
Finding the Pattern You Need: The Design
Pattern Intent Ontology

Holger Kampffmeyer and Steffen Zschaler

Technische Universität Dresden, Germany
Holger.Kampffmeyer@googlemail.com,
Steffen.Zschaler@tu-dresden.de

Abstract. Since the seminal book by the Gang of Four, design pat-
terns have proven an important tool in software development. Over time,
more and more patterns have been discovered and developed. The sheer
amount of patterns available makes it hard to find patterns useful for
solving a specific design problem. Hence, tools supporting searching and
finding design patterns appropriate to a certain problem are required.
To develop such tooling, design patterns must be described formally
such that they can be queryed by the problem to be solved. Current ap-
proaches to formalising design patterns focus on the solution structure of
the pattern rather than on the problems solved. In this paper, we present
a formalisation of the intent of the 23 patterns from the Gang-of-Four
book. Based on this formalisation we have developed a Design Pattern
Wizard that proposes applicable design patterns based on a description
of a design problem.

1 Introduction

Since Gamma, Helm, Johnson, and Vlissides (the so-called Gang of Four (GoF))
published their seminal book [14], design patterns have proven a useful tool in
software development. A design pattern encapsulates a solution for a recurring
design problem in template form, ready to be applied to new instances of the
problem. It, thus, is a form of encoding and transferring design knowledge be-
tween projects and developers.

Because design patterns are so useful, lots of them have been discovered or de-
veloped and documented since the publication of the GoF book. Current design
patterns have appeared in specific application domains (J2EE patterns [5,6,11],
User-Interface patterns [20]), as language-dependent patterns (also called id-
ioms), as patterns at different abstraction levels (analysis patterns [10], archi-
tectural patterns [11,12]), or simply as large collections of design patterns in
pattern catalogues [7,25]. Even though the GoF book only contains 23 design
patterns, the authors state that “it might be hard to find the one (design pattern)
that addresses a particular design problem especially if the catalogue is new and
unfamiliar to you.” [14]. The sheer number of design patterns available today
impedes effective reuse of design patterns, because it is very difficult to find the

G. Engels et al. (Eds.): MoDELS 2007, LNCS 4735, pp. 211–225, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

212 H. Kampffmeyer and S. Zschaler

right design pattern for a given design problem. This is especially true for inex-
perienced developers who do not yet know a large number of design patterns by
heart. To deal with the large number of patterns effectively, software developers
require tool support for finding design patterns that can solve a certain design
problem. This paper is a step towards such tooling.

For this, we require a description of design patterns to be available in a
machine-readable format. This description must contain a formal specification
of the design patterns. It must be constructed in such a way as to allow querying
based on the design problem to be solved.

Existing approaches to formalising design patterns generally cover only the
formal description of the solution structure of design patterns. While the struc-
ture of a design pattern explains how it is applied in software design, it does
not explain when to apply a design pattern for a given design problem. Only the
intent section of a design pattern description explains the purpose of a design
pattern. To the best of our knowledge, no work exists trying to formalise the
intent of design patterns. However, software tools based on such a formalisation
could enable users to query for a design pattern by giving a description of their
design problem based on terminology defined in the specification. Ontologies are
one way of expressing such a formalisation, because they directly support the
creation and querying of such knowledge bases.

The main contribution of this paper is, therefore, a Design Pattern Intent
Ontology (DPIO); that is, an extensible knowledge base of design patterns (in
our case the 23 GoF patterns) classified by their intent.

The remainder of this paper is structured as follows: The following two sections
give a short introduction to design patterns and to ontologies. Section 4, the main
section of the paper, presents the DPIO. In Sect. 5 the ontology is evaluated by
checking that certain competency questions (sample queries) can be formalised
and answered based on the ontology. Section 6 discusses the design pattern
wizard developed on top of the DPIO. The paper closes with a discussion of
related work (Sect. 7) and a conclusion (Sect. 8).

2 Design Patterns

A design pattern is “a solution to a problem in a context” [13]. It is a way
to achieve reusability in software design. Design patterns first emerged in the
context of architecture and town building [4]. However, the idea of reusing design
by applying patterns to recurring design problems has been ported to object-
oriented software design in the GoF book Design Patterns: Elements of Reusable
Object-Oriented Software [14].

In the GoF book, design pattern descriptions are structured into the follow-
ing parts: pattern name and classification, intent, motivation (forces), applicabil-
ity, structure, participants, collaboration, consequences, implementation, sample
code, known uses, and related patterns. Formalisations of design patterns typi-
cally focus on the structure of the solution proposed in the pattern (for example,
[17]). This does not, however, uniquely characterise a design pattern. Consider, for

Finding the Pattern You Need: The Design Pattern Intent Ontology 213

Fig. 1. The structure of the (a) State and (b) Strategy patterns. Copied from [14].

example, the patterns State and Strategy (cf. Fig. ??). Their structure is more or
less identical. However, their intent is not. The intent of State is given in [14] as

“Allow an object to alter its behavior when its internal state changes.
The object will appear to change its class.” [14]

In contrast, the intent of Strategy is

“Define a family of algorithms, encapsulate each one, and make them
interchangeable. Strategy lets the algorithm vary independently from
clients that use it.” [14]

The intent of a design pattern is the first section a developer reads when trying
to understand whether a design pattern is a solution to the developer’s current
problem. Hence, this is the section that should form the basis of a formalisation
of design patterns that can help developers find the pattern they need.

3 Ontologies

“An ontology is an explicit specification of a conceptualisation” [16]. Ontologies
were developed by the Artificial Intelligence community to support the sharing
and common understanding of domain knowledge. Every ontology consists of a
hierarchy of classes, properties (attached to the classes and used to model
relationships between them), and individuals (instances of classes).

Ontologies are suitable means for formalising the intent of design patterns,
because they allow to encode domain knowledge in a simplified abstract way and
enable queries to be evaluated against a knowledge base defined by an ontology.
For this reason, in this paper, we present an ontology-based formalisation of
the intent of design patterns, thus defining a machine-readable, queryable cat-
alogue of design patterns. We use OWL, the Web Ontology Language [26], as
the formalisation language. We have chosen OWL, because it is a W3C rec-
ommendation (that is, an accepted standard) and because its good tool- and
framework-support (see [2,3]) allows easy extension of the ontology and devel-
opment of tools using the ontology as a knowledge base.

4 The Design Pattern Intent Ontology

The aim of the Design Pattern Intent Ontology (DPIO) is to support developers
in choosing a design pattern for a given design problem. That is, the domain

214 H. Kampffmeyer and S. Zschaler

Fig. 2. The parent classes of the three hierarchies Design Pattern, Design Problem and
Problem Concept

of the ontology is the area of software development. In this paper, we constrain
the scope of the ontology to cover only the design patterns defined in the GoF
book.1 Thus, the ontology should provide the terms and concepts the GoF book
uses to describe software design and design patterns.

The scope of the ontology is restricted to the intent and the application of
design patterns in software design. The ontology must be elaborate enough to
enable the querying for solutions to design problems. However, it is not intended
to describe the structure of a design pattern. There is other work that is formal-
ising these aspects of design patterns (see Sect. 7). For the scope of this work,
the formalisation of the structure of design patterns does not give any additional
benefits.

Competency questions are a way of determining the scope of an ontology [24].
They are the kind of questions the ontology should be able to answer. Here are
some possible competency questions for the DPIO:
– Which design patterns are contained in the ontology?
– Which concepts are contained in the ontology that can be used to model a

design problem?
– Which design pattern is a solution to the problem of varying an algorithm?
– Which design pattern is a solution to the problem of objectifying state?

In Sect. 5 we show how a formalised representation of the competency questions
can be used to evaluate the ontology.

In designing the structure of the DPIO, we need to take into account the
possible relations between design patterns and the problems they solve: One
design pattern can be the solution to more than one design problem. But one
design problem can also be solved by more than one design pattern. For ex-
ample, both the Prototype pattern and the Builder pattern are concerned with
object creation. Consequently, there exists an n:m relationship between design
patterns and design problems. The solution to model this n:m relationship is
1 This is for reasons of associated effort only. The basic structure of the DPIO has

been designed to be extensible to arbitrary design patterns.

Finding the Pattern You Need: The Design Pattern Intent Ontology 215

1 Class: StrategyDesignPattern
2

3 SubClassOf: GOFPattern
4

5 and isSolutionTo some
6 AlgorithmDecoupling
7 and isSolutionTo some
8 AlgorithmSelection
9 and isSolutionTo some

10 AlgorithmVariation
11

12 ...

Listing 1.1. Definition of the design pattern class StrategyDesignPattern

by defining a set of design problems and relating these design problems to de-
sign patterns. Therefore, a design pattern is a solution to one or more design
problems. We furthermore describe a design problem by using problem concept
terms. A design problem is constrained by problem concepts. Figure ?? gives
a graphical overview of the core structure of the DPIO. The relations between
DesignPattern, DesignProblem and ProblemConcept classes are depicted us-
ing UML-notations.2 UML classes symbolise OWL classes, UML associations
symbolise OWL object properties. The association between DesignPattern and
DesignProblem indicates an object property isSolutionTo that relates Design-
Pattern classes to DesignProblem classes. The property isSolvedBy is an in-
verse property of isSolutionTo. The association class constrains indicates
an OWL object property that can be further specialised by subproperties. Both
DesignPattern, DesignProblem and ProblemConcept classes are the
root classes of subclass hierarchies specialising the root concepts.

To discuss the structure of the ontology in more detail, we look at some exam-
ple definitions. Listing 1.1 is an example of a subclass from the DesignPattern
hierarchy and shows the definition of the class StrategyDesignPattern in Man-
chester OWL syntax [18]. It states that an individual is a StrategyDesign-
Pattern if it is a subclass of GOFPattern (Line 3) and is a solution to certain
problems as per the intent of the Strategy design pattern: “Define a family of
algorithms, encapsulate each one, and make them interchangeable. Strategy lets
the algorithm vary independently from clients that use it. [. . .] Strategies provide
a way to configure a class with one of many behaviors [they can be used when]
we need different variants of an algorithm” [14]. The design problems formal-
ising these aspects are AlgorithmDecoupling (Line 6), AlgorithmSelection
(Line 8), and AlgorithmVariation (Line 10). Together they define a set of
design problem facets with the need to decouple, select and vary algorithms.

2 There seems to be no commonly agreed visual representation of ontologies yet. We
have chosen UML class diagrams because they are easy to understand.

216 H. Kampffmeyer and S. Zschaler

Consequently, the Strategy design pattern is a solution to these design problems
and connected to them via the object property isSolutionTo.

1 Class: AlgorithmDecoupling
2

3 SubClassOf: DecouplingProblem
4

5 and decouples some
6 Algorithm

Listing 1.2. Definition of the design problem class AlgorithmDecoupling

Listing 1.2 is an example of a subclass from the DPProblem hierarchy and
shows the definition of the class AlgorithmDecoupling. For an individual to be
of class AlgorithmDecoupling it is necessary to be a member of the anonymous
class of things that is linked to at least one member of class Algorithm via the
object property decouples (Line 5–6). The property decouples is thereby an ex-
ample of a subproperty of the constrains hierarchy. An AlgorithmDecoupling
design problem is therefore simply concerned with the decoupling of algorithms.

The examples discussed so far (Listing 1.1 and 1.2) have been modelled using
vocabulary defined in the DPIO. Tables 1 and 2 show an excerpt of the terms
and concepts we have defined in the DPIO3. Table 1 shows the design problem
hierarchy. An abstract concept DPProblem is defined that is the root node for
more specific problems. The inheritance relationship is represented by a � symbol
and an indentation. The description column gives a short comment on the intent
of each problem concept. For example, a Problem “is the abstract base class and
the root node of the problem hierarchy”. A DPProblem is a Problem that can be
solved by design pattern solutions. Further specialisations are ControlProblem,
AlgorithmSelection, DecouplingProblem etc. The top level hierarchy is based
on the Tichy catalogue [28], an initial classification of design-pattern intents.
However, we extend and restructure Tichy’s hierarchy to allow a more detailed
modelling of the problem domain.

Similar to classes, OWL properties also can be specialised by sub-properties.
The OWL object property constrains, modelled as a UML association class, is
the root property of more specialised object properties. Table 2 lists an excerpt
of modelled OWL object properties which are used to describe design problems.

The aforementioned framework structure of DesignPattern, DesignProblem,
constrains-properties and ProblemConcept is what allows developers to formu-
late queries without knowing the design patterns in the knowledge base. To do
so, developers use the terminology provided in the ProblemConcept hierarchy
and the constrains-properties to model their design problem. Standard ontol-
ogy reasoning can then be used to determine the design patterns solving such
3 The whole ontology can be downloaded from
http://www.holger-kampffmeyer.de/DesignpatternsIntentOntology.owl.

http://www.holger-kampffmeyer.de/DesignpatternsIntentOntology.owl

Finding the Pattern You Need: The Design Pattern Intent Ontology 217

Table 1. The design problem taxonomy

Design Problem Description

Problem Abstract base class and root of the hierarchy.
� DPProblem A problem from the domain of design patterns.
� ControlProblem controls execution and method selection.
�
� AlgorithmSelection controls algorithm selection.
�

� DecouplingProblem divides a software system into independent parts.
The parts can be built, changed, replaced.

� AlgorithmDecoupling decouples algorithms from the rest of the system.
�

� VariantManagementProblem treats different objects uniformly.
�
� AlgorithmVariation varies an algorithm.
�

1 (retrieve (?solution)
2 (and (?solution |GOFPattern|)
3 (?solution ?designproblem |isSolutionTo|)
4 (?designproblem ?problemConstraint |<objectproperty>|)
5 (?problemConstraint |<someclass>|)
6))

Listing 1.3. Template-structure of a nRQL query to retrieve all design patterns that
are a solution to some design problem

problems. The structure of a query asking for those design patterns solving
a specific problem can look like Listing 1.3, showing the structure of a query
in nRQL syntax [19]. In nRQL, a query is composed of a preliminary com-
mand, followed by the query head and body put in parentheses, respectively.
The head of the query contains variables that are bound to the result set of
the query. The body contains constraints of a query, similar to those of SQL
where-clauses. It consists of one or more query atoms. Query atoms can be com-
bined to complex queries by using logical operators such as AND, OR, and NOT.
The query in Listing 1.3 retrieves all design patterns being a solution to a spec-
ified design problem. The placeholders <objectproperty> and <someclass>
need to be replaced by concrete subproperties of constrains and subclasses
of ProblemConcept, respectively. For example, <objectproperty> could be re-
placed by distributes and <someclass> could be replaced by Behavior to
retrieve all behavioral design patterns. The Design Pattern Wizard we introduce
in Section 6 generates queries with a similar structure to the query shown in
Listing 1.3.

218 H. Kampffmeyer and S. Zschaler

Table 2. The OWL object properties used to model design problems

Object Property Description

constrains binds a problem concept to a design problem,
super property for all other properties.

� varies allows diversity.
�
� controls handles something.
�
� handles equivalent property to “controls“.
�
� selects chooses some behavior.
�
� decouples loosens the coupling of objects.
�

1 (concept-descendants |DesignPattern|)

Listing 1.4. nRQL query to retrieve all design patterns defined in the ontology

5 Evaluation

There are different possibilities for evaluating an ontology such as the DPIO. The
final proof of the concepts can, of course, only be found through a controlled
experiment in which developers are asked to use the ontology to solve certain
design problems. Such an experiment would show if the ontology achieves our
underlying goal of providing a formalisation of design patterns more appropri-
ate to the problem of finding the design pattern one needs to solve a specific
problem in software design. Performing such experiments is costly and time con-
suming. For this reason, we have not done so yet. However, we acknowledge the
importance of such work and propose to perform it in future research.

A different approach to evaluating our ontology is to check whether it can
answer the kinds of questions that are likely to be asked of it. To this end,
we have developed a catalogue of competency questions. Here, we translate the
competency questions into a formal version we can use to query the DPIO. In a
second step, we test the ontology by verifying that the result set of the queries
correspond to the intended meaning of the ontology. We use the nRQL query
language [19] for formalising the competency questions.

Which design patterns are contained in the ontology? Listing 1.4 shows the
formal representation of this competency question. It retrieves all children of
the concept DesignPattern. The result set of the query contains the 23 GoF
patterns modelled in the ontology.

Which concepts are contained in the ontology that can be used to model a
design problem? Listing 1.5 shows the formal representation of this competency

Finding the Pattern You Need: The Design Pattern Intent Ontology 219

1 (concept-descendants |ProblemConcept|)

Listing 1.5. nRQL query to retrieve all problem concepts defined in the ontology

1 (retrieve (?x)
2 (and (?x |GOFPattern|)
3 (?x ?p |isSolutionTo|)
4 (?p ?a |varies|)
5 (?a |Algorithm|)
6))

Listing 1.6. nRQL query to retrieve all design patterns that are a solution to varying
an algorithm

question. Concepts that are intended to model a design problem are subclasses of
the class ProblemConcept. Consequently, the nRQL query retrieves all children
of ProblemConcept.

Which design pattern is a solution to the problem of varying an algorithm?
Listing 1.6 shows the formal representation of this competency question. The
query asks for those subclasses of GOFPattern that are linked to a design prob-
lem via the object property isSolutionTo. It furthermore asks for only those
design problems that have an object property varies that relates the concept
Algorithm. The query results in the Template Method and the Strategy design
patterns.

Which design pattern is a solution to the problem of objectifying state? List-
ing 1.7 shows the formal representation of this competency question. The query
asks for those subclasses of GOFPattern that are linked to a design problem via
the object property isSolutionTo. It furthermore asks for only those design
problems that have an object property objectifies that relates the concept
State. The result set for this query contains the Memento and the State design
patterns.

1 (and (?x |GOFPattern|)
2 (?x ?p |isSolutionTo|)
3 (?p ?a |objectifies|)
4 (?a |State|)
5))

Listing 1.7. nRQL query to retrieve all design patterns that are a solution to
objectifying state

220 H. Kampffmeyer and S. Zschaler

6 The Design Pattern Wizard

As we have outlined in the introduction, an ontology can be used in tools as a
knowledge base. The Design Pattern Intent Ontology contains the vocabulary
for describing the intent of design patterns. In order to extract knowledge from
the ontology, the user has to execute queries on it. However, the construction of
these queries can be quite complicated. This reduces the usability of ontologies
to domain experts only. The Design Pattern Wizard serves as a front-end for
generating well-defined queries. It allows design problems to be described visually
and suggests a set of matching design patterns for a given design problem. It,
furthermore, provides inexperienced users with vocabulary they can use to define
design problems. The Design Pattern Wizard can be obtained from the first
author at email request.

The Design Pattern Wizard is a prototype and proof of concept. It shows
the applicability of ontologies for tool support in the area of software design.
The Design Pattern Wizard has been implemented as an Eclipse RCP (Rich
Client Platform) application [1]. The RCP architecture allows the developer to
configure an application to either be integrated as a plug-in into the Eclipse
platform or to be deployed as a stand-alone application.

Figure 3 shows the problem description window when the Design Pattern Wiz-
ard is started. The main part of the dialogue is filled by the problem description
table. It consists of a predicate constraint column and an object (concept) con-
straint column. Each row represents a statement constraining the design problem
a design pattern should solve. The first column consists of check boxes used to
select rows for editing or deletion. Below the constraint table resides a button
for adding constraint rows to the table and a button for deleting a selected row.
In the bottom right corner of the dialogue the button for retrieving a design
pattern suggestion based on the design problem description is located.

Clicking on the predicate constraint in one of the rows allows to open the Pred-
icate Constraint Dialog shown in Fig. 4 a). A tree representation of all predicates
modelled in the ontology is presented. The user can choose a predicate and the

Fig. 3. Screenshot of the Design Pattern Wizard

Finding the Pattern You Need: The Design Pattern Intent Ontology 221

(a) constraining problem predicates (b) constraining problem concepts

Fig. 4. Screenshot of the dialogues constraining problem predicates and problem con-
cepts

chosen predicate value will be set in the constraint row of the wizard. A similar
dialogue is opened when the user wants to constrain the concept constraint part
of a problem constraint. The Concept Constraint Dialog (Fig. 4 b)) allows the
user to select a concept that further constrains a predicate. The selected concept
is then set in the constraint cell.

Figure 5 shows the Result Dialog that is opened when the user hits the Suggest
Design Pattern button. It presents all suitable design patterns matching the
modelled design problem in a simple table. The first column shows the name of
the design pattern while the second shows a description of the pattern.

Fig. 5. Screenshot of the result window suggesting suitable design patterns

7 Related Work and Discussion

Our survey of current work in design pattern formalisation indicates that no
other work before has tried to classify design patterns according to their intent
by using ontologies.

The formalisation of design problems in this paper is based on the work of
Tichy [28], who developed a catalogue (but no formal ontology) listing over 100
design patterns. In his classification, he concentrates on the problems patterns
solve. Among Tichy’s design problem categories are decoupling which refers to
dividing a software system into independent parts such that the parts can be

222 H. Kampffmeyer and S. Zschaler

built, changed, replaced, and reused independently; variant management whose
patterns treat different but related objects uniformly by factoring out their com-
monalities; state handling whose patterns allow the generic manipulation of
object state; control whose patterns are used to control execution and method
selection and others. We have both formalised and refined Tichy’s classification
and, thus, made it available to mechanical treatment and to computer-aided
querying by software developers.

Henninger et al. [17] are using an ontology-based metamodel to formally
describe software patterns. The goal is to develop intelligent tools that pro-
vide a computational basis utilising software patterns. As a use case they men-
tion usability patterns. They base their core metamodel on properties such as
hasProblem, hasSolution, hasContext, hasRationale, hasForces, properties
that are developed from the original structure of the pattern description of [4].
They extend the core metamodel with properties that describe the relationships
between patterns, such as uses, requires, alternative, and conflictsWith.
The ontology they have developed does not so much concentrate on the support
of selecting a suitable pattern for a given problem, but rather on the relationships
between patterns. Furthermore, Henninger et al. concentrate on the domain of
usability patterns of web sites, but not on GoF patterns or design patterns in
general. The main goal of their work is to define a shareable vocabulary in the
domain of usability patterns. Furthermore, they do not describe how to query
their ontology, nor do they describe how to model design problems in an ontol-
ogy. A very similar approach to [17] is [23]. Here, ontologies are used to formalise
hypermedia and web design patterns. The vocabulary is almost identical to [17]
but includes additional concepts such as PatternComponent, Category, Problem
and Solution. The scope of their work is the support of and an integration into
hypermedia design tools.

Pereira de Medeiros et al. [8] have developed the Kuaba Ontololgy, an ontology
and design vocabulary to describe the design rationale of software design. The
goal is to make explicit the decisions and justifications that have led to a design.
The formal description of the design rationale enables reuse at a high abstraction
level. Important reasoning elements of the ontology are Question, Idea and
Argument. The vocabulary defined in the Kuaba Ontology helps in the decision-
making process of software design. Their work is not particularly focused on
design patterns, but more on software design in general.

The work of Dietrich et al. [9] uses OWL to formally describe design patterns.
However, only the structure of design patterns is considered, not the intent or
applicability. They use their ontology to detect patterns in software artefacts,
not to help in the selection process of a design pattern. Other approaches that
use formal languages to describe the structure of design patterns include [21]
who developed a design pattern modelling language DPML, and [22,27]. What
is common to all this work is the sole concentration on the structural aspects of
design patterns and the omission of the intent of design patterns.

Finding the Pattern You Need: The Design Pattern Intent Ontology 223

8 Conclusion and Further Work

In this paper, we have presented a novel approach to formalising design patterns,
based on their intent. We have proposed the Design Pattern Intent Ontology
providing terminology for formulating intents and classifying the 23 GoF design
patterns by their intent. To the best of our knowledge, this is the first formal-
isation of design patterns based on their intent. This ontology forms the basis
for the Design Pattern Wizard, a tool supporting software developers in finding
the right design pattern(s) for a given design problem.

The work presented in this paper enables software developers to efficiently
find design patterns applicable for their design problems. It is, thus, a measure
countering the effect of the ever increasing number of design patterns available in
various design pattern catalogues. The hierarchical structure of the ontology al-
lows developers to provide incomplete descriptions of their design problems and
still receive valuable responses. A developer with only a rough picture of her de-
sign problem can simply choose predicates from the top parts of the hierarchies.
Such a query results in the retrieval of all design patterns matching this rough
problem description. Iteratively, the developer can describe her design problem
more precisely, based on the results of the former queries. The basic structure of
DesignPattern, DesignProblem, and ProblemConcept is valid for all design
patterns. Therefore, the ontology can easily be extended to cover other design
patterns beyond the GoF book. To this end, it may be necessary to add new
vocabulary to the DesignProblem and ProblemConcept hierarchies. Testing the
ontology with other catalogues of design patterns remains for future work.

So far, the Design Pattern Wizard is a stand-alone application. In the future,
this should be integrated with CASE tools to allow direct integration of a pattern
found into a design under development. Developers could select a design and add
a design pattern to it, using the Design Pattern Wizard to select the pattern. For
this to work, we need to study ways of selecting and manipulating the parts of a
model where a design pattern should be added, in addition to the formalisation
of design-pattern intent.

Another interesting question is how we can help developers understand the
problem they are trying to solve. We believe, developers often know that there
are flaws in their design, but cannot immediately understand the source of the
problem. Thus, they will experiment with different design choices, which with
good designers will eventually lead to a better understanding of the problem,
and, thence, to a better design. An interesting question is if this problem-finding
process can be supported by CASE tools observing the different experiments of a
designer and using the DPIO to suggest design patterns that might be helpful.4

Additionally, the basic structure of the DPIO should also be applicable to
patterns that are not strictly design patterns. For example, [15] have proposed
an approach to graphically organise, analyse and refine non-functional require-
ments for the structuring, understanding, and applying of design patterns during
design. We plan to study how the DPIO can be applied in this context.

4 Thanks to Mirko Seifert for this suggestion.

224 H. Kampffmeyer and S. Zschaler

References

1. Eclipse – Rich Client Platform (2006),
http://www.eclipse.org/home/categories/rcp.php

2. Jena – a semantic web framework for Java (2006),
http://jena.sourceforge.net/

3. Protégé ontology editor and knowledge acquisition system (2006),
http://protege.stanford.edu

4. Alexander, C., Ishikawa, S., Silverstein, M.: A Pattern Language. Center for Envi-
ronmental Structure Series, vol. 2. Oxford University Press, New York, NY (1977)

5. Alur, D., Crupi, J., Malks, D.: Core J2EE Patterns: Best Practices and Design
Strategies. Pearson Education (2001), Patterns catalog available at
http://java.sun.com/blueprints/corej2eepatterns/index.html

6. Alur, D., Crupi, J., Malks, D.: Sun Java center – J2EE patterns (March 2001),
http://java.sun.com/developer/technicalArticles/J2EE/patterns/

7. PatternShare Community. Patternshare community (2006),
http://patternshare.org/

8. de Medeiros, A.P., Schwabe, D., Feijó, B.: A design rationale representation for
model-based designs in software engineering. In: Belo, O., Eder, J., e Cunha, J.F.,
Pastor, O. (eds.) CAiSE Short Paper Proceedings, CEUR Workshop Proceedings.
CEUR-WS.org. vol. 161 (2005), http://www.ceurws.org/Vol-161/FORUM 27.pdf

9. Dietrich, J., Elgar, C.: A formal description of design patterns using OWL. In:
Australian Software Engineering Conference (ASWEC’05), pp. 243–250. IEEE
Computer Society, Los Alamitos (2005), http://doi.ieeecomputersociety.org/
10.1109/ASWEC.2005.6

10. Fowler, M.: Analysis Patterns: Reusable Object Models. The Addison-Wesley Ob-
ject Technology Series. Addison-Wesley Professional, Reading (1996)

11. Fowler, M.: Patterns of Enterprise Application Architecture. The Addison-Wesley
Signature Series. Addison Wesley, Reading (2003)

12. Fowler, M.: Patterns in enterprise software (2005),
http://www.martinfowler.com/articles/enterprisePatterns.html

13. Fowler, M.: Writing software patterns (August 2006),
http://martinfowler.com/articles/writingPatterns.html

14. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Professional Computing Se-
ries. Addison-Wesley Publishing Company, New York, NY (1995)

15. Gross, D., Yu, E.S.K.: From non-functional requirements to design through pat-
terns. Requirements Engineering 6(1), 18–36 (2001),
http://citeseer.ist.psu.edu/gross00from.html

16. Gruber, T.R.: A translation approach to portable ontology specifications. Knowl-
edge Acquisition 6(2), 199–221 (1993),
http://portal.acm.org/citation.cfm?id=173747

17. Henninger, S., Padmapriya, A.: An Ontology-Based Metamodel for Software Pat-
terns. In: Seke2006. 18th Int. Conf. on Software Engineering and Knowledge En-
gineering, San Francisco (July 2006) (to be presented),
http://cse.unl.edu/∼scotth/papers/SEKE06-TechReport.pdf

18. Horridge, M., Drummond, N., Goodwin, J., Rector, A., Stevens, R., Wang,
H.H: The Manchester OWL syntax (2005), http://owl-workshop.man.ac.uk/
acceptedLong/submission 9.pdf

http://www.eclipse.org/home/categories/rcp.php
http://jena.sourceforge.net/
http://protege.stanford.edu
http://java.sun.com/blueprints/corej2eepatterns/index.html
http://java.sun.com/developer/technicalArticles/J2EE/patterns/
http://patternshare.org/
http://www.ceurdiscretionary {-}{}{}ws.org/Vol-161/FORUM_27.pdf
http://doi.ieeecomputersociety.org/10.1109/ASWEC.2005.6
http://doi.ieeecomputersociety.org/10.1109/ASWEC.2005.6
http://www.martinfowler.com/articles/enterprisePatterns.html
http://martinfowler.com/articles/writingPatterns.html
http://citeseer.ist.psu.edu/gross00from.html
http://portal.acm.org/citation.cfm?id=173747
http://cse.unl.edu/~scotth/papers/SEKE06-TechReport.pdf
http://owl-workshop.man.ac.uk/acceptedLong/submission_9.pdf
http://owl-workshop.man.ac.uk/acceptedLong/submission_9.pdf

Finding the Pattern You Need: The Design Pattern Intent Ontology 225

19. Racer Systems GmbH & Co. KG. Racerpro users guide version 1.9 (2005),
http://www.racer-systems.com/products/racerpro/manual.phtml

20. Mahemoff, M., Johnston, L.: Principles for a usability-oriented pattern language
(1998), http://citeseer.ist.psu.edu/article/mahemoff98principles.html

21. Mapelsden, D., Hosking, J., Grundy, J.: Design pattern modelling and instantiation
using DPML. In: CRPIT ’02. Proceedings of the Fortieth International Conference
on Tools Pacific, pp. 3–11. Australian Computer Society, Inc., Darlinghurst, Aus-
tralia, Australia (2002)

22. Mikkonen, T.: Formalizing design patterns. In: ICSE ’98. Proceedings of the 20th
international conference on Software engineering, pp. 115–124. IEEE Computer
Society, Washington, DC, USA (1998)

23. Montero, S., Diaz, P., Aedo, I.: Formalization of web design patterns using ontolo-
gies (2005)

24. Noy, N.F., McGuinness, D.L.: Ontology development 101: A guide to creating your
first ontology. Technical Report KSL-01-05, Knowledge Systems Laboratory, Stan-
ford University, Stanford, CA, 94305, USA (March 2001)

25. Portland Pattern Repository. Portland pattern repository (2006), http://c2.com/
ppr/

26. Smith, M.K., Welty, C., McGuinness, D.L.: OWL web ontology language guide
(2004), http://www.w3.org/TR/owl-guide

27. Taibi, T., Ngo, D.C.L.: Formal specification of design patterns - a balanced ap-
proach. Journal of Object Technology 2(4), 127–140 (2003), http://www.jot.fm/
issues/issue 2003 07/article4.pdf

28. Tichy, W.F.: A catalogue of general-purpose software design patterns. In: TOOLS
’97. Proceedings of the Tools-23: Technology of Object-Oriented Languages and
Systems, IEEE Computer Society, Washington, DC, USA (1997)

http://www.racer-systems.com/products/racerpro/manual.phtml
http://citeseer.ist.psu.edu/article/mahemoff98principles.html
http://c2.com/ppr/
http://c2.com/ppr/
http://www.w3.org/TR/owl-guide
http://www.jot.fm/issues/issue_2003_07/article4.pdf
http://www.jot.fm/issues/issue_2003_07/article4.pdf

	Finding the Pattern You Need: The Design Pattern Intent Ontology
	Introduction
	Design Patterns
	Ontologies
	The Design Pattern Intent Ontology
	Evaluation
	The Design Pattern Wizard
	Related Work and Discussion
	Conclusion and Further Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /MTEX
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

