
Improving Inconsistency Resolution with
Side-Effect Evaluation and Costs

Jochen M. Küster and Ksenia Ryndina

IBM Zurich Research Laboratory, Säumerstr. 4
8803 Rüschlikon, Switzerland
{jku,ryn}@zurich.ibm.com

Abstract. Consistency management is a major requirement in software
engineering. Although this problem has attracted significant attention in
the literature, support for inconsistency resolution is still not standard
for modeling tools. In this paper, we introduce explicit side-effect expres-
sions for each inconsistency resolution and costs for each inconsistency
type. This allows a fine-grained evaluation of each possible inconsistency
resolution for a particular inconsistent model. We further show how an
inconsistency resolution module for a modeling tool can be designed and
implemented based on our approach. We demonstrate the applicability of
our approach for resolution of inconsistencies between object life cycles
and process models.

1 Introduction

Consistency management is a major requirement in software engineering [6]. It
requires one to establish consistency constraints that can be checked to identify
inconsistencies in models [5,11]. For resolving a particular inconsistency, it is
common practice to specify one or more suitable inconsistency resolutions that
can transform the model so that the consistency constraint is no longer violated.

Although many solutions addressing various aspects of inconsistency man-
agement have been proposed [7,13,20], most modeling tools currently do not
offer adequate support to the user for resolution of inconsistencies, in particu-
lar for behavioral models such as activity diagrams, statecharts and sequence
diagrams. One reason for this is that inconsistency resolution for these models
requires transformations that often have side-effects. Such side-effects include
both, introduction of new inconsistencies and expiration of existing inconsis-
tencies [12]. As a consequence, in the presence of numerous inconsistencies in a
model, many alternative resolutions can be applicable and it is often not obvious
which resolution is most appropriate to apply. One technique that has been pro-
posed to tackle this problem is the detection of potential dependencies between
inconsistency resolutions using dependency analysis [12,13,22]. This analysis is
performed without taking a particular inconsistent model into account. However,
only some of the discovered dependencies are usually relevant for a given incon-
sistent model and these must be precisely identified for comparing alternative
resolutions.

G. Engels et al. (Eds.): MoDELS 2007, LNCS 4735, pp. 136–150, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Improving Inconsistency Resolution with Side-Effect Evaluation and Costs 137

In this paper, we propose an approach where inconsistency resolutions are asso-
ciated with explicit side-effect expressions. Such side-effect expressions are evalu-
ated given a concrete inconsistent model to determine whether or not a resolution
will have side-effects. This leads to precise knowledge of both expired and induced
inconsistencies before applying a particular resolution. Further, we introduce the
concept of costs for inconsistency types that allows one to prioritize resolution
of different inconsistencies and calculate the total inconsistency cost for a given
model. In combination with side-effect expressions, cost reductions for a resolu-
tion can be calculated in advance. Overall, our approach leads to an improved way
of inconsistency resolution, because it allows a fine-grained comparison of alterna-
tive resolutions. In addition, explicit side-effects are also used to avoid re-checking
the whole model for inconsistencies after applying a resolution.

We demonstrate our approach using a case study that deals with inconsistency
of object life cycles and process models in the context of IBM Insurance Appli-
cation Architecture (IAA) [1]. For showing the feasibility, we briefly present a
design of an inconsistency resolution module based on the proposed approach.
Using this design, we have implemented a prototype extension to IBM Web-
Sphere Business Modeler [2] for resolving inconsistencies between object life
cycles and process models.

The paper is structured as follows: Section 2 presents our case study by in-
troducing object life cycles, process models and inconsistencies that can occur
between these models. In Sect.3, we introduce the concept of explicit resolution
side-effects and costs for inconsistency types. Design and implementation of tool
support for inconsistency resolution are discussed in Sect.4. We compare our
approach with existing work in Sect.5 and conclude the paper in Sect.6.

2 Inconsistency of Object Life Cycles and Process Models

In this section, we first introduce object life cycles and process models, together
with an example inspired by IAA. We then discuss inconsistencies that can occur
in these models.

An object life cycle [4,9] captures all possible states and state transitions for
a particular object type and can be represented as a state machine. Figure 1(a)
uses the UML2 State Machine notation [3] for modeling a life cycle for objects
of type Claim in an insurance company. The object life cycle shows that after a
claim has been registered, it goes through an evaluation process and can be either
granted or rejected. Rejected claims are closed directly, while granted claims are
first settled and then closed. According to this model, every claim is created in
state Registered and passes through state Closed to the only final state.

Our case study deals with reference object life cycles that are prescriptive
models capturing how objects should be evolved by business processes. Consis-
tency with such reference object life cycles may be an internal business policy
or an external legal requirement.

A process model captures the coordination of individual actions in a particular
process and the exchange of objects between these actions. Figure 1(b) shows

138 J.M. Küster and K. Ryndina

UnderEvaluation (UE)

Granted (GR) Rejected (RJ)

Settled (SE)
Closed (CL)

assign evaluator

settle

close
close

grant reject

Registered (RG)

register

C[UE]
open
claim

decide
on claim

review

settle

C[GR,RJ]

C[GR]

C[RJ]
notify

rejection

C[GR,RE]

C[RE]

C[NR,SE]

C[RJ]

C[CL]close
claim

initial
node

object
flow

action

pin

decision merge

flow final
node

object type
[states]

LEGEND

initial
state

state

transition

event

State Machine Activity

(a)

(b)

prepare
settlement C[GR]

C[RE]C[NR]

C[SE]

states of Claim (C):
UnderEvaluation (UE), Granted (GR),
Rejected (RJ), NeedsReview (NR),

Reviewed (RE), Settled (SE), Closed (CL)

final
state

Fig. 1. (a) Reference object life cycle for claims (b) Claim handling process model

a process model for a simplified Claim handling process in the UML2 Activity
Diagram notation [3]. In the beginning of this process, a claim is opened and then
an evaluation decision is made. If the claim is granted, a settlement is prepared
for it. During settlement of a claim, the claimant may appeal for a review of
the settlement amount and conditions, in which case these are reviewed and the
adjusted settlement is then carried out. Only settled claims are closed in this
process.

A process model can also depict how an object changes state as it moves
through the process, which is explained in detail in [17]. In our example, the
open claim action creates a claim in state UE (UnderEvaluation) and passes it to
action decide on claim that changes the claim’s state to either GR (Granted) or
RJ (Rejected). The following decision node passes claims in state GR to prepare
settlement and those in state RJ to notify rejection.

In order to define consistency of a given process model with respect to an ob-
ject life cycle, we first consider the relation between these models in the UML2
metamodel. Figure 2 shows an extract from the UML2 metamodel that contains
relevant classes for State Machine and Activity modeling. The inState association
of a Pin to a State makes it possible to specify input and output object states
for ActivityNodes in an Activity. We assume that control nodes also have pins that
are not explicitly shown in Fig.1(b). For a more convenient means of referring
to input and output object states of ActivityNodes, we define additional input-
state() and outputstate() operations, shown as Object Constraint Language [10]
definitions at the bottom of Fig.2.

We assume that when executing a process model, state transitions of objects
are induced. We also identify states in which the process creates objects and
states that objects can be in upon termination of the process:

Improving Inconsistency Resolution with Side-Effect Evaluation and Costs 139

Definition 1 (Induced transition, first state and last state). Let a
process model P (instance of Activity) and an object type o (instance of Class)
be given.

– An induced transition of o in P is a triple (a, ssrc, stgt) such that there is
an Action a in P with ssrc ∈ a.inputstate(o) and stgt ∈ a.outputstate(o);

– A state sfirst is a first state of o in P such that sfirst ∈ a.outputstate(o)
for some Action a that has no input pins of type o;

– A state slast is a last state of o in P such that slast ∈ n.inputstate(o) for
some ActivityNode n that has no output pins of type o.

Fig. 2. UML2 metamodel extract

For consistency of process models and object life cycles, we distinguish be-
tween conformance1 and coverage [17]: Conformance requires that a given process
model does not manipulate objects in a way that is not defined in the given life
cycle. Coverage requires that objects used in the process model cover the entire
scope of their life cycle. In the following, we directly define inconsistency types:

Definition 2 (Inconsistency types). Given an object life cycle OLC (in-
stance of State Machine) for object type o (instance of Class) and a process model
P (instance of Activity), we define the following inconsistency types:

– non-conformant transition: an induced transition (a, ssrc, stgt) of o in P ,
such that OLC contains no transition from state ssrc to state stgt;

– non-conformant first state: a first state sfirst of o in P , such that OLC
contains no transition from the initial state to state sfirst;

– non-conformant last state: a last state slast of o in P , such that OLC con-
tains no transition from slast to a final state;

1 Called compliance in [17].

140 J.M. Küster and K. Ryndina

– non-covered transition: a transition (ssrc, stgt) in OLC where ssrc is not the
initial state, such that there is no induced transition (a, ssrc, stgt) of o in P
for any action a;

– non-covered initial state: a state si in OLC that has an incoming transition
from the initial state, such that si is not a first state of o in P ;

– non-covered final state: a state sf in OLC that has an outgoing transition
to a final state, such that sf is not a last state of o in P .

We discover the following inconsistencies in the example claim handling process
with respect to the reference life cycle for claims (Fig.1): non-conformant tran-
sitions (settle, GR, NR), (settle, RE, SE), (review, NR, RE), a non-conformant first
state UE, a non-conformant last state RJ, a non-covered transition (RJ, CL), and
a non-covered initial state RG. Two inconsistencies of the same type are dis-
tinguished by their contexts that comprise model elements contributing to the
inconsistency. For example, the context of the non-conformant transition (settle,
GR, NR) comprises action settle, and states GR and NR.

3 Inconsistency Resolution with Side-Effects and Costs

In this section we first identify requirements that a solution for inconsistency
resolution needs to satisfy, motivated by the case study. We then introduce our
proposed solution and explain how it addresses these requirements.

Given a set of inconsistencies such as those discovered for the claims handling
example in Sect.2, it is unclear which inconsistency should be resolved first.
If our goal is to achieve conformance with the reference claim life cycle, but
not necessarily full coverage of it, non-conformance inconsistencies will be of
higher priority for the resolution than non-coverage inconsistencies. The first
requirement is therefore that priorities of different inconsistency types
must be made explicit in the resolution process (Req1).

In order to support the user in resolving a particular inconsistency, we define a
number of alternative resolutions for each inconsistency type, following existing
work [21,22]. In this paper, we selected three resolutions for resolving a non-
conformant transition (an induced transition (a, ssrc, stgt) of o in P , such that
OLC contains no transition from state ssrc to state stgt). These are informally
specified in Fig.3: (a) r1 removes state ssrc from a.inputstate(o), (b) r2 removes
stgt from a.outputstate(o) and (c) r3 removes the entire action a from the process
model. We assume that removing the last input or output state also involves
removing the associated pin.

Suppose that from the set of discovered inconsistencies for the claims handling
process, we choose to first resolve the non-conformant transitions (settle, GR, NR)
and (review, NR, RE). This gives rise to three alternative resolutions for each incon-
sistency, shown in Fig.4. To assist the user in choosing how to resolve a particular
inconsistency, advantages and disadvantages of each available resolution
should be identified and used to rank the resolutions (Req2).

Some resolutions may have side-effects, in other words an application of a reso-
lution may not only resolve its target inconsistency, but also introduce new incon-

Improving Inconsistency Resolution with Side-Effect Evaluation and Costs 141

a
O[ssrc,si,..,sj]

a

(a)

r1: remove ssrc
from

input states

O[stgt,sm,..,sn]
a

a

r2: remove stgt
from

output states

O[stgt,sm,..,sn]O[si,..,sj]

O[stgt,sm,..,sn]O[ssrc,si,..,sj]

O[ssrc,si,..,sj] O[sm,..,sn]

(b)

n1 a
O O

n2

n1 n2

(c)

r3: remove action a

O

Fig. 3. Resolutions for a non-conformant transition

sistencies (induced inconsistencies) or remove other existing inconsistencies (ex-
pired inconsistencies) [12]. For example, if we apply r1 to the non-conformant
transition (settle, GR, NR) as shown in Fig.4 (b), we will introduce a new non-
covered transition (GR, SE). Applying r1 to the non-conformant transition (review,
NR, RE) introduces a new non-covered first state RE, see Fig.4 (e). This shows
that applying the same resolution to different inconsistencies may yield differ-
ent side-effects. Generally, the user will become aware of the side-effects of a
resolution only after applying it. To improve this situation, side-effects of a
resolution must be calculated before the resolution is applied (Req3).

In the following, we explain our approach to inconsistency resolution that
satisfies the identified requirements.

Let M = {me1, ..., men} be a model comprising model elements me1, ..., men.
We denote the set of inconsistency types defined for M as TM , where each
inconsistency type t ∈ TM is associated with a set of resolutions Rt. In our ex-
ample, the claims handling process together with the claim life cycle form the

C[UE]open
claim

decide
on claim

review

settle

C[GR,RJ]

C[GR]

C[RJ]
notify

rejection

C[GR,RE]

C[RE]

C[NR,SE]

C[RJ]

C[CL]close
claim

prepare
settlement C[GR]

C[RE]C[NR]

C[SE]

(e) (f) (g)

settle
C[NR,SE]

(b)

C[RE]

(c) (d)r1: remove GR
from input states

r2: remove NR
from output states

r3: remove action
settle

r1: remove NR
from input states

r2: remove RE
from output states

r3: remove action
review

(a)

settle
C[GR,RE] C[SE]

review
C[RE]

review
C[NR]

Fig. 4. Resolving non-conformant transitions in the example

142 J.M. Küster and K. Ryndina

model M . The set of inconsistency types is TM ={ncnf tran, ncnf first, ncnf last,
ncov tran, ncov init, ncov fin} and comprises non-conformant transition, first state,
and last state, non-covered transition, initial state and final state inconsis-
tency types, respectively. For non-conformant transitions, the resolution set is
Rncnf tran = {r1, r2, r3}.

We denote the set of inconsistencies in M as IM . Each inconsistency i ∈ IM

has a type t ∈ TM and a context {mej, ...mek} ⊆ M of model elements that con-
tribute to this inconsistency, hence we write i = t(mej , ..., mek). In the example,
the set of inconsistencies is IM = { ncnf tran(settle, GR, NR), ncnf tran(review, NR,
RE), ncnf first(UE), ncnf last(RJ), ncov tran(RJ, CL), ncov init(RG)}.

We introduce costs for different inconsistency types to reflect that resolving
inconsistencies of some types has a higher priority than of others (Req1).

Definition 3 (Cost of an inconsistency type). The cost of an inconsistency
type is defined by a function cost : TM → N that maps an inconsistency type to
a natural number.

Costs can either be assigned to inconsistency types once and then used for in-
consistency resolution in every model, or different costs for each model can be
assigned to reflect a specific resolution goal. For our example, we assume that
our main goal is to achieve conformance of the claim handling process. We fur-
ther consider that conformance of transitions and last states is more important
than that of first states. Therefore, we assign the following costs to the differ-
ent inconsistency types: cost(ncnf tran) = 3, cost(ncnf first) = 2, cost(ncnf last) = 3,
cost(ncov tran) = 1, cost(ncov init) = 1 and cost(ncov fin) = 1.

We further associate each resolution with one or more side-effects, each having
an explicit side-effect expression that can be evaluated given an inconsistency
in a concrete model. Evaluating side-effect expressions allows us to calculate
side-effects of each resolution before they are applied (Req3).

Definition 4 (Side-effect and side-effect expression). A resolution r ∈ Rt

for a given inconsistency type t ∈ TM is associated with a set of side-effects
Er = Er

− ∪Er
+, where Er

− are side-effects that expire existing inconsistencies
and Er

+ are side-effects that induce new inconsistencies. Each side-effect affects
inconsistencies of one type, defined by function type : Er → TM . A side-effect
e ∈ Er is associated with a side-effect expression expe : IM → P(IM ′), where
M ′ denotes the model that would be obtained by applying r to M .

In Table 1, we define side-effect expressions for resolutions r1, r2 and r3, which
were identified by manually analyzing each resolution. We currently specify ex-
pressions informally, although this could also be done using first-order logic or
the Object Constraint Language [10]. Applying r1 involves removing ssrc from
a.inputstate(o), which may resolve non-conformant transitions that are induced
by action a other than the target non-conformant transition (a, ssrc, stgt). This
means that r1 can expire existing non-conformant transitions, as defined in expe1 .

Furthermore, some induced transitions that provide coverage for a transition
in the life cycle may no longer be induced after r1 is applied. To capture this in

Improving Inconsistency Resolution with Side-Effect Evaluation and Costs 143

a side-effect expression, we introduce the concept of a coverage set: A coverage
set of a transition (sk, sl) in the object life cycle contains all induced transitions
of the form (a′, sk, sl) in the process model. If an induced transition (a′, sk, sl)
is the only element of a coverage set for (sk, sl), then removing this induced
transition will introduce a new non-covered transition (sk, sl). For r1, induced
non-covered transitions are defined in expe2 .

Table 1. Side-effect expressions, where i = ncnf tran(a, ssrc, stgt)

Res Side-effect Side-effect expression
r1 e1 ∈ Er1

− expe1(i) = {ncnf tran(a, ssrc, si) | si ∈ a.outputstate(o) and
ncnf tran(a, ssrc, si) ∈ IM}

e2 ∈ Er1
+ expe2(i) = {ncov tran(ssrc, si) | (a, ssrc, si) is an induced transition

of o in P and (a, ssrc, si) is the only element in the coverage set of
(ssrc, si)}

e3 ∈ Er1
+ expe3(i) = {ncnf first(si) | si ∈ a.outputstate(o) and ssrc is the only

state in a.inputstate(o) and there is no transition from the initial state
to si in OLC}

r2 e4 ∈ Er1
− expe4(i) = {ncnf tran(a, si, stgt) | si ∈ a.inputstate(o) and

ncnf tran(a, si, stgt) ∈ IM}
e5 ∈ Er2

+ expe5(i) = {ncov tran(si, stgt) | (a, si, stgt) is an induced transition of o
in P and (a, si, stgt) is the only element in the coverage set of (si, stgt)}

e6 ∈ Er2
+ expe6(i) = {ncnf last(si) | si ∈ a.inputstate(o) and stgt is the only

state in a.outputstate(o) and there is no transition from si to a final
state in OLC}

r3 e7 ∈ Er3
− expe7(i) = {ncnf tran(a, si, sj) | si ∈ a.inputstate(o) and sj ∈

a.outputstate(o) and ncnf tran(a, si, sj) ∈ IM}
e8 ∈ Er3

+ expe8(i) = {ncov tran(si, sj) | (a, si, sj) is an induced transition of o
in P and (a, si, sj) is the only element in the coverage set of (si, sj)}

For resolving non-conformant transitions (settle, GR, NR) and (review, NR, RE), we
get the following details about the effect of each resolution if we evaluate the
defined side-effect expressions (see Fig.4(b)-(g)):

Resolutions for ncnf tran(settle, GR, NR)
r1 resolves ncnf tran(settle, GR, NR) and introduces ncov tran(GR,SE);
r2 resolves ncnf tran(settle, GR, NR), ncnf tran(settle, RE, NR);() ()
r3 resolves ncnf tran(settle, GR, NR), ncnf tran(settle, RE, NR) and introduces ncov tran(GR,SE).

Resolutions for ncnf tran(review, NR, RE)

r1 resolves ncnf tran(review, NR, RE) and introduces ncnf first(review, RE);
r2 resolves ncnf tran(review, NR, RE) and introduces ncnf last(review, NR);
r3 resolves ncnf tran(review, NR, RE).

This detailed information about the effect of each resolution helps the user
to decide which resolution to apply in each case. Generally, the most beneficial
resolution would be the one that overall removes the greatest number of incon-
sistencies. In this example, we would choose r2 to resolve ncnf tran(settle, GR, NR)
and r3 to resolve ncnf tran(review, NR, RE).

144 J.M. Küster and K. Ryndina

To satisfy Req2, our approach goes further to provide a more fine-grained
comparison of resolutions based on cost reduction values calculated for each
resolution.

Definition 5 (Cost reduction of a resolution). Given a resolution r ∈ Rt

that can resolve an inconsistency i ∈ IM of type t ∈ TM , with side-effects E−
r =

{e11, ..., e1p} and E+
r = {e21, ..., e2q}, the cost reduction of resolution r is denoted

by costredr and calculated as follows:

costredr = cost(t) +
p∑

j=1

(
| expe1j (i) | × cost(type(e1j))

)

−
q∑

k=1

(| expe2k
(i) | × cost(type(e2k)))

We now calculate cost reduction values for the resolutions in our example:

ncnf tran(settle, GR, NR) ncnf tran(review, NR, RE)
costredr1 = 3 − (1 × 1) = 2 costredr1 = 3 − (1 × 2) = 1
costredr2 = 3 + (1 × 3) = 6 costredr2 = 3 − (1 × 3) = 0
costredr3 = 3 + (1 × 3) − (1 × 1) = 5 costredr3 = 3

It can be seen that based on the calculated cost reduction values, we can
perform a more fine-grained comparison of the resolutions that takes into account
the priorities or costs of different inconsistency types.

With our approach, we could also introduce more automation into the resolu-
tion process by applying resolutions without user intervention whenever there is
one resolution that has a highest cost reduction value for a particular inconsis-
tency. However, in our scenario, approving the choice of a resolution needs to be
done by an expert who is aware of what impact the change in the process model
has on the business. Provided that we are working with a model of an existing
business process, removing an action from this model translates to removing a
step in the process and may be difficult to implement in practice, even though
the cost reduction value indicates that this is the best resolution.

4 Design and Implementation of Tool Support

In this section we present a design for an inconsistency resolution module based
on our approach, which leads to an efficient implementation of inconsistency
resolution.

Figure 5 shows the fundamental elements of the resolution module design,
comprising several abstract classes (labeled in italics) that need to be extended
to arrive at an executable implementation.

The central element of the module is the InconsistencyResolver that has refer-
ences to all InconsistencyTypes that it can handle and a Model that is the subject of
inconsistency handling. The checkAndResolve() method of the InconsistencyResolver
is the entry-point to the inconsistency checking and resolution process.

Improving Inconsistency Resolution with Side-Effect Evaluation and Costs 145

Fig. 5. Design for an inconsistency resolution module

Listing 1.1. InconsistencyResolver : checkAndResolve()

1 checkAndResolve()
2 inconsistencies = checkModelForInconsistencies ();
3 while (inconsistencies . size > 0) do
4 totalInconsistencyCost = 0;
5 for each (Inconsistency i in inconsistencies) do
6 totalInconsistencyCost += i.type.cost ;
7 computeResolutions();
8 displayInconsistenciesAndResolutions ();
9 Resolution r = getUsersChoice();

10 if (r == null) then
11 return ;
12 else
13 r .type.apply ();
14 inconsistencies .remove(r. inconsistency);
15 inconsistencies .removeAll(r . expiredInconsistencies);
16 inconsistencies .add(r. inducedInconsistencies);

As shown in the method in Listing 1.1, the working model is first checked
for inconsistencies and then the total inconsistency cost for the model is com-
puted (lines 4-6). For each discovered inconsistency, possible resolutions are iden-
tified and these are communicated to the user (lines 7,8). After a resolution of
user’s choice is applied (lines 9-13), the model is not re-checked, but rather the
inconsistency set is directly updated by removing the resolved inconsistency and
those that expired and adding induced inconsistencies (lines 14-16). This added
efficiency is valuable in practice, as in reality many models tend to get very large
and as soon as re-checking them takes a noticeable amount of time, unnecessary
interruptions are introduced into the resolution process.

As shown in Fig.5, each Resolution is associated with sets of inconsistencies that
it will induce or expire if it is applied. An effect of a Resolution is the overall change
in number of inconsistencies that it will inflict and its costReduction reflects how

146 J.M. Küster and K. Ryndina

the resolution will reduce the total inconsistency cost. These are determined in
the computeResolutions() method of the InconsistencyResolver shown in Listing 1.2
as pseudocode. As each resolution resolves its target inconsistency, effect of each
resolution is initialized to -1 (line 8) and initial costReduction is set to the cost of
the target inconsistency type (line 9). Iterating over the resolution side-effects,
values of effect and costReduction attributes are updated (lines 13-14,17-18).

Listing 1.2. InconsistencyResolver : computeResolutions()

1 computeResolutions()
2 for each (Inconsistency i in inconsistencies) do
3 i .canBeResolvedBy.clear ();
4 for each (ResolutionType rt in i .type.canBeResolvedBy) do
5 Resolution r = new Resolution();
6 i .canBeResolvedBy.add(r);
7 r . inconsistency = i;
8 r . effect = −1;
9 r .costReduction = i.type. cost ;

10 for each (SideEffect se in rt . sideEffects) do
11 Set inconsistencies = se. getInconsistencies (i ,workingModel);
12 if (se . expiresInconsistencies) then
13 r . effect −= inconsistencies . size ();
14 r .costReduction += inconsistencies . size () ∗ se . affectedInconsistencyType . cost ;
15 r . expiredInconsistencies .add(inconsistencies);
16 else
17 r . effect += inconsistencies . size ();
18 r .costReduction −= inconsistencies . size () ∗ se . affectedInconsistencyType . cost ;
19 r . inducedInconsistencies .add(inconsistencies);

Our proposed design can be directly used to derive the implementation core of
a resolution module, after which all abstract classes need to be extended to com-
plete the implementation. For implementing support for inconsistency resolution
between object life cycles and process models for example, we extend Inconsisten-
cyResolver with the concrete class ObjectLifeCycleProcessModelResolver that provides
an implementation for finding inconsistencies in a model and communication
with the user. For each resolution side-effect like the ones shown in Table 1, we
create an extension of the SideEffect class and implement the getInconsistencies()
method that evaluates the associated side-effect expression. Our approach does
not place any restrictions on how transformations associated with resolutions
are to be implemented, i.e. this can be done directly in a conventional program-
ming language such as Java or using one of the existing model transformation
approaches.

We have implemented a prototype for resolution of inconsistencies between
object life cycles and process models, based on the presented approach. Our
prototype is an extension to IBM WebSphere Business Modeler [2] that natively
supports process modeling and has been extended for modeling object life cy-
cles (Fig.6).

Detected inconsistencies are shown in the inconsistencies view below the model
editors, where inconsistencies with higher costs are displayed higher in the list.
The total number and cost of inconsistencies are shown at the top of this view, so
that the effect on these numbers can be monitored during the resolution process.

Improving Inconsistency Resolution with Side-Effect Evaluation and Costs 147

After an inconsistency is selected, resolution side-effects and cost reduction val-
ues are calculated by the tool and can be taken into account for choosing the
most appropriate resolution.

Fig. 6. Inconsistency resolution prototype in IBM WebSphere Business Modeler

We have used the prototype for resolving inconsistencies between several ex-
ample models inspired by IAA [1]. This initial study has shown that the proposed
approach provides powerful assistance for the user in selecting a resolution for
each inconsistency.

5 Related Work

Recent work on inconsistency resolution includes work by Mens et al. [12,13]
that uses the AGG [23] graph transformation tool to detect potential depen-
dencies between different inconsistency resolutions. Inconsistency detection and
resolution rules are expressed as graph transformation rules in AGG and are
then analyzed using critical pair analysis. Analysis results point to potentially
conflicting resolutions, resolutions that may induce or expire other types of in-
consistencies and potential cycles between resolutions. In this paper, we propose
explicit specification of side-effect expressions that can be evaluated given a
model inconsistency and hence provide the user with a basis for comparison of

148 J.M. Küster and K. Ryndina

alternative resolutions. It would be interesting to investigate how automated
dependency analysis can assist in the specification of side-effect expressions.

The FUJABA tool suite [15] supports both manual and automatic incremen-
tal inconsistency resolution [24]. Consistency checking rules can be configured by
the user and organized into different categories in order to support domain- or
project-specific consistency requirements. Consistency checking rules and incon-
sistency resolution rules are specified using graph grammar rules and executed
by a FUJABA rule engine. Although different categories could also be used
for obtaining different priorities, our approach can be seen as complementary
because we focus on the evaluation of several alternative resolutions for one in-
consistency based on side-effects and costs. Work on incremental transformations
using triple graph grammars [19] studies the problem of keeping two models syn-
chronized [8,18]. This is achieved by analyzing changes in one model and applying
incremental updates for re-establishing consistency. Although these updates are
analyzed for conflicts, a detailed evaluation of side-effects is not addressed.

Nentwich et al [14] propose to generate inconsistency resolutions (called repair
actions) automatically from consistency constraints that are specified in first
order logic. As opposed to our approach, generated repair actions do not take
into account a concrete model violating consistency constraints and also do not
consider side-effects.

Spanoudakis and Zisman [20] conducted a survey about inconsistency man-
agement and concluded that the most important open research issue in incon-
sistency handling is providing more guidance to the user for choosing among
multiple alternative resolutions. The authors argue that resolutions should be
ordered based on cost, risk and benefit. They further conclude that existing ap-
proaches do not adequately address efficiency and scalability of inconsistency
detection in models that change during the resolution process. In our approach,
we use side-effects and costs for evaluating alternative resolution and avoid re-
checking the whole model after a resolution is applied.

Nuseibeh et al. [16] present a framework for managing inconsistency in soft-
ware development. This framework comprises monitoring, identification and
measuring of inconsistencies. Measuring inconsistencies includes attaching pri-
orities to different inconsistencies. In our work, we use costs to reflect priorities
of inconsistency types and also to calculate cost reduction for each resolution.

6 Conclusions and Future Work

In this paper, we introduce the concept of side-effect expressions that can be eval-
uated for a given inconsistent model to determine whether or not a resolution
leads to new or expired inconsistencies. This allows the user to compare alterna-
tive resolutions for the same inconsistency. We attach costs to each inconsistency
type, which enables us to calculate cost reduction values for each resolution and
therefore provide a more fine-grained comparison of resolutions. Finally, we show
how our concepts can be used to implement an efficient inconsistency resolution
module for integration with an existing modeling tool.

Improving Inconsistency Resolution with Side-Effect Evaluation and Costs 149

Our case study and application of the prototype to various examples have
shown that the approach adds significant value for the user during the reso-
lution process. To enhance our solution further, we will next investigate more
sophisticated cost models and study how cycles can be detected during the res-
olution process. Another area of future work is the application of our approach
to domain-specific languages. Here, automated resolution dependency analysis
and reusable side-effect specifications can be of interest in order to decrease the
manual overhead of our approach.

Acknowledgements. We would like to thank Harald Gall, Jana Koehler, Ce-
sare Pautasso, Hagen Völzer and Michael Wahler for their valuable feedback on
an earlier version of this paper.

References

1. IBM Insurance Application Architecture, http://www.ibm.com/industries/
financialservices/doc/content/solution/278918103.html

2. IBM WebSphere Business Modeler,
http://www.ibm.com/software/integration/wbimodeler/

3. UML2.0 Superstructure, formal/05-07-04. OMG Document (2005)
4. Ebert, J., Engels, G.: Specialization of Object Life Cycle Definitions. Fachberichte

Informatik 19/95, University of Koblenz-Landau (1997)
5. Engels, G., Küster, J.M., Groenewegen, L., Heckel, R.: A Methodology for Spec-

ifying and Analyzing Consistency of Object-Oriented Behavioral Models. In:
ESEC’01. Proceedings of the 8th European Software Engineering Conference, pp.
186–195. ACM Press, New York (2001)

6. Finkelstein, A., Gabbay, D., Hunter, A., Kramer, J., Nuseibeh, B.: Inconsistency
Handling in Multi-Perspective Specifications. IEEE Transactions on Software En-
gineering 20(8), 569–578 (1994)

7. Ghezzi, C., Nuseibeh, B.A.: Special Issue on Managing Inconsistency in Software
Development (1). IEEE Transactions on Software Engineering 24(11) (November
1998)

8. Giese, H., Wagner, R.: Incremental Model Synchronization with Triple Graph
Grammars. In: Nierstrasz, O., Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS
2006. LNCS, vol. 4199, pp. 543–557. Springer, Heidelberg (2006)

9. Kappel, G., Schrefl, M.: Object/Behavior Diagrams. In: Proceedings of the 7th
International Conference on Data Engineering, Washington, DC, USA, pp. 530–
539. IEEE Computer Society, Los Alamitos (1991)

10. Kleppe, A., Warmer, J.: The Object Constraint Language, 2nd edn. Addison-
Wesley, Reading (2003)

11. Küster, J.M.: Consistency Management of Object-Oriented Behavioral Models.
PhD thesis, University of Paderborn (March 2004)

12. Mens, T., Van Der Staeten, R., Warny, J.-F.: Graph-Based Tool Support to Im-
prove Model Quality. In: Proceedings of the 1st Workshop on Quality in Model-
ing co-located with MoDELS 2006, Technical report 0627, Technische Universiteit
Eindhoven, pages 47–62 (2006)

 http://www.ibm.com/industries/financialservices/doc/content/solution/278918103.html
 http://www.ibm.com/industries/financialservices/doc/content/solution/278918103.html
http://www.ibm.com/software/integration/wbimodeler/

150 J.M. Küster and K. Ryndina

13. Mens, T., Van Der Straeten, R., D’Hondt, M.: Detecting and Resolving Model In-
consistencies Using Transformation Dependency Analysis. In: Nierstrasz, O., Whit-
tle, J., Harel, D., Reggio, G. (eds.) MoDELS 2006. LNCS, vol. 4199, pp. 200–214.
Springer, Heidelberg (2006)

14. Nentwich, C., Emmerich, W., Finkelstein, A.: Consistency Management with Re-
pair Actions. In: Proceedings of the 25th International Conference on Software
Engineering, Portland, Oregon, USA, May 3-10, 2003, pp. 455–464. IEEE Com-
puter Society, Los Alamitos (2003)

15. Nickel, U.A., Niere, J., Zündorf, A.: Tool Demonstration: The FUJABA Environ-
ment. In: ICSE. Proceedings of the 22nd International Conference on Software
Engineering, Limerick, Ireland, pp. 742–745. ACM Press, New York (2000)

16. Nuseibeh, B., Easterbrook, S., Russo, A.: Making Inconsistency Respectable in
Software Development. Journal of Systems and Software 58(2), 171–180 (2001)

17. Ryndina, K., Küster, J.M., Gall, H.: Consistency of Business Process Models and
Object Life Cycles. In: Kühne, T. (ed.) Workshops and Symposia at MoDELS
2006. LNCS, vol. 4364, pp. 80–90. Springer, Heidelberg (2007)

18. Lohmann, S., Westfechtel, B., Becker, S., Herold, S.: A Graph-Based Algorithm for
Consistency Maintenance in Incremental and Interactive Integration Tools. Journal
of Software and Systems Modeling (to appear, 2007)

19. Schürr, A.: Specification of Graph Translators with Triple Graph Grammars. In:
Mayr, E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 151–
163. Springer, Heidelberg (1995)

20. Spanoudakis, G., Zisman, A.: Handbook of Software Engineering and Knowledge
Engineering, chapter Inconsistency Management in Software Engineering: Survey
and Open Research Issues, pp. 329–380. World Scientific Publishing Co. (2001)

21. Van Der Straeten, R.: Inconsistency Management in Model-Driven Engineering.
PhD thesis, Vrije Universiteit Brussel (September 2005)

22. Van Der Straeten, R., D’Hondt, M.: Model Refactorings through Rule-Based In-
consistency Resolution. In: SAC. Proceedings of the 2006 ACM Symposium on
Applied Computing, Dijon, France, April 23-27, 2006, pp. 1210–1217. ACM, New
York (2006)

23. Taentzer, G.: AGG: A Graph Transformation Environment for Modeling and Val-
idation of Software. In: Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003.
LNCS, vol. 3062, pp. 446–453. Springer, Heidelberg (2004)

24. Wagner, R., Giese, H., Nickel, U.: A Plug-In for Flexible and Incremental Consis-
tency Management. In: Proceedings Workshop on Consistency Problems in UML-
based Software Development, San Francisco, USA, Technical Report. Blekinge In-
stitute of Technology, San Francisco (October 2003)

	Improving Inconsistency Resolution with Side-Effect Evaluation and Costs
	Introduction
	Inconsistency of Object Life Cycles and Process Models
	Inconsistency Resolution with Side-Effects and Costs
	Design and Implementation of Tool Support
	Related Work
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

