
Reconciling TGGs with QVT

Joel Greenyer and Ekkart Kindler

University of Paderborn, Department of Computer Science,
33100 Paderborn, Germany

Abstract. The Model Driven Architecture (MDA) is an approach to develop
software based on different models. There are separate models for the business
logic and for platform specific details. Moreover, code can be generated
automatically from these models. This makes transformations a core technology
for MDA. QVT (Query/View/Transformation) is the transformation technology
recently proposed for this purpose by the OMG.

TGGs (Triple Graph Grammars) are another transformation technology
proposed in the mid-nineties, used for example in the FUJABA CASE tool. In
contrast to many other transformation technologies, both QVT and TGGs
declaratively define the relation between two models. With this relation
definition, a transformation engine can execute a transformation in both
directions and, based on the same definition, can also propagate changes from
one model to the other.

In this paper, we compare the concepts of QVT and TGGs. It turns out that
TGGs and QVT have many concepts in common. In fact, fundamental parts of
QVT-Core can be implemented by a TGG transformation engine. Moreover, we
discuss how both technologies could profit from each other.

Keywords: MDA, model based software engineering, model transformation,
model synchronization, Query/View/Transformation (QVT), Triple Graph
Grammar (TGG).

1 Introduction

In the recent years, several approaches to model based software engineering have
been proposed. One of the most prominent approaches is the Model Driven
Architecture (MDA) of the OMG [1]. The main idea of all these approaches is that
software should no longer be programmed, but developed by a stepwise refinement
and extension of models. In the MDA, the focus is on separating the models for the
business logic and for platform and implementation specific details. In the end, the
code can be generated from these models. This makes technologies for transforming,
integrating, and synchronizing models a core technology within model based software
engineering.

Today, there are many different technologies for transforming one model into
another. Most of these technologies are defined in a more or less operational way; i.e.
they basically define instructions how the elements from the source model must be

{jgreen,kindler}@upb.de

G. Engels et al. (Eds.): MoDELS 2007, LNCS 4735, pp. 16–30, 2007.
© Springer-Verlag Berlin Heidelberg 2007

transformed into elements of the target model. This implies that forward and
backward transformations between two models are defined more or less
independently of each other. Moreover, the operational definition of a transformation
makes it very hard to verify its correctness. By contrast, QVT1 (Query/View/
Transformation) [2] and TGGs (Triple Graph Grammars) [3] allow us to declaratively
define the relation between two or more models. Such a declarative definition of a
relation can be used by a transformation engine in different ways which we call
application scenarios: Firstly, there are the forward and backward transformations of
one model into another. Secondly, once we have transformed one model into another,
the engine can keep track of changes in either model and propagate those changes to
the other model and change it accordingly. This is called model synchronization and
is one of the most crucial application scenarios in round-trip engineering. Since QVT
and TGGs have only a single definition of the relation between two classes of models,
inconsistencies among the different transformation scenarios are avoided.

QVT is the transformation technology recently proposed by the OMG for the
MDA. Actually, QVT has different parts: There are declarative and operational
languages. Here, we focus on QVT-Core, which forms the basic infrastructure of the
declarative part of QVT. TGGs were introduced in the mid-nineties, and are now used
in the FUJABA Tool Suite, which is a CASE tool supporting round-trip engineering.
TGGs are at the core of FUJABA, for transforming back and forth between UML
diagrams and Java code [4]. Another implementation of TGGs exists in the MOFLON
tool set [5]. In addition to being declarative, QVT-Core and TGGs have many
concepts in common and – upon closer investigation – have striking similarities. In
this paper, we investigate these similarities for several reasons. Firstly, the common
concepts of QVT-Core and TGGs identify the essential concepts of a declarative
approach toward specifying the relationship between two classes of models.
Secondly, the analysis shows that QVT-Core can be mapped to the concepts of TGGs
so that QVT-Core can be implemented by an engine for executing TGG
transformations. This mapping was worked out in a master thesis [6] and is briefly
discussed in this paper. Thirdly, the differences between QVT and TGGs are
analyzed and we discuss how both technologies can benefit from the concepts
provided by the other technology. This will help to improve both transformation
technologies – in particular this could provide valuable input for QVT as a standard.

This paper is structured as follows: Section 2 introduces the main concepts of QVT
and TGGs with the help of an example. Section 3 identifies the similar concepts and
shows how QVT can be mapped to TGGs, which provides an implementation of QVT
based on a TGG engine. Section 4 gives a more detailed comparison of the
philosophical, conceptual, and technical differences between QVT and TGGs.

2 QVT and TGG Transformation Rule Examples

In the following, we introduce QVT and TGG transformation rules along a small
example. The example is picked from the ComponentTools project where component-

1 Actually, QVT has different ways for defining transformations. Here, we refer to QVT-Core
only, which is the basic infrastructure of the declarative part of QVT.

 Reconciling TGGs with QVT 17

based material-flow systems can be designed and analyzed by the help of formal
methods [7]. For instance, transportation or manufacturing systems can be designed
by placing and connecting components, such as tracks, switches and stoppers, inside a
project. Then, the project and its interconnected components are transformed into a
formal model, for example a Petri net. Figure 1 shows how two connected Tracks in a
Project should be transformed into a corresponding Petri net: A Track is represented
by a Place, an Arc, and a Transition. The Connection simply corresponds to an Arc.

Fig. 1. An example of how two connected tracks are mapped to the corresponding Petri net

Figure 2 shows the way a rule can express how model structures correspond to
each other. Here, it is specified that a Track relates to the particular Petri net construct
in a certain context. The required context here is an existing relation between the
parent model elements, the Project and the Petri net.

Fig. 2. A rule expressing the relation of model structures

Such rules, which express the relation between model structures, can be classified
as relational rules and both QVT and TGG rules follow this archetype. Note that such
relations can also be expressed between more than two models [8]. However, for
simplicity, we focus on relations between only two models in this paper. The
advantage of such rules over other transformation approaches is that they can be
applied in different ways. They can be used to bidirectionally transform models, to
check if two given models are equivalent, or, after an initial transformation, to
incrementally propagate changes made in one model to the other. But, the rules do not
describe operationally how to transform models. They are declarative and it is up to a
transformation engine to make them operational.

For example, transforming a ComponentTools Project into its corresponding Petri
net would involve the following steps. Firstly, an axiom or start rule is needed to map
the Project root model object to a Petri net root model object. This provides the

18 J. Greenyer and E. Kindler

context necessary to apply the rule shown in Figure 2. The application of the above
rule is visualized in Figure 3: For every Track in the Project, the corresponding Place-
Arc-Transition-construct is created in the Petri net.

Fig. 3. Two rule applications in the example transformation

The model structures which are newly created during such rule applications
provide the context for applying further rules. For example, a further rule would now
be involved to transform the Connection between the components.

After introducing the concepts of relational rules and how they are used for model
transformation, the following subsections will inspect the details of QVT and TGGs.

2.1 QVT-Core Mappings

The QVT specification defines two declarative transformation languages which form
two layers of abstraction. Firstly, there is the more abstract and more user friendly
QVT-Relations. QVT-Relations is then mapped to a more concrete language, QVT-
Core, for which the semantics for performing transformations is defined in more
detail. Although the concepts of QVT-Relations and its mapping to QVT-Core are
very interesting, this paper focuses on QVT-Core, because it is the foundation of the
declarative QVT and structurally more similar to TGGs.

In both QVT-Relations and QVT-Core, model patterns are described by OCL
expressions. Although there is no graphical syntax specified for QVT-Core, Figure 4
illustrates the QVT-Core representation of the example rule from Figure 2 in a
graphical way. Instead of using the concrete syntax of components and Petri nets, the
model patterns are now shown in a notation similar to object diagrams. Each object
node shown here represents an OCL variable. In the following, the terms variable and
node are used interchangeably.

A single transformation rule in QVT-Core as shown here is called a mapping. The
patterns in a mapping are structured in three columns2, called areas, each consisting
of a guard pattern and a bottom pattern. The bottom patterns represent the model
elements which are actually brought into relationship by this mapping. The guard
patterns specify the context which is required for this relation to hold. The outer
columns, which contain the patterns belonging to the different involved models, are
called the domain areas. In this example, the ComponentTools domain is abbreviated
as ctools and the Petri net domain is abbreviated as pnet.

2 There can be more columns in QVT-Core to specify relations between more than two models.

 Reconciling TGGs with QVT 19

Fig. 4. A QVT-Core example rule

The center column, called the mapping area, contains additional elements, which
embody the mapping of the involved domain patterns. In particular, there is one3
mapping node in the middle-bottom pattern of a rule, which references all nodes in
the domain-bottom patterns. In the course of a transformation, these “mapping nodes”
are instantiated and keep track of the corresponding model structures. These objects
are therefore called trace objects. In the rule, we will refer to those “mapping nodes”
also as trace nodes or trace variables. In addition to the middle-bottom pattern, the
middle-guard pattern can contain an arbitrary number of trace nodes, depending on
the complexity of the context specified by this mapping.

Next, we have a look at the textual representation of this mapping, which is shown
in Listing 1. First of all, we see the two domain areas represented by “check
ctools” and “check enforce pnet”. The keywords check and enforce
determine whether the model patterns should just be matched in an existing model or
whether model elements should also be created when they are missing. So, the
mapping as shown below can just be applied in certain application scenarios, also
called application modes: The rule can be applied to transform from a ctools model
to a pnet model, but not backwards. Furthermore, if the ctools and pnet models
both exist, the rule can check for a valid correspondence between the models. In
particular, the enforce-keyword denotes that parts of the pnet model, which do not
correspond to the ctools model, can be altered to establish a valid correspondence.

The domain areas are then structured in the way that the guard pattern is specified
inside the parentheses following the domain identifier and the bottom pattern is
specified in braces. The domain-guard patterns are fairly simple in this example, since
they each contain just a single variable. But, in the bottom pattern, we see how the
variable declaration is followed by a number of OCL expressions. These expressions
describe the model structure, i.e. how the model objects should be referencing each
other. Additionally, we see that there are two constraints formulated regarding a
“type”-string of the Track's ports. In this example, these constraints are necessary to
determine the in-Port and out-Port of the Track. For simplicity, these constraints were
not reflected in the rule's graphical representation in Figure 4.

3 QVT-Core is not restricted to just one mapping node in the bottom pattern of a rule.
However, the QVT specification does not seem to intend the use of more than one.

20 J. Greenyer and E. Kindler

Listing 1. The QVT-Core example rule in its textual notation

map TrackToPlaceArcTransition{
 check ctools(project:Project){
 track:Track, portIn:Port, portOut:Port|
 track.project = project; track.port = portIn; track.port = portOut;
 portIn.type = “in”; portOut.type = “out”;
 }
 check enforce pnet(petrinet:Petrinet){
 realize place:Place, realize arc:Arc, realize trans:Transition|
 arc.arcToPetrinet := petrinet; arc.arcToPlace := place;
 arc.arcToTransition := trans; place.placeToPetrinet := petrinet;
 trans.transitionToPetrinet := petrinet;
 }
 where(t1:TProjectToPetrinet|
 t1.project=project,t1.petrinet=petrinet){
 realize t2:TTrackToPlaceArcTransition|
 t2.track := track; t2.inPort := inPort; t2.outPort := outPort;
 t2.place := place; t2.arc := arc; t2.transition := trans;
 }
}

Looking at the bottom pattern of the enforceable pnet domain, we see some
differences to the previous domain. Firstly, we see that the variables are marked as
realizable. This means that, when missing, they can be created when the rule is
applied. Secondly, we see that the OCL expressions contain an assignment symbol :=
instead of a normal equals symbol. Since OCL is just a language to formulate
constraints and queries, QVT introduces additional operations, called assignments, to
assign reference or attribute values to model objects.

The mapping area is specified in the where-section. Here, we see the trace
variables of the guard and bottom pattern. The expressions in these patterns specify
how they reference the variables in the domain areas.

2.2 TGG Rules

The actual idea of Triple Graph Grammars (TGGs) is to specify how two types of
graphs relate to each other. Because software models can be considered graphs, this
theory can be applied to models as well. We assume that we have two types of graphs
given and their structure is specified by (single) graph grammars. Then, TGG rules
allow us to specify how these single graph grammar rules structurally correspond to
each other. This correspondence is expressed by inserting a third graph grammar,
where the nodes provide a mapping by referencing the nodes in the other two graph
grammars. This is illustrated in Figure 5 for the example rule from Figure 2. The
generation of graphs through the simultaneous application of these corresponding
graph grammars always results in structurally corresponding graphs.

 Reconciling TGGs with QVT 21

Fig. 5. The three graph grammar rules in a Triple Graph Grammar rule

Now, this formalism can be used to transform one graph into another. This is
achieved by parsing an existing graph with the graph grammar on one side of the
TGG. Then, during this process, the other graph grammar and the correspondence
grammar of the TGG are applied to create the target graph and the correspondence
graph. Another application of TGGs is to check two given graphs for their
correspondence by parsing the two graphs simultaneously with the particular graph
grammars in the TGG rules. In this process, the correspondence graph is built up and,
in the end, represents the detailed correspondence of the nodes in the two graphs.

TGG rules are structurally very similar to QVT-Core rules. Figure 6 shows a
collapsed representation of the above TGG rule. This collapsing is possible, because
TGGs use only non-deleting graph grammars. This means that every element on the
left-hand (top) side of the rule also appears on the right-hand (bottom) side. Note that
we also introduced two attribute value constraints which were not present in Figure 7.

Fig. 6. A TGG example rule

Similar to QVT, there are three columns. The two columns containing the ctools
and pnet patterns are called the domains. In fact, TGGs can also relate more than
two models and may thus also be called Multi Graph Grammars (MGGs) [8]. In
TGGs, the mapping nodes are called correspondence nodes and the middle column is
therefore called the correspondence domain.

22 J. Greenyer and E. Kindler

One difference between the above QVT-Core mappings and the TGG rules is that
TGG rules have a graphical syntax. In Figure 4, we have just visualized the pattern
structure made up by the OCL expressions in the QVT-Core rule. A TGG rule, in
contrast, actually consists of nodes, representing the model objects, and edges,
representing the references between these objects. Additionally, TGG rules may
specify the attribute values of objects with attribute value constraints, as expressed by
the rounded boxes containing labels attached to the nodes. Similar to QVT, OCL
expressions can also be used for this purpose to specify literal values or values
calculated from attribute values somewhere in the involved models.

After illustrating the structural similarities of QVT-Core and TGGs, the following
section shows how the constructs of QVT-Core can be mapped to TGGs. The
semantics of these rules are also very similar due to the fact that both QVT and TGGs
are relational rules as illustrated in Figure 2. Remaining issues concerning slight
differences in the semantics, or rather philosophies, are discussed in Section 4.

3 Mapping QVT to TGGs

As we have seen in the previous section, there are some apparent similarities between
QVT-Core and TGGs. Therefore, a mapping can be specified from QVT-Core to
TGGs. The full details have been worked out and implemented in a master thesis [6].
In the following, we informally describe the major steps of this mapping.

In the previous section, we observed that a variable in QVT-Core is essentially the
same as a node in TGGs. Both a variable and a node are typed by a class in one of the
involved models. Actually, in the redesigned TGG model proposed in [6], TGG nodes
are also variables in terms of OCL, because the nodes should be reused as variables in
OCL expressions as shown in Figure 6. Secondly, expressions which specify the
reference values of objects in QVT are mapped to edges in TGGs. This holds for both
OCL equality expressions, as track.port=portIn, and for assignments in an
enforceable domain, as arc.arcToPlace:=place. Note that in TGGs, there is
no distinction between an expression which is enforceable and one which is not. It is
up to the transformation engine to decide the enforcement in a particular
transformation scenario – but, we will come back to that in Section 4.

The overall structure of a single rule in QVT-Core is also quite similar to the
structure of a TGG rule. The QVT-Core domain areas are mapped to TGG domain
sides and, accordingly, the mapping area is mapped the correspondence column of a
TGG. Then, the guard and bottom patterns in QVT-Core mappings are mapped to
TGGs in such a way that the variables in the guard pattern of a QVT-Core mapping
are mapped to such nodes in the TGG rule, which belong to the right-hand and the
left-hand side. Variables which belong to the bottom pattern in the QVT-Core rule are
mapped to nodes which belong to the right-hand side of the TGG rule only.

 Reconciling TGGs with QVT 23

T T

Fig. 7. Mapping the constructs of QVT and TGG transformation rules

24 J. Greenyer and E. Kindler

Before designing a set of rules in QVT or TGGs, we need to specify a general
transformation setting. This setting consists of references to the packages of the
domain models involved in the transformation as well as the package of the
correspondence or trace model. In the redesign of the TGG model proposed in [6],
this description of a transformation setting was adopted from what is called the QVT-
Base package in QVT. Therefore, technically, there is a one-to-one mapping at this
level between QVT and TGGs.

We have actually specified the above mapping from QVT-Core to TGGs by a set
of TGG rules. So, we use TGGs to transform QVT-Core mappings into TGG rules
and, thus, we can perform model transformations specified in QVT-Core. One
example of such a QVT-Core-to-TGG rule is shown in Figure 8. Here, a variable in
the guard-pattern of a QVT-Core mapping is related to a node which belongs to the
right-hand side and left-hand side pattern of a TGG rule. It is made sure that the QVT
variable and TGG node belong to the correct domain column by referring to the
corresponding CoreDomain and DomainGraphPattern in the context of the rule.

However, we do not explain the details of this rule, but rather illustrate the steps
required to actually implement this transformation. Firstly, to create and transform
QVT and TGG rules, both a QVT and TGG metamodel is needed. Because there are
yet no implemented metamodels of the declarative QVT languages available, we
implemented them anew, according to the QVT specification. A TGG metamodel and
transformation engine was available from the ComponentTools project [9]. However,
due to insights gained during the comparison of TGGs with QVT, we decided to
conduct a redesign and reimplementation of the TGG technology. For the
implementation, we chose the modeling framework of the Eclipse platform, EMF
[10], as a basis. For one reason, The ComponentTools project and its TGG technology
was already based on EMF. Another argument for using EMF is that it provides many
useful features and that there are many interesting projects now based on EMF. One
particularly interesting project is the Graphical Modeling Framework, GMF [11],
where graphical editors can be generated from EMF models. Figure 8 actually shows
a screenshot of a TGG rule in the generated graphical GMF-editor.

Fig. 8. Mapping the constructs of QVT and TGG transformation rules

Our TGG engine supports the interpretation of the TGG rules and is thus also
called TGG interpreter. The integration of OCL is not yet completed, so that for now,
only simple attribute value constraints are supported.

The transformation from TGGs back to QVT-Core is only possible under certain
conditions. The backward mapping works if, firstly, we can assume that QVT-Core
supports multiple trace variables in the bottom pattern. Secondly, because TGG rules
do not specify if any domain is enforceable or not, the resulting QVT-Core would
need to consider every domain area to be enforceable. A backward mapping from
QVT to TGGs could nevertheless be interesting to evaluate advantages or
disadvantages between the TGG interpreter and upcoming implementations of QVT-
Relations or QVT-Core.

4 Comparing Concepts of QVT and TGGs

In the previous sections, we have discussed the basic concepts of QVT and TGGs. In
this section, we relate the concepts of QVT and TGGs and discuss how the concepts
of both technologies could benefit from each other.

The starting point of our work was that there are striking similarities and analogies
between QVT and TGGs. We have seen in Section 3 that the basic structure of QVT
and TGGs coincide and the rough meaning of these concepts are the same. But, there
are some more or less significant differences, on the technical, the conceptual, and the
philosophical level. Firstly, we discuss some philosophical differences. Then we
compare the definitions of the semantics and some conceptual differences. In the end,
we discuss some advanced features.

 Reconciling TGGs with QVT 25

4.1 Philosophical Differences

We start with a discussion of two philosophical differences between QVT and TGGs.
Firstly, there is a difference in how a QVT mapping and a TGG rule are read: QVT
mappings are read in the direction from “bottom to top”, whereas TGG rules are read
from “top to bottom”. In particular, this means that, in QVT-Core, we first have a
look at the bottom patterns of the mapping, which must match on both domains when
the guard pattern also match. The semantics of a TGG rules is defined in the other
direction. We start with matching the left-hand side (top part) of the rule; only when a
match is found, the right-hand side of both domains (bottom part) is considered. Of
course, the real execution of a TGG rule is driven by the existing parts of a model
(and the application scenario); but, conceptually and in the implementation, TGG
rules are applied from top to bottom. Though, this might appear as a minor issue, it
reflects a different way of thinking of QVT mappings and of TGG rules. In particular,
this is reflected in the fact that QVT-Core may have mappings with empty guard
patterns, which means that they do not need a particular context to be applied. These
mappings can be used to provide the initial bindings, which serve as context for the
application of further mappings. The counterpart of such QVT start mappings in
TGGs is the axiom, which provides the start context for applying further rules in
TGGs. The difference is that QVT can start with several start mappings in different
parts of the model, whereas the matching of a TGG always starts with a single axiom.

Secondly, there is a fundamental difference in the way QVT and TGGs are applied
in a concrete transformation scenario. In QVT, the application scenario, i.e. whether
we perform a consistency check only or a transformation in one direction or the other,
is partly encoded in the QVT mappings. The directives check and enforce within a
QVT mapping state in which domain patterns will be created, deleted, or modified.
Therefore, the QVT mappings are written with an application scenario in mind. By
contrast, TGG rules do not refer to the application scenario. The same set of TGG
rules can be used for checking consistency, for transformations in either direction, as
well as for synchronizing both models after they have been changed independently of
each other. The benefit is that we have a single set of TGG rules with the same
semantics for all application scenarios—the only thing changing is the application
scenario itself. This guarantees that the models are and remain consistent with respect
to the single TGG specification, even when switching the application scenario.

This second philosophical difference has an important implication. In QVT, there
is no explicit scenario which synchronizes two models that have been changed
independently of each other. This can be achieved only by two subsequent
incremental transformations in both directions4. By contrast, TGGs can be interpreted
to synchronize two models in both directions in a single run at the same time.

4.2 Semantical Comparison

In Section 4.1, we have discussed the philosophical differences between QVT and
TGGs already. Next, we ask a more technical question concerning the semantics of

4 Actually, most of today's synchronization technologies use this approach; they incrementally
transform the changes of one model into the other and vice versa subsequently.

26 J. Greenyer and E. Kindler

QVT and TGGs. Let us assume that we have two models which are in the relation
specified by the QVT mappings, resp. TGG rules. Now, we have a set of applications
of these rules which prove that the models are in relation. Then, each variable or node
is mapped or bound to the actual model elements. Now, let us consider these bindings
in the opposite direction.

In TGGs, every object in the two models has exactly one binding to a creating
node of an applied TGG rule (i.e. an application of a TGG rule where the node occurs
on the right-hand side of this rule only). This results from the definition of the
semantics of TGG rules which generates legal pairs of corresponding models.
Conceptually, these pairs of models are defined by generating pairs of corresponding
models starting from the axiom by applying some TGG rules: This way, both models
are generated simultaneously. In the end, each object of the two generated models
corresponds to exactly one creating node (right-hand side only) in an application of a
TGG rule and vice versa. For more details, see [12]. In practical cases, however, we
may want to describe only the relation between parts of the models. Therefore, the
TGG rules will cover only these relevant parts and the rest of the models will be
ignored. In these cases, there is exactly one binding of the relevant model objects to a
creating node of an application of a TGG rule and there is no such binding for a
model object which is not considered by the TGG.

The QVT standard, in contrast, does not make it clear whether there is at most one
binding of each model object to a variable in a bottom pattern of exactly one
application of a QVT mapping. Some explanations in the standard as well as the
examples suggest that this is true and, thus, the interpretation seems to be very similar
to the TGG interpretation. But, the mathematical formalization does not guarantee
that. However, under the assumption that, at least for enforced variables, QVT also
implies such a one-to-one correspondence between the relevant objects of the model
and variables in the bottom patterns, the semantics of QVT-Core mappings can be
mapped to TGG rules as discussed in Section 3. We consider this an open issue and a
final justification of this assumption will have to be discussed.

This assumption is however supported by other considerations which concern
verification. As pointed out in [13] and proved in a case study [14], TGGs can be used
for verifying the semantical correctness of models that are transformed by TGGs.
This kind of verification is possible, because of the one-to-one semantics of TGGs,
which nicely reflects the definition of a semantics in SOS-style (structural operational
semantics).

4.3 Conceptual Differences

In addition to the philosophical differences, there are some conceptual differences
between QVT and TGGs. But, we will see that these can be easily aligned.

Though there is a graphical notation for QVT, QVT is conceptually more closely
related to defining a set of variables and the definition of relations among these
variables. These relations are defined in terms of OCL expressions and assignments.
This makes QVT very flexible and expressive—due to the expressive power of OCL.
By contrast, TGGs are graphical in nature and originate from the realm of graph
grammars and graph transformations. A model is considered as a graph with typed

 Reconciling TGGs with QVT 27

nodes and edges between them. On the one hand, this results in a simple, precise and
intuitive semantics (see Section 4.2); on the other hand, this imposes some
restrictions. Some restrictions have been overcome by introducing different kinds of
expressions to different variants of TGGs. Most of these extensions are
straightforward, but not quite in the spirit of TGGs. However, inspired by QVT, we
have shown how to introduce OCL constraints to TGGs without spoiling the “spirit of
TGGs” and their graphical nature [12]. By equipping TGGs with OCL constraints, the
essence of a relation between two models can be specified in a graphical way; still the
expressive power of OCL is at hand when necessary. In particular, we do not need to
distinguish between (querying) expressions and assignments in TGGs.

As mentioned above, QVT has the concepts of check and enforce. In fact, these
keywords occur in two quite different ways in the QVT specification. So they actually
constitute two different concepts. The first concepts defines the mode of application,
i.e. it defines whether the mapping should be interpreted as a consistency check, or as
a transformation in different directions, or as a synchronization. In TGGs, we call this
the application scenario. So, mode and application scenario are just two different
names for essentially the same concept. In QVT, however, check and enforce also
occur within a mapping—with a similar but still different meaning. Some areas can be
marked with check and enforce. The idea of check and enforce in this context is
that, during a transformation, an existing object of a model can be reused in such a
mapping. Only if this object does not exist, it will be created. This increases the
efficiency in transformations where parts of models already exist. Though there are
many different extensions of TGGs, the basic form of TGGs does not have such a
concept of reusable nodes. A node is either required (when it occurs on the left-hand
side of the rule) or it is created (when it occurs on the right-hand side only). Based on
the practical experience with TGGs and inspired by QVT, we have introduced a
concept of reusable nodes to TGGs. There meaning is that these nodes can be reused
if a node with the required properties already exists. Note that reusable nodes in
TGGs do allow to reuse nodes, but they do not require their reuse. If we want to force
the reuse of a node, this needs to be specified by additional global constraints, which
will be explained shortly. Altogether, the concept of check and enforce of QVT can
be expressed in TGGs by the concepts of reusable nodes and global constraints.
Since reusable elements are identified on the level of individual nodes, TGGs can
express this concepts on a finer level of granularity.

As mentioned above, we also introduced the concept of global constraints to
TGGs. A global constraint allows us to enforce that a node with specific properties
exists at most once in a model. This way, the reuse of a node can be enforced. Note
that a global constraint is very similar to the concept of keys of QVT-Relations, which
is used to uniquely identify an object by some of its attributes. This guarantees that a
transformation does not generate duplicates of objects that have the same key.

A last difference between QVT and TGG is of technical nature: QVT was
proposed in the context of the MDA. Therefore, QVT is defined based on MOF and
uses the underlying concepts. TGGs were introduced long before the existence of
MOF, and there are different implementations for different technologies—
independently from MOF. But, there are implementations based on the Eclipse
Modeling Framework (EMF), which in turn is an implementation of MOF.

28 J. Greenyer and E. Kindler

4.4 Advanced Features

In addition to the differences discussed above, there are some advanced features of
QVT and TGGs that are briefly discussed here.

First of all, QVT-Core allows to nest mappings within mappings. According to the
QVT-Specification [2], this nesting of mappings helps to avoid inefficient and iterated
deletion and creation of objects. Thus, nested mappings do not increase the expressive
power of QVT mappings, but do increase the efficiency of their application. By
contrast, it is not suitable to adopt the concept of nested rules to TGG rules. As
pointed out before, this would not increase the expressive power, but only the
efficiency. Efficiency, however, is an implementation matter. In TGGs, efficiency
might be achieve in a simpler way, due to the top down interpretation from a single
start context. Still, TGGs can be designed in such way that an implementation works
efficiently. One of the main concerns for efficiency is to reduce the size of each
individual TGG rule (because applying a rule basically means applying a graph-
matching algorithm between this rule and the models).

A useful feature in QVT-Core is the refinement of rules by others, similar to
inheritance in object orientation. This is a feature which is not yet present in TGGs.
We feel that this is useful for better maintaining sets of TGGs and for making them
more understandable. But, this can be built on top of the concepts of TGGs and it is
not necessary to make this a core feature of TGGs.

As pointed out earlier, TGGs allow many different correspondence nodes in a
single TGG rule. In QVT is seems to be possible to use more than one trace node in
the bottom pattern, but it does not seem to be strongly encouraged. In TGGs, multiple
correspondence nodes allow us to keep track of relations between individual model
elements in a very detailed way. This helps to design TGG rules in a local way, which
in turn results in simpler and smaller TGG rules. We identified examples where this
clearly reduces the number and size of rules. In this way, multiple correspondence
nodes compensate the efficiency of nested mappings in QVT. But, they do more: they
also help us to design clearer and better understandable TGG rules.

5 Conclusion

In this paper, we have discussed the similarities of QVT and TGGs. Due to the similar
structure and concepts, QVT mappings can be transformed into TGG rules. This way,
a TGG engine can execute transformations specified in QVT-Core.

In addition, we have discussed the differences in the philosophy and concepts
between QVT and TGGs. This improves our understanding of how model
transformations and model synchronizations work with relational rules. The insights
gained here have inspired the extension of TGGs and might provide valuable input for
QVT as a standard. The goal is to have a clear and simple semantics to support a
straightforward employment of model transformation technologies and to facilitate
the use of validation and verification techniques.

Furthermore, it could be interesting to inspect the relation between QVT-Relations
and TGGs. QVT-Relations provides more structure in order to simplify and better
organize a set of transformation rules We believe that this could result in some

 Reconciling TGGs with QVT 29

 . concepts on top of TGGs, which could improve the comprehensibility of TGGs. Also
we believe that there are additional concepts needed for the efficient synchronization
of models, which go beyond transforming back and forth. This will need a closer
investigation in the future.

References

30 J. Greenyer and E. Kindler

1. Object Management Group (OMG): Model Driven Architecture - A Technical Perspec-
tive (July 2001) (last accessed 2nd of April 2007), http://www.omg.org/docs/
ormsc/01-07-01.pdf

2. Object Management Group (OMG): MOF QVT Final Adopted Specification (Novem-
ber 2005) (last accessed 2nd of April 2007), http://www.omg.org/docs/ptc/
05-11-01.pdf

3. Schürr, A.: Specification of Graph Translators with Triple Graph Grammars. In: Mayr, E.W.,
Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, Springer, Heidelberg (1995)

4. Wagner, R.: Developing Model Transformations with Fujaba. In: Proceedings of the 4th In-
ternational Fujaba Days 2006, Bayreuth, Germany, pp. 79–82 (September 2006)

5. The MOFLON Tool Set (last accessed 30th of June 2007), http://www.moflon.org
6. Greenyer, J.: A Study of Model Transformation Technologies - Reconciling TGGs with

QVT. University of Paderborn, Department of Computer Science, Master/Diploma thesis
(July 2006)

7. Gepting, A., Greenyer, J., Kindler, E., Maas, A., Munkelt, S., Pales, C., Pivl, T., Rohe, O.,
Rubin, V., Sander, M., Scholand, A., Wagner, C., Wagner, R.: Component Tools: A vision for
a tool. In: Kindler, E. (ed.) Algorithmen und Werkzeuge für Petrinetze (AWPN) - Algorithms
and Tools for Petri nets. Proceedings of the Workshop AWPN, September 30th, October 1st
2004, pp. 37–42 (2004)

8. Königs, A., Schürr, A.: MDI - a Rule-Based Multi-Document and Tool Integration Approach
Special Section on Model-based Tool Integration in Journal of Software&System Modeling.
Academic Press, San Diego (2006)

9. Rohe, O.: Model Transformation by Interpreting Triple Graph Grammars: Evaluation and
Case Study. Bachelor thesis, University of Paderborn (January 2006)

10. The Eclipse Project: The Eclipse Modeling Framework (last accessed 2nd of April 2007),
http://www.eclipse.org/emf/

11. The Eclipse Project: The Graphical Modeling Framework (last accessed 2nd of April 2007),
http://www.eclipse.org/gmf/

12. Kindler, E., Wagner, R.: Triple Graph Grammars: Concepts, Extensions, Implementations,
and Application Scenarios. Technical Report, University of Paderborn, Department of Com-
puter Science (June 2007)

13. Giese, H., Glesner, S., Leitner, J., Schäfer, W., Wagner, R.: Towards Verified Model Trans-
formations. In: MoDeV2a. Proceedings of the 3rd International Workshop on Model Devel-
opment, Validation and Verification, Genova, Italy, pp. 78–93. Le Commissariat à l’Energie
Atomique - CEA (October 2006)

14. Leitner, J.: Verifikation von Modelltransformationen basierend auf Triple Graph Gram-
matiken. Diploma thesis, University of Karlsruhe/TU Berlin (March 2006)

	Reconciling TGGs with QVT
	Introduction
	QVT and TGG Transformation Rule Examples
	QVT-Core Mappings
	TGG Rules

	Mapping QVT to TGGs
	Comparing Concepts of QVT and TGGs
	Philosophical Differences
	Semantical Comparison
	Conceptual Differences
	Advanced Features

	Conclusion
	References

