in terms of the performance of the policy, expressed as a cost. It should be noted
that the cost is derived from direct computation, not simulation. The idea is
that, given the (optimal) decision f(S) in each state S, we calculate the steady
state distribution denoted πf . The average cost of the system is then calculated
as the product gf = π′

f ·V (S). There is a slight complication. Due to the policy
some states can be unreachable. Those states are removed from the system in
order to solve the steady state equations. All this is not necessary in the case of
the optimal solution found by the non-discounted policy improvement algorithm,
as the optimal cost g∗ is actually outputted there.

The cost achieved by the optimal policy generated with a discount factor of
α = 0.9, α = 0.99, α = 0.999 and the undiscounted version, is 1.5095, 1.4250,
1.4249 and again 1.4249 respectively. In this example there is a clear benefit of
setting the discount factor to at least 0.99, a very modest benefit to setting it
to 0.999 and no noticeable benefit to calculating the undiscounted policy. The
downside of setting a higher discount policy is the increased computation time it
requires. There is no straight-forward formula for calculating the exact increase
since it is not caused by an increase in state space, but by the ease with which
the matrix equation (17) can be solved. In general this is harder (i.e. requires
more iterations) if α is closer to 1. Indeed in this example it took about half
an hour to calculate the policy with discount factor 0.9, 1 hour for α = 0.99, 5
hours for α = 0.999 and 7 hours for the undiscounted version.

It is difficult to draw any definitive conclusions from this example since the
results are completely dependent on the parameters of the system. E.g. although
here a discount factor of 0.99 seems to achieve a reasonable balance between
performance and computational effort, it could very well be that for different
system parameters the ‘best’ discount factor is entirely different. Indeed in the
next few examples different values will be presented. But the trade-off is general:
higher discount factors require significantly more computation time but offer
better performance.

A second factor of interest is the effect of the truncation level on the policy.
Table 2 shows the actions of two policies, both generated by the undiscounted
policy improvement algorithm, one for a system truncated at maximum queue
lengths of 10 and a second truncated at queue lengths 20. As mentioned before,
the second actions are identical to those generated with α = 0.999. The most
striking differences in decisions between the two policies can be found where
both queue lengths are big. Here the policy computed with the maximum queue
length set at 10 makes seemingly odd decisions. E.g. if j1 = 10 and j2 = 7 it still
decides to switch the server assigned to queue 1 to queue 2. The explanation is

196 J. Slegers, I. Mitrani, and N. Thomas

Table 2. Example 1 continued: Optimal actions for different truncation levels (10,20)

j1 j2 0 1 2 3 4 5 6 7 8 9 10

0 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1
1 1,0 1,1 1,1 1,1
2 1,1 1,1 1,1
3 1,1 1,1
4 1,1 1,1
5 -1,-1 1,0 1,1
6 -1,-1 1,0 1,1
7 -1,-1 1,0 1,1
8 -1,-1 1,0 1,0 1,0
9 -1,-1 1,0 1,0 1,0
10 -1,-1 1,0 1,0 1,0 1,0

that the system cannot get any worse with respect to job type 1 at that point, so
it makes sense to try and decrease the more expensive queue 2 and not make any
efforts towards reducing queue 1. While this is truly the optimal solution for the
truncated system, it is obviously nonsensical if the system under consideration
allows larger or even infinite queues. This makes the generalization of results for
truncated systems to larger ones problematic.

4.2 Example 2: Medium Loaded System

The second example considers a system with very similar parameters to the
previous one. The only change is in the load during an on period. Here these
are λ1 = λ2 = 0.1, leading to a system that could be considered to experience
medium load. The focus will be on the effect of truncation and discount factor
on the performance of the policy, rather than on its form. There are also some
results from the value iteration algorithm.

Table 3 shows the cost of the policy computed under various conditions. Hor-
izontally we vary the allowed maximum queue length and vertically we consider
several ways of computing the policy. Here ‘QL’ stands for the maximum allowed
queue size of both job types, PI stands for the policy improvement algorithm, VI
for the value iteration algorithm, the numbers 0.9, 0.99, 0.999 for the discount
factors used and the addition ‘full’ indicates that the undiscounted policy was
computed.

The cost increase with the maximum allowed queue size because the cost
is computed for the system with the specified maximum queue length. I.e. if
QL = 20 any job request arriving to a queue that already contains 20 jobs
(including those being served), is rejected. There is no cost attached to this
rejection. This makes the different policies somewhat more difficult to compare,
but as noted previously, there is no clear cut way of generalizing a policy to allow
for a system with higher queue lengths. Although some patterns are similar
to ones noted earlier, one remarkable difference can be found in the effect of
the discount factor. Where in the previous example a discount factor of 0.99

Optimal Dynamic Server Allocation in Systems with On/Off Sources 197

Table 3. Example 2: cost of policy computed with various queue lengths and discount
factors

QL=10 QL=20 QL=30 QL=40

PI, 0.9 4.1769 6.8937 11.003 16.77
PI, 0.99 4.0411 6.7794 10.745 16.201
PI, 0.999 3.961 5.8398 8.4187 13.644
PI, full 3.961 5.7952 8.2851 12.794
VI, 0.9 4.1769 6.8937 11.003
VI, 0.99 4.0411 6.7794 10.745
VI, full 3.961 5.8231

seemed to generate reasonable results, here a big gain seems to be possible
when using the higher 0.999 discount factor or even using an undiscounted cost.
This effect is much more pronounced when the allowed maximum queue lengths
are higher. This re-emphasizes the caution one must use when computing a
discounted policy.

The results of the value iteration are very similar to those of the equivalent
policy improvement algorithm. This is probably caused by the stopping crite-
rion used. Recall that criterion mentioned in section 3.2 means the algorithm
terminates when the biggest and the smallest change in values between two it-
erations are relatively (with some proportional factor ε) close. Here that factor
was chosen as ε = 0.001, a fairly strict criterion. To guarantee stopping in a
reasonable amount of time, there was a second stopping criterion. If the number
of iterations exceeded 10000 the algorithm terminated as well. For a maximum
queue length of 10, both the 0.99 discounted and the undiscounted calculations
terminated after less than 10000 iterations, meaning that the relative conver-
gence criterion was achieved. This yields equivalent policies (and hence cost) to
the guaranteed optimal solution generated by the policy improvement algorithm.
For a maximum allowed queue length of 20, the 0.99 discounted computation also
terminated on the ε criterion, after 1115 iterations. However the undiscounted
version terminated due to reaching the 10000th iteration. As can be seen, this
results in a suboptimal policy.

Table 4 shows some of the compute times and number of iterations required.
The compute times are only an indication since they are dependent on the ma-
chine running the algorithm. In this case a 2.8 Ghz. desktop with 2 GB of RAM
was used. The size of the state space is 4841 for a truncation level of 10 (implying
48412 possible transitions, although most of them are zero) and 17641, 38441,
67241 for truncation levels 20, 30 and 40 respectively. In general, for N servers,
M job types and QL maximum queue length the size of the state space is:

|S| = (QL+ 1)M · 2M ·
(
N +M2 − 1

M2

)
.

It should be noted that the time to compute the policies using the value
iteration algorithm, significantly exceeded that of the policy improvement algo-
rithms. For the smaller or more heavily discounted systems, this could perhaps

198 J. Slegers, I. Mitrani, and N. Thomas

Table 4. Example 2 continued: compute time and number of iterations required for
various policies

QL=10, time iterations QL=20 time iter QL=30 time iter QL=40 time iter

PI, 0.9 2 minutes 5 27 minutes 5 3 hours 5 7 hours 5
PI, 0.99 3 minutes 7 45 minutes 8 3.5 hours 8 14 hours 10
PI, 0.999 3 minutes 8 45 minutes 8 3.5 hours 8 14.5 hours 10
PI, full 3 minutes 8 51 minutes 9 4.5 hours 10 15 hours 10
VI, 0.9 32 minutes 311 5.5 hours 328 23 hours 344
VI, 0.99 2 hours 1115 1 day 1596 4.5 days 1789
VI, full 14 hours 10000 5 days 10000

be helped by setting a less stringent convergence criterion. But the case of the
undiscounted value iteration algorithm with a maximum queue length of 20 pro-
vides an indication that this is not likely to consistently generate optimal results.

5 Conclusions and Future Research

We examined a server allocation problem in the presence of on/off sources. Both
a value iteration and a policy improvement algorithm were used to calculate
the optimal policy for some parameters of such a system. This calculation is
not straight forward and requires several choices that balance the accuracy of
the computed policy with the computational effort required. We examined this
in some detail and showed the problems arising when using a more tractable
computation.

For future research these phenomenon should be considered in much more
detail. It is also interesting to compare the performance of these optimal dynamic
policies with that of the optimal static allocation and the dynamic heuristic
policies outlined in earlier work by the authors. One might hope to even get
some insight into general (heuristic) policies that perform well.

References

1. Golub, G.H., Van Loan, C.F.: Matrix computations. Johns Hopkins University Press,
Baltimore (1996)

2. Howard, R.A.: Dynamic Programming and Markov Processes. Wiley, New York
(1960)

3. Palmer, J., Mitrani, I.: Optimal Server Allocation in Reconfigurable Clusters with
Multiple Job Types. Journal of Parallel and Distributed Computing 65/10, 1204–
1211 (2005)

4. Slegers, J., Mitrani, I., Thomas, N.: Server Allocation in Grid Systems with On/Off
Sources. In: Min, G., Di Martino, B., Yang, L.T., Guo, M., Ruenger, G. (eds.) ISPA
2006 Workshops. LNCS, vol. 4331, pp. 897–906. Springer, Heidelberg (2006)

Optimal Dynamic Server Allocation in Systems with On/Off Sources 199

5. Slegers, J., Mitrani, I., Thomas, N.: Static and Dynamic Server Allocation in Sys-
tems with On/Off Sources, to appear in special issue of Annals of Operations Re-
search, entitled Stochastic Performance Models for Resource Allocation in Commu-
nication Systems

6. de Souza e Silva, E., Gail, H.R.: The Uniformization Method in Performability Anal-
ysis. In: Haverkort, B.R., Marie, R., Rubino, G., Trivedi, K. (eds.) Performability
Modelling, Wiley, Chichester (2001)

7. Tijms, H.C.: Stochastic Models. Wiley, New York (1994)
8. White, D.J.: Dynamic Programming, Markov Chains and the Method of Successive

Approximations. J. Math Anal. and Appl. 6, 373–376 (1963)

K. Wolter (Ed.): EPEW 2007, LNCS 4748, pp. 200–212, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Towards an Automatic Modeling Tool for Observed
System Behavior

Thomas Begin1, Alexandre Brandwajn2, Bruno Baynat1, Bernd E. Wolfinger3,
and Serge Fdida1

1 Université Pierre et Marie Curie – Lab. LIP6 – CNRS, Paris, France
{Thomas.Begin, Bruno.Baynat, Serge.Fdida}@lip6.fr

2 University of California Santa Cruz, Baskin School of Engineering, USA
alexb@soe.ucsc.edu

3 Universitaet Hamburg, Dept. Informatik, Germany
Wolfinger@informatik.uni-hamburg.de

Abstract. Current computer systems and communication networks tend to be
highly complex, and they typically hide their internal structure from their us-
ers. Thus, for selected aspects of capacity planning, overload control and re-
lated applications, it is useful to have a method allowing one to find good and
relatively simple approximations for the observed system behavior. This paper
investigates one such approach where we attempt to represent the latter by
adequately selecting the parameters of a set of queueing models. We identify a
limited number of queueing models that we use as Building Blocks in our pro-
cedure. The selected Building Blocks allow us to accurately approximate the
measured behavior of a range of different systems. We propose an approach
for selecting and combining suitable Building Blocks, as well as for their cali-
bration. We are able to successfully validate our methodology for a number of
case studies. Finally, we discuss the potential and the limitations of the pro-
posed approach.

Keywords: High-Level Modeling, Automatic Tool, Constructive Modeling,
Computer and Communication Systems, Model Calibration, Building Blocks,
Performance, Measurements.

1 Introduction

1.1 Motivations

Analytic performance modeling of computer and communication systems has numer-
ous applications throughout the life-cycle of such systems, from their design phase to
the actual configuration, tuning and capacity planning [11]. A commonly used
method, which we refer to as the constructive approach, is to attempt to reproduce in
the mathematical model essential aspects of the system structure and operation. This
constructive approach has its limits. First, important aspects of large and heterogene-
ous computer or communication systems, such as modern I/O controllers, or Internet
Service Provider networks, may be largely unknown. Second, extensive knowledge

 Towards an Automatic Modeling Tool for Observed System Behavior 201

and expertise that may simply not be available may be necessary to correctly identify
key system components and features lest the resulting models become unrealistic or
intractable in their complexity. These difficulties motivate in part our approach.

In our high-level modeling, we don’t necessarily seek to “mimic” the structure of
the system under study. Rather, we focus on the observable behavior of the system as
given by measurements, and attempt to infer a possible high-level model structure ca-
pable of adequately reproducing the observed system. In doing so, we forego the de-
tailed representation of the system in favor of the possibility that a relatively simple
model, not necessarily related to the apparent structure of the system, might be able to
capture the behavior of the system under consideration (e.g. certain priority systems,
cf. Section 2.3). An obvious justification for our approach is that, even in a complex
system, it is possible that a small number of components, or a single component, may
be the critical bottleneck, effectively driving the system behavior. This idea is by no
means novel, and has been frequently employed in the past, e.g. in the case of an
Internet path [20, 2], disk arrays [22], time-sharing system [21] and a Web server [7].

Our approach has several objectives. First, it may help discover properties of the
system not immediately apparent from the system structure. This may include both
the fact that the system performance can be represented by a simple model, or, on the
contrary, that no simple model (among the ones examined) will be able to adequately
represent the system. As such, our approach can be viewed as helpful for and com-
plementary to constructive system modeling. Second, our approach may provide the
performance analyst with a ready-to-use model to generate reliable predictions for
system performance at other workload levels, without the expense and the effort of
obtaining additional measurements. Finally, for a subsystem embedded in a larger
system (with the obvious proviso that measurements be available for the subsystem),
our approach may be able to provide a model of the subsystem that can then be incor-
porated in the overall system model. This latter application has a clear connection
with decomposition methods [4].

The advantage of the proposed approach is that it requires a priori little information
about the system. Our contribution is to automate the process of model selection and
to make it systematic by embedding it into a software tool with an optimization
method. As a result, the approach requires no special modeling or queueing theory
expertise from the end user.

1.2 Structure

The paper is structured as follows. Section 2 describes the general framework in
which we cast our approach. We present a subset of the selected models (Building
Blocks), as well as our general approach to determining the best set of model parame-
ters and grading the goodness of fit for a given Building Block. Section 3 presents a
few examples of application of our tool. All case studies in our paper use measure-
ment data from real life systems. Finally, Section 4 summarizes the main contribu-
tions of our approach, as well as its limitations, and outlines possible extensions of
our work.

202 T. Begin et al.

2 General Framework

2.1 Terminology

Systems considered in our study may represent a whole computer or communication
system, or specific components such as processors, a disk array, an Ethernet network
or a WLAN, etc. We use the term requests to refer to the individual entities that are
treated by the system, such as packets or frames in the case of networks, I/O requests
in the case of storage systems, HTTP requests in the case of web servers, etc. The
workload (offered load) includes all the requests that are submitted to the system for
treatment. In our view, the system performance changes in response to the workload,
and these changes are reflected in the corresponding measurements. More details on
workloads for networks can be easily found (e.g. [24] and [8]).

2.2 Measurements of the Observed System’s Behavior

Our approach relies on the availability of measurements of specific system perform-
ance parameters. These parameters may include quantities such as the attained
throughput of requests processed by the system per time unit, as well as measures of
internal system congestion such as the number of requests inside the system. Typical
measured performance parameters include throughput, loss probability, average re-
sponse time and queue length, denoted by X mes , L mes, R mes , and Q mes, respectively.

This is illustrated in Fig. 1. The throughput X mes represents the average number of
requests that leave the system per unit time (this quantity may differ from the offered
workload if the system is subject to losses). L mes gives the probability that an arriving

request is rejected, i.e., denied entry to the system. R mes defines the average sojourn
time (waiting for and receiving service) experienced by a request inside the system.
Finally, Q mes represents the average number of requests in the system. Note that, by

Little’s law [15], Q mes = X mesR mes so that it suffices to measure any two of these three
quantities.

Fig. 1. Performance parameters

In computer networks, typical performance parameters are the throughput at an in-
terface, the time spent by packets inside the network and the packet loss ratio. In disk
arrays, performance parameters may represent the I/O response time, I/O request
throughput, device utilization, etc. Crovella and Krishnamurthy [10], as well as Pax-
son [17] give additional useful information regarding network measurements.

 Towards an Automatic Modeling Tool for Observed System Behavior 203

Each measurement point corresponds to a set of performance parameters that have
been measured at a particular state of the load (e.g. (X mes,R mes)) and may in general
also include input parameters such as the corresponding offered load. A total of n
measurement points for the same system constitutes a set of measurements.

Note that in our high-level modeling approach, the measurement set must include
measurement points for different load levels. Hence, methods that consist in fitting a
model of discrete or continuous distribution to a sample of measurements for a single
level of system load are clearly unsuitable for our approach [5].

2.3 Simple and Not So Simple Models

As discussed in Section 1, one of the premises of our approach is that a complex sys-
tem may exhibit behavior that can be reproduced by a relatively simple queueing
model. Consider for example an M/G/1 queue with preemptive-resume priority disci-
pline and three priority levels where level 1 has the highest and level 3 the lowest pri-
ority. We denote by λ i the rate of arrivals to priority level i, by 1 μ i the mean and by
γ i the coefficient of variation of the service time for level i. We look at the mean re-
sponse time of the lowest priority level for a number of values of λ3 with the work-
load of higher priority levels kept constant. The well-known solution of the M/G/1
priority queue (e.g. [1]) gives the performance curve represented in Fig. 2.

While the analytical formula used to generate this curve is manageable, it may not
be obvious that the mean response time for the selected priority level is in fact that of
a simple M/G/1 queue with a different (higher) coefficient of variation as shown in
Fig. 2. It is interesting to note that, for the parameter values used in this example, a
simple M/M/1 queue (as proposed in some approximations) cannot adequately repre-
sent the behavior of lower priority levels (cf. [12]).

Our simple Building Blocks include queues such as the M/M/C, M/M/C/K, M/G/1,
M/G/1/K [6], as well as the M/G/C approximation [14]. Additionally, we have de-
fined original Building Blocks whose service times are driven by the congestion pa-
rameters of an embedded model. These Building Blocks belong to models with load
dependent service times, and are not presented in this paper due to lack of space. To
represent the fact that, in some systems, the response time comprises a fixed overhead
as an additive load-independent component, we expand our Building Blocks to in-
clude a fixed “offset” value. Note that this offset does not affect the congestion at the
server, and the response time in our Building Blocks is simply the sum of the offset
value and the response time at the server. This quantity can be viewed as an irreduci-
ble and load independent additive overhead in the response time. This constant offset
value is denoted by Off in figures and formulas.

In the example shown in Fig. 2, to find an M/G/1 block that matches the behavior
of a lower priority level in an M/G/1 priority queue, we need to determine the appro-
priate values for the first moment of the service time, its coefficient of variation, as
well as the additional offset value. These three quantities are the parameters of this
particular Building Block. We note that, in our approach we are unable to derive the
values of its parameters directly from the underlying model, as would be the case in

204 T. Begin et al.

Fig. 2. Behavior of the lowest priority class in an M/G/1 priority system with μ1 = 0.1,γ1 = 2,
μ2 = 0.5,γ2 = 2 and μ3 = 1,γ3 = 2 with higher classes workload kept constant

constructive modeling. This limits the predictive power of our approach. However,
the fact that an M/G/1 queue (in this example) is a good fit, and the M/M/1 is not,
may be valuable in the search of a simple constructive model. Interestingly, several
authors [21, 20] have contemplated the use of the M/G/1 queue to model general
queueing networks.

2.4 Error Criterion

We need a way to measure the goodness of fit of a given model versus the measure-
ment set. This is the role of the error criterion, referred to as φ . The goal of the func-
tion φ is to provide a convenient way to compare fairly various models. There are
many reasonable ways to define such a function. In our implementation, we have se-
lected the sum of the deviations between mean sojourn time obtained from measure-
ments and the one obtained from the model for values of throughput equal to the
measured throughput as illustrated by the Fig. 3. We use the subscript th to denote
values obtained from a model. Thus, let R mes,i ,i = 1,...,n be the measured mean re-

sponse time values, and R th,i ,i = 1,...,n , the corresponding mean response times ob-
tained from a model. φ can be formally expressed as:

φ = R th,i − R mes,i

i=1

n

∑ (1)

It is worthwhile noting that using a different definition for the function φ may af-
fect the results of our approach. In particular, the selected definition, while simple to
implement, may introduce an undue bias for points near system saturation where a
small visual distance between two curves may result in a very large error value (see
Fig. 3). Some adjustments to the definition of φ are possible. As an example, one can
take into account absolute and relative components for deviations.

 Towards an Automatic Modeling Tool for Observed System Behavior 205

Fig. 3. Error criterion

2.5 Search for an Adequate Model Among the Building Blocks

Our high-level approach uses a set of generic models - the Building Blocks - that we
attempt to automatically calibrate. By calibration of a Building Block we mean the
search for a set of values of model parameters that minimizes the error criterion φ . In
general, this leads to a non-linear numerical regression problem. Such a search must
be efficient since it is repeated for each Building Block. Clearly, because of its inher-
ent exponential complexity, we must exclude exhaustive search of the parameter
space. Liu et. al. [16] propose an efficient and robust solution method based on a
quadratic programming. Unfortunately, their method does not appear usable for our
application since it is specifically tailored to open Kelly-type queueing networks [13],
and it appears restricted to end-to-end delays and server utilization. We avoid as well
algorithms based on derivatives of φ . In most cases, computing the derivative of φ , if
at all possible, is time consuming and it is specific to each Building Block making the
inclusion of new blocks difficult.

We cast the calibration of a Building Block as a numeric optimization problem,
and we choose to employ an iterative descent technique in order to find a minimum of
the error function. Our tool is based on Derivative Free Optimization (DFO) methods
[18] and [9]. These methods have the advantage that no derivatives are invoked or es-
timated. They are not specific to a particular Building Block, so that the introduction
of a new Building Block is an easy task. In our specific implementation, we use a lo-
cal quadratic approximation, which implies a low computational cost while speeding
up the convergence. A drawback of DFO methods is that they require that all parame-
ters be continuous. To treat all Building Block parameters as continuous, we define
intermediate models in which discrete parameters are replaced by their corresponding
continuous extensions. These intermediate models coincide with “standard” models
when their extension parameters have integer values.

We note in passing that for a given Building Block and a set of measurements, cer-
tain bounds on the values of the Building Block (such as related to the stability of an
open queue) must be taken into account in the search procedure.

The results of our experiments indicate that the proposed search method tends to be
robust and very fast for Building Blocks with a limited number of parameters (say, up
to 5 or 6). With a larger number of parameters, the complexity of the method leads to

206 T. Begin et al.

excessive search times. There exist several other DFO methods, some of which might
outperform the one we use.

In our search for an adequate model, we start by the simplest Building Blocks (in
terms of the number of parameters and their computational complexity) and move on
to more complex ones only if no good calibration has been found for a simpler model.

2.6 Requirements for the Methodology

Measurements represent a key component for our approach. To be of use, the sets of
measurements must satisfy certain common sense conditions.

First, the different measurement points from a particular set must come from the
same system, and correspond to varying load levels. As a result, it makes sense to re-
quire that key parameters of the system stay identical for every measurement point or
vary in a “non-random” way as a function of the workload.

Second, in our view, the system resources can be shared by two types of traffic: the
one directly captured in the available measurements (captured traffic) and the uncap-
tured or background traffic. In a large computer network, a significant part of the traf-
fic may be processed without being directly captured by measurements. Since the
background traffic competes for shared system resources, the common sense condi-
tion discussed above requires that the background traffic be either negligible, con-
stant, or in a clear relationship to the captured (measured) traffic for all measurement
points.

Third, the available measurement data must adequately capture the salient features
of system behavior in the range of interest. Clearly, for instance, if the system
response exhibits an inflection point and this inflection point is not present in the
measurement data, there is little chance that the model proposed by our approach will
correctly reproduce such a behavior.

3 Case Studies

3.1 Preliminaries

The proposed approach aims at finding a model, referred to as the laureate model,
whose performance parameters match as closely as possible those known from system
measurements (in terms of the error function described in Section 2.4). As discussed
before, the laureate model is chosen from a set of pre-defined more or less simple
Building Blocks.

In addition to simply matching the data points in the measurement set, we would
want the laureate model to be able to correctly predict the performance of the system
within some reasonable domain. Therefore, in the case studies that follow we deliber-
ately remove one or more data points from the measurement sets. Having found the
laureate model for a given data set, we then test the ability of this model to predict the
system performance at the removed data points.

The data sets used in this paper have been measured in operational real-life sys-
tems such as wireless and Ethernet networks.

 Towards an Automatic Modeling Tool for Observed System Behavior 207

3.2 Broadband Wireless Network

We start by considering the high-speed wireless network for which Quintero et al.
give in [19] a set of performance measurements. The measurement points, shown in
Fig. 4, relate packet throughput to queueing delays experienced by packets in high
load scenarios. As mentioned before, we remove some number of measurement points
from the measurement set during the search for the laureate model. It is apparent from
the shape of the delay time curve in Fig. 4 that, in this case, the point for the highest
load level is likely to be most difficult to reproduce accurately. We elect to remove
precisely this point from the measurement set in order to test the predictive capabili-
ties of the laureate model.

Fig. 4 shows that a simple M/G/1 queue with adequate parameters determined by
our approach, viz. μ = 20.03, γ = 5.5 and Off = 0.44 , closely approximates the ob-
served performance for this system. We have also represented in Fig. 4 the results of
the “best” (in terms of smallest error) M/M/C and M/M/C/K queues (these two
curves are so close that they are difficult to tell apart). We notice that neither of these
two queueing models is able to correctly reproduce the measured system behavior.
The laureate M/G/1 model provides also a reasonable prediction for the removed
point. When comparing the expected sojourn times for the throughput level of the
removed point, we observe a relative error of 15%, while a comparison of expected
throughputs at the same mean sojourn time for the removed point yields a relative
difference of less than 1%. Given the steep slope of the performance curve in the vi-
cinity of the removed point, we view the attained accuracy as more than reasonable.
Not surprisingly, we note that the performance predictions of the M/M/C and
M/M/C/K Building Blocks are poor. If we remove other, randomly selected points,
and repeat the calibration procedure, we find that the laureate M/G/1 model yields
predictions whose relative errors are all below 5%.

Fig. 4. Broadband Wireless Network

208 T. Begin et al.

It may be of interest in building a constructive model of the average performance
parameters for the wireless network considered that neither the M/M/1 (M/M/C) nor
the M/M/1/K (M/M/C/K) models appear adequate. Our results show that even with
the best possible combination of parameters these two Building Blocks fall short from
matching the observed performance.

3.3 Ethernet Network

In this example, we consider the Ethernet network with a nominal rated capacity of 10
Mbps described and measured by Wang and Keshav [23]. The performance of this
network has been measured for three packet sizes: 64, 512 and 1500 bytes. Thus we
have three measurement sets, one per packet length. The data points in each set give
the expected sojourn time and the corresponding average packet throughput in the
network.

As could be expected, the behavior of the Ethernet network considered depends on
the packet size. Since the service time of a packet in this network (such as in many
other communication and computer systems) includes a fixed incompressible over-
head, using shorter packets reduces the transfer time of a packet but also the achiev-
able network throughput. This tradeoff between minimizing delay versus maximizing
network throughput has been extensively studied.

Fig. 5 illustrates the results obtained for this Ethernet network with 64, 512 and
1500 byte blocks. Note that the throughput in Fig. 5 is expressed in requests per time
unit and not in bits or bytes per time unit.

To represent the effect of the size of packets on the network behavior, we assume
that the intrinsic service time in our Building Blocks 1 μ can be expressed as

1 μ = S0 +U capa (2)

where U is the length of a packet in bits (units of work considered), S0 is the fixed
overhead expressed as a time, and capa denotes the treatment capacity of the server
in terms of units of work per time unit. A similar representation of the service time
may be of interest in other applications such as I/O subsystems, virtual memory, file
systems, etc. In our case, two parameters, S0 and capa , are required to define the
service-time for a given packet size. Clearly, the use of a formula like (2) implies
some knowledge of the system and a bit of constructive modeling.

This case study has two objectives. First, we show that a simple model can ade-
quately represent the performance of this Ethernet system. Second, we show that, if
we use only two of the three measurement sets, our laureate model is able to correctly
predict the performance of this network for the third packet size, not used to calibrate
the laureate model.

As shown in Fig. 5, the first objective is fully achieved. We observe that a simple
M/G/1 with (capa = 9.7 ×10+6 , S0 = 1.4 ×10−4 and γ = 6.0 ×10−1) is well suited to
reproduce the measured system behavior for different throughputs and packet sizes.
As before, we tested the predictive capability of the laureate model by randomly re-
moving some number of measurement points from the search and calibration process.
These results are not presented for the sake of clearness, but the laureate M/G/1
yielded accurate predictions for the removed data points.

 Towards an Automatic Modeling Tool for Observed System Behavior 209

Fig. 5. Ethernet Network

Fig. 6. Ethernet network – only sets for 64 and 512 bytes packets are used for calibration

To illustrate our second objective, we remove one of the data sets (corresponding
to one of the packet sizes) from the model search and calibration procedure. As an ex-
ample, we remove the measurement set for 1500 byte packets, and we search for the
“best” model. We find the same laureate as before, viz. an M/G/1 queue with
(capa = 9.7 ×10+6 , S0 = 1.4 ×10−4 and γ = 5.3×10−1). Therefore, it is not surprising
that the laureate model correctly predicts the performance of the network for the
“missing” packet size of 64 bytes. This is illustrated in Fig. 6. Similar experiments

210 T. Begin et al.

where we remove the measurement set for 512 and 1500 bytes, respectively, yield the
same result (not presented to be more concise).

It is important to note that, in general, the execution times for our approach are
quite short. Thus, (to the extent that the network can be adequately represented as one
of the Building Blocks, and we have measurement sets for two different packet sizes),
the laureate model provides a convenient way to approximately determine the optimal
packet size in a specific application.

Clearly, in some systems, the real dependence of the service time on the request
size may be more complex than the one given in formula (2). The results presented
here, suggest that, at least for this type of system, formula (2) is adequate.

4 Conclusions

We have presented a high-level modeling approach based on measurement data.
Unlike in constructive modeling, we don’t seek to represent “explicitly” the structure
of the system being studied. We focus on the measurement results, and attempt to dis-
cover a more or less elementary model that might correctly reproduce the observed
behavior. We identify a few obvious classical queueing models as possible Building
Blocks for our approach. Using several sets of measurements from real computer and
communication systems, we have shown that our Building Blocks are not only able to
reproduce the observed system behavior, but have also some predictive power.

We embed the search for a best fitting model in an efficient Derivative Free Opti-
mization procedure. The speed and the efficiency of this approach allow us to auto-
mate the search for the best fitting Building Block. Note that, owing to the use of
DFO methods, our approach is not limited to the particular performance measures
used in this paper. Other performance measures could be used as long as the Building
Blocks considered can be solved for the selected performance indices.

Our main contribution lies in the automation of the search for the laureate model.
Since the search for a laureate model has been automated, performance analysts with
a minimal queueing network background can use the resulting tool. It is worthwhile
noting that, in addition to the laureate model, our tool can produce the next best can-
didate (from another Building Block), which may be of interest in some situations.

The laureate models obtained from our approach are useful to predict performance
at workload levels for which measurements may not have been obtained. Hence, our
approach may be of help in predicting whether the system considered fulfills or fails
to fulfill a quality of service requirement. For instance, based on a projection of the
growth in workload, the laureate model provides a quick answer whether a given al-
lowed threshold-value for the average response time will be satisfied or not by the
system. Unlike the “classical” constructive approach (such as a proposed framework
for e-business applications [3] or disk arrays [22]), our approach reaches this goal
without investigating the internal behavior of the system. The nature of the best-
fitting Building Block may also be of help for constructive modeling of the system.
Indeed, it may provide guidance in the search for simple approximations, by indicat-
ing which Building Block may and which ones may not work.

Our approach has several limitations. Since it is based on measurement data, the
system considered (or a detailed constructive simulation model of the system) must

 Towards an Automatic Modeling Tool for Observed System Behavior 211

exist, and there must be a sufficient number of measurement points to adequately cap-
ture the behavior of the system. In general, there is no guarantee that our approach
will find an adequate model, and a failure of the approach does not necessarily imply
that there is no adequate simple model for the given system.

As mentioned before, the laureate model determined by our approach may be a
good starting point for constructive modeling or for a search for a good approxima-
tion. The potential drawback of our approach is that there is in general no clear read-
ily seen relationship between the parameters of the laureate model and the “natural”
parameters of the corresponding constructive model. This limits also the predictive
application of the laureate model in that it is not typically clear how the parameters of
the laureate should be modified to reflect a change in the characteristics of the system
being modeled. However, we believe that, packaged as a ready-to-use tool, our ap-
proach can be of significant value both to the performance analyst in capacity plan-
ning situation, and to the performance modeler in general.

Acknowledgments. We would like to thank Safia Kedad and Francis Sourd from
LIP6 for their valuable help in designing the specific Derivative Free Optimization
method we implemented in our automatic model calibration tool.

References

1. Allen, A.O.: Probability, Statistics, and Queueing Theory with Computer Science Applica-
tions, 2nd edn. Academic Press, London (1990)

2. Alouf, S., Nain, P., Towlsey, D.F.: Inferring network characteristics via moment-based es-
timators. In: INFOCOM, pp. 1045–1054 (2001)

3. Bacigalupo, D.A., Turner, J.D., Graham, R.N., Dillenberger, D.N.: A dynamic predictive
framework for e-business workload management. In: 7th World Multiconference on Sys-
temics,Cybernetics and Informatics (SCI2003) Performance of Web Services Invited Ses-
sion, Orlando, Florida, USA (2003)

4. Brandwajn, A.: Equivalence and decomposition in queueing systems- a unified approach.
Performance Evaluation 1985, 175–186 (1985)

5. Burnham, K.P., Anderson, D.R.: Model Selection and Multi-Model Inference, 2nd edn.
Springer, Heidelberg (2002)

6. Brandwajn, A., Wang, H.A.: Conditional Probability Approach to M/G/1-like Queues.
Submitted for publication, available as a technical report (2006)

7. Cao, J., Andersson, M., Nyberg, C., Kihl, M.: Web server performance modeling using an
M/G/1/K*PS queue. In: ICT’2003: 10th International Conference on Telecommunications,
2nd edn., pp. 1501–1506 (2005)

8. Cong, J., Wolfinger, B.E.: A unified load generator based on formal load specification and
load transformation. In: Proceedings of ValueTools 2006: International Conference on
Performance Evaluation Methodologies and Tools, Pisa, Italy (2006)

9. Conn, A.R., Scheinberg, K.K., Toint, P.L.: Recent progress in unconstrained nonlinear op-
timization without derivatives. Mathematical Programming 79, 397–414 (1997)

10. Crovella, M., Krishnamurthy, B.: Internet Measurement: Infrastructure, Traffic and Appli-
cations. John Wiley & Sons, Inc, Chichester (2006)

11. Heidelberger, P., Lavenberg, S.S.: Computer performance evaluation methodology. IEEE
Trans. Computers 33, 1195–1220 (1984)

212 T. Begin et al.

12. Kaufman, J.S.: Approximation Methods for Networks of Queues with Priorities. Perform-
ance Evaluation 4, 183–198 (1984)

13. Kelly, F.P.: Reversibility and Stochastic Networks. John Wiley & Sons, Chichester (1979)
14. Kimura, T.: Approximations for Multi-Server Queues: System Interpolations. Queueing

Systems: Theory and Applications 17, 347–382 (1994)
15. Kleinrock, L.: Queueing Systems, Volume 1: Theory. John Wiley & Sons, Chichester

(1975)
16. Liu, Z., Wynter, L., Xia, C.H., Zhang, F.: Parameter inference of queueing models for IT

systems using end-to-end measurements. Performance Evaluation 63, 36–60 (2006)
17. Paxson, V.E.: Measurements and Analysis of End-To-End Internet Dynamics. Doctoral

Thesis, University of California at Berkeley (1998)
18. Powell, M.J.D.: Unconstrained minimization algorithms without computation of deriva-

tives. Bollettino della Unione Matematica Italiana 9, 60–69 (1974)
19. Quintero, A., Elalamy, Y., Pierre, S.: Performance evaluation of a broadband wireless ac-

cess system subjected to heavy load. Computer Communications 27, 781–791 (2004)
20. Salamatian, K., Fdida, S.: A framework for interpreting measurement over Internet. In:

Proceedings of the ACM SIGCOMM workshop on models, methods and tools for repro-
ducible network research, Karlsruhe, Germany, pp. 87–94 (2003)

21. Scherr, A.: An Analysis of Time-Shared Computer Systems. MIT Press, Cambridge
(1967)

22. Varki, E., Merchant, A., Xu, J., Qiu, X.: Issues and challenges in the performance analysis
of real disk arrays. IEEE Trans. Parallel Distrib. Syst. 15, 559–574 (2004)

23. Wang, J., Keshav, S.: Efficient and accurate Ethernet simulation. In: 24th Annual IEEE In-
ternational Conference on Local Computer Networks, Boston, MA, pp. 182–191. IEEE
Computer Society Press, Los Alamitos (1999)

24. Wolfinger, B.E., Zaddach, M., Heidtmann, K.D., Bai, G.: Analytical modeling of primary
and secondary load as induced by video applications using UDP/IP. Computer Communi-
cations 25, 1094–1102 (2002)

Censoring Markov Chains and Stochastic

Bounds

J.-M. Fourneau1,2, N. Pekergin2,3,4, and S. Younès2

1 INRIA Project MESCAL, Montbonnot, France
2 PRiSM, University Versailles-Saint-Quentin, 45, Av. des Etats-Unis 78000 France
3 Marin Mersenne Laboratory, University Paris 1, 90, Rue de Tolbiac, 75013 France

4 LACL, 61 avenue Général de Gaulle 94010, Créteil, France
{jmf,nih,sayo}@prism.uvsq.fr

Abstract. We show how to combine censoring technique for Markov
chain and strong stochastic comparison to obtain bounds on rewards
and the first passage time. We present the main ideas of the method,
the algorithms and their proofs. We obtain a substantial reduction of
the state space due to the censoring technique. We also present some
numerical results to illustrate the effectiveness of the method.

1 Introduction

Modeling systems with huge or infinite Markov chain is still a hard problem when
the chain does not exhibit some regularity or symmetry which allow analytical
techniques or lumping. An alternative approach is to compute bounds on the
rewards we need to check against requirement. For instance we may obtain an
upper bound on the loss probability and verify that this bound is smaller than
the quality of service required by a network application. To compute bounds
on rewards the usual way is to bound the steady-state or transient distribution
at time t, define the elementary reward for state i and perform the summation
of the product of the elementary rewards by the state probabilities. The last
two parts are the easiest step of the method. The main difficulty is to obtain
a bound of the steady state or transient distributions. Some rewards are also
related to the first passage time or the absorbing time if the chain has some
absorbing states. We must in that case compute the fundamental matrix of
the chain, again a difficult problem when the state space is extremely large.
The main idea is to derive a smaller chain which provides a bound. In the
recent years, several algorithms have been published to obtain some stochastic
bounds on Markov chains [18,7,10,3]. But most of these algorithms have used
the lumpability approach to reduce the size of chain and only considered finite
DTMC (Discrete Time Markov Chain). Here we show how we can compute
stochastic bounds using the Censored Markov chain and how we can deal with
large Markov chains.

Consider a discrete time Markov chain {Xt : t = 1, 2, . . .} with finite state
space S. Suppose that S = E ∪ Ec, E ∩ Ec = ∅. Suppose that the successive

K. Wolter (Ed.): EPEW 2007, LNCS 4748, pp. 213–227, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

214 J.-M. Fourneau, N. Pekergin, and S. Younès

visits of Xt to E take place at time epochs 0 < t1 < t2 < . . . <. Then the
chain {XE

u = Xtu , u = 1, 2, . . .} is called the censored process (or chain) with
censoring set E [19]. Let Q denote the transition matrix of chain Xt. Consider
the partition of the state space to obtain a block description of Q:

Q =
(
QE QEEc

QEcE QEc

)
E
Ec (1)

The censored chain only watches the chain when it is in E. Under some structural
condition on the matrix, it can be proved [19] that the stochastic matrix of the
censored chain is:

SE = QE +QEEc

(∞∑
i=0

(QEc)i

)
QEcE (2)

Assume that (QEc) does not contain any recurrent class, the fundamental matrix
is

∑∞
i=0(QEc)i = (I − QEc)−1. Censored Markov chains have also been called

restricted or watched Markov chains. When the chain is ergodic there are strong
relations with the theory of stochastic complement [11]. Note that it is not
necessary for censored Markov chains to be ergodic and we can study for instance
the absorbing time. In many problems Q can be large and therefore it is difficult
to compute (I − QEc)−1 to finally get SE . Deriving bounds of SE from QE

and some information on the other blocks without computing SE is therefore an
interesting alternative approach.

To the best of our knowledge this paper is the first approach to combine
stochastic bounds and censored Markov chain, even if the stochastic comple-
ment approach was mentioned in a survey on algorithmic aspects of stochastic
bounds [9]. However some of the methods already published for NCD (Nearly
Completely Decomposable) chains may be applied to construct bounds. For in-
stance in [17] Truffet has proposed a two-level algorithm for NCD chains by
using aggregation and the stochastic ordering to compute bounding distribu-
tions. This method is different from the bounded aggregation method proposed
by Courtois-Semal which uses polyhedra theory [4] to compute bounds. In [13],
this approach has been extended by employing reordering to improve the ac-
curacy and a better component-wise probability bounding algorithm. In these
works, before employing the aggregation of blocks, the slack probabilities which
are small due to the NCD structure are included in the last column for the upper
bounding case and to the first column for the lower bounding case. In the case
of general Markov chains, an algebraic approach has been recently proposed to
dispatch slack probabilities [6].

In this work, we derive bounds on SE , in a completely different way by apply-
ing graph algorithms. Indeed we propose to compute element-wise lower bounds
on the second term of Eq. 2 by exploring some paths that return to partition
E passing through partition Ec. We give some relations between element-wise
lower bound on SE and the derived stochastic bounds on it.

The following of the paper is as follows. In section 2 we present stochas-
tic bounds and the basic algorithm to build a monotone upper bound for any

Censoring Markov Chains and Stochastic Bounds 215

stochastic matrix and we present the basic operator used to formally define
this algorithm. We also give some necessary definitions and results for censored
Markov chains. Section 3 is devoted to the main theoretical results of this paper:
we show how we can obtain a stochastic upper bound of SE from any element-
wise lower bound of SE . We also prove that the more accurate is the element-wise
lower bound the more accurate is the stochastic upper bound. Clearly, QE is an
element-wise lower bound of SE . QEEc

(∑∞
i=0(QEc)i

)
QEcE represents all the

paths entering Ec, staying in this set for an arbitrary number of transitions and
finally returning to E. Thus if we only keep some paths in consideration we obtain
again an element-wise lower bound of SE . We develop this approach in section
4 using several graph techniques to obtain sets of paths and their probabilities.
Finally in section 5 we present some examples and numerical results.

2 Theoretical Background

In this section, we present some preliminaries on the stochastic comparison
method and on censored Markov chains. We refer to the books [14,15] for the the-
oretical issues for comparison of random variables and Markov chains. We study
Discrete Time Markov chains (DTMC in the following) on finite or denumerable
state space endowed with a total ordering. Let S be the state space.

2.1 Basic Algorithms to Bound a Markov Chain

Definition 1. Let X and Y be random variables taking values on a totally or-
dered space S. Then X is said to be less than Y in the strong stochastic sense,
(X �st Y) if and only if E[f(X)] ≤ E[f(Y)] for all non decreasing functions
f : S → R, whenever the expectations exist.

Indeed �st ordering provides the comparison of the underlying probability dis-
tribution functions: X �st Y ↔ Prob(X > a) ≤ Prob(Y > a) ∀a ∈ S. Thus
it is more probable for Y to take larger values than for X . Since the �st ordering
yields the comparison of sample-paths, it is also known as sample-path ordering.
We give in the next proposition the �st comparison in the case of finite state
space.

Property 1. Let X , Y be random variables taking values on {1, 2, · · · , n} and p,
q be probability vectors which are respectively denoting distributions of X and
Y , X �st Y iff

∑n
j=i p[j] ≤

∑n
j=i q[j] ∀i = {n, n − 1, · · · , 1}. Remark that

X = Y implies that X �st Y .

The stochastic comparison of random variables has been extended to the com-
parison of Markov chains. It is shown in Theorem 5.2.11 of [14, p.186] that
monotonicity and comparability of the probability transition matrices of time-
homogeneous Markov chains yield sufficient conditions to compare stochastically
the underlying chains. We first define the monotonicity and comparability of
stochastic matrices and then state this theorem and some useful corollaries.

216 J.-M. Fourneau, N. Pekergin, and S. Younès

Definition 2. Let P be a stochastic matrix. P is said to be stochastically st-
monotone (monotone for short) if for any probability vectors p and q,

p �st q =⇒ p P �st q P.

Definition 3. Let P and Q be two stochastic matrices. Q is said to be an upper
bounding matrix of P in the sense of the strong stochastic order (P �st Q) iff

Pi,∗ �st Qi,∗, ∀i

where Pi,∗ denotes the ith row of matrix P .

Theorem 1. Let P (resp. Q) be the probability transition matrix of the time-
homogeneous Markov chain {Xt, t ≥ 0} (resp. {Yt, t ≥ 0}). If

– X0 �st Y0,
– at least one of the probability transition matrices is monotone, that is, either
P or Q is monotone,

– the transition matrices are comparable, (i.e. P �st Q).

then Xt �st Yt ∀t.

Then the following corollary ([14]) lets us compare the steady-state distributions
of Markov chains when they exist. And we can also compare absorption time if
the chain has an absorbing state (see [2] for a proof).

Corollary 1. Let Q be a monotone, upper bounding matrix for P for the st-
ordering. If the steady-state distributions (ΠP and ΠQ) exist, then ΠP �st ΠQ.

Corollary 2 (proposition 2.9 in [2])). Let {Xt, t ≥ 0} and {Yt, t ≥ 0} be two
Markov chains on the same finite state space. Assume that the last state (say n)
is absorbing for both chains. Assume that Xt �st Yt, ∀t then Ti,n(Y) �st Ti,n(X)
where Ti,n(X) is the absorption time in n for chain X when initial state is i.

Stochastic comparison and monotonicity can be represented by linear inequal-
ities. Once we have derived a set of equalities, instead of inequalities and or-
dered them we obtain a constructive way to design a monotone upper bounding
stochastic matrix Q for an arbitrary stochastic matrix P .

{∑n
k=j Q1,k =

∑n
k=j P1,k∑n

k=j Qi+1,k = max(
∑n

k=j Qi,k,
∑n

k=j Pi+1,k) ∀ i, j (3)

This is the basic theory behind Vincent’s algorithm [1]. We now present an
operator description of this basic algorithm (see [9] for a survey of algorithmic
aspects of stochastic bounds).

Definition 4. Let P and Q be two positive matrices with the same size, P �el Q
iff P [i, j] ≤ Q[i, j] for all i and j.

Censoring Markov Chains and Stochastic Bounds 217

Definition 5. Following the presentation in [5] we define two operators r and
v for matrix of size n× n as follows:

– r is a summation operator: r(P)[i, j] =
∑n

k=j P [i, k]. The inverse of r (de-
noted as r−1) is:

r−1(P)[i, j] =
{
P [i, n] if j = n
P [i, j] − P [i, j + 1] if j < n

– Let v be the operator defined by:

v(P)[i, j] = maxm≤i(
∑
k≥j

P [m, k]) = maxm≤ir(P)[m, j] (4)

Property 2. Vincent’s algorithm is simply operator r−1v.

Example 1. Let P be a stochastic matrix. Vincent’s algorithm gives:

P =

⎡
⎢⎢⎣

0.1 0.3 0.2 0.4
0.1 0.4 0.2 0.3
0.2 0.1 0.5 0.2
0.2 0 0.4 0.4

⎤
⎥⎥⎦ v(P) =

⎡
⎢⎢⎣

1 0.9 0.6 0.4
1 0.9 0.6 0.4
1 0.9 0.7 0.4
1 0.9 0.8 0.4

⎤
⎥⎥⎦ r−1v(P) =

⎡
⎢⎢⎣

0.1 0.3 0.2 0.4
0.1 0.3 0.2 0.4
0.1 0.2 0.3 0.4
0.1 0.1 0.4 0.4

⎤
⎥⎥⎦

Property 3. Let P and Q two stochastic matrices with the same size, P �st Q
iff r(P) �el r(Q).

And we define two new operators θ and γ which transform a sub-stochastic
matrix P into stochastic matrix by adding the probability missing in P in the
last (resp. the first) column.

θ(P)[i, j] =
{
P [i, j] if j < n
P [i, j] + βi if j = n

γ(P)[i, j] =
{
P [i, j] if j > 1
P [i, j] + βi if j = 1

where βi = 1 −
∑n

j=1 P [i, j]. Of course, if P is stochastic θ(P) = P = γ(P).

2.2 Censoring a Markov Chain

Let us go back to the definition and the fundamental results on censored chains.

Lemma 1 (Theorem 2 in [19]). Let Q be the transition probability matrix of
a DTMC X(t). Consider a partition of the finite state space S into two subsets
E and Ec.

Q =
(
QE QEEc

QEcE QEc

)
E
Ec

218 J.-M. Fourneau, N. Pekergin, and S. Younès

Then, the censored process XE(t) is a Markov chain and its transition probability
matrix is given by:

SE = QE +QEEc

(∞∑
i=0

(QEc)i

)
QEcE (5)

When Q is irreducible the transition probability matrix of the censored chains is
the stochastic complement matrix defined by Meyer and we have the following
results [11]:

Theorem 2. If Q is irreducible, with steady state distribution ΠQ = (ΠE ,ΠEc)
and transient distribution at discrete time epoch t, Πt

Q = (Πt
E ,Π

t
Ec). Then the

steady state distribution ΠSE and the transient distribution at time t, Πt
E of the

censored matrix SE are given by:

ΠSE =
ΠE∑

i∈E ΠE(i)
and Πt

SE
=

Πt
E∑

i∈E Πt
E(i)

(6)

The transition matrix of the censored chain can be decomposed into two parts.
QE is an element-wise lower bound of SE . QEEc

(∑∞
i=0(QEc)i

)
QEcE represents

all the paths enteringEc, staying in this set for an arbitrary number of transitions
and finally returning to E. Assuming that QEc does not contain any recurrent
class we have:

∑∞
i=0(QEc)i = (Id−QEc)−1. But the state space is so huge that

this operation is too complex. Thus instead of computing SE we advocate that
we can obtain stochastic bounds of this matrix.

As QEEc

(∑∞
i=0(QEc)i

)
QEcE contains all the paths, we will only keep some

of them in consideration and we obtain more accurate bounds of SE . The main
idea is that only some elements of QEc are generated and stored during the
construction of the Markov chain.

3 Bounds for Censored Chains

We first prove some technical lemmas and then give the theorems to provide
bounds.

Lemma 2. Let P and Q be two stochastic or sub-stochastic matrices of size
n× n. if P �el Q then θ(Q) �st θ(P).

Proof. ∀ 1 ≤ i ≤ n and ∀ 1 ≤ q ≤ n we have:

n∑
j=q

θ(Q)[i, j] = 1 −
∑
j<q

Q[i, j] ≤ 1 −
∑
j<q

P [i, j] =
n∑

j=q

θ(P)[i, j]

Thus θ(Q) �st θ(P).

Lemma 3. Let P and Q be two stochastic matrices, if P �st Q then r−1v(P)�st

r−1v(Q).

Censoring Markov Chains and Stochastic Bounds 219

Proof. It follows from Property 3 and Eq. 4 that if P �st Q then v(P) ≤el v(Q).
This implies following Property 3 that r−1v(P) �st r

−1v(Q).

We now present the two fundamental theorems which allow to bound a censored
Markov chain. For both theorems, let {Xt, t ≥ 0} be a denumerable DTMC with
transition matrix Q and E a finite subset of state space S. Let SE be the matrix
of the censored Markov chain and QE the block of Q restricted to states in E.

Theorem 3. For all sub-stochastic matrix M such that QE �el M �el SE, we
have

SE �st r
−1vθ(M) (7)

Proof. We assume that M �el SE . We apply Lemma 2 to obtain: θ(SE) �st

θ(M). But SE is a stochastic matrix. Thus θ(SE) = SE and we get: SE �st θ(M).
We now apply lemma 3 which implies that: r−1v(SE) �st r

−1vθ(M).
We finally remark that due to the definition of operators r and v we have

SE �st r
−1v(SE) and we obtain that SE �st r

−1vθ(M) to complete the proof.

Similarly we can obtain a lower bound with operator γ and the modified version
of Vincent’s algorithm to obtain monotone lower bound. The following theo-
rem explains how we can improve this bound. If we are able to improve the
element-wise lower bound M , we also improve the stochastic upper bound for
SE . However remember that X �st Y does not exclude that X = Y and the
improvement on the stochastic bound can be zero (see for instance the first part
of the example in Section 4).

Theorem 4. For all sub-stochastic matrices M1 and M2 such that M1 �el

M2 �el SE, we have:
r−1vθ(M2) �st r

−1vθ(M1) (8)

Proof. As we assume that M1 �el M2 Lemma 2 shows that: θ(M2) �st θ(M1).
But θ(M1) and θ(M2) are stochastic matrices. We then apply Lemma 3 to
obtain r−1vθ(M2) �st r

−1vθ(M1) to complete the proof.

So the algorithms mainly consist in computing an element-wise lower bound of
SE which is obtained by adding some probability to QE and then apply operators
θ and Vincent’s algorithm. We show in the next section how we can improve
element-wise lower bounds of SE . We now show that bounds on censored chains
can provide bounds for some performances measures on the original chain. First
we have a very simple property, the proof of which is a simple application of
theorem 2.

Property 4. Let i and j be two states in S. If i ∈ E and j ∈ Ec then:

ΠQ(i) ≤ ΠSE (i) and ΠQ(j) ≤ ΠSEc (j) (9)

We can derive bounds for steady-state rewards, absorbing probabilities and ab-
sorbing time. Assume that we have derived two monotone stochastic matrices
UE and LE such that: LE �st SE �st UE.

220 J.-M. Fourneau, N. Pekergin, and S. Younès

Property 5 (Steady-state rewards). Let w : S → R be the reward function that
assign to each state i ∈ S a reward value w(i). Assume that w(i) ≥ 0 for all i.
Let E be the set of states which has a positive reward. Assuming that we sort
the states in E such that function w is non decreasing. We clearly have:

R =
∑
i∈S

w(i)ΠQ(i) =
∑
i∈E

w(i)ΠE(i) ≤
∑
i∈E

w(i)ΠSE (i) ≤
∑
i∈E

w(i)ΠUE(i)

We obtain an upper bound on the reward.

Property 6 (Probability of Absorption). We consider a chain with a finite number
of absorbing states. Assume that all these absorbing states are in E and assume
that the initial state is in E. Assume also that the states which immediately
precede absorbing states are also in E. Then the absorption probabilities in the
initial chain and in the censored chain are the same.

Proof. Remember that when we have a block decomposition of a transition ma-

trix with absorbing states equal to
[
Id 0
F H

]
, matrix M = (Id−H)−1 exists and

is called the fundamental matrix [16]. Furthermore the entry [i, j] of the product
matrix M ∗F gives the absorption probability in j knowing that the initial state
is i.

We assume that the absorbing states are gathered in the first part of set E.
Thus we can describe the matrix of the chain by its block decomposition:

⎡
⎣ Id 0 0
R A B

0 C D

⎤
⎦

According to lemma 1, the transition matrix of the censored chain is:
[
Id 0
R A

]
+

[
0
B

]∑
i

[D]i
[
0 C

]

which is finally equal to:
[
Id 0
R A+B

∑
iD

iC

]
. As D is transient, we have:∑

iD
i = (Id−D)−1. And the fundamental matrix of the censored chain is:

(Id−A−B(Id−D)−1C)−1.

The fundamental matrix of the initial chain is: M =
[
Id−A B
C Id−D

]−1

. To

obtain the probability we must multiply by
[
R
0

]
and consider an initial state in

E. Thus we only have to compute the upper-left block of F . According to [12]
page 123, it is equal to:

(Id−A−B(Id−D)−1C)−1

Censoring Markov Chains and Stochastic Bounds 221

if blocks (Id − A) and its Schur complements are non singular. This is clearly
true. So we have the same absorption probability in Q and in SE and bounds
for the censored chain will also be bounds for the initial chain.

Property 7 (Average Time for Absorption). We consider a chain X with several
absorbing states and the same block decomposition. Let Y be the censored chain.
Let i be an initial state in E, j an arbitrary state in S and k an absorbing state.
Let ZX [i, j] be the average number of passages in j before absorption knowing
that the initial state is i for chain X . We have:

1. ZX [i, j] = ZY [i, j] if j is in E.
2. E(Ti,k(Y)) ≤ E(Ti,k(X)).

Proof. Again remember that the average number of visits in j when the initial
state is i is entry [i, j] of the fundamental matrix. The proof of the previous
property states that the upper-left block of the fundamental matrix of X is
equal to the fundamental matrix of Y . This equality implies the first part of the
property. The second part is a consequence of the first part and of the average
number of visits to states in Ec which are positive in X and equals to 0 in Y .

4 Algorithms

The algorithms must find some paths which are contained in the fundamental
matrix (Id − QEc)−1, thus there is clearly a trade-off between complexity and
accuracy. So we have developed several algorithms and data structures to deal
with paths exploration. The aim is to deal with chains which are so large that
the transition matrix does not fit in memory.

The algorithms compute some paths leaving immediately state i in E and
coming back to E in any state. The output of the algorithms is a row vector called
q whose the jth entry contains the probability of the paths from i to j which
have been selected. Thus if we add q to row i of QE we obtain a more accurate
element-wise lower bound for row i of SE : QE [i, ∗] ≤el QE[i, ∗] + q ≤el SE [i, ∗].

Note also that all the rows do not have the same importance for the computa-
tion of the bound. Due to the monotonicity constraints, the last rows are often
completely modified by Vincent’s algorithm. Thus it is much more efficient to
try to improve the first rows of QE than the last ones. This is illustrated by the
following example.

QE =

⎡
⎢⎢⎣

0.1 0.3 0.2 0.1
0.1 0.4 0.2 0
0.2 0.1 0.5 0.2
0.3 0 0.4 0

⎤
⎥⎥⎦

Truffet’s approach gives:

θ(QE) =

⎡
⎢⎢⎣

0.1 0.3 0.2 0.4
0.1 0.4 0.2 0.3
0.2 0.1 0.5 0.2
0.3 0 0.4 0.3

⎤
⎥⎥⎦ r−1vθ(QE) =

⎡
⎢⎢⎣

0.1 0.3 0.2 0.4
0.1 0.3 0.2 0.4
0.1 0.2 0.3 0.4
0.1 0.2 0.3 0.4

⎤
⎥⎥⎦

222 J.-M. Fourneau, N. Pekergin, and S. Younès

Now suppose that one has computed the probability [0.1, 0.1, 0, 0.1] of some paths
leaving E from state 4 and entering again set E after a visit in Ec. This is a
lower bound of the set of all paths beginning in state 4. Let M be the improved
element-wise lower bound.

M =

⎡
⎢⎢⎣

0.1 0.3 0.2 0.1
0.1 0.4 0.2 0
0.2 0.1 0.5 0.2
0.4 0.1 0.4 0.1

⎤
⎥⎥⎦ θ(M) =

⎡
⎢⎢⎣

0.1 0.3 0.2 0.4
0.1 0.4 0.2 0.3
0.2 0.1 0.5 0.2
0.4 0.1 0.4 0.1

⎤
⎥⎥⎦ r−1vθ(M) =

⎡
⎢⎢⎣

0.1 0.3 0.2 0.4
0.1 0.3 0.2 0.4
0.1 0.2 0.3 0.4
0.1 0.2 0.3 0.4

⎤
⎥⎥⎦

And the bound does not change despite the computation of paths beginning in
state 4. Assume now one has improved the first row and we have got the same
vector of probability for the paths:

M =

⎡
⎢⎢⎣

0.2 0.4 0.2 0.2
0.1 0.4 0.2 0
0.2 0.1 0.5 0.2
0.3 0 0.4 0

⎤
⎥⎥⎦ θ(M) =

⎡
⎢⎢⎣

0.2 0.4 0.2 0.2
0.1 0.4 0.2 0.3
0.2 0.1 0.5 0.2
0.3 0 0.4 0.3

⎤
⎥⎥⎦ r−1vθ(M) =

⎡
⎢⎢⎣

0.2 0.4 0.2 0.2
0.1 0.4 0.2 0.3
0.1 0.2 0.4 0.3
0.1 0.2 0.4 0.3

⎤
⎥⎥⎦

Clearly this bound is now much better than the original one.
We consider the directed graph G = (S, DE) associated to the initial Markov

chain where DE is the set of directed edges. If Q(i, j) > 0 then there exists an
arc from i to j in G and arc (i, j) has probability Q(i, j). The directed edges (or
arcs) in the graph are labelled with a positive cost. A path P is an ordered list of
consecutive arcs. The cost of path P is the sum of the cost of arcs which belong
to P multiplied by their number of occurrences in P . Indeed an arc may appear
several times in a path. The probability of path P (denoted as Pr(P)) is the
product of the probability of the arcs which belongs to P . Again we must take
into account the number of occurrence of the arcs in the path. The set of paths
beginning in i a node of E, then jumping to a node in Ec, staying in Ec for an
arbitrary number of jumps and finally entering again E in state j is denoted as
SP i,j .

The main idea is to select paths with high probabilities and to perform this
selection very quickly. We present here two type of algorithms: the Shortest
Path approach and Breadth First search. The first one builds one path to every
destination while the second builds all the paths whose lengths are smaller than
a parameter Δ. We also show that we can take into account the self loops to
obtain easily an infinite set of paths rather than a single one.

4.1 Shortest Path

We use Dijkstra’s shortest path algorithm. The length taken into account in the
algorithm is the cost c() which is positive. The following property states how we
first compute the cost to obtain the path with the highest probability.

Property 8. If for all arcs in DE, the cost is defined as c(i, j) = −log(Q(i, j)) then
the shortest path according to cost c is also the path with maximum probability.
Note that as Q(i, j) < 1 the cost is positive.

Censoring Markov Chains and Stochastic Bounds 223

Proof. Let P1 be this shortest path. Assume that there exists P2, a path
such that Pr(P2) > Pr(P1). As function logarithm is increasing we have:
log(Pr(P2)) > log(Pr(P1)). The probability of the path is the product of the
probability of arcs. Thus:

∑
(i,j)∈P2

log(Q(i, j)) >
∑

(k,l)∈P1

log(Q(k, l))

After substitution: ∑
(i,j)∈P2

c(i, j) <
∑

(k,l)∈P1

c(k, l)

And P2 is shorter than the shortest path; a contradiction.

Thus the algorithm searches the shortest path from state i in a graph where
the costs are defined as the negative of the logarithm of transition probabilities
and where the arcs from i to other nodes in E have been removed because we
want to get a path from i which passes through Ec and comes back to E. The
shortest path with the cost function may have a large number of arcs. Thus we
must give a bound on the number of arcs in the shortest path to avoid very large
number of iterations. Let Δ be this bound. The following algorithm computes
the probability of the shortest path. In the algorithm, P is the set of generated
vertices, Γ (x) denotes the set of successors of node x and p(x) is the probability
to reach x from i in the selected paths.

Algorithm 1. Shortest path
Input : vertex i ∈ E; Δ
Output : row vector q: qj is the probability to return to j ∈ E from i
P = ∅; qz = 0 , z ∈ E
foreach vertex x ∈ Γ (i) such that x ∈ Ec do

p(x)=prob. of transition from i to x; put x in P
end
repeat

Select a leaf y ∈ P such that p(y) = maxleaf x∈P {p(x)}
foreach z ∈ Γ (y)\{y} do

p2 =(prob. of transition from y to z) ∗ p(y)
switch z do

case z ∈ E: qz = qz + p2

case z /∈ P : p(z) = p2; put z in P
case z is a leaf and p(z) < p2: p(z) = p2

end
end

until number of iteration > Δ ;

Note that as we only search for successors of a limited number of nodes, only
a part of the transition matrix must be in memory. Even if the whole matrix
does not fit in memory it is sufficient that the states we really use during the
construction of the paths can be stored or generated.

224 J.-M. Fourneau, N. Pekergin, and S. Younès

4.2 Adding Self Loops

Once a path from i to j is selected it is possible to build an infinite set of paths
from i to j and to sum their probabilities in a closed-form formula. We just have
to use the directed cycles. The proofs of following properties are quite simple
and they are omitted here due to the limitation on the size of the paper.

Property 9. Let i and j be two arbitrary vertices in E. Let P be a path in SP i,j

with a probability p. Let k be a vertex which belongs to P and Ec such that
there exists a directed cycle using nodes of Ec going through k. Let q be the
product of the probabilities of the arcs in this directed cycle. Then the path Pk

built with P and k times the directed cycle is also in SP i,j and its probability
is p qk. Considering all these paths Pk for all values of k, we finally obtain a
probability equals to p

1−q .

Computing a directed cycle may be difficult but it is quite simple to take into
account the self loops during the visits. Indeed self loops are directed cycles and
finding them does not require any new computational effort.

Property 10. Let P = (i, k1, k2, . . . , kl, j) be an arbitrary elementary path in
SP i,j . Suppose that every vertex km in the path has a self loop with probability
qkm . If there is no loop in km we simply have qkm = 0. Then all the path obtained
from P and an arbitrary number of visits in each loop is also in SP i,j . And the
resulting probability for all these paths is p

∏l
m=0

1
1−qm

.

4.3 Breadth First Search

We just build all paths of length smaller than Δ using a Breadth First search
technique and computing their probabilities. Some of these paths return to a
node in E at step k ≤ Δ. We use in the algorithm the same notation for data
structure as in Shortest Path Algorithm and we finally denote by InE[y, z] the
probability to enter E through z leaving from y ∈ Ec.

5 Examples and Numerical Results

Due to the limitation on the size of the paper, it is not possible to present here
a real example. We have just designed an abstract model to test our algorithms
and show some numerical experiments. We consider a set of N resources: they
can be operational or faulty. In the considered model we distinguish two types of
faults: hard and soft, that we denote respectively by h and s. The fault arrivals
of (h and s) follow independent Poisson processes with rate respectively λh and
λs. The distribution of times to fix a fault are exponential with rate μh and μs

except when all the resources are faulty. In that case, the repairman can speed up
the fixing and with rate μ all the resources are repaired. Under these Markovian
arrival hypothesis, the considered system can be modelled as a CTMC with state
space S = {(ns, nh), C = ns + nh ≤ N} where C represents the total number of

Censoring Markov Chains and Stochastic Bounds 225

Algorithm 2. Breadth-First search
Input : vertex i ∈ E; Δ
Output : row vector q such that qz is the probability to return to z ∈ E
P = ∅;
foreach x ∈ Γ (i) such that x ∈ Ec do

p(x)=prob. of transition i to x; put x in P
end
P last = P ;
repeat

P last
2 = ∅

foreach vertex x ∈ P last do
foreach vertex y ∈ Γ (x) do

switch y do
case y ∈ E: InE[x, y] =prob. of transition from x to y
case y /∈ P : p(y) = p(x)∗(prob. of transition from x to y); put y
in P and in P last

2

case y ∈ P : p(y) = p(y) + p(x)∗(prob. of transition from x to y);
put y in P last

2
end

end
end
P last = P last

2
until number of iteration > Δ ;
foreach y ∈ P do foreach z ∈ E do qz = p(y) ∗ InE[y, z]

faulty resources, ns (resp. nh) represents the number of faulty resources caused
by soft (resp. hard) error. The size of the underlying chain is (N+1)(N+2)

2 . Note
that the considered chain is not NCD because of the numerical values of rate μ
we have considered in the examples.

We present in Table 1, the conditional probability p to have the N resources
operational and the upper bound on this probability. The censored state space
contains states with no faulty hardware components. The states are ordered
according to the decreasing number of software faulty components. The second
step is to determine an element-wise lower bound to SE . We apply the shortest
path algorithm presented previously in subsection 4.1 with considering self loops.
Remind that we have to fix the maximum number of arcs of shortest paths Δ
and the number of first rows R in which we will apply the algorithm to simplify
the computation of the bound. In the following table we present results for
different values of Δ and R that represent parameters of the algorithm given
in column algorithm parameters. Numerical Results are computed in a 3.2
GHz Intel Pentium 4 CPU with 1.5 Go of memory under Linux 2.6.8 kernel
system. We also report computation time T (in second) needed to obtain the
exact and bounding probability. We can see obviously that computation times
are drastically reduced using the proposed bounding approach. It also provides
results when the exact analysis fails (N = 10000). Moreover, obtained results
confirm that it is not necessary to apply proposed algorithms to all rows. For

226 J.-M. Fourneau, N. Pekergin, and S. Younès

Table 1. λs = 0.5, λh = 0.0001, μs = μ = 1, μh = 0.02

model size Exact algorithm parameters Bound

N space size p T Δ R p T

100 5151 3.622e-6 1.57 2 N/4 4.14361e-6 .06
N 4.14351e-6 .08

10 N/4 4.12148e-6 .07
N 4.12111e-6 .17

300 45451 1.224e-6 32.56 2 N/4 1.408871e-6 .16
N 1.40884e-6 .22

10 N/4 1.40141e-6 .23
N 1.40127e-6 .51

500 125751 7.528e-7 168.47 2 N/4 8.76306e-7 .27
N 8.76287e-7 .39

10 N/4 8.71677e-7 .38
N 8.71588e-7 .91

1000 501501 4.013e-7 603.14 2 N/4 4.82768e-7 .78
N 4.82757e-7 1.01

10 N/4 4.80213e-7 1.08
N 4.80164e-7 2.31

10000 50015001 - - 2 N/4 2.90822e-7 55.98
N 2.90815e-7 55.10

10 N/4 2.89280e-7 71.02
N 2.89250e-7 123.01

this example we do not remark a notable difference between bounds obtained
by considering all rows R = N or (R = N/4). We can therefore decrease the
complexity of the computation of the bounds by considering only some rows.

6 Concluding Remarks

We have proposed a new method to numerically obtain simple stochastic bounds.
This method may also help to find lower bound on the absorption time if the
chain is absorbing. The chain may be very large. We are still working to im-
prove this approach to infinite DTMC. Indeed, we must correctly define order-
ing and censoring for transient and ergodic infinite DTMC. We only require
that set E must be finite and that the absorbing states must be observed. The
method only samples some paths in the non-observed part of the chain. This al-
lows several tradeoffs between accuracy and computation time. We proved that
if we add a new path in the samples the new bound we obtain is stochasti-
cally smaller than the previous one when we compute upper bound. We hope
that this new approach will open new perspectives to study very large Markov
chains.

Censoring Markov Chains and Stochastic Bounds 227

References

1. Abu-Amsha, O., Vincent, J.M.: An algorithm to bound functionals of Markov
chains with large state space. In: 4th INFORMS Conference on Telecommunica-
tions, Boca Raton, Florida (1998)

2. Benmammoun, M., Busic, A., Fourneau, J.M., Pekergin, N.: Increasing convex
monotone Markov chains: theory, algorithms and applications. In: Markov An-
niversary Meeting, pp. 189–210. Boson Books (2006)

3. Busic, A., Fourneau, J.M.: Bounds for Point and Steady-State Availability: An
Algorithmic Approach Based on Lumpability and Stochastic Ordering. In: Bravetti,
M., Kloul, L., Zavattaro, G. (eds.) EPEW, WS-FM 2005. LNCS, vol. 3670, pp. 94–
108. Springer, Heidelberg (2005)

4. Courtois, P., Semal, P.: Bounds for the positive eigenvectors of nonnegative matri-
ces and for their approximations by decomposition. J. of ACM 31, 804–825 (1984)

5. Dayar, T., Fourneau, J.M., Pekergin, N.: Transforming stochastic matrices for
stochastic comparison with the st-order. RAIRO-RO 37, 85–97 (2003)

6. Dayar, T., Pekergin, N., Younes, S.: Conditional Steady-State Bounds for a Subset
of States in Markov Chains. In: SMCTools, Pisa,Italy (2006)

7. Fourneau, J.M., Le Coz, M., Quessette, F.: Algorithms for an irreducible and
lumpable strong stochastic bound. Linear Algebra and Applications 386, 167–186
(2004)

8. Fourneau, J.M., Le Coz, M., Pekergin, N., Quessette, F.: An open tool to compute
stochastic bounds on steady-state distributions and rewards. In: IEEE Mascots 03,
Orlando, USA (2003)

9. Fourneau, J.M., Pekergin, N.: An algorithmic approach to stochastic bounds. In:
Calzarossa, M.C., Tucci, S. (eds.) Performance 2002. LNCS, vol. 2459, pp. 64–88.
Springer, Heidelberg (2002)

10. Haddad, S., Moreaux, P.: Sub-stochastic matrix analysis for bounds computation-
Theoretical results. Eur. Jour. of Operational. Res. 176, 999–1015 (2007)

11. Meyer, C.D.: Stochastic complementation, uncoupling Markov chains, and the the-
ory of nearly reducible systems. SIAM Review 31(2), 240–272 (1989)

12. Meyer, C.D.: Matrix Analysis and Applied Linear Algebra. SIAM (2000)
13. Pekergin, N., Dayar, T., Alparslan, D.: Compenent-wise bounds for nearly com-

pletely decomposable Markov chains using stochastic comparison and reordering.
Eur. Jour. of Op. Res. 165, 810–825 (2005)

14. Muller, A., Stoyan, D.: Comparison Methods for Stochastic Models and Risks.
Wiley, New York (2002)

15. Shaked, M., Shantikumar, J.G.: Stochastic Orders and Their Applications. Aca-
demic Press, San Diago (1994)

16. Trivedi, K.S.: Probability and Statistic with Reliability, Queueing and Computer
Science Applications. Second Edition, Wiley (2002)

17. Truffet, L.: Near Complete Decomposability: Bounding the error by a Stochastic
Comparison Method. App. Prob. 29, 830–855 (1997)

18. Truffet, L.: Reduction Technique For Discrete Time Markov Chains on Totally
Ordered State Space Using Stochastic Comparisons. Journal of Applied Probabil-
ity 37(3) (2000)

19. Zhao, Y.Q., Liu, D.: The Censored Markov chain and the Best Augmentation.
Jour. of App. Prob. 33, 623–629 (1996)

Workload Characterization of the

SPECjms2007 Benchmark

Kai Sachs1, Samuel Kounev1,2, Jean Bacon2, and Alejandro Buchmann1

1 Databases and Distributed Systems Group, TU Darmstadt, Germany
2 Computer Laboratory, University of Cambridge, UK

Abstract. Message-oriented middleware (MOM) is at the core of a vast
number of financial services and telco applications, and is gaining increas-
ing traction in other industries, such as manufacturing, transportation,
health-care and supply chain management. There is a strong interest
in the end user and analyst communities for a standardized benchmark
suite for evaluating the performance and scalability of MOM. In this pa-
per, we present a workload characterization of the SPECjms2007 bench-
mark which is the world’s first industry-standard benchmark specialized
for MOM. In addition to providing standard workload and metrics for
MOM performance, the benchmark provides a flexible performance anal-
ysis framework that allows users to customize the workload according
to their requirements. The workload characterization presented in this
paper serves two purposes i) to help users understand the internal com-
ponents of the SPECjms2007 workload and the way they are scaled, ii)
to show how the workload can be customized to exercise and evaluate se-
lected aspects of MOM performance. We discuss how the various features
supported by the benchmark can be exploited for in-depth performance
analysis of MOM infrastructures.

1 Introduction

Message-oriented middleware (MOM) is increasingly adopted as an enabling
technology for modern event-driven applications like stock trading, event-based
supply chain management, air traffic control and online auctions to name just a
few. Novel messaging applications, however, pose some serious performance and
scalability challenges. For example, the next generation of event-driven supply
chain management based on RFID technology [6] (for instance SAP’s AutoID
infrastructure [3]) will be highly reliant on scalable and efficient backend systems
to support the processing of acquired real-time data and its integration with
enterprise applications and business processes [12]. Large retailers, like Wal-
Mart, Metro or Tesco, are expected to have throughput rates of about 60 billion
messages per annum [2]. The performance and scalability of the underlying MOM
platforms used to process these messages will be of crucial importance for the
successful adoption of such applications in the industry.

To guarantee that applications meet their Quality of Service (QoS) require-
ments, it is essential that the platforms on which they are built are tested using

K. Wolter (Ed.): EPEW 2007, LNCS 4748, pp. 228–244, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Workload Characterization of the SPECjms2007 Benchmark 229

benchmarks to measure and validate their performance and scalability. However,
if a benchmark is to be useful and reliable, it must fulfill several fundamental
requirements [9]. First of all, it must be designed to stress platforms in a manner
representative of real-world messaging applications. It must exercise all critical
services provided by platforms and must provide a level playing field for per-
formance comparisons. Finally, to be reliable, a benchmark must generate re-
producible results and must not have any inherent scalability limitations. While
a number of proprietary benchmarks for MOM servers (for example [14,7,1,8])
have been developed and used in the industry for performance testing and prod-
uct comparisons (see [5,11,4]), these benchmarks do not meet the above re-
quirements. The reason is that most of them use artificial workloads that do
not reflect any real-world application scenario. Furthermore, they typically con-
centrate on stressing individual MOM features in isolation and do not provide
a comprehensive and representative workload for evaluating the overall MOM
server performance. To address these concerns, in September 2005 we launched a
project at the Standard Performance Evaluation Corporation (SPEC) with the
goal to develop a standard benchmark for evaluating the performance and scal-
ability of MOM products. The new benchmark was called SPECjms2007 and it
was developed at SPEC’s OSG-Java Subcommittee with the participation of TU-
Darmstadt, IBM, Sun, BEA, Sybase, Apache, Oracle and JBoss. SPECjms2007
exercises messaging products through the JMS (Java Message Service) [15] stan-
dard interface which is supported by all major MOM vendors.

In this paper, we introduce the SPECjms2007 benchmark and provide a com-
prehensive characterization of its workload. We start with a brief overview of
the benchmark goals and then present the business scenario it models and dis-
cuss the way it was implemented. An important advantage of SPECjms2007 is
that it allows users to customize the workload to their needs by configuring it
to stress selected features of the MOM infrastructure in a way that resembles
a given target customer workload. However, in order to exploit this, users need
to understand the way the workload is decomposed into components and which
performance aspects are exercised by these components. To this end, after dis-
cussing the benchmark scenario and its implementation, we present a detailed
characterization of the benchmark workload. This characterization, on the one
hand, aims to help users gain an in-depth understanding of the SPECjms2007
workload, so that they can interpret the benchmark results correctly. On the
other hand, it provides the information needed to enable users to tailor the
workload to their own requirements.

The rest of the paper is organized as follows. In Section 2, we briefly dis-
cuss the goals of SPECjms2007 and then introduce the business scenario and
interactions it models. Following this, in Section 3, we present an in-depth char-
acterization of the SPECjms2007 workload in terms of the number and types of
destinations, the interaction mix, the message types, the message sizes and the
message delivery modes. We show how the workload can be customized to stress
selected performance aspects and discuss two standard strategies for scaling the
workload. The paper is wrapped up in Section 4.

230 K. Sachs et al.

2 The SPECjms2007 Benchmark

2.1 Requirements and Goals

The aim of the SPECjms2007 benchmark is to provide a standard workload and
metrics for measuring and evaluating the performance and scalability of MOM
platforms. To achieve this the SPECjms2007 workload must fulfill several im-
portant requirements. First of all, it must be based on a representative workload
scenario that reflects the way platform services are exercised in real-life systems.
The goal is to allow users to relate the observed behavior to their own applica-
tions and environments. Second, the workload should be comprehensive in that
it should exercise all platform features typically used in MOM applications in-
cluding both point-to-point (P2P) and publish/subscribe (pub/sub) messaging.
The features and services stressed should be weighted according to their usage in
real-life systems. The third requirement is that the workload should be focused
on measuring the performance and scalability of the MOM server’s software and
hardware components. It should minimize the impact of other components and
services that are typically used in the chosen application scenario. For example,
if a database would be used to store business data and manage the application
state, it could easily become the limiting factor of the benchmark as experience
with other benchmarks shows [10]. Finally, the SPECjms2007 workload must
not have any inherent scalability limitations. The user should be able to scale
the workload both by increasing the number of destinations (queues and topics)
as well as the message traffic pushed through a destination.

Producing and publishing standard results for marketing purposes will be just
one usage scenario for SPECjms2007. Many users will be interested in using the
benchmark to tune and optimize their platforms or to analyze the performance
of certain specific MOM features. Others could use the benchmark for research
purposes in academic environments where, for example, one might be interested
in evaluating the performance and scalability of novel methods and techniques for
building high-performance MOM servers. All these usage scenarios require that
the benchmark framework allows the user to precisely configure the workload
and transaction mix to be generated. Providing this configurability is a great
challenge because it requires that interactions are designed and implemented in
such a way that one could run them in different combinations depending on the
desired transaction mix.

2.2 Workload Scenario

The workload scenario chosen for SPECjms2007 models the supply chain of a su-
permarket company. The participants involved are the supermarket company, its
stores, its distribution centers and its suppliers. The scenario offers an excellent
basis for defining interactions that stress different subsets of the functionality
offered by MOM servers. Moreover, it offers a natural way to scale the workload.
The participants involved in the scenario can be grouped into the following four
roles:

Workload Characterization of the SPECjms2007 Benchmark 231

Company Headquarters (HQ). The company’s corporate headquarters are
responsible for managing the accounting of the company, managing information
about the goods and products offered in the supermarket stores, managing selling
prices and monitoring the flow of goods and money in the supply chain.

Distribution Centers (DCs). The distribution centers supply the supermar-
ket stores. Every distribution center is responsible for a set of stores in a given
area. The distribution centers in turn are supplied by external suppliers. The
distribution centers are involved in the following activities: taking orders from
supermarkets, ordering goods from suppliers, delivering goods to supermarkets
and providing sales statistics to the HQ (e.g. for data mining).

Supermarkets (SMs). The supermarkets sell goods to end customers. The
scenario focuses on the management of the inventory of supermarkets including
their warehouses. Some supermarkets are smaller than others, so that they do not
have enough room for all products, others may be specialized for some product
groups like certain types of food. We assume that every supermarket is supplied
by exactly one of the distribution centers.

Suppliers (SPs). The suppliers deliver goods to the distribution centers of
the supermarket company. Different suppliers are specialized for different sets
of products and they deliver goods on demand, i.e. they must receive an order
from the supermarket company to send a shipment.

2.3 Modeled Interactions

SPECjms2007 implements seven interactions between the participants in the
supermarket supply chain.

Company HQ
Super-

markets

Suppliers Supermarket Company

Distribution

Centers

=goods &

info flow
=only info

1

2
6

3

4

5

Fig. 1. Interaction 1 - Communication
between SM and DC

Company HQ
Super-

markets

Suppliers Supermarket Company

Distribution

Centers

=goods &

info flow
=only info

1

2 4

2

3

1

7

4

6

5

Fig. 2. Interaction 2 - Communication
between SP and DC

232 K. Sachs et al.

Interaction 1: Order/Shipment Handling between SM and DC
This interaction exercises persistent P2P messaging between the SMs and DCs.
The interaction is triggered when goods in the warehouse of a SM are depleted
and the SM has to order from its DC to refill stock. The following steps are
followed as illustrated in Figure 1:

1. A SM sends an order to its DC.
2. The DC sends a confirmation to the SM and ships the ordered goods.
3. Goods are registered by RFID readers upon leaving the DC warehouse.
4. The DC sends information about the transaction to the HQ (sales statistics).
5. The shipment arrives at the SM and is registered by RFID readers upon

entering the SM warehouse.
6. A confirmation is sent to the DC.

Interaction 2: Order/Shipment Handling between DC and SP
This interaction exercises persistent P2P and pub/sub (durable) messaging be-
tween the DCs and SPs. The interaction is triggered when goods in a DC are
depleted and the DC has to order from a SP to refill stock. The following steps
are followed as illustrated in Figure 2:

1. A DC sends a call for offers to all SPs that supply the types of goods that
need to be ordered.

2. SPs that can deliver the goods send offers to the DC.
3. Based on the offers, the DC selects a SP and sends a purchase order to it.
4. The SP sends a confirmation to the DC and an invoice to the HQ. It then

ships the ordered goods.
5. The shipment arrives at the DC and is registered by RFID readers upon

entering the DC’s warehouse.
6. The DC sends a delivery confirmation to the SP.
7. The DC sends transaction statistics to the HQ.

Interaction 3: Price Updates
This interaction exercises persistent, durable pub/sub messaging between the
HQ and the SMs. The interaction is triggered when selling prices are changed
by the company administration. To communicate this, the company HQ sends
messages with pricing information to the SMs.

Interaction 4: SM Inventory Management
This interaction exercises persistent P2P messaging inside the SMs. The inter-
action is triggered when goods leave the warehouse of a SM (to refill a shelf).
Goods are registered by RFID readers and the local warehouse application is
notified so that inventory can be updated.

Interaction 5: Sales Statistics Collection
This interaction exercises non-persistent P2P messaging between the SMs and
the HQ. The interaction is triggered when a SM sends sales statistics to the
HQ. HQ can use this data as a basis for data mining in order to study customer
behavior and provide useful information to marketing.

Workload Characterization of the SPECjms2007 Benchmark 233

Interaction 6: New Product Announcements
This interaction exercisesnon-persistent, non-durable pub/sub messaging between
the HQ and the SMs. The interaction is triggered when new products are an-
nounced by the company administration. To communicate this, the HQ sends mes-
sages with product information to the SMs selling the respective product types.

Interaction 7: Credit Card Hot Lists
This interaction exercises non-persistent, non-durable pub/sub messaging be-
tween the HQ and the SMs. The interaction is triggered when the HQ sends
credit card hot lists to the SMs (complete list once every hour and incremental
updates as required).

2.4 Benchmark Implementation

Event Handlers and Agents. SPECjms2007 is implemented as a Java appli-
cation comprising multiple JVMs and threads distributed across a set of client
nodes. For every destination (queue or topic), there is a separate Java class called
Event Handler (EH) that encapsulates the application logic executed to process
messages sent to that destination. Event handlers register as listeners for the
queue/topic and receive call backs from the messaging infrastructure as new
messages arrive. For maximal performance and scalability, multiple instances of
each event handler executed in separate threads can exist and they can be dis-
tributed over multiple physical nodes. Event handlers can be grouped according
to the physical location (e.g. HQ, SM, DC or SP) they pertain to in the busi-
ness scenario. In addition to the event handlers, for every physical location, a
set of threads is launched to drive the benchmark interactions that are logically
started at that location. These are called driver threads. The set of all event
handlers and driver threads pertaining to a given physical location is referred to
as agent. For example, each DC agent is comprised of a set of event handlers for
the various destinations inside the DC and a set of driver threads used to drive
Interaction 2, which is the only interaction with logical starting point at DCs.

Workload Configurability. An important goal of SPECjms2007 that we dis-
cussed in Section 2.1 was to provide a flexible framework for performance analysis
of MOM servers that allows users to configure and customize the workload ac-
cording to their requirements. To achieve this goal, the interactions have been
implemented in such a way that one could run them in different combinations
depending on the desired transaction mix. SPECjms2007 offers three different
ways of structuring the workload: horizontal, vertical and freeform. The latter
are referred to as workload topologies and they correspond to three different
modes of running the benchmark offering different level of configurability. The
horizontal topology is meant to exercise the ability of the system to handle in-
creasing number of destinations. To this end, the workload is scaled by increasing
the number of physical locations (SMs, DCs, etc.) while keeping the traffic per
location constant. The vertical topology, on the other hand, is meant to exercise
the ability of the system to handle increasing message traffic through a fixed
set of destinations. Therefore, a fixed set of physical locations is used and the

234 K. Sachs et al.

workload is scaled by increasing the rate at which interactions are run. Finally,
the freeform topology allows the user to use the seven SPECjms2007 interactions
as building blocks to design his own workload scenario which can be scaled in
an arbitrary manner by increasing the number of physical locations and/or the
rates at which interactions are run. The user can configure the number of phys-
ical locations emulated, the number of message producers and consumers, the
message size disributions, the message delivery modes, etc. Most importantly,
the user can selectively turn off interactions or change the rate at which they
are run to shape the workload according to his requirements. At the same time,
when running the horizontal or vertical topology, the benchmark behaves as if
the interactions were interrelated according to their dependencies in the real-life
application scenario. For further details on the benchmark implementation, the
reader is referred to [13].

3 SPECjms2007 Workload Characterization

3.1 Message Traffic Analysis

We start with a detailed analysis of the message traffic produced by the bench-
mark workload in terms of the number and type of messages generated and their
sizes. We consider the workload parameters that can be configured in the most
general freeform topology and show how they affect the resulting message traffic.
The different types of messages and destinations used in the various interactions
are detailed in Table 1.

Messages Sizes. The sizes of the messages generated as part of each interaction
can be configured by setting an interaction-specific message sizing parameter
(for example, “number of order lines sent to DC” for Interaction 1). Each sizing
parameter can be assigned three possible values with respective probabilities
(discrete probability distribution). The message sizing parameters used for the
different interactions are listed in Table 2, along with some data that can be
used to compute the resulting message sizes in KBytes. This data is based on
measurements we took using a deployment of SPECjms2007 on a major JMS
server platform1. The exact message sizes may be slightly different on different
platforms, as MOM servers add their own platform-specific message headers. The
measurements provided here were compared against measurements on a second
popular JMS server and the differences were negligible. Based on the data in
Table 2, the message sizes in KBytes for Interactions 1, 2, 4, 6 and 7 can be
computed as ϑ = m1 ·x+b where x is the interaction’s message sizing parameter
and m1 and b are set to their respective values from Table 2. The priceUpdate
messages of Interaction 3 have constant size that cannot be changed by the user.
The size of the statInfoSM messages used in Interaction 5 is configured using
two sizing parameters as follows ϑ = x · (m1 + m2 · y) + b where x and y are

1 Due to product license restrictions, the specific configuration used cannot be
disclosed.

Workload Characterization of the SPECjms2007 Benchmark 235

Table 1. Message Types Used in The Interactions - (N)P=(Non-)Persistent;
(N)T=(Non-)Transactional; (N)D=(Non-)Durable

Intr. Message Destination Type Prop. Description

order Queue (DC) ObjectMsg P, T Order sent from SM to DC.
orderConf Queue (SM) ObjectMsg P, T Order confirmation sent from DC to

SM.
shipDep Queue (DC) TextMsg P, T Shipment registered by RFID readers

upon leaving DC.1
statInfo-
OrderDC

Queue (HQ) StreamMsg NP, NT Sales statistics sent from DC to HQ.

shipInfo Queue (SM) TextMsg P, T Shipment from DC registered by
RFID readers upon arrival at SM.

shipConf Queue (DC) ObjectMsg P, T Shipment confirmation sent from SM
to DC.

callForOffers Topic (HQ) TextMsg P, T, D Call for offers sent from DC to SPs
(XML).

offer Queue (DC) TextMsg P, T Offer sent from SP to DC (XML).
pOrder Queue (SP) TextMsg P, T Order sent from DC to SP (XML).
pOrderConf Queue (DC) TextMsg P, T Order confirmation sent from SP to

DC (XML).2
invoice Queue (HQ) TextMsg P, T Order invoice sent from SP to HQ

(XML).
pShipInfo Queue (DC) TextMsg P, T Shipment from SP registered by RFID

readers upon arrival at DC.
pShipConf Queue (SP) TextMsg P, T Shipment confirmation sent from DC

to SP (XML).
statInfo-
ShipDC

Queue (HQ) StreamMsg NP, NT Purchase statistics sent from DC to
HQ.

3 priceUpdate Topic (HQ) MapMsg P, T, D Price update sent from HQ to SMs.

4 inventoryInfo Queue (SM) TextMsg P, T Item movement registered by RFID
readers in the warehouse of SM.

5 statInfoSM Queue (HQ) ObjectMsg NP, NT Sales statistics sent from SM to HQ.

6 product-
Announcement

Topic (HQ) StreamMsg NP, NT,
ND

New product announcements sent
from HQ to SMs.

7 creditCardHL Topic (HQ) StreamMsg NP, NT,
ND

Credit card hotlist sent from HQ to
SMs.

the two sizing parameters (i.e. “number of SM cash desks” and “number of sales
lines”) and m1, m2 and b are set to their respective values from Table 2. Based
on the above two formulas and the data in Table 2, the user can configure the
benchmark to use message sizes that match the user’s own target workload.

Message Throughput. We now characterize the message throughput first on a
per interaction basis and then on a per location basis. The two most important
sets of workload parameters that determine the message throughput are the
number of locations of each type and the interaction rates. We denote the sets
of physical locations as follows:

ΨSM = {SM1, SM2, . . . , SM|ΨSM |} ΨDC = {DC1, DC2, . . . , DC|ΨDC |}
ΨSP = {SP1, SP2, . . . , SP|ΨSP |} ΨHQ = {HQ1, HQ2, . . . , HQ|ΨHQ|}

Note that although the modeled scenario has a single physical HQ location,
the benchmark allows multiple HQ instances to exist each with its own set of
queues. The goal is to avoid the HQ queues becoming a bottleneck when scaling

236 K. Sachs et al.

Table 2. Parameters for Message Size Calculation

Intr. Message Sizing Parameters Message m1 m2 b

orderConf 0.0565 na 1.7374
statInfoOrderDC 0.0153 na 0.1463
shipInfo 0.0787 na 0.89121 No of order lines sent to DC
shipDep 0.0787 na 0.7222
order 0.0565 na 1.4534
shipConf 0.0202 na 0.7140

callForOffers 0.1785 na 0.8094
offer 0.2489 na 0.9414
pOrder 0.2498 na 1.1076
pShipConf 0.0827 na 0.76122 No of purchase order lines sent to SP
statInfoShipDC 0.0831 na 0.7681
pOrderConf 0.2410 na 1.3494
invoice 0.1942 na 1.1211
pShipInfo 0.0827 na 0.7279

3 Message has fixed size priceUpdate na na 0.2310

4 No of registered items leaving warehouse inventoryInfo 0.0970 na 0.5137

5 No of cash desks & sales lines statInfoSM 0.0139 0.3650 0.9813

6 No of new products announced productAnnouncement 0.0103 na 0.1754

7 No of credit cards in hot list creditCardHL 0.0166 na 0.1846

the number of SMs, DCs and SPs. It is assumed that messages sent to the
HQ are distributed evenly among the HQ instances. Multiple HQ instances are
considered as separate servers within the same physical location.

For each interaction, the interaction rate specifies the rate at which the in-
teraction is initiated by every physical instance of its initiating location, SM
for Interaction 1, DC for Interaction 2, etc. We denote the interaction rates as
λi, 1 ≤ i ≤ 7. Since multiple HQ instances are not considered as separate physical
locations, it follows that the rates of Interactions 3, 6 and 7 which are initiated
by the HQ are interpreted as rates over all HQ instances as opposed to rates per
HQ instance. Interaction 2 uses a set of topics representing the different product
families offered by suppliers. These topics help to distribute the callForOffers
messages sent by DCs. Suppliers subscribe to all topics corresponding to groups
of products they offer so that they receive all relevant callForOffers messages.
We denote the set of product families as Π = {PF1, PF2, PF3, . . . , PF|Π|}.

The probability that a SP offers products from a given product family PFi ∈ Π
is a configurable workload parameter and will be denoted as ρ. Every SP sub-
scribes to ρ · |Π | product families and thus |ΨSP | · ρ · |Π | subscriptions exist
overall. The number of subscribers that subscribe to a given product family is
denoted as ζ = |ΨSP | · ρ.

In the following, we show how the message throughput, in terms of the number
of messages sent and received per unit of time, can be broken down according

Table 3. Message Groups

Group a b c d
Type Pub/Sub Pub/Sub P2P P2P
Properties NP NT ND P T D NP NT P T

Workload Characterization of the SPECjms2007 Benchmark 237

to the type of messaging (P2P vs. pub/sub) and the message delivery mode
(persistent vs. non-persistent, transactional vs. non-transactional, durable vs.
non-durable). To this end, we group messages as shown in Table 3. Further, we
define the following sets:

Γ = {a, b, c, d}: Message groups as defined in Table 3.
Ω = {se, re}: Messages sent vs. messages received.
Λ = {SM,SP,DC,HQ}: Types of physical locations.

3.1a). Message Throughput per Interaction
We first analyze the message throughput on a per interaction basis. We will use
the following notation:

ξji,k for j ∈ Ω, 1 ≤ i ≤ 7 and k ∈ Γ
No of messages of group k sent/received per sec as part of Interaction i.

ξji =
∑

k∈Γ ξ
j
i,k for 1 ≤ i ≤ 7, j ∈ Ω

Total no of messages sent/received per sec as part of Interaction i.

ξj =
∑7

i=1 ξ
j
i for j ∈ Ω

Total no of messages sent/received per sec over all interactions.

Based on the information provided in the previous sections and analysis of
the benchmark design, the following equations are derived characterizing the
message throughput of each interaction:

Interaction 1: ξse
1,c = ξre

1,c = λ1 · |ΨSM |
ξj1,k = 0, ∀k ∈ {a, b} ∧ j ∈ Ω

ξse
1,d = ξre

1,d = 5 · λ1 · |ΨSM |

Interaction 2: ξj2,a = 0, ∀j ∈ Ω
ξse
2,b = λ2 · |ΨDC

ξre
2,b = ζ · λ2 · |ΨDC |

ξse
2,c = ξre

2,c = λ2 · |ΨDC |
ξse
2,d = ξre

2,d = (ζ + 5) · λ2 · |ΨDC |

Interaction 3: ξse
3,b = λ3

ξre
3,b = λ3 · |ΨSM |

ξj3,k = 0, ∀k ∈ Γ, k 	= b ∧ j ∈ Ω

Interaction 4: ξse
4,d = ξre

4,d = λ4 · |ΨSM | ξj4,k = 0, ∀k ∈ Γ, k 	= d ∧ j ∈ Ω

Interaction 5: ξse
5,d = ξre

5,d = λ5 · |ΨSM | ξj5,k = 0, ∀k ∈ Γ, k 	= d ∧ j ∈ Ω

Interaction 6: ξse
6,a = λ6

ξre
6,a = λ6 · |ΨSM |

ξj6,k = 0, ∀k ∈ Γ, k 	= a ∧ j ∈ Ω

Interaction 7: ξse
7,a = λ7

ξre
7,a = λ7 · |ΨSM |

ξj7,k = 0, ∀k ∈ Γ, k 	= a ∧ j ∈ Ω

238 K. Sachs et al.

3.1b). Message Throughput per Location
We now analyze the message throughput on a per location basis. The following

notation will be used:

χj
l,k for j ∈ Ω, l ∈ Λ, k ∈ Γ

No of messages of group k sent/received per sec by a location of type l.
χj

l =
∑

k∈Γ ξ
j
l,k for j ∈ Ω, l ∈ Λ

Total no of messages sent/received per sec by a location of type l.

SMs participate in all interactions apart from Interaction 2. The following
equations characterize the message throughput of each SM:

χse
SM,a = χse

SM,b = χre
SM,c = 0

χre
SM,a = λ6 + λ7

χre
SM,b = λ3

χse
SM,c = λ5

χse
SM,d = 2λ1 + λ4

χre
SM,d = 2λ1 + λ4

SPs participate only in Interaction 2. Overall λ2 · |ΨDC | callForOffers mes-
sages are sent by the DCs per sec. Therefore, every SP receives ρ · λ2 · |ΨDC |
messages and for each of them it sends an offer to the respective DC. The prob-
ability that an offer is accepted is 1

ζ and hence the number of SP offers accepted
per sec is given by:

ρ · λ2 · |ΨDC |
ζ

=
λ2 · |ΨDC |
|ΨSP |

The following equations characterize the message throughput of each SP:

χse
SP,a = χre

SP,a = χse
SP,b = χse

SP,c = χre
SP,c = 0

χre
SP,b = ρ · λ2 · |ΨDC |

χse
SP,d = ρ · λ2 · |ΨDC | +

3λ2 · |ΨDC |
|ΨSP |

χre
SP,d =

2λ2 · |ΨDC |
|ΨSP |

DCs participate in Interactions 1 and 2 both as producers and consumers of
messages. The number of SMs supplied by each DC is given by δ = |ΨSM |

|ΨDC | .
The following equations characterize the message throughput of each DC:

χse
DC,a = χre

DC,a = χre
DC,b = χre

DC,c = 0
χse

DC,b = λ2

χse
DC,c = δ · λ1 + λ2

χse
DC,d = 3λ1 · δ + 2λ2

χre
DC,d = 3λ1 · δ + λ2(ζ + 2)

Workload Characterization of the SPECjms2007 Benchmark 239

The HQ participate in Interactions 1, 2, and 5 as message consumer and in In-
teractions 3, 6, and 7 as message producer. The following equations characterize
the message throughput of the HQ:

χre
HQ,a = χre

HQ,b = χse
HQ,c = χse

HQ,d = 0
χse

HQ,a = λ6 + λ7

χse
HQ,b = λ3

χre
HQ,c = λ1 · |ΨSM | + λ2 · |ΨDC | + λ5 · |ΨSM |
χre

HQ,d = λ2 · |ΨDC |

The detailed message throughput analysis presented above serves two main
purposes. First, using the throughput equations, the user can assemble a work-
load configuration (in terms of number of locations and interaction rates) that
stresses specific types of messaging under given scaling conditions. As a very
basic example, the user might be interested in evaluating the performance and
scalability of non-persistent pub/sub messaging under increasing number of sub-
scribers. In this case, a mix of Interactions 6 and 7 can be used with increasing
number of SMs. Second, the characterization of the message traffic on a per lo-
cation basis can help users to find optimal deployment topology of the agents
representing the different locations such that the load is evenly distributed among
client nodes and there are no client-side bottlenecks. This is especially important
for a messaging benchmark where the server acts as mediator in interactions and
significant amount of processing is executed on the client side.

3.2 Horizontal Topology

As mentioned earlier, the goal of the horizontal topology is to exercise the ability
of the system to handle increasing number of destinations. To achieve this, the
workload is scaled by increasing the number of physical locations (SMs, DCs,
etc) while keeping the traffic per location constant. A scaling parameter BASE is
introduced and the following rules are enforced:

1. |ΨSM | = BASE

2. |ΨDC | = ' |ΨSM |
5 (

3. |ΨSP | = [0.4 · |ΨSM |]
4. |ΨHQ| = ' |ΨSM |

20 (

5. |Π | = |ΨSM |
6. ρ = 5

|Π|
7. λi, 1 ≤ i ≤ 7 are fixed

Figure 3 shows how the number of locations of each type is scaled as the
BASE parameter is increased. The rates λi at which interactions are initiated by
participants are fixed so that the traffic per location (and therefore also per des-
tination) remains constant. The relative weights of the interactions are set based
on a detailed business model of the supermarket supply chain which captures
the interaction interdependencies. This model has several input parameters (e.g.
total number of product types, size of supermarkets, average number of items
sold per week) whose values are chosen in such a way that the following overall
target messaging mix is achieved as close as possible:

240 K. Sachs et al.

0

20

40

60

80

100

120

140

160

180

5 15 25 35 45 55 65 75 85 95

Base

N
o
.

L
o
c
a
ti
o
n
s

HQ

SM

SP

DC

Fig. 3. # Locations for Horiz. Topology

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

P2P Pub/Sub P2P Pub/Sub

 % Msg. % Kbytes

Transactional Non-Transactional

Fig. 4. Horiz. Topology Message Mix

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

40 80 120 160 200 240 280

Base

N
o
.

M
s
g
. a

b

c

d

Fig. 5. Horizontal Topology: # msg

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

40 80 120 160 200 240 280

Base

K
b
y
te

s

a

b

c

d

Fig. 6. Message traffic in Kbytes

– 50% P2P messages and 50% pub/sub
– 50% of P2P messages persistent, 50% non-persistent
– 25% of pub/sub messages persistent, 75% non-persistent

The goal is to put equal weight on P2P and pub/sub messaging. Within
each group the target relative weights of persistent vs. non-persistent messaging
have been set according to the relative usage of these messaging styles in real-
life applications. Table 5(a) shows the achieved message mix in the horizontal
topology. Figure 4 presents the same data in graphical form. Figures 5 and 6
show how the number of messages of each type and the bandwidth they use are
scaled as a function of the BASE parameter. As evident from the figure, when
scaling the workload the proportions of the different types of messages remain
constant. This is expected since the relative weights of the various messaging
styles used by the workload should not depend on the scaling factor.

The sizes of the messages used in the various interactions have been chosen
to reflect typical message sizes in real-life MOM applications. Pub/sub messages
are generally much smaller than P2P messages due to the decoupled nature
of the delivery mechanism. For every type of message, SPECjms2007 generates
messages with sizes chosen from a discrete distribution with three possible values
as shown in Table 4. There are two exceptions, the priceUpdate message used

Workload Characterization of the SPECjms2007 Benchmark 241

Table 4. Message Sizes in KByte

Message Size 1 Size 2 Size 3 Avg.
Intr. Probability 95 % 4 % 1 % Size

orderConf 2.02 7.39 41.29 2.63
statInfoOrderDC 0.22 1.67 10.83 0.39
shipInfo 1.28 8.76 55.95 2.131
shipDep 1.12 8.59 55.79 1.96
order 1.74 7.10 41.01 2.34
shipConf 0.81 2.73 14.83 1.03

callForOffers 1.35 7.06 36.52 1.93
offer 1.69 9.65 50.71 2.50
pOrder 1.86 9.85 51.07 2.67
pShipConf 1.01 3.65 17.29 1.282
statInfoShipDC 1.02 3.68 17.38 1.29
pOrderConf 2.07 9.79 49.56 2.86
invoice 1.70 7.92 39.95 2.33
pShipInfo 0.98 3.62 17.26 1.24

3 priceUpdate 0.24 0.24 0.24 0.24

4 inventoryInfo 1.48 10.22 49.03 2.31

5 statInfoSM na 5.27

6 productAnnouncement 1.21 0.28 10.51 1.26

7 creditCardHL 1.01 8.49 50.00 1.80

in Interaction 4 and the statInfoSM message used in Interaction 5. The former
has a fixed size, while the latter has size between 4.7 and 24.78 KB with an
average of 5.27 KB. Since statInfoSM messages contain sales statistics, their
size is determined by the rate at which items are sold in supermarkets which
depends on the number of customers visiting a supermarket per day and the
average number of items sold per customer.

Table 5. Topology Message Mix

(a) Horizontal

Message Message Count Bandwidth
Group Target Achieved Used
a 37.50% 37.46% 24.66%
b 12.50% 12.45% 2.41%
c 25.00% 24.55% 49.19%
d 25.00% 25.55% 23.74%

(b) Vertical

Message Message Count Bandwidth
Group Target Achieved Used
a 15.00% 14.19% 7.19%
b 5.00% 5.99% 2.25%
c 40.00% 39.09% 61.03%
d 40.00% 40.74% 29.52%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

P2P Pub/Sub P2P Pub/Sub

% Msg % Kbytes

Transactional Non-Transactional

Fig. 7. Vert. Topology Message Mix

3.3 Vertical Topology

The goal of the vertical topology is to exercise the ability of the system to handle
increasing message traffic through a fixed set of destinations. Therefore, a fixed
set of physical locations is used and the workload is scaled by increasing the

242 K. Sachs et al.

rate at which interactions are executed. Similar to the horizontal case, a single
parameter BASE is used as a scaling factor. The following rules are enforced:

1. |ΨSM | = 10
2. |ΨDC | = 2
3. |ΨSP | = 5
4. |ΨHQ| = 1

5. |Π | = 100
6. ρ = 50%
7. λi = ci · BASE, where ci is a fixed

factor and 1 ≤ i ≤ 7

Again, the relative weights of the interactions are set based on the business
model of the supply chain scenario. Unlike the horizontal topology, however,
the vertical topology places the emphasis on P2P messaging which accounts
for 80% of the total message traffic. The aim is to exercise the ability of the
system to handle increasing traffic through a destination by processing messages
in parallel. This aspect of MOM server performance is more relevant for P2P
messaging (queues) than for pub/sub messaging where the message throughput
is inherently limited by the speed at which subscribers can process incoming
messages.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

40 80 120 160 200 240 280

Base

N
o
.

M
s
g
. a

b

c

d

Fig. 8. Vertical Topology: # msg

0

2000

4000

6000

8000

10000

12000

14000

16000

40 80 120 160 200 240 280

Base

K
b
y
te
s a

b

c

d

Fig. 9. Message traffic in Kbytes

Table 5(b) shows the achieved message mix in the vertical topology. Figure 7
presents the same data in graphical form. Figures 8 and 9 shows how the number
of messages of each type and the bandwidth they use are scaled as a function of
the BASE parameter. Again, when scaling the workload the message mix remains
constant which is the expected behavior. The sizes of the messages used in the
various interactions are computed in the same way as for the horizontal topology
(see Table 4).

4 Concluding Remarks

We presented a comprehensive workload characterization of the SPECjms2007
benchmark which is the world’s first industry standard benchmark specialized
for MOM. SPECjms2007 provides a flexible and robust tool that can be used
for in-depth performance evaluation of MOM servers. However, in order to take

Workload Characterization of the SPECjms2007 Benchmark 243

advantage of this, users need to understand the way the workload is decom-
posed into components and which performance aspects are exercised by these
components. The workload characterization presented in this paper is meant to
help users gain an in-depth understanding of the SPECjms2007 workload and
how it can be configured and customized. Our extensive analysis of the mes-
sage traffic produced by the benchmark considered the following dimensions,
i) message types and destinations, ii) message sizes, iii) message throughput and
iv) message delivery modes. We characterized the message traffic both on a per
interaction and location basis. The results we presented can be used to define
a workload configuration that stresses selected features of the MOM infrastruc-
ture in a way that resembles a given target customer workload. Moreover, the
traffic equations are essential for finding an optimal deployment topology with
a uniform load distribution and no client-side bottlenecks. After considering the
general freeform topology, we looked at the more specific horizontal and verti-
cal topologies. We discussed their goals and characterized the interaction and
message mixes they are based on and the way they are scaled. Our analysis not
only helps to better understand and interpret official benchmark results, but
also provides an example of how to define a scalable workload configuration for
evaluating selected performance and scalability aspects of MOM.

Acknowledgments

This work was partially funded by the German Research Foundation. We
acknowledge the contributions of the members of the SPECjms Working
Group to the specification and development of SPECjms2007, in particular
Marc Carter and Tim Dunn from IBM, George Tharakan from Sun Microsys-
tems, Tom Barnes and Russell Raymundo from BEA, Evan Ireland from Sybase,
and Adrian Co from Apache. We are also especially thankful to Lawrence Cullen,
Robert Berry, Alan Adamson and John Stecher from IBM, Steve Realmuto from
BEA and Ricardo Morin from Intel for their continued support of the SPECjms
project.

References

1. ActiveMQ. JMeter performance test (2006),
http://incubator.apache.org/activemq/jmeter-performance-tests.html

2. Alexander, K., Gillian, T., Gramling, K., Kindy, M., Moogimane, D., Schultz,
M., Woods, M.: IBM Business Consulting Services - Focus on the Supply Chain:
Applying Auto-ID within the Distribution Center. White paper IBM-AUTOID-
BC-002 (2003)

3. Bornhövd, C., Lin, T., Haller, S., Schaper, J.: Integrating Automatic Data Acqui-
sition with Business Processes - Experiences with SAP’s Auto-ID Infrastructure.
In: Proceedings of VLDB’04 (2004)

4. Carter, M.: JMS Performance with WebSphere MQ for Windows V6.0 (2005),
http://www-1.ibm.com/support/docview.wss?rs=171\&uid=swg24010028

http://incubator.apache.org/ activemq/jmeter-performance-tests.html
http://www-1.ibm.com/support/docview.wss?rs=171& uid=swg24010028

244 K. Sachs et al.

5. Crimson Consulting Group. High-Performance JMS Messaging - A Benchmark
Comparison of Sun Java System Message Queue and IBM WebSphere MQ (2003)

6. Finkenzeller, K.: RFID Handbook: Fundamentals and Applications in Contactless
Smart Cards and Identification, 2nd edn. John Wiley & Sons, Chichester (May
2003)

7. IBM Hursley. Performance Harness for Java Message Service (2005), http://www.
alphaworks.ibm.com/tech/perfharness

8. JBoss. JBoss JMS New Performance Benchmark (2006), http://wiki.jboss.org/
wiki/Wiki.jsp?page=JBossJMSNewPerformanceBenchmark

9. Kounev, S.: Performance Engineering of Distributed Component-Based Systems -
Benchmarking, Modeling and Performance Prediction. Shaker Verlag (Dec 2005),
ISBN: 3832247130

10. Kounev, S., Buchmann, A.: Improving Data Access of J2EE Applications by
Exploiting Asynchronous Processing and Caching Services. In: Proceedings of
VLDB’02 (2002)

11. Krissoft Solutions. JMS Performance Comparison (2006),
http://www.fiorano.com/comp-analysis/jms perf report.htm

12. Sachs, K.: Evaluation of Performance Aspects of the SAP Auto-ID Infrastructure.
Master’s thesis, Department of Computer Science, Darmstadt University of Tech-
nology (2004)

13. Sachs, K., Kounev, S., Carter, M., Buchmann, A.: Designing a Workload Sce-
nario for Benchmarking Message-Oriented Middleware. In: Proceedings of the 2007
SPEC Benchmark Workshop. SPEC (January 2007)

14. Sonic Software Corporation. SonicMQ Test Harness (2005)
15. Sun Microsystems Inc. Java Message Service (JMS) Specification Version 1.1(2002),

http://java.sun.com/products/jms/docs.html

http://www.alphaworks.ibm.com/tech/perfharness
http://www.alphaworks.ibm.com/tech/perfharness
http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossJMSNewPerformanceBenchmark
http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossJMSNewPerformanceBenchmark
http://www.fiorano.com/comp-analysis/jms_perf_report.htm
http://java.sun.com/products/jms/docs.html

Resource Sharing in Performance Models

Vlastimil Babka, Martin Děcký, and Petr Tůma

Department of Software Engineering
Faculty of Mathematics and Physics, Charles University

Malostranské náměst́ı 25, Prague 1, 118 00, Czech Republic
{vlastimil.babka,martin.decky,petr.tuma}@dsrg.mff.cuni.cz

Abstract. In software systems, individual components interact not only
through explicit function invocations, but also through implicit resource
sharing. The use of shared resources significantly influences the duration
of the invoked functions. For resources that are heavily shared, capturing
this influence can lead to performance models that have a large number of
elements and a large number of dependencies. We introduce an approach
that can model resource sharing separately from function invocations,
keeping the performance model reasonably simple while still describing
many of the effects of resource sharing on the duration of function in-
vocations. The approach has been tested on the CoCoME component
application modeling example.

Keywords: enterprise systems, performance modeling, resource sharing.

1 Introduction

Our work focuses on performance models of software systems that describe the
interaction of individual software components in terms of atomic actions, and
that derive the duration of the atomic actions from the implementation of the
components [15,16,17,18,26,27,29]. The duration of the atomic actions, needed
to solve the performance model, is typically chosen to reflect the duration of
function invocations on individual software components.

The duration of function invocations is typically determined by benchmarking.
This, however, cannot be done by benchmarking the entire software system –
if the entire software system were readily available and easily benchmarked,
performance modeling would not be of much use. The individual components of
the software system are thus benchmarked mostly in isolation and the average
duration of function invocations determined by benchmarking applies to this
isolated execution.

Unfortunately, the duration of a function invocation typically depends on the
resources the function uses. When such resources are shared within a software
system, the duration of the function invocation is likely to differ from the dura-
tion of the function invocation observed during the relatively isolated execution
of benchmarks. Unless resource sharing is described in the performance model,
this naturally impacts the performance model precision.

K. Wolter (Ed.): EPEW 2007, LNCS 4748, pp. 245–259, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

246 V. Babka, M. Děcký, and P. Tůma

Resource sharing is very common and in some cases, such as sharing of pro-
cessor caches, physical memory, or disk caches, concerns many components.
Describing these resources in a performance model increases the complexity
of the model both in the number of elements and in the number of depen-
dencies between elements. This is probably why even recent work on perfor-
mance modeling of software systems often tends to omit some heavily shared
resources [16, 17, 18,26,27,29] or points out the high cost of solving the perfor-
mance model when heavily shared resources are present [15]. Both intuition and
evidence, however, suggest that these resources need to be modeled [13, 14].

To remedy the difficulties associated with describing heavily shared resources
in performance modeling of software systems, we present an approach where re-
source sharing can be modeled separately from function invocations. Our com-
bined model consists of the resource model, which describes how resources are
used, and the performance model, which describes how functions are invoked.

The resource model and the performance model complement each other. To
solve the resource model, knowledge of the interactions between the individual
components and of the degree of parallelism inside the individual components
is needed – and is provided by the performance model. Similarly, to solve the
performance model, knowledge of the duration of the atomic actions is needed
– and is provided by the resource model. The two models are solved iteratively.

We test our approach by modeling the performance of the architecture pro-
vided by CoCoME [5]. This architecture describes an enterprise information sys-
tem responsible for tracking the stocks and sales of products in multiple stores.
Its prototype implementation relies on contemporary middleware technologies
such as ActiveMQ [1], Apache Derby [2] and Hibernate [11], and can be con-
sidered a reasonably realistic example of a software system for the purposes of
performance modeling.

To describe our approach in detail, we first illustrate on examples of two heav-
ily shared resources why we believe such resource sharing to be difficult to de-
scribe in performance models. We proceed by detailing the concept of separating
the resource model and the performance model and explaining the complemen-
tary character of the two models. The test of our approach follows, with due
evaluation and conclusion.

2 Resource Sharing

In the context of performance modeling, our definition of a resource includes
any shared entity that individual components rely on in their execution. Typical
resources are physical memory, processor with its various caches, disk with its
caches and queues, and even entire file systems and network connections. The
duration of function invocations, represented by the duration of atomic actions
in performance models, naturally depends on the use of resources. The exact
nature of this dependency is affected by the resource kind and by the way it is
used. We select two common examples for a more detailed look.

Resource Sharing in Performance Models 247

2.1 Sharing Processor Cache

Processor cache is a resource that is shared inherently by any code running on
the same processor. To illustrate how sharing of processor cache can change
the duration of method invocation, we use two simple experiments with a Fast
Fourier Transform library, FFT for short.

When processing data in a memory buffer, FFT will naturally perform faster
if the memory buffer is cached. In our first experiment, we model a situation
where FFT is one in a pipe of functions competing for the data cache. In detail,
we fill the memory buffer with input data, simulate the competing functions by
reading a set number of random addresses outside the buffer, and finally perform
the FFT.1 Figure 1 shows the dependence of the FFT duration on the number of
the random addresses. As expected, increasing the portion of the buffer evicted
from the cache by competing functions decreases the FFT performance.

0 8192 16384 32768 65536 131072 262144 524288

60
00

00
80

00
00

10
00

00
0

12
00

00
0

Amount of evicted data [bytes]

F
F

T
 d

ur
at

io
n

[C
P

U
 c

lo
ck

s]

Fig. 1. Data cache sharing in FFT, one 128 KB buffer

As our second experiment, we show that the results can also be surprisingly
different from expectations. The experiment is similar to the first one except in
that it uses separate input and output buffers and runs on a different hardware2

Figure 2 shows that the negative impact of data cache sharing is limited and
that even a positive impact can be observed.

2.2 Sharing File System

File system is another frequently shared resource, or, rather, a complex of related
resources whose sharing exhibits even residual effects, potentially affecting future
operations. We illustrate two sharing effects via experiments.
1 Intel Pentium 4 Northwood 2.2 GHz, 8 KB data L1, 12 KB code L1, 512 KB unified

L2, Fedora Core 6. FFTW 3.1.1 fftw plan dft 1d [7].
2 AMD Athlon 64 3000+ Venice DH7-CG 1.8 GHz, 64 KB data L1, 64 KB code L1,

512 KB unified L2.

248 V. Babka, M. Děcký, and P. Tůma

0 131072 262144 393216 524288 655360 786432 917504 1048576

24
00

00
0

24
50

00
0

25
00

00
0

25
50

00
0

26
00

00
0

Amount of evicted data [bytes]

F
F

T
 d

ur
at

io
n

[C
P

U
 c

lo
ck

s]

Fig. 2. Unusual effects of data cache sharing in FFT, two 320 KB buffers

The first experiment demonstrates how reading multiple files at a time pro-
longs the read duration compared to reading the files one at a time. First, we
write four 256 MB files one at a time. Next, we measure the time to read the
files one at a time and then multiple files at a time, interleaving reads of 32 KB,
1 MB and 16 MB blocks from each file. The results3 on Figure 3 show that the
more frequent the interleaving, the bigger the performance impact.

In the second experiment, we measure the residual effect of writing multiple
files at a time, which affects reading due to fragmentation. First, we write four
256 MB files, interleaving the writes as we did the reads in the first experiment.
Next, we measure the time to read the files one at a time. Figure 4 shows a small
but measurable performance impact.

Block size Read slowdown

32 KB 2.60 ± 0.32
1 MB 1.33 ± 0.04
16 MB 1.03 ± 0.04

Fig. 3. Effect of interleaved reading

Block size Read slowdown

32 KB 1.06 ± 0.03
1 MB 1.05 ± 0.03
16 MB 1.02 ± 0.03

Fig. 4. Effect of interleaved writing

2.3 Describing Sharing

The common denominator of these two and other examples of resource sharing
is that they are difficult to model precisely. When a performance model of a
resource does exist, it typically focuses on a specific feature of the resource – for
example, the cache models in [3,12] would not cover the processor cache example
presented here simply because they did not focus on the interaction of multiple
cache hierarchies, and the storage models in [6, 19] would not cover the file

3 Intel Pentium 4 2.2 GHz, 512 MB RAM, Hitachi 250 GB ATA, Fedora Core 5, ext3.

Resource Sharing in Performance Models 249

system example presented here simply because they did not focus on interleaving
and fragmentation. Furthermore, the performance models of resources can be
based on a different formalism than the performance model of a software system,
making their integration difficult.

Another observation is that often, the general knowledge of how a resource
performs when shared is based on measurement rather than modeling. Instead
of using modeling to predict performance issues, we use measurement to dis-
cover and understand performance issues and revert to modeling to confirm
our understanding. The fact that even this method of arriving at understand-
ing requires considerable amount of work [10, 20] underscores our argument
that heavily shared resources are inherently difficult to describe in performance
models.

We believe that one approach to tackling the complexity of describing resource
sharing is separating the resource model and the performance model for heavily
shared resources as described next.

3 Combined Performance Model

To explain the concept of separating the resource model and the performance
model, let us first consider a performance model of a software system that omits
some heavily shared resources and that describes the interaction of the individ-
ual components in terms of atomic actions whose average durations are known.
These average durations have been determined by measuring the durations of
corresponding function invocations in a benchmark experiment.

Since function invocations use the omitted resources, we can only expect the
performance model to provide a good approximation of the software system when
the benchmark experiment that provided the average durations of atomic actions
used a good approximation of the resource usage. In the examples from Section
2, if we were to model software that frequently evicts data from processor caches,
we would have to frequently evict data from processor caches in the benchmark.
Similarly, if we were to model software that uses heavily fragmented files, we
would have to use heavily fragmented files in the benchmark.

The question that we need to ask is therefore how well we can approximate
resource usage in the benchmark experiment. For further discussion, we describe
resource usage as consisting of two related factors, mode of resource usage and
degree of resource usage.

3.1 Mode of Resource Usage

The mode of resource usage describes in which way the resource is used – this
concerns details such as access patterns, strategies, interleaving, etc. On our
examples of the processor cache and file system resources, mode of resource
usage boils down to issues including strong or weak locality of memory references,
sequential or random character of file accesses, ratio of file reads to writes, etc.

These issues are not only specific to each resource, but also difficult to for-
malize and quantify. Fortunately, we can avoid the need for formalizing and

250 V. Babka, M. Děcký, and P. Tůma

quantifying the mode of resource usage by designing the benchmark experiment
so that it resembles the scenario we are modeling. This is routinely done by
many benchmarks, such as TPC [23], which resembles transaction processing
applications, or RUBiS [21], which resembles an on-line bidding application.

We can conclude that as far as the mode of resource usage goes, benchmarks
that provide the average durations to the performance model can be designed to
resemble the scenarios we want to model and therefore approximate the mode
of resource usage in these scenarios. Note, however, that this does not yet guar-
antee that the benchmarks will provide useful average durations, a simultaneous
approximation of the degree of resource usage is needed for that as well.

3.2 Degree of Resource Usage

The degree of resource usage describes how much the resource is used – this
concerns details such as capacity, size or rate of requests and replies, parallelism,
etc. On our examples of the processor cache and file system resources, degree of
resource usage boils down to issues including cache and working set sizes, number
of threads and rate of context switches, number of concurrent file readers and
writers, etc.

Compared to the mode of resource usage, these issues are relatively easy to
quantify. Unlike the mode of resource usage, however, we cannot approximate
the degree of resource usage by designing the benchmark experiment so that it
resembles the scenario we are modeling. The mode of resource usage is typically
an input to performance modeling, but the degree of resource usage is related to
the output of performance modeling and therefore not available when designing
the benchmark experiment.

To illustrate the argument, consider the examples of the TPC and RUBiS
benchmarks. When designing a benchmark experiment that would approximate
the database usage in these benchmarks, we can easily approximate the mode of
usage, because the specification of the benchmarks includes the types and ratios
of queries and updates to be executed. We cannot, however, approximate the
degree of usage, because the specification of the benchmarks does not say how
frequently the queries and updates are executed or how many queries or updates
are executed in parallel. This information is what would be the output of the
benchmarks – or the output of performance modeling, if we were to model rather
than execute the benchmarks.

3.3 Iterating Between Models

As outlined, we are faced with a situation where we could expect the performance
model to give us good results, if only we could feed it with good approximations
of the average durations of atomic actions – and we could use benchmark ex-
periments to provide us with good approximations of the average durations, if
only we could design the experiments knowing what degree of resource usage to
approximate – or, in other words, knowing the results of the performance model.
In principle, this situation can be solved by starting with a sensible degree of

Resource Sharing in Performance Models 251

resource usage and then iterating between using the benchmark experiments to
obtain the average durations of atomic actions for the current degree of resource
usage and solving the performance model to obtain an updated degree of re-
source usage. If and when the iteration stabilizes, the results will be based on
good approximations of the average durations of atomic actions.

Generally, benchmark experiments tend to be cumbersome and expensive,
which is why, as a final step of our approach, we replace them in the iteration by
performance models of resources. Together, the performance models of heavily
shared resources form a resource model, which complements the performance
model of the software system. In light of the arguments from Section 2, we note
that the resource model remains separate from the performance model, giving us
freedom in the choice of formalisms and even allowing us to arbitrarily combine
the resource model with benchmark experiments when our knowledge of how a
resource performs is not sufficient to construct a precise model – as would be
the case with examples from Sections 2.1 and 2.2.

An obvious question is whether the iteration between the two models ever
converges. As there are no constraints on either of the two models, convergence
is generally impossible to guarantee – in fact, for all but trivial cases, a resource
model or a performance model that prevents the iteration from converging can
be constructed. We can, however, argue that the iteration between the resource
model and the performance model that describes certain workload resembles
initial behavior of the software system when put under that workload – as the
iteration adjusts the resource usage and thus the average durations of atomic ac-
tions, so does the software system react to the workload by changing the average
durations of function invocations. An oscillation or divergence in the iteration
can therefore suggest a tendency towards similar behavior in the software system.

Finally, we should point out that the iteration does not accumulate error.
For a given degree of resource usage, the resource model outputs the average
durations of function invocations with an error inherent only to that model. The
same is respectively true for the performance model. The errors therefore bear
influence on the progress of the iteration, but when the iteration stabilizes, the
results are precise up to the errors introduced in the last cycle only.

4 Proof of Concept Example

We have chosen the Common Component Modeling Example, or CoCoME [5]
for short, as a proof of concept platform for our combined model. CoCoME
describes an enterprise information system that keeps track of products sold by
a chain of stores. When stocked by a store, a product is represented by a stock
item that has a bar code, a price and an amount as its important attributes.
Sale of an item is done at one of the cash desks of a store, which locates the
item by its bar code, shows its price and, when the sale completes, decrements
its amount in the stock.

CoCoME has been created with emphasis on practical usability. The architec-
ture is reasonably large and comes with a reference implementation in Java. This

252 V. Babka, M. Děcký, and P. Tůma

prototype implementation uses contemporary middleware technologies such as
ActiveMQ [1], Apache Derby [2] and Hibernate [11], which makes it similar to
the platforms modeled recently for example in [16, 17, 18,24,26,27,29].

When creating our combined model, we have further relied on the fact that the
CoCoME architecture has been described within the SOFA component frame-
work [22]. This description includes the deployment plan, which provides us with
information on the placement of individual components of the application on the
nodes that run it, and the behavior model, which provides us with information
on the interactions between individual components. This information is used to
construct the resource model.

4.1 Performance Model

The obvious performance related question in CoCoME is how many concurrent
sales it can handle. To answer this question, we build our performance model
by identifying the activities that make up the sale or that interfere with the sale
and representing them explicitly in the performance model. Each sale consists
of scanning the bar codes of the items being sold – a scan is followed by a query
of the stock item in the database – and of booking the sale – a booking is done
by an update of the amounts of stock items in the database. This activity is at
the core of our performance model.

Other activities described by the CoCoME architecture, such as handling
of customers that do not have enough money to pay for the sale, have been
omitted from the performance model. These activities have no impact on how
many concurrent sales can be handled, and their omission allows us to keep the
model reasonably simple.

We have also decided to simplify activities of the components that are de-
ployed on embedded devices and are unlikely to represent performance bottle-
necks – for example, we do not model the bar code scanner or the cash desk
display components separately as they are always serving only a single sale and
there is little chance that the sale would progress at a speed that the bar code
scanner or the cash desk display cannot handle. As a result, each cash desk
is modeled by a single component that calls atomic actions at the rate that
corresponds to the time elapsing between scans of individual items.

For the formalism of the performance model, we have decided to adopt
LQN [28] – the feedback from LQN to the resource model will take the form of
queue length and processor utilization values. Another choice would be adopting
SPN [9] – the feedback from SPN to the resource model would take the form
of numbers of tokens in selected places. Both LQN and SPN were reported to
achieve good results when modeling enterprise information systems [4].

The CoCoME specification defines the rates of requests, size of sales and
other properties necessary to seed the performance model with proper constants.
Where defined using tabulated distribution functions, we have used averages
instead.

Resource Sharing in Performance Models 253

4.2 Resource Model

The performance model needs the resource model to provide the average dura-
tions of two atomic actions, namely the stock item query and the sale booking
update. Benchmarking experiments with the middleware used by the CoCoME
reference implementation suggest that these durations are most sensitive to the
use of system memory and to the use of database cache, which is why we describe
these two resources in our model.

The model of the database cache assumes that the query and the update
operations either use cached data or fetch data from disk and that the probability
of the two alternatives depends on the relative size of the cache with respect to
the size of the database. Similarly, the model of the system memory assumes
that the query and the update operations access some resident pages and some
swapped out pages and that the frequency of swapping depends on the relative
usage of memory with respect to the total amount of available memory.

We therefore start the construction of the resource model by determining the
average durations of the two alternatives of the query and update operations
by benchmark experiments, see Figure 5. Similarly, we get the additive unit
overhead of swapping, which is 162 ms.

Operation Query time (ms) Update time (ms)
cached 5.53 75
fetched 8.31 169

Fig. 5. Average durations of the atomic operations

To determine what is the probability of each variant of the atomic operations,
we need to calculate the degree of resource usage in the resource model, which
depends on the particular implementation of the resources.

The implementation uses Hibernate for persistent representation of stock
items in the database. Hibernate caches data separately for each transaction.
The memory usage therefore grows linearly (i) with the number of transactions
executing simultaneously and (ii) with the size of the data fetched in each trans-
action. The number of transactions executing simultaneously is not bounded,
the size of the fetched data is bounded by the size of the database.

The database is Apache Derby, which keeps separate context for each connec-
tion and caches pages for all transactions together. Its memory usage therefore
grows linearly (i) with the number of connections opened simultaneously and (ii)
with the size of the data cached for all transactions. The number of simultaneous
connections is bounded by the size of the Hibernate connection pool, the cache
size is bounded by a configurable maximum cache size.

Considering the configurable maximum cache size with the default value of
10000 pages (pagesavailable), 4096 bytes each (sizepage), and a single stock item

254 V. Babka, M. Děcký, and P. Tůma

occupying 460 bytes (sizestockitem), the probability that a query or an update
is cached can be computed as the equation (4.1) suggests.

pagesused =
sizepage

sizestockitem
· products · stores

Pcached = min
(

1,
pagesavailable

pagesused

)
(4.1)

Considering a node with 512 MB of physical memory, of which 451 MB was
available for applications (memoryavailable), the degree of memory usage is deter-
mined by two constituents listed in equation (4.4) – the memory occupied by the
code and static data of the components from equation (4.3) (memory shared by
the running virtual machines, memory private to each virtual machine, memory
private to the database) – and the memory consumed by the concurrent activ-
ities from equation (4.2) (memory consumed per database connection, memory
consumed per query).

usageconcurrency = 'concurrency(· usageconnection (4.2)
usagecomponents = usageshared + stores · usagestore + usagedatabase (4.3)

Given the degree of memory usage, the probability that a query or an update
does not require swapping can be very roughly approximated by equation (4.5).
Note that a rough approximation suffices since swapping should not occur during
normal mode of operation, whose performance modeling is of interest.

memoryused = usagecomponents + usageconcurrency (4.4)

President = min
(

1,
memoryavailable

memoryused

)
(4.5)

Concurrency represents the number of concurrent queries. During iteration, it
is provided by the performance model, except for the initial value, which is taken
to be zero. The solution of the performance model consists of the throughput
and the observed service times of the atomic operations, the number of concur-
rent queries corresponds to the length of the queue of requests on the database
component and is calculated using equation (4.6).

concurrency = queuelength =
∑

m∈ops

throughputm · timem (4.6)

The value of concurrency is used by the resource model to recalculate the total
memory usage usageconcurrency and the probability President – the probability
Pcached does not depend on concurrency. The iteration is repeated until the
results converge, using a simple ε stability criterion.

4.3 Results

The results provided by our combined model in the form of an average through-
put in stock items processed per second and an average time spent on each sale

Resource Sharing in Performance Models 255

2 4 6 8 10 12 14

10
20

30
40

50
60

70

Stores

T
hr

ou
gh

pu
t

Fig. 6. Throughput calculated from the combined model (8 cash desks per store)

1 2 3 4 5 6 7 8 9 10 11 12 13 14

0
20

40
60

80
10

0

Stores

T
hr

ou
gh

pu
t

Fig. 7. Throughput benchmarked on the prototype (8 cash desks per store)

are displayed on Figures 6 and 8. The figures plot dependency of the throughput
and round-trip values on the number of cash desks per store and the number of
stores per enterprise as the scalability factors.

On average, the combined model needed only three iterations to converge.
This is because the memory consumption per query is relatively low compared
to the total memory consumption. The value of the concurrency variable at the
end of the iteration was approximately 1.24 for a single store with 8 cash desks,
5.16 for two stores, 11.57 for three stores and growing rapidly. We can therefore
conclude that the effect of memory consumption per query is not negligible.

For comparison, the results of a real benchmark of the CoCoME reference
implementation are on Figures 7 and 9. The benchmark, as well as the benchmark
experiments used to obtain the average durations of the atomic actions, have
used an Intel Pentium 4 Xeon 2.2 GHz machine with 512 MB RAM running
Fedora Core 6 and the database cache of 10000 pages for the server machine,

256 V. Babka, M. Děcký, and P. Tůma

2 4 6 8 10 12 14

0
50

10
0

15
0

20
0

25
0

30
0

35
0

Stores

S
al

e
ob

se
rv

ed
 ti

m
e

[s
]

Fig. 8. Round-trip calculated from the combined model (8 cash desks per store)

1 2 3 4 5 6 7 8 9 10 11 12 13 14

5
10

20
50

10
0

20
0

50
0

20
00

Stores

S
al

e
ob

se
rv

ed
 ti

m
e

[s
]

Fig. 9. Round-trip benchmarked on the prototype (8 cash desks per store)

and a dual Intel Core 2 Quad Xeon 1.8 GHz machine with 8 GB RAM running
Fedora Core 6 for the client machine. The relatively low amount of memory on
the server machine was used deliberately to allow the manifestation of swapping
with a reasonably small number of cash desks and stores.

5 Evaluation

One approach to evaluating our method is comparing the results predicted by
the combined model on Figures 6 and 8 with the results measured by the real
benchmark on Figures 7 and 9. This comparison suggests that the approach
is reasonably precise – the maximum throughput predicted by the model is 71
stock items per second, the maximum throughput measured by the benchmark
is 74 stock items per second. Similarly, the duration of a sale predicted by the

Resource Sharing in Performance Models 257

model is 10 seconds for one store (with 8 cash desks) and grows to around 26
seconds before the server starts swapping, the duration of a sale measured by the
benchmark is 17 seconds for one store and grows to around 25 seconds before the
server starts swapping. If a better precision were desired, the usual calibration
of the model could be employed as in [24,26].

As stated in the introduction, however, our goal is not predicting the exact
values of round-trip and throughput, but predicting how the values of round-trip
and throughput change when the scale of the application changes. Comparing the
results, we see that our approach predicted getting within 10% of the maximum
throughput around 2 stores, when the measurement shows this happening around
3 stores. Our approach also predicts the onset of swapping and the associated
degradation in throughput around 8 stores, when the measurement shows this
happening around 10 stores. The difference can be explained by our inability
to determine the precise memory requirements of the individual components,
something that is difficult to do with current tools.

When comparing our results to the results of other researchers, we did not
achieve that good a precision in predicting the values of round-trip and through-
put. We believe that this is not inherent to our approach but specific to the proof
of concept performance model, which has been kept intentionally simple – our
approach allows us to easily reuse performance models such as those in [24,26].

We note, however, that of the models of similar platforms in [16, 17, 18, 24,
26, 27, 29], none is able to predict the onset of swapping and the associated
degradation of performance due to resource sharing of computer memory. We
believe that this is a result of practical importance in performance modeling.

Finally, we should point out that early work recognizing the importance of
resource models in addition to performance models exists, such as [25]. There,
complexity functions in workload models are introduced to provide the con-
tention model, which corresponds to the performance model in our terminology,
with information on resource usage. The work, however, still expects that re-
source sharing will be described together with component interaction inside the
contention model, which is something that we argue is too complex.

The idea of iterating between the resource model and the performance model
can also be seen as an extension of earlier iterative approaches to solving the
performance models. For illustration, [15] describes solving the performance
model iteratively in initialization and simulation phases, with the initialization
phase calculating service times and routing probabilities based on an assumed
value that the simulation phase adjusts. The work, however, gives no details on
this value and views the entire iteration as an unfortunate consequence of the
performance model complexity.

6 Conclusion

We have described an approach to performance modeling of software systems
based on creating a combined model, in which a resource model and a perfor-
mance model complement each other in an iterative calculation. The advantage

258 V. Babka, M. Děcký, and P. Tůma

of the approach is that it allows modeling heavily shared resources separately
from other concerns, keeping the combined model reasonably simple.

We use an example of an enterprise information system to show that even with
very simple resource and performance models, the effects of resource sharing can
be predicted. We use the average durations of only four variants of two atomic
actions determined by benchmarking experiments for the resource model, and
only six tasks in the performance model. With that, we predict the effects of both
database cache sharing and system memory sharing, including the conditions of
resource exhaustion, which are rarely modeled elsewhere.

Our approach is based on the assumption that resource usage can be described
as consisting of two factors – mode of usage and degree of usage, where the mode
is determined by the scenario we are modeling and captured by the resource
model, and the degree is determined by the performance of the system we are
modeling and provided by the performance model. We believe that our approach
has a potential to work for heavily shared resources such as physical memory
or file systems, where long periods of stable execution are considered. In these
situations, the effects of resource sharing can often be modeled relatively simply
in the resource model, without cluttering the performance model.

An obvious requirement of our approach is being able to model the behavior
of individual resources. In this aspect, our approach retains the options of using
benchmark experiments to measure the resource, using a separate performance
model to model the resource, or modeling the resource as a part of the integrated
performance model of the entire software system. We should therefore always be
better off than approaches that only have one integrated performance model.

Acknowledgments. The authors would like to thank the team working on the
SOFA model of the CoCoME architecture for providing a supporting framework,
especially the deployment plan and the behavior model. This work was partially
supported by the Grant Agency of the Czech Republic project GD201/05/H014
and by the Czech Academy of Sciences project 1ET400300504.

References

1. ActiveMQ, http://activemq.apache.org
2. Apache Derby, http://db.apache.org/derby
3. Agarwal, A., Hennessy, J., Horowitz, M.: An Analytical Cache Model. In: TOCS,

vol. 7(2), ACM Press, New York (1989)

4. Balsamo, S., DiMarco, A., Inverardi, P., Simeoni, M.: Model-Based Performance
Prediction in Software Development. In: TSE, IEEE Computer Society Press, Los
Alamitos (2004)

5. CoCoME, http://agrausch.informatik.uni-kl.de/CoCoME
6. Drakopoulos, E., Merges, M.J.: Performance Analysis of Client-Server Storage Sys-

tems. In: TC, IEEE Computer Society Press, Los Alamitos (1992)
7. Frigo, M., Johnson, S.G.: FFTW, http://www.fftw.org
8. Ghosh, A., Givargis, T.: Cache Optimization for Embedded Processor Cores: An

Analytical Approach. In: TODAES, vol. 9(4), ACM Press, New York (2004)

http://activemq.apache.org
http://db.apache.org/derby
http://agrausch.informatik.uni-kl.de/CoCoME
http://www.fftw.org

Resource Sharing in Performance Models 259

9. Haas, P.J.: Stochastic Petri Nets: Modelling, stability, simulation. Springer, Hei-
delberg (2002)

10. Hauswirth, M., Diwan, A., Sweeney, P.F., Mozer, M.C.: Automating Vertical Pro-
filing. In: OOPSLA’05, ACM Press, New York (2005)

11. Hibernate, http://www.hibernate.org
12. Hossain, A., Pease, D.J.: An Analytical Model for Trace Cache Instruction Fetch

Performance. In: ICCD’01, IEEE Computer Society Press, Los Alamitos (2001)
13. Kalibera, T., Bulej, L., Tuma, P.: Benchmark Precision and Random Initial State.

In: SPECTS’05, SCS (2005)
14. Kannan, H., Guo, F., Zhao, L., Illikkal, R., Iyer, R., Newell, D., Solihin, Y.,

Kozyrakis, C.: From Chaos to QoS: Case Studies in CMP Resource Management.
In: SIGARCH CAN, vol. 35(1), ACM Press, New York (2007)

15. Kant, K., Sundaram, C.R.M.: A Server Performance Model for Static Web Work-
loads. In: ISPASS’00, IEEE Computer Society Press, Los Alamitos (2000)

16. Kounev, S., Buchmann, A.: Performance Modeling of Distributed E-Business Ap-
plications using Queuing Petri Nets. In: ISPASS’03, IEEE Computer Society Press,
Los Alamitos (2003)

17. Liu, Y., Gorton, I.: Performance Prediction of J2EE Applications Using Messaging
Protocols. In: Heineman, G.T., Crnković, I., Schmidt, H.W., Stafford, J.A., Szyper-
ski, C.A., Wallnau, K. (eds.) CBSE 2005. LNCS, vol. 3489, Springer, Heidelberg
(2005)

18. Liu, Y., Fekete, A., Gorton, I.: Predicting the Performance of Middleware-Based
Applications at the Design Level. In: WOSP’04, ACM Press, New York (2004)

19. Pentakalos, O.I., Menasce, D.A., Halem, M., Yesha, Y.: An Approximate Perfor-
mance Model of a Unitree Mass Storage System. In: MSS’95, IEEE Computer
Society Press, Los Alamitos (1995)

20. Pimentel, A.D., Thompson, M., Polstra, S., Erbas, C.: On the Calibration of
Abstract Performance Models for System-Level Design Space Exploration. In:
SAMOS’06, IEEE Computer Society Press, Los Alamitos (2006)

21. RUBiS, http://rubis.objectweb.org
22. SOFA Component Model, http://dsrg.mff.cuni.cz/sofa
23. TPC Benchmarks, http://www.tpc.org/information/benchmarks.asp
24. Ufimtsev, A., Murphy, L.: Performance Modeling of a JavaEE Component Appli-

cation using Layered Queuing Networks: Revised Approach and a Case Study. In:
SAVCBS’06, ACM Press, New York (2006)

25. Vetland, V.: Measurement-Based Composite Computational Work Modelling of
Software, Doctoral thesis, University of Trondheim (1993)

26. Xu, J., Oufimtsev, A., Woodside, C.M., Murphy, L.: Performance Modeling and
Prediction of Enterprise JavaBeans with Layered Queuing Network Templates. In:
SIGSOFT SEN, vol. 31(2), ACM, New York (2006)

27. Xu, J., Woodside, C.M.: Template-Driven Performance Modeling of Enterprise
Java Beans. In: MWS’05, IEEE Computer Society Press, Los Alamitos (2005)

28. Woodside, C.M., Neron, E., Ho, E.D.S., Mondoux, B.: An Active-Server Model for
the Performance of Parallel Programs Written Using Rendezvous. In: JSS, vol. 6(1-
2), Elsevier, Amsterdam (1986)

29. Wu, X.P., Woodside, C.M.: Performance Modeling from Software Components. In:
WOSP’04, ACM Press, New York (2004)

http://www.hibernate.org
http://rubis.objectweb.org
http://dsrg.mff.cuni.cz/sofa
http://www.tpc.org/information/benchmarks.asp

Exploiting Commodity Hard-Disk Geometry to

Efficiently Preserve Data Consistency

Alessandro Di Marco

DISI, Università di Genova
Via Dodecaneso, 35
16146 Genova, Italy
dmr@disi.unige.it

Abstract. In the last couple of years, hard-disk technology has experi-
enced an unjustified progressive boost of the built-in cache size, affecting
both the power consumption and the reliability of stored data. Large
built-in caches offer limited benefits in terms of performance with respect
to the smaller ones. Moreover, they need to be kept in write-through
mode to preserve data in case of a power failure in mission-critical sys-
tems. This implies severe repercussions on the disk write performance,
due to the role of the built-in cache itself, mainly acting as a write sched-
uler, rather than just a mere I/O buffer, as its ever increasing size would
suggest.

In this scenario, an exact hard-disk characterization can provide the
upper layers enough information to compensate the performance loss
produced by the write-through policy. File-systems and device-drivers
can in fact obviate most of these issues via proper data layouts, depending
on a detailed knowledge of the hard-disks geometry.

This paper introduces the chunk skew layout, a novel data layout
strategy targeted to improve the performance of commodity hard-disks in
mission-critical systems. For this purpose we also analyze the differences
in terms of geometry and performance in a batch of identical commodity
hard-disks, discovering an unexpected and more complex scenario where
most of the assumptions made so far on hard-disk technology do not hold
anymore.

Keywords: disk drives, performance, rotational latency reduction,
data layout, disk characterization, measurement techniques.

1 Introduction

For decades magnetic disk drives have been the preferred components for sec-
ondary data storage. This induced a sustained innovation in the hard-drive indus-
try, providing an incredible speedup in terms of both performance and capacity
of the disks at any price-range. Unfortunately, although disk storage densities
starting from the beginning of the 90s have improved at the amazing rate of
nearly 178 percent per year1, in the same period performance has improved
1 Which rises to 181 percent per year, considering the platter densities.

K. Wolter (Ed.): EPEW 2007, LNCS 4748, pp. 260–274, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Exploiting Commodity Hard-Disk Geometry 261

about 135 percent per year. As a result, performance became a dominant factor
in overall disk system behavior.

The performance speedup of modern hard-disks with respect to the older ones
is mainly due to the presence of an internal buffer, also called built-in cache. In
the past this buffer has grown with the disk size, up to the dramatical size of the
latest SCSI drives that can reach more than 16MB. Built-in cache contributes
significantly to the efficient hard-disk management, acting as read cache, read-
ahead cache and write cache [1,2,3]. Its improvements are quite evident. For
example, disabling one of these features in a modern hard-disk could easily lead
to a performance drop up to 80 percent. Nevertheless there is some concern
regarding the real advantages in equipping hard-disks with such large buffers,
affecting both the power consumption and the reliability of stored data. More-
over, research showed that caches larger than 512KB are of little impact on
performance [4].

The built-in cache of commodity hard-disks is usually made of ordinary RAM,
losing its content in case of power failure. To see how this can impact on reliability
of stored data, consider that built-in cache can be used for writing either in
write-back or write-through mode. The first case is the faster, as write requests
are considered completed as soon as all their data have been transferred to the
cache, but not necessarily to the disk media [5]. This has the effect of drastically
reducing the write latency, but also exposes to the risk of data loss in case of
power shortage [6,1]. Obviously, the larger the cache is, the higher are the chances
of losing some important data.

There are quite few solutions to this problem, one of them consists in employ-
ing high-end SCSI hard-disks. These not-so-cheap devices in fact are equipped
with a battery backed-up built-in cache, which effectively protects against these
risks [1]. A second possibility pursued by some hardware manufacturers in the
attempt to use cheaper commodity hard-disks in mission-critical environments,
consists in adopting special RAID [7] controllers equipped with built-in battery
backed caches [8,9]. This lets hard-disks provide the maximum throughput in
write-back mode, yet with the guarantee that data are safely retained by the
controller cache in case of power loss. A third possibility consists in employing
SATA-II hard-disks. These latest generation commodity hard-disks provide Na-
tive Command Queuing (NCQ), a powerful interface/disc technology designed
to increase performance by allowing the drive to internally optimize the execu-
tion order of workloads [10]. As a consequence, under some assumptions NCQ-
powered hard-disks can reach their maximum speed also in write-through mode.

Nevertheless, all these solutions do not completely solve the problem. There
are cases, in fact, where they cannot be adopted. In software RAIDs, for example,
neither is there space for pricey high-end hard-disks nor would it be viable to
equip each participating workstation with a battery backed RAID controller.
Furthermore, the NCQ performance advantage can only be realized by queuing
a number of write operations in the drive [10]. This poses at least two problems.
First, a large number of applications still perform synchronous I/O. Second,
asynchronous I/O applications would be subjected to data consistency problems

262 A. Di Marco

in case of power failure, due to the potential write operation reordering produced
by the NCQ technology within the drive’s internal command queue.

In these cases, the only feasible solution to guarantee the data consistency
seems to resort to the legacy write-through mode [6,5,1], where requests are
considered completed only when they are physically on-disk and no implicit
command reordering is performed. Unfortunately, this operative way constitutes
a serious performance bottle-neck that makes it unaffordable in data intensive
contexts.

This paper describes the chunk skew layout, a novel data layout that can be ef-
fectively exploited to improve the streaming disk performance in write-through
mode. As we will discuss, the effectiveness of this layout is highly location-
dependent, and therefore an appropriate software has been developed to auto-
matically tune-up its parameters during the deployment phase. As Section 4
reports, this layout proved to be really effective, scoring up to 400 percent of
performance speedup with respect to the legacy disk layout for sequential write
operations. For a thorough evaluation of this layout, different workloads char-
acteristics should be also taken into account; a successive version of this paper
will contain a complete analysis in such sense.

The balance of the paper is as follows: Section 2 provides basic details on
hard-disks functioning, Section 3 covers the hard-disks characterization problem,
Section 4 analyzes the chunk skew layout. Finally, Section 5 concludes this work
discussing the effectiveness of the proposed layout.

2 Hard-Disk Basics

This section covers the basic details to introduce the reader to the techniques
involved in the paper; please refer to [1,11] for a thorough analysis on hard-disks
functioning.

Hard-disks are essentially composed of two parts: an interface and a disk-head
assembly. The interface has a dual role, consisting both in communicating with
the clients and in managing the disk-head compound. The latter involves com-
plex work, usually carried out by a programmable micro-controller, rather than
dedicated electronic components. The micro-controller can also use a built-in
buffer to speedup the operations. All the requests that are not directly satisfi-
able by the built-in buffer are directed to the disk-head assembly. A hard-disk is
usually formed by multiple platters, each one surrounded by two heads (one per
surface) attached to a bar called arm. Each platter is then split into tracks, con-
centric rings ranging from the outer to the internal border of the platter. A set
of tracks (one per platter), all with the same distance from the center, is called a
cylinder. Cylinders are a direct consequence of the fact that the arms are all tied
together, so switching between tracks on the same cylinder requires theoretically
less time than switching between tracks on different ones. Unfortunately, this is
no longer true on modern hard-disks for short head displacements [1]. In other
words, a disk contains as many cylinders as tracks in any of its platters. Finally,

Exploiting Commodity Hard-Disk Geometry 263

each track is then divided into a certain number of fixed length sectors (usually
512 bytes).

Older hard-disk models were characterized by uniform sized tracks. This
choice was quite expensive in terms of storage efficiency. Outer tracks were in
fact longer than the inner ones, and in the last few years hard-disk manufacturers
have decided to adopt variable sized tracks. The disk surface has been therefore
split into zones, each characterized by a different track density. Clearly this im-
plies a greater controller complexity, due to its central role in translating a given
Logical Block Address (LBA) to the corresponding head, cylinder and sector
coordinates. In legacy LBA scheme, a disk is seen as a big mono-dimensional
array of sectors, numbered starting from zero. The absolute sector number is
the logical block address.

Once the target sectors have been identified on disk, the micro-controller
can start issuing proper signals to the disk-head assembly to fulfill the request.
It starts switching to the desired head, moving simultaneously the heads on
the right cylinder (seek action). This is probably the most complex hard-disk
activity, so it has been divided in four phases [1]: speedup, coast, slowdown and
settle. Firstly, the arm is accelerated until it reaches half of the seek distance
or a fixed maximum velocity (speedup). Only with the longest seeks the arm
is allowed to move at the maximum speed for a while (coast). Then the arm is
brought to remain close to the desired cylinder (slowdown) and finally the micro-
controller can adjust the head to access the desired location (settle). Clearly, in
case of short seeks the time spent in this last phase (settle time) dominates
over the other ones. At the end of the settle phase the head is guaranteed to
be on the correct track, so that the micro-controller has only to wait that the
requested sectors run under the head. When the disk’s head moves, the time
spent between the beginning of the speedup and the end of the settle phases is
called seek latency, whereas the time wasted between the end of the settle phase
and the start of the data transfer is called rotational latency.

In the worst case, rotational latencies can last for several milliseconds, corre-
sponding to a whole disk revolution. As a consequence, the overall disk perfor-
mance could degrade if the interface does not carefully handle the I/O requests.
Clearly this does not affect only random accesses, but also the sequential ones,
when the disk’s head has to move from the end of a track to the start of the next
one. In such cases, once the disk’s head reaches the last sector of the first track,
the micro-controller triggers a seek action that, due to the extreme proximity of
the target, lasts roughly as much as the settle time. Being directly proportional
to the disk’s track density [1,11], this time is non-negligible on the high-density
hard-disks of the last generation2. As a consequence, keeping aligned the start
sectors of the disk tracks entails a rotational latency per seek. Older hard-disks
relied upon two different approaches to prevent rotational latencies in seek ac-
tions, namely, head skew and cylinder skew. These consisted in a way to com-
pensate the seek latency by shifting ahead the start sector of the next track of a
certain amount. However, this distinction is no more true for latest generation

2 One fifth of the rotational latency at least.

264 A. Di Marco

hard-disks anymore (i.e. head and cylinder skews are pretty much the same), so
we will refer to both with the more general track skew term. The track skew
accounts for the track switch delay to maximize streaming bandwidth.

Carefully calculated track skews can keep the rotational latencies out from the
sequential transfers. Unfortunately this is not enough to gather the maximum
throughput out of a hard-disk. A central role in this case is held by the built-in
buffer. At first it accumulates requests in order to eliminate the host transfer
delay3 [14]. Without the built-in buffer, the disk would in fact accept a single
request at a time, spending a non-negligible amount of time in idle between the
notification of the end of a request and the arrival of the next one. Clearly, the
built-in buffer latencies are far lower than the host transfer delay, and therefore
the client experiences a substantial performance improvement. As a secondary
effect, the built-in cache also guarantees prolonged sequential data transfers at
the maximum speed. This is due to the fact that a single request encompasses
only a limited amount of data. As a consequence, in the time the host transfers
the next request, the disk’s head has already run beyond the right starting sector,
introducing an extra disk’s revolution delay between adjacent write requests on
the same track. Instead, thanks to the negligible latency of the built-in buffer
accumulating the write requests, the disk is able to promptly serve them without
extra delays.

From the above discussion, host transfer delay and rotational latency turn
out to be the main reasons for the poor performance provided by hard-disks
when their built-in buffers work in write-through mode. Rotational latency re-
sults far more penalizing than the other (nearly 70% of performance drop off).
Therefore, addressing it would provide a significant performance improvement
for the streaming write operations in write-through mode. Our contribution in
this sense consists in the chunk skew layout, a novel way to displace groups of
sectors, called chunks, in a way similar to the tracks one. This is quite differ-
ent from other well known approaches, which attempt to maximize the disk’s
performance by preserving the track alignment (see [13] for example). On the op-
posite, our approach is targeted to synchronize the disk’s head position with the
stored data in order to avoid rotational delays. The track-to-track switch time
is negligible if compared with rotational latency. As a consequence, it produces
only a minimal slow-down in the disk’s performance that anyway can be readily
overcome in the chunk skew layout via extra chunks displacements, targeted to
avoid that a given chunk spans over adjacent tracks. On the other hand, without
proper hardware support (e.g. a FIFO buffer), we can only rely on synchronous
write operations in write-through mode: a given request has to wait for the com-
pletion of the previous one before being sent out to the disk. This leaves little
room to address at the software level the host transfer delay, roughly accounting
for 30 percent of the transfer time in our testbed (see Section 3).

As discussed in Section 4, our testbed showed that skewing 13 percent of
the track size is enough to avoid rotational delays between adjacent chunks

3 Time elapsed between the generation of a request and its receipt on the disk’s inter-
face (also known as host delay [12] or bus transfer time [13]).

Exploiting Commodity Hard-Disk Geometry 265

in 90 percent of the cases, providing a substantial speedup of the disk’s I/O
performance in write-through mode. Better results can be further gained by
fine-tuning this value based on the disk’s properties. Chunk skew layout is in
fact highly dependent on parameters such as disk rotation speed, seek latency,
tracks size, and so on.

3 Hard-Disks Characterization

Several hard-disk characterization papers have been published [15,16,17,18], all
sharing the same basic approach4. It consists in measuring the access time for a
plurality of sectors on the disk drive, performing alternately the following steps.
First, (in the order) accessing an anchor sector and a successive sector of the
disk drive. Second, measuring the completion time of the accesses.

For example, in order to measure the disk rotational latency we can subtract
the completion times of two successive accesses to the same disk sector [15].

The parameters related to the data layout geometry of the disk drive are
inferred from the measured completion times. Clearly this must be done without
resorting to the built-in buffer, in order to avoid measuring its latency in place
of the sought rotational latency. A second method, that does not suffer from
the built-in buffer activity consists in accessing two adjacent sectors in reverse
order, causing a slightly minor precision.

We started measuring the rotational latency on a testbed of 29 Maxtor
ATA/133 80GB hard-disks, sharing the same model number (6Y080P0) and
firmware revision (YAR41BW0). We modified the 2.6.20.1 version of the Linux
kernel to measure the completion time of any given I/O request directly in the
IDE driver, respectively before and after the DMA activity. This gives far more
accurate measurements than the usual queue-level approach commonly adopted
by hard-disk benchmarks. Moreover, for the maximum accuracy we rely on the
rdtscll() function to sample the clock cycles counter, containing the number of
clock cycles elapsed since the CPU powered on. These values are then converted
into milliseconds via a simple division by the CPU clock rate.

With the above instrumentation we obtained estimations of the rotational
delay in accordance with the Maxtor’s specifications (7200 RPM +/- 1%) for
every hard-disk in the testbed. On the other end, some problems arose with
the zones measurements. From Section 2, a zone consists in bunch of tracks
all having the same size. The track size can be defined in terms of consecutive
skew-points5 distance, which are in turn identified by track skews. Therefore,
we can precisely characterize the zones boundaries of a disk simply traversing
its skew-points via fast, binary search-based algorithms [15,18]. Exploiting the
tracks uniformity in each hard-disk zone, these approaches quickly sweep the
disk surface, backtracking to find the exact zone boundary when they detect
a track size change. Notwithstanding, all these advanced techniques failed to
4 A second approach based on drives mode pages is possible only on high-end SCSI

drives [12].
5 The last sector of a track.

266 A. Di Marco

 0

 10

 20

 30

 40

 50

 60

 0 10000 20000 30000 40000 50000 60000 70000 80000

T
hr

ou
gh

pu
t (

M
B

/s
ec

)
Maxtor 6Y080P0

 Y3LRAHYE (YAR41BW0)

 0

 10

 20

 30

 40

 50

 60

 0 10000 20000 30000 40000 50000 60000 70000 80000

T
hr

ou
gh

pu
t (

M
B

/s
ec

)

Distance (MB)

 Y2EXDV7E (YAR41BW0)

Fig. 1. Reference hard-disks with 14/16 zones

determine the zones boundaries in our testbed due to the presence of zones with
non uniform track size. As a consequence, we resorted to a more accurate yet
less efficient method to characterize the hard-disks in our testbed.

3.1 A More Accurate Approach

We started isolating the disk’s zones boundaries through a method already ex-
tensively adopted in many hard-disk reviews, consisting in a uniform sampling
of the disk throughput. From the variable zones sector density and the constant
disk rotation speed follows that outer disk zones are able to provide greater
throughput than inner ones. Figure 1 reports the throughput of two reference
disks in function of the distance from the outer border. Easily recognizable as
descending throughput steps and clearly separated by vertical lines, these disks
present respectively 14 and 16 zones. All the other disks in the testbed match
either of these results, so we started from the middle of each respective zone to
calculate the track size via a variant of the basic approach of Section 3.

When the built-in buffer is turned off, the completion time difference of two
adjacent accesses is equal to the rotational latency. The only exception occurs
when the two accesses are on adjacent tracks, namely, when a track skew is
located between them. In such cases the difference of the completion times should
drop to the settle time, since the track skew should take care of the rotational
latency. In our approach we issue a stream of consecutive one-sector disk accesses
starting from a given logical block address. This required the inhibition of the

Exploiting Commodity Hard-Disk Geometry 267

 0

 2

 4

 6

 8

 10

 0 50 100 150 200 250 300

S
ke

w
 L

at
en

cy
 (

m
s)

Maxtor 6Y080P0 - Y3LRAELE (YAR41BW0)

 Y3LRAELE (YAR41BW0)

 0

 2

 4

 6

 8

 10

 0 50 100 150 200 250 300

S
ke

w
 D

is
ta

nc
e

(t
ra

ck
s)

Track Number

 Y3LRAELE (YAR41BW0)

Fig. 2. Track-to-track switch times and distance in tracks between broken skews

elevator system6, since there is no way on stock Linux kernels that two adjacent
single-sector requests can reach the disk device driver independently (i.e. not
merged). Measuring the differences in completion times for adjacent requests
would expect a periodical drop in correspondence to skew-points. However we
found that not all the skew-points are actually able to compensate the track-to-
track switch time.

The upper graph of Figure 2 depicts the measured difference between the
completion times of two accesses straddling a track, i.e. accessing the last sector
of a track and the first sector of the next one. It reports the values measured in
correspondence to the first 600 tracks of one of the disks in our testbed (all the
other disks showed similar results as well). Moreover, it clearly shows that some of
these values are affected by an unexpected full rotational delay (around 8.3 ms).
This could be due to several factors, such as either wrong track or cylinder skews,
as well as defects on the disk surface. Anyway, we found that the placement of
these “broken” skew-points on the disk surface follows a regular pattern, ruling
out most of the hypotheses. The lower graph of Figure 2 reports the distance
between successive “broken” skew-points in function of the track number, which
clearly reveals the cited pattern. The analysis of the hard-disks in our testbed
revealed a number of different patterns. As reported to the end of Section 3.2,
we presuppose that their presence is strictly related to the length of the disk
tracks. At the moment, scaling the completion times down to the modulo of the
6 Linux kernel component that is responsible of merging different I/O requests into a

single larger one before the transmission to the underlying disk device driver.

268 A. Di Marco

rotational latency is enough to bring back the broken skews at the same level of
the working ones, which lets us associate the skew-points with the logical block
numbers of consecutive accesses having completion time differences (in modulo)
corresponding to the settle time (roughly 1.5 ms in our testbed).

3.2 Tracks Patterns

Section 3.1 variant is clearly a time-consuming process, unpractical to exhaus-
tively enumerate all the skew-points in modern hard-disks with huge capacity
and long tracks. Luckily enough, our tests revealed that even if disk zones con-
tain tracks with variable size, these follow periodical patterns, hence few sam-
pled skew-points in each of these zones are enough to completely characterize the
corresponding disk geometry.

 500

 600

 700

 800

 900

 1000

 1100

 1200

 0 5 10 15 20 25 30

T
ra

ck
 S

iz
e

(s
ec

to
rs

)

Track Number

Maxtor 6Y080P0 - Y3LND7AE (YAR41BW0)

zone z1
zone z2
zone z3
zone z4
zone z5
zone z6
zone z7
zone z8
zone z9

zone z10
zone z11
zone z12
zone z13
zone z14

Fig. 3. Track size patterns in hard-disk zones

Figures 3 and 4 report the size of 25 adjacent tracks, sampled starting from the
middle of the respective zones in two selected hard-disks of our testbed. The lower
is the zone number, the more external is the zone itself. As usual, the track sizes
diminish as the zone number increases. Anyway, what is unexpectedly new here,
is the odd sequence of tracks with different sizes in each zone. Nearly all disks in
our testbed exhibit different track patterns (see [19] for a complete review of these
patterns). Moreover, from preliminary data collected on several other models
(also from different brands) we noticed analogous phenomena, suggesting that
every relatively recent hard-disk on the market is subjected to a non negligible
chance to be unique.

Exploiting Commodity Hard-Disk Geometry 269

 600

 650

 700

 750

 800

 850

 900

 950

 1000

 1050

 1100

 0 5 10 15 20 25 30

T
ra

ck
 S

iz
e

(s
ec

to
rs

)

Track Number

Maxtor 6Y080P0 - Y3LRAELE (YAR41BW0)

zone z1
zone z2
zone z3
zone z4
zone z5
zone z6
zone z7
zone z8
zone z9

zone z10
zone z11
zone z12
zone z13
zone z14

Fig. 4. Track size patterns in hard-disk zones

In our opinion these patterns are a direct consequence of the intrinsic com-
plexity level reached by hard-disk technology in these last years. These hard-disk
characterization techniques simply do not have anymore access to the whole disk
addressing range to obtain the real track size. In fact, modern hard-disks usually
split the entire storage area in three data spaces [20,21]. The first, the user space,
is a storage area for user data. The second, the internal test space, is a reserved
area for diagnostic purposes. The third, the system space, is an area for exclusive
use of hard-disks themselves.

Whilst the user space allows the user to access directly data through the logical
block addressing system, both the internal test space and the system space are
reserved to the system, and therefore they cannot be directly accessed. They
are accessed exclusively by the hard-disk self-diagnostics tests and at hard-disk
power-on, respectively. However, hard-disks allocate cylinders to each of these
spaces. Spare areas for defective sectors are for example “immersed” in the user
space. Several sectors in the last track of a cylinder and the last cylinder in
the zone are usually allocated as spare areas. All these factors contribute to
obfuscate the real hard-disk geometry, as also suggested by the presence of the
same scaled pattern in all the zones of each analyzed hard-disk. Nevertheless,
hard-disk analytical models and optimized data layouts operate in user space
area, so hardly they can neglect track patterns in order to effectively improve
the hard-disk performance.

These patterns also offer a possible explanation for the “broken” skews above.
Hard-disk manufacturers calibrated the track skews on the user space. In this

270 A. Di Marco

way both the internal test space and the system space contribute to track skew,
reducing the track-to-track seek time seen by the user. However, the lack of
uniformity in “user tracks” required the adoption of an average track skew, in
order not to further complicate the already complex micro-controller logic. In
this scenario, the “broken” skew-points simply belong to the tracks needing a
skew space greater than the average track skew.

4 The Chunk Skew Layout

The chunk skew layout maps the logical block addresses onto physical disk sectors
in a way that prevents incurring rotational delays. In the legacy LBA mapping
these arise as a direct consequence of the host transfer delay which each I/O
request incurs as a result of the disk’s built-in buffer write-through mode.

R
o
ta

ti
o
n

133

134
135

136
79

S

S
266

267
268

269
277

278
279

69

0
1

2
10

11

12
S

S
S 200

143
144

145

15 sectors

1st surface

Fig. 5. Chunk skewed logical block address mapping onto physical disk sectors

Figure 5 depicts an example of the chunk skew layout for a disk drive having
100 sectors per track, two media surfaces, 6 sectors track skew, 10 sectors chunks
and constant chunk skew of 5 sectors. Logical blocks are assigned to the outer
track of the first surface, the outer track of the second surface, the second track
of the first surface, and so on. The track skew accounts for the track switch
delay, as well as the chunk skews account for the host transfer delay in order
to maximize streaming bandwidth. In the depicted layout, chunks are separated
by a skew of six sectors (sectors labeled with S in the Figure), except for the
7th (60 → 69 LBA), the 14th (130 → 139 LBA) and the 21st (200 → 209
LBA) chunks requiring no skew space at all. The existing track skew between
the 7th and the 8th, between the 14th and the 15th, and between the 21st and
the 22nd chunk is in fact enough to compensate the host transfer delay in these
cases, without the need of further displacements. Therefore, each track contains
7 chunks, corresponding to 70 free data sectors, while the remaining 30 sectors

Exploiting Commodity Hard-Disk Geometry 271

are S-sectors. For example, the Figure depicts the last sector of the first track
(69 LBA, belonging to the 7th chunk) followed 6 + 9 sectors away by last sector
of the second track’s first chunk (79 LBA, belonging to the 8th chunk). We
urge to stress how the six S -sectors separating these two chunks are completely
ignored by the chunk skew layout. In fact, they are used as mere spacers to
preserve hard-disk’s head synchronization. This does not prevent a hypothetical
chunk skewed file-system to accommodate smaller files in S -sectors of course,
since these files would not benefit of the speed-up provided by the chunk skew
layout anyway.

Please note that the values involved in the examples above are not related
with those measured in our testbed at all, and have been appositely chosen to
simplify the drawing. In fact, the unexpected results of Section 3.2 complicate
a lot the deployment of the chunk skew layout. The presence of variable track
size makes the analytical estimation of the chunk skews difficult, whereas the
presence of “broken” skew-points scattered all over the disk surface or potentially
relocated defective blocks introduces another level of complexity. Therefore, as a
first approximation we directed our interest to discover how much this layout was
dependent on variable tracks sizes. For this purpose we empirically experimented
with progressively increasing chunk skews on several chunk sizes, ranging from 8
to 256 sectors. These are hard-limits imposed by the hard-disks in our testbed,
since the Maxtor’s DMA interface refuses to transfer more than 128KB per I/O
operation.

For each couple of values7 we tested the corresponding chunk skew layout on
a large write operation (500 MB), starting from the outer disk track. This is in
fact the highest performance area in hard-disks and therefore the most penalized
by the legacy disk layout.

Figure 6 reports the average performance measured on a reference hard-disk
in write-through mode in function of the chunk offset. The six curves correspond
to different values of the chunk size.

Each curve shows an optimal chunk skew of approximately 128 sectors, provid-
ing the maximum throughput for the given chunk size. For values lower than the
optimal chunk skew, the write performance remains substantially similar to the
legacy LBA mapping case, represented with the zero chunk skew case at the left
hand of the graph. This value corresponds to the number of sectors flowed under
the disk’s head during the host transfer delay, so it diminishes as the head moves
towards the center of the platters. More interestingly, the optimal chunk skew
remains practically constant in all the hard-disks of our testbed, emphasizing
the good tolerance of the chunk skew layout to track pattern variations.

Switching to the read side, the optimal chunk skew performance remains
substantially the same. Read operations do not involve data consistency prob-
lems, so we leave the read-ahead cache turned on. Anyway, as the left graph in
Figure 7 shows, its contribution was confined to regularize rather than improve
the performance. Most of the built-in buffer’s benefits are in this case diminished
by the continuous seek produced by the chunk skews.

7 Chunk size varies in 2n sectors steps just for drawing precision.

272 A. Di Marco

 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200

T
hr

ou
gh

pu
t (

M
B

/s
ec

)

Chunk Skew (sectors)

Maxtor 6Y080P0 - Y3LRAHYE (YAR41BW0)

8 sectors per chunk
16 sectors per chunk
32 sectors per chunk
64 sectors per chunk

128 sectors per chunk
256 sectors per chunk

Fig. 6. Performance of the chunk skew layout

Figure 7 reports the “instantaneous” throughput of this layout, measured re-
spectively using read and write operations. At this purpose we grouped several
chunks in a batch (more precisely, 16 subsequent 256 sectors chunks spaced out
by 128 sectors), afterward we measured the disk’s submission and response time
per batch. Each point in the figure reports the average batch speed for several
different batches, identified by the offsets (in sectors) of their starting chunk.
The plots has been limited to few samples just to reveal the regularization effect
produced by the disk’s read-ahead (see the left graph of Figure 7). At a first
look, these graphs also show how the measured throughput follows a periodical
pattern, essentially due to the presence of variable track size. For example, refer-
ring to the left graph in Figure 7 we can see how the first few sampled batches of
chunks score 42 MBytes/sec, corresponding roughly to the maximum disk perfor-
mance8. For the successive samples, the instantaneous throughput progressively
diminishes down to 24 MBytes/sec due to the rotational latencies involved, and
next raises again up to the maximum speed allowed by the host transfer delay.
This behavior suggests that there is room for a certain degree of improvement
in the chunk skew layout. In particular, the depicted samples are partitioned in
three main clusters located at different performance levels, suggesting a still not
perfect chunks synchronization. This is plausible considering that for this basic
approach we adopted regular chunk skews, whereas the disks present extremely
variable characteristics. A more geometry-oriented approach, targeted to bring

8 When I/O operations are affected by the host transfer delay.

Exploiting Commodity Hard-Disk Geometry 273

 25

 30

 35

 40

 45

 0 40000 80000 120000 160000 200000

T
hr

ou
gh

pu
t (

M
B

/s
ec

)

Batch Offset (sectors)

Maxtor 6Y080P0 - Y3LRAHYE (YAR41BW0)

read

 25

 30

 35

 40

 45

 0 40000 80000 120000 160000 200000

Batch Offset (sectors)

Maxtor 6Y080P0 - Y3LRAHYE (YAR41BW0)

write

Fig. 7. Instantaneous performance of the chunk skew layout (128 sectors skew)

the lower two clusters up to the same performance level of the third one, is at
the moment still under investigation.

5 Conclusions

In this paper we have tackled the problem of preserving data consistency still
providing reasonable disk performance in commodity hard-disks. It has also been
shown that hard-disks often present unexpected characteristics as a direct conse-
quence of an intrinsic complexity targeted to squeeze performance. Chunk skew
layout has proved to effectively alleviate the performance loss which hard-disks
incur when their built-in buffer is operated in write-through mode. Comforted
by these encouraging results, our efforts will now be directed to refine this lay-
out, adapting it to the new complexities which dominate the latest hard-disk
technology to develop a reliable yet efficient storage solution for the commodity
hard-disks.

References

1. Ruemmler, C., Wilkes, J.: An introduction to disk drive modeling. IEEE Com-
puter 27(3), 17–28 (1994)

2. Ruemmler, C., Wilkes, J.: Modeling disks. Technical Report HPL-93-68, Hewlett-
Packard Laboratories (1993)

3. Ruemmler, C., Wilkes, J.: UNIX disk access patterns. In: Usenix Conference. 405–
420 (Winter 1993)

274 A. Di Marco

4. Zhu, Y., Hu, Y.: Can large disk built-in caches really improve system performance?
In: Proceedings of ACM Sigmetrics (June 2002)

5. Zhu, Y., Hu, Y.: Can large disk built-in caches really improve system performance?
Technical Report TR259/03/02ECECS, Department of Electrical and Computer
Engineering and Computer Science, University of Cincinnati (March 2002)

6. Ng, W.T., Aycock, C.M., Rajamani, G., Chen, P.M.: Comparing disk and memory’s
resistance to operating system crashes. In: ISSRE ’96: Proceedings of the The
Seventh International Symposium on Software Reliability Engineering (ISSRE ’96),
p. 182. IEEE Computer Society, Washington, DC, USA (1996)

7. Patterson, D.A., Gibson, G., Katz, R.H.: A case for redundant arrays of inex-
pensive disks (RAID). In: SIGMOD ’88: Proceedings of the 1988 ACM SIGMOD
international conference on Management of data, pp. 109–116. ACM Press, New
York (1988)

8. Adaptec Inc.: Software RAID vs. Hardware RAID (2002)
9. Adaptec Inc.: Hardware RAID vs. Software RAID: Which implementation is best

for my application? (2006)
10. Intel Corporation, Seagate Technology: Serial ATA Native Command Queuing

(July 2003)
11. Ng, S.W.: Advances in disk technology: Performance issues. Computer 31(5), 75–81

(1998)
12. Schindler, J., Ganger, G.: Automated disk drive characterization. Technical Report

CMU-CS-99-176, Carnegie Mellon University (November 1999)
13. Schindler, J., Griffin, J.L., Lumb, C.R., Ganger, G.R.: Track-aligned extents:

Matching access patterns to disk drive characteristics. In: FAST ’02: Proceedings of
the Conference on File and Storage Technologies. USENIX Association, Berkeley,
CA, USA, pp. 259–274 (2002)

14. Aboutabl, M., Agrawala, A.K., Decotignie, J.D.: Temporally determinate disk ac-
cess: An experimental approach (extended abstract). In: Measurement and Mod-
eling of Computer Systems, 280–281 (1998)

15. Mesut, O., Lambert, N.: HDD characterization for A/V streaming applications.
IEEE Transactions on Consumer Electronics 48(3), 802–807 (2002)

16. Talagala, N., Arpaci-Dusseau, R.H., Patterson, D.: Microbenchmark-based extrac-
tion of local and global disk characteristics. Technical report, UC Berkeley Tech-
nical Report (1999)

17. Worthington, B.L., Ganger, G.R., Patt, Y.N., Wilkes, J.: On-line extraction of
SCSI disk drive parameters. Technical Report CSE-TR-323-96 (19 1996)

18. Zedlewski, J., Sobti, S., Garg, N., Zheng, F., Krishnamurthy, A., Wang, R.: Model-
ing hard-disk power consumption. In: Proceedings of the 2nd USENIX Conference
on File and Storage Technologies (FAST ’03), pp. 217–230 (March 2003)

19. Di Marco, A.: The geometry of commodity hard-disks. Technical Report DISI-TR-
07-07, DISI - Università di Genova (July 2007)

20. Fujitsu: C141-E103-02EN: MAH3182MC/MP series, MAH3091MC/MP series,
MAJ3364MC/MP series, MAJ3182MC/MP series, MAJ3091MC/MP series disk
drives product/maintenance manual (December 2000)

21. IBM: S31L-8989-06: Hard disk drive specifications, Ultrastar 36LZX, 3.5 inch
SCSI hard disk drive, models: DDYS-T36950, DDYS-T18350, DDYS-T09170 (June
2000)

K. Wolter (Ed.): EPEW 2007, LNCS 4748, pp. 275–283, 2007.
© Springer-Verlag Berlin Heidelberg 2007

An Efficient Counter-Based Broadcast Scheme for
Mobile Ad Hoc Networks

Aminu Mohammed, Mohamed Ould-Khaoua, and Lewis Mackenzie

Department of Computing Science, University of Glasgow, G12 8RZ,
Glasgow, United Kingdom

{maminuus,mohamed,lewis}@dcs.gla.ac.uk

Abstract. In mobile ad hoc networks (MANETs), broadcasting plays a
fundamental role, diffusing a message from a given source node to all the other
nodes in the network. Flooding is the simplest and commonly used mechanism
for broadcasting in MANETs, where each node retransmits every uniquely
received message exactly once. Despite its simplicity, it however generates
redundant rebroadcast messages which results in high contention and collision
in the network, a phenomenon referred to as broadcast storm problem. Pure
probabilistic approaches have been proposed to mitigate this problem inherent
with flooding, where mobile nodes rebroadcast a message with a probability p
which can be fixed or computed based on the local density. However, these
approaches reduce the number of rebroadcasts at the expense of reachability.
On the other hand, counter-based approaches inhibit a node from broadcasting a
packet based on the number of copies of the broadcast packet received by the
node within a random access delay time. These schemes achieve better
throughput and reachability, but suffer from relatively longer delay. In this
paper, we propose an efficient broadcasting scheme that combines the
advantages of pure probabilistic and counter-based schemes to yield a
significant performance improvement. Simulation results reveal that the new
scheme achieves superior performance in terms of saved-rebroadcast,
reachability and latency.

Keywords: MANETs, Flooding, Broadcast storm problem, Saved-rebroadcast,
Reachability, Latency.

1 Introduction

Broadcasting is a means of diffusing a message from a given source node to all
other nodes in the network. It is a fundamental operation in MANETs and a buil-
ding block for most other network layer protocols. Several unicast routing protocols
such as Dynamic Source Routing (DSR), Ad Hoc on Demand Distance Vector
(AODV), Zone Routing Protocol (ZRP), and Location Aided Routing (LAR), as well
multicast protocols employ broadcasting to detect and maintain routes in a dynamic
environment. Currently, these protocols typically rely on simplistic form of
broadcasting called simple flooding, in which each mobile node retransmits every
unique received packet exactly once. Although flooding is simple and easy to

276 A. Mohammed, M. Ould-Khaoua, and L. Mackenzie

implement, it often causes unproductive and harmful bandwidth congestion, a
phenomenon referred to as the broadcast storm problem [1], [2], [3].

Several broadcast schemes have been proposed that mitigate the broadcast storms
problem. The performance of these schemes is measured in terms of reachability,
which is the fraction of the total nodes that receive the broadcast messages, the saved-
rebroadcast, that is the fraction of the total nodes that does not rebroadcast the
messages, and the latency, that is the time between the first and the last instant that
the broadcast message is transmitted [4]. These schemes are usually divided into two
categories [4], [5]: deterministic schemes and probabilistic schemes. Deterministic
schemes require global topological information of the network and are guaranteed a
reachability of 1 considering an ideal MAC layer. However, they incur large overhead
in terms of time and message complexity for maintaining the global knowledge
requirements due to the inherent dynamic topology of MANETs. On the other hand,
probabilistic schemes do not require global topological information of the network to
make a rebroadcast decision. As such every node is allowed to rebroadcast a message
based on a predetermined forwarding probability p. As a consequence, these schemes
incur a smaller overhead and demonstrate superior adaptability in dynamic
environment when compared to deterministic schemes [6]. However, they typically
sacrifice reachability as a trade-off against overhead.

Among the probabilistic schemes that have been proposed are probability-based
and counter-based schemes [1], [2], [3]. In probability-based schemes, a mobile node
rebroadcasts a message according to certain probability p which can be fixed or
computed based on the local density. Current probabilistic schemes assume a fixed
probability value and it is shown [1], [4], [7] that the optimal rebroadcast probability
is around 0.65. However, these approaches reduce the number of rebroadcast at the
expense of reachability [2]. In contrast, messages are rebroadcast only when the
number of copies of the message received at a node is less than a threshold value in
counter-based schemes. This lead to better throughput and reachability, but suffer
from relatively longer delay [3], [4].

In this paper, we proposed an efficient counter-based scheme that combines the
advantages of probabilistic and counter-based schemes. We set a rebroadcast
probability at each node (as in [1], [4] and [7]) if the packet counter is less than the
threshold value rather than rebroadcasting the message automatically. This is because
the packet counter is not exactly equal to the node number of neighbors. Otherwise
we drop the message. We compare this scheme with simple flooding, fixed
probability and counter-based scheme. Simulation results reveal that this simple
adaptation can lead to a significant performance improvement.

The rest of the paper is organized as follows: In Section 2, we introduce the related
work on probabilistic and counter-based schemes. The description of our scheme is
presented in Section 3. We evaluate the performance of our scheme and present the
simulation results in Section 4. Finally, concluding remarks are presented in Section 5.

2 Related Work

This section sheds some light on the research work related to probabilistic and
counter-based broadcasting schemes.

 An Efficient Counter-Based Broadcast Scheme for Mobile Ad Hoc Networks 277

Ni et al [2] proposed a probability-based scheme to reduce redundant rebroadcast
by differentiating the timing of rebroadcast to avoid collision. The scheme is similar
to flooding, except that nodes only rebroadcast with a predetermined probability P.
Each mobile node is assigned the same forwarding probability regardless of its local
topological information. In the same work, counter-based scheme is proposed after
analysing the additional coverage of each rebroadcast when receiving n copies of the
same packet.

Cartigny and Simplot [8] have proposed an adaptive probabilistic scheme. The
probability p for a node to rebroadcast a packet is determined by the local node
density and a fixed value k for the efficiency parameter to achieve the reachability of
the broadcast. However, the critical question thus becomes how to optimally select k,
since k is independent of the network topology.

In Ni et al follow-on work [3], the authors have proposed an adaptive counter-
based scheme in which each node dynamically adjusts its threshold value C based on
its number of neighbors. Specifically, they extend the fixed threshold C to a function
C(n), where n is the number of neighbors of the node. In this approach there should be
a neighbor discovery mechanism to estimate the current value of n. This can be
achieved through periodic exchange of ‘HELLO’ packets among mobile nodes.

Recently, Zhang and Agrawal [9] have described a dynamic probabilistic broadcast
scheme which is a combination of the probabilistic and counter-based approaches.
The scheme is implemented for route discovery process using AODV as base routing
protocol. The rebroadcast probability P is dynamically adjusted according to the value
of the local packet counter at each mobile node. Therefore, the value of P changes
when the node moves to a different neighborhood; for example, in sparser areas, the
rebroadcast probability is large compared to denser areas. To suppress the effect of
using packet counter as density estimates, two constant values d and d1 are used to
increment or decrement the rebroadcast probability. However, the critical question is
how to determine the optimal value of the constants d and d1.

In this paper, we propose an efficient counter-based scheme which combines the
merits of probability-based and counter-based algorithms to yield a significant
performance improvement in terms of saved rebroadcast, reachability and end-to-end
delay which are simple enough for easy implementation. The detail of the scheme is
described in the next section.

3 Efficient Counter-Based Scheme (ECS)

In this section, we present the efficient counter-based scheme that aims to mitigate the
broadcast storm problem associated with flooding. The use of ECS for broadcasting
enables mobile nodes to make localized rebroadcast decisions on whether or not to
rebroadcast a message based on both counter threshold and forwarding probability
values. Essentially, this adaptation provides a more efficient broadcast solution in
sparse and dense networks.

In ECS, a node upon reception of a previously unseen packet initiates a counter c
that will record the number of times a node receives the same packet. Such a counter
is maintained by each node for each broadcast packet. After waiting for a random
assessment delay (RAD, which is randomly chosen between 0 and Tmax seconds), if c

278 A. Mohammed, M. Ould-Khaoua, and L. Mackenzie

reaches a predefined threshold C, we inhibit the node from this packet rebroadcast.
Otherwise, if c is less than the predefined threshold, C, the packet is rebroadcast with
a probability P as against automatically rebroadcasting the message in counter-based
scheme. The use of a rebroadcast probability stem from the fact that packet counter
value does not necessarily correspond to the exact number of neighbours of a node,
since some of its neighbours may have suppressed their rebroadcast according to their
local rebroadcast probability. Thus, the selection of an optimal forwarding probability
is vital to the performance of our scheme. Based on [1], [4], and [7], we opt for a
rebroadcast probability of 0.65. A snapshot of our algorithm is presented in figure 1.

4 Performance Analysis

This section studies the performance of our scheme, counter-based, fixed probability
and flooding in terms of reachability, saved-rebroadcast and latency. In order to
isolate the effects of various design choices of the broadcast algorithms on
performance we do not simulate other protocol layers such as the MAC and physical
layers. Our performance analysis is based on the assumptions widely used in literature
[11], [12], [17].

i. All nodes participate fully in the protocol of the network. In particular each
participating node should be willing to forward packets to other nodes in the
network.

Algorithm : Efficient Counter-Based Scheme

On hearing a broadcast message m at a node X

- initialize the counter c = 1;
- set and wait for RAD to expire;
- for every duplicate message m received within RAD

o increment c, c = c +1;
o if (c < C) (counter threshold-value) {

 wait for RAD to expires;
 rebroadcast probability P = P1; }

 else{ //where P1 = 0.65
 stop waiting
 Drop the message }

- Generate a random number RN over [0, 1]
- If RN ≤ P

o Rebroadcast the message;
 else

o Drop the message

Fig. 1. A snapshot of efficient counter-based scheme algorithm

 An Efficient Counter-Based Broadcast Scheme for Mobile Ad Hoc Networks 279

ii. Packet may be corrupted or lost in the wireless transmission medium during
propagation. A node has the capability of detecting a corrupted received
packet and can discard it.

iii. All mobile nodes are homogeneous. The wireless transmission range and the
interface card are the same. Likewise the wireless channel is shared by all
nodes and can be accessed by any node at random time. Therefore, collision
is a possible phenomenon with the channel.

4.1 Simulation Setup

We use ns-2 packet level simulator (v.2.29) [10] to simulate a square 600m by 600m
area populated with 25, 50, 75, …, 150 mobile nodes that are uniformly distributed
in the region, each with a circular radio transmission range of radius 100m. This
corresponds to networks consisting of multi-hops radio across while the selected
mobile nodes represent the various network densities ranging from sparse to high
density network. The radio propagation model used in this study is the ns-2 default,
which uses characteristic similar to a commercial radio interface, Lucent’s
WaveLAN card with a 2Mbps bit rate [13]. The distributed coordination function
(DCF) of the IEEE 802.11 protocol [14] is utilized as MAC layer protocol while
random waypoint model [15] is used as the mobility model. Because it takes time for
the random way point model to reach a stable distribution of mobile nodes [16], the
modified random waypoint mobility model [15] used take care of this node
distribution problem. The simulation is allowed to run for 900 seconds for each
simulation scenario. Other simulation parameters that have been used in our
experiment are shown in Table 1.

Table 1. Simulation Parameters

Simulation Parameter Value
Simulator
Transmission range
Bandwidth
Interface queue length
Packet size
Traffic type
Packet rate
Topology size
Number of nodes
Number of trials
Simulation time
Maximum speed
Counter threshold (C)
RAD Tmax

NS-2 (v.2.29)
100 meters
2 Mbps
50
512 byte
CBR
10 packets/sec
600 x 600 m2
25, 50, …, 150
30
900 sec
20 m/s
4
0.01 seconds

Each data point represents an average of 30 different randomly generated mobility

models with 95% confidence interval. Likewise, the maximum speed used is the ns-2
default which characterise a high mobility network.

280 A. Mohammed, M. Ould-Khaoua, and L. Mackenzie

4.2 Simulation Results

In this section, we present the performance results of ECS (efficient counter-based
broadcast scheme) side by side with counter-based, fixed probability and flooding.
The simulation output is collected using replication mean method where each data
point represents an average of 30 different randomly generated mobility models with
95% confidence intervals. Our main focus is to mitigate the broadcast storm problem
therefore reducing the contention in the network and decreasing the probability of
packet collisions. As a result, end-to-end delay can be reduced, and the percentage of
saved rebroadcast can be improved.

4.2.1 Saved Rebroadcast (SRB)
Figure 2 shows the performance comparisons of fixed probability, counter-based,
flooding and ECS in terms of SRB with varying network density. The four schemes
achieve different SRB percentages with increasing network density. The figure
demonstrates that ECS can significantly mitigate the contentions and collisions incur
during broadcasting especially in dense networks with node moving at 20 m/s. In
sparse networks, ECS has superior SRB of 46% and about 56% in medium and high
dense networks. Under the same network conditions, the SRB achieved by the other
algorithms are as follows: fixed probability has 39% and 35%; counter-based has 22%
and 32%; and flooding has 4% and 1% for sparse and medium – high dense network
respectively. Thus, ECS has superior SRB performance in various network densities.
As shown in Figure 2, ECS can substantially reduce the number of rebroadcast
because nodes rebroadcast a packet with a certain probability value (0.65) rather than
automatically rebroadcasting every received packet. However, sending too few
rebroadcast can result in broadcast packet not reaching all the nodes in the network.

4.2.2 Reachability
Figure 3 shows that reachability increases when network density increases regardless
of which scheme is used. Flooding has best performance in terms of reachability,
reaching about 100% of the nodes. The performance of ECS scheme shows that the
reachability is about 95% in sparse networks and above 98% in medium and high
density network. In high density networks, very similar and comparable results are
obtained for all the four schemes. However, in the case of low density networks
(specifically 25 nodes), flooding and counter-based schemes achieved better
reachability performance than ECS. As redundant rebroadcasts also contribute to
chances of packet collisions which may eventually cause packet drops, thus
negatively affecting the reachability. Depending on the value of the probability, ECS
may have lower reachability compared to flooding and counter-based schemes.
However, by choosing appropriate probability value, we can achieve acceptable
reachability. ECS ‘s inferior reachability performance in sparse network is due to fact
that the network might be partition and thus increasing the likelihood of more
broadcast packets not reaching all the nodes in the network.

4.2.3 Latency
In this section we measure the end-to-end delay of the broadcast packet that has been
received by all nodes in the network. The results in figure 4 show the effects of

 An Efficient Counter-Based Broadcast Scheme for Mobile Ad Hoc Networks 281

network density on the latency of broadcast packets. When node density increases,
more broadcast packets fail to reach all the nodes due to high probability of packet
collision and channel contention caused by excessive redundant retransmission of
broadcast packets. Therefore the waiting time of packets in the interface queues
increases. As shown in figure 4, ECS exhibits lower latency than counter-based, fixed
probability and flooding. Since rebroadcast packets collide and content for channel
with each other, and the ECS incurs the lowest number of rebroadcasts (highest
saved-rebroadcast), it should have the lowest latency.

Fig. 2. Saved-Rebroadcast of the four schemes against network density

Fig. 3. Reachability of the four schemes against network density

282 A. Mohammed, M. Ould-Khaoua, and L. Mackenzie

Fig. 4. Latency of the four schemes against network density

5 Conclusion

This paper has proposed an efficient counter-based broadcast scheme for MANETs
that mitigate the broadcast storm problem associated with flooding. The scheme uses
two different probability values to distinguish between rebroadcast probability for
nodes in sparse network and that of a dense network. In order to reduce the broadcast
overhead and without sacrificing the network connectivity in dense networks, the
rebroadcast probability of nodes located in sparse areas is set high and that of nodes
located in dense areas is set low. Compared to flooding, fixed probability and counter-
based schemes, our simulation results have revealed that the adjusted counter-based
scheme can achieve up to 56% saved rebroadcast without sacrificing reachability in
both medium to high density networks. Likewise the scheme has better latency.

As a continuation of this research in the future, we plan to investigate the
performance of our scheme under a more realistic scenario (non uniform node
distribution) and that achieved by a routing protocol when they employ ECS
broadcast schemes. Furthermore, we intend to build an analytical model for our
efficient counter-based scheme in order to facilitate its validation strategy.

References

1. Ni, S., Tseng, Y., Chen, Y., Sheu, J.: The Broadcast Storm Problem in a Mobile Ad Hoc
Networks. In: The Broadcast Storm Problem in a Mobile Ad Hoc Networks, pp. 151–162.
IEEE Computer Society Press, Los Alamitos (1999)

2. Tseng, Y.-C., Ni, S.-Y., Chen, Y.-S., Sheu, J.-P.: The Broadcast Storm Problem in a
Mobile Ad Hoc Network. Wireless Networks. 8, 153–167 (2002)

 An Efficient Counter-Based Broadcast Scheme for Mobile Ad Hoc Networks 283

3. Tseng, Y.-C., Ni, S.-Y., Shih, E.-Y.: Adaptive Approaches to Relieving Broadcast Storms
in a Wireless Multihop Ad Hoc Networks. IEEE Transactions on Computers. 52, 545–557
(2003)

4. Williams, B., Camp, T.: Comparison of Broadcasting Techniques for Mobile Ad Hoc
Networks. In: Williams, B., Camp, T. (eds.) Proceeding MOBIHOC., pp. 194–205.
Lausanne, Switzerland (2002)

5. Lou, W., Wu, J.: Localized Broadcasting in Mobile Ad Hoc Networks Using Neighbour
Designation. CRC Press, Boca Raton, USA (2003)

6. Alireza, K-H., Vinay, R., Rudolf, R.: Color-Based Broadcasting for Ad Hoc Networks. 4th
International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless
Networks, pp. 1–10 (2006)

7. Haas, Z.J., Halpern, J.Y., Li, L.: Gossip-based ad hoc routing. In: Proceeding of IEEE
INFOCOM, IEEE Computer Society Press, Los Alamitos (2002)

8. Cartigny, J., Simplot, D.: Border node retransmission based probabilistic broadcast
protocols in ad hoc networks. Telecommunication Systems. 22, 189–204 (2003)

9. Zhang, Q., Agrawal, D.P.: Dynamic Probabilistic Broadcasting in MANETs. Parallel and
Distributed Computing. 65, 220–233 (2005)

10. The Network Simulator ns-2, http://www.isi.edu/nsnam/ns/
11. Perkins, C.E., Moyer, E.M.: Ad-hoc on-demand distance vector routing. In: Proceedings of

2nd IEEE Workshop on Mobile Computing Systems and Applications, pp. 90–100. IEEE
Computer Society Press, Los Alamitos (1999)

12. Johnson, D.B., Maltz, D.A.: Dynamic source routing in ad hoc wireless networks. Mobile
Computing, pp. 153–181. Dordrecht Academic Publishers, The Netherlands (1996)

13. IEEE802.11 WaveLAN PC Card - User’s Guide, A-1
14. Internet Standard Comm: Wireless LAN medium access control (MAC) and physical layer

(PHY) specifications. IEEE standard 802.11-1997. IEEE, New York (1997)
15. Navidi, W., Camp, T., Bauer, N.: Improving the accuracy of random waypoint simulation

through steady-state initialization. In: Proceedings of the 15th International Conference on
Modeling and Simulation (MS’04), Marina Del Rey, Califonia, USA (2004)

16. Camp, T., Boleng, J., Davies, V.: A survey of mobility models for ad hoc network
research. Wireless Communication and Mobile Computing (WCMC), vol. 2 (2002)

17. Colagrosso, M.D.: Intelligent broadcasting in mobile ad hoc networks: Three classes of
adaptive protocols. EURASIP Journal on Wireless Communication and Networking. 2007,
p. 16 (2007)

The Effect of Mobility on Local Service Discovery in the
Ahoy Ad-Hoc Network System�

Patrick Goering, Geert Heijenk, Boudewijn Haverkort, and Robbert Haarman

Faculty of EEMCS / DACS
University of Twente

P.O. Box 217, 7500 AE Enschede, The Netherlands
patrick.goering@utwente.nl, geert.heijenk@utwente.nl,

brh@ewi.utwente.nl, rhaarman@inglorion.net

Abstract. Ahoy, a protocol to perform local service discovery in ad-hoc
networks is described in this paper. The protocol has been implemented in a
discrete-event simulator to study its performance in case of a multihop mobile ad-
hoc network. Especially the effect of mobility on the network load and the prob-
ability of finding services is investigated. Experiments show that the load caused
by advertisement messages is very low, even when the mobility is increasing. For
low speeds the percentage of found services is close to the maximum possible,
while even at high speeds the probability of finding a service is still reasonable.

1 Introduction

Ad-hoc networks are used to enable wireless communication between mobile nodes
without making use of any infrastructure. Users of these networks want to interconnect
their devices, make use of services provided by other devices, and have the possibility
to offer their own services to other devices. In many cases it is useful to be able to find
the nearest available service, also called service discovery, such as a printer or scanner.
In such an ad-hoc network environment we want to be able to find services that are
located nearby, while keeping in mind the limited power and network capacity.

In [1] we described a simple local service discovery protocol and presented ex-
periments in a static situation, without node mobility. In this paper, we introduce a
keep alive mechanism to the protocol to save bandwidth. We use keep alive messages
instead of larger advertisement messages where possible. We implemented this new
protocol, now named Ahoy, in a discrete-event simulator. Furthermore, in this paper we
study the effect of mobility, the amount of bandwidth it takes to keep information about
local services up-to-date, and the effect on the success probability of queries; this has
not been done before.

The organization of this paper is as follows. Section 2 describes other research re-
lated to service discovery in ad-hoc networks. Section 3 discusses our service discovery
solution using attenuated Bloom filters; the hash functions we use, the effect of mobil-
ity on the protocol, and the impact of false positives. Section 4 describes the simulation
setup and Sect. 5 gives simulation results of the protocol when there is mobility. Finally,
Sect. 6 presents the conclusions and future work.
� This work is supported by the Dutch Ministry of Economic Affairs under the Innovation Ori-

ented Research Program (IOP GenCom, QoS for Personal networks at Home).

K. Wolter (Ed.): EPEW 2007, LNCS 4748, pp. 284–300, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

The Effect of Mobility on Local Service Discovery 285

2 Related Work

Several service discovery protocols have been developed for computer networks. We
look at the suitability of some of them for local service discovery in a mobile ad-hoc
network (MANET). One distinction we can make is between centralized and distributed
solutions. An example of a centralized service discovery system, with a directory server
that stores all available services is SLP [2]. All devices in the network have to commu-
nicate with this directory server, which is a disadvantage for mobile ad-hoc networks,
as there is limited network capacity and this server might not always be reachable.

A distributed solution has some advantages in a mobile ad-hoc network [3]; it can be
proactive or reactive. A proactive solution forwards advertisements of available services
to all nodes when there are any changes, whereas in a reactive solution query messages
are forwarded through the network at the time a service is needed. A proactive solution
has the advantage of services being available quicker at the cost of some bandwidth.
An example of such an approach is Zeroconf [4], e.g., implemented as Apple Bonjour,
an IETF protocol that enables the discovery of services on a local area network. A us-
able IP network is automatically created without the need for configuration or special
servers, but it is limited to a single subnet. Bonjour does allow service discovery out-
side a single subnet, but this requires special DNS configuration and a connection to
an infrastructure network. Thus in a multihop ad-hoc network Apple Bonjour cannot
be used for local service discovery. In [5] the newscast epidemic protocol is used to
provide a robust overlay network that adapts to (large) changes in a dynamic network.
It uses quite some bandwidth to accomplish this, which makes it not suitable for wire-
less networks. Another approach was taken with HESED [6], where query messages are
multicasted to all nodes. Selective edge nodes are used to reduce the number of multi-
cast packets. Matching servers multicast their information to all nodes as well. Clients
cache this information and use it to reduce the number of query messages.

For service discovery in ad-hoc networks, where we want to discover services lo-
cated nearby, we need a fully distributed solution, suitable for multihop networks. Many
nodes in ad-hoc networks will be mobile with a wireless network interface. Further-
more, such an approach should work as soon as a new node arrives, without the need to
pre-establish a cluster or group. The Group-based Service Discovery Protocol (GSD)
[7] is a distributed protocol for MANETs. In GSD, advertisements are limited to nodes
within a maximum number of hops and services are grouped to allow selective for-
warding of queries. The grouping of services is based on the semantics of the service
descriptions and is predefined. Queries are forwarded to a node that has advertised ser-
vices in the same group as the service might be available near this node. GSD does
allow users to find a service within a maximum number of hops, but not necessarily the
nearest service. Furthermore, groups need to be predefined and services classified in
these groups to make use of selective forwarding of queries. Proximity Discovery Ser-
vice (PDS) [8] also provides proximity based service discovery. This solution relies on
the availability of the real geographic location by using a GPS satellite receiver, which
we don’t consider as a requirement for our protocol.

Attenuated Bloom filters have been used in [9] for context discovery. There, an anal-
ysis is done on the false positive probability and the size and depth of the used Bloom
filters. Optimum values are found for several parameters to make efficient use of band-
width. Here, we extend the service discovery protocol with a keep-alive mechanism to

286 P. Goering et al.

minimize the bandwidth usage further. Also, the impact of mobility on service discov-
ery with respect to bandwidth usage and reachability of services is evaluated.

The Ahoy protocol is a combination of a proactive and a reactive approach; a sum-
mary of available services is forwarded between neighbors upto a certain number of
hops and queries are selectively forwarded using the information in the summary. The
work presented in this paper further evaluates the idea of using attenuated Bloom filters
for service discovery, especially in the presence of mobility.

3 The Ahoy Service Discovery Protocol

The Ahoy service discovery protocol is described in this section. Firstly, an overview
is given of the protocol and the usage of Bloom filters. Secondly, the advertising and
querying algorithms used in the protocol are explained. Then we discuss the hash func-
tions used, the effect of mobility on the protocol, and the impact of false positives.

3.1 Overview

A Bloom filter [10] can be used to describe the membership of objects in a set, with
a small chance of false positives. It consists of an array of w bits, initially all set to
0. A number of b independent hash functions over the range [1,w] is used to map a
text string to the Bloom filter. A total number of b bits are set in the Bloom filter, one
for each hash result. Some of the bits might be overlapping, that is, two different text
strings might partially map to the same bits. A service, represented by a text string,
is considered to be represented in a Bloom filter when all bits corresponding to the b
hashes of this text string are set. For local service discovery in ad-hoc networks we
propose to use attenuated Bloom filters [11]. They were introduced as a method to
optimize the performance of location mechanisms especially when objects to be found
are located nearby. We use Bloom filters in our service discovery protocol, because they
can highly compress service availability information and thus reduce the bandwidth
usage of the protocol.

An attenuated Bloom filter is a stack of standard Bloom filters of depth d. Every row
in the filter represents objects at a different distance, indicated by the number of hops.
Nodes maintain a separate attenuated Bloom filter for every link to a direct neighbor.
This enables to select a link where an object most likely can be found, a so-called match-
ing link. Periodically, an advertisement packet is broadcasted to all direct neighbors.
The packet contains an attenuated Bloom filter, which represents the services reachable
through the sending node. The attenuated Bloom filter is created by combining, a sim-
ple OR operation, all attenuated Bloom filters from all available links. This result is
shifted down one layer and then combined with the node’s own Bloom filter. See below
for more details of the advertisement procedure.

When a client wants to find a specific service it will check whether the service is
available locally. If this is not the case the client will check its attenuated Bloom filters
and send a query packet to any link with a matching Bloom filter. A node receiving such
a query again will check for local availability of the service, check its attenuated Bloom
filters, and forward the query to any link with a matching Bloom filter. A node that
does provide the service will send a response packet back along the path the queries

The Effect of Mobility on Local Service Discovery 287

followed (in reverse order), as will be explained later. When the client receives the
response packet it can call upon the service, although there is a possibility it does not
exist.

3.2 Advertising

Algorithm 1 shows the actions taken by each node independently when packets related
to advertisements arrive in a node.

switch received packet do1

case keep alive2

if BC ID != previous BC ID then3

send (request update packet to originating link);4

update cleanup timer for neighbor;5

case advertisement6

if BC ID != previous BC ID then7

store received attenuated Bloom filter;8

store BC ID;9

foreach layer do10

combine attenuated Bloom filters from links;11

if advertisement packet != previous advertisement packet then12

send (advertisement packet to all links);13

update cleanup timer for neighbor14

case request update packet15

send (advertisement packet to originating link);16

Algorithm 1. Advertisement (Run by Each Node Independently)

Advertisement messages include the attenuated Bloom filter as well as a broadcast
identification field (BC ID) that uniquely identifies the advertisement packets per neigh-
bor. Keep alive messages are broadcasted to all direct neighbors every period seconds.
This period consists of a fixed part and a random part. The random part is added to
desynchronize the keep alive messages from all nodes. It also prevents peaks in band-
width used by keep alive messages. The keep alive messages include the BC ID value
from the last sent advertisement packet. Because the size of the keep alive messages is
small compared to the size of the advertisements, the bandwidth usage is lower than in
the case where we would send advertisement messages periodically. This also means
we can send more keep alive messages for the same network load and thus be able to
detect changes in the network, like a new neighbor with new services, quicker. Sending
one UDP packet in an ad-hoc network also involves MAC, IP and UDP header over-
head, where part of the MAC header is transmitted at a lower speed. Thus the number of
messages we can send more does not only depend on the time it takes to send advertise-
ment and keep alive messages of a specific size, but also on the time it takes to transmit
the overhead. Receiving a keep alive packet (line 2) with a specific BC ID signifies all
neighboring nodes that the services announced with the advertisement packet with the
same BC ID from the same neighbor are still valid. The only action a node takes when
the BC ID matches is postponing the clean up procedure as explained below. When

288 P. Goering et al.

the BC ID does not match (line 3), this signifies that the node has old information and
should request an update of the available services reachable through the neighbor that
sent the keep alive packet. This situation could occur when an advertisement packet is
lost, e.g., caused by interference in the radio link or by a new node moving into range. A
request update packet is then sent directly to the neighbor, there is no need to broadcast
this packet.

When an advertisement message is received (line 6) and the BC ID differs from
the BC ID in the last advertisements from the same neighbor (line 7), the BC ID and
attenuated Bloom filter in the message are stored. All attenuated Bloom filters from all
neighbors are combined (line 10). In case the newly constructed advertisement differs
from the last advertisement sent (line 12), an advertisement message with the combined
attenuated Bloom filter is broadcasted to all direct neighbors.

Upon receipt of a request update packet (line 15) a node will send an advertisement
packet containing a full attenuated Bloom filter directly to the requesting neighbor.

A clean up procedure removes information of services reachable through a neighbor
when this neighbor is out of reach of a node for a certain amount of time. A node is
considered to be out of reach when the keep alive messages are no longer received
from this node. As packets can get lost in a wireless environment, a certain number of
consecutive keep alive messages should be allowed to be missed before the clean up
procedure is started. After this number of keep alive messages are missing, detected
by not receiving a keep alive packet for a number of keep alive periods, the node will
construct a new attenuated Bloom filter that represents the services reachable through
this nodes at this specific time, i.e., without the services of the node that got out of reach.
An advertisement packet containing this Bloom filter is transmitted to all neighbors
when it contains information that is different from the previous advertisement.

Advertisements are not transmitted immediately after receiving new information
from a neighbor for two reasons. Firstly, several nodes might receive an updated ad-
vertisement at the same time. Sending an advertisement immediately would result, with
high probability, in collisions of the advertisement packets in the wireless network. Sec-
ondly, sending an update will likely trigger a neighbor to also send an updated adver-
tisement. Randomization by adding a delay here allows to incorporate the information
from this advertisement and will limit the number of messages per second nodes will
send.

3.3 Querying

Algorithm 2 shows the query algorithm as it is run by each node independently.
Query messages contain a query identification (Q ID), a maximum number of hops

the message should be forwarded as well as a Bloom filter representing the queried
service. The Q ID together with the address of the originating node of the query is used
to detect duplicates. When a node receives a query (line 2) with a Q ID it has seen
before, it can discard this query. In case the Q ID is new (line 3), the maximum hops
value is decremented by one. As the initial maximum hops value is d, up to a maximum
of d hops away all services that match the query can be found. When the received query
matches a Bloom filter previously received from any neighbor (line 7,8), the Q ID value
is stored together with the link the message was received from and the source address
of the originating node. This information is used to send the response back along the

The Effect of Mobility on Local Service Discovery 289

switch received packet do1

case query2

if not originating node and Q ID match previous query then3

maximum hops -= 1;4

if service matches Bloom filter locally then5

send (response packet to originating link);6

foreach link L do7

if service matches Bloom filter for link L upto maximum hops then8

send (query packet to L);9

store Q ID and link Q query was received from;10

case response11

if Q ID matches previous query then12

send (response packet to link Q);13

Algorithm 2. Query (Run by Each Node Independently)

path the query traveled. The query is then forwarded to all neighbors with a matching
Bloom filter. The destination of the query, a node with a matching service, will send a
response back to the node the query was received from first. Upon receipt of a response
packet (line 11), a response packet is send to the neighbor the query was received from
(line 12), as known from the previously stored Q ID. All nodes repeat this process until
the query arrives at the originating node.

3.4 Hash Functions

For our protocol we need a number of hash functions, which distribute the bits set uni-
formly over the entire Bloom filter for the service being hashed. This is to make the
probability of false positives as low as possible with a given Bloom filter width. In
essence, we can tolerate some false positives, so this can be one of the criteria for the
size of the Bloom filters being used. We use universal hashing [12]. These hash func-
tions have the property that for any two distinct inputs the probability of a collision
between those two inputs is the same as if we where using a uniform random function.
In our service discovery protocol different nodes use hash functions to generate a num-
ber of bits to be set in a Bloom filter for announcing services as well as for querying for
these services. Therefore, every node must use the same set of hash functions to be able
to find services. The number of hash functions needed is determined by the number of
bits that need to be set for every service that has to be represented in a Bloom filter.
For the bandwidth usage of the protocol to be minimized, about half the bits need to
be set in a Bloom filter [10]. In that case the false positive probability is low, while the
width of the Bloom filters is not too high. The Bloom filters of d layers still have to fit
in a single IP packet, to avoid the overhead of sending multiple IP packets for a single
advertisement message.

3.5 False Positives

False positives affect the service discovery as follows: a service can appear to be avail-
able through a specific neighbor due to a false positive. False positives can show up

290 P. Goering et al.

as an effect of the combining of Bloom filters. When this happens in the lowest layer,
only this node is affected, all other neighbors will not have the false positive. However,
when it happens in layer d-1, all neighbors will have the same false positive in layer
d, due to the way the advertisement procedure works. A query for such a service will
be forwarded until it reaches a node where the false positive does not occur; the query
along this path would then be silently dropped.

Generally, more nodes can be reached as the distance, and thus the maximum number
of hops, increases. The lower layers of an attenuated Bloom filter will then contain
more services, which means more bits are set. Thus, the probability of a false positive
is higher in the lower layers than in the higher layers of an attenuated Bloom filter.

3.6 Mobility

In a situation, without node movement and without changes of services, results for
queries are returned in the time it takes to forward and process the query messages for a
maximum of d hops and sending back a response message. The bandwidth used by the
protocol in this situation comes from sending keep alive messages as well as the queries
and responses themselves. A more challenging situation for a service discovery protocol
appears when mobile nodes are moving around, so that there are changes in the services
reachable. The frequency of the keep alive messages determines how quick an update
for a change in reachable neighbors and thus the update for the change in reachable
services is propagated. When one node has a change in any of its services, potentially
all nodes in a radius of d hops will exchange advertisement messages to notify all nodes
in their range about the change.

4 Simulation Setup

The protocol described in the previous section has been implemented in the discrete-
event simulator OPNET Modeler, version 11.5 [13]. The manet station adv model from
the OPNET model library was used as a basis for our protocol implementation. In the
following experiments mobile nodes are placed in a simulation area. The nodes have
one wireless network interface that supports the IEEE 802.11b [14] standard for com-
municating with each other. The modified OPNET model was set to IEEE802.11b mode
with a bitrate of 11 Mbps. Packets are always sent at 11 Mbps, there is no rate adap-
tation. For the moment the transmission range is limited to 300 meters. When a node
is within a radius of 300 meters the free space path-loss propagation model, receiver
sensitivity and transmission power are used to determine whether the transmission is
successful or there is packet loss, i.e., packet transmissions may fail due to collisions
or radio conditions. When a node moves out of this 300 meter radius of a sending node
there is no interference with this sending node. We do not use a routing protocol in
these experiments; from client to service the attenuated Bloom filters determine where
packets are sent. The response messages from service back to the client follow the re-
verse path. Every simulation run is done with different seeds for the random number
generator. The random number generator is used for all randomness in the standard
OPNET models, as well as the random times in our model. Also both the advertised
strings and the query strings are picked randomly using this random number generator,

The Effect of Mobility on Local Service Discovery 291

unless stated otherwise. More specifically, every node advertises one service. We select
10 random ASCII characters as input for the hash function for every service and for
every simulation run. The clean up period is set to 40 seconds and the keep alive period
is 15 seconds plus a random time, drawn every time a message is sent, uniformly dis-
tributed between 0 and 2 seconds. All protocol messages are sent over IP version 4 and
UDP, thus for every message there is an overhead of an IP and a UDP header. The total
message size further depends on the width and depth of the Bloom filter. Table 1 shows
the values of the parameters used in the experiments.

5 Experiments

Four different experiments have been selected to study the behaviour of our protocol
in varying degrees of mobility. The first two experiments examine a mostly static situ-
ation, where all nodes are fixed in a grid structure. One node moves through this grid
at different speeds and we examine the effect of the advertisement delay parameter,
as introduced in Sect. 3.2. Experiment 2 extends this experiment by investigating the
effect the delay has on reachability of services. The last two experiments introduce
more mobility; all nodes are moving randomly in the simulation area. Experiment 3
focuses on the advertisement load depending on the average speed of the nodes and the
maximum Bloom filter depth d. Experiment 4 investigates the percentage of successful
queries achieved by our protocol compared to the maximum possible as determined by
the transmission range and the position of the nodes.

5.1 Limited Mobility Experiments

We consider the situation where our service discovery protocol is used in an ad-hoc
network in which the nodes are relatively static. This scenario shows the effect of a
single node traveling through an area, where many stationary ad-hoc nodes provide
services. We position 61 nodes in a grid structure, which will stay stationary during the
experiments. The grid structure was chosen for basic understanding of the interaction
between nodes. Here one extra node (node 62) with a starting position outside the reach
of any other node starts moving after 20 minutes simulation time. In these 20 minutes all
other nodes learn each others services and then send keep alive messages periodically.
As the keep alive messages for all nodes will be transmitted at random times, they will
not be synchronized to each other. The mobile node moves with a constant speed from
the bottom left to the top right in a straight line, as illustrated in Fig. 1. The spacing
between all nodes is 300 meter, so that the mobile node will be in reachable distance of
at least one node as long as it is in the center area (for about 2500 m).

The speed of this node is varied from 0 to 100 km/hr (27.8 m/s) in steps of 10
km/hr and for each speed 20 simulation runs are done. We let the simulation run long
enough to allow the mobile node move through the entire network, until it is out of
reach of any node again. The travel time depends on the actual speed of the node, the
higher the speed the shorter the required simulation time. Node 62 starts learning about
available services and the Bloom filters are updated as it moves through the simulation
area. The depth of the attenuated Bloom filters d is 5. Note that since the radius of the
network is also 5, services of the center node are propagated to the edge of the network.

292 P. Goering et al.

Table 1. Parameters

parameter exp1,2 exp3,4
advertisement 0-2 + 2 +

delay unif[0,0.5] s unif[0,0.5] s
d 5 1-5
w 512 bits
b 8

period 15 s + unif[0,2] s
range 300 m

Fig. 1. Node movement

They would not propagate any further for a larger radius of the network. We selected
the number of bits b = 8 and the Bloom filter width w = 512 bits. The size of one
advertisement message, including MAC, IP, and UDP headers is then 384 bytes.

Experiment 1. In this experiment we measure the number of advertisement messages
sent by the moving node (node 62), the center node (node 1), and the average for all
nodes in the network. We do this while the moving node is within range of at least
one of the static nodes of the network, i.e., we count all messages from the time the
moving node comes within reach of the network until this node leaves the area where
the other nodes are. The node is considered to be in range of one of the other nodes
as long as it has neighbors for which it keeps an attenuated Bloom filter. After the
last neighbor information has been removed through a clean up operation, we consider
the node to be out of reach. We use the advertisement delay as a parameter for these
experiments. The advertisement delay consists of a fixed and a random part. We always
choose the random delay uniformly between 0 and 0.5 seconds, but vary the fixed delay.
For different speeds the time we do the measurements will be different.

Figure 2 shows the number of advertisement messages per second per node aver-
aged over all nodes during the simulation runs. We can observe that the advertisement
load increases linearly with the speed of the mobile node. As the speed of the mo-
bile node approaches zero, we see no advertisement messages at all. Nodes only send
keep alive messages to inform each other that there are no changes. As the speed of the
mobile node increases, the number of advertisement messages per second increases as
well, to keep all nodes up-to-date of the changed services. As the speed is increased
to 100 km/hr (27.8 m/s) advertisement load increases to approximately 0.07 message
per second. On average, nodes then use 215 bps (≈ 0.002% of 11 Mbps) for sending
advertisement messages. As a reference: the AODV [15] routing protocol sends 608 bps
of HELLO messages when a node is part of an active route. Note that in this graph the
influence of the advertisement delay parameter is hardly visible.

The Effect of Mobility on Local Service Discovery 293

When we look at the number of sent advertisements per second for two specific
nodes some interesting phenomena can be observed. Both the mobile node (see Fig. 3)
and the center node (see Fig. 4) exhibit the same linear increase of the advertisement
load as the speed of the mobile node increases. In both figures the average number of
advertisement messages from Fig. 2 is included for reference. However, the load of the
center node, and especially of the mobile node increases much steeper than the load of
an average node. At 100 km/hr (27.8 m/s) the load of the center node is almost twice the
load of an average node, the load of the mobile node is approximately four times that
value. This can be explained by the fact that the center node is on the trajectory of the
mobile node, so most of the time, changes in reachability of services (from the mobile
node) occur within d=5 hops. Of course the reachability of services from the mobile
node changes continuously, so that the mobile node has an even higher advertisement
load. Note however that the absolute value of the advertisement load is still very low.

speed (m/s)

m
es

sa
g
es

 /
 s

ec
o
n
d

0 5 10 15 20 25

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Average all nodes, Delay = 0 sec

Average all nodes, Delay = 1 sec

Average all nodes, Delay = 2 sec

Average all nodes, Delay = 0 sec

Average all nodes, Delay = 1 sec

Average all nodes, Delay = 2 sec

Fig. 2. Average number of advertisement mes-
sages from all nodes

speed (m/s)

m
es

sa
g
es

 /
 s

ec
o
n
d

0 5 10 15 20 25

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Node 62, Delay = 0 sec

Node 62, Delay = 1 sec

Node 62, Delay = 2 sec

Avg all nodes, Delay = 0 sec

Avg all nodes, Delay = 1 sec

Avg all nodes, Delay = 2 sec

Node 62, Delay = 0 sec

Node 62, Delay = 1 sec

Node 62, Delay = 2 sec

Avg all nodes, Delay = 0 sec

Avg all nodes, Delay = 1 sec

Avg all nodes, Delay = 2 sec

Fig. 3. Advertisement messages from node 62

Let us now consider the influence of the advertisement delay parameter on the adver-
tisement load. From Fig. 2, it can be observed that the parameter hardly has any effect
for an average node, although at higher speeds of the mobile node, some influence starts
to be visible. For the mobile node itself, the impact of the advertisement delay is more
pronounced (see Fig. 3). Even at moderate speed, significant savings in the advertise-
ment load can be achieved by delaying advertisements for 1 or 2 seconds. For the center
node (Fig. 4) the effect of the parameter is less straightforward. There appear to be non-
linear increases of the load for certain delay values, especially for the center node, but
also for the mobile node. Below, we will give an explanation for these deviations.

When we look at the mobile node moving from the bottom left to the top right
through the area, as shown in Fig. 5, we see that the mobile node will get in range of the
nodes A and C as soon as it reaches the position of node D. From this moment on, nodes
A and C can receive the keep alive messages sent by the mobile node, and the mobile
node can receive the keep alive messages sent by nodes A and C. Keep alive messages
are sent periodically, so some time will elapse before either node A or C receives one
from the mobile node, or the mobile node receives one from node A or C. Let us assume
that the mobile node is the first node to receive a keep alive message, and it receives it
when it is exactly on the border of the outer shaded area. This will trigger the exchange
of a request update message and a subsequent unicast advertisement message, because

294 P. Goering et al.

speed (m/s)

m
es

sa
g
es

 /
 s

ec
o
n
d

0 5 10 15 20 25

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Node 1, Delay = 0 sec

Node 1, Delay = 1 sec

Node 1, Delay = 2 sec

Avg all nodes, Delay = 0 sec

Avg all nodes, Delay = 1 sec

Avg all nodes, Delay = 2 sec

Node 1, Delay = 0 sec

Node 1, Delay = 1 sec

Node 1, Delay = 2 sec

Avg all nodes, Delay = 0 sec

Avg all nodes, Delay = 1 sec

Avg all nodes, Delay = 2 sec

Fig. 4. Advertisement messages from node 1 Fig. 5. Effect of delay

the keep alive message will refer to an unknown advertisement. Taking into account
that this advertisement will contain as yet unknown services, its receipt will trigger the
mobile node to broadcasting a new advertisement message. However, the mobile node
will only broadcast the advertisement after waiting for the advertisement delay, during
which the mobile node can travel to the border of the inner shaded area.

If the mobile node is within the inner shaded area when broadcasting its new adver-
tisement to nodes A and C, the broadcast will also be received by node B, which will
save the transmission of an extra broadcast message. It can be seen that this saving only
occurs when the time of waiting for a keep alive message from node A or C, plus the
advertisement delay (plus the time for exchanging some messages) is sufficient for the
mobile node to travel from the point where it gets in reach of nodes A and C to the point
where it also gets in reach of node D. Note that a similar, yet slightly different effect
occurs if either node A or C is the first node to receive a keep alive message from the
mobile node.

So, the speed of the mobile node influences the advertisement load in two different
ways. If the speed increases, more changes in reachable services are detected, and hence
more advertisements are sent in the same time period. On the other hand, if the speed
increases, savings in the number of broadcasts to send can be made. The latter effect
depends on the advertisement delay, among others, and is not continuous. Note that the
same effect can also be observed for random topologies, although in a less deterministic
way.

Experiment 2. For the same network as in the above experiment, we now want to
know when a service can be found as long as the mobile node (node 62) is moving
through the grid. We let node 54 try to find one of node 62’s services. At the same
time we also let the mobile node try to find a service advertised by the center node,
node 1. Both node 1 and node 62 advertise a static, not randomly determined, service.
When there is no match in any of the layers of the attenuated Bloom filter, nothing is
done. When a match is found in one of the layers of the attenuated Bloom filter, a query
is sent in that direction and forwarded as long as a match can be found and until it
reaches node 62. At some points the location of the target node is not where it should

The Effect of Mobility on Local Service Discovery 295

be according to the apparently outdated information in the Bloom filters. We want to
find how often the service is still found and a reply is sent back to and received by the
originating node. After 20 minutes, the time the mobile node starts moving, we start
querying for the services. The time between query tries on both nodes is exponentially
distributed with a mean value of one second. In the optimal case a service can be found
when a network path of at most d hops exists between the client and the service. In
our regular grid network we know when such a network path exists and thus we can
normalise the number of successful queries to the maximum number of queries that
could be successful in this scenario.

We see in Fig. 6 that at low speeds the service is almost always found, it approaches
100% when the speed is low. When there is no mobility the service will always be
found as long as a path of at most d hops exists. For increasing speeds the percentage
of found services decreases and is also more dependent on the delay parameter. We
can also see nonlinear behaviour in the percentage of successful queries for different
speeds, caused by the deviations in the number of advertisement messages found in the
previous experiment. When for a certain speed there are less advertisement messages,
this means there is less information of available services. On average the probability of
success to find a service will be lower as well for this specific speed. When we look
at the effect of the delay parameter, we see that for smaller delays the service is more
often found, because all nodes in the path between client and service will know about
changes quicker. This comes at the price of more bandwidth usage when changes are
detected.

speed (m/s)

P
er

ce
n
ta

g
e

o
f

su
cc

es
sf

u
l
q
u
er

ie
s

(n
o
rm

al
iz

ed
)

0 5 10 15 20 25

0

10

20

30

40

50

60

70

80

90

100

Delay = 0 sec

Delay = 1 sec

Delay = 2 sec

Delay = 0 sec

Delay = 1 sec

Delay = 2 sec

Fig. 6. Reachability of mobile node’s services
from node 54

speed (m/s)

P
er

ce
n
ta

g
e

o
f

su
cc

es
sf

u
l
q
u
er

ie
s

(n
o
rm

al
iz

ed
)

0 5 10 15 20 25

0

10

20

30

40

50

60

70

80

90

100

Delay = 0 sec

Delay = 1 sec

Delay = 2 sec

Delay = 0 sec

Delay = 1 sec

Delay = 2 sec

Fig. 7. Reachability of center node’s services
from mobile node

When we also compare the percentage of successful queries from the mobile node
to the center node, see Fig. 7, we see a difference. At higher speeds the percentage of
found services decreases more for node 54 than for node 62. This can be explained
by the distance or number of hops between client and service. The number of hops is
always large from node 54 to node 62, namely the maximum depth d = 5 at which
the service still can be found. Especially in this case a higher delay causes the number
of found services to be lower, as there are more nodes in the path between client and
service that need time, proportional to the advertisement delay value, to update their
neighbors with new information. The percentage of successful queries from node 62

296 P. Goering et al.

to node 1 is less dependent on the speed and delay, because here client and service
are always moving towards each other or away from each other. As the position of
the mobile node changes there is always a node within one hop distance, that knows
a correct path less than a total of d = 5 hops to the service. Thus only a small part of
the path between client and service needs to be updated to be able to keep finding the
service.

5.2 Full Mobility Experiments

The following experiments investigate a more mobile situation, where a number of users
move through an area. There are 25 nodes in a simulation area of 1500 × 1500 meters,
which gives the same node density as in the limited mobility experiments. The nodes are
all moving according to a random waypoint pattern. The starting positions of the nodes
are uniformly spread over the simulation area and the nodes start moving as soon as the
simulation starts. For all nodes a destination is chosen distributed uniformly over the
simulation area. Nodes move towards their destination with a random speed and pause
at their destination for a random amount of time. After the pause a new destination
is chosen for the node with a new random speed. To prevent nodes getting trapped at
low speeds, as shown in [16], in our simulations we use a minimum speed of 0.1 m/s.
The maximum speed varies from 1 to 20 m/s and the wait time is uniformly distributed
between 0 and 30 seconds. A higher maximum speed means a higher average level of
mobility for the nodes in our simulation. All simulation runs use the same start positions
for the nodes, but we use 10 different random waypoint patterns per speed. The total
simulation time is 60 minutes. We discard 20 minutes of simulation time to allow the
random waypoint model to reach steady state. Then we start collecting results, thus
for different seeds the positions will be different from the moment we start looking as
well. We then vary the maximum depth d of the attenuated Bloom filter from 1 to 5
and do 10 simulation runs for each value of the depth parameter. Node 1 is the only
node that advertises a fixed service. For these experiments the advertisement delay was
uniformly distributed between 2 and 2.5 seconds. All nodes send queries for a service
node 1 advertises with an exponentially distributed query rate with a mean value of 5
seconds. We start querying after 20 minutes of simulation time.

From [9] we know that the false positive probability can be calculated as Pfp ≈
(1 − (1 − 1/w)bxj)b, where xj represents the number of services in layer j. When
using the simulation parameters from experiments 3 and 4, the worst case false positive
probability occurs when all nodes are reachable in the lowest layer: Pfp ≈ 0.012%.
Then for every query the probability of a false positive in layer d of the attenuated
Bloom filter is approximately 0.012%. However, at the next hop the number of services
represented in layer d-1 and thus the false positive probability is significantly lower. In
most cases a query message due to a false positive is forwarded only one hop and then
it will be discarded.

Experiment 3. In this experiment we study the effect of mobility on the number of
advertisement and query messages in the network respectively.

First, Fig. 8 shows for different maximum depths d and increasing mobility the in-
crease in the average number of advertisement messages per node. For low speeds dou-
bling the maximum depth of the attenuated Bloom filter from one to two causes an

The Effect of Mobility on Local Service Discovery 297

almost twice as high number of advertisement messages, but going from a maximum
depth d of four to five has a smaller effect. When we first look at increasing the maxi-
mum depth d from one to two, we see the difference in the absolute number of adver-
tisement messages increase as the maximum speed increases. However, proportionally
seen there is a decrease. When we increase the maximum depth d more the influence
on the number of advertisement messages gets smaller. Also increasing the speed any
further does not result in an increase in the number of advertisement messages any-
more. Thus at some point adding more mobility to the network does not give a higher
advertisement load anymore. Nevertheless, this does have an effect on the probability of
finding a service as we describe below. The average number of advertisement messages
in both cases is limited by the keep alive period, changes in the network cannot be de-
tected any quicker anymore. This means a higher maximum depth d does not result in
more advertisement messages. Off course the size of the advertisement packets is larger
as information from an extra layer in the attenuated Bloom filter has to be transmitted,
so there is still a cost involved when choosing the maximum depth d for a specific sit-
uation. Without mobility the number of advertisement messages is 0 for all depths. For
a depth d = 5, the number of advertisement messages increases to 0.16 messages per
second as the speed is increased to 20 m/s, which is still a low absolute value.

Second, we examine the average query load experienced by the mobile nodes.
Figure 9 shows that for increasing depth d of the attenuated Bloom filter the average
number of queries increases more. For nodes located further away, there are more possi-
ble paths from client to service over which queries are sent. When increasing the speed
of the mobile nodes, there is first a decrease in the query load at 3 m/s. From speeds
from 5 to 10 m/s the number of messages increases again. Speeds above 15 m/s result
in a faster increase which is more pronounced for larger depths d of the Bloom filters.
There are two effects that play a role, first, in a low mobility situation all Bloom filters
are almost always up-to-date. When, somewhere on the path from client to service, a
connection is broken due to mobility, this results in fewer query messages. Queries are
no longer forwarded from that point on. Second, for higher speeds, the clean up period
causes more nodes to be listed as direct neighbor. During this clean up period the infor-
mation from the old neighbors is still kept, while new neighbors are being discovered.
This explains the overall increase as more direct neighbors results in more queries. The
maximum number of query message occurs at a speed of 20 m/s for depth d=5, where
we observe 6.3 query messages per second. Note that, the effect of false positives as
calculated in Sect. 5.2 is negligible in these results.

Experiment 4. We finally study the effect of mobility and the maximum depth d of the
attenuated Bloom filter on the probability to find a service. As the nodes are sending
queries when they find a match in their Bloom filters, we count the number of success-
fully found services, that is, a reply came back to the originating node. This is a measure
for the reachability of the service with our protocol for different mobility patterns and
varying maximum depth of the attenuated Bloom filters.

Figure 10 shows the percentage of successful queries for different levels of mobility
and different values of the maximum depth d. As d increases, more layers are added
tot the attenuated Bloom filters, the number of successfully found services increases

298 P. Goering et al.

maximum speed (m/s)

A
d
v
er

ti
se

m
en

t
m

es
sa

g
es

 p
er

 n
o
d
e

p
er

 s
ec

o
n
d

0 5 10 15 20

0

0.05

0.1

0.15
d = 1

d = 2

d = 3

d = 4

d = 5

d = 1

d = 2

d = 3

d = 4

d = 5

Fig. 8. Advertisement load

maximum speed (m/s)

Q
u
er

y
 m

es
sa

g
es

 p
er

 n
o
d
e

p
er

 s
ec

o
n
d

0 5 10 15 20

0

1

2

3

4

5

6

7

d = 1

d = 2

d = 3

d = 4

d = 5

d = 1

d = 2

d = 3

d = 4

d = 5

Fig. 9. Query load

as well. As the number of layers present gets higher, adding another layer does not give
a large increase in the number of successfully found services anymore. Adding layers
4 and 5 gives us a slightly higher percentage of successful queries while increasing the
advertisement cost. For d = 5, the percentage of successful queries is 73%. As the aver-
age speed of the nodes increases, the number of successful queries decreases, resulting
in 55% success for d = 5. Propagating the changes in available services takes time, for
a depth of d = 5 we have a maximum total delay of five times the advertisement delay
before all nodes know about the changes in the network. Thus for a higher maximum
depth d this effect is bigger, because there is a longer path of nodes between client and
service that needs to know about changes in the topology. More mobility makes it more
difficult to find services a larger number of hops away. There is a slight increase above
15 m/s, caused by the limited size of the area. A node forgets about neighbors after a
fixed interval determined by the cleanup period. When there is more mobility nodes
learn faster about more new neighbors, in effect, increasing the amount of information
in the Bloom filters. More often a query is sent based on outdated information, but
nodes along the path towards the service might already have new information, resulting
in a successful query.

We can distinguish two main reasons for queries being unsuccessful; due to the prop-
erties of the protocol or due to the radio range combined with the location of the nodes
during the simulation runs. To determine the efficiency of our protocol, we need to look
at the maximum number of successful queries possible only. For a maximum depth of
one, a range of r meters, and an area of aXa meters the maximum percentage of suc-
cessful queries Smax can be approximated by dividing the area in range of node 1 with
the total surface area: Smax = πr2/a2. To get such a maximum percentage of success-
ful queries for all depths d we calculated the number of nodes within d hops from the
random waypoint patterns used in the simulation runs. Figure 11 shows the percentage
of successful queries normalized to the maximum possible due to network limitations.
Generally the percentage is lower when the maximum number of hops increases. For
low speeds the percentage of successful queries achieved by the protocol is around 99%.
As speed increases towards 20 m/s the number of successful queries decreases to 91%
in case d = 5.

The Effect of Mobility on Local Service Discovery 299

maximum speed (m/s)

P
er

ce
n
ta

g
e

o
f

su
cc

es
sf

u
l
q
u
er

ie
s

0 5 10 15 20

0

10

20

30

40

50

60

70

80

d = 1

d = 2

d = 3

d = 4

d = 5

d = 1

d = 2

d = 3

d = 4

d = 5

Fig. 10. Successfull queries depending on the
speed

maximum speed (m/s)

P
er

ce
n
ta

g
e

o
f

su
cc

es
sf

u
l
q
u
er

ie
s

(n
o
rm

al
iz

ed
)

0 5 10 15 20

0

10

20

30

40

50

60

70

80

90

100

d = 1

d = 2

d = 3

d = 4

d = 5

d = 1

d = 2

d = 3

d = 4

d = 5

Fig. 11. Maximum reachability depending on
the speed

6 Conclusions and Further Work

In this paper we have studied the lookup capabilities of a new service discovery protocol
using Bloom filters in several scenarios. We thereby focused on the impact of node
mobility on the performance of the protocol.

Attenuated Bloom filters can be used for local service discovery in ad-hoc networks
where nodes may be mobile. To keep the information about available services in the
vicinity up-to-date, advertisement messages need to be transmitted to neighbors. A delay
between the time new information is received and an advertisement is sent helps to keep
the bandwidth usage low. However, with a high delay the probability of finding services
is lower, especially when there is more mobility in the ad-hoc network. The load of
advertisement messages in a situation where nodes are moving randomly increases when
there is more mobility, but is still quite low. For situations with higher mobility, the
number of advertisement messages stabilizes to a maximum. For low mobility situations
our protocol can find services close to 100% of the maximum possible as determined by
the location and the transmission range of the nodes. With increased mobility still in a
large number of cases (91% in experiment 4) services can be successfully found.

The Ahoy service discovery protocol has been implemented in a prototype [17]. In
this MSc thesis, the feasibility of using Bloom filters for service discovery in ad-hoc
networks is shown, and some alternative choices where investigated.

Further work includes adding more optimizations to the protocol to support node
mobility even better. For instance, the number of advertisement messages can be further
reduced by limiting the maximum number of hops a query can be propagated depending
on the distance to the nearest service as found from the information in the attenuated
Bloom filter.

References

1. Goering, P.T.H., Heijenk, G.J.: Service Discovery Using Bloom Filters In Ad-Hoc Networks.
In: Participants Proceedings of the Dutch PhD Network on Computing and Imaging, June
2006, pp. 219–227 (2006)

2. Veizades, J., Guttman, E., Perkins, C., Kaplan, S.: Service Location protocol. RFC 2165
(June 1997)

300 P. Goering et al.

3. Hoebeke, J., Moerman, I., Dhoedt, B.: Analysis of Decentralized Resource and Service Dis-
covery Mechanisms in Wireless Multi-hop Networks. In: Braun, T., Carle, G., Koucheryavy,
Y., Tsaoussidis, V. (eds.) WWIC 2005. LNCS, vol. 3510, pp. 181–191. Springer, Heidelberg
(2005)

4. Cheshire, S., Aboba, B., Guttman, E.: Dynamic Configuration of IPv4 Link-Local Addresses.
RFC 3927 (May 2005)

5. Voulgaris, S., van Steen, M.: An epidemic protocol for managing routing tables in very large
peer-to-peer networks. In: Brunner, M., Keller, A. (eds.) DSOM 2003. LNCS, vol. 2867, pp.
41–54. Springer, Heidelberg (2003)

6. Yang, Y., Hassanein, H., Mawji, A.: Efficient service discovery for wireless mobile ad hoc
networks. In: 4th ACS/IEEE International Conference on Computer Systems and Applica-
tions, pp. 571–578. IEEE Computer Society Press, Los Alamitos (2006)

7. Chakraborty, D., Joshi, A., Finin, T., Yesha, Y.: GSD: a Novel Group-based Service Discov-
ery Protocol for MANETs. In: 4th IEEE Conference on Mobile and Wireless Communication
Networks (MWCN), pp. 140–144. IEEE Computer Society Press, Los Alamitos (2002)

8. Meier, R., Cahill, V., Nedos, A., Clarke, S.: Proximity-based service discovery in mobile
ad hoc networks. In: Kutvonen, L., Alonistioti, N. (eds.) DAIS 2005. LNCS, vol. 3543, pp.
115–129. Springer, Heidelberg (2005)

9. Liu, F., Heijenk, G.J.: Context discovery using attenuated bloom filters in ad-hoc networks.
Journal of Internet Engineering (2007)

10. Bloom, B.H.: Space/Time Trade-offs in Hash Coding with Allowable Errors. Communica-
tions of the ACM 13(7), 422–426 (1970)

11. Rhea, S.C., Kubiatowicz, J.: Probabilistic location and routing. In: Proc. of INFOCOM 2002,
vol. 3, pp. 1248–1257 (2002)

12. Carter, J.L., Wegman, M.N.: Universal classes of hash functions. In: Proc. 9th annual ACM
symposium on Theory of computing, pp. 106–112. ACM Press, New York (1977)

13. OPNET modeler software, available:http://www.opnet.com/products/modeler
14. LAN MAN Standards Committee of the IEEE Computer Society: Wireless LAN Medium

Access Control (MAC) and Physical Layer (PHY) Specifications. IEEE std. 802.11b (1999)
15. Perkins, C., Belding-Royer, E., Das, S.: Ad hoc on-demand distance vector (aodv) routing.

RFC 3561 (July 2003)
16. Yoon, J., Liu, M., Noble, B.: Random Waypoint Considered Harmful. In: Proceedings of

IEEE INFOCOM., vol. 2, pp. 1312–1321. IEEE Computer Society Press, Los Alamitos
(2003)

17. Haarman, R.: Ahoy: A Proximity-Based Discovery Protocol. Master’s thesis, Computer Sci-
ence, University of Twente (January 2007)

 http://www.opnet.com/products/modeler

Author Index

Ardaiz, Oscar 141

Babka, Vlastimil 245
Bacon, Jean 228
Baynat, Bruno 200
Begin, Thomas 200
Bell, Alexander 2
Brandwajn, Alexandre 200
Brunner, Rene 141
Buchmann, Alejandro 228
Bušić, Ana 33

Chacin, Pablo 141
Chao, Isaac 141
Cortellessa, Vittorio 171

Děcký, Martin 245

Fdida, Serge 200
Fourneau, Jean-Michel 213
Freitag, Felix 141
Frittella, Laurento 171

Goering, Patrick 284

Haarman, Robbert 284
Haverkort, Boudewijn R. 2, 80,

154, 284
Heijenk, Geert 284
Horváth, Gábor 48

Kounev, Samuel 125, 228
Kuntz, Matthias 80

López, Natalia 63

Mackenzie, Lewis 275
Marco, Alessandro Di 260
Markovski, Jasen 18
Mello, Emerson Ribeiro de 112
Merayo, Mercedes G. 97
Mitrani, Isi 1, 186
Mohammed, Aminu 275
Moorsel, Aad van 112

Navarro, Leandro 141
Nou, Ramon 125
Núñez, Manuel 63, 97

Ould-Khaoua, Mohamed 275

Pekergin, Nihal 33, 213

Reinelt, Patrick 154
Rodŕıguez, Ismael 63, 97

Sachs, Kai 228
Sadre, Ramin 154
Silva Fraga, Joni da 112
Slegers, Joris 186
Sokolova, Ana 18

Telek, Miklós 48
Thomas, Nigel 186
Torres, Jordi 125
Trčka, Nikola 18
Tůma, Petr 245

Vink, Erik P. de 18

Wolfinger, Bernd E. 200

Younès, Sana 213

	Title Page
	Preface
	Organization
	Table of Contents
	Optimization Problems in Service Provisioning Systems
	Untold Horrors About Steady-State Probabilities: What Reward-Based Measures Won’t Tell About the Equilibrium Distribution
	Introduction
	Iterative Solvers for Markov Chains
	Background
	Stopping Criteria
	The IEEE 754 Floating-Point Standard
	Summation Problems

	Experiments
	Model and Measure of Interest
	Stagnating Convergence
	Erratic Convergence
	Negative Elements in CGS Solutions
	Different Solution Methods
	Different State Space Orderings
	Varying the Processor Architecture
	Measure of Interest in Dependence of Accuracy
	Varying the Number of Processors

	Conclusion
	References

	Compositionality for Markov Reward Chains with Fast Transitions
	Introduction
	Discontinuous Markov Reward Chains
	Aggregation Methods

	Markov Reward Chains with Fast Transitions
	Aggregation Methods

	Relational Properties
	Parallel Composition and Compositionality
	Composing Discontinuous Markov Reward Chains
	Composing Markov Reward Chains with Fast Transitions

	Conclusion
	References

	Closed Form Absorption Time Bounds
	Introduction
	Class C^{G} Matrices
	Definition and Basic Properties
	Closed Form Solution for Absorption Time Distribution

	Algorithmic Construction of Bounding Matrices
	Stochastic Comparison
	Algorithms for Upper and Lower Bounding Class C^{G} Monotone Matrices

	Bounding PH-Distributions Modeling Service Times
	Conclusion
	References

	A Canonical Representation of Order 3 Phase Type Distributions
	Introduction
	PH(3) Distributions
	Unicyclic Representation of PH(3) Distributions
	Canonical Representation of PH(3) Distributions
	The Canonical Transformation Procedure
	Properties of the Proposed Canonical Form

	Practical Application of the Canonical form and the Transformation Procedure
	Phase Type Fitting
	Moment Matching with PH(3)
	Moments Bounds of the PH(3) Class

	Numerical Examples
	Dependence of Bounding Quantities on the Matrix Elements
	Dependence of the Unicyclic Representation on x_{1}

	Conclusion
	References

	$SPAMR$: Extending $PAMR$ with Stochastic Time
	Introduction
	The Language $SPAMR$
	Examples
	The Readers and Writers Problem
	The Three Researchers

	Conclusions and Future Work
	References

	Faster SPDL Model Checking Through Property-Driven State Space Generation
	Introduction
	SPDL - Syntax, Semantics and Model Checking
	Syntax of SPDL
	Semantics of SPDL
	Model Checking SPDL

	Stochastic Process Algebras
	A Property-Driven Symbolic Semantics for \mathcal{YAMPA}
	General Idea
	Multi-terminal Binary Decision Diagrams Encode SLTSs
	Property-Driven Symbolic Semantics - Introduction and Example
	Property-Driven Symbolic Semantics - Formal Definition

	Empirical Results
	Fault-Tolerant Packet Collector
	Kanban System
	Fault-Tolerant Multiprocessor System

	Conclusions
	References

	Testing Finite State Machines Presenting Stochastic Time and Timeouts
	Introduction
	$SFSM$: A Stochastic Extension of the FSM Model
	Implementation Relations
	Tests Cases for Stochastic Systems
	Test Derivation: Soundness and Completeness
	Concluding Remarks
	References

	Evaluation of P2P Search Algorithms for Discovering Trust Paths
	Introduction
	Trust Path Discovery Problem
	P2P Networks

	Experiment Setup
	Trust Path Discovery Algorithms
	Topologies

	Results
	Conclusions
	References

	Building Online Performance Models of Grid Middleware with Fine-Grained Load-Balancing: A Globus Toolkit Case Study
	Introduction
	The Globus Toolkit
	Modeling Approach
	Scheduling Mechanism
	Online Performance Prediction

	Case Study
	Workload Characterization
	Grid Server Models
	Experimental Results

	Conclusions and Future Work
	References

	Performance Measuring Framework for Grid Market Middleware
	Introduction
	Grid Market Middleware
	Application Interaction with Grid Market Middleware
	Middleware Implementation

	Performance Measuring Framework
	Goals of the Performance Measuring Framework
	Metrics Definition
	Instrumentation and Local Data Collector
	Global Metrics Collector

	Experimental Results
	Setup of the Experiment
	Experimental Results
	Discussion

	Related Work
	Conclusions
	References

	A Fixed-Point Algorithm for Closed Queueing Networks
	Introduction
	Fixed-Point Analysis of OQNs
	Fixed-Point Analysis of CQNs
	General Procedure
	Characteristics of the Bottleneck
	CQN Analysis with FiFiQueues
	Complexity

	Validation
	A Cyclic Three-Queue CQN
	CQNs with Merging and Splitting
	A Larger CQN

	Related Work
	Summary and Conclusions
	References

	A Framework for Automated Generation of Architectural Feedback from Software Performance Analysis
	Introduction
	Automated Generation of Feedback
	Software Performance Granularity: System, Subsystem, Resource
	Using Feedback for Architectural Refinements: A Thorough Process
	The InterpretationMatrices
	Supporting Structures: Some Classified Antipatterns

	Applying Our Approach
	Conclusions
	References

	Optimal Dynamic Server Allocation in Systems with On/Off Sources
	Introduction
	The Model
	Solution Method
	Policy Improvement
	Value Iteration

	Results
	Example 1: Lightly Loaded System
	Example 2: Medium Loaded System

	Conclusions and Future Research
	References

	Towards an Automatic Modeling Tool for Observed System Behavior
	Introduction
	Motivations
	Structure

	General Framework
	Terminology
	Measurements of the Observed System’s Behavior
	Simple and Not So Simple Models
	Error Criterion
	Search for an Adequate Model Among the Building Blocks
	Requirements for the Methodology

	Case Studies
	Preliminaries
	Broadband Wireless Network
	Ethernet Network

	Conclusions
	References

	Censoring Markov Chains and Stochastic Bounds
	Introduction
	Theoretical Background
	Basic Algorithms to Bound a Markov Chain
	Censoring a Markov Chain

	Bounds for Censored Ch
	Algorithms
	Shortest Path
	Adding Self Loops
	Breadth First Search

	Examples and Numerical Results
	Concluding Remarks
	References

	Workload Characterization of the SPECjms2007 Benchmark
	Introduction
	The SPECjms2007 Benchmark
	Requirements and Goals
	Workload Scenario
	Modeled Interactions
	Benchmark Implementation

	SPECjms2007 Workload Characterization
	Message Traffic Analysis
	Horizontal Topology
	Vertical Topology

	Concluding Remarks
	References

	Resource Sharing in Performance Models
	Introduction
	Resource Sharing
	Sharing Processor Cache
	Sharing File System
	Describing Sharing

	Combined Performance Model
	Mode of Resource Usage
	Degree of Resource Usage
	Iterating Between Models

	Proof of Concept Example
	Performance Model
	Resource Model
	Results

	Evaluation
	Conclusion
	References

	Exploiting Commodity Hard-Disk Geometry to Efficiently Preserve Data Consistency
	Introduction
	Hard-Disk Basics
	Hard-Disks Characterization
	A More Accurate Approach
	Tracks Patterns

	The Chunk Skew Layout
	Conclusions
	References

	An Efficient Counter-Based Broadcast Scheme for Mobile Ad Hoc Networks
	Introduction
	Related Work
	Efficient Counter-Based Scheme (ECS)
	Performance Analysis
	Simulation Setup
	Simulation Results

	Conclusion
	References

	The Effect of Mobility on Local Service Discovery in the Ahoy Ad-Hoc Network System
	Introduction
	Related Work
	The Ahoy Service Discovery Protocol
	Overview
	Advertising
	Querying
	Hash Functions
	False Positives
	Mobility

	Simulation Setup
	Experiments
	Limited Mobility Experiments
	Full Mobility Experiments

	Conclusions and Further Work
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

