
G. Engels et al. (Eds.): MoDELS 2007, LNCS 4735, pp. 360–374, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A UML2 Profile for Service Modeling

Vina Ermagan and Ingolf H. Krüger

1 University of California San Diego
9500 Gilman Drive, Mail Code 0404, La Jolla, CA 92093-0404, USA

{vermagan, ikrueger}@ucsd.edu
http://sosa.ucsd.edu

Abstract. In this article we provide an embedding of an interaction-based
service notion into UML2. Such an embedding is needed, because to this date,
UML2 has only limited support for services – they are certainly not first-class
modeling elements of the notation. This is despite the ever increasing
importance of services as an integration paradigm for ultra large scale systems.
The embedding we provide rests on two observations: (i) services are
fundamentally defined by component collaborations; (ii) to support a seamless
development process, the service notion must span both logical and deployment
architecture. To satisfy (i) and (ii) we introduce modifications to the UML that
focus on interaction modeling, and the mapping from logical to deployment
service architectures. The result is a novel and comprehensive UML2 profile for
service-oriented systems.

Keywords: Rich Services, Service-oriented Architectures, Web Services,
Model Driven Architectures.

1 Introduction

A major challenge in the development of ultra large scale software intensive systems
is the controlled integration of multiple subsystems, such that the resulting system
fulfills a wide spectrum of integration requirements ranging from authentication to
security to policy management and governance. Web services have proven useful as a
lightweight deployment and implementation mechanism for system integration;
support for many of these integration challenges is, however, still under development
in the Web services community. Furthermore, little guidance exists to date on how to
model and design service-oriented architectures such that they leverage the emerging
standards, such as WS-Security (authentication and security) and WS-BPEL (business
process modeling and execution), as part of an integration solution. However, service-
orientation is quickly gaining ground also in other domains with increasing software
complexity; the automotive domain is one example, where service-orientation is a
declared goal [21] but the deployment architectures are quite removed from a Web
services flavor.

Contributions: This paper addresses this challenge by introducing a UML2 profile
for the specification of service-oriented architectures that can be deployed on a
variety of different object-, component- and service-oriented platforms. In particular,

 A UML2 Profile for Service Modeling 361

to mention two extremes, service-oriented models according to our profile can be
directly mapped not only into a Web service-enabled environment, but also into
purely component-oriented deployment environments such as in automotive or
avionics.

To that end, we develop a modest set of stereotypes with associated structural and
behavioral rules. To address the integration challenges of the system class we target,
we place the interplay of the constituent services in the center of concern. Therefore, a
major means for specifying services in our approach is by means of interaction
diagrams. However, we allow the full set of structural and behavior specification
techniques to describe service interfaces and detailed service behaviors.

Figure 3 shows a generic example of the decomposition of a service-oriented
architecture according to the Rich Services Profile we define in this paper. Intuitively,
the profile introduces services as having an interface to their environment and, if they
are composite, a predefined internal structure. This internal structure is modeled after
two major successful architectural patterns: (1) the emerging Enterprise Service Bus
(ESB) and Message-Oriented Middleware (MOM) technologies, such as the
increasingly popular Mule/ActiveMQ [22] combination; (2) bus-oriented industrial
communication architectures, such as they are found in production plants, cars and
airplanes. The basic idea is that every service consists internally of a messaging
component, a router, and a set of internal services. Any call upon the service (which
we model as a message sent to the service via its Service/Data adapter) is intercepted
by the Router, which – using the Messenger as its communication infrastructure –
exposes the message to a prescribed set of internal services. Each such internal
service can alter or transform the message on its path to its final destination.
Analogously, calls made by the Rich Service are also intercepted by the Router before
they leave via the Service/Data Adapter. This architectural blueprint provides a rich
control framework for service composition.

Benefits: The immediate benefits of this profile are as follows: (i) The concept of
service is introduced as a first-class modeling citizen into the UML – in particular,
service interfaces and service behavior can be modeled using the well-known
description techniques provided by the UML. (ii) The profile defines a structural and
behavioral blueprint for controlled service composition and refinement – each
composite service can define a set of interaction protocols that govern the interplay of
its constituent services, so that the interplay addresses the functional and non-
functional integration requirements. Each service, in turn, can be hierarchically
decomposed according to the same blueprint to support scalability of the modeling
approach. (iii) The distance between a logical service-oriented architecture following
the blueprint and a suitable deployment architecture is minimal, resulting in improved
traceability from requirements to implementation.

Outline: The remainder of this paper is structured as follows. In Section 2, we
introduce the Rich Service Profile in detail by introducing a structural and behavioral
domain model for Rich Services modeled after Figure 3. In particular, we describe the
stereotypes we introduce, their interplay in terms of behavioral constraints, and our
rationale for selecting the design decisions we made. Along the way we also mention
the description techniques available to the engineer in specifying systems according to
the profile. Section 3 presents a case study illustrating both the modeling approach

362 V. Ermagan and I.H. Krüger

enabled by the profile, and the use of the stereotypes; the context of the case study is a
large-scale system-of-systems integration architecture in the domain of ocean
observatories. In Section 4, we discuss our approach in the context of related work.
Section 5 contains our conclusions and outlook.

2 Rich Service Profile

As service-oriented modeling and implementation technologies become more popular,
so does the need for systematically designing large-scale systems of systems
integration solutions based on services. The UML is a common and widely used set of
notations providing visual modeling languages, valuable for modeling, design and
comprehension of requirements and architectural designs. Currently, the UML
supports specific notations for development of object- and component-oriented
software, but to date, no explicit notion of service, as a first class modeling entity, is
defined in the UML.

The profile mechanism has been specifically defined for providing a lightweight
extension mechanism to the UML standard for tailoring UML for various domains or
different target platforms. Stereotypes, tagged values, and constraints are the main
extension mechanisms available in a profile. To complete the previous versions of
UML, the UML2 infrastructure and superstructure specifications have defined the
profile mechanism as a specific meta-modeling technique, where stereotypes are
specific metaclasses, tagged values are metaattributes, and profiles are specific
packages [23]. In this section, we take advantage of the UML2 profile package to
create a profile as a metamodel for complex service-oriented architectures.

The goal of the Rich Service Profile we propose here is to provide a common
language for describing the central aspects of service-oriented systems. This includes
specification of the syntactic and semantic interface of individual services, behavior
specifications for services, service composition, and the mapping of services to
deployment architectures. As mentioned in Section 1, our particular focus is the
controlled aggregation of individual services into composite service architectures,
such that the resulting architecture, by construction, observes a wide spectrum of
crosscutting requirements. The profile we present supports a variety of deployment
platforms for implementation of the modeled service(s) – including traditional web
service-based approaches, emerging Enterprise Service Bus technologies, and general
message-oriented middlewares.

In this section, we utilize the standard mechanism for tailoring the UML, profiles,
to provide the core of a common language supporting the mentioned goals.

The Rich Service Profile references the UML metamodel as its reference model. It
extends Components to specify Rich Services and further constructs, including
Router, Messenger, and Service Interfaces, needed for supporting them. In essence, a
Rich Service serves as a Wrapper around traditional services, including web services,
within an architectural framework that supports hierarchical service decomposition, as
well as addressing composition and integration concerns within and across
hierarchical levels.

The profile also includes collaborations that define the general behavior of the
main entities of the profile. These collaborations serve as guidelines for designers

 A UML2 Profile for Service Modeling 363

who can further refine the general behaviors present in the profile to create a more
detailed deployment model.

In the following subsections, we introduce the stereotypes of the Rich Service
Profile together with the relevant collaborations in detail.

2.1 Rich Service Profile Stereotypes

The stereotypes of the Rich Service Profile and their base classes are described in
Table 1. Figure 1 illustrates the metamodel that the Rich Service Profile provides
using the stereotypes of Table 1.

RichService

1 1

Service/Data Adapter

1*

ServiceSpecification

SimpleRichService CompositeRichService

1
1

Messenger Router

Message RoutingTable

* * 1 *

Channel

RichApplicationService RichInfrastructureService

Registry

type

*

*

1*

*

structure

**

Fig. 1. The Rich Services metamodel

The central entity of the profile is the Rich Service. It serves to model individual
services, as well as their integration into composite services. Intuitively, a Rich
Service consists of the following entities: (1) a Service/Data Adapter, which serves as
the interface of the Rich Service to its environment, (2) a Messenger, which is
responsible for message transmission among the sub-services of a Rich Service, (3) a
Router, which is responsible for intercepting inbound and outbound messages to and
from the Service/Data Adapter and routing these messages through the correct set of
sub-services, and (4) the sub-services themselves, which are also Rich Services that
communicate using the Messenger and Router.

A Rich Service is modeled as a stereotype extending Component from the UML
BasicComponents package. A Rich Service is active, meaning that it has an
associated behavior; it has precisely one externally visible port stereotyped as the
Service/Data Adapter. A Rich Service defines provided and required Service
Specifications. Service Specification stereotypes the Interface from the

364 V. Ermagan and I.H. Krüger

ProtocolStateMachines package and has a tag named Protocol, which is a protocol
state machine that defines the external view of the sequence of operation calls that can
occur on the interface.

Table 1. Stereotypes of the Rich Service Profile

Stereotype Base Class Tags Parent
RichService Component Adapter
SimpleRichService Component RichService
CompositeRichService Component Messenger,

Router
RichService

Messenger Component
Router Component RoutingTable
RoutingTable Class
Channel Class
PublishSubscribe
Channel

Class Channel

PointToPointChannel Class Channel
DataTypeChannel Class Channel
Message NamedElement
Adapter Port (From

ProtocolStateMachines)
Protocol

ServiceSpecification Interface (from
ProtocolStateMachines)

Protocol

Registry Component Publish: (Provided
Interface)

A Rich Service can be simple, meaning that it has no (or, more precisely, a trivial)

internal structure in the sense of entities (2)-(4) mentioned above; it can also be
composite, having an internal structure as follows. A Composite Rich Service has a
Messenger, a Router, and a number of internal Rich Services. Messenger and Router
are stereotypes extending Component. Multiple internal Rich Services can be attached
to the Messenger via ports. Messenger is responsible for Message transmission
between the connected Rich Services and between the Rich Services and the
Service/Data Adapter. Messenger has a number of Channels to implement the
messaging. A Channel is a stereotype extending Class. This allows the profile to
support various types of channels, including Publish_Subscribe Channel, DataType
Channel, and Point_to_point Channel. A Messenger is always associated with a
Router. The Router is responsible for routing the messages through the correct set of
Channels based on its Routing Tables. Routing Table is a stereotype extending Class.
Intuitively, the router is the mechanism that allows us to inject monitoring and
transformation services into a composite service. The idea is that the router intercepts
inbound messages at the Service/Data adapter, before they are accessible to the
internal Rich Services. The router then follows the configuration stored within its
Routing Table to steer the processing of these messages from one internal Rich
Service to another. This mechanism can be used, for instance, to encrypt or decrypt
messages, to log them, to persist them, etc, without the sender being aware of the

 A UML2 Profile for Service Modeling 365

intermediate services. Similarly, outbound messages are exposed to the routing
scheme before they leave the Rich Service via the Service/Data Adapter.

Rich Services can be of two types: Rich Infrastructure Service (RIS), or Rich
Application Service (RAS). Rich Application Services are only aware of the
Messenger, while Rich Infrastructure Services can manipulate the Routing Tables and
therefore have access to the Router. Rich Infrastructure Services are Rich Services
that can directly access the routing tables in order to provide services to the
messaging infrastructure, while Rich Application Services provide application-
specific services to the system. A specific example of a Rich Infrastructure Service is
a Registry where other Rich Services can publish their Service Specification, i.e. their
interfaces including the protocol state machines. The Registry associates Channels to
published Service Specifications; other Rich Services can subscribe to Channels
based on their Service Specifications. The information on subscription of Rich
Services to Channels is kept as part of the Routing Table and the Router is responsible
for routing the messages sent by the provider Rich Service to the subscribing Rich
Services. When a Service/Data Adapter puts a Message on the Messenger, the Router
intercepts the Message and routes it based on the Routing Table information through a
set of Rich Infrastructure and Application Services.

2.2 Behavior

Collaborations are particularly useful as a means for capturing standard design
patterns. Since a Collaboration in UML2 is a kind of classifier, any kind of behavioral
description can be attached to it. By extending Collaborations from the UML2
Collaborations package we can form prototypical collaborations to define behavioral
pattern of some of the Rich Service Profile entities as part of the profile. These
Collaborations can have associated interactions to achieve a more detailed behavior
specification. The Stereotyped Collaborations can be used as guidelines for designers
on how to use and integrate the profile entities to form meaningful system models.

Fig. 2. Communication collaboration

A Communication Collaboration for a Composite Rich Service (see Figure 2) is a
stereotype that has a Messenger, a Router, and multiple Rich Services as its parts
(tags). Every Composite Rich Service instantiates such a collaboration. The bindings
of the collaboration roles to the Rich Service’s parts are trivial due to the shared
names of the roles and Rich Service’s parts. An interaction can be attached to this
collaboration, specifying the behavior of the Router as an interceptor (Smart Proxy

366 V. Ermagan and I.H. Krüger

[29]). Every Rich Service can send a Message to Messenger. The Router works as an
interceptor and picks up the Message, routs it through any specified intermediate Rich
Services before sending it to the destination Rich Service. These intermediate Rich
services can be Rich Infrastructure Services, or they can be other Rich Application
Services. This describes the generic behavior for service composition. A composite
Rich Service implements this behavior via the respective role bindings.

Designers can capture the overall behavior of a Composite Rich Service as an
interaction. Such an interaction will have the internal Rich Services, the Messenger,
and Router as its lifelines. This high level behavior will specify the order in which
Rich Services communicate, and can be used to populate the Routing Table. To
further refine the model behavior, one can use PartDecomposition from the UML2
Interactions package to decompose the internal Rich Services (modeled as lifelines) to
capture the internal behavior of these internal Composite Rich Services. Of course,
the internal behavior is visible from outside the Composite Rich Services only to the
degree it is specified in the corresponding Service/Data Adapter. The Formal Gates on
the decomposed interaction form the interfaces for the Composite Rich Service.

The high level behavior can also be represented as UML2 Protocol State Machines,
which can be further redefined to form the internal behavior of encapsulated
Composite and Simple Rich Services. This allows us to model service behavior with
all the behavior description techniques provided by UML2.

3 Case Study

We demonstrate the utility of the proposed profile and metamodel by using a case
study from the domain of global ocean observatories, namely the federated Ocean
Research Interactive Observatory Networks (ORION) program [24]. This case study
is an elaboration of the ORION-CI conceptual architecture available at [24]. Clearly,
here we can only scratch the surface of the complexity of building an architecture of
the scale of ORION. However, it allows us to show (i) modeling of services and their
integration, (ii) service decomposition, and (iii) the direct deployment mapping from
an instance of the profile to state-of-the art Web services technologies. Along the way
we will also sketch the key steps of our iterative service elicitation and architecture
definition process: (1) model use cases and their relationships, (2) identify the
collaborations, interfaces, and associated integration constraints that define the
services needed to support the use cases, (3) flesh out the service architecture using
Composite and Simple Rich Infrastructure and Application Services as needed,
following the integration requirements elicited in (2), (4) specify behaviors of Simple
Rich Services as needed, or refine them into Composite Rich Services, (5) specify
mapping from the entities in the Rich Service Profile to deployment entities to create
an instance of the architecture. Iterate over (1)-(5) until the desired degree of detail is
reached.

A system satisfying the goals of ORION would support scientific discovery by
providing eligible oceanographers with ubiquitous access to instrument networks for
sensing and actuation, computational resources, and modeling and simulation
facilities, as well as means for distributed data storage and access. A traditional SOA
approach would quickly reach its limits in the face of the challenges induced by the

 A UML2 Profile for Service Modeling 367

diverse requirements of supporting governance of the different authority domains,
access policies, and concerns of the multiple stakeholders involved in such a complex
system-of-systems. To capture the requirements for and manage the complexity of the
resulting cyber-infrastructure we exploit the Rich Service Profile as defined above;
we directly benefit from its disentanglement of logical and deployment architectures
for services because the various subsystems indeed rest on a wide spectrum of
deployment technologies.

<<RIS>>
Encryption

<<Router>> MainRouter

<<Messenger>> MainMessenger

<<RIS>>
Logging

<<RIS>>
Authentication

<<Adapter>>
A-Adapter

<<Router>> O-Router

<<Messenger>> O-Messenger

<<RIS>>
Control

<<Adapter>>
C-adapter

<<RIS>>
Authentication
<<Adapter>>
AO-Adapter

<<RAS>>
Instrument1

<<RAS>>
Observatory

<<Router>> R-Router

<<Messenger>> R-Messenger

<<RIS>>
Encryption
<<Adapter>>
En-adapter

<<RIS>>
Authentication
<<Adapter>>
AR-Adapter

<<RAS>>
Client

<<RAS>>
Research Laboratory

<<RAS>>
Instrument2

<<RAS>>
Storage

<<RAS>>
Scheduler

<<Adapter>>
E-Adapter

<<Adapter>>
L-Adapter

<<Adapter>>
O-Adapter

<<Adapter>>
R-Adapter

<<Adapter>>
I1-adapter

<<Adapter>>
I2-adapter

<<Adapter>>
CR-adapter

Fig. 3. Orion case study model based on our profile

The hierarchical nature of Rich Services supports creating traceable views for
various stakeholders of the system, and a decomposition methodology that supports
operation and distributed management of thousands of independently owned taskable
resources (modeled as services) of various types (e.g., sensors, sensor platforms,
processes, numerical models and simulations) across a core infrastructure operated by
independent stakeholders. This also enables hierarchical structuring of the
stakeholders’ logical roles into the cyber-infrastructure, and encapsulation of
crosscutting concerns according to their individual policies.

Figure 3 represents a possible subset of stakeholders as high-level Rich Services
such as an Observatory and a Research Laboratory. Such a decomposition allows us
to reason about their role in the cyber-infrastructure without dealing directly with
their internal deployment models. Steps (1)-(3): In order to illustrate the steps
involved in modeling such a system based on the proposed profile, we will consider
one use case of the system, namely an oceanographer accessing a remote ocean
instrument and retrieving the experimental data from the instrument. As a requirement
for this use case, all of the conversations between an oceanographer and an instrument

368 V. Ermagan and I.H. Krüger

must be logged. The oceanographer and instrument are parts of different authority
domains, each with its own set of requirements and policies. At a very high level
view, we can abstract from the Adapters and concentrate on the communication
between Rich Services. The use case can be modeled as a Communicate collaboration
(see Figure 2) use where Research Laboratory and the Observatory play the roles of
Rich Services, and the Messenger and the Router play their respective roles.

Fig. 4. Observatory-Research Laboratory Collaboration with Logging

To enforce the logging requirement, however, we create a logging collaboration, as
it can be reused for other use cases of the system as well. The Logging collaboration
has two Rich Application Service roles: RAS1 and RAS2, and a Logging Rich
Infrastructure Service. It specifies that every message sent by RAS1 to the Messenger
will be sent by the Router to the Logging role and then to the RAS2, through the same
Messenger. An interaction diagram can be used to express the sequence of
interactions for this collaboration in more detail. Now, we can create a new
collaboration for our use case that uses the Logging collaboration to capture the
communication of the Observatory and the Research Laboratory. This collaboration is
shown in Figure 4. In order to capture the detailed behavior of this collaboration we
use a UML interaction diagram shown in Figure 5.

In this interaction, the Research Laboratory, Observatory, Router, and Messenger
are captured as lifelines, because they are connectable elements (parts) of their
container, i.e. the Rich Service modeling the overall system. The Research Laboratory
sends the request to the Messenger, destined for the Observatory. The Router
intercepts this communication, sending the request to the Logging Rich Service, also
via the Messenger. After being processed by the Logging service, the Router routes
the request to the final destination, the Observatory. Note that by using UML
interactions, we can further impose time and duration constraints on the occurrences
of partial interactions. This interaction model captures the essential behavior of the
system to fulfill the use case and its integration requirements and constraints.

 A UML2 Profile for Service Modeling 369

Client:RAS :Messenger :Router Encryption:RIS :Adapter

m1(ch1)
m1(ch1)

m1(ch2)
m1(ch2)

m2(ch3)

m2(ch3)

Fig. 5. Interaction diagram for the Observatory-Research Laboratory collaboration

Step (4) - behavior specification and refinement: The Research Laboratory itself is
a composite Rich Service and may have many internal services such as oceanographer
client service, identification, authentication, and encryption of the outbound
messages. The identification and the management of the remote Instrument also
concerns another stakeholder, as the Instrument is located deeper in the hierarchy of
the Observatory, and within the local control domain of a Regional Cabled
Observatory near the seashore. We can use PartDecomposition from the UML
Interactions package, which is a new concept added in UML2, to further decompose
the model capturing the interactions occurring between the internal parts (Rich
Services) of each of these composite Rich Services. As an example, Figure 6 shows
how the Oceanographer Client’s outgoing requests should be intercepted by the
internal Router and processed by the Encryption Rich Service before reaching the
Adapter, which acts as a gateway for outbound messages.

Observatory:RAS :Messenger :Router Logging:RISResearchLaboratory:RAS

m1(ch1) m1(ch1)

m1(ch2)

m1(ch2)

m1(ch3)

m1(ch3)

m1(ch4)m1(ch4)

Fig. 6. Research Laboratory internal interaction for Encryption

Note that the only formal gates for the internal interactions of a composite Rich
Service exist on the Adapter lifeline of the interaction. Following the semantics of the
PartDecomposition, these formal gates must match the actual gates on the
decomposed lifeline in the higher level interaction. Together these gates define the
partial interfaces of the composite Rich Service. The union of the gates of the

370 V. Ermagan and I.H. Krüger

composite Rich Service from all the interactions that it participates in will form the
complete interface of this service. Since these gates are expressed as parts of the
interactions, partial or global protocol state machines can be assigned to their union in
the interface, giving a richer definition of the service.

Also note that PartDecomposition is used to model a form of service composition
where the participating services are parts of the same composite Rich Service.
Sanders et al. [14] propose a methodology for modeling and specifying service
composition using UML2 collaborations. They also use interaction overviews, and
state machines to specify the collaboration behavior in further details. Such an
approach, being based on UML2, fits well with our Rich Service Profile and can be
used to model service composition. Service composition can be addressed in a
centralized way by adding a coordinating Rich Service that will orchestrate the
participating services and with the help of the Router/Interceptor. BPEL4WS is the
standard choice for such an approach if the Web Services is the target domain.
Service composition can also be addressed in a distributed way, where choreography
based languages such as WSCL or WS-CDL can be used when targeting the Web
Services domain. Rich Services support these composition approaches while their
encapsulation and hierarchy guide developers to focus on one hierarchical level at a
time[28].

Step (5) – deployment mapping: A possible deployment plan for such a system
might include classic Web services or a more general Enterprise Service Bus (ESB)-
based technology. ESBs combine the strengths of message-oriented middleware; a
flexible plugin architecture for processing messages to handle crosscutting concerns
for a set of connecting Rich Services; and a rich set of data adapters/connectors to
facilitate rapid connections between emerging and legacy data sources, applications
and services. Examples of ESB implementations include Architect's Toolbox, Cape
Clear's ESB, Fiorano ESB, Sonic ESB, SpiritSoft's Spiritwave, and CodeHaus’ Mule.
For instance, a web service based target platform, might consider WSDL as the
Adaptor and Service Interface description. Also conversion rules described in [15] for
converting UML models to WDSL can be used. Leveraging the many technologies
supported by an ESB, including Mule as transport mechanisms, an Adaptor can
publish itself via JMS, HTTP, SOAP, etc. Also, in this example we have abstracted
from the Registry services, assuming that the binding is hard-coded into the Routing
Tables, which are actually a feature of the ESB itself. Since the Registry is modeled
as a Rich Service, the same modeling approach can be used for the interactions
including a Registry, which can be mapped to a UDDI service as a target technology.
This example shows how the Rich Service Profile allows specification of a service-
oriented architecture at both the logical and the deployment level, using the
description techniques already included in UML2. Because it disentangles logical and
deployment aspects of services, the profile lends itself to the modeling of complex
service architectures with heterogeneous deployment infrastructures.

4 Discussion and Related Work

Model driven design and development of systems is a well-established practice [19].
However, model driven approaches to service-oriented design of systems are still in

 A UML2 Profile for Service Modeling 371

their early stages. Although UML [23] is a commonly used and widely accepted
modeling language, it still has no explicit support for services and their auxiliary
constructs. The work presented here leverages the experience we have gained in
earlier research, where we have built a comprehensive Service Architecture Definition
Language (Service-ADL) with services as first-class modeling citizens [25], and
makes these concepts accessible within the UML. In particular, this allows us to also
carry over the interaction modeling, behavior synthesis, and architecture exploration
techniques we have built for Service-ADL into the UML context [1] [2].
Several other attempts exist to use existing UML constructs to model service-oriented
applications. [3] uses UML class diagrams to design a general model for service-
oriented architectures (SOAs) and uses collaboration diagrams and graph
transformation rules for dynamic architecture reconfigurations. [4] proposes use of
UML 2.0 collaboration diagrams for modeling web service collaboration protocols
along with activity and interaction diagrams as more detailed modeling levels. Kim
[26] investigates how UML diagrams can be used to graphically specify collaboration
protocols with an automated mapping to BPSS. UMM [27] provides rich set of UML-
based modeling concepts for business to business collaboration protocols and
methodological guidance to move from requirements gathering to implementation
design. All of these approaches suggest the use of UML modeling techniques for
SOA modeling. Our work complements these efforts by embedding an explicit
metamodel for SOAs into the UML.

Profiles, as the only lightweight means for extending UML, were leveraged in
many approaches to address the lack of support for services. All of these profiles are
based on UML 1.x, while the changes from previous UML versions to UML 2.0 have
important benefit and impact on service modeling, which is leveraged in our Rich
Service Profile. Electronic Services are proposed in [5] as services that are enriched
with content and provision. A UML profile for Electronic Service Management
Systems [5] is created as a framework for representing operational logic of e-services,
providing a conceptual infrastructure for e-services development and management.
However, ESMS does not address the business definition and engineering of services.
The Enterprise Collaboration Architecture (ECA) defined as part of the UML profile
for distributed object computing (EDOC) [6] provides a comprehensive framework
for modeling of enterprise systems, while still no explicit notion for services exists in
this profile. UML activity models are recommended for service composition modeling
in this profile. A metamodel for WSDL is proposed in [8] along with a mapping to
UML. Our Rich Service Profile, while based on UML 2.0, has explicit notions for
services and adds an architectural pattern to service modeling, while it maps well to
currently used Web services technologies, such as WSDL, UDDI and BPEL. For
instance, we can use BPEL specifications not only for individual services, but also for
the interaction model of composite Rich Services, and then derive the corresponding
routing and interaction constraints from these specifications. Gardner [7] describes a
UML profile for automated business processes and a mapping of the profile to
BPEL4WS. He uses UML activity graphs for specifying the business processes. This
profile can be used along with the Rich Service Profile if a mapping of the model to
BPEL as a target technology is desired. The profile proposed in [20] is based on
UML2. It models services as first class elements; however, as mentioned before, the
Rich Services Profile goes beyond by adding a scalable architectural pattern enabling

372 V. Ermagan and I.H. Krüger

the managed integration of multiple existing service composition and coordination
approaches.

In the web services domain, there are several other approaches such as [9]
suggesting the use of activities from UML to model web service composition, while
[10] proposes a service composition model based on UML class diagrams. Thöne et
al. [11] create a UML profile for web service composition and propose the
UML_WSC language as a replacement for BPEL4WS. A different approach to
service composition leverages rich ontologies that describe service characteristics. For
example, the Semantic Web [12] community uses semantic annotations to reason
about Web services by using languages such OWL-S [13]. In our Rich Service
Profile, services are enriched by having hierarchies and following the specific
architectural pattern as part of the metamodel. The use of a Router as an interceptor
allows for modeling dynamic reconfiguration at runtime, if needed. Specifically, we
can model a wide range of service composition operators, including sequencing,
alternatives, repetitions, and parallelism, by means of the Routing Table of the
composing Rich Service. More complex operators, such as the ones modeling
interrupts, or service synchronization can be modeled using the Routing Table in
conjunction with an additional Rich Infrastructure Service that monitors and manages
the composition result. Service interfaces are already augmented by suggesting the
addition of protocol state machines on them as part of the metamodel, and the profile
has the capability of exposing richer interfaces and communication reconfiguration at
run time, thereby enabling the use of ontology-based composition techniques.

Work on Web Services composition has highlighted its tight coupling with
interaction modeling. [16] explores the use of Message Sequence Charts (MSC) to
define interactions. [17], for example, presents a tool that transforms MSC to BPEL
specifications to allow Web services composition. We leverage similar techniques to
compose Rich Services. Toward this goal we have already experimented with the
definition and composition of services based on MSC in [18].

5 Conclusions and Outlook

Service-oriented modeling and implementation are the centerpieces of modern
system-of-systems integration approaches. Web services and related technology
standards address many important issues of service deployment. The modeling of
service-oriented integration architectures, independently from Web Services
deployments, however, is still an area of active research and experimentation. To date
there is no widely accepted modeling language for that purpose – specifically, the
UML2 proper has not assigned “first-class modeling status” to the notion of service.

In this paper, we have identified the need for having an interaction-based,
hierarchical service model that disentangles logical architecture from deployment
concerns. We have introduced an UML2 profile for Rich Services. Rich Services
introduce an explicit integration architecture, consisting of a messaging and routing
component, which allows controlled composition of the internal sub-services that
implement a service’s behavior. This provides support for a wide spectrum of service
composition operators and allows the designer to manage crosscutting aspects of an
integration task – examples are: encryption, governance, and policy management.

 A UML2 Profile for Service Modeling 373

Furthermore, the hierarchic decomposition of Rich Services allows us to scale service
models to any desired level of detail. Using a systems-of-systems integration
challenge from the domain of oceanography, we have demonstrated utility of the
profile, as well as the direct mapping of Rich Service models to current Web Service-
based technologies.

By construction, we leverage all of the UML’s description techniques for system
specifications based on our profile; tailoring these description techniques further to
address dynamic architecture changes, as they are supported by our profile, is one
interesting area of future work.

Acknowledgments. Our work was partially supported by the NSF within the project
“ITR: Collaborative Research: Looking Ahead: Designing the Next Generation
Cyber-infrastructure to Operate Interactive Ocean Observatories” (award OCE/GEO
#0427924), as well as by funds from the California Institute for Telecommunications
and Information Technology (Calit2). We are grateful to the anonymous reviewers for
insightful comments.

References

1. Deubler, M., Krüger, I., Meisinger, M., Rittmann, S.: Modeling Crosscutting Services with
UML Sequence Diagrams. In: Briand, L.C., Williams, C. (eds.) MoDELS 2005. LNCS,
vol. 3713, pp. 522–536. Springer, Heidelberg (2005)

2. Ermagan, V., Krueger, I., Menarini, M.: Towards Model-Based Failure-Management for
Automotive Software. In: Proceedings of the ICSE 2007 Workshop on Software
Engineering for Automotive Systems (SEAS) (2007)

3. Baresi, L., Heckel, R., Thöne, S., Varró, D.: Modeling and validation of service-oriented
architectures: application vs. style. In: Proceedings of the 11th ACM SIGSOFT
Symposium on Foundations of Software Engineering 2003, ESEC/FSE, pp. 68–77 (2003)

4. Kramler, G., Kapsammer, E., Kappel, G., Retschitzegger, W.: Towards Using UML 2 for
Modelling Web Service Collaboration Protocols. In: Proceedings of the First International
Conference on Interoperability of Enterprise Software and Applications (INTEROP-
ESA’05) (2005)

5. Piccinelli, G., Emmerich, W., Williams, S., Stearns, M.: A Model-Driven Architecture for
Electronic Service Management Systems. In: Proceeding of International Conference on
Service Oriented Computing, pp. 241–255 (2003)

6. Enterprise Collaboration Architecture: (ECA) Specification. Version 1.0. formal/04-02-01
(February 2004), http://www.omg.org/docs/formal/04-02-01.pdf

7. Gardner, T.: UML Modelling of Automated Business Processes with a Mapping to
BPEL4WS. In: Cardelli, L. (ed.) ECOOP 2003. LNCS, vol. 2743, Springer, Heidelberg
(2003)

8. Bézivin, J., Hammoudi, S., Lopes, D., Jouault, F.: Applying MDA Approach for Web
Service Platform. In: Proceedings 8th International Enterprise Distributed Object
Computing, pp. 58–70 (2004)

9. Skogan, D., Gronmo, R., Solheim, I.: Web Service Composition in UML. In: Proceedings
of the 8th IEEE Intl Enterprise Distributed Object Computing Conference (EDOC), IEEE
Computer Society Press, Los Alamitos (2004)

374 V. Ermagan and I.H. Krüger

10. Orriëns, B., Yang, J., Papazoglou, M.: Model Driven Service Composition. In: Orlowska,
M.E., Weerawarana, S., Papazoglou, M.M.P., Yang, J. (eds.) ICSOC 2003. LNCS,
vol. 2910, pp. 75–90. Springer, Heidelberg (2003)

11. Thöne, S., Depke, R., Engels, G.: Process-Oriented, Flexible Composition of Web Services
with UML. In: Proceedings of the International Conference on Conceptual Modeling
(Workshops), pp. 390–401 (2002)

12. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American 284(5),
34–43 (2001)

13. OWL-S: Semantic Markup for Web Services (2004), http://www.w3.org/Submission/
OWL-S/

14. Sanders, R., Castejón, H., Kraemer, F., Bræk, R.: Using UML 2.0 Collaborations for
Compositional Service Specification. In: Proceedings of the 8th International Conference
of Model Driven Engineering Languages and Systems, pp. 460–475 (2005)

15. Gronmo, R., Skogan, D., Solheim, I., Oldevik, J.: Model-driven Web services
development. In: EEE’04, pp. 42–45. IEEE, Los Alamitos (2004)

16. Krüger, I.H.: Distributed System Design with Message Sequence Charts, Ph.D.
dissertation, Technische Univer-sität München (2000)

17. Foster, H., Uchitel, S., Magee, J., Kramer, J.: Tool support for model-based engineering of
Web service compositions. In: ICWS 2005, pp. 95–102. IEEE, Los Alamitos (2005)

18. Broy, M., Krüger, I.H., Meisinger, M.: A Formal Model of Services. ACM Transactions
on Software Engineering and Methodology (TOSEM) 16(1), 5 (2007)

19. Mellor, S., Clark, A., Futagami, T.: Special Issue on Model-Driven Development. IEEE
Software 20(5) (2003)

20. IBM: UML 2.0 Profile for Software Services, http://www-128.ibm.com/developerworks/
rational/library/05/419_soa/

21. Krüger, I.H., Nelson, E.C., Prasad, K.V.: Service-Based Software Development for
Automotive Applications. In: Proceedings of the CONVERGENCE 2004. Convergence
Transportation Electronics Association (2004)

22. http://mule.mulesource.org/wiki/display/MULE/Home
23. Object Management Group: UML 2.1.1 Superinfrastructure version 07-02-03,

http://www.omg.org/cgi-bin/doc?formal/07-02-05
24. ORION Program Cyber Infrastructure, http://www.orionprogram.org/organization/

committees/ciarch/
25. Ermagan, V., Huang, T.-J., Krüger, I., Meisinger, M., Menarini, M., Moorthy, P.: Towards

Tool Support for Service-Oriented Development of Embedded Automotive Systems. In:
Proceedings of the Dagstuhl Workshop on Model-Based Development of Embedded
Systems (MBEES’07), Informatik-Bericht 2007-01 (2007)

26. Kim, H.: Conceptual Modeling and Specification Generation for B2B Business Process
based on ebXML. In: SIGMOD Record vol. 31

27. Hofreiter, B., Huemer, C., Naujok, D.: UN/CEFACT’s Buisness Collaboration
Framework- Motivation and Basic Concepts. In: Proceedings of the MKWI (2004)

28. Arrott, M., Demchak, B., Ermagan, V., Farcas, C., Farcas, E., Krüger, I.H., Menarini, M.:
Rich Services: The Integration Piece of the SOA Puzzle. In: Proceedings of the IEEE
International Conference on Web Services (ICWS), Salt Lake City, Utah, IEEE Computer
Society Press, Los Alamitos (2007)

29. Hohpe, G., Woolf, B.: Enterprise Integration Patterns: Designing, Building, and Deploying
Messaging Solutions. Addison-Wesley, Reading (2003)

	A UML2 Profile for Service Modeling
	Introduction
	Rich Service Profile
	Rich Service Profile Stereotypes
	Behavior

	Case Study
	Discussion and Related Work
	Conclusions and Outlook
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

