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Abstract. The Model Driven Architecture (MDA) is an approach to develop 
software based on different models. There are separate models for the business 
logic  and  for  platform  specific  details.  Moreover,  code  can  be  generated 
automatically from these models. This makes transformations a core technology 
for MDA. QVT (Query/View/Transformation) is the transformation technology 
recently proposed for this purpose by the OMG.

TGGs (Triple Graph Grammars) are another transformation technology 
proposed in the mid-nineties, used for example in the FUJABA CASE tool. In 
contrast  to  many  other  transformation  technologies,  both  QVT  and  TGGs 
declaratively  define  the  relation  between  two  models.  With  this  relation 
definition,  a  transformation  engine  can  execute  a  transformation  in  both 
directions and, based on the same definition, can also propagate changes from 
one model to the other.

In this paper, we compare the concepts of QVT and TGGs. It turns out that 
TGGs and QVT have many concepts in common. In fact, fundamental parts of 
QVT-Core can be implemented by a TGG transformation engine. Moreover, we 
discuss how both technologies could profit from each other.

Keywords:  MDA, model based software engineering,  model transformation, 
model  synchronization,  Query/View/Transformation  (QVT),  Triple  Graph 
Grammar (TGG).

1   Introduction

In the recent years,  several approaches to  model based software engineering have 
been  proposed.  One  of  the  most  prominent  approaches  is  the  Model  Driven 
Architecture (MDA) of the OMG [1]. The main idea of all these approaches is that 
software should no longer be programmed, but developed by a stepwise refinement 
and extension of models. In the MDA, the focus is on separating the models for the 
business logic and for platform and implementation specific details. In the end, the 
code can be generated from these models. This makes technologies for transforming, 
integrating, and synchronizing models a core technology within model based software 
engineering.

Today,  there  are  many  different  technologies  for  transforming  one  model  into 
another. Most of these technologies are defined in a more or less operational way; i.e. 
they basically define instructions how the elements from the source model must be 
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transformed  into  elements  of  the  target  model.  This  implies  that  forward  and 
backward  transformations  between  two  models  are  defined  more  or  less 
independently of each other. Moreover, the operational definition of a transformation 
makes  it  very  hard  to  verify  its  correctness.  By  contrast,  QVT1 (Query/View/ 
Transformation) [2] and TGGs (Triple Graph Grammars) [3] allow us to declaratively 
define the relation between two or more models. Such a declarative definition of a 
relation  can  be  used by a  transformation engine  in  different  ways which  we call 
application scenarios: Firstly, there are the forward and backward transformations of 
one model into another. Secondly, once we have transformed one model into another, 
the engine can keep track of changes in either model and propagate those changes to 
the other model and change it accordingly. This is called model synchronization and 
is one of the most crucial application scenarios in round-trip engineering. Since QVT 
and TGGs have only a single definition of the relation between two classes of models, 
inconsistencies among the different transformation scenarios are avoided.

QVT is  the  transformation  technology recently  proposed  by  the  OMG for  the 
MDA.  Actually,  QVT  has  different  parts:  There  are  declarative  and  operational 
languages. Here, we focus on QVT-Core, which forms the basic infrastructure of the 
declarative part of QVT. TGGs were introduced in the mid-nineties, and are now used 
in the FUJABA Tool Suite, which is a CASE tool supporting round-trip engineering. 
TGGs are at the core of FUJABA, for transforming back and forth between UML 
diagrams and Java code [4]. Another implementation of TGGs exists in the MOFLON 
tool  set  [5].  In  addition  to  being  declarative,  QVT-Core and  TGGs  have  many 
concepts in common and – upon closer investigation – have striking similarities. In 
this paper, we investigate these similarities for several reasons. Firstly, the common 
concepts  of  QVT-Core and  TGGs identify  the  essential  concepts  of  a  declarative 
approach  toward  specifying  the  relationship  between  two  classes  of  models. 
Secondly, the analysis shows that QVT-Core can be mapped to the concepts of TGGs 
so  that  QVT-Core can  be  implemented  by  an  engine  for  executing  TGG 
transformations. This mapping was worked out in a master thesis  [6] and is briefly 
discussed  in  this  paper.   Thirdly,  the  differences  between  QVT  and  TGGs  are 
analyzed  and  we  discuss  how  both  technologies  can  benefit  from  the  concepts 
provided  by  the  other  technology.  This  will  help  to  improve  both  transformation 
technologies – in particular this could provide valuable input for QVT as a standard.

This paper is structured as follows: Section 2 introduces the main concepts of QVT 
and TGGs with the help of an example. Section 3 identifies the similar concepts and 
shows how QVT can be mapped to TGGs, which provides an implementation of QVT 
based  on  a  TGG  engine.  Section 4 gives  a  more  detailed  comparison  of  the 
philosophical, conceptual, and technical differences between QVT and TGGs.

2   QVT and TGG Transformation Rule Examples

In the following, we introduce QVT and TGG transformation rules  along a small 
example. The example is picked from the ComponentTools project where component-

1 Actually, QVT has different ways for defining transformations. Here, we refer to QVT-Core 
only, which is the basic infrastructure of the declarative part of QVT.
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based material-flow systems can be designed and analyzed by the help of  formal 
methods [7]. For instance, transportation or manufacturing systems can be designed 
by placing and connecting components, such as tracks, switches and stoppers, inside a 
project. Then, the project and its interconnected components are transformed into a 
formal model, for example a Petri net. Figure 1 shows how two connected Tracks in a 
Project should be transformed into a corresponding Petri net: A Track is represented 
by a Place, an Arc, and a Transition. The Connection simply corresponds to an Arc.

Fig. 1. An example of how two connected tracks are mapped to the corresponding Petri net

Figure  2 shows the way a rule can express how model structures correspond to 
each other. Here, it is specified that a Track relates to the particular Petri net construct 
in a certain context.  The required context here is  an existing relation between the 
parent model elements, the Project and the Petri net.

Fig. 2. A rule expressing the relation of model structures

Such rules, which express the relation between model structures, can be classified 
as relational rules and both QVT and TGG rules follow this archetype. Note that such 
relations can also be expressed between more than two models [8].  However,  for 
simplicity,  we  focus  on  relations  between  only  two  models  in  this  paper.  The 
advantage of  such rules  over  other  transformation approaches  is  that  they can be 
applied in different ways. They can be used to bidirectionally transform models, to 
check  if  two  given  models  are  equivalent,  or,  after  an  initial  transformation,  to 
incrementally propagate changes made in one model to the other. But, the rules do not 
describe operationally how to transform models. They are declarative and it is up to a 
transformation engine to make them operational.

For example, transforming a ComponentTools Project into its corresponding Petri 
net would involve the following steps. Firstly, an axiom or start rule is needed to map 
the  Project  root  model  object  to  a  Petri  net  root model  object.  This  provides  the 
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context necessary to apply the rule shown in Figure 2. The application of the above 
rule is visualized in Figure 3: For every Track in the Project, the corresponding Place-
Arc-Transition-construct is created in the Petri net.

Fig. 3. Two rule applications in the example transformation

The  model  structures  which  are  newly  created  during  such  rule  applications 
provide the context for applying further rules. For example, a further rule would now 
be involved to transform the Connection between the components.

After introducing the concepts of relational rules and how they are used for model 
transformation, the following subsections will inspect the details of QVT and TGGs.

2.1   QVT-Core Mappings

The QVT specification defines two declarative transformation languages which form 
two layers of abstraction. Firstly, there is the more abstract and more user friendly 
QVT-Relations. QVT-Relations is then mapped to a more concrete language, QVT-
Core,  for  which  the  semantics  for  performing  transformations  is  defined  in  more 
detail. Although the concepts of QVT-Relations and its mapping to QVT-Core are 
very interesting, this paper focuses on QVT-Core, because it is the foundation of the 
declarative QVT and structurally more similar to TGGs. 

In  both  QVT-Relations  and  QVT-Core,  model  patterns  are  described  by  OCL 
expressions. Although there is no graphical syntax specified for QVT-Core, Figure 4 
illustrates  the  QVT-Core  representation  of  the  example  rule  from  Figure  2 in  a 
graphical way. Instead of using the concrete syntax of components and Petri nets, the 
model patterns are now shown in a notation similar to object diagrams. Each object 
node shown here represents an OCL variable. In the following, the terms variable and 
node are used interchangeably.

A single transformation rule in QVT-Core as shown here is called a mapping. The 
patterns in a mapping are structured in three columns2, called areas, each consisting 
of a  guard pattern and a  bottom pattern. The bottom patterns represent the model 
elements which are actually brought into relationship by this mapping. The guard 
patterns  specify the context  which is  required for  this  relation to  hold.  The outer 
columns, which contain the patterns belonging to the different involved models, are 
called the domain areas. In this example, the ComponentTools domain is abbreviated 
as ctools and the Petri net domain is abbreviated as pnet.

2 There can be more columns in QVT-Core to specify relations between more than two models.
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Fig. 4. A QVT-Core example rule

The center column, called the mapping area, contains additional elements, which 
embody the mapping of  the involved domain patterns.  In  particular,  there is  one3 
mapping node in the middle-bottom pattern of a rule, which references all nodes in 
the domain-bottom patterns. In the course of a transformation, these “mapping nodes” 
are instantiated and keep track of the corresponding model structures. These objects 
are therefore called trace objects. In the rule, we will refer to those “mapping nodes” 
also as  trace nodes or  trace variables. In addition to the middle-bottom pattern, the 
middle-guard pattern can contain an arbitrary number of trace nodes, depending on 
the complexity of the context specified by this mapping.

Next, we have a look at the textual representation of this mapping, which is shown 
in  Listing  1.  First  of  all,  we  see  the  two  domain  areas  represented  by  “check 
ctools”  and  “check enforce pnet”.  The  keywords  check and  enforce 
determine whether the model patterns should just be matched in an existing model or 
whether  model  elements  should  also  be  created  when  they  are  missing.  So,  the 
mapping as shown below can just be applied in certain application scenarios, also 
called application modes: The rule can be applied to transform from a ctools model 
to a pnet model, but not backwards. Furthermore, if the ctools and pnet models 
both exist,  the rule can check for  a  valid  correspondence between the models.  In 
particular, the enforce-keyword denotes that parts of the pnet model, which do not 
correspond to the ctools model, can be altered to establish a valid correspondence.

The domain areas are then structured in the way that the guard pattern is specified 
inside  the  parentheses  following  the  domain  identifier  and  the  bottom  pattern  is 
specified in braces. The domain-guard patterns are fairly simple in this example, since 
they each contain just a single variable. But, in the bottom pattern, we see how the 
variable declaration is followed by a number of OCL expressions. These expressions 
describe the model structure, i.e. how the model objects should be referencing each 
other.  Additionally,  we  see  that  there  are  two  constraints  formulated  regarding  a 
“type”-string of the Track's ports. In this example, these constraints are necessary to 
determine the in-Port and out-Port of the Track. For simplicity, these constraints were 
not reflected in the rule's graphical representation in Figure 4.

3 QVT-Core  is  not  restricted  to  just  one  mapping  node  in  the  bottom  pattern  of  a  rule. 
However, the QVT specification does not seem to intend the use of more than one.
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Listing 1. The QVT-Core example rule in its textual notation

map TrackToPlaceArcTransition{
  check ctools(project:Project){
    track:Track, portIn:Port, portOut:Port|
    track.project = project; track.port = portIn; track.port = portOut;
    portIn.type = “in”; portOut.type = “out”;
  }
  check enforce pnet(petrinet:Petrinet){
    realize place:Place, realize arc:Arc, realize trans:Transition|
    arc.arcToPetrinet := petrinet; arc.arcToPlace := place;
    arc.arcToTransition := trans; place.placeToPetrinet := petrinet;
    trans.transitionToPetrinet := petrinet;
  }
  where(t1:TProjectToPetrinet|
    t1.project=project,t1.petrinet=petrinet){
    realize t2:TTrackToPlaceArcTransition|
    t2.track := track; t2.inPort := inPort; t2.outPort := outPort;
    t2.place := place; t2.arc := arc; t2.transition := trans;
  }
}

Looking  at  the  bottom pattern  of  the  enforceable  pnet domain,  we see  some 
differences to the previous domain. Firstly, we see that the variables are marked as 
realizable.  This  means  that,  when  missing,  they  can  be  created  when  the  rule  is 
applied. Secondly, we see that the OCL expressions contain an assignment symbol := 
instead  of  a  normal  equals  symbol.  Since  OCL  is  just  a  language  to  formulate 
constraints and queries, QVT introduces additional operations, called assignments, to 
assign reference or attribute values to model objects.

The  mapping  area  is  specified  in  the  where-section.  Here,  we  see  the  trace 
variables of the guard and bottom pattern. The expressions in these patterns specify 
how they reference the variables in the domain areas.

2.2   TGG Rules

The actual idea of Triple Graph Grammars (TGGs) is to specify how two types of 
graphs relate to each other. Because software models can be considered graphs, this 
theory can be applied to models as well. We assume that we have two types of graphs 
given and their structure is specified by (single) graph grammars. Then, TGG rules 
allow us to specify how these single graph grammar rules structurally correspond to 
each other.  This correspondence is  expressed by inserting a third graph grammar, 
where the nodes provide a mapping by referencing the nodes in the other two graph 
grammars.  This is illustrated in Figure  5 for the example rule from Figure  2. The 
generation of  graphs through the  simultaneous  application  of  these  corresponding 
graph grammars always results in structurally corresponding graphs.
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Fig. 5. The three graph grammar rules in a Triple Graph Grammar rule

Now,  this  formalism can be used to  transform one graph  into another.  This  is
achieved by  parsing an existing graph with the graph grammar on one side of the
TGG. Then, during this process, the other graph grammar and the correspondence
grammar of the TGG are applied to  create the target graph and  the correspondence
graph.  Another  application  of  TGGs  is  to  check  two  given  graphs  for  their
correspondence by parsing the two graphs simultaneously with the particular graph
grammars in the TGG rules. In this process, the correspondence graph is built up and,
in the end, represents the detailed correspondence of the nodes in the two graphs.

TGG rules  are  structurally  very  similar  to  QVT-Core  rules.  Figure  6 shows a
collapsed representation of the above TGG rule. This collapsing is possible, because
TGGs use only non-deleting graph grammars. This means that every element on the
left-hand (top) side of the rule also appears on the right-hand (bottom) side. Note that
we also introduced two attribute value constraints which were not present in Figure 7.

Fig. 6. A TGG example rule

Similar to QVT, there are three columns. The two columns containing the ctools
and pnet patterns are called the  domains. In fact, TGGs can also  relate more than
two models  and  may thus also be called Multi  Graph Grammars (MGGs)  [8].  In
TGGs, the mapping nodes are called correspondence nodes and the middle column is
therefore called the correspondence domain.
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One difference between the above QVT-Core mappings and the TGG rules is that 
TGG rules have a graphical syntax. In Figure  4, we have just visualized the pattern 
structure made up by the OCL expressions in the QVT-Core rule. A TGG rule, in 
contrast,  actually  consists  of  nodes,  representing  the  model  objects,  and  edges, 
representing  the  references  between  these  objects.  Additionally,  TGG  rules  may 
specify the attribute values of objects with attribute value constraints, as expressed by 
the rounded boxes containing labels attached to the nodes.  Similar  to QVT, OCL 
expressions  can  also  be  used  for  this  purpose  to  specify  literal  values  or  values 
calculated from attribute values somewhere in the involved models.

After illustrating the structural similarities of QVT-Core and TGGs, the following 
section  shows  how  the  constructs  of  QVT-Core  can  be  mapped  to  TGGs.  The 
semantics of these rules are also very similar due to the fact that both QVT and TGGs 
are  relational  rules  as  illustrated  in  Figure  2.  Remaining  issues  concerning  slight 
differences in the semantics, or rather philosophies, are discussed in Section 4.

3   Mapping QVT to TGGs

As we have seen in the previous section, there are some apparent similarities between 
QVT-Core  and TGGs.  Therefore,  a  mapping can  be  specified from QVT-Core  to 
TGGs. The full details have been worked out and implemented in a master thesis [6]. 
In the following, we informally describe the major steps of this mapping.

In the previous section, we observed that a variable in QVT-Core is essentially the 
same as a node in TGGs. Both a variable and a node are typed by a class in one of the 
involved models. Actually, in the redesigned TGG model proposed in [6], TGG nodes 
are also variables in terms of OCL, because the nodes should be reused as variables in 
OCL expressions as  shown in  Figure  6. Secondly,  expressions  which  specify  the 
reference values of objects in QVT are mapped to edges in TGGs. This holds for both 
OCL equality expressions, as  track.port=portIn, and for assignments in an 
enforceable domain, as  arc.arcToPlace:=place. Note that in TGGs, there is 
no distinction between an expression which is enforceable and one which is not. It is 
up  to  the  transformation  engine  to  decide  the  enforcement  in  a  particular 
transformation scenario – but, we  will come back to that in Section 4.

The overall  structure of  a  single rule in QVT-Core is  also quite  similar to  the 
structure of a TGG rule. The QVT-Core domain areas are mapped to TGG domain 
sides and, accordingly, the mapping area is mapped the correspondence column of a 
TGG. Then, the guard and bottom patterns in QVT-Core mappings are mapped to 
TGGs in such a way that the variables in the guard pattern of a QVT-Core mapping 
are mapped to such nodes in the TGG rule, which belong to the right-hand and the 
left-hand side. Variables which belong to the bottom pattern in the QVT-Core rule are 
mapped to nodes which belong to the right-hand side of the TGG rule only.
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Fig. 7. Mapping the constructs of QVT and TGG transformation rules
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Before designing a set of rules in QVT or TGGs, we need to specify a general 
transformation  setting.  This  setting  consists  of  references  to  the  packages  of  the 
domain  models  involved  in  the  transformation  as  well  as  the  package  of  the 
correspondence or trace model. In the redesign of the TGG model proposed in  [6], 
this description of a transformation setting was adopted from what is called the QVT-
Base package in QVT. Therefore, technically, there is a one-to-one mapping at this 
level between QVT and TGGs.

We have actually specified the above mapping from QVT-Core to TGGs by a set 
of TGG rules. So, we use TGGs to transform QVT-Core mappings into TGG rules 
and,  thus,  we  can  perform  model  transformations  specified  in  QVT-Core.  One 
example of such a QVT-Core-to-TGG rule is shown in Figure 8. Here, a variable in 
the guard-pattern of a QVT-Core mapping is  related to a node which belongs to the 
right-hand side and left-hand side pattern of a TGG rule. It is made sure that the QVT 
variable  and TGG node belong to  the correct  domain column by referring to  the 
corresponding CoreDomain and DomainGraphPattern in the context of the rule.

However, we do not explain the details of this rule, but rather illustrate the steps 
required to actually implement this transformation. Firstly, to create and transform 
QVT and TGG rules, both a QVT and TGG metamodel is needed. Because there are 
yet  no  implemented  metamodels  of  the  declarative  QVT languages  available,  we 
implemented them anew, according to the QVT specification. A TGG metamodel and 
transformation engine was available from the ComponentTools project [9]. However, 
due to insights gained during the comparison of TGGs with QVT, we decided to 
conduct  a  redesign  and  reimplementation  of  the  TGG  technology.  For  the 
implementation,  we chose the modeling framework of  the Eclipse platform,  EMF 
[10], as a basis. For one reason, The ComponentTools project and its TGG technology 
was already based on EMF. Another argument for using EMF is that it provides many 
useful features and that there are many interesting projects now based on EMF. One 
particularly  interesting  project  is  the  Graphical  Modeling  Framework,  GMF  [11], 
where graphical editors can be generated from EMF models. Figure 8 actually shows 
a screenshot of a TGG rule in the generated graphical GMF-editor.



Fig. 8. Mapping the constructs of QVT and TGG transformation rules

Our TGG engine supports the  interpretation of  the TGG rules  and is  thus also 
called TGG interpreter. The integration of OCL is not yet completed, so that for now, 
only simple attribute value constraints are supported.

The transformation from TGGs back to QVT-Core is only possible under certain 
conditions. The backward mapping works if, firstly, we can assume that QVT-Core 
supports multiple trace variables in the bottom pattern. Secondly, because TGG rules 
do not specify if any domain is enforceable or not, the resulting QVT-Core would 
need to consider every domain area to be enforceable. A backward mapping from 
QVT  to  TGGs  could  nevertheless  be  interesting  to  evaluate  advantages  or 
disadvantages between the TGG interpreter and upcoming implementations of QVT-
Relations or QVT-Core.

4   Comparing Concepts of QVT and TGGs

In the previous sections, we have discussed the basic concepts of QVT and TGGs. In 
this section, we relate the concepts of QVT and TGGs and discuss how the concepts 
of both technologies could benefit from each other.

The starting point of our work was that there are striking similarities and analogies 
between QVT and TGGs. We have seen in Section 3 that the basic structure of QVT 
and TGGs coincide and the rough meaning of these concepts are the same. But, there 
are some more or less significant differences, on the technical, the conceptual, and the 
philosophical  level.  Firstly,  we  discuss  some  philosophical  differences.  Then  we 
compare the definitions of the semantics and some conceptual differences. In the end, 
we discuss some advanced features.
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4.1   Philosophical Differences

We start with a discussion of two philosophical differences between QVT and TGGs. 
Firstly, there is a difference in how a QVT mapping and a TGG rule are read: QVT 
mappings are read in the direction from “bottom to top”, whereas TGG rules are read 
from “top to bottom”. In particular, this means that, in QVT-Core, we first have a 
look at the bottom patterns of the mapping, which must match on both domains when 
the guard pattern also match. The semantics of a TGG rules is defined in the other 
direction. We start with matching the left-hand side (top part) of the rule; only when a 
match is found, the right-hand side of both domains (bottom part) is considered. Of 
course, the real execution of a TGG rule is driven by the existing parts of a model 
(and  the  application scenario);  but,  conceptually  and in  the implementation,  TGG 
rules are applied from top to bottom. Though, this might appear as a minor issue, it 
reflects a different way of thinking of QVT mappings and of TGG rules. In particular, 
this is  reflected in the fact  that QVT-Core may have mappings with empty guard 
patterns, which means that they do not need a particular context to be applied. These 
mappings can be used to provide the initial bindings, which serve as context for the 
application  of  further  mappings.  The  counterpart  of  such  QVT start  mappings  in 
TGGs is the axiom, which provides the start  context for applying further rules in 
TGGs. The difference is that QVT can start with several start mappings in different 
parts of the model, whereas the matching of a TGG always starts with a single axiom.

Secondly, there is a fundamental difference in the way QVT and TGGs are applied 
in a concrete transformation scenario. In QVT, the application scenario, i.e. whether 
we perform a consistency check only or a transformation in one direction or the other, 
is partly encoded in the QVT mappings. The directives  check and  enforce within a 
QVT mapping state in which domain patterns will be created, deleted, or modified. 
Therefore, the QVT mappings are written with an application scenario in mind. By 
contrast, TGG rules do not refer to the application scenario. The same set of TGG 
rules can be used for checking consistency, for transformations in either direction, as 
well as for synchronizing both models after they have been changed independently of 
each other.  The benefit  is  that  we have a single  set  of  TGG rules  with the same 
semantics for all application scenarios—the only thing changing is the application 
scenario itself. This guarantees that the models are and remain consistent with respect 
to the single TGG specification, even when switching the application scenario.

This second philosophical difference has an important implication. In QVT, there 
is  no  explicit  scenario  which  synchronizes  two  models  that  have  been  changed 
independently  of  each  other.  This  can  be  achieved  only  by  two  subsequent 
incremental transformations in both directions4. By contrast, TGGs can be interpreted 
to synchronize two models in both directions in a single run at the same time.

4.2   Semantical Comparison

In Section  4.1, we have discussed the philosophical differences between QVT and 
TGGs already. Next, we ask a more technical question concerning the semantics of 

4 Actually, most of today's synchronization technologies use this approach; they incrementally 
transform the changes of one model into the other and vice versa subsequently.

26 J. Greenyer and E. Kindler 



QVT and TGGs. Let us assume that we have two models which are in the relation 
specified by the QVT mappings, resp. TGG rules. Now, we have a set of applications 
of these rules which prove that the models are in relation. Then, each variable or node 
is mapped or bound to the actual model elements. Now, let us consider these bindings 
in the opposite direction.

In TGGs, every object in the two models has  exactly one binding to a  creating 
node of an applied TGG rule (i.e. an application of a TGG rule where the node occurs 
on  the  right-hand  side  of  this  rule  only).  This  results  from the  definition  of  the 
semantics  of  TGG  rules  which  generates  legal  pairs  of  corresponding  models. 
Conceptually, these pairs of models are defined by generating pairs of corresponding 
models starting from the axiom by applying some TGG rules: This way, both models 
are generated simultaneously. In the end, each object of the two generated models 
corresponds to exactly one creating node (right-hand side only) in an application of a 
TGG rule and vice versa. For more details, see [12]. In practical cases, however, we 
may want to describe only the relation between parts of the models. Therefore, the 
TGG rules will cover only these relevant parts and the rest of the models will be 
ignored. In these cases, there is  exactly one binding of the relevant model objects to a 
creating node of an application of a TGG rule and there is  no such  binding for a 
model object which is not considered by the TGG.

The QVT standard, in contrast, does not make it clear whether there is at most one 
binding  of  each  model  object  to  a variable  in  a  bottom  pattern  of  exactly  one 
application of  a  QVT mapping.  Some explanations  in  the standard as well  as  the 
examples suggest that this is true and, thus, the interpretation seems to be very similar 
to the TGG interpretation. But,  the mathematical  formalization does not guarantee 
that. However, under the assumption that, at least for enforced variables, QVT also 
implies such a one-to-one correspondence between the relevant objects of the model 
and variables in the bottom patterns, the semantics of QVT-Core mappings can be 
mapped to TGG rules as discussed in Section 3. We consider this an open issue and a 
final justification of this assumption will have to be discussed.

This  assumption  is  however  supported  by  other  considerations which  concern 
verification. As pointed out in [13] and proved in a case study [14], TGGs can be used 
for verifying the semantical  correctness of models that  are transformed by TGGs. 
This kind of verification is possible, because of the one-to-one semantics of TGGs, 
which nicely reflects the definition of a semantics in SOS-style (structural operational 
semantics).

4.3   Conceptual Differences

In addition to the philosophical  differences,  there are some conceptual differences 
between QVT and TGGs. But, we will see that these can be easily aligned.

Though there is a graphical notation for QVT, QVT is conceptually more closely 
related to  defining a  set  of  variables and  the  definition of  relations  among these 
variables. These relations are defined in terms of OCL expressions and assignments. 
This makes QVT very flexible and expressive—due to the expressive power of OCL. 
By contrast,  TGGs are graphical  in nature and originate from the realm of  graph 
grammars and graph transformations. A model is considered as a graph with  typed 
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nodes and edges between them. On the one hand, this results in a simple, precise and 
intuitive  semantics  (see  Section   4.2);  on  the  other  hand,  this  imposes  some 
restrictions. Some restrictions have been overcome by introducing different kinds of 
expressions  to  different  variants  of  TGGs.  Most  of  these  extensions  are 
straightforward, but not quite in the spirit of TGGs. However, inspired by QVT, we 
have shown how to introduce OCL constraints to TGGs without spoiling the “spirit of 
TGGs” and their graphical nature [12]. By equipping TGGs with OCL constraints, the 
essence of a relation between two models can be specified in a graphical way; still the 
expressive power of OCL is at hand when necessary. In particular, we do not need to 
distinguish between (querying) expressions and assignments in TGGs.

As mentioned above, QVT has the concepts of  check and  enforce. In fact, these 
keywords occur in two quite different ways in the QVT specification. So they actually 
constitute two different concepts. The first concepts defines the mode of application, 
i.e. it defines whether the mapping should be interpreted as a consistency check, or as 
a transformation in different directions, or as a synchronization. In TGGs, we call this 
the  application scenario.  So,  mode and  application scenario are just two different 
names for essentially the same concept. In QVT, however,  check and  enforce also 
occur within a mapping—with a similar but still different meaning. Some areas can be 
marked with check and enforce. The idea of check and enforce in this context is 
that, during a transformation, an existing object of a model can be reused in such a 
mapping. Only if  this  object  does not exist,  it  will  be created.  This  increases the 
efficiency in transformations where parts of models already exist.  Though there are 
many different extensions of TGGs, the basic form of TGGs does not have such a 
concept of reusable nodes. A node is either required (when it occurs on the left-hand 
side of the rule) or it is created (when it occurs on the right-hand side only).  Based on 
the  practical  experience  with  TGGs and inspired  by QVT, we have  introduced  a 
concept of reusable nodes to TGGs. There meaning is that these nodes can be reused 
if  a  node with the  required properties  already exists.  Note that  reusable nodes in 
TGGs do allow to reuse nodes, but they do not require their reuse. If we want to force 
the reuse of a node, this needs to be specified by additional global constraints, which 
will be explained shortly.  Altogether, the concept of check and enforce of QVT can 
be  expressed  in  TGGs by  the  concepts  of  reusable  nodes  and  global  constraints. 
Since reusable elements are identified on the level of individual nodes, TGGs can 
express this concepts on a finer level of granularity.

As  mentioned  above,  we  also  introduced  the  concept  of  global  constraints to 
TGGs. A global constraint allows us to enforce that a node with specific properties 
exists at most once in a model. This way, the reuse of a node can be enforced. Note 
that a global constraint is very similar to the concept of keys of QVT-Relations, which 
is used to uniquely identify an object by some of its attributes. This guarantees that a 
transformation does not generate duplicates of objects that have the same key.

A  last  difference  between  QVT  and  TGG  is  of  technical  nature:  QVT  was 
proposed in the context of the MDA. Therefore, QVT is defined based on MOF and 
uses the underlying concepts.  TGGs were introduced long before the existence of 
MOF,  and  there  are  different  implementations  for  different  technologies—
independently  from  MOF.  But,  there  are  implementations  based  on  the  Eclipse 
Modeling Framework (EMF), which in turn is an implementation of MOF.
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4.4   Advanced Features

In addition to the differences discussed above, there are some advanced features of 
QVT and TGGs that are briefly discussed here.

First of all, QVT-Core allows to nest mappings within mappings. According to the 
QVT-Specification [2], this nesting of mappings helps to avoid inefficient and iterated 
deletion and creation of objects. Thus, nested mappings do not increase the expressive 
power  of  QVT mappings,  but  do  increase  the  efficiency  of  their  application.  By 
contrast,  it  is  not  suitable to  adopt  the concept  of  nested rules  to  TGG rules.  As 
pointed  out  before,  this  would  not  increase  the  expressive  power,  but  only  the 
efficiency.  Efficiency,  however,  is  an implementation matter.  In  TGGs,  efficiency 
might be achieve in a simpler way, due to the top down interpretation from a single 
start context. Still, TGGs can be designed in such way that an implementation works 
efficiently. One of  the main concerns  for  efficiency is  to  reduce the size of  each 
individual  TGG rule (because  applying  a  rule  basically  means  applying  a  graph-
matching algorithm between this rule and the models).

A  useful  feature  in  QVT-Core  is  the  refinement  of  rules  by  others,  similar  to 
inheritance in object orientation. This is a feature which is not yet present in TGGs. 
We feel that this is useful for better maintaining sets of TGGs and for making them 
more understandable. But, this can be built on top of the concepts of TGGs and it is 
not necessary to make this a core feature of TGGs.

As  pointed  out  earlier,  TGGs allow many different  correspondence  nodes in  a 
single TGG rule. In QVT is seems to be possible to use more than one trace node in 
the bottom pattern, but it does not seem to be strongly encouraged. In TGGs, multiple 
correspondence nodes allow us to keep track of relations between individual model 
elements in a very detailed way. This helps to design TGG rules in a local way, which 
in turn results in simpler and smaller TGG rules. We identified examples where this 
clearly reduces the number and size of rules. In this way, multiple correspondence 
nodes compensate the efficiency of nested mappings in QVT. But, they do more: they 
also help us to design clearer and better understandable TGG rules.

5   Conclusion

In this paper, we have discussed the similarities of QVT and TGGs. Due to the similar 
structure and concepts, QVT mappings can be transformed into TGG rules. This way, 
a TGG engine can execute transformations specified in QVT-Core.

In  addition,  we have  discussed  the  differences  in  the  philosophy and  concepts 
between  QVT  and  TGGs.  This  improves  our  understanding  of  how  model 
transformations and model synchronizations work with relational rules. The insights 
gained here have inspired the extension of TGGs and might provide valuable input for 
QVT as a standard. The goal is to have a clear and simple semantics to support a 
straightforward employment of model transformation technologies and to facilitate 
the use of validation and verification techniques.

Furthermore, it could be interesting to inspect the relation between QVT-Relations 
and TGGs. QVT-Relations provides more structure in order to simplify and better 
organize a set of transformation rules We believe that this could result in some
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     .          concepts on top of TGGs, which could improve the comprehensibility of TGGs. Also 
we believe that there are additional concepts needed for the efficient synchronization 
of models, which go beyond transforming back and forth.  This will  need a closer 
investigation in the future.
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