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Preface

MODELS 2007 was the tenth incarnation of the series of conferences on Model
Driven Engineering Languages and Systems. The conference was held in Nash-
ville (TN), USA, during the week of September 30 to October 5, 2007. The local
arrangements were provided by the Department of Electrical Engineering and
Computer Science of Vanderbilt University.

The program of the week comprised three keynote presentations, technical
paper presentations, two panels, as well as several workshops and tutorials on
key topics in the field. The invited keynote speakers were Mary Shaw (Carnegie
Mellon University), Kevin Sullivan (University of Virginia), and Patrick Lardieri
(Lockheed Martin Advanced Technology Lab).

This volume contains the final versions of the papers accepted for presenta-
tion at the conference. These papers cover topics from the field including meta-
modeling, model transformations, model analysis, aspect-oriented modeling, and
modeling process support.

We received 158 full paper submissions (including 18 experience reports) for
review from 36 different countries. Of these, 31 papers were submitted with
authors from more than one country. The top countries submitting papers were
France (72), USA (64), and Germany (59). A total of 45 papers were accepted for
inclusion in the proceedings, including five experience papers. The acceptance
rate was therefore 28 %, which is comparable to those of previous MODELS
conferences.

At least three Program Committee members reviewed each paper. Reviewing
was thorough, and most authors received detailed comments on their submissi-
ons. Conflicts of interest were taken very seriously. No one participated in any
way in the decision process of any paper where a conflict of interest was iden-
tified. In particular, PC members who submitted papers did not have access to
information concerning the reviews of their papers.

We would like to thank everyone who submitted a paper or a proposal for
a workshop or a tutorial. We would also like to thank the large number of
volunteers who contributed to the success of the conference. Richard van de
Stadt deserves special thanks for his prompt and gracious service in supporting
special requests for CyberChairPRO, the conference management system used
to manage papers submissions and the virtual PC meeting. Finally, we would
like to thank our sponsors, ACM and IEEE Computer Society, for their support
of the MODELS 2007 conference.

October 2007 Gregor Engels
Bill Opdyke

Douglas C. Schmidt
Frank Weil
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Meta-Modeling

On Metamodeling in Megamodels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Dragan Gašević, Nima Kaviani, and Marek Hatala

Magritte – A Meta-driven Approach to Empower Developers and End
Users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
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Consistent Models

Improving Inconsistency Resolution with Side-Effect Evaluation and
Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
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Bidirectional Model Transformations in QVT:

Semantic Issues and Open Questions

Perdita Stevens�

School of Informatics, University of Edinburgh
Fax: +44 131 667 7209
perdita@inf.ed.ac.uk

Abstract. We consider the OMG’s Queries, Views and Transforma-
tions (QVT) standard as applied to the specification of bidirectional
transformations between models. We discuss what is meant by bidirec-
tional transformations, and the model-driven development scenarios in
which they are needed. We analyse the fundamental requirements on
tools which support such transformations, and discuss some semantic
issues which arise. We argue that a considerable amount of basic re-
search is needed before suitable tools will be fully realisable, and suggest
directions for this future research.

Keywords: bidirectional model transformation, QVT.

1 Introduction

The central idea of the OMG’s Model Driven Architecture is that human intelli-
gence should be used to develop models, not programs. Routine work should be,
as far as possible, delegated to tools: the human developer’s intelligence should be
used to do what tools cannot. To this end, it is envisaged that a single platform
independent model (PIM) might be created and transformed, automatically,
into various platform specific models (PSMs) by the systematic application of
understanding concerning how applications are best implemented on each spe-
cific platform. The OMG’s Queries, Views and Transformations (QVT) standard
[12] defines languages in which such transformations can be written.

In this paper we will discuss bidirectional transformations, focusing on basic
requirements which such transformations should satisfy.

The structure of the paper is as follows. In the remainder of this section, we
motivate bidirectional transformation, and especially, the need for non-bijective
bidirectional transformations; we then discuss related work. Section 2 briefly
summarises the most relevant aspects of the QVT standard. Section 3 discusses
key semantic issues that arise. Section 4 proposes and motivates a framework
and a definition of “coherent transformation”. Finally Section 5 concludes.

In order to justify the considerable cost of developing a model transformation,
it should ideally be reused; perhaps a vendor might sell the same transformation

� Corresponding author.

G. Engels et al. (Eds.): MoDELS 2007, LNCS 4735, pp. 1–15, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



2 P. Stevens

to many customers. However, in practice a transformation will usually have to
be adapted to the needs of a particular application. Similarly, whilst we might
like to argue that only the PIM would ever need to be modified during develop-
ment, with model transformation being treated like compilation, the transformed
model never being directly edited, nevertheless in practice it will be necessary
for developers to modify both the source and the target models of a transforma-
tion and propagate changes in both directions. The interesting albeit unfinished
document [14] makes these and other points, emphasising especially that bidi-
rectional transformations are a key user requirement on QVT, and that ease of
use of the transformation language is another key requirement.

Even in circumstances where it is in principle possible to make every change
in a single source model, and roll changes down to target models by reapplying
unidirectional transformations, in practice this is not desirable for a number of
reasons. A human reason is that different developers are familiar with different
models, and even different modelling languages. Developers are less likely to
make mistakes if they change models they are comfortable with. A technical
reason is that some changes are most simply expressed in the vocabulary, or
with respect to the structure, of one model. For example, a single change to
one model might correspond, semantically, to a family of related changes in the
other.

Given the need for transformations to be applied in both directions, there are
two possible approaches: write two separate transformations in any convenient
language, one in each direction and ensure “by hand” that they are consistent, or
use a language in which one expression can be read as a transformation in either
direction. The second is very much preferable, because the checking required
to ensure consistency of two separate transformations is hard, error-prone, and
likely to cause a maintenance problem in which one direction is updated and the
other not, leaving them inconsistent. QVT Relational takes this second approach:
a transformation written in QVT Relational is intended to be able to be read
as a specification of a relation which should hold between two models, or as a
transformation function in either direction.

1.1 Bidirectional Versus Bijective Transformations

A point which is vital for the reader to understand is that bidirectional trans-
formations need not be bijective. A transformation between metamodels M and
N given by a relation R is bijective if for every model m conforming to M there
exists exactly one model n conforming to N such that m and n are related by R,
and vice versa (for every model n conforming to N there exists exactly one ...).
This is an important special case because there is then no choice about what
the transformation must do: given a source model, it must return the unique
target model which is correctly related to the source. Ideally, the developer writ-
ing a bijective transformation does not have to concern herself with how models
should be transformed: it should suffice to specify the relation, which will in fact
be a bijective function. (In practice, depending on exactly how the relation is ex-
pressed, it might be far from trivial for a tool to extract the functions, however.)
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Modulo information encoded in the transformation itself, both source and target
models contain exactly the same information; they just present it differently. The
classic example in the QVT standard of transformation between a UML class
diagram and a database schema is a case where both models contain almost (but
not quite) the same information, so it happens not to be a clear illustration of
the inadequacy of bijective transformations. More realistically we might express
the requirement as the synchronisation of a full UML model, including dynamic
diagrams, with a database schema, which makes it obvious that there will be
many UML models which might be related to a given schema. More generally,
bijective transformations are the exception rather than the rule: the fact that one
model contains information not represented in the other is part of the reason for
having separate models. The QVT standard [12] is somewhat ambivalent about
whether it intends all bidirectional QVT transformations to be bijective. On the
one hand, the requirements of MDD clearly imply that it should be possible
to write non-bijective transformations (see also [14]): for example, in general,
the development of a PSM will involve the addition of information concerning
design decisions on a particular platform. On the other hand, it is technically a
consequence of statements made in the QVT Relations chapter that all “valid”
transformations expressed in that language must be bijective, as we will show
below. We take the latter to be a bug in the document, or at least, a restriction
which needs to be relaxed for the promise of MDD to be fully realised.

1.2 Related Work

In the context of model transformations, almost all formal work on bidirectional
transformations is based on graph grammars, especially triple graph grammars
(TGGs) as introduced by Schürr (see, for example, [7]). Indeed, the definition
of the QVT core language was clearly influenced by TGGs. A master’s thesis
by Greenyer [4] studies the relationship between QVT (chiefly QVT core) and
TGGs, defining a translation from (a simplified subset of) QVT core into a
version of TGGs that can be input into a TGG tool. More broadly, the field of
model transformations using graph transformation is very active, with several
groups working and tools implemented. We mention in particular [8,13]. Most
recently, the paper [2] by Ehrig et al. addresses questions about the circumstances
in which a set of TGG rules can indeed be used for forward and backward
transformations which are information preserving in a certain technical sense. It
is future work to relate our approach to TGGs.

In this context, it may seem foolhardy to write a paper which approaches se-
mantic issues in bidirectional model transformations from first principles. How-
ever, there is currently a wide gap between what is desired for the success of
MDD and what is known to be soundly supportable by graph transformations;
the use of QVT-style bidirectional transformations has not spread fast, despite
the early availability of a few tools, partly (we think) because of uncertainty
among users over fundamental semantic issues; and moreover, there is a large
body of quite different work from which we may hope to gain important insights.
Here we give a few pointers.
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Benjamin Pierce and colleagues in the Harmony group have explored bidirec-
tional transformations extensively in the context of trees [3], and more recently in
the context of relational databases [1]. In their framework, a lens, or bidirectional
transformation, is a pair of functions (a “get” function and a “putback” function)
which are required to satisfy certain properties to ensure their coherence. They de-
fine a number of primitive lenses, and combinators with which to build more com-
plex lenses. Thus, they define a programming language operating on trees in which
a program can be read either forwards or backwards. Coherence of the forward and
backward readings of the program follows from properties of the primitives and
combinators. Their framework is asymmetric, however: their forward transforma-
tion is always a function on the source model only, which, in conjunction with their
coherence conditions, implies that the target model is always an abstraction of the
source model: it contains less information. This has advantages and disadvantages.
It is insufficiently flexible to serve as a framework for MDA-style model transfor-
mations in general, but the restriction permits certain constructs, especially com-
position, to work in a way which does not seem to be possible in the more general
setting. We shall return to this work later in the paper.

Bidirectional programming languages have been developed in various areas,
and a survey can be found in [3]. Notably Lambert Meertens’ paper [9] addresses
the question of developing “constraint maintainers” for use in user interface de-
sign, but his approach is far more general. His maintainers are essentially model
transformations which, in terms we shall introduce below, are required to be
correct and hippocratic, but not undoable. In [6], Kawanaka and Hosoya develop
a bidirectional programming language for XML. In Tokyo, Masato Takeichi and
colleagues Shin-Cheng Mu and Zhenjiang Hu have also worked extensively on
an algebraic approach to bidirectional programming: see [10,11,5].

2 QVT

The OMG’s Queries, Views and Transformations (QVT) standard [12] addresses
a family of related problems which arise in tool-supported model driven devel-
opment. Not all information which is modelled is relevant at any one time, so
there is a need to be able to abstract out the useful information; and models
need to be held in meaningful relationships with one another. Provided that we
permit non-bijective transformations (required to support model views), trans-
formations subsume views.

The QVT standard describes three languages for transformations: the Op-
erational, Relational and Core languages. The Relational language is the most
relevant here. In the Operational language, someone wishing to specify a bidi-
rectional transformation would have to write a pair of transformations and make
them consistent by hand, which we have already said is undesirable. QVT Core
is a low level language into which the others can be translated; an example trans-
lation from QVT Relational to QVT Core is given in the standard. Since we are
concerned with transformations as expressed by users, we will work with QVT
Relational.
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The issue of whether transformations expressed in QVT Relational are sup-
posed to be bijective is not explicitly discussed, but it seems to be a – possibly
unintended – consequence of statements made in [12] that they must be. Specif-
ically, QVT transformations are given a “check then enforce” semantics which
means that a transformation must not modify a target model if it is already
correctly related to the source model. At the same time, [12] page 18 states:

In relations, the effect of propagating a change from a source model to a tar-
get model is semantically equivalent to executing the entire transformation
afresh in the direction of the target model.

This seems to imply that if a transformation is to propagate changes made in a
source model m to a target model n, the new target model that results must be
independent of the old one: the result of the transformation must depend only
on m, since it is equivalent to “executing the entire transformation” on m. In
other words given m, there is a unique target model n which must result from
executing the transformation. Now suppose that there is also a different model
n′ which is correctly related to m. Of course, this is quite compatible with the
functional interpretation of transformation given in the above quotation: it could
happen that even though n′ would be a correct target model, n is the one which
happens to be produced when the transformation is run on m. In this case, if
the transformation is run in a situation where the source model is m and the
target model is n′, the target model must be transformed into n, even though n′

was already correctly related to m. This, however, is exactly what is forbidden
by the “check then enforce” semantics: given that n′ is already correctly related
to m, it must not be modified by running the transformation. If the situation of
running a transformation on models which are already correctly related seems
too artificial, the reader may prefer to consider a situation in which a target
model may be put in correct relation with a source model in two different ways:
either by making a tiny change to turn it into one correctly related model, or by
making a large change to turn it into a different correctly related model. It will
be natural to want the transformation to make the minimal possible changes to
ensure relatedness (and, indeed, the text in [12] immediately following the above
quotation suggests that this is intended). Interpreting the quoted text literally,
though, forbids the transformation to give different results depending on how
close the existing target model is to each correctly related target model.

It might be possible to interpret “semantically equivalent” in the above quo-
tation so as to resolve this problem, but this seems forced (since it would require
being able to regard models which contained very different information as being
“semantically equivalent”). A better solution seems to be to assume that the
above quotation is unintentionally restrictive, and disregard it.

3 Semantic Issues

In this section we raise a variety of issues which we consider to need further
study: they are settled neither by the QVT standard, nor as far as we know by
existing related work.
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3.1 What Exactly It Makes Sense to Write

The QVT Relational language is designed to be easy for someone familiar with
related OMG standards such as OCL to learn and use; this has clearly been
a higher design goal than ensuring that only safe transformations can be writ-
ten. There are several places (when and where clauses, among others) where
arbitrary OCL expressions are permitted, even though only certain expressions
make sense as part of a bidirectional transformation. For example, a transfor-
mation may in one direction give an attribute a value using an non-invertible
expression.1 Specifying exactly what language subset is permitted, however, is
likely to run quickly into a familiar problem: that any reasonably easy-to-define
language subset which is provably safe will also exclude many safe expressions
of the full language. It may well be preferable to be permissive, and rely on
users not to choose to write things that don’t make sense. They will, how-
ever, require a clear understanding of what it means for a transformation to
“make sense”. In Section 4 we propose first steps in this direction and give sim-
ple postulates which, we argue, any bidirectional model transformation should
obey.

3.2 Determining Validity of a Transformation

Let us suppose that the reader and the developer accept that model transfor-
mations will be written in an expressive, unsafe language, but that the trans-
formations written should obey our proposed postulates (even though this has
to be verified on a case-by-case basis, lacking a language in which any trans-
formation is guaranteed to satisfy the postulates). How can developers become
confident that their transformations do indeed obey these postulates? Ideally,
the language and the postulates should be so clearly understandable that the
developers can be confident in their intuition: tool support is no substitute for
this kind of clarity. However, it is also desirable that a tool should be able to
check, given the text of a transformation and the metamodels to which it ap-
plies, that it obeys the postulates. That is, this transformation should be able
to be verified statically at the time of writing it, as opposed to failing when it is
applied to arguments which expose a problem. Whether or to what extent this
can be done is an open question.

A major danger with bidirectional transformations is that one direction of
the transformation may be a seldom used but very important “safety net”. It
will be unfortunate if the user only finds out that their transformation can-
not be executed in the less usual direction long after the transformation has
been written, in circumstances where the reverse transformation is really
needed.

1 Note that permitting non-bijective transformations does not make this unproblem-
atic: since transformations are to be deterministic, where there are several relation-
ally possible choices of value the language needs to provide a way to specify which
should be chosen.
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3.3 Composition of Relations in QVT: When and Where Clauses

Most of this paper takes a high level view of transformations, in which a whole
transformation text specifies a relation and a pair of transformational functions.
We have not yet considered the details of how simpler relations are combined
and built up into transformations in QVT. This is interesting, however, and not
least because it gives another justification for considering non-bijective transfor-
mations. A QVT relational transformation has an overall structure something
like this:

transformation ... {
top relation R {
domain a...
domain b...
when {...}
where {...}

}
top relation S ...
relation ...
relation ...
...
}

In order to understand when and where clauses, note that [12] uses two different
notions of a relation holding. At the top level, a relation holds of a pair of mod-
els – checking will return TRUE – if they are consistent. E.g. if a UML model
m is consistent with an RDBMS model s according to relation ClassToTable,
we will write ClassToTable+(m,s). The + is intended to distinguish this no-
tion from the following: the consistency between m and s is demonstrated by
matching individual classes in m to individual tables in s: then the class c and
table t (or more formally, the corresponding valid bindings of domain variables
in the text of ClassToTable) may also be said to be related. We will write
ClassToTable(c,t). Note that the relation on models ClassToTable+ is a lifted
version of the relation on bindings ClassToTable: a UML model is related to an
RDBMS model by ClassToTable+ iff for every class there is a table related to
it by ClassToTable and vice versa.

The when and where clauses can contain arbitrary OCL, but are typically
expected to contain (if anything) statements about relations satisfied by vari-
ables of the domain patterns. Thus in fact, the relation R holds if for every
valid match of the first domain, there exists a valid match of the second do-
main such that the where clause holds. The when clause “specifies the conditions
under which the relationship needs to hold”. The example used in the stan-
dard is the relation ClassToTable with domains binding c:Class (and hence
p:Package etc.) and t:Table (and hence s:Schema etc.), the when clause being
PackageToSchema(p,s) and the where clause being AttributeToColumn(c,t).

Now, what does this mean in relational terms, and specifically, what is the dif-
ference between the when clause and the where clause, both of which
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appear at first sight to impose extra conditions on valid matches of bindings,
thus forming an intersection of relations? Unfortunately, this is not straight-
forward to express relationally. Operationally, the idea is that the variables in
the when clause “are already bound” “at the time this relation is invoked”.
Roughly speaking, when a relation ClassToTable has domain patterns with
variables including p : Package and s : Schema, and a when clause which
states PackageToSchema(p,s), the QVT engine is supposed to have already pro-
cessed the PackageToSchema relation (if not, it will postpone consideration of the
ClassToTable relation). The matchings calculated for PackageToSchemaprovide
bindings for variables p and s in ClassToTable. Evaluation of ClassToTable
now proceeds, looking for compatible valid bindings of all the other variables.

We have sketched the operational view of what happens in one example, but
an open problem is to give a clean compositional account of even the relation
(let alone the transformation) defined by a whole QVT transformation. Making
this precise would involve a full definition of R+ taking account of when and
where clauses, and an account of the relationship between properties of R and
properties of R+. As an example of the complications introduced by dependen-
cies between relations, suppose that there are two ways of matching pairs of
valid bindings (skolem functions) for one relation, one of which leads to a com-
patible matching for a later-considered relation and one of which does not. If a
QVT engine picks “the wrong” matching for the first relation considered, is it
permitted to return the result that the models are inconsistent, even though a
different choice by the tool would have given a different result? Surely not: but
then there is a danger that the tool will need to do global constraint solving
or arbitrarily deep backtracking to ensure that it is not missing a solution. Not
only is this inefficient, but it will be very hard for the human user to understand.
Now, looking at the examples in [12], it seems clear that this kind of problem
is not supposed to arise, because when clauses are used in very restricted cir-
cumstances. However, it is an open question what can be permitted, and we can
expect to encounter the usual problem of balancing expressivity against safety.

For a simple example of “spatial” composition of relations where we can lift
good properties of simple relations to good properties of a more complex relation,
see the next section.

3.4 Sequential Composition of Transformations

We have discussed the ways in which relations are composed in QVT to make up
transformations. A different issue is the sequential composition of whole transfor-
mations. We envisage a bidirectional QVT tool which does not retain information
between uses: it simply expects to be given a pair of models, a transformation,
and a command telling it in which direction to apply the transformation and
whether to check or enforce.2

2 If the tool is allowed to retain trace information – the correspondence graph in TGG
terms – between executions, the problem becomes more tractable. But this is a severe
pragmatic limitation.
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We naturally expect to be able to define a transformation to be the sequential
composition of two other transformations, and then treat the composition as a
first-class transformation in its own right. In this case, the pair of models given
to the tool will be the source of the first transformation and the target of the
second: the tool will not receive a version of the intermediate model, the one
which acts as target of the first transformation and source of the second. In
order to define a general way to compose transformations, we need to suppose
that we are given transformations R from M to N and S from N to P and show
how to construct a composed transformation T = R; S, giving the relational and
functional parts of the composed relation in terms of the parts of the constituent
relations.

We will return to this issue in the next section, after introducing appropriate
notation.

4 Requirements for Bidirectional Model Transformations

In this section we discuss bidirectional model transformations which are not nec-
essarily bijective, and discuss under what circumstances these will make sense.
We will give postulates which are clearly satisfied by bijective transformations,
but also by certain non-bijective transformations.

First let us set some basic notation. We will use capital letters such as R, S, T
for the relations which transformations are supposed to ensure. That is, if M and
N are metamodels (or sets of models) to be related by a model transformation,
the relation R ⊆ M × N holds of a pair of models – and we write R(m, n) – if
and only if the pair of models is deemed to be consistent. Associated with each
relation will be the two directional transformations:

−→
R : M ×N −→ N

←−
R : M ×N −→ M

The idea is that −→R looks at a pair of models (m, n) and works out how to
modify n so as to enforce the relation R: it returns the modified version. Similarly,←−
R propagates changes in the opposite direction.

In practical terms, what we expect is that the programmer writes a single text
(or set of diagrams) defining the transformation in the QVT relational language
(or indeed, in another appropriate language). This same text can be read in three
ways: as a definition of a relation which must hold between pairs of models; as
a “forward” transformation which explains how to modify the right-hand model
so as to make it relate to the left-hand model; as a “backward” transformation
which explains how to modify the left-hand model so as to make it relate to
the right-hand model. By slight abuse of notation, we will use capital letters
R, S etc. to refer to the whole transformation, including both transformational
functions as well as the relation itself, when no confusion can result.

Our notation already incorporates some assumptions, or rather assertions,
which need justification.
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First, and most importantly, that the behaviour of a transformation should
be deterministic, so that modelling it by a mathematical function is appropriate.
The same transformation, given the same pair of models, should always return
the same proposed modification. This is a strong condition: it proscribes, for
example, transformation texts being interpreted differently by different tools.
An alternative approach, which we reject, would have been to permit a tool to
modify the target model by turning it into any model which is related to the
source model by the relation encoded in the transformation. There are several
good reasons to reject that approach. Most crucially, the model transformation
does not take place in isolation but in the presence of the rest of the development
process. Even though certain aspects of one model may be irrelevant to users
of the other – so that the transformation will deliberately abstract away those
aspects – this does not imply that the abstracted away aspects are not important
to other users! Usually, it will be unacceptable for a tool to “invent information”
in any way, e.g. by making the choice of which related model to choose. The
developer needs full control of what the transformation does. Even in rare cases
where certain aspects of the transformation’s behaviour (say, the choice of name
for a newly created model element) might be thought of as unimportant, we
claim that determinism is necessary in order to ensure, first, that developers will
find tool behaviour predictable, and second, that organisations will not be unac-
ceptably “locked in” to the tool they first use. Experience shows that even when
a choice is arbitrary, people find it important that the way the arbitrary choice
is made be consistent. One example of this is the finding that, even though the
spatial layout of UML diagrams does not (generally) carry semantic information,
it is important for UML tools to preserve the information.

Our second assertion is that the behaviour of a transformation may reason-
ably depend on the current value of the target model which will be replaced,
as well as on the source model. This follows from our argument in Section 1
that restricting bidirectional transformations to be bijective is too restrictive.
Of course, the fact that we choose a formalism which permits the behaviour of
a transformation to depend on both arguments does not force it to do so. In the
special case of a bijective transformation, the result of −→R may be independent
of its second argument, and the result of ←−R independent of its first argument.
Another important special case is when the transformation in one direction uses
only one of its arguments, while the reverse transformation uses both. Pierce
et al.’s lenses fall into this category, and we will discuss how they fit into this
framework below.

A technical point is that we require transformations to be total, in the sense
that −→R and ←−R are total functions, defined on the whole of M×N . We may want
to define, for a metamodel M , a distinguished “content-free” model εM to be
used as a dummy argument e.g. in the case that a target model is created afresh
from a source model. Note that since the model containing no model elements
might not conform to M , εM might not literally be empty.
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Correctness. Our notation is chosen to suggest that the job of −→R and ←−R is to
enforce the relation R, and our first postulates state that they actually do this.
We will say that a transformation T is correct if

∀m ∈ M ∀n ∈ N T (m,
−→
T (m, n))

∀m ∈ M ∀n ∈ N T (←−T (m, n), n)

These postulates clearly have to be satisfied by any QVT-like transformation.

Hippocraticness, or “check-then-enforce”. The QVT standard very clearly states
that a QVT transformation must not modify either of a pair of models if they
are already in the specified relation. That is, even if models n1 and n2 are both
properly related to m by R, it is not acceptable for −→R , given pair (m, n1), to
return n2. Formally, we say that a transformation is hippocratic3 if for all m ∈ M
and n ∈ N , we have

T (m, n) =⇒ −→
T (m, n) = n

T (m, n) =⇒ ←−
T (m, n) = m

These postulates imply that if the relation T is not bijective, then (at least
one of) the transformations must look at both arguments. As a consequence,
applying a transformation to a source model in the presence of an existing target
model will not in general be equivalent to applying it in the presence of an empty
target model.

Undoability. Our final pair of postulates is motivated by thinking about the
following scenario. The developer, beginning with a consistent pair of models m
(the source) and n (the target, perhaps produced by a model transformation),
makes a modification to the source model, producing m′, and propagates it using
the model transformation tool (so that target model n is replaced by −→T (m′, n)).
Immediately, without making any other changes to either model, our developer
realises that the modification was a mistake. She reverts the modified model to
the original version m, and propagates the change. The developer reasonably
expects that the effect of the modification has been completely undone: just as
the modified model has been returned to its original state m, so has the target
model been returned to its original state n.

Formally, we will say that transformation T is undoable if for all m, m′ ∈ M
and n, n′ ∈ N , we have

T (m, n) =⇒ −→
T (m,

−→
T (m′, n)) = n

T (m, n) =⇒ ←−
T (←−T (m, n′), n) = m

3 First, do no harm. Hippocrates, 450-355BC
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It turns out that this requirement is hard to meet in general, and arguably too
strong. However, we find the scenario compelling: a model transformation which
did not allow one’s changes to be undone in this way would be quite confusing.
Therefore, in the present paper, we take it to be essential (we shall shortly show
that we can still write non-bijective transformations).

Definition 1. Let R be a transformation between metamodels M and N , con-
sisting of a relation R ⊆ M×N and transformation functions −→R : M×N −→ N
and ←−R : M × N −→ M . Then R is a coherent transformation if it is correct,
hippocratic and undoable.

4.1 Examples and Consequences

Having presented a framework for bidirectional transformations and argued for
a set of postulates that they should obey, let us explore the consequences of
our choices. (Proofs, all easy, are omitted for space reasons; as are various other
small results.) First we state two reassuring trivialities:

Lemma 1. Let M be any metamodel. Then the trivial transformation, given by:

– R(m, n) if and only if m = n

– −→
R (m, n) = m

– ←−
R (m, n) = n

is a coherent transformation.

Lemma 2. Let M and N be any metamodels. Then the universal transforma-
tion, given by:

– R(m, n) always
– −→

R (m, n) = n

– ←−
R (m, n) = m

is a coherent transformation.

Note that the latter lemma already proves that our postulates permit bidirec-
tional transformations which are not bijective. We would of course expect that
any bijective transformation is coherent, and so it is:

Lemma 3. Let M and N be any metamodels. Then any bijective transforma-
tion, given by:

– R(m, n) if and only if n = r(m)
– −→

R (m, n) = r(m)
– ←−

R (m, n) = r−1(n)

where r : M −→ N is a bijective function, is a coherent transformation.

The relationship between our framework and that of [3] is close. Note that it is
our undoability postulates which prevent more general lenses being coherent.
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Lemma 4. Any very well behaved lens l can be regarded as a coherent trans-
formation.

The reader familiar with [3] may be surprised that our postulates do not include
analogues of the GETPUT and PUTGET laws from that work. They are in fact
immediate consequences of correctness and hippocraticness:

Lemma 5. Let M and N be any metamodels, and let R be a correct and hip-
pocratic (but not necessarily undoable) transformation. Then for any m ∈ M ,
n ∈ N :

– ←−
R (m,

−→
R (m, n)) = m

– −→
R (←−R (m, n), n) = n

4.2 Composition of Metamodels

Let us say that a metamodel M is the direct product of metamodels M1 and
M2 if any model m conforming to M can be written in exactly one way as
a pair of a model m1 conforming to M1 and a model m2 conforming to M2,
and conversely, any such pair conforms to M . For example, perhaps M1 and
M2 comprise disjoint sets of metaclasses, with no relationships or constraints
between the two sets. (This is admittedly an artificially constraining scenario:
we will discuss relaxations in a moment.)

Now suppose that we have coherent transformations R on M1×N1 and S on
M2×N2. We can construct a transformation which we will call R⊕S on M ×N
pointwise as follows:

– (R⊕ S)(m1 ⊕m2, n1 ⊕ n2) if and only if R(m1, n1) and S(m2, n2)
–
−−−−−→
(R⊕ S)(m1 ⊕m2, n1 ⊕ n2) = (−→R (m1, n1))⊕ (−→S (m2, n2))

–
←−−−−−
(R⊕ S)(m1 ⊕m2, n1 ⊕ n2) = (←−R (m1, n1))⊕ (←−S (m2, n2))

Then

Lemma 6. If R and S are coherent transformations, R ⊕ S is also a coherent
transformation.

The proof is a straight application of the definitions. This captures the intu-
ition that transformations on parts of models which are completely independent
ought to be able to be combined without difficulty. One would expect to be able
to extend this result to cover carefully-defined simple dependencies between the
metamodel parts, perhaps sufficient to justify, for example, applying a transfor-
mation defined only for class diagrams to a complete UML model, rolling the
resulting changes to the class diagram through to the rest of the model. Even
here, though, the issues are not entirely trivial.

4.3 Sequential Composition Revisited

The relation part of the sequential composition of transformations must be given
by the usual mathematical composition of relations: (R; S)(m, p) if and only if
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there exists some n such that R(m, n) and S(n, p). Mathematically this is a fine
definition, but we already see the core of the problem: a tool has no obvious way
to find a relevant n. What about the associated transformations? For example,−→
T may be given models m and p such that there does not exist any n such that
R(m, n) and S(n, p). It is required to calculate an update of p; that is, to find
a new model p′ such that such an intermediate model does exist, and in general
the choice of intermediate model will depend on both m and p. However, −→R
“does not understand” p, etc., so there does not appear to be any way to do this
in general.

We may consider two special cases in which it is possible to define composition
of transformations.

1. If R and S are bijective transformations, then the intermediate model is
unique, and is found by applying −→R just to the first argument m. Composi-
tion of transformations in this case is just the usual composition of invertible
functions.

2. More interestingly, the Harmony group considers transformations in which−→
R is a function of the source model only, even though ←−

R still uses both
source and target model. Here −−→R; S must clearly be defined to be −→R ;−→S , and
we can define ←−−R; S using a trick: use the function −→

R to bring the source
model forward into the middle in order to use it to push the changes back.
Formally (and translating into our notation)

←−−
R; S(m, n) = ←−

R (m,
←−
S (−→R (m), n))

5 Conclusion

We have explored some fundamental issues which arise when we consider re-
lationally defined transformations between models which are bidirectional and
not necessarily bijective. We have motivated our work from the current QVT
standard, and some of the issues we raise are specific to it, but most are more
general. We have suggested a framework and a set of postulates which ensure
that bidirectional transformations will behave reasonably for some definition
of “reasonable”, and explored some consequences of our choice. Future work in-
cludes relating our framework to triple graph grammars, and further exploration
of the relation with bidirectional programming.
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Abstract. The Model Driven Architecture (MDA) is an approach to develop 
software based on different models. There are separate models for the business 
logic  and  for  platform  specific  details.  Moreover,  code  can  be  generated 
automatically from these models. This makes transformations a core technology 
for MDA. QVT (Query/View/Transformation) is the transformation technology 
recently proposed for this purpose by the OMG.

TGGs (Triple Graph Grammars) are another transformation technology 
proposed in the mid-nineties, used for example in the FUJABA CASE tool. In 
contrast  to  many  other  transformation  technologies,  both  QVT  and  TGGs 
declaratively  define  the  relation  between  two  models.  With  this  relation 
definition,  a  transformation  engine  can  execute  a  transformation  in  both 
directions and, based on the same definition, can also propagate changes from 
one model to the other.

In this paper, we compare the concepts of QVT and TGGs. It turns out that 
TGGs and QVT have many concepts in common. In fact, fundamental parts of 
QVT-Core can be implemented by a TGG transformation engine. Moreover, we 
discuss how both technologies could profit from each other.

Keywords:  MDA, model based software engineering,  model transformation, 
model  synchronization,  Query/View/Transformation  (QVT),  Triple  Graph 
Grammar (TGG).

1   Introduction

In the recent years,  several approaches to  model based software engineering have 
been  proposed.  One  of  the  most  prominent  approaches  is  the  Model  Driven 
Architecture (MDA) of the OMG [1]. The main idea of all these approaches is that 
software should no longer be programmed, but developed by a stepwise refinement 
and extension of models. In the MDA, the focus is on separating the models for the 
business logic and for platform and implementation specific details. In the end, the 
code can be generated from these models. This makes technologies for transforming, 
integrating, and synchronizing models a core technology within model based software 
engineering.

Today,  there  are  many  different  technologies  for  transforming  one  model  into 
another. Most of these technologies are defined in a more or less operational way; i.e. 
they basically define instructions how the elements from the source model must be 
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transformed  into  elements  of  the  target  model.  This  implies  that  forward  and 
backward  transformations  between  two  models  are  defined  more  or  less 
independently of each other. Moreover, the operational definition of a transformation 
makes  it  very  hard  to  verify  its  correctness.  By  contrast,  QVT1 (Query/View/ 
Transformation) [2] and TGGs (Triple Graph Grammars) [3] allow us to declaratively 
define the relation between two or more models. Such a declarative definition of a 
relation  can  be  used by a  transformation engine  in  different  ways which  we call 
application scenarios: Firstly, there are the forward and backward transformations of 
one model into another. Secondly, once we have transformed one model into another, 
the engine can keep track of changes in either model and propagate those changes to 
the other model and change it accordingly. This is called model synchronization and 
is one of the most crucial application scenarios in round-trip engineering. Since QVT 
and TGGs have only a single definition of the relation between two classes of models, 
inconsistencies among the different transformation scenarios are avoided.

QVT is  the  transformation  technology recently  proposed  by  the  OMG for  the 
MDA.  Actually,  QVT  has  different  parts:  There  are  declarative  and  operational 
languages. Here, we focus on QVT-Core, which forms the basic infrastructure of the 
declarative part of QVT. TGGs were introduced in the mid-nineties, and are now used 
in the FUJABA Tool Suite, which is a CASE tool supporting round-trip engineering. 
TGGs are at the core of FUJABA, for transforming back and forth between UML 
diagrams and Java code [4]. Another implementation of TGGs exists in the MOFLON 
tool  set  [5].  In  addition  to  being  declarative,  QVT-Core and  TGGs  have  many 
concepts in common and – upon closer investigation – have striking similarities. In 
this paper, we investigate these similarities for several reasons. Firstly, the common 
concepts  of  QVT-Core and  TGGs identify  the  essential  concepts  of  a  declarative 
approach  toward  specifying  the  relationship  between  two  classes  of  models. 
Secondly, the analysis shows that QVT-Core can be mapped to the concepts of TGGs 
so  that  QVT-Core can  be  implemented  by  an  engine  for  executing  TGG 
transformations. This mapping was worked out in a master thesis  [6] and is briefly 
discussed  in  this  paper.   Thirdly,  the  differences  between  QVT  and  TGGs  are 
analyzed  and  we  discuss  how  both  technologies  can  benefit  from  the  concepts 
provided  by  the  other  technology.  This  will  help  to  improve  both  transformation 
technologies – in particular this could provide valuable input for QVT as a standard.

This paper is structured as follows: Section 2 introduces the main concepts of QVT 
and TGGs with the help of an example. Section 3 identifies the similar concepts and 
shows how QVT can be mapped to TGGs, which provides an implementation of QVT 
based  on  a  TGG  engine.  Section 4 gives  a  more  detailed  comparison  of  the 
philosophical, conceptual, and technical differences between QVT and TGGs.

2   QVT and TGG Transformation Rule Examples

In the following, we introduce QVT and TGG transformation rules  along a small 
example. The example is picked from the ComponentTools project where component-

1 Actually, QVT has different ways for defining transformations. Here, we refer to QVT-Core 
only, which is the basic infrastructure of the declarative part of QVT.
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based material-flow systems can be designed and analyzed by the help of  formal 
methods [7]. For instance, transportation or manufacturing systems can be designed 
by placing and connecting components, such as tracks, switches and stoppers, inside a 
project. Then, the project and its interconnected components are transformed into a 
formal model, for example a Petri net. Figure 1 shows how two connected Tracks in a 
Project should be transformed into a corresponding Petri net: A Track is represented 
by a Place, an Arc, and a Transition. The Connection simply corresponds to an Arc.

Fig. 1. An example of how two connected tracks are mapped to the corresponding Petri net

Figure  2 shows the way a rule can express how model structures correspond to 
each other. Here, it is specified that a Track relates to the particular Petri net construct 
in a certain context.  The required context here is  an existing relation between the 
parent model elements, the Project and the Petri net.

Fig. 2. A rule expressing the relation of model structures

Such rules, which express the relation between model structures, can be classified 
as relational rules and both QVT and TGG rules follow this archetype. Note that such 
relations can also be expressed between more than two models [8].  However,  for 
simplicity,  we  focus  on  relations  between  only  two  models  in  this  paper.  The 
advantage of  such rules  over  other  transformation approaches  is  that  they can be 
applied in different ways. They can be used to bidirectionally transform models, to 
check  if  two  given  models  are  equivalent,  or,  after  an  initial  transformation,  to 
incrementally propagate changes made in one model to the other. But, the rules do not 
describe operationally how to transform models. They are declarative and it is up to a 
transformation engine to make them operational.

For example, transforming a ComponentTools Project into its corresponding Petri 
net would involve the following steps. Firstly, an axiom or start rule is needed to map 
the  Project  root  model  object  to  a  Petri  net  root model  object.  This  provides  the 
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context necessary to apply the rule shown in Figure 2. The application of the above 
rule is visualized in Figure 3: For every Track in the Project, the corresponding Place-
Arc-Transition-construct is created in the Petri net.

Fig. 3. Two rule applications in the example transformation

The  model  structures  which  are  newly  created  during  such  rule  applications 
provide the context for applying further rules. For example, a further rule would now 
be involved to transform the Connection between the components.

After introducing the concepts of relational rules and how they are used for model 
transformation, the following subsections will inspect the details of QVT and TGGs.

2.1   QVT-Core Mappings

The QVT specification defines two declarative transformation languages which form 
two layers of abstraction. Firstly, there is the more abstract and more user friendly 
QVT-Relations. QVT-Relations is then mapped to a more concrete language, QVT-
Core,  for  which  the  semantics  for  performing  transformations  is  defined  in  more 
detail. Although the concepts of QVT-Relations and its mapping to QVT-Core are 
very interesting, this paper focuses on QVT-Core, because it is the foundation of the 
declarative QVT and structurally more similar to TGGs. 

In  both  QVT-Relations  and  QVT-Core,  model  patterns  are  described  by  OCL 
expressions. Although there is no graphical syntax specified for QVT-Core, Figure 4 
illustrates  the  QVT-Core  representation  of  the  example  rule  from  Figure  2 in  a 
graphical way. Instead of using the concrete syntax of components and Petri nets, the 
model patterns are now shown in a notation similar to object diagrams. Each object 
node shown here represents an OCL variable. In the following, the terms variable and 
node are used interchangeably.

A single transformation rule in QVT-Core as shown here is called a mapping. The 
patterns in a mapping are structured in three columns2, called areas, each consisting 
of a  guard pattern and a  bottom pattern. The bottom patterns represent the model 
elements which are actually brought into relationship by this mapping. The guard 
patterns  specify the context  which is  required for  this  relation to  hold.  The outer 
columns, which contain the patterns belonging to the different involved models, are 
called the domain areas. In this example, the ComponentTools domain is abbreviated 
as ctools and the Petri net domain is abbreviated as pnet.

2 There can be more columns in QVT-Core to specify relations between more than two models.
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Fig. 4. A QVT-Core example rule

The center column, called the mapping area, contains additional elements, which 
embody the mapping of  the involved domain patterns.  In  particular,  there is  one3 
mapping node in the middle-bottom pattern of a rule, which references all nodes in 
the domain-bottom patterns. In the course of a transformation, these “mapping nodes” 
are instantiated and keep track of the corresponding model structures. These objects 
are therefore called trace objects. In the rule, we will refer to those “mapping nodes” 
also as  trace nodes or  trace variables. In addition to the middle-bottom pattern, the 
middle-guard pattern can contain an arbitrary number of trace nodes, depending on 
the complexity of the context specified by this mapping.

Next, we have a look at the textual representation of this mapping, which is shown 
in  Listing  1.  First  of  all,  we  see  the  two  domain  areas  represented  by  “check 
ctools”  and  “check enforce pnet”.  The  keywords  check and  enforce 
determine whether the model patterns should just be matched in an existing model or 
whether  model  elements  should  also  be  created  when  they  are  missing.  So,  the 
mapping as shown below can just be applied in certain application scenarios, also 
called application modes: The rule can be applied to transform from a ctools model 
to a pnet model, but not backwards. Furthermore, if the ctools and pnet models 
both exist,  the rule can check for  a  valid  correspondence between the models.  In 
particular, the enforce-keyword denotes that parts of the pnet model, which do not 
correspond to the ctools model, can be altered to establish a valid correspondence.

The domain areas are then structured in the way that the guard pattern is specified 
inside  the  parentheses  following  the  domain  identifier  and  the  bottom  pattern  is 
specified in braces. The domain-guard patterns are fairly simple in this example, since 
they each contain just a single variable. But, in the bottom pattern, we see how the 
variable declaration is followed by a number of OCL expressions. These expressions 
describe the model structure, i.e. how the model objects should be referencing each 
other.  Additionally,  we  see  that  there  are  two  constraints  formulated  regarding  a 
“type”-string of the Track's ports. In this example, these constraints are necessary to 
determine the in-Port and out-Port of the Track. For simplicity, these constraints were 
not reflected in the rule's graphical representation in Figure 4.

3 QVT-Core  is  not  restricted  to  just  one  mapping  node  in  the  bottom  pattern  of  a  rule. 
However, the QVT specification does not seem to intend the use of more than one.
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Listing 1. The QVT-Core example rule in its textual notation

map TrackToPlaceArcTransition{
  check ctools(project:Project){
    track:Track, portIn:Port, portOut:Port|
    track.project = project; track.port = portIn; track.port = portOut;
    portIn.type = “in”; portOut.type = “out”;
  }
  check enforce pnet(petrinet:Petrinet){
    realize place:Place, realize arc:Arc, realize trans:Transition|
    arc.arcToPetrinet := petrinet; arc.arcToPlace := place;
    arc.arcToTransition := trans; place.placeToPetrinet := petrinet;
    trans.transitionToPetrinet := petrinet;
  }
  where(t1:TProjectToPetrinet|
    t1.project=project,t1.petrinet=petrinet){
    realize t2:TTrackToPlaceArcTransition|
    t2.track := track; t2.inPort := inPort; t2.outPort := outPort;
    t2.place := place; t2.arc := arc; t2.transition := trans;
  }
}

Looking  at  the  bottom pattern  of  the  enforceable  pnet domain,  we see  some 
differences to the previous domain. Firstly, we see that the variables are marked as 
realizable.  This  means  that,  when  missing,  they  can  be  created  when  the  rule  is 
applied. Secondly, we see that the OCL expressions contain an assignment symbol := 
instead  of  a  normal  equals  symbol.  Since  OCL  is  just  a  language  to  formulate 
constraints and queries, QVT introduces additional operations, called assignments, to 
assign reference or attribute values to model objects.

The  mapping  area  is  specified  in  the  where-section.  Here,  we  see  the  trace 
variables of the guard and bottom pattern. The expressions in these patterns specify 
how they reference the variables in the domain areas.

2.2   TGG Rules

The actual idea of Triple Graph Grammars (TGGs) is to specify how two types of 
graphs relate to each other. Because software models can be considered graphs, this 
theory can be applied to models as well. We assume that we have two types of graphs 
given and their structure is specified by (single) graph grammars. Then, TGG rules 
allow us to specify how these single graph grammar rules structurally correspond to 
each other.  This correspondence is  expressed by inserting a third graph grammar, 
where the nodes provide a mapping by referencing the nodes in the other two graph 
grammars.  This is illustrated in Figure  5 for the example rule from Figure  2. The 
generation of  graphs through the  simultaneous  application  of  these  corresponding 
graph grammars always results in structurally corresponding graphs.
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Fig. 5. The three graph grammar rules in a Triple Graph Grammar rule

Now,  this  formalism can be used to  transform one graph  into another.  This  is
achieved by  parsing an existing graph with the graph grammar on one side of the
TGG. Then, during this process, the other graph grammar and the correspondence
grammar of the TGG are applied to  create the target graph and  the correspondence
graph.  Another  application  of  TGGs  is  to  check  two  given  graphs  for  their
correspondence by parsing the two graphs simultaneously with the particular graph
grammars in the TGG rules. In this process, the correspondence graph is built up and,
in the end, represents the detailed correspondence of the nodes in the two graphs.

TGG rules  are  structurally  very  similar  to  QVT-Core  rules.  Figure  6 shows a
collapsed representation of the above TGG rule. This collapsing is possible, because
TGGs use only non-deleting graph grammars. This means that every element on the
left-hand (top) side of the rule also appears on the right-hand (bottom) side. Note that
we also introduced two attribute value constraints which were not present in Figure 7.

Fig. 6. A TGG example rule

Similar to QVT, there are three columns. The two columns containing the ctools
and pnet patterns are called the  domains. In fact, TGGs can also  relate more than
two models  and  may thus also be called Multi  Graph Grammars (MGGs)  [8].  In
TGGs, the mapping nodes are called correspondence nodes and the middle column is
therefore called the correspondence domain.
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One difference between the above QVT-Core mappings and the TGG rules is that 
TGG rules have a graphical syntax. In Figure  4, we have just visualized the pattern 
structure made up by the OCL expressions in the QVT-Core rule. A TGG rule, in 
contrast,  actually  consists  of  nodes,  representing  the  model  objects,  and  edges, 
representing  the  references  between  these  objects.  Additionally,  TGG  rules  may 
specify the attribute values of objects with attribute value constraints, as expressed by 
the rounded boxes containing labels attached to the nodes.  Similar  to QVT, OCL 
expressions  can  also  be  used  for  this  purpose  to  specify  literal  values  or  values 
calculated from attribute values somewhere in the involved models.

After illustrating the structural similarities of QVT-Core and TGGs, the following 
section  shows  how  the  constructs  of  QVT-Core  can  be  mapped  to  TGGs.  The 
semantics of these rules are also very similar due to the fact that both QVT and TGGs 
are  relational  rules  as  illustrated  in  Figure  2.  Remaining  issues  concerning  slight 
differences in the semantics, or rather philosophies, are discussed in Section 4.

3   Mapping QVT to TGGs

As we have seen in the previous section, there are some apparent similarities between 
QVT-Core  and TGGs.  Therefore,  a  mapping can  be  specified from QVT-Core  to 
TGGs. The full details have been worked out and implemented in a master thesis [6]. 
In the following, we informally describe the major steps of this mapping.

In the previous section, we observed that a variable in QVT-Core is essentially the 
same as a node in TGGs. Both a variable and a node are typed by a class in one of the 
involved models. Actually, in the redesigned TGG model proposed in [6], TGG nodes 
are also variables in terms of OCL, because the nodes should be reused as variables in 
OCL expressions as  shown in  Figure  6. Secondly,  expressions  which  specify  the 
reference values of objects in QVT are mapped to edges in TGGs. This holds for both 
OCL equality expressions, as  track.port=portIn, and for assignments in an 
enforceable domain, as  arc.arcToPlace:=place. Note that in TGGs, there is 
no distinction between an expression which is enforceable and one which is not. It is 
up  to  the  transformation  engine  to  decide  the  enforcement  in  a  particular 
transformation scenario – but, we  will come back to that in Section 4.

The overall  structure of  a  single rule in QVT-Core is  also quite  similar to  the 
structure of a TGG rule. The QVT-Core domain areas are mapped to TGG domain 
sides and, accordingly, the mapping area is mapped the correspondence column of a 
TGG. Then, the guard and bottom patterns in QVT-Core mappings are mapped to 
TGGs in such a way that the variables in the guard pattern of a QVT-Core mapping 
are mapped to such nodes in the TGG rule, which belong to the right-hand and the 
left-hand side. Variables which belong to the bottom pattern in the QVT-Core rule are 
mapped to nodes which belong to the right-hand side of the TGG rule only.
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Fig. 7. Mapping the constructs of QVT and TGG transformation rules
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Before designing a set of rules in QVT or TGGs, we need to specify a general 
transformation  setting.  This  setting  consists  of  references  to  the  packages  of  the 
domain  models  involved  in  the  transformation  as  well  as  the  package  of  the 
correspondence or trace model. In the redesign of the TGG model proposed in  [6], 
this description of a transformation setting was adopted from what is called the QVT-
Base package in QVT. Therefore, technically, there is a one-to-one mapping at this 
level between QVT and TGGs.

We have actually specified the above mapping from QVT-Core to TGGs by a set 
of TGG rules. So, we use TGGs to transform QVT-Core mappings into TGG rules 
and,  thus,  we  can  perform  model  transformations  specified  in  QVT-Core.  One 
example of such a QVT-Core-to-TGG rule is shown in Figure 8. Here, a variable in 
the guard-pattern of a QVT-Core mapping is  related to a node which belongs to the 
right-hand side and left-hand side pattern of a TGG rule. It is made sure that the QVT 
variable  and TGG node belong to  the correct  domain column by referring to  the 
corresponding CoreDomain and DomainGraphPattern in the context of the rule.

However, we do not explain the details of this rule, but rather illustrate the steps 
required to actually implement this transformation. Firstly, to create and transform 
QVT and TGG rules, both a QVT and TGG metamodel is needed. Because there are 
yet  no  implemented  metamodels  of  the  declarative  QVT languages  available,  we 
implemented them anew, according to the QVT specification. A TGG metamodel and 
transformation engine was available from the ComponentTools project [9]. However, 
due to insights gained during the comparison of TGGs with QVT, we decided to 
conduct  a  redesign  and  reimplementation  of  the  TGG  technology.  For  the 
implementation,  we chose the modeling framework of  the Eclipse platform,  EMF 
[10], as a basis. For one reason, The ComponentTools project and its TGG technology 
was already based on EMF. Another argument for using EMF is that it provides many 
useful features and that there are many interesting projects now based on EMF. One 
particularly  interesting  project  is  the  Graphical  Modeling  Framework,  GMF  [11], 
where graphical editors can be generated from EMF models. Figure 8 actually shows 
a screenshot of a TGG rule in the generated graphical GMF-editor.



Fig. 8. Mapping the constructs of QVT and TGG transformation rules

Our TGG engine supports the  interpretation of  the TGG rules  and is  thus also 
called TGG interpreter. The integration of OCL is not yet completed, so that for now, 
only simple attribute value constraints are supported.

The transformation from TGGs back to QVT-Core is only possible under certain 
conditions. The backward mapping works if, firstly, we can assume that QVT-Core 
supports multiple trace variables in the bottom pattern. Secondly, because TGG rules 
do not specify if any domain is enforceable or not, the resulting QVT-Core would 
need to consider every domain area to be enforceable. A backward mapping from 
QVT  to  TGGs  could  nevertheless  be  interesting  to  evaluate  advantages  or 
disadvantages between the TGG interpreter and upcoming implementations of QVT-
Relations or QVT-Core.

4   Comparing Concepts of QVT and TGGs

In the previous sections, we have discussed the basic concepts of QVT and TGGs. In 
this section, we relate the concepts of QVT and TGGs and discuss how the concepts 
of both technologies could benefit from each other.

The starting point of our work was that there are striking similarities and analogies 
between QVT and TGGs. We have seen in Section 3 that the basic structure of QVT 
and TGGs coincide and the rough meaning of these concepts are the same. But, there 
are some more or less significant differences, on the technical, the conceptual, and the 
philosophical  level.  Firstly,  we  discuss  some  philosophical  differences.  Then  we 
compare the definitions of the semantics and some conceptual differences. In the end, 
we discuss some advanced features.
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4.1   Philosophical Differences

We start with a discussion of two philosophical differences between QVT and TGGs. 
Firstly, there is a difference in how a QVT mapping and a TGG rule are read: QVT 
mappings are read in the direction from “bottom to top”, whereas TGG rules are read 
from “top to bottom”. In particular, this means that, in QVT-Core, we first have a 
look at the bottom patterns of the mapping, which must match on both domains when 
the guard pattern also match. The semantics of a TGG rules is defined in the other 
direction. We start with matching the left-hand side (top part) of the rule; only when a 
match is found, the right-hand side of both domains (bottom part) is considered. Of 
course, the real execution of a TGG rule is driven by the existing parts of a model 
(and  the  application scenario);  but,  conceptually  and in  the implementation,  TGG 
rules are applied from top to bottom. Though, this might appear as a minor issue, it 
reflects a different way of thinking of QVT mappings and of TGG rules. In particular, 
this is  reflected in the fact  that QVT-Core may have mappings with empty guard 
patterns, which means that they do not need a particular context to be applied. These 
mappings can be used to provide the initial bindings, which serve as context for the 
application  of  further  mappings.  The  counterpart  of  such  QVT start  mappings  in 
TGGs is the axiom, which provides the start  context for applying further rules in 
TGGs. The difference is that QVT can start with several start mappings in different 
parts of the model, whereas the matching of a TGG always starts with a single axiom.

Secondly, there is a fundamental difference in the way QVT and TGGs are applied 
in a concrete transformation scenario. In QVT, the application scenario, i.e. whether 
we perform a consistency check only or a transformation in one direction or the other, 
is partly encoded in the QVT mappings. The directives  check and  enforce within a 
QVT mapping state in which domain patterns will be created, deleted, or modified. 
Therefore, the QVT mappings are written with an application scenario in mind. By 
contrast, TGG rules do not refer to the application scenario. The same set of TGG 
rules can be used for checking consistency, for transformations in either direction, as 
well as for synchronizing both models after they have been changed independently of 
each other.  The benefit  is  that  we have a single  set  of  TGG rules  with the same 
semantics for all application scenarios—the only thing changing is the application 
scenario itself. This guarantees that the models are and remain consistent with respect 
to the single TGG specification, even when switching the application scenario.

This second philosophical difference has an important implication. In QVT, there 
is  no  explicit  scenario  which  synchronizes  two  models  that  have  been  changed 
independently  of  each  other.  This  can  be  achieved  only  by  two  subsequent 
incremental transformations in both directions4. By contrast, TGGs can be interpreted 
to synchronize two models in both directions in a single run at the same time.

4.2   Semantical Comparison

In Section  4.1, we have discussed the philosophical differences between QVT and 
TGGs already. Next, we ask a more technical question concerning the semantics of 

4 Actually, most of today's synchronization technologies use this approach; they incrementally 
transform the changes of one model into the other and vice versa subsequently.
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QVT and TGGs. Let us assume that we have two models which are in the relation 
specified by the QVT mappings, resp. TGG rules. Now, we have a set of applications 
of these rules which prove that the models are in relation. Then, each variable or node 
is mapped or bound to the actual model elements. Now, let us consider these bindings 
in the opposite direction.

In TGGs, every object in the two models has  exactly one binding to a  creating 
node of an applied TGG rule (i.e. an application of a TGG rule where the node occurs 
on  the  right-hand  side  of  this  rule  only).  This  results  from the  definition  of  the 
semantics  of  TGG  rules  which  generates  legal  pairs  of  corresponding  models. 
Conceptually, these pairs of models are defined by generating pairs of corresponding 
models starting from the axiom by applying some TGG rules: This way, both models 
are generated simultaneously. In the end, each object of the two generated models 
corresponds to exactly one creating node (right-hand side only) in an application of a 
TGG rule and vice versa. For more details, see [12]. In practical cases, however, we 
may want to describe only the relation between parts of the models. Therefore, the 
TGG rules will cover only these relevant parts and the rest of the models will be 
ignored. In these cases, there is  exactly one binding of the relevant model objects to a 
creating node of an application of a TGG rule and there is  no such  binding for a 
model object which is not considered by the TGG.

The QVT standard, in contrast, does not make it clear whether there is at most one 
binding  of  each  model  object  to  a variable  in  a  bottom  pattern  of  exactly  one 
application of  a  QVT mapping.  Some explanations  in  the standard as well  as  the 
examples suggest that this is true and, thus, the interpretation seems to be very similar 
to the TGG interpretation. But,  the mathematical  formalization does not guarantee 
that. However, under the assumption that, at least for enforced variables, QVT also 
implies such a one-to-one correspondence between the relevant objects of the model 
and variables in the bottom patterns, the semantics of QVT-Core mappings can be 
mapped to TGG rules as discussed in Section 3. We consider this an open issue and a 
final justification of this assumption will have to be discussed.

This  assumption  is  however  supported  by  other  considerations which  concern 
verification. As pointed out in [13] and proved in a case study [14], TGGs can be used 
for verifying the semantical  correctness of models that  are transformed by TGGs. 
This kind of verification is possible, because of the one-to-one semantics of TGGs, 
which nicely reflects the definition of a semantics in SOS-style (structural operational 
semantics).

4.3   Conceptual Differences

In addition to the philosophical  differences,  there are some conceptual differences 
between QVT and TGGs. But, we will see that these can be easily aligned.

Though there is a graphical notation for QVT, QVT is conceptually more closely 
related to  defining a  set  of  variables and  the  definition of  relations  among these 
variables. These relations are defined in terms of OCL expressions and assignments. 
This makes QVT very flexible and expressive—due to the expressive power of OCL. 
By contrast,  TGGs are graphical  in nature and originate from the realm of  graph 
grammars and graph transformations. A model is considered as a graph with  typed 
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nodes and edges between them. On the one hand, this results in a simple, precise and 
intuitive  semantics  (see  Section   4.2);  on  the  other  hand,  this  imposes  some 
restrictions. Some restrictions have been overcome by introducing different kinds of 
expressions  to  different  variants  of  TGGs.  Most  of  these  extensions  are 
straightforward, but not quite in the spirit of TGGs. However, inspired by QVT, we 
have shown how to introduce OCL constraints to TGGs without spoiling the “spirit of 
TGGs” and their graphical nature [12]. By equipping TGGs with OCL constraints, the 
essence of a relation between two models can be specified in a graphical way; still the 
expressive power of OCL is at hand when necessary. In particular, we do not need to 
distinguish between (querying) expressions and assignments in TGGs.

As mentioned above, QVT has the concepts of  check and  enforce. In fact, these 
keywords occur in two quite different ways in the QVT specification. So they actually 
constitute two different concepts. The first concepts defines the mode of application, 
i.e. it defines whether the mapping should be interpreted as a consistency check, or as 
a transformation in different directions, or as a synchronization. In TGGs, we call this 
the  application scenario.  So,  mode and  application scenario are just two different 
names for essentially the same concept. In QVT, however,  check and  enforce also 
occur within a mapping—with a similar but still different meaning. Some areas can be 
marked with check and enforce. The idea of check and enforce in this context is 
that, during a transformation, an existing object of a model can be reused in such a 
mapping. Only if  this  object  does not exist,  it  will  be created.  This  increases the 
efficiency in transformations where parts of models already exist.  Though there are 
many different extensions of TGGs, the basic form of TGGs does not have such a 
concept of reusable nodes. A node is either required (when it occurs on the left-hand 
side of the rule) or it is created (when it occurs on the right-hand side only).  Based on 
the  practical  experience  with  TGGs and inspired  by QVT, we have  introduced  a 
concept of reusable nodes to TGGs. There meaning is that these nodes can be reused 
if  a  node with the  required properties  already exists.  Note that  reusable nodes in 
TGGs do allow to reuse nodes, but they do not require their reuse. If we want to force 
the reuse of a node, this needs to be specified by additional global constraints, which 
will be explained shortly.  Altogether, the concept of check and enforce of QVT can 
be  expressed  in  TGGs by  the  concepts  of  reusable  nodes  and  global  constraints. 
Since reusable elements are identified on the level of individual nodes, TGGs can 
express this concepts on a finer level of granularity.

As  mentioned  above,  we  also  introduced  the  concept  of  global  constraints to 
TGGs. A global constraint allows us to enforce that a node with specific properties 
exists at most once in a model. This way, the reuse of a node can be enforced. Note 
that a global constraint is very similar to the concept of keys of QVT-Relations, which 
is used to uniquely identify an object by some of its attributes. This guarantees that a 
transformation does not generate duplicates of objects that have the same key.

A  last  difference  between  QVT  and  TGG  is  of  technical  nature:  QVT  was 
proposed in the context of the MDA. Therefore, QVT is defined based on MOF and 
uses the underlying concepts.  TGGs were introduced long before the existence of 
MOF,  and  there  are  different  implementations  for  different  technologies—
independently  from  MOF.  But,  there  are  implementations  based  on  the  Eclipse 
Modeling Framework (EMF), which in turn is an implementation of MOF.
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4.4   Advanced Features

In addition to the differences discussed above, there are some advanced features of 
QVT and TGGs that are briefly discussed here.

First of all, QVT-Core allows to nest mappings within mappings. According to the 
QVT-Specification [2], this nesting of mappings helps to avoid inefficient and iterated 
deletion and creation of objects. Thus, nested mappings do not increase the expressive 
power  of  QVT mappings,  but  do  increase  the  efficiency  of  their  application.  By 
contrast,  it  is  not  suitable to  adopt  the concept  of  nested rules  to  TGG rules.  As 
pointed  out  before,  this  would  not  increase  the  expressive  power,  but  only  the 
efficiency.  Efficiency,  however,  is  an implementation matter.  In  TGGs,  efficiency 
might be achieve in a simpler way, due to the top down interpretation from a single 
start context. Still, TGGs can be designed in such way that an implementation works 
efficiently. One of  the main concerns  for  efficiency is  to  reduce the size of  each 
individual  TGG rule (because  applying  a  rule  basically  means  applying  a  graph-
matching algorithm between this rule and the models).

A  useful  feature  in  QVT-Core  is  the  refinement  of  rules  by  others,  similar  to 
inheritance in object orientation. This is a feature which is not yet present in TGGs. 
We feel that this is useful for better maintaining sets of TGGs and for making them 
more understandable. But, this can be built on top of the concepts of TGGs and it is 
not necessary to make this a core feature of TGGs.

As  pointed  out  earlier,  TGGs allow many different  correspondence  nodes in  a 
single TGG rule. In QVT is seems to be possible to use more than one trace node in 
the bottom pattern, but it does not seem to be strongly encouraged. In TGGs, multiple 
correspondence nodes allow us to keep track of relations between individual model 
elements in a very detailed way. This helps to design TGG rules in a local way, which 
in turn results in simpler and smaller TGG rules. We identified examples where this 
clearly reduces the number and size of rules. In this way, multiple correspondence 
nodes compensate the efficiency of nested mappings in QVT. But, they do more: they 
also help us to design clearer and better understandable TGG rules.

5   Conclusion

In this paper, we have discussed the similarities of QVT and TGGs. Due to the similar 
structure and concepts, QVT mappings can be transformed into TGG rules. This way, 
a TGG engine can execute transformations specified in QVT-Core.

In  addition,  we have  discussed  the  differences  in  the  philosophy and  concepts 
between  QVT  and  TGGs.  This  improves  our  understanding  of  how  model 
transformations and model synchronizations work with relational rules. The insights 
gained here have inspired the extension of TGGs and might provide valuable input for 
QVT as a standard. The goal is to have a clear and simple semantics to support a 
straightforward employment of model transformation technologies and to facilitate 
the use of validation and verification techniques.

Furthermore, it could be interesting to inspect the relation between QVT-Relations 
and TGGs. QVT-Relations provides more structure in order to simplify and better 
organize a set of transformation rules We believe that this could result in some
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     .          concepts on top of TGGs, which could improve the comprehensibility of TGGs. Also 
we believe that there are additional concepts needed for the efficient synchronization 
of models, which go beyond transforming back and forth.  This will  need a closer 
investigation in the future.
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Abstract. A model transformation can be decomposed into a sequence of sub-
transformations, i.e. a transformation chain, each addressing a limited set of con-
cerns. However, with current transformation technologies it is hard to (re)use and
compose subtransformations without being very familiar with their implemen-
tation details. Furthermore, the difficulty of combining different transformation
technologies often thwarts choosing the most appropriate technology for each
subtransformation. In this paper we propose a model-based approach to reuse and
compose subtransformations in a technology-independent fashion. This is accom-
plished by developing a unified representation of transformations and facilitating
detailed transformation specifications. We have implemented our approach in a
tool called UniTI, which also provides a transformation chain editor. We have
evaluated our approach by comparing it to alternative approaches.

1 Introduction

Model transformations are a key ingredient of Model Driven Development (MDD).
They can for example be used to add details to a model, incorporate non-functional
concerns, convert between different types of models, and refactor certain constructs
within a model. Model transformations quickly become complex when they need to
address many concerns at once. Monolithic transformations, as most non-modularized
software entities [1], have some inherent problems: little reuse opportunities, bad scal-
ability, bad separation-of-concerns, sensitivity to requirement changes, etc. A number
of these problems can be solved by decomposing a transformation into a sequence of
smaller subtransformations, i.e. a transformation chain.

Currently, most transformation technologies do not very well support reuse and com-
position of subtransformations as high-level building blocks. One of the causes is the
fuzzy distinction between specification, implementation and execution of transforma-
tions [2]. We define these terms as follows:

Implementation is the transformation source code, as seen by the developer. For many
common transformation languages this comes down to a set of mapping rules.

Specification is the documentation that describes how a transformation behaves, in-
dependently of its concrete implementation. We focus on the functional interface
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(similar to programming languages) of a transformation in terms of input and out-
put model types.

Execution is the runtime instance of a transformation that has concrete input models
and produces one or more output models.

Furthermore, current transformation technologies offer little to no support for com-
bining transformation technologies even though in practice different technologies may
be suitable for different parts of a transformation chain. Lastly, the focus of transforma-
tion technologies on local implementations prevents them from adressing issues that go
beyond the boundary of a single transformation such as end-to-end traceability.

In this paper we propose a technology-neutral view on model transformations: the
Unified Transformation Representation (UTR). We have implemented a tool called
UniTI (Unified Transformation Infrastructure) based on UTR that facilitates transfor-
mation composition and execution without having to know underlying implementation
details. UniTI provides the groundwork to incorporate cross-transformation services
such as traceability, mentioned in the previous paragraph.

The remainder of this paper is structured as follows. In Section 2 we give a concise
overview of current transformation techniques and identify a number of concrete prob-
lems concerning (re)usability and composability. We then list a set of characteristics
that a solution to these problems must possess (Section 3). In Section 4 we present the
Unified Transformation Representation; the implementation of the latter – UniTI – is
discussed in Section 5. We summarize related work in Section 6 and evaluate our ap-
proach by comparing it to alternative solutions in Section 7. Finally, we round up by
drawing conclusions and identifying future work in Section 8.

2 Using and Composing Transformations

Current transformations technologies all have their own specific vision on model
transformations. In Section 2.1 we give a concise overview of a selection of available
transformation technologies. We then zoom in on a number of shortcomings of trans-
formation technologies related to the creation of transformation chains in Section 2.2.

2.1 Characteristics of Current Transformation Technologies

A lot of effort has already been spent on the development of suitable languages to
express model transformations. Key examples are ATL [3], MTF [4], VIATRA [5], UM-
LAUT [6] and OMG’s QVT [7]. Note that generic programming languages such as JAVA

can also be used to implement transformations. The main objective of specialized lan-
guages is to provide a number of powerful yet easy to use constructs to express rela-
tions between model elements. Many of the mentioned transformation languages take
a different approach to implementing transformations. They differ in notational style
(graphical:VIATRA; textual: ATL, MTF or a combination:QVT), specification style (im-
perative:JAVA; declarative:MTF or hybrid:ATL, QVT), directionality (unidirectional:ATL

or omnidirectional:MTF), supported model types (UML [8]:UMLAUT; MOF [9]; Ecore
[10]), etc. The examples given here cover only a small subset of available transfor-
mation languages; a more complete discussion of these and other differences between
transformation languages can be found in [11].
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In this subsection we describe to what extent one must be familiar with a transfor-
mation’s implementation in order to use it in a meaningful way. We take ATL, MTF and
JAVA as reference languages; we believe these cover a substantial part of the existing
transformation approaches.

MTF enables the implementation of transformations by specifying an arbitrary num-
ber of declarative mapping rules. Each one of these rules denotes a relationship between
one or more model elements and can call out to other rules. An MTF transformation is
always omnidirectional, which means that any of the (meta)models involved can be
designated both as input or as output. Moreover, a transformation can be initiated from
any of the mapping rules, possibly producing a different result. In order to execute an
MTF transformation we need to select an appropriate initial rule and select the direction
of the transformation. One should be very careful when choosing a direction. It is not
because a transformation turns model A into B that applying the same transformation to
B yields A. We will not go into the intricate details of omnidirectional transformations
but we emphasize that it is far from trivial to choose a specific direction and initial rule
without being very familiar with its implementation details.

In ATL we use transformation rules that have both declarative and imperative char-
acteristics to relate a number of models. The transformations implemented as such are
unidirectional. ATL transformations are, to some extent, metamodel independent – ref-
erences to metamodels are not included in the implementation. Only when we execute a
transformation, we need to select concrete metamodels. The range of valid metamodels
directly depends on the set of transformation rules. For example, if rules only refer to
‘Class’ and ‘StructuralProperty’ we can execute the transformation for any version of
the UML metamodel. When we add an additional rule that refers to ‘Port’, we can only
choose UML2 since that element is not present in lower versions. Hence, the set of valid
metamodels can only be derived by studying the implementation.

A transformation written in JAVA, or any other general purpose language, accesses
models directly via the model repository. Hence, the developer is not bound to any rules
to implement a transformation. There is no standard technique to specify the input and
output models; this can be done through method parameters, command-line arguments,
files, etc. The same goes for specifying the entry point of the implementation (which
method should be invoked?). So, in case of JAVA, we need complete knowledge of the
implementation in order to use it.

2.2 Limitations

In this subsection we identify a number of deficiencies in the area of current transfor-
mation technologies with respect to using transformations as (reusable) building blocks
in transformation chains.

Incomplete Specification. It is clear from the previous subsection that an intimate
knowledge of a transformation’s implementation is required in order to use it. The fol-
lowing elements are not clear from the implementation alone:

– MTF : direction; initial rule
– ATL : concrete metamodels
– JAVA : concrete metamodels; direction; entry point, ...
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In order to be able to (re)use, compose and execute transformations we must clearly
fix the possible values of these enumerated properties.

Imprecise Specification. When we have filled the specification gaps of each technol-
ogy, we can say that a transformation is mainly characterized by its input and output
model types. Metamodels are used to type models: a model conforms to a metamodel.
This implies that if we know the metamodel we automatically know what kind of mod-
els to expect. This is indeed true, but the sheer amount of possible models that conform
to a (complex) metamodel often make this an inadequate way to type models (from a
transformation point of view). We give examples in three categories:

– Metamodel variation In order to allow a greater flexibility, a metamodel can de-
liberately be left incomplete. For example, the UML has a number of so-called
semantic variation points, which need to be resolved before using the metamodel.

– Metamodel delimitation Complex metamodels such as the UML are not often used
completely; a transformation usually only considers a subset of UML. For exam-
ple, a UML to RDB (Relational DataBase) transformation, only takes structural
elements such as classes and associations into account and ignores other elements
such as actions and states.

– Model structure Next to global metamodel concerns, transformations may also
make assumptions at the model level. For example, requiring specific model ele-
ments such as a ‘Car’ class, a directed association named ‘fuel’, etc.

Mind that the above issues are not due to shortcomings of particular metamodeling
languages. Metamodels such as the UML are conceived to accommodate a wide range
of modeling possibilities, making them reusable in many domains. A transformation,
however, often only makes sense on a small subset of all the possible instances of a
metamodel.

Current transformation languages cannot directly express such subsets. The best they
can do is check whether a model belongs to the expected subset at execution time, which
requires additional code that pollutes the implementation. This also means that the re-
quirements on the involved models are hidden inside the implementation. In order to
check whether we can successfully execute a transformation or whether transforma-
tions can be connected in a chain, these subsets must explicitly be defined as part of its
specification.

Technology Lock-in. Different technologies can be suited to implement different types
of transformations. Figure 1 suggests a technology for each subtransformation in an
imaginary transformation chain.

To go from Modela to Modelb we use a generic transformation language that sup-
ports any metamodel (e.g. ATL). To make minor changes to Modelb we prefer an in-
place (source=target) technology (e.g. JAVA). In order to combine Modelb and Modelc
we use a model weaving engine (e.g. AMW [12]). Finally, we use a domain specific
transformation language (XSTL) to transform XML models.

If we choose a different technology for each subtransformation, we must ensure the
ability to combine the technologies. Since current transformation technologies offer no
(or only very basic by QVT) possibilities to call out to other independently defined
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Fig. 1. Different types of transformations in a transformation chain

transformations, it is very hard to mix different technologies. In order to realize a cross-
technology transformation composition we need to write additional, external glue code.

Megamodel Concerns. Megamodel management is the term introduced by Bézivin et
al [12] to indicate the need to establish and use global relations between macroscopic
MDD entities such as (meta)models and transformations while ignoring the internal de-
tails of these entities. Reusing and composing transformations in transformation chains
is one of the use cases within this area.

Current transformation languages focus on implementation details of individual
transformations and cannot express much at the level of complete models or trans-
formations. A higher level transformation infrastructure is needed to offer additional
functionality on top of a transformation chain, such as end-to-end traceability [13].

3 Characteristics of Reusable and Composable Transformations

Since we are using transformations as building blocks, our point of view is related to
the field of component based software engineering (CBSE) [14]. We will use the main
principles of CBSE as guidelines to solve the issues raised in the previous section.
These principles, reformulated to fit the transformation domain, are summarized below.
We also describe deficiencies of current transformation technologies with respect to
each principle.

Black-Box principle. The black-box principle is the strict separation of a transfor-
mation’s public behavior and its internal implementation. Implementation hiding
makes any technique an eligible candidate to implement the transformation.

As discussed in the previous section, transformation specifications in the con-
sidered languages are both incomplete and imprecise. We need to look into their
implementation in order to use them, which violates the black-box principle.

Composition. Constructing a complete transformation with reusable transformation
building blocks should be considerably less work than writing it from scratch. A
transformation component should be a self-contained unit and composition should
be as easy as possible without the need for much glue code.

Neither ATL or MTF have an explicit notion of (external) transformation com-
position; they only support low-level internal composition of individual transfor-
mation rules (see Section 2.2). Some other transformation languages have limited
high-level composition support (QVT, VMT [15]) but cross-technology composi-
tion is generally hard to accomplish.
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External specification. Each transformation should clearly specify what it requires
from the environment and what it provides.

An ideal external specification should only provide detailed information about
the expected input and provided output models of a transformation (its environ-
ment). All other information such as metamodel choice, initial rule, invocation
method, etc. is not relevant at this level and should be hidden in the specifica-
tion. The external specification is only weakly defined in current transformation
technologies (at many points implementation knowledge is required) and differs
profoundly among the different technologies (see Section 2.1).

4 Unified Transformation Representation

In this section we describe a common, model-based, representation for transformations
(Unified Transformation Representation – UTR) to establish a common ground among
different transformation technologies. The UTR separates implementation, specifica-
tion and execution of transformations and contains concepts to type and compose trans-
formations (see Section 4.1). We also show how the UTR metamodel gives rise to a
number of transformation roles in Section 4.2 and discuss a practical usage scenario
that involves these roles in Section 4.3.

4.1 UTR Metamodel

Figure 2 shows an extract of the UTR metamodel. We clarify this metamodel in the
following paragraphs.

Basic Transformation Concepts. We make a distinction between the specification of
a transformation, which encapsulates a concrete implementation, and the execution or
instance of a transformation, which is subject to composition.

Each TFSpecification is characterized by an implementation and an external spec-
ification. An AtomicTFSpecification defines the transformation directly in terms of a
specific transformation technology. Alternatively, a CompositeTFSpecification is itself
expressed as a chain of subtransformations (inherits from TFChain). Implementation
details, whether atomic or composite, are hidden by subclassing (ATLImpl, MTFImpl
and JavaImpl). Notice that it is not our intention to allow multiple implementations
for one TFSpecification but rather to provide a clear specification that hides intricate
technology and implementation details.

A TFSpecification is represented in terms of input and output models, denoted by
TFFormalParameters and their respective model types, denoted by ModelingPlatforms.
We explain the concept of ModelingPlatform in greater detail later in this section, for
now it suffices to see it as a constrained metamodel. The combination of TFFormalPa-
rameters and ModelingPlatforms specify exactly what a TFSpecification requires from
its inputs and provides on its outputs and hence defines the context in which a transfor-
mation can be meaningfully executed. ModelingPlatforms and TFSpecifications can be
grouped and organized in TFLibraries.

The lower part of Figure 2 represents the execution level. TFExecution and TFActu-
alParameter are the runtime counterparts (or instances) of TFSpecification and TFFor-
malParameter. TFActualParameter is a container for a concrete Model, so only at this
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Fig. 2. Extract of the UTR metamodel

level we can execute a transformation. We introduce the Connector element to intercon-
nect two TFExecutions through their TFActualParameters. The Connector is modeled
as a class so that it can provide additional behavior such as verifying models, pause
execution, etc. A connection is valid only if the TFActualParameters have the same
type (equal ModelingPlatforms). Finally, the TFChain class represents a transforma-
tion chains that is composed of TFExecutions, Connectors and Models.

Model Types. As discussed in Section 2.2, a metamodel is not always sufficient to
accurately specify inputs and outputs of a TFSpecification. We need to be able to tune
existing metamodels such as UML to our needs (metamodel variation and delimitation)
and to enforce local transformation requirements (model structure).

In classical programming languages, similar problems can be encountered when
specifying the signature of an operation. Some programming languages offer as a so-
lution preconditions and invariants (Design by Contract [16]) that limit the range of
allowed parameter values. We propose a similar approach to solve the limitations of
typing by metamodel. We allow additional constraints on each transformation input so
that we can exactly describe what is expected from the input model, beyond the struc-
ture imposed by the metamodel.

The specification of input and output models is accomplished in two stages (see
Figure 2): (1) through the transformation-specific TFFormalParameters and (2) through
cross-transformation reusable ModelingPlatforms. Both can impose Constraints on the
models. We must stress that we do not refer to execution platforms such as J2EE or
.NET in any way. A ModelingPlatform is composed of a Metamodel along with a num-
ber of Constraints that describe our expectations on the structure of the model beyond
those captured in the metamodel. Such constraints are typically expressed using OCL
[17]. In this way ModelingPlatforms allow for a more controlled reuse of existing meta-
models. A TFFormalParameter is typed by a ModelingPlatform and can impose addi-
tional, transformation-local, constraints on the global ModelingPlatform.
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Although Constraints can be attached to both TFFormalParameters and Modeling-
Platforms, a number of good practices can be formulated. Constraints that are common
to many transformations (via their TFFormalParameters) should be factored out to a
shared ModelingPlatform. The mere fact that transformations have overlapping con-
straints is a sign to consider the introduction of an additional ModelingPlatform. Fur-
thermore, ModelingPlatforms should only constrain constructs at the metamodel level
(e.g. UML without inheritance). TFFormalParameters on the other hand constrain con-
structs at the model level (e.g. a class named ‘Proxy’ needs to be present). In summary,
a ModelingPlatform is a globally or company-wide reusable entity while TFFormalPa-
rameters specify additional and local transformation-specific requirements.

4.2 Transformation Roles

In the previous subsection we have made a distinction between the following levels
of model transformations: transformation specification, implementation and execution.
We associate a different set of skills with each of these levels. Therefore we identify
three roles in the development of transformations. The roles are loosely based on the
roles of Knowledge Builder, Facilitator and User as proposed in [18].

Transformation Developer. A person in this role is responsible for implementing
transformations using the most appropriate technique (ATL, JAVA, etc.). In many
cases this role will be anonymous, for example when reusing third-party transfor-
mations.

Transformation Specifier. The Transformation Specifier is responsible for the exter-
nal specification of a transformation. Depending on the context, this role performs
a different task, hence we split it up in two subroles:

The designer subrole is used in the classical specification-before-implementation
sequence. The designer gathers the requirements and defines the external specifica-
tion of the required transformations. This information is then passed on to a Devel-
oper, who implements the given TFSpecification.

Because many transformation implementations are readily available we also
introduce the more pragmatic role of the harvester. In this subrole the Specifier
searches for available and appropriate transformation implementations that could
be of use in a project. The harvester thoroughly studies and tests the implementa-
tions (a reverse engineering activity) so that appropriate TFSpecifications can be
created. Basically this involves creating an explicit manifestation of the implicit
assumptions that are present in the implementation.

Transformation Assembler. This role selects appropriate TFSpecifications and com-
poses TFExecutions into a transformation chain that realizes an overall transforma-
tion goal. The Assembler is shielded from low level implementation details because
only TFSpecifications (provided by the Specifier) must be looked at.

4.3 Usage Scenario

To get a better view on how UTR concepts can be used and where the different roles
come in, we present a typical usage scenario (see Figure 3). We describe the creation
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Fig. 3. A typical usage scenario. Part of the notation is derived from UML Activity diagrams.

of a transformation chain (TFChain) that takes a Storage model as input and produces
a corresponding JAVA model. The input model specifies a storage application such as a
library or warehouse in a domain specific modeling language.

The process of building the transformation chain consists of three steps. First, the
Transformation Specifier/Harvester searches for candidate transformation implemen-
tations that can contribute to the chain. We have selected three relevant transformation
implementations (left column of Figure 3): one converts Storage to UML models (ATL),
one changes Associations within the UML model (MTF) and one transforms UML to
equivalent JAVA models (JAVA). The only information that is available at this point is the
source code of the transformation and textual documentation. As explained in Section
2, we need to fix many variables before we can execute any of the transformations.

In a second step we translate the transformation implementations into UTR Trans-
formation Specifications. The Transformation Specifier is again responsible for this
step. Due to the variability points of the implementations (e.g. direction, metamodel),
there are often several alternative but valid Specifications possible. For example, in the
middle column of Figure 3, we have defined a separate Specification for each direc-
tion of the omnidirectional MTF transformation Associations: AddAssociations and Re-
moveAssociations. In the case of ATL (Storage2UML) we have varied the metamodels
to target UML2.0 or UML1.5. The latter two are materialized as ModelingPlatforms.

The final step is to create the actual transformation chain from the building blocks
provided by the previous steps. We are completely shielded from transformation
implementation details at this stage. The Transformation Assembler instantiates the
appropriate TFSpecifications, which yield TFExecutions, and composes them using
Connectors (see right of Figure 3). Mind that Connectors can only connect TFActu-
alParameters of the same type: their constraints must be compatible and their Model-
ingPlatforms must be the same. Finally we provide the input model s and a container
for the result o.
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The discussed scenario presents a pragmatic approach that leverages existing trans-
formation implementations and represents them in UTR. Alternatively, we can start by
defining TFSpecifications (middle column) based on a set of given requirements. These
TFSpecifications are then implemented (left column), reused from previous projects or
bought. Finally a transformation chain is created (right column). In practice a combina-
tion of both the pragmatic and the latter approaches can be appropriate.

5 Implementation

We have developed a tool that implements the Unified Transformation Representation
and supports the usage scenario described in the previous section. This tool is called
Unified Transformation Infrastructure (UniTI) and is built as a plugin for the Eclipse
[19] platform. We have used the Eclipse Modeling Framework (EMF) [10] to represent
the UTR metamodel. A dedicated model editor assists both Transformation Specifier
and Assembler with the creation of transformation chains.

Figure 4 gives an impression of UniTI. The transformation chain that is shown is the
same as in the usage scenario of Section 4.3. The left part of the figure shows a library of
TFSpecifications. A number of so-called wizards assist the Transformation Specifier by
asking for the necessary implementation details of each technology. TFSpecifications
are then automatically generated. Note that the Transformation Specifier can now alter
the generated TFSpecifications to his likings without destroying the coupling with the

Fig. 4. An example worked out with UniTI
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underlying implementation. Typically, ModelingPlatforms are refined at this point –
e.g. the BasicUMLClasses ModelingPlatform in the figure.

If we shift focus to the right of Figure 4, we see the actual transformation chain
model. Before modeling can start we need to import the necessary TFLibraries – only
‘MyTfLibrary’ in this case. We can now instantiate the necessary TFExecutions and
connect them appropriately. The transformation chain can then be executed. Execution
of each transformation is taken care of behind the scenes and hides technology-specific
details. All intermediate models are automatically saved and are available for inspection
during and after execution. UniTI supports parallel execution of transformations by
allowing multiple Connectors on the same TFActualParameter. Conditional execution
is not yet supported.

We allow extensions of UniTI with new transformation technologies through two
mechanisms. A lightweight extension mechanism is provided by the standard support
for JAVA transformations. A simple JAVA interface that represents JAVA transformations
can be reused to encapsulate any transformation technology that provides a JAVA API. A
more heavyweight approach is by extending the metamodel by subclassing the Atomic
Transformation Specification class. The main advantage of the heavyweight approach
is better integration in UniTI; for example, we can provide a technology-specific wizard
that simplifies the creation of Transformation Specifications.

6 Related Work

In our work we consider models and transformations as course-grained building blocks
of an MDD approach. In the following paragraphs we discuss other approaches that
apply a similar point of view.

In [2], transformation composition is seen as the composition of different tools that
support a number of dedicated transformations or provide a generic transformation
specification facility. An Eclipse plugin, the Model Control Center (MCC) allows the
creation of transformation networks by using a simple scripting language that allows se-
quential, parallel and conditional execution. Our approach is similar to [2] by making a
clear distinction between the specification and execution of transformations and allow-
ing different transformation technologies to work together. Our approach differs in the
way we specify transformations. They reuse JAVA interfaces to encapsulate model types
while we have the dedicated concept of Transformation Parameters and Platforms. We
make a more detailed comparison of UniTI and MCC in the next section.

Another approach similar to ours is described in [20]. They use a classical compo-
nent system as a Transformation Composition Framework (TCF). Transformations and
models are encapsulated in components and component interfaces act as model types,
execution entry points and context information nodes. They provide a basic transfor-
mation language for defining simple transformations; composite transformations are
facilitated by the existing component framework. As in [2], transformations/models are
typed by regular interfaces which limits their preciseness. They are also limited to their
own transformation language, although this limitation seems easy to circumvent. Most
of the limitations of this approach are a direct cause of reusing an existing component
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framework. UniTI avoids many of these limitations by offering more dedicated con-
structs. TCF will be compared to our approach in more detail in the next section.

In [21] a Domain Specific Language (DSL) is described to compose JAVA

metamodel-specific transformation classes and automatically choose the right transfor-
mation instance depending on the preceding transformations. Our approach is similar
to this one in that we also use a kind of DSL, which is defined by the UTR metamodel.

OMG’s QVT [7] supports chaining of internal (QVT native) and external (imple-
mented in another language) transformations at the transformation language level. It is,
however, up to the tool implementer to provide the mechanisms to call out to external
transformations so the composition of subtransformations is limited in practice. QVT
supports precise model types by metamodel and compliance kind (strict, effective). This
approach is comparable to, but more restricted than, our notion of Platform.

A number of approaches make use of classical build tools such as ANT [22] to man-
age transformation compositions. Examples are AM3/ATL [12] and OMELET [23]; the
latter tries to extend build tools with the notion of metamodel as data type in order to fit
them better to transformations.

Finally the MDDI ModelBus [24] provides a middleware that enables the execu-
tion of all kinds of model services provided by different tools in a technology-neutral
fashion. Transformation services offered through the ModelBus could be integrated in
UniTI through the provided extension mechanisms.

In summary, we proposed a model-based solution for transformation reuse and com-
position while most other approaches reuse existing technology to facilitate transforma-
tion chaining. Hence, the main advantage of our approach is that the abstractions that
we use map very well to the transformation domain, while this is not always the case
for the other approaches. A more detailed comparison of UniTI, MCC, TCF and ANT
is made in the next section.

7 Evaluation

In this section we evaluate UniTI by comparison with other approaches that offer sup-
port for composition and reuse of transformations. We also look at how regular trans-
formation languages support modularization and composition of transformations.

Table 1 shows a comparison of selected characteristics of UniTI, ANT, TCF and
MCC. Although ANT cannot be considered as a dedicated transformation composition
tool we have included it because it is used for that purpose in practice. For each of
the characteristics we have indicated the corresponding element/value in each of the
approaches. For example, the transformation module of UniTI is the TFSpecification
while for TCF it is a regular component and for ANT there is no such concept.

In order to get a measure of the effort required for defining a transformation chain
in each of these tools we have expressed our running example (see Subsection 4.3)
in each of them. The amount of necessary glue code was then recorded as lines of
code. Because UniTI does not offer a textual syntax we have recorded the amount of
model elements that needed to be created instead. We looked at the transformation chain
from the perspective of a Transformation Assembler. Therefore we never counted the
specification of a transformation in the glue code if it was possible to leave it out.
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Table 1. Qualitative comparison of UniTI, ANT, TFC and MCC

UniTI ANT TCF MCC
Tf Module TF Spec. (wizard) N/A Component Eclipse plugin
Tf exchange/reuse import library N/A copy component install plugin
Model Typing Platform N/A JAVA Interface JAVA Interface
Tf Composition model-based script component composition script
Cross-technology built-in manual manual? manual
Glue code 7 model elements ∼60 lines ∼20 lines ∼6 lines

From this comparison we can conclude that ANT offers the least support for the
Transformation Assembler. UniTI, TCF and MCC offer substantial advantages in the
area of model typing, chaining and exchange. Notice that UniTI is the only approach
that takes a model-based approach. It offers transformation concepts as first-class en-
tities (e.g. Transformation Specification) while others reuse existing notions such as
components and Eclipse plugins to represent transformations. Therefore, UniTI has
very expressive model typing, easy exchange of transformations and concise glue code.
Furthermore, UniTI has built-in support for different transformation languages and is
thus the only approach that also supports the task of the Transformation Specifier by
automatically generating Transformation Specifications.

Table 2. Modularization alternatives for transformations

Transformation chain Rule-based Modularized rule-based

t r a n s f GET
t r a n s f SET
connec t GET . out , SET . i n

t r a n s f g e t s e t
r u l e g e t s e t

from P r o p e r t y
to O p e r a t i o n ‘ ge t ’
to O p e r a t i o n ‘ s e t ’

t r a n s f g e t s e t
r u l e g e t

from P r o p e r t y
to O p e r a t i o n ‘ ge t ’

r u l e s e t
from P r o p e r t y
to O p e r a t i o n ‘ s e t ’

In this paper we have focussed on composition of complete transformations as build-
ing blocks. Since the modularization mechanisms offered by transformation languages
are usually situated at a lower level, e.g. transformation rules, it is hard to make a
meaningful comparison. Instead, we believe that both techniques have to be used in
conjunction. In some cases it might be more opportune to modularize a transforma-
tion at the implementation level, while in others, composition of larger building blocks
might be a good solution. In Table 2, we show alternative possibilities to modularize a
transformation that adds accessor and mutator operations (i.e. getters and setters) to a
Class, expressed in pseudo-code. The leftmost definition makes use of transformation
chaining while the other definitions are expressed in a rule-based transformation lan-
guage. The middle definition shows a naive implementation and the rightmost definition
decomposes the transformation into two separate rules. For the transformation chaining
approach, one line of code corresponds with one model element in UniTI.

At this point it is not clear which (de)composition strategy is best for different sit-
uations. We believe that both approaches can live in harmony, but more experience/re-
search is required in order to define a set of guidelines that guide the developer in
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choosing the right strategy for each situation. A more thorough study is out of the scope
of this paper. For a more detailed evaluation of the composition possibilities offered by
rule-based transformation languages we refer to [25].

8 Conclusions and Future Work

A possible approach to implement complex transformations is by composing many
simple subtransformations. We showed that this is not so easy to accomplish with cur-
rent transformation technologies, certainly not when mixing different technologies. The
main problem is the weak separation of specification and implementation of transfor-
mations, which requires a deep implementation knowledge both when reusing and
composing transformations. Therefore we have proposed a model-based approach that
offers a unified view on transformations with a clear distinction between implemen-
tation and specification. Transformation chains can thus be created without bothering
with the technological or implementation details of each subtransformation.

The core concepts of our approach are defined in the Unified Transformation Rep-
resentation (UTR) metamodel, which fulfills the following characteristics for transfor-
mations: the black-box principle, subject to composition and clear external specifica-
tion. In order to realize these we made a clear distinction between implementation,
specification and execution of transformations. Our approach gave rise to different us-
age roles: Transformation Developer, Specifier and Assembler. Each of these roles has
a restricted view on transformations and is assigned with a clear set of responsibili-
ties. The Developer implements a transformation in the most appropriate technology,
the Assembler composes transformations without having to know anything about the
underlying implementation and the Specifier mediates between the former two by pro-
viding Transformation Specifications. UniTI implements the UTR metamodel and as-
sists both Transformation Specifier and Assembler to create transformation chains in a
technology-transparent fashion.

In future work we will investigate how to offer cross-transformation services such as
end-to-end traceability. We will explore how this traceability information can be used
throughout the transformation chain to improve subsequent transformations.
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Abstract. We study the Apache Open for Business (OFBiz), an
industrial-strength platform for enterprise applications. OFBiz is an
example of a substantial project using model-driven development with
multiple domain-specific languages (DSLs). We identify consistency
management as one of its key challenges. To address this challenge, we
present SmartEMF, which is an extension of the Eclipse Modeling Frame-
work that provides support for representing, checking, and maintaining
constraints in the context of multiple loosely-coupled DSLs. SmartEMF
provides a simple form of user guidance by computing the valid set of
editing operations that are available in a given context. We evaluate the
prototype by applying it to the OFBiz project.

1 Introduction

Successful development and customization of ever more complex enterprise
systems depends on effective collaboration between several stakeholders as
well as on a flexible and coherent conceptualization of the problem domain.
Among the different approaches towards tackling this challenge, domain-specific
modeling seems especially promising. Domain-specific modeling can be defined
as the systematic application of domain-specific languages (DSLs) in the design
and programming phases of a development project. In complex projects, multiple
DSLs are usually necessary in order to cope with different concerns. This
requirement raises the need to manage the consistency among several models
in multiple DSLs, which is the focus of this paper.
We give an example of an industrial-strength enterprise application framework

that uses multiple DSLs, namely Apache Open for Business (OFBiz) [1]. We
analyze the use of multiple DSLs in OFBiz applications by studying the
OFBiz documentation, issue tracking system, developer forums, and the OFBiz
implementation artifacts. We identify consistency management, and in particular
ensuring referential integrity across models, as one of the key challenges of
multi-DSL development. We want to address these challenges in a non-invasive
way that can be incorporated in an existing development process and system
architecture.
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To address the problems identified in the OFBiz study, we introduce
SmartEMF, which is an extension of the Eclipse Modeling Framework (EMF)
[2]. SmartEMF provides support for representing, checking, and maintaining
constraints using Prolog. SmartEMF can represent and check four kinds of
constraints that we identified in OFBiz DSLs. Furthermore, it provides a simple
form of user guidance by computing the valid set of editing operations that can
be applied in a given context based on the current state of all models.
We believe that our study of OFBiz offers a valuable example of how multiple

DSLs are used in industry today and the challenges that arise from such use. We
are not aware of other quantitative studies of using multiple DSLs to describe
a single system. Furthermore, although Prolog has been previously used to
represent models and provide constraint checking and editing guidance, three
aspects of SmartEMF are novel: (i) the use of Prolog to compute multiple valid
operations; (ii) the exposition of how Prolog’s higher-order queries can elegantly
support constraint checking and the computation of valid operations; (iii) the
support for loosely coupled DSLs by defining the valid target domain for name-
based references through an annotation mechanism. The last capability makes
it possible for SmartEMF to automatically support existing DSLs represented
as XML Schemas that use name-based references to cross-link elements of
individual models without the need to create a single, integrated metamodel.
The paper is structured as follows. Section 2 introduces OFBiz—our case

study. Section 3 elaborates on issues in the typical process of developing
applications in OFBiz. Section 4 describe the different kinds of consistency
constraints that we have identified in OFBiz. Section 5 presents our tool
SmartEMF, which addresses the issues by guided development with multiple
DSLs. Section 6 discusses the solution and examines possible alternative
approaches. Section 7 describes the related work and finally, section 8 concludes
the paper and suggests possible future work.

2 Motivating Example: Apache Open for Business

The Apache Open for Business (OFBiz) framework [1] is an open source plat-
form for building enterprise automation software, such as Enterprise Resource
Planning (ERP), Content Management System (CMS), Customer Relationship
Management (CRM), and Electronic Commerce systems. OFBiz is a top-level
project at the Apache Foundation. Its users include both large companies, such
as British Telecom and United Airlines [3], and a range of small and medium-
sized ones. The framework is an excellent example of state-of-the-art, industrial-
strength application development with multiple DSLs.
From a technical viewpoint, OFBiz is a J2EE framework that delivers

a service-oriented architecture with persistent business objects, its own web
application framework, and support for business rules, workflow, role-based
security, and localization. OFBiz based applications are expressed using multiple
DSLs. The core of OFBiz is an engine that can load and interpret more than
fifteen DSLs (Figure 1). Each DSL covers a different aspect of application
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Table 1. Overview of the OFBiz DSLs

No. of
Tier DSL Description Elements

Data Entity Model Define business objects, attributes, and relations 23
Fieldtype Model Define attribute types 3
Entity Config Configure data sources, files, and transactions 19
Entity Group Configure active models and entities 2
Entity ECA Define events, conditions, and actions for entities 5

Service Service Def. Define service interfaces and permissions 18
Service Group Configure active models and services 3
Service Config Configure security, threading, and service engine 13
Service ECA Define events, conditions, and actions for services 6
Minilang Implement services 154
XPDL Define workflows 89

UI Screen Implement screens and layout 65
Form Implement user forms and data binding 57
Menu Implement menus 27
Tree Implement visual tree structures and data

binding
38

WWW Site Config Define web controller behaviour 15
Regions Def. Define screen regions 3

development such as defining business objects, services, graphical user interfaces,
and workflows. Each DSL is defined using an XML Schema, and individual
models are represented simply as XML documents. Table 1 provides a list of
the DSLs. The table also specifies the number of elements in the schema of each
DSL as an estimate of its size.

OFBiz applications are implemented as mod-

Fig. 1. The architecture

ules on top of the engine and the DSL layer
(Figure 1). Each module typically consists of 20
to 60 models expressed in different DSLs and
sometimes also custom Java code. The framework
includes predefined modules such as Inventory,
Customer Service, Product Catalogs, Order Entry,
Accounting, and other ERP functions. Table 2 lists
the artifacts constituting two of the predefined
modules, including artifact sizes and numbers of
cross-references among the artifacts. The frame-

work is highly extensible allowing custom modules to be build on existing ones.

3 Application Development with Multiple DSLs in OFBiz

To understand how multiple DSLs are used in OFBiz, we analyzed the
freely available documentation, including tutorials, Wiki sites, user forums, the
project’s issue tracking system [4], and the actual source code (stable build,
September 2, 2006).
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Table 2. DSL usage statistics for selected OFBiz modules

DSLs in No. of No. of No. of
’Accounting’ module Models Elements Cross-refs

Entity Model 2 2105 723
Entity Group 1 140 138
Service Def. 18 1726 433
Service Group 1 15 10
Service ECA 2 59 57
Minilang 16 2127 277
Form 11 2400 1141
Site Config 1 1087 228
Screen 11 1889 648
Tree 1 25 4
Menu 2 268 45

DSLs in No. of No. of No. of
’Content’ module Models Elements Cross-refs

Entity Model 1 1005 271
Entity Group 1 71 70
Service Def. 6 1334 389
Service ECA 1 10 9
Minilang 9 2718 506
Form 13 3487 1699
Site Config 1 1443 284
Screen 12 2303 796
Tree 2 122 11
Menu 9 366 107

Table 3. Summary of a sample OFBiz customization

Reference OFBIZ-93: Support BillingAcct & PaymentMethod for Payment

Link http://issues.apache.org/jira/browse/OFBIZ-93

Module Accounting

Problem
The requirement is that a customer be able to use a billing account plus another form
of payment, such as a credit card, for a payment on an order. The billing account is
to be used first.

Solution

• New service declaration captureBillingAccountPayment
• Java implementation of this service
• An extra parameter in the calcBillingAccountBalance service definition
• Minor changes to 3 existing service implementations and a few utility methods
• Minor changes to a single screen definition

The recommended OFBiz application development process involves a bottom-
up development of new models or customization of existing ones according to the
tiered architecture of OFBiz [5]. The first step is to define business objects and
data models using the data-tier DSLs (Table 1). Then services are defined using
the service-tier DSLs and, in complex cases, also Java and scripting languages.
The third step is to implement the user interface using the user interface DSLs
and possibly HTML/CSS code. A particular customization employs one or more
of these steps depending on its purpose and requirements.
Multiple DSLs are involved not only in the development of complete OFBiz

applications, but even in small customizations of the existing ones. Descriptions
of customizations are available in the OFBiz issue tracking system. In our study
we have selected a sample set of eleven completed customizations of predefined
applications, all categorized as new features or improvement requests. Table 3
shows an example of such a customization. The number of affected artifacts for
each of the eleven customizations are listed in Table 4. The average number
of affected artifacts in the selected set was five, which approximates well the
number of DSLs used in an average customization.
We have examined the discussions in the OFBiz issue forum [4] related

to the issues in Table 4 and have found that the customizations typically

http://issues.apache.org/jira/browse/OFBIZ-93
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Table 4. Number of affected artifacts per customization

No. of
Issue Affected modules artifacts

OFBIZ-16 ECommerce 3
OFBIZ-93 Accounting 13
OFBIZ-113 Order 1
OFBIZ-188 ECommerce 2
OFBIZ-338 Manufacturing 7
OFBIZ-339 WorkEffort 6

No. of
Issue Affected modules artifacts

OFBIZ-361 Webtools 5
OFBIZ-435 Marketing 4
OFBIZ-540 WorkEffort, Catalog, Product 14
OFBIZ-557 Product 4
OFBIZ-580 WorkEffort 6

required several iterations of changes to the involved artifacts before they
were correctly implemented. A very common problem is inconsistency among
the new or modified artifacts and the existing artifacts, mainly caused by
dangling references. Currently developers use ordinary XML and Java editors
to implement their customizations. These tools offer little help to keep the
artifacts consistent. To check for inconsistencies, the developers start up the
application and run test scenarios, which is time-consuming and error-prone.
According to the OFBiz forum [6], one of the main future tool requirements is
better consistency checks and editing guidance that could visualize how different
artifacts are related.

4 Consistency Constraints in OFBiz

Our survey has revealed that inconsistency was one of the main development
problems. We will now illustrate this problem with some concrete examples
taken from the OFBiz framework. We cover both the problem of consistency
within a single artifact and consistency among multiple artifacts. On the surface,
these cases do not seem to differ: in either the goals are to avoid dangling
references, to enforce typing, and to satisfy other constraints. In practice, the
mechanisms for expressing references and enforcing constraints within and across
artifacts are likely to differ. Different artifacts need to support independent
editing and storage and also may belong to different technical spaces, e.g., XML
and Java. In the following we identify four kinds of constraints that need to be
maintained in application development. Unfortunately, the current OFBiz tools
cannot represent, check, and maintain these constraints.

(1) Well-formedness of individual artifacts. Currently, all OFBiz DSLs are
XML-based, which means that well-formedness can be established by checking
whether a model conforms to its schema. Unfortunately, XML Schemas have
serious limitations. In particular, element and attribute declarations are context
insensitive and therefore cannot express whether their presence depends on the
presence of other elements or attributes in their context [7, Sec 4.3-4.4]. However,
OFBiz requires expressing such constraints. For example, according to the OFBiz
documentation, if the alias element in the Entity DSL contains the group-by
attribute, it should also contain the function attribute.
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Fig. 2. Simplified excerpt from the metamodels of two DSLs

(2) Simple referential integrity across artifacts. A serious and frequent problem is
that of referential integrity across models. Multiple DSLs often refer to each other
because they represent different views of the same system. We have identified
more than 50 such references across the OFBiz DSLs. For example, each Service
in the Service Definition language needs to refer to an Entity in the Entity
Model language since services operate on entities. In OFBiz, as illustrated in
Figure 2, all such references across DSLs are name-based : the value of the
default-entity-name attribute in Service should match the name attribute
of the corresponding Entity. Sadly, there is no mechanism in XML Schema to
enforce this. Observe that typed references, absent from XML Schema, would
offer only a partial solution to the problem since name-based references between
XML and Java still need to be enforced. Cross-model name references are used
also in other approaches, e.g., in Microsoft DSL Software Factories [8].

(3) References with additional constraints. One can also find more complex
constraints imposed on references among OFBiz models, for example, between
models expressed in the Form and the Entity languages. A typical Form on a
webpage possesses fields linked to attributes of some Entity. A Registration
formmay, for instance, have fields Firstname, Lastname and Password generated
using a reference to a Person. However, it is sometimes necessary to override these
generatedfields.Wemaywanttocreateapasswordtextwidget insteadofthedefault
textfield for the Password field. In this case, the reference from the Registration
form to the Person entity has the additional constraint that the overridden field
must correspond to an attribute on the entity. More generally, all overriden form
fields should correspond to attributes on the entity that the form refers to. If this
constraint is violated, the engine will not be able to render the overriden form fields
correctly since it can not determine their origin in the entity layer.

(4) Style constraints. A fourth class of constraints suitable for OFBiz instal-
lations are style constraints. Enforcement of such constraints is not necessary
to execute OFBiz applications but facilitates maintenance in the long run. For
instance, the OFBiz designers have consciously adopted typical J2EE design
patterns. An example of a style constraint is to require that entity models
conform to the ObjectRole pattern as discussed in the OFBiz forums [9]: all
entities with a name that ends with Role should connect entities that do not
end with Role. This constraint ensures that relationships in the entity layer are
only specified between entities and not between relationships.
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5 SmartEMF

SmartEMF is an extension of the Eclipse Modeling Framework (EMF) [2] that
aims at addressing the consistency management challenges identified in the
previous sections. SmartEMF provides support for (i) representing, (ii) checking,
and (iii) maintaining constraints of the four categories identified in Section 4.
SmartEMF builds on EMF—an implementation of an essential subset of

the Meta Object Facility [10]. EMF is a platform for defining DSLs that
has several advantages over XML. In contrast to XML, EMF supports typed
references, proper many-to-many relationships, and a standard cross-model
reference mechanism. EMF has an editing and rendering API with a command
framework and an adapter layer for integration with model editors. A generator
of tree-based editors is included, while graphical editors are supported via
the Graphical Modeling Framework. In contrast to the string-based Document
Object Model (DOM) of XML, the EMF editing API is strongly typed.
SmartEMF achieves constraint checking and editing guidance using a logical

representation of EMF models. The logical representation is maintained in
parallel to the model. Constraints are expressed as Prolog rules and a Prolog
inference engine is used to evaluate them. For a given model a set of valid
operations is inferred and presented, guiding the user to select valid targets for
references. The following sections explain each of these aspects.

5.1 Ecore-to-Prolog Mapping

SmartEMF assumes that a metamodel of each DSL is given in EMF’s Ecore
notation, which closely resembles MOF [10]. EMF offers bi-directional bridges
between Ecore and other technical spaces, such as XML and Java. In particular,
XML Schema Definition (XSD) files of OFBiz DSLs and the corresponding
XML documents can be automatically imported into EMF, which makes them
accessible as Ecore models and instances.
Figure 3 shows an excerpt of the mapping from Ecore to Prolog for a fragment

of the Entity model from Figure 2. The mapping is directly inspired by the GEMS
project [11]. Similar to GEMS, all elements of an Ecore model representing the
DSL metamodel and all elements of an Ecore model instance representing a
concrete model in the DSL are declared as facts in the fact base. For example,
an Ecore class is represented as a fact using the eclass predicate with a unique
identifier of the class as an argument. N-ary predicates are used to assert relations
such as between an attribute and its containing class or between an integer
attribute and its upper bound.
Upon startup, our prototype initializes the fact base by traversing and

asserting model elements from Ecore, EMF’s embedded XML metamodel, and
all relevant DSLs and their instances. The resulting fact base then serves as the
underlying representation of a reflective Ecore editor, which manipulates and
queries both the EMF object model and the fact base. SmartEMF extends the
standard EMF editing commands, such as add, set, and delete, to propagate
changes of the model to the Prolog fact base.
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Fig. 3. Mapping from Ecore to Prolog

5.2 Representing Constraints

Consistency constraints from all of the categories discussed in Section 4 can be
represented as Prolog rules. Since all the DSLs and models are represented in the
Prolog fact base, constraints spanning one or more DSLs are expressed naturally.
A simple example of a well-formedness constraint (1) is required value present :

every mandatory feature should have a value. Every constraint consist of two
parts: a name (required value present) and a rule. The rule expresses a
negation of the constraint, so that the rule is satisfied whenever the constraint
is violated. In our example this happens if a mandatory feature, i.e., a feature
with a lower bound of 1, has value id UNSET. As shown below such constraints
are relatively simple to read and write.

% name
constraint( required_value_present ) .
% rule representing the negation of the constraint
required_value_present( Object, Feature ) :-
lower_bound( Feature, 1 ) ,
( attrvalue( Object, Feature, id_UNSET ) ;
refvalue( Object, Feature, id_UNSET ) ) .

Another class of constraints (2) considers consistency relations across distinct
DSLs. A DSL can refer to another one in two ways. Either by using types from
the other language or by name-based references.
Typed references are natively supported by Ecore and our mapping to Prolog.

However, name-based references require additional information in the Ecore
model, which SmartEMF supports with the modelref annotation. Figure 4 shows
how the sample reference from Service to Entity from Figure 2 is represented
using the annotation. The annotation consists of two key/value pairs: a model
key which denotes the target DSL by its namespace and an xpath key which is
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Fig. 4. Name-based reference from the Services DSL to the Entitymodel DSL

an XPath query that identifies the target element in that DSL. Provided with
the corresponding values of the two keys in the modelref annotation, SmartEMF
can determine the set of legal values (a valid domain) of an annotated model
element. In the example, the annotation on the defaultEntityName attribute of
the service shows that the valid values for this attribute are names of entities in
the Entitymodel DSL. The rule expressing the negation of this constraint follows:

% name
constraint( no_dangling_modelrefs ).
% rule
no_dangling_modelrefs( Object, AnnotatedFeature ) :-
modelref( AnnotatedFeature, DomainFeature ) ,
attrvalue( Object, AnnotatedFeature, Value ) ,
not( attrvalue( _ , DomainFeature, Value ) ) .

5.3 Constraint Checking Using Higher-Order Queries

Constraint checking utilizes Prolog’s support for higher-order queries. The meta-
logical call predicate facilitates such queries. The call predicate invokes
a goal with an optional set of extra arguments. Since all our constraints
are declared using the custom constraint predicate, we can easily compute
the set of all constraints in the fact base. By using the call predicate,
we can then determine which constraints are violated, i.e., evaluate to true
for a given binding of their variables. The check rule states this query:

check( Object, Violations ) :-
findall( [ Goal, Object, Feature ] ,
( constraint( Goal ) ,
call( Goal, Object, Feature ) ) ,
ViolationsUnsorted ) ,
sort( ViolationsUnsorted, Violations ) .

If the check predicate is evaluated with the Object variable bound to an object
then the result is a binding of the Violations variable to an empty list in case of
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no constraint violations or a list of tuples. In the latter case each tuple consists
of the violated constraint (a goal), the concrete object, and the feature of that
object. If the check predicate is evaluated with two variables, the query produces
all constraint violations in the entire fact base in one shot.

5.4 Preconditions of Editing Operations

Simple editing guidance can be offered by computing the set of editing
operations (and possibly some or all of their arguments) that are available in
a given context based on the current state of the fact base. This facility is
achieved by representing the preconditions of editing operations such as add,
set, and delete as Prolog rules and querying them using a higher-order query.

% name
operation( add ) .
% rule
add( Object, Feature, AddableTypes ) :-
instance( Object ) ,
is_a( Object, ObjectType ) ,
containment( ObjectType, Feature ) ,
upper_bound( Feature, Upper ),
refvalue( Object, Feature, CurrentValues ) ,
not( length( CurrentValues, Upper ) ) ,
is_a( Feature, AddableTypes ) .

The above listing shows a declaration of the add operation, which adds a
child element to a containment reference. Similarly to constraints declarations,
the precondition consists of a fact declaring the rule name and the rule. The
rule states that only the instances of the feature’s type can be added and only
as long as the number of instances in the containment list does not exceed the
upper bound. Similar preconditions are declared for other operations.
We determine valid editing operations in a context by using the higher-order

query operations shown below. Depending on whether the Object and/or the
Feature variables are bound, we can either determine all valid operations, all
valid operations for a given object, or all valid values for a given feature.

operations( Object, Feature, Operations ) :-
findall( [ Goal, Object, Feature, Value ] ,
( operation( Goal ) ,
call( Goal, Object, Feature, Value ) ) ,
OperationsUnsorted ) ,
sort( OperationsUnsorted, Operations ) .

5.5 Reflective Editor

SmartEMF provides a reflective editor that exploits the underlying represen-
tation and previously described queries. It is a form-based editor implemented
as an Eclipse EMF plugin (Figure 5). It enables users to access and modify
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Fig. 5. SmartEMF’s reflective editor

instances of different DSLs in a uniform way. Each DSL is represented in a tab
containing three columns. The first column lists different models in the selected
DSL. The second column contains a hierarchical view of the model elements
in the currently selected model. The third column displays the features of a
selected model element. All objects and feature values can be loaded, edited,
and serialized respecting the individual file formats of their DSLs. Specifically,
in the OFBiz case, every modified model is saved in XML conforming to the
original DSL-defining XSDs.
The editor uses reflective capabilities of the regular EMF object model in

order to structure the user interface. When the user selects an object or a
feature, the framework queries the underlying representation for valid editing
operations using the operations predicate from Section 5.4. The resulting tuples
are presented in the form of various visual or textual hints as shown in Figure 6.
Since the framework simultaneously queries the representation using the check
predicate, a list of inconsistencies is available, which is both shown in the bottom
as well as using other visual hints.
The reflective nature of the SmartEMF editor is one of its main advantages.

Most EMF editors are generated and hence customized for a particular set of
models. In contrast, the SmartEMF editor allows the user to quickly include
new DSLs, new instances, and new constraints just by changing the loading
configuration of the editor. Upon loading, the editor automatically adapts to
the current selection of DSLs while still providing guidance and consistency
management. Of course, the query facilities of SmartEMF could also be used
from specialized and generated editors.

6 Discussion and Suggestions for Future Work

Experience in applying SmartEMF to OFBiz. OFBiz applications are tradition-
ally developed using built-in XML and Java editors of IDEs like Eclipse. As
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Fig. 6. Guidance and consistency management in the SmartEMF editor

described in the previous section, these tools do not offer any cross-language
support or editing guidance. In our experiments, we annotated the Entity,
Service definition, and Form languages and loaded all models in these
languages from the accounting module. The setup comprised 31 models with
a total of 6231 model elements and 2297 potentially broken cross-references.
We implemented a set of simple customizations, such as extending an entity,
revising a service, and displaying the results in the user interface, experiencing
no performance problems with checking and guidance.
We have not yet performed any user studies apart from the customizations

that we ourselves have done. We do, however, expect a significant drop in
undetected inconsistencies when SmartEMF is systematically applied to OFBiz
projects. The guidance facilities should also speed up development since they
provide very concrete hints on how to complete the models in a given installation.
Empirical studies need to be performed in order to validate these claims.

Applicability to other DSL-based infrastructures. A growing number of XML-
based infrastructures (e.g., Struts and Spring) use similar mechanisms as
OFBiz and we expect that these infrastructures could benefit equally well from
SmartEMF’s guidance and consistency management facilities. Also, we wish to
examine how Java-customizations can be related to DSL artifacts. One possible
approach would be to extract Ecore-based models from Java code as it has been
done in framework-specific modeling languages [12].

Prolog as a constraint language. An object-oriented language such as OCL, which
supports a concise expression of constraints and navigation, would seem to be
a better choice than Prolog. Alternatively an approach based on a relational
database and SQL queries could have been adopted. While both solutions are
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more elegant than a pure Java approach, they do not offer the advantages of
Prolog. The main advantages of Prolog are: (i) the ability to infer possible
solutions by using free variables in a query, (ii) higher-order predicates such
as call, which support highly concise and expressive global queries and (iii) an
implicit representation of the solution space (unlike in databases).

More advanced guidance. Extending SmartEMF to provide guidance for more
complex (composite) operations, e.g., refactorings, and for sequences of opera-
tions are interesting future work items. For operation sequencing, both pre- and
post-conditions of operations need to be considered. Finally, an extra layer of
guidance could be to prescribe the order in which model elements are actually
created. This layer could be achieved by introducing modeling workflows or
instantiation plans in the manner suggested by Lahtinen et al. [13].

7 Related Work

Consistency management. Tracking inconsistencies between models is not a
new research field. The ViewPoint method [14] is one of the best treatments
of the subject. Recently several authors have addressed the problem, also
considering repairs. Mens et al. [15] propose a graph-based approach where
different models are represented as a single graph. The graph can be searched
for erroneous patterns. Each pattern has a corresponding repair that can be
applied to the graph. Similarly, other approaches support repairs by annotating
OCL-constraints with repair actions [16] or even generating repair actions
automatically [17]. More advanced repairs and diagnostics may be offered by
implementing model checks as transformations as suggested by Bézivin and
Jouault [18]. The checking aspect of all these approaches is impressive, but the
guidance is limited to the predefined repairs. SmartEMF’s ability to search for
possible editing operations is not present in any of these.

Mapping models to a logical fact base. We have adopted the idea of mapping
an Ecore-based model to Prolog from the GEMS project [11]. The primary
emphasis in the GEMS project is on creating a graphical, guided editor for
one or more DSLs based on a single, thightly-integrated meta-metamodel and
allowing automatic configuration of models. SmartEMF draws on this approach,
but uses pure Ecore as its meta-metamodel rather than a custom Ecore-based
meta-metamodel. This choice allows SmartEMF to leverage existing languages
by loading, editing, and saving different models in a schema-conformant way.
Furthermore, in the case of multiple DSLs, GEMS would require a composite
metamodel with multiple aspects, or views. SmartEMF handles this case by using
a generic editor which can display both regular cross-model references as well as
name-based references. Another Prolog-based approach is the Design Critiquing
facility of the ArgoUML tool described by Robbins et al. [19]. This approach is
focused on critiquing rather than suggesting possible edits as SmartEMF.

Multiple DSL development. Development scenarios with multiple DSL is sparsely
described in the existing literature. One of the best empirical studies of DSL
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usage to date is Tolvanen and Kelly’s work [20], which is primarily concerned
with single DSLs. There are, as far as we know, no comprehensive empirical
studies of industrial instances of multiple DSL applications like OFBiz. An early
theoretical reference is the DRACO system [21], which contains a systematic
approach for dealing with multiple DSLs. Recently, Warmer and Kleppe [8] have
described an approach based on multiple DSLs, but that work does not provide
empirical data such as the size of the involved DSLs and the number of cross-
references among them.

Partial models and name-based references. Warmer and Kleppe [8] advocate
the use of loosely coupled, partial models. Name-based references are used to
integrate multiple DSLs. Their approach uses a consistency checking mechanism
tailored to a specific set of languages.

8 Conclusion

We have examined the problem of working with multiple DSLs in domain-
specific modeling. Our main contributions are: (i) a qualitative study of the
architecture and development problems of an industrial-strength, multiple DSL
application, OFBiz, and (ii) SmartEMF—an EMF-based framework offering
consistency checking and editing guidance. We have tested our prototype within
OFBiz development scenarios, applying it to the problems that were identified
in the study as common issues in OFBiz development. Preliminary experiments
suggest that a guidance tool can significantly help in maintaining consistency
during development with multiple DSLs.

References

1. The Apache Software Foundation: The Apache Open for Business Project (March
8, 2007) (2007), http://ofbiz.apache.org/

2. Budinsky, F., Steinberg, D., Merks, E., Ellersick, R., Grose, T.J.: Eclipse Modeling
Framework: a Developer’s Guide. Addison-Wesley, Reading (2004)

3. Chen, S.: Opening Up Enterprise Software: Why Enterprises are Adopting Open
Source Applications (2006), http://www.opensourcestrategies.com/slides/

4. The Apache Software Foundation: The Open for Business Project. Issue Tracking
System (March 22, 2007), https://issues.apache.org/jira/browse/OFBIZ

5. Undersun Consulting LLC: OFBiz Framework Quick Reference Book, ver. 1.5.1
(March 26, 2007) (2004),
http://bigfiles.ofbiz.org/FrameworkIntro/01MainDiagram.pdf

6. Jones, D.E.: Requirements for an OFBiz IDE (March 27, 2007) (2006),http://
www.nabble.com/Re%3A-requirements-for-an-OFBiz-IDE-p8066093.html

7. Møller, A., Schwartzbach, M.I.: An Introduction to XML and Web Technologies.
Addison-Wesley, Reading (2006)

8. Warmer, J., Kleppe, A.: Building a Flexible Software Factory Using Partial Domain
Specific Models. In: Proc. of The 6th OOPSLA Workshop on Domain-Specific
Modeling (2006), http://www.dsmforum.org/events/DSM06/

http://ofbiz.apache.org/
http://www.opensourcestrategies.com/slides/
https://issues.apache.org/jira/browse/OFBIZ
http://bigfiles.ofbiz.org/FrameworkIntro/01MainDiagram.pdf
http://www.nabble.com/Re%3A-requirements-for-an-OFBiz-IDE-p8066093.html
http://www.nabble.com/Re%3A-requirements-for-an-OFBiz-IDE-p8066093.html
http://www.dsmforum.org/events/DSM06/


60 A. Hessellund, K. Czarnecki, and A. Wąsowski

9. Howe, C.: Party Relationship Best Practices (March 27, 2007) (2006),
http://www.nabble.com/Party-Relationship-Best-Practices-p5453154.html

10. Object Management Group: Meta-Object Facility (March 12, 2007) (2007),
http://www.omg.org/mof/

11. White, J., Schmidt, D., Nechypurenko, A., Wuchner, E.: Domain-Specific
Intelligence Frameworks for Assisting Modelers in Combinatorically Challenging
Domains. In: GPCE4QoS (2006)

12. Antkiewicz, M., Czarnecki, K.: Framework-Specific Modeling Languages with
Round-Trip Engineering. In: Nierstrasz, O., Whittle, J., Harel, D., Reggio, G. (eds.)
MoDELS 2006. LNCS, vol. 4199, pp. 200–214. Springer, Heidelberg (2006)

13. Lahtinen, S., Peltonen, J., Hammouda, I., Koskimies, K.: Guided Model Creation:
A Task-Driven Approach. In: VLHCC ’06: Proc. of the Visual Languages and
Human-Centric Computing, pp. 89–94 (2006)

14. Nuseibeh, B., Kramer, J., Finkelstein, A.: Expressing the relationships between
multiple views in requirements specification. In: ICSE ’93: Proc. of the 15th Int’l.
Conf. on Software Engineering, pp. 187–196 (1993)

15. Mens, T., Van Der Straeten, R., D’Hondt, M.: Detecting and Resolving Model
Inconsistencies Using Transformation Dependency Analysis. In: Nierstrasz, O.,
Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS 2006. LNCS, vol. 4199, pp.
200–214. Springer, Heidelberg (2006)

16. Kolovos, D.S., Paige, R.F., Polack, F.A.: On the Evolution of OCL for Capturing
Structural Constraints in Modelling Languages. In: Proc. Dagstuhl Workshop on
Rigorous Methods for Software Construction and Analysis (2007)

17. Nentwich, C., Emmerich, W., Finkelstein, A.: Consistency Management with
Repair Actions. In: Proc. of the 25th Int’l. Conf. on Software Engineering, May
3-10, 2003, Portland, Oregon, USA, pp. 455–464 (2003)
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Abstract. Intrusion Detection Systems (IDSs) have the reputation of generating 
many false positives. Recent approaches, known as stateful IDSs, take the state 
of communication sessions into account to address this issue. A substantial 
reduction of false positives, however, requires some correlation between the 
state of the session, known vulnerabilities, and the gathering of more network 
context information by the IDS than what is currently done (e.g., configuration 
of a node, its operating system, running applications). In this paper we present 
an IDS approach that attempts to decrease the number of false positives by 
collecting more network context and combining this information with known 
vulnerabilities. The approach is model-driven as it relies on the modeling of 
packet and network information as UML class diagrams, and the definition of 
intrusion detection rules as OCL expressions constraining these diagrams. The 
approach is evaluated using real attacks on real systems, and appears to be 
promising. 

Keywords: Intrusion Detection, UML modeling, OCL constraints. 

1   Introduction 

An Intrusion Detection System (IDS) monitors network traffic in real-time, identifies 
undesirable utilization of computer resources, and reports on such utilization to 
network administrators. Most available (signatures-based) IDSs use packets and 
protocol headers, i.e., they rely on specific characteristics of packets and headers (i.e., 
their signatures) to define intrusion detection rules. This is currently the most efficient 
approach. However, these IDSs have the reputation of generating many false 
positives, i.e., false alarms. More recent IDSs, called stateful IDSs, additionally rely 
on the state of the communication sessions in order to reduce the number of false 
positives, i.e., an attack can only be successful during specific states of a session.  

We performed an experiment [13] during which we evaluated the response to well-
known attacks of two of the most advanced and widely used stateful IDSs to date, 
namely Snort 2.3.2 [7] and Bro 0.9a9 [16]. We used 92 vulnerability programs, 
implementing 57 vulnerabilities. Results show that Snort, in particular, has a high rate 
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of false positives (83%). This experiment confirmed our intuition that despite the 
adoption of stateful approaches, much remains to be done in the area of intrusion 
detection. Specifically, we identified that: (1) the false positives problem partly lies in 
the inability of current IDSs to fully exploit network context information in order to 
correctly interpret intrusion alarms. For instance, if a packet is recognized as being a 
threat to a Windows machine but is sent to a Unix machine (network context), a 
context-based IDS can be designed to be silent (if this is acceptable to the network 
administrator); and (2) IDSs mostly rely on one or two packets within one session to 
identify attacks, whereas detecting modern attacks requires monitoring series of 
packets in multiple sessions to distinguish between successful and failed attacks.  

The Passive Network Monitoring approach we describe in this paper attempts to 
address these issues. It can monitor complex communication patterns that involve 
multiple packets in multiple sessions, and analyze these patterns within the particular 
network context in which they occur. As a result, it is possible to correlate attacks and 
vulnerabilities of a particular system. By adopting the Model Driven Architecture 
(MDA) approach [8], whereby the level of abstraction is raised to the level of models 
and model transformations are automated, our approach models the monitored (packet 
and network) information in UML and defines detection rules in OCL. 

The rest of the article is structured as follows. Section 2 describes the related work 
on current IDS technologies. Section 3 describes our approach. Section 4 presents the 
results we obtained, and a comparative analysis with a well-known IDS, with real 
attacks and systems. Conclusions are drawn in Section 5. 

2   Related Work 

We performed a systematic review of approaches currently used in IDSs. The most 
common approaches we discovered, among the ten IDSs we studied, include 
Temporal Logic [17], Petri Nets [9], State Machines [24, 25], Expert Systems [1, 10], 
Event Calculus [14], Regular Expressions [19] and Ad hoc paradigms [3, 7, 16]. In 
this article, due to space constraints, we only report on the most salient conclusions of 
this study, referring to only two well-known, mostly used IDSs, namely Snort [7] and 
Bro [16], and refer the reader interested in more details to [2]. 

The two main technological drawbacks we identified are that: 

1. Network monitoring engines often restrict their analysis of network traffic to 
multiple packets from the same session. However, (modern) attacks involve 
several packets over several sessions, which call for an IDS with a multi-
packet, multi-session monitoring engine.  
Snort and Bro have originally been built to monitor multiple packets in one 
session. The plugin-based extension mechanisms of Snort (plugins are 
programmed in C) can be used to address this issue to some extent though. 
However, each time a new plugin is created (or modified), the whole Snort IDS 
must be rebuilt. Similarly, it is theoretically possible to detect a multi-session 
attack with Bro, using the Bro customization language (similar to C). However, 
in both cases, this functionality is not built-in and has to be programmed at a 
low-level using a non-declarative language such as C. This is one of the issues 
further discussed below (issue 4). 
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2. IDSs do not fully benefit from the information that can be gathered about the 
state (or context) of the network such as the configuration of a host, its 
operating system, its role on the network, its active services and known 
vulnerabilities. Context information includes static and dynamic data [12]. The 
former do not depend on a specific network infrastructure (e.g., a given 
operating system is vulnerable to a specific attack) and typically come from 
vulnerability databases. The latter are collected from monitored packets, e.g., a 
computer on the network has an open port.  
Though Snort has not been originally built to be context-aware, a recent 
approach has introduced limited network context awareness to Snort rules [26] 
(limited to server reactions), and Snort plugins (programmed in C) can be 
added and re-built to become more context-aware. For instance, sfPortScan 
is a preprocessor for Snort to detect scans on ports. Bro offers certain ability to 
capture and to represent network context (e.g. server reaction, product version). 
However, the extent of the network context that can be reached is not clear (see 
issue 3 below), and the context verification is limited to the same session as the 
attack. 

From a methodological standpoint, we additionally found that it was often difficult 
to precisely compare existing IDSs, and to identify the root causes of technological 
drawbacks for two main reasons: 

3. It is often impossible to precisely understand what packet and network 
information is monitored, and how this information is structured. What is often 
missing is a description of a formal packet model (specifying what information 
related to packets is used) and a formal network model (specifying what 
information on the network context is used). 
For instance, the packet data used by Snort and Bro is specified in English. 
Although most of this relates to the communication protocols being monitored 
(e.g., TCP), which is standardized information, natural language tends to be 
imprecise. Similarly, since both Snort and Bro have not been originally built to 
be network context-aware, the network context data they use is scattered in all 
the rules/scripts they provide.  

4. IDSs typically infer information as specified in the (often implicit) network 
model from data collected according to the (often implicit) packet model. 
Ideally, IDS rules should be defined in a declarative language that is 
independent of the monitoring engine. As a result, those two aspects of the IDS 
are able to evolve (and likely improve) independently. 
As already mentioned, Snort and Bro rely on an imperative programming 
language for the definition of advanced intrusion detection rules (e.g., C in the 
case of Snort). Although a flexible option (one can potentially do anything), 
this results in a strong coupling between the monitoring engine and the rule 
evaluation engine and this requires more effort to write rules. 

We acknowledge that these last two issues are not mandatory technical 
requirements for designing and reporting on an IDS. We however believe that it is 
important that researchers precisely specify the packet and network models they rely 
on, using an unambiguous specification language, to easily compare the IDS 
approaches and capabilities. 
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3   The PNMT Approach 

To help leverage IDS technology, we developed a Passive Network Monitoring 
approach and Tool (PNMT) that specifically addresses the four issues listed 
previously. The approach is illustrated in Figure 1. In the Monitoring & 
Reporting swimlane, the packet capturing engine (Sniffer), collects packet 
data that is used by the Dispatcher to populate a packet data model. The Rule 
Evaluation Engine evaluates compiled OCL rules against packet information 
to derive network information. Both the packet and network information are 
formally defined by a packet and network data model, respectively (issue 3). The 
Rule Evaluation Engine is able to monitor a series of packets and relate 
monitored packets to each other, thus capturing the network context and detecting 
multi-packet attack scenarios in possibly multiple sessions (issue 1). The 
Reporting Engine is then used by the network administrator to identify attack 
attempts. This requires that OCL rules be defined and processed, which is the 
purpose of the Rule Specification swimlane: OCL rules created by an 
engineer well versed into OCL and the two data models are automatically 
processed by the OCL Rule Compiler to generate pieces of code that can 
directly be used by the Monitoring Engine. To increase the accuracy of the 
context-based analysis of the OCL rules, additional network information data is 
derived from vulnerability databases (issue 2). We have shown [12] how this can 
be done by combining Snort rules [7] and Nessus scripts [22] (for the identification 
of vulnerabilities) with Bugtraq data [18] (a well-known database of identified 
systems’ vulnerabilities). Typically, by using the Bugtraq number reported in a 
Snort rule or in a Nessus script, we are able to know the systems that are 
vulnerable to an attack. 

To address issue 3, we specify a packet data model and a network data model 
under the form of UML class diagrams (Sections 3.1 and 3.2, respectively). This 
allows us to precisely specify the packet and network information used in our 
approach and PNMT tool. This also allows us to define logical rules relating to either 
intrusion detection or network context discovery with the OCL (Section 3.3). OCL 
provides PNMT with a declarative rule specification language that is independent of 
the monitoring engine (issue 4). Another advantage of using UML is that the class 
diagrams provide a solid starting point for the design of the tool supporting our 
approach (PNMT): This is shortly described in Section 3.4.  

Our choice of UML was obvious as it is now the de-facto standard for modeling 
domain concepts and for designing object-oriented software systems. Because 
OCL is a declarative constraint language which is already part of UML, our choice 
of OCL for the definition of intrusion detection rules was also immediate. Other 
technical aspects, further discussed in Section 3.4, also strengthened our decision 
to use OCL. As an alternative, extending Snort (or Bro) was not considered, since 
we wanted to use a higher level of abstraction than an imperative programming 
language. 
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Fig. 1. PNMT Activity Diagram 

3.1   Network Data Model 

Few methods have been proposed in the literature to model a computer network from 
a perspective useful to IDSs. The most important contributions are reported in [6, 15, 
23], where the model suggested in [15], referred to as M2D2, encompasses concepts 
from the other two. M2D2 models network topology, host configuration (including 
products and vulnerabilities) and packets. M2D2 seems the most appropriate for 
modeling networks from an intrusion detection perspective. 

To model the network, we extended the M2D2 model and made some adjustments. 
For example, we went from a functional specification to an object-oriented 
specification using the UML and OCL. Second, we made the model suitable for 
modeling missing network context information. For example, we changed the 
minimum multiplicity of some relations to 0, as opposed to 1 for M2D2. In particular, 
this modification was applied to the Interface - IPStack relationship because it 
is possible to have an Interface object without any associated IPStack object at 
some moment in time. Finally, we added/removed some data (i.e., class relationships, 
attributes) to/from the M2D2 model. For example, we added a state attribute to 
class Port and we added a relationship between Product and Port.  

Whenever, possible our models abstracted away from implementation details. For 
instance, we could have added an IPAddress class with four attributes of type 
Integer (representing the four number composing an IP address), associated with 
the class IPStack. However, we did not consider this level of details necessary for 
our model, and instead represented IP addresses as strings.  

Figure 2 shows our network data model, where the classes can be split into three 
categories. The network configuration classes represent the network components: 
Host, Interface, IPStack, Session, and Port. The host configuration 
classes represent how each network component is configured: Product and 
Vendor. The information security classes represent security information that 
needs to be modeled, in relation with the host network configuration and the  
host configuration classes: Alarm, Exploit, Vulnerability, and 
Reference. 

The Host class models each component communicating on the network. This 
class represents infrastructure equipment (routers, switches, workstations, servers). It 



66 F. Massicotte et al. 

is associated with class Interface: interfaces allow hosts to communicate on the 
network. Each interface corresponds to IPStack objects that model the 
configuration of the IP communication stacks. IPStack is associated with class 
Product: these are the products installed on the host that are using this IP stack. 
Attribute type of class Product can take any value of OperatingSystem, FTP, 
Telnet, … The IPStack class is also associated with class Port: Port and 
IPStack objects model open sessions on the network (class Session). A 
Session is between a source (sourcePort and sourceAddr) and a destination 
(destPort and destAddr). The Port class is also associated with class 
Product to capture information such as the fact that a port is associated with a 
specific product (e.g., a Microsoft IIS FTP server) running on a particular port of a 
particular host. Each Product object is also associated to a Vendor object that 
represents this product’s vendor, and may be associated to other Product(s). The 
recursive association on class Product models the fact that a given service (a 
Product instance) is only available on a specific operating system (another 
Product instance). The Alarm class represents the alarms generated by PNMT. 
The Alarm objects are associated to Exploit objects that represent known 
computer system exploits. Each Exploit object is associated to a particular 
Vulnerability object, which are known software vulnerabilities of Product 
running on computer systems. The Reference class links vulnerabilities to existing 
databases recording exploits and systems’ vulnerabilities. 

3.2   Packet Data Model 

An intrusion detection system analyses packet traffic. Hence, it is important to 
properly represent network packets. In [6, 15], packets are represented as tuples, 
where each element of the tuple corresponds to a protocol header. Although this is a 
very natural way to proceed, because of the encapsulated nature of headers in the OSI 
model [21], we have opted for a model based on compositions. This is similar to Snort 
[7], though based on a UML class diagram instead of plain language descriptions. Our  
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Fig. 2. Network data model
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packet data model is depicted in Figure 3. (Note that some attributes have been 
omitted and a complete description of the attributes can be found in [11].) A Packet 
instance describes a complete packet collected by the sniffer (Figure 1). Attribute 
number is a unique identifier of the packet instance and attribute timestamp 
indicates when the packet was collected. A unique number is necessary since, 
depending on the precision of the clock, two different packets may have the same 
timestamp. On the other hand, a timestamp attribute is required to measure 
delay among packets. Each packet is composed of any of the following headers, at 
most once: ARPHeader for the Address Resolution Protocol (ARP); ICMPHeader 
for the Internet Control Message Protocol (ICMP); TCPHeader for the Transmission 
Control Protocol (TCP); EthernetHeader for the Ethernet protocol; IPHeader 
for the Internet Protocol (IP); UDPHeader for the User Datagram Protocol (UDP); 
HTTPHeader for the Hypertext Transfer Protocol (HTTP). Note that other 
application protocols than HTTP can be implemented, but so far it is the only 
application protocol implemented in PNMT. 

3.3   Rule Specification 

In the case of context-based intrusion detection, we drew on the same idea as model 
transformation in the context of MDA [8] and used OCL to express how to translate 
packet header information into network context information such as alarms (i.e., 
intrusion detection), network configuration and host configuration information. 
Instead of resorting to OCL extensions that have not yet been standardized (e.g., [4, 
27]), we decided to add the notion of time to the packet model, thus attribute 
timestamp in class Packet (Figure 3). This way, as the Sniffer (Figure 1) 
collects packet data and forwards them to the Dispatcher, the Dispatcher 
creates a sequence of Packet instances, ordered according to their arrival time (i.e., 
timestamp). We can then define OCL rules that specify characteristics of Packet 
instances in a sequence of packets. 
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We describe below three representative examples of PNMT (OCL) rules. Note that 
the first rule cannot be expressed using the Snort rule specification language. Only a 
Snort plugin (a.k.a., flow plugin) can provide the same functionality. Also, it is not 
possible to write the other two rules using the Snort rule specification language 
because Snort does not have a network model capturing network context. In these 
cases, there is no plugin available. Additionally, a plugin would be difficult to build as 
it would have to gather network context which is not the default behavior of Snort. 
(This will be further illustrated in Section 4.) 

3.3.1   PNMT Rule to Gain Network Context Information 
The OCL rule in Figure 4 is used to gain more information on the monitored network, 
i.e., to increase contextual information. This rule infers that a given TCP port is open 
on a given computer. In order to come up with such a conclusion, the IDS must 
observe, within a specific period of time (2000 ms), two packets traveling in opposite 
directions, one being a SYN packet and the other being a SYN ACK packet. The rule 
specifies that if such a condition is satisfied (left-hand part of the implies operator) 
for any two observed packets p1 and p2 (Packet.allInstances-
>forAll(…)), p2 being the SYN ACK response, then the source of p2 has an open 
port (right-hand side of the implies operator). The OCL expression is simplified 
thanks to four operations defined using def expressions in the context of Packet 
(Figure 5), but not shown in Figure 4. These expressions define variables and 
operations that can be used in other OCL expressions in the context of Packet. This 
illustrates that a PNMT user can define other utility operations that can be used in the 
PNMT rules. A tool supporting the PNMT approach would therefore not need to be 
re-built (e.g., recompiled) if new rules (or supporting functions) are needed.  

Similar context gathering rules to identify open sessions, operating systems and 
products running on hosts’ ports can be found in [11]. 

Context Packet 
inv: Packet.allInstances->forAll(p1, p2 | ( p1.syn  and  p2.synAck    
    and  p1.oppositeTCPFlow(p2) and  p2.occuredWithin(2000,p1))  
  implies IPStack.allInstances->exists(i | i.ipAddr = p2.ip.sourceAddr   
    and i.ports->exists(po:Port | po.state = PortState::Open  
      and  po.type = PortType::TCP and  po.number = p2.tcp.sourcePort))) 

Fig. 4. OCL expression modeling an Open Port 

Context Packet 
def: syn: Boolean = self.tcp.syn = true and  self.tcp.ack = false  
def: synAck: Boolean  = self.tcp.syn = true and  self.tcp.ack = true 
def: oppositeIPFlow(p:Packet):Boolean = self.ip.sourceAddr = 

p.ip.destAddr  and  self.ip.destAddr = p.ip.sourceAddr 
def: oppositeTCPFlow(p:Packet):Boolean = self.oppositeIPFlow(p)  
       and  self.tcp.sourcePort = p.tcp.destPort 
       and  self.tcp.destPort = p.tcp.sourcePort 
def: occuredWithin(t:Integer,p:Packet):Boolean =   
       self.timeStamp > p.timeStamp   
       and ((self.timeStamp – p.timeStamp) < t) 

Fig. 5. Utility Operations of class Packet 
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3.3.2   Microsoft IIS Server 5.0 Printer ISAPI Extension Buffer Overflow 
The Microsoft IIS Web Server 5.0 is vulnerable to the “.printer ISAPI 
Exten-sion Buffer Overflow”. An unchecked buffer in a dll file could allow 
attackers to execute arbitrary code. This vulnerability corresponds to Bugtraq number 
2674 [18], and only affects version 5.0 of the server. A successful attack consists in 
sending an HTTP “.printer” request containing approximately 420 bytes in the 
“Host:” field. 

Figure 6 shows the PNMT OCL intrusion detection rule for this vulnerability. It is 
simple thanks to other utility operations, specified in Figure 7: sessionOpen() 
returns true if the packet passed as a parameter is part of an open session (i.e., the 
parameter is a TCP packet and the source/destination of the packet corresponds to a 
session in the model); hasDaemonOnPort() returns true if a specific port, on a 
specific computer (to which the Packet passed as a parameter is sent) is running a 
specific daemon; exists() is used to describe the kind of alarm that is sent by the 
PNMT rule. The rule in Figure 6 specifies that if PNMT finds a packet p that (i) 
contains an HTTP header with string “.printer” in its url field, (ii) has a TCP 
destination port of 80, (iii) is part of an open session, and (iv) there is a computer in 

Context Packet 
inv: Packet.allInstances->forAll(p:Packet |  
   (  p.http.url.contains(".printer") and  p.tcp.destPort = 80  
      and sessionOpen(p)   
      and  IPStack.hasDaemonOnPort(p, PortType::TCP, "IIS", 5.0))  
   implies  
      Alarm.allInstances->exists(p, "WEB-IIS ISAPI .printer access")) 

Fig. 6. PNMT rule for vulnerability 2674 (Bugtraq reference)

Context Packet 
def: sessionOpen(p:Packet):Boolean = 
Session.allInstances->exists(s | s.sourcePort.number = p.tcp.sourcePort  
  and s.sourcePort.type = PortType::TCP   
  and s.destPort.type = PortType::TCP 
  and s.destPort.number = p.tcp.destPort  
  and s.sourceAddr.ipAddr = p.ip.sourceAddr 
  and s.destAddr.ipAddr = p.ip.destAddr) 
Context IPStack 
def: hasDaemonOnPort(p:Packet, t:PortType, n:String, v:String):Boolean = 
IPStack.allInstances->exists(i | i.ipAddr = p.ip.destAddr    
    and i.port->exists(po:Port| po.number = p.tcp.destPort  
              and po.type = t and po.daemon.prodName = n  
              and po.daemon.version = v)  ) 
Context Alarm 
def: exists(p:Packet, descr:String):Boolean = 
Alarm.allInstances->exists(a | a.exploit.description = descr 
  and a.concerns->exists(s | s.sourceAddr.ipAddr = p.ip.sourceAddr   
    and s.time = p.timeStamp  and s.destAddr.ipAddr = p.ip.destAddr 
    and s.destPort.type = PortType::TCP   
    and s.sourcePort.type = PortType::TCP 
    and s.sourcePort.number = p.tcp.sourcePort  
    and s.destPort.number = p.tcp.destPort  ) ) 

Fig. 7. Utility Operations of class Packet (cont.) 
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the network to which p is sent (IP address and port identical to p’s data) and that runs 
a daemon for a product called "IIS" with version equal to "5.0", then there must be an 
Alarm instance in the network model that is characterized by information from 
packet p with its message value equal to “WEB-IIS ISAPI .printer 
access”. 

Our PNMT rules, like the one in Figure 6, detect when attacks are made against 
vulnerable systems. It could be debated that a network administrator could also be 
very interested in knowing that an intruder made an attempt against a non-vulnerable 
system. Distinguishing such attempts is possible with PNMT (see the discussion at the 
beginning of Section 3.3) by creating an OCL rule that is a slight variation of the one 
in Figure 6: the left part of the implies would check for versions different from 
version 5.0, and the right part would raise different kind of alarms (e.g., different 
severity of alarms) depending on the identified versions. 

3.3.3   Wu-ftpd File Globbing Heap Corruption 
A well-known vulnerability against the WU-FTP server is the Wu-ftpd File Glob-bing 
Heap Corruption vulnerability, which allows attackers to execute arbitrary code on a 
server remotely. This vulnerability corresponds to Bugtraq number 3581 [18].  

Figure 8 shows the PNMT rule for this vulnerability. It specifies that if PNMT 
finds a packet p with a data field that matches regular expression “~.[”, that is part 
of an open session, and if p’s target (destination IP address and port) is running a 
daemon with a product name equal to "WU-FTP" and a version number equal to 2.5.0, 
2.6.0 or 2.6.1, then the network model must contain a corresponding Alarm instance. 
Note that the rule uses a String operation called match() to match a string with a 
regular expression. 

Context Packet 
inv:Packet.allInstances->forAll(p | p.data.match(”~.*[”)   
    and p.tcp.destinationPort = 21 and  sessionOpen(p)  
    and  (IPStack.hasDaemonOnPort(p, PortType::TCP, "WU-FTP", "2.5.0")  
       or  IPStack.hasDaemonOnPort(p, PortType::TCP, "WU-FTP", "2.6.0")  
       or  IPStack.hasDaemonOnPort(p, PortType::TCP, "WU-FTP", "2.6.1")) 
  implies Alarm.allInstances->exists(p, "FTP wu-ftp bad file completion 
attempt [")) 

Fig. 8. PNMT rule for vulnerability 3581 (Bugtraq reference) 

3.4   Tool Design 

In order to quickly develop a prototype version of PNMT for the experiment we 
present in Section 4, we decided to implement the OCL rules by hand instead of 
building a complete OCL rule compiler (Figure 1). However, we developed a 
framework to help specify the OCL rules. This framework is not described here due to 
space constraints and the interested reader is referred to [11]. We are considering, as 
an alternative to building an OCL rule compiler, the use of recent technology 
developed by IBM in the framework of the Eclipse platform. An EMF model of our 
packet and network models could be queried using the EMF Query Framework [5] 
which supports OCL queries. 
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We have created a prototype version of PNMT in Java (52 classes and 9 KLOC) 
for the Windows platform [11]. The sniffer uses the Windows version of the libpcap 
library included in tcpdump, thus capturing all the packets it sees on the network. 

4   Case Study 

In this section, we report on an experiment we performed to assess our approach and 
tool (PNMT). This experiment has two objectives: (1) Evaluate whether the (packet 
and network) models are sufficient to handle a variety of situations, i.e., to evaluate 
the completeness and correctness of our approach; (2) Quantitatively and qualitatively 
evaluate the reduction of false positives by comparing PNMT with a well-known and 
widely used IDS, namely Snort (version 2.3.2) [7]. Section 4.1 describes the setting of 
the experiment and Section 4.2 discusses the results.  

4.1   Case Study Setting 

To test Snort and PNMT we developed a data set of attack scenarios. To make this 
data set similar to attacks perpetrated on the Internet, trying to be as general as 
possible, we carefully picked different Vulnerability Exploitation Programs (VEP) 
that exploit vulnerabilities in the most popular key services (HTTP, FTP, SMTP) that 
are running on the most common operating systems (e.g., Linux, Windows, 
FreeBSD). We also used VEPs that affect services directly related to the operating 
systems. We therefore selected the following vulnerabilities, all referred to by their 
Bugtraq number (BID) [18]: BID 2674 is an HTTP vulnerability against the IIS web 
server running on Windows; BID 3581 (resp. BID 4482) is an FTP vulnerability 
against wu-ftpd (resp. IIS FTP server) which runs on Linux (resp. Windows); BID 
6991 is an SMTP vulnerability against sendmail that can run on Linux or FreeBSD; 
BID 8205 (resp. BID 4006) is a vulnerability of RPC (resp. MSDTC) on Windows 
operating systems. The complete descriptions of these vulnerabilities, as well as the 
corresponding VEPs, can be found on the SecurityFocus web site [18]. 

To generate this data set, we used the following testing strategy: we launched every 
VEP against vulnerable and non-vulnerable services and operating systems and we 
recorded each attack scenario and documented them. The resulting data set is 
therefore composed of traffic traces that each contain an attack scenario. Each traffic 
trace is then analyzed by each IDS as a test case to verify first whether it is able to 
detect the attack scenarios and second whether it is able to distinguish between an 
attack to a vulnerable target or not (to reduce false positives).  

Table 1 summarizes the case study setting. The first column identifies the 
vulnerabilities we used, referred to by their Bugtraq number. The following two 
columns report the number of VEPs used for each vulnerability and the number of 
(non-)vulnerable systems against which these VEPs were executed. (The rest of the 
table is discussed in the next section.) For instance, we used 6 different VEPs for 
vulnerability BID 2674, and those 6 different attack programs were used to attack 9 
vulnerable systems (9 Windows systems) and 26 non-vulnerable systems (6 Windows 
systems and 20 Linux systems), thus resulting in 210 traffic traces (54 traces for 
vulnerable targets and 156 traces for non-vulnerable targets) to be analyzed by both 
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Snort and PNMT. We only report on a representative subset of our results in this 
paper as we possess a larger number of traffic traces: in [13], we used 92 VEPs 
implementing 57 vulnerabilities. To build such a large set, we developed a controlled 
network infrastructure [13] that allows network traffic recording, prevention of 
information leakage and noise (to obtain clean traffic traces), control of attack 
propagation (i.e., attack confinement), usage of real and heterogeneous system 
configurations and fast attack recovery to initial conditions.  

The number of VEPs in Table 1 varies from one BID to another for two main 
reasons. First, there are not always many VEPs for a given vulnerability on the 
SecurityFocus web site. Second, we only selected VEPs that actually attack the target 
systems. In other words, we discarded VEPs that are smart enough to recognize that 
the target system would not be vulnerable to their attack and therefore do not perform 
any attack. The number of (non-)vulnerable systems also varies from one BID to 
another. One main reason is that some vulnerabilities require a specific service and a 
specific operating system version (one possible vulnerable combination) whereas 
others require a specific service but can work on several operating system versions 
(several possible vulnerable combinations). 

Table 1. Case study setting and results 

Number of Alarms raised  
Vuln. / not Vuln. 

Successful / non Successful 
attacks BID 

VEPs
Vulnerable / 

not Vulnerable Snort PNMT Snort PNMT 
2674 6 9 / 26 54 / 156 54 / 0 16 / 194 16 / 38 
3581 1 6 / 69 6 / 69 6 / 0 6 / 69 6 / 0 
4482 2 10 / 68 20 / 136 20 / 0 8 / 148 8 / 12 
4006 1 3 / 1 3 / 1 3 / 0 0 / 4 0 / 3 
6991 2 1 / 1 2 / 2 2 / 0 2 / 2 2 / 0 
8205 5 14 / 3 378 / 52  1 378 / 0 87 / 343 87 / 291 

The main observation we can draw from this initial (rule modeling) step is that we 
were able to use the packet and network models to define intrusion detection rules for 
this initial set of representative (services, systems, operating systems) vulnerabilities. 
(The rules for the two first vulnerabilities in Table 1 have been discussed in Sections 
3.3.2 and 3.3.3, respectively.) This suggests that our packet and network models are 
complete and correct based on the case study. 

4.2   Results 

The fourth and fifth columns of Table 1 show the number of alarms raised by Snort 
and PNMT on the attack scenarios for vulnerable and non-vulnerable targets. For 
example, in the case of BID 2674, Snort raised an alarm for all the 54 (6*9) attacks on 
vulnerable targets, as well as for all the 156 (6*26) attacks on non-vulnerable targets 
(156 false positives). On the other hand, for the same vulnerability, PNMT only raised 

                                                                 
1 As opposed to the other VEPs that have only one configuration, the five VEPs for BID 8205 

have various configurations, specifically 5, 11, 7, 2, and 2 configurations for the five VEPs, 
respectively. This results in (5+11+7+2+2)*14=378 attack traces for vulnerable targets. 
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an alarm for the 54 attacks on vulnerable targets (0 false positive). This observation 
applies for the six selected vulnerabilities (except for BID 8205 that we discuss 
below), and is representative of other vulnerabilities we have tried: Snort raised an 
alarm, regardless of the vulnerability of the target, but PNMT is able to distinguish 
attacks that will not succeed because sent on non-vulnerable targets. This confirms 
that using (more) network context allows an IDS to reduce the number of false 
positives. 

There is one exception to the trend we just discussed: vulnerability 8205. In this 
case, the reaction of some non-vulnerable targets differs from the one of vulnerable 
targets. At the same time, the Snort rule for BID 8205 only triggers an alarm if the 
attack is detected and the target system has a specific reaction. However, the reaction 
part of the rule is not accurate enough to detect all possible reactions that correspond 
to a failed attack. In other words, Snort uses some network context, but this is not 
enough to reduce the number of false positives to the level of PNMT. 

Snort was able to take some of the systems reaction into context for BID 8205 and 
it generated 52 false positives (out of 81 attack scenarios against non-vulnerable 
targets) against the 3 non-vulnerable systems. However, PNMT performed better than 
Snort in this situation. 

The last two columns of Table 1 report on additional qualitative analysis we 
performed on the attacks. Specifically, we looked at whether the attacks we used were 
successful or not on the vulnerable targets. For instance (Table 1), for BID 2674, only 
16 of the 54 attacks on vulnerable targets succeeded. Therefore, Snort really produces 
194 false positives (156 non-vulnerable targets, and 54-16=38 vulnerable targets), and 
PNMT really produces 38 false positives. An example of unsuccessful attack is the 
following: some VEPs execute shell code by exploiting a vulnerability, but the shell 
code is sometimes operating system dependent, thus a shell code for FreeBSD used 
against a vulnerable Linux operating systems will not succeed. This experimentally 
confirms that future work will have to improve IDSs by incorporating even more 
network context (e.g., by looking at the target reaction to the attack scenario) [20, 26]. 

5   Conclusion 

Intrusion Detection Systems (IDSs) are known to generate large numbers of false 
positives, i.e., to raise alarms from monitored packets that are not actual attacks or 
attacks that have no chance of being successful. Though different techniques have 
been investigated to reduce the number of false positives, one promising solution is to 
have a so-called stateful approach: to account for some communication session 
context in the intrusion detection rules. In existing solutions, this context information 
is limited and does not entail for instance the characteristics of the system under 
attack (e.g., the actual operating system and its known vulnerabilities). 

In this paper, we present a proof of concept IDS called Passive Network 
Monitoring Tool (PNMT) that is able to passively acquire network context 
information, allowing the inclusion of such context in network intrusion detection 
rules. Our approach is model-driven and based on the UML/OCL standard in order to 
achieve two additional objectives. First, the packet and network information on which 
the detection rules rely is precisely and formally modeled, thus facilitating any future 
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comparisons with other IDSs and providing a good starting point for the design of 
other, similar IDSs. The UML class diagrams are a starting point to derive an object-
oriented IDS design. Second, using UML and OCL, the specification of the intrusion 
detection rules are independent from any specific monitoring engine, so that those two 
aspects of an IDS can evolve independently. The Object Constraint Language (OCL) 
is a natural choice to express constraints on class diagrams, and thus on our data 
models for packets and network context. We developed a set of network context 
gathering rules and intrusion detection rules in OCL that are shown, on a case study, 
to reduce the number of false positives when compared to Snort, a well-known and 
widely used IDS. 

Considerable improvements can be made in the future by investigating two main 
avenues of research. First, we should improve the automation for creating checkable 
OCL intrusion detection rules (and study the performance) and, as discussed, some 
open source technologies are promising to that end. Second, during our 
experimentation with PNMT and Snort, while using attack programs, we discovered 
that even more context is needed, for instance, to infer that an attack has succeeded or 
not. For instance we have discovered that some attacks conducted on vulnerable 
systems do not necessarily succeed although the traffic trace contains all the elements 
for Snort and PNMT to raise an alarm. This calls for an improved approach where 
even more network context data is collected and used (e.g., the fact that a machine is 
no longer responding because of a denial of service attack indicates a successful 
attack). Last, we recognize that a comprehensive list of Bugtraq vulnerabilities used 
to test PNMT and Snort may not be sufficient to validate that PNMT produces a small 
rate of false positive. Based on the results presented in this article, we are considering 
to evaluate PNMT on a larger, more complete set of vulnerability exploit programs, 
and target systems. Finally, an alternative to OCL for specifying detection rules could 
be to embed the security expert’s knowledge into a domain specific language. 
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Abstract. The Object Constraint Language (OCL) is a OMG standard that 
plays an important role in the elaboration of precise models. However, it is not 
hard to find models and metamodels containing overly complex OCL 
expressions. Refactoring is a technique that can be used in this context since its 
goal is to reduce complexity by incrementally improving the internal software 
quality. Indeed several refactorings have already been proposed to improve the 
quality of OCL expressions. This paper presents the results of an empirical 
study that investigates the impact of poor OCL constructs, also known as OCL 
Smells, and OCL refactorings on the understandability of OCL expressions. 
Current results show that most refactorings significantly improve the 
understandability of OCL specifications. 

1   Introduction 

The Model Driven Architecture (MDA) is gradually becoming an important element 
of software development. MDA is a framework for model-based software 
development sponsored by the Object Management Group (OMG) [1]. In MDA, 
platform independent models, platform dependent models and automatic model 
transformations have a key importance in the software development process. The 
Object Constraint Language (OCL) [2] plays an important role in this context, 
because it allows the elaboration of precise, consistent and computer-processable 
models. Besides, OCL can be used in the context of model transformation languages, 
as is the case of OMG QVT (Query, Views and Transformations) standard [3]. 

Although OCL was designed to be both formal and simple when compared to 
formal specification languages such as Z [4] and VDM-SL [5], specifications written 
in OCL may be difficult to understand and evolve, particularly when they contain 
overly complex or duplicate OCL expressions. OCL smell was defined in [6] as a hint 
that some parts of a specification written in OCL, or even of its underlying model, 
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contain constructs that might generate a negative impact on its understandability and 
extensibility. In [7], we presented a catalogue of OCL smells often found in OCL 
specifications, including the UML 2.0 specifications [8, 9] and several conference 
papers.  

Refactoring is considered an essential technique for handling software evolution 
[10]. It is defined as changes made to the internal structure of a software, without 
modifying its observable semantics, aiming at improving quality factors such as 
understandability, modularity and extensibility of a software model or implementation 
[11]. In [7], we presented a catalogue of refactorings which can be applied to remove 
OCL smells from a specification. Automated support for OCL refactorings have 
recently appeared in research tools such as RocIET [12] and Odyssey-PSW [7]. 
Experienced programmers easily acknowledge and realize the effectiveness of code 
refactorings. Although there is anecdotal evidence on their usefulness, few 
quantitative evaluations of software refactorings have been done so far [13].  

This paper reports on a controlled experimental study that was performed with the 
purpose of evaluating whether the understandability of constraints written in OCL can 
be affected by the structure of their expressions. In particular, our goal was to verify 
whether the presence of OCL smells impacts the understandability of OCL 
expressions when compared to refactored versions of the same expressions. We chose 
to perform a controlled study in order to control for extraneous factors which could 
have affected the results. 

The rest of this paper is structured as follows: section 2 briefly presents the OCL 
smells involved in the study. Section 3 describes some OCL refactorings that can be 
used to remove those OCL smells. Section 4 describes the objectives, design and the 
instrumentation of the study. Section 5 reports on the results obtained from the study 
and the threats to their validity. In section 6, we draw some conclusions in terms of 
practical significance and future work. 

2   OCL Smells 

This section briefly presents the OCL smells involved in the empirical study reported 
in this paper. The main session of the study was designed to take no longer than 90 
minutes, not only due to the limited availability of subjects, but also because longer 
sessions might introduce undesirable effects caused by factors such as fatigue, for 
example. Therefore, although there are twelve OCL smells catalogued in [7], we 
limited our study to the following five OCL smells, which correspond to the ones that 
we have found most often in OCL specifications. 

      a)   Implies Chain 
Implies chain corresponds to OCL expressions of the form b1 implies (b2 
implies bn), where b1, b2 and bn are boolean expressions. 

      b)   Verbose Expression 
This OCL smell corresponds to expressions that are larger than necessary.   
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Two usual forms of this smell are:  

• Expressions containing more operation calls than needed. Ex: X-> 
select(x | P(x))->size() > 0   vs.  X->exists(x | P(x)).   

• Invariants defined in the wrong context class: since an invariant can be 
described in many ways depending on its context class, attaching an 
invariant to the wrong context usually makes it harder to specify and 
maintain [2].   

 

c)  Forall Chain 
ForAll chain is a special case of the Verbose Expression smell corresponding 
to expressions containing a chain of forAll operation calls. This chain can be 
replaced by a single forAll applied to a navigation expression:  

  Ex: A ->forAll(a1 | a1.B->forAll(b1 | b1.C->forAll(c1 | P(c1))))  
 

 d)  Downcasting 
Downcasting is a well-known smell in the object oriented programming 
community. In OCL, it corresponds to the use of expressions of the form 
x.oclAsType(Y).z, usually preceded by an expression of the form 
x.oclIsKindOf(Y).  

 
 e)   Type Related Conditionals 

This smell occurs in expressions of the form if x.oclIsKindOf(A) then 
<exp1> else if x.oclIsKindOf(B) then <exp2> else … endif, i.e., the result of 
the expression depends on the type of a given object x which is obtained 
through calls to oclIsKindOf or oclIsTypeOf operations. 

3   OCL Refactorings 

A number of refactorings can be applied to OCL expressions and their underlying 
model in order to remove OCL smells such as the ones described in the previous 
section. These refactorings can be classified into three categories:  

 

a) OCL-exclusive refactorings refer to changes that only affect OCL expressions, 
i.e., the underlying model remains the same and no new OCL helper attributes 
or operations are defined. Examples of this kind of refactoring are:  

 

• Replace Implies Chain by a Single Implication: transform an Implies Chain 
- A implies (B implies C)) - into an expression of the form (A and B) 
implies C. 

 

• Replace ForAll Chain by Navigations: transform a ForAll Chain                      
 A->forAll (a1 | a1.B->forAll (b1 | b1.C->forAll (c1 | P(c1)))) into a 

navigation expression of the form A.B.C->forAll(c1 | P(c1)). 
 

• Simplify Operation Calls: Rewrites an expression using less operation calls. 
Ex: X->select(x | P(x))->size() > 0 and its refactored version: X-> exists(x | 
P(x)).   
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• Change Context: This refactoring is usually motivated by the presence of 
the Verbose Expression smell, and corresponds to writing an invariant in a 
shorter form by using a different context class. 

 

b) OCL definition constraint refactorings correspond to changes related to OCL 
definition constraints, i.e., addition, renaming, removal or use of OCL helper 
attributes or operations. Examples of this kind of refactoring are:  

 

• Add Operation Definition and Replace Expression by Operation Call: The 
main motivation for these two refactorings is to promote encapsulation and 
reuse across a specification. By using operation definitions, one can hide 
complex expressions from other parts of a specification and avoid the 
duplication of expressions that are used in many parts of a specification. 

 

• Add Property Definition and Replace Expression by Property Call 
Expression are analogous to the refactorings based on operation definitions 
previously described. Instead of creating and using OCL helper operations, 
they create and use OCL helper properties. 

 
c) Underlying model refactorings are the ones that demand changes in the 

underlying model. Addition, removal or renaming of classes, attributes, 
associations or operations are examples of model refactorings. Another 
specific example of this type of refactoring is: 

 

• Introduce Polymorphism: this refactoring replaces complex if-then-else-
endif expressions that makes considerable use of operations such as 
oclIsKindOf, oclIsTypeOf, oclAsType, by a combination of generic and 
specific operations defined in a hierarchy of classes. 

4   Study Design 

This section describes the design of the experimental study. Section 4.1 defines the 
study and describes its context and material. Section 4.2 formulates the hypothesis. 
The study design and instrumentation are detailed in section 4.3.  

4.1   Definition  

The purpose of the study was to evaluate whether the understandability of constraints 
written in OCL can be affected by the structure of their expressions. In particular, our 
goal was to verify whether the presence of OCL smells impacts the understandability 
of OCL expressions when compared to their refactored versions. 

The study consists of reading and interpretating OCL constraints associated to 
elements defined in the same UML model. Those activities were not performed in the 
context of a real industry project. All instruments were specially prepared in 
laboratory.  

Each subject answered ten questions. Each question presents an OCL invariant and 
a small object diagram corresponding to a snapshot of objects of a given UML model. 
Subjects should answer whether the given snapshot violates the invariant, and justify 
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their answers. They were divided in two groups (GI and GII) and each group 
answered a different set of questions (Set I and Set II, respectively). Both sets contain 
five questions of two types: S-Type questions are interpretation of constraints 
containing OCL smells; R-Type questions are interpretation of constraints 
corresponding to refactored versions of the constraints present in the S-type questions 
answered by the other group. 

The subjects were 23 graduated software developers who have attended to a 40-
hour course in UML/OCL offered by Federal University of Rio de Janeiro. An 
invitation was sent by e-mail to everyone who has attended to this course in the last 3 
years. We invited about 100 attendees, from which 23 volunteered to participate in the 
study. 

Most subjects have experience on using UML in real projects, but their previous 
experience with OCL was limited to simple examples and small case studies. Subjects 
were told they would not be rewarded on performance, but that they were expected to 
perform theirs tasks in a professional manner. They were asked to answer the 
questions as quickly as possible, without sacrificing the quality of their answers. The 
subjects were aware that we were attempting to evaluate some issues related to OCL, 
but they were not aware of the exact hypotheses we were testing or what results we 
were hoping to obtain. Their knowledge of OCL was restricted to basic OCL syntax 
and semantics, i.e., they were not aware of concepts such as OCL smells and OCL 
refactorings. 

4.2   Hypothesis 

The type of each question answered by the subjects is the independent variable of this 
study. There are two possible values for this variable: S (S-Type questions) and R (R-
type questions).  

We investigated the impact of the independent variable on the following dependent 
variables: 

• Question Score (QS): the score of a subject in a specific question. Each 
question has a two-part answer, and QS is computed as follows: one point for 
the yes/no part of the answer regarding a possible violation of the constraint in 
a given snapshot of objects, and one point for the explanation part. Two 
additional scores are computed for each subject: SS (Smell Score) = sum of 
QS in questions of type S; and RS (Refactored Score) = sum of QS in 
questions of type R. 
Therefore, 0 <= QS <= 2; 0 <= SS <= 10; 0 <= RS <= 10. 

• Question Time to Answer (QT): time in seconds spent by a subject to give the 
two-part answer to a question. Two other variables are computed for each 
subject: ST (smell time) = sum of QT in questions of type S; and RT 
(refactored time) = sum of QT in questions of type R. 

 
The Null Hypothesis (H0) is formulated as follows: “The understandability of OCL 

constraints is not influenced by the structure of their expressions, i.e., there is no 
difference in accuracy and time to answer interpretation questions on constraints 
containing OCL smells, when compared to their refactored versions”. Therefore, HO: 
μSS = μRS and μST = μRT. 
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The alternative hypothesis (H1) is that OCL smells affect accuracy or time to 
answer those interpretation questions. To be more precise, H1 should be one-tailed: we 
expect OCL smells to have one or both of the following effects: decreased accuracy 
or increased time to answer. Therefore, H1: μSS < μRS or μST > μRT. 

4.3   Study Design and Instrumentation 

This study involves only one factor of interest: whether or not the expressions used in 
OCL invariants contain OCL smells. In order to increase the number of observations 
given the number of participants, all subjects were submitted to both treatments, i.e., 
they analyzed OCL constraints containing OCL smells (S-type questions) and 
refactored constraints (R-type questions). The study was organized in the following 
activities: 

 

a) Enrollment  
A pre-session survey questionnaire was distributed to obtain information about the 
background of the participants, e.g., their academic background, their UML and 
OCL experience and their industrial experience in software development and 
modeling. 

 

b) Self-Study  
After answering the survey, the participants received a self-study tutorial on OCL, 
authored by us, which describes the main concepts of OCL and all operations 
defined in the OCL standard library. The description of each concept and 
operation was accompanied with examples and self assessment exercises. Subjects 
were given two weeks to study this tutorial. The goal of this tutorial was to give 
the participants enough knowledge to answer the questions presented in the main 
session of the study.  
 

c) Initial Assessment  
After studying the OCL tutorial, the knowledge in OCL of each subject was 
assessed by a test containing a UML model, a set of objects of the classes defined 
in that model, and a set of OCL expressions whose values should be manually 
evaluated by the subjects. Although there might be more robust forms to assess the 
knowledge of each participant in OCL, we judged this assessment as the most 
adequate given the constraints on the time available of each participant.  

Given the results of this assessment, subjects were grouped in two blocks: High 
(grades above the median) and Low (grades below the median). Each group (GI 
and GII) was then randomly assigned subjects from both blocks (High and Low) 
in nearly identical proportions. GI was assigned with 6 subjects from High and 5 
subjects from Low; GII was composed of 5 subjects from High and 6 subjects 
from Low. One subject was allocated to test the instrumentation, and therefore did 
not take part in the main session of the study. The goal of this test was to avoid a 
possible bias on the assignment of subjects in the two groups regarding their 
knowledge of OCL.  

d) Instructions and Warm-Up 
Each participant received detailed written instructions about the main session of 
the study. Before the start of the main session, they answered a warm-up question 
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in order to make them familiar with the format of the questions to be answered in 
the main session. This warm-up question also helped the participants on 
understanding and practicing the procedure that they were expected to follow 
during the session.  
 
e) Main session 
In this session, each participant answered the set of ten questions assigned to his 
group (SI or SII). In order to avoid biasing the results due to the presentation order 
of the questions, each subject had to fully answer one question to proceed to the 
next one. If the current question were of type S, the next must be of type R and 
vice versa. The type of the first question was selected randomly for each subject. 
This strategy allowed us to collect the time spent by the subjects on each question. 
They were not allowed to change the answer of any previous question. 

We used an adaptation from the Royal & Loyal case study [2] as the underlying 
model for the sets of questions answered by the participants during the main 
session of the study. The adapted model contains 12 classes, 13 associations and 2 
generalizations. Each subject was given 10 minutes to study the model before 
starting to answer the set of ten questions. The participants were expected to take 
60 minutes to answer all ten questions, but there was no time limit to answer each 
of the questions.  

R-type questions of one set (Set I, for example) use the same object diagrams 
present in S-type questions of the other set (Set II). The constraints of R-type 
questions of one set are equivalent to the constraints of S-type questions in the 
other set. The main difference is that the constraints of R-type questions are 
refactored versions of the expressions present in S-type questions of the other set. 
Figure 1 shows an example of the invariant used in a S-type question containing 
the Verbose Expression smell and its corresponding R-type question of the other 
set which contains a refactored version of the same expression. 

The two sets of questions tried to expose all subjects to expressions containing 
the same number of OCL smells at the same difficulty level. Therefore, if the set 
SI has a question Sm with an expression that has an OCL smell X, the set SII must 
have a question Sn containing that same OCL smell. Questions Sm and Sn have 
different OCL expressions but they are at a similar level of difficulty. 

Question S7 
context Client 
inv: self.cards.transactions 

->select(x | x.oclIsKindOf(EarnTransaction)) 
->forAll(t | t.value > 10.0) 

Question R7 
context EarnTransaction 
def: minValue : Real = 10.0 
inv: self.value > minValue 

 

Fig. 1. Example of OCL invariants present in R-type and S-type questions 
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Table 1 presents a summary of the structure of each set of questions and the 
OCL smells present in each S-type question. The relation between questions 
containing the same OCL smells is given by the following pairs: (S1-S10); (S2-
S5); (S3-S4); (S6-S9) and (S7-S8). 

Table 1. Composition of each set of questions 

Set SI Set SII 
Question OCL Smells Question OCL Smells 

S1 Implies Chain R1 Refactored version of S1 
R2 Refactored version of S2 S2 Forall Chain 
S3 Downcasting R3 Refactored version of S3 
R4 Refactored version of S4 S4 Downcasting 
S5 Forall Chain R5 Refactored version of S5 
R6 Refactored version of S6 S6 Type Rel. Contitionals 
S7 Verbose Expression  

(Wrong Context) 
R7 Refactored version of S7 

R8  Refactored version of S8 S8 Verbose Expression 
(Wrong Context) 

S9 Type Rel. Conditionals R9 Refactored version of S9 
R10 Refactored version of S10 S10 Implies Chain 

 
f) Subjective Evaluation 
After answering the set of questions, the participants were asked to classify each 
question according to two aspects: the difficulty level and the perceived quality of 
the OCL expressions.  

For the evaluation of the difficulty level of each question, we used a Likert scale 
from 1 to 5 (1-very easy, 2-easy, 3-medium, 4-difficult, 5-very difficult). The 
quality of the OCL expressions present in each question was evaluated according 
to a 1-3 scale: 1- constraint is badly written; 2- not sure whether the constraint is 
well or badly written; 3- constraint is well written. The participants were also 
asked to describe possible improvements that could be applied to the OCL 
expressions present in each question. Those subjective evaluations were collected 
in order to verify a possible influence of the instruments on the result, and also to 
supplement the analysis of the objective results obtained from the sets of questions 
SI and SII. 

5   Results 

This section reports the results of the study. Section 5.1 describes the analysis of the 
instruments. The analysis of the scores and time to answer the questions are discussed 
in sections 5.2 and 5.3 respectively. Section 5.4 presents the results of the subjective 
evaluation of the questions and section 5.5 discusses threats to the validity of the 
study. 
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5.1   Instruments 

The first analysis that we conducted was related to the instruments used in the main 
session. Our goal was to evaluate whether the two sets of questions had a significant 
influence on the results, since they were designed to give a similar experience to all 
subjects. In this evaluation, we applied the ANOVA test, with a significant threshold 
(α-level) of 0.05, comparing the following data: mean score of each set of questions; 
mean score of questions of the same type in each set of questions; mean time spent on 
each set of questions; mean time spent on questions of the same type in each set of 
questions; frequency of each difficulty level (subjective evaluation) in each set of 
questions; frequency of each difficulty level (subjective evaluation) in questions of 
the same type. 

Table 2 presents the results regarding the mean score in each set of questions. 
Since F(ANOVA) < FCRIT, we conclude that there is no significant difference between 
the mean score obtained by the subjects in both sets of questions. The results obtained 
in the other data sets also indicate that there was no significant difference in the 
performance and difficulty perceived by the participants in both sets of questions. 
Therefore, we concluded that there was no need to analyze the results of each set 
separately. 

Table 2. ANOVA table: mean score in each set of questions 

Set  Size (N) Sum of Squares Mean Square Individual Mean  
SI 110 368 321 17,09 
SII 110 373 332 17,36 

F (ANOVA) 0,10 FCRIT 3,88  

5.2   Scores 

Table 3 shows the mean score of the subjects considering the two sets of questions. 
Compared to S-Type questions, the mean score was higher and the standard deviation 
was lower in R-type questions. 59% of the subjects correctly answered all R-type 
questions, while only 22% answered all S-type questions correctly.  

Table 3. Descriptive statistics of the scores 

 Type S Type R Total 
Mean 7,95 9,27 17,22 
Standard Deviation 1,65 0,98 2,04 
% with highest score (20 points) 22% 59% 18% 

Figure 2 graphically shows the total score obtained by all subjects in each question. 
The highest score for each question is 22 (11 subjects x 2 points). Nine questions 
were correctly answered by all subjects (six R-type questions and three S-type 
questions). The bottom four scores correspond to S-type questions (S5, S10, S6 and 
S9). This graph also shows that the total scores in all R-type questions were greater 
than or equal to their respective S-type questions. 
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Fig. 2. Total score by question 

The ANOVA test (α-level = 0.05) was applied to the score of each type of 
question. The results shown in Table 4 rejected the null hypothesis H0, in favor of the 
alternative hypothesis H1: μSS < μRS, i.e., the mean score in S-type questions is lower 
than the mean score in R-type questions.  

Table 4. ANOVA table: score in each type of question 

Question Type Size (N) Sum of Squares Mean Square Individual Mean 
S 110 339 278 7,95 
R 110 402 378 9,27 

F (ANOVA) 9,89 FCRIT 6,75  

Therefore, the results show that, at least in the sample analyzed in the study, the 
presence of OCL smells in expressions negatively impacts the understanding of OCL 
constraints. 

5.3   Time to Answer 

Results show that most subjects spent more time answering S-type questions than R-
type questions. Table 5 shows the mean time spent by the subjects in each type of 
question, and the mean time they took to answer all questions.  

Table 5. Descriptive statistics of the time to answer 

  S-Type R-Type Total 
Mean 26:12 20:00 46:12 
Standard Deviation 8:56 5:55 14:11 
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Figure 3 shows a graph comparing the mean time spent in each question, 
considered that each S-type question has a correspondent R-type question. In 90% of 
the questions, the average time to answer S-type questions was greater than the 
average time to answer their respective R-type questions. In questions 3, 4, 7, 8 and 9, 
there is a big relative difference in the average time spent on S and R-type questions. 
They correspond to the Downcasting (questions 3 and 4), Verbose Expression 
(questions 7 and 8) and Type Related Conditionals (question 9) smells. This result can 
be explained by the fact that those smells are usually associated to longer and more 
complex expressions.  

00:00:00

00:01:26

00:02:53

00:04:19

00:05:46

00:07:12

00:08:38

1 2 3 4 5 6 7 8 9 10

S

R

 

Fig. 3. Time to answer each question (left bars = S-Type) 

On the other hand, there was only a small difference in the average time to answer 
questions 1 and 10, which correspond to the Implies Chain smell. A possible 
explanation for this result is that the expressions present in those questions are of 
almost the same size. However, as shown in Figure 2, the total score in questions R1 
and R10 (38) was significantly higher than the score in questions S1 and S10 (31). 
This latter result suggests that it might be easier to misunderstand an expression 
containing an implies chain, but more specific studies need to be done in order to 
draw such conclusions. 

The ANOVA test (α-level = 0.05) was applied to the time to answer each type of 
question. The result shown in Table 6 rejected the null hypothesis H0, in favor of the 
alternative hypothesis H1: μST > μRT, i.e., the mean time to answer S-type questions 
is greater than the mean time to answer R-type questions. 

Table 6. ANOVA table: time to answer each type of question 

Question 
Type 

Size (N) Sum of 
Squares 

Mean Square Individual mean 
time spent in 
each question 

S 105 13.236.000 10.047.146,67 05:14 
R 103 8.525.400 5.942.403,88 04:00 

F (ANOVA) 8,87 FCRIT 3,89  
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Therefore, the results show that, at least in the sample analyzed in the study, the 
presence of OCL smells in expressions can negatively impact the time needed to 
understand OCL constraints. 

5.4   Subjective Evaluation 

a) Perceived Level of Difficulty 
Data collected from the subjective evaluation made by the subjects were analyzed 
in order to investigate whether they perceived some difference in the difficulty 
level of S-type questions compared to R-type questions. Figure 4 shows that more 
than 60% of R-type questions were perceived as easy or very easy, and only 10% 
of R-type questions were perceived as difficult or very difficult. On the other 
hand, less than 30% of S-type questions were perceived as easy or very easy, 
while 30% of them were perceived as difficult or very difficult.  
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Fig. 4. Subjective evaluation of the difficulty level by the question type 

After mapping the difficulty level from the ordinal scale to an interval scale 
using a monotonical function that preserves the order of the elements, we found a 
negative correlation (-0.71) between the difficulty perceived by the subjects and 
their score, i.e, the higher the difficulty level of a question, the lower the score 
was. We also found a positive correlation (0.73) between the difficulty level of a 
question and the time spent by the subjects to answer it.  
 

b) Perceived Quality of the Expressions 
Table 7 shows the overall evaluation of S-type and R-type questions regarding the 
quality perceived in the OCL expressions present in those questions. The results 
show that there is a significant difference in the perceived quality of expressions 
present in S-type questions and R-type questions.  

While only 4% of the evaluations of R-type questions classified their 
expressions as of poor quality, that number raised to 36% in S-type questions. 
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80% of the evaluations indicate that R-type questions were well written. 
However, a significant number of evaluations (44%) perceived expressions 
containing OCL smells (S-type) as of good quality.  

Table 7. Descriptive statistics of the perceived quality of the expressions 

Evaluation S-type R-type 
Well Written 44% 80% 
Neutral (not sure whether good or poor) 20% 16% 
Badly Written 36% 4% 

5.5   Threats to Validity 

This section discusses threats to the validity of the results found in this study, in 
decreasing priority order: internal, external, construction, conclusion [14]. 

The internal validity is defined as the ability of a new study to reproduce the 
observed behavior using the same subjects and instruments. We tried to minimize the 
threats to internal validity by submitting all subjects to the same treatments and by 
applying the R-type and S-type questions in an alternate fashion. All subjects were 
selected from volunteered people and most of them reported some interest in using or 
learning more about OCL. However, since the goal of the study was not to compare 
OCL with any other language, we believe that the selection of the subjects did not 
have a significant influence on the results. 

The external validity reflects the ability to reproduce the same behavior in groups 
other than the ones that were analyzed. We tried to involve subjects with different 
academic background and professional experience. Although they attended the same 
40-hour UML/OCL course, they have graduated from different universities and they 
have worked for different companies and in different types of systems. Another issue 
that is almost always present in controlled experiments with industry professionals 
regards the size and complexity of the constraints used in the study: we cannot state 
that the results of this study would occur in the same way using bigger and more 
complex models and OCL constraints. 

The construction validity refers to the relationship between the instruments / 
subjects and the theory under study. We designed the study so that all subjects could 
have comparable and similar experiences. The results presented in section 5.1 indicate 
that this goal was achieved. It is not possible to state that we used the best strategy to 
evaluate the understandability of OCL specifications. However, we followed an 
approach similar to those used in other empirical studies that evaluated some aspect 
related to program or specification understanding [15, 16 and 17].  

The conclusion validity relates the treatments and the results, defining the ability of 
the study in generating some conclusion. Threats to conclusion validity were 
mitigated by carefully designing all instruments and by using objective measures and 
statistical parametric tests. We also used subjective evaluations in order to support the 
quantitative results. Although the number of subjects could be considered low, we 
tried to increase the number of data points by submitting all subjects to both 
treatments.  
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6   Conclusions  

In this paper, we investigate an important issue regarding the specification of 
constraints in OCL: whether the structure of the expressions used in OCL constraints 
has a negative impact on their understandability. The results indicate that the presence 
of OCL smells in OCL expressions may have a negative impact in both the 
correctness and the time necessary to understand a constraint written in OCL. 

Subjects scored better and took less time to answer R-type questions than S-type 
questions. S-type questions were perceived as being more difficult than R-type 
questions. Moreover, we found a correlation of this level of difficulty perceived by 
the subjects and their performance: lower score and increased time to answer S-type 
questions. Although some insights on the impact of each OCL smell were presented 
in section 5, the focus of this study was on the global performance of the subjects 
considering the whole set of questions. We plan to conduct more specific assessments 
of the impact of each OCL smell in a future work. 

The subjective evaluation of the perceived quality of the expressions reflects 
somehow the lack of experience of the subjects with OCL. Although a significant part 
was able to see that some expressions are more complex than necessary, few subjects 
were able to correctly explain how they could be made simpler. Besides the lack of 
experience with OCL, we believe that an additional reason for such results is that their 
knowledge is restricted to basic OCL syntax and semantics. Therefore, the results 
suggest that a catalogue of OCL smells and their respective refactorings is an 
important asset that the OCL community should consider to continually use and 
evolve. 

References 

[1] OMG: Model Driven Architecture (MDA) Guide, document number omg/2003-06-01 – 
(June 2003) 

[2] Warmer, J., Kleppe, A.: The Object Constraint Language – Getting Your Models Ready 
for MDA. Addison-Wesley, Reading (2003) 

[3] OMG: MOF QVT Final Adopted Specification. Document ptc/05-11-01 – (November 
2005) 

[4] Woodcock, J., Davis, J.: Using Z. Specification, Refinement and Proof. Prentice-Hall, 
Englewood Cliffs (1996) 

[5] Jones, C.B.: Systematic Software Development Using VDM. Prentice-Hall, Englewood 
Cliffs (1989) 

[6] Correa, A., Werner, C.: Applying Refactoring Techniques to UML/OCL Models. In: 
Baar, T., Moreira, A., Strohmeier, A., Mellor, S. (eds.) UML 2004. LNCS, vol. 3273, pp. 
173–187. Springer, Heidelberg (2004) 

[7] Correa, A., Werner, C.: Refactoring Object Constraint Language Specifications. In: 
Journal of Software and Systems Modeling (SoSyM), Springer, Heidelberg (2006) 

[8] OMG: Unified Modeling Language (UML) Infrastructure Specification, version 2.0, 
Object Management Group, ptc/03-09-15 (2003) 

[9] OMG: Unified Modeling Language (UML) Superstructure Specification, version 2.0, 
Object Management Group, ptc/03-08-02 (2003) 



90 A. Correa, C. Werner, and M. Barros 

[10] Roberts, D.B.: Practical Analysis for Refactoring. PhD thesis, University of Illnois at 
Urbana-Champaign (1999) 

[11] Mens, T., Tourwe, T.: A Survey of Software Refactoring. IEEE Transactions on Software 
Engineering 30(2), 126–139 (2004) 

[12] Jeanneret, C., Eyer, L., Markovic, S., Baar, T.: RocIET – Refactoring OCL Expressions 
by Transformations. In: 19th International Conference on Software & Systems 
Engineering and their Applications (2006) 

[13] Kataoka, Y., Imai, T., Andou, H., Fukaya, T.: A Quantitative Evaluation of 
Maintainability Enhancement by Refactoring. In: Proceedings of the International 
Conference on Software Maintainance (ICSM), Montreal, Canada (2002) 

[14] Wohlin, C., Runeson, P., Host, M., Ohlsson, M.C., Regnell, B., Wesslen, A.: 
Experimentation in Software Engineering – An Introduction. Kluwer, Dordrecht (2000) 

[15] Finney, K., Fenton, N., Fedorec, A.: Effects of structure on the comprehensibility of 
formal specifications. IEE Proceedings – Software 146(4), 193–202 (1999) 

[16] Briand, L., Labiche, Y., Penta, M., et al.: An Experimental Investigation of Formality in 
UML-Based Development. IEEE Transactions on Software Engineering 31(10), 833–849 
(2005) 

[17] Snook, C., Harrison, R.: Experimental Comparison of the Comprehensibility of a Z 
Specification and its Implementation. In: Proceedings of the Conference on Empirical 
Assessment in Software Engineering – EASE 01, England (April 2001) 



G. Engels et al. (Eds.): MoDELS 2007, LNCS 4735, pp. 91–105, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

On Metamodeling in Megamodels 

Dragan Gašević1, Nima Kaviani2, and Marek Hatala2 

1 Athabasca University, Canada 
2 Simon Fraser University Surrey, Canada 

dragang@athabascau.ca, {nkaviani, mhatala}@sfu.ca 

Abstract. Model-Driven Engineering (MDE) introduced the notion of 
metamodeling as the main means for defining modeling languages. As a well 
organized engineering discipline, MDE should also have its theory clearly 
defined in terms of the relationships between key MDE concepts. Following the 
spirit of MDE, where models are first class citizens, even the MDE theory can 
be defined by models, or so called megamodels. In this paper, we use Favre’s 
megamodel that was already used for defining linguistic metamodeling.  
Starting from the premise that this megamodel can also be used for defining 
other MDE concepts, we use it to specify the notion of ontological 
metamodeling. Here, we show that in order for this megamodel to be able to 
fully capture all the concepts of ontological metamodeling, some refinements 
should be applied to its definition. We also show how these new changes are in 
the same direction with the work of Kühne in defining linguistic and 
ontological metamodels. 

1   Introduction 

The idea of Model Driven Engineering (MDE) stems from software engineering, and 
more specifically, from the recent research in software development. MDE evolved as 
the paradigm shifted from the object-oriented approach where the main principle is 
that everything is an object into the model engineering paradigm based on the 
principle that everything is a model [6]. The object-oriented technology is about 
classes and objects, and main relations are instantiation (an object is an instance of a 
class) and inheritance (a class inherits from another class). MDE is about models, but 
it is also about relations between a model and the system under study (which can be a 
software artifact or a real world domain), metamodels, and model transformations. 
Similar to the object-oriented technology, MDE can be characterized by two main 
relations, namely, representation (a model represents a software artifact or real world 
domain) and conformance (a model conforms to a metamodel). Generally speaking, 
MDE is a field of system engineering in which the process heavily relies on the use of 
models and model engineering. Here, model engineering is considered as a 
disciplined and rationalized production of models [11]. 

For MDE to be popularized and accepted by the software engineering community, 
the theory behind it should be precise and easy to grasp. Furthermore, this theory 
must be comprehensive enough to address all the phenomena related to the languages 
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and metamodels used in MDE (e.g. OWL, XML, and UML). It makes the study of 
MDE’s theory critical. Modeling, as the spirit of MDE, is arguably the best method to 
study the theory of MDE, especially because of its natural ability in simplifying the 
specification and description of the intended goal in mind [7]. 

Atkinson & Kühne [1, 2, 15, 16] and Favre [11, 12] have taken important steps in 
clarifying the theory of MDE through using models. Atkinson & Kühne have 
distinguished between two types of metamodeling, namely ontological and linguistic 
(cf. Section 3), and Favre has used a megamodel to represent the concepts of 
modeling and metamodeling in MDE. Our aim in this paper is to compare these two 
research works and bring clarification inputs, in the form of metamodeling concepts, 
into both of them. Relying on the generality of Favre’s megamodel to cover the 
concepts of both linguistic and ontological metamodeling, we apply his megamodel, 
currently only applied to linguistic metamodels, to ontological metamodels and 
discuss the raised problems. We try to solve these problems by expanding the 
megamodel, so that it can support the modeling of ontological metamodels as well. 
Since MDE theory should be able to cover any modeling language, in this paper we 
are exercising Favre’s megamodel on the example of the Web Ontology Language 
(OWL) [23]. As both Favre’s megamodel and OWL are based on set theory, applying 
the megamodel to OWL can help with refining and increasing the generality of the 
megamodel and thus the MDE theory. The composition of the worlds represented by 
Semantic Web ontology languages and MDE is followed as a goal by the Object 
Management Group (OMG) through defining the Ontology Definition Metamodel  
[4, 8, 13, 20]. Our work can also be regarded as another step towards reconciliation of 
these two worlds. 

The rest of the paper has been organized as follows. In Section 2, we review the 
notions of megamodel and also describe ontologies and models and how they are 
inter-related. Section 3 further describes the definition of Favre’s megamodel which is 
used to provide linguistic metamodeling and ontological metamodeling for OWL as a 
modeling language in MDE. Section 4 discusses the problems of the current 
megamodel with modeling the concepts of OWL and gives suggestions on how it can 
be improved. Finally, Section 5 will be a conclusion to this work followed by 
planning the future research in this area. 

2   Megamodels and Models in Model Driven Engineering  

Favre has introduced the notion of megamodel as a way to formally define the theory 
of MDE [10]. The term megamodel is selected to avoid the confusion with the basic 

meanings of the terms model and 
metamodel. Defining the formal 
theory in the form of a model 
representing the basic MDE 
concepts and their relations helps 
us infer new facts about MDE that 
are not explicitly represented in the 
megamodel. From this perspective 
the megamodel can also be 
regarded as an ontology of MDE.  

System

PhysicalSystem DigitalSystem AbstractSystem

{incomplete}
*

* RepresentationOf

 

Fig. 1. The megamodel: Classification of systems 
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Fig. 1 shows an excerpt of Favre’s megamodel [11] as a UML class diagram. The 
diagram defines the most abstract concept of discourse in MDE – System. The 
(incomplete) classification of systems shown in Fig. 1 distinguishes between physical 
systems, digital systems, and abstract systems. PhysicalSystem represents things from 
the reality such as ‘a travel agency’. AbstractSystem is an abstraction in human minds 
that can be processed by human brains, for example, concepts and their relations from 
the biological domain. Finally, DigitalSystem is a digital representation that can be 
processed by computers, such as an XML document with an OWL representation of 
biological classes and their properties. 

In constructing the megamodel, the following definition of models is used: A 
model is a set of statements about some system under study [22]. This definition 
introduces the notions of a model, the system under study, and their relations. The fact 
that being a model or a system under study (aka subject [15, 16]) is a relative notion, 
not an intrinsic property of an artifact, is represented by the non-transitive relation 
RepresentationOf (or simply μ) between different systems. This means that, one 
system can be a model of another system, and this can be represented by 
RepresentationOf. For example, an ontology of the biological domain (abstract 
system) is a representation of the conceptualization used by a biologist. A file in an 
OWL XML format (digital system) is a representation of the ontology of the 
biological domain.  The same ontology can also be represented in an XML format of 
UML (i.e., UML XML Metadata Interchange, XMI). 

2.1   On Meaning of Models and Ontologies 

Since in this paper we are using the OWL language to experiment with Favre’s 
megamodel, in this subsection, we discuss the relations between ontologies and 
models in order to motivate why the MDE theory should be applicable to the ontology 
languages. We have already defined a model as a set of statements about some system 
under study [22]. Looking strictly from the software development perspective, models 
are used to specify (or prescribe) a software system being developed. Having models 
formally defined, we can use them to check the validity of developed systems with 
respect to these models. Furthermore, we can check the consistency of well-defined 
models. In addition to specifying systems, models can also be used to describe 
systems under study. This is the role of conceptual models that model concepts and 
their relations within the system under study. In a megamodel, the role of models is 
defined relative to the roles that reflect relations between systems they represent. A 
model can be an abstract system that is a RepresentationOf another system (that can 
be physical, abstract, or digital, see Fig. 1), expressed in some modeling language. As 
one system is a RepresentationOf another system, the meaning of a model is always 
relative. For example, a UML model is an abstract system that is used to describe a 
specific domain (either physical or abstract system) or to specify a software system (a 
digital system). 

On the other hand, we have ontologies based on the knowledge representation 
languages. Initially, ontology was defined as a formal specification of a 
conceptualization. More recent definition states that an ontology is a set of knowledge 
terms, including the vocabulary, the semantic interconnections, and some simple rules 
of inference and logic for some particular topic [14]. This definition implies the 
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descriptive nature of ontologies, which is equivalent to the descriptive nature of 
models. Thus, the RepresentationOf relation from the megamodel can be applied to 
ontologies as well. However, nothing can prevent us from building specification 
models (e.g., of a software system) using ontologies, as nothing can prevent us from 
representing ontologies using UML constructs and later transform that representation 
into ontology languages [2]. One of the main advantages of ontologies over UML is 
that ontologies have formally defined semantics which makes them better suited for 
checking the validity of the systems they specify. This also proves the usefulness of 
the RepresentationOf relation from the megamodel for ontologies when they are used 
as specification models.  

Based on the above discussion, we can conclude that although UML and OWL 
originate from different domains they have a lot in common. Furthermore, we should 
not neglect the fact that the design of UML and object-oriented programming 
languages is generally based on frame-based systems. In addition, object-oriented 
technology has had an important impact on ontology development methodologies and 
the construction of ontology languages. Some types of description logics adopted the 
basic object-oriented concepts, such as instantiation and inheritance1. This resulted in 
a proposal for unification of software modeling and knowledge representation 
technologies [2]. Therefore, in the rest of the paper, we use OWL to exemplify the 
metamodeling phenomena that are defined by using the megamodeling approach.  

3   Metamodeling 

We start our discussion on metamodeling with the definition of metamodels given in 
the OMG’s MOF specification [19]: A metamodel is a model that defines the 
language for expressing a model. This definition emphasizes the linguistic nature of 
metamodeling where metamodeling is used for defining modeling languages. 
Seidewitz [22] gives the most commonly used definition of metamodels in MDE. A 
metamodel is a specification model for a class of systems under study where each 
system under study in the class is itself a valid model expressed in a certain modeling 
language. In fact, a metamodel is a specification model, which leads us to the 
conclusion that metamodels should be used to validate models represented in a 
specific language. That is, a metamodel makes statements about what can be 
expressed in the valid models of a certain modeling language. Generally speaking, a 
metamodel is any language specification written in English, such as the W3C’s OWL 
language specification or the OMG’s UML specification. However, in order to 
automatically check the validity of models w.r.t. their metamodels, we need to 
formalize the definition of the metamodel. In the scope of the MDA’s pile of 
standards, MOF is defined as a metamodeling language for defining other languages 
(see [17] for further details about the MDA). In common understanding of the MDA, 
metamodels and models are connected by the instanceOf relation meaning that a 
metamodel element (e.g. the Class metaclass from the UML metamodel) is 
instantiated at the model level (e.g. a UML class Collie).  

                                                           
1  The discussion about different design practices, such as the use of inheritance in software 

designs and knowledge representation is out of scope of this paper – see [3] for details. 
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Earlier research in MDE recognized two different types of instantiation relations in 
various metamodeling architectures: i) instantiation of elements residing at different 
modeling layers; and ii) instantiation of elements residing at the same modeling layer 
[5]. This is further explored in [1] where the example shown in Fig. 2 is used. We can 
say that linguistic metamodeling is equivalent to the definitions cited above [22] and 
[19]. In fact, linguistic metamodeling is a way for defining modeling languages and 
their primitives (e.g., Object, Class, MetaClass) on the layer of a metamodel (L2 in 
Fig. 2 or M2 in terms of the MDA). These language concepts are linguistically 
instantiated on the layer of models (L1 in Fig. 2 or M1 in terms of the MDA).  

Ontological metamodeling is 
concerned with domain definition 
and uses ontological instantiation. 
For example, a UML object (Fido) 
is an ontological instance of a UML 
class (Collie). It is important to say 
that a UML class and a UML object 
are on different ontological layers 
(O0 and O1, respectively), but still 
they are on the same linguistic 
metamodeling layer (L1 or M1 in 
terms of the MDA). We can go 
further and provide more abstract 
domain types or domain 
metaclasses (Breed) on higher 
ontological layers (O2) without the 
need to leave the model layer L1.  

This distinction of metamodeling types had two important implications on the 
MDA: 

1. The existence of the M0 layer in the classical four-layer MDA architecture has 
been discarded, as there is no need to separate the M0 and M1 layers. In fact, M0 
layer comprising UML objects which are instances of UML classes is now a part of 
the M1 layer, but UML objects and UML classes are still on different ontological 
layers (O0 and O1). 

2. The UML2 specification enables designing domain concepts whose instances can 
be both classes and objects.  

Looking at the OWL language, we can identify both types of metamodeling. The 
OWL specification can be regarded as a model of the OWL modeling language, thus 
it is a linguistic metamodel. To allow for the automatic checking of ontology validity, 
this linguistic metamodel of OWL has to be specified by using a metamodeling 
language. Indeed, this is the role of the RDF schema of the OWL language that is a 
part of the official OWL specification. This schema can be regarded as a linguistic 
metamodel of the OWL language. To bring OWL ontologies to the MDA, a linguistic 
metamodel of OWL needs to be represented by an MDA language (i.e. MOF). This, 
at a more general level, is the goal of the ODM initiative [20], namely, to use MOF as 
a metamodeling language to develop a linguistic metamodel for representing 
ontological languages.  

 

Fig. 2. Two types of metamodeling [1]: 
ontological and linguistics 
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In terms of ontological metamodeling, OWL Full allows an instance of a class to 
be another class, while Boris Motik recently described one OWL Full semantic that is 
decidable [18]. 

Taking into account the above examples, we can identify an important issue that 
should be answered: “How can we formally specify the difference between the 
ontological and linguistic metamodeling?” In the remainder of this section, we will try 
to answer this question by using the megamodel [12]. 

3.1   The Megamodel: Metamodeling Relations 

Having in mind the purpose of metamodels as means for defining modeling 
languages, Favre suggests analyzing metamodels in terms of the language theory that 
is based on sets [12]. The language theory allows us to formally represent relations 
between models and metamodels, so that one can reason over modeling languages, 
and thus deduce facts about modeling languages and their characteristics that are not 
explicitly asserted. In a very broad definition borrowed from the language theory 
where a language is a set of systems (or a set of sentences), it is emphasized that a 

language itself is an 
abstract system without 
any materialization. 
Additionally, we need a 
way to verify the validity 
of statements in modeling 
languages. Models seem 
as one way to do so due to 
their specification nature.  

Based on these facts, the megamodel is extended with new elements in order to 
explain the meaning of metamodeling (Fig. 3). Besides adding the concept Set into the 
megamodel, the relation ElementOf (ε) is added as a means to assert that a system 
belongs to a set. In terms of OWL, this relation allows us to state that an individual 
(i.e. an Abstract System) is an ElementOf a class (i.e., a Set). This relation can also 
relate two sets stating that a set is ElementOf (or subset of) another set. However, 
ElementOf is not a transitive relation. This implies that the elements of a set’s subset 
are not elements of its superset. It is obvious that this relation can not be used to 
model inheritance. To enable inheritance, the megamodel defines the IncludedIn (ζ) 
relation which is transitive. The transitivity of this relation means that the elements of 
a set’s subset are also elements of its superset, which is the common meaning of this 
relation in UML (generalization) and OWL (subClassOf). However, verifying the 
validity of statements in modeling languages can not be done by using only sets and 
their relations. For this purpose, the megamodel defines the relation ConformantTo 
(χ): a non-transitive relation between systems in the megamodel. In the rest of this 
section, we use these relations to define two types of metamodeling. 

3.2   Linguistics Metamodeling 

Let us consider now how we can express relations between some constructs of the 
OWL language in terms of the extended megamodel (see Fig. 4). As an illustration, 
we use the concepts from Fig. 2. In OWL, we can use an individual to represent a 

 

Fig. 3. Elements of the megamodel to define metamodeling 
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physical system. In Fig. 4, 
an OWL individual is an 
abstract system (Fido:AS) 
that is a representation of (μ) 
a physical system (our pet 
collie Fido:PS). 
Additionally, we can use an 
OWL class, e.g. Collie, to 
generalize the characteristics 
of all collies. According to 
the definitions of the 
megamodel the class Collie 
should be defined as a set in 
order to be a representation 
of the set of all individuals. 
Thus, the Collie:Set class is 

a representation of (or a model of) the abstract system Collie:AS. Note that we leave 
the analysis of the relation between the class Collie:Set and the individual Fido:AS for 
the next subsection. According to the definition borrowed from the language theory 
that a language is a set of systems, we infer that both the individual Fido:AS and the 
class Collie:Set are elements of (ε) the OWL language (i.e. OWL:Set). Furthermore, 
we can say that a modeling language (in this case OWL:Set) is a set of models. Since 
a set is an abstract system, we need to represent (μ) a modeling language by a 
physical system in order to develop tools for checking the validity of expressions in 
that language. In fact, such a representation of (μ) a modeling language (OWL:Set) in 
the form of a physical system (OWL Specification:PS) is actually a model of a 
modeling language, i.e. a metamodel. This is why in this case we can say that the 
official W3C’s OWL specification can play the role of a metamodel. In the same way, 
the ODM specification is a metamodel of OWL but specified in MOF. Finally, we can 
conclude that a metamodel is a model of a set of models [12]. 

There is one important relation between elements of (e.g. Collie:Set and Fido:AS) 
a modeling language (e.g. OWL:Set) and the metamodel of the modeling language 
(e.g. OWL Specification:PS). This relation is ConformantTo (χ), which means that all 
elements (classes and individuals) of a modeling language have to conform to (χ) the 
metamodel of the modeling language. It is very important to note that the relation 
between models (Collie:Set and Fido:AS) and their metamodel is not ElementOf, 
hence the metamodel does not contain them. Another observation is that the relation 
ConformantTo is equivalent to the linguistic instanceOf relation from Fig. 2 and this 
type of metamodeling is linguistic metamodeling. In terms of the OWL language this 

relation is represented by the rdf:type 
property relating the OWL language 
construct owl:class with a concrete 
ontology class, such as the class 
Collie:Set. We refer readers to [12] 
where the notion of linguistic 
metamodeling is defined for the UML 
language in a similar way.  

►

       

►

►

 

Fig. 5. The μεμ (a) and conformant (b) patterns 

►

►

 

Fig. 4. Relations between models, metamodels, and 
modeling languages 
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From the above analysis, one can infer an interesting pattern for defining linguistic 
metamodeling. This pattern is shown in Fig. 5a, and Favre [12] named it the μεμ 
pattern or a pattern representing a model of a set of models. Furthermore, we used the 
conformance pattern (Fig. 5b) to define linguistic metamodeling. The number of times 
we apply this pattern (i.e. the number of meta-steps) determines whether we are 
dealing with a model, a metamodel, a metametamodel, etc. For example, repeating 
this pattern two times leads us to the notion of a meta-metamodel. This is how MOF 
is defined in the MDA architecture: MOF is a model of a metamodeling language, i.e. 
a language for defining modeling languages. Looking back at the notion of 
metamodeling used in [18] to assert that Breed from Fig. 2 is a metamodel (i.e. a 
metaclass) of the Collie class, it is obvious that in this case the conformance pattern 
(Fig. 5b) is not applicable. Although the ConformantTo relation exists in this case as 
well, the ElementOf relation between Breed (metamodel) and Collie (model) is not 
present, although it should be defined according to the definition of the OWL class 
from the OWL specification. The existence of the ElementOf relation would imply 
that the metamodel (Breed) contains specific elements of a modeling language (in this 
case the class Collie), which is not the case in linguistic metamodeling. Instead, it is 
the case in ontological metamodeling as explained in the next subsection2. 

3.3   Ontological Metamodeling 

To explain ontological metamodeling, let us first clarify the relations between the 
elements of the modeling language. Fig. 6a shows an extended UML static structure 
diagram from Fig. 4 with the relations between the set Collie:Set and the abstract 
system Fido:AS shown. The notion of a set for Collie has been chosen correspondent 
to the definitions of Favre’s megamodel in which ontological concepts have been 
considered as sets [12]. The set Collie:Set in modeling languages (such as OWL and 
UML) can be best modeled by using the term class. Such a set is typically composed 
of elements that are just abstract systems (or facts in terms of the OWL specification). 
This explains why we have the ElementOf relation between Collie:Set and Fido:AS 
with the meaning that Fido:AS is an ElementOf Collie:Set. However, the set of 
abstract systems groups them also based on their common characteristics. 
Consequently, according to Favre’s megamodel, abstract systems have to be 
ConformantTo their sets. This implies having a ConformantTo relationship from the 
Fido:AS to Collie:Set, as it has been shown in Fig. 6a. 

In Fig. 6b, we analyze the relation between the meta-class Breed:Set and the class 
Collie:Set from Fig. 2 using the megamodel. The meaning of the set Collie:Set is the 
same as above (Fig. 6a): RepresentationOf (μ) the abstract system Collie:AS; 
ConformantTo (χ) the OWL specification; ElementOf (ε) the OWL:Set (i.e. OWL 
language); and Fido is ElementOf (ε) and ConformantTo (χ) the set Collie. Note that 
Breed also has been chosen as a set by following the same rationality that was 
expressed for Collie. This way we can keep up with the notions of megamodel that 
has been suggested by Favre. 
                                                           
2  This also reflects the strict separation (a basis for strict metamodeling architectures) of a set of 

elements or symbols belonging to models from a set of elements belonging to the metamodel, 
i.e., having strict separation between meta-layers in metamodeling architectures [22]. This idea 
has also inspired [19] to develop their metamodeling architecture for the Semantic Web. 
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Fig. 6. Relations between abstract systems and sets of abstract systems represented in a 
modeling language (a); Ontological metamodel in the megamodel: Relations between a set and 
sets of models (b) 

Let us look at Breed. Breed:AS is the real meaning of Breed in human’s mind, 
while the set Breed:Set (according to Favre’s megamodel) is considered as a 
RepresentationOf (μ) the abstract system Breed:AS, i.e Breed:Set is a model of the 
abstract system Breed:AS. Furthermore, the Breed:Set contains the Collie:Set 
meaning that the Collie:Set is an ElementOf (ε) the Breed:Set. In terms of OWL, the 
Breed:Set is a class that contains another class, i.e. the Collie:Set. Since the set 
Breed:Set defines characteristics of its elements (instantiation relation from Fig. 2), 
the Collie:Set should be also ConformantTo (χ) the Breed:Set. Due to the non-
transitive definition of the ElementOf relation, the elements of the Collie:Set (i.e. 
Fido:AS) are not elements of the Breed:Set. In this case, we can say that Breed:Set is 
a superset of the Collie:Set whose element is the abstract system Fido:AS. In the 
OWL language, it can be said that the class Collie is of type Breed, which means that 
the Breed class is a meta-class for Collie. The individual Fido is of type Collie, but 
Fido is not of type Breed. 

Here we have a case of metamodeling, which is not linguistic metamodeling as 
defined in the previous section; it is ontological metamodeling. In this case, we can 
identify another pattern that is based on the χε relation between two sets, and both 
sets are models of abstract systems. However, the ConformantTo relationship between 
Fido as an abstract system and Collie as a set, and also Collie as a set and Breed as 
another set, opens some points for discussion. Although it is reasonable to consider an 
abstract system conformant to another abstract system, it is not reasonable to consider 
an abstract system or a set conformant to another set. Looking at Collie as a set of all 
collies in the world, there is nothing in common between our Fido and a community 
of Collies, but the commonality comes from the properties that all these dogs share as 
Collies. Similarly the representation and definition of the concept Breed makes Collie 
a Breed, but the Breed set is just to identify the individuals that have been instantiated 
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from Breed. In Section 4, we argue how the megamodel can be modified in order to 
have a more comprehensive representation of the ontological metamodeling. 

4   Expanding the Megamodel for Ontological Metamodeling 

So far, we have discussed ontological and linguistic metamodeling through the use of 
megamodeling notions. According to the discussions in the previous section, Favre’s 
megamodel [12] provides a suitable definition for linguistic metamodeling in MDE, 
however, once we apply it to ontological metamodeling some issues arise. In  
Section 3.3, we have shown that, as a result of expressing ontological metamodels by 
using Favre’s megamodel, an abstract system or a set is considered conformant to 
another set, which is not reasonable. For example, Fido, from our previous example, 
is not ConformantTo(χ) the set of Collies, but it is ConformantTo(χ) the 
characteristics that differentiate between Collies and other breeds of dogs. At the 
same time, the same Fido is an ElementOf (ε) the set of Collies. Knowing that each 
ontological concept can be modeled with a class, the question is how we can precisely 
define the sets and the characteristics of a class, and its correspondent concept, in the 
megamodel. 

Let us start with the definition of a class in the OWL specification. According to 
W3C’s specification for OWL [23], “Classes provide an abstraction mechanism for 
grouping resources with similar characteristics. Every OWL class is associated with a 
set of individuals, called the class extension. The individuals in the class extension are 
called the instances of the class. A class has an intensional meaning (the underlying 
concept) which is related but not equal to its class extension. Thus, two classes may 
have the same class extension, but still be different classes.”  

The main problem with the definition of Favre’s megamodel is that there is no 
distinction between the intension and the extension of a class. While our Fido is 
ConformantTo(χ) the characteristics of the class Collie, i.e. the intension of the class 
Collie, it is an ElementOf (ε) the extension of this class. In fact, in ontological 
metamodeling the instantiation relationship (instanceOf) happens between two 
concepts when one concept is ConformantTo(χ) the intension and is an ElementOf (ε) 
the extension of the other concept. Consequently, the relations between Breed, Collie, 
and Fido of Fig. 2 should be modeled similar to Fig. 7, which is different from what 
we obtained in Fig. 6. Note that the <<instanceOf>> relationship of Fig. 7 is not part 
of the megamodel and we are using the link between the super concept and its 
instance only for the sake of clarification. 

We claim that a set is equivalent to the extensional part of a concept, and 
considering the concept equal to a set means dropping the intensional part of that 
concept. Especially, it has been also pointed out in the OWL definition of a class that 
the extensional part might be shared among a couple of classes with each class 
representing different intensions. Referring to a class as a set makes the desired 
intensional meaning ambiguous. Also, according to the defintion of a class in OWL, 
the extension of a class is a set of its instances or individuals. It means that this 
extension is in the same ontological level as one single individual of the class (see 
Fig. 7). Additionally, for each of the intensional and extensional properties of a 
concept, there is a description in the form of an abstract system in the real world 
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which can be connected to the intension or extension of the system with a 
RepresentationOf (µ) relation as shown in Fig. 7. In OWL, the intensional part of a 
concept is defined in the form of class properties, also each object instantiated from a 
class is an element of the extensional part of the class. Consequently, a class can be 
considered an abstract system composed of intensional and extensianl parts which are 
also abstract systems. 

∈
 

Fig. 7. The relations between the instantiated elements and the intensional and extensional 
properties of their super classes 

Based on the discussions that we have made to this point, the megamodel 
introduced by Favre should be further refined to cover the intensional and extensional 
meanings of a concept. We argued that intensional and extensional properties of a 
class are also abstract systems. We believe, the term Set, coined in Favre’s 
megamodel as an abstract system, is nothing but the extensional meaning of the 
ontological concept, and thus this extensional meaning of the concept is an abstract 
system as well. Moreover, the intensional meaning of a concept is fully in line with 
the definition of the abstract system in Favre’s megamodel (cf. Section 2) and can be 
considered an abstract system. This leads us to improving Favre’s megamodel by 
extending the abstract system according to Fig. 8. It is worth mentioning that Favre in 
his megamodel represented the identified types of a system as incomplete, which has 
left the room for further expansion and improvement. Our expansion of Favre’s 
system is yet an incomplete representation of the system as well. 

As Fig. 8 shows, an abstract system composes a set (as the extensional part) and an 
instensional part which both are also abstract systems. However, a set is an abstract 
system for which there is no intensional part, while the intensional system is an 
abstract system that can have both the extensional and intensional parts. This 
definition of an intensional system makes it possible to have a set of intensions for an 
abstract system, which is generally the case when defining the ontological concepts.  
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Fig. 8. The extended megamodel to cover intensional and extensional systems 

Given the definitions in Fig. 7 and Fig. 8, our representation of ontological 
metamodel becomes so close to what Kühne has provided in [15, 16]. Kühne 
considers element e an ontological instance of a type (or super class) T where: 

( ))(extension)( Te μμ ∈  and 

( )( ))()(intension eT μμ  

 

The second formula is equal to considering the RepresentationOf element e 
ConformantTo the intension of the RepresentationOf type T. The main difference, 
however, is that in Kühne’s representation of ontological metamodel there is no 
intensional or extensional system in the ontological layers (e.g. O0 or O1) and these 
two systems are only considered as the meanings in the real world (referred to in the 
form of RepresentationOf). Nonetheless, we believe that extensional and intensional 
meanings also exist as systems within the modeling space [9]. The witness to this 
claim is the representation of the properties for a class which can be considered as the 
intension of the class. Furthermore, referring to the definition of a class in OWL, 
provided in the beginning of this section, one can recognize that the set of individuals 
for an OWL class are not judged based on their presence in the real world, but these 
individuals are the objects instantiated from the OWL class in the knowledge base. 
We can even consider the representation of a class in OWL as a DigitalSystem which 
is a model of the AbstractSystem intended in the program. However, as the notion of 
model is relative; this chain of finding a model for another model will never stop 
unless we decide to stop it at a certain point. As a result, we consider the definition of 
a class in OWL as an AbstractSytem.  

Now that we have made a clear understanding of the ontological metamodeling by 
refining the definitions of the megamodel, we can provide a definition for the 
ontological metamodel, based on our notions of megamodel. We define an 
ontological metamodel as a set (or extension) of models of abstract systems classified 
based on some instensions, and as an element of a modeling language. At the same 
time, the ontological metamodel is a model of an abstract system. Given the definition 
above, the next section compares the implications of ontological and linguistic 
metamodeling. 
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4.1   Ontological and Linguistic Metamodeling: Implications 

There are several important consequences of the definitions above: 

1. An ontological metamodel is a model of an abstract system, which means that 
ontological metamodel can only model abstract systems (not physical and digital 
systems). This further means that an ontological metamodel can only be a 
representation of systems that are sets of either other sets or abstract systems. 
Consequently, an ontological metamodel in the OWL Full language can not 
contain individuals, only classes.  

2. Being an ontological metamodel means being only a model of an abstract system, but 
not a model of models of systems like it is the case with linguistic metamodel. 
Consequently, an ontological metamodel is not a model of a modeling language, and 
thus it is not supposed to define a set of valid constructs of a modeling language.  

3. The definition of an ontological metamodel is surprising at first, since an 
ontological metamodel is not just a model, but it is also a set. Having in mind that 
the main purpose of ontological metamodel is to define libraries of high level 
domain types [1] it seems quite natural that an ontological metamodel is indeed a 
set of (predefined domain specific) models of abstract systems. That is to say, a set 
of classes, meta-classes, meta-meta-classes and so forth in terms of OWL or UML.  

4. An ontological metamodel should be conformant to the linguistic metamodel of the 
modeling language like any other element of the modeling language. This is again 
compliant with the notion of ontological metamodeling from Fig. 2 where the 
libraries of high level domain types are linguistic instances of the linguistic 
metamodel.  

There are also some inferred facts about relations between ontological and 
linguistic metamodeling.  

5. The first concern with regards to the linguistic metamodel is whether the change to 
the megamodel affects the definition of linguistic metamodeling or not. Fig. 9a 
shows the exact pattern that we introduced in Fig. 5b. Fig. 9b is the rotation of that 
same pattern, and finally, Fig. 9c is the pattern that we obtained for ontological 
metamodeling based on intensional and extensional expansion of abstract system, 
which is really close to Fig. 9b. It can be said that in ontological metamodeling, 
because we are mostly dealing with the AbstractSystems, the notions of intensional 
and extensional systems become more important, so that they need to be clearly 
defined. However, in linguistic metamodeling, because the metamodel is usually a 
PhysicalSystem or DigitalSystem, it can play as both intensional and extensional 
systems and thus these two systems can be omitted (in Fig. 8 we consider 
intensional and extensional systems only for AbstractSystems). The possibility of 
having an AbstractSystem as a linguistic metamodel is open for future research. 

                  

Fig. 9. The effect of the change to the megamodel on the pattern of Fig. 5 
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6. Linguistic metamodeling is used to specify a set of valid statements of a modeling 
language, and thus linguistic metamodeling (a linguistic metamodel of the OWL or 
UML languages) specifies whether ontological metamodeling is supported by a 
modeling language. Defining a modeling language by a linguistic metamodel does 
not necessarily mean that the modeling language supports ontological 
metamodeling.  

7. Metamodeling languages, such as MOF, may have also support for ontological 
metamodeling according to the meta-step definition for linguistic metamodeling. 
This means that we can define meta-classes that are ontological instances of other 
meta-classes on the same linguistic layer. However, the pragmatics for the presence 
of such features in metamodeling languages is out of scope of this paper (see 
discussion on minimal reflective metamodel [22]). 

5   Conclusion 

Favre by representing megamodels and Kühne by identifying linguistic and 
ontological metamodeling have had important contributions to clarifying the theory of 
MDE. In this paper, we investigated the generality and comprehensiveness of Favre’s 
megamodel, once it is applied to the ontological metamodels. We have shown that for 
this megamodel to be able to fully capture the intended meaning of the ontological 
metamodeling, the concept of AbstractSystems should be further expanded to entail 
intensional and extensional systems which are also AbstractSystems. We also argued 
that the extensional system is what we know as a Set, while the intensional system is 
the characteristic or the set of characteristics (as an intensional system can entail a set 
itself as a result of being an abstract system) that classify the objects in the set. As a 
consequence of applying the change to the megamodel, we have shown how the 
ontological classification becomes more meaningful by making each concept 
ConformantTo the intensional system of its super class and an ElementOf the 
extensional system of the super class. We have also shown that this change does not 
really interfere with Favre’s representation of linguistic metamodeling using 
megamodels and the whole systems remains consistent. As a future plan for this 
research, we decide to consider the relations between different intensional systems 
that have the share the same extensional system (e.g. a group of planets clustered in 
one single set based on both their biological and botanical characteristics) and see 
how the intensional and extensional relations affect the definition of the megamodel. 
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Abstract. Model-driven engineering is a powerful approach to build
large-scale applications. However, an application’s metamodel often re-
mains static after the initial development phase and cannot be changed
unless a new development effort occurs. Yet, end users often need to
rapidly adapt their applications to new needs. In many cases, end users
would know how to make the required adaptations, if only the application
would let them do so. In this paper we present how we built a runtime-
dynamic meta-environment into Smalltalk’s reflective language model.
Our solution offers the best of both worlds: developers can develop their
applications using the same tools they are used to and gain the power of
meta-programming. We show in particular that our approach is suitable
to support end user customization without writing new code: the adap-
tive model of Magritte not only describes existing classes, but also lets
end users build their own metamodels on the fly.

Keywords: Meta-Modeling, Meta-Data, Adaptive Object Model, Busi-
ness Application Development, Smalltalk.

1 Introduction

As a result of our experience with developing dynamic web applications at an
industrial scale1, we recognized the need to introduce a meta-layer to provide us
with more flexibility. Describing domain entities is not a new idea [1,2,3,4,5].
However, often meta-descriptions remain static after the initial development
phase and cannot be changed unless a new development effort occurs. Yet, end
users often need to rapidly adapt their applications to new business needs [6]
and in many cases, they would know how to make the required adaptations, if
only the application would let them do so [7].

Application requirements usually do not remain static after the initial devel-
opment phase. Changing business plans typically boils down to minor modifi-
cations to domain objects and behavior, for example new input fields have to
be added, configured differently, rearranged or removed. Unfortunately most of
today’s applications don’t provide this ability to their end users. The situation
is even more striking in the context of web applications that are typically built
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for a lot of different people with varying needs. Furthermore it is often the case
that software systems have a static object model: one that has been defined by
the software architect at implementation time and that cannot be changed later
without changing and recompiling the source-code.

Generative techniques should be avoided, as they prevent the metamodel
from being dynamically changed at runtime. Also, the introduction of meta-
descriptions should not disrupt the normal way of programming and the tools
used to program. The development tools (refactorings, version control, unit test-
ing, debugger, etc.) should continue to work as if there were no meta-descriptions
[9]. The approach should be integrated as closely as possible into the object-
oriented paradigm, the tools and the programming environment. In our case we
use Squeak2, an open-source Smalltalk [10,11], and Seaside3, an open-source web
application framework [12].

Domain Model

Metamodel

Meta-

Metamodel

Magritte
Developer

<described-by>

<described-by>

Developer

End User
Magritte
End User

Fig. 1. Magritte is self-described and features metamodel changes at runtime. This
allows end users not only to interact with the application data, but also change the
metamodel without having to write code.

This publication reports on our experience with using the Magritte meta-
descriptions framework. Magritte has been originally developed for web appli-
cations, but its applicability goes beyond that context. The Magritte meta-
descriptions are integrated into the reflective metamodel of Smalltalk to support
1 The first author of this paper is an independent consultant and software architect.

In the context of his Master thesis [8] he invented and developed the Magritte frame-
work, which is used in several large-scale industry and open-source projects.

2 http://www.squeak.org
3 http://www.seaside.st
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the development of flexible applications. As the Magritte metamodel is self-
described, it is possible to apply the same editors for both domain data and
its corresponding metamodel. As illustrated on Figure 1 this enables a Magritte
user to work on two meta-levels at the same time. This applies to both the
end user and the developer. With Magritte we can reap the benefit of the two
worlds: On the one hand we keep our efficient and dynamic object-oriented pro-
gramming with an excellent tooling context, and at the same time we gain the
flexibility and compactness of meta-descriptions to factor repetitive tasks of our
application development.

This paper is structured as follows: Section 2 introduces the Magritte frame-
work and presents an example how Magritte descriptions are specified. In
Section 3 we present different interpreters that have been written for Magritte.
Section 4 explains how Magritte is self-described and how this enables end users
to customize their applications. Section 5 compares Magritte to related frame-
works and Section 6 evaluates our approach and discusses the lessons learnt.

2 Describing Domain Objects

Magritte is a meta-description framework, describing domain classes and their re-
spective attributes, relationships and constraints [4]. Magritte augments the re-
flective metamodel of Smalltalk [13] with additional means to reason about the
structure and behavior of objects. The Smalltalk programming language is used
to define Magritte meta-entities and their behavior. An attribute description con-
tains the type information, the way the attribute is accessed, and some optional
information such as a comment and label, relationships and validation conditions.

In the following sections we use the example of a meta-described person
domain-model. The Person class defines the instance variables name and birth-
day. In Sections 4 and 6 we present more realistic examples used in productive
applications.

Example. To describe the entities in this model we need corresponding descrip-
tion instances, that can be either built from the source-code at development
time, dynamically at run-time, or a combination of the two approaches. Either
way, the code to build the descriptions looks the same. To describe the name, we
create an instance of StringDescription, define an access strategy (in this case the
getter method #name is used), provide a label and add the constraint that this
is a required value4.

(StringDescription new)
selectorAccessor: #name;
label: ’Name’;
beRequired

4 In Smalltalk messages follow the pattern receiver methodName: argument, which
is equivalent to the Java syntax receiver.methodName(argument). Hence String-
Description new sends the message new to the class StringDescription that returns
a new instance of the receiving class. Subsequently the messages selectorAccessor:,
label: and beRequired are sent to this instance.
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Note that descriptions provide much more information than just type infor-
mation. A date description, for example, knows how the attribute should be
displayed (June 11, 1980, 11 June 1980, 06/11/1980), edited (text-input fields,
drop-down boxed, date-picker), and validated. Moreover descriptions do not nec-
essarily describe instance variable attributes, but might also describe derived
attributes that are dynamically calculated on demand.

2.1 Structural Descriptions

The Essential Meta-Object Facility (EMOF) is a standard for model driven
engineering defined by the Object Management Group (OMG). Similar to EMOF
Magritte is not designed as a layered architecture. Magritte descriptions live in
a flat world and there is no distinction drawn between objects in the meta-
metamodel (M3), the metamodel (M2), the model (M1) and the instances (M0).

Contrary to EMOF Magritte has no notion of instantiation, inheritance and
classes. We describe objects that have already been instantiated. Magritte is
tightly embedded into the Smalltalk object model. Smalltalk is used to instanti-
ate, configure and compose the descriptions, as well as to model the behavior of
the meta-descriptions. In Magritte objects are not tightly connected with a sin-
gle description. Descriptions can be shared, exchanged and applied to different
instances and classes.

Description

Container ElementDesc.

MagnitudeDesc. StringDesc. ReferenceDesc.

DateDesc. NumberDesc. OptionDesc. RelationDesc.

ToOneDesc. ToManyDesc.SingleDesc. MultipleDesc.

attributes

BooleanDesc.

reference

Fig. 2. The Description Hierarchy of Magritte

As seen in Figure 2 the description classes define a type hierarchy. This is
similar to the subclasses of Type in EMOF, where a distinction between classes
and primitive types is made. An instantiated Magritte description is similar to
an EMOF property.

Magritte defines multiplicities using the Composite design pattern. The class
ReferenceDescription knows another description, that is used to describe the ref-
erenced object. Whether the elements are ordered and/or unique is determined
as a property in ReferenceDescription. Upper and lower bounds of are specified
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using constraints. In EMOF multiplicities are part of the type information. Our
approach has shown to be more straightforward when automatically building
editors and reports.

Option Descriptions. The SingleOptionDescription models an 1 : 1 relationship.
The class MultipleOptionDescription models a 1 : n relationship. In both cases
the referenced objects must be chosen from a list of existing objects satisfying
the reference description.

Relationship Descriptions. The ToOneRelationshipDescription models an 1 : 1
relationship. The ToManyRelationshipDescription models an 1 : ∗ relationship.
In both cases any object can be referenced that satisfies the reference de-
scription.

The architecture of Magritte, i.e., describing Smalltalk class with descriptions,
is not new and can be seen as a validation of the nowadays well-known distinc-
tion between two conceptually different kinds of instance-of relationships: (1) a
traditional and implementation driven one where an instance is an instance of
its class, and (2) a representation one where an instance is described by another
entity [14]. Atkinson and Kühne named these two forms: form vs. contents or
linguistic and logical [15,16].

2.2 Executability and Constraints

Magritte does not provide specific functionality to describe behavioral aspects,
such as operations, their parameters and return values [17,9]. This is not neces-
sary, as methods in Smalltalk are objects that can be described as any other ob-
ject. Then using the reflective facilities it is possible to retrieve a list of invokable
method sends (first class method invocations) that are available on a particular
class. On request these methods can be invoked with arguments provided by
end users. This shows how Magritte integrates with the reflective facilities of
Smalltalk. Furthermore Magritte directly supports constraint objects on its de-
scriptions, that are similar to the constraints part of the Complete Meta-Object
Facility (CMOF). We avoided introducing a specific constraint language, such
as OCL, but use plain Smalltalk expressions. This simplifies the development, as
developers can use the well known tools and don’t have to learn a new language.
As OCL was influenced by Smalltalk, our constraint expressions resemble those
of OCL.

Example. To add a size constraint to a string description we use a block closure
(anonymous function) to ensure a maximal size of 5 characters. In case the
condition is not satisfied the error message “too long” is displayed:

aDescription addCondition: [ :value | value size <= 5 ] label: ’too long’

3 Interpreting Descriptions

Magritte descriptions can be interpreted in many different ways. Simple inter-
preters just iterate over the descriptions and perform different tasks on the
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associated model. In more generic cases we exploit the Visitor design pattern
to walk trough the description graph. The most immediate use case is the one
to automatically build views, editors and reports.

3.1 Building a View

The simplest interpreter that can be written is one that iterates over all descrip-
tions of a domain model and prints the label and the current values onto a text
stream. The following code shows everything that is needed to accomplish this
task on any described domain-model as aModel in the following:

aModel description do: [ :desc |
aStream

nextPutAll: (desc label);
nextPutAll: ’: ’;
nextPutAll: (desc toString: (desc accessor readFrom: aModel));
cr ].

First we ask the model for its description, then we iterate over its individual
attributes. Within the loop, we first print the label, then we ask the accessor of
the description to return the associated attributes from aModel and transform
this value to a string, so that it can be appended to the output. The resulting
output might look like:

Name: John Lennon
Birthday: 9 October 1940

Since every description knows how to convert its values to strings, we get a
readable list of all the described attributes of our domain-model. By defining
a different string-conversion strategy in descriptions, we are able to change the
way values are printed. When adding, removing or changing descriptions in the
domain-model, the above code will still print the correct output without having
to change a single line of the interpretation code.

3.2 Building an Editor

Most business applications today consist of a large number of input-dialogs that
need to be built and validated manually. One of the goals of Magritte was that
developers could specify how their domain objects can be modified, so that
it becomes possible to automatically build editors for different user-interfaces
frameworks, as seen in Figure 3.

Sending the message asComponent to a domain model returns a ready-to-use
Seaside component that can be plugged into the web application. As in Sec-
tion 3.1, Magritte will iterate over the descriptions and compose an editor. The
default interpreter creates XHTML markup that is annotated with a variety of
CSS classes, so that the layout and look can adapted to most needs by only
using a different style-sheet. For specific cases it is always possible to subclass
the interpreter or to define a different XHTML generation strategy on a per
meta-description bases.



112 L. Renggli, S. Ducasse, and A. Kuhn

Fig. 3. Interpreting descriptions for different GUI frameworks: the web (left) and Mor-
phic Squeak (right)

During an edit operation, Magritte works on copies of the values being edited,
so that the original data remains untouched. Before actually committing the
changes, Magritte checks if the model satisfies all its validation conditions. More-
over the framework ensures that there are no edit conflicts caused by other people
editing the same objects at the same time, and, if necessary, shows a warning.

All this is very convenient for software developers, as they don’t have to do the
caching, the validation and the conflict detection for every editor manually. Not
only does this increase the development speed, but it also makes the software
more robust, since all editing concerns are handled at a single place and are not
spread across all editors in the system.

3.3 Other Interpreters

Over the past few years many Magritte interpreters have been written:

Validate, Verify and Setup Objects. Whenever user input is requested incoming
data has to be validated. Existing graphs of objects need to be verified from
time to time to ensure validity. Complex graphs of objects need to be built and
initialized with default values. All these tasks can be accomplished by walking
trough a description graph and validate or build these objects on the fly.

Persistency, Indexing and Querying. Making objects persist is one of the most
daunting tasks. Magritte description are able to tell a interpreter how a graph of
domain models should be stored and loaded. For example Magritte can generate
SQL statements to retrieve and update objects in a relational database. In the
context of object databases it is crucial to build indexes to be able to efficiently
query that data. With Magritte these tasks can be automated.

Introspection, Reflection. The metamodel of Magritte provides additional infor-
mation that can be used to improve the development processes, for example in
the debugger and in the inspector a high level view can be provided instead of
a straight memory dump of the object layout.

4 End Users Customizability

Often dialogs in applications remain static after the initial development phase
and cannot be changed unless a new development effort occurs. Yet end users
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name
birthday

Person

name = 'John'
birthday = 9 Oct 1940
email = 'john@..'

john :Person

<instance of>

Meta-MetamodelDomain Data

:Description

:Description

<described by>

<described by>

Metamodel

:Description<described by>

<described by>

<reified by>

Fig. 4. The meta-levels of the Magritte metamodel

often need to rapidly adapt their applications to new business needs. In many
cases they would know how to make the required adaptations, if only the appli-
cation would let them do so.

As shown in Figure 4 there are different spots to specify, reify and interpret
the Magritte metamodels. The domain class Person is written by the application
developer. The class is described by a set of Magritte descriptions that are com-
mon to all instances of Person. These descriptions are either hardcoded into the
source-code of the application or have been specified at runtime by an end user.

john is an instance of the class Person. The instance itself references a set of
instance specific descriptions used to reify the class-based descriptions. These
descriptions are either dynamically built from the application logic or have been
manually specified by an end user using an editor as seen in Figure 5. Instances
that do not use instance-specific descriptions simply reference the set of class
descriptions. Furthermore to avoid the need to introduce an instance variable to
hold the instance-specific descriptions on all objects, we propose the use of an
adaptive model as presented in the next section.

Figure 5 shows a description editor that is part of a commercial workflow def-
inition and runtime engine. The editor opened on a specific workflow task allows

Fig. 5. A Magritte description editor that allows end users to change the metamodel
without writing code
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Fig. 6. An automatically built editor from runtime customized meta-descriptions dis-
playing if the form conditions are satisfied

end users to customize the existing metamodel to suit their particular needs.
Moreover, the end user is able to specify validation and transition conditions in
different sections of the user interface. When interpreted by the runtime engine,
see Figure 6, the specified metamodel is used to collect the data from the users
and to operate the workflow execution. Therefore, an end user can adapt forms
on the fly and see its effects directly. Furthermore the customized metamodel is
exploited to operate reporting and querying facilities on running workflows. It is
Magritte too, that is responsible to make all the meta-data and data persistent.

As we have illustrated in Figure 1, the possibility to work on two meta-
level applies to both end users and developers. This, and the fact that Magritte
describes itself, are the key concepts to enable end users to modify the metamodel
on their own.

4.1 Adaptive Model: Enabling End User Editable Meta-descriptions

To enable instance specific metamodels, Magritte introduces a generic object
model mapping descriptions to actual values, as seen in Figure 7. The Adaptive-

Adaptive
Model

Description

Object

+ copy()

Copies the values, but
not necessarily associated 
descriptions.

d
e
s
c
ri
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Fig. 7. An adaptive model, mapping a set of descriptions to actual model values
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Model has two instance variables, the first being used to refer to the descriptions
of the instance and the other one to keep a list of the actual values of the model.
Transforming the class of the adaptive model into a Trait [18] allows us turn any
existing class into an adaptive model and to combine the descriptions defined in
the class with the ones provided by the instance.

End users are able to edit the adaptive model at two different levels, at the
model and at the metamodel level:

Domain Data Editing. Since the adaptive model is described, an editor can
be built automatically (see Figure 6). The only difference is that the described
values are not stored in instance variables of the model, but are kept within a
hash table inside the adaptive model, mapping descriptions to their actual values.
This gives much better flexibility when descriptions are added and removed.

Metamodel Editing. The descriptions of an adaptive model can change on the fly,
since they are stored as part of the model-data. The descriptions can be either
changed programmatically by the developer, or through end user interactions
from a description editor. Since descriptions are described as well (see Figure 4),
it is possible to let Magritte build a meta-editor (see Figure 5).

Descriptions can be shared among different adaptive model instances or can
be unique to every instance. Therefore when copying an adaptive model one has
to specify if the descriptions should be copied as well. If descriptions are shared,
editing the metamodel affects all its associated instances.

5 Related Work

Yoder et al propose the type-square design pattern [19], based on the type object
that separates the entity from its entity type [20]. Magritte uses these patterns
as well, but it makes some generalizations, as seen in Figure 8: the distinction
between components and properties is not made. A component and a property
are just any kind of object. It is the same for component-types and property-
types. They are all descriptions with the same superclass.

JavaBeans [5] includes a property framework similar to the description hier-
archy of Magritte. However JavaBeans properties are solely based on the static
type signature of the instance variable. Other settings, such as if the value is read-
only, is determined implicitly through the absence of a write-accessor. JavaBeans
properties do not describe themselves.

One reason that most frameworks do not describe themselves is that they all
tend to be very domain-specific: some concentrate on the modeling of a specific
business model, others concentrate on a specific output format, such as for a
web framework. Unfortunately this leads to a model that is not able to describe
itself. Therefore a lot of additional work is required if end users should be able to
modify the adaptive-models. Magritte tries to consolidate everything by enabling
meta-editing using itself.

Muller et al [21] present an approach to platform-independent web appli-
cation modeling and development in the context of model-driven engineering.
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Fig. 8. (a) The type-square, and (b) the meta-recursive model of Magritte are both
making extensive use of the type-object design pattern

A specific metamodel (and associated notation) is introduced and motivated
for the modeling of dynamic web specific concerns. Web applications are rep-
resented via three independent but related models (business, hypertext and
presentation). A kind of action language (based on OCL and Java) is used
on these models to write methods and actions, specify constraints and express
conditions.

WebML [22] enables the high-level description of a web site according to dis-
tinct orthogonal dimensions: its data content (structural model), the pages that
compose it (composition model), the topology of links between pages (naviga-
tion model), the layout and graphic requirements for page rendering (presen-
tation model), and the customization features for one-to-one content delivery
(personalization model). WebML goes in the same direction as Netsilon: An ap-
plication is modeled using different perspectives and generated. Our approach
is different. Our object-oriented applications are implemented in Smalltalk but
meta-described, and this connected meta-description is used to support the gen-
eration of web user interface, queries and persistency. There is no automatic
code generation involved in our approach, therefore if the metamodel changes,
all the users of the metamodel behave the new way automatically.

6 Evaluation and Lessons Learned

Figure 9 compares two web-based content management systems, SmallWiki5

and Pier6. Both open-source systems have been written by the first author and
make it possible to collaboratively build web sites. SmallWiki does not have a
metamodel, all its features, such as the different views, the search engine, and the
persistency, are hardcoded. Conversely Pier, the successor version of SmallWiki,
is built from ground up using the Magritte metamodel. While the code base of
5 http://smallwiki.unibe.ch/smallwiki
6 http://www.lukas-renggli.ch/smalltalk/pier

http://smallwiki.unibe.ch/smallwiki
http://www.lukas-renggli.ch/smalltalk/pier
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SmallWiki

Model

1561 LOC

44%

View

1983 LOC

56%

Pier

Model

3078 LOC

63%

View

1812 LOC

37%

Fig. 9. Comparison of two web applications: SmallWiki and Pier (meta-described)

Pier is noticeably bigger, it also provides functionality that was not possible in
SmallWiki:

– As opposed to SmallWiki, Pier has a low coupling between model and view.
Different views are interchangeable and their implementations are relatively
small, as they only consist of Magritte glue code and some view specific
functionality.

– Pier is easily extensible as the entities of the model are specified declaratively.
The search engine, the persistency layer and user interface builders all take
advantage of the Magritte descriptions.

– Most aspects of Pier can be customized by end users at runtime without
having to write code. Additional data fields can be added to any page, to
make it simple to collect and display structured data on the web.

As stated by Ralph Johnson [6] a metamodel introduces additional complexity
to an application and therefore inexperienced developers might have conceptual
problems. Another problem might be a reduced execution speed, as there are
additional indirections introduced through the interpretation of the metamodel.
Comparing the execution speed of two systems like SmallWiki and Pier is diffi-
cult, as their features and implementation details don’t exactly match. Most of
the time other factors such as the network connection and persistency back-ends
are more critical than the use of an underlying metamodel.

To evaluate the speed penalty when using a metamodel we benchmarked the
text search of the two frameworks. Both frameworks are using the Visitor pattern
to walk over the object graph: in SmallWiki this is hard coded, while in Pier this
makes extensive use of meta-descriptions. For the benchmark we created a test
setup of 100 pages and run 100 queries on both implementation. As expected
SmallWiki performed better with a cumulated search time of 2456 ms. In Pier
the search took 8190 ms, so the meta-driven search is about 30% slower than
the hard coded one. Given the number of involved objects (a single page consists
of hundreds of described objects) text search is a hard task for the meta-driven
approach, as many descriptions have to be traversed and matched on the fly. We
expect a much better performance for other use-cases and we plan to perform
compile-time caching if necessary.
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We have described our experience of using a metamodel integrated in the
reflective metamodel of Smalltalk to support the development of flexible appli-
cation. Our metamodel is self-described which enables end user customization.

6.1 Lessons Learned

As we have observed while developing several real world applications, having a
meta-framework such as Magritte greatly reduces recurrent work, such as im-
plementing different views, editors and persistency. Often it is much simpler
to write a generic interpreter of the metamodel than to manually build spe-
cific implementations of the functionality in different places of the application.
Developers only change the description at one single place in the source-code
without having to refactor all places that deal with the object. More important
end users are enabled to reify the choices of the developer through a convenient
interface without having to know anything about the implementation and the
underlying programming language. Hence, the use of Magritte not only supports
the developers, but it makes the application more adaptable to changing needs
of end users and reduces the need for development iterations.

Extending the existing Smalltalk metaclass does not allow to keep the meta-
model independent of the actual implementation of the class. It should be pos-
sible to exchange the metamodel on the fly, and even use multiple metamodels
at the same time for the same underlying domain object. Moreover we would
like to let end users customize these model, without that they have to know the
underlying programming language.

The fact that descriptions are used to describe Magritte itself, makes the
system even more versatile: it gives end users the possibility to customize existing
models or to build new ones, without having to write a single line of code. The
interpreting software system can easily control how far this meta-customization
should go. We observed that exposing a small subset of Magritte to end users
greatly reduces complexity and increases productivity. Having adaptive models
is the key for customizable applications, to allow end users build their own data-
models.

As future work, we would like to investigate how the control flow of applica-
tions could be meta-described with Magritte. Especially in the context of web
application it would be interesting to model the flow between pages as a meta-
described graph, and again end user should be empowered to customize it on
the fly.
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Abstract. An important demand in Model-Driven Development is the
simple and efficient expression of model patterns. Current approaches
tend to distinguish the language they use to express patterns from the
one for modelling. Consequently, productivity is reduced by dealing with
a distinct new language, and new intermediate steps are introduced in
order to support pattern-matching. In this paper we propose a frame-
work for expressing patterns as model-snippets. We present how model-
snippets are specified upon concepts in a given domain (meta-model),
and how we perform pattern-matching with model-snippets, whatever
the meta-model. We also provide an implementation which is well inte-
grated with existing technologies, such as Eclipse Modelling Framework.

1 Introduction

Recently, hopes that modelling might play a more important role in the software
engineering process have been lived up by Model Driven Development initiatives.
These initiatives have been mainly advanced by the Object Management Group
and IBM through the Eclipse foundation. The main proposition of this approach
consists of considering models as first-class artefacts within the software develop-
ment process. The recent focus on these assets has raised several new issues [1].
An important demand is the introduction of more automatic ways for search-
ing into model repositories. This demand can be rephrased into the ability to
perform efficient pattern matching at the model level.

Pattern-matching at the design level is also used, for example, in order to
perform declarative transformations [2], to recover design-patterns in an object-
oriented software design [3], or to identify join points in a model from a pointcut
expression to weave aspects into models [4,5]. In all these cases, we can imagine
patterns as model snippets with some conditions, which are possibly expressed
by some predicates over the models that they wish to match. In fact, several
languages have been proposed to express these patterns [4,5] in this way. Un-
fortunately, most of these languages were designed to a specific domain, defined
by a specific meta-model. Moreover, approaches that implement pattern match-
ing over these languages tend to also be specific to these meta-models. This
limitation has been obstructing the application of pattern matching over new
meta-models, since each of them requires new support for pattern matching.
For instance, despite of the good results of current methods for aspect-oriented

G. Engels et al. (Eds.): MoDELS 2007, LNCS 4735, pp. 121–135, 2007.
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modelling, it is still difficult to play with its concepts over non object-oriented
paradigms or, even more, meta-models that do not extend UML.

In this paper, we propose a generic pattern framework for expressing pattern
at the model level and for performing pattern-matching. The language for ex-
pressing patterns is built on demand, conforming to an input meta-model of the
model that we wish to match. The main goal of simplifying the expression of
patterns at the model level, avoiding any textual regular expressions, is to assist
the design of these patterns with existing model editors for the user, what-
ever the meta-model. Moreover, we consistently define model patterns upon the
concepts of model-typing [6], which permits us to better manage such patterns
during model evolution. The results of this work are also integrated with existing
technologies, such as EMF1 (Eclipse Modelling Framework), Kermeta1 (a meta-
model engineering environment within Eclipse) and Flora-21 (An object-oriented
knowledge base language that extends Prolog).

The next section complements this introduction with a motivating example,
which will also guild us throughout the paper. Then, Section 2 presents our
approach for meta pattern-matching in details, and Section 3 describes how this
is implemented and integrated with Kermeta and Flora-2. Finally, Section 4
relates this work with existing approaches, and Section 5 concludes this paper.

1.1 Motivating Example

In order to motivate this work, a small state-machine meta-model is presented in
this section, in which we intend to perform a pattern-matching. As any typical
state-machine, it is mainly formed by a set of states and transitions among the
states. Additionally, the meta-model might include some constraints (expressed
in OCL, for example), which among other things may specify that the state-
machine must have a unique initial state.

Now, assume that we have a state-machine obeying this meta-model (left-hand
side of Fig. 1), which is composed by several complex states and transitions and
detailed with actions to be executed during the state-machine life-cycle.

Moreover, suppose that we want to find some simple patterns over this model,
such as cyclic-transitions or, in the opposite way, any transition that links two
distinct states. By the simple nature of these patterns, we wish to avoid dealing
with complex details of the state-machine meta-model, specifying just what is
needed for performing pattern-matching. Moreover, it makes sense to express
patterns in a similar language in order to make their specification easier and
avoid learning new languages. Another concern is to use the same mechanism
for each meta-model, instead of recreate them to each new meta-model. We can
summarise these concerns, as follows:

– How to have a simple way to express a valid pattern?
– How can we be guided by our meta-model in the specification of a pattern?
– Can we express patterns using existing editors for our meta-model?
– Are our models already supported by any existing pattern-matching tool?

1 see www.eclipse.org/emf, www.kermeta.org and flora.sourceforge.net
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Fig. 1. A model and a meta-model of state-machine

All things considered, we have identified, as other authors [4], that probably
the simplest way to express patterns is using the same concepts that we find
in our meta-model, i.e. expressing patterns as snippets of a valid model in our
meta-model. In order to realise this idea, and also to support its application
in new meta-models, we discuss throughout this paper a pattern framework for
expressing pattern as model snippets and for performing pattern-matching. The
questions raised in this section are also addressed during the paper, using the
small example of the state-machine to illustrate our discussion.

2 Patterns as Model-Snippets

As suggested in the previous section, patterns might be expressed as model snip-
pets, such as the UML templates [4] in Fig. 2. Having patterns expressed in this
way, it is possible to allow a user to draw patterns using editors that he is used
to, when drawing the models that he intents to match.

Each model-snippet defines a set of information existing in the model that
we wish to match. For example, in Fig. 2, a class named Trace is declared with

Fig. 2. UML Templates of a Class and State Diagram
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two methods (traceEntry and traceExit). Whenever, a class contains the same
name and methods, it matches with Trace. Obviously, the matched class might
have also more information, such as methods, attributes or associations.

Observe that the snippet in Fig. 2 was constructed for UML models [4]. Many
other domain specific languages could take advantage of a similar approach. In
brief, we can define model snippets as:

A set of objects S is a model snippet of meta-model MM iff:
– every object in S is an instance of a metaclass defined in MM;
– there exists a set M where M is a Valid Model w.r.t. MM and S is

subset or equal to M.
where, we assume that a model and a meta-model are respectively sets
of EMOF objects and classes.

Every valid model is also a snippet (w.r.t its own metamodel) and so is every
model that can be obtained by removing objects from that model. But not every
model that may be obtained by adding objects to such a model.

With this in mind, we show how we can express model-snippets in any domain.
We present in Sect. 2.1 a pattern-framework with the minimal elements that
forms a pattern. In Sect. 2.2, we show how to create model snippets and to
customise this framework according to a target meta-model. Finally, on Sect. 2.3
we formally define what we mean by pattern-matching using model-snippets.

2.1 Pattern-Framework Meta-model

Taking a closer look at the model-snippet in Fig. 2, we can see the snippet as an
instance of the UML meta-model. All elements in the snippets are instances of a
UML classifier, and furthermore inherit from a superclass NamedElement. For
instance, Trace is an instance of a UML Class identified with a feature name
equal to ′Trace′, and the method traceEntry is an instance of Operator with
name equal to ′traceEntry′. The same happens in the model that we want to
match. An important finding from this observation is that a snippet specifies a
subset of instances, and of associations among them, in the model that we want
to match. This set of instances is the information that we use to match models.
However, a pattern seems to be a little more complex than just a set of instances
of a meta-model.

It is clear from Fig. 2 that a pattern is mainly formed by a snippet part (in
each package of the figure) and a sequence of free-variables over this snippet part
(in rectangle on the top-right side of each package). The purpose of variables is
to define the selection criteria for a particular model element. A variant can
also be conceptually seen as a placeholder for any element in the intended model
that is matched to it. In most cases, variables represent elements that play a
significant role in the pattern, and that we have a special interest in matching
with. Contrary to variables, non-variables must be directly associated to a unique
element in the intended model, containing all features which identify the element.

Nearly all meta-models define a special feature that uniquely identifies each
element of their models. As we wish to be able to match variables with more
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than one element in the model, we do not take into account this identifier dur-
ing pattern-matching of variables. For instance, TracedClass is a variable in
Fig. 2. So it matches to any class, with any name, that has the same meth-
ods than TracedClass and an association to a class named ′Trace′. Trace is a
non-variable, and, furthermore, we take into account its name during pattern-
matching. As in most of the cases, UML uses a feature name as an identifier.
However, the feature can change in other meta-models.

The more information is expressed in the structural part of the pattern, the
more precise is the pattern-matching. However, an excessive and detailed snippet
might also uncover all positive matches. For this reason, as any model, a pattern
can have additional constraints, which help to better describe the pattern and
to relate variables with other elements in the model.

Note that constraints between variables and non-variables in a pattern should
still be valid after they have been matched with elements in the intended model.
From this standpoint, constraints might also help to describe false positives in
the set of possible matchings. In doing so, constraints can represent Negative
Application Conditions (NAC) in a pattern-matching, improving the accuracy
of the matching process.

Based on the concepts presented above, a possible generic meta-model for
patterns could be expressed as the one in Fig. 3. In the meta-model, Pattern
represents the whole pattern, and PatternStructure represents its structure.
The structural part contains a PModel with a set of instances of classes in a
given meta-model, which we wish to be related to the metamodel that describes
the models in which we look for matches (intended model). PatternStructure
has also a set of Role, which express pattern variables in the structural part.
Additionally, the pattern can also have some constraints, or invariants, that,
here, might be expressed in OCL or Kermeta.

Fig. 3 presents what we call a Pattern Framework. PModel is the point (hot
spots) where the framework can be adapted or specialised by the developer. The
specialisation of our framework to the meta-model that describes the intended
models is described in the next section.

Fig. 3. Meta-model of the pattern framework
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2.2 Constructing Model-Snippets

Most of the time, the meta-model (MM) of the intended model is too restrictive
to represent patterns. The reason for that is very simple; patterns have to be
expressed in a higher level of abstraction, such as model-snippets (see definition
in the beginning of Sect. 2). For example in the state machine meta-model, it is
totally understandable that someone does not want to provide the mandatory
event of a Transition, or even want to instantiate a V ertex, which is defined as
abstract, in order to match over instances of State or PseudoState.

We wish that a snippet relies as much as possible on the same concepts of
MM . In order to do that, we construct by demand a more flexible meta-model
(MM ′) that allows us to represent abstract patterns with all concepts of the
meta-model of the intended model. If we imagine a flexible meta-model MM ′

that is equals to MM , except that:

– No invariant or pre-condition is defined in MM ′;
– All features of all classes in MM ′ are optional;
– MM ′ has no abstract element.

Then, we can notice that all concepts in MM are also represented in MM ′.
MM ′ describe a wider range of models, including all models described by MM
(see Fig. 4). This is obtained by removing all restrictions that exist in MM : in-
variants, mandatory features, nonexistence of instances of certain class. To allow
features to be optional, we just set its lower bound as zero. These restrictions
can be taken rewritten as invariants over a group of classes S, and any group of
classes with a weaker invariant could be taken as a generalisation of S [6].

Note that any model that conforms to MM also conforms to MM ′, and,
furthermore, any model-snippet that conforms to MM also conforms to MM ′.
A detailed discussion about this conformance is presented in Sect. 2.4. This is
an important result, it shows that we can still use existing graphical editors to
draw pattern snippets and use them for pattern-matching. It also says that any
meta-model that generalises MM can be used to specify more abstract patterns.

For example, we can generate a new and flexible meta-model (MM ′) from the
state machine meta-model in Fig. 1 (MM). MM ′ might describe, for instance,
a Region with zero InitialStates or a State with no Activity. It also describes
V ertex as a concrete class, allowing instances of it.

In order to finish the automatic building the meta-model of model snippets
according to a specific meta-model, we need to merge our general framework
for patterns (Fig. 3) with this restrictiveness meta-model (MM ′), which takes

Fig. 4. Process for deriving a meta-model for pattern snippets
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Fig. 5. Process for customising the pattern framework

into account concepts in the intended domain (MM). This composition is called
a weaving because this transformation integrates PObject, which comes from
the pattern framework (PatternFramework), as a superclass of all meta-classes
in MM ′. The transformation can be compared to an interface introduction in
AspectJ1 that adds a new superclass to a type. Our weaving process is equiva-
lent to this mechanism. The implicit pointcut used in our weaving applies the
introduction of the PObject superclass into all the metaclasses that do not have
any superclass. The whole process to derive MM ′ from MM and to permit the
specification of valid pattern snippet(PATsnippet) is presented in Fig. 5.

For example, we can generate a new meta-model that weaves our pattern
framework and the state machine meta-model. It includes classes from both
framework and meta-model, and additionally hook all classes from the latter
with PObject. Then, all classes that do not have a super class in MM ′ inherit
from PObject after the weaving process. Fig. 6 shows the inheritance between
some of these classes and PObject. As a result, we obtain a meta-model that
can be used to express model-snippets and also can be taken as an input of the
pattern-matching mechanism.

Fig. 6. Weaved state machine meta-model

2.3 Pattern-Matching Behaviour

In this section, we describe what we mean by pattern-matching using model
snippets. We make use of a formal notation that looks like OCL, but with explicit
use of quantifier operators of the first order logic. We also assume that any
instance of MM ′ and MM is also an instance of Model, as it is presented in
Fig. 7. Where, Model contains a elements reference with a set of EMOF object
instances.
1 see www.eclipse.org/aspectj.
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In order to better represent our ideas, we define some auxiliary (private)
methods in PatternMatcher. We have included the method Booleancontains
(Obj1 : EObject, Obj2 : EObject) to indicate when an object Obj1 contains all
the features that an object Obj2 has, and Booleancontains(M1 : Model, M2 :
Model) to indicate when all objects in model M1 have all objects in a model
M2. These methods are specially used to know when a model M2 is a snippet
of M1.

contains(M1 : Model, M2 : Model) = contains(M1, M2, {}, {}) (1)

contains(Obj1 : EObject, Obj2 : EObject) = contains(Obj1, Obj2, {}, {}) (2)

contains(M1 : Model, M2 : Model, fIds : EString[0..∗], roles : Role[0..∗]) = (3)

∀e2 ∈ M2.elements • ∃e1|contains(e1, e2, fIds, roles) (4)

contains(Obj1 : EObject, Obj2 : EObject, fIds : EString[0..∗], (5)

roles : Role[0..∗]) = (6)

∀r2 ∈ Obj2.getAllReferences() | Obj2.eGet(r2).isDefined() • (7)

∃r1 :∈ Obj1.getAllReferences()|r2.name = r1.name ∧ (8)

contains(Obj1.eGet(r1), Obj2.eGet(r2), fIds, roles) ∧ (9)

∀a2 ∈ Obj2.getAllAttributes() | Obj2.eGet(a2).isDefined() • (10)

∃a1 :∈ Obj1.getAllAttributes()| (11)

(a2.name = a1.name ∧ Obj1.eGet(a1) = Obj2.eGet(a2)) ∨ (12)

(∃ro : roles|ro.player = Obj2 ∧ a2.name ∈ fIds) (13)

We also included two auxiliary methods that take into account the list of fea-
tures used as identifiers (fIds) in the model type (as we said before, this list
changes from a domain to another) and a list of variables (roles). The method
Booleancontains(M1, M2, fIds, roles) is used to indicate that M2 is a snippet
of M1 considering a set of feature identifiers and pattern variables. With the help
of a method with similar signature for objects, it checks if every objects in M2

has a counterpart in M1, checking every association (lines 7-9) and comparing
every attribute (lines 10-13). While the attributes are checked, feature identifiers
of a pattern variable are ignored (line 13).

However, pattern-matching is not solely about detecting that a pattern snip-
pet exists in a model. We need to cope with the possible bindings of the pattern
variables with the intended model. For our purposes, we define pattern-matching

Fig. 7. Abstraction level of MM and MM ′
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as the set of possible bindings (tuples with variable name and object) from the
pattern variables into the objects of the intended model.

patternMatching(pat : Pattern,m : Model) : Role[0..∗][0..∗] = (14)

lets patsnpt = pat.structure.snippet ∧ vars = pat.structure.variables ∧ (15)

ids = pat.featureIDName (16)

∀snpt : Model | contains(m, snpt) ∧ contains(snpt, patsnpt, ids, vars) ∧ (17)

� ∃minorsnpt : Model | minorsnpt! = snpt ∧ contains(snpt,minorsnpt) ∧(18)

contains(minorsnpt, patsnpt, ids, vars) • (19)

∃setroles ∈ result | (20)

∀es ∈ snpt.elements, ro ∈ vars | contains(es, ro.player, ids, vars) ∧ (21)

(∀(ro.name, e) ∈ setroles | e = es) • (ro.name, es) ∈ setroles (22)

It the above expression, the patternMatching method is formed by two steps,
first, in the lines 17-19, the smallest snippets of the intended model that contains
the pattern structure are found. Then, in lines 20-22, the bindings with the
objects of these snippets are finally defined. This is a very general and inefficient
definition. We use it here for explanation purposes. The way that we address its
implementation is described in the next section.

2.4 Model-Snippets During Model Evolution

During a software evolution, an important question that might raises is:

– How useful is a model-snippet (or pattern) when definitions in the meta-
model are changed ?

The need for identifying relationships between models, including model-
snippets, suggests that we might examine model-typing [6]. Indeed, we need
to identify a type for the model-snippet in order to verify if a pattern can still
be applied in a certain domain, after changes in the meta-model.

For this purpose, we can think in patternMatching() (see Fig. 3) as a
parametrized type operation, that can be performed to any model that con-
forms to a criterion. A good starting point for this criterion is to use type check-
ing based on the type relationship matching [6] (< #), where any operation
Op[X < #MMT ] parametrized with the group of types X can be successfully
performed when X matches to a group of types MMT . Generally speaking,
matching2 in this context is satisfied when all class ct in MMT has a respective
class cx in X that matches to it. A class cx matches to another ct if: 1) cx in-
cludes all features of ct, 2) and, for all associations of ct with other class c

′

t there
is an association in cx to a class c

′

x, which contains c
′

t.
Despite we have presented a pattern-framework that is independent of any

meta-model, we can use model type as a pre-step criterion for verifying the
validity of a pattern in a specific domain, comparing the model types of the
2 Do not mix pattern-matching with the type relationship called matching. We use

only matching when we refer to the latter in this paper.
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pattern snippet and the intended model. This criterion can be expressed as a
pre-condition of the pattern-matching operation, as follows.

patternMatching(pat : Pattern,m : Model) : Role[0..∗][0..∗]
pre : pat.structure.snippet.getModelType() <#m.getModelType()

From the expression above, we identify that we can use any meta-model MM ′

to describe a pattern snippet, provided that MM ′<#MM . So, in other words,
a model-snippets is still useful if the changes applied to a meta-model MM does
not make it less abstract than the MM ′.

3 Implementation

From Sect. 2, we can see how pattern-matching is performed. However, an ef-
ficient implementation might not be so easy to construct. Fortunately, this is
an extensive topic of research, which has produced several existing languages
and APIs with embedded pattern-matching mechanisms [2,7]. For that reason,
we have decided to rely on these existing tools as much as possible in order to
integrate our ideas and to contribute with existing tools in this research topic.

Our implementation relies on the Kermeta language [8], an executable and
object-oriented DSL (Domain Specific Language) for meta-model engineering.
Kermeta is built as a conservative extension of EMOF, giving special attention
to the specification of abstract syntax, static semantic (OCL) and operational
semantics as well with connexion to the concrete syntax. Consequently, an EMF
model is seen as a Kermeta model without operational semantics. Through our
implementation, we contribute with pattern-matching mechanisms to the meta-
model engineering environment available with Kermeta, which includes model
transformations, aspect weaving and loading of EMF models.

For our purpose, we have implemented a pattern-matching front-end in Ker-
meta. This front-end behaves as an abstract interface between our framework for
pattern-matching and existing engines with embedded pattern-matching mech-
anisms. In order to delegate computation to these engines, we require the imple-
mentation of a specialised back-end for each engine.

As a proof of concept, we have constructed a back-end that uses a Prolog
engine to perform pattern-matching. Using this approach, facts are derived from

Fig. 8. The workflow of pattern-matching implementation using flora2
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Fig. 9. A simplified meta-model of Flora-2

the model that we intent to match and inserted in a knowledge base of the engine.
Then, queries are generated to search for a subset of the facts that matches with
the pattern. An abstract workflow of this back-end is presented in Fig. 8.

Initially, the front-end inputs the pattern and the intended model into the
back-end in Kermeta. The later transforms both into an intermediate model in
Flora-2, an object-oriented Prolog dialect that is suitable to represent concepts
in EMOF [9]; a simplified meta-model for Flora-2 is presented next. In order
to interpret this model in Flora-2, we serialise it in the concrete textual syntax
of Flora-2. Then, our back-end implementation in Kermenta sends the Flora-2
program to the Prolog Engine trough a Java proxy layer; Kermeta supports a
seamless integration with Java programs. The Engine interprets the program
and returns the result for our query. From the analysis of this result, we obtain
a set of bindings from pattern variables into elements in the intended model.

Being object-oriented, Flora-2 offers all necessary counterparts for concepts
in EMOF. However, as it is a conservative extension of Prolog, Flora-2 still is
a fact-based language. All information about a class or instance is distributed
in several atoms1 (AtomicFormula), as it is presented in Fig. 9. Fig. 9 shows a
simplified and incomplete meta-model for Flora-2, which only addresses concepts
that Flora-2 takes from F-Logic.

Any concept in Flora-2 starts being represented by the most basic atom, a
Term, which might be classified as a primitive type, a constant or a variant;

1 Despite Molecule constructions permit the direct representation of object and classes
and their features, it still is a syntax sugar for a set of related atom in the Knowledge
base. Furthermore, it is not represented in our meta-model.
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the last one is usually used in queries. Initially any new term might represent a
class or an object in the knowledge base. In a class declaration, its super-types
are declared through ISASubClass atoms, and features of the class are declared
through SignatureAtom atoms. For example, the class State in Fig. 1 is repre-
sented by a term with the same name, its superclass by a term V ertex, and it is
the host of a feature entry of class Activity. These atoms are textually expressed
in Flora-2 as State :: V ertex and State[entry ∗=> Activity]; they could also be
condensed in a unique molecule State :: V ertex[entry ∗=> Activity]. The type of
an object instance is represented through an ISAInstance atom, and the value
of its features through DataAtom atoms. So, a state S1 with entry entryAct
and exit exitAct, is textually expressed as S1 :: State, S1[entry −> entryAct],
S1[entry −> entryAct].

After transforming the intended model and its meta-model into a Flora-2
model, using the meta-model in Fig. 9, the back-end generates a program in
Flora-2 in its textual concrete syntax. So, for the example presented in Sect. 1.1,
we obtain the following program. For brevity, we do not present all program.

// Facts about the meta-model
PseudoState :: Vertex, State :: Vertex.
FinalState :: State, InitialState :: PseudoState.
...
//Facts about the model
SM1:StateMachine [name -> "sm1", topRegion -> Reg1].
Reg1 [transition => {T1, T2, T3, T4, T5}, vertex => {S0, S1, S2, S3}].
T1:Transition[name -> "T1", source -> S0, target -> S1, trigger -> event1].
T2:Transition[name -> "T2", source -> S1, target -> S1, trigger -> event2].
T3:Transition[name -> "T3", source -> S1, target -> S3, trigger -> event3].
T4:Transition[name -> "T4", source -> S2, target -> S1, trigger -> event4].
T5:Transition[name -> "T5", source -> S1, target -> S2, trigger -> event5].
S0:InitialState[name -> "S0", owner -> Reg1].
S1:State[name -> "S1", entry -> Activity1].
S2:State[name -> "S2", entry -> Activity2].
S3:FinalState[name -> "S3"owner -> Reg1].

In the program above, we summarised some facts about subtyping in the meta-
model, which we use next for pattern matching. Subtyping is expressed in the
form Class :: SuperClass. Classes are themselves expressed using atomic clauses
(atoms) or molecules. And, objects are represented in the form ObjectID :
Class[feature1−> value, ..., featuren => setOfV alues], where the operators
−> and => map a feature into a single and multiple values, respectively.

In this way, if we wish to detect all transitions from two states, excepting
self-transitions, we would use the pattern presented in Fig. 10. The transition,
its source and target states are presented in the left-hand side of the figure, while
the false-positive pattern with a cyclic transition is shown in the right-hand side.

The Flora-2 textual representation of this pattern, considering the false-
positive pattern in the right-hand side of figure, is expressed bellow. The query
is composed of clauses, conjuncted by commas, with Flora-2 variables (symbols
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Fig. 10. Patterns of state machines

with a ? suffix) to represent all pattern variables. The false-positive is represented
with a negation clause not((...))).

?link : Transition[source -> ?SourceState, target -> ?TargetState],
not ((?link : Transition [source -> ?SameState, target -> ?SameState])),
?SourceState : State, ?TargetState : State, ?SameState : State.

The query result is presented as follows. Note that the transition from S1
to the final state (S3) is also returned, since the type FinalState inherits from
State in the state-machine meta-model (see Fig. 1).

?source = S1
?target = S2
?link = T5

?source = S2
?target = S1
?link = T4

?source = S1
?target = S3
?link = T3

After analysing the set of bindings from the inference engine, which maps
variables into elements of the intended model, we check constraints over the
pattern considering each new set of binding for roles in the pattern. This final
checking is useful to eliminate false positives in the pattern. Note that part of
these constraints might be anticipated through the representation of patterns
for false positives, using the falsepositive feature of the pattern (see Fig. 3).
Elements in falsepositive can also be conceptually seen as an negative expression
in the query in Prolog, restricting the possible results in the search. Despite the
possible use of negative patterns, constraints are always checked, as a post-
procedure to filter false positives from the results of the pattern-matching.

After the elimination of false positives, a final set of bindings are presented to
the user, or program which invoked the pattern-matching, who can chose among
the bindings the most convenient one.

4 Related Work

Pattern-matching has been analysed theoretically in various contexts. For meta-
model engineering, the most successful results have been achieved in approaches
that use graph transformation, such as GReAT1 and AGG1. They rely on graph
theories to perform searches in an intermediate graph model that represents the
source model. Patterns are also constructed as graphs, which are used to match
with model graphs. Differently, but still using an intermediate language, MOLA
has an efficient approach for pattern matching [7] through SQL queries in a
model repository located in a database.
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The unique exception, known by the authors, that proposes a concrete syntax
for pattern for graph transformations is reported in [10]. Similar to our approach,
this work discuss how a metamodel for patterns can be generated conforming
to the meta-model of the model that we wish to match, and how these patterns
can visualised using a concrete syntax. Besides its originality, this work does
not address negative application conditions and constraints (like in OCL) as we
do.

In ATL [2], pattern-matching is used to identify a source element for declar-
ative transformations. Opposite to real pattern-matching, so called pattern-
matching in ATL is used in a simplistic way to identify a unique element, rather
that a snippet of the model. Features related to pattern-matching in all these
languages are encompassed in the approach presented in Sect. 2, which solves a
common deficiency in non-graph-like transformation languages, as Kermeta.

Concerning the implementation in Sect. 3, pattern-matching implemented via
Prolog have been already studied in [3]. However, contrary to our approach, this
work has focused in the detection of design patterns in object-oriented programs.
While the process steps are very similar, our implementation concerns the ap-
plication of Prolog in pattern-matching at the model level. The derivated facts
from the meta-models and models in this section are also aligned to the formal
mapping of class and object into Flora-2 in [9] and other transformations using
F-Logic [11]. However, we take as input EMOF classes and objects.

5 Conclusion

Nearly all of graph model transformation languages use pattern-matching as the
main functional element for defining how the source model components must be
detected in model transformations or weavings. For this reason, this work brings
an important contribution to Kermeta, permitting the use of pattern-matching
mechanisms in its environment. It also brings an alternative between so many
existing pattern-matchings using graph-transformations.

In Sect. 2, we also present a simple meta-model framework for patterns, which
is beyond any language or implementation. We have shown that this framework
might be used in conjunct with any meta-models in order to represent concepts
in existing or new domains. We have also discussed how pattern snippets might
be validated according to the model type of models in these domains. This have
shown that indeed, although its limitations, we can use these meta-models to
guide the specification of pattern snippets; this also brings some advantages in
the use of existing model editors to express model-snippets. This consideration
of model type in pattern-matching, and the relation between patterns and the
models that they intent to match, have been neglected so far.

An efficient implementation of these ideas is proposed in Sect. 3, through the
integration of Kemeta and Flora-2. This is by itself an original contribution,
concerning model transformations from arbitrary EMOF model to Flora-2 and
the presentation of a, despite simplified, meta-model for Flora-2.
1 see tfs.cs.tu-berlin.de/agg and repo.isis.vanderbilt.edu/tools
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As future work, we plan to match semantic equivalent models. Examples of its
need are mainly found in the pattern-matching of behavioural models, since too
much semantic information is required. Another future work is to take advantage
of transaction logic to directly introduce OCL constraints as Flora-2 facts, in
order to improve the overall performance of our implementation. Indeed, such
optimisation contributes to a better integration with the Prolog engine, which
uses execution strategies with backtracking to reduce the exhaustive search.
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Abstract. Consistency management is a major requirement in software
engineering. Although this problem has attracted significant attention in
the literature, support for inconsistency resolution is still not standard
for modeling tools. In this paper, we introduce explicit side-effect expres-
sions for each inconsistency resolution and costs for each inconsistency
type. This allows a fine-grained evaluation of each possible inconsistency
resolution for a particular inconsistent model. We further show how an
inconsistency resolution module for a modeling tool can be designed and
implemented based on our approach. We demonstrate the applicability of
our approach for resolution of inconsistencies between object life cycles
and process models.

1 Introduction

Consistency management is a major requirement in software engineering [6]. It
requires one to establish consistency constraints that can be checked to identify
inconsistencies in models [5,11]. For resolving a particular inconsistency, it is
common practice to specify one or more suitable inconsistency resolutions that
can transform the model so that the consistency constraint is no longer violated.

Although many solutions addressing various aspects of inconsistency man-
agement have been proposed [7,13,20], most modeling tools currently do not
offer adequate support to the user for resolution of inconsistencies, in particu-
lar for behavioral models such as activity diagrams, statecharts and sequence
diagrams. One reason for this is that inconsistency resolution for these models
requires transformations that often have side-effects. Such side-effects include
both, introduction of new inconsistencies and expiration of existing inconsis-
tencies [12]. As a consequence, in the presence of numerous inconsistencies in a
model, many alternative resolutions can be applicable and it is often not obvious
which resolution is most appropriate to apply. One technique that has been pro-
posed to tackle this problem is the detection of potential dependencies between
inconsistency resolutions using dependency analysis [12,13,22]. This analysis is
performed without taking a particular inconsistent model into account. However,
only some of the discovered dependencies are usually relevant for a given incon-
sistent model and these must be precisely identified for comparing alternative
resolutions.

G. Engels et al. (Eds.): MoDELS 2007, LNCS 4735, pp. 136–150, 2007.
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In this paper, we propose an approach where inconsistency resolutions are asso-
ciated with explicit side-effect expressions. Such side-effect expressions are evalu-
ated given a concrete inconsistent model to determine whether or not a resolution
will have side-effects. This leads to precise knowledge of both expired and induced
inconsistencies before applying a particular resolution. Further, we introduce the
concept of costs for inconsistency types that allows one to prioritize resolution
of different inconsistencies and calculate the total inconsistency cost for a given
model. In combination with side-effect expressions, cost reductions for a resolu-
tion can be calculated in advance. Overall, our approach leads to an improved way
of inconsistency resolution, because it allows a fine-grained comparison of alterna-
tive resolutions. In addition, explicit side-effects are also used to avoid re-checking
the whole model for inconsistencies after applying a resolution.

We demonstrate our approach using a case study that deals with inconsistency
of object life cycles and process models in the context of IBM Insurance Appli-
cation Architecture (IAA) [1]. For showing the feasibility, we briefly present a
design of an inconsistency resolution module based on the proposed approach.
Using this design, we have implemented a prototype extension to IBM Web-
Sphere Business Modeler [2] for resolving inconsistencies between object life
cycles and process models.

The paper is structured as follows: Section 2 presents our case study by in-
troducing object life cycles, process models and inconsistencies that can occur
between these models. In Sect.3, we introduce the concept of explicit resolution
side-effects and costs for inconsistency types. Design and implementation of tool
support for inconsistency resolution are discussed in Sect.4. We compare our
approach with existing work in Sect.5 and conclude the paper in Sect.6.

2 Inconsistency of Object Life Cycles and Process Models

In this section, we first introduce object life cycles and process models, together
with an example inspired by IAA. We then discuss inconsistencies that can occur
in these models.

An object life cycle [4,9] captures all possible states and state transitions for
a particular object type and can be represented as a state machine. Figure 1(a)
uses the UML2 State Machine notation [3] for modeling a life cycle for objects
of type Claim in an insurance company. The object life cycle shows that after a
claim has been registered, it goes through an evaluation process and can be either
granted or rejected. Rejected claims are closed directly, while granted claims are
first settled and then closed. According to this model, every claim is created in
state Registered and passes through state Closed to the only final state.

Our case study deals with reference object life cycles that are prescriptive
models capturing how objects should be evolved by business processes. Consis-
tency with such reference object life cycles may be an internal business policy
or an external legal requirement.

A process model captures the coordination of individual actions in a particular
process and the exchange of objects between these actions. Figure 1(b) shows
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Fig. 1. (a) Reference object life cycle for claims (b) Claim handling process model

a process model for a simplified Claim handling process in the UML2 Activity
Diagram notation [3]. In the beginning of this process, a claim is opened and then
an evaluation decision is made. If the claim is granted, a settlement is prepared
for it. During settlement of a claim, the claimant may appeal for a review of
the settlement amount and conditions, in which case these are reviewed and the
adjusted settlement is then carried out. Only settled claims are closed in this
process.

A process model can also depict how an object changes state as it moves
through the process, which is explained in detail in [17]. In our example, the
open claim action creates a claim in state UE (UnderEvaluation) and passes it to
action decide on claim that changes the claim’s state to either GR (Granted) or
RJ (Rejected). The following decision node passes claims in state GR to prepare
settlement and those in state RJ to notify rejection.

In order to define consistency of a given process model with respect to an ob-
ject life cycle, we first consider the relation between these models in the UML2
metamodel. Figure 2 shows an extract from the UML2 metamodel that contains
relevant classes for State Machine and Activity modeling. The inState association
of a Pin to a State makes it possible to specify input and output object states
for ActivityNodes in an Activity. We assume that control nodes also have pins that
are not explicitly shown in Fig.1(b). For a more convenient means of referring
to input and output object states of ActivityNodes, we define additional input-
state() and outputstate() operations, shown as Object Constraint Language [10]
definitions at the bottom of Fig.2.

We assume that when executing a process model, state transitions of objects
are induced. We also identify states in which the process creates objects and
states that objects can be in upon termination of the process:
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Definition 1 (Induced transition, first state and last state). Let a
process model P (instance of Activity) and an object type o (instance of Class)
be given.

– An induced transition of o in P is a triple (a, ssrc, stgt) such that there is
an Action a in P with ssrc ∈ a.inputstate(o) and stgt ∈ a.outputstate(o);

– A state sfirst is a first state of o in P such that sfirst ∈ a.outputstate(o)
for some Action a that has no input pins of type o;

– A state slast is a last state of o in P such that slast ∈ n.inputstate(o) for
some ActivityNode n that has no output pins of type o.

Fig. 2. UML2 metamodel extract

For consistency of process models and object life cycles, we distinguish be-
tween conformance1 and coverage [17]: Conformance requires that a given process
model does not manipulate objects in a way that is not defined in the given life
cycle. Coverage requires that objects used in the process model cover the entire
scope of their life cycle. In the following, we directly define inconsistency types:

Definition 2 (Inconsistency types). Given an object life cycle OLC (in-
stance of State Machine) for object type o (instance of Class) and a process model
P (instance of Activity), we define the following inconsistency types:

– non-conformant transition: an induced transition (a, ssrc, stgt) of o in P ,
such that OLC contains no transition from state ssrc to state stgt;

– non-conformant first state: a first state sfirst of o in P , such that OLC
contains no transition from the initial state to state sfirst;

– non-conformant last state: a last state slast of o in P , such that OLC con-
tains no transition from slast to a final state;

1 Called compliance in [17].
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– non-covered transition: a transition (ssrc, stgt) in OLC where ssrc is not the
initial state, such that there is no induced transition (a, ssrc, stgt) of o in P
for any action a;

– non-covered initial state: a state si in OLC that has an incoming transition
from the initial state, such that si is not a first state of o in P ;

– non-covered final state: a state sf in OLC that has an outgoing transition
to a final state, such that sf is not a last state of o in P .

We discover the following inconsistencies in the example claim handling process
with respect to the reference life cycle for claims (Fig.1): non-conformant tran-
sitions (settle, GR, NR), (settle, RE, SE), (review, NR, RE), a non-conformant first
state UE, a non-conformant last state RJ, a non-covered transition (RJ, CL), and
a non-covered initial state RG. Two inconsistencies of the same type are dis-
tinguished by their contexts that comprise model elements contributing to the
inconsistency. For example, the context of the non-conformant transition (settle,
GR, NR) comprises action settle, and states GR and NR.

3 Inconsistency Resolution with Side-Effects and Costs

In this section we first identify requirements that a solution for inconsistency
resolution needs to satisfy, motivated by the case study. We then introduce our
proposed solution and explain how it addresses these requirements.

Given a set of inconsistencies such as those discovered for the claims handling
example in Sect.2, it is unclear which inconsistency should be resolved first.
If our goal is to achieve conformance with the reference claim life cycle, but
not necessarily full coverage of it, non-conformance inconsistencies will be of
higher priority for the resolution than non-coverage inconsistencies. The first
requirement is therefore that priorities of different inconsistency types
must be made explicit in the resolution process (Req1).

In order to support the user in resolving a particular inconsistency, we define a
number of alternative resolutions for each inconsistency type, following existing
work [21,22]. In this paper, we selected three resolutions for resolving a non-
conformant transition (an induced transition (a, ssrc, stgt) of o in P , such that
OLC contains no transition from state ssrc to state stgt). These are informally
specified in Fig.3: (a) r1 removes state ssrc from a.inputstate(o), (b) r2 removes
stgt from a.outputstate(o) and (c) r3 removes the entire action a from the process
model. We assume that removing the last input or output state also involves
removing the associated pin.

Suppose that from the set of discovered inconsistencies for the claims handling
process, we choose to first resolve the non-conformant transitions (settle, GR, NR)
and (review, NR, RE). This gives rise to three alternative resolutions for each incon-
sistency, shown in Fig.4. To assist the user in choosing how to resolve a particular
inconsistency, advantages and disadvantages of each available resolution
should be identified and used to rank the resolutions (Req2).

Some resolutions may have side-effects, in other words an application of a reso-
lution may not only resolve its target inconsistency, but also introduce new incon-
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Fig. 3. Resolutions for a non-conformant transition

sistencies (induced inconsistencies) or remove other existing inconsistencies (ex-
pired inconsistencies) [12]. For example, if we apply r1 to the non-conformant
transition (settle, GR, NR) as shown in Fig.4 (b), we will introduce a new non-
covered transition (GR, SE). Applying r1 to the non-conformant transition (review,
NR, RE) introduces a new non-covered first state RE, see Fig.4 (e). This shows
that applying the same resolution to different inconsistencies may yield differ-
ent side-effects. Generally, the user will become aware of the side-effects of a
resolution only after applying it. To improve this situation, side-effects of a
resolution must be calculated before the resolution is applied (Req3).

In the following, we explain our approach to inconsistency resolution that
satisfies the identified requirements.

Let M = {me1, ..., men} be a model comprising model elements me1, ..., men.
We denote the set of inconsistency types defined for M as TM , where each
inconsistency type t ∈ TM is associated with a set of resolutions Rt. In our ex-
ample, the claims handling process together with the claim life cycle form the
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Fig. 4. Resolving non-conformant transitions in the example
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model M . The set of inconsistency types is TM ={ncnf tran, ncnf first, ncnf last,
ncov tran, ncov init, ncov fin} and comprises non-conformant transition, first state,
and last state, non-covered transition, initial state and final state inconsis-
tency types, respectively. For non-conformant transitions, the resolution set is
Rncnf tran = {r1, r2, r3}.

We denote the set of inconsistencies in M as IM . Each inconsistency i ∈ IM

has a type t ∈ TM and a context {mej, ...mek} ⊆ M of model elements that con-
tribute to this inconsistency, hence we write i = t(mej , ..., mek). In the example,
the set of inconsistencies is IM = { ncnf tran(settle, GR, NR), ncnf tran(review, NR,
RE), ncnf first(UE), ncnf last(RJ), ncov tran(RJ, CL), ncov init(RG)}.

We introduce costs for different inconsistency types to reflect that resolving
inconsistencies of some types has a higher priority than of others (Req1).

Definition 3 (Cost of an inconsistency type). The cost of an inconsistency
type is defined by a function cost : TM → N that maps an inconsistency type to
a natural number.

Costs can either be assigned to inconsistency types once and then used for in-
consistency resolution in every model, or different costs for each model can be
assigned to reflect a specific resolution goal. For our example, we assume that
our main goal is to achieve conformance of the claim handling process. We fur-
ther consider that conformance of transitions and last states is more important
than that of first states. Therefore, we assign the following costs to the differ-
ent inconsistency types: cost(ncnf tran) = 3, cost(ncnf first) = 2, cost(ncnf last) = 3,
cost(ncov tran) = 1, cost(ncov init) = 1 and cost(ncov fin) = 1.

We further associate each resolution with one or more side-effects, each having
an explicit side-effect expression that can be evaluated given an inconsistency
in a concrete model. Evaluating side-effect expressions allows us to calculate
side-effects of each resolution before they are applied (Req3).

Definition 4 (Side-effect and side-effect expression). A resolution r ∈ Rt

for a given inconsistency type t ∈ TM is associated with a set of side-effects
Er = Er

− ∪Er
+, where Er

− are side-effects that expire existing inconsistencies
and Er

+ are side-effects that induce new inconsistencies. Each side-effect affects
inconsistencies of one type, defined by function type : Er → TM . A side-effect
e ∈ Er is associated with a side-effect expression expe : IM → P(IM ′), where
M ′ denotes the model that would be obtained by applying r to M .

In Table 1, we define side-effect expressions for resolutions r1, r2 and r3, which
were identified by manually analyzing each resolution. We currently specify ex-
pressions informally, although this could also be done using first-order logic or
the Object Constraint Language [10]. Applying r1 involves removing ssrc from
a.inputstate(o), which may resolve non-conformant transitions that are induced
by action a other than the target non-conformant transition (a, ssrc, stgt). This
means that r1 can expire existing non-conformant transitions, as defined in expe1 .

Furthermore, some induced transitions that provide coverage for a transition
in the life cycle may no longer be induced after r1 is applied. To capture this in
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a side-effect expression, we introduce the concept of a coverage set: A coverage
set of a transition (sk, sl) in the object life cycle contains all induced transitions
of the form (a′, sk, sl) in the process model. If an induced transition (a′, sk, sl)
is the only element of a coverage set for (sk, sl), then removing this induced
transition will introduce a new non-covered transition (sk, sl). For r1, induced
non-covered transitions are defined in expe2 .

Table 1. Side-effect expressions, where i = ncnf tran(a, ssrc, stgt)

Res Side-effect Side-effect expression
r1 e1 ∈ Er1

− expe1(i) = {ncnf tran(a, ssrc, si) | si ∈ a.outputstate(o) and
ncnf tran(a, ssrc, si) ∈ IM}

e2 ∈ Er1
+ expe2(i) = {ncov tran(ssrc, si) | (a, ssrc, si) is an induced transition

of o in P and (a, ssrc, si) is the only element in the coverage set of
(ssrc, si)}

e3 ∈ Er1
+ expe3(i) = {ncnf first(si) | si ∈ a.outputstate(o) and ssrc is the only

state in a.inputstate(o) and there is no transition from the initial state
to si in OLC}

r2 e4 ∈ Er1
− expe4(i) = {ncnf tran(a, si, stgt) | si ∈ a.inputstate(o) and

ncnf tran(a, si, stgt) ∈ IM}
e5 ∈ Er2

+ expe5(i) = {ncov tran(si, stgt) | (a, si, stgt) is an induced transition of o
in P and (a, si, stgt) is the only element in the coverage set of (si, stgt)}

e6 ∈ Er2
+ expe6(i) = {ncnf last(si) | si ∈ a.inputstate(o) and stgt is the only

state in a.outputstate(o) and there is no transition from si to a final
state in OLC}

r3 e7 ∈ Er3
− expe7(i) = {ncnf tran(a, si, sj) | si ∈ a.inputstate(o) and sj ∈

a.outputstate(o) and ncnf tran(a, si, sj) ∈ IM}
e8 ∈ Er3

+ expe8(i) = {ncov tran(si, sj) | (a, si, sj) is an induced transition of o
in P and (a, si, sj) is the only element in the coverage set of (si, sj)}

For resolving non-conformant transitions (settle, GR, NR) and (review, NR, RE), we
get the following details about the effect of each resolution if we evaluate the
defined side-effect expressions (see Fig.4(b)-(g)):

Resolutions for ncnf tran(settle, GR, NR)
r1 resolves ncnf tran(settle, GR, NR) and introduces ncov tran(GR,SE);
r2 resolves ncnf tran(settle, GR, NR), ncnf tran(settle, RE, NR);( ) ( )
r3 resolves ncnf tran(settle, GR, NR), ncnf tran(settle, RE, NR) and introduces ncov tran(GR,SE).

Resolutions for ncnf tran(review, NR, RE)

r1 resolves ncnf tran(review, NR, RE) and introduces ncnf first(review, RE);
r2 resolves ncnf tran(review, NR, RE) and introduces ncnf last(review, NR);
r3 resolves ncnf tran(review, NR, RE).

This detailed information about the effect of each resolution helps the user
to decide which resolution to apply in each case. Generally, the most beneficial
resolution would be the one that overall removes the greatest number of incon-
sistencies. In this example, we would choose r2 to resolve ncnf tran(settle, GR, NR)
and r3 to resolve ncnf tran(review, NR, RE).
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To satisfy Req2, our approach goes further to provide a more fine-grained
comparison of resolutions based on cost reduction values calculated for each
resolution.

Definition 5 (Cost reduction of a resolution). Given a resolution r ∈ Rt

that can resolve an inconsistency i ∈ IM of type t ∈ TM , with side-effects E−
r =

{e11, ..., e1p} and E+
r = {e21, ..., e2q}, the cost reduction of resolution r is denoted

by costredr and calculated as follows:

costredr = cost(t) +
p∑

j=1

(
| expe1j (i) | × cost(type(e1j))

)

−
q∑

k=1

(| expe2k
(i) | × cost(type(e2k)))

We now calculate cost reduction values for the resolutions in our example:

ncnf tran(settle, GR, NR) ncnf tran(review, NR, RE)

costredr1 = 3− (1 × 1) = 2 costredr1 = 3− (1× 2) = 1
costredr2 = 3 + (1 × 3) = 6 costredr2 = 3− (1× 3) = 0
costredr3 = 3 + (1 × 3)− (1× 1) = 5 costredr3 = 3

It can be seen that based on the calculated cost reduction values, we can
perform a more fine-grained comparison of the resolutions that takes into account
the priorities or costs of different inconsistency types.

With our approach, we could also introduce more automation into the resolu-
tion process by applying resolutions without user intervention whenever there is
one resolution that has a highest cost reduction value for a particular inconsis-
tency. However, in our scenario, approving the choice of a resolution needs to be
done by an expert who is aware of what impact the change in the process model
has on the business. Provided that we are working with a model of an existing
business process, removing an action from this model translates to removing a
step in the process and may be difficult to implement in practice, even though
the cost reduction value indicates that this is the best resolution.

4 Design and Implementation of Tool Support

In this section we present a design for an inconsistency resolution module based
on our approach, which leads to an efficient implementation of inconsistency
resolution.

Figure 5 shows the fundamental elements of the resolution module design,
comprising several abstract classes (labeled in italics) that need to be extended
to arrive at an executable implementation.

The central element of the module is the InconsistencyResolver that has refer-
ences to all InconsistencyTypes that it can handle and a Model that is the subject of
inconsistency handling. The checkAndResolve() method of the InconsistencyResolver
is the entry-point to the inconsistency checking and resolution process.
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Fig. 5. Design for an inconsistency resolution module

Listing 1.1. InconsistencyResolver : checkAndResolve()

1 checkAndResolve()
2 inconsistencies = checkModelForInconsistencies ();
3 while ( inconsistencies . size > 0) do
4 totalInconsistencyCost = 0;
5 for each ( Inconsistency i in inconsistencies ) do
6 totalInconsistencyCost += i.type.cost ;
7 computeResolutions();
8 displayInconsistenciesAndResolutions ();
9 Resolution r = getUsersChoice();

10 if (r == null) then
11 return ;
12 else
13 r .type.apply ();
14 inconsistencies .remove(r. inconsistency );
15 inconsistencies .removeAll(r . expiredInconsistencies );
16 inconsistencies .add(r. inducedInconsistencies );

As shown in the method in Listing 1.1, the working model is first checked
for inconsistencies and then the total inconsistency cost for the model is com-
puted (lines 4-6). For each discovered inconsistency, possible resolutions are iden-
tified and these are communicated to the user (lines 7,8). After a resolution of
user’s choice is applied (lines 9-13), the model is not re-checked, but rather the
inconsistency set is directly updated by removing the resolved inconsistency and
those that expired and adding induced inconsistencies (lines 14-16). This added
efficiency is valuable in practice, as in reality many models tend to get very large
and as soon as re-checking them takes a noticeable amount of time, unnecessary
interruptions are introduced into the resolution process.

As shown in Fig.5, each Resolution is associated with sets of inconsistencies that
it will induce or expire if it is applied. An effect of a Resolution is the overall change
in number of inconsistencies that it will inflict and its costReduction reflects how
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the resolution will reduce the total inconsistency cost. These are determined in
the computeResolutions() method of the InconsistencyResolver shown in Listing 1.2
as pseudocode. As each resolution resolves its target inconsistency, effect of each
resolution is initialized to -1 (line 8) and initial costReduction is set to the cost of
the target inconsistency type (line 9). Iterating over the resolution side-effects,
values of effect and costReduction attributes are updated (lines 13-14,17-18).

Listing 1.2. InconsistencyResolver : computeResolutions()

1 computeResolutions()
2 for each ( Inconsistency i in inconsistencies ) do
3 i .canBeResolvedBy.clear ();
4 for each (ResolutionType rt in i .type.canBeResolvedBy) do
5 Resolution r = new Resolution();
6 i .canBeResolvedBy.add(r);
7 r . inconsistency = i;
8 r . effect = −1;
9 r .costReduction = i.type. cost ;

10 for each ( SideEffect se in rt . sideEffects ) do
11 Set inconsistencies = se. getInconsistencies ( i ,workingModel);
12 if (se . expiresInconsistencies ) then
13 r . effect −= inconsistencies . size ();
14 r .costReduction += inconsistencies . size () ∗ se . affectedInconsistencyType . cost ;
15 r . expiredInconsistencies .add( inconsistencies );
16 else
17 r . effect += inconsistencies . size ();
18 r .costReduction −= inconsistencies . size () ∗ se . affectedInconsistencyType . cost ;
19 r . inducedInconsistencies .add( inconsistencies );

Our proposed design can be directly used to derive the implementation core of
a resolution module, after which all abstract classes need to be extended to com-
plete the implementation. For implementing support for inconsistency resolution
between object life cycles and process models for example, we extend Inconsisten-
cyResolver with the concrete class ObjectLifeCycleProcessModelResolver that provides
an implementation for finding inconsistencies in a model and communication
with the user. For each resolution side-effect like the ones shown in Table 1, we
create an extension of the SideEffect class and implement the getInconsistencies()
method that evaluates the associated side-effect expression. Our approach does
not place any restrictions on how transformations associated with resolutions
are to be implemented, i.e. this can be done directly in a conventional program-
ming language such as Java or using one of the existing model transformation
approaches.

We have implemented a prototype for resolution of inconsistencies between
object life cycles and process models, based on the presented approach. Our
prototype is an extension to IBM WebSphere Business Modeler [2] that natively
supports process modeling and has been extended for modeling object life cy-
cles (Fig.6).

Detected inconsistencies are shown in the inconsistencies view below the model
editors, where inconsistencies with higher costs are displayed higher in the list.
The total number and cost of inconsistencies are shown at the top of this view, so
that the effect on these numbers can be monitored during the resolution process.



Improving Inconsistency Resolution with Side-Effect Evaluation and Costs 147

After an inconsistency is selected, resolution side-effects and cost reduction val-
ues are calculated by the tool and can be taken into account for choosing the
most appropriate resolution.

Fig. 6. Inconsistency resolution prototype in IBM WebSphere Business Modeler

We have used the prototype for resolving inconsistencies between several ex-
ample models inspired by IAA [1]. This initial study has shown that the proposed
approach provides powerful assistance for the user in selecting a resolution for
each inconsistency.

5 Related Work

Recent work on inconsistency resolution includes work by Mens et al. [12,13]
that uses the AGG [23] graph transformation tool to detect potential depen-
dencies between different inconsistency resolutions. Inconsistency detection and
resolution rules are expressed as graph transformation rules in AGG and are
then analyzed using critical pair analysis. Analysis results point to potentially
conflicting resolutions, resolutions that may induce or expire other types of in-
consistencies and potential cycles between resolutions. In this paper, we propose
explicit specification of side-effect expressions that can be evaluated given a
model inconsistency and hence provide the user with a basis for comparison of
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alternative resolutions. It would be interesting to investigate how automated
dependency analysis can assist in the specification of side-effect expressions.

The FUJABA tool suite [15] supports both manual and automatic incremen-
tal inconsistency resolution [24]. Consistency checking rules can be configured by
the user and organized into different categories in order to support domain- or
project-specific consistency requirements. Consistency checking rules and incon-
sistency resolution rules are specified using graph grammar rules and executed
by a FUJABA rule engine. Although different categories could also be used
for obtaining different priorities, our approach can be seen as complementary
because we focus on the evaluation of several alternative resolutions for one in-
consistency based on side-effects and costs. Work on incremental transformations
using triple graph grammars [19] studies the problem of keeping two models syn-
chronized [8,18]. This is achieved by analyzing changes in one model and applying
incremental updates for re-establishing consistency. Although these updates are
analyzed for conflicts, a detailed evaluation of side-effects is not addressed.

Nentwich et al [14] propose to generate inconsistency resolutions (called repair
actions) automatically from consistency constraints that are specified in first
order logic. As opposed to our approach, generated repair actions do not take
into account a concrete model violating consistency constraints and also do not
consider side-effects.

Spanoudakis and Zisman [20] conducted a survey about inconsistency man-
agement and concluded that the most important open research issue in incon-
sistency handling is providing more guidance to the user for choosing among
multiple alternative resolutions. The authors argue that resolutions should be
ordered based on cost, risk and benefit. They further conclude that existing ap-
proaches do not adequately address efficiency and scalability of inconsistency
detection in models that change during the resolution process. In our approach,
we use side-effects and costs for evaluating alternative resolution and avoid re-
checking the whole model after a resolution is applied.

Nuseibeh et al. [16] present a framework for managing inconsistency in soft-
ware development. This framework comprises monitoring, identification and
measuring of inconsistencies. Measuring inconsistencies includes attaching pri-
orities to different inconsistencies. In our work, we use costs to reflect priorities
of inconsistency types and also to calculate cost reduction for each resolution.

6 Conclusions and Future Work

In this paper, we introduce the concept of side-effect expressions that can be eval-
uated for a given inconsistent model to determine whether or not a resolution
leads to new or expired inconsistencies. This allows the user to compare alterna-
tive resolutions for the same inconsistency. We attach costs to each inconsistency
type, which enables us to calculate cost reduction values for each resolution and
therefore provide a more fine-grained comparison of resolutions. Finally, we show
how our concepts can be used to implement an efficient inconsistency resolution
module for integration with an existing modeling tool.
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Our case study and application of the prototype to various examples have
shown that the approach adds significant value for the user during the reso-
lution process. To enhance our solution further, we will next investigate more
sophisticated cost models and study how cycles can be detected during the res-
olution process. Another area of future work is the application of our approach
to domain-specific languages. Here, automated resolution dependency analysis
and reusable side-effect specifications can be of interest in order to decrease the
manual overhead of our approach.
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Abstract. Software product lines (SPL) are an established technology for 
developing families of systems. In particular, they focus on modeling 
commonality and variability, that is, they are based on identifying features 
common to all members of the family and variable features that appear only in 
some members. Model-based development methods for product lines advocate 
the construction of SPL requirements, analysis and design models for features. 
This paper describes an approach for maintaining feature separation during 
modeling using a UML composition language based on graph transformations. 
This allows models of features to be reused more easily. The language can be 
used to compose the SPL models for a given set of features. Furthermore, 
critical pair analysis is used to detect dependencies and conflicts between 
features during analysis and design modeling. The approach is supported by a 
tool that allows automated composition of UML models of features and 
detection of some kinds of feature interactions. 

Keywords: Software product lines, model transformation, feature interaction. 

1   Introduction 

A software product line (SPL) consists of a family of software systems where family 
members have some common functionality and some variable functionality [1-3]. 
Software product line engineering involves developing the requirements, architecture, 
and component implementations for a family of systems, from which applications 
(family members) are derived and configured. A better understanding of a product 
line can be obtained by considering the multiple views, such as requirements models, 
static models, and dynamic models of the product line, which can be depicted in 
UML. A key view of a software product line is the feature modeling view [4]. The 
feature model is crucial for managing variability and product derivation as it describes 
the product line requirements in terms of common and variable features, as well as 
defining feature dependencies [5]. SPL model-based development methods, such as 
PLUS [6] and Orthogonal Variability Modeling [7], typically advocate feature-based 
approaches for developing SPL requirements, analysis and design models. 

Model-based SPL development methods would benefit considerably from 
automated support for maintaining clear and traceable feature separation throughout 
the modeling lifecycle. In PLUS, common, optional, and alternative features are 
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determined during feature modeling, which is part of the requirements phase. The 
common features are called the kernel, and the optional and alternative features are 
called variants. Impact analysis is used during dynamic modeling to determine each 
variant feature’s impact on kernel interaction and state machine models. This is a 
manual process. Conventional UML tools do not provide automated feature-based 
navigation and traceability between multiple view SPL models. In particular, current 
methods like PLUS do not maintain separation of features at the analysis modeling 
stage of the modeling lifecycle. This can lead to inconsistencies in software product 
line models and ultimately to errors in implementations.  

To address these issues, this paper describes an automated approach for modeling 
features in UML such that the UML analysis and design models for each feature are 
maintained separately and are combined on-demand at any point during the modeling 
lifecycle. A model composition language, MATA (Modeling Aspects using a 
Transformation Approach) is used to specify how features relate to each other. 
MATA is based on the graph transformation formalism. This has two major 
advantages. Firstly, existing graph rewrite tools can be used to compose the models 
for a given set of features. In our case, AGG (Attributed Graph Grammar) [8] is used. 
Secondly, critical pair analysis (CPA) [9] can be used to detect static interactions 
between models of features. Hence, if the modeler (accidentally) introduces a new 
feature dependency or conflict during the modeling phase, CPA will inform her. She 
can then choose to modify the models to avoid the dependency or to update the 
feature dependency diagram. In either case, the consistency between feature 
dependency diagram and models of features is maintained. After resolving the 
conflicts or dependencies, the modeler can execute the actual model composition to 
generate the combined model consisting of behavior for multiple features. 

The remainder of this paper is structured as follows. Section 2 describes existing 
tool support for SPL engineering. In section 3, we describe the necessary background 
concepts. In section 4, our approach to modeling SPLs and the detection of feature 
interactions is explained. Section 5 provides an application on an example case study. 
Section 6 surveys the related work in the area of model compositions. Finally we 
present future threads of research and conclude the paper in section 7.  

2   Tool Support for Software Product Line Engineering 

Automated tool support is highly desirable for managing the complexity and 
variability inherent in software product lines. Previous research [10-12] provided tool 
support for representing the multiple graphical views (i.e., static and dynamic views) 
of a SPL using various CASE tools, including IBM Rational Rose. Using the open 
architecture provided by these CASE tools, plug-ins were developed to extract the 
underlying representation of each view and store this information in a SPL repository, 
which consisted of an integrated set of database relations. A multiple view 
consistency checking tool was then developed to check for consistency among the 
multiple views and report any inconsistencies to the user [13]. Automated tool support 
[12] was also provided for deriving application models for an individual SPL member 
from the SPL repository. This was achieved by developing a knowledge-based 
requirements elicitation and application derivation tool, which interacts with the user 



 Model Composition in Product Lines and Feature Interaction Detection 153 

to ensure selection of a consistent set of application features and then derives the 
application model [10, 11].  

While these tools all rely on the concept of commonality and variability in SPL 
engineering, they do not maintain separation of features throughout the modeling 
lifecycle. The novelty of the research described in this paper is providing an approach 
for modeling individual features, detecting feature relationships at the modeling level 
and then providing automated composition of models of features. 

This paper describes an SPL process and tool which can be used to model features 
independently of other features, compose models of features and also to detect 
structural interactions between features automatically. The technique is based on 
graph transformations, which are described in the next section. 

3   Background 

This section presents background on graph transformations which form the formal 
basis of our approach. A graph consists of a set of nodes and a set of edges. A typed 
graph is a graph in which each node and edge belongs to a type defined in a type 
graph. An attributed graph is a graph in which each node and edge may contain 
attributes where each attribute is a (value, type) pair giving the value of the attribute 
and its type. A graph transformation is a rule used to modify a host graph, G, and is 
defined by a left hand graph, L, and a right hand graph, R. The process of applying the 
rule to a graph G involves finding a graph monomorphism, h, from L to G and 
replacing h(L) in G with h(R). Further details can be found in [14].  

We give a simple example of using graph transformations for composing UML 
class diagrams in a product line. The example is for a family of microwave ovens. 
The microwave oven product line contains a variant feature, called Language, to 
select the display language for the microwave display prompts. The kernel class 
diagram of the product line—i.e., the classes that are common to all family 
members—contains an abstract class DisplayPrompts. The Language feature adds the 
implementation class FrenchPrompts to the kernel to allow user messages to be 
displayed in another language. The kernel class diagram is shown in Figure 1. The 
composed class diagram, after the Language feature has been added to the kernel, is 
shown in Figure 2. The Language feature can be represented as a graph 
transformation, as shown in Figure 3. Figure 3 defines the left and right graphs of the 
transformation to the left and right of the arrow, respectively. 

One may, of course, define multiple graph transformation rules on a given host 
graph. For product lines, this corresponds to adding multiple variant features.  

In general, there are two ways of introducing non-determinism when applying a set 
of graph rules—either the same rule may match in different ways, or the rules may be 
applied in a different order to yield a different result. The latter case of non-
determinism arises because of relationships between rules. These relationships are 
either conflicts or dependencies. A conflict relation arises when one rule modifies an 
element of the host graph in such a way that another rule can no longer be applied. A 
dependency relation arises when one rule requires the existence of elements in the 
host graph that must be produced by another rule. Critical pair analysis [9] is a well-
established technique for discovering conflict and dependency relations for a set of 
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Fig. 1. Kernel class diagram Fig. 2. Class diagram of kernel with language 
feature 

 

Fig. 3. Graph transformation of language feature 

graph rules. Dependency relations can be resolved by imposing an ordering on the 
application of the rules. Some conflicts can be resolved by choosing an ordering, but, 
in general, conflicts may require that the models be rewritten. 

There already exist a number of tools for applying graph transformations—for 
example, AGG [8], FUJABA [15], GREAT [16]. AGG, in particular, supports critical 
pair analysis. We will apply graph transformations and critical pair analysis in the 
context of modeling software product lines. Hence, AGG is used as the underlying 
tool for executing graph transformations and detecting conflicts and dependencies.  

4   Model Composition and Feature Interaction for Product Lines 

Figure 4 illustrates our approach for SPL feature-based modeling, which can be used 
with existing methods that capture dependencies between features on a feature 
dependency diagram. Once an initial set of features has been decided on, a feature 
dependency model is defined showing which features require other features1 (see 
Figure 4). Next, the kernel feature set is modeled using UML. Currently, our tool 
supports class diagrams, sequence diagrams and statecharts. Each variant feature (or 
feature group if a set of features are always used together) is modeled in the MATA 
language in terms of how it relates to the kernel UML models. This allows a single 
feature (or feature group) to be modeled separately from other features. This is in 

                                                           
1 We allow richer relationships between features but only consider <<requires>> in this paper. 
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contrast to other approaches like PLUS where kernel and variant features are mixed 
on the same set of diagrams. In particular, PLUS incrementally adds features to a set 
of kernel models without maintaining any traceability as to where the feature 
elements come from. 

Feature

Feature

Feature

<<requires>>

<<requires>>

Feature 
Dependency

Diagram

Kernel
Feature(s)

Feature
Group

Feature
Group

MATA 
Models

MATA 
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MATA
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UML 
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UML Models
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Conflict & Dependency Detection

<<relates to>>
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Fig. 4. Feature-based product line development with MATA 

Since each variant feature is modeled independently of other variant features, the 
user can choose a subset of the available features and automatically generate the 
models (class, sequence and state diagrams) for the combined set of features. 
Furthermore, new features can be added relatively easily. The user may specify an 
ordering of features or may leave it unspecified. In any case, critical pair analysis 
(CPA) is applied to detect any structural conflicts and dependencies between models 
of features. These results are fed back to the user who either modifies the ordering or 
the UML models to ensure a consistent composition. The user may also discover an 
inconsistency with the feature dependency diagram and update it accordingly. 

4.1   A Language for Composing Variant Features with the Kernel (MATA) 

The MATA specifications shown in Figure 4 are transformations detailing how to 
modify kernel models. Transformations for UML such as QVT 
(Queries/Views/Transformations) [17] are typically specified at the meta-level using 
abstract syntax. (Note, for example, that abstract syntax is used in Figure 3). For 
product line modeling, this approach is insufficient because it requires the writer of 
the transformation to have an intimate knowledge of the UML metamodel. Most 
model developers do not have this knowledge. Therefore, it would be inadvisable to 
force them to use the abstract syntax of the metamodel. Graph transformations for 
UML, however, can also be specified directly over UML’s concrete syntax. The only 
drawback of this is that meta-level concepts cannot be referred to.  
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MATA is essentially a compact representation of graph transformations which 
allows the user to describe model transformations graphically in UML concrete 
syntax. MATA is not meant to be a general model transformation language but is 
instead geared towards feature composition in product lines.  

Usually, graph rules have a left- and a right-hand side. For a more compact 
representation, MATA uses stereotypes to capture the left- and right-hand sides on the 
same diagram. We follow the notation offered in VIATRA [18]. MATA allows the 
following three stereotypes, which may be applied to any UML model element: 

• <<create>> – create new element during transformation. 
• <<delete>> – delete existing element during transformation. 
• <<context>> – used to introduce a container around existing elements in the 

host graph—eg., match a state and create a composite state around it. 

We illustrate an example use of these directives for state diagrams. Figure 5 shows 
the kernel state diagram for the microwave oven product line. Now consider how to 
specify a variant feature. 

The Light feature adds a light object to the oven. This light should be turned off 
when the door is closed and turned on when the door is opened. The Light feature can 
be defined in MATA as shown in Figure 6. The figure describes elements of the 
kernel state diagram affected by the Light feature and also describes how those 
elements are affected—in this case, a new action is added to each of the Door Opened 
and Door Closed events. Note that only kernel elements affected by the Light feature 
need be included in Figure 6. The models for Light feature shown in Figure 6 match 
any two distinct states that are connected by at least one transition which is triggered 
by the Door Closed or the Door Opened event. 

There are special composition situations when the creation of new elements 
requires existing elements to be contained in newly created elements. <<context>> is 
a special directive used when a new element is created such that it encloses an 
existing element. It follows that <<context>> has to be specified within a <<create>> 
directive. The use of <<create>> is “optimized” in the sense that if a state is 
stereotyped as <<create>> then any of its substates or transitions are also created. 
This optimization reduces the number of stereotypes a user must specify. To stop 
substates from being created, they are stereotyped as <<context>>. Figure 7 illustrates 
using a variant feature called Recipe. The Recipe feature requires the creation of a 
new composite state Recipe around existing states ‘Ready to Cook’, ‘Door Open with 
Item’ and ‘Cooking’. 

The resultant state diagram obtained from composing the Light and Recipe features 
with the kernel is shown in Figure 8. Our tool automates the composition of the kernel 
for a chosen set of variant features. The tool first converts each MATA definition to a 
standard graph rule. The graph rule is then executed in AGG to produce a composed 
model and the composed model is converted back to UML. The equivalent meta-level 
graph rule for the Recipe feature is shown in Figure 9. Note that the Light and Recipe 
features are orthogonal, i.e. they do not conflict or depend on each other. Hence the 
ordering between them can be ignored at this point. 

MATA allows modular specification of a variant feature with minimal knowledge 
of the kernel. In other words, only the kernel elements directly affected by the variant 
need be included in the MATA specification for the variant. Also, each variant feature 
is represented independently from other variant features and hence the features can be 
reused more easily.  
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MATA allows a slice-based approach to describe features. Each feature consists of 
a “slice” described by class diagrams, sequence diagrams and state diagrams. For 
example, the slice for the Recipe feature consists of the state diagram slice (Figure 8) 
and the sequence diagram slice (Figure 12). Each MATA model represents an 
incremental change to the kernel models. Once the UML and MATA models have 
been specified, the modeler chooses any subset of the feature set to compose. Our tool 
translates the MATA models to their equivalent graph transformation rules and uses 
AGG to execute the transformations on the kernel models. Finally, the composed 
graph is translated from its graph representation back to UML and is presented to the 
user. The result is a set of multiple view UML models that describe the composition 
of the models for the selected features. 

 

Fig. 5. Kernel state diagram of microwave product line 

 

Fig. 6. MATA representation of light feature 

 

Fig. 7. MATA representation of recipe feature 
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Fig. 8. Resulting state diagram after applying light and recipe feature 

 

Fig. 9. Equivalent graph rule for recipe feature 

4.2   Application of Critical Pair Analysis to Detecting Feature Interactions 

In section 3, we discussed how critical pair analysis (CPA) is used to detect conflict 
and dependency relationships between graph rules. In our methodology, models of 
product line features are represented as graph rules. Hence, conflicts and 
dependencies can be detected between these rules using CPA. This is a form of 
feature interaction detection in which undesired static structural interactions between 
features are detected automatically. These interactions can be verified for consistency 
with the relations captured in the feature dependency diagram. The purpose of 
consistency checking between relations is two fold. 

• Detection of redundant feature dependencies captured in the feature dependency 
diagram but not realized in the models for features. 

• Detection of new dependencies not specified in the feature dependency diagram 
but which are introduced (accidentally) in the models for features. 

After detection, the feature interactions are resolved by ordering the features in a 
way that allows all selected features to be added successfully. In some cases, the 
detected interactions correspond to design flaws and the models must be changed. 
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Ordering information is assigned as integers starting from 0 (highest). If no critical 
pairs are detected, then this means that the feature specifications are orthogonal, i.e., 
there are no relationships in the feature dependency diagram. In a case like this, no 
ordering is needed for execution as there is no interaction that needs to be resolved. 

We look at an example of dependency interaction between two features for 
sequence diagrams in the microwave product line. The features are specified using the 
MATA syntax explained above.  

• Multi-Line display (Figure 10) – Add the Multi-Line Display object so that it 
can be used to display multiple lines of data sent as updates to the microwave 
controller. (Note that the object sending the data to the controller is deliberately 
left unspecified). 

• Recipe (Figure 12) – Add a Recipes lifeline and add the interactions for the 
selection of pre-stored recipes and display the recipe. 

 

 

SequenceDiagram Conflict-None 
SequenceDiagram Dependencies- 
  Found critical pairs from Multi-Line 
Display to Recipe: Class Multi-Line    

Display is produced. 

Fig. 10. Multi-line display feature Fig. 11. Critical pair analysis 

 

Fig. 12. Recipe feature 

 
The results of critical pair analysis for this example are shown in Figure 11. The 

results show that no conflicts exist between the between the Multi-Line Display and 
the Recipe features. However one dependency is found to exist between the two 
features. The tool detects and describes the dependency as the production of a class 
called Multi-Line Display by the Multi-Line Display feature. To resolve this 
dependency, we assign an execution order such that the Multi-Line Display feature is 
composed before the Recipe feature. 
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5   MATA Evaluation and Tool Support 

To evaluate our software product line composition approach, we used the full 
microwave oven case study introduced in [6], which was developed using the PLUS 
product line engineering method. We specified the variant features using MATA in 
terms of how they impact the kernel class, sequence and state diagrams. Then, we 
analyzed the relationships among the features using CPA in order to determine the 
order of composition. We also injected a feature conflict intentionally to the case 
study since the case study did not already contain a conflict. 

In the PLUS SPL method, requirements are captured through use case modeling 
and feature modeling. Use case variability is addressed by optional and alternative 
use cases, as well as through variation points, which are mapped to optional and 
alternative features in the feature model. Due to space limitations, a small subset of 
the features of the microware oven is covered in this section (Figure 13). A 
summary of the features in the original case study is shown in Table 1. 

Table 1. Microwave case study 

Complexity Count 
Kernel Features 1 
Variant Features 19 
Feature groups 4 

Feature 
Relationships 

14 

  

 

Fig. 13. Features of the microwave oven 
  

 

We need to specify the kernel in UML and the variant features in MATA. Figures 
14a and 14b show a specification of the Light and Analog Weight features using state, 
sequence, and class diagrams annotated with MATA directives. The state diagrams 
are for the Microwave Controller object.  

In the kernel microwave oven, whenever items are placed inside the oven, the 
Weight Sensor Device informs the Weight Sensor interface object. The latter sends an 
Item Placed message to the Microwave Controller object. This message is critical for 
the Light and Analog Weight features.  

Now consider the variant features. The Light feature requires that a weight 
indicator should be switched on when items are placed in the oven (Figure 14a). The 
Analog Weight feature, on the other hand, passes the weight of the placed item to the 
control object. This new logic is captured by replacing the Item Placed message with 
the Weight Change message (Figure 14b).  

When CPA was applied on these models, it detected a conflict between Analog 
Weight and Light. The Analog Weight feature deletes the Item Placed message that is 
required by the Light feature. So, if we were to change the order of composition to (1) 
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Fig. 14a. Light feature slice Fig. 14b. Weight feature slice 

Analog Weight and then (2) Light, the latter would not find the Item Placed 
message. With manual feature impact analysis, this simple conflict could easily be 
overlooked CPA automates the detection process and, therefore, it is an important 
step towards developing consistent models of features in software product line 
engineering. 

To create a new member of the product line that includes both Light and Analog 
Weight features, the MATA tool composes the models automatically with the 
kernel. Figure 15a shows the kernel models before composition with the two 
variant features (in the order (2) then (1)), and Figure 15b shows the result after 
composition.  
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Fig. 15a. Kernel feature before 
composition 

Fig. 15b. Kernel feature after composition 

6   Related Work 

Hyper/UML [19] is an attempt to bring the composition mechanisms defined for 
Hyper/J [20] to the modeling level. The composition specification language in 
Hyper/UML is much more limited than MATA. Modelers are restricted to a pre-
defined set of four composition relations—merge, override, summary and order. 
Merge, for example, simply takes two models and combines identical elements. As 
shown in [21], the merge relation is not sufficient to define practical compositions.  
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Ziadi and Jézéquel [22] describe an approach that addresses composition of static 
and behavioral models for product lines. Static models of features are restricted in that 
they must be implemented as subclasses of an abstract kernel class. Feature 
relationships are enforced on the static models using OCL. Composition for 
interaction models is by using sequential (seq), alternate (alt) and looping (loop) 
composition operators. Since only a predefined number of operators is allowed, the 
approach is not as expressive as in this paper, where the full behavioral model syntax 
is available for composition. A significant issue not addressed by Ziadi and Jézéquel 
is the extension of features by other features. Our approach does allow this and also 
supports richer composition semantics like pattern matches, contextual creation and 
deletion of base elements. There is no inheritance hierarchy restriction for MATA 
features and the model composition is automated.  

FMP2RSM [23] is an editor for specifying feature relationships and UML models 
for features. However, in FMP, features are all described on the same UML diagram 
and each model element is color-coded to show which feature it contributes to. 
MATA provides a cleaner separation of features and hence better reuse. However, a 
combination of these two approaches might prove beneficial.  

Feature composition is very similar to aspect composition. There is a large body of 
work on aspect-oriented modeling, although much of this has been restricted to 
structural models. Work of note that considers behavioral models is the Motorola 
WEAVR tool for state machines [24], Song et al.’s work on weaving security aspects 
into sequence diagrams [25], and Jézéquel et al.’s work on semantic composition for 
interaction diagrams [26]. UML models of features are also very similar to use case 
slices [27] and themes [28].  

AHEAD [29] considers feature interactions formally by using algebraic constructs. 
The approach follows the Principle of Uniformity in that all representations of a 
system are converted to a structured model such as object oriented code. AHEAD 
then applies techniques like aspectual mixins to refine code blocks and compose 
features. This approach is neither graphical nor does it maintain consistency between 
feature dependency diagrams and the models of features. It would be interesting, 
however, to see if our approach can be mapped to AHEAD. 

The work described in this paper maintains consistency between a feature 
dependency diagram and the definitions of the features themselves. A significant 
amount of work has been done on detecting inconsistencies in UML models [13, 30]. 
In this research, an inconsistency arises when the same information is represented in 
different ways in different views. Our work instead looks at dependencies between 
models in the same view. 

7   Future Work and Conclusion 

In this paper, we presented an approach for maintaining feature separation throughout 
the modeling lifecycle, and an approach for detecting undesired structural interactions 
between models of different features. Kernel features are expressed in UML class 
diagrams, sequence diagrams and state diagrams. Variant features are specified in 
MATA, a UML representation of graph transformations, in terms of how they modify 
the kernel models. Features are composed automatically using the graph rewrite 
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engine AGG and critical pair analysis is used to detect structural feature interactions. 
These interactions manifest themselves when the feature dependency diagram, 
developed during requirements engineering, is inconsistent with the UML models of 
the features. The entire approach is supported by a tool, which is a plug-in to IBM 
Rational Software Modeler.  

As future work, we plan to implement code generators to map models of features 
to code. This could be done either by composing the features and generating code, or 
by mapping each feature independently to code in an aspect-oriented language. We 
are investigating the latter approach for a number of aspect-oriented languages. 

We also plan to extend the MATA language itself by adding support for the 
specification of expressive patterns that would allow, for instance, a modeler to match 
against an arbitrary sequence of messages, or an arbitrary chain of states. Some other 
extensions such as element matches using name wildcards and ignoring the rule 
application for specific matches by a negative constraint are also being investigated. 
Currently critical pair analysis only checks interactions between models of the same 
type that belong to different features. A higher level abstraction that relates 
heterogeneous models needs to be investigated. 
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Abstract. Based on several years of experience in generating code from
large SDL and UML models in the telecommunications domain, it has
become apparent that model analysis must be used to augment more
traditional validation and testing techniques. While model correctness
is extremely important, the difficulty of use and non-scalability of most
formal verification techniques when applied to large-scale design models
renders them insufficient for most applications. We have also repeat-
edly seen that even the most complete test coverage fails to find many
problems. In contrast, sophisticated model analysis techniques can be
applied without human interaction to large-scale models. A discussion
of the model analysis techniques and the model defects that they can
detect is provided, along with some real-world examples of defects that
have been caught.

1 Introduction

This paper summarizes several years of experience related to Model-Driven En-
gineering (MDE) in the context of developing large telecommunications applica-
tions. The experience covers the development of infrastructure components (e.g.,
cell site controllers) from the architecture and analysis phases though their field
deployment. These projects used full automatic generation of C code from SDL
and UML models and from protocol Domain Specific Languages (DSLs).

These models were developed by teams of between 10 and 30 engineers, and
the size of the resulting code was from 300,000 to 600,000 lines of C code per ap-
plication. The larger models contain over 300 signal definitions and a half-dozen
state-machine-based processes (active classes). The system often has thousands
of simultaneous active instances, each handling on the order of 100 different sig-
nals. Our code generation system has been used on dozens of such modelings
projects. Through working on these projects and observing the types of model
defects that are common, we have developed model analysis capabilities to catch
these problems at the model level before code generation is even done.

Model correctness is fundamentally important to MDE. The central tenet of
MDE—that the models are the basis for development—implies that the models
must be correct. If they are not, then the principle of “garbage in, garbage out”
applies. The effort spent in finding defects in the design phase when models
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are being created is paid back many-fold. The increased emphasis recently on
network security, and the negative publicity generated when the security fails,
provide additional reasons to exercise due diligence in finding defects.

Formal validation and verification are frequently cited as ways to ensure cor-
rectness. However, full formal verification is only possible on simple systems
using simple properties, and even that requires some expertise in the underlying
techniques (model checking, theorem proving, etc.). Testing is also used at both
the modeling and implementation levels to uncover defects, but as is discussed
below, this testing rarely uncovers more than the obvious problems with typical
“sunny day” scenarios.

Model analysis provides an additional level of correctness checking to what
can be realistically done with these verification techniques. Model analysis at-
tempts to uncover model defects by looking for violations of the semantics of the
underlying modeling language. While such analysis techniques are independent
of what the model should do, they are quite fruitful at detecting situations where
the model will do something that it should not do.

2 Model Development Environment

The “environment” in which the model is developed (i.e., the modeling domain,
the semantics applied to close semantic variation points in the modeling lan-
guage, the abstractions available in DSLs, etc.) provides a context in which to
apply model analysis techniques. The domain in which the work described here
was done is telecommunication systems. That is, the fundamental abstractions
are protocol data units (PDUs) and communicating, asynchronous, finite state
machines. Within Motorola, various languages such as ASN.1 are used for PDU
descriptions, and the majority of MDE development is done using either SDL or
UML plus the SDL Profile. The work in this paper is based on experience with
the most commonly used modeling tools within Motorola, Telelogic’s SDL Suite
and TAU. However, virtually every commercial modeling tool is used within
Motorola, and the discussions apply to these other tools as well.

The basic tool chain for MDE is shown in Figure 1. It is assumed that the
modeling tool provides syntactic checking and some forms of simple static se-
mantic checking, so there is no need for the model analysis tool to duplicate that
capability. The model is first checked by the model analyzer for pathologies that
can be found without “deep” analysis. These checks are done early to provide
feedback to the user as quickly as possible and in a form that is most easily re-
lated to the model. The model is then passed to the code generator where, as a
by-product of the sophisticated analysis required for code generation, additional
pathologies can be uncovered. While the analysis here is more in-depth, it is
also slower and more difficult to relate back to the original model. It is also in
the code generation stage that defensive tactics can be inserted to account for
potential problems (see Section 7).

The techniques used in the model analysis tools vary depending on whether
they are done in the initial pass or as part of code generation. For initial
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Fig. 1. Basic MDE Tool Chain Overview

analysis, the main technique is traversal of the model, applying rules that can
be statically checked (e.g., the presence or absence of an element). Analysis
done during code generation has access to the full power of the transformation
engine. The major analytic algorithms are partial evaluation, constant folding,
dead-code elimination, data-flow analysis, control-flow analysis, type propaga-
tion, def-use chaining, liveness analysis, alias analysis, side-effect analysis, and
variable range propagation. All of these techniques are useful in finding different
types of pathologies, and all of them are currently in use as part of the code
generation system. For example, alias analysis is critical for enabling both per-
formance and space optimizations, and as a by-product it can help identify uses
of variables before they are defined.

2.1 Formal Verification of Models

Two techniques are commonly used to prove model correctness: model checking
and automated theorem proving. Briefly, model checking exhaustively explores
the state space of the model to verify that a property, usually written in temporal
logic, holds in every state. Automated theorem proving is a technique for proving
a mathematical statement (a theorem) about a model by automatically applying,
possibly with some human direction, inductive or deductive steps to generate a
proof of the truth of a theorem, usually stated in a higher-order logic.

There have been some tremendous advances and successes in these areas in
recent years. For example, the VRS system [6] has found problems in require-
ments specifications for telecommunications components that had previously es-
caped formal inspections. The SLAM toolkit [2] statically analyzes sequential
C code to check temporal safety properties of the interfaces, and has found
several defects in Windows device drivers. The FLUID project [4] focuses on
verifying non-local properties such as locking policies, type consistency, etc., in
programs.

However, these techniques either have not been applied to large-scale design
models in a language such as UML or SDL, or they are relatively specific in
the types of pathologies they look for (or both). There are two main reasons
for this. Firstly, the general techniques do not scale well to the size required,
even when techniques such as supertrace exploration [5] are used to reduce the
state space. Secondly, it is beyond the expertise of most developers to write
the mathematically formal statements of “correctness” for general requirements.
Formal verification can be useful in safety-critical systems where the cost of
finding and removing even a single defect can be dwarfed by the cost of fail-
ure, but these systems are not typical, especially in the telecommunications
domain.
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2.2 System Testing

Our experience has shown that testing done on the models during the design
phase is typically done to various levels of completeness, and that the more
model testing that is done, the more defects that are found. However, this testing
suffers from four main drawbacks.

Firstly, truly exhaustive testing is not possible. Even 100% coverage (of the
paths, inputs, symbols, states, ...) does not mean that the model is being tested
for all possible combinations of circumstances.

Secondly, test cases are often created by the same developers that are creating
the model, and these test cases are based on the same requirements specification
from which the model was created. At best, this ensures that the model will
generate execution traces that correspond to the original Sequence Diagrams,
but these traces are only a small fraction of the complete behavior of the system.

Thirdly, test cases and Sequence Diagrams tend to focus heavily on the correct
behavior of the system. The exceptional behavior of the system, the so-called
“rainy-day” scenarios, are usually added as an afterthought or provided to give
a few examples of what should happen in certain undesirable scenarios.

Finally, the test cases tend not to exercise the system’s boundary condi-
tions, and the execution of a test case that encounters a defect may not trigger
detectably bad behavior. For example, the implementation languages that are
prevalent in telecommunications network components, C and C++, have little
in the way of built-in protection against memory corruption. Having an off-by-
one defect that causes an array to be indexed at −1 in C is not illegal, and the
memory accessed may not be in use when the scenario is executed. However,
the more loaded a system is, the more likely it is that the memory in question
will be in use, and the more likely it is that the defect will cause a system fault.
The most likely time for these faults to occur, then, is the worst possible time
for them to occur in practice. We have seen this specific off-by-one defect bring
down a cell site in a major urban center at peak system load, even though a test
case exercised this situation.

We are not implying here that model testing is not useful. We have seen that
having a comprehensive and automated regression test suite for a model lowers
the overall development effort. When using this approach, product development
groups have seen up to a 30x reduction in the time required to fix a defect,
partly due to the fact that the defect is demonstrably fixed and that it very
rarely introduces any new defects.

3 Model Analysis

Given the shortcomings of formal model verification and model testing, it is ben-
eficial to apply additional techniques of determining the correctness of a model.
This is especially true if these techniques are inexpensive and easy to apply
and are unobtrusive to the development process. The technique discussed in the
remainder of this paper is model analysis. Model analysis is the process of apply-
ing semantic rules that look for situations that either are semantically incorrect
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(e.g., they represent a type conflict) or are semantically suspect although not
technically incorrect (e.g., silently discarding a received signal).

There are two assumptions being made here. Firstly, it is not relevant to
talk about a model being semantically correct if it is not syntactically correct.
Secondly, many violations of the static semantics are trivially easy to detect.
For example, the declaration and initialization shown below are not semantically
correct for the usual definition of Integer:

i : Integer = "this is not an integer";

Most UML and SDL modeling tools will detect syntax errors and simple
semantic errors, and this aspect of model analysis will not be discussed further.

Model analysis requires the existence of sophisticated analysis tools, but the
applied techniques tend to scale well. Most of these techniques are linear or
better in the size of the model, not the size of its state space. There are some
algorithms, such as forward analysis, that are almost quadratic in the depth of
looping constructs in a given execution path, but this number is very small in
practice. For those rare cases when it is not and the quadratic time begins to
dominate, the time can still be limited in practice by truncating the iterations
with very little effect on the results.

Many of the pathologies listed here are not specific to modeling and are fa-
miliar to compiler developers [1,3]. We present all of the pathologies listed here
in the context of model analysis. It should also be noted that it is not sufficient
to delay finding these problems until a compiler possibly detects them in the
generated code. Firstly, some problems have no equivalent in the target lan-
guage (e.g., non-deterministic signal sends). Secondly, compilers will generate
messages related to the generated code, not to the model. Ideally, the modeler
should never have to try to understand the generated code. Finally, the seman-
tics of the modeling language and the target language may be different, and this
is especially a problem when the target language semantics are looser than those
of the modeling language. For example, C has different semantics than SDL for
type compatibility, unions, and case-statement fall-through.

3.1 Model Pathologies Overview

Both static semantic errors and dynamic semantic errors can be detected through
model analysis. Static semantic errors are those that can be detected through
analysis of the structure and contents of the model without the need for symbolic
execution. Dynamic semantic errors are those that cannot be caught through
static evaluation. In practice, there are some cases of “dynamic” semantic errors
that can be caught by static analysis. For example, detecting a divide-by-zero
error cannot be done statically in the general case. However, constant folding
and partial evaluation of constant expressions makes it possible to detect many
of these errors at code generation time.

While one might be tempted to think that such “obvious” cases are rare, they
are surprisingly common. We have seen this happen when a developer forgets to
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fill in a constant value that was set to a default value during initial development,
and also when a developer changes one part of a model but does not anticipate
all the consequences in another part of the model. Just as an experienced speaker
of English will occasionally construct a grammatically incorrect sentence, even
an experienced modeler will occasionally construct a model with semantic errors.

Another perspective of the capability that model analysis provides is that,
even though it is a requirements-agnostic technique, it can find problems in
the translation of requirements to design. Technically correct but semantically
suspect model behaviors almost always indicate an incorrect translation of the
requirements into the design model. For example, it is hard to imagine the re-
quirement that corresponds to the sending of an internal signal that cannot
possibly be received. As such, it is unlikely that this behavior was intended by
the modeler. In practice, this type of problem can be caught during static seman-
tic analysis and should be reported as a warning, whereas the semantic errors
should be reported as defects.

When model analysis uncovers a problem or a potential problem with the
model, reporting the issue back to the developer with sufficient detail to locate
and understand the concern has proved to be generally sufficient. The model
analysis needs to use the context of the problem to determine its severity and to
show the implications of the problem. For example, consider what could happen
when a violation is detected of an integer range (e.g., having a value of 6 in a
context where the range is expected to be 1 to 5). In the context of a conditional
comparison, it may or may not have any immediate consequences since the com-
parison will yield a value and execution will continue normally. In the context
of a loop index check, it may lead to an infinite loop since it may result in the
check part of the loop being optimized away. In the context of an array bounds,
it is a violation of the underlying semantics of the data type and represents an
incorrect capture of the requirements.

From experience, we have found that one additional step is helpful beyond
a warning message to the user. It is an invaluable aid to debugging to put a
marker in the code (e.g., an assert or a special comment) that indicates the
suspicious condition that occurred and the potentially unintended consequences.
For example, if a branch of a decision is being optimized away due to constant
folding in the condition, then add a comment at that place indicating that the
branch was optimized away and why. When the consequences of that code no
longer being present manifests itself, it is at least immediately apparent why.

The pathologies described in the following sections are divided into three
categories: structural and communications pathologies, domain pathologies, and
realizability pathologies. Each will be discussed with examples.

4 Structural and Communications Pathologies

The structural and communications pathologies are those that depend on how
the components of the model are put together and the communication paths
that that structure implies.
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4.1 Sending an Unreceivable Signal

Signals should be sent only to instances that exist. That is, it should always be
true that when a signal is sent to an instance, either the instance must exist
due to constraints in the model, or the logic of the model must ensure that
if the receiving instance does not exist, the signal is not sent. From the point
of view of clarity of purpose, the modeler should not rely on the semantics of
the modeling language to silently ignore certain behavior. Otherwise, there will
be no way to distinguish between intentional uses and unintentional ones. In
practice, however, it can be very difficult to statically prove that a signal sent
to a dynamic instance will be received. Typically, one must resort to the scheme
described in Section 7.

4.2 Ignored Behavior

Behavior that is explicitly present in a model should rarely be ignored. For
example, it is possible that the structure of a model allows an instance to send a
signal to another instance even if the receiving instance does not explicitly handle
the signal. Although the default behavior may be to silently discard the signal,
this situation typically indicates behavior that was overlooked. It is usually quite
straightforward to add an explicit discard of the signal to the behavior of the
receiving instance, and it makes it clear to users of the model that that behavior
is what was intended. The model analysis should check that every state in a state
machine explicitly deals with every signal listed in the associated input ports.

4.3 Unused Elements

Any declaration of an element that is never used should be detected and warned
about. Typical elements in this category include signals, signal lists, variables
and attributes, operations and operators, classes, exported variables that are
never imported, and external functions. These declarations are often an artifact
of early development phases that were later not needed. Whether or not an un-
used element really indicates the presence of a problem does depend on context
in some cases. For example, a local variable that is unused in an operator in-
dicates an inconsistency, but a signal listed in a provided interface may simply
indicate unused behavior in a reused component. However, it is still best to issue
a warning because, to continue the previous example, the system may also use
a signal in the component’s required interface that is only generated when the
unused provided signal is received, again indicating an inconsistency.

4.4 Statically Unreachable Behavior

While it is possible to have behavior that is in itself unreachable (e.g., a state with
no transition into it), the more typical case involves behavior that is associated
with paths of a branch point that cannot be executed. That is, static analysis can
show that the possible values of a branch decision do not allow some branches
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ever to be taken. This includes loop termination expressions that can be shown
to be always true (indicating that the loop will never execute) or always false
(indicating an infinite loop). Behavior that can in reality never be executed but is
included in a model typically indicates an undesired consequence of some related
portion of the model. The more precise the reason can be given that the behavior
is unreachable, the easier it is to determine the root cause of the problem.

4.5 Nondeterminism

Most modeling languages contain one or more nondeterministic features. One of
the guiding principles of good design is that nondeterminism should be avoided
since nondeterminism does not imply randomness or fairness. This distinction
is extremely important, but is one that is often misunderstood by modelers.
Nondeterminism means that there is no criteria for determining which choice
will be made. A perfectly valid interpretation is that one choice is always made
to the exclusion of the others. It will rarely, if ever, be the case that this is really
the desired behavior.

Typical nondeterministic behavior that can be detected through model anal-
ysis is described here.

Nondeterministic signal sends: There is no issue if a signal send uses direct
addressing to indicate the receiver of the signal (i.e., to a process ID in SDL or
using the receiver.signalnotation in UML). However, this generally limits
the reusability of a component since it makes the behavior of the instance
context dependent. Without using direct addressing, there are cases when a
unique destination instance for a signal send cannot be determined, either
because the signal is provided on multiple ports or because more than one
instance that requires the signal is connected to the providing port. In either
case, if the structure of the model does not enforce a single receiver, then the
modeler should be warned that the behavior of the model is nondeterministic,
with all possible receivers being listed as part of the warning. Note that this
behavior is a semantic variation point in the UML specification, so UML
tools are free to choose whatever behavior they want for this, which in itself
is a problem for understandability.

Spontaneous transitions: Some modeling languages allow a transition out
of a state in a state machine to happen without an associated event. For
example, SDL has the concept of a spontaneous transition, which indicates
a transition that can occur at any time, whether or not there is a relevant
signal on the input port of the instance. There is no implied priority between
normal transitions and spontaneous transitions.

Nondeterministic values: Some modeling languages allow an unspecified and
arbitrary value of a data type to be indicated. For example, SDL allows the
use of the keyword any. As before, nondeterministic does not mean random.
If a random value is needed, an operation can be written to return one (for
some suitable definition of random). If the value is truly not important but
it must be set in the model, it is best for the modeler to pick a valid value
and use it by documented convention.
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4.6 Informal Text

Modeling languages often provide a way to indicate behavior that is not part
of the semantics of the language itself. Instead, the text must be interpreted
in the semantics of some other language such as C++. This construct is given
various names such as informal text or uninterpreted strings and is distinct from
comments, which do not specify behavior. While it could be argued that it is
sometimes a necessity to drop into another language in a model, our experience
has shown that there is almost always a way to specify the desired behavior
within the modeling language itself. Informal text specifies behavior that is to-
tally dependent on the context in which the model is executed and on the usually
unspecified interplay between the semantics of the two languages.

4.7 Use Before Definition

A data value that is accessed before it is given a value yields undefined results,
possibly even a value that is not legal. For example, assume that the model
defines variables u and v to be Integers in the range of 1 to 10. If u is not given a
value—that is, it is undefined—but it is assigned to v, there is no guarantee that
the garbage in the memory location for u in an implementation will correspond
to an integer value between 1 and 10. This discussion applies not only to scalar
variables, but also to array elements, structure fields, etc.

5 Domain Pathologies

The domain pathologies are those that violate some inherent property of an
underlying semantic domain such as arithmetic operations, integer ranges, data
type properties, etc.

5.1 Underconstrained or Overconstrained Branch Points

Whenever a branch point (e.g., a static branch point in UML or a decision
statement in SDL) exists in the model, the potential for a problem exists. The
conditions covering the branches must cover all of the possible values of the
associated decision, and multiple branches cannot cover the same value. For
example, a branch point may cover all the values of an enumerated type. If a
new value is later added to the type, this new case may not have been added to
all branch points, and execution of the branch point leads to undefined behavior.
This underconstrained case can be readily detected, though, by comparing the
values of the decision’s type with the union of all the conditions of the branches.
The overconstrained case can be easily detected by intersecting the conditions
on the branches. If the intersection is not empty, then there is a problem.

In one example we have seen, a type with three possible values (indicating the
state of an environment actor) was used in a routine where only two of the three
values were expected, and naturally this routine contained an underconstrained
branch point. When the requirements of the model changed, the third value was
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passed to this routine and caused abnormal execution during system testing. If
the third value was originally handled in the branch point by raising an error,
the defect could have been traced to the incorrect routine without debugging.

The same discussion of overconstrained choices also holds for guard conditions
on a state transition for the same input signal.

5.2 Real Number Equality

Modeling languages typically do not specify a precision for real (floating-point)
numbers, but it should not be assumed by the modeler that it is infinite. For
example, the comparison (1.0/3.0) ∗ 3.0 == 1.0 may or may not be true in
an underlying implementation. Uses of direct comparison operations for real
numbers, including <, >, <=, etc., can be easily detected during model analysis.

5.3 Incompatible Subranges

Modeling languages allow data types to be based on a given type but with a
restricted range of values. This is a very valuable feature in that it makes the
intent more clear, it allows potentially infinite data types (such as Integers)
to be implemented, and it enables additional model analysis checks. Anywhere
that subranges are used, analysis can check that the actual values are within the
defined range. Any attempt to assign a value out of the assigned range is an error,
including for implicit assignments such as parameter values. Range checking can
also detect situations that result in dead code such as is described above. In the
context of iteration, these “fencepost errors” can result in an infinite loop due to
a comparison to a constant which is always less than or greater than the index
variable for the iteration.

One manifestation of this issue which we commonly see in models is a condi-
tional statement which attempts to detect an exceptional situation and raise an
error condition. These conditionals often compare a value with a defined range
against a value which is outside of this range. These comparisons are never true,
and the error recovery code can never be invoked. By definition, these errors
will manifest themselves when the system is most heavily loaded, and failure to
respond properly to the situation can create a catastrophic system failure.

5.4 Out-of-Bounds Indexes

One of the most common sources of field failures (i.e., system crashes) that we
have seen involves either accessing or assigning to an element past the defined
bounds of the range of an indexed type (array, string, etc.). As was previously
stated, these errors can be extremely difficult to debug because the effects may
not be local to the error. For example, if an array is defined to have 10 elements,
then assigning a value to the “11th element” will corrupt memory.

A surprisingly large number of errors come from off-by-one mistakes in in-
dexes, especially those caused by confusion on whether indexing starts at zero
or one. In one example, we have observed a model where an array is indexed
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from the initial value 3, and a value of 0 was passed to a function for use as an
index into this array. This situation led to heap corruption of a different array
which happened to precede the indexed array in memory. Since the eventual ap-
plication failure occurred long after the heap corruption, the modeler was unable
to determine the cause of the fault through ordinary debugging techniques.

When an index expression is not a simple variable of an appropriately ranged
type, the analysis should attempt to prove that the expression value must be in
the correct range. If it cannot, it is critical to provide detailed feedback to the
modeler. While not all index uses can be proved to be correct, it is better to have
a false positive here than to have a false negative. When proof is impossible, the
scheme described in Section 7 can be applied.

5.5 Dereferencing Null

Similar to out-of-bounds indexes, attempting to dereference (get the contents
of) a Null pointer can cause runtime failures. The model analyzer should warn
whenever a dereference operation occurs and the analyzer cannot prove that the
value being dereferenced has been initialized and is not Null.

5.6 Invalid Union Access

Modeling languages often have the notion of a union of data types (e.g., the
union property in UML and the choice data type in SDL). This type should
not be used in the same way as a union is typically used in C; that is, as an
implicit casting operation. The selection of the contained type should be explicit
in the model. That is, one should not write a value of one type and read it back
out into a variable of another type. Model analysis should try to determine that
the type of the value being accessed matches the type of the value written. In
other words, the union should be thought of as a tagged union, where the tag
indicates the type of the latest value written to the union. A problem occurs
with assignments that do not respect the tag. If this condition is not checked
for and enforced, subtly unexpected results can occur. For example, consider the
case where a union is composed of two structure types. If an assignment is made
to a field of the first structure and a following assignment is made to a field of
the second structure, the contents of the union as a whole are undefined. This
can cause consequences ranging from a memory leak to heap corruption. This
defect has been present in the majority of models we have seen.

5.7 Invalid Operations on a Type

Certain operations are invalid according to the constraints of the input types,
such as division by zero. This concept—detecting obviously invalid operations
on a given data type—can be extended to all data types. Model analysis can
often detect when operations are inconsistent with the size of a string or other
collection. For instance, we have seen models where a string is declared to hold at
least some minimum number of elements, but values containing fewer elements
than the minimum are used within the model.
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6 Realizability Pathologies

The realizability pathologies are related to needing to create a design model
that corresponds to limitations from the real world, such as how much memory
is available in the system and what should be done when it is exhausted.

6.1 Unbounded Number of Instances

No implemented system can have an unbounded number of instances of any
active class. It is better from a design perspective to limit the number of in-
stances to some realizable number and then explicitly handle the case when the
maximum is reached. If this is not done, the implemented system may fail in
unexpected ways (e.g., exhausting available memory, reaching the limit of the
number of simultaneous threads, etc.).

6.2 Infinite or Unrealizably Large Data Structures

It is possible to specify a data structure in a design model that cannot be imple-
mented due to its sheer size. For example, one could specify an array whose keys
(domain values) are Integers. However, even if the Integer values are restricted to
32 bits (and most modeling languages do not impose such explicit constraints),
such an array could contain 232 elements. As with unbounded process instances,
it is better to specify a realistic maximum and then to explicitly handle the
limit case. The definition of “overly large” is open to interpretation here, but
the more obvious cases such as specifying Integer can be easily detected. As a
representation of the requirements, it would be very unusual for a real system to
have requirements that say that one must allow this large a number of elements.

7 When Model Analysis Is Not Sufficient

As has been mentioned in previous sections, it is not always possible to prove
the absence of the above semantic issues. Two approaches can be taken in such
a case. Both options are essentially equivalent in that they have the same end
result. They differ only in their scalability.

The general scheme is to have safety code inserted in the resulting code at ev-
ery point where the absence of an issue cannot be proved by the model analysis.
While this technique will increase the size of the generated code, allowing in-
correct and potentially catastrophic behavior to happen is not a valid trade-off.
The two techniques to insert this safety code into the generated code are:

1. Insert safety code at the location of every potential issue prior to analysis. In
those cases where this code was not necessary, model analysis will indicate
that it can be safely removed again. That is, the failure branch can be proved
to be dead code and can therefore be eliminated. Any safety code left after
model analysis indicates a real issue, or at least one that cannot be shown
to be not an issue.
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2. Perform model analysis before inserting any safety code. At any point where
a warning would be generated by the model analysis, safety code must be
inserted.

In practice, the second option is somewhat more efficient in terms of the model
analysis itself. However, depending on how integrated the code generation and
the model analysis are, one approach may be more straightforward to implement
than the other.

The following example illustrates the first scheme. In this assignment state-
ment, assume that my array is an array defined over a subrange of Integers, and
that index is a variable declared to be of type Integer:

my_array[index] = 3;

The model analysis must prove that the value that index has at the time
of the assignment is within the valid subrange used for indexing the array. The
following safety code can be inserted around the array access:

if ((index >= LOWEST_INDEX) and (index <= HIGHEST_INDEX))
my_array[index] = 3;

else
error();

Appropriate values of LOWEST INDEX and HIGHEST INDEX can easily be ob-
tained from the declaration of my array. If the model analysis shows that the
else branch is dead code, then the check can be optimized away again since
there can be no indexing problem. The second scheme would simply flag the
array access as suspect if the above condition could not be statically proved to
evaluate to true, and the check could be inserted after the fact.

This general scheme, however, leaves an interesting open question: What
should the definition of error() be? A context-independent answer would be
that anything more ordered than memory corruption would be an improvement.
From this point of view, the error functionality could simply log the problem
and then shut the system down gracefully.

From the viewpoint of the system developer, however, perhaps a better an-
swer is that the error functionality should depend on the context. For example,
accessing an array value out of the bounds of the array may be a fault worthy
of causing the system to shut down, but assigning to an integer variable a value
out of its declared subrange may not be. One may be tempted, therefore, to
insert error indicators that differ based on the type of fault: index error(),
subrange error(), etc.

In practice, the context of an error goes beyond the structure of a model to its
purpose, so this scheme is also inadequate. For example, in a telecommunications
network controller, dropping a single call is undesirable but acceptable; bringing
down an entire cell site is not acceptable. Functionality such as is required by
index error() will need to differ based on where it is in a model. In an instance
of an active class handling a single call, killing the instance may be appropriate.
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In an instance of an active class that is the call handler for several thousand calls,
more strenuous efforts at error recovery would probably need to be attempted.

8 Summary

The model analysis techniques described in this paper have been successfully
deployed in an industrial context. Results of applying these analysis techniques
to large models of telecommunications components indicate that a typical model
will result in hundreds of potential problems being flagged. These issues are
discovered after the model passes the analyzers from commercial modeling tools
with no errors and no warnings.

The model analyzers have been applied to SDL and UML models from more
than a dozen development teams, encompassing more than 50 production mod-
els. While it is difficult to give an exact measure of the size of these models, they
correspond to a total of a few tens of millions of lines of generated C code. In
analyzing these models, we have found that a typical model has four to six ma-
jor semantic errors (e.g., an array access out of bounds). Once these errors have
been fixed, a model will generally still have an average of about 1200 warnings,
ranging from just over 100 to more than 4200 per model. About 75% of the total
warning involve violations of range bounds (e.g., assigning 0 to a variable declared
to range from 1 to 9). Many of these subrange warnings relate to assumed exter-
nal constraints, such as when two protocols specify different value ranges, but the
developer “knows” that values will be compatible due to system usage. This as-
sumption, however, can lead to defects that are very difficult to diagnose when
assumption change in subsequent versions of the system. The next biggest class
of warnings, accounting for about 20% of the total, involves assuming that inte-
gers can be arbitrarily large, which, depending on the target platform, can lead to
a system that is impossible to implement or unacceptibly slow. Surprisingly, the
third most common type of warning, accounting for about 2% of the total, involves
decision points (if statements or switch statements). Of these, 80% are under-
constrained branch points, and 20% are statically computable Boolean conditions
in if statements (which also implies dead code in most cases).

Approximately 10% to 40% of the uncovered issues correspond to problems
that have caused a field failure, and virtually all of them have been discovered
in deployed or soon-to-be-deployed telecommunications products. Many of the
model pathologies discussed in this paper, and the techniques for finding them,
have been driven by joint post-mortem analysis by the development team and
the analysis team of actual field failures.

The importance of applying automated checks to uncover human error cannot
be overestimated. In a large and complex model, even simple cut-and-paste errors
can make it through formal inspections and rigorous testing. For example, the
authors have seen a field failure that caused a cellular network control node to
crash. The root cause of the problem was memory corruption caused by assigning
to an array out of bounds. This access happened because the modeler cut-and-
pasted similar code but forgot to change the name of the index variable in one
place. This incorrect index variable had a largely overlapping subrange with the
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correct variable, and, due to the long and similar names of the variables, no one
noticed it during inspections. Testing failed to trigger the case that caused the
crash, but several weeks of sitting in a live network in a heavily used market did.
The extra effort for a developer to read through and act on a detailed analysis
report to fix this one warning before going to the field, even if this were several
staff-days of effort, would have been far less costly than having the field failure.
This is the reason that it is important to warn about situations that may not
be what was intended (such as silently discarding a signal) and to appropriately
change the model to address them.

The model analysis described in this paper has proved to be extremely valu-
able. These techniques can also be easily extended to apply local “good modeling
practices”, such as the use of named constants instead of literal values, naming
conventions, etc. Because these model analysis techniques do not require special-
ized knowledge such as temporal logic, they can be effectively deployed across
large organizations and incorporated into current development processes with a
minimum of overhead.
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Abstract. Models addressing both structure and behaviour of a system are usu-
ally quite complex. Much of the complexity is caused by the necessity to distin-
guish between different cases, such as legal vs. illegal constellations of objects, 
typical vs. rare scenarios, and normal vs. exceptional flows of control. The re-
sult is an explosion of cases causing large and deeply nested case analyses. 
While those based on the kinds of objects involved can be tackled with standard 
dynamic dispatch, possibilities for differentiations based on the state of objects 
have not yet been considered for modelling. We show how the handling of class 
and state-induced distinctions can be unified under a common subtyping 
scheme, and how this scheme allows the simplification of models by splitting 
them into piecewise definitions. Using a running example, we demonstrate the 
potential of our approach and explain how it serves the consistent integration of 
static and dynamic specifications. 

1   Introduction 

In the age of model-driven development, models are required to specify both structure 
and behaviour of a system. Although there will always be the case for coarse abstrac-
tions omitting many particulars, a large class of models must address the specification 
of detail. Such models have to deal with considerable complexity introduced by the 
necessity to distinguish between many cases of alternative collaboration and control 
flow. Particular problems present cases of undefinedness, i.e., illegal constellations of 
objects or method invocations with which no reasonable behaviour can be associated. 
Excluding such cases through many explicit conditions disrupts the primary concern 
of a model, the depiction of what is right and what should be done. As a result, mod-
els are more difficult to write, to read, and to maintain than they should be. 

In this paper, we suggest to use subtyping and overloading of relations (where rela-
tions include associations, attributes, and operations) as a means for structuring a do-
main into defined and undefined cases, and to provide modular, piecewise definitions 
for the defined cases. Our approach shares some similarity with multi-dispatching 
known from programming languages, but significantly extends it with the possibility 
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to take the dynamic state of objects into account. By doing so, our approach not only 
allows simpler models, it also improves the integration of static and dynamic specifi-
cations that were previously thought to be rather isolated. 

In the remainder of this paper we first we show how the declaration of relations is 
used as an essential ingredient of type-level specifications, and how systematic over-
loading can be used to refine the information conveyed (Section 2). Following the 
concept of multi-dispatch, we show how attaching definitions to different (over-
loaded) branches of a declaration can eliminate the need for certain types of case dis-
tinctions (Section 3). We extend this idea to cover the state of objects, by introducing 
state subtypes and overloading relation declarations on these (Section 4). Further-
more, we show how state subtypes can be automatically derived from the statecharts 
associated with classes, and how in general statecharts can be integrated with struc-
ture and sequence diagrams. In Section 5, we elaborate process issues associated with 
our approach. We then present a discussion of the limitations of our approach and a 
comparison with related work (Section 6), and conclude with Section 7.  

2   Modelling with Declarations 

In object-oriented modelling, declarations are an accepted form of specification on the 
type level. For instance, an excerpt from a static structure (class) diagram such as 

DocumentPrinter
print

DocumentPrinter
print

 
expresses that documents and printers can engage in a relation1 named print. Its tex-
tual equivalent is the declaration of the signature of a relation: 

print: Printer × Document  (1) 

Following the general understanding in programming (which suggests that the types 
in a declaration must be substitutable by all of their subtypes), such a declaration is 
usually (mis)interpreted as a statement of total definedness, i.e., it is assumed that 
printing is defined for all combinations of printers and documents. Looking at the 
problem domain more closely, however, one notices that there are such different enti-
ties as diagrams and texts, as well as line printers and plotters, and that texts are 
printed only on line printers, while diagrams are printed only on plotters. This refine-
ment can be modelled by overloading the declaration of print, either graphically by 

DocumentPrinter

Text

Diagram

LinePrinter

Plotter

print

print

print

DocumentPrinter

Text

Diagram

LinePrinter

Plotter

print

print

print

 
or textually by 

print: Plotter × Diagram 
print: LinePrinter × Text 

(2) 

                                                           
1  We deliberately speak of relations here and not of associations, since following [20] we take 

relations to cover associations, attributes, and methods. 



 Piecewise Modelling with State Subtypes 183 

Text

Li
ne

P
rin

te
r

Diagram

P
lo

tte
r

Printer

Document

Text

Li
ne

P
rin

te
r

Diagram

P
lo

tte
r

Printer

Document

 

Text

Li
ne

P
rin

te
r

Diagram

P
lo

tte
r

Printer

Document

empty¬empty

¬
em

pt
y

em
pt

y

¬
em

pt
y

em
pt

y

Text

Li
ne

P
rin

te
r

Diagram

P
lo

tte
r

Printer

Document

empty¬empty

¬
em

pt
y

em
pt

y

¬
em

pt
y

em
pt

y

 
(a) (b) 

Fig. 1. (a) Definition holes (dark – or red – squares) induced by undefinedness of certain class 
combinations. (b) Additional holes imposed by dynamic conditions. The relation’s domain is ir-
regular and can only be declared piecewisely; besides, it cannot be declared using static classi-
fication (classes) alone. 

However, there is no way to explicitly declare that  

¬print: LinePrinter × Diagram (3) 

Instead, declaration (1) seems to warrant the printability of diagrams on line printers, 
a misunderstanding that results from the erroneous interpretation of declarations as 
definitions. In fact, in mathematics, a declaration such as (1) expresses that 

print ⊆ Printer × Document  (4) 

i.e., that the extension of print is a subset of the Cartesian product of the domains of 
its places (which subset exactly typically being subject to further definition). The Car-
tesian product Printer × Document provides merely an upper bound, which is too high 
in our example since as mentioned above there are combinations of documents and 
printers that will never engage in the print relation. In fact, least upper bounds are 
usually non Cartesian, as illustrated by Fig. 1(a). 

Moreover, in modelling and programming we have an additional temporal dimen-
sion, which means that the extension of print  grows and shrinks with time. So how 
are the declarations (1) and (2) to be interpreted? Generally, we assume that more 
specific declarations (i.e., declarations of the same relation, but involving subtypes) 
are intended to overrule the more general ones. In fact, we go as far as requiring that 
only minimal overloadings of a declaration (i.e., overloadings such that there is no 
other overloading that involves only subtypes of the first) may have tuples. This al-
lows us to define relations whose domain is not Cartesian, but rather a hypercube with 
(hypercubic) holes (cf. Fig. 1), with each tuple of the relation binding to a minimal 
overloading (not necessarily precisely one; cf. the discussion in Section 0). In Sec-
tions 0 and 0, we will attach specifications2 to minimal overloadings and show how 
they represent branches of a piecewise definition of the relation within the model. 
One might be tempted to conclude that any tuple for which a minimal declaration ex-
ists is defined – however, as argued in Section 6.1 this is not necessarily the case. 

                                                           
2  A more appropriate term would be “implementation”, but this word is problematic in the 

context of modelling. “Definition” is another alternative; however, this would make our defi-
nition of definedness appear circular. 
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Returning to the meaning of the declarations (1) and (2): they now bound the ex-
tension of print by the union of the Cartesian products of its minimal declarations: 

print ⊆ (Plotter × Drawing) ∪ (LinePrinter × Text) (5) 

Since relations include attributes (see Footnote 1) we can furthermore write 

myPrinter: Document → Printer (6) 

in order to declare an attribute myPrinter with value type Printer for Document as a 
special relation where the arrow separates the last argument of the relation (the value) 
from the rest. Again, this declaration must not be interpreted as statement of total de-
finedness, since (6) can be overloaded as in (2), e.g., with the branches 

myPrinter: Diagram → Plotter 
myPrinter: Text → LinePrinter 

(7) 

defining the range of the attribute as being dependent on its domain (cf. the discussion 
of dependent types in Section 0). 

3   Attaching Definitions to Declarations 

To illustrate how piecewise definitions based on overloaded declarations can simplify 
modelling, we extend our printing example by first adding a print manager that prints 
documents on printers. Second, we let texts consist of pages and let them be printed 
page by page, in contrast to diagrams, which are printed on a single page each. Last 
but not least, a printer can run out of paper in which case all printing attempts fail 
(i.e., are undefined), the only exception being the printing of an empty text (i.e., a text 
that has no pages). Later, we will be confronted with a niggling user who is dissatis-
fied with the undefinedness of the out-of-paper situation; fortunately, thanks to our 
piecewise definition approach pleasing him will turn out to be easy. 

The static structure of our domain is modelled by the class diagram in Fig. 2. 
PrintManager is a singleton that acts as a façade to the printing module. Its sole pur-
pose is to accept printing requests and forward them to the printer. Printer and Docu-
ment are linked by an association print, which represents the same print relation as 
expressed by the operation print(Document) in class Printer, but shows additionally 
how it is overloaded. Since Printer and Document are both abstract, the print relation 
must recruit its elements (tuples) from its concrete subtypes. Following our binding 
rules from Section 2, missing combinations (e.g., Text × Plotter) are undefined. 

Page

1 *

Page

1 *hasMorePages() : bool
nextPage() : Page

Text

Diagram

LinePrinter

Plotter

Document

print(Document)

Printer
print

printprint

print

print(Document, Printer)

«singleton»
PrintManager

print

 

Fig. 2. Static structure of the printing example 



 Piecewise Modelling with State Subtypes 185 

The sequence of actions required to process a printing request is shown in the se-
quence diagram of Fig. 3. Although the overall behaviour is rather simple, the many 
case distinctions make the diagram appear complex. Note that the branches depend on 
the type of the arguments of the print relation (as expressed by the instanceof opera-
tor) and on the state of the individual involved objects (whether or not the printer is 
empty, whether or not the text has more pages). With growing detail in the modelled 
scenarios the number of special cases needed to be considered steadily increases, 
quickly leading to a combinatorial explosion. Since nested branches are known to be 
extremely error-prone (both in programming and in modelling), significant improve-
ments can be expected from any modelling construct that does away with them. 

This is where our overloaded declarations come into play. They allow us to split 
the sequence diagram of Fig. 3 into the two pieces shown in Fig. 4, one for each ad-
missible combination of documents and printers. A message print(doc, prn) sent to a 
print manager pm is then bound to one of the two diagrams, or rejected as undefined. 
We thus have separated defined from undefined cases and provided alternative defini-
tions depending on the types of arguments. 

pm:PrintManager

print(doc, prn)

print(doc)

[prn instanceof Plotter and doc instanceof Diagram]

[prn.empty()]

IllegalState

[not prn.empty()]

rawPrint(doc)
done

[prn instanceof LinePrinter and doc instanceof Text]

[not doc.hasMorePages()]

done

[not prn.empty() and doc.hasMorePages()]

nextPage()

pg:Page

done

IllegalState

altalt

altalt

altalt

[else]

rawPrint(pg)

print(doc)

[else]

IllegalArgument

prn:Printer doc:Document

 

Fig. 3. UML sequence diagram handling printing requests for arbitrary printers and documents 
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4   Introduction of State Subtypes 

The sequence diagrams of Fig. 4 still contains undesirable case analyses, but this 
time, the distinctions are induced by the states of the involved objects. If we could 
capture the states of the objects with corresponding (sub)types, we could use the same 
technique as before, namely overloading and piecewise definition, to further reduce 
the complexity of each sequence diagram. Assuming that we declare the state sub-
types and the new minimal branches of print as shown in Fig. 5, we can extend Fig. 
1(a) to 1(b) and replace the sequence diagrams of Fig. 4 with those of Fig. 6. Note 
that each object may only be in one state at a time; hence we have marked the classes 
that have state subtypes (Plotter, LinePrinter, and Text) as abstract.  

pm:PrintManager

print(doc, prn)

doc:Diagram

print(doc)

[prn.empty()]

IllegalState

[not prn.empty()]

rawPrint(doc)
done

altalt

prn:Plotter

pm:PrintManager

print(doc, prn)

prn:LinePrinter doc:Text

[not doc.hasMorePages()]
done

[not prn.empty() and

doc.hasMorePages()]

nextPage()

pg:Page

done

IllegalState

altalt

[else]

rawPrint(pg)

print(doc)

print(doc)

(a)

(b)

 

Fig. 4. Same specification as that of Fig. 2, with type-based branching replaced by binding 
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Text| HasMorePages

Text|hasMorePages

Text| HasMorePages

Text|hasMorePages

Plotter|empty Plotter| EmptyPlotter|empty Plotter| Empty

LinePrinter|empty

LinePrinter| Empty

LinePrinter|empty

LinePrinter| Empty

DocumentPrinter

Text

Diagram

LinePrinter

Plotter

Page

1 0..*

print

print

print

1

1..*

1

1..*

printprint

printprint

printprint

printprint

 

Fig. 5. Addition of state subtypes and corresponding overloadings (marked by arrows). Note 
the missing link from Plotter|empty to Diagram. Also, the multiplicity of the aggregation be-
tween Text and Page has been restricted for Text|hasMorePages, while Text|¬hasMorePages 
does not relate to Page. 

 

If a state subtype does not engage in an overloading then this subtype contributes 
no elements to the relation. For instance, the absence of an overloading involving 
Plotter|empty and Diagram expresses that diagrams cannot be printed on empty plot-
ters. Note that we use a vertical bar to create a state subtype’s name from the name of 
the class it subtypes and the name of the state. 

The diagram in Fig. 6 (c) raises an important issue. Because the state types of doc 
and prn may change after each printed page, the types specified in the lifelines heads 
may no longer be valid. However, subsequent relation tuples (i.e., method sends, in-
cluding the recursive print(prn, doc)) will then bind to branches based on the new 
state subtypes. This allows us to elegantly model the printing of pages until either the 
printer is empty or all pages of the text have been printed, where all the control logic 
is implicit in the binding of message sends. Not inserting a new binding after possible 
state changes would require explicit tests and branching (in our example, a loop with 
explicit loop conditions), which are still possible but cumbersome. 

Note that the change in state could be reflected by using a state invariant on the 
lifeline of the object, a feature of UML 2.0 [15]. As we will see below, possible state 
changes can be automatically derived from statecharts modelling the state transitions 
of objects. 

4.1   Definition of State Subtypes 

By definition, subtypes add to the intension of their supertypes: they add properties to 
and pose additional constraints on their elements. Hence, the extension of a subtype is 
always a subset of that of its supertypes, implying that relations that are only partially 
defined on supertypes may be totally defined on subtypes. 

We define a state subtype as a subtype of a class that collects all objects of that 
class that are in a certain state. A state subtype adds to the intension of a class by re-
stricting the range of attribute values, and by restricting the associations3 and methods  

                                                           
3  Indeed, the fact that an object plays a certain role (sits in the place of a relationship) can be 

considered (part of) its state. 
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pm:PrintManager

print(doc, prn)

doc:Diagram

print(doc)

rawPrint(doc)

done

prn:Plotter| empty

pm:PrintManager

print(doc, prn)

prn:LinePrinter doc:Text| hasMorePages

done

print(doc)

pm:PrintManager

print(doc, prn)

prn:LinePrinter| empty doc:Text|hasMorePages

nextPage()

pg:Page

done

rawPrint(pg)

print(doc)

print(doc)

(a)

(b)

(c)

 

Fig. 6. Further simplification of behaviour specification made possible by the introduction of 
state subtypes. Note that Figs. 5 and 6 are equivalent to Figs. 2 and 3. 

 

its objects can engage in. Although state subtypes need not generally be mutually ex-
clusive, those that are (because they are generated from the same statechart; see be-
low) provide a complete partition of the class’s extension (cf. also Fig. 1(b)). 

State subtypes allow piecewise total definitions of otherwise partial relations us-
ing subtyping and overloading, even if definedness depends on dynamic condi-
tions. For instance, the relation print from above is totally defined for all objects of 
state subtype Plotter|¬empty (but not for all objects of class Plotter4). Like the 
subclasses from Fig. 2, state subtypes may serve to express definition holes by 
overloading relations. 

4.2   Integration with Statecharts 

One might argue that the static structure diagram of Fig. 5 has taken over much of the 
complexity removed from the sequence diagram of Fig. 3. Particularly larger exam-
ples may cause such structure diagrams to quickly become unwieldy. Fortunately, the 
latter can be automatically generated from much simpler diagrams. 

The key to only specify a regular class diagram and obtain the additional informa-
tion contained in Fig. 5 for free is to exploit supplementary statecharts. Fig. 7 shows  

                                                           
4  At first glance, our notion of state subtypes seems to contradict the idea of subtyping, be-

cause objects of a (state-) subtype can no longer substitute for those of its supertype. How-
ever, we remind the reader that the (assumed) all-quantification of a declaration (cf. Section 
2) is untenable anyway: a stack cannot be popped if it is empty, no matter what the declara-
tion of the class promises. Since at any point in time every instance of a class is also an in-
stance of one of its state subtypes, the notion of substitutability can only involve those prop-
erties that are independent of state. 
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emptyempty

print(Text)

print(Text|hasMorePages)

print(Text| hasMorePages)

LinePrinter

emptyempty

print(Text)

print(Text|hasMorePages)

print(Text| hasMorePages)

LinePrinter

hasMoreP.hasMoreP.

nextPage()

nextPage()

Text

hasMoreP.hasMoreP.

nextPage()

nextPage()

Text

emptyempty

print(Diagram)

print(Diagram)

Plotter

emptyempty

print(Diagram)

print(Diagram)

Plotter

 

Fig. 7. Statecharts for classes Plotter, LinePrinter, and Text. States correspond to the state sub-
types in Fig. 4, events correspond to the overloaded declarations in Fig. 4 and to the methods in 
Fig. 5; their absence determines which method is undefined for which state. Note that UML’s 
semantics for statecharts is different: events for which no transitions are shown are ignored. 

three simple statecharts, describing the behaviour of the objects of classes Plotter, 
LinePrinter, and Text respectively. Note that the states from each statechart partition 
the dynamic extension of the class it is associated with since each object of a class 
must be in exactly one state at a time. Furthermore, the events of Fig. 7 code the de-
finedness of relations in each state: they correspond to the minimal overloaded decla-
rations of Fig. 5 as well as to the method signatures found in Fig. 6. This allows us to  
automatically derive the state subtypes and overloadings of print in Fig. 5 from Fig. 7. 
In addition, the transitions of Fig. 7 specify which possible state changes need to be 
considered in a sequence diagram, e.g., that the state subtype of both a text and a line 
printer may change after printing each page (cf. section 4).  Last but not least, the se-
quence diagram specifies the interaction between objects, i.e., it binds the different 
statecharts together by showing which events in one statechart lead to which events in 
another (print of LinePrinter leads to nextPage of Text). It follows that state subtypes 
are natural pivotal points for the integration of static and dynamic specifications. 

5   Process Issues 

Model Evolution. Modelling is an iterative, incremental process, and the usability of 
modelling languages that do not support this development style is severely limited. 
Modelling with piecewise definitions based on subtypes and overloading supports in-
cremental development rather well, as the following considerations suggest. 

pm:PrintManager prn:Plotter/!empty doc:Text/hasMorePages

print(doc)print(doc, prn)

done

nextPageAsDiagram()

dg:Diagram

rawPrint(dg)

print(doc)

 

Fig. 8. Added behavior specification for printing texts on plotters. No interference with other 
specifications must be considered. 
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When modelling, we must distinguish two different kinds of undefinedness: natu-
ral undefinedness and as-yet undefinedness (as-yet with respect to the progress of the 
modelling process). An example of the former is the printing of a diagram on a line 
printer, and example of the latter is the printing of a document on an empty printer. 
While natural undefinedness will persist right to the final version of the model, as-yet 
undefinedness is usually removed while the model progresses: it is a form of “tempo-
rary omission”. In terms of supporting model evolution, the question is how much re-
arrangement of the model is required to remove such temporary omissions. 

In the case of printing on an empty printer, the corresponding refactoring is trivial: 
all that needs to be added is a branch that lets the printer wait until paper is refilled; 
no interaction with other objects is required. Note how this added behaviour also fixes 
the undefinedness problem of a text having more pages than the printer has paper. 

Also the decision that texts cannot be printed on plotters can be easily revoked. 
Fig. 8 shows the corresponding new collaboration which can be added without inter-
fering with the rest of the model. These “low impact changes” are possible because 
we extend the definition of relations rather than that of single classes, thereby allow-
ing a form of refinement that is automatically coordinated among classes. Our ap-
proach thus fulfils the old promise of object-orientation, namely to be able to refine 
models locally through subtyping. 

Tool Support. Just as programming today is unthinkable without programming 
environments, the quality of models is an increasing function of the quality of 
modelling tools used. However, this is only true if a modelling language allows tools 
to contribute to the quality of models. In particular, consistency and completeness 
checks should be supported; otherwise tools are reduced to mere drawing aids. 

Fortunately, our framework offers a wealth of opportunities for tool support. Com-
puting the coverage of minimal declarations of the domain spanned by the most gen-
eral declaration of a relation shows potential definition holes, which can then be 
marked by the modeller as either natural or as as-yet undefined. Overlapping of 
minimal declarations can also be flagged: for instance, if default behaviour for all 
empty printers is added as suggested above, the resulting overlap with the specifica-
tion for printing empty texts (cf. Fig. 1(b)) can be discovered. In fact, we envision a 
relationship browser that presents the definition of relations in a form similar to that 
of Fig. 1, collecting all piecewise definitions and allowing their quick access and edit-
ing. Also, consistency of statecharts with associated structure and sequence diagrams 
can be automatically checked, and changes in one diagram may propagate directly to 
changes in the others. Last but no least, the state transitions of statecharts can be used 
to check whether possible state changes are adequately accounted for in the sequence 
diagrams. This may include the computation of sets of operations that are admissible 
in all possible post-states of a previous operation.  

6   Discussion 

6.1   Total and Partial Relations, and Error Propagation 

At first glance it appears that our piecewise definition approach is capable of turning 
all partially defined relations into totally defined ones, by separating out the undefined 
cases. However, this need not always be the case: even though the minimal branch 
print: LinePrinter|¬empty × Text|hasMorePages appears to be OK, printing text on a 
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non-empty line printer is in fact undefined if the text has more pages than the printer 
has sheets of paper (see Fig. 6). Unfortunately we cannot solve this problem by intro-
ducing a finite number of new state subtypes, since the number of pages is generally 
not limited. In fact, total definedness of a branch is granted if and only if 

1. its specification does not rely on other branches, or  
2. it involves only branches that are themselves totally defined. 

In other words, the partiality of a branch automatically propagates to all specifications 
that depend on it. While this is a feature of our approach (because it frees the modeller 
from dealing with partiality explicitly), it is also a problem, because undefinedness 
can creep into seemingly innocuous parts of a model.  

We address this problem by making definition holes explicit, for instance by add-
ing exceptions to the signature of relations. These exceptions could be interpreted as 
the names of sets of tuples that are to be subtracted from the domain of a relation. For 
instance, we could write 

print: LinePrinter|¬empty × Text|hasMorePages \ TooManyPages (8) 

in order to denote that the set labelled TooManyPages must be subtracted from the do-
main of print. This set would contain all pairs of texts and printers of which the text has 
more pages than the printer has paper denotes; its specification could either be left im-
plicit, or tied to the fact that the printing results in an empty printer with pages left to 
print. Relations that depend on print will inherit the exception, as for instance the ter-
nary version of print that is associated with the print manager (see Fig. 3). We can unify 
this explicit form of error propagation with the implicit one (the inability to bind a tuple 
to a branch) since the latter can be automatically translated to explicit exceptions. 

6.2   Open Problems 

Although we could demonstrate some appealing properties, our approach certainly 
deserves further elaboration. For instance, in order to eliminate all explicit branches 
of a model, large numbers of small specifications will have to be provided. While this 
is considered good practice in object-oriented programming, it may lead to models 
that are difficult to trace (the negative impact dynamic binding may have on program 
understanding applies accordingly). Also, many of the opportunities for model inte-
gration suggested here depend on simple diagram languages. Given the complexity of 
UML’s current statechart specification, it would be naïve to believe that integration 
with sequence diagrams can remain as simple as shown here. Another problem we did 
not touch on is that a single class can have several statecharts attached, and that the 
resulting state subtypes need not be unrelated, so that possible interdependencies be-
tween statecharts must be considered (for instance through attributes whose range is 
constrained by states of more than one statechart). 

6.3   Possible Improvements 

Many basic states such as empty occur over and over, as do the transitions linking them. 
Rather than specifying one statechart for each class separately, one could envision the 
definition of “abstract” statecharts that are “implemented” by various classes, each possi-
bly adding variations. For instance, the statecharts for LinePrinter and Plotter in Fig. 7 
are sufficiently similar to think about deriving them from a common generalization. 
However, a corresponding investigation is beyond the scope of this paper. 
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The notion of state subtypes and piecewise definition could also be extended to 
other diagram types, for instance activity diagrams. As the latter – together with se-
quence diagrams – are a popular means to formalize use cases, this immediately 
points out a path to piecewise definitions of use cases as well. Note that the “extends” 
relationship between use cases may already be considered as an existing way to 
piecewisely specify exceptional or alternative behaviour, clearly demonstrating the 
need for modularity in use case specifications. 

Last but not least, an automatic translator of models into declarations of a statically 
typed language with (checked) exceptions (such as Java) could be devised. This trans-
lator may automatically add illegal argument and illegal state exceptions as shown in 
Fig. 3 to method signatures, and translate subtype information of overloaded declara-
tions to preconditions firing these exceptions. For more sophistically typed languages, 
the generation of dependent types should also prove to be a fairly simple exercise. 

6.4   Related Work 

Interestingly, the UML standard does not even attempt to specify binding rules: “The 
dispatching method by which a particular behaviour is associated with a given mes-
sage depends on the higher-level formalism used and is not defined in the UML speci-
fication (i.e., it is a semantic variation point).” [15] It appears that specification of 
binding is deliberately left to the target programming language selected for the pro-
ject. The consequences of such a policy have been discussed in [1]; we add that UML 
still lacks an explicit notion of overloading (cf. the discussion in [19]). 

Avoiding case analyses caused by state-induced behaviour differentiation is also 
the goal of the State pattern [8]. Its application might be a viable alternative in the 
context of programming (e.g., with Java) but models should not contain explicit reali-
zation structures that are designed to address lacking language support. Applications 
of the State (addressing state-based dispatch) or the Visitor pattern (addressing multi-
dispatch) would introduce realization structures to models which are not induced by 
an original to be described or a system to be specified.  

Our approach has some similarity to order-sorted algebraic specifications [11], in 
particular the universal order-sorted algebras independently developed by Gogolla 
and others [10, 13]. This form of algebraic specification assumes that each operation 
symbol represents a single operation defined on a universe of individuals, with sorts 
corresponding to subsets of that universe. In this framework, overloaded operations 
whose domains overlap must be identical on the overlap (because they denote the 
same operation). This feature has particular appeal to us, since it saves the modeller 
from having to deal with such things as overriding and calls to super, programming 
constructs that are believed to increase the compactness of specifications, but really 
introduce a lot of problems. In fact, our requirement that specifications can only be at-
tached to minimal declarations should be seen as a first step towards congruent rela-
tion specifications (as it can flag possible inconsistencies, cf. Section 0). Conditions 
required so that all tuples bind to one minimal declaration unambiguously (corre-
sponding to the regularity of signatures simplifying the implementation of overloaded 
order-sorted algebras [10]) have not been formulated explicitly here, because they 
would have required a more formal exposition which we sacrificed in favour of a 
more readable description of our work. 

Also in the context of algebraic specifications, Gogolla et al. have introduced the 
distinction between unsafe and OK functions, the former of which may lead to errors 
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[8]. Terms containing unsafe functions are themselves unsafe; in analogy to our rela-
tions that are specified in terms of other, partial relations. Interestingly, the partiality 
of operations and the propagation of errors remain hard problems for algebraic speci-
fications [13]; given the analogies pointed out above, universal order-sorted algebras 
with exceptions can provide a nice formal semantics of our approach. 

Shang shares our view that is inadequate to interpret declarations as statements 
generally all-quantified over their parameters [18]. For instance, a declaration Ani-
mal.eat(Food) (where Animal and Food are supertypes) should not be read as “all 
animals eat all food”. He notes that what he calls component types (types of fields or 
of parameters to methods) are sometimes dependent on the type of the enclosing ob-
ject (e.g., the specific kind of food is dependent on the specific kind of animal), and 
that declarations on (abstract) supertypes should explicitly express this dependency. 
Piecewise definitions of relations as suggested above cover the idea of dependent 
types, but are more general: in particular, they do not require a statement of which pa-
rameter type depends on which (which would be somewhat arbitrary in our printing 
example). Also, dependent types do not account for state-induced case analyses. 

Castagna has argued the case for overloading by way of covariant redefinition and 
multiple dispatching in object-oriented programming [2]. In his λ&-calculus, he de-
fines a message as a set of methods, where each method defines a branch of a function 
distinguished by the types of its parameters. Castagna’s branches roughly correspond 
to our piecewise definitions, and his multi-dispatch to our binding rules. Castagna al-
lows contravariance of method parameters to ensure substitutability for parameters on 
which no dispatching is desired; by contrast, we prefer to treat all parameters equally. 
Like Shang, Castagna does not consider dynamic typing. 

Based on work by Ernst et al. [6], Millstein has extended Java with “predicate dis-
patch”, i.e., a generalization of method dispatch that not only includes the types of pa-
rameters (as in multi-dispatch), but also potentially their values [12]. The emphasis in 
this work is on creating a modular static type system and the automatic detection of 
ambiguous method definitions. For this purpose, Millstein considers structural types, 
integers, and Boolean values; although dispatch on state subtypes could be emulated, 
such is not explicitly addressed. 

Chambers introduced the concept of predicate classes (corresponding to our state 
subtypes) to the programming language CECIL and demonstrates their utility with a 
number of examples [3], thereby validating the concept in a programming language 
context. Our work differs from and goes beyond the work by Chambers by suggesting 
the applicability of state subtypes in the context of modelling and by using piecewise 
definitions for a number of diagram types ranging from sequence diagrams to use case 
diagrams. Working in a modelling context we can draw on the existence of statecharts 
associated to classes and automatically derive state subtypes from them, thus advanc-
ing the integration of static and dynamic diagram types. We furthermore show how to 
unify the treatment of class and state-based behaviour with undefined behaviour and 
hint at potential support by modelling tools.  

FickleII is a proposed extension to the static type system of object-oriented pro-
gramming languages like Java that allows the type-safe, dynamic reclassification of 
aliased objects stored in temporary variables (including this) [5]. It uses state subtypes 
that extend so-called root types (classes) by adding and overriding members. The state 
type of an object can be changed at runtime, so that subsequent dispatches of same 
members on same variables may yield different results. Since different state subtypes 
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of the same root can have different members, the contents of attributes that are not 
common to all state subtypes are dropped upon state change. In contrast, our state 
subtypes can only restrict the ranges of attributes and the applicability of operations. 

Salzman and Aldrich have also suggested removing explicit branching by multi-
dispatch based on the state of objects [17]. However, they use prototypes rather than 
state subtypes for this, and do not cater for undefined constellations as we do, but in-
stead require that methods are provided for all possible parameter constellations, thus 
requiring explicit handling of undefinedness. Regarding natural “definition holes”, 
their approach is not as expressive as dependent types, or our work. 

Nierstrasz defines “regular types” by specifying (or at least approximating) their 
protocol through non-deterministic finite state machines [14]. Thanks to the existence 
of an equivalence test for this category of automata, he can check whether one type is 
a behavioural subtype of another type, with respect to their specified protocols.  
Although Niersrasz’s work would be helpful for dealing with the inheritance of state-
charts (cf. Section 0), unfortunately we cannot directly draw on it since we must as-
sume more powerful automata types in general. 

Similar to Nierstrasz, Paech and Rumpe specify rules for behavioural subtyping re-
lationships but see their relevance predominantly in refining existing types in an in-
cremental model development process [16]. Similar to our discussion of covariantly 
redefined attribute values in Section 0, Paech and Rumpe also constrain the attribute 
values of objects, depending on which state (of an automaton) the object is in.  

DeLine and Fähndrich introduce type states to object-oriented programming in or-
der to make statements about object states through the help of a modular, static type 
system [4]. They use type states in pre- and postconditions, for instance, to guarantee 
the error free execution of methods. As a result, state transitions are scattered over 
methods and – in contrast to our explicit state diagrams – the corresponding state 
transition graph is only implicitly defined. DeLine and Fähndrich thoroughly investi-
gate state subtypes in the context of inheritance between classes, but do not consider 
the extension of dynamic binding to include the state (-types) of objects. 

The type system of ALLOY [7] computes for every model two kinds of types, called 
bounding types and relevance types. Bounding types restrict the possible set of values 
of expressions from above, whereas relevance types approximate the sets of elements 
that make a difference in the evaluation of an expression in a given context; contrary 
to our approach, they are a derived, rather than a declared, property. Empty relevance 
types flag modelling errors (since no object can make a difference). Non-empty rele-
vance types on the other hand do not indicate total definedness of an expression; in 
fact, ALLOY has no explicit relation declarations, and undefined expressions evaluate 
to the empty set (ALLOY has no exceptions). Interestingly, ALLOY also allows over-
loading and interprets it as union of relations; in addition, it resolves all non-abstract 
supertypes to abstract supertypes with one additional, (implicit) subtype containing 
the remainder. Issues of openness (and modularity) of a model are not addressed. 

7   Conclusion 

While much work remains to be done, we believe to have shown that state subtypes 
can significantly reduce the complexity of models. In particular, in combination with 
overloading they allow the definition of models in a piecewise fashion, thus avoiding 
explicit case analyses. Hence state subtypes support incremental model development, 
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allowing modellers to easily address temporary omissions by simply adding new local 
definitions, leaving the rest of the model unchanged. Our presented framework fur-
thermore enables a unified treatment of special type-based, state-based, and undefined 
behaviour. Finally, state subtypes turn out to be natural pivotal points for the integra-
tion of static and dynamic specifications. 
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Abstract. Class diagrams must be complemented with a set of system 
operations that describes how users can modify and evolve the system state. To 
be useful, such a set must be complete (i.e. through these operations, users 
should be able to modify the population of all elements in the class diagram) 
and executable (i.e. for each operation, there must exist a system state over 
which the operation can be successfully applied). Manual specification of these 
operations is an error-prone and time-consuming activity. Therefore, the goal of 
this paper is to automatically provide a basic set of system operations that verify 
these two properties. Operations are drawn from the elements (classes, 
attributes, etc) of the class diagram and take into account the possible 
dependencies between the different change events (i.e. inserts/updates/deletes) 
that may be applied to them. Afterwards, the designer could reuse our proposal 
to build up more complex operations. 

1   Introduction 

The specification of an information system must include all relevant static and 
dynamic aspects of the domain [9]. The static aspects are collected in structural 
diagrams, class diagrams in the UML. Dynamic aspects are usually specified by 
means of a behavioral schema consisting of a set of system operations [11] (also 
known as domain events [14]) that the user may execute to query and/or modify the 
information modeled in the class diagram. A system operation consists of a non-
empty set of basic modifications over the system state that is perceived by the user of 
the information system as a single change in the domain. We refer to these basic 
modifications as structural events. Each structural event, such as “create object”, 
“update attribute” or “delete link”, represents an elementary change to the elements of 
a class diagram. 

Behavioral schemas must be complete [14] and executable [7]. A behavioral 
schema bs is complete when, through the system operations in bs, a user can apply all 
kinds of structural events to any modifiable element of the class diagram (i.e. given an 
element e of the class diagram and a possible structural event s over e, there is at least 
an operation in bs that includes s). It is executable, when, for each operation op, there 
exists at least an initial system state and a set of argument values that ensure a 
successful execution of op (an execution is successful when the new system state is 
consistent with the class diagram’s integrity constraints). Incomplete behavior 
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schemas result in information systems that have parts that the user cannot modify 
since no available operations address their modification. Non-executable behavior 
schemas result in information systems with operations that can never be successfully 
executed.  

For instance, given the simple example shown in Fig. 1.1, we must specify an 
operation to create new employees, an operation to delete employees and two 
operations to update the name and salary attributes. This behavior schema is complete 
since all the modifiable elements in the class diagram (dateOfBirth is marked as read 
only) can be created, updated and deleted through the execution of the system 
operations. Moreover, it is also executable. The deletion operation can be executed in 
all states with at least one employee instance. The creation and update operations can 
be applied provided that the argument corresponding to the new salary value is greater 
than 600, which is the only restriction imposed by the ValidSalary constraint. 

 Employee 

name: String  
dateOfBirth: Date {readOnly} 
salary: Money 

context Employee ValidSalary inv:  self.salary>600 

 

Fig. 1.1. Example of a simple structural schema 

For all non-trivial class diagrams the number of required system operations rapidly 
increases. Therefore, the specification of a complete and executable set of operations 
becomes an error-prone and time-consuming activity.  

We believe that an automatic generation of behavior schemas from UML class 
diagrams would offer two main benefits. Firstly, it would guarantee the quality (in 
terms of completeness and executability) of the specified system operations. 
Secondly, the software development process would be sped up by avoiding a 
systematic definition of all operations. In this sense, given a class diagram, the main 
goal of our paper is to provide a method for the automatic generation of a basic 
behavior schema that satisfies the completeness and executability properties. We 
define our generated behavior schema as a basic one since we try to keep all defined 
operations as simple as possible. Operations are declaratively specified by means of 
OCL contracts. As far as we know, ours is the first approach to provide an automatic 
generation of a complete and executable behavior schema.  

Although our basic schema suffices to cover most common operations appearing in 
class diagrams, designers may want to generate arbitrary complex operations. Such 
complex operations may be defined as a combination of our basic ones in order to 
guarantee their executability as well. Ideally, these more complex operations could 
also be (semi)automatically generated when additional diagrams (such as the use case 
diagram [21]) are considered but this is left as further work. 

The rest of the paper is organized as follows. Section 2 introduces several 
preliminary concepts. Section 3 and 4 define the completeness and executability of a 
behavior schema, respectively. Section 5 presents our generation of a basic complete 
and executable behavior schema. A case study is shown in Section 6. Finally, Section 
7 presents related work and section 8 puts forwards the conclusions and ideas for 
further research. 
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2   Preliminary Concepts 

Class Diagrams. We represent a class diagram CD using the tuple: 
CD=<CL, ATT, ASS, AC, GEN, IC > 

where CL, ATT, ASS, AC, GEN and IC represent the set of classes, attributes, 
associations, association classes, generalizations and constraints of the class diagram 
CD, respectively. All elements in CD are assumed to be correct instances of the 
corresponding metaclasses of the UML metamodel. We assume that all associations 
are binary associations. N-ary associations can easily be expressed in terms of a set of 
binary ones plus additional constraints [2].  

Structural events. The concrete number (and specification) of the system operations 
required by a class diagram depends on the exact types of structural events provided 
by the modeling language. The structural event types (and their effect) being 
considered in this paper are the following:  

1. iCl(x): inserts a new object (i.e. instance) x into class Cl. If Cl participates in a 
class taxonomy, x is inserted into all (direct or indirect) superclasses as well. 

2. dCl(x): deletes an existing object x from Cl and from all its direct and indirect 
superclasses and subclasses.    

3. uAtiCl(x,v): sets v as the new value for the attribute Ati of object x (of class Cl).  
4. iAs(x1:Cl1,x2:Cl2): inserts a new link in As between objects x1 of type Cl1 and x2 

of type Cl2. 
5. dAs(x1:Cl1,x2:Cl2): removes the link between objects x1 and x2 in As.  
6. gClcClp(x): generalizes an object x of a (child) subclass Clc to a (parent) 

superclass Clp.  
7. sClpClc(x): specializes an object x of a superclass Clp to Clc.  

Creation/deletion of instances of association classes requires creating/deleting both 
the class and association facets of the association class instance with the 
corresponding events.  

Our events are more basic than those proposed in the UML (see the list of actions 
in the UML metamodel [15]). This permits a more fine-grained reasoning. 
Nevertheless, we could easily define a correspondence between the two sets.  

3   Completeness of a Behavior Schema 

A behavior schema bs is complete when users are able to apply all kinds of changes to 
the modifiable elements of a class diagram CD through the execution of the 
operations in bs, that is, when for each modifiable element e in CD and each possible 
structural event s over e, there is at least one operation in bs that includes s. 

Therefore, completeness is guaranteed if we first compute the set setev of structural 
events that may be applied over CD and then we ensure that each event ev, ev ∈ setev, 
is included in one of the system operations in CD.  

In Section 3.1 we define the notion of modifiability for each kind of model element 
appearing in a class diagram. Then, in Section 3.2 we compute the set of structural 
events relevant to a given class diagram (i.e. the set of events that can be possibly 
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executed over the diagram), taking into account the modifiability of each element in 
the diagram. To illustrate the process we use the class diagram shown in Fig. 3.1 as a 
running example.  

 
Employee 

name: String  
dateOfBirth: Date {readOnly}
salary: M oney 

Manages 0..11
Department

name: String  
maxSalary:M oney 

managedboss

WorksIn* 
employeremployee 

SeniorEmp

experience: String 

context D epartment inv bossIsSenior: 
  self.boss.oclIsTypeO f(SeniorEmp) 
 
context D epartment inv  maxSalary:  
  self.employee-> forAll(e| e.salary<=self.maxSalary) 

1 

JuniorEmp IsSupervisedBy 
1 * 

{disjoint,complete}

supervisor 
 

Fig. 3.1. Class diagram used as a running example 

3.1   Modifiability of a Model Element 

The modifiability of a model element (that is, the possibility of changing the value or 
population of that element) depends on the type of element and on the (metamodel) 
properties specified by the designer during its definition. 

A class c is modifiable as long as c is not an abstract class (i.e. when its isAbstract 
property, defined in the Class metaclass evaluates to false) and c is not the supertype 
of a covering generalization set (covering is also known as complete). In a covering 
generalization set no instances of the supertype can be directly created, they can only 
be created when one of their subtypes is being instantiated.  

An attribute a is modifiable when a is neither read only nor derived (i.e. 
a.isReadOnly=false and a.isDerived=false, where isReadOnly and isDerived are 
properties of the Property metaclass).  

An association is modifiable when none of its member ends is read only or derived. 
An association class is modifiable when both its class facet and its association facet 
are modifiable.  

Generalization sets are always modifiable. 
All elements in the class diagram in Fig. 3.1 are modifiable except for the 

dateOfBirth attribute, which is marked as readOnly. 

3.2   Computing the Relevant Structural Events for a Class Diagram 

Given a class diagram CD=<CL, ATT, ASS, AC, GEN, IC> the set of structural 
events that may be applied to CD are the following: 

- iCl and dCl events for each modifiable class Cl in CD. 
- iAs and dAs events for each modifiable association As in CD. 
- An uAtiCl event for each modifiable1 attribute Ati of a class Cl. 
- gClcClp and sClpClc events for each subclass Clc of a superclass Clp in a 

generalization set. 

                                                           
1 Update events for non-modifiable attributes are only admitted just after the object has been 

created, as a way of initializing the attribute’s value. 
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In the example of Fig. 3.1, iJuniorEmp, dJuniorEmp and gJuniorEmpEmployee 
events may be applied over JuniorEmp. Similarly, iSeniorEmp, dSeniorEmp, 
gSeniorEmpEmployee and uExperienceSeniorEmp may be applied over SeniorEmp. 
Relevant events for Department are iDepartment, dDepartment, uNameDepartment 
and uMaxSalaryDepartment and for Employee are uNameEmployee, 
uSalaryEmployee, sEmployeeJuniorEmp and sEmployeeSeniorEmp2. For Manages 
and WorksIn, insertion and deletion events may be applied.  

4   Executability of a Behavior Schema 

A behavior schema bs is executable when for all system operations in bs there is at 
least a system state and a set of arguments for the operation parameters that permit a 
successful execution of the operation. An operation succeeds when its execution 
evolves the initial system state to a new state that satisfies all integrity constraints.  

Defining an operation as executable does not imply that every time the operation is 
executed the new system state will be consistent (this depends on the previous state 
and on the exact arguments passed as parameters for the operation). We just guarantee 
that it is at least possible to successfully execute it sometime. Otherwise, the operation 
is completely useless and should be removed. 

Executability depends on the set of structural events that the operation applies over 
the system state. The basic idea is that some events require the presence of other 
events within the same operation in order to leave the data in a consistent state at the 
end of the operation execution. As an example, an operation createDepartment 
creating new instances of department (that is, an operation applying the iDepartment 
event) must be in charge of creating a new link in the Manages association relating 
the new department with its boss (iManages event). Otherwise, every time this 
operation is executed the minimum multiplicity of the boss role (see Fig. 3.1) 
becomes violated, and thus, the operation never succeeds. 

Therefore, executability is guaranteed if, for each event ev included in the effect of 
a system operation op, all other events required by ev appear in op as well. A behavior 
schema is executable when all operations are executable. 

Dependencies between structural events depend on the type of the event and on the 
integrity constraints of each particular class diagram. When the dependencies for an 
event ev are being computed, all we need to consider are the minimum multiplicity 
constraints for associations and attributes3 and disjoint and complete constraints 
(either graphically represented or implicitly induced by textual OCL constraints4).  

                                                           
2 iEmployee and dEmployee events may be applied over Employee only when the generalization 

set in which Employee participates as a supertype is defined as incomplete.  
3 Although it is also possible to define minimum multiplicities for the number of objects in a 

class, they are quite rare. We are therefore not going to consider them in our approach. 
4 Some textual OCL constraints may exactly correspond to minimum multiplicity, disjoint or 

complete constraints. Also, some may indirectly imply them (for instance, stating that 
navigating from an object of type X to the related Y objects we must find more than N objects 
satisfying condition cond implies that the minimum cardinality of the Y role in the navigated 
association must be at least N). 
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For other constraints, we can always find a combination of a system state and/or a 
set of arguments for which the execution of ev results in a consistent state. For 
instance, maximum multiplicity constraints are never violated when ev is applied to 
an empty system state. Constraints restricting the value of the attributes of an object 
may be satisfied when passing the appropriate arguments as parameters for the event. 
The same situation occurs with constraints restricting the relationship between an 
object and related objects. Therefore, all these constraints are ignored when 
computing the dependencies of ev, and thus, when determining the executability of 
operations including ev. As an example, the maxSalary constraint (Fig. 3.1) does not 
affect the executability of operations modifying departments, employees and the links 
between them. The creation of employees and departments is always successful. 
Updates of Salary and MaxSalary attributes may be successful when choosing the 
right values for the corresponding attributes. The creation of a new WorksIn link is 
successful when the state has at least a department and an employee (who is not 
already related to a department) that satisfies the maxSalary condition. 

For the class diagram of Fig. 3.1, several dependencies between the relevant 
structural events are necessary. For instance, an iJuniorEmp(x) event requires the 
presence of events uNameEmployee(x,name), uDateOfBirthEmployee(x,date) and 
uSalaryEmployee(x,sal) to initialize the values of its non-derived attributes. 
Otherwise, operations that do not include them will always violate the minimum ‘1’ 
multiplicity of these attributes. Additionally, this event also requires the events 
iIsSupervisedBy(x,y) and iWorksIn(x,z) to avoid violating the minimum multiplicity of 
the supervisor and employer roles. The complete list of dependencies for this example 
can be found in Section 5.2.1. 

5   Generation of a Complete and Executable Behavior Schema 

In this section, we show how to automatically generate a complete and executable 
behavior schema for a given class diagram CD, according to the previous complete 
and executable properties. Our method has two main phases: 

- The assignment of all relevant events for CD to a set of new system 
operations (completeness) 

- The definition of the actual operation parameters and body in view of the 
dependencies of the assigned events (executability) 

In our approach, system operations are assigned to an appropriate class of the class 
diagram. Other authors argue that it is better to first assign all operations to an 
artificial class called System [11]. The adaptation of our method to this case is 
straightforward.  

Furthermore, operations can be specified in one of two ways: imperatively or 
declaratively [22]. In an imperative specification, the set of structural events that the 
operation applies during the operation execution are explicitly defined. In a 
declarative specification the designer defines a contract for each operation. The 
contract consists of a set of pre and postconditions. A precondition defines a set of 
conditions on the operation input and the system state that must hold when the 
operation is invoked. The postcondition states the set of conditions that must be 
satisfied by the system state at the end of the execution. In our approach, the 
imperative version of each operation can be directly deduced from the structural 
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events we assign to the operation during the generation process. Therefore, we focus 
on the declarative version.  

Note that our pre- and postconditions do not include the verification of the integrity 
constraints in CD (strict interpretation of operation contracts [18]) in order to avoid 
redundancies between the contracts and the constraints (this improves the quality of 
the resulting specifications, see [6]). Only those constraints that could potentially 
affect the executability property of the operations are considered (see the discussion 
presented in Section 4) and already tackled when reasoning on the dependencies 
between the structural events assigned to the operation. 

5.1   Creating the Required System Operations 

Assignment of relevant events for a class diagram CD into a set of system operation 
can be done in many different ways. Since we intend to create a basic behavior 
schema, our goal is to minimize the complexity of the generated operations. Roughly, 
we create a different operation in CD for each relevant structural event. 

Given that setev is the set of relevant events for CD (as computed in section 3.2) the 
system operations our method generates are the following (operations are assigned to 
the appropriate class according to the GRASP patterns [11]): 

- A class operation Cl::Create for each iCl event in setev 
- A Cl::Delete operation for each dCl event in setev 
- A Clc::GeneralizeCl operation for each gClcClp event in setev 
- A Clp::SpecializeCl operation for each sClpClc event in setev 
- A Cl::UpdateAti operation for each uAtiCl event in setev  
- Two P::CreateLinkAs operations (one for each participant class P) for each 

iAs event in setev.  
- Two P::DeleteLinkAs operations (one for each participant class P) for dAs 

events in setev 

 
Employee

name: String  
dateOfBirth: Date {readOnly}
salary: Money 

Manages 0..11 
Department 

name: String  
maxSalary:Money 

managed boss 

WorksIn* 
employer employee 

SeniorEmp

experience: String 

1 

JuniorEmp IsSupervisedBy
1 * 

{disjoint,complete} 

UpdateName 
UpdateSalary 
SpecializeJuniorEmp 
SpecializeSeniorEmp 
CreateLinkManages 
DeleteLinkMananges 
CreateLinkWorksIn 
DeleteLinkWorksIn

Create 
Delete 
GeneralizeEmployee 
CreateLinkIsSupervisedBy 
DeleteLinkIsSupervisedBy 

Create 
Delete 
UpdateExperience 
GeneralizeEmployee 
CreateLinkIsSupervisedBy 
DeleteLinkIsSupervisedBy 

Create 
Delete 
UpdateName 
UpdateMaxSalary 
CreateLinkManages 
DeleteLinkMananges 
CreateLinkWorksIn 
DeleteLinkWorksIn 

supervisor 

 

Fig. 5.1. Class diagram with the generated system operations  
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In UML, operations cannot be assigned to associations (except for association 
classes). Therefore, operations on associations are assigned to the participants of the 
association. For recursive associations we can use the name of the opposite role rather 
than the association name when creating the operation. To satisfy the completeness 
property, it would be enough to add the operations to one of the participants. 
However, on behalf of the usability of the generated behavior schema, we prefer to 
add the operations to both participants. When designing the specified system, 
designers may add navigability information to the diagram and remove the operations 
using non-navigable association ends.  

Fig. 5.1 shows the running example of Fig. 3.1 once it has been extended to 
include the set of generated operations.  

5.2   Completing the Operation Definition 

Following on from the previous section we get a set of operations, each one attached 
to a class in CD and with one of the relevant structural events assigned to it. 

To complete the operation definition we need to first determine whether the 
operation behavior must be extended with new events due to dependencies between 
them (Section 5.2.1). We will then be able to define the set of parameters for the 
operation (Section 5.2.2) and its final body (Section 5.2.3).  

5.2.1   Computing the Dependencies 
A simple dependency for a structural event ev is defined as a tuple <direction, event> 
where event is the name of the structural event required by ev and direction indicates 
whether that event should be executed before ev (symbol ←), after ev (symbol →) or 
if the exact position of ev is irrelevant (symbol ↑). In fact, the direction field is not 
strictly necessary (in the same way that the exact order of predicates in a 
postcondition is also irrelevant); as long as all dependent events are applied over the 
system state, the state at the end of the operation will be consistent. Nevertheless, the 
direction field helps to obtain a more clear and readable contract. 

More complex dependencies are expressed as a sequence of simple ones joined 
with the logical AND and OR operators (for example, ev may require the existence of 
the events ev1 and ev2 or, alternatively, the existence of an event ev3). 

Computing the list of dependencies for an event ev is a recursive process. If ev 
requires an event ev2 we must take into account also the dependencies of ev2 and so 
on. Otherwise an operation including ev and ev2 may be non-executable due to the 
dependencies of ev2 not being satisfied within the operation. Therefore, to ensure 
executability, we must compute the transitive closure of the dependencies of ev. The 
transitive closure can be computed by means of recursively applying the following 
dependency rules over the new events added to the initially empty list of 
dependencies for an event ev until no more dependencies are added5.  

Note that, due to OR dependencies (stating that ev depends on an event ev1 or, 
alternatively, on an event ev2) we may obtain different alternative dependency lists at 
the end of the computation process. Each OR dependency is a splitting point. From 
that point, two new lists are created. The lists are initialized with the contents of the 
                                                           
5 Termination is guaranteed except in the case of rare multiplicities combinations (as a cyclic 

sequence of exact one-to-one associations), which require the designer to take part in the 
process. 
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original one and then the process continues with each list separately. Each list 
generates a different operation specification. 

The list of dependency rules is the following (in the rules min(Cl,As)  returns the 
minimum multiplicity of Cl in As, i.e. the minimum number of links in As in which all 
instances of Cl must participate, and max(Cl,As)  its maximum multiplicity).: 

Rules for computing the dependencies for a structural event iCl(x): 
- A dependency depAt1 = <→, uAtiCl(x,v)> for each non-derived attribute Ati 

of Cl AND 
- A dependency depAt2 = <→, uAtkClp(x,v)> for each non-derived attribute Atk 

of Clp where Clp is a direct or indirect superclass of Cl AND 
- A number of min(Cl,Asj) dependencies depAs1 = <→, iAsj(x,y)> for each 

non-derived association Asj where Cl has a mandatory participation 
(min(Cl,Asj) >=1) AND 

- A number of min(Clp,Ask) dependencies depAs2 = <→, iAsk(x,y)> for each 
non-derived association Ass where Clp is a direct or indirect superclass of Cl 
and Clp has a mandatory participation in Ask. 

Dependencies for a dCl(x) event : 
- A number of min(Cl,Asj) dependencies depAs1 = <→, dAsj(x,y)> for each 

non-derived association Asj where Cl has a mandatory participation AND 
- A number of min(Cl’,Ask) dependencies depAs2 = <→, dAsk(x,y)> for each 

non-derived association Ask where Cl’ is a direct or indirect superclass or 
subclass of Cl and Cl’ has a mandatory participation in Ask. 

Dependencies for a sClpClc(x) event: 
- A dependency depAt = <→, uAtiClc(x,v)> for each non-derived attribute Ati 

of Clc AND 
- min(Clc, Asj) dependencies depAs = <→, iAsj(x,y)> for each non-derived 

association Asj where Clc has a mandatory participation AND 
- A dependency depSpec = <→, gClc’Clp(x)> for a Clc’ class such that Clc≠ Clc’ 

and that x is an instance of Clc’ . This dependency only applies when the 
generalization set, for which Clp is the supertype, is disjoint and complete; in 
such a case, specialization of x to Clc forces the removal (generalization) of x 
from a different subtype Clc’ to satisfy the disjoint constraint. We know that x 
was instance of some Clc’ because the generalization set is complete. 

Dependencies for a gClcClp(x) event: 

- min(Clc,Asj) dependencies depAs = <→, dAsj(x,y)> for each non-derived 
association Asj where Clc has a mandatory participation AND 

- A dependency depGen = <→, sClpClc’(x)> such that Clc≠ Clc’. Again, this 
dependency only applies when the generalization set, for which Clp is the 
supertype, is disjoint and complete.  

Dependencies for an iAs(x:Cl1,y:Cl2) event when min(Cl1,As)=max(Cl1,As) (the 
process must be repeated for Cl2 when min(Cl2,As)=max(Cl2,As)): 

- A dependency depAs = <↑, dAs(x,z)> such that  <x,z> is an existing link in 
As, if  min(Cl2,As)≠max(Cl2,As) OR 

- A dependency depIns = <←, iCl1(x)> OR 
- A dependency depSpec = <←, sClpCl1(x)> if Cl1 has a supertype Clp 
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Dependencies for a dAs(x:Cl1,y:Cl2) event when min(Cl1,As)=max(Cl1,As) (the 
process must be repeated for Cl2 when min(Cl2,As)=max(Cl2,As)): 

- A dependency depAs = <↑, iAs(x,z)> if  min(Cl2,As)≠max(Cl2,As) OR 
- A dependency depIns = <←, dCl1(x)> OR 
- A dependency depGens = <←, gCl1Clp(x)> if Clp is a supertype of Cl1. 

No dependencies are needed for uAtiCl events since changes on attribute values do 
not violate cardinality, complete or disjoint constraints. Table 5.1 summarizes the 
result of the (recursive) application of these rules over the relevant structural events 
for the class diagram shown in Fig. 3.1. 

Table 5.1. Dependencies for the relevant structural events in the class diagram in Fig 3.1 

Structural event Required events (dependencies) 
iJuniorEmp(x) uNameEmployee(x,vname) AND uDateOfBirthEmployee(x,vdate) AND 

uSalaryEmployee(x,vsal) AND iIsSupervisedBy(x,y) AND iWorksIn(x,z) 
dJuniorEmp(x) dIsSupervisedBy(x,y) AND dWorksIn(x,z) 

sEmployeeJuniorEmp(x) iIsSupervisedBy(x,y) AND gSeniorEmpEmployee(x) 
sEmployeeSeniorEmp(x) uExperienceSeniorEmp(x,exp) AND gJuniorEmpEmployee(x) AND 

dIsSupervisedBy(x,y)  
gJuniorEmpEmployee(x) sEmployeeSeniorEmp(x) AND dIsSupervisedBy(x,y) AND 

uExperienceSeniorEmp(x,exp) 
iSeniorEmp(x) uNameEmployee(x,name) AND uDateOfBirthEmployee(x,date) AND 

uSalaryEmployee(x,sal) AND uExperienceSeniorEmp(x,exp) AND 
iWorksIn(x,z) 

dSeniorEmp(x) dWorksIn(x,z) 
gSeniorEmpEmployee(x) sEmployeeJuniorEmp(x) AND iIsSupervisedBy(x,y)  

iDepartment(x) uNameDepartment(x,name) AND uMaxSalaryDepartment(x,maxSal) 
AND iManages(x,y)  

dDepartment(x) dManages(x,y) 
iManages(x,y) dManages(x:Department,z:Employee) OR iDepartment(x) 
dManages(x,y) iManages(x:Department,z:Employee) OR dDepartment(x) 
iWorksIn(x,y) dWorksIn(z:Department,y:Employee) OR iEmployee(y) 
dWorksIn(x,y) iWorksIn(z:Department,y:Employee) OR dEmployee(y) 

iIsSupervisedBy(x,y) dIsSupervisedBy(z:SeniorEmp,y:JuniorEmp) OR iJuniorEmp(y) OR 
sJuniorEmp(y) 

dIsSupervisedBy(x,y) iIsSupervisedBy(z:SeniorEmp,y:JuniorEmp) OR dJuniorEmp(y) OR 
gJuniorEmpEmployee(y) 

5.2.2   Defining the Operation Signature 
The signature of an operation op depends on the list listev of structural events the 
operation consist of (computed as shown in the previous section) and the class where 
op is attached.  

Each event ev ∈ listev may require the addition of new parameters in the signature. 
The basic idea is that every variable that appears as a parameter of ev must also 
appear as a parameter (of the same type) in the operation. Four exceptions apply:  

1. Variables for iCl events are not parameters of the operation. These new 
objects are created during the operation execution. 

2. A parameter variable that has already appeared in a previous event does 
not generate a new operation parameter (i.e. if an operation consists of 
two events iAsX(x1,x2) and iAsY(x1,x3) only three parameters x1, x2 and x3 

are defined). 
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3. We use the implicit parameter self as a replacement for one of the 
parameters whose type is the class to which the operation is attached (i.e. 
if an operation defined in a class Cl has the event uAtiCl(x,v) only a 
parameter for v is generated; the implicit self parameter is used whenever 
x appears).  

4. Variables for dAs events not included in a DeleteLinkAs or a 
CreateLinkAs operation are not parameters of the operation. Those 
deletions are required by dCl or gClcClp events. In those cases, the link/s 
to be deleted are the ones in which the self parameter participates, and 
thus, they can be determined automatically. 

For instance, the operation JuniorEmp::Create of Fig 5.1 consists of the 
iJuniorEmp(x) event and all its dependencies defined in Table 5.1 
(uNameEmployee(x,vname), uDateOfBirthEmployee(x,vdate), uSalaryEmployee(x,vsal), 
iIsSupervisedBy(x,y), iWorksIn(x,z)). From this list of events we may determine the 
signature of the Create operation as follows:  

Create(vname:String, vdate:Date, vsal:Money, y: SeniorEmp, z:Department).  

Similarly, the signature of Department::Delete is simply Delete(). This signature is 
calculated from the list of events for this operation (dDepartment(x), dManages(x,y)). 
In accordance with the rules above, none of the event variables must be added as an 
explicit parameter of this operation. 

5.2.3   Defining the Operation Body 
In an imperative specification of the operation effect, the operation body is simply 
defined as the ordered list of structural events computed for the operation as shown in 
the previous sections. However, in a declarative specification we must transform the 
list of structural events into an OCL contract such that the application of the events 
over a state satisfying the contract preconditions evolves this initial state into a new 
state that satisfies the contract postconditions. 

As discussed in the introduction of Section 5, our operations do not explicitly 
include the integrity checking of the class diagram’s constraints. Therefore, our 
operations do not include preconditions and the postconditions refer solely to the 
operation’s own behavior. Constraints that may affect the executability property of 
the operation will already have been considered when computing the dependencies. 

The initial postcondition is obtained by means of translating each single event into 
an equivalent boolean condition and concatenating the different conditions with AND 
operators (this translation is not unique, see [3]). In the following we provide a 
possible boolean condition for each event. 

1. iCl(x): x.oclIsNew() and x.oclIsTypeOf(Cl) 
2. dCl(x):OclAny::allInstances()=OclAny::allInstances()@pre->excluding(x)  
3. uAtiCl(x,v): x.Ati=v 
4. iAs(x1,x2): x1.r2->includes(x2) (r2 is the role corresponding to x2 in As) 
5. dAs(x1,x2): x1.r2->excludes(x2) (r2 is the role corresponding to x2 in As) 
6. gClcClp(x): x.oclIsTypeOf(Clp) 
7. sClpClc(x): x.oclIsTypeOf(Clc) 
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Note that OclAny is the supertype of all types in the UML class diagram [16]. 
Using OclAny instead of Cl in the definition of the dCl(x) event condition guarantees 
that the object x is completely removed from the system (and that it does not remain, 
for example, as an instance of a supertype of Cl). 

The resulting postcondition may need to be refined depending on the combination 
of translated structural events. For instance, if several sClpClc events are applied over 
an instance x, only the translation for the event over the more specific class is 
necessary. Translation for events dAs(x1,x2) can be discarded when dCl(x1) and/or 
dCl’(x2) events also appear (usually, the deletion of links is implicitly assumed).  

As an example, we provide the contract for the operation JuniorEmp::Create and 
for the operation Department::Delete. 

context JuniorEmp::Create(vname:String, vdate:Date, vsal:Money,y:SeniorEmp,             
z:Department)  
post: x.oclIsNew() and x.oclIsTypeOf(JuniorEmp) and x.name=vname and 
x.dateOfBirth=vdate and x.salary=vsal and x.supervisor->includes(y) and 
x.employer->includes(z) 

context Department::Delete()  
post: OclAny::allInstances()=OclAny::allInstances()@pre->excluding(self) 

6   Case Study 

To show the benefits of our proposal, in this section we compare the behavior schema 
for a real-life application when it has been generated by our method with the behavior 
schema originally specified by the designer by hand for the same application.  

In particular, we analyze a system for a Conference Management Application as 
specified in [19]. This system provides functionalities to support paper submissions, 
assignment of papers to reviewers and the evaluation process. The class diagram 
consists of 13 classes, 13 binary associations, 2 non-covering generalization sets and 
several constraints. The proposed behavior schema includes 29 operations.  

Our method is able to completely generate 13 of the 29 operations (6 creation 
operations, 3 deletion operations and 4 update operations). Seven additional 
operations (each one assigning one or more constant values to attributes of the class 
diagram) can be directly mapped to our generated system operations by passing these 
constant values as parameters of our UpdateAti operations. The rest of the system 
operations, 9 out of 29, can only be partially generated by our method. This means 
that the designer must manually complete their specification. Mainly, the difference is 
that in the original schema these nine operations include some ad hoc if-else 
conditions that restrict the applicability of the operations depending on the system 
state. Clearly, it is not possible to automatically generate these conditions.  

From the results presented above, we see that the application of our proposal helps 
designers by reducing by 69% (20 of 29) the number of operations to be defined and 
by providing at least an initial contract specification for the remaining ones.  

Moreover, our approach generates several operations that did not appear in the 
manually specified schema (for instance, all GeneralizeCl and SpecializeCl and some 
UpdateAti operations). Designers could use this information to detect whether some 
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required operations must be added to the class diagram or if the specification of the 
class diagram is incomplete (for instance, attributes are not marked as readOnly or 
derived, completeness and/or disjointness of generalizations sets is not defined, etc).  

7   Related Research 

As far as we know, ours is the first approach to study the application of the 
completeness and executability properties to the automatic generation of a basic 
behavior schema.  

[10] partially determines the set of possible structural events to be applied to a 
class diagram (generalizations are not considered). However, in this approach system 
operations must be manually defined as a combination of a set of structural events. 
Therefore, the completenesss and executability of these operations must be 
guaranteed by designers. In this approach, operations are specified using the formal 
notation B.  

[8] derives a set of basic operations (similar to our concept of structural events) and 
a set of elementary operations from an EER diagram. These latter operations are not 
necessarily executable since cardinality constraints are not considered in any case.  

Alternatively, other approaches try to generate system operations from the 
information provided in different diagrams, such as the use case diagram. For 
instance, [21] presents a method for generating system operations from use cases 
specifications. Nevertheless, this method is not automatic and completeness and 
executability properties of the generated behavior schema are not analyzed.  

The idea of dependencies between structural events is not new. This problem has 
been addressed in the (deductive) database field as part of the more general problem 
of integrity maintenance at compile-time (see [20], [12], [17]). In those cases, the goal 
was similar: to extend a (predefined) given transaction/operation with additional 
events to always ensure its successful execution. However, their expressivity 
regarding the definition of the structural diagram and the set of admitted structural 
event types is more restricted than in our method. 

Regarding OCL contracts, [1] provides some patterns to help designers in their 
manual definition but automatic generation of contracts is not studied. 

Some IDEs (as [5] or [13]) are able to automatically generate basic getter/setter and 
creator methods for classes. However, the methods do not take into account the 
possible dependencies among the included events. 

8   Conclusions and Further Research 

The complete definition of the behavior schema is one of the most important tasks in 
the analysis and design stages of an information system. The method presented in this 
paper facilitates this task by automatically generating an initial set of system 
operations. Operations are drawn from the structure of the class diagram. 

The executability and completeness properties of this set of operations guarantee 
the quality of the behavior schema. Designers are free to directly use our operations 
(avoiding the manual definition of the behavior schema) or to reuse our method in 
order to create more complex operations (while maintaining the previous properties).  
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We believe our method is useful even when the designer is not interested in a 
complete and automatic generation of the behavior schema. If integrated in an OCL 
editor, our method could assist the designer during the definition of OCL contracts by 
means of suggesting additional predicates to complete the postconditions. These 
suggestions would be provided based on our dependencies computation. 

As a further research, we would like to study how we can reuse the information of 
use cases (as in [21]) and state diagrams to automatically derive more complex system 
operations. We are also interested in studying how to integrate the efficient 
verification of all constraints that may be violated by the operation execution (the 
relevant constraints can be determined with [4]) into the preconditions of our 
generated operation contracts so that a successful execution of the operation is always 
guaranteed (providing that the precondition is satisfied). Additionally, we plan to 
apply the completeness and executability properties to the verification of existing 
behavior schemas.   
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Abstract. Since the seminal book by the Gang of Four, design pat-
terns have proven an important tool in software development. Over time,
more and more patterns have been discovered and developed. The sheer
amount of patterns available makes it hard to find patterns useful for
solving a specific design problem. Hence, tools supporting searching and
finding design patterns appropriate to a certain problem are required.
To develop such tooling, design patterns must be described formally
such that they can be queryed by the problem to be solved. Current ap-
proaches to formalising design patterns focus on the solution structure of
the pattern rather than on the problems solved. In this paper, we present
a formalisation of the intent of the 23 patterns from the Gang-of-Four
book. Based on this formalisation we have developed a Design Pattern
Wizard that proposes applicable design patterns based on a description
of a design problem.

1 Introduction

Since Gamma, Helm, Johnson, and Vlissides (the so-called Gang of Four (GoF))
published their seminal book [14], design patterns have proven a useful tool in
software development. A design pattern encapsulates a solution for a recurring
design problem in template form, ready to be applied to new instances of the
problem. It, thus, is a form of encoding and transferring design knowledge be-
tween projects and developers.

Because design patterns are so useful, lots of them have been discovered or de-
veloped and documented since the publication of the GoF book. Current design
patterns have appeared in specific application domains (J2EE patterns [5,6,11],
User-Interface patterns [20]), as language-dependent patterns (also called id-
ioms), as patterns at different abstraction levels (analysis patterns [10], archi-
tectural patterns [11,12]), or simply as large collections of design patterns in
pattern catalogues [7,25]. Even though the GoF book only contains 23 design
patterns, the authors state that “it might be hard to find the one (design pattern)
that addresses a particular design problem especially if the catalogue is new and
unfamiliar to you.” [14]. The sheer number of design patterns available today
impedes effective reuse of design patterns, because it is very difficult to find the

G. Engels et al. (Eds.): MoDELS 2007, LNCS 4735, pp. 211–225, 2007.
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right design pattern for a given design problem. This is especially true for inex-
perienced developers who do not yet know a large number of design patterns by
heart. To deal with the large number of patterns effectively, software developers
require tool support for finding design patterns that can solve a certain design
problem. This paper is a step towards such tooling.

For this, we require a description of design patterns to be available in a
machine-readable format. This description must contain a formal specification
of the design patterns. It must be constructed in such a way as to allow querying
based on the design problem to be solved.

Existing approaches to formalising design patterns generally cover only the
formal description of the solution structure of design patterns. While the struc-
ture of a design pattern explains how it is applied in software design, it does
not explain when to apply a design pattern for a given design problem. Only the
intent section of a design pattern description explains the purpose of a design
pattern. To the best of our knowledge, no work exists trying to formalise the
intent of design patterns. However, software tools based on such a formalisation
could enable users to query for a design pattern by giving a description of their
design problem based on terminology defined in the specification. Ontologies are
one way of expressing such a formalisation, because they directly support the
creation and querying of such knowledge bases.

The main contribution of this paper is, therefore, a Design Pattern Intent
Ontology (DPIO); that is, an extensible knowledge base of design patterns (in
our case the 23 GoF patterns) classified by their intent.

The remainder of this paper is structured as follows: The following two sections
give a short introduction to design patterns and to ontologies. Section 4, the main
section of the paper, presents the DPIO. In Sect. 5 the ontology is evaluated by
checking that certain competency questions (sample queries) can be formalised
and answered based on the ontology. Section 6 discusses the design pattern
wizard developed on top of the DPIO. The paper closes with a discussion of
related work (Sect. 7) and a conclusion (Sect. 8).

2 Design Patterns

A design pattern is “a solution to a problem in a context” [13]. It is a way
to achieve reusability in software design. Design patterns first emerged in the
context of architecture and town building [4]. However, the idea of reusing design
by applying patterns to recurring design problems has been ported to object-
oriented software design in the GoF book Design Patterns: Elements of Reusable
Object-Oriented Software [14].

In the GoF book, design pattern descriptions are structured into the follow-
ing parts: pattern name and classification, intent, motivation (forces), applicabil-
ity, structure, participants, collaboration, consequences, implementation, sample
code, known uses, and related patterns. Formalisations of design patterns typi-
cally focus on the structure of the solution proposed in the pattern (for example,
[17]). This does not, however, uniquely characterise a design pattern. Consider, for
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Fig. 1. The structure of the (a) State and (b) Strategy patterns. Copied from [14].

example, the patterns State and Strategy (cf. Fig. ??). Their structure is more or
less identical. However, their intent is not. The intent of State is given in [14] as

“Allow an object to alter its behavior when its internal state changes.
The object will appear to change its class.” [14]

In contrast, the intent of Strategy is

“Define a family of algorithms, encapsulate each one, and make them
interchangeable. Strategy lets the algorithm vary independently from
clients that use it.” [14]

The intent of a design pattern is the first section a developer reads when trying
to understand whether a design pattern is a solution to the developer’s current
problem. Hence, this is the section that should form the basis of a formalisation
of design patterns that can help developers find the pattern they need.

3 Ontologies

“An ontology is an explicit specification of a conceptualisation” [16]. Ontologies
were developed by the Artificial Intelligence community to support the sharing
and common understanding of domain knowledge. Every ontology consists of a
hierarchy of classes, properties (attached to the classes and used to model
relationships between them), and individuals (instances of classes).

Ontologies are suitable means for formalising the intent of design patterns,
because they allow to encode domain knowledge in a simplified abstract way and
enable queries to be evaluated against a knowledge base defined by an ontology.
For this reason, in this paper, we present an ontology-based formalisation of
the intent of design patterns, thus defining a machine-readable, queryable cat-
alogue of design patterns. We use OWL, the Web Ontology Language [26], as
the formalisation language. We have chosen OWL, because it is a W3C rec-
ommendation (that is, an accepted standard) and because its good tool- and
framework-support (see [2,3]) allows easy extension of the ontology and devel-
opment of tools using the ontology as a knowledge base.

4 The Design Pattern Intent Ontology

The aim of the Design Pattern Intent Ontology (DPIO) is to support developers
in choosing a design pattern for a given design problem. That is, the domain
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Fig. 2. The parent classes of the three hierarchies Design Pattern, Design Problem and
Problem Concept

of the ontology is the area of software development. In this paper, we constrain
the scope of the ontology to cover only the design patterns defined in the GoF
book.1 Thus, the ontology should provide the terms and concepts the GoF book
uses to describe software design and design patterns.

The scope of the ontology is restricted to the intent and the application of
design patterns in software design. The ontology must be elaborate enough to
enable the querying for solutions to design problems. However, it is not intended
to describe the structure of a design pattern. There is other work that is formal-
ising these aspects of design patterns (see Sect. 7). For the scope of this work,
the formalisation of the structure of design patterns does not give any additional
benefits.

Competency questions are a way of determining the scope of an ontology [24].
They are the kind of questions the ontology should be able to answer. Here are
some possible competency questions for the DPIO:
– Which design patterns are contained in the ontology?
– Which concepts are contained in the ontology that can be used to model a

design problem?
– Which design pattern is a solution to the problem of varying an algorithm?
– Which design pattern is a solution to the problem of objectifying state?

In Sect. 5 we show how a formalised representation of the competency questions
can be used to evaluate the ontology.

In designing the structure of the DPIO, we need to take into account the
possible relations between design patterns and the problems they solve: One
design pattern can be the solution to more than one design problem. But one
design problem can also be solved by more than one design pattern. For ex-
ample, both the Prototype pattern and the Builder pattern are concerned with
object creation. Consequently, there exists an n:m relationship between design
patterns and design problems. The solution to model this n:m relationship is
1 This is for reasons of associated effort only. The basic structure of the DPIO has

been designed to be extensible to arbitrary design patterns.
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1 Class: StrategyDesignPattern
2

3 SubClassOf: GOFPattern
4

5 and isSolutionTo some
6 AlgorithmDecoupling
7 and isSolutionTo some
8 AlgorithmSelection
9 and isSolutionTo some

10 AlgorithmVariation
11

12 ...

Listing 1.1. Definition of the design pattern class StrategyDesignPattern

by defining a set of design problems and relating these design problems to de-
sign patterns. Therefore, a design pattern is a solution to one or more design
problems. We furthermore describe a design problem by using problem concept
terms. A design problem is constrained by problem concepts. Figure ?? gives
a graphical overview of the core structure of the DPIO. The relations between
DesignPattern, DesignProblem and ProblemConcept classes are depicted us-
ing UML-notations.2 UML classes symbolise OWL classes, UML associations
symbolise OWL object properties. The association between DesignPattern and
DesignProblem indicates an object property isSolutionTo that relates Design-
Pattern classes to DesignProblem classes. The property isSolvedBy is an in-
verse property of isSolutionTo. The association class constrains indicates
an OWL object property that can be further specialised by subproperties. Both
DesignPattern, DesignProblem and ProblemConcept classes are the
root classes of subclass hierarchies specialising the root concepts.

To discuss the structure of the ontology in more detail, we look at some exam-
ple definitions. Listing 1.1 is an example of a subclass from the DesignPattern
hierarchy and shows the definition of the class StrategyDesignPattern in Man-
chester OWL syntax [18]. It states that an individual is a StrategyDesign-
Pattern if it is a subclass of GOFPattern (Line 3) and is a solution to certain
problems as per the intent of the Strategy design pattern: “Define a family of
algorithms, encapsulate each one, and make them interchangeable. Strategy lets
the algorithm vary independently from clients that use it. [. . . ] Strategies provide
a way to configure a class with one of many behaviors [they can be used when]
we need different variants of an algorithm” [14]. The design problems formal-
ising these aspects are AlgorithmDecoupling (Line 6), AlgorithmSelection
(Line 8), and AlgorithmVariation (Line 10). Together they define a set of
design problem facets with the need to decouple, select and vary algorithms.

2 There seems to be no commonly agreed visual representation of ontologies yet. We
have chosen UML class diagrams because they are easy to understand.
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Consequently, the Strategy design pattern is a solution to these design problems
and connected to them via the object property isSolutionTo.

1 Class: AlgorithmDecoupling
2

3 SubClassOf: DecouplingProblem
4

5 and decouples some
6 Algorithm

Listing 1.2. Definition of the design problem class AlgorithmDecoupling

Listing 1.2 is an example of a subclass from the DPProblem hierarchy and
shows the definition of the class AlgorithmDecoupling. For an individual to be
of class AlgorithmDecoupling it is necessary to be a member of the anonymous
class of things that is linked to at least one member of class Algorithm via the
object property decouples (Line 5–6). The property decouples is thereby an ex-
ample of a subproperty of the constrains hierarchy. An AlgorithmDecoupling
design problem is therefore simply concerned with the decoupling of algorithms.

The examples discussed so far (Listing 1.1 and 1.2) have been modelled using
vocabulary defined in the DPIO. Tables 1 and 2 show an excerpt of the terms
and concepts we have defined in the DPIO3. Table 1 shows the design problem
hierarchy. An abstract concept DPProblem is defined that is the root node for
more specific problems. The inheritance relationship is represented by a � symbol
and an indentation. The description column gives a short comment on the intent
of each problem concept. For example, a Problem “is the abstract base class and
the root node of the problem hierarchy”. A DPProblem is a Problem that can be
solved by design pattern solutions. Further specialisations are ControlProblem,
AlgorithmSelection, DecouplingProblem etc. The top level hierarchy is based
on the Tichy catalogue [28], an initial classification of design-pattern intents.
However, we extend and restructure Tichy’s hierarchy to allow a more detailed
modelling of the problem domain.

Similar to classes, OWL properties also can be specialised by sub-properties.
The OWL object property constrains, modelled as a UML association class, is
the root property of more specialised object properties. Table 2 lists an excerpt
of modelled OWL object properties which are used to describe design problems.

The aforementioned framework structure of DesignPattern, DesignProblem,
constrains-properties and ProblemConcept is what allows developers to formu-
late queries without knowing the design patterns in the knowledge base. To do
so, developers use the terminology provided in the ProblemConcept hierarchy
and the constrains-properties to model their design problem. Standard ontol-
ogy reasoning can then be used to determine the design patterns solving such
3 The whole ontology can be downloaded from
http://www.holger-kampffmeyer.de/DesignpatternsIntentOntology.owl.

http://www.holger-kampffmeyer.de/DesignpatternsIntentOntology.owl
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Table 1. The design problem taxonomy

Design Problem Description

Problem Abstract base class and root of the hierarchy.
� DPProblem A problem from the domain of design patterns.
� ControlProblem controls execution and method selection.
� . . . . . .
� AlgorithmSelection controls algorithm selection.
� . . . . . .

� DecouplingProblem divides a software system into independent parts.
The parts can be built, changed, replaced.

� AlgorithmDecoupling decouples algorithms from the rest of the system.
� . . . . . .

� VariantManagementProblem treats different objects uniformly.
� . . . . . .
� AlgorithmVariation varies an algorithm.
� . . . . . .

1 (retrieve (?solution )
2 (and (?solution |GOFPattern|)
3 (?solution ?designproblem |isSolutionTo|)
4 (?designproblem ?problemConstraint |<objectproperty>|)
5 (?problemConstraint |<someclass>|)
6 ))

Listing 1.3. Template-structure of a nRQL query to retrieve all design patterns that
are a solution to some design problem

problems. The structure of a query asking for those design patterns solving
a specific problem can look like Listing 1.3, showing the structure of a query
in nRQL syntax [19]. In nRQL, a query is composed of a preliminary com-
mand, followed by the query head and body put in parentheses, respectively.
The head of the query contains variables that are bound to the result set of
the query. The body contains constraints of a query, similar to those of SQL
where-clauses. It consists of one or more query atoms. Query atoms can be com-
bined to complex queries by using logical operators such as AND, OR, and NOT.
The query in Listing 1.3 retrieves all design patterns being a solution to a spec-
ified design problem. The placeholders <objectproperty> and <someclass>
need to be replaced by concrete subproperties of constrains and subclasses
of ProblemConcept, respectively. For example, <objectproperty> could be re-
placed by distributes and <someclass> could be replaced by Behavior to
retrieve all behavioral design patterns. The Design Pattern Wizard we introduce
in Section 6 generates queries with a similar structure to the query shown in
Listing 1.3.
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Table 2. The OWL object properties used to model design problems

Object Property Description

constrains binds a problem concept to a design problem,
super property for all other properties.

� varies allows diversity.
� . . . . . .
� controls handles something.
� . . . . . .
� handles equivalent property to “controls“.
� . . . . . .
� selects chooses some behavior.
� . . . . . .
� decouples loosens the coupling of objects.
� . . . . . .

1 (concept-descendants |DesignPattern|)

Listing 1.4. nRQL query to retrieve all design patterns defined in the ontology

5 Evaluation

There are different possibilities for evaluating an ontology such as the DPIO. The
final proof of the concepts can, of course, only be found through a controlled
experiment in which developers are asked to use the ontology to solve certain
design problems. Such an experiment would show if the ontology achieves our
underlying goal of providing a formalisation of design patterns more appropri-
ate to the problem of finding the design pattern one needs to solve a specific
problem in software design. Performing such experiments is costly and time con-
suming. For this reason, we have not done so yet. However, we acknowledge the
importance of such work and propose to perform it in future research.

A different approach to evaluating our ontology is to check whether it can
answer the kinds of questions that are likely to be asked of it. To this end,
we have developed a catalogue of competency questions. Here, we translate the
competency questions into a formal version we can use to query the DPIO. In a
second step, we test the ontology by verifying that the result set of the queries
correspond to the intended meaning of the ontology. We use the nRQL query
language [19] for formalising the competency questions.

Which design patterns are contained in the ontology? Listing 1.4 shows the
formal representation of this competency question. It retrieves all children of
the concept DesignPattern. The result set of the query contains the 23 GoF
patterns modelled in the ontology.

Which concepts are contained in the ontology that can be used to model a
design problem? Listing 1.5 shows the formal representation of this competency
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1 (concept-descendants |ProblemConcept|)

Listing 1.5. nRQL query to retrieve all problem concepts defined in the ontology

1 (retrieve (?x )
2 (and (?x |GOFPattern|)
3 (?x ?p |isSolutionTo|)
4 (?p ?a |varies|)
5 (?a |Algorithm|)
6 ))

Listing 1.6. nRQL query to retrieve all design patterns that are a solution to varying
an algorithm

question. Concepts that are intended to model a design problem are subclasses of
the class ProblemConcept. Consequently, the nRQL query retrieves all children
of ProblemConcept.

Which design pattern is a solution to the problem of varying an algorithm?
Listing 1.6 shows the formal representation of this competency question. The
query asks for those subclasses of GOFPattern that are linked to a design prob-
lem via the object property isSolutionTo. It furthermore asks for only those
design problems that have an object property varies that relates the concept
Algorithm. The query results in the Template Method and the Strategy design
patterns.

Which design pattern is a solution to the problem of objectifying state? List-
ing 1.7 shows the formal representation of this competency question. The query
asks for those subclasses of GOFPattern that are linked to a design problem via
the object property isSolutionTo. It furthermore asks for only those design
problems that have an object property objectifies that relates the concept
State. The result set for this query contains the Memento and the State design
patterns.

1 (and (?x |GOFPattern|)
2 (?x ?p |isSolutionTo|)
3 (?p ?a |objectifies|)
4 (?a |State|)
5 ))

Listing 1.7. nRQL query to retrieve all design patterns that are a solution to
objectifying state
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6 The Design Pattern Wizard

As we have outlined in the introduction, an ontology can be used in tools as a
knowledge base. The Design Pattern Intent Ontology contains the vocabulary
for describing the intent of design patterns. In order to extract knowledge from
the ontology, the user has to execute queries on it. However, the construction of
these queries can be quite complicated. This reduces the usability of ontologies
to domain experts only. The Design Pattern Wizard serves as a front-end for
generating well-defined queries. It allows design problems to be described visually
and suggests a set of matching design patterns for a given design problem. It,
furthermore, provides inexperienced users with vocabulary they can use to define
design problems. The Design Pattern Wizard can be obtained from the first
author at email request.

The Design Pattern Wizard is a prototype and proof of concept. It shows
the applicability of ontologies for tool support in the area of software design.
The Design Pattern Wizard has been implemented as an Eclipse RCP (Rich
Client Platform) application [1]. The RCP architecture allows the developer to
configure an application to either be integrated as a plug-in into the Eclipse
platform or to be deployed as a stand-alone application.

Figure 3 shows the problem description window when the Design Pattern Wiz-
ard is started. The main part of the dialogue is filled by the problem description
table. It consists of a predicate constraint column and an object (concept) con-
straint column. Each row represents a statement constraining the design problem
a design pattern should solve. The first column consists of check boxes used to
select rows for editing or deletion. Below the constraint table resides a button
for adding constraint rows to the table and a button for deleting a selected row.
In the bottom right corner of the dialogue the button for retrieving a design
pattern suggestion based on the design problem description is located.

Clicking on the predicate constraint in one of the rows allows to open the Pred-
icate Constraint Dialog shown in Fig. 4 a). A tree representation of all predicates
modelled in the ontology is presented. The user can choose a predicate and the

Fig. 3. Screenshot of the Design Pattern Wizard
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(a) constraining problem predicates (b) constraining problem concepts

Fig. 4. Screenshot of the dialogues constraining problem predicates and problem con-
cepts

chosen predicate value will be set in the constraint row of the wizard. A similar
dialogue is opened when the user wants to constrain the concept constraint part
of a problem constraint. The Concept Constraint Dialog (Fig. 4 b)) allows the
user to select a concept that further constrains a predicate. The selected concept
is then set in the constraint cell.

Figure 5 shows the Result Dialog that is opened when the user hits the Suggest
Design Pattern button. It presents all suitable design patterns matching the
modelled design problem in a simple table. The first column shows the name of
the design pattern while the second shows a description of the pattern.

Fig. 5. Screenshot of the result window suggesting suitable design patterns

7 Related Work and Discussion

Our survey of current work in design pattern formalisation indicates that no
other work before has tried to classify design patterns according to their intent
by using ontologies.

The formalisation of design problems in this paper is based on the work of
Tichy [28], who developed a catalogue (but no formal ontology) listing over 100
design patterns. In his classification, he concentrates on the problems patterns
solve. Among Tichy’s design problem categories are decoupling which refers to
dividing a software system into independent parts such that the parts can be
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built, changed, replaced, and reused independently; variant management whose
patterns treat different but related objects uniformly by factoring out their com-
monalities; state handling whose patterns allow the generic manipulation of
object state; control whose patterns are used to control execution and method
selection and others. We have both formalised and refined Tichy’s classification
and, thus, made it available to mechanical treatment and to computer-aided
querying by software developers.

Henninger et al. [17] are using an ontology-based metamodel to formally
describe software patterns. The goal is to develop intelligent tools that pro-
vide a computational basis utilising software patterns. As a use case they men-
tion usability patterns. They base their core metamodel on properties such as
hasProblem, hasSolution, hasContext, hasRationale, hasForces, properties
that are developed from the original structure of the pattern description of [4].
They extend the core metamodel with properties that describe the relationships
between patterns, such as uses, requires, alternative, and conflictsWith.
The ontology they have developed does not so much concentrate on the support
of selecting a suitable pattern for a given problem, but rather on the relationships
between patterns. Furthermore, Henninger et al. concentrate on the domain of
usability patterns of web sites, but not on GoF patterns or design patterns in
general. The main goal of their work is to define a shareable vocabulary in the
domain of usability patterns. Furthermore, they do not describe how to query
their ontology, nor do they describe how to model design problems in an ontol-
ogy. A very similar approach to [17] is [23]. Here, ontologies are used to formalise
hypermedia and web design patterns. The vocabulary is almost identical to [17]
but includes additional concepts such as PatternComponent, Category, Problem
and Solution. The scope of their work is the support of and an integration into
hypermedia design tools.

Pereira de Medeiros et al. [8] have developed the Kuaba Ontololgy, an ontology
and design vocabulary to describe the design rationale of software design. The
goal is to make explicit the decisions and justifications that have led to a design.
The formal description of the design rationale enables reuse at a high abstraction
level. Important reasoning elements of the ontology are Question, Idea and
Argument. The vocabulary defined in the Kuaba Ontology helps in the decision-
making process of software design. Their work is not particularly focused on
design patterns, but more on software design in general.

The work of Dietrich et al. [9] uses OWL to formally describe design patterns.
However, only the structure of design patterns is considered, not the intent or
applicability. They use their ontology to detect patterns in software artefacts,
not to help in the selection process of a design pattern. Other approaches that
use formal languages to describe the structure of design patterns include [21]
who developed a design pattern modelling language DPML, and [22,27]. What
is common to all this work is the sole concentration on the structural aspects of
design patterns and the omission of the intent of design patterns.
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8 Conclusion and Further Work

In this paper, we have presented a novel approach to formalising design patterns,
based on their intent. We have proposed the Design Pattern Intent Ontology
providing terminology for formulating intents and classifying the 23 GoF design
patterns by their intent. To the best of our knowledge, this is the first formal-
isation of design patterns based on their intent. This ontology forms the basis
for the Design Pattern Wizard, a tool supporting software developers in finding
the right design pattern(s) for a given design problem.

The work presented in this paper enables software developers to efficiently
find design patterns applicable for their design problems. It is, thus, a measure
countering the effect of the ever increasing number of design patterns available in
various design pattern catalogues. The hierarchical structure of the ontology al-
lows developers to provide incomplete descriptions of their design problems and
still receive valuable responses. A developer with only a rough picture of her de-
sign problem can simply choose predicates from the top parts of the hierarchies.
Such a query results in the retrieval of all design patterns matching this rough
problem description. Iteratively, the developer can describe her design problem
more precisely, based on the results of the former queries. The basic structure of
DesignPattern, DesignProblem, and ProblemConcept is valid for all design
patterns. Therefore, the ontology can easily be extended to cover other design
patterns beyond the GoF book. To this end, it may be necessary to add new
vocabulary to the DesignProblem and ProblemConcept hierarchies. Testing the
ontology with other catalogues of design patterns remains for future work.

So far, the Design Pattern Wizard is a stand-alone application. In the future,
this should be integrated with CASE tools to allow direct integration of a pattern
found into a design under development. Developers could select a design and add
a design pattern to it, using the Design Pattern Wizard to select the pattern. For
this to work, we need to study ways of selecting and manipulating the parts of a
model where a design pattern should be added, in addition to the formalisation
of design-pattern intent.

Another interesting question is how we can help developers understand the
problem they are trying to solve. We believe, developers often know that there
are flaws in their design, but cannot immediately understand the source of the
problem. Thus, they will experiment with different design choices, which with
good designers will eventually lead to a better understanding of the problem,
and, thence, to a better design. An interesting question is if this problem-finding
process can be supported by CASE tools observing the different experiments of a
designer and using the DPIO to suggest design patterns that might be helpful.4

Additionally, the basic structure of the DPIO should also be applicable to
patterns that are not strictly design patterns. For example, [15] have proposed
an approach to graphically organise, analyse and refine non-functional require-
ments for the structuring, understanding, and applying of design patterns during
design. We plan to study how the DPIO can be applied in this context.

4 Thanks to Mirko Seifert for this suggestion.
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Abstract. Designing a large application user interface is an iterative process.  
Commonly used tools lack models to support this iterative process.  Research 
on model-driven UI design has over the years focused on modeling UI at a 
higher level of abstraction but lacked support during in the iteration process.  
This paper briefly presents the context of our research – transforming a business 
model into a base UI model for further customization.  Specifically, we present 
a feature that helps reflect changes from the business model in the user interface 
design tool.  We designed it so that the human designers can choose to react to 
these changes as they see appropriate.  The technique is one of our attempts to 
apply the model-drive approach to better support design iteration through 
requirement changes. 

Keywords: User Interface Model, Human Computer Interaction Model, User-
Centered Design, User Interface Modeling Tools, Model Transformations, 
Model Engineering Methodologies. 

1   Introduction 

For large enterprise solutions, designing human interactions is a complex process.  
Products of this design process – solution storyboards, low-fidelity UI mock-ups, and 
high-fidelity designs – are the bridge between business requirements and solution 
development.  Business stakeholders express requirements more explicitly as a 
solution design become more concrete through these design products.  Users give 
better feedback when they can see a design in early prototyping phases.  Keeping user 
interface design products in sync with requirement changes is very tedious via today’s 
popular tools such as Adobe products, Macromedia family products, or Microsoft 
PowerPoint.  A small change in requirement could mean updating many static design 
pages embedded in multiple documents and websites.  One can easily imagine the 
multitude of this task. 

As the business world is becoming more competitive, the overall design process is 
on a constant pressure to achieve more with less.  Quality often goes down with the 
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time pressure.  When there is less time to propagate requirement changes to design, it 
often leads to requirement compromises.  While some user-centered design activities 
such as user interviews cannot take shortcuts, design tools can be improved to 
accelerate the design maintenance process.  When a high-level design model is used 
to generate UI code, inefficiency from integrity loss from design to development can 
be reduced. 

Our team focused on model-driven business transformation research, specifically 
on deriving methodologies that enable better and automated connections from 
business process modeling to the underlying IT solution [1,2].  Through several 
business transformation engagements, we have experienced the enterprise-level 
solution design process and gained valuable insights into the iteration bottleneck in 
the large enterprise UI design process.  Our goal is to better the solution design 
process to meet business requirements and keep up with high-quality UI.  The 
research tools reported in this paper is part of how we enable designers to conform 
and connect UI design with business domain model elements, and to help maintain 
design integrity through automatic generation.   Our work primarily focuses on the UI 
design process and not started on UI design management.  The latter is specifically 
reported in this paper.   

Since our research is driven by case studies from real business engagements, we 
will use an example from a recent engagement to drive the discussion in this paper. 

2   Related Work 

Model-driven user interface research has been around as several references to early 
efforts can be found in [3].  According to Myers, Hudson & Pausch in [3], the 
motivation behind model-based UI design tools was to enable programmers who, 
without user interface design experience, could implement only the functionality and 
let user interfaces be automatically generated.  Early efforts focused on exactly that 
by explicitly representing components that makes up the user interfaces from user 
tasks to interaction techniques [4,5,6,7].  Nowadays design skills are abundant but 
tools that could help these designers manager their jobs, not eliminating them, are 
seriously lacking.  

Automatic generation of user interfaces dated back to the early 90’s. In [8], a 
comprehensive notation for expressing the quality of data attributes was used.  This 
work also attempted to lay out the whole page detail, a task that is quite easy for a 
designer to do but tremendously hard for a machine.  Related work in [9] was at a 
much smaller and practical scale, automatically generating for only selected 
attributes, that inspired the automatic generation in our work.  Venderdonkt in [7] 
does semi-automatic generations through Automatic Interaction Objects structure.   

Generating user interfaces from task-based models was done in a series of 
publications by Paterno in [4,5,10].  His approach is quite similar to ours while our 
work use business tasks, which tend to be much higher level, as a starting point. Our 
work uses the business task model as the input into the design process. One of the 
major embarkations on using UML to represent high-level abstraction of user 
interface was reported in [11.]   In this work, Nunes and Cunha put the interaction 
design methodology of separating the information from the design and the application 
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logic into perspectives through a set of corresponding UML profile elements.  Nunes’ 
later work with Campos [12] attempted to provide User-Center Design (UCD) 
support, a goal similar to ours, though their work focused on reusable interaction 
patterns. 

With the prevalence of XML, we have seen more of modeling languages that drive  
user interface creation such as XForms, Laszlo, XIML, though these models are fairly 
page-based low-level models without much inter-connections between various parts 
of the design or to design intentions.  We have not found other related work that 
attempts to understand the role of user-centered design in the context of business 
process modeling.  

3   Approach for User Interface Life Cycle Support 

Our approach begins with business modeling, a starting point of many IT business 
engagements in consulting practices today.  A business model expresses a business 
flow by means of sequences of business tasks that must be performed, user roles or an 
organization that performs each task, and the information which flows through tasks.  
Our design methodology harvests information about “people” and their work context 
associated with business tasks from the business model.  We collect information 
artifacts that are passed through people as inputs to and output from business tasks.  
We then churn the collected information into views that focus on the “users.”   

 

Fig. 1. A snippet of a service order management process 
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Figure 1 illustrates a snippet of a service order management process drawn in a 
particular software product called IBM Websphere Business Modeler (WBM).  It 
shows the “Approve Enablement Plan” task of the account manager user role.  In this 
paper, we will discuss various elements pertaining to a page design for this task.  In 
this task, the account manager views the content of a “Service Order” with a list of 
“Delivery Plan” and “Service Order Tasks” to be performed by various service 
providers.  The service providers were assigned by a “Service Delivery Manager” in 
the previous task.  When the designers discuss with business analysts and subject 
matter experts (SMEs) about this task, they have the context that the account manager 
will either approve or reject the order based on the validity and plausibility of the 
combined plan.  We want to make it clear that the designer’s awareness of the 
meaning of this diagram is much deeper than what the diagram is capable of 
expressing; hence a business model like this is not the end-all be-all source of 
information for interaction designers.   

  

Fig. 2a. The “User – Task” view Fig. 2b. The “User – Artifact” view 

To begin the human interface modeling, the business model with diagrams as such 
is transformed into a human-centric perspective in our Model-Driven Human 
Interaction (MDHI) tool.  In this particular implementation, the WBM model in its 
custom format is converted into the human interaction model in UML2.  The 
transformation turns the business model around to show “what each user role” does in 
the “User – Task” view (Figure 2a) and what kind of information altogether each role 
has to manage in the “User – Artifact” view (Figure 2b).  Information that flows 
through user tasks is turned into either “business” artifacts or “contextual” artifacts in 
this view.  Contextual artifacts are information that are inputs to single tasks while 
business artifacts are passed around among tasks.  We use the artifact notions to 
inform designers of the significance of the information in the context of the business 
model.  

Please note that though our work is specific to the IBM WBM business model, the 
transformation from the business domain to user-centered design domain harvests 
generic business information such as user roles, tasks, task inputs and outputs, as well 
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as task flow in the business context.  In other words, we connect the business domain 
concepts to user-centered design concept through shared vocabulary.  The 
transformation concept of this work is transferable though the specific code will not 
be generically usable in other business modeling tools. 

It is the user interface model that is gradually built up by the designers in the “User 
– Design” view (for example shown in Figure 3a) that, at the end of the design 
process, captures the structure of the pages and UI components that can generate an 
executable interface.  Since the focus of this paper is not the overview of the 
modeling environment, readers can refer to [13] for more information about the views 
and the transformation.  We will only touch upon particular aspects of this 
environment that support the technical discussions in the following 3 sections. 

3.1   Remaining in Scope with Business Design 

With a business model as a starting point to the design process, our goal is to maintain 
the tie from the UI design to business components.  First, the user roles in the 
business process model become the user roles for which user interface is designed.  
Secondly, the business tasks become high-level user tasks the users need to fulfill 
through the UI flow.  Essentially the UI design pertaining to a particular business task 
enables the user to perform all the necessary subtasks (not explicitly modeled at this 
point.)  By associating each UI page with a business task, the designer can keep track 
of the relationship between a page and the business flow. 

 

 

Fig. 3a. The User-Design view showing an 
artifact has been removed   

Fig. 3b. The “Artifact – User” view showing 
a user role has been removed 

   

Typically, the business model and the user interface design are iterated for a period 
of time before they stabilize.  The ties between elements from the business model to 
the elements added as part of the human interaction design process help the designer 
keep track of the business connections, hence help maintain business integrity.  
However, the ties are not designed to be too rigid as to hinder the design process.  For 
example, we cannot quite assume removal of elements in the business model should 
automatically eradicate human interaction elements related to them.  When a design 
has started for some time, there is quite a bit of human investment into the design 
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efforts.  Design of pages associated to a single user or a single artifact that may have 
been removed from the business model could be reused in other parts of the solution 
or archived for future use. In MDHI, we only inform the designer of the changes from 
the business domain.  It is up to designers to evaluate the consequence of the changes 
as human are much better at this kind of decisions.  It is up to them to remove these 
elements from their design space.  Figure 3a shows an example from the “User – 
Design” view when a user role is removed form the business model.  Figure 3b shows 
the “Artifact – User” view after a business artifact has been removed.  We currently 
handle only changes in user roles, user tasks, artifacts and artifact attributes.  We do 
not deal with changes in task sequence at this point. 

3.2   Coping with Iterations  

Changing in business requirements happens continuously during design evolution, 
regardless of how careful one might be from the beginning.  From our experience, 
once an initial cut of a user interface design is presented, it gives business analysts 
and subject matter experts more concrete handles which they can discuss in further 
detail.  They then can recognize shortcomings of the process or wrong attempts to pull 
unrelated actions together.  By going from a high-level design to a concrete design, 
business analysts can visualize and actually say “you need to add total amount to this 
order detail view” or “this task needs to happen first.”  Repeatedly, requirements 
become more detailed; common understandings of business solution are confirmed in 
finer details. 

The traditional process of using drawing tools such as Adobe Photoshop, Adobe 
Illustrator or Microsoft PowerPoint to produce design snapshots has at least two 
drawbacks when it comes to dealing with requirement changes.  First, little changes 
such as adding or dropping a field to a set of information could result in changes in 
many mock-up pages, making it rather tedious and time consuming to keep up with 
requirement changes.  The other drawback is lack of a visible structure that could help 
designers locate change locality.  A particular screen snapshot may be identified for 
changes, but the designers would have to search for the source of drawings and the 
right drawing layers to pinpoint where corrections must be made.  

One of the modeling concepts we use to link design elements to the business 
model, in particular information artifacts, is “data group.”  A data group is a subset of 
data elements in an artifact that appears visually together on a UI page.  From our 
example, a service order has many attributes (which can be seen in Figure 5,) some of 
which are key to provide a summary of a service order.  Figure 4 schematically 
illustrates the “data group” concept that allows a subset of attributes to be selected 
from the full list of artifact attributes.  A data group is then related later on to a UI 
element on a page.  A data group can be reused multiple times on different pages. 
Data groups can overlap.  In other words, the same attributes can be included in 
multiple data groups as the designer see appropriate.  We also support data groups 
that can span across artifacts but it must be used with caution.  The intention is not to 
encourage careless information mash-up but to provide the users with good proximity 
of information they need for a task, even if it means crossing boundary of artifacts.  
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Fig. 4. Illustrating the relationship of a data group, and artifact, and a display 

 
Fig. 5. A full set of attributes associated with the service order business artifact 

Figure 5 above shows the full list of attributes of the service order artifact and 
Figure 6 on the following page shows a data group that is created as a subset.  Both 
figures display the “Artifact – User” view which supports the views of artifact 
attributes and their types.  Notice that this view is also used to define UI semantic 
types and display labels of each attribute.  UI semantic types are the modeling concept 
we use to associate a UI hint to each attribute.  MDHI uses semantic types and display 
labels to generate UI elements when a data group is associated to a UI element, with 
automatic generation capability, on a page.   Semantic types should be defined 
globally across user roles in this view for each artifact so the same types hold true 
through out the design scope.   Display labels can be defined globally, per user role, 
and per page.  When a data group is created, semantic types and display labels are 
inherited from parent definition.   
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Fig. 6. Service Order Summary Data Group Showing a Subset of Service Order Attributes  

Now let us demonstrate how a small change is handled in MDHI.   Let’s say the 
attribute priority is no longer needed.  Business executives decide there is no need to 
define service order priority.  The attribute is removed from the business model.  
Figure 7 illustrates the indication in the “Artifact – User” view that the priority 
attribute has been removed from the business model.  It is up to the designer to 
remove this attribute from the master view of the service order artifact, which will be 
reflected in all child data groups.  Or if the designer remains skeptical of such a 
change, she may choose to only remove the priority attribute from a particular data 
group while continuing with her design.  

 

Fig. 7. The “Service Order Summary” data group shows the priority attribute deleted removed 
from the business model  



234 N. Sukaviriya et al. 

Data groups are significant when they are associated to our specific types of UI 
elements with automatic generation capability.  One is a “List Container” UI element 
which uses the attributes in a data group to automatically set column headers and 
format in a table display.  Another example is the “Data Layout Container” UI 
element which uses the attributes in a data group to automatically call out specific UI 
elements based on the semantic types and the read/write status of the attributes 
(specified in the “Artifact – User” or the “User – Artifact” view.)   When a data group 
is modified, for example, an attribute is eliminated, the designer can choose to 
eliminate the attributes and re-generate the UI.  All pages which use the same data 
group will be automatically adjusted. 

Associations of data groups to the content of a UI design page also have 
implications on the data retrieval at run time.  The MDHI system uses data group 
details as a source for generating appropriate web service calls to retrieve and store 
information for the page.  This run-time feature is not the focus of this paper hence 
will not be elaborated further in this paper. 

3.3   Maintaining Design Integrity  

One of the major problems in delivering a user interface from design to 
implementation is the lost of integrity.  We have seen repeatedly high fidelity designs 
losing element placements and precision, which often means losing the semantic 
clusters of the application semantics.  While a WSIWYG editor is a better solution for 
this aspect, we have developed a model that would be appropriate for such a tool that 
also works with our framework.  Our unique contribution  is in how we instrument the 
meta-model to provide a design hierarchy that structures the design per user role.  
This makes it simpler to manage a large design space. 

 

Fig. 8. The “User – Design” view showing a model structure of the “Service Order Detail” page 
that shows the summary of the service order and its related service order tasks 
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Figure 8 shows the “User – Design” view where pages designed for each user role 
are organized and structured.  Notice a structure of “Page1” designed for the “account 
manager” user role.  The “Service Order Summary” data group in Figure 6 is 
associated to the “OrderDetail” data layout container; its content shown in the list 
below is automatically generated by MDHI when the designer clicks on “Auto Gen” 
button in data layout editor (not shown in the paper.)  This portion of the UI can be 
seen in the top half of the generated UI in Figure 9.  Another data group for the 
service order task artifact is associated with the list container, which generates a table 
of service tasks shown in the bottom half of Figure 9.  The “Approve” and “Reject” 
buttons, a left navigation, and a low-fidelity banner are also defined for this page.    

 

Fig. 9. The page that is automatically generated from the model description in Figure 8 

The precision of UI elements are stated in the MDHI design model as a function of 
the designer-defined grid.  For example, the screen in Figure 9 is designed with a grid 
size of 16 by 9, where the width of 16 units occupies 100% of the screen width and 
the height of 9 units occupies 100% of the screen height (minus what is lost from the 
browser’s overhead.)  The precision control is not accurate to the pixel levels as the 
underlying web programming model doesn’t allow such precision.  Even so we are 
still refining our precision control and will continue to improve in this respect.  
Currently the precision and the integrity of the design are reasonably supported. 

4   Models 

In this section, we will discuss part of our human interaction model that supports the 
design process with the selected features mentioned in this paper.  Due to space 
limitation, we cannot elaborate on all aspects of the model. 

Figure 10 shows the schematic view of various models in our research tool.  To 
enable parallel yet collaborative iterations of the business model and the human 
interaction design, we instrument the MDHI model as an extension to the core 
translation of the business model.  First, the business model is transformed into a 
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“core model.”  Unique identifications of business model elements are maintained here 
and the core model functions as a reflection of the current state of the business model.  
The UI extension model maintains the references, which needs to be established once 
when the UI extension model is first created, to the core model elements.  Any 
changes in the business model that follow are updated in the extension model when 
MDHI views open.  New references are new elements and missing references are 
shown as eliminated elements.  

 

Fig. 10. A diagram showing how various models transform to form the end-to-end human 
interaction design process 

The UI design model captures both the structure of the screen designs, the human 
perspective interpretation of the business model, as well as the relationships from the 
UI design to business model elements.  To generate an executable UI, the screen 
content portion of the model is used to generate a more efficient platform independent 
model which then is used to generate a platform specific model that enables a running 
user interface.  The platform independent model is currently captured in XML.  The 
next 3 sections highlight selected parts of the MDHI model pertaining to this paper. 

4.1   Design Model  

The design model is centered on the user role and how each user role has references 
to various aspects of the business and design meta-structures.  Information pertaining 
to the human interaction design process such as user tasks, task inputs and outputs, 
the types of information the user needs to juggle in a day (list of artifact types in the 
“User – Artifact” view) and the scope of the user functionality (list of business tasks 
as user tasks in the “User – Task” view) all point to the user role.  The central 
connection to the user role is one key dimension in making and exposing the user-
centric perspective of our design model.   

Another dimension of our design model comes in the support for the design 
hierarchy and the inheritance of semantically enhanced UI information in order to 
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help speed up the design process.  The data group model to be discussed in Section 
4.2 is an example of how we support sharing information among multiple design 
components.  Another example is in the use of the pseudo “users” user role.  A page 
designed for this user role can be used across the design space.  Figure 11 portrays 
most of the stereotypes define in the Human Interaction UML2 profile.  The meta-
classes from which MDHI stereotypes extend are shown in parentheses. 

 

Fig. 11. A meta-model diagram of the human interaction design stereotypes.  In this diagram, 
the user role is centric to aspects that are considered in the human interaction design. 

4.2   Group Model  

Two modeling elements, the HIAttribute and AttributeModifier stereotypes, are the 
key elements that allow artifact attributes to be shared yet customizable for various 
design contexts.  Table 1 shows the attributes of these 2 stereotypes. 

Notice that while business artifacts, contextual artifacts, and data groups appear to 
the designers to have the most information in the MDHI various views, the 
information load is internally on instances of the HIAttribute and AttributeModifier 
stereotypes.  Via instances of these two stereotypes, the system maintains and 
manages the consistency of information among them.  

In the current implementation, we assume artifact attributes come directly from the 
business model.  In practice, we find that this level of detail is often not available 
unless it is modeled by someone with a more technical background.  The UI extension 
model in a way is insensitive to the data source.  We foresee that, in the future, the 
data model source could be other data modeling tools while the business model still 
gives the essence of how the information is aggregated in the business flow.  Our 
approach remains in tact with close ties to the business model, though detailed data 
could come from elsewhere. 
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Table 1. Attributes in the HIAttribute, AttributeModifier, and DataGroup stereotypes 

Stereotype Base Meta-Class Attribute Type 
BusinessInfoArtifact Class userFriendlyLabel String 
ContextualInfoArtifact Class userFriendlyLabel  
HIAttribute Class writability boolean 
  visibility boolean 
  addedInHI boolean 
  displayLabel String 

HISemanticType String   
originalDataType String 

AttributeModifier Association writability boolean 
  visibility boolean 
  displayLabel String 
DataGroup Class name String 

4.3   UI Model  

The UI model is designed to enable the capture of UI specifications in the usual 
Model-View-Controller pattern. 

• Model – the set of information that needs to be rendered on the page  
• View – how this set of information is presented on the page 
• Controller – what are possible and allowable human interactions on the page 

When a UI is ready to be generated, the UML2 human interaction model is 
transformed to an XML model which becomes the input to the platform specific 
implementation layer.  For each page, the XML schema contains 3 main types of 
information: 

• Page Content – describes the page layout and the placement of UI 
elements. This content is specified in the “User - Design” view and 
constitutes the “view” part of the MVC pattern. Currently, we decorate 
style information on appropriate elements in the model here.  This will 
change in the future when MDHI views are enhanced. 

• Page Bindings – list the bindings from UI elements to data elements. This 
information is specified in data groups and their mappings to UI elements, 
which altogether translates to the “model” part of the MVC pattern. 

• Page Interactions – defined  actions and page transitions on the page. This 
information is captured in “user task” view (not discussed in the paper) 
and makes up the “controller” part of the MVC pattern. 

Figure 12 shows snippets of the XML model for the service order details page 
(Page1) example shown in Figure 9.  

Finally, the XML UI model specified as above is transformed into a platform 
specific IBM “Websphere Portlet Factory” model (a commercial software product) 
which in turn generates the corresponding JSPs and backend java beans. We follow 
the loosely coupled consumer-provider pattern to link the generated UI to the backend 
system that provides the data.  The page content is used to generate the consumer 
code. The page bindings and interactions define the provider. The generated provider 
mainly consists of stubs to connect to the backend which can provide actual data and 
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backend functions through web services, simple java classes, or RMI. In absence of 
real connections to the backend system, the provider gives dummy data for different 
UI elements.  The dummy data is generated based on the semantic types associated 
with the attributes in the artifact model.  We use a test database which contains 
sample data for different semantic types.  The test data contains multiple values for 
each semantic types and picks up data randomly from each value set. For lists, we 
generate pre-specified number of records. To ensure uniqueness between values 
picked for successive records in a list, we remove the value which has been already 
picked in prior runs for list records from the candidate value-set. 

 

Fig. 12. Page binding and page content XML snippets of the UI page shown in Figure 9 

During initial phases of the project, when the system requirements and the design 
are still evolving, the UI model is used primarily to generate screen mockups and UI 
prototypes with dummy data.  During later stages in the project, the same model can 
be crafted to generate the high-fidelity UI and backend connections to the actual data 
sources and process instances. This would require inputs from the designers for the 
style information and input from the developers on what information is passed from 
one page to another or from the generated UI to the backend for different events.   

5   Summary 

In this paper, we presented our general model-driven UI research approach.  While 
have a full model to capture UI design for automatic code generation, our research 
focus is on connecting the UI model to the business model and requirements.  We 
used the business model to bootstrap the UI design process through sharing and 
connecting common domain elements.  Specifically presented in this paper is a rather 
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new work we are embarking on – supporting design iterations while business model 
changes.  We presented how changes in business model are reflected in the UI design 
model and the particular modeling components to maintain and support the changing 
information.   Our endeavor will continue to support more automation paralleling 
business model changes with changes in UI design work products. 
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Abstract. The development of successful interactive applications often
requires high efforts in creative design tasks to build high quality user
interfaces. Such creative development tasks – such as user interface design
or design of specific features like 3D objects – are usually performed
using different tools optimized for the respective task. For example, in
early development stages, tools like Photoshop or Flash are established
for creating user interface prototypes. 3D graphics is usually developed
using 3D authoring tools.

In this paper we propose a general approach to integrate heteroge-
neous tools into model-centric development. Thereby, the models act as
central hub between different specific tools and development steps. This
enables excellent support for creative design while using concepts from
model driven engineering, such as explicit metamodels and transforma-
tions, to facilitate a well-coordinated development and ensure consistency
of the resulting overall application. We illustrate this approach by con-
crete examples from different application domains.

1 Introduction

From an engineering point of view, the approach of model-driven development
is very appropriate for the production of high-quality software. However, a key
problem in using the state-of-the-art modelling languages (like UML), is that
the audience which can understand the models is severely restricted to people
being trained in using high abstraction levels. This in practice mostly means
engineers or scientists, may they be part of the development team or work on
the customer side. It is already difficult for domain specialists without computer
science background to deal with abstract models, and for most end users it is
completely impossible. This observation is in unpleasant contrast to the fact
that the end users are the target group for which the whole design effort is
directed. The overall acceptance of software systems by its end users is often
determined by properties of its user interface [1,2], so it makes good sense to
adopt a user-centred design process. Such a process typically uses very early
prototypes and interface mock-ups to obtain feedback from end users. These

G. Engels et al. (Eds.): MoDELS 2007, LNCS 4735, pp. 241–255, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



242 A. Pleuss, A. Vitzthum, and H. Hussmann

steps produce artefacts which are of a completely different nature compared to
the abstract (e.g. UML-based) engineering models. Moreover, there is a rapidly
growing species of applications where the key features are located rather in the
user interface than in the background logic. Examples are all kinds of product
presentations on the Web or multimedia applications in entertainment sector.
These applications cannot be developed without taking care of the user interface
and its graphical design from the beginning. So it can be stated that development
projects face a clash of cultures between engineering people taking the abstract
view and interface designers and graphical artists working creatively and taking
a very concrete view of the system.

This paper presents thoughts and technologies which may in the long run help
to bridge the gap between these cultures. We concentrate here on possibilities
to conceptually integrate the tools which are used in the development process.
In tool usage, the clash of cultures is apparent as well. Engineers typically use
CASE tools (like MagicDraw, EclipseUML, Rational Rose, Poseidon) which are
not usable in any way for a typical graphical designer, for instance. On the other
hand, a user interface designer has a number of very advanced tools available, e.g.
drawing tools like Adobe Illustrator, image processing tools like Adobe PhotoShop
or animation workbenches like Adobe Flash, or even 3D graphics tools like 3D
studio max. This kind of tools at the first look is completely incompatible with
the CASE tools. However, we will point out in this paper that there are ways
how such a landscape of different tools can work together in an orchestrated way,
to produce a common vision of the system under development.

The ideas presented here are partially motivated by the results of a work-
shop on Model-Driven Development of Advanced User Interface [3] which was
held at the UML 2005 conference. There, an agreement among people with dif-
ferent perspectives on user interface development emerged that the role of an
abstract model (based on an appropriate metamodel) can be to integrate the
heterogeneous artefacts produced with tools of different application context.

The paper is based on work by the authors on extending UML for the spec-
ification of multimedia and 3D user interfaces, which provides already a step
from abstract models towards more concrete representations at the user inter-
face. There exists already some work on generating (multimedia) interfaces, or
better skeletons for them, from such an abstract description. In this paper we
will take the opposite view and will discuss how a concrete interface prototype
or mock-up can be abstracted onto a level where it fits to the abstract model.
It is obvious that a long-term goal will then be a seamless transition across
abstraction levels (and across tools). In order to avoid analysing completely un-
structured artefacts, we make the assumption that it will be possible to agree
on a number of structure and naming conventions in a development project, for
all people, including user interface designers and artists. So, the vision is that
the user interface specialists work with the tools they are used to (PhotoShop,
Flash), but obtain a number of conventions which make it easier to integrate
their work with abstract models. We are confident that designers are willing to
adhere to such conventions, since this is already daily routine at many places. A
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simple example are the naming conventions in Flash ActionScript code (where
a movie clip object for instance should have a name ending in “ mc”), which
are well accepted in the community. We propose below more “invasive” conven-
tions which also give guidelines on how to structure a user interface prototype
or mock-up. However, we believe that such guidelines will be used like design
patterns, in giving people more advice and confidence when solving a problem,
so the acceptance problem will be small. It is obvious that the fact of being able
to use familiar tools will contribute significantly to bring abstract models into
the world of interface designers.

The paper is structured as follows. Section 2 gives a general discussion of the
relationship between models and tools for creative design. Sections 3 through 5
give concrete examples for the integration of models with various state-of-the
art interface creation tools. Section 6 briefly discusses related work.

2 Models as Central Hub

As explained in section 1, there is a need for enabling the usage of tools which
support creative design. The goal is to better integrate different experts with
background in creative design into the development process. This consideration
affects not only the final implementation of the system, but rather all steps
during the development process to ensure the usability of the system and the
required quality of the user interface.

Models are an excellent vehicle for integrating different stakeholders and dif-
ferent views on the system during the whole development process. Thus, in our
vision, models are also used to integrate the different tools and the resulting
products. Thereby the concepts from model-driven development, like explicit
transformations, are applied for computer-supported transitions between tools
and artefacts. This ensures consistency between the artefacts produced by het-
erogeneous tools and furthermore reduces effort as subsequent steps can start
directly from earlier results instead of taking them over manually.

Model

Flash: Click-Dummy

Photoshop: Mock-Up
GUI Builder: 

Functional Prototype

3D Authoring Tool:
3D Graphics

IDE: Code

Flash: Multimedia UI

Fig. 1. Models as central hub in the development integrating different specific devel-
opment steps and tools

Figure 1 visualizes this idea on models acting as such an “central hub”. The
upper arrows contain examples for earlier development phases where prototypes
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play a central role in interactive systems development. For example, Photoshop
mock-ups (as described in section 3.2) can be used to select first ideas about the
system to be developed. When this step is finished, transformations are used to
transmit the significant abstract information from the mock-ups into the model
where it can be used for further development steps, like creating corresponding
Flash click-dummies (see section 3.1) for gaining more specific user feedback.
During this step, additional abstract information about the system is added
which should again be kept in a central place, i.e. in the model. Thus, it is im-
portant to allow transitions into both directions: extraction of relevant abstract
information from the tools (kind of “reverse engineering”) and generation of
artefacts for the desired tools based on the existing model information.

The lower part of figure 1 shows examples for later development steps, such as
implementation of a final release. Here, the kinds of tools are more diverse and
depend on the application domain and the target platforms. Models can be used
to distribute the final implementation on different tools optimized for realizing
different aspects of the system. For example, in multimedia development with
Flash, it is a common practice to develop the code for system’s application logic
within an external programming IDE, instead of using the Flash authoring tool’s
built-in code editor.

In the following sections we describe four of the mentioned examples more in
detail and present how the transitions between models and tools can be realized.

3 From Prototypes to Models

An important part of interactive systems development is the usage of prototypes.
Standard tools for user interface designers and people with background in cre-
ative design are Adobe Photoshop and Adobe Flash. In the following we show as
an example how the information from prototypes created with these two tools
can be extracted into models.

3.1 Flash Click-Dummies

Flash is a professional authoring tool for the creation of multimedia applications.
It especially supports the creation of vector-based 2D graphics and animations
and provides easy integration of other media objects like sound and video. The
file format for the Flash authoring tool is the proprietary FLA format. To execute
a Flash application, it is compiled into the SWF format which is executed by
the Flash player. The Flash player is available as plug-in for all common web-
browsers.

Due to the possibility to create complex and individual visual user interfaces
very quickly, Flash is often used as a tool for creating prototypes. In this section
we focus on so-called click-dummies, i.e. (horizontal) prototypes which show a
broad range of user interface screens of a visual application without any under-
lying functionality. Sometimes some basic application functionality is simulated
through predefined visualizations. Therefore, and for the navigation between the



Integrating Heterogeneous Tools into Model-Centric Development 245

scenes, some user interface elements are (partially) enabled. This provides the
user a good impression of the overall look and feel of the system and gives an
idea of the intended task flow and overall functionality.

Timeline

Stage

Fig. 2. Screenshot of the Flash authoring tool (reduced to the most important ele-
ments.) On the stage, a part of a UI prototype is visible including individual graphics
and standard widgets.

Using the Flash AuthoringTool forCreation ofClick-Dummies. Figure 2
shows a screenshot of the Flash authoring tool. The tool is timeline-based, i.e.
it uses the metaphor of a timeline to visualize the temporal aspect of Flash ap-
plications (important e.g. to support easy creation of animations). A timeline
(upper window in fig. 2) contains a sequence of frames. Each frame can contain
individual content, i.e. graphics, sound, video, text, or a Flash component such
as a standard user interface widget (buttons, list boxes, text fields, etc.). In the
authoring tool, the content of the currently selected frame is shown on the stage
(centre window in fig. 2). The toolbar on the left hand side in figure 2 provides
tools to create or modify the content on the stage, such as creating or editing
2D graphics or text on the stage. During the execution of a Flash application in
the Flash player, the content of the frames is displayed. By default, the frames
are shown successively according to their order on the timeline. However, it is
also possible to stop the play-back of the timeline, which means that the content
of the current frame remains on the stage (while it is still possible to interact
with the elements in the displayed frame). Starting and stopping play-back of
the timeline as well as jumping to a specific frame can be controlled by script-
ing code. The scripting language provided in Flash is ActionScript, which is
a complete programming language with object-oriented features. ActionScript
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code can either be embedded within Flash documents directly, or can be specified
in external class files (analogous to class files in Java).

The Flash authoring tool enables very easy creation of click-dummies. A com-
mon way to realize the different screens of a click-dummy is to use a frame (on the
timeline) for each screen. The content of a frame then corresponds to the content
of a screen of the prototype. The navigation between the screens is realized just
by a simple scripting command to jump to the respective frame in the timeline.
For this purpose, usually a unique name is assigned to each frame. The creation
of the content for the frames is very easy in Flash: standard widgets are just
placed on the stage by dragging and dropping them from the component library.
Individual graphical elements can be created using the comprehensive drawing
and editing functionality of Flash. This is very beneficial if the prototype should
contain individual graphical elements (e.g. information visualization) or if the
prototype should simulate a platform where no conventional standard widgets
are suitable (e.g. on TV devices). Other media objects can be imported into the
tool and placed on the screen by drag’n drop as well. In this way, it is easy to
integrate background images, which might also include screenshots or an image
of the context of the application, like an image of the mobile device which should
be the platform for the final system.

Interaction can easily be added to the prototype by assigning event handling
scripting code directly to the user interface elements on the stage. It is also
easily possible to assign scripting code to a specific region within an image,
which is useful for screenshots part of the prototype (e.g. it is possible to simulate
interaction with a button on a mobile phone using an image of the mobile phone).

Extracting information from Flash into a Flash model. A general prob-
lem when extracting information from a Flash document is the proprietary file
format of Flash documents. We aim to deal with the FLA files, as they contain
more information than the complied SWF files. To solve this problem we use the
extension mechanism which exists for the Flash authoring tool. The extensions
must be specified in JSFL, i.e. JavaScript using the JSFL library to access all
elements in the authoring tool in terms of a kind of “document object model”,
similar to DOM in web-browsers. JSFL allows creating, accessing and editing
of Flash documents just like in the authoring tool. We have specified a JSFL
script which walks through an arbitrary Flash document, accesses its content,
and outputs it as a Flash model. For the Flash model, we use the Flash meta-
model we proposed in [4]. The Flash metamodel is implemented with the Eclipse
Modelling Framework (EMF ); the Flash models resulting from our JSFL plug-in
are thus saved as an EMF-compliant XML file. Consequently, the resulting Flash
model can be further processed using the conventional technologies from model
driven engineering without any knowledge on JSFL or on the Flash authoring
tool itself.

Example Transformation from Flash Model to Abstract User Interface
Model. A common concept to model user interfaces in an abstract way are
abstract user interface models as used in the user interface modelling community
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(see e.g. [5]). In other domains, like web-engineering, similar concepts are used. In
an abstract user interface model the user interface consists of presentation units
(abstraction of screens) which contain abstract user interface elements. Possible
abstract user interface elements are input elements which allow the user to input
information into the system (such as a text input), output elements which present
some information to the user (such as a text label or an image), and action
components which allow the user to invoke an action of the system without
additional data input (such as a button). UI containers are used to structure
the UI elements. (These elements are often further subdivided into more specific
subtypes, like selection element, notification element, etc., depending on the
specific modelling approach.)

For abstract user interface models as described above, the transformation can
be defined as follows: widgets in the prototype are mapped to the correspond-
ing abstract user interface elements (text input to input component, button to
action component, etc.). Videos and sounds are mapped to output components.
2D graphic objects are mapped to input components when they have assigned
an event listener and otherwise to output components. Images are mapped to
UI containers, as images might be screenshots which represent several UI com-
ponents (the content of the UI container then can not be derived automatically
from the model). Frames on the timeline are mapped to presentation units. The
transitions between the presentation units can be derived by searching for script
commands in the ActionScript code which specify the jumps to another frame.

To ensure the success of the transformation, the designer is asked to comply
to some conventions: first, the prototype must follow the explained timeline-
based structure, instead of e.g. using external ActionScript code for the different
screens (which is usually not useful for quick creation of prototypes, anyway).
Second, the names for the frames representing screens have to follow a naming
convention (e.g. a prefix “screen”) to distinguish them from other frames in the
document.

3.2 Photoshop Mock-Ups

Photoshop is an image editing software which can be used for the very fast
creation of user interface mock-ups, i.e. pictures of the user interface to present
possible ideas about the user interface to the customer or the target user group.
Based on the mock-ups the most promising approaches are selected and can
then be further refined using more advanced prototypes e.g. created with Flash
as described in section 3.1. The main advantage of using bitmaps (instead of
e.g. GUI builders) is that any new and arbitrarily complex user interface can be
visualized in very short time. The mock-ups are usually composed of different
image pieces which are arranged and manipulated to create the desired new
user interface. For standard widgets or user interface elements similar to already
existing elements (like a dialogue window, a menu bar, or icons), the designer
simply takes a screenshot of the desired element, cuts it, and integrates it in the
mock-up. More individual elements, such as complex information visualization,
are drawn manually or put together from any other existing image snippets. Due
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to the unlimited flexibility of an image editing tool, any visual user interface can
be composed in very short time, including user interfaces for new devices. If
required, an image of the device (e.g. a mobile device) can also be part of the
mock-up: the actual (software) user interface is then placed on the “screen”
location within the image of the device which provides the user a good idea how
the application will look like on the final device.

After the usage of the mock-ups is finished and some user interfaces have
been identified as promising, it is useful to capture the basic information from
the mock-ups. As described in section 2, models in their role as “central hub”
are an ideal instrument for this purpose. The most relevant information from
the mock-ups are the user interface elements required for the user interface.
Therefore, we provide a transition from the mock-ups to abstract user interface
models as described in section 3.1. The identification of the type of user interface
element requires some conventions for the designer: usually, each piece of image
in a Photoshop document is put on a different layer (because otherwise it would
not be possible to move it later within the whole image). By convention, the
designer specifies the type and the name of the user interface element as the
layer name (e.g. “address input” for an input component intended to input an
address). Complex pieces which represent multiple user interface elements are
specified as UI container.

Technically, the transformation is performed by executing the built-in com-
mand “Save Layers...” in Photoshop which causes all layers to be saved on disk in
separate files. The resulting file names then correspond to the layer names which
contain by convention the type and the name of the user interface element. A
simple Java application then collects the file names and creates a corresponding
abstract user interface model. The model is used as base for further develop-
ment steps, which may include, for instance, generating skeletons for a Flash
click-dummy according to the mock-ups.

4 MML: From Models to Multimedia Authoring Tools

In the foregoing sections we discussed by the example of prototypes how in early
development phases abstract model information can partially be derived from
different external tools which support informal, creative design. In the following
two sections we briefly present two existing examples showing how professional
existing tools can be integrated into model-centric approaches to support creative
tasks during the final implementation of the system.

In this section we show how to integrate the Flash authoring tool for the final
design of user interfaces and media objects within a model-driven development
approach for multimedia applications. By the term “multimedia applications” we
refer to applications which provide a individual, complex and interactive user in-
terface using different kinds of media objects, like graphics, animation, sound and
video. Classic examples are training and simulation applications, newer examples
are infotainment systems in cars or home entertainment applications. The mod-
elling language used here is called Multimedia Modeling Language (MML) [6,7],
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a platform-independent language for model-driven development of multimedia
applications. Motivation for the language is the lack of a structured develop-
ment process, claimed by many publications in this area. A specific problem of
these applications are the different developer groups involved in the development
process, as interactive multimedia applications require three different kinds of
design: software design as current applications often include complex applica-
tion logic, user interface design as the user interface is one of the core issues
of the application and should often be individual and provide a high degree of
usability, and media design which often requires large effort and specific expert
knowledge. A design phase using models ensures the coordination between the
different developer groups and their results.

MML reuses concepts from UML, user interface modelling, and existing ap-
proaches for modelling of multimedia applications. It provides four kinds of mod-
els: the structural model specifies the structure of the application logic in terms
of an UML class diagram. In addition, the model allows specifying media objects
which are part of the system. The scene model mainly describes the presentation
units (in multimedia context referred to as scenes) and the transitions between
them. The abstract user interface model specifies the user interface for each scene
in terms of abstract user interface elements similar as described in section 3.1.
The abstract user interface elements are associated with classes or class proper-
ties from the structural model, e.g. an output component can represent a class
attribute. In addition, media objects can be integrated into the user interface.
Finally, the interaction model shows the main control flow in each scene based
on events received from the abstract user interface elements or caused by media
objects.

MML is intended to allow transformations into code skeletons for any platform
which supports multimedia user interfaces. However, particularly interesting is
the idea to generate code skeletons for multimedia authoring tools like Flash. As
described in [4], we perform this in several steps. The MML models are trans-
formed into Flash models. For this purpose we have specified a Flash metamodel
and a transformation. The Flash models are transformed into code skeletons:
Flash documents (FLA files, generated using JSFL analoguous to section 3.1)
which can be directly loaded into the Flash authoring tool and ActionScript
code.

For the application logic we use external ActionScript class files. Thus, the
ActionScript code can be edited as any other object-oriented code e.g. within an
IDE like Eclipse using Eclipse plug-ins for ActionScript support. The relation-
ships between the elements in the Flash document and the ActionScript code are
generated using JSFL, which ensures consistency with the model. The Action-
Script code contains the properties from the class diagram including attributes
and operation signatures. The operations have to be filled out by conventional
programming in order to realize the application logic and to control the user
interface objects and media objects they are associated with.

The generated Flash documents implement the overall structure of the ap-
plication and contain the required standard widgets and placeholders for the
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media objects. In order to complete the application, the developer has to fill
out the placeholders by selecting them on the stage and creating content inside
them using all available functionality of the authoring tool in conventional way.
Furthermore she arranges the filled-out placeholders and the generated widgets
on the stage to create the final user interface layout. Of course, she is free to add
any adornments, change the size and the appearance of the generated elements,
or their type. As the navigation between the screens has been generated as well,
it is possible to run and test the application immediately after generation.

The described transformation has been implemented using the Atlas Trans-
formation Language (ATL) and JSFL realizing the concepts described above
(currently not including MML interaction models). First tests with MML have
been run in several student projects. MML is currently not supported by its own
visual modelling editor, but as a temporary solution we provide a plug-in for the
UML tool MagicDraw supporting all types of MML models.

5 SSIML: From Models to 3D Authoring Tools

Just as multimedia system development, the creation of interactive 3D applica-
tions is an interdisciplinary activity. Different developer groups such as 3D con-
tent creators and programmers are involved in the development process. These
groups use a variety of tools, such as 3D authoring tools and integrated devel-
opment environments. Furthermore, a 3D user interface displaying 3D contents
(represented by a so-called 3D scene which contains 3D objects) is often tightly
coupled with the base application containing the application logic. Thus, these
software components must seamlessly integrate with each other. Therefore con-
cepts and tools are needed to support the collaboration of developers.

The visual modeling language SSIML (Scene Structure and Integration Mod-
elling Language) [8], which was developed by our research group, addresses this
challenge. SSIML has the goal to facilitate the integration of 3D user interfaces
into a broad spectrum of applications such as 3D product presentations and
product configurators, virtual galleries, interactive 3D-manuals, 3D guides, Vir-
tual Reality (VR) applications and even Augmented Reality (AR)-applications.

The Visual Modeling Language SSIML and its Extensions. Unlike most
conventional 3D development approaches, SSIML supports a model-based de-
sign prior to implementation. The elements of SSIML were specified in a MOF-
conform metamodel which was also mapped to a UML profile in order to allow
an easy integration of SSIML into existing UML tools.

SSIML allows a semi-formal and platform-independent specification of
important 3D application parts. In particular, it offers different possibilities
to interconnect complex-structured 3D contents (represented by a 3D scene)
and application logic. One possibility for such an interconnection is the inter-
relation model described below in this section. Thereby SSIML abstracts from
implementation-level details such as concrete geometries of 3D objects. SSIML
provides a comprehensible and compact graphical notation which was designed
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to be easily understood by the different persons involved in the development pro-
cess. Moreover, the visual SSIML models can not only serve as communication
aid for the developers, but can also be used for documentation purposes. In or-
der to reduce implementation errors and to save implementation time, platform-
specific code skeletons can be generated automatically from the models.

The basic SSIML language comprises two model types: the scene model and
the interrelation model. The scene model allows describing the 3D scene structure
(including all scene objects) and therewith the structure of the 3D user interface
in a scene graph-oriented manner. A scene graph is a directed acyclic graph
(DAG) representing the transformation hierarchy of the objects contained in
the 3D scene. A scene object in SSIML is characterized by a unique name (e.g.
table1), a content type identifier (e.g. Table), the type of the model element
representing the 3D object (e.g. group, ’atomic’ object), its attributes (e.g. a
transformation attribute) and - where applicable - by its children objects (e.g. a
group tables could have two children: table1 and table2). In order to manage
complex scene structures it is also possible to encapsulate whole subgraphs of a
SSIML scene model in specialized nodes. Due to the high level of abstraction,
2D-scenes instead of 3D-scenes can be described using SSIML, even if we focus
especially on 3D scenes.

The interrelation model comprises the scene model, application components
represented by UML classes and interrelations between classes and scene ele-
ments. For example, in the interrelation model one can specify that instances
of a certain class are able to modify the transformation value of a specific 3D
object (the transformation value represents the orientation, position and scale
of an object in the three-dimensional space).

Based on the core elements of SSIML we have defined several SSIML exten-
sions, e.g. for the description of 3D object behavior [9] and task-dependent infor-
mation presentation [10]. Partial results of an informal evaluation of an extended
SSIML version (SSIML for Augmented Reality - SSIML/AR) were presented
in [10].

Model-Centric Development with SSIML. Along with SSIML, we propose
a sketch of a suitable development process. In this process three main developer
roles are distinguished: software designer, 3D developer and programmer. The
software designer creates the visual SSIML models. The design can be discussed
with other development team members and can also be changed if necessary. Af-
terwards, platform-specific code is generated from the models. The scene model
is translated into a so-called 3D template which is encoded e.g. in a 3D markup
language such as VRML or X3D. The 3D developer is then able to import the
3D template into a 3D authoring environment and to enrich it with 3D contents
such as concrete object geometries. The interrelations in the interrelation model
are transformed into program code, e.g. Java or C++ code. The programmer
fills out the gaps in the generated program code.

Since different code components in different languages (e.g. 3D markup lan-
guage code, Java code) originate from the same SSIML model, the model can
be seen as the central element in the SSIML development process. It represents
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a kind of contract between the different developer groups and therewith also
ensures the consistency between (generated) code components.

Ideally, from a model-centric point of view and as mentioned in section 1,
modifications of the code should be also reflected by changes in the SSIML mod-
els and vice versa, while the consistency of the changed system would be checked
automatically. It should be even feasible to integrate existing code components
such as an existing 3D scene into a SSIML model. Unfortunately, the present
SSIML tools (see below) only support forward engineering. However, at the end
of this section we briefly sketch a possibility how an existing 3D scene can be
translated back into a SSIML scene model.

Present Tool Support. As mentioned above, we have defined a UML-profile
based on the SSIML metamodel in order to enable the integration of SSIML into
existing UML tools. We have integrated SSIML into the well-known UML tool
MagicDraw , to name an example. In addition, this allows us encoding a SSIML
model in the XML Metadata Interchange format (XMI), which is supported
by a variety of UML tools. The XMI-format provides a suitable basis for the
automatic translation of SSIML models into platform-specific code using XSLT
stylesheets. More precisely, we have chosen X3D and VRML as target formats
for automatically generated 3D code skeletons and Java as target language for
the XSLT-based generation of program code.

From the interrelations specified in a SSIML interrelation model we generate
Java ’glue code’ in order to enable a seamless integration of the 3D scene into
the corresponding overall application.

Deriving SSIML Models from Existing 3D Scenes. As discussed in
section 1, in some cases it might be useful to derive a model from an exist-
ing user interface prototype. In the context of SSIML this means that a SSIML
model can be extracted from an already existing 3D scene which was created
by a 3D content developer using a 3D authoring tool. As a first approach which
actually takes into account an existing 3D scene, we have developed a validation
tool which compares two 3D scenes in terms of their structure (object hierarchy,
object types) and the naming of the contained 3D objects. After generating a 3D
template from a SSIML scene specification, the tool allows checking if a present
scene conforms to the generated template and therewith conforms to the SSIML
model. The tool reports structural differences between the two 3D scenes. How-
ever, this approach still requires an existing abstract specification of the scene
in a SSIML model.

The next step would be to completely generate a SSIML model from a 3D
scene which was already created with a 3D authoring tool. A suitable basis
for such a transformation is the X3D-format. X3D is the successor of VRML.
X3D and VRML are standardized formats, integrate with different 3D platforms
which provide VRML/X3D scene loaders (e.g. Java3D), can be imported and
exported by many 3D authoring tools and are supported by several 3D format
converters. Since X3D is an XML-based format, it is possible to translate an
X3D scene into an XMI-encoded SSIML model using XSLT. Like SSIML, X3D
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uses a scene graph-oriented structure. Thus, the mapping between X3D and
SSIML is quite straightforward. Names and types of SSIML elements can be
derived from the names and types of corresponding elements of the X3D scene.
A transformation of an X3D scene into a SSIML model should also preserve
property values of scene objects (e.g. transformation and color values). Although
these values are not visible in the SSIML diagram editor, they could be later
incorporated again in a retranslation of an (adapted) SSIML model into X3D
code or another 3D format.

6 Related Work

Important related work are the concepts from the user interface modelling com-
munity. While many approaches in this field are restricted to the usage of mod-
elling tools or markup languages without specific tool support, some approaches
basically allow the usage of visual user interface design tools. UsiXML [11] allows
transformations between the different levels of abstraction which could help to
extract abstract information from a concrete user interface model. [12,13] pro-
vide reverse engineering for HTML-based user interfaces. User interface modelling
tools like CanonSketch [14] integrate different views on the user interface models,
including a concrete HTML view. Similarly, in domain specific tools for model-
driven development, such as [15], GUI builders are integrated to visually spec-
ify the application’s user interface. However, concerning our goals, all approaches
have in common that they are restricted to standard elements like HTML widgets.

Similar restrictions exist (naturally) in the area of model-driven development
of web-application (web-engineering). However, it is worth to note that some
approaches in this area (e.g. [16,17]) claim that the integration of existing tools
for visual, creative user interface design is mandatory for the success of the
development approach. As a consequence, they enable the usage of external
web-design tools for the specification of the user interface design.

In the field of 3D application development (e.g. Virtual Reality and Aug-
mented Reality development) model-driven methods are rarely applied, although
e.g. Smith et al. [18] underline the need of such approaches in the context of VR
development. Nevertheless, some modelling approaches exist which allow the
generation of platform-specific code (e.g. for interaction techniques [19] or pre-
sentation flows [20]) and are often directed towards a better support of develop-
ers without deeper experiences in programming such as designers [21]. However,
all these approaches focus mainly on forward engineering and don’t consider a
retranslation of an implementation level specification into a more abstract rep-
resentation. Furthermore, unlike in SSIML (see previous section), 3D contents
have to be created independently from the modelling approaches and must be
connected manually (by programming) with the code generated from the models.

In the domain of multimedia applications, [22] presents a model-based ap-
proach for the development of training applications using the authoring tool
Adobe Director. However, the transition between the models and the implemen-
tation in the tool has to be performed manually.
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In summary, several tendencies towards a better integration of tools for cre-
ative design and model-centric development exist, but there is clearly a lack of
a more consequent and explicit integration of them, especially for earlier devel-
opment steps like prototyping.

7 Conclusion and Outlook

In this paper, we have discussed a number of quite heterogeneous approaches,
without providing much detail on each individual approach. The common theme
among all the proposed tools is that there is an abstract software model on one
side and an artefact of a concrete state-of-the-art commercial tool for user inter-
face design on the other side. Both directions of transitions have been described:
Creating artefact skeletons from the abstract model (forward engineering) as
well as creating abstract views from artefacts (reverse engineering). Like in the
traditional transitions between models and program code, the ideal world would
be a “round trip” engineering between the levels. However, in the case of user in-
terface design, it is also common to deal with many tool technologies at once. So
a development may start from a user interface design (made in Photoshop), then
derive an abstract interface model from it, create a skeleton for a Flash click-
prototype from it, refine the abstract model based on some user studies, and
finally make a transition towards Java code skeletons for a final implementation.
The abstract model helps for establishing much more formal and traceable links
between various design artefacts than in todays practice. Moreover, using the
model as a central hub for transformations may in the long run help to reduce
the (nowadays common) thinking in terms of one single design platform only,
and therefore helps to introduce a more abstract way of thinking in projects
where graphical designers and software designers work together.

Of course, the prototypes for transformators which were mentioned above are
far from being exhaustive and not yet well integrated. Nevertheless, they show
that this is a road which is viable, and we will further elaborate the “model as
design hub” idea in future work. The long-term vision is that import and export
functions to and from abstract models will become standard features for any
kind of design tool used in the development process.
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Abstract. A business process contains a set of interdependent activities that 
describe operations provided by an organization. E-commerce applications are 
designed to automate business processes. A business process specification (i.e., 
a workflow) is defined by a business analyst from the viewpoint of the end-
users. The process encapsulates the knowledge related to the natural work 
rhythms that a business user would follow when using an e-commerce 
application. In this paper, we analyze the information embedded in business 
process specifications, and infer the functional and usability requirements. We 
use the inferred information in a model-driven approach to automatically 
generate user interfaces (UIs) from a business process specification through a 
set of transformations. To improve the usability of UIs for the e-commerce 
applications, each transformation is guided by usability principles. 

Keywords: Business process, User interface generation, Usability, Model 
driven engineering, Task model, Dialog model, Presentation model. 

1   Introduction 

A business process is a set of linked activities that need to be carried out to achieve 
business goals for an organization. These activities are called tasks and may be 
performed by multiple roles. For example, “Find product” and “Validate credit 
card” are two tasks in an online shopping business process and are performed by the 
role “Customer sales representative” (CSR) and the role “Bank clerk”, respectively. 
E-commerce applications are designed to automate business processes in an 
organization [1]. In today’s fast-changing business environments, marketing strategies 
and technical innovations drive the evolution of business processes. To maintain their 
competitive edge, organizations must keep on updating the business logic and UIs of 
e-commerce applications in order to reflect new business initiatives. However, the 
updates and evolution of UIs are often performed without referencing the underlying 
business processes. Therefore, the UIs of e-commerce applications and the business 
processes rarely evolve consistently. 
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The usability of UIs of e-commerce applications is crucial for the survival of a 
business and its success. The key to attract customers is e-commerce applications with 
high quality content, ease of use, quick response and frequent updates. However, 
studies [2] show that the majority of the UIs of e-commerce applications suffer from 
usability problems. For example, applications often provide more functionalities than 
necessary. It is not obvious for users to navigate through a data centered UI in order to 
fulfill business tasks. Approaches have been proposed for automating the design and 
implementation of UIs [3, 5]. However, these approaches create the designs of the UIs 
from the perspectives of the software development domain. Without the participation 
of business users, the UI might not satisfy the usage patterns of business users. 
Therefore, it is crucial to provide an approach that can directly involve the business 
user in the design of UIs in order to ensure the usability of these interfaces. 

In this work, we propose a framework that can automatically generate UIs from 
business processes using a sequence of model transformations. More specifically, we 
analyze business processes to obtain the functional requirements specified by the 
business analysts. An initial task model is generated to reflect the functionalities in 
the UI. We extract contextual information from business process specifications to 
provide supports for users. Examples of contextual information are the order of task 
execution, the data flow from one task to another, and the pre-conditions and post-
conditions for task execution. To generate UIs with different quality goals (e.g., high 
learnability and high efficiency), we apply usability practices and UI design principles 
to guide the transformations of business processes into UI design models. For 
example, UIs with high learnability can provide more guidance for the users. 
Developers can pick their preferred UI based on their quality requirements. 

In the following sections, we introduce the details of our approach. Section 2 
describes other researchers’ work related to our approach. Section 3 introduces our 
model-driven UI generation framework. Section 4 presents models and their 
transformations. Section 5 illustrates our approach using case studies. Section 6 
presents our conclusion and future work. 

2   Related Work 

To improve the efficiency in software development, approaches for automatic UI 
generation were proposed to separate UIs from business logic [5]. Model based UI 
development typically creates a series of declarative models, such as models of user 
tasks, dialogs and presentations [6]. User task models are used to elicit the 
requirements of functionalities. Derived from the identified user tasks, dialog models 
describe the interactions between the user and the UI.  Furthermore, presentation 
models are created by assigning abstracted graphic user interface (GUI) widgets to 
dialog models. Finally, UIs are implemented by mapping presentation models to 
specific UI implementation technologies, such as HTML pages or Java™ Swing 
components. Proposed by Elkoutbi et al. [3], UML collaboration diagrams annotated 
with UI information can be transformed into UI prototypes. In our work, we provide 
an approach that generates UIs from business processes modeled by business analysts. 

Domain-specific languages (DSL) provide high-level languages for code 
generation in certain problem domains [8]. For example, business process 
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specifications, such as BPEL (Business Process Execution Language) are widely used 
to integrate Web services using the standards of the service-oriented architecture [9]. 
In our research, we infer the information embedded in business process specifications 
to generate UIs for applications. 

3   Model-Based UI Generation Framework 

To reduce the development and maintenance efforts of a UI and its corresponding 
business process, our UI generation framework uses model transformation techniques 
that analyze the content of business processes (e.g., tasks, data, and control flows) and 
produce the source code of an application. Figure 1 illustrates the overall steps in our 
UI generation framework. However, business processes usually do not contain 
enough information to automatically generate code. For example, a business process 
does not describe the threading model or the database schemas to be used in the 
implementation. We generate intermediate models with increasing details towards the 
final UI code. The intermediate models include task models, dialog models, and 
presentation models. Task models recognize the structural and temporal information 
and describe how roles execute various tasks defined in business processes. 
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Fig. 1. UI generation framework 

To derive such functional requirements, we must analyze business processes and 
examine task annotations that describe the functionality of a role (i.e., the person who 
performs a task). The challenge lies in the fact that the granularity of tasks, expressed 
in business processes, varies considerably. For example, primitive tasks, such as 
“Create an order” and “Add a new category” represent the lowest level of detail. 
Other tasks may convey functional requirements that can be composed by a sequence 
of primitive tasks. Instead of considering every task as delivering individual 
functional requirements, we analyze data dependencies among tasks and data 
coupling/cohesion in the business processes to group tasks into functional segments. 
We propose a set of segmentation rules that can group relevant tasks and data into 
meaningful functional segments. A task model consists of a collection of functional 
segments. Furthermore, we map one segment into one dialog that specifies the 
interaction between users and applications. 

A dialog model defines the flows (i.e., transitions) of UI windows. We distinguish 
two types of windows in a dialog model: task windows and support windows. A task 
window maps to a segment in the task model. A task window allows a user to interact 
with an application in order to accomplish the tasks in a segment. To improve the user 
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experience, we need to provide more precise information (i.e., input data or output 
data) about a task. In this way, a business user can understand the functionality of a 
task, verify the correctness of their operations once the task is carried out, and easily 
access auxiliary information for the fulfillment of a task. For example, a picture is a 
required input to the “Add product attributes” task, and a picture of a product may be 
added into a product catalog after performing this task. A user who is performing the 
“Add product attributes” task would find it useful to be able to preview a picture of 
the product before inserting it into a product catalog. It may be valuable for the user to 
be able to verify the product description after the product description is created in a 
catalog. Support windows provide auxiliary data operations inferred from business 
processes and assist users performing tasks in the task windows. Window transitions 
are generated based on the control flows between segments in a task model.  

In the presentation model, a dialog is associated with a set of abstract widgets and 
implements task windows and support windows. An abstract widget describes the 
generic properties (e.g., title, size, and alignment) of a concrete widget in a specific 
implementation platform. General speaking, a task can be realized by a set of abstract 
widgets. For example, a “Find product” task can be implemented by a text field that 
allows a user to enter searching criteria, and a table that displays the search result. To 
improve the usability of the generated UI, each task or group of tasks is associated 
with a UI design pattern (e.g., find pattern, output display pattern, and shopping cart 
pattern). The layout of each window is guided by various UI best practices.  

4   Models and Their Transformations 

In this section, we introduce the background knowledge about our model-based UI 
generation. We illustrate the concepts of task models, dialog models, presentation 
models and transformation rules using examples.  

4.1   Analysis of Business Processes  

Our UI generation approach starts by analyzing business processes in order to extract 
functional requirements and usability information from them. As illustrated in Figure 
2, we model a business process in terms of tasks and connectors. Tasks (e.g., “Find 
product”) describe activities that a user needs to perform in order to achieve a 
business goal. Connectors define the control flow and data flow of a business process.  
As depicted in Figure 4, an example business process is composed of 9 tasks and 8 
connectors. More specifically, a task has a name, a role, zero or more input 
connectors, and zero or more output connectors.  The role specifies who is allowed to 
perform the task. Input connectors and output connectors describe the input data and 
the output data exchanged between tasks. A connector links a source task with a target 
task along with data flows and conditions. For example, as shown in Figure 4, a 
connector, < “Add to cart”, “Enter quantity”, Shopping cart, null> links its source 
task “Add to cart” and its target task “Enter quantity” along with a data item 
Shopping cart that is created by the “Add to cart” task and serves as an input to the 
“Enter quantity” task. No data flow conditions are specified in this example. There 
are three types of control structures in business processes: sequence, decision, and 
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loop. Tasks in a sequence structure will be performed continuously. A decision 
structure defines more than one possible execution path. Each path has a pre-
condition. Once the precondition of a path is satisfied, the tasks in the path are 
executed. Tasks in a loop structure will be performed multiple times. A loop may 
have a condition to decide when it stops. Moreover, a data item is composed of a set 
of data attributes, such as name and type. The data attributes in a business process is 
specified in an information model that defines the relations among the data items in 
business processes. Each data item is considered as a class in the information model. 
The attributes of the data item are interpreted as fields in the corresponding class. A 
data attribute can be a primitive type (e.g., a string and an integer) or a reference to 
other data item. For example, the data attribute billingAddress in Payment data item is 
an instance of a type Address. Moreover, a data attribute may have a default value.  

BP = <Task+, Connector* >
Task = <Name, Role, InputConnector*, OutputConnector*>
Connector = <SourceTask, TargetTask, [DataItem], [Condition]>
DataItem = < DataAttr+>
DataAttr = < Name, Type, DefaultValue >
+  means that the occurrence of an element in a tuple is one or more
* means that the occurrence of an element in a tuple is zero or more
[ ] means the this element is optional  

Fig. 2. The definition of business processes  

4.2   Task Model 

In the design of UIs, limiting the number of widgets in a window can improve the 
efficiency of the interactions between users and computers because users can 
concentrate on performing one task at a time.  Elkoutbi et al. suggest a threshold of 20 
widgets in a window [3]. As aforementioned, a task can be implemented by a group of 
widgets. Our aim is to identify the relevant tasks that need to be performed together in 
the same window, and to limit the number of widgets in a window. We propose 
several heuristic rules that identify the relevance between tasks and segment tasks by 
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Fig. 3. The meta-model of the task model 
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analyzing control and data flows in the business processes. Intuitively, grouping 
relevant tasks divides a business process into a set of smaller segments of task groups. 
Each segment is mapped to a window in the generated UI.  The segments are linked 
by the connectors between segments in a business process. The meta-model of task 
models is depicted in Figure 3. A business process consists of a set of Segments and 
Connectors. Each Segment encapsulates tasks and data items. In the following 
subsection, we discuss our heuristics for dividing a business process.  

 

Fig. 4. An example business process 

4.2.1   Role Rule 
B1={c|c.SourceTask.Role ≠ c.TargetTask.Role} 

where c is a connector, c.SourceTask and c.TargetTask describe c’s source task and c’s target 
task respectively (Figure 2). c.SourceTask.Role and c.TargetTask.Role refer to the roles of these 
two tasks, respectively. 

We want to provide a personalized UI for different roles in a business process. A 
personalized UI provides the necessary functional features and UI widgets with 
respect to individual roles. A user can focus on their own work and easily select the 
widgets from fewer widget sets in the UI. We derive a role rule that divides a business 
process into a few groups as specified in B1. Each group of tasks is performed by the 
same role. We identify a set of connectors that link the source tasks of connectors and 
target tasks of the connectors, performed by different roles. Furthermore, connectors 
in B1 divide a business process into Segments. Each Segment contains the task and 
related data items performed by one role. For example, as illustrated in Figure 4, the 
business process is segmented by connectors {5, 6, 7, 9} by applying the role rule.  

4.2.2   Primitive Task Rule 
B2={c|c.SourceTask.IsPrimitiveTask()} 

where c is a connector, IsPrimitiveTask() can identify whether a task is primitive or not 
Primitive tasks, such as “Add to cart” and “Submit order”, describe the lowest 

level of details in a business process. Such tasks are usually implemented as button 
widgets and used in combination with other tasks that share the same UI window. For 
example, when a product is found, the product can be selected from a list of products, 
and added to a shopping cart. To improve the efficiency of the UI, the “Add to cart” 
task is often combined with the “Find product” task and implemented in one 
window, as illustrated in Figure 4. We identify primitive tasks using naming 
conventions. For example, we look for tasks with a name containing “submit”, 
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“save”, “add”, and “delete”. A primitive task alone does not produce a segment in a 
business process. 

4.2.3   Manual Task Rule 
B3={c|c.SourceTask.IsManualTask() ⊕ c.TargetTask.IsManualTask()} 

where c is a connector, IsManualTask() checks whether a task is a manual task or not 
Manual tasks, such as sending surface mail, are manually accomplished by 

humans without using the e-commerce applications. Therefore, no UI windows are 
required for performing the manual tasks. The manual task rule is defined by B3, 
and used to exclude the manual tasks from the rest of the tasks in a business 
process. Therefore, we can avoid generating unnecessary widgets or windows for 
manual tasks in UIs. In B3, IsManualTask() is used to identify a manual task, an 
attribute that is usually specified in the properties of the task. If either the source 
task of a connector or the target task of a connector is a manual task, the connector 
divides the business process into segments by removing the manual task from the 
business process.  

4.2.4   Optional Task Rule 
B4={c|c.SourceTask.IsOptionalTask() ⊕ c.TargetTask.IsOptionalTask()} 

where c is a connector, IsOptionalTask() identify whether a task is a optional task or not 
To improve their work efficiency, users would rather click fewer buttons. In this 

case, the developers may choose to provide default values or settings for UI 
widgets, such as combo boxes and text boxes. We use the default values specified 
in the attributes of a data item, which is defined as an output of a task, to provide 
the default values for the widgets that are used to implement the task. Such a task 
is considered an optional task to perform only if the user would like to change the 
default values. For example, the payment by credit card is defined as the default 
payment method. The task “Select payment method” can be skipped. Optional 
tasks separate the business processes into segments. This rule can improve 
efficiency because users perform optional tasks only when they cannot use default 
values. We use the equation B4 to identify connectors that link to optional tasks. If 
a task is an optional task, then IsOptionalTask() returns true. If either the source 
task or the target task of a connector is an optional task, such a connector breaks 
the business process into segments.  

4.2.5   Branch Rule 
B5={c|NumberofInputConnectors(c.SourceTask)>1 
∨ NumberOfOutputConnectors(c.TargetTask)>1} 

where c is a connector, NumberofInputConnectors () and NumberOfOutputConnectors () count 
the number of input connectors and the number of output connectors of a task. 

If a task has more than one outgoing connector, this structure indicates alternative 
branches or parallel paths. We include all the tasks in one branch as a segment. For 
example, the business process in Figure 4 is divided into three segments using the 
branch rule by connectors {6, 7, 9}. 
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4.2.6   Data Sharing Rule 
B6={c|(c.SourceTask.InputConnectors≠null ∧  

ic∈c.SourceTask.InputConnectors()) ∧ ic.DataItem() ≠ c.DataItem()} 
where c is a connector, ic is one of the input connectors of the source task of connector c; 
c.DataItem() returns the data item associated with connector c. 

If a sequence of tasks operates on the same data item, these tasks share the same 
data information. In the UI design, it would be inefficient if a user had to enter the 
same information multiple times when performing different tasks. This data sharing 
rule improves the efficiency of the UI design by grouping the tasks and their shared 
data item in a segment. As specified in B6, if the data item of the connector c and the 
data item of the connector ic are not equivalent, c is a connector that divides the 
business process into different segments. For example as shown in Figure 4, two 
segments are identified using the data sharing rule. The “Enter quantity” task and the 
“Checkout cart” task are included in the same segment since both tasks share the data 
item, Shopping cart. The “Enter payment information” task and the “Submit order” 
task share the data item, “Order” and are grouped into one segment. 

4.3   Application of Rules 

Each rule has preconditions that specify the context for applying the rule. For 
example, the branch rule would not be applied for sequentially ordered tasks. In the 
process of dividing a business process into a collection of segments in a task model, 
we identify an applicable set of rules using the preconditions of each rule. The role 
rule, data sharing rule, branch rule, manual task rule, and optional task are 
independent from each other. Therefore, the result of the segments is independent 
from the order of applying these rules. The primitive tasks, such as the “Add to cart” 
and “Submit order” tasks are not associated with a separate window. As the result, the 
primitive task rule identifies primitive tasks, and merges the identified primitive task 
with the prior task. In this case, the primitive task and their prior task are treated as 
one merged task. Therefore, we apply the primitive task rule before any other rules. 
Figure 4 illustrates a segmentation example. The primitive task rule is applied before 
any other rules and it identifies the connector set B2. Moreover, the role rule, branch 
rule, and data sharing rule are applied independently in any orders. These will identify 
the connector set (B1 ∪  B5 ∪ B6). At last, we derive six connectors that divide the 
business process into segments (i.e., B2 ∪ (B1 ∪  B5 ∪ B6) = {2, 4, 5, 6, 7, 9}).  

4.4   Dialog Model 

The dialog model is composed of a set of linked windows, as illustrated in Figure 5. 
Each window is generated from a segment in the task model. Window transitions are 
generated from connectors in the task model. In the dialog model, task windows 
provide widgets that allow users to interact with the application in order to fulfill 
tasks following predefined orders as specified in the business processes. The Support 
windows provide contextual support that assists users in performing related tasks. A 
task window contains task and data operations. A support window can only include 
data operations inferred from data items. An example of data operations can be 
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viewing the product specification before performing the “Add to cart” task. To 
prevent users from making errors when performing tasks, a window (i.e., editor) can 
be only editable when a task requires input from the user. Otherwise, we set the 
window as a viewer that is used for displaying information.  
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Fig. 5. The meta-model of the dialog model 

Our rules for transforming task models to dialog models are inspired by [14, 15], 
which derive navigation structures and window structures from task structures. Our 
window transactions are directly derived from the connectors in the task models. To 
generate window structures, we have designed the following three rules to transform 
segments to windows. 
 
Single Window Rule 

S
T

⇒W,  where S is a segment, W is a window and 
T

⇒  is a transformation 

We transform all tasks and data operations in one segment into one window. This rule 
results in a UI that is ideal for expert users, since the users can complete tasks using 
fewer clicks. But the UI might be difficult for novice users, who have to learn and 
remember the functionality and order of use of all the widgets in one window. 
 
Data Window Rule 

S

T

⇒  WT+∑
N

i
DiW ,  where S is a segment, WT is the task window for the 

segment S, WDi is the window of the data item i, and N is 
the number of data items of a segment 

This rule transforms all tasks in one segment in a task window and the data operations 
related to one data item into a support window.  In this case, support windows can be 
reused in many other segments that contain data operations for the same data item. 
This rule permits us to reduce the number of tasks and data operations implemented in 
one window.  Moreover, users’ knowledge about a support window can be reused in 
other contexts when the same data items recur. 
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Functional Window Rule 

S

T

⇒WT+WS,  where S is a segment, WT is the task window for the segment S, 
and WS is the support window for the segment S. 

This rule transforms all tasks in a segment into a window and all data operations in 
the segment into a support window. This rule decreases the number of tasks and data 
operations in a window. The generated UI is easier to learn than the one generated 
using the single window rule. However, it may be more difficult to learn than the one 
generated using the data window rule. This rule is a trade-off between the single 
window rule and the data window rule. 

4.5   Presentation Model 

The presentation model transforms the dialog model into a collection of platform-
independent abstract interface objects. As illustrated in Figure 6, a window in the 
presentation model is associated with a collection of abstract interface objects, such as 
input fields, output fields, selectors and action invokers. The generation of the 
presentation model is accomplished by matching tasks with task patterns, which are 
collections of widely used operations in the design of UIs, such as find operation, 
display contents operation. Two well-known collections of UI task patterns are 
summarized in [10, 11]. For example, Figure 7 shows the structure of a search task 
pattern, adapted from [12, 13]. Specifically, a search task can be decomposed into two 
sub-tasks including entering search criteria and displaying search results. 
Furthermore, an input field (e.g., text field) and a search action invoker (e.g., button) 
allow a user to enter search criteria. Similarly, an output field (e.g., a table) and search 
action invoker (e.g., button) display the returned result. We use naming similarities in 
order to match tasks in the business processes with task patterns used in the UI 
designs. The screenshot for our generated UI after performing the search task pattern 
on the “Find product” task is shown on the right side of Figure 7.  
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Fig. 6. The meta-model of the presentation model 

To transform a platform-independent presentation model into a platform-specific 
concrete UI implementation, a set of platform-specific code templates are used to 
implement abstract interface objects. The selection of a concrete widget is determined 
by the tasks and data items specified in the business process. For example, when a 
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task generates output data, the window that implements this task is set to be an editor, 
for the reason that a user can modify the intermediate result when performing the task. 
When a data item, such as a Picture of a Product, is used as an input to a task, the 
content of this data item can be previewed using a viewer assuming that we can’t 
modify the content of the input data item. We map the types of the data attributes of a 
data item with different widgets that are used to display the context of a data item. For 
example, the data item, Product, contains string typed attributes, such as Product ID, 
Product name, and Product type. The string typed data attributes are interpreted into 
text fields, as illustrated in Figure 7. A data item that can appear multiple times (e.g., 
an array of resulting products), is converted into a table, as shown in Figure 7. 
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Fig. 7. The structure of search task pattern and an example implementation 

Moreover, we incorporate several UI design principles during the generation of the 
UI. For example as shown in Figure 7, three buttons (i.e., “Undo”, “Cancel”, and 
“Next”) at the bottom are generated to improve the usability of this window.  The 
“Undo” button and the “Cancel” button allow user to correct their mistakes by 
adapting the “Forgiving users pattern” usability pattern [10, 11]. The “Next” button 
is created using the “Wizard” pattern [10, 11], which guides users to perform tasks in 
a step-by-step fashion. Users can use this button to transition to the next page to 
perform the next task. 

5   Case Studies 

We designed and developed a prototype tool that can automatically generate UIs from 
business processes. The screenshot for our UI generation environment is illustrated in 
Figure 8.a. Our prototype tool parses the business processes that are modeled in 
IBM® WebSphere® Business Modeler and stored in XML documents. For the 
business process modeled using other modelers, a separate parser needs to be 
developed in order to handle a particular business process specification language. In 
our UI generation environment, multiple UIs can be generated by applying different 
UI design principles on the task models, dialog models, and presentation models. 
Eventually, we allow developers to specify the code templates for implementing 
abstract UI objects defined in the presentation model. 



 A Business-Process-Driven Approach for Generating E-Commerce User Interfaces 267 

 

 

Fig. 8. Screenshots of our prototype UI generation tool 

Moreover, our generated UIs can be previewed in a test environment, as illustrated 
in Figure 8.b.  The process list view allows developers to access the UI generated 
from the selected business process. Once a UI for a business process is selected, the 
structure of the business process is displayed in the navigation view. The task window 
of the initial task is launched in the area of the task window. The data operations of 
the task are initiated in the area of the support window. In this screenshot, we applied  
the data window rule to generate separate windows for each data items and their 
corresponding data operations.  

In the following subsections, we report on the following studies:  

1) Evaluate the usefulness of the business process segmentation rules. We track 
the frequency of the application of each rule in the process of generating task 
models from business processes. 

2) Evaluate the usability of the generated UI. 

5.1   Application of Rules 

We performed an experiment to count the frequency of the rule application during 
model transformations. We selected 10 business processes from an existing call center 
application and counted the frequency of the application of each rule. The results are 
 

Table 1. Frequency of rule application 

Business  
process 

Role 
rule 

Manual 
task rule 

Optional 
task rule 

Branch 
rule 

Data sharing 
rule 

1 1 1 0 0 3 
2 1 0 0 0 2 
3 1 0 0 1 6 
4 1 1 3 2 11 
5 1 1 3 1 5 
6 1 1 2 3 5 
7 1 0 0 1 1 
8 1 1 0 0 2 
9 1 1 0 0 4 
10 1 1 0 0 4 
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listed in Table 1. Role rules are applied in each business process, since more than one 
role participates in the studied business processes. Manual task rules, optional task 
rules and branch rules are applied in some of the business processes, since not all the 
business processes contain manual tasks, the data items with default values, and 
decision paths. As shown in Table 1, data sharing rule is frequently used to merge 
tasks with data dependencies.  

5.2   Usability Evaluation 

We guide the generation of UIs using UI design principles. To evaluate the usability 
of the generated UI, we use a standard questionnaire proposed by Chin, Nielsen, and 
Lewis et al. [7], as illustrated in Figure 9.  

 

Fig. 9. The Nielsen’s ten usability heuristic questionnaire [7] 

We generate two versions of the UI following different UI design principles. One 
version has high learnability and the other one has high efficiency. For example, high 
learnability can be achieved by giving more guidance to users. We generate 
navigation buttons for each window. High efficiency is achieved by grouping the 
widgets for accomplishing the tasks in one segment into one window. We invite 5 
usability researchers to evaluate these generated UIs. The evaluators walked twice 
through the two versions of UIs of the 10 business processes. Then they evaluated the 

 
Table 2. Usability evaluation result 

Question E1 E2 E3 E4 E5 
Q1 5 5 5 5 5 
Q2 5 5 5 5 5 
Q3 4 5 5 4 5 
Q4 5 5 5 5 5 
Q5 5 4 4 5 4 
Q6 5 5 5 5 5 
Q7 5 5 5 5 5 
Q8 5 5 4 5 5 
Q9 5 4 5 4 5 

Q10 NA NA NA NA NA 
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generated UIs using the questionnaire shown in Figure 9. Each question is scored 
from 1(bad) to 5(good).  If the feature corresponding to a particular question is not 
available, the score is marked NA. The evaluation results are listed in Table 2. All 
scores for Q10 are NA, for the reason that we generate UIs without considering 
context-sensitive help and documentation. Other questions are marked as good or 
above average. Hence, we believe that the usability of the generated UI is acceptable 
for the professional usability researchers.  

6   Conclusion and Future Work 

In this paper, we present our approach for automatically generating UIs from business 
processes. Business processes are used as business requirement models that capture 
business knowledge. The task models are directly derived from business processes. 
The UIs are generated using two other intermediate models: the dialog models and the 
presentation models with increasing levels of details. To ensure that the generated UIs 
are easy to use and learn, the transformations between models are guided by UI 
design principles and task patterns. As a result, the generated UI has strong usability 
supports such as consistent look and feel, and transition guidance. Moreover, any 
changes to business processes can be automatically propagated to the UIs by 
regenerating the code using our prototype tool. So, it is easy for developers to 
integrate their feedback to the generation process and to fine-tune their design. 

In the future, we plan to extend our prototype tool to allow users to integrate their 
own task patterns and UI design principles into the generation process so that they can 
reuse their existing knowledge to generate UI following their existing style. We will 
improve the business process analysis technique by identifying additional contextual 
information from business processes.  
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Abstract. The objective of the ongoing OMG standard about a foun-
dational UML subset semantics (fUML) is twofold: providing operational
semantics for a UML subset, and ease unambiguous and automatic model
exploitations. Its impact could however be limited if usual UML profil-
ing practices do not evolve. Profiles are the traditional way to specialize
UML semantics and handle semantic variation points. However, they are
usually defined in a way that only informally addresses the semantic
issue, potentially limiting the benefits that fUML could bring in UML
based methodologies. UML profiling practices must evolve: we propose
to explicitly encapsulate operational semantics into stereotype opera-
tions, and provide a way to intuitively handle semantic variation points
through template parameters. We illustrate the usage of these mecha-
nisms and demonstrate their potential benefits. We also show that no
UML metamodel modifications are required to support them, so that
their implementation in L3-compliant UML tools is straightforward1.

1 Introduction

Since the earliest days of the Unified Modeling Language and right up to its cur-
rent version (2.1.1), the most fundamental criticism made by the ”models” com-
munity has been its lack of semantics. The informal nature of UML’s semantic de-
scription (i.e. natural language) inevitably generates ambiguities, often making it
difficult to agree on the meaning of a given model. These ambiguities involuntar-
ily leave the door open to multiple and potentially contradictory interpretations
of a same model. In [6], Steve Cook thus talks about the ”cognitive semantics” of
UML, as opposed to the ”objectivist semantics” of a well-defined programming
or modeling language. This drawback limits the impact that ”pure” UML could
have on model-driven engineering, where (semi-)automatic model exploitations

1 This work has been performed in the context of the Usine Logicielle project
(www.usine-logicielle.org) of the System@tic Paris Region Cluster. This project is
partially funded by the ”Direction Gnrale des Entreprises of the French administra-
tion”, the ”Conseil Rgional d’le de France”, the ”Conseil Gnral des Yvelines”, the
”Conseil Gnral de l’Essonne” and the ”Conseil Gnral des Hauts de Seine”.

G. Engels et al. (Eds.): MoDELS 2007, LNCS 4735, pp. 271–285, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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(and therefore automatic and unambiguous interpretations of the underlying
semantics) are required (the most obvious example of this is code generation).
UML profiles are usually used to overcome these undesirable side-effects. A

profile basically provides users with a specialization of the UML 2 metamodel,
through stereotypes and constraints definitions, thus enabling to clarify and/or
specialize its semantics. Often associated with dedicated methodologies, profiles
have proven useful for many modeling domains. The Accord/UML methodology
[13][14] we proposed in previous works is a good example of UML profiling
efficiency, namely for real-time systems engineering. More generally, for a given
profiled model, a given stereotyped model element can be ”recognized” by the
tool chain associated with the methodology, and interpreted in a proper way.
OCL constraints associated with the definition of profile elements are typically
used to guarantee that the underlying model repository will be well-formed and
interpretable for the tool chain. A similar usage of UML profiles is of course also
recommended to fix the explicitly identified semantic points for which potential
interpretations may vary (i.e. fix the ”Semantic Variation Points”).
More pragmatically, UML profiling mechanisms have achieved their primary

objective: providing UML users with an intuitive means for customizing UML,
from both syntactic and semantic terms. However, as in the case of the UML 2
metamodel, semantic descriptions associated with a profile remain ”cognitive”
(i.e. expressed in natural language), and are not an explicit part of the pro-
file definition: ”Automatic semantic interpretation” (as mentioned above) must
therefore be ”hard-coded” in one way or another in the tool chain. At a time
when the OMG officially recognizes a need for formalizing UML 2 semantics
(see its RFP of August 2005 [9], on the Semantics of a Foundational Subset for
Executable UML Models), we are convinced that the role of profiles in UML-
based methodologies should be enhanced. The offshoot of this RFP (which is
further described in section 2.3) should be an executable semantics description
(in operational style) for a UML subset. UML profiles (traditionally used to
define specialized UML semantics) would thus directly and explicitly influence
operational semantics: UML profiles should explicitly encapsulate such opera-
tional semantic description and provide users with an explicit means for varying
semantics where needed (i.e. for identifying and/or fixing semantic variation
points).
In section 2, we first clarify the meaning of ”semantics”, and provide an

overview of existing works on formalizing UML semantics. This focuses specifi-
cally on the OMG standard being developed for UML semantics and motivates
our own ”operational profiles” approach. To better explain how traditional use
of profiling mechanisms can be enhanced, section 3 gives a recap of UML profil-
ing basics, by defining a simple profile for specializing UML state machines. In
the rest of the paper, we use this basic example to explain and illustrate how
the role of UML profiles could be enhanced. In section 4, we elaborate on the
basic profile by first showing how operational semantics can be encapsulated in
stereotype definitions, then how template parameters help to explicitly handle
semantic variation points. We also show why and how these original mechanisms
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are easily supported by our open source UML 2 tool, Papyrus2. We conclude
with a discussion of relevant future works and their potential implications for
UML-based model-driven approaches.

2 UML and Semantics

There has been much previous work on formalizing UML semantics. Before de-
scribing the approaches most frequently used to address this issue, we propose to
clarify the definition of the much debased word ”semantics”. This is followed by
a thorough description of what is probably one of the most promising documents
about the subject: the future OMG standard on ”Semantics of a Foundational
Subset for Executable UML Models”.

2.1 The Semantics of Semantics

As stated by D.Harel and B.Rumpe in [5], a language is defined by its syntax,
itself defined by a lexicon and a grammar (or, in our context, a metamodel), and
its semantics, i.e. the meanings associated with each of its syntactic elements.
The authors explain that defining the semantics of a language is like defining a
mapping between the identified syntactic elements and a given semantic domain
(the set of natural numbers N, and their underlying properties, is an example of
a semantic domain). A language can be considered well-defined if its semantic
mappingM leads from a clear and expressive syntax L to a well-defined and well-
understood semantic domain S (concisely denoted asM : L → S in their article).
Whatever the concrete formalism used to do so, a description of programming or
modeling language semantics most often uses one the three following ”semantic
description styles” [4]:

– Denotational: Semantic mapping provides a link between language con-
structs and mathematical models. For a given language being defined, a
conventional (and very simple) example of such mapping would be linking
the keyword ”nat” to the set of natural numbers N. In the same way, the
keyword ”+” could be mapped to the addition function on natural numbers.
– Axiomatic: Semantic mapping links language constructs and a set of logical
rules. A typical example is association of the keyword ”function” with a rule
stating that ”applying equal functions to equal arguments produces equal
outputs”.
– Operational: Semantic mapping links language constructs with rules for
their execution on an abstract machine. This style could also be qualified
”algorithmic”, in the sense that it usually relies on a sequence of ”instruc-
tions” on the abstract machine. The word ”operational” is understood in-
tuitively in connection with the semantics of dynamic/executable parts of a
language. However, the same style could also be used to describe the non
executable, or static, parts of a language. Extensively used for the definition

2 http://www.papyrusuml.org
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of the UML metamodel, the ”PackageMerge” relationship (which is a purely
structural construct) is a typical case in which the same description mecha-
nisms could be applied. In the UML Infrastructure [10], the Merge concept
is in fact described using an informal algorithmic description (through a set
of 10 algorithmic statements).

According to these very general definitions, UML does not currently fall into
the category of well-defined languages, since the semantic domain and semantic
mapping are described only through an informal natural language description
associated with the metamodel. The next section of this article gives a brief
overview of UML formalization approaches commonly used to overcome these
limitations.

2.2 Related Works

In his article on improving UML definition [2], G.O’Keefe gives (along with a set
of general recommendations) an interesting and illustrative survey of work re-
lated to formalizing UML (examples include [8] and [12]). All the work identified
by O’Keefe basically shares one principle: linking parts of the UML metamodel
to formal languages such as Z, Object-Z, or CSP, thus providing a strong math-
ematical basis for the targeted UML subsets.
However, the traditional UML user usually does not have an ”academic pro-

file”. This assertion, which is not meant to be pejorative, refers to the fact that
formalizing an UML subset in Z language will probably not help the traditional
UML user better understand state machine or sequence diagram semantics. It
is not a criticism of the fundamental value or quality of the work mentioned in
the previous paragraph. We simply think that the answers given so far are not
suited to the typical UML user, who is looking for an unambiguous but intuitive
semantic description, and a degree of formalism that affords reliable automatic
model exploitations. G.O’Keefe has quipped that ”Too much of the work on
UML semantics looks like a technical answer which is glad to have found a good
practical question”. We have reason to believe that the future OMG standard
”Semantics of a Foundational UML Subset for Executable UML Models” will
provide the practical answers hoped for by most of the UML users. The following
section tells the reader why.

2.3 Semantics of a Foundational UML Subset

The RFP of august 2005 on ”Semantics of a Foundational UML Subset for
Executable UML Models” RFP [9] requests proposals of a definition for a ”com-
putationally complete and compact subset of UML 2”. Here, ”computationally
complete” means that the elements contained in the identified subset (usu-
ally called fUML, for ”foundational UML”’) should have unambiguous execu-
tion/interpretation semantics, so that any compliant tool chain can fully and
automatically interpret a model specified using that subset. For example, fUML
will identify and precisely define a minimal set of actions and activities that could
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be combined to propose semantic definitions of higher level modeling constructs,
such as state machines. The RFP states (at the end of 6.2) that ”the foundational
subset defines a basic virtual machine for the Unified Modeling Language, and
the specific abstractions supported thereon...”. In other words, fUML elements
are given an unambiguous interpretation for that virtual machine.
Using a combination of fUML elements to specify semantics of higher level

UML constructs (such as state machines) clearly boils down to defining opera-
tional semantics for these constructs (see section 2.1). From a traditional UML
user’s point of view, this is basically enough to understand the exact meaning
of a UML model: on the one hand, the informal semantic description associated
with the UML metamodel can intuitively lead to a general understanding of
the model; on the other hand, the operational semantic description of the foun-
dational UML subset elements (and their combination for defining higher level
modeling constructs) provides unambiguous clarification where needed, and are
also available for automatic model exploitations such as code generation or inter-
active model debugging. In fact, we have something that is almost equivalent to
a well-documented Java program, where generated Java doc provides the overall
intuition, and Java statements the precise meaning.
Note that a subset of fUML, usually called bUML (for base UML), will be

identified and formalized in a way that ”breaks circularity” (this subset will be
mathematically founded, probably on a denotational style. This is not clearly
stated in the RFP, or indirectly in requirement 6.5.2.4: ”To avoid circularity, the
base semantics shall not itself depend on the semantic definition provided by
the execution model.”). Beyond the inherent elegance of strong mathematical
formalization, this kind of information is potentially useful for formal model-
based activities such as model compiling or optimization, where, for example, a
strong definition of ”model equivalence” properties (based on the denotational
semantics of bUML) may be necessary for suitable optimizations, in early stages
of the development process.
Beyond the exact content of fUML (which is supposed to be delivered be-

fore the end of 2007), the main point to keep in mind is that semantics of high
level modeling constructs will be specified through a combination of lower level
fUML elements, using an operational semantics style. For consistency purposes,
and in order to maximize the potential benefits of fUML, we believe that UML
profiling, which is the main current practice for UML specializations/extensions,
should enable ”objectivist” semantic description of UML semantics specializa-
tions (as opposed to the ”cognitive” semantics we mentioned in the introduction
to this article). According to the RFP quoted above, the most natural way to
do so would be to in some way or another encapsulate an operational semantic
description within the profile definition, using elements provided by fUML (or
even higher level elements specified through a combination of fUML elements) to
express it. A means for explicitly identifying and fixing semantic variation points
and their related operational semantics should also be provided. The next sec-
tion of this article proposes the definition of a ”nave” UML profile, illustrating
common profile definition practices. This basic profile definition is then enhanced
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(in subsequent later sections of this article), with emphasis on the added value
of our proposals.

3 UML Profiling Basics

To illustrate the way that UML profiles are traditionally defined, let us de-
scribe (in a cognitive way) a simple profile for specializing UML 2 state machine
semantics. In UML, state machines are mainly used to describe the behavior
associated with instances of active classes. A state machine owns one or more
regions, which in turn own vertices (pseudo states and states) and transitions
that relate vertices to each other. Transitions may be guarded by a constraint,
and fired according to certain triggers referencing a firing event. Firing a tran-
sition results in the execution of the potentially associated effect behavior, and
an evolution of the region’s current state from the source vertex to the target
vertex of the fired transition.
At execution time, the state machine accesses an event pool that is managed

by the context object owning this state machine. The context object interacts
with its environment, and updates the content of the event pool according to
certain event occurrences (reception of an operation call, a signal, etc.). The
state machine takes, dispatches and processes events from the pool only once
the previous event occurrence has been fully processed (i.e. Run-to-completion
semantics). On the basis of such simple dynamic semantics, several semantic
variation points are identified in the UML 2 Superstructure. A semantic variation
point can be basically defined as a particular aspect of a language where semantic
interpretation can vary according to the domain where the language is used.
Given the limited size of this article, the profile we are about to describe will
address only two of them: event selection and transition selection policies.
According to the current state of the state machine and the set of relevant

events contained in the pool (i.e. events that can trigger a transition from the cur-
rent state), the event selection policy determines an event dequeuing order, and
leaves open the possibility of modeling different priority-based schemes. In the
following sections, we consider simple LIFO and FIFO policies as possible con-
crete semantics for the event selection policy. When the ”highest priority event”
has been selected according to a concrete event selection policy, the transition
selection policy determines the transition to be fired where the same event may
trigger several transitions. In the following paragraphs, we consider a Random
policy and a Stochastic policy as concrete semantics for the transition selection
policy.
In fig.1, we define a profile that addresses the two previously identified se-

mantic variation points for the UML state machines. We implicitly consider
other semantic aspects to be handled by the tool chain associated with this
profile. This simple profile contains the definition of the UnambiguousStateMa-
chine stereotype, which applies to the StateMachine metaclass. This stereotype
embeds two tagged values: eventPolicy and transitionPolicy, typed by EventS-
electionPolicy and TransitionSelectionPolicy enumerations respectively. These
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Fig. 1. Simple Profile Example

enumerations contain identifiers for the possible interpretations associated with
the semantic variation points identified in the source state machine metamodel.
Note that they could be extended to account for other policies.
Applying this profile to a given UML model can make this model unambigu-

ously and automatically interpretable for the associated tool chain. However,
this automatic interpretation must be hard-coded in some way or another in the
tool chain. Moreover, the semantic description of the profile remains ”cognitive”
(i.e. with an associated natural language description). The next section demon-
strates how use of UML profiling mechanisms can be enhanced to overcome these
limitations.

4 Behaviored and Templated Profiles

To better demonstrate how the definition of the basic profile proposed in the
previous section can be enhanced, let us consider the following hypothesis: The
UML tool used for the current design proposes the default operational seman-
tics for state machine interpretations, expressed using fUML (or any formalism
respecting the fUML approach described in section 2.3). In section 4.1, we first
describe this default operational semantics, providing what we will call the ”ex-
ecution model”. We also show how this default execution model could be spe-
cialized to take into account the basic profile of fig.1 and its connoted semantic
specializations. In section 4.2, we propose a L2-compliant enhancement of the
basic profile (where L2 is the second UML compliance level, as it is described in
the superstructure [11], p.5) making semantic specializations explicit and objec-
tivist, through the definition of operations on stereotypes, and encapsulation of
operational semantics into these operations. In 4.3, we propose a L3-compliant
enhanced version of the profile defined in section 4.2, where semantic variation
points are: (a) explicitly identified through template parameter definitions, (b)
described using the strategy design pattern, and (c) fixed through bindings of
the formal parameters to actual strategy classes. Section 4.4 finally explains
how and why the profile enhancements we propose are actually legal according
to UML compliance levels.
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4.1 Execution Model

The default execution model for UML state machines (mentioned in the in-
troduction to this section) is described in fig.2. The StateMachineExecution
class represents an excerpt from the global execution environment3. It basically
knows which state machine is to be executed (executedStateMachine role),
and knows a set of information related to the run-time context of this execution
(namely currentState and eventPool, where eventPool contains the set of run-
time events to be handled by the state machine). This class provides executable
semantics expressed in an operational style. More precisely, each operation em-
beds a behavior, and these operations are properly called by the encapsulating
execution environment. The step() operation provides a global scheme for the
execution of one step of the state machine. The operational semantic description
provided in fig.2 is expressed using a Java-like language as its concrete syntax,
but the description could have been based on an activity (where each action
has a corresponding fUML definition, or a combination of fUML elements). The
Java-like syntax is only used for conciseness.
The behavior associated with the step operation first extracts from the event

pool the events that are currently relevant (i.e. events that may fire a transition
according to the current state). This is done through a call to the selectRelevan-
tEvents() operation. From this set of relevant events, the event with the highest
priority is then selected, through a call to the selectEventToHandle() operation.
This step corresponds to the ”event selection policy” semantic variation point
we have identified in the previous section. A default implementation (i.e. the
default semantics) is provided by the tool for this operation. Then, from the
highest priority selected event, the transition to fire is determined through a
call to the selectTransitionToFire() operation. This step is related to the pre-
viously identified ”transition selection policy” semantic variation point. Finally,
the selected transition is fired through a call to the fireTransition() operation.
To credit the connoted semantic specializations introduced in the profile de-

scribed in fig.1, the selectEventToHandle() and selectTransitionToFire() opera-
tions of StateMachineExecution need to be specialized. This could be done by
defining a SpecializedStateMachineExecution class, with a generalization rela-
tionship between this class and StateMachineExecution. A constraint would be
defined on that class to ensure that the executedStateMachine is an instance of
an «UnambiguousStateMachine» stereotyped StateMachine. Then the behavior
associated with the selectEventToHandle() and selectTransitionToFire() opera-
tions of the SpecializedStateMachineExecution class would be redefined to ac-
count for the eventSelectionPolicy and transitionSelectionPolicy tagged values.
A similar methodology could be applied for each new stereotype definition, each

3 This architectural pattern (one Execution class, embedding operational semantics,
for each metaclass that may have a run-time and executable manifestation) seems
to be the one used for the definition of fUML, as it is described in this official
and publicly available presentation: http://www.omg.org/docs/ad/06-06-16.pdf. The
slides are extracted from the initial submission, which is unfortunately not publicly
available.
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Fig. 2. State Machines Default Execution Model

time involving the definition of a new specialization of StateMachineExecution.
This methodology can be improved. The next section describes a L2-compliant
enhanced version of the profile where operational semantics is made explicit and
objectivist, and shows how the default execution model previously described can
be made more generic.

4.2 L2-Compliant Profile Enhancement

The profile described in fig.3 is an enhanced version of the ”unambiguousState-
Machine” profile shown in fig.1. The «UnambiguousStateMachine» stereotype
now owns two (meta-)operations: selectEventToHandle() and selectTransition-
ToFire(). Each operation encapsulates a behavioral description, thus providing
specialized operational semantics for these particular aspects of state machine
meaning (with semantics of course expressed using fUML).
These operations are intended to be called by the execution environment.

Indeed, in fig.4, the default StateMachineExecution class has been specialized
by the definition of GenericStateMachineExecution. In GenericStateMachine-
Execution, selectEventToHandle() and selectTransitionToFire() operations are
overridden so that each behavior actually provides user-defined operational se-
mantics, through explicit delegation to the selectEventToHandle() and select-
TransitionToFire() operations of the «UnambiguousStateMachine» stereotype.
The run-time information required for execution of these operations (i.e. the
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Fig. 3. Behaviored Profile Example

current state of the state machine and the set of event occurences to consider)
are provided by the execution environment.
In addition to the advantages of a generic definition for the execution environ-

ment (we will not in fact further modify its definition until the end of this article),
the main benefit to be had from this approach is that semantic aspects of inter-
est to the user (in this case event selection policy and transition selection policy)
have now become an explicit part of the profile definition, through an explicit op-
erational semantic description: From the first version shown in fig.1 to the one in
fig.3, we progressed from a ”cognitive” semantic description to an ”objectivist”
semantic description, automatically interpretable by the execution environment.
A very perceptive reader might object that the objectivist semantic we are talking
aboutwas already part of the previously introduced SpecializedStateMachineExe-
cution class.We would reply that the traditional way to specialize UML semantics
is to define UML profiles. From our point of view, the most natural place to de-
scribe the semantic specializations is therefore the profile itself. The next section
describes another possible enhancement for the profile definition, providing a L3-
compliant elegant and intuitive solution for handling semantic variation points,
through template parameters and strategy classes.

4.3 L3-Compliant Profile Enhancement

In [1], we proposed a technique for explicitly denoting semantic variation points
in Domain-Specific Modeling Languages (DSML) metamodels. This approach is
based on the definition of template parameters and the use of the strategy design
pattern [3]. In the strategydesign pattern, a ”strategy class” embeds only one oper-
ation and is used as a server.A client class then embeds several operations, in which
the behavior of each operation is expressed as a call for a strategy class operation.
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Fig. 4. Execution Model Refinement

In our proposal, semantic variation points are encapsulated in strategy classes, the
concrete type of which is left open as a template parameter in the meta-model.
Binding such a template parameter creates a new specialization of the language,
thus fixing the semantic variation point. The profile enhancement proposed in fig.5
is an almost direct application of this approach.Thepowerful templatizationmech-
anisms provided by UML4 are applied to define this enhanced profile.
The concretePolicies model library contains strategy classes. Event-

SelectionPolicy and TransitionSelectionPolicy are abstract classes representing
abstract strategies (i.e. strategies having no behavior associated with selectEvent-
ToHandle() and selectTransitionToFire() operations) and concrete policies (i.e.
with an actual behavior description) are defined in the library through definition
of new specialized classes: FIFO, LIFO, Random and Stochastic (other policies
could be defined in the same way). The template signature associated with the
unambiguousStateMachine profile owns two formal template parameters, expos-
ing the following ParameterableElements5: ESP, a class that must comply with
the abstract EventSelectionPolicy strategy class (i.e. EventSelectionPolicy is the
constraining classifier of the corresponding template parameter), and TSP, which
must comply with TransitionSelectionPolicy. The «UnambiguousStateMachine»
stereotype owns two properties: eventSelectionPolicy and transitionSelectionPol-
icy, of type ESP and TSP respectively (i.e. the types exposed as formal template
parameters by the owning profile). The behavior associated with the selectEvent-
ToHandle() and selectTransitionToFire() operations of the «UnambiguousState-
Machine» stereotype are now specified as explicit delegations, through the
following operation calls (parameters are not written for conciseness): eventSe-
lectionPolicy. selectEventToHandle() and transitionSelectionPolicy. selectTransi-
tionToFire() respectively.
From a functional point of view, this solution is equivalent to the one pro-

posed in fig.3. However, from a cognitive point of view (”cognitive” is used here
in a non-pejorative way), semantic variation points have been clearly and ex-
plicitly identified through template parameter definitions on the owning profile.

4 Superstructure [11], chapter 17.5.
5 ParameterableElement is a metaclass introduced in the UML metamodel subset
about templates. It represents an element that can be exposed as a formal template
parameter, and passed as an actual value in the context of a template binding.
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Fig. 5. Templated profile example

Users of the profile now have a clear indication of how they can make state ma-
chine semantics vary. In fig.5, this is done by defining new specialized profiles
(SpecializedStateMachineA and B), where formal parameters of the unambigu-
ousStateMachine profile are actually bound to concrete policies from the model
library (through the «bind» relationships). Each profile thus provides a variant
for state machine semantics, and these variants can be unambiguously and au-
tomatically interpreted by the execution environment. Note that the example
we propose defines formal parameters for the profile, but these parameters could
have been specified for the stereotype itself in a similar way. In the latter case,
new specialized stereotypes could also be defined through binding relationships.
The next sections now explains how and why these profile enhancements are
legal according to the various UML compliance levels.

4.4 Profile Enhancements and UML Compliance Levels

Our proposed use of UML profiles in the previous sections may seem strange.
We have not in fact seen similar uses in the relevant literature; nor are any
mentioned in the Superstructure itself. However, the uses we are promoting are
legal according to UML specification. Fig.6 is based on figures 2.2, 2.3 and 2.4
from the UML superstructure [11]. The packages on the bottom of the diagram
represent the various UML compliance levels, and those on the top provide a
particular focus that helps us to argue our point. The various merge relationships
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illustrated in fig.6 justify our affirmation, and hence the profiles we defined in
fig.3 and fig.5 are actually legal. The interpretation we are about to describe is
based on a similar case proposed in the UML 2 superstructure to illustrate the
use and the meaning of package merges. This example is illustrated in figures
7.68 and 7.69 of the UML 2 superstructure.

Fig. 6. UML Compliance Levels (Excerpt and Focus)

At the L1 level, the BasicBehaviors package is merged, so that operations of
classes can now encapsulate behaviors (Operation is indeed a subtype of Behav-
ioralFeature). At the L2 level, the Profiles package is merged, so that Stereotype
can have operations that encapsulate behaviors (because Stereotype is a subclass
of Class, and Class has this capability from L1 level). Thus we conclude that the
L2 compliance level is enough to support profile definitions similar to the one pro-
posed in fig.3 (where behaviors are encapsulated in the selectEventToHandle()
and selectTransitionToFire() operations of the «UnambiguousStateMachine»
stereotype). Then, at the L3 level, the Templates package is merged, so that classi-
fiers and packages defined with an L3-compliant tool can own a template signature
(they are indeed subtypes of the abstract TemplateableElement metaclass, that
is to say an element that can own a TemplateSignature). As a consequence, pro-
files and stereotypes specified with an L3-compliant tool can also own a template
signature (because Profile is a subclass of Package, and Stereotype is a subclass of
Class, which is a subclass of Classifier).We therefore also conclude that the profile
we proposed in fig.5 is legal, and requires the use of a L3-compliant tool.
Pragmatically, the designers of the Eclipse UML 2 plugin6 (the de-facto stan-

dard implementation of the UML 2 metamodel) came to the same conclusion.
The plugin indeed provides an L3-compliant implementation of UML [7], and
hence it directly supports the encapsulation of behaviors into stereotype opera-
tions and the definition of template signatures for both stereotypes and profiles.
This is all what we need to support the description part of the mechanisms
proposed in section 4. Implementation of the visual editing part of these mech-
anisms in our open source UML 2 tool, Papyrus, is then quite straightforward.
We discuss this point again in the conclusion.
6 http://www.eclipse.org
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5 Conclusion

The informal nature of UML semantic description leaves the door open to multi-
ple and possibly contradictory interpretations. This strongly limits its adoption
for constrained domains, such as real-time embedded systems, while the demand
and potential benefits of using such a widespread standard are strong. UML Pro-
files are traditionally used to overcome these limitations. They provide a means
for clarifying/specializing UML semantics and fixing semantic variation points.
In practice, a profile specification only provides a structural model describing
stereotypes and their structural features, leaving semantic description as infor-
mal as those of the UML metamodel. This informal semantic description does
not lend itself to automatic model interpretation. We have shown that this lim-
ited use of UML profiling mechanisms is not imposed by the UML standard, so
that profiling practices could be enhanced to explicitly address the automatic se-
mantic interpretation issue. In this article, we have proposed an approach where
operational semantics is encapsulated into stereotype operations and semantic
variation points (directly related to UML or specific to the domain targeted by
the profile) are explicitly handled through template parameters and strategy
classes. We have demonstrated that this approach is UML compliant, and de-
scribed how it could explicitly and intuitively influence the default semantics of
UML models, where this default semantics could be expressed with fUML (the
future OMG standard about the executable semantics of a foundational UML
subset), or any equivalent formalism. Papyrus, our open source UML tool, is
based on the Eclipse UML2 plugin. Therefore, the 1.6 version of Papyrus sup-
ports the description part of the mechanisms we propose.
Most of our current work now concerns the application of the enhanced pro-

filing mechanisms we propose to our Accord/UML approach. Accord/UML is
a UML-based methodology for real-time systems development. It basically re-
lies on: (a) a UML profile (implicitly specializing UML semantics about state
machines and active classes, and providing time related annotations), (b) a re-
finement process (involving model transformations and code generation), (c) an
execution framework (encapsulating the semantic interpretation of profiled UML
models). We plan to make Accord/UML evolve from this hard-coded semantic
interpretation to a more flexible and high level semantic description directly in-
tegrated into the profile. The first step of this evolution is to provide users with a
means for varying certain hard-coded aspects of the refinement process, such as
the definition of the event selection policy, while the ”global” refinement process
remains hard-coded. This could be done through template parameters, strategy
classes and stereotype operations (i.e. something similar to the templated profile
provided as an example in this article), and code generation from these particular
semantic aspects (described in operational style within behaviors encapsulated
into strategy classes and stereotype operations). This goal is independent from
fUML, and it will be achieved before the end of the year. Concerning long-term
perspectives, we would like to integrate in the profile a complete semantic inter-
pretation (i.e. not limited to semantic variation points), and explicit links with
UML default operational semantics (default operational semantics should be
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partially provided by fUML). This would enable interactive model level debug-
ging or model level simulation from a profiled UML model. The main difficulty
to handle concerns the way to address concurrency and time-related aspects of
the semantics. One possible way we are exploring is to define a semantic founda-
tion for time-related concepts of MARTE7 (Modeling and Analysis of Real Time
and Embedded systems). Then, the time management mechanisms provided by
MARTE (logical clocks, chronometric clocks, etc.) could be used unambiguously
to integrate timed semantics within the Accord/UML profile definition.
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Abstract. An understandable concrete syntax and a comprehensible
abstract syntax are two central aspects of defining a modeling language.
Both representations of a language significantly overlap in their structure
and also information, but may also differ in parts of the information. To
avoid discrepancies and problems while handling the language, concrete
and abstract syntax need to be consistently defined. This will become an
even bigger problem, when domain specific languages will become used
to a larger extent. In this paper we present an extended grammar for-
mat that avoids redundancy between concrete and abstract syntax by
allowing an integrated definition of both for textual modeling languages.
For an amendment of the usability of the abstract syntax it furthermore
integrates meta-modeling concepts like associations and inheritance into
a well-understood grammar-based approach. This forms a sound foun-
dation for an extensible grammar and therefore language definition.

1 Introduction

The definition of a language involves various kinds of activities. Usually a con-
crete and an abstract syntax is developed first, and then a semantics is designed
to define the meaning of the language [9]. These activities are complemented
by developing a type system, priorities for operators, naming systems etc. if
appropriate. Especially the definition of concrete and abstract syntax show a
significant redundancy, because domain concepts are reflected in both artifacts.
This leads to duplications which are a constant source of problems in an iter-
ative agile development of modeling languages. Despite general problems that
occur when two documents are used, like inconsistency checking and supporting
adequate ways to resolve them, domain concepts in the abstract syntax may be
expressed on different ways in the concrete syntax. On the contrary the abstract
syntax may contain elements that cannot be expressed in the concrete syntax of
the language. These potential problems unnecessarily complicate an efficient de-
velopment and evolution of languages, and therefore, an integrated development
of both artifacts is highly desirable.

Meta-modeling is a popular method to define the abstract syntax of languages.
It simplifies the language development by allowing the designers to directly map
the classes of a domain analysis [2] to classes in the meta-model, associations
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and inheritance are directly part of the language definition. On the other side,
grammar-based language definitions yield trees with single root-objects. Associa-
tions between leaves and an inheritance-based substitutability are not commonly
existent in grammars.

There are several approaches to derive a grammar and thus, a textual rep-
resentation from a given metamodel. These approaches often lack flexibility in
defining an arbitrary concrete syntax, it may even happen that the desired con-
crete syntax must be adapted in order to get an automatic mapping between
abstract and concrete syntax (e.g., [11]). This stands in contrast to a basic design
principle for DSLs [19] that already existing notations of the domain shall be
used unaltered. Beyond that, one main argument for defining concrete syntax
and abstract syntax separatly is that more than a one concrete syntax can be
used with a single abstract syntax. We argue, when dealing with DSLs this is
a minor aspect because usually in a single domain no two notations are used
that have the same expressiveness and therefore apply to same abstract syntax.
However, we suggest the use of two similar abstract syntaxes and a (simple)
model transformation for these rare cases.

The concrete syntax of a language is either texual or graphical. The graphi-
cal concrete syntax is often defined by the structure of the abstract syntax and a
set of graphical representations for classes and associations in the abstract syntax
(e.g. [7]). Especially for languages that do not have an adequate graphical rep-
resentation, a textual syntax is used which is usually described by a context-free
grammar. Parser-generators,e.g. Antlr [14] or SableCC [5] can be used to generate
language recognition tools from this form of language definition. Since we aim at
textual concrete syntaxes, we concentrate in this paper on the second approach.

The MontiCore framework [8] can be used for the agile development of tex-
tual languages, in particular domain-specific modeling languages (DSMLs). In
order to reduce the abovementioned redundancy, one of the main design goals
of the underlying grammar format was to provide a single language for spec-
ifying concrete as well as abstract syntax in a single definition. Associations,
compositions, and inheritance as known from meta-modeling can directly be
specified in this format. Such a language definition can be mapped to an object-
oriented programming language where the each production is mapped to a class
with strongly typed attributes. A parser is generated to create instances of the
abstract syntax from a textual representation.

Despite these main design goals, we decided to develop the MontiCore gram-
mar format in such a way, that the recognition power of the resulting parser is
only limited by the underlying parser generator, namely Antlr [14], which is a
predicated-LL(k) parser generator. Thus, it can not only be used for the develop-
ment of domain specific modeling languages but for general-purpose languages
like variants of Java or C++. The concrete syntax of the grammar format is sim-
ilar to the input format of common parser-generators. Therefore, users that have
already worked with such tools shall easily become familiar with it. The context-
free grammars can be extended with meta-modeling concepts like associations
and inheritance to define the abstract syntax of the modeling language.
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The rest of the paper is structured as follows. Section 2 describes the syntax
of the MontiCore grammar format and its semantics in form of the resulting con-
crete and abstract syntax of the defined modeling language. Section 3 describes
an example that illustrates the clarity of the specification in the MontiCore
grammar format. Section 4 relates our approach to others whereas Section 5
concludes the paper and outlines future work.

2 The MontiCore Grammar Format

The MontiCore grammar format specifies a context free grammar with produc-
tions that contain nonterminals (reference to other rules) and terminals. Termi-
nals (also called identifiers) are specified by regular expressions. To simplify the
development of DSLs, the identifer IDENT and STRING are predefined to parse
names and strings. Identifiers are usually handled as strings, but more complex
identifers are possible by giving a function defined in the programming language
Java that maps a string to an arbitrary data type. Default functions exist for
primitive data types like floats and integers. Examples are given in Figure 1. In
line 2 the simple identifier IDENT is specified which is mapped to a String in the
abstract syntax. The identifier NUMBER in line 5 is mapped to an integer in
the abstract syntax whereat the default mapping is used. In line 8 the identifier
CARDINALITY is mapped to an int. The transformation is specified in Java
(line 10 and 11) and the unbounded cardinality is expressed as the value -1.

MontiCore-Grammar

1 // Simple name
2 ident IDENT (’a’..’z’|’A’..’Z’)+ ;
3

4 // Numbers (using default transformation)
5 ident NUMBER (’0’..’9’)+ : int;
6

7 // Cardinality (STAR = -1)
8 ident CARDINALITY (’0’..’9’)+ | ’*’ :
9 x -> int {

10 if (x.equals("*")) return -1;
11 else return Integer.parseInt(x);
12 };

Fig. 1. Definition of identifiers in MontiCore

The definition of a production in the grammar leads to a class with the same
name in the abstract syntax. The nonterminals and identifiers on the right hand
side of a rule can explicitly be given a name that maps to attribute names. For
unnamed elements we derive default names from the name of the nonterminal.
The identifiers form the attributes of the class whereas the nonterminals lead to
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composition relationships between classes in the abstract syntax. The type of at-
tributes in the abstract syntax is inferred automatically, the types of identifieres
are handled as described before, attributes which form a composition relation-
ship are typed with the class of the target rule. Thus, the attribute name of the
rule Client in line 7 of Figure 2 results in a string attribute in the corresponding
class of the abstract syntax, whereas Address in line 8 results in an attribute of
the type Address. Additionally, the structure of a production is analyzed to de-
termine the cardinality of the attributes and compositions. Doing so, attributes
that occur more than once are realized as lists of the corresponding data type.
This approach allows to specify constant separated lists without an extra con-
struct in the grammar format. The term a:X ("," a:X)* can be used on the
right hand side of a grammar rule and desribes a comma-separated list of the
non-terminal X. It results in a composition named a with unbounded cardinality
that contains all occurrences of X. Therefore, terminals and identifiers with the
same name contribute to the same attribute or composition.

Figure 2 shows an excerpt of a MontiCore grammar. The class section shows a
UML class diagram of the abstract syntax that is created from the productions.
In the MontiCore framework this class diagram is mapped to a Java imple-
mentation where the production names are used as class names. All attributes
are realized as private fields and public get- and set-methods. The composition
relationships are realized in the same way as attributes and contribute to the
constructor of the class. All classes support a variant of the Visitor pattern [6]
to traverse the abstract syntax along the composition relationships.

In addition to the already explained nonterminals and identifiers, constant
terminal symbols like keywords can be added to the concrete syntax of the
language. These elements are not directly reflected in the abstract syntax if they
are unnamed. Note that in contrast to many parser generators and languages
like TCS [11] there is no specific need for distinguishing between keywords like
“public” and special symbols like “,”. To further simplify the development of a
modeling language we generate the lexer automatically from the grammar. By
this strategy the technical details like the distinction between parser and lexer
(necessary for the parser generator) are effectively hidden from the language
developer.

As explained above, keywords are not directly reflected in the abstract syntax
as attributes, but may influence the creation of the AST by distinguishing pro-
ductions with the same attributes from each other. The situation is different for
reserved words that determine certain properties of domain concepts. An exam-
ple is shown in Figure 3 where the reserved word premiumclient determines the
value of an attribute of the domain concept client. The grammar format uses
constants (inside brackets) to express this fact. Single value constants are trans-
lated to booleans whereas multi-value constants are mapped to enumerations.

The languages defined through the grammar in Figure 2 and the substituted
grammar in Figure 3 are equal. But their abstract syntax is quite different. The
concrete syntax poses the invariant that clients cannot have a discount whereas
premium clients do have one. This invariant is not visible in the abstract syntax
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MontiCore-Grammar

1 ShopSystem =
2 name:IDENT
3 (Client | PremiumClient)*
4 (OrderCreditcard | OrderCash)*;
5

6 Client =
7 "client" name:IDENT
8 Address;
9

10 PremiumClient =
11 "premiumclient"
12 name:IDENT discount:IDENT
13 Address;
14

15 OrderCreditcard =
16 "creditorder"
17 clientName:IDENT billingID:IDENT;
18

19 OrderCash =
20 "cashorder"
21 clientName:IDENT amount:IDENT;
22

23 Address =
24 street:STRING town:STRING;

OrderCreditcard

clientName:String
billingID:String

ShopSystemAddress

street:String
town:String

OrderCash

clientName:String
amount:String

Client

name:String

PremiumClient

name:String
discount:String

*

*

name:String

*

*

11

Fig. 2. Definition of productions in MontiCore

MontiCore-Grammar

1 Client =
2 premium:["premiumclient"]
3 name:IDENT discount:IDENT
4 | "client" name:IDENT;

Client

premium:Boolean
name:String
discount:String

Fig. 3. Use of constants

from Figure 3. On the other hand, the abstract syntax resulting from Figure 2
doesn’t reflect the similarities between Client and PremiumClient resp. Order-
Cash and OrderCreditcard. This example motivates the use of more advanced
features of the MontiCore grammar format to represent the invariants and simi-
larities directly in the grammar. Despite very general constraint definitions (like
OCL), inheritance allows us to deal with similarities and associations with con-
nections between related nodes of the AST.
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2.1 Interfaces and Inheritance Between Nonterminals

The abstract syntax shown in Figure 2 raises the question how an interface
Order that both classes OrderCreditcard and OrderCash implement can be
added to the abstract syntax and how it can be expressed that premium clients
are special clients. For this purpose we decided to extend the grammar format
by allowing to express an inheritance relationship and to define interfaces which
can be implemented by nontermianls.

The inheritance relationship between two productions is expressed by includ-
ing the rule name of the super-production after the production name of the sub-
production using the keyword extends (Figure 4, left, line 16). This inheritance
of rules is directly reflected in the abstract syntax as an object-oriented inheri-
tance. In the parser an additional alternative is added to the super-production.
This concept is motivated by the definition of object-oriented inheritance where
each occurrence of a superclass can be substituted by a subclass. The EBNF sec-
tion in Figure 4, right, shows a representation with equivalent concrete syntax
to explain the mapping of the MontiCore grammar format to the input format
of a parser generator.

The grammar on the right hand side in Figure 4 defines the same concrete
syntax as the one on the left, but has additional Order and Client rules. How-
ever, we have decided to use an OO style of inheritance instead of the traditional
grammar style to get more flexibility in extending languages. In the left grammar,
Client need not be changed when extending the language with PremiumClients.
This is a significant benefit that we will further explore when defining operators
on the language.

Due to experience in designing languages with this grammar format, we de-
cided to decouple the concrete syntax of the both productions (sub- and super-
production). This allows the language designer to decide freely on the concrete
syntax and minimizes non-determinisms in the grammar.

This form of inheritance also allows the definition of superinterfaces using
the keyword implements (Figure 4, left, line 5 and 9). Interfaces can be used
as normal nonterminals on the right hand side of any production. By default
a interface does not contain any attributes. We decided against an automatic
strategy where all common attributes of known subclasses are taken, as the
interface may be a good place for future extensions of the defined language
which only use a subset of all available attributes.

Additional attributes may be added to interfaces and classes by using the ast
section in a grammar (Figure 4, left, line 25). This block uses the same syntax
as inside the production but only produces attributes in the abstract syntax
and does not interfere with the concrete syntax. The attributes of interfaces are
realized as get- and set-methods in the Java implementation. Figure 4 illustrates
the inheritance capabilities of the grammar format extending the example. The
EBNF section shows the equivalent EBNF syntax used for parsing and the re-
sulting abstract syntax can be found in Figure 5.
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MontiCore-Grammar

1 ShopSystem =
2 name:IDENT
3 Client* Order*;
4

5 OrderCreditcard implements Order =
6 "creditorder"
7 clientName:IDENT billingID:IDENT;
8

9 OrderCash implements Order =
10 "cashorder"
11 clientName:IDENT amount:IDENT;
12

13 Client =
14 "client" name:IDENT Address;
15

16 PremiumClient extends Client =
17 "premiumclient"
18 name:IDENT discount:IDENT;
19

20 Address =
21 street:STRING town:STRING;
22

23 interface Order;
24

25 ast Order =
26 clientName:IDENT;

EBNF

1 ShopSystem ::=
2 IDENT Address
3 Client* Order*
4

5 OrderCreditcard ::=
6 "creditorder"
7 IDENT IDENT
8

9 OrderCash ::=
10 "cashorder"
11 IDENT IDENT
12

13 Client ::=
14 "client" IDENT Address
15 | PremiumClient ;
16

17 PremiumClient ::=
18 "premiumclient"
19 IDENT IDENT
20

21 Address ::=
22 STRING STRING
23

24 Order ::=
25 OrderCredit | OrderCash
26

Fig. 4. Inheritance and use of interfaces

2.2 Associations Between Nonterminals

The attributes name in Client and clientName in Order (see Figure 5) are
obviously semantically connected. The invariant that an order may only use
client names that exists cannot be expressed in a context-free grammar format.
When designing a meta-model this relation is usually expressed by an associ-
ation where an order references a client as the ordering person. Therefore, the
extended context-free grammar allows to add associations and mimic typical
meta-modeling techniques in grammars. The result of this extension is an ar-
bitrary graph with an embedded spanning tree that results from the original
grammar.

The block association allows to specify non-compositional associations be-
tween rules which enables the navigation between objects in the abstract syntax.
This concept allows to specify a uni-directed navigation from one object to a
specified number of other objects. In addition, an opposite association can be
specified that reverses the first association. An example for an association can
be found in Figure 6 (line 17-21) where the association OrderingClient connects
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OrderCreditcard

clientName:String
billingID:String

ShopSystem

*

Address

street:String
town:String

OrderCash

clientName:String
amount:String

Client

name:String

PremiumClient

discount:String

*
<<interface>>

Order

clientName:String

name:String

1

Fig. 5. Abstract syntax of the language defined in Figure 4

one Order object with a single Client. The reverse association is named Order
(the name is automatically derived from the target) which connects one Client
object with an unbounded number of Order objects. This form is very similar
to the associations in EMF [1].

The main challenging question for associations in a unified format for concrete
and abstract syntax is not the specification but to automatically establish the
links between associated objects from a parseable textual input. Grammar-based
systems usually parse the linear character stream and represent it in a tree-based
structure that has the same structure as the grammar. Then symbol tables are
used to navigate between nodes in the AST that are not directly connected. The
desired target of navigation is determined by identifiers in source and target
nodes and a name resolution algorithm.

Due to the simple nature of many languages that lack namespaces, simple
resolution mechanisms like file-wide unique identifiers can often be used for an
establishment of associations. This of course does not always work. E.g., lan-
guages like Java and many UML-sublanguages do have a more sophisticated
namespace concept.

Therefore, we decided to use a twofold strategy: First, we generate inter-
faces that contain methods induced by the association to navigate between the
AST-objects. The resulting classes of the abstract syntax allow the access of
associations in the same way as attributes and compositions are accessed. Sec-
ond, we generate implementations for simple resolving problems like file-wide
flat simple or hierarchical namespaces. As an alternative, the DSL developer can
program his own resolving algorithms in the second step if needed.

Figure 6 extends the example from Figure 5 by adding an association specifi-
cation. The association orderingClient connects each Order to a single Client
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MontiCore-Grammar

1 OrderCreditcard implements Order =
2 "creditorder"
3 iD:IDENT amount:IDENT;
4

5 OrderCash implements Order =
6 "cashorder"
7 iD:IDENT amount:IDENT;
8

9 Client =
10 "client" name:IDENT
11 Address;
12

13 PremiumClient extends Client =
14 "premiumclient"
15 name:IDENT discount:IDENT;
16

17 association {
18 Order.orderingClient
19 * <-> 1
20 Client
21 }

OrderCreditcard

clientName:String
billingID:String

ShopSystem

*

Address

street:String
town:String

OrderCash

clientName:String
amount:String

Client

name:String

PremiumClient

discount:String

*
<<interface>>

Order

clientName:String

name:String

1

orders *

orderingClient1

Fig. 6. Specification of associations

(as specified by 1). Order is the inverse association from Client to Order with
unbound cardinality (as specified by *). In addition to the shown cardinalities,
ranges like 3..4 are possible values.

Figure 7 sketches a Java implementation of the class diagram from Figure 6
with the most important methods. A Binding-Interface is generated for each

<<interface>>
OrderBinding

Client

<<interface>>
ClientBinding

<<interface>>
Order

CashOrder
Client getOrderingClient()

<<interface>>
OrderResolver

OrderBinding
getBinding(ASTOrder)

resolver

getAST()

Client getOrderingClient() {
return resolver.getBinding(this).

getOrderingClient().getAST();
}

getOrderingClient()

getOrders()

getAST()

Fig. 7. Java implementation of an association
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interface or class that is involved in an association as either source or target.
This interface contains the relevant methods for the navigation between different
nodes. In addition a Resolver is generated for each class or interface which allows
the resolving of a Binding-object from an AST-object.

Note that these interfaces are generated to simplify the use of associations
for a DSL. When simple resolving algorithms are appropriate, MontiCore can
generate both Binding-implementations and a single Resolver-implementation
that resolves all objects automatically. The complexity of multiple classes with
different responsibilities is hidden from the user of the abstract syntax, e.g. a
programmer of a code generator for the developed language. He simply uses the
get- and set-methods like the shown getOrderingClient() method that returns
the client object which is referred from this order.

3 A Demonstrating Example

To demonstrate the usability of our approach to specify a modeling language we
use a simplified version of finite hierarchical automata as shown in Figure 8.

Automaton

1 automaton PingPong {
2 state <<initial>> NoGame;
3 NoGame - startGame > InPlay;
4 InPlay - ["doStopGame()"] stopGame > NoGame;
5 state InPlay {
6 state <<initial>> Ping;
7 state Pong;
8 }
9 Ping - returnBall > Pong;

10 Pong - returnBall > Ping;
11 }

Fig. 8. Example for finite hierarchical automata

An automaton has a name and consists of several states and transitions. States
in turn may be initial or final and may have substates. Transitions have a source
and a target state, an event models the condition for the transition. In order
to demonstrate a possible field of application for grammar rule inheritance, a
transition may have an action which will be executed when a transition was
performed. Figure 9 shows a first version of the MontiCore grammar.

In our example transitions refer to states as source and target which will be
identified by their name. Thus, the generated class Transition contains string
attributes from and to containing the names of these states. This is ineffective
because a direct navigation from transitions to their source or target is not
possible. Furthermore, there is no information in states about their ingoing and
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MontiCore-Grammar

1 package mc.languages.automaton;
2

3 grammar Automaton {
4

5 Automaton = !"automaton" name:IDENT "{"
6 ( State | Transition )*
7 "}";
8

9 State =
10 !"state" name:IDENT
11 ( "<<" initial:[!"initial"] ">>" | "<<" final:[!"final"] ">>" )*
12 ( "{" State* "}" | ";" ) ;
13

14 Transition = from:IDENT "-" event:IDENT ">" to:IDENT ";";
15

16 TransitionWithAction extends Transition =
17 from:IDENT "[" action:STRING "]" "-" event:IDENT ">" to:IDENT ";";
18 }

Fig. 9. Basic definition of finite hierarchical automata in MontiCore

MontiCore-Grammar

1 association {
2 Transition.fromState * <-> 1 State.outgoingTransitions * ;
3 Transition.toState * <-> 1 State.incomingTransitions * ;
4 }

Fig. 10. Definition of non-compositional associations between states and transitions

outgoing transitions. The abovementioned concept association can be used to
solve this. An appropriate association extending Figure 9 is defined in Figure 10.

This definition leads to attributes which refer to states and transitions di-
rectly. They have to be filled by an appropriate resolve mechanism depending
on the underlying naming system. As described in Section 2.2, MontiCore sup-
ports different kinds of resolve mechanisms, in this example we use the simplest
version, namely file-wide unique identifiers which is defined by the concept sim-
plereference. Therefore, states must have a unique name within the automaton
and transitions use that name in order to reference these states. Beyond that,
we have to specify that our concept for simple references should be used in order
to resolve the associations defined in Figure 10. Therefore, the code of Figure 11
has to be added to our automaton grammar (Figure 9).
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MontiCore-Grammar

1 concept simplereference {
2 fromState: Transition.from -> State.name;
3 toState: Transition.to -> State.name;
4 }

Fig. 11. Using concept simplereference to resolve source and target of transitions

Given both, the definition of simple references and the concept association,
the MontiCore framework ensures the following constraints.

1. Each transition refers exactly one state as source and target, respectively.
2. Each referenced state has a unique name within all referenced states.
3. The method getIncomingTransitions() of a state returns all transitions which

refer to that state as target. Therefore, incomingTransitions is the opposite
association of ToState.

4. The method getOutgoingTransitions() of a state returns all transitions which
refer to that state as source. Therefore, outgoingTransitions is the oppo-
site association of FromState.

Another useful feature we want to present in this example is the concept
classgen. It can be used in order to add attributes as well as methods into the
abstract syntax. Therefore, it has to be defined which class should be extended
and what should be added to that class. Again, the example shown in Figure 12
can be added to the basic grammar (Figure 9). It adds the boolean method
isDirectlyReachable to the abstract syntax class State which calculates if one
state is directly reachable from this state.

MontiCore-Grammar

1 ast State =
2 method public boolean isDirectlyReachable(State target) {
3 for (Transition t: getOutgoingTransitions()){
4 if (t.getToState().equals(target)){
5 return true;
6 }
7 }
8 return false;
9 };

Fig. 12. Using an ast block to add methods to states

Summarizing, we have developed a grammar for finite hierarchical automata
in a few lines of code. Non-compositional bi-directional associations are sup-
ported and filled automatically by a simple naming system which ensures correct
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cardinalities. An example of an additional method defined in Java enhances
usability as well as it prevents editing the generated code.

4 Related Work

We are currently not aware of a language that allows specifying both a textual
concrete syntax and an abstract syntax with (non-compositional) associations
in a coherent and concise format. Grammar-based approaches usually lack a
strongly typed internal representation (for exceptions see below) and the exist-
ing model-based approaches use two forms of description, a meta-model for the
abstract syntax and a specific notation for the concrete syntax.

In [15] a phylum/operator-notation is used to describe the abstract syntax
of a language. The notation of alternate phylums achieves similar results as the
object-oriented inheritance we use, although our tied coupling of the abstract
syntax to a programming language allows the direct use of the inheritance to
simplify the implementation of algorithms working on the abstract syntax.

SableCC [5] is a parser-generator that generates strictly-typed abstract syntax
trees and tree-walkers. The grammar format contains actions to influence the
automatic derivation of the AST. In contrast to MontiCore, SableCC does not
aim to include associations in its AST.

In [18] an algorithm is presented that derives an (strongly typed) abstract
syntax from a WBNF grammar (an BNF variant). The main difference in the
derivation to our approach is the use of an explicit notation for lists that are
separated by constants and that nonterminals with same name do not contribute
to the same attribute in the abstract syntax.

The Grammar Deployment Kit (GDK) [12] consists of several components
to support the development of grammars and language processing tools. The
internal grammar format can be transformed into inputs of different parser gen-
erators, such as btyacc [3], Antlr [14] or SDF [10]. Furthermore, it provides
possibilities for grammar adaption, like renaming of rules or adding alterna-
tives. In opposition to our approach it does not support extended concepts like
inheritance or associations.

In [4] and [13] the Textual Concrete Syntax Specification Language (TCSSL)
is described that allows the description of a textual concrete syntax for a given
abstract syntax in form of a meta-model. TCSSL describes a bidirectional map-
ping between models and their textual representation. The authors describe tool
support to transform a textual representation to a model and back again.

In [11] a DSL named TCS (Textual Concrete Syntax) is described that spec-
ifies the textual concrete syntax for an abstract syntax given as a meta-model.
The described tool support is similar to the one we used for the MontiCore
framework and the name resolution mechanisms are the same that we gener-
ate automatically from the grammar format. In contrast to our approach, two
descriptions for abstract and concrete syntax are needed.
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5 Conclusion

This work presents a new approach where an extended grammar format is used
to specify both, abstract and concrete syntax of a modeling language. By using a
single format it avoids general problems that occur when abstract and concrete
syntax are described by two different languages like inconsistency checking and
resolving by construction.

As special concepts, we added the possibility todefine associations betweenAST
nodes based on name references and we allow inheritance of grammar rules that
does not affect the super-rule at all. This paves the way for extensible languages.

We also implemented a prototypical framework called MontiCore that is based
on an established parser-generator. It is able to parse textual syntax and gener-
ates the model representation as both Java and EMF classes. The prototype is
able to parse multiple language definitions like UML/P [17,16] and a complete
Java 5 grammar. In addition the system is bootstrapped and currently about
75% of the code is generated from several DSLs.

In future we especially want to explore which resolution mechanisms can be
used to create links between objects (that conform to the specified associations).
The mechanisms for resolving imports in models and inheritance seem to be
promising candidates for generalization.

We mainly treated the transformation from concrete syntax to abstract syntax
representation in this paper. The opposite transformation, where a model is
transformed to a concrete (textual) representation could be realized in different
ways: Hand coded java code, template engines etc. In the future we like to explore
which additional information has to be included in the grammar format to allow
the automatic generation of concrete syntax representations.

The current implementation of the parser generation in the MontiCore frame-
work is based on Antlr version 2.x. The new version 3 simplifies the creation of
grammars by automatically calculating the necessary syntactic predicates for
alternatives where the linearized lookahead algorithm predicts false results. This
will reduce the number of required syntactic predicates and simplify the devel-
opment of readable grammars in MontiCore.
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8. Grönniger, H., Krahn, H., Rumpe, B., Schindler, M., Völkel, S.: MontiCore 1.0
- Ein Framework zur Erstellung und Verarbeitung domänenspezifischer Sprachen.
Technical Report Informatik-Bericht 2006-04, Software Systems Engineering Insti-
tute, Braunschweig University of Technology (2006)

9. Harel, D., Rumpe, B.: Meaningful modeling: What’s the semantics of ”semantics”?
Computer 37(10), 64–72 (2004)

10. Heering, J., Hendriks, P.R.H., Klint, P., Rekers, J.: The syntax definition formalism
SDF–Reference Manual—. 24(11), 43–75 (1989)

11. Jouault, F., Bezivin, J., Kurtev, I.: TCS: a DSL for the Specification of Textual
Concrete Syntaxes in Model Engineering. In: Proceedings of GPCE ’06 (2006)
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Abstract. Architecture descriptions are important for reasoning about system
properties in order to make the right architectural decisions for building systems
with adequate quality. Modularising concerns at the architecture description level
may ease system configurability and cater for variations in architectural require-
ments. We devise a technique for modularising and composing complex architec-
tural connectors described in UML using structured classes. We define a binding
language with lexical and graphical syntax to support the composition. Finally,
we discuss the relationship with standard UML constructs.

1 Introduction

Architecture represents essential building blocks of software. The quality of the archi-
tecture correlates strongly with the performance of the system as a whole. The impor-
tance of architecture in software development has long been recognised by the software
engineering community, as seen in books (e.g. [1]), articles ([2,3,4]), and standards
(IEEE 1471[5]).

To support the need for architecture descriptions, many different architecture de-
scription languages (ADLs) have evolved over the years, such as Architecture Analysis
and Design Language (AADL)[6], Koala[7], and ACME [8]. Some of them targets spe-
cific domains of architecture, others are more general-purpose languages. Being the
de-facto standard for software modelling, UML is also being used for architecture de-
scription. UML, however, has limitations both regarding architectural descriptions and
architectural composition. Specifically, the connector concept in UML has been argued
to be too simple to represent connections between components in architectural descrip-
tions (architectural connectors) [9,10].

As system complexity and size increases, the need and benefit of modularising and
combining architectural features become evident. Architectural features that cross-cut
the architecture could be separated out for simplicity and comprehension. Architectural
features that are not necessarily cross-cutting, but variable in an architecture configura-
tion, could also be modularised to enable flexible composition with a common (product
line) architecture. The standard mechanisms in UML cannot provide this out of the box.

We address how complex architectural connectors can be described in UML, and
how these provide architectural variance when they are composed with base architec-
tures. We call the approach ArchSpect. We devise a binding language that is used to
describe the composition between archspects and base architectures. Finally, we dis-
cuss how standard UML mechanisms relate to the proposed approach. Initial ideas on
this topic were presented in [11].

G. Engels et al. (Eds.): MoDELS 2007, LNCS 4735, pp. 301–315, 2007.
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In the following, we detail our approach for architectural description and composi-
tion in UML. In Section 2, we present a motivating example. In Section 3, we
describe the main ideas of archspects. In Section 4, we compare our approach with
standard UML mechanisms. In Section 5 we describe related work, and in Section 6 we
conclude.

2 A Motivating Example

We will use an example called ICU (I See You) to motivate the ArchSpect approach.
The ICU-System is a buddy positioning application based on mobile messaging (SMS),
where users can register, manage their buddies, and perform positioning services on
those buddies. Mobile terminals are used to interact with the system.

The system is described completely in terms of UML models and it represents a
fully executable system. UML structured classes describe the system architecture while
UML state machines describe its behaviour. Our focus in this paper is the structural
parts of the system.

Fig. 1. The ICU-System Architecture

The ICU-System is a state-machine-based, reactive system with asynchronous mes-
saging between system objects. The system architecture is defined by structured classes
with parts, ports, and connectors. The main system architecture (Fig 1a) consists of
three parts: the SMSManager receives and sends SMS messages from and to the user
terminals. The Controller does the further handling of the messages and the DBMan-
ager handles persistent storage of data. Fig 1b details the structure of the Controller
class.

Extending the System. At some point, we get new requirements to our system. In this
case, the requirement is to add access restrictions to the system, which we choose to
implement using an access control component. We also want to keep our current system
without this new feature, since it is the common core of the ICU software product line.
Fig 2a shows the desired new architecture. An access control part intercepts incoming
messages to authorise users and then to forward or reject them.
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The new architecture could be made in UML by modifying the original system di-
rectly. This would leave us without the original system intact and prevent other variant
architectures. We could also try to specialise the original system and redefine the nec-
essary parts. The desired result cannot be achieved by redefinition in UML. Simply
copying the original system and modifying it would lead to unwanted duplication and
loss of traceability to the original system.

Fig. 2. System with Access Control

Another requirement to our original system appears independently of the previous
one. A customer requests that the SMSManager and the Controller must execute on dif-
ferent machines. This is solved by introducing distribution layers between the two parts.
Fig 2b shows our new architecture variant, imposing two new parts to our architecture:
one handling local-to-remote communication from the SMSManager to the Controller
and another handling local-to-remote communication the opposite direction.

Fig 3 illustrates a third variant, a modification to the Controller structure to manage
transactions on user requests. In the original Controller (Fig 1b), the router figures
out the destination for requests and instantiate the appropriate type for forwarding.
When the task is finished, a response is sent back to the router and then to the SMS-
Manager. In Fig 3, transaction managers have been inserted between the router and its
communicating parts. The transaction managers are typed by a state machine Trans-
actionSM that is responsible for initiating and committing transactions. In this refine-
ment, two connectors are replaced with one part handling the communication on both
connectors.

The new models illustrated by Figs 2 and 3 are refinements of the original archi-
tecture. We cannot obtain these in UML while preserving the original architecture
and avoiding model duplication. Requirements may also demand more cross-cutting
modifications, e.g. that all communication between components should be a specific
protocol.

In order to cope with such architectural variance, we devise ArchSpect, a technique
for describing UML architectural connector aspects and their binding to base architec-
tures. ArchSpect is detailed in Section 3.



304 J. Oldevik and Ø. Haugen

Fig. 3. Adding Transactions to the Controller

3 ArchSpect - Architectural Aspects in UML

An archspect is a UML-based architectural aspect, which can be composed with and
possibly cross-cut base architectures. It represents an architectural connector that refine
connectors in base architecture with more complex structures.

An archspect is represented by a UML structured class with parts, ports and con-
nectors. No specific UML extensions are used for describing it; it is syntactically like
any other structured class. In order to be useful in a composition, however, an archspect
should be designed according to constraints that restrict how it can be composed with
other models. We use the ports owned by the archspect class (formal ports) to repre-
sent elements that should be bound in a composition. The internal structure of the class
is fixed and will be instantiated during a composition. We restrict this further by only
allowing pairs of formal ports that may represent end points of a connector. These re-
strictions are not explicit in the archspect itself, but a property of the binding language.
The binding language requires the input archspect to provide formal ports that can be
bound to connectors. With ArchSpect, we provide a flexible way of refining connectors
in multiple locations in a base architecture.

An archspect is composed with a base architecture using a binding specification. Fig
4 illustrates the approach. The base model (a) and the AccessControl archspect (b) are
combined using a binding (c). The binding specifies how the unbound elements are
bound to the base model. A composed model (d) is the result.

The specification of the archspect is done in UML, as illustrated in Fig 4b. It is
defined by a class, which in this case have two formal ports. These are bound to the
connector identified by the ports envUsr and fromUsr in the binding. Fig 5 shows the
Distribution Archspect. It has two formal ports, localPort and remotePort, which repre-
sents unbound elements of the archspect. The DistributedComm class implements the
distributed communication and is decomposed in proxy and skeleton parts.
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Fig. 4. ArchSpect Illustration

The bindings are specified separately from the architectural models in a binding lan-
guage that establishes the relationships between the architectures. Section 3.3 details
the binding language.

3.1 Architectural Variance with ArchSpect

Many architectural specialisations can be handled by standard UML mechanisms such
as specialisation and redefinition. We address a class of refinement that the standard
mechanisms cannot cope with; the refinement of connectors into more complex struc-
tures. The examples in Figs 2 and 3 are examples of this. The refinement of connectors
has implications also for the ends to which connectors attach, the ports, the parts, and
their types.

Single Connector Replacement. A single connector can be replaced by a structure
such that inner connectors of that structure attach to the connection ends of the orig-
inal connector. This structure may be a single part or several connected parts. This is
illustrated by Fig 2. The types of the new parts may contain additional structure or
behaviour. We refer to these newly introduced parts as connector parts.

Replacement of Multiple Connectors Between two Parts. Two (or more) connectors
between two parts are replaced by a structure with twice as many connectors that must
attach to the connection ends of the original connectors. This is illustrated by Fig 3.



306 J. Oldevik and Ø. Haugen

Fig. 5. Distribution Archspect

Connectors may also be refined as described above with the addition of new parts
being introduced that are shared by all introduced connector parts. This may be relevant
if for instance the new connector parts define a routing protocol that must share a re-
entrant routing lookup table. Fig 6 illustrates this using the distribution example. It is
up to the binding to define that part as shared for that specific context.

Fig. 6. Example - Shared Part in the Distribution Example

Connector replacement may cross-cut several connectors in the base architecture,
as defined by the binding. If this is the case, several occurrences of the archspect will
be populated in the composed model, corresponding to the connectors matched by the
binding.

The Connector Binding. Architectural connectors are the main focus of ArchSpect. In
order to refine a connector with more complexity, we need to refer to the endpoints of
the connector, which in UML terms are ConnectorEnds. In our context, these are ports
or parts owned by an archspect class in the UML specification. In ArchSpect, only
formal ports represent unbound elements and are subject to binding in a composition.

Unbound ports are bound pairwise to connectors in the base architecture. Each base
connector has two endpoints that are targets of the binding. The end points for the
binding are the ConnectorEnds of that connector, which may be either ports or parts.
(Although a connector in UML formally may have N-ary connectors, we make a
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restriction to binary ones.) The binding to a connector identifies the connector and its
connector ends and establishes the relation between the archspect formal ports and the
connector ends in the base architecture.

Type Implications. The binding of ports to the base architecture intuitively has impact
on the typing of the ports and parts of the final system. The binding of a port to an-
other leads to augmenting the provided and required interfaces. Eventually, the owning
classifier must provide an implementation of those interfaces. A port added to a part
represents a corresponding property on the owning classifier.

Ports originating from the archspect may also be subject to change in order to main-
tain a coherent architecture. If the connector ends targeted by an archspect binding are
ports that provide specific interfaces, these must be propagated to the ports of the arch-
spect occurrence replacing their role in the composition. Fig 7 illustrates this with the
access control example.

Fig. 7. Interface Propagation

3.2 Asymmetrical vs. Symmetrical Concerns

In our approach, we define archspects using standard structured classes from UML.
However, in the bindings, we require an archspect to be on a certain form: a class with
inner structure and a set of formal ports that serve as parameters to the binding. A model
without any formal ports is thus meaningless in the role of an archspect. Hence, with
respect to the binding and the binding language, archspects are asymmetrical.

Since the archspect representations are just like any structured class they have the
same capabilities and constraints as any other UML class. They may for example be
specialised. This also means that archspects may be applied to other archspects in com-
positions, which implies element symmetry[12]. Furthermore, the specification of re-
lationships between archspects and a base architecture is done separately from both in
the binding specification, which implies relationship symmetry.

The separation between base architecture and archspect is important as they play
different roles in a composition. The base architecture is refined to a new structure that
contains more detail. The archspect contributes to that detailing in populating itself in
the new structure.

3.3 Binding Language

The binding language specifies how archspects are composed with base architectures
by relating unbound elements to base architecture elements. In that sense, it resembles
UML CollaborationUse, which binds roles to elements in a classifier. The relationship
with UML collaborations is discussed in Section 4.2.
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A binding uses name references to specify specific unbound elements (ports)
of an archspect. These are the actual parameters to the binding. A blend of name ref-
erences and queries are used to identify target elements in the base architecture. A
binding of the AccessControlArchSpect (Fig 4b) is shown in Prog 1. It simply binds
the two ports acEnv and inRec from the archspect to the ports envUsr and fromUsr,
respectively.

binding acBinding (AccessControlArchSpect ac, ICU-System base) {
bind (acEnv, inRec)

envUsr, fromUsr;
}

Prog 1. Binding the Access Control Archspect

A binding may also specify part renaming. This is necessary when a fixed archspect
part is populated more than once in the base architecture, as the case with the appli-
cation of the DistributionArchspect to the ICU-System (Fig 2b). The renaming may
be omitted, in which case an automatic renaming scheme is applied. Prog 2 shows the
binding of the DistributionArchspect, which has two explicit targets, the connectors
between port pairs (toCtrl, fromSms) and (toSms, fromCtrl).

binding dpaBinding (DistributionArchspect distr, ICU-System base) {
bind (localPort, remotePort, "distrProxy"){

Connector(toCtrl, fromSms), "distrIn";
Connector(toSms, fromCtrl), "distrOut";

}
}

Prog 2. Binding the Distribution Archspect

Variables and Quantification. The bindings of port pairs to connectors in the base
architecture are either specified by direct matching with element references (names)
or by variables representing queries that quantify sets of target elements. Variables are
declared using an @ sign before a name and the queries are constrained by connectivity,
typing, or naming.

In Fig 3 we illustrated a refinement of the controller structure where transaction
parts intercept communication between the router and the service providers of the
system. Fig 8 defines the archspect representing that refinement and Prog 3 defines
the binding for that particular composition. The TransactionMgmtArchspect defines
four unbound ports(a,b,c, and d), each associated with a connector to the transaction
manager.

The binding (Prog 3) specifies the binding of the four unbound ports and the ’trans-
Mgr’ part name. The ports are bound pairwise based on their connectivity. It binds port
a to the toSessions port and port b to any port p that is connected with the toSessions
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Fig. 8. Transaction Archspect

port. Furthermore, it binds ports c and d to any ports x and y that are connected, where
the owner of y is the router and y is a different port than toSessions. The binding of the
name ’transMgr’ is omitted, which then defaults to an automatic renaming scheme.

binding transBinding (TransactionMgmtArchspect trans, ICU-System base) {
bind ((a, b), (c, d), "transMgr"){
Connector(toSessions, Port @p)), Connector((Port @x, Port @y) |

y.owner.name = "router" && y!=toSessions;
}

}

Prog 3. Binding the Transaction Archspect

The toSessions reference in the binding in Prog 3 is an example of a named reference
and the @p variable an example of a variable that quantifies over ports in the base
model. A binding specification may also query elements that are not direct targets for
a binding (free variables), but used as parameters to constrain the binding. These are
declared as other variables, as a prefix to the constraint.

As seen by the examples, a binding may target specific connectors by name ref-
erences. It may also specify more general queries that select sets of elements in the
base architecture. A query may search for connectors adhering to specified constraints,
which for instance could be the types of its connector ends. The constraint is defined by
an ocl-like expression, extended with some helper operation related to parts, ports, and
connectors (such as isConnected(p1,p2), hasType(t), provides(i)).

Binding Language Details. A binding is declared with the binding keyword followed
by a name and a set of input model parameters (one or more archspect and a base
model). The input model parameters refer to classes that define the archspect and the
base architecture. The binding contains a set of binds. Each bind refers to the unbound
elements - the ports - of the archspect and contains a body with one or more binding
queries.

A binding may also specify an input constraint specifying an archspect element to be
shared in the context of that binding, i.e. to allow multiple occurrences of the archspect
to share a part in the composed system.

Each binding query defines a corresponding number of query elements to which the
unbound elements are bound. It selects the connectors to which the parameter ports
should be bound. This is done by direct reference to the connector or its ends, or by
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variables that represent selection of element sets in the base architecture. The result is
limited by additional constraints related to the connector variables.

Prog 4 shows the binding language grammar.

binding = ’binding’ name ’(’ inputArchspect+ ’,’ inputBase ’){’
inputConstraint?
bind+

’}’
inputConstraint = ’shared’ name (’,’ name)+ ’;’
bind = ’bind’ ’(’ portPair

(’,’ portPair)* (’,’ renameSource)* ’)’
’{’ (bindingQuery ’;’)+ ’}’

portPair = ’(’ portPair ’)’ | portRef ’,’ portRef
bindingQuery = queryConnector (’,’ queryConnector)* (’,’ renameTarget)*

(’|’ (freeVariable ’,’)* elementConstraint)? ’;’
queryConnector = ’Connector’ ’(’ connectorEnd ’,’ connectorEnd’)’ |

’Connector’ name
connectorEnd = name | variableElement
variableElement = (type)? ’@’name
freeVariable = variableElement
elementConstraint = oclExpression
portRef = name
inputArchspect = modelName name
inputBase = modelName name
renameSource = ’"’ name ’"’
renameTarget = ’"’ name ’"’ | ’auto’
type = ’Port’ | ’Part’
modelName = name
name = <valid name>

Prog 4. Binding Language Grammar

Graphical Binding with UML constructs. A graphical, UML-based approach to
binding specifications is an alternative to the lexical one. A benefit with this is improved
visualisation of the composition, which may be easier to understand for the user. The
user also gets the benefit of a similar notation for bindings as for architecture descrip-
tions. Explicit links to the archspect and base model and quasi-UML conventions can
be considered drawbacks.

In the UML-based binding notation, we use parts, ports and connectors to specify
binding patterns. Dependencies to from the binding pattern to the archspect specify the
bindings. Fig 9 illustrates bindings in UML.

The purpose of the binding pattern is to mimic the semantics defined by our lexical
binding language. Fig 9a shows the elements of a binding pattern. Open (’?’) names
on parts, ports, or types signifies quantifications that can match anything in the base
architecture. Names of parts and ports are matched exactly if specified.

Types of ports may be specified as a list of alternative or mandatory types. For
parts, only list of alternatives can be specified. Alternatives are described as a comma-
separated list of type names (portA: IntA, intB). Mandatory types are separated by am-
persands (portA:intA & intB).

The main advantage with this graphical notation over UML CollaborationUse is
the capability of quantification and thereby specifying cross-cutting bindings more
compactly.
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Fig. 9. Binding Using UML Notation

4 Comparing With UML Mechanisms

4.1 Archspects vs. Specialisation

Specialisation and redefinition of virtual elements open many configuration possibili-
ties. A class can be specialised, and its contained parts, ports, and connectors can be
redefined. However, the architectural extensions made in the example are not legal spe-
cialisations in UML, because they require changes to existing elements (connectors)
that are not legal redefinitions in UML. A redefinition of a port, part, or connector can
only be done with another, type compatible port, part, or connector, respectively.

In the examples, the changes in the composed system architecture are not compat-
ible with specialisation. Another option with specialisation is to redefine the existing
parts to contain the added complexity, such that for example, a redefined SMSMan-
ager contains the access control aspect. Redefined parts, ports and connectors must be
type/interface-compatible with the redefined ones. The redefinition approach requires a
full specification of the ”new” system and its wiring. Concerns can still be described as
separate components (aspects), but the benefits of quantification and cross-cutting are
lost, and the architecture is different from our composed result.

Another possibility with specialisation is to take an approach closer to product line
design, where possible future ”aspect” extensions already are identified in the archi-
tecture as ”virtual parts” that can be overridden in specialisations. This, however, is in
many cases difficult as future requirements can be hard to predict.

We see that the intent provided by an aspect-oriented approach is a different one
than that captured by inheritance and virtuality. In this case, the transformation defining
the composed model from the archspects and the base model can be viewed as a set of
connector refinements of the base model.



312 J. Oldevik and Ø. Haugen

4.2 Archspects vs. Collaborations and CollaborationUse

Collaborations in UML provide a way of describing interacting roles, which may rep-
resent concerns. Each role represents an element that is bound using a role binding in
a CollaborationUse. Roles in a collaboration are references to UML ConnectableEle-
ments, which may be any UML Property. They may therefore represent ports, parts
(composite properties), or any other property type (as well as Parameters). The collabo-
ration model is thus quite flexible, but it does not have a notation that separates different
connectable element types.

A CollaborationUse defines bindings between connectable elements in a collabora-
tion and those defined in another classifier. This binding model defines constraints that
make it difficult to use for our purpose: all roles in the collaboration must have a bind-
ing in a collaboration use, and the connectors in the target classifier must connect in
correspondence to its binding roles.

We want the ability to also have elements that are not bound, as well as less restric-
tive connection correspondence. We also want the ability to describe quantifications of
bindings. We would need to extend the capabilities of CollaborationUse to support the
semantics of the archspect binding language.

4.3 Archspects and Virtual Connectors

Connectors in UML can be virtual and may then be redefined by specialising classes.
This is also true for ports and parts. A connector can only be redefined by another con-
nector, and the redefining connector and its ends must be associated with compatible
types. Consequently, it is not possible to redefine a connector into a more complex struc-
ture. A certain degree of connector modification can be achieved by using stereotypes to
signify different kind of connectors, but this will not help in advancing the architecture.

The extensions illustrated by the examples in this paper (such as the distributed proxy
example) represent a kind of connector refinement, where a connector is redefined by a
part with two connectors. Such a part may represent further decomposition defined by
its type, which may contain more complex structure or behaviour.

A UML connector is typed by an association, which is either defined by the user or
inferred. If that association is an association class, the connector type may be an in-
stance of a more complex structure defined by that class. This is a way of reasoning
about the complexity of a connector. It also provides a possible means of refining the
connector structure by specialising the system and redefine the connector with a spe-
cialised version of the original connector association class. The type of the connector,
however, depends on the types of the corresponding connector ends; as such, it cannot
be easily reused by connectors with different end types.

5 Related Work

There are many approaches to aspect-based architectural design with and without UML,
which are surveyed in an AOSD Europe report [13]. Krechetov et al [14] integrate what
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they see as the key architectural design approaches that use UML. The resulting lan-
guage uses stereotypes to represent aspects with cross-cutting interfaces and dependen-
cies. They do not address the decomposition of UML structured classes with parts, ports
and connectors, which is the main focus in ArchSpect.

In [15], Pinto et al present the language DAOP-ADL and the Component Aspect
Model (CAM), which combines architecture description and aspects. They provide a
formalism to specify component architectures, aspects, and composition rules for these
descriptions. XML is used to describe these, and a mapping to UML is provided as a
profile. In contrast to ArchSpect, this is specific to the DAOP platform, it operates on
component interfaces related to messages/events, and does not consider internal struc-
ture or connectors.

In [16], Bouckle et al describe an approach for composing cross-cutting concerns
by introducing three composition operators in xADL[17]: substructure, unification, and
mapping. Substructure composition is used to describe independent substructures that
decompose higher level components. This resembles decomposition with structured
classes in UML. Mappings define correspondences between interfaces in two archi-
tectural structures. This is similar to the bindings defined in this paper. The unification
operator unifies interfaces in mapping operations.

In [18], Garcia et al describe an aspect-oriented extension to the ACME architecture
description language[8], which introduces aspectual connectors that modularise cross-
cutting interactions between components. An aspectual connector identifies a base role,
a cross-cutting role, and a glue that specifies behaviour ordering of compositions (be-
fore/after/around). The mapping of roles are done with ACME attachments with quan-
tifiers. The binding of ArchSpect ports resembles the binding of roles in Aspectu-
alACME. ArchSpect focuses on connector binding to refine connectors, not only ports.
The specification of composition ordering is not supported by ArchSpect. A mapping
of AspectualACME to UML introducing profile extensions for aspectual connectors is
presented in Sande et al [19].

In [20], Haugen and Møller-Pedersen describe how architectural configurations can
be done by combining inheritance with subsetting and constraints. The approach is
complementary to the one described here, as it does not address connector refinement
as part of configurations.

In [9], Perez-Martinez et al evaluate the usage of UML1.4 and UML2 for represent-
ing architecture connectors in the context of some specific architectural styles. One of
the observations is that the connector concept in UML2 is not powerful enough to rep-
resent architectural connectors. The workshop ’Software Architecture Description and
UML’ in 2004 [10] discussed and presented various facets of UML used for architecture
description. Roh et al [21] describe a UML2 profile for architecture modelling where a
number of extensions are made to support architecture modelling, such as providing a
new type of connector based on collaborations.

6 Conclusion

Architecture descriptions are important for understanding architecture and being able
to reason about their properties. UML provides a standard notation for representing
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software system abstractions. We have shown how UML structures can be used to de-
scribe architectural concerns that can modularise complex system specifications, and
how these concerns can be used in composition towards more complex system archi-
tectures.

We have described ArchSpect, a technique for describing architectural concerns
specifically related to refinement of architectural connectors. It allows UML architec-
tural concerns to cut across other architectures. We have defined a binding language
that provides the means of binding architectural concerns to base architectures and pro-
posed a lexical and UML-based notation. Our approach provides refinements that goes
beyond those available in vanilla UML in terms of extension and redefinitions. We dis-
cussed the relationship with different UML constructs and how these are difficult to use
for representing refinement of architectural connectors.

Our main contribution is a way of specifying and composing architectural concerns
that specifically pertain to the connectors between components and parts, which im-
prove how UML architectural descriptions can be modularised and composed.
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(Semantics-preserving Weaving - Advancing the Technology), funded by the Norwe-
gian Research Council (project number 167172/V30).
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Abstract. Our empirical study shows that reconfigurable networked systems ex-
ecuting software components deployed on interconnected heterogeneous hard-
ware nodes highly benefit from an effective framework and a normative design
methodology relying on domain specific models supporting both application and
platform domains. The approach is based on building metamodels for various
expert domains to enable precise knowledge codification in the form of inter-
pretable and analyzable information frameworks. The core platform architecture
is characterized by interlinked on-the-fly reconfigurable communicating compo-
nents whose behavior is specified by finite state machine model of computation.
The proposed methodology covers the whole development and operation life
cycle.

1 Introduction

Effective high-quality software development supporting distributed reconfigurable net-
worked systems is an actively researched topic in the domains of ad-hoc and sensor
networks. One of the ambitions of the Reconfigurable Ubiquitous Network Embed-
ded Systems (RUNES) [1] IST project has been to unburden the task of the applica-
tion developers by providing a distributed component-based platform architecture on
top of a heterogeneous network of computational nodes and by establishing a model-
based software development methodology and a corresponding model-based develop-
ment framework. The heterogeneity of the nodes are hidden from the applications. The
reflective components are linked together by their interfaces, communicate by mes-
sage sending and store their meta-data in a distributed database. Each computational
node incorporates a Component Run-Time Kernel (CRTK), which provides the basic
middleware APIs of component management. The corresponding model-based soft-
ware development framework deals with both the application and the platform domains.
The framework supports domain experts in the creation of formal metamodels and en-
ables refinement steps in multiple iterations. The metamodels describe the entities, re-
lationships and properties of the domains; the models represent the particular domain
knowledge. The goal of the approach is to facilitate the creation of executable mod-
els through multi-stage model transformations until platform compatible executable
code has been produced. The platform metamodel features deployment aspects to assist
software architects in mapping the application components onto the available computa-
tional resources in a fully distributed environment. On one hand, the framework takes
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advantage of Model-Integrated Computing [2], that is, the metamodels and the instan-
tiated models support precise knowledge codification in the form of interpretable and
analyzable information. On the other hand, it applies important elements of Service Ori-
ented Architecture [3] for the behavior specification of the application. The core part of
the generated application consists of interconnected communicating components con-
trolled by the Finite State Machine (FSM) model of computation.

We have developed ErlCOM [4,5], a robust prototype RUNES platform implemented
in Erlang [6], to illustrate effective code generation and component deployment on top
of the Generic Modeling Environment (GME) [7]. Furthermore, we have implemented
a MIC-based Deployment Tool demonstrating both initial application deployment and
dynamic run-time reconfiguration of component systems. Our technology supports the
whole development cycle of distributed applications for heterogeneous HW/OS archi-
tectures via model interpreters and graph transformators. Our prototype performed suc-
cessfully at the IST2006 Conference [8] and vividly demonstrated the feasibility of the
methodology and the related technology. In the remainder of the paper the elements of
our model-based methodology, the development framework and the execution platform
will be demonstrated by the fire detection service of the Tunnel Control Application;
more detailed information is available in our RUNES technical report [9].

In Section 2, an overview of the design process is given, then the scenario analysis
will be introduced in Section 3. Section 4 examines interaction modeling using the fire
detection service to disseminate the approach and to show some important technical
points in the case of a small real-life example. In Section 5, platform modeling and
implementation details are presented. Then, Section 6 shows the connection between
platform and interaction modeling. In Section 7, our model based deployment and re-
configuration facilities are introduced.

2 Process

Any kind of professional software development is usually accompanied by some devel-
opment process which safeguards the industrial scale applicability of the technology.
There are many widely applied development approaches in the model based software
arena like Rational Unified Process or Microsoft’s Software Factory. Our process has
been significantly influenced by the existing methods; however, the ambition of our
work aimed at covering all the stages of application development based on genera-
tive metamodeling technologies. The overview of the process stages are depicted in
Figure 1.

Figure 1 is layered into five stages, namely, the Scenario (Section 3), the Application
Modeling (Section 4 and 6), the Platform (Section 5), the Code Repository and the
Running System (Section 7). The arrows connecting the artifacts of the various stages
are labelled by sequence numbers regarding the process activities. This section only
introduces the steps of the process and concentrates on their interwork; the technical
details of the relevant steps are revisited in later sections of the paper.

The Scenario contains the set of scenario descriptions establishing the scope of the
application domain. Our experience from the RUNES project has proved that applica-
tions can only be successfully developed if the scenarios are detailed enough to enable
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Fig. 1. Platform Independent Behavior for Fire Detector

non-trivial application modeling and quality analysis. Since any realistic distributed ap-
plication involves intense interaction among application components both structural and
interaction (Section 4) modeling are equally important. The Application Domain Model
must be created to cover the scenario in such a way that all the use case details must
be taken adequately into account and the stakeholders’ roles have to be discovered.
The roles make up the basic elements of the interaction model, hence, the dynamic-
ity of the use cases must be translated into corresponding Message Sequence Charts
(MSC) among the participating roles. The Application Domain Model and the Interac-
tion Model should be detailed enough so that quality investigations could be carried out
to check the feasibility of the design. Obviously, modeling is not a one shot activity,
therefore, iterative scenario-modeling-to-quality-evaluation cycles are fairly probable.
Each cycle involves creative decision making, so both arrow 1 and 2 in Figure 1 are
dotted showing that the activity is carried out manually.

The Interaction Model is transformed into FSM Model (Section 4) and then a further
translation step turns it into RUNES Component Model (Section 5). The solid arrow
indicates that the translation is executed by graph transformations. The Application
Domain Model usually requires creative refinements and only in rare cases allows to-
tally automatically translation into the RUNES Component Model, which is indicated
by the dotted arrow.

The Platform Model stage has been conceived to support total semantics elabora-
tion, that is, the RUNES Component Model is extended by the semantics of the plat-
form, components and the FSMs applying any high level process-oriented - preferably
functional - language. The step involves some manual coding to produce executable
specification of the whole application. During the evaluation of the process, we used
ErlCOM (Section 5.3) as the platform and Erlang as its accompanying language of se-
mantics embedment; therefore, the resulting model is called ’ErlCOM Model’ in the
paper.
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The final application model must take into consideration the distributed nature
of the application, hence, the so-called Deployment Model is established (Section 7). It
fully specifies the component allocation of the application towards the available re-
sources. The Deployment Model is an instance (dotted arrow without label) of the
RUNES Component Model as it represents one particular deployment configuration
of the application.

The Code Repository is the stage where the source code is stored. The code pro-
duction is fully automatic indicated by the dashed lines. The Deployment Model is
translated into run-time configuration information (initial configuration, run-time dis-
tributed database etc.) which is, finally, deployed onto the available platform nodes. The
run-time changes of the component configuration are managed by the Deployment Tool
and the Deployment Model is updated accordingly as indicated by arrow 7.

This process incorporates a set of meta-programmable MIC tools; the most impor-
tant to be mentioned are the Generic Model Environment (GME) for metamodeling [7]
and the Graph Rewriting and Transformation (GReAT) tool for graph transformation
[10] purposes. The process is totally application agnostic, therefore, it is suitable for
the development of any possible type of distributed applications. Our experiment and
the success of the RUNES demo at the IST2006 Conference have clearly shown the
viability of the process and the underlying modeling technology.

3 Scenario Modeling

In order to illustrate certain technical concepts of the integration of the various pieces
of modeling work and code generators the RUNES project decided to choose the Fire
in the Road Tunnel scenario [11]. The overview of the scenario story is the following:

"At the beginning of our story traffic is flowing normally in the road tunnel. Tunnel
fires can be detected by the wired system that is part of the tunnel infrastructure. The fire
sensors do, however, have the capability to operate wirelessly if required. An accident
within the road tunnel has resulted in a fire. The fire is detected and is reported back to
the Tunnel Control Room. The emergency services are summoned manually by Tunnel
Control Room personnel. As a result of the fire the wired infrastructure is damaged and
the link is lost between fire detection nodes. Using wireless communication, information
from the fire detection nodes is still delivered to the Tunnel Control Room seamlessly.
The first response team arrive from the fire brigade. Four firemen are sent into the
tunnel on foot. As the firemen move towards the fire the sensors reporting periodic data
on external temperatures detect a rise in temperature and respond by increasing the
frequency of reporting so that the Emergency Control can assess the danger to the fire
fighters. The fire becomes more severe. A node is lost..."

The methodology begins with the analysis of the scenario description, that is, the
creation of an application domain specific metamodel. In this case, the metamodel con-
tains the concepts and the relationships relating to the networked embedded system
of the tunnel domain. The domain concepts of the scenario are e.g. Tunnel Control
Room, Alarm, Sensor nodes, Filters etc. Based on the metamodel different configura-
tions (a.k.a. application scenarios) of the domain can be built.
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The goal of the application in this scenario is to monitor the state of the various tun-
nel networks connected to the Tunnel Control Room. The sensors in different sectors
of the tunnel send measurements towards the control room. The control room filters
the measurements and notifies the emergency units via a jurisdiction network when a
fire situation has been detected. The crucial point of the scenario is that the application
server in the control room is able to detect fire situations in an ever changing environ-
ment. The connection to the sensor network of the tunnel in disaster case is unreliable
therefore some measurements can be lost. Furthermore, the network can reconfigure
itself to be able to adapt to the changing environment. Since the reconfiguration of
the network sometimes takes for a while the application has to handle delayed mea-
surements due to the reconfiguration. The fire detection service is implemented by the
Fire Detector (FD) unit of the application, which will be used as our example in the
sequel.

4 Interaction Modeling

Large-scale networked systems can be efficiently comprehended as a large number of
interacting services. By combining the various services an entity is involved in the com-
plete behavior specification for that entity is obtained. Therefore, the service concept is
effectively based on the interaction patterns among distributed entities. The notion of
a role describes the contribution of the entity as it plays this role to a given interaction
pattern. The main idea of service-oriented development presumes that when developing
one service the designer may not necessarily have complete information about all the
other services that might co-exist in the system. The mapping of the service specifi-
cation onto a set of components is well established and follows the methodology [3]
which advocates the use of state machine synthesis algorithms so that the scenarios can
be quickly simulated and/or validated (see Figure 2). The generated state machines pos-
sess the intended dynamic behavior of the system that can be automatically incorporated
into the architectural design.

Fig. 2. Service-based development

The state machine generation is carried out by the tool called M2Code [3]. A cen-
terpiece of its capability is the (semi)automatic derivation of state machines from the
interaction patterns specified via Message Sequence Charts (MSC). Two types of MSCs
are defined; the basic MSCs and the high level MSCs (HMSC). A basic MSC consists
of a set of axes, each labelled with the name of a role. An axis represents a certain seg-
ment of the behavior displayed by its corresponding role. An HMSC is a graph whose
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nodes are references to other (H)MSCs. The semantics of an HMSC is obtained by fol-
lowing the paths through the graph and composing the interaction patterns owned by
the nodes along the way. The output of M2Code is a role domain model (Figure 4) to-
gether with one Finite State Machine (FSM) for each role defined in the domain model;
the FSM implements the respective role’s contribution to the services it is associated
with.

4.1 Behavior Specification

Interaction modeling focuses on the specification and elaboration of the dynamic behav-
ior of the application. The interactions are defined manually based on the application
scenario via Message Sequence Charts (MSC) in M2Code. The Fire Detector service is
specified by the following five MSCs (Figure 3):

– MSC A: In Normal state the detector receives all the measurement events from the
sensor.

– MSC B: If in Normal state no measurement event has been arrived in time from
the sensor (due to loss of connection) Fire state is activated.

– MSC C: If in Fire state a new measurement event is received it indicates that the
connection to the sensor has been re-established, therefore, Normal state is re-set.

– MSC D: If in Fire state no measurement event has been arrived in time from the
sensor (due to destroyed sensor) Dead state is activated.

– MSC E: In Dead state any measurement that might have been received is consid-
ered faulty since the sensor must have already been destroyed by the fire.

Fig. 3. Message Sequence Charts of Fire Detector
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a) FSM model of the Fire Detector b) Role domain model

Fig. 4. M2Code generated models imported into GME

The generated FSM is shown in Figure 4a. It can be seen that the state names are
automatically generated; therefore, they must be relabelled to establish their semantics.
The relabelling is a highly creative task since the model designer should be able to un-
derstand the correspondence between the generated FSMs’ states and the states of the
MSCs. Moreover, the correspondence must be thoroughly understood, otherwise, se-
mantics anchoring is unfeasible and any further semantics elaboration into implemen-
tation code is fairly questionable. In general, the roles of the FSMs are later mapped
onto the architectural model of the application. The mapping might happen in various
manners depending on the needs of the application. In the particular case of the Fire
Detector we applied the simple one-role-to-one-component style.

Although M2Code provides essential support for distributed application develop-
ment currently it does not support time-out handling out-of-the-box. Therefore, in order
to be able to support effective time-out handling we have introduced an extra role, that
is, the virtual Timer role, however, it resulted in the appearance of some extra artificial
states in the FSM. Thus, we have invented a graph transformation based algorithm that
fully eliminates the additional states. The graph transformation language we applied to
address our needs is the Graph Rewriting and Transformation language (GReAT) [10].

4.2 State Elimination

Our state elimination rule is based on the fact that all the time-out handling of the ap-
plication is bundled in a single Timer role, hence, the elimination rule is the following:

State Elimination Rule: If a component is connected via any channel to component
Timer that component is to be colored. If state A of any colored component has tran-
sition T to state B involving event sending (!) to Timer and state B has transition Z to
state C involving event reception (?) from Timer then state A will be connected to state
C via a new timeout translation Y and transition T and Z will be deleted.

It is easy to see that the rule describes only structural model transformations, that is,
it can be most effectively carried out by a graph transformation executed on the FSM
model. Figure 5 depicts the control flow of the graph transformation that produces the
reduced FSM. The rules describe the sequence of pattern matchings applied to the in-
coming subgraphs of the FSM model. The packets enter via the blue ingresses and leave
through the red egresses of the boxes. The boxes are connected together according to
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Fig. 5. Control Flow of Graph Transformation for State Elimination

the logic flow of the process. The pattern matching rules are located inside the boxes.
Figure 6 depicts the first part of the elimination rule, which is located in box ChannelS-
election. After the successful application of "State Elimination Rule" the unnecessary
transitions (transition T and Z) and state (state B) are deleted (red rectangles) and a
new transition (translation Y) is partially created (blue rectangle). The conditions of
the "State Elimination Rule" are only fulfilled by the simultaneously successful pattern
matching and the related satisfied conditions (TimeOutEvent). Figure 7 shows the sec-
ond part of the rule (located in FSMUpdate) when the creation of the new transition
(translation Y) is completed and the default value of the timeout is set.

Fig. 6. First part of State Elimination
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Fig. 7. Second part of State Elimination

The generated FSMs are stored in the GME database and they represent the Platform
Independent Behavior (PIB) of the to-be-synthesized system. The resulted FSM of the
Fire Detector is shown in Figure 8. It is important to emphasize that the states have
already been named according to their semantics, however, the details of the semantics
have not been elaborated yet so that the semantic details of the behavior could be kept
totally platform independent.

Fig. 8. Platform Independent Behavior for Fire Detector

5 Platform Modeling

The RUNES platform consists of a component-based middleware that decouples and
encapsulates the functionalities provided by its various constituents via well-defined
interfaces. Moreover, the middleware reaches down into layers that typically belong to
the network and the operating system, therefore providing a unified approach to config-
uration, deployment and reconfiguration at multiple levels of abstraction.

5.1 RUNES Component Metamodel

An outline of the component metamodel is illustrated in Figure 9. Components are
encapsulated units of functionality and deployment that interact with each other ex-
clusively via their interfaces and receptacles. Interfaces are defined by a set of related
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operation signatures and associated data types. Components can support multiple inter-
faces; this is useful in embodying separations of concern (e.g. between base function-
ality and component management). Receptacles are "required" interfaces to explicitly
state the dependencies among the components. Deploying a component into a capsule
its receptacles totally determine which other components must be present to satisfy
the dependencies. Capsules are platform containers providing access to run-time APIs.
Bindings ensure consistent connection setup between an interface and a receptacle. The
component model itself is complemented by two further architecture elements: compo-
nent frameworks and reflective extensions. Component frameworks (CF) are groupings
of components with constraint guarantee to allow only meaningful component config-
urations. All entities of the metamodel (Component, Capsule, Interface, Receptacle,
Binding, Component Framework) can store arbitrary <key,value> attributes, which es-
tablish a reflective layer facilitating global discover at run-time. Component interactions
can be intercepted at the bindings by pre-actions and post-actions to enable additional
processing on the level of individual messages. An important aspect of the platform
is that both the concurrent activities represented by the components and the individual
interactions represented by the bindings can be reified and reasoned on.

Fig. 9. RUNES Component Kernel metamodel

5.2 RUNES Semantics Metamodel

There are many ways of defining action semantics on model level. OMG (Object Man-
agement Group) has proposed to define a common, high level "Action Semantics" in
UML, which is capable to embody all kinds of actions. The main purpose of the Action
Semantics is to provide platform independent description of the actions from which lan-
guage specific implementation can be generated. Unfortunately, the syntax of the Action
Semantics Language (ASL) and the additional extensions of proprietary ASLs are not
standardized, hence, all vendors have their own non-standardized syntactical represen-
tation of the UML Action Semantics. Moreover, strong abstraction and modeling skills
are needed to use the proprietary ASLs correctly, which might even be harder to find
than good coding skills and this usually restricts broader applicability in large corpo-
rations. In the RUNES project we have experimented with another way for describing
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behavior. We have restricted our investigation only to the definition of behavior in com-
ponent platform. Since platforms must support heterogeneity on software and hardware
level so the modeling framework also has to cater for this diversity. The cornerstone of
the component behavior description metamodel is an abstract model (see Figure 10),
namely, the Behavior Model.

Fig. 10. Behavior metamodel

The Behavior Model has an attribute which classifies the modeled behavior accord-
ing to the implementation language. The metamodel entities that may contain behavior
description are the Interface and the Component. A component model is translated to
the target implementation language by model interpreters. In that way, the components
can be created in various languages from the same modeling framework. A model inter-
preter processes those parts of a component model which contain relevant information
for the desired target platform. The metamodel embodies various categories of imple-
mentation code snippets; the snippets are woven into the component implementation
accordingly by the model interpreter. The most important categories of code snippets
are:

– Init - Initialization code for a component, an interface or the system.
– Body - Implementation of an interface operation. The signature of the operation is

defined in the model and generated by the interpreter.
– StateAction - Specifies the semantics of a state. This is the connection point to the

generated FSM Model. (see Section 6.2)

5.3 ErlCOM

The RUNES Semantics Metamodel relies on the RUNES Component metamodel and
the heterogeneous implementations of the corresponding Run-Time Kernel (CRTK) to
enable rapid application development by leveraging model based code generation. The
Erlang implementation of the RUNES CRTK is called ErlCOM [4,5], which takes into
account the beneficial aspects of Erlang, that is, concurrency, fault-tolerance, robust-
ness, functional programming style and super-efficient message passing. Erlang is also
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used for semantics specification taking advantage of its functional style to eliminate
side-effects and to benefit from complex pattern matching and higher order functions.
The most important characteristics of ErlCOM are as follows:

– ErlCOM supports concurrently executing components that can be dynamically cre-
ated, loaded, updated, unloaded and destroyed.

– The components can migrate from capsule to capsule by reconfiguring themselves
in response to external events.

– The design and management of ErlCOM is built on top of the GME innovative
modeling environment and GUI.

6 Application Modeling

6.1 Metamodel Mapping to ErlCOM

Section 4 described in details the method how the Platform Independent Behavioral
(PIB) model is produced for distributed reactive systems from the application scenario
specifications. The PIB model does not depend on the platform concepts of the RUNES
metamodel (Secton 5). Nevertheless, since the component architecture represents the
platform specific modeling (PSM) layer, thus, following OMG’s MDA terminology the
platform independent model (PIM) must be translated into the platform specific one.

Although the structural parts of the synthesized application model seem to be perfect
candidates for graph transformations, in the case of complex real-life applications only
some parts of the model can be handled accordingly. Fortunately, the behavior parts of
any synthesized application model are available in the form of Platform Independent
Behavior FSMs. The states of the FSMs are labelled, but the semantics of the transi-
tions and the states have not been specified, yet. First, the transitions of the FSMs are
mapped into StateAction atoms by graph transformation. Then, the FSMs’ state struc-
ture is mapped onto ErlCOM. We have taken explicit advantage of Erlang’s FSM design
pattern (timeout handling included), hence, a GME interpreter automatically produces
the necessary source code.

6.2 Component Mapping

The structural and behavioral mapping is followed by the component mapping. The
FSM StateActions are automatically generated from the PIB FSMs, however, the other
component functionalities must be elaborated manually according to the needed appli-
cation semantics. When the complete synthesized platform specific application model
(ErlCOM Model) is ready it is automatically translated into ErlCOM compliant Erlang
source code. The translator is a complex GME interpreter which checks the model con-
sistency and generates optimized Erlang code. It is important to emphasize here that
as far as the RUNES metamodel and the ErlCOM API do not change the translator
safeguards that good quality source code is produced from analyzable, semantically
anchored, synthesized, reusable domain specific models.
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7 Deployment Architecture

The complete synthesized platform specific application model contains both the struc-
tural configuration and the behavioral semantics of all the constituent components in-
cluding their interconnecting bindings and the component framework constraints. That
model represents the functional view of the application, however, it does not specify
how the application is distributed on the available hardware nodes and how it starts.
Therefore, the distributed configuration must be modeled, too. Although the deployed
component configuration, in theory, is an instance of the complete synthesized platform
specific application GME, unfortunately, only allows two layer model-metamodel re-
lationships, so multi-layer model-metamodel relationships (three layer in our case) are
only realizable with the help of References as it is shown in Figure 11. The model,
which contains the complete synthesized platform specific application model and the
initial configuration information of the components is called the total synthesized plat-
form specific distributed application model.

Fig. 11. Deployment configuration metamodel

From the point of view of model based development, the most important element of
the deployment is the Deployment Tool, which establishes a soft real-time synchroniza-
tion loop between the GME model repository and the running application. The schemat-
ics of Deployment Tool based reconfigurability is shown in Figure 12. The Deployment
Tool analyzes the initial component configuration of the total synthesized platform spe-
cific application model and creates the ErlCOM elements by relying on the ErlCOM
API. After the initial deployment has been completed the application starts running and
ErlCOM’s CRTK constantly observes any changes of the component configuration and
sends notifications to the Deployment Tool accordingly. The Deployment Tool visu-
alizes the actual component configuration of the running system by updating the total
synthesized platform specific RUNES application model in GME.

The current implementation of the Deployment Tool is based on a GME Add-on
running in its own thread, connects to a UDP/IP socket in order to be able to receive
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notifications and it relies on ErlCOM’s CRTK for component management. ErlCOM’s
innovative architecture supports the following modes of reconfigurability:

– Re-active component reconfiguration: The application’s control logic decides
how to reconfigure the currently deployed component configuration in order to
adapt it to dynamically changing environmental factors. GME only tracks the
changes; the control intelligence lies inside the application code. The decision-
making is based both on the component configuration graph and the current execu-
tion state of the application.

– Pro-active component configuration: GME continuously evaluates the actual
component configuration of the deployed application and decides when and how
changes should be carried out. The intelligence is incorporated either in one of the
plug-ins of GME or in any legacy tool connected to GME via a versatile XML/XSLT
importer facility. The decision-making is only based on the component configura-
tion graph of the application.

– Component behavior change: The previous two reconfiguration types take effect
only on the component configuration granularity, but the functionality of the com-
ponent is kept unchanged. However, GME knows about the total synthesized plat-
form specific model database, therefore, the programmer or any intelligent plug-in
can modify the semantics of any of the components even dynamically. Via model-
driven code generators, automatic deployment and the dynamic code change feature
of Erlang the functionality of the relevant parts of the application can be changed
on-the-fly without ever touching the current component configuration graph. Both
the intelligence and the decision-making lie in this case inside GME.

Fig. 12. Deployment Tool based reconfigurability of running component application

8 Conclusion

The paper proposed a software development process for reconfigurable networked sys-
tems. The evaluation of the software development process and the related technology
enabled us to gather enough experiences to be able to summarize the most important
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advantages of the technique. The observed advantages are numerous; however, the most
important one is that models and metamodel provide analyzable formal specifications,
therefore, early validation and verification are possible semi-automatically. Moreover,
applying the MIC philosophy available legacy system components can be easily inte-
grated into the application and/or platform through the meta-programable development
environment.

All in all, the described process and modeling technology seem to be highly bene-
ficial in practical distributed application development in reconfigurable networked sys-
tems. The only major remaining challenge is related to the formal validation and verifi-
cation of the transformations since the currently introduced technology works correctly
only in the hands of talented and crafted software designers. Thus, having the frame-
work put in place its accurate applicability will be the focus of our further research
efforts in the future.
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Abstract. Compositional architecture-driven and model-based system
design holds huge potential to increase design efficiency and improve de-
sign quality for large-scale industrial systems. Transition to such design
paradigm is hampered by the lack of domain-specific methods and tools
that give adequate support for both behavioral and structural modeling
and development automation. This paper introduces an enhancement
to Lyra, a rigorous service-oriented modeling method for the design of
communicating distributed systems that brings process algebraic think-
ing into industrial system specification with particular focus on behav-
ior. This enhancement offers a sound basis for implementing the ideas of
MDA in automation of system design, functional verification and confor-
mance testing. The Lyra method and its enhancement are exemplified
using UML2 to model a critical and complex part of the mobile WiMAX
wireless system.

Keywords: model-based system design, MDA, UML2, design automa-
tion, formal methods.

1 Introduction

The trend in industrial product development is towards ever more complex func-
tionalities that are often distributed between multiple processing nodes. Tradi-
tional product creation paradigm puts a lot of emphasis on fast implementation
of the needed functionalities, with little consideration how to maintain overall
consistency over the component implementations. This has led to problems such
as time and cost overruns because of prolonged testing and debugging periods,
low quality due to difficulty of removing errors from complex implementations,
difficulty in making changes and new configurations, lack of reuse, and difficulty
in tracking product requirements. As an alternative to this implementation-
driven mode of development, architecture-driven product development based on
modeling offers a promising way to tackle these problems. This is partly due
to the fact that in model-based development the testing and verification can
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cover the whole product creation cycle and not be limited to just the last hec-
tic phase, and partly to the possibility to have an unbroken chain of rigorous
machine-readable descriptions of the system from the first requirements to final
implementation.

The chain of models represent system specifications at various levels of ab-
straction. To establish strong linkage between these specifications, and ultimately
between the specifications and final implementations, they should include rig-
orous and verifiable definitions of system behavior for critical control points.
Natural such control points are the system interfaces. They allow ensurance of
conformance with respect to externally observable behavior of the system using
various verification and testing methods.

The advance of modeling languages and methods opens up new possibilities
for the deployment of model-based development and formal methods in indus-
try. The Lyra method [3] is a domain-specific design method that incorporates
the ideas of model-based development and process algebraic specification into
existing practices of industrial system development. Lyra has been tested and
streamlined in several industrial modeling pilots, which have shown the large po-
tential of modeling and formal methods in industrial settings. These pilots have
also shown that strong automation is both possible and crucial in industrial envi-
ronment. Automation allows hiding of the unnecessary details in modeling or the
underlying formal framework, and remarkably speeds up the process of creating
executable and verifiable specifications. It was mostly this ambition towards au-
tomation and enhanced industrial applicability that drove us to enhance Lyra.
In the following we will present the enhanced Lyra method and demonstrate the
use of it with the WiMAX mobile broadband system.

This paper is structured as follows: Section 2 describes the Lyra design flow for
specification of behavior. Section 3 introduces the additions to Lyra for rigorous
structural definitions. An example case, using the enhanced method in the design
of the WiMAX system, is described in section 4. Finally, the learnings and
identified future work items are covered in Section 5.

2 Lyra Design Flow for the Specification of Behavior

The Lyra method[3] is a service-oriented rigorous design method that incorpo-
rates the ideas of model-based development and process algebraic specification
(see e.g. [1,2]) into existing practices of industrial system development. Lyra is
especially suitable for designing distributed reactive systems with asynchronous
communication, like telecommunication systems and protocols. The design flow
of Lyra focuses on the definition of system behavior and it is based on the con-
cepts of decomposition, step-wise refinement and preservation of the externally
observable behavior. The system behavior is modularized and organised into
hierarchical layers according to the type of behavior. The main categories of
behavior are internal and externally observable behavior. The internal behavior
types include the control logic and internal computation. The externally observ-
able behavior is further categorized according to the related communication and
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interface types (provided/used service interface). Strict categorization and la-
beling of behavior aims at facilitating automated refinement and compositional
verification and testing of industrial-scale systems with enormous size and com-
plexity. Embedding formal methods into industrial development process, as an
inherent and invisible part of it, has been a main driver for the development of
Lyra.

The Lyra method can be considered as an implementation of MDA (Model
Driven Architecture)[15]. It refines the process framework set by UP (The Uni-
fied Process)[11] and RUP (Rational Unified Process)[10] into a domain-specific,
and even company-specific, method. It adopts relevant ideas from the earlier
approaches in the domain of distributed communicating systems, like SDL de-
sign method [6] and ROOM (Real-time Object-Oriented Modeling)[7,8]. All this,
and the process algebraic specification approach, are combined with the existing
industrial design practices, and consolidated into a harmonized rigorous design
flow. The method is language independent, but used mostly with the UML2[16].
The subset of UML2 modeling concepts used and extended by Lyra has been
defined in a Lyra UML2 profile, see e.g. [4]. In this work we have used Telelogic
Tau G2 [14] as the modeling tool.

This section describes the Lyra design flow, introduced in the original Lyra
method[3]. It consists of four main phases, each of which focuses on either def-
inition or refinement of a certain aspect in the system behavioral specification.
In Lyra, all system behavior is encapsulated in services that are building blocks
of either systems or larger services. Construction of systems from these build-
ing blocks will be described later. The overall picture of the Lyra design flow is
presented in Figure 1.

2.1 Service Specification

The valid behavior of a service as observed by the users of that service is spec-
ified in the Service Specification phase. This specification for externally observ-
able behavior consists of both static interface definitions and dynamic behav-
ioral specifications. First, Provided Service Access Points (PSAPs) are created
for user-service communication, usually one for each service. Next, logical in-
terfaces are defined for communication with various user types and attached
to the relevant PSAPs of the service. The interface definitions encapsulate the
service messages and their parameters used for the communication between the
user and the service. Finally, the valid dynamic behavior of the service as ob-
served by the users (i.e. the PSAP interface behavior) is defined by a single
PSAP Communication state machine. If independent state machines would be
needed for different users, the service should be broken into multiple services
in such a way that the PSAP behavior of each can be specified by a single
state machine. State machines are used as the primary behavioral specifica-
tion as they unambiguously and rigorously specify the valid behavior of the
service.

Fig. 2 shows an example of a PSAP Communication state machine. State
transitions (arrows) are tied to triggers, usually receptions of service requests,
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Fig. 1. Lyra design flow: behavioral specification flow (left) and structural specifica-
tions (right)

such as RNG REQ(). Transitions can also cause actions, like sending responses
(e.g. RNG RSP) back to the user. Typically. the states in a PSAP Communica-
tion state machine are composite states (in UML2 terms), i.e. contain substate
machines. Hierarchical state machines allow separation of the externally observ-
able behavior from the internal behavior. As we do not specify the internal
behavior in Service Specification phase, we replace these parts of the behavior
with indeterministic substate machines. This allows already the Service Speci-
fication model to be executable. Stochastic models can be used to emulate the
anticipated internal behavior for early simulations and analysis.

2.2 Service Decomposition

In Service Decomposition phase we specify how the externally observable be-
havior of a service is realized by its internal behavior. The internal behavior
specification consists of Execution Control and Internal Computation state ma-
chines. Execution Control state machine specifies the order and logic of running
internal functionalities of a service (service components). Internal Computation
state machine encapsulates the internal algorithms and calculations. One more
layer of behavioral hierarchy is still needed in those services that use other ser-
vices. That is defined by USAP (Used Service Access Point) Communication
state machines that specify how the service communicates with the external
service providers. Both Internal Computation and USAP Communication are
triggered by the Execution Control state machine. The most important driver
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HandoffFunction_TBS state PSAPBehavior {1/1}
  

Ready

CandidatePreparation [xp_candidate_preparation_fail][xp_candidate_preparation_fail]
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handoff_
fail

xp_
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WaitForHOConfirm

HO_Confirm()HO_Confirm()

xp_
handoff_
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xp_
handoff_
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[xp_timer_expired][xp_timer_expired]

xp_
handoff_
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xp_
handoff_
ok

  

ComputeRangingResponse

WaitForRngReq

RNG_REQ()RNG_REQ()

WaitForSATekReq

[xp_compute_ok]/
^RNG_RSP() via PSAP_MS;
[xp_compute_ok]/
^RNG_RSP() via PSAP_MS;

xp_
handoff_
fail

xp_
handoff_
fail

SecurityAssociation

SA_TEK_REQ()SA_TEK_REQ()

[xp_timer_expired][xp_timer_expired]

[xp_sa_ok]/
^SA_TEK_RSP() via PSAP_MS;
[xp_sa_ok]/
^SA_TEK_RSP() via PSAP_MS;

WaitForDatapath
[xp_datapath_updated]/
^HO_Completed() via PSAP_SBS;
[xp_datapath_updated]/
^HO_Completed() via PSAP_SBS;

xp_
handoff_
fail

xp_
handoff_
fail

[xp_datapath_fail][xp_datapath_fail]

xp_
handoff_
fail

xp_
handoff_
fail

[xp_timer_expired][xp_timer_expired]

xp_
handoff_
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xp_
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[xp_compute_fail][xp_compute_fail]

xp_
handoff_
fail

xp_
handoff_
fail

[xp_sa_fail][xp_sa_fail]

Fig. 2. An example of a PSAP Communication state machine

for such strong layering of behavior has been the intention to automate behav-
ioral verification, as mentioned earlier.

The first step in defining the internal behavior is the decomposition of the
service into smaller units, or service components. Decomposition is described in
a Functional Decomposition diagram, which is a stereotyped use case diagram in
UML2 (see Fig. 3.a). That shows the service components that the service con-
sists of as well as their mutual relation. As an example, in Fig. 3.a the service
component HandoffExecution itself consists of three components: DatapathReg-
istration, RetrieveKeys and UplinkMap. The Execution Control state machine
for HandoffExecution (Fig. 3.b) has the same service components and specifies
the logic and order how they are triggered. The decomposition of the service into
smaller components continues recursively until the required level of atomicity is
reached. For example, if the service will be distributed into multiple nodes (sub-
systems), there is no need to decompose further service components that will
stay intact in all foreseeable distribution configurations.

2.3 Service Distribution

The Service Decomposition model defines the functionality (behavior) of a ser-
vice by breaking it into service components and specifying how they are trig-
gered. How the service is distributed into different logical or physical entities
(subsystems) has been of no concern. The purpose of Service Distribution phase
is to define this distribution. It requires that Service Decomposition for the given
service exists and that the System Architecture (section 3.3) has been defined for
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HandoffFunction_TBS: 
Execution Ctrl

state
HandoffExecution

UpLinkMap

RetrieveKeys

DataPathRegistration

Functional Decomposition package ServiceOverview {2/2}

HandoffFunction_TBS
 

CandidatePreparation
 

WriteContext
 

<<include>><<include>>

<<include>><<include>>

ServiceLevelPrediction
 

<<include>><<include>>

HandoffExecution
 

<<include>><<include>>

DatapathRegistration
 

<<include>><<include>>

RetrieveKeys
 

<<include>><<include>>

UplinkMap
 

<<include>><<include>>

ComputeRangingResponse
 

<<include>><<include>>
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<<include>><<include>>

Fig. 3. a. Functional decomposition diagram of theHandoffFunction TBS service (left).
b. Execution Control state machine for the HandoffExecution service component
(right).

the system where the service resides. Service Distribution consists of the follow-
ing steps: creation of a new service for each subsystem where the original service
will distribute into, assigning the service components into these new services,
definition of the peer interfaces for the communication between the distributed
services, and finally generation of the state machines to specify the behavior for
peer communication (following the PSAP/USAP pattern introduced earlier).
The new set of services is specified in such a way that the composition of that
set is behaviorally equivalent to the original service specification.

2.4 Service Implementation

The previous Lyra steps have produced virtual specifications for the service in-
terfaces. That is, all the external communication of the services is based on the
specified real behavior but virtual representations of the signals. The purpose
of the Service Implementation phase is to map the virtual signal representa-
tions into the real communication mechanisms used in the implementation (or
specifications thereof). In its simplest form, this involves a signal mapping us-
ing an adapter element in the model. A more complicated situation arises often
in communication systems when the virtual communication between peer enti-
ties needs to be routed through the underlying communication layers. Also then
an adapter (or peer proxy) that maps the virtual signal representations into a
form understandable by the underlying communication layer can be made. Such
adapters open up good opportunities for automated testing of implementations
against their (virtual) specifications, or even automatic generation of code from
detailed specification models. The generation of such adapters is itself a process
that can be mostly automated. This makes the mapping of specification models
into different implementations, and thus realization of virtualization, efficient.
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2.5 Automation of Service Design Flow

We have developed a set of wizards to automate the routine operations in creat-
ing Lyra models. When initiating a new phase in the service design flow, the New
Service Specification wizard creates a complete model structure for a new service.
The New Service Decomposition, New Service Distribution and New Service Im-
plementation wizards create a transition path from an earlier development phase
by creating a working area with a new set of refined model elements for the new
phase. The refined model elements are generated according to patterns defined by
the Lyra design flow, and by using the definitions (rules, constraints) described in
the Lyra profile (see e.g. [5]). This allows refinement of a service or service com-
ponent without modifications to the earlier, more abstract specifications. It also
provides means for preserving the consistency between the Lyra phases, particu-
larly when enhanced with the formal verification approaches, such as automated
refinement producing models correct-by-construction or automated consistency
checking at the end of the specification phase.

The wizards at the lower levels of hierarchy correspond to the design tasks
inside the main Lyra phases. They create or update smaller parts of the phase-
specific model. For example, the New Execution Control and New USAP Com-
munication wizards create new hierarchical state machines for the behavior.

3 Lyra Enhancement for the Specification of System
Structure

The Lyra design flow was primarily developed for rigorous and systematic mod-
eling of system behavior. However, an equally systematic and rigorous approach
for the description of system structure is required for full-scale design automation
and efficient reuse. The systematically encapsulated behavioral components are
easy to reuse in different systems and system configurations. Similarly, systems
or parts of systems should be reusable.

We have developed an enhancement to Lyra (Lyra 2.0) that provides a consis-
tent model structure both regarding the system behavior and the system struc-
ture. Adhering to a stable and systematic model structure has major advantages:
it allows automation of tools to help generate models faster as well as develop-
ment of view and document generators that work similarly on any model. Also,
post-processing of the models for code generation as well as generation of analysis
models and testware can be easily automated.

Lyra 2.0 preserves the basic requirements and goals of Lyra for the specifica-
tion of systems. First, recursive top-down system specification has to be possible.
Second, compositional mode of development and efficient reuse, where systems
can be built from existing system or service definitions, has to be supported.
Third, the enhancement has to allow scalability for truly large systems being
developed by a multitude of teams in parallel. Lastly, it should be possible to
separate three different kind of specifications for a system: external behavior,
internal behavior and internal structure. In Lyra 2.0, these specifications are, in
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the same order, System Interface Specification, System Functional Architecture
and System Architecture. In the following, the term system component is used
to refer to the specification of any structural part of a system. The system com-
ponents always appear similar regardless of whether they are at the top of the
overall system hierarchy or at the very bottom.

3.1 System Interface Specification

The externally observable behavior of a system component is specified by its Sys-
tem Interface Specification (SIS). This specification is necessary for integrating a
system component with the other system components and with its environment.
SIS is usually given as input to the team responsible for the further development
of this system component.

The behavioral components resulting from all phases of the Lyra design flow
are used as building blocks when defining systems and system components. For
example, some system components may have only a Service Specfication level
of description, while the other ones may be results of Service Decomposition
and Service Distribution phases. The systems may include also components,
which have not been implemented according to the Lyra design flow, like COTS
(Commercial-off-the-shelf) or legacy components and open source software. To
include also such components into the overall system model, they are encap-
sulated as system components with SIS. Possibility to use a mixture of sys-
tem components at different levels of abstraction allows early simulations and
early start for systems pre-integration in a truly compositional development
mode.

The SIS of each system component includes the specification of behavior for
all its interfaces (which are attached to the system ports in UML2). To this
end, SIS is defined as a composition of services that are appropriately connected
to the system ports. A system interface specification is the composition of the
interface specifications of all the services that communicate through that system
interface. The systems ports consist of PSAP and USAP ports of the included
servces, but the system ports do not have such categorization.

3.2 System Functional Architecture

System Functional Architecture (SFA) presents an encapsulation and view for
the system as a composition of its services and internal functionalities (defined
also as services in the Lyra design flow). Composite behavior of the included
service components and internal functional components defines the emergent
behavior of a system component.

SIS is the starting point for the definition of the SFA. Since the SIS is a more
abstract specification for the system, it allows several SFAs for implementation.
The consistency between the SIS and SFA has to be preserved with respect to
the alphabet and externally observable behavior.
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3.3 System Architecture

The third definition for a system component is needed when the system compo-
nent itself consists of (sub)systems. System Architecture (SA) defines formally
how the system is composed of its subsystems and how the subsystems are in-
terfaced. Whereas SIS and SFA are compositions of service components, SA is
a composition of system components. It is the formal SA that allows recursion
in system design and ties together all system specifications at different levels of
abstraction.

3.4 Recursive System Design Process

A typical cycle in recursive system design process (see Fig. 1) begins by the team
responsible for system X development take the SIS of that system component as
input. Unless the system is at the root of system hierarchy, i.e. not a subsystem
of any larger system, the SIS has been generated as the output of the previous
cycle. For the top-most system component, creation of the SIS is the very first
step.

Next, the system X team generates the SFA for their system component. This
typically is derived from the SIS by refining the services further and possibly
defining a set of new services that are internal to the system component. If the
services in SIS are found as an inadequate starting point, a new set of services
can be defined by the team as long as consistency with the SIS external behavior
is maintained. This may be, for example, due to need for using legacy or open
source softwware as part of the system implementation. Note that the team
will not be able to unilaterally change the SIS as that is the key for successful
interfacing with the surrounding system components.

Parallel to the SFA development, also the System Architecture is developed. It
is possible to have multiple SA variants that correspond e.g. to differing product
configurations. The final step in the recursive system design cycle is executing
the Service Distribution phase of the Lyra design flow, where the SFA services
are distributed into the SA subsystems. The outcome of this is the SIS for each
new system component. The SA generated this way is the integration model for
system X, i.e., it specifies how the subsystems of X operate together.

Note that this description applies to a pure top-down system development flow
for the sake of clarity and simplification. In practice, system design is a mixture
of top-down and compositional mode, due to e.g. existing legacy. Also, the de-
velopment of the SIS, SFA and SA, as well as different layers of architectural
abstraction (e.g. systems and implementation architectures), always overlap in
practical work.

3.5 Automation of System Design Flow

The implementation of wizards for the system component design flow follows the
same approach used for the service design flow. There are top-level wizards that
participate in the initiation of a new phase in the system component design flow.
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The New System Interface Specification, New System Functional Architecture
and New System Architecture wizards prepare transitions paths from one design
phase to another. These are the largest wizards, creating several UML packages
and classes for the Lyra concepts.

A second set of wizards create or update a smaller portion of a model within
one development phase. The New System User and New System Interface wiz-
ards specify the system SAPs and interfaces for users. Finally the New System
Service wizard specifies system services, thus making a link between the ser-
vice and system component design flows. In order to provide visibility for the
Lyra concepts, the Tau tool was extended with Lyra specific views using view
generators. They show model elements grouped according to the relationships
between the Lyra concepts. The Service View shows the specified service com-
ponents and the outcomes of the refinement phases. The System View shows all
the three possible specifications (SIS, SFA and SA) for the system components.
Finally, the System Tree view shows the system structure, i.e. the hierarchical
decomposition of the system into (sub)systems, in the form of a tree. In prin-
ciple, each system designer could customize his/her own view generators that
would work on all Lyra 2.0 models.

4 WiMAX Design Example

This example is part of a larger case study that was done to demonstrate the
suitability of the enhanced Lyra for the functional specification of a real indus-
trial distributed system. Also the applicability of a service-oriented approach to
quite complex control functionalities was of interest. The purpose was to make
an executable specification for product implementation purposes that could also
be validated functionally by way of simulations. This exercise was part of a real
system specification effort in a product program, and was done in close cooper-
ation with the system architecture and specification team.

The target system for the study was a mobile version of WiMAX [17]. WiMAX
is a broadband wireless communication system, that originally was developed
to replace the last-mile wired broadband connection to Internet. The logical
architecture of mobile WiMAX contains the following nodes: mobile station,
base station, gateway, home agent and some other nodes that are of no interest
to the case study because of their functionality.

To limit the scope of the case study, only the functionalities related to mo-
bility, and especially those functionalities needed for handover, were modeled.
Handover means here the sequence of events that the network has to master to
change the serving base station of a given WiMAX terminal to another one. As
one the most critical and complex functionalities of any mobile network, it meets
well the goals set for this case study. To limit the scope of this example, only
the functionality in the mobile station and the two base stations involved in the
handover is addressed, omitting a lot of details. The case study was done using
Telelogic Tau G2 UML2 tool and the Lyra profile developed in Nokia Research
Center.
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We dubbed the system to be specified (modeled) WimaxMobility. It is not a
physical component of WiMAX, but can be considered a logical subsystem (en-
capsulation of functionality) that is distributed in many nodes of the complete
WiMAX system. The first step would be to create the System Interface Specifi-
cation (SIS) for WimaxMobility. However, somewhat atypically, WimaxMobility
is a closed system with no communication with the external world and therefore
cannot have a SIS. We will start by defining the Functional Architecture for
WimaxMobility. Creating of a SIS will be illustrated for one of the subsystems
of WimaxMobility.

4.1 Functional Architecture for WimaxMobility

The WiMAX standard specification [17] defines three primary mobility func-
tions.HandoffFunction has the overall control of the handover process. Context-
Function manages the context information in the network and, for example,
moves the context information from source to target base station. Datapath-
Function modifies the required routing tables keeping the data flows to and
from the mobile node correctly routed as it moves in the network. RRM refers
to Radio Resource Management, and its purpose in this limited example is to
make a decision whether the target base station is able to accept a new mobile
station to be served.

System Functional 
Architecture

active<<SystemComponent>>class
WimaxMobility

<<ServiceComponent>>

aHandoffFunction:
HandoffFunction

USAP_CFUSAP_CF

USAP_DPFUSAP_DPF

USAP_RRMUSAP_RRM

<<ServiceComponent>>

aContextFunction:
ContextFunction

PSAPPSAP

<<ServiceComponent>>

aDataPathFunction:
DataPathFunction

PSAPPSAP

<<ServiceComponent>>

aRRM:RRM

PSAPPSAP

System Architecture active<<SystemComponent>>class
WimaxMobility

<<SystemComponent>>

MobileStation:
WimaxMobility_MS

R1R1

<<SystemComponent>>

ServingBaseStation:
WimaxMobility_BS

R1R1
R8R8

<<SystemComponent >>

TargetBaseStation:
WimaxMobility_BS

R1R1

R8R8

Fig. 4. WimaxMobility system. a) Functional Architecture (left). b) System Architec-
ture (right).

The Functional Architecture of WimaxMobility is shown in Fig. 4.a (a com-
posite structure diagram in UML2). HandoffFunction recognizes the need for
handover, makes the decision to start it, controls its execution and uses three
other services for certain handover tasks. It is clearly the most critical service



342 K. Leppänen, S. Leppänen, and M. Turunen

of WimaxMobility and one that has to be distributed both to mobile station
and to base station. The three others will only be visible in the base station,
and at this stage of system development a definition at the level of Service
Specification is adequate for them. As the DataPathFunction was available as
an legacy implementation, there was no need to refine its definition beyond
the Service Specification level at all. Instead of modeling existing legacy, an-
other possibility would have been to encapsulate the implementation as a model
component.

4.2 System Architecture for WimaxMobility

The logical nodes of the WiMAX network can be considered as the platform on
which we have to implement the WimaxMobility system. With this in mind, we
break the WimaxMobility into two subsystems WimaxMobility MS and Wimax-
Mobility BS, for the mobile station and base station, respectively. Fig. 4.b shows
the System Architecture for WimaxMobility. Note that it has one instantiation
of WimaxMobility BS for the source and a second for the target base station.
As these are rather base station roles that change in the handover, defining a
separate subsystem for both target and source base station would make little
sense.

Note that the System Architecture so defined can not yet be used for system
simulation, since at this point the behavior of the subsystems is not defined by
way of services. Defining these is our next job.

4.3 Service Distribution for HandoffFunction

We will now break the critical service, HandoffFunction, into a set of new services
that can be placed into relevant subsystems. As the handover control functional-
ity is different in the mobile station, source base station and target base station,
we define three new services for these, respectively: HandoffFunction MS, Hand-
offFunction SBS and HandoffFunction TBS. This begins with the definition of
the placement of the HandoffFunction service components. The next step is the
definition of the PSAP Communication, Execution Control and USAP Commu-
nication behavior for the new services. As an example, the PSAP Communication
of HandoffFunction TBS is shown in Fig. 2. It shows how the peer communica-
tion between the child services triggers service components in the target base
station. This and the corresponding USAP Communication behavior in the trig-
gering service define a part of the peer communication protocol between the
source and target base station.

4.4 System Interface Specification for WimaxMobility BS

From now on, the two subsystems are considered full-fledged systems. Next we
show how to construct the SIS for the WimaxMobility BS (Fig. 5). As this sys-
tem can take the role of both source and target base station, its SIS contains
the corresponding distributed versions of the HandoffFunction service. Note that
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only these two services are directly connected to the system ports of Wimax-
Mobility BS. The three other services, DataPathFunction, ContextFunction and
RRM are included in the SIS, because the preceding definition of HandoffFunc-
tion (see Fig. 4.a) already used them, and their omission would have required
abstracting away already defined behavior.
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<< ServiceComponent >>
<< ServiceComponent >>

<< ServiceComponent >>

<< ServiceComponent >>

Fig. 5. System Interface Specification for the WimaxMobility BS system

Fig. 5 also indicates how, for example, the R1 interface specification between a
mobile station and a base station is composed. First, it is the composition of, at
least, the three system interfaces of WimaxMobility BS: I MS to Mobility BS,
I MS from Mobility BS and I BS to Mobility MS, which are further composi-
tions of the corresponding service interfaces. As an example, interface
I MS to Mobility BS is a composition of two service interfaces, I MS to
HandoffFunction SBS and I MS to HandoffFunction TBS. As these contain
both interface alphabet and behavior, the logical system interface R1 is fully
specified compositionally. Of course, full R1 specification requires the composi-
tion of all the systems that use R1, not only WimaxMobility. The model elements
that are required to form the interface compositions can be automatically gener-
ated based on the information in the relevant System Interface Specification(s).

4.5 System Integration

Once an executable SIS has been defined for each subsystem, the System Archi-
tecture of WimaxMobility can be made executable with references to the sub-
system SISs. The SA can then be used to validate the subsystem integration.
As an example, a simulation trace in Fig. 6 shows the communication between
the subsystem instances for a fully successful handover execution. Since the be-
havior of each subsystem if formally defined based on process algebra, also more
sophisticated methods could be used to validate correct system behavior.
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interaction WimaxHandoversd

TargetBaseStationServingBaseStationMobileStation

MOB_SCN_REQ ()()
MOB_SCN_RSP ()()

MOB_MSHO_REQ()()
HO_Request ()()

HO_Response ()()
MOB_BSHO_RSP()()

MOB_HO_IND ()()
HO_Confirm ()()

UL_MAP ()()
RNG_REQ ()()

RNG_RSP ()()
SA_TEK_REQ ()()

SA_TEK_RSP ()()
HO_Completed ()()

Fig. 6. A simulation trace for a successful handover in the WimaxMobility system

5 Conclusions and Future Work

We have introduced an enhancement to Lyra, a rigorous service-oriented model-
ing method for the design of communicating distributed systems. The driver for
the enhancement has been automation of the industrial strength development
process. Automation is necessary to get a wider acceptance for model-driven
development and formal methods in industrial settings. In this paper we have
also illustrated the applicability of model-based design, incorporating formal ap-
proaches, to the design of industrial systems with the design of critical control
functionality in the WiMAX mobile wireless system.

Even though many powerful ideas of automation have not yet been imple-
mented, already the first experiments with automation wizards have shown sig-
nificant speed-up in the specification of complex systems. The first wizards take
care of many of the mundane tasks related to creation of new services and sys-
tem components, or building simulators, and allow the modeler to focus on the
system structure and behavior, rather than the details of the model. The lack
of such automation has been a significant obstacle in industrial projects up to
date.

In future, a lot of work remains in further automation. As an example, the
definition of service components and their relations during the Service Decom-
position and Service Distribution phases takes a lot of manual labor, but have
excellent potential for automation: the Execution Control state machines, which
orchestrate the parallel execution of the service components, can be automati-
cally created based on the information in the Functional Decomposition diagram,
instead of specifying such state machines manually.

Another important area of automation is the consistency checking and func-
tional verification of models, where good progress has been done e.g. in the
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RODIN project [9] (see e.g. [5,12,13]). The project has used the Lyra design
flow and the Lyra profile as a basis for academic research and development
of automated refinement, fault-tolerance and plug-in verification tools. Finally,
automatic checking of implementation conformance is an important current
and future work item to close the circle for fully architecture-driven product
development.
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Abstract. A navigation model describes the possible sequences of web pages a 
user can visit, and a request routing model describes how server side compo-
nents handle each request. Earlier we developed formal models and analysis 
operations for such models. While each is useful independently, their utility is 
greatly improved by relating the models, which is the contribution described in 
this paper. We describe mappings between the models, and show that the map-
pings preserve navigation behavior and are bijective, thus supporting traceabil-
ity and allowing the models to be used in round-trip engineering. With these 
mappings built into our Model Helper tool, it is now possible to automatically 
determine whether a Request Routing model conforms to the navigation design, 
and to automatically generate a Request Routing model from a navigation 
model. Finally, we describe one of a number of case studies where we used 
Model Helper in a round-trip engineering scenario.  

1   Introduction 

The navigation of a web application is the possible sequences of web pages a user can 
visit. For simple cases, the next page displayed depends only on which button or link 
the user selects in the current page. But web applications often use adaptive naviga-
tion, where the next page may also depend on: the user’s mode, for example whether 
they are a customer or an administrator (mode-adaptive navigation); what pages the 
user has visited previously (history-sensitive navigation). Adaptive navigation is more 
common for applications with dynamic page content (sometimes called “dynamic 
web applications,” but can also be used with static web pages. 

Navigation is a very important part of a web application, but it is usually described 
informally in a diagram such as Fig. 1. Boxes are web pages, and arrows are naviga-
tion links between pages, with text describing the circumstances under which the 
navigation link is taken. From a diagram like this we can see that when a user is at the 
Home page, is logged on, and wishes to view their account, they next see the Account 
page. But it is problematic to determine whether the user must always be logged on in 
order to view the Account page. The link from the Home page explicitly states this, 
but the link from the Order page does not, so we must examine all links that reach the 
Order page. Clearly, as the number of pages and links grows, this becomes problem-
atic with an informal diagram. 
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On the other hand, some web engineering approaches include formal navigation 
models, but these other approaches do not explicitly model adaptive navigation ([1] 
[4] [12]), thus cannot support automated analysis to answer questions like the one 
posed above. 

LogonProduct 
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Item Cart 

add current item  
to the cart 

add current  
item to the cart 
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logon

view product list 
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completed 
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view 
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view product list 

 

Fig. 1. Typical Description of Navigation 

We earlier provided this with FARNav (a Formal Approach for Rich Navigation) 
[7]. A FARNav model uses statecharts to precisely describe navigation, including 
adaptive navigation. We use an existing general-purpose tool (SMV model checker) 
to analyze the model [3]. To use this tool, we translate the FARNav model into the 
input format needed, then write rules describing the desired properties of the model. 
The tool determines which rules hold and which are violated.  

A navigation model describes how the application should behave, so it is the de-
veloper’s responsibility to provide an implementation that conforms to the navigation 
model. With a platform such as J2EE, each navigation link first results in a request re-
ceived by the server. The web application processes the request using a set of server 
components, then prepares a response page that is sent back to the user, which com-
pletes the navigation link. Thus for each navigation link the developer must determine 
which server components process it, in what order, and which response page will be 
returned. We call this a request route, the sequence of components that handle a re-
quest originating from a web page. The request routing is the union of all possible re-
quest routes from all web pages, so it provides implementation information for an ap-
plication’s navigation. 

Unfortunately, identifying request routes with a platform such as J2EE is difficult. 
Each component along the request route participates in the request routing by check-
ing and/or setting the associated URI, so this code is scattered across a number of 
components. In addition, although the request handling is in effect a pipeline, com-
munication between server components is indirect, with web.xml mapping a request 
between components using its URI. This makes the tracing of request routes a com-
plicated and error-prone task. 

To support the developer in understanding request routing, we earlier developed a 
formal Request Routing model to explicitly represent the request routing of a web ap-
plication, and we provide operations for analyzing the request routing [6]. The model 
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and operations are specified with Z, and Jaza is used to read in a model and perform 
operations on it. No prior approach explicitly represents and/or supports the tracing of 
request routes. 

The ability to see and analyze a request routing model can help the developer de-
termine whether the implementation conforms to the desired navigation behavior. It 
also helps during maintenance, where most tasks involve some tracing of request 
routes. Changes in the navigation design will affect the request routing and vice versa.  

Thus traceability between a navigation model and a request routing is critical for 
both initial development and maintenance. An even bigger benefit to the developer 
would be to provide support for round-trip engineering from navigation model to re-
quest routing model and vice versa.  

In this paper we describe the FARNav and Request Routing models (Sections 2 
and 3) and present model transformations in both directions (Section 4). Because the 
transformations preserve navigation semantics and are bijective, we can use them in 
round-trip engineering. We provide a Model Helper tool to perform these model 
transformations (Section 5). With this tool support, it is now possible to automatically 
determine whether a Request Routing model conforms to the navigation design, and 
to automatically generate a Request Routing model from a navigation model. 

2   The FARNav Navigation Model 

FARNav uses Statecharts with parallel state machines to model navigation. The main 
state machine is the Page Navigation state machine, which contains one state per web 
page, with navigation links represented by transitions between these pages. The other 
state machines are mode state machines, one for each mode, and one for each case of 
history-sensitive navigation. For the example in Fig. 1, the FARNav model consist of 
three state machines: Page Navigation, Logon Mode, and Logon NextPage (Fig. 2).  

Page Navigation transitions may use information about the state of the modes as a 
guard, and may send events to zero or more mode state machines in order to change 
their states. Thus the mode state machines control which Page Navigation transition 
fires, and these transitions in turn cause a mode to change state. The format for a tran-
sition label is ‘event[guard]/action’: 

 event: a user action; format is ‘eTag.eRes’, where eTag is the user action and 
eRes is the result of processing this action (e.g. logon.success) 

 guard: navigation link applies only for these mode values; format is ‘in gs0, 
in gs1,…, in gsi’ where gs is a state in a mode state machine. 

 action: navigation link causes the mode in a parallel substate to change its 
value; format is ‘a0,a1,…,aj’ where a is a transition in a mode state machine. 

For a mode state machine representing mode-adaptive navigation, there is one state 
for each possible value of the mode (Logon Mode in Fig. 2). For history-sensitive 
navigation, the state machine starts in a neutral state where previously visited pages 
are not relevant. There is an additional state for each case where a previously visited 
page must be remembered (Logon NextPage in Fig. 2). Transitions in mode state ma-
chines are usually triggered with events fired in the Page Navigation state machine, or 
with timing events such as logon timeout. All state names must be unique, across all 
state machines in the model.  
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Fig. 2. FARNav Model for the Example Application 

Although a navigation model such as that in Fig. 2 precisely describes the naviga-
tion, it can still be difficult to check properties of the navigation. For example, it is 
still not obvious that the Account page cannot be reached unless the user is logged on. 
So we formulate this property as a rule and use the tools to automatically determine 
whether the navigation model violates this rule. 

3   The Request Routing Model 

The Request Routing model describes a set of nodes that represent server compo-
nents, which can be web pages, filters, or servlets. Each node has associated entry and 
exit ports. Each port has a URI, so an entry port on a node indicates that the node re-
ceives requests with the URI of the entry port, and an exit port on a node indicates 
that the node forwards requests with the URI of the exit port. Using URIs to route a 
request through server-side components is a convention of J2EE web applications. 

An exit port of one node is connected to an entry port of another node when their 
URIs are the same (a between-node connection). Within a node, an entry port can be 
connected to an exit port (an in-node connection), and the in-node connection may  
have  an associated function that processes requests arriving with the URI of the entry 
port. A function can be associated with multiple in-node connections of a node, and in 
this case each in-node connection has a different return value and exit port, or has a 
different entry port.  
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Fig. 3. The Request Routing Model for the Example Application 

In this paper we use diagrams to show request routing models rather than showing 
their underlying Z representation. Fig. 3 shows the Request Routing model for part of 
the earlier example. It covers the transitions leaving states Logon and Cart. For exam-
ple, the transition from Cart to Logon in Fig. 2 corresponds to the path from Cart to 
LogonScreen in Fig. 3. 

Now we can more precisely define a request route to be a path through a sequence 
of ports (ExitP0, EntryP1, ExitP1, EntryP2, ExitP2, …, EntryPi, ExitPi, … EntryPn-1, 
ExitPn-1, EntryPn) where: 

• EntryPi (0 < i <= n) are entry ports; 
• ExitPi (0 <= i < n) are exit ports; 
• ExitP0 is attached to a request web page node; 
• EntryPn is attached to a response web page node;  
• EntryPi and ExitPi (0<i<n) are attached to Nodei  and are in-node connected; 
• The in-node connection between EntryPi and ExitPi (0<i<n) may have an associ-

ated function (Funci) and return value (FuncReturni). 
• ExitPi and EntryPi+1 (0 <= i < n) are attached to different nodes, and are between-

node connected, thus the URI of both is URIi . 

If two request routes go through exactly the same set of ports, they must be the 
same request route, so the sequence of ports uniquely identifies a request route. 

4   Relating the Models 

The FARNav and Request Routing models both describe navigation behavior, so they 
are related. A transition between two states in the Page Navigation state machine of 
the FARNav model corresponds to a request route in the request routing model. 

We wish not just to establish traceability between the models but to support  
round-trip engineering. With round-trip engineering the task of keeping the models 
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synchronized is greatly simplified: if a developer changes the FARNav model, then 
the Request Routing model is generated or adjusted accordingly. Similarly, if the de-
veloper changes the Request Routing model, the FARNav model can be extracted 
from the Request Routing model.  

We provide mappings to build a Request Routing model from a FARNav model 
(FARtoRR) and vice versa (RRtoFAR). We then show that the mappings are bijective 
and that they preserve the navigation-related behavior. Both of these properties are 
necessary for the mappings to be used in round-trip engineering. We do this first for 
the core part of the mappings, then extend the mappings to handle transformation op-
erations on a Request Routing model. 

Property 1: Correctness. The mapping result (a FARNav model or a Request Rout-
ing model) is semantically equivalent to the mapping source (a Request Routing 
model or a FARNav model) for the navigation-related features. 

Property 2: Bijection. Let N be a FARNav model and R be a Request Routing 
model, (∀ N, RRtoFAR(FARtoRR(N)) = N) ∧ (∀ R, FARtoRR(RRtoFAR(R)) = R)). 

4.1   The Core Mappings 

The general idea of the core mapping from navigation to request routing is as follows.  
Fig. 4 shows an example of the request routing model that would be generated from 
the navigation model in Fig. 2. After leaving the request web page node, each request 
route will go through a ProcessRequest node. This is where the developer can provide 
code to evaluate the request, so a function is assigned to each request route. The func-
tion may have return values that split requests along two or more routes. An example 
is a login function that returns either ‘success’ or ‘failure’. 

At the other end of the request routes, the last node before the response page node 
is a PrepareResponse node. Again a function is assigned so that a developer can pro-
vide code to prepare the response page. 

The nodes between ProcessRequest and Prepare-Response are created to handle the 
adaptive navigation. They check mode values and route a request accordingly, then 
set new mode values as required. 

To describe the core mappings we represent the models in a tabular format. For a 
FARNav model, each row represents a Page Navigation transition and describes its 
transit-from state, event, guard, action and transit-to state (Tables 1 and 4).  For a Re-
quest Routing model, we use one request route per table. Each row in the table de-
scribes how the request route travels through a node. So between-node connections 
are between adjacent rows (Tables 2 and 3). 

CoreFARtoRR 
Next we describe how the transition in Table 1 is mapped to the rows in Table 2. 

Row 1: The transit-from state pageA is mapped to a node named pageA, with se-
quence number “1”. This node has an exit port ExitP0 with URI pageA_eTag.  

Row 2: This row uses the ProcessRequest node, which is numbered 10. The entry 
URI is the previous row’s exit URI, and the exit URI uses the same value with 
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‘_ER_eRes’ concatenated on the end. The function is named ‘checkeTag’, and the 
function value uses the event response: ‘_ER_eRes’.  

Rows 3 through 2+i, where i is the number of guard value pairs: For guard value 
pair GM=gs, a row uses the node named CheckGM, and node number computed  
using that mode state machine’s sequence number. The entry URI is the previous 
row’s exit URI, and the exit URI concatenates on _C_gs. The function is named 
‘checkGM’ and its value is ‘_C_gs’.  

Rows 3+i through 2+i+j, where j is the number of action value pairs: For action 
value pair AM=ts, a row uses the node named SetAM, and node number computed 
using that mode state machine’s sequence number. The entry URI is the previous 
row’s exit URI, and the exit URI concatenates on _S_ts. The function is named ‘se-
tAM’ and its value is ‘_S_ts’. 

Row 3+i+j: This row uses the PrepareResponse node, which is numbered 9990. The 
entry URI is the previous row’s exit URI, and the exit URI is the transit-to state 
pageB plus “Screen”. 

Row 4+i+j: The transit-to state pageB is mapped to a node named pageBScreen, with 
sequence number “10000”. This node has an entry port ExitP3+i+j with URI pageB-
Screen.  

There is problem with assigning an arbitrary ordering for the mode state machines. 
This arises when a state in the Page Navigation state machine has two or more outgo-
ing transitions. If each of the outgoing transition guards checks a different mode state 
machine, then the ordering of these checks does not matter. If each guard checks ex-
actly the same set of mode state machines, again the ordering does not matter. But for 
the third case, where the guards check different but overlapping sets of mode state 
machines, the ordering is critical: the first mode checked must be the shared one.  Be-
cause different sets of transitions could impose conflicting restrictions on the ordering 
of mode state machines, we instead “normalize” transitions for the third case, by mak-
ing each transition from the same state check exactly the same set of mode state  
machines. Thus a transition that originally did not check a mode must be split into 
several transitions, one for each value of the added mode. 

The Function Name column of Table 2 contains modes that this function checks or 
sets, and we define a set of check-tags and a set of set-tags to specify these mode state 
machine and states. The tags were not originally part of the request routing model 
since they are needed only for maintaining traceability with the navigation model. The 
tags are kept in a table format. A function may contain multiple check-tags and set-
tags. Each tag contains an argument and a set of possible values.  

Table 1. A General Page Navigation Transition 

Transit-from Event Guard Action Transit-to 
pageA eTag.eRes GM0 = gs0, GM1 =  

gs1, …, GMi = gsi 

a0(AM0=ts0), a1(AM1=ts1), 
…, aj(AMj=tsj) 

pageB 
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Table 2. The Corresponding Request Route (Result of CoreFARtoRR) 

Entry 
Port 

Exit
Port 

Node Name 
(seq. num) 

Entry URI Exit URI 
Function 

Name 

Func 
Ret. 
Val. 

- 
Exit 
P0 

pageA (1) - pageA_eTag - - 

Entry 
P1 

Exit 
P1 

ProcessRe-
quest (10) 

pageA_eTag  
pageA_eTag
_ER_eRes 

check eTag 
_ER 

_eRes 

0<
 k

 <
=i

 En-
try 
P1+

k 

Exit 
P1+k 

CheckGMk 

(20+i*10,  
Mi = GMk) 

pageA_eTag
_ER_eRes 
_C_gs0... 
_C_gsi-1 

pageA_eTag
_ER_eRes 
_C_gs0... 
_C_gsi 

check GMk 
_C_ 
gsk 

0 
< 

k 
<=

 j 

En-
try 
P1+i

+k 
 

Exit 
P1+i+k 

SetAMk 
(30+m*10+i

*10,  
Si = AMk) 

pageA_eTag 
_ER_eRes_ 
C_gs0..._C_ 
gsi_S_ts0… 

_S_tsk-1 

pageA_eTag
_ER_eRes_
C_gs0..._C_
gsi_S_ts0… 

_S_tsk 

setAMk _S_tsk 

Entry 
P2+i+j 

Exit 
P2+i+j 

Prepare 
Response 

(9990) 

pageA_eTag
_ER_eRes_C
_gs0..._C_gsi_ 
S_ts0…_S_tsk 

pageBScreen 

pageA_eTag 
_ER_eRes_C
_gs0..._C_gsi_
S_ts0…_S_tsk

_proRes 

- 
 

Entry 
P3+i+j 

- 
pageBScreen 

(10000) 
pageBScreen - - - 

CoreRRtoFAR 
The reverse mapping (from Table 3 to Table 4) is simpler. The first row of Table 4 
maps to the transit-from state and the event tag. Then the check values of the middle 
rows are combined and mapped to the event response and guard of the transition. 
Similarly the set values of these rows are combined and mapped to the action. The 
last row maps to the transit-to state. 

Table 3. A General Request Route 

Entry 
Port 

Exit 
Port 

Node 
Name 

Entry 
URI 

Exit 
URI 

Function Name 
Func. 

Ret.Val. 

/ ExitP0 Node0 / 
Node0_
Event 

/ / 

0 
< 

i <
 n

 En
try 
Pi 

ExitPi Nodei URIi-1 URIi 

Funci [checkTag arg.: 
event”]+ [checkTag arg.: 

GMi0,  …, GMik]
+ 

[setTag arg.:  
AMi0, …, AMil]

+ 

[_ER_erV]+ 

[_C_cVi0…_
C_cVik]

+ 

[_S_sVi0…_ 
S_sVil]

+ 

En-
tryPn 

/ Noden URIn-1 / / / 
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Table 4. The Corresponding Page Navigation Transition (Result of CoreRRtoFAR) 

Transit- From Event Transit-to 
Node0 Event.erV  Node n 
 
Guard Action 

U U
1

1 0

)(
−

= =

=
n

i

k

j
ijij cVGM cVij ≠ “ANY” U U

1

1 0

))((
−

= =

=
n

i

k

j
ijijij sVAMtosV sVij ≠ “NOT” 

The core mapping from a FARNav model to a Request Routing model satisfies 
Property 1 because according to the mapping steps provided earlier, each page navi-
gation transition is mapped to a request route. It starts from an exit port of a node rep-
resenting the transit-from state and the event tag; goes through functions checking a 
mode with a state as return value as all guard value pairs; goes through functions set-
ting a mode with a state as return value as all action value pairs; ends at an entry port 
of a node representing the transit-to state. Thus it is not possible for a page navigation 
transition to have no corresponding request route. 

Also it is not possible to have a request route with no corresponding page naviga-
tion transition. The reason is the request routing model is the combination of all “cor-
rect” request routes that are mapped from the page navigation transitions. Because no 
two request routes can join before the exit port of PrepareResponse, it is not possible 
to have extra request routes that partially follow the route of a “correct” request route. 
Thus each request route maps to a page navigation transition in the FARNav model. 

A similar argument applies when showing that the core mapping from a Request 
Routing model to a FARNav model satisfies Property 1.  

Since both core mappings satisfy Property 1, it is obvious that Property 2 holds: for 
both core mappings, the number of request routes and the number of page navigation 
transitions is the same and there is 1 to 1 mapping. So applying the inverse core map-
ping gives the original source model. 

4.2   FARtoRR and RRtoFAR 

The Request Routing model generated using the core mappings can be directly used 
to guide implementation. However, a developer may want to refine the generated Re-
quest Routing model before implementation. We provide two model transformation 
algorithms: node reordering and node combining. Although we do not have space to 
show it here, after applying any sequence of these operations, the resulting Request 
Routing model still maps to the same FARNav model as the original. 

Node reordering changes a node’s sequence number and updates the request rout-
ing model. Node reordering may be used to reduce the complexity of the request rout-
ing model or may be used before combining two nodes since only adjacent nodes can 
be combined. A developer may want to combine adjacent nodes, for example when 
following the Model2 architecture, which has just one servlet acting as a front con-
troller. 

The mappings CoreFARtoRR and CoreRRtoFAR are the core mappings and they 
are bijections. However, if any transformation operations have been applied to the re-



 Relating Navigation and Request Routing Models in Web Applications 355 

quest routing model, there are now two request routing models that map to the same 
navigation model, and we lose the bijective property. Thus the transformation opera-
tions must be carried along by both models. With this approach, any number of trans-
formation operations can be applied and the core mappings remain bijections. The 
complete mappings FARtoRR and RRtoFAR are: 

FARtoRR(N, ops) = executeOps(ops, CoreFARtoRR(N)) 
RRtoFAR (R, ops) = attachOps (ops, CoreRRtoFAR(R)) 

Although the operations are included in the FARNav model, they are treated as a 
comment. Thus FARtoRR and RRtoFAR satisfies Property 1 because the core map-
pings satisfy Property 1 and neither attaching nor applying the operations affects the 
“correctness” of the result model.  

The intuition behind our proof that Property 2 holds for both mappings is as fol-
lows. If R is the result of executing a sequence of operations on the core request rout-
ing model coreR, then applying RRtoFAR followed by FARtoRR regenerates the 
original request routing model and reapplies the sequence of operations, so the result 
is the same R.  Similarly, if we start with the FARNav model N, convert it to coreR 
then to R, we have applied only the operations in N, and these are carried along when 
converting back to the FARNav model. 

5   Tool Support 

We developed a Model Helper tool that implements the mappings and transformation 
operations described in Section 4. For the forward engineering task of the round-trip 
engineering, Model Helper generates a request routing model including the function 
tags from a FARNav model. If there are existing transformation operations (OPS), 
these are applied on the generated request routing model, in the order specified. 

Then a developer can use the tool to transform the request routing model by reor-
dering the nodes or combining the nodes. A record of the operations applied is added 
to OPS. Then the request routing model can be used in Jaza to trace and analyze re-
quest routes.  

For the reverse engineering task, Model Helper uses the request routing model with 
embedded function tags and saved OPS in order to generate a FARNav model. The 
function tags are used to recreate the mode state machines, but the OPS are simply 
stored as a comment in the FARNav model. Then the developer can check the naviga-
tion design using the SMV tool. 

We applied the Model Helper in a number of case studies using existing web appli-
cations. The goal was to test the Model Helper tool and the round-trip engineering 
process. Next we give an overview of one of these case studies. A portion of the 
FARNav model for the PetStore [14] application appears in Fig. 2. This was created 
by observing the application behavior. Fig. 3 shows the corresponding Request Rout-
ing model, which was created by examining the source code. 

Starting from the FARNav model in Fig. 2, we applied Model Helper to generate 
the Request Routing model shown in Fig. 4. The port URIs generated are quite long, 
because they record the event tag, event response, and all check and set values used in 
the adaptive navigation. We abbreviated these URIs in the diagram. 
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Fig. 4. Generated Request Routing Model for the Example Application 

Next we applied some transformation operations, in order to reach a request rout-
ing model like the one in Fig. 3, which reflects the current implementation. We ap-
plied the node combining operation four times to combine nodes ProcessRequest, 
CheckLogonNextPage, CheckLogonMode, SetLogonNextPage and SetLogonMode. 
This combines the processing of requests and the handling of adaptive navigation into 
one node. Model Helper also records the operations in OPS. The result is shown in 
Fig. 5.  
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Fig. 5. The Request Routing Model after Node Combining 

The structure of the model is now close to our target, and we used Model Helper 
again to confirm that the new model conforms to the FARNav model, and that it can 
be regenerated from the FARNav model. However, node names, function names, and 
URIs are meaningful but quite lengthy, and not all functions are needed, so the next 
step is to edit the model manually: 

 rename the RequestProcess… node to SignOnFilter; 
 rename the functions in the SignOnFilter node to “testSignOn” and “validate-

SignOn” (also in the function tag table); 
 rename the Cart_LOn_... function to “doCheckout”; 
 remove the other two functions in the PrepareResponse node, and their related en-

try and exit ports (since no processing is needed for these response pages); 
 rename the PrepareResponse node to MainServlet; 
 rename the events and URIs with simpler names. 

The last change is to add a new Encoding node and encoding function right after 
the request web page nodes. 
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The resulting request routing model looks exactly like Fig. 3, except for the func-
tion return values, which still have their generated long form. Changing these is cur-
rently not allowed since that would affect the regeneration of the FARNav model. 
These manual changes are not currently supported as transformation operations. We 
can still use the Model Helper to generate the corresponding FARNav model, but the 
manual changes are not saved as OPS, so they are lost if we then regenerate the re-
quest routing model. 

After applying the manual changes to the request routing model, we used it to re-
generate a FARNav model, then compared that to the original and saw that it does 
match. So the developer is assured that the manual changes do not affect the naviga-
tion design. 

6   Related Work 

As Henriksson described in [8], for round-trip engineering it is necessary for model 
transformations to have the two properties we state in Section 4: correctness and bi-
jection. However, examining whether these properties hold is not commonly done for 
model transformations (for example, [11]). 

While nearly every existing web engineering approach includes a navigation 
model, many are simply descriptive models. There are some formal models for navi-
gation, but none explicitly describe adaptive navigation. For example, Draheim et. al. 
use bipartite graphs to describe navigation, with one set of nodes representing the web 
pages and the other set the actions taken on the server side [4]. This is equivalent to 
our Page Navigation state machine, with transition labels representing the server  
actions. Their model has no equivalent to our Mode state machines, nor for describing 
the interaction among them. 

Several existing navigation models can be used to generate an implementation. 
Fraternali et. al use HDM-lite notation to specify structure, navigation and presenta-
tion of web application semantics, then generate database schema and web pages from 
the model [5]. Merialdo et. al generate code from design artifacts [9]. Navarro et. al. 
use the Pipe approach for characterizing navigational maps then map to UML-
Conallen class diagrams with the web pages [10]. Book et. al use the Dialog Flow No-
tation to represent the dialog flow within a web application, then translate this into an 
object-oriented dialog flow model for run-time lookups [1]. Vilain et. al created the 
User Interaction Diagram (UID) as a basis for generating a preliminary class diagram 
using heuristic guidelines. [14] 

However, most of these approaches simply map to web pages (except for [1] and 
[14]). None support adaptive navigation nor explicitly show how the navigation impacts 
the request routing. None support traceability between navigation and implementation, 
nor do they provide an inverse transformation back to the navigation model.  

7   Discussion and Conclusion 

A FARNav model and a Request Routing model describe different features of a web 
application and should be used at different stages of development and maintenance. 
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The FARNav model represents the navigation design so it is related with user re-
quirements and high-level design. The request routing model represents the request 
routes in a web application, so it is closer to the implementation: the elements in a re-
quest routing model directly map to the source code elements.  

Earlier we developed these models along with operations that automatically ana-
lyze properties of the models. While each is useful independently, their utility is 
greatly improved by relating the models. This is the contribution described in this pa-
per. We provide mappings (model transformations) between a FARNav model and a 
Request Routing model and vice versa. We show that the mappings are correct, mean-
ing that they preserve navigation behavior, and that they are bijective. 

Because the mappings have these properties, they support traceability between the 
models, and they allow the models to be used in round-trip engineering. We also 
gained practical benefit by examining whether the mappings had these properties. We 
started by writing algorithms for the model transformations in pseudo-code, then dis-
covered errors after explicitly addressing these properties for the mappings. 

These mappings are implemented in a new Model Helper tool. In a forward engi-
neering scenario, as when developing a new application, the developer can: 

1. Create a FARNav model to represent and verify adaptive navigation. 
2. Run the Model Helper to generate an initial Request Routing model. 
3. If desired, trace and analyze request routes; reorder and combine nodes. 
4. Follow coding conventions to create code skeletons from the Request 

Routing model. 

For reverse engineering, the developer can: 

1. Extract the Request Routing model from the source code. 
2. If desired, trace and analyze request routes to assist maintenance tasks. 
3. Run the Model Helper to generate the FARNav model. 
4. Use the FARNav model for maintenance tasks. 

When putting these together for round-trip engineering, changes to the FARNav 
model are propagated to the Request Routing model and vice versa. Thus the Model 
Helper saves effort for the developer by generating the initial Request Routing model, 
and by ensuring that the two models are consistent. In this paper we described one of 
a number of case studies we have done, using the Model Helper in a round-trip engi-
neering scenario. 

Although we had a general idea of how we would relate the two models as we de-
veloped each, the models have changed as a result of defining the mappings between 
them. One change was to refine the format of the events on transitions in the Page 
Navigation state machine. Another change affected the way adaptive navigation is 
exhibited in the Request Routing model. An earlier version had a special notation for 
adaptive navigation, but now we generate an assembly of nodes containing check and 
set functions to handle the adaptive navigation. We had to add function tag tables to 
the Request Routing model in order to be able to recreate the details of the mode state 
machines. Finally, we had to carry the Request Routing model’s transformation op-
erations along in the FARNav model, in order to reapply those operations to a gener-
ated Request Routing model. 
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The next step for the mappings and Model Helper tool is to define additional trans-
formation operations for a Request Routing model. Once we have a richer set of op-
erations, we can investigate the use of heuristics to generate more customized Request 
Routing models, for example when the developer specifies that the front controller 
pattern should be used. 
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Abstract. In this article we provide an embedding of an interaction-based 
service notion into UML2. Such an embedding is needed, because to this date, 
UML2 has only limited support for services – they are certainly not first-class 
modeling elements of the notation. This is despite the ever increasing 
importance of services as an integration paradigm for ultra large scale systems. 
The embedding we provide rests on two observations: (i) services are 
fundamentally defined by component collaborations; (ii) to support a seamless 
development process, the service notion must span both logical and deployment 
architecture.  To satisfy (i) and (ii) we introduce modifications to the UML that 
focus on interaction modeling, and the mapping from logical to deployment 
service architectures. The result is a novel and comprehensive UML2 profile for 
service-oriented systems.  

Keywords: Rich Services, Service-oriented Architectures, Web Services, 
Model Driven Architectures. 

1   Introduction 

A major challenge in the development of ultra large scale software intensive systems 
is the controlled integration of multiple subsystems, such that the resulting system 
fulfills a wide spectrum of integration requirements ranging from authentication to 
security to policy management and governance. Web services have proven useful as a 
lightweight deployment and implementation mechanism for system integration; 
support for many of these integration challenges is, however, still under development 
in the Web services community. Furthermore, little guidance exists to date on how to 
model and design service-oriented architectures such that they leverage the emerging 
standards, such as WS-Security (authentication and security) and WS-BPEL (business 
process modeling and execution), as part of an integration solution. However, service-
orientation is quickly gaining ground also in other domains with increasing software 
complexity; the automotive domain is one example, where service-orientation is a 
declared goal [21] but the deployment architectures are quite removed from a Web 
services flavor.  

Contributions: This paper addresses this challenge by introducing a UML2 profile 
for the specification of service-oriented architectures that can be deployed on a 
variety of different object-, component- and service-oriented platforms. In particular, 
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to mention two extremes, service-oriented models according to our profile can be 
directly mapped not only into a Web service-enabled environment, but also into 
purely component-oriented deployment environments such as in automotive or 
avionics. 

To that end, we develop a modest set of stereotypes with associated structural and 
behavioral rules. To address the integration challenges of the system class we target, 
we place the interplay of the constituent services in the center of concern. Therefore, a 
major means for specifying services in our approach is by means of interaction 
diagrams. However, we allow the full set of structural and behavior specification 
techniques to describe service interfaces and detailed service behaviors.  

Figure 3 shows a generic example of the decomposition of a service-oriented 
architecture according to the Rich Services Profile we define in this paper. Intuitively, 
the profile introduces services as having an interface to their environment and, if they 
are composite, a predefined internal structure. This internal structure is modeled after 
two major successful architectural patterns: (1) the emerging Enterprise Service Bus 
(ESB) and Message-Oriented Middleware (MOM) technologies, such as the 
increasingly popular Mule/ActiveMQ [22] combination; (2) bus-oriented industrial 
communication architectures, such as they are found in production plants, cars and 
airplanes. The basic idea is that every service consists internally of a messaging 
component, a router, and a set of internal services. Any call upon the service (which 
we model as a message sent to the service via its Service/Data adapter) is intercepted 
by the Router, which – using the Messenger as its communication infrastructure – 
exposes the message to a prescribed set of internal services. Each such internal 
service can alter or transform the message on its path to its final destination. 
Analogously, calls made by the Rich Service are also intercepted by the Router before 
they leave via the Service/Data Adapter. This architectural blueprint provides a rich 
control framework for service composition. 

Benefits: The immediate benefits of this profile are as follows: (i) The concept of 
service is introduced as a first-class modeling citizen into the UML – in particular, 
service interfaces and service behavior can be modeled using the well-known 
description techniques provided by the UML. (ii) The profile defines a structural and 
behavioral blueprint for controlled service composition and refinement – each 
composite service can define a set of interaction protocols that govern the interplay of 
its constituent services, so that the interplay addresses the functional and non-
functional integration requirements. Each service, in turn, can be hierarchically 
decomposed according to the same blueprint to support scalability of the modeling 
approach. (iii) The distance between a logical service-oriented architecture following 
the blueprint and a suitable deployment architecture is minimal, resulting in improved 
traceability from requirements to implementation. 

Outline: The remainder of this paper is structured as follows. In Section 2, we 
introduce the Rich Service Profile in detail by introducing a structural and behavioral 
domain model for Rich Services modeled after Figure 3. In particular, we describe the 
stereotypes we introduce, their interplay in terms of behavioral constraints, and our 
rationale for selecting the design decisions we made. Along the way we also mention 
the description techniques available to the engineer in specifying systems according to 
the profile. Section 3 presents a case study illustrating both the modeling approach 
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enabled by the profile, and the use of the stereotypes; the context of the case study is a 
large-scale system-of-systems integration architecture in the domain of ocean 
observatories. In Section 4, we discuss our approach in the context of related work. 
Section 5 contains our conclusions and outlook. 

2   Rich Service Profile 

As service-oriented modeling and implementation technologies become more popular, 
so does the need for systematically designing large-scale systems of systems 
integration solutions based on services. The UML is a common and widely used set of 
notations providing visual modeling languages, valuable for modeling, design and 
comprehension of requirements and architectural designs. Currently, the UML 
supports specific notations for development of object- and component-oriented 
software, but to date, no explicit notion of service, as a first class modeling entity, is 
defined in the UML.  

The profile mechanism has been specifically defined for providing a lightweight 
extension mechanism to the UML standard for tailoring UML for various domains or 
different target platforms. Stereotypes, tagged values, and constraints are the main 
extension mechanisms available in a profile. To complete the previous versions of 
UML, the UML2 infrastructure and superstructure specifications have defined the 
profile mechanism as a specific meta-modeling technique, where stereotypes are 
specific metaclasses, tagged values are metaattributes, and profiles are specific 
packages [23]. In this section, we take advantage of the UML2 profile package to 
create a profile as a metamodel for complex service-oriented architectures. 

The goal of the Rich Service Profile we propose here is to provide a common 
language for describing the central aspects of service-oriented systems. This includes 
specification of the syntactic and semantic interface of individual services, behavior 
specifications for services, service composition, and the mapping of services to 
deployment architectures. As mentioned in Section 1, our particular focus is the 
controlled aggregation of individual services into composite service architectures, 
such that the resulting architecture, by construction, observes a wide spectrum of 
crosscutting requirements. The profile we present supports a variety of deployment 
platforms for implementation of the modeled service(s) – including traditional web 
service-based approaches, emerging Enterprise Service Bus technologies, and general 
message-oriented middlewares.  

In this section, we utilize the standard mechanism for tailoring the UML, profiles, 
to provide the core of a common language supporting the mentioned goals.  

The Rich Service Profile references the UML metamodel as its reference model. It 
extends Components to specify Rich Services and further constructs, including 
Router, Messenger, and Service Interfaces, needed for supporting them. In essence, a 
Rich Service serves as a Wrapper around traditional services, including web services, 
within an architectural framework that supports hierarchical service decomposition, as 
well as addressing composition and integration concerns within and across 
hierarchical levels. 

The profile also includes collaborations that define the general behavior of the 
main entities of the profile. These collaborations serve as guidelines for designers 
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who can further refine the general behaviors present in the profile to create a more 
detailed deployment model.  

In the following subsections, we introduce the stereotypes of the Rich Service 
Profile together with the relevant collaborations in detail. 

2.1   Rich Service Profile Stereotypes 

The stereotypes of the Rich Service Profile and their base classes are described in 
Table 1. Figure 1 illustrates the metamodel that the Rich Service Profile provides 
using the stereotypes of Table 1. 

RichService

1 1

Service/Data Adapter

1*

ServiceSpecification

SimpleRichService CompositeRichService

1
1

Messenger Router

Message RoutingTable

* * 1 *

Channel

RichApplicationService RichInfrastructureService

Registry

type

*

*

1*

*

structure

**

 

Fig. 1. The Rich Services metamodel 

The central entity of the profile is the Rich Service. It serves to model individual 
services, as well as their integration into composite services. Intuitively, a Rich 
Service consists of the following entities: (1) a Service/Data Adapter, which serves as 
the interface of the Rich Service to its environment, (2) a Messenger, which is 
responsible for message transmission among the sub-services of a Rich Service, (3) a 
Router, which is responsible for intercepting inbound and outbound messages to and 
from the Service/Data Adapter and routing these messages through the correct set of 
sub-services, and (4) the sub-services themselves, which are also Rich Services that 
communicate using the Messenger and Router. 

A Rich Service is modeled as a stereotype extending Component from the UML  
BasicComponents package. A Rich Service is active, meaning that it has an 
associated behavior; it has precisely one externally visible port stereotyped as the 
Service/Data Adapter. A Rich Service defines provided and required Service 
Specifications. Service Specification stereotypes the Interface from the 
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ProtocolStateMachines package and has a tag named Protocol, which is a protocol 
state machine that defines the external view of the sequence of operation calls that can 
occur on the interface.  

Table 1. Stereotypes of the Rich Service Profile 

Stereotype Base Class Tags Parent   
RichService Component Adapter  
SimpleRichService Component  RichService 
CompositeRichService Component Messenger, 

Router 
RichService 

Messenger Component   
Router Component RoutingTable  
RoutingTable Class   
Channel Class   
PublishSubscribe 
Channel 

Class  Channel 

PointToPointChannel Class  Channel 
DataTypeChannel Class  Channel 
Message NamedElement   
Adapter Port (From 

ProtocolStateMachines)
Protocol  

ServiceSpecification Interface (from 
ProtocolStateMachines)

Protocol  

Registry Component Publish: (Provided 
Interface) 

 

 
A Rich Service can be simple, meaning that it has no (or, more precisely, a trivial) 

internal structure in the sense of entities (2)-(4) mentioned above; it can also be 
composite, having an internal structure as follows. A Composite Rich Service has a 
Messenger, a Router, and a number of internal Rich Services. Messenger and Router 
are stereotypes extending Component. Multiple internal Rich Services can be attached 
to the Messenger via ports. Messenger is responsible for Message transmission 
between the connected Rich Services and between the Rich Services and the 
Service/Data Adapter. Messenger has a number of Channels to implement the 
messaging. A Channel is a stereotype extending Class. This allows the profile to 
support various types of channels, including Publish_Subscribe Channel, DataType 
Channel, and Point_to_point Channel. A Messenger is always associated with a 
Router. The Router is responsible for routing the messages through the correct set of 
Channels based on its Routing Tables. Routing Table is a stereotype extending Class. 
Intuitively, the router is the mechanism that allows us to inject monitoring and 
transformation services into a composite service. The idea is that the router intercepts 
inbound messages at the Service/Data adapter, before they are accessible to the 
internal Rich Services. The router then follows the configuration stored within its 
Routing Table to steer the processing of these messages from one internal Rich 
Service to another. This mechanism can be used, for instance, to encrypt or decrypt 
messages, to log them, to persist them, etc, without the sender being aware of the 
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intermediate services. Similarly, outbound messages are exposed to the routing 
scheme before they leave the Rich Service via the Service/Data Adapter. 

Rich Services can be of two types: Rich Infrastructure Service (RIS), or Rich 
Application Service (RAS). Rich Application Services are only aware of the 
Messenger, while Rich Infrastructure Services can manipulate the Routing Tables and 
therefore have access to the Router. Rich Infrastructure Services are Rich Services 
that can directly access the routing tables in order to provide services to the 
messaging infrastructure, while Rich Application Services provide application-
specific services to the system. A specific example of a Rich Infrastructure Service is 
a Registry where other Rich Services can publish their Service Specification, i.e. their 
interfaces including the protocol state machines. The Registry associates Channels to 
published Service Specifications; other Rich Services can subscribe to Channels 
based on their Service Specifications. The information on subscription of Rich 
Services to Channels is kept as part of the Routing Table and the Router is responsible 
for routing the messages sent by the provider Rich Service to the subscribing Rich 
Services. When a Service/Data Adapter puts a Message on the Messenger, the Router 
intercepts the Message and routes it based on the Routing Table information through a 
set of Rich Infrastructure and Application Services.  

2.2   Behavior 

Collaborations are particularly useful as a means for capturing standard design 
patterns. Since a Collaboration in UML2 is a kind of classifier, any kind of behavioral 
description can be attached to it. By extending Collaborations from the UML2 
Collaborations package we can form prototypical collaborations to define behavioral 
pattern of some of the Rich Service Profile entities as part of the profile. These 
Collaborations can have associated interactions to achieve a more detailed behavior 
specification. The Stereotyped Collaborations can be used as guidelines for designers 
on how to use and integrate the profile entities to form meaningful system models.  

 

Fig. 2. Communication collaboration 

A Communication Collaboration for a Composite Rich Service (see Figure 2) is a 
stereotype that has a Messenger, a Router, and multiple Rich Services as its parts 
(tags). Every Composite Rich Service instantiates such a collaboration. The bindings 
of the collaboration roles to the Rich Service’s parts are trivial due to the shared 
names of the roles and Rich Service’s parts. An interaction can be attached to this 
collaboration, specifying the behavior of the Router as an interceptor (Smart Proxy 
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[29]). Every Rich Service can send a Message to Messenger. The Router works as an 
interceptor and picks up the Message, routs it through any specified intermediate Rich 
Services before sending it to the destination Rich Service. These intermediate Rich 
services can be Rich Infrastructure Services, or they can be other Rich Application 
Services. This describes the generic behavior for service composition. A composite 
Rich Service implements this behavior via the respective role bindings.  

Designers can capture the overall behavior of a Composite Rich Service as an 
interaction. Such an interaction will have the internal Rich Services, the Messenger, 
and Router as its lifelines. This high level behavior will specify the order in which 
Rich Services communicate, and can be used to populate the Routing Table. To 
further refine the model behavior, one can use PartDecomposition from the UML2 
Interactions package to decompose the internal Rich Services (modeled as lifelines) to 
capture the internal behavior of these internal Composite Rich Services. Of course, 
the internal behavior is visible from outside the Composite Rich Services only to the 
degree it is specified in the corresponding Service/Data Adapter. The Formal Gates on 
the decomposed interaction form the interfaces for the Composite Rich Service. 

The high level behavior can also be represented as UML2 Protocol State Machines, 
which can be further redefined to form the internal behavior of encapsulated 
Composite and Simple Rich Services. This allows us to model service behavior with 
all the behavior description techniques provided by UML2. 

3   Case Study 

We demonstrate the utility of the proposed profile and metamodel by using a case 
study from the domain of global ocean observatories, namely the federated Ocean 
Research Interactive Observatory Networks (ORION) program [24]. This case study 
is an elaboration of the ORION-CI conceptual architecture available at [24]. Clearly, 
here we can only scratch the surface of the complexity of building an architecture of 
the scale of ORION. However, it allows us to show (i) modeling of services and their 
integration, (ii) service decomposition, and (iii) the direct deployment mapping from 
an instance of the profile to state-of-the art Web services technologies. Along the way 
we will also sketch the key steps of our iterative service elicitation and architecture 
definition process: (1) model use cases and their relationships, (2) identify the 
collaborations, interfaces, and associated integration constraints that define the 
services needed to support the use cases, (3) flesh out the service architecture using 
Composite and Simple Rich Infrastructure and Application Services as needed, 
following the integration requirements elicited in (2), (4) specify behaviors of Simple 
Rich Services as needed, or refine them into Composite Rich Services, (5) specify 
mapping from the entities in the Rich Service Profile to deployment entities to create 
an instance of the architecture. Iterate over (1)-(5) until the desired degree of detail is 
reached.  

A system satisfying the goals of ORION would support scientific discovery by 
providing eligible oceanographers with ubiquitous access to instrument networks for 
sensing and actuation, computational resources, and modeling and simulation 
facilities, as well as means for distributed data storage and access. A traditional SOA 
approach would quickly reach its limits in the face of the challenges induced by the 
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diverse requirements of supporting governance of the different authority domains, 
access policies, and concerns of the multiple stakeholders involved in such a complex 
system-of-systems. To capture the requirements for and manage the complexity of the 
resulting cyber-infrastructure we exploit the Rich Service Profile as defined above; 
we directly benefit from its disentanglement of logical and deployment architectures 
for services because the various subsystems indeed rest on a wide spectrum of 
deployment technologies.  
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Fig. 3. Orion case study model based on our profile 

 

The hierarchical nature of Rich Services supports creating traceable views for 
various stakeholders of the system, and a decomposition methodology that supports 
operation and distributed management of thousands of independently owned taskable 
resources (modeled as services) of various types (e.g., sensors, sensor platforms, 
processes, numerical models and simulations) across a core infrastructure operated by 
independent stakeholders. This also enables hierarchical structuring of the 
stakeholders’ logical roles into the cyber-infrastructure, and encapsulation of 
crosscutting concerns according to their individual policies.  

Figure 3 represents a possible subset of stakeholders as high-level Rich Services 
such as an Observatory and a Research Laboratory. Such a decomposition allows us 
to reason about their role in the cyber-infrastructure without dealing directly with 
their internal deployment models. Steps (1)-(3): In order to illustrate the steps 
involved in modeling such a system based on the proposed profile, we will consider 
one use case of the system, namely an oceanographer accessing a remote ocean 
instrument and retrieving the experimental data from the instrument. As a requirement 
for this use case, all of the conversations between an oceanographer and an instrument 
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must be logged. The oceanographer and instrument are parts of different authority 
domains, each with its own set of requirements and policies. At a very high level 
view, we can abstract from the Adapters and concentrate on the communication 
between Rich Services. The use case can be modeled as a Communicate collaboration 
(see Figure 2) use where Research Laboratory and the Observatory play the roles of 
Rich Services, and the Messenger and the Router play their respective roles. 

 

Fig. 4. Observatory-Research Laboratory Collaboration with Logging 

To enforce the logging requirement, however, we create a logging collaboration, as 
it can be reused for other use cases of the system as well. The Logging collaboration 
has two Rich Application Service roles: RAS1 and RAS2, and a Logging Rich 
Infrastructure Service. It specifies that every message sent by RAS1 to the Messenger 
will be sent by the Router to the Logging role and then to the RAS2, through the same 
Messenger. An interaction diagram can be used to express the sequence of 
interactions for this collaboration in more detail. Now, we can create a new 
collaboration for our use case that uses the Logging collaboration to capture the 
communication of the Observatory and the Research Laboratory. This collaboration is 
shown in Figure 4. In order to capture the detailed behavior of this collaboration we 
use a UML interaction diagram shown in Figure 5.  

In this interaction, the Research Laboratory, Observatory, Router, and Messenger 
are captured as lifelines, because they are connectable elements (parts) of their 
container, i.e. the Rich Service modeling the overall system. The Research Laboratory 
sends the request to the Messenger, destined for the Observatory. The Router 
intercepts this communication, sending the request to the Logging Rich Service, also 
via the Messenger. After being processed by the Logging service, the Router routes 
the request to the final destination, the Observatory. Note that by using UML 
interactions, we can further impose time and duration constraints on the occurrences 
of partial interactions. This interaction model captures the essential behavior of the 
system to fulfill the use case and its integration requirements and constraints. 
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Client:RAS :Messenger :Router Encryption:RIS :Adapter

m1(ch1)
m1(ch1)

m1(ch2)
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m2(ch3)

m2(ch3)

 

Fig. 5. Interaction diagram for the Observatory-Research Laboratory collaboration 

Step (4) - behavior specification and refinement:  The Research Laboratory itself is 
a composite Rich Service and may have many internal services such as oceanographer 
client service, identification, authentication, and encryption of the outbound 
messages. The identification and the management of the remote Instrument also 
concerns another stakeholder, as the Instrument is located deeper in the hierarchy of 
the Observatory, and within the local control domain of a Regional Cabled 
Observatory near the seashore. We can use PartDecomposition from the UML 
Interactions package, which is a new concept added in UML2, to further decompose 
the model capturing the interactions occurring between the internal parts (Rich 
Services) of each of these composite Rich Services. As an example, Figure 6 shows 
how the Oceanographer Client’s outgoing requests should be intercepted by the 
internal Router and processed by the Encryption Rich Service before reaching the 
Adapter, which acts as a gateway for outbound messages.  

Observatory:RAS :Messenger :Router Logging:RISResearchLaboratory:RAS

m1(ch1) m1(ch1)

m1(ch2)

m1(ch2)

m1(ch3)

m1(ch3)

m1(ch4)m1(ch4)

 

Fig. 6. Research Laboratory internal interaction for Encryption 

 

Note that the only formal gates for the internal interactions of a composite Rich 
Service exist on the Adapter lifeline of the interaction. Following the semantics of the 
PartDecomposition, these formal gates must match the actual gates on the 
decomposed lifeline in the higher level interaction. Together these gates define the 
partial interfaces of the composite Rich Service. The union of the gates of the 
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composite Rich Service from all the interactions that it participates in will form the 
complete interface of this service. Since these gates are expressed as parts of the 
interactions, partial or global protocol state machines can be assigned to their union in 
the interface, giving a richer definition of the service.  

Also note that PartDecomposition is used to model a form of service composition 
where the participating services are parts of the same composite Rich Service. 
Sanders et al. [14] propose a methodology for modeling and specifying service 
composition using UML2 collaborations. They also use interaction overviews, and 
state machines to specify the collaboration behavior in further details. Such an 
approach, being based on UML2, fits well with our Rich Service Profile and can be 
used to model service composition. Service composition can be addressed in a 
centralized way by adding a coordinating Rich Service that will orchestrate the 
participating services and with the help of the Router/Interceptor. BPEL4WS is the 
standard choice for such an approach if the Web Services is the target domain. 
Service composition can also be addressed in a distributed way, where choreography 
based languages such as WSCL or WS-CDL can be used when targeting the Web 
Services domain. Rich Services support these composition approaches while their 
encapsulation and hierarchy guide developers to focus on one hierarchical level at a 
time[28]. 

Step (5) – deployment mapping: A possible deployment plan for such a system 
might include classic Web services or a more general Enterprise Service Bus (ESB)-
based technology. ESBs combine the strengths of message-oriented middleware; a 
flexible plugin architecture for processing messages to handle crosscutting concerns 
for a set of connecting Rich Services; and a rich set of data adapters/connectors to 
facilitate rapid connections between emerging and legacy data sources, applications 
and services. Examples of ESB implementations include Architect's Toolbox, Cape 
Clear's ESB, Fiorano ESB, Sonic ESB, SpiritSoft's Spiritwave, and CodeHaus’ Mule. 
For instance, a web service based target platform, might consider WSDL as the 
Adaptor and Service Interface description. Also conversion rules described in [15] for 
converting UML models to WDSL can be used. Leveraging the many technologies 
supported by an ESB, including Mule as transport mechanisms, an Adaptor can 
publish itself via JMS, HTTP, SOAP, etc. Also, in this example we have abstracted 
from the Registry services, assuming that the binding is hard-coded into the Routing 
Tables, which are actually a feature of the ESB itself. Since the Registry is modeled 
as a Rich Service, the same modeling approach can be used for the interactions 
including a Registry, which can be mapped to a UDDI service as a target technology. 
This example shows how the Rich Service Profile allows specification of a service-
oriented architecture at both the logical and the deployment level, using the 
description techniques already included in UML2. Because it disentangles logical and 
deployment aspects of services, the profile lends itself to the modeling of complex 
service architectures with heterogeneous deployment infrastructures.  

4   Discussion and Related Work 

Model driven design and development of systems is a well-established practice [19]. 
However, model driven approaches to service-oriented design of systems are still in 
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their early stages. Although UML [23] is a commonly used and widely accepted 
modeling language, it still has no explicit support for services and their auxiliary 
constructs. The work presented here leverages the experience we have gained in 
earlier research, where we have built a comprehensive Service Architecture Definition 
Language (Service-ADL) with services as first-class modeling citizens [25], and 
makes these concepts accessible within the UML. In particular, this allows us to also 
carry over the interaction modeling, behavior synthesis, and architecture exploration 
techniques we have built for Service-ADL into the UML context [1] [2]. 
Several other attempts exist to use existing UML constructs to model service-oriented 
applications. [3] uses UML class diagrams to design a general model for service-
oriented architectures (SOAs) and uses collaboration diagrams and graph 
transformation rules for dynamic architecture reconfigurations. [4] proposes use of 
UML 2.0 collaboration diagrams for modeling web service collaboration protocols 
along with activity and interaction diagrams as more detailed modeling levels. Kim 
[26] investigates how UML diagrams can be used to graphically specify collaboration 
protocols with an automated mapping to BPSS. UMM [27] provides rich set of UML-
based modeling concepts for business to business collaboration protocols and 
methodological guidance to move from requirements gathering to implementation 
design. All of these approaches suggest the use of UML modeling techniques for 
SOA modeling. Our work complements these efforts by embedding an explicit 
metamodel for SOAs into the UML.  

Profiles, as the only lightweight means for extending UML, were leveraged in 
many approaches to address the lack of support for services. All of these profiles are 
based on UML 1.x, while the changes from previous UML versions to UML 2.0 have 
important benefit and impact on service modeling, which is leveraged in our Rich 
Service Profile. Electronic Services are proposed in [5] as services that are enriched 
with content and provision. A UML profile for Electronic Service Management 
Systems [5] is created as a framework for representing operational logic of e-services, 
providing a conceptual infrastructure for e-services development and management. 
However, ESMS does not address the business definition and engineering of services. 
The Enterprise Collaboration Architecture (ECA) defined as part of the UML profile 
for distributed object computing (EDOC) [6] provides a comprehensive framework 
for modeling of enterprise systems, while still no explicit notion for services exists in 
this profile. UML activity models are recommended for service composition modeling 
in this profile. A metamodel for WSDL is proposed in [8] along with a mapping to 
UML. Our Rich Service Profile, while based on UML 2.0, has explicit notions for 
services and adds an architectural pattern to service modeling, while it maps well to 
currently used Web services technologies, such as WSDL, UDDI and BPEL. For 
instance, we can use BPEL specifications not only for individual services, but also for 
the interaction model of composite Rich Services, and then derive the corresponding 
routing and interaction constraints from these specifications. Gardner [7] describes a 
UML profile for automated business processes and a mapping of the profile to 
BPEL4WS. He uses UML activity graphs for specifying the business processes. This 
profile can be used along with the Rich Service Profile if a mapping of the model to 
BPEL as a target technology is desired. The profile proposed in [20] is based on 
UML2. It models services as first class elements; however, as mentioned before, the 
Rich Services Profile goes beyond by adding a scalable architectural pattern enabling 
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the managed integration of multiple existing service composition and coordination 
approaches. 

In the web services domain, there are several other approaches such as [9] 
suggesting the use of activities from UML to model web service composition, while 
[10] proposes a service composition model based on UML class diagrams. Thöne et 
al. [11] create a UML profile for web service composition and propose the 
UML_WSC language as a replacement for BPEL4WS. A different approach to 
service composition leverages rich ontologies that describe service characteristics. For 
example, the Semantic Web [12] community uses semantic annotations to reason 
about Web services by using languages such OWL-S [13]. In our Rich Service 
Profile, services are enriched by having hierarchies and following the specific 
architectural pattern as part of the metamodel. The use of a Router as an interceptor 
allows for modeling dynamic reconfiguration at runtime, if needed. Specifically, we 
can model a wide range of service composition operators, including sequencing, 
alternatives, repetitions, and parallelism, by means of the Routing Table of the 
composing Rich Service. More complex operators, such as the ones modeling 
interrupts, or service synchronization can be modeled using the Routing Table in 
conjunction with an additional Rich Infrastructure Service that monitors and manages 
the composition result. Service interfaces are already augmented by suggesting the 
addition of protocol state machines on them as part of the metamodel, and the profile 
has the capability of exposing richer interfaces and communication reconfiguration at 
run time, thereby enabling the use of ontology-based composition techniques. 

Work on Web Services composition has highlighted its tight coupling with 
interaction modeling. [16] explores the use of Message Sequence Charts (MSC) to 
define interactions. [17], for example, presents a tool that transforms MSC to BPEL 
specifications to allow Web services composition. We leverage similar techniques to 
compose Rich Services. Toward this goal we have already experimented with the 
definition and composition of services based on MSC in [18]. 

5   Conclusions and Outlook 

Service-oriented modeling and implementation are the centerpieces of modern 
system-of-systems integration approaches. Web services and related technology 
standards address many important issues of service deployment. The modeling of 
service-oriented integration architectures, independently from Web Services 
deployments, however, is still an area of active research and experimentation. To date 
there is no widely accepted modeling language for that purpose – specifically, the 
UML2 proper has not assigned “first-class modeling status” to the notion of service. 

In this paper, we have identified the need for having an interaction-based, 
hierarchical service model that disentangles logical architecture from deployment 
concerns. We have introduced an UML2 profile for Rich Services. Rich Services 
introduce an explicit integration architecture, consisting of a messaging and routing 
component, which allows controlled composition of the internal sub-services that 
implement a service’s behavior. This provides support for a wide spectrum of service 
composition operators and allows the designer to manage crosscutting aspects of an 
integration task – examples are: encryption, governance, and policy management. 
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Furthermore, the hierarchic decomposition of Rich Services allows us to scale service 
models to any desired level of detail. Using a systems-of-systems integration 
challenge from the domain of oceanography, we have demonstrated utility of the 
profile, as well as the direct mapping of Rich Service models to current Web Service-
based technologies. 

By construction, we leverage all of the UML’s description techniques for system 
specifications based on our profile; tailoring these description techniques further to 
address dynamic architecture changes, as they are supported by our profile, is one 
interesting area of future work. 
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Abstract. The specification of business processes is becoming a more and more 
critical aspect for organizations. Such processes are specified as workflow 
models expressing the logical precedence among the different business activi-
ties (i.e. the units of work). Up to now, workflow models have been commonly 
managed through specific subsystems, called workflow management systems. 
In this paper we advocate for the integration of the workflow specification in 
the system domain model. This workflow-extended domain model is automati-
cally derived from the initial workflow specification. Then, model-driven  
development methods may depart from the extended domain model to auto-
matically generate an implementation of the system enforcing the business 
processes in any final technology platform, thus avoiding the need of basing the 
implementation on a dedicated workflow engine.  

1   Introduction 

Software development processes for complex business applications usually require 
the definition of a workflow model to express logical precedence and process con-
straints among the different business activities (i.e. the units of work).  

Currently, workflow models are usually implemented with the help of dedicated 
workflow management systems (e.g., [15], [21]) which are heavy-weight applications 
focused on the control aspects of the workflow enactment. Alternatively, some ap-
proaches focus on the implementation of the workflow model in a specific technology 
platform, as  relational databases (generally in the form of triggers [2]), web applications 
(by means of hypertextual links and buttons properly placed in Web pages, thus restrict-
ing the user navigation [5]) or web services (through transformation into BPEL4WS 
[18]). These adhoc approaches are hardly generalizable to other technologies. 

In this paper we adopt a formalized model-driven development process for work-
flow-based applications and advocate for the automatic integration of the workflow 
model within the (platform-independent) domain model. Given a domain model d and 
a workflow model w, it is possible to automatically derive a full fledged domain 
model d’ enriched with the types needed to record the required workflow information 
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in w (mainly its activities and the enactment of these activities in the different work-
flow executions) and with a set of process constraints over such types to control the 
correct workflow execution. We refer to this resulting model as the workflow-
extended domain model. We will represent it using UML class diagrams annotated 
with OCL constraints to represent the process constraints. The whole process is 
sketched in Fig. 1.1. Note that, if necessary, several workflow models can be inte-
grated within the same domain model. This approach has been implemented in a pro-
totype tool. 

The main characteristic of a workflow-extended domain model is that it automati-
cally ensures a consistent behavior of all enterprise applications with respect to the 
business process specification. As long as the applications properly update the work-
flow information in the extended model, the generated process constraints enforce 
that the different tasks are done according to the initial workflow model.  

Another advantage of a workflow-extended domain model is that it is platform-
independent. Indeed, our workflow-extended model can benefit from any method or 
tool designed for managing a generic domain model, no matter the target technology 
platform or the purpose of the tool, spawning from direct application execution, to 
verification/validation analysis, to metrics measurement and to automatic code-
generation in any final technology platform. Those methods do not need to be ex-
tended to cope with our workflow-extended models, since our workflow-extended 
domain model is a completely standard UML model.  

Moreover, our workflow-extended models enable the definition of more expressive 
business constraints, including timing conditions [8] or involving both workflow and 
domain information. These constraints are generally not allowed by workflow defini-
tion languages.  

The rest of the paper is structured as follows: in Section 2 the basic workflow con-
cepts and our case study are illustrated. In Sections 3 and 4 we provide the definition 
of the workflow-extended domain model and of the OCL process constraints, respec-
tively. Section 5 sketches possible implementation strategies for this extended model. 
Section 6 compares our approach with related work and in Section 7 we draw our 
conclusions, provide some details about our tool support and discuss future work.  

 

Fig. 1.1. MDD process for workflow-based applications  
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2   Basic Workflow Concepts 

Several visual notations and languages have been proposed to specify workflow mod-
els, with different expressive power, syntax, and semantics. Without loss of general-
ity, in our work we have adopted the Workflow Management Coalition terminology 
and the BPMN [20] OMG standard notation1. 

The workflow model is hence based on the concepts of Process (the descrip-
tion of the business process), Case (a process instance, that is, a particular work-
flow execution), Activity (the elementary unit of work composing a process), 
Activity instance (an instantiation of an activity within a case), Actor (a user role 
intervening in the process), Event (some punctual situation that happens in a 
case), and Constraint (logical precedence among activities and rules enabling 
activities execution). Processes can be internally structured using a variety of 
constructs: sequences of activities; gateways implementing AND, OR, XOR 
splits, respectively realizing splits into independent, alternative and exclusive 
threads; gateways implementing joins, i.e., convergence point of two or more 
activity flows; conditional flows between two activities; loops among activities or 
repetitions of single activities. Each construct may involve several constraints 
over the activities. 

Our approach covers a large subset of the full expressive power of BPMN; we do 
not cope with the concepts of nested subprocesses (which can be easily tackled by 
flattening the process representation), transactions (which can exploit implementation 
features), and a few combinations of primitive constructs, such as the direct concate-
nation of several gateways (which can be handled by introducing fake activities be-
tween them).  

In the sequel, we will exemplify the proposed approach on a case study consisting 
of a workflow implementing a simplified purchase process, as illustrated in Fig. 2.1.  

According to the BPMN semantics, the depicted diagram specifies a process in-
volving two actors (represented by the two swimlanes): a customer and a seller. The 
customer starts the workflow by asking for a quotation about a set of products (Ask 
Quotation activity). The seller provides the quotation (Provide Quotation activity) 
and the customer may decide (exclusive choice) to modify the request (and hence the 
quotation request and response are repeated) or to accept it (then the order is submit-
ted and the seller takes care of it). For simplicity, it is not modeled what happens if 
they do never reach an agreement. The order management requires two parallel activi-
ties to be performed: the choice of the shipment options and the internal management 
of each order line. The latter is represented by the multi-instance activity called Proc-
ess OrderLine: a different instance is started for each order line included in the order. 
Once all order lines have been processed and the shipment has been decided (i.e., 
after the AND merge synchronization), the order is shipped and the customer pays the 
corresponding amount. 
                                                           
1 The results of our approach when using Activity Diagrams would have been quite similar. See 

[23] for a correspondence between BPMN and Activity Diagrams. 
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Fig. 2.1. Example of a workflow schema 

3   Extending Domain Models with Workflow Information 

Given an initial domain model, the workflow-extended domain model of the work-
flow-based application is obtained by extending the domain model with some addi-
tional elements derived from the workflow specification. This extension can be  
regarded as a kind of model weaving between the workflow and domain models [13].  
We will focus on the case of a single workflow; however, our extensions to the do-
main model suffice when considering different workflows on the same domain. 

Clearly, the workflow-extended domain model is more complex than the original 
domain model. However, we believe that this increased complexity is compensated by 
the fact that it may be automatically generated (with our method) and processed (with, 
for instance, code-generation tools) and thus, the designer does not need to manipu-
late it. Moreover, the size of the extension is constant regardless the size of the do-
main model and linear with respect to the number of activities in the workflow.  

The workflow-extended model contains the minimum set of concepts required to 
manage the workflow and to easily specify the needed process constraints. However, 
richer schemas with further relationship types and/or attributes could be defined, 
according to the requirements of the specific workflow application (for example, we 
could have used a more complex pattern for the specification of the role-user relation-
ship [6]). Similarly, simpler extensions could be used instead but then, as a trade-off, 
the process constraints would become much more complex. 

To illustrate the process we will use the workflow model of Fig. 2.1 and we will 
assume that the initial domain model is the one shown in the bottom part of Fig. 3.1, 
consisting in the types Product, Quotation, QuotationLine, and Order (note that when 
accepted by the customer, a Quotation generates an Order and then, its quotation lines 
are referred to as order lines). 
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The workflow-extended domain model must include at least: (i) the original do-
main model, (ii) user-related information, (iii) workflow-related information, (iv) a set 
of possible relationships between the domain schema, the workflow information and 
the user information, and (v) a set of process constraints guaranteeing a consistent 
state of the whole model with respect to the workflow definition (see the next sec-
tion). Due to lack of space, the extensions required for Event management are only 
provided in [3]. 

More formally, we define a workflow-extended domain model as follows. Given 
an initial domain model with entity types (i.e. classes) E={e1,…,en}, representing the 
knowledge about the domain, and a workflow model w with activities A={a1,…,am}, 
the workflow-extended domain model  is obtained in the following way: 

i) Domain subschema: All entity types in E and their relationships (i.e. associations) 
remain unchanged in the workflow-extended model (bottom part of Fig. 3.1).   

ii) User subschema: User-related information is added to the extended model by 
means of two entity types (see the top-left part of Fig. 3.1): entity type User repre-
sents individual workflow actors; entity type Role represents groups of users, hav-
ing access to the same set of tasks. A user may belong to different roles. 

iii) Workflow subschema: Workflow-related information (top-right part of Fig. 3.1) 
includes several fixed types (i.e. independent of the particular workflow model): 
- Entity type Process represents the supported workflows. As an example, an in-

stance of the Process type would be our Purchase workflow. Other instances 
would represent additional workflows over the same domain subschema. 

- Entity type Case denotes an instance of a process, which has a name, a start 
time, an end time and a status, which can be: ready, active, cancelled, aborted, 
or completed [20]. Every execution of a process results in a new instance of 
this type. This new instance is related with the appropriate process instance. 

- Entity type ActivityType represents the different activities that compose a proc-
ess. Activity types are assigned to roles, which are responsible of executing 
them. In our case study, AskQuotation, ProvideQuotation, etc. would be in-
stances of ActivityType. 

- Entity type Activity denotes the occurrence of a particular activity within a 
Case, described by the start time, the end time, and the current status, which 
can be: ready, active, cancelled, aborted, or completed. Only one user can exe-
cute a particular activity instance, and this is recorded by the relationship type 
Performs. The Precedes relationship keeps track of the execution order be-
tween activities.  

and a set of workflow-dependent subtypes: 
- For each activity a ∈ A, a new subtype sa is added to the entity type Activity 

(ActivityType is a powertype for this set of generalization relationships). The 
name of the subtype is the name of a (e.g., in Fig. 3.1 we introduced Proces-
sOrderLine, AskQuotation, ShipOrder, and so on). These subtypes record the 
information about the specific activities executed during a workflow case. For 
instance, the action of asking a quotation for the purchase X in a case C of a 
workflow W would be recorded in the system as an instance of the AskQuota-
tion subtype related with the corresponding instance “C” in the Case type (in 
its turn related with the “W” instance in the Process type) 
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iv) Relationships between workflow subschema and domain subschema: each subtype 
sa is related with a (possibly empty) set of entity types Ea ⊆ E.  These new rela-
tionship types are useful to record the objects modified/managed during the execu-
tion of a certain activity. Also, they are required to evaluate conditions appearing 
in some process constraints. In the case study (see Fig. 3.1), a set of relationship 
types are established: Quotations are associated to the activities Ask Quotation and 
Provide Quotation; QuotationLines are associated to the ProcessOrderLine activ-
ity; and Orders are associated to the activities Submit Order, Choose Shipment, 
Process OrderLine, Ship Order, and Pay Order.  When necessary, these associa-
tions between the domain and the workflow subschemata may be automatically 
generated if the workflow specification includes auxiliary primitives for describ-
ing the data flow between activities and/or when the designer defines some pat-
tern-matching among the names of the activities and of the entity types. Other-
wise, they must be manually specified.  
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Fig. 3.1. Workflow-extended domain model  

4   Translation of Process Constraints  

The structure of a workflow model implies a set of constraints regarding the execution 
order of the different activities, the number of possible instances of each activity in a 
given case, the conditions that must be satisfied in order to start a new activity, and so 
forth. These constraints are usually referred to as process constraints. The behavior of 
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all enterprise applications must always satisfy these constraints. Thus, the generation 
of the workflow-extended model must consider all process constraints.  

Process constraints are translated as constraints over the population of the sa1,…,sam 

subtypes of Activity (see previous section). The generated constraints guarantee that 
any update event over the population of one of these subtypes (for instance, the crea-
tion of a new activity instance or the modification of its status) will be consistent with 
the process constraints defined in the workflow model.  

We specify process constraints by means of invariants written in the OCL lan-
guage. Invariants in OCL are defined in the context of a specific type, the context 
type. The actual OCL expression stating the constraint condition is called the body of 
the constraint. The body is always a boolean expression and must be satisfied by all 
instances of the context type, that is, the evaluation of the body expression over every 
instance of the context type must return a true value. Constraints are defined to re-
strict only the execution of the workflow they are created for. Therefore, no interfer-
ences among different workflows occur, even if they are defined over an overlapping 
subset of the domain model. 

The complexity of the constraints is of relative importance since all of them are 
automatically generated from the workflow model, and thus, they do not need to be 
manipulated (nor even necessarily understood) by the designer but for other tools. 
However, to simplify its presentation in the extended model, we could easily define 
an stereotype for each constraint type, as done in [9]. 

Next subsections define a set of patterns for the generation of the process con-
straints corresponding to the different constructs appearing in workflow models (se-
quences, split gateways, merge gateways, conditions, loops, and so on).  The patterns 
can be combined to produce the full translation of the workflow model. As an exam-
ple, we provide in Section 4.6 the translation of the workflow model of Fig. 2.1. Pat-
terns for the generation of process constraints for Events are only shown in [3]. 

Note that some constructs admit several graphical representations equivalent to the 
ones used in this paper (see [20] for details). Moreover, the workflow language de-
fines some complex constructs that can be derived from the basic ones, such as com-
plex gateways and event-based gateways, not addressed here due to lack of space. 

4.1   Sequences of Activities 

A sequence flow between two activities (Fig. 4.1) indicates that the first activity (A) 
must be completed before starting the second one (B). Moreover, if A is completed 
within a given case, B must be eventually started before ending the case (we do not 
require B to be completed since, for instance, it could be interrupted by the trigger of 
an intermediate exception event). This behavior can be enforced by means of the 
definition of three OCL constraints. 

BA

 

Fig. 4.1. Sequence flow 
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The first constraint (seq1 constraint) is defined over the entity type corresponding 
to the destination activity (B in the example) stating that for all activity instances of 
type B the preceding activity instance must be of type A and that it must have been 
already completed. Its specification in OCL is the following: 

context B inv seq1: previous->size()=1 and previous->exists(a| a.oclIsTypeOf(A) 
and a.status=‘completed’) 

This OCL definition enforces that B instances (since B is the context type of the 
constraint) have a previous activity (because of the size operator over the value of the 
navigation through the role previous) and that such activity is of type A  (enforced by 
the exists operator). B and A are Activity subtypes as defined in Section 3.  

The other two required constraints are: 

- A constraint seq2 over the second activity to prevent the creation of two different B 
instances related with the same A activity instance 

context B inv seq2: B.allInstances()-> isUnique(previous)  

- A constraint seq3 over the Case entity type verifying that when the case is com-
pleted there exists a B activity instance for each completed A activity instance. This 
B instance must be the only instance immediately following the A activity instance. 

context Case inv seq3: status=‘completed’ implies self.activity-> select(a| 
a.oclIsTypeOf(A) and a.status=‘completed’)->forAll(a|a.next->exists( b| 
b.oclIsTypeOf(B)) and a.next->size()=1) 

4.2   Split Gateways  

A split gateway is a location within a workflow where the sequence flow can take two 
or more alternative paths. The different split gateways differ on the number of possi-
ble paths that can be taken during the execution of the workflow. For XOR-split gate-
ways only a single path can be selected. In OR-splits several of the outgoing flows 
may be chosen. For AND-splits all outgoing flows must be followed. 

For each kind of BPMN split gateway, Table 4.1 shows the process constraints re-
quired to enforce the corresponding behavior.  

Besides the process constraints appearing in the table, we must also add to all the 
activities B1…Bn the previous constraints seq1 and seq2 to verify that the preceding 
activity A has been completed and that no two activity instances of the same activity 
Bi are related with the same preceding activity  A. We also require that the activity 
instance/s following A is of type B1 or … or Bn. 

Table 4.1. Constraints for split gateways 

Split gateway Process constraints 

Bn

A

B1

XOR Split
 

- Only one of the B1..Bn activities may be started  

context A inv: next->select(a| a.oclIsTypeOf(B1) or … or 
a.oclIsTypeOf(Bn))->size()<=1  

- If A is completed, at least one of the B1..Bn activities must be 
created before ending the case 

context Case inv: status=‘completed’ implies activities-> se-
lect(a|a.oclIsTypeOf(A) and a.status=‘completed’)-> forAll 
(a|a.next->exists(b|b.oclIsTypeOf(B1) or..or b.oclIsTypeOf(Bn))) 
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Table 4.1. (continued) 

B1

Bn

A

OR Split  

- Since several B1..Bn activities may be started, we just need to 
verify that if A is completed, at least one of the B1..Bn activities 
is created before ending the case (like in the XOR split above) 

A

Bn

B1

AND Split
 

-If A is completed all B1..Bn activities must be eventually started  
context Case inv:status=‘completed’ implies activity->select(a| 
a.oclIsTypeOf(A) and a.status=‘completed’)->forAll(a| a.next-
>exists(b| b.oclIsTypeOf(B1)) and … and a.next->exists( 
b|b.oclIsTypeOf(Bn))) 

4.3   Merge Gateways  

Merge gateways are useful to join or synchronize alternative sequence flows. Depend-
ing on the kind of merge gateway, the outgoing activity may start every time a single 
incoming flow is completed (XOR-Merge) or must wait until all incoming flows have 
finished in order to synchronize them (AND-Merge gateways). The semantics of the 
OR-Merge gateways is not so clear. If there is a matching OR-split, the OR-Merge 
should wait for the completion of all flows activated by the split. If no matching split 
exists several interpretations are possible, being the simplest one to wait just till the 
first incoming flow. This is the interpretation adopted in this paper. For a complete 
treatment of this construct see [24].  

Table 4.2 presents the different translation patterns required for each kind of merge 
gateway. Besides the constraints included in the table, a constraint over A should be 
added to all gateways to verify that two A instances are not created for the same in-
coming set of activities (i.e. the intersection between the previous instance/s of all A 
instances must be empty). 

Table 4.2. Constraints for merge gateways 

Merge gateway Process constraints 

B1

A

Bn
XOR Merge

 

- All A activity instances have as a previous activity instance a 
completed activity instance of type B1 or … or Bn 

context A  inv: previous->size()=1 and previous->exists(b| 
(b.oclIsTypeOf(B1) or … or b.oclIsTypeOf(Bn)) and 
b.status=‘completed’) 

- Each B1..Bn  activity instance is followed by an A activity 

context Case inv: status=‘completed’ implies activity->select(b| 
b.oclIsTypeOf(B1) or … or b.oclIsTypeOf(Bn))-> forAll(b|b.next-
>exists(a| a.oclIsTypeOf(A))) 

A

Bn

B1

OR Merge
 

- An A activity instance must wait for at least an incoming flow 

context A  inv: previous->select(b| (b.oclIsTypeOf(B1) or … or  
b.oclIsTypeOf(Bn)) and b.status=‘completed’)->size()>=1 
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Table 4.2. (continued) 

B1

Bn

A

AND Merge  

- An activity instance of type A must wait for a set of activities 
B1..Bn to be completed 
context A inv: previous->exists(b| b.oclIsTypeOf(B1) and 
b.status=‘completed’) and … and  
previous->exists(b| b.oclIsTypeOf(Bn) and b.status=‘completed’) 

- Each set of completed B1..Bn activity instances must be related 
with an A activity instance.  
context Case inv: status=‘completed’ implies not ( 
activity->exists(b|b.oclIsTypeOf(B1) and   b.status=‘completed’ 
and not b.next->exists(a| a.oclIsTypeOf(A)) and … and activity-
>exists(b| b.oclIsTypeOf(Bn) and b.status=‘completed’ and not 
b.next->exists(a| a.oclIsTypeOf(A))) 

4.4   Condition Constraints 

The sequence flow and the OR-split and XOR-split gateways may contain condition 
expressions to control the flow execution at run-time. As an example, Fig. 4.2 shows 
a conditional sequence flow. In the example, the activity B cannot start until A is com-
pleted and the condition cond is satisfied. The condition expression may require ac-
cessing the entity types of the domain subschema related to B in the workflow-
extended model. Through the Precedes relationship type, we can also define condi-
tions involving the previous A activity instance and/or its related domain information.  

To handle these condition expressions we must add, for each condition defined in a 
sequence flow or in an outgoing link of OR and XOR gateways, a new constraint over 
the destination activity. The constraint ensures that the preceding activity satisfies the 
specified condition, according to the following pattern: 

context B inv: previous->forAll(a| a.cond) 
Note that these additional constraints only need to hold when the destination activity 
is created, and thus, they must be defined as creation-time constraints [19]. 
  

A Bcond

 

Fig. 4.2. A conditional sequence flow 

4.5   Loops 

A workflow may contain loops among a group of different activities or within a single 
activity. In this latter case we distinguish between standard loops (where the activity 
is executed as long as the loop condition holds) and multi-instance loops (where the 
activity is executed a predefined number of times). Every time a loop is iterated a new 
instance of the activity is created. Fig. 4.3 shows an example of each loop type. 
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BAAA

 
Standard Multi-Instance External 

 

Fig. 4.3. Loop examples  

Management of external loops does not require new constraints but the addition of 
a temporal condition in all constraints stating a condition like “an instance of type B 
must be eventually created if an instance of type A is completed”. The new temporal 
condition on those constraints ensures that the B instance is created after the A in-
stance is completed (earlier B instances may exists due to previous loop iterations). 

Standard loops may be regarded as an alternative representation for conditional 
sequence flows having the same activity as a source and destination. Therefore, the 
constraints needed to handle standard loop activities are similar to those required for 
conditional sequence flows. We need a constraint checking that the previous loop 
instance has finished and another one stating that the loop condition is still true when 
starting the new iteration (again, this is a creation-time constraint). The loop condition 
is taken from the properties of the activity as defined in the workflow model. More-
over, we need also to check that the activity/ies at the end of the outcoming flows of 
the loop activity are not started until the loop condition becomes false. To prevent this 
wrong behavior we should treat all outgoing flows from the loop activity as condi-
tional flows with the condition ‘not loopCondition’. Then, constraints generated to 
control the conditional flow will prevent next activity/ies to start until the condition 
‘not loopCondition’ becomes true. 

Multi-instance loop activities are repeated a fixed number of times, as defined by 
the loop condition, which now is evaluated only once during the execution of the case 
and returns a natural value instead of a boolean value. At the end of the case, the 
number of instances of the multi-instance activity must be an exact multiple of this 
value. Assuming that the multi-instance activity is called A, the OCL formalization of 
this constraint would be: 

context Case inv: (activity->select(a|a.oclIsTypeOf(A))->size() mod loopCondition)=0 

For multi-instance loops the different instances may be created sequentially or in 
parallel. Besides, we can define when the workflow shall continue. It can be either 
after each single activity instance is executed (as in a normal sequence flow), after all 
iterations have been completed (similar to the AND-merge gateways), or as soon as a 
single iteration is completed (similar to the basic OR-merge gateway).  

4.6   Applying the Translation Patterns 

As an example, Table 4.3 summarizes the process constraints resulting from applying 
the translation over the workflow schema of Fig. 2.1.   

For sake of brevity, we do not include here the complete set of constraints, but we 
exemplify in Table 4.4 the full definition of the constraints involved in the Provide 
Quotation activity (the rest of the specifications can be found in the extended version 
of the paper at [3]). The Provide Quotation activity involves a set of constraints due 
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to the sequence constraint with Ask Quotation activity and a set due to the subsequent 
XOR split.   

Table 4.3. Process constraints for the workflow running example 

Activity Constraints 
Ask 

Quotation 
- When the activity instance comes after a Provide Quotation, the latter must 

have been completed (a single new ask quotation activity can be generated). 
Otherwise, it must have been created in response to the occurrence of a start 
event (due to the implicit XOR merge gateway corresponding to the two in-
coming arrows).  

Provide 
Quotation 

- A quotation cannot be provided until the Ask Quotation activity has finished. 
Moreover, if an instance of Ask Quotation is completed, a single Provide 
Quotation instance must eventually be created 

- After providing a quotation we can either ask for a new quotation or submit 
an order, but not both.  At least one of them must be executed. 

Submit 
Order 

- The previous Provide Quotation activity must be completed. Besides, only a 
single Submit Order instance must be created for the same Provided Quota-
tion instance 

- After submitting an order, both the Choose Shipment and the Process Or-
derLine activities must be executed 

Choose 
Shipment 

- The preceding Submit Order activity instance must be completed. Besides, a 
single Choose Shipment activity must be executed for each Submit Order  
activity instance 

Process 
OrderLine 

- The preceding Submit Order activity  must be completed  
- The system must exactly execute as many Process OrderLine activity in-

stances as the number of order (quotation) lines for the related order 
Ship 

Order 
- The order cannot be shipped until the shipment has been chosen and all 

order lines have been processed. Then, a Ship Order activity instance must 
be executed before ending the case 

Pay 
Order 

- An order cannot be paid until it has been shipped. A single pay order activ-
ity shall be created in response to each order shipment 

 

5   Code-Generation of the Workflow-Extended Domain Model 

A workflow-extended domain model is a completely standard domain model. No new 
modeling primitives have been created to express the extension of the original model 
with the required workflow information. Therefore, any method or tool able to pro-
vide an automatic implementation of the initial domain model can also cope with the 
automatic generation of our workflow-extended model in any final technology plat-
form using general-purpose MDD techniques and frameworks. 

For instance, activity classes (as AskQuotation or ProvideQuotation) could be  
implemented as database tables or Java classes while process constraints could be 
implemented as triggers and method preconditions respectively. Note that a transla-
tion from OCL into SQL or Java is already provided by several tools (e.g., [10], [16]), 
covering also efficient implementation of OCL constraints [7]. 
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Table 4.4. Constraint definitions for the Provide Quotation activity 

The preceding activity must be of type Ask Quotation and must be completed 
context ProvideQuotation inv: previous->size()=1 and previous->exists(a| 
a.oclIsTypeOf(AskQuotation) and a.status=‘completed’) 
No two instances may be related with the same Ask Quotation instance 
context ProvideQuotation inv: ProvideQuotation.allInstances()-> is-
Unique(previous) 
A Provide Quotation instance must exist for each completed Ask Quotation 

Constraints 
due to the 
sequence 
with Ask 
Quotation  

context Case inv: status=‘completed’ implies activity-> select(a| a.oclIsTypeOf( 
AskQuotation) and a.status=‘completed’)->forAll(a|a.next-
>exists(b|b.oclIsTypeOf( ProvideQuotation)  and a.end<=b.start) and a.next-
>size()=1) 
The next activity must be either another Ask Quotation instance or a Submit 
Order instance, but not both 
context ProvideQuotation inv: next->select (a|  a.oclIsTypeOf(AskQuotation) or 
a.oclIsTypeOf(ProvideQuotation))->size()<=1  
If the Provide Quotation instance is completed, an Ask Quotation or a Submit 
Order must be created before ending the case.  

context Case inv: status=‘completed’ implies activity->select(a|a.oclIsTypeOf( 
ProvideQuotation) and a.status=‘completed’)-> forAll (a| a.next-> exists(b|  
b.oclIsTypeOf(AskQuotation) or b.oclIsTypeOf(SubmitOrder))) 
Only Ask Quotation activity instances or Submit Order instances may follow a 
Provide Quotation instance 

Constraints 
due to the 
XOR split 

context ProvideQuotation inv: next->forAll(b| b.oclIsTypeOf(AskQuotation) or 
b.oclIsTypeOf(SubmitOrder) 

6   Related Work 

Research on business process in software engineering has mainly addressed the cor-
rectness of the design of the workflow model (see [12] as an example) or its direct 
implementation in specific final technology platforms (see [2] for an implementation 
over a relational database and [5] for an implementation using web technologies). 
Integration of workflows and MDD approaches has only been explored from a gen-
eral framework perspective [14]. 

As far as we know, ours is the first proposal where both workflow information and 
process constraints are automatically derived from a workflow model and integrated 
within a platform-independent domain model. As we have seen in the previous sec-
tion, this integration permits to generate workflow applications in any final technol-
ogy without requiring to develop an specific treatment for the workflow model. 

Moreover, ours is also the first translation of a workflow model into a set of OCL 
declarative constraints. Such a translation is necessary regardless how these con-
straints are to be enforced in the final workflow implementation.  

Very few examples of translations to other declarative languages exist (e.g., see [4] 
for a translation to LTL temporal logics). In literature, workflow metadata and OCL 
constraints have only been used in [11] to manually specify workflow access control 
constraints and derive authorization rules, in [1] to express constraints with respect to the 
distribution of work to teams, in ArgoUWE [17] to check for well-formedness in the 
design of process models, in [22] to manually specify business models with UML and in 
[18] to specify the contracts for the transformation of activity diagrams into BPEL4WS.  
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7   Conclusions 

In this paper we presented an automatic approach to integrate the semantics of busi-
ness process specifications within domain models.  

Once the designer has specified both the workflow and the domain models sepa-
rately, we build an integrated workflow-extended domain model by means of adding 
to the domain model (i) the definition of a set of new entity and relationship types for 
workflow status tracking and (ii) the rules for generating the integrity constraints on 
such types, needed for enforcing the business process specification.  

The integration of both the domain and the workflow aspects in a single extended 
domain model permits a homogeneous treatment of the workflow-based application.  
For instance, we can apply the usual model-driven development methods over our 
extended model to generate its automatic implementation in any technology platform. 

To make the proposed approach viable, we have developed a visual editor proto-
type that allows to design BPMN diagrams (see the tool of Fig. 2.1) and to automati-
cally generate the corresponding workflow subschema (Fig. 3.1) and its process  
constraints, according to the guidelines presented in this paper. In particular, given the 
XML representation of the workflow model and the XMI representation of the initial 
domain model (in particular the XMI version used by MagicDraw), our tool generates 
a new XMI file containing the workflow-extended model and the process constraints.   

Future work will include the extension of our translation patterns to directly cover 
the full expressivity of the BPMN notation and the study and comparison of different 
implementation options for the workflow-extended models depending on application-
specific requirements. Also, we would like to explore the possibility of using our 
extended model as a bridge to facilitate reverse-engineering of existing applications 
into their original workflow models and to ease keeping them aligned. Finally, we 
plan to develop a method that, from the generated process constraints, is able to com-
pute the list of activities that can be enacted by a user in a given case (i.e. those activi-
ties that can be created without violating any of the workflow constraints according to 
the case state at that specific time. 
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Abstract. Business-driven development is an approach that focuses on 
automating the path from business understanding to IT solution. IBM’s 
experiences with customers taking a business-driven approach to develop 
services-oriented solutions are highlighting a number of best practices that are 
important to share and discuss. This paper focuses on how companies adopting 
a service-oriented approach are assembling the appropriate environment to be 
successful. The paper identifies three design techniques for SOA and describes 
when each of them can be used in practice, depending on the business and IT 
drivers and the organization’s maturity. We then highlight how to use structured 
enterprise models together with the tools and methods to automate the design of 
service-oriented solutions. These scenarios and examples are playing an 
important role in the development of future method content and tooling 
requirements for IBM Rational tools. 

1   Introduction 

Intense pressures on developing software-intensive solutions in many business 
domains are the result of several convergent factors, including [1,2]:  

• End users want more timely, synchronized information to be available 
everywhere, on demand, with no downtime. 

• To be competitive, enterprise IT organizations are taking advantage of lower 
labor rates around the world, integrating components from a variety of suppliers, 
and reusing solutions across product lines and solution families.  

• The fast pace of business change is leading to a greater number of enterprises 
focused on agile delivery of on time solutions that are “good enough” rather than 
miss key business deadlines. 

• Today’s distributed solutions platforms offer a rich collection of distributed 
infrastructure technologies allowing greater flexibility in how core application 
capabilities  are deployed, optimized, and redeployed as the business needs 
change.  

 

As a result, existing software design practices are under pressure to support 
different design styles, architectures, and team structures. The new solutions, often 
described under the broad umbrella of Service-Oriented Architectures (SOA), exhibit 
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common characteristics: a focus on business/IT alignment, support for assembly of 
components, and recognition that flexibility in design is paramount [3]. A great deal 
of attention is being given to technology support for SOA. 

However, while many technology aspects of SOA solutions have been discussed in 
detail, there are remarkably few analyses of the kinds of design techniques 
organizations are adopting to create an SOA. Indeed, where these topics are 
addressed, they often devolve into broad generalization of interface-based design 
approaches (e.g., [4, 5]), or technology-specific tutorials linked to a specific 
implementation technology (e.g., [6, 7]). 

This paper describes real-world design techniques applied by IBM customers when 
developing business applications in a service-oriented style. Following a discussion 
on design principles for SOA, this paper describes three categories of design 
techniques that span the services-oriented solutions we have seen. We then further 
elaborate services-oriented design approaches by describing a model-driven approach 
to SOA that uses these techniques based on a substantial set of industry models used 
in a range of enterprise application in the financial services domain. 

2   Design for SOA 

The goal of service-oriented solutions is to provide the flexibility to treat elements of 
business processes and the underlying IT infrastructure as secure, standardized 
components – typically Web services – that can be reused and combined to address 
changing business priorities. They enable businesses to address key challenges and 
pursue significant opportunities quickly and efficiently. 

To achieve this goal solutions adopt a specific architectural style [8] that focuses 
on collaborations among independent providers of capabilities. By considering this 
style of solution, and its common realization as web services, we recognize a set of 
characteristics for services that inform us of their nature and applicability. 
Furthermore, efficient use of services suggests a few high-level best practices, 
particularly in relation to more established object and component-based design 
approaches. In particular, services are typically: 

• Coarse-grained — operations on services are frequently implemented to 
encompass more functionality and operate on larger data sets, compared with 
component-interface design. 

• Defined via their interfaces— services implement separately defined interfaces. 
The benefit of this is that multiple services can implement a common interface 
and a service can implement multiple interfaces. 

• Discoverable — services need to be found at both design time and run time, not 
only by unique identity but also by interface identity and by service kind. 

• Instantiated as a single instance — unlike component-based development, 
which instantiates components as needed, each service is a single, always running 
instance that a number of clients communicate with. 

• Loosely coupled — a SOA is loosely coupled architecture because it strictly 
separates the interface from the implementation.  In addition, runtime discovery 
further reduces the dependency between service consumers and providers and 
makes SOA even more loosely coupled. Services are connected to other services 
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and clients using standard, dependency-reducing, decoupled message-based 
methods such as XML document exchanges. 

• Asynchronous — in general, services use an asynchronous message passing 
approach; however, this is not required. 

• Reusable — services are assets that can be reused in several contexts regardless 
of the component architecture. 

 
Some of these criteria, such as a focus on interfaces and ease of discovery, are also 

used in existing component-based development approaches. However, the major 
difference between SOA and component-based development is the fact that SOA 
focuses only on interfaces, their discoverability, and emphasizes loose coupling, 
particularly over network infrastructures. While in contrast, component-based 
development focuses on the component execution environment, and the acquisition 
and deployment of software components in that environment. Collectively, these 
characteristics differentiate a services-based solution from one developed using 
component architectures. 

2.1   SOA Design Elements 

In light of these SOA characteristics, when developing service-oriented solutions, our 
experiences indicate that there are 5 elements to a solution that are essential to such an 
architectural style [17]. Each must be modeled using appropriate notations and 
techniques. Briefly, as illustrated in Figure 1, these 5 elements are: 

• Service – A service is a software resource (discoverable) with an externalized 
service specification. This service specification is available for searching, 
binding, and invocation by a service consumer.  

• Message – Many service-oriented solutions are inherently message based in that 
they communicate by passing messages. A message is a subset of an information 
model which is passed into or out of a service invocation. 

• Interaction – The behavioral specification of a service is described as an 
interaction, defining the protocol between the service and the consumer, a service 
may be stateful, or it may have certain conversational requirements fulfilled by 
the client. 

• Composition – A Service Collaboration represents a configurable, externalized 
flow description sequencing a set of message exchanges between services. 

• Policy – The policy information specifies constraints and governance regarding 
the operation of the service. Examples of policies include security, availability, 
quality of service and so forth; these also represent non-functional requirements 
on the solution as a whole. 

In designing for a service-oriented solution, these 5 elements are the basis for the 
service model. The service model is used to conceive as well as document the design 
of the software services. It is a comprehensive, composite artifact encompassing all 
services, providers, specifications, partitions, messages, collaborations, and the 
relationships between them. The service model primarily sets the architecture, but is 
also a vehicle for analysis during the elaboration phase. It is then refined by detailed 
design decisions during the construction phase. 
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Fig. 1. Elements of an SOA Design Style 

2.2   Developing SOA Solutions with the IBM Rational Software Delivery 
Platform 

Our experiences at IBM over the past 3 years in developing and delivering service-
oriented solutions have led to the creation of a number of methods, practices, and 
automated capabilities designed to support their practical realization. The IBM 
Rational Software Delivery Platform is an integrated set of capabilities for business-
driven development of solutions [9]. It supports the design, implementation, testing, 
deployment, and management of services-based solutions, particularly when those 
solutions are realized as web services.  

From these experiences we can distill some of the key technologies pertaining to 
SOA design that are often in use, these include the following. 

• Business-level tools for modeling and simulation that support description of 
business-level services in the context of business optimization or business 
improvement efforts (e.g., WebSphere Business Modeler). 

• Business service choreography and assembly using a standards-based business 
service definition and execution approach, optimized for integration with 
business integration runtimes (e.g., WebSphere Integration Developer). 

• Support for architectural design of services and service assemblies with 
governance and control of those architectures through the application of SOA 
patterns. Prepackaged transformations and an open extensibility platforms 
support a rich set of transformations from analysis and design models to 
implementation (e.g., Rational Software Architect). 

• A set of capabilities for web services creation and validation consisting of a 
comprehensive set of web services tools to discover, create, build, test, deploy 
and publish Web services. This includes automated generation of fully functional 
component tests for Java (classes, interfaces), EJBs, and Web Services. (e.g., 
Rational Application Developer). 

 
Collectively, these capabilities provide an integrated platform that allows services 

to be designed, visualized, assembled, constructed, tested, deployed and monitored. 
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They make use of an emerging SOA-based programming model and design notation 
that make it easier to build solutions that meet the needs of the business  

3   Practical SOA Design Techniques 

Analyzing the characteristics of SOA solutions is useful in providing insights into 
how a delivered system assembled from services differs from established object-based 
techniques. However, a key challenge for developing an SOA is how to identify 
appropriate services, and how to architect service-based solutions as service 
interactions that constitute a flexible service model. Furthermore, to manage risk in 
adopting an SOA approach requires a deeper understanding of the impact on the roles 
and activities of a typical enterprise IT project. 

Our experiences with users of the IBM Rational Software Delivery Platform have 
allowed us to observe three primary design patterns being used in the creation of 
service-oriented solutions: message-centric, services-centric, and collaboration-
centric. Here we outline these three design patterns, and illustrate them with specific 
examples abstracted from real customer experiences. We focus on the impact of these 
design techniques on the roles and tasks of an enterprise IT project. 

3.1   Message-Centric Design 

3.1.1   Main Characteristics 
Many useful applications of an SOA style involve integrating several existing 
solutions with overlapping capabilities. A key element of any solution is 
synchronization and mediation between data sources. Taking a message-oriented view 
of these situations can frequently be very useful. As a result, the most useful services 
may be those that act as data management services and the identification of services 
will tend to focus more on the data model, domain model, or business analysis model. 

3.1.2   Practical Example 
A large insurance provider was developing new applications to support one of their 
lines of business. The alignment between the business and supporting IT in this 
company was reasonably good, with a good focus on delivery of value to the business 
through IT. 

The project in this scenario is the extension of two claims processing systems to 
provide service-oriented interfaces that will enable their tactical integration. The 
strategic objective was to be able to retire one system and move all claims processing 
to a single system.  

The line of business folks expressed the desire that the services be in support of 
some existing business processes, but since these processes change over time, 
coupling the services to the process would have been impractical. In response, the IT 
architect for this business area suggested that a more appropriate approach might be to 
focus on the business artifacts in the process, primarily of course the claim itself. 
These artifacts were already defined as part of their enterprise architecture efforts 
based on IBM Insurance Application Architecture (IAA) [10]. 
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The main effort was then in understanding the mappings between these enterprise 
artifacts and the system-specific representations.  

3.1.3   Key Activities 
The Business Analyst documented requirements, both functional and non-functional, 
to support current and planned integration of systems. Process models were developed 
for both current systems and their intersection. 

The IT Architect took these requirements and worked with the Business Analyst to 
develop more detailed process models that focused on the flow of artifacts in common 
between the two systems. The IT Architect also worked with the Business Analyst in 
understanding the data requirements of the current systems and their relationship to 
the IAA data model. 

The Data Architect worked with the IT Architect in drawing up a schema for the 
“canonical” representations of the artifacts in the new processes. 

The IT Architect developed an initial service model that partitioned the process 
activities into a set of service operations. This model included the message 
requirements for each operation and the relationship of the messages to the artifact 
data model. 

The IT Architect worked with Integration Specialists to define the mappings 
required from this new model to the current implementations. These mappings were 
to be implemented in the middleware but must not be so onerous as to introduce 
major performance issues. 

The IT Architect worked with Senior Developers in elaborating requirements for 
adapters that may have been needed in the existing applications. The Developers were 
responsible for the delivery of these adapters to support the new process. 

3.2   Service-Centric Design 

3.2.1   Main Characteristics 
Adapting a common design technique from both Object-Oriented and Component-
based Development, a useful way to begin service identification involves identifying 
the services in some business or technical domain through a domain analysis 
technique such as noun-verb analysis, or CRC cards. Then, as collaborations between 
services are analyzed the operations (responsibilities of the service) are identified and 
added to the service specification. 

In addition, some refactoring takes place by aggregating services and operations 
into more meaningful units. Driven by business-level use cases or typical user 
scenarios, this helps to ensure that the services defined are not too fine grained and 
represent more reusable business-focused capabilities. 

3.2.2   Practical Example 
An on-line provider of components for the chemical process industry wanted to 
provide access to the purchasing portal via more programmatic means than through 
the web itself. Previously, the business provided a web portal through which 
customers could buy parts as well as phone and fax; at some point they had attempted 
to implement an EDI purchasing solution but the cost of initial deployment as well as 
the required infrastructure proved too costly. It was felt that a number of current 
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customers were moving to other providers that offer such access as they are able to 
integrate them better into their more automated processes. 

In this case the project was far more driven by the IT organization, as the business 
goals were simply to provide a mechanism to perform the same ordering operations 
without having either the customer spend time entering into the web portal or the 
business entering orders from faxes. So, this left the IT organization to make many 
decisions independently, and obviously to produce a solution that did not require the 
cost of the previous EDI attempt. 

So, two important design decisions/observations were made by the senior team in 
the IT organization. 

1. The set of capabilities provided must not be any less than the customer is able to 
do via the web or manual ordering. 

2. The set of operations should not be driven by the organization’s business 
processes, but be used by a customer as a part of their processes with the result 
that any implementation will have the least possible set of assumptions about 
their use. 

 

So in this case the IT architect produced a set of use case documents describing the 
kinds of capabilities expected by customers and agreed them with the business team. 
The use cases were then broken down into a set of discrete operations and the data 
requirements (messages) specified. These operations were then aggregated into a set 
of three services for search, ordering and account management; this step was driven 
more by experience and judgment than any precise metrics and so was necessarily 
iterative in nature. 

Once the services and the set of operations were known the team defined the 
service specifications more formally, including the protocols for each interface and 
any policy information that was required by service consumers. This step was 
extremely important as it provided the consumers with information that could be 
understood from simply reading the WSDL deployed by the business once the 
services were ready for use. 

3.2.3   Key Activities 
The Business Executive communicated a need to provide the business’ clients access 
to business services programmatically as they felt the business was losing revenue to 
larger providers that currently provided such capabilities.  

The IT Architect introduced the proposal to develop a set of services that provided 
the core capabilities of the web ordering system. The proposal included a set of use 
cases describing the activities customers were already performing via the web 
(developed with a Business Analyst from the on-line business). Also included was an 
early model demonstrating the services and their relationship to the existing back-end 
system (demonstrating services, providers and partitions representing the service zone 
and back-end application zone). 

The IT Architect, on approval of the project, iterated on the initial model to include 
gateways on the back-end application zone that reflected the services provided by the 
applications and the permissible access to those services. 
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In parallel the IT Architect had a Senior Developer look at the existing web 
application and how it interacted with the back-end system, mining out any required 
business logic and requirements to be implemented by the services. 

The IT Architect and Business Analyst agreed the set of required actions to be 
provided as operations provided by the services and any constraints/policies required. 
This iteration of the model then showed three concrete services as well as initial 
service specifications, although these only specified the interfaces at that time. 

The IT Architect worked with Developers on the web application team to 
understand the specific data requirements for the identified set of operations. This was 
handed to a Data Architect with XML skills to develop a message model that 
generated the schemas for the messages to be consumed and produced by the 
operations. 

The Senior Developer began to connect the service model with an implementation 
model (J2EE) that would be used to describe the components that provide business 
logic and connect with the existing back-end applications. 

The IT Architect and Senior Developer finally refined the service model with 
details on the service specifications; primarily providing protocol details that enabled 
a consumer to understand how to interact with the services. 

That approach resulted in a complete set of models: 

1. A use-case model describing the customer expectations. 
2. A service model describing both the consumer view (service specifications) 

and provider view (services, partitions, etc.).  
3. A set of implementation models describing the software components realizing 

the service specifications. 

It was then possible for the Developers to implement the pilot system ready for a 
select set of customers to use. 

3.2.4   Follow-Up Actions 
Following the successful deployment of the pilot project it was noted that the 
provision of the services to clients involved a parallel implementation of certain 
functionality to the web system. A new project was proposed, and included in some 
regularly planned updates to the web application, to reconfigure the web application 
to reuse these services. Such a reconfiguration moved certain business logic from the 
web application into the services and so a single set of components were then used for 
both the web- and service-centric customers.  

To address performance concerns by the web application team the services were 
also reconfigured to provide more efficient Java bindings when accessed from the 
web application in addition to the SOAP/HTTP bindings provided to partners. 

3.3   Collaboration-Centric Design 

3.3.1   Main Characteristics 
Many organizations have a mature view of the business processes that allow them to 
focus on the major roles and activities that form their business, and how the major 
stakeholders interact to perform a particular business-driven task. This perspective 
provides an “outside in” view into the service design, highlighting the collaborations 
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among services, and thereby allowing identification of specific behavior required of 
each service. 

In particular, this approach provides a very tight connection between business 
stakeholders and the IT organization implementing services by allowing for service 
operations to directly support the tasks identified in process models. In general, 
business process models focus on tasks performed by roles and/or resources in an 
organization to accomplish some task, usually to provide value in the form of product 
or service to an external party such as a customer or partner. 

3.3.2   Practical Example 
In this scenario we describe a mid-tier banking organization that decided to pursue a 
strategy of growth through acquisition and an organization for whom Information 
Technology is not just a must-have but a competitive advantage in absorbing acquired 
operations. 

The bank developed a leading portfolio of applications, and a portfolio that is 
carefully managed to ensure both cost and capability efficiency. However, it was clear 
that certain technical and cultural inhibiters existed in the vision to provide a common 
set of applications across the whole organization. These inhibiters directed the 
company to look at the provision of IT capabilities through services and to develop all 
new capabilities in such a style. The organization has, over the years, developed a 
very process-centric mind set, and it is these well understood and common processes 
that allow them to effectively integrate acquired organizations but also to direct their 
IT in support of these processes. The IT organization has been organized to be very 
close to the business teams that define the processes that run the banking group – i.e. 
for this organization the well documented Business/IT Gap does not exist simply 
because the group has organized to eliminate it.  

The bank brought one of its legacy applications into the service portfolio, which 
gave them the opportunity to look at one of the process models. The process model 
for account consolidation, a business service whereby the organization assists 
customers in making more efficient use of their accounts, contained a number of 
“black-box” activities. In the models, it was common for an activity to be performed 
either by systems that are not enabled as part of the service portfolio, or in ways that 
were not yet detailed. In this case the models denote these as “black-boxes” and no 
more details were provided. In this example it was noted that certain legacy 
applications participate not only in three activities in the account consolidation 
process, but an analysis of other process models uncovered two other processes where 
the application was being used. 

In the method that the organization has come to rely on, the process models are the 
primary artifact for analysis and requirements gathering. The process itself represents 
the complete embodiment of the functional requirements of the business on the IT 
(and personnel) and attached and formally defined documents describe non-functional 
requirements. Such process models are carefully maintained under configuration 
management and published for each operational process so they not only guide the 
development of the process but also provide material for training the bank’s staff in 
the processes. 

The service portfolio mentioned earlier was a RAS [13] repository that allows for 
searches based on criteria defined by the RAS manifest in each asset. The assets were 
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the deployed services and the manifest consisted of a core profile for describing 
services and extensions describing business information such as ownership, policy 
and so forth.  

In developing the services to provide the capabilities of the legacy application, the 
team (combined business and IT representation) focused very much on the 
collaboration between services as the realization of a business process. In this way the 
business experts were able to see the result as a traditional business process model 
whereas the IT side saw the same model as a collaboration between services. 

3.3.3   Key Activities 
The Business Analyst either created a new or updated an existing business process 
model. This model described the new process as envisioned by the business; this 
process update also included the definition of business documents managed, 
consumed or produced by the process activities. 

The IT Architect created a gap analysis document that compared the requirements 
of the new business process against the existing service portfolio. 

The Business Analyst defined Key Performance Indicators as a part of the business 
process itself. This implies that the services participating in the process supported 
metrics that could be queried to ensure conformance with the KPIs. 

The Data Architect refined the business document definitions from the business 
process model, ensuring commonality with existing schema and then developed a 
message model that could be used to generate the XML schemas required for the 
services. 

The IT Architect updated the services models with either new services or added 
new specifications to existing services. The message models developed by the data 
architect were used (or reused) for these service specifications. 

The IT Architect and Business Analyst updated the process model defined earlier 
to map activities to the new or updated services. The model was therefore complete 
with respect to the service update, and it could be versioned and published. 

The IT Architect and Senior Developer developed detailed service specifications 
that included the protocol and policy information. Such a detailed specification acted 
as a contract between the provider and consumer, and so could not be broken by 
either party. 

The Developers created adapters and/or transforms against the legacy application 
for implementation of the detailed specifications.  

The Developers developed the metric required for monitoring, these were generally 
specific operations required for the monitoring infrastructure to query the service for 
general state and state of the metrics. 

The Integration Specialist updated process choreographies with new services, in 
this case the business process was transformed into a choreography language (BPEL). 
In some cases the generated choreography needed to be updated with some additional 
information before deployed. 

The Business Analyst updated the monitoring middleware with the business KPI 
definitions, and defined their relationship to the detailed metrics. As a result, the new 
services could then be monitored. 
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4   Use of Enterprise Models to Automate Realization of  
Service-Oriented Solutions 

Enterprise models can provide an efficient context for designing a service-oriented 
solution. The three identified SOA design techniques can each leverage a different 
facet of the enterprise models. 

Enterprise models can be designed internally or can customize existing industry 
models such as IBM’s Insurance Application Architecture (IAA) or IBM’s 
Information Framework (IFW) for the banking industry. [10, 11, 12]. The decision of 
building or customizing these models is out of scope of this paper but this section will 
assume that the enterprise models are built in a style compatible with the out-of the 
box IBM Industry Models (and will use their terminology). 

4.1   Enterprise Models Relevant to SOA 

A variety of enterprise models are relevant in an SOA context, as represented in  
Figure 2. Here we see: 

• The process models provide an enterprise-wide definition of business 
processes. They provide a natural fit for the top layer of an SOA. 

• The use-case models describe the possibilities of automating parts of the 
process layer.   

• The business model is a normalized domain model that describes all of the 
main concepts of the business domain. 

• The message model (although not a separate model per se) defines how the 
data structures from the business model are aggregated and denormalized to 
represent all data transfers across collaborating services. 

• Finally, the service model provides the design of the services to support the 
use cases as well as the collaborations and dependencies between these 
services. 

Process 
models

Use case 
models

Service model

Business 
model

Message 
model 

 

Fig. 2. Enterprise Models relevant to SOA 

4.2   Application of Enterprise Models to SOA 

This section describes at quite a high level the generic method for deploying 
enterprise models in SOA engagements. We will then examine in the next sections 
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how to apply enterprise models in the context of the three previously described design 
techniques.  

As shown in Figure 3, business-driven SOA engagements should ideally start with 
process analysis. In order to achieve efficiency, the process analysis should be 
conducted across the enterprise. This point is particularly important as it drives the 
analysis from the very beginning in the direction or re-usable enterprise services. 

Analyze 
Business 

Processes

Analyze 
services

Design 
services

Process 
models 

Service 
models 

Use case 
models 

 

Fig. 3. A Simplified Method for SOA 

The service analysis step consists of customizing the use case models to support 
the automation of the customized processes. It focuses on service identification, data 
aggregation and definition of the micro-flows at analysis level in activity diagrams. 

Finally, the service design consists of fully defining the service interfaces and 
collaborations.  

4.3   Process Analysis 

Analyzing the business processes is typically an activity performed by business 
analysts in conjunction with subject matter experts. The goal is to obtain a 
representation of how the business is (or should be) run.  

 

Fig. 4. A Fragment of a Business Process in IAA 

 
Figure 4 shows a small subset from the Insurance Application Architecture of a 

business process in IBM’s WebSphere Business Modeler describing a small number 
of steps in the claims process. 
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Although from a theoretical method point of view, one should always start 
business-driven SOA engagements with process analysis, we have seen in section 3 
that in practice it not always the case. Indeed, this requires a certain level of maturity 
both in the way an enterprise can start to think horizontally at the business level 
(enterprise-wide view of the processes) and in the business-IT alignment.  

As we have seen in the first two design techniques (message-centric and service-
centric), it is possible to already derive a lot of benefits from SOA without fully 
applying process modeling in the project. 

4.4   Service Analysis 

The industry models define use cases at two levels of detail: external and internal. The 
external view focuses on the data input and output of the service at analysis level. The 
internal view describes the micro-flows in activity diagrams. Figure 5 shows an 
example from IAA of an external view for the Record claim details use-case. 

 

Fig. 5. A Sample Use Case in IAA 

 
In most cases, it is a necessary step to go through system use-case analysis but as 

we have seen, when the main focus is on service rationalization (message-centric 
design), it is possible to skip that step and to start from the existing service designs as 
the basis for rationalizing their message payloads.  

4.5   Service Design 

A key step in any SOA project is service design. Indeed, although purely business-
oriented initiatives that do not involve actual service design could qualify as SOA 
engagements, it would be difficult to derive a path to realize a solution without 
activities that result in some form of service architecture. In fact, we have seen that 
service design is an essential step for all three design techniques.  

The IAA models provide service definitions in IBM Rational Software Architect. The 
services are defined by UML interfaces with operations. The service payload design is 
the application at design level of the data boundaries defined in the system use cases.  

5   Summary and Conclusions 

Flexibility is essential to organizations today as they seek to react more quickly to the 
changing demands of their customers, announcements by competitors, and the 
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evolving business environment. The role of software in many businesses is now seen 
as central to their ability to compete effectively and efficiently. Taking a service-
oriented approach to the systems being developed helps to focus businesses on what is 
essential to them – the services they offer to customers. It also helps IT professionals 
to look at the systems that support the business in a different way – as composable 
solution fragments that must be assembled to meet evolving business needs.  

In this paper we have focused on the importance of designing for and with services 
to create quality service-oriented solutions that meet the needs of organizations for 
flexibility and agility of their enterprise IT systems. We described three design 
techniques which we believe to be representative of the needs and concerns of our 
customers.  

We have seen that choosing among these techniques is based on the particular 
domain context in which they are required, and will be influenced by the specific 
alignment between the business and IT drivers. We have also identified that all of 
these techniques are important in a model-driven approach to SOA through use of 
structured industry content as provided by IBM industry models. 

These practical lessons are playing an important role in how IBM is delivering 
tools, technologies, and methods in support of service-oriented design. The recent 
release of a UML profile for Software Services [14] supported by a Rational Unified 
Process plug-in for service-based design [15] builds upon these ideas and encourages 
their direct application in IBM’s commercial tooling. These technologies will be 
updated as further experience with these techniques emerges. 
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Abstract. The structural semantics of UML-based metamodeling were
recently explored[1], providing a characterization of the models adher-
ing to a metamodel. In particular, metamodels can be converted to a
set of constraints expressed in a decidable subset of first-order logic, an
extended Horn logic. We augment the constructive techniques found in
logic programming, which are also based on an extended Horn logic, to
produce constructive techniques for reasoning about models and meta-
models. These methods have a number of practical applications: At the
meta-level, it can be decided if a (composite) metamodel characterizes
a non-empty set of models, and a member can be automatically con-
structed. At the model-level, it can be decided if a submodel has an
embedding in a well-formed model, and the larger model can be con-
structed. This amounts to automatic model construction from an in-
complete model. We describe the concrete algorithms for constructively
solving these problems, and provide concrete examples.

1 Preliminaries - Metamodels, Domains, and Logic

This paper describes constructive techniques, similar to those found in logic pro-
gramming, for reasoning about domain-specific modeling languages (DSMLs) de-
fined with metamodels. Before we proceed, we must describe how a metamodel
can be viewed as a formal object that characterizes the well-formed models
adhering to that metamodel. We will refer to the models that adhere to meta-
model X as the models of metamodel X . In order to build some intuition for
this view, consider the simple DIGRAPH metamodel of Figure 1. The models of
DIGRAPH consist of instances of the Vertex and Edge classes such that Edge
instances “connect” Vertex instances. In other words, DIGRAPH characterizes

Vertex Edge
src

dst

Fig. 1. DIGRAPH: A simple metamodel for labeled directed graphs
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a class of labeled directed graphs. Thus, a model might be formalized as a pair
G = 〈V ⊆ Σ, E ⊆ V ×V 〉, where Σ is an alphabet of vertex labels. If Σ is fixed,
then the set G of all models of DIGRAPH is: G = {(V, E)|V ⊆ Σ, E ⊆ V 2}.
This is the classic description of labeled digraphs, and at first glance it might
appear possible to extend this description to characterize the models of arbi-
trary metamodels. Unfortunately, UML-like metamodels[2][3] contain a number
of constructs that deny a simple extension of graph-based descriptions. The UN-
SAT metamodel of Figure 2 illustrates some of these constructs. First, classes

RootClass ClassA

bAttribute: bool

ClassB

sAttribute: string

ClassC

zAttribute: integer

EdgeClass

bAttribute: bool

src

dst

1..3 1..2

isAPort

isAPort 1..*

0..*

Fig. 2. UNSAT: A complex metamodel with no finite non-trivial models

may have non-trivial internal structure. For example, classes of UNSAT have
typed member fields (called attributes). An instance of ClassA has a boolean
field named bAttribute. Classes also inherit this structure, e.g. an instance of
ClassC has two attributes, bAttribute and zAttribute, via inheritance. Instances
may contain other instances with constraints on the type and number of con-
tained instances. An instance of ClassA must contain between 1 and 3 instances
of ClassB. Second, internal instance structure can be “projected” onto the out-
side of an instance as ports. The containment relation from ClassA to RootClass

instOf B_3

instOf B_2

instOf B_1

instOfA_1

instOfB_1 instOfB_2 instOfB_3
instOf B_4

instOf B_5

instOfA_2

instOfB_4

instOfB_5

instOf B_7

instOf B_6

instOfA_3

instOfB_6

instOfB_7

instOfA_3

instOfA_2

instOfA_1

instOfRoot

instOf B_8

instOfC_1

instOfB_8

instOfC_2

Fig. 3. Model that (partially) adheres to the UNSAT metamodel
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has the isAPort rolename, requiring that all contained instances of ClassA ap-
pear as interfaces on the outside of the containing instance of RootClass. Figure
3 shows a model with containment and ports. The hollow oblong shapes denote
instances that can contain other instances, and the small squares with white
arrows on the oblongs’ borders denote ports. For example, the outermost con-
tainer instOfRoot is an instance of the RootClass and contains three instances
of ClassA. Each ClassA instance appears as a port on the far right-hand side
of instOfRoot. Containment and ports are a useful form of information hiding,
but they also complicate matters because ports permit edges to cross hierar-
chy. For example, the edges in Figure 3 connect instances of ClassB together
even though these instances are not contained in the same parent. Furthermore,
the edges are actually contained in the RootClass instance, even though the end-
points are not. The third major complication arises because edges are not simple
binary relations. In UNSAT, edges are instances of EdgeClass, and so each edge
has a member field named bAttribute. In general, edges must be distinguishable
(i.e. labeled), otherwise it would not be possible to reliably determine the values
of member fields. In fact, the UML-notation (correctly) implies that edges are
ternary associations between an edge label, source label, and destination label.

Graph-based formalisms have been used extensively by the model transfor-
mation community, and provide reasonable approximations of model structure
for the purpose of transformation. However, in this paper we do not focus on
model transformation, but rather we explore techniques for reasoning about all
the details of metamodel and model structure. One approach to characteriz-
ing realistic model structure might be to combine all existing graph extensions
and consider models to be hierarchical [4], typed, attributed [5] hypergraphs with
labeled edges. However, even this would not handle all aspects of modern meta-
modeling languages, and it would produce a brittle and unwieldy formalism. In
[1] we present an alternative approach to model structure based on formal logic,
which we briefly outline now. In order to present our view, we begin with the
concept of a domain (in the sense of domain-specific modeling languages). A
domain D = 〈Σ, Υ, ΥC , C〉 is a quadruple where Σ is an (infinite) alphabet for
distinguishing model elements, Υ is a finite signature for encoding model con-
cepts, ΥC is a finite signature for encoding model properties, and C is a set of
logical statements (constraints) for deriving model properties. A model realiza-
tion is set of terms from the term algebra[6] TΥ (Σ) over signature Υ generated
by Σ. The set of all possible model realizations is P(TΥ (Σ)), i.e. all subsets of
terms. We will use the notation (f, n) ∈ Υ to indicate that function symbol f of
arity n is a member of the signature Υ .

Example 1. The domain of labeled digraphs DG has the model realizations given
by the signature Υ = {(v, 1), (e, 2)} and a countably infinite alphabet (|Σ| =
|ℵ0|). These two symbols encode the concepts of vertex and edge. Vertices are
encoded using the unary function symbol v and edges are encoded using the
binary function symbol e. Some model realizations include:

1. M1 = { v(c1), v(c2), e(c1, c2) }, a 2-path from a vertex c1 to a vertex c2.
2. M2 = { v(c3), e(c3, c4) }, a dangling edge starting at vertex c3.
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3. M3 = { v(e(c5, c6)), v(v(c7))}, a structure that is not a graph at all.

where the symbols written in typewriter font indicate members of the alphabet.

The term algebra easily captures arbitrary n-ary concepts and permits concepts
to be combined in complex ways. Item 3 of Example 1 shows that function
symbols can be arbitrarily nested. Notice also that not all model realizations
combine the modeling concepts in ways that match our intentioned meaning of
the symbols. Item 1 describes a simple 2-path, but Item 2 describes a dangling
edge because vertex c4 is not in the model. Finally, Item 3 does not correspond
to a graph in any obvious way, but is still a legal member of P(TΥ (Σ)).

The set of model realizations of a domain contains all possible ways that
the concepts can be used together. In fact, with a single operator f of ar-
ity greater than or equal to one, and an alphabet with at least one element,
a countably infinite number of terms can be generated. (Consider a succes-
sor operation succ and Σ = {0}.) Thus, for all non-trivial cases the number
of possible model realizations is uncountably infinite. Therefore P(TΥ (Σ)) will
typically contain many model realizations that use the function symbols con-
trarily to our intentions. In order to counteract this, we must define a set of
model properties, characterized by another signature ΥC , and a set C of log-
ical statements for deriving model properties. For simplicity, we assume that
ΥC simply extends the signature of Υ (i.e. ΥC ⊃ Υ ). For example, the prop-
erty of directed paths could be captured by: ΥC = {(v, 1), (e, 2), (path, 2)} and
C = {∀x, y, z (e(x, y)∨ path(x, y))∧ e(y, z)⇒ path(x, z)}. The symbol path(·, ·)
encodes the concept of a directed path between two vertices. The single logical
statement in C defines how to derive the paths in a digraph. The keyword derive
is important, and there are some subtle points to be made about derivation.

Classically, the notion of a derivation is represented by a consequence operator,
written �, which maps sets of terms to sets of terms �: P(TΥC (Σ)) → P(TΥC (Σ)).
A consequence operator encapsulates the inference rules of a particular style of
logic, and may make use of additional axioms to derive terms. In our framework,
the set C is the set of axioms that the consequence operator may use. Given a
model M (i.e., a set of terms), M �C M ′ denotes the set of terms M ′ that can
be discovered from the terms M and the axioms C. A term t can be derived
from a model M if t ∈ M ′. We will simply write M �C t to denote that t ∈
M ′. Notice that using consequence operators we can extend the notation of
a derivation beyond predicate logic. For example, given the simple graph M1

(Item 1 of Example 1), we can derive the term path(c1, c2) without make any
claims about the value of this term. Classical consequence operators, in the
sense of Tarski, correspond to closure operators and are extensive, isotone, and
idempotent [6]. Later, we will discuss the consequence operators of nonmonotonic
logics where the isotone property does not hold. The history of mathematical
logic is rich and diverse; we will not summarize it here. Instead, we will focus
on particular applications and limit our discussion to those applications. For the
reader unfamiliar with this area, it suffices to remember these two points: First,
consequence operators capture the derivation of terms. Second, terms are not
predicates.
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Among the properties that can be encoded using ΥC and C, we require at
least one property to be defined that characterizes if a model is well-formed. We
permit well-formedness to be defined either positively or negatively. A positive
domain includes the function symbol wellform(·) in ΥC , and a model M is
well-formed if ∃x ∈ TΥC (Σ), M �C wellform(x). In other words, a model is
well-formed if a term of the form wellform(x) can be derived for some x. A
negative domain is characterized by the function symbol malform(·) such that
a model is well-formed if ∀x ∈ TΥC (Σ), M �C malform(x). In other words, a
model is well-formed if it is not possible to prove malform(x) for any x. At first
glance it may appear that the positive domains have weaker definitions than
negative domains. In fact, this depends on the expressiveness of the underlying
logic of �. For example, if the logic has a “negation” (which is not the usual
propositional negation) then we can define wellform(x) ⇔ ∀y ¬malform(y)
for some arbitrary x. On the other hand, if the logic is restricted, then the
positive domains may be strictly weaker than the negative domains.

A domain captures the set of possible model realizations and provides a mech-
anism to discern the good models from the bad ones. From this perspective, the
set of all metamodels also defines a domain Dmeta that characterizes all well-
formed metamodels. Let the set V be a fixed vocabulary of function symbols
and the sets Σ and Σv be two fixed disjoint countably infinite alphabets. Let
SIG(V) = {Υ |Υ : V → Z+}, be the set of all partial functions from V to the
positive integers, i.e., the set of all possible signatures. Finally, let F(Υ, ΥC) be
the set of all formulas that can be defined over terms composed from function
symbols of Υ, ΥC with constants from Σ and variables from Σv. These parame-
ters allow us to characterize the set of all domains ΔF that can be defined with
a particular style of logic1:

ΔF =
⋃

Υ∈SIG(V)

⋃

Υ⊂ΥC∈SIG(V)

⋃

C⊆F(Υ,ΥC)

(Σ, Υ, ΥC , C)

A metamodeling language is a pair (Dmeta, τmeta) where τmeta : Dmeta → ΔF
maps metamodels to domains. In [1] we show how the mapping can be con-
structed for realistic metamodel languages. With this approach, we can extract
a precise set of domain concepts and constraints from a metamodel by applying
the mapping τmeta. Here we overload the notation D to also represent the set of
all well-formed models characterized by the domain D.

Given these preliminaries, we now turn our attention to the analysis of do-
mains. For example, we might like to know: Does a domain contain any non-
trivial finite models?. It turns out that this fundamental question is difficult to
answer for UML-like metamodels. Consider the UNSAT metamodel of Figure 2.
If a model of UNSAT contains anything at all, then it contains an instance of
RootClass. However, an instance of RootClass must contain at least one instance
of ClassA, which in turn must contain at least one instance of ClassC. So far the
1 Technically, we should include the property that all ΥC signatures contain

wellform(·) or malform(·). We have left this out as it unnecessarily complicates
the definition of ΔF .
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constraints pose no problem. However, the inheritance operator declares that
ClassC is a subclass of ClassA, so ClassC inherits the property that each in-
stance must also contain at least one instance of ClassC. This leads to an infinite
regress, so there exists no non-trivial finite model of UNSAT. This can be seen
in Figure 3, which is a finite model that almost adheres to UNSAT, except that
the instance instOfC 2 does not contain another instance of ClassC. The degree
to which we can reason about metamodels depends on the expressiveness of the
constraint logic. We now turn our attention to a well-known decidable subset of
first-order logic, Horn Logic.

2 Analysis of Nonrecursive Horn Domains

2.1 The Membership Problem

The simplest class of logic we examine is nonrecursive Horn logic[7]. Admit-
tedly, this class is too small for characterizing most realistic domains, but the
algorithms for manipulating this logic serve as a foundation for the more ex-
pressive logic that we describe in the next section. We begin by recalling some
definitions. Formulas are built from terms with variables and logical connec-
tives. There are different approaches for distinguishing variables from constants.
Following the notation of the previous section, let Σv be an alphabet of vari-
able names such that Σ ∩ Σv = ∅. The terms TΥC (Σ) are called ground terms,
and contain no variables. This set is also called the Herbrand Universe denoted
UH . The set of all terms, with or without variables, is TΥC (Σ ∪ Σv), denoted
UT . Finally, the set of all non-ground terms is just UT − UH . A substitution φ
is term endomorphism φ : UT → UT that fixes constants. In other words, if a
substitution φ is applied to a term, then the substitution can be moved to the
inside φf(t1, t2, . . . , tn) = f(φt1, φt2, . . . , φtn). A substitution does not change
constants, only variables, so ∀g ∈ UH , φ(g) = g. We say two terms s, t ∈ UT

unify if there exists substitutions φs, φt that make the terms identical φss = φtt,
and of finite length. (This implies the occurs check is performed.) We call the
pair (φs, φt) the unifier of s and t. The variables that appear in a term t are
vars(t), and the constants are const(t).

A Horn clause is a formula of the form h ⇐ t1, t2, . . . , tn where h is called the
head and t1, . . . , tn are called the tail (or body). We write T to denote the set
of all terms in the tail. The head only contains variables that appear in the tail,
vars(h) ⊆

⋃
i vars(ti). A clause with any empty tail (h ⇐) is called a fact, and

contains no variables. Recall that these clauses will be used only to calculate
model properties. This is enforced by requiring the heads to use those function
symbols that do not encode model structure, i.e. every head h = f(t1, . . . , tn)
has f ∈ (ΥC − Υ ). (Proper subterms of h may use any symbol.) This is similar
to restrictions placed on declarative databases[8]. We slightly extend clauses to
permit disequality constraints. A Horn clause with disequality constraints has
the form h ⇐ t1, . . . , tn, (s1 �= s′1), (s2 �= s′2), . . . , (sm �= s′m), where si, s

′
i are

terms with no new variables vars(si), vars(s′i) ⊆
⋃

i vars(ti). We can now define
the meaning of a Horn clause. The definition we present incorporates the Closed
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World Assumption which assumes all conclusions are derived from a finite initial
set of facts (ground terms) I. Given a set of Horn clauses Θ, the operator �̂Θ is
called the immediate consequence operator, and is defined as follows:

M �̂Θ = M ∪
{

φ(hθ) | ∃φ, θ, φ(Tθ) ⊆ M and ∀(si �= s′i)θ ∈ θ, φsi �= φs′i
}

where φ is a substitution and θ is a clause in Θ. It can be proved that I �Θ I∞
where I �̂Θ I1 �̂Θ . . . �̂Θ I∞. The new terms derivable from I can be calcu-
lated by applying the immediate consequence operator until no new terms are
produced (i.e. the least fixed point). Notice that the disequality constraints
force the substitutions to keep certain terms distinct. Nonrecursive Horn logic
adds the restriction that the clauses of Θ can be ordered θ1, θ2, . . . , θk such
that the head hθi of clause θi does not unify with any tail t ∈ Tθj for all
j ≤ i. This is a key restriction; without it, the logic can become undecid-
able. Consider the recursive axiom Θ = {f(f(x)) ⇐ f(x)}. Then {f(c1)} �Θ

{f(c1), f(f(c1)), . . . , f(f(f(. . . f(c1) . . .)))} includes an infinite number of dis-
tinct terms. Let FNH(Υ, ΥC) be the set of all sets of Horn clauses defined over
signatures Υ, ΥC with alphabets Σ, Σv. We call domains specified with formulas
from FNH nonrecurive Horn domains (abbreviated NHD). The first problem we
wish to solve is the membership problem for positive NHDs.

Definition 1. The membership problem for positive NHDs: Given a positive NHD
D, does there exists a finite model M ⊂ UH(D) such that M �C wellform(x)
for some x. The notation UH(D) indicates the set of ground terms defined by the
signature Υ of D.

The membership problem for positive NHDs is the easiest problem to solve. We
will solve it by actually constructing a model M for which a wellform(·) term
can be derived. This is possible because nonrecursive Horn logic has an important
property called monotonicity: If a model M derives terms M ′, and another
model N contains M , then N must derive at least M ′. In symbols, M ⊆ N and
M �Θ M ′, N �Θ N ′, then M ′ ⊆ N ′. This property implies that an algorithm
only needs to examine the “smallest” models that could derive a wellform(·)
term. Our algorthims are similar to those found in logic programming, but with
some necessary augmentations. Typically, logic programs are provided with a
set of initial facts that form the closed world. Our task is to determine the set
of facts such that if the logic program were initialized with these facts, then the
desired outcome (e.g. deriving a wellform(·) term) would occur. This distinction
means that our algorithms cannot rely on the fact that the closed world contains
a finite number of ground terms, because these terms are not yet known. It turns
out that although there are an infinite number of “small” models, these models
can be partitioned into a finite number of equivalence classes; these classes can
be exhaustively examined.

2.2 Finding Well-Formed Members

We have developed a theorem prover called FORMULA (FORmal Modeling
Using Logic Analysis) which implements these techniques. Figure 4 shows a
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positive NHD of directed graphs, called CYCLE, using FORMULA syntax. Line
1 declares the two function symbols v (for vertex) and e (for edge). The keyword
in marks these as input symbols, i.e. elements of the signature Υ . The remaining
symbols are used to calculate properties of an input model, and are marked priv
for private symbols, i.e. elements of ΥC . The theorem prover will never return
a model that contains a private symbol. Well-formed models of the CYCLE

1: in v arity 1; in e arity 2;
2: priv path3 arity 3; priv path4 arity 4;
3: priv cycle3 arity 3; priv cycle4 arity 4;
4: priv useless arity 1; priv useless2 arity 1;
5: priv wellform arity 1;
6:

7: cycle3(X,Y,Z ) <= path3(X,Y,Z ), e(Z,X );
8: cycle4(X,Y,Z,W ) <= path4(X,Y,Z,W ), e(W,X );
9:

10: path3(X,Y,Z ) <= e(X,Y ), e(Y,Z ),
11: !=(X,Y ), !=(X,Z ), !=(Z,Y );
12: path4(X,Y,Z,W ) <= path3(X,Y,Z ), e(Z,W ),
13: !=(W,X ), !=(W,Y ), !=(W,Z );
14:

15: useless(X ) <= useless2(X );
16: wellform(X ) <= useless(X ), e(X,Y );
17: wellform(X ) <= cycle3(X,Y,Z );
18: wellform(X ) <= cycle4(X,Y,Z,W );

 useless2(X) 

 useless(X) 

 wellform(X) 

 e(X,Y) 

 cycle3(X,Y,Z) 

 cycle4(X,Y,Z,W) 

 path4(X,Y,Z,W) 

 path3(X,Y,Z) 

Fig. 4. (Left) CYCLE: a positive NHD in FORMULA syntax. (Right) Backwards
chaining graph generated from goal wellform(X).

domain must contain either a directed 3-cycle or 4-cycle. Lines 7,8 define the
properties of 3-cycles and 4-cycles based on the properties of 3-paths and 4-
paths. For example, a 3-cycle exists if there is a 3-path on vertices X, Y, Z and
there is an edge from Z to X . (Note that the variable names are local to each
clause.) Notice the use of disequality contraints in the definition of 3-paths and
4-paths in Lines 10-13. These constraints ensure that the paths contain unique
vertices. Finally, Lines 16-18 define the derivation of wellform(·) terms.

The first step towards generating a well-formed model is to determine the
derivation steps that lead to wellform(·) terms. This is done via an augmented
form of backwards chaining. First, some definitions are necessary. We call two
terms s, t isomorphic if there exists a substitution φ such that φ is a term
monomorphism (one-to-one map), φ s = t, and φ−1 is also a substitution. Clearly
it holds that s = φ−1 t. Given a set of terms T , let IT be an equivalence relation
on terms such that (s, t) ∈ IT if s and t are isomorphic. It is easy to see that IT is
an equivalence relation, because composition of monomorphisms yields another
monomorphism. A goal term g is a term (with variables), and a solution M is a
set of ground terms such M �Θ M ′ and ∃φ, ∃t ∈ M ′ (φ g = t). In other words, a
solution is a model that derives a ground term unifying with the goal. The terms
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derived from the solution M are all ground terms, so, without lost of generality,
it can be assumed that the unifier is (φ, idUT ). Let terms(D) be the union of all
terms in the domain definition, (i.e. union of all heads and tails). Given a set of
goals G and a domain D, let [t] be the equivalence class of t in Iterms(D)∪G. A
backwards chaining graph B(G) over a set of goal terms G is defined inductively
as follows:

1. For each g ∈ G, [g] ∈ VB(G).
2. For all clauses hθi ⇐ t1, . . . , tm in Θ such that [hθi ] ∈ VB(G), then [ti]1≤i≤m ∈

VB(G) and there exists a directed “AND” edge ([hθi ], {[ti]}1≤i≤m) ∈ EB(G).
3. For all clauses hθi ⇐ t1, . . . , tm in Θ such that hθi unifies with some tail

tθj and [tθj ] ∈ VB(G) then [hθi ] ∈ VB(G) and there exists a directed edge
([tθj ], [hθi ]) ∈ EB(G).

The right-hand side of Figure 4 shows the backwards chaining graph generated
by the single goal term wellform(X). There are significantly fewer vertices in the
graph than terms in the domain definition, because many terms are isomorphic.
B(G) has several properties, though we will not prove them here. B(G) is finite
because the domain D has a finite number of clauses, and B(G) is acyclic because
D is nonrecursive. Unlike typical backwards chaining, the sinks in the graph are
not ground terms, but are terms with function symbols completely in Υ . (The
ground terms must be discovered.) Any sinks without this property are pruned
from the graph. For example, the useless(·) and useless2(·) terms are pruned,
because there are no ways to derive these terms from Υ terms. The vertices
and edges in dotted lines are the pruned part of the graph. If a solution exists
then there must be a directed path from every [g]g∈G vertex to a non-pruned
sink using non-pruned edges. This holds because a solution contains only ground
terms, which impose stronger restrictions on the unifier morphisms, than those
imposed by the construction of B(G).

The backwards chaining graph captures the various paths from the goal to
possible solutions, and each path must be walked until a solution is found or it is
confirmed that no solution exists. A path can be “unrolled” one at a time (as in
SLD resolution[9]), or a tree can be constructed capturing every possible walk.
We choose the latter in order to support other uses of FORMULA. The left-hand
side of Figure 5 shows the unrolling of the Figure 4 into a solution tree. The tree
has a root with a single AND edge having an endpoint on each goal term g.
Every goal term g attached to the root receives an edge for each v ∈ B(G) such
that g unifies with v. For example, Figure 5 shows the vertex wellform(V 0)
connected to the wellform(V 1). This edge indicates that wellform(V 0) unifies
with wellform(V 1). The tree construction algorithm always standardizes apart
unifying terms by instantiating them with unique variables. wellform(V 1) has
two distinct paths in the backwards chaining graph, and each of these are un-
rolled into two subtrees of the wellform(V 1) vertex. If a clause has disequality
constraints, then these appear as constraints on the edges in the solution tree.

The solution tree is viewed as a constraint system over terms. As the tree
is walked, equations concerning terms are collected. A unification of terms s, t
can be converted to a system of equations over variables. For example g(X, Y )
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ROOT

 wellform(V0) 

 wellform(V1) 

 cycle3(V1,V3,V4) 
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depends

 welform(V0) 

depends

 welform(V1) 
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Fig. 5. (Left) Solution tree generated from backwards chaining graph of Figure 4
(Right) Constraint system shown as a forest of union-find trees

unifies with g(Z, Z) if X = Y = Z. Clearly any unifier (φs, φt) must have
φs(X) = φs(Y ) = φt(Z). The correct equations are calculated by an induc-
tive procedure as motivated in [9]. The constraint system is represented as a
forest of union-find trees; a unification s, t yields a set of equations {si = ti},
which is converted to operations on the forest: for each equation si = ti perform
join(find(si), f ind(ti)) where the find(x) operation creates the vertex labeled
x if x does not already exist. For example, there is one non-trivial union-find tree
in Figure 5 resulting from the unification of wellform(V 0) with wellform(V 1),
which joins V 0 and V 1. As terms are added to the forest, so are their subterms.
Dependency links are maintained between vertices, where a term t is dependent
on a term s if s is a subterm of t. An operation fails if the dependency edges form
a cycle, essentially indicating that a multi-step unification fails. The dependency
edges in Figure 5 are gray and labeled “depends”. Disequality constraints are
implemented as “Not equal” edges between vertices. Notice that all terms in the
same union-find tree share the same constraints and dependencies. As trees are
joined, all the constraints are moved up to the root. For example, in Figure 5 all
constraint edges terminate on the JOIN vertex. Thus, a disequality constraint
fails if a vertex is deemed unequal to itself, or a join operation moves the source
and destination of a disequality edge onto the same join vertex. As the algo-
rithm walks the solution tree, it performs operations on the constraint system.
As soon as the constraint system becomes inconsistent, the algorithm restarts
on an unexplored combination of subtrees. FORMULA maintains all possible
restart configurations, and only fails after all restarts have been tried. Let W be
the sequence of vertices visited in a walk of the solution tree. Then CS(W ) is
the constraint system produced by that walk.



Constructive Techniques for Meta- and Model-Level Reasoning 415

After a consistent walk W has been found, the constraint system CS(W )
can be converted into a set of ground terms. Notice that the sinks (ignoring
disequality edges) in the constraint system are those terms for which all other
terms are dependent. In fact, our construction guarantees that the sinks are just
variables or ground terms. Let sinks(CS) be the sinks of a consistent constraint
system CS defined as follows: A union-find tree T ∈ CS is a sink tree if the root
has no outgoing edges, or only has outgoing disequality edges. If no leaves of
the sink tree are ground, then pick a leaf and place it in sinks(CS). Choose any
substitution φmin such that φmin(X) �→ cX ∈ (Σ − const(D)), where cX is a
unique constant not appearing anywhere in the domain definition. If a variable X
is in the same union-find tree as a ground term tg, then φmin(X) �→ tg. The values
of all other variables are calculated transitively to form the full substitution φsol.
Finally, the candidate solution MW for walk W is

MW =

(
⋃

v∈W

φsol(tv)

)
∩ TΥ (Σ)

where tv is the term of a vertex v in the walk W of the solution tree. MW

is a proper solution if no model terms of the form f(t1, . . . , tn), where f ∈ Υ ,
are removed by the intersection with TΥ (Σ). Such a term would be thrown
out if it contains a subterm ti built from symbols of ΥC − Υ . In this case, the
candidate solution is discarded and another walk through the solution tree is
attempted. Applying this algorithm to the constraint system of Figure 5 gives
sinks(CS) = {V 0, V 3, V 4}. Let φmin(V 0) �→ c0, φmin(V 3) �→ c1, φmin(V 4) �→
c2. By transitivity, φsol(V 1) �→ c0, and all variables are accounted for. Applying
φsol to each vertex on the left-hand walk of Figure 5 gives a candidate model
MW = {e(c0, c1), e(c1, c2), e(c2, c0)}, which is a correctly constructed 3-cycle. It
is not difficult to prove:

Theorem 1. A positive NHD has a non-trivial finite model iff there exists a
walk W such that CS(W ) is consistent and the candiate model MW is proper.

2.3 Generating Well-Formed Embeddings

These algorithms can also be used to construct well-formed models with partic-
ular embeddings. Let γ : UH �→ UH be a term endomorphism (i.e. a homomor-
phism over model terms). A model M ′ can be embedded into a model M , written
M ′ ≤ M , if there exists a one-to-one term endomorphism (i.e. a monomorphism)
such that γ(M ′) ⊆ M . Constructive techniques that can produce embeddings
allow us to sketch a model that might be malformed, but produce a well-formed
version that still contains the original model. This can be quite useful for users
who do not understand all of the particular constraints of a modeling language,
and would like the computer to correct mistakes. Consider the top-left graph of
Figure 6. This star graph (S4) is malformed with respect to the CYCLE domain,
because it contains neither a 3-cycle nor 4-cycle. However, with a slight modi-
fication to the algorithms above, a new model can be built that is well-formed
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Fig. 6. (Left) From top to bottom: A malformed input model, a well-formed embed-
ding, and a minimal embedding. (Middle) Initial constraint system showing only sink
trees and disequality constraints. (Right) Minimized constraint system.

and contains an embedding of the star graph. Let D be a domain and let an
input model MI be a finite subset of model terms TΥ (Σ). Choose any one-to-one
map α : Σ → Σv that uniquely relates constants to variables in Σv. Clearly α
induces a monomorphism φα : TΥ (Σ) → TΥ (Σv) from terms without variables
to terms that only have variables. We will use this monomorphism to encode the
input model as a Horn clause. Pick any function symbol f /∈ ΥC and add it ΥC

with arity |consts(MI)|, i.e. the arity of f is equal to the number of constants
in the input model MI . Add the following clause θMI to D:

θMI

·= f(α(c1), α(c2), . . . , α(cn)) ⇐
∧

tm∈MI

φα(tm)
∧

i�=j

(α(ci) �= α(cj))

where 1 ≤ i, j ≤ n = |consts(MI)|. Recall from the previous algorithms, that
a solution is constructed by defining a substitution φsol that is determined
by the sink variables sinks(CS(W )). Consider any solution to any goal set
G where f(α(c1), . . . , α(cn)) ∈ G. By construction, the restriction of φsol to
sinks(CS(W )) yields a one-to-one map. In the construction above, all pairs
of variables induced by MI have disequality constraints, so α(consts(MI)) ⊆
sinks(CS(W )) for any consistent walk W 2. Therefore, the restriction of any φsol

to the terms TΥ (α(consts(MI))) must be a monomorphism. Thus, γ = (φsol◦φα)
gives the embedding of MI in any proper solution MW for a consistent walk W .

Theorem 2. Given an input model MI and a positive NHD D, augmented with
f and θMI . Any proper solution to a goal set G, where f(α(c1), . . . , α(cn)) ∈ G,
contains an embedding of MI .

2 This is a slight simplification. There will be some representative sink variable for
each variable in the image of α.
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In particular, let the goal set G = {f(α(c1), . . . , α(cn)), wellform(X)}, where
the variable X is not in the image of α, then any solution to G contains MI and is
well-formed. The middle-left graph of Figure 6 shows FORMULA’s construction
of a well-formed version of the star graph in the CYCLE domain.

The default embedding produced by FORMULA is not particularly elegant. It
contains a star juxtaposed with a 3-cycle. This solution was constructed because
φsol assigns a unique constant to each sink variable, yielding a maximal solu-
tion with respect to the number of constants. A smaller solution can be found
by manipulating the final constraint system CS(W ) so that the number of sink
variables are reduced. This can be accomplished by merging sink trees, which is
legal if the trees do not have disequality constraints between them. The middle
graph of Figure 6 shows the sink trees of the constraint system after produc-
ing the middle-left embedding. The root of each tree is in bold, and disequality
constraints between trees are shown as bold edges. These are the only types of
edges between trees, because sink trees do not have dependency edges between
them. A minimal solution can be formed by partitioning the root vertices into a
minimal number of independent sets. This is a computationally hard optimiza-
tion problem related to the independent set problem. The right side of Figure
6 shows the optimized constraint system, which contains only four trees (and
four sink variables). The roots of the optimized constraint system form a clique,
therefore no further optimization is possible. The bottom-left graph shows the
optimized solution generated by FORMULA, wherein the star and 3-cycle have
been merged in an ideal fashion. Note that this process yields a minimal, but not
neccessarily minimum model. Finding a minimum model requires minimizing all
possible consistent walks of the solution tree.

3 Extensions, Tools, and Future Directions

We have shown that the constructive reasoning of UML-like metamodels is a
rich area of study, both theoretically and algorithmically. In the interest of
space we have used directed graphs as our toy example. However, these tech-
niques can be applied to much more complicated metamodels, and with prac-
tical applications: Metamodel composition is the process of constructing new
domain-specific languages by combining existing metamodels. Two metamodels,
mm1 and mm2, can be syntactically combined with an operator ◦, such as class
equivalence[10], and the syntactic composition can be converted into a domain
Dcomp = τmeta(mm1 ◦ mm2). The membership problem for the domain can
then be solved, thereby deciding if the metamodel composition is semantically
meaningful. Other problems, like the construction of embeddings, correspond to
the automatic construction of useful models that satisfy the domain constraints.
Model transformations can also be incorporated into our framework, and then
constructive techniques can be used to prove that the transformation always
produces well-formed output models from well-formed input models. This is the
weakest form of correctness one could imagine, but checking these properties has
remained mostly open. There is already precedent for the use of Prolog engines
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to transform a particular input model MI to an output model MO, as is done
by Viatra2[11]. A particular input/output pair (MI , MO) can then be compared
to check for mutual consistency (e.g. via bisimulation). However, checking prop-
erties of the overall transformation is more difficult, though our approach can
handle it as long as the transformation is restricted to an appropriate class of
logic. The verification goal resembles Hoare’s notion of a verifying compiler [12].

This brings us to questions of expressiveness. How expressive is Horn logic
and how far can it be taken? This question has driven our development of FOR-
MULA, which we now summarize. Positive NHDs are not particularly expressive,
but they are an essential starting point for developing constructive techniques
for more expressive domains. The next step in the progression is to solve the
membership problem for negative NHDs. Recall that negative domains char-
acterize the malformed models with the symbol malform(·), and a model M
is wellformed if ∀x, M �C malform(x). Negative NHDs can express domains
not representable by positive NHDs, because of the universal quantification over
malform(x). Notice that the solution tree for a goal G = {malform(x)} con-
tains all equivalence classes of malformed models, and the malformed-ness prop-
erty is monotonic in models. With these observations, the membership problem
can be solved by repeating this procedure: Prune all leaves in B({malform(x)}),
except for one symbol f ∈ Υ . If malform(x) can be proved on the corresponding
pruned solution tree, then by monotonicity, no wellformed model can contain
a term unifiying with f . If malform(x) cannot be proved, then a wellformed
model M = {f(·, . . . , ·)} has been found. This test is repeated (at least once)
for each f ∈ Υ ; due to unification issues, it may be repeated multiple times for
non-unifying f -terms. This procedure is also implemented in FORMULA.

A further increase in expressiveness can be obtained by extending the Horn
logic so that a tail can contain a “negated” term ¬ti. (For example, the UN-
SAT domain (Figure 2) can be defined with this extension.) Loosely, a negated
term is a constraint requiring that a solution M �C ti. Theoretically, this ex-
tension approximates the power of full first order logic, but remains decidable
(under additional restrictions on its use). It turns out that this simple extension
corresponds to a nonmonotonic logic, and has deep theoretical and algorithmic
repercussions. Our major challenge has been the development of constructive
techniques for domains written in Horn logic extended with negation. These
techniques are also implemented in FORMULA, and extend existing work on
nonmonotonic inference[7][13] to deal with the particulars of UML-like meta-
models. Theoretically, these extensions must be handled carefully in order to
maintain the soundness and completeness of the theorem prover. Algorthmically,
our approach combines the aforementioned algorithms with state-of-the-art SAT
solvers to construct models. In conclusion, a reasonable level of expressiveness
can be obtained.

A common criticism of theorem proving is the requirement of the user to
understand the underlying mathematics. We have addressed this issue by devel-
oping an automated conversion from metamodels to domain definitions. This
approach is described in [1], and supports metamodeling in the well-known
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Generic Modeling Environment (GME) toolsuite[14]. Furthermore, because the
theorem prover is constructive, the results of the prover are concrete models that
can be automatically imported back into the GME modeling environment. This
closes the loop, providing constructive reasoning about models and metamodels
without leaving the comfort of the modeling toolsuite (for most of the common
queries). Our future work is to apply these techniques to analyze model transfor-
mations, including those specified with the Graph Rewriting and Transformation
(GReAT) language[15] that is also part of the GME toolsuite.
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Abstract. We have previously proposed an expressive UML-based lan-
guage for constructing and transforming security-design models, which
are models that combine design specifications for distributed systems
with specifications of their security policies. Here we show how the same
framework can be used to analyze these models: queries about proper-
ties of the security policy modeled are expressed as formulas in UML’s
Object Constraint Language and evaluated over the metamodel of the
security-design language. We show how this can be done in a semanti-
cally precise and meaningful way and demonstrate, through examples,
that this approach can be used to formalize and check non-trivial se-
curity properties of security-design models. The approach and examples
presented have been implemented and checked in the SecureMOVA tool.

1 Introduction

Model driven development [9] holds the promise of reducing system development
time and improving the quality of the resulting products. Recent investigations
[2,6,7,8] have shown that security can be integrated into system-design models
and that the resulting security-design models can be used to generate systems
along with their security infrastructures. Moreover, when the models have a
formal semantics, they can be reasoned about: one can query their properties
and understand potentially subtle consequences of the policies they define.

In previous work [2], we presented a UML-based security modeling language,
called SecureUML, closely related to Role Based Access Control (RBAC) [5]. We
showed how to systematically combine different design modeling languages with
SecureUML in a way that allows users to formalize authorization restrictions
on systems implementing the design. The combination scheme was defined both
syntactically and semantically and we also described translators that automati-
cally generate distributed, middleware-based systems with complete, configured,
access control infrastructure from security-design models.

Our focus in this paper is on formalizing and automatically analyzing security
properties of security-design models. In our setting, security-design models con-
stitute formal objects with both a concrete syntax (or notation) and an abstract
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syntax. Security-design models themselves are described by a metamodel that
formalizes the structure of well-formed models. We show that, in this setting,
security properties of security-design models can be expressed as formulas in the
Object Constraint Language (OCL) [11] over this metamodel. We can formal-
ize queries in this language that ask questions about the relationships between
users, roles, permissions, and actions. An example of a typical query (taken from
Section 5) is: are there two roles such that one includes the set of actions of the
others, but the roles are not related in the role hierarchy? Such queries can be
answered by evaluating the OCL expressions over the metamodel of the security
modeling language.

The idea of formulating OCL queries about role-based access control policies
is not new. Our work is inspired by [1,12], who first explored the use of OCL
for querying RBAC policies, and we make comparisons in Section 7. Given this
previous work, we see our contributions as follows. First, we clarify the metathe-
ory required to make query evaluation formally well-defined. This requires, in
particular, precise definitions of both the metamodel of the modeling language
and the mapping from models to the corresponding instances of this metamodel.
Second, we show the feasibility of this approach and illustrate some of its key
aspects on a nontrivial example: a security-design modeling language from [2]
that combines SecureUML and a component modeling language named Com-
ponentUML. Finally, we provide evidence that OCL expressions, evaluated in
the context of such a metamodel, can be used to formalize and check non-trivial
security properties of security-design models. The approach presented here has
been implemented and tested in SecureMOVA, a security-design modeling tool
whose implementation is directly based on our metamodel-based approach for
analyzing security-design models.

2 General Approach

Background: models and meaning. A modeling language provides a vocabulary
(concepts and relations) for building models, as well as a notation to graphically
depict them as diagrams. Diagrams have to conform with the metamodel of the
modeling language. The precise definition of well-formed diagrams is based on
the underlying mapping from diagrams (or graphical models) to instances of
the metamodel (or abstract models): well-formed diagrams are those that are
mapped to instances of the metamodel that satisfy the metamodel’s invariants.

Some modeling languages explain the meaning of the diagrams using natural
language. In this situation, analyzing the models represented by the diagrams
can only be done informally and no rigorous tool support can be expected. Other
modeling languages explain the meaning of the diagrams using a formal seman-
tics: that is, they define an interpretation function [ ] that associates mathemat-
ical structures to well-formed diagrams, or, more precisely, to the instances of
the metamodel that correspond to well-formed diagrams. In this case, proper-
ties of the models represented by the diagrams can be formally proven, possibly
with the assistance of automated tools. In the following, let M be a graphical
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model (for a modeling language M), M be the corresponding abstract model,
and [M ] be the mathematical structure associated to the abstract model by the
interpretation function.

Problem statement: rigorously analyzing security models. Given a language with
a formal semantics, one can reason about models by reasoning about their se-
mantics. That is, a security model M has a property P (where P is expressed in
some logical language) if and only if [M ] |= P . While this approach is standard,
it either requires deductive machinery for reasoning about the semantics of mod-
els (i.e., a semantic embedding [3] and deduction within the relevant semantic
domains) or an appropriate programming logic for reasoning at the level of the
models. These are strong requirements and a hurdle for many practical applica-
tions. Hence, the question we address is whether there are other ways of formally
analyzing security policies modeled by M , but in a more familiar setting.

Approach taken. Our approach for analyzing properties of security-design mod-
els M reduces deduction to evaluation: we formalize the desired properties as
OCL queries and evaluate these queries over instances M of the metamodel.
Observe that these queries are formulated over the abstract models, not the
(graphical) models that the modeler sees and works with. Hence, for the results
to be meaningful, we require that the mapping relating graphical models to ab-
stract models, along with the interpretation function [ ], correctly interacts with
the evaluation of OCL expressions. If the mapping is not explicitly given or the
requirements are not satisfied, then the validity of the results may be open, or
even wrong (for examples, see the related work section).

To be more precise, we state the following requirements. Let f be a function
on the semantic domain and let expf be an expression intended to formalize f
in OCL. We require the following diagram to commute:

graphical abstract semantic
Model Model Domain

M �→ M �→ [M ]
↓ ↓

ev(expf , M) �→ f([M ])

In this diagram, the downward arrow on the left side denotes the evaluation of
the OCL expression expf (the result of which, denoted by the function ev( , ),
constitutes another abstract model). The downward arrow on the right side
corresponds to the evaluation of the function f in the semantic domain. The
requirement says that the OCL expression expf can be used to analyze the
behavior of f if and only if [ev(expf , M)] = f([M ]). Roughly speaking, this
means that an OCL expression can be correctly used for checking a property P
if and only if, for arbitrary models M , the result of evaluating this expression
over M corresponds to the value of the property P in [M ].

Rigorously proving this correspondence requires detailed metareasoning that
involves the semantics of the underlying formal system, the formal semantics of
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OCL, and the translation scheme from terms in the semantic domain to OCL
expressions. This is a large undertaking and outside the scope of this paper. In
many practical cases however, one may settle for the next best thing: it may
be sufficient to have a careful understanding of the metamodel of the modeling
languages, its invariants, and of the underlying mapping from models to the
corresponding instances of the metamodel. Note that this is already a neces-
sary condition for stating meaningful OCL expressions on models in the first
place.

Overall, our approach has a number of advantages over more traditional de-
ductive approaches. First, OCL is a formal language defined as a standard add-on
to UML. Hence, as noted in [14], “it should be easily read and written by all
practitioners of object technology and by their customers, i.e., people who are
not mathematicians or computer scientist.” Second, there are tools that can au-
tomatically evaluate OCL expressions. The limitations are also clear: there may
be interesting properties that cannot be naturally expressed using OCL or that
cannot be proved by simply evaluating OCL expression over the metamodel.

3 SecureUML+ComponentUML

In this section, we describe SecureUML and Component UML, the security and
design modeling languages that we use to illustrate our approach and some of
its key aspects, like the mapping from models to instances of the metamodel.

3.1 The SecureUML+ComponentUML Metamodel

SecureUML [2,10] is a modeling language for formalizing access control require-
ments that is based on RBAC [5]. In RBAC, permissions specify which roles
are authorized to perform given operations. RBAC additionally allows one to
organize these roles in a hierarchy, where roles can inherit permissions along
the hierarchy. In this way, the security policy can be described closely following
the hierarchical structure of an organization. Users are then granted permissions
by being assigned to the appropriate roles, based on their competencies and
responsibilities in the organization.

SecureUML provides a language for specifying access control policies for ac-
tions on protected resources. However, it leaves open what the protected re-
sources are and which actions they offer to clients. These are specified in a
so called dialect and depend on the primitives for constructing models in the
system-design modeling language. Figure 1 shows the SecureUML metamodel.
The system-design modeling language that we consider here, ComponentUML,
is a simple language for modeling component-based systems. Essentially, it pro-
vides a subset of UML class models: Entities can be related by Associations and
have Attributes and/or Methods. The metamodel of ComponentUML is shown
in the right part of Figure 2. The dialect definition, shown in the left part of
Figure 2, additionally specifies:



424 D. Basin et al.

Role
default: Boolean

Permission
default: Boolean

Action Resource

User AuthorizationConstraint
body: String
language: String

CompositeAction AtomicAction

+hasrole

+includes

UserAssignment
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RoleHierarchy

+givesaccess
+haspermission

PermissionAssignment

+isconstraintby

+constrains

ConstraintAssignment
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ActionAssignment
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ResourceAssignment

+subordinatedactions

+compositeaction

ActionHierarchy

Fig. 1. SecureUML Metamodel

CompositeAction AtomicAction

Action

CompositeAction AtomicAction

Resource+resource+action ResourceAssignment

EntityMethod

isQuery(): Boolean

Attribute

AssociationEnd

Association

+hasmethod

EntityMethod

+hasattribute

EntityAttribute

+hasassociationend
EntityAssociationEnd

EntityFullAccess EntityUpdate EntityRead

AttributeFullAccess AssociationEndFullAccess

AtomicUpdate AtomicRead

AtomicCreate AtomicDelete AtomicExecute

Fig. 2. ComponentUML Dialect Metamodel

– The model element types of the system-design modeling language that repre-
sent protected resources. Here, Entities, as well as their Attributes, Methods,
and AssociationEnds (but not Associations as such) are protected resources.

– The actions these resources types offer and hierarchies classifying these ac-
tions. The actions offered here are shown in the following table:

Resource Actions
Entity create, read, update, delete, full access
Attribute read, update, full access
Method execute
Association end read, update, full access

The atomic actions are intended to directly map onto actual operations of
the modeled system. The composite actions are used to group more primi-
tive actions into a hierarchy of more higher-level ones. Here, for example, the
composite action AttributeFullAccess contains both the read and the update
action of the attribute. The precise definition of the actions offered by the dif-
ferent resources, and their hierarchical relationship, is made by adding OCL
invariants to the metamodel. The interested reader can find the complete list
of these constraints in the references given at http://maude.sip.ucm.es/
securemova.

– the default access control policy for actions where no explicit permissions
is defined (i.e., whether access is allowed or denied by default). Here, by
default, access is allowed.

http://maude.sip.ucm.es/securemova
http://maude.sip.ucm.es/securemova


A Metamodel-Based Approach for Analyzing Security-Design Models 425

«Role»

UserRole

«Role»

SuperVisorRole

«Role»

SystemAdministratorRole

«Permission»

UserMeeting
«entityaction» Meeting:create
«entityaction» Meeting:read

«Permission»

OwnerMeeting
«entityaction» Meeting:update
«entityaction» Meeting:delete

«Permission»

SupervisorCancel
«methodaction» Meeting.cancel: execute
«methodaction» Meeting.notify: execute

«Permission»

ReadMeeting
«entityaction» Meeting: read

caller = self.owner.name

«Entity»

Meeting
start: Date
duration: Time
notify()
cancel()

«Entity»
Person

name: String

0..*

+owner1

0..*

+participants 2..*

Fig. 3. Example Security Policy

3.2 The SecureUML+ComponentUML Models

We use Figure 3 as a running example to illustrate the concrete syntax of Se-
cureUML and ComponentUML. In this example, the system should maintain a
list of users and records of meetings. A meeting has an owner, a list of partici-
pants, a time, and a place. Users may carry out standard operations on meetings,
such as creating, reading, editing, and deleting them. A user may also cancel a
meeting, which deletes the meeting and notifies all participants by email. The
system should obey the following (here informally given) security policy:

– All users of the system are allowed to create new meetings and read all
meeting entries.

– Only the owner of a meeting is allowed to change meeting data and cancel
or delete the meeting.

– A supervisor is allowed to cancel any meeting.
– A system administrator is allowed to read meeting data.

Figure 3 formalizes this security policy using the UML profile for SecureUML
and ComponentUML defined in [2]. In this profile, a role is represented by a
UML class with the stereotype �Role� and an inheritance relationship between
two roles is defined using a UML generalization relationship. The role referenced
by the arrowhead of the generalization relationship is considered to be the su-
perrole of the role referenced by the tail. A permission, along with its relations
to roles and actions, is defined in a single UML model element, namely an asso-
ciation class with the stereotype �Permission�. The association class connects
a role with a UML class representing a protected resource, which is designated
as the root resource of the permission. The actions that such a permission refers
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to may be actions on the root resource or on subresources of the root resource.
Each attribute of the association class represents the assignment of an action to
the permission, where the action is identified by the name and the type of the
attribute. Stereotypes for these permission attributes specify how the attribute
is mapped to an action. The stereotype �entityaction�, for example, specifies
that a permission attribute refers to an action on an entity. The name of the
permission attribute specifies the name of the attribute, method, or association
end targeted by this permission. The type of the permission attribute specifies
the action (e.g., read, update, or full access) that is permitted by this permission.
The authorization constraint expressions are attached to the permissions’ asso-
ciation classes. ComponentUML entities are represented by UML classes with
the stereotype �Entity�. Every method, attribute, or association end owned by
such a class is automatically considered to be a method, attribute, or association
end of the entity.

3.3 The Mapping from Models to Metamodel Instances

Recall that, in our approach, the specification of security properties using OCL
directly depends on the mapping from models to instances of the metamodel,
since the expressions formalizing the properties will not be evaluated over the
graphical models, but over the corresponding instances of the metamodel. To
a large extent, this mapping is straightforward: UML model elements with
appropriate stereotypes are mapped to instances of the corresponding meta-
model elements, and associations between UML model elements are mapped
to appropriate links between the instances of the corresponding metamodel
elements.

In some cases, however, this mapping is less straightforward, in particular,
where the notation provides the modeler with convenient “syntactic sugar”. We
list below some examples of such subtleties. Let M be a model, then M contains
(among others) the following elements:

– “Default” objects of type Role, AuthorizationConstraint, and Permission, which,
however, do not correspond to roles, authorization constraints, or permis-
sions depicted in M .

– Objects of subtypes of Action, which correspond to the actions offered by
the resources, although they may not be mentioned in the attributes of the
permissions depicted in M .

– Links between the “default” objects of type Role, AuthorizationConstraint, and
Permission, and between the “default” object of type Permission and the ob-
jects of subtypes of Action, which correspond to the default access control
policy defined in the metamodel.

– Links between the objects of subtypes of Action, which correspond to the
hierarchy of actions defined in the metamodel.

The reader can find the complete definition of this mapping in the references
given at http://maude.sip.ucm.es/securemova.

http://maude.sip.ucm.es/securemova
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4 Analyzing SecureUML+ComponentUML Models

In this section, we define OCL query operations over the metamodel of Se-
cureUML+ComponentUML that capture different aspects of the access control
information contained in the models. These operations will be part of an OCL-
based language for analyzing access control decisions that depend on static infor-
mation, namely the assignment of users and permissions to roles.1 The approach
we take not only allows us to formalize desired properties of models, but also to
automatically analyze models by evaluating the corresponding OCL expressions
over the instances of the metamodel that corresponds to the models.

4.1 Semantics

We recall here the semantics of SecureUML+ComponentUML models [2], with
respect to which we claim that our OCL-operations correctly capture access con-
trol information. Let ΣRBAC = (SRBAC ,≥RBAC ,FRBAC ,PRBAC ) be an order-
sorted signature that defines the type of structures specifying role-based access
control configurations. Here SRBAC is a set of sorts, ≥RBAC is a partial order
on SRBAC , FRBAC is a sorted set of function symbols, and PRBAC is a sorted
set of predicate symbols. In detail, let

SRBAC = {Users, Roles, Permissions , AtomicActions , Actions},

where Actions ≥RBAC AtomicActions . Also, let FRBAC = ∅ and

PRBAC =

⎧
⎨

⎩

≥Roles : Roles × Roles , ≥Actions : Actions ×Actions ,
UA : Users × Roles , PA : Roles × Permissions
AA : Permissions ×Actions

⎫
⎬

⎭ .

Given a SecureUML+ComponentUML model M , one defines a
ΣRBAC -structure  RBAC in the obvious way: the sets Users, Roles, Permis-
sions, AtomicActions, and Actions each contain entries for every model element
in M of the corresponding metamodel types User, Role, Permission, AtomicAction,
and Action. The relation ≥Roles is given by the reflexive and transitive closure of
the association RoleHierarchy on Role, and the relation ≥Actions by the reflexive
and transitive closure of the association ActionHierarchy. Finally, the relations UA,
PA, and AA contain tuples for each instance of the associations UserAsssignment,
PermissionAssignment, and ActionAssignment.

Note that the SecureUML metamodel and its semantics mention “users” and
user assignments to roles. These are not usually modeled in the security-design
model (e.g., they are not depicted in Figure 3) because this is configuration
data that is typically not known at modeling time. For analysis or illustrative
purposes, such configuration data can be given as additional input.
1 Programmatic access control decisions that depend on dynamic information, namely

the satisfaction of OCL authorization constraints in concrete system states, can be
then analyzed using OCL evaluators.
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Remark 1. Let  RBAC be the ΣRBAC structure defined by a model M . Then,
for any u in Users, p in Permissions, and a in Actions, the following table shows
the basic correspondence between satisfaction in  RBAC and evaluation of OCL
expressions in M :

is satisfied in  RBAC evaluates to true over M
UA(u, r) u.hasrole−>includes(r)
PA(r, p) r.haspermission−>includes(p)
AA(p, a) p.accesses−>includes(a)

4.2 Analysis Operations

In this section, we define a number of OCL query operations that are useful
for analyzing security properties of security-design models formalized using Se-
cureUML+ComponentUML. We also mention other OCL analysis operations,
whose definitions we omit here.

To analyze the relation ≥Roles, we define Role::superrolePlus():Set(Role), which
is an operation that returns the collection of roles (directly or indirectly) above
a given role in the role hierarchy.

context Role::superrolePlus():Set(Role) body:
self.superrolePlusOnSet(self.superrole)

context Role::superrolePlusOnSet(rs:Set(Role)):Set(Role) body:
if rs−>collect(r1|r1.superrole)−>exists(r|rs−>excludes(r))
then self.superrolePlusOnSet(rs−>union(rs.superrole))
else rs−>including(self)
endif

Similarly, we define the operation Role::subrolePlus():Set(Role) returning the roles
(directly or indirectly) below a given role in the role hierarchy. Also, we use
these operations to define the operation Role::allPermissions():Set(Permission) that
returns the collection of permissions (directly or indirectly) assigned to a role.

context Role::allPermissions():Set(Permission) body:
self.superrolePlus().haspermission−>asSet()

Conversely, we define the operation Permission::allRoles():Set(Role), returning the
collection of roles (directly or indirectly) assigned to the given permission.

To analyze the relation ≥Actions , we define Action::subactionPlus():Set(Action)
that returns the collection of actions (directly or indirectly) subordinated to an
action.

context Action::subactionPlus():Set(Action) body:
if self.oclIsKindOf(AtomicAction)
then Set{self}
else self.oclAsType(CompositeAction).subordinatedactions.subactionPlus()
endif
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Similarly, we define the operation Action::compactionPlus():Set(Action) returning
the collection of actions to which an action is (directly or indirectly) subordi-
nated. In addition, we define the operation Permission::allActions():Set(Action) that
returns the collection of actions whose access is (directly or indirectly) granted
by a permission.

context Permission::allActions():Set(Action) body:
self.accesses.subactionPlus()−>asSet()

Conversely, we define the operation Action::allAssignedPermissions():Set(Permission),
returning the collection of permissions that (directly or indirectly) grant access to
an action. Finally, we define the operation User::allAllowedActions():Set(Action) that
returns the collection of actions that are permitted for the given user, subject
to the satisfaction of the associated constraints in each concrete scenario.

context User::allAllowedActions():Set(Action) body:
self.hasrole.allPermissions().allActions()−>asSet()

Remark 2. Let  RBAC be the ΣRBAC structure defined by a model M . Then,
for any u in Users, r, r1, r2 in Roles, p in Permissions, and a, a1, a2 in Actions,
the following table shows the additional correspondence between satisfaction in
 RBAC and evaluation of OCL expressions in M .

is satisfied in  RBAC evaluates to true in M
r1 ≥Roles r2 r2.superrolePlus()−>includes(r1)

r1.subrolePlus()−>includes(r2)
∃r2 ∈ Roles . r2 ≥Roles r1 ∧ PA(r2, p) r1.allPermissions()−>includes(p)

p.allRoles()−>includes(r1)
a1 ≥Actions a2 a1.subactionPlus()−>includes(a2)

a2.compactionPlus()−>includes(a1)
∃a2 ∈ Actions. a2 ≥Actions a1 ∧ AA(p, a2) p.allActions−>includes(a1)

a1.allAssignedPermisssions()−>includes(p)
φRBAC (u, a) u.allAllowedActions()−>includes(a)

Here, φRBAC(u, a) is the formula that states whether a user u has a permission
to perform action a:

φRBAC (u, a) = ∃r1, r2 ∈ Roles .

∃p ∈ Permissions . ∃a′ ∈ Actions.

UA(u, r1) ∧ r1 ≥Roles r2 ∧ PA(r2, p)
∧AA(p, a′) ∧ a′ ≥Actions a .

5 Analysis Examples

In this section, we give a collection of examples that illustrates how one can ana-
lyze SecureUML+ComponentUML models M using the OCL operations defined
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in Section 4. The questions are formalized as queries over objects in M , possi-
bly with additional arguments. Note that, with the exception of Example 3, the
queries refer to static information about the access control configuration, which
is independent of the system state. In contrast, in Example 3 we explicitly query
about the circumstances under which a user can perform an action.

The first three examples address the basic question of who can do what, under
which circumstances. These functions can provide an elementary sanity check of
the access control policy.

Example 1. Given a role, which atomic actions can a user in this role perform?

context Role::allAtomics():Set(Action) body:
self.allPermissions().allAction()−>asSet()
−>select(a|a.oclIsKindOf(AtomicAction))

Example 2. Given an atomic action, which roles can perform this action?

context AtomicAction::allAssignedRoles():Set(Roles) body:
self.compactionPlus().isassigned.allRoles()−>asSet()

Example 3. Given a role and an atomic action, under which circumstances can
a user in this role perform this action?

context Role::allAuthConst(a:Action):Set(String) body:
self.permissionPlus(a).isconstraintby.body−>asSet()

context Role::permissionPlus(a:Action):Set(Permission) body:
self.allPermissions()−>select(p|p.allActions()−>includes(a))

The next two examples address the question of whether there are possibilities
for refactoring or simplifying the role hierarchy. If we have two roles with the
same set of allowed actions, one of them may be redundant and could therefore
be removed. Similarly, consider two roles where one role is allowed everything
the other role is allowed. In this case, the policy could be simplified by letting
the second role inherit from the first.

Example 4. Are there two roles with the same set of atomic actions?

context Role::duplicateRoles():Boolean body:
Role.allInstances()−>exists(r1, r2| r1.allAtomics = r2.allAtomics)

Example 5. Are there two roles such that one includes the set of actions of the
other, but the roles are not related in the role hierarchy?
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context Role::virtualSubroles():Boolean body:
Role.allInstances()−>exists(r1,r2| r1.allActions()−>includesAll(r2.allActions())

and not(r1.superrolePlus()−>includes(r2)))

The next example addresses the question of which role a user should be as-
signed, given that he is supposed to perform a particular action. According to
the least-privilege-principle, the user should have no more privileges than abso-
lutely required.

Example 6. Given an atomic action, which roles allow the least set of actions
including the atomic action? This requires a suitable definition of “least” and
we use here the smallest number of atomic actions.

context AtomicAction::minimumRole():Set(Role) body:
self.allAssignedRoles()−>select(r1|self.allAssignedRoles()
−>forAll(r2| r1.allAtomics()−>size() <= r2.allAtomics()−>size()))

The next two examples address the question of whether there are possibilities
for refactoring permissions. Given two permissions that share allowed actions, it
may be useful to refactor the common actions into a new, separate permission.

Example 7. Do two permissions overlap?

context Permission::overlapsWith(p:Permission):Boolean
body: self.allActions()−>intersection(p.allActions())−>notEmpty()

Example 8. Are there overlapping permissions for different roles?

context Permission::existOverlapping():Boolean body:
Permission.allInstances()−>exists(p1,p2| p1 <> p2 and p1.overlapsWith(p2)

and not(p1.allRoles−>includesAll(p2.allRoles)))

The next example provides another way of detecting opportunities for refactoring
permissions. Suppose the policy default is to allow access and, moreover, there
is an action that is allowed by every role. The policy can then be simplified
by removing this action from all permissions, effectively assigning it the default
permission.

Example 9. Are there atomic actions that every role, except the default role,
may perform?

context AtomicAction::accessAll():Boolean body:
AtomicAction.allInstances()−>exists(a| Role.allInstances−>forAll(r|

not(r.default) implies r.allAtomics()−>includes(a)))
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The above examples provide evidence that OCL expressions can be used to
formalize and check non-trivial security properties. This expressiveness is due
to the fact that, in our applications, the OCL language is enriched with the
types provided by the metamodel of SecureUML+ComponentUML, (e.g, Role,
Permission, Set(Action)) and vocabulary (e.g., hasrole, givesaccess, isassigned).

6 The SecureMOVA Tool

As [12] observed, although there have been various proposals for specifying role-
based authorization constraints, there is a lack of appropriate tool support for
analyzing role-based access control policies. In response to this need, [12] shows
how to employ the USE system to validate and test access control policies for-
mulated in UML and OCL. We comment on this work in Section 7.

As part of our work, we have implemented a prototype tool called Secure-
MOVA for analyzing SecureUML+ComponentUML models. SecureMOVA is an
extension of the ITP/OCL tool, a text-input mode validation and analysis tool
for UML diagrams with OCL constraints. SecureMOVA extends the ITP/OCL
tool with commands for building SecureUML+ComponentUML diagrams and
for evaluating OCL queries using, among others, the analysis operations intro-
duced in Sections 4.2 and 5 (the users may, of course, add their own analysis
operations to the system). Importantly, SecureMOVA implements the mapping
from models to instances of the metamodel introduced in Section 3.3. Thus,
the users can work directly with the models (as they are used to), but their
queries are evaluated over the corresponding instances of the metamodel, which
are automatically generated by SecureMOVA. For reason of space, we omit here
the complete definition of the SecureMOVA commands. The interested reader
can find it at http://maude.sip.ucm.es/securemova along with a collection
of examples, including the example in Figure 3.

7 Conclusion

Related Work. As mentioned in the introduction, our work is inspired by [1],
who first explored the use of OCL for querying RBAC policies (see also [13,12]).
A distinct characteristic of our work is that we spell out and follow a precise
methodology, which guarantees that query evaluation is formally meaningful.
This methodology requires, in particular, precise definitions of both the meta-
model of the modeling language and the mapping from models to the correspond-
ing instances of this metamodel. These definitions make it possible to rigorously
reason about the meaning of the OCL expressions used in specifying and ana-
lyzing security policies.

To underscore the importance of such a methodology, consider a simple exam-
ple: specifying two mutually exclusive roles such as “accounts payable manager”
and “purchasing manager”. Mutual exclusion means that one individual cannot
have both roles. In [1,13,12] this constraint is specified using OCL as follows:

http://maude.sip.ucm.es/securemova
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context User inv:
let M : Set = {{accounts payable manager, purchasing manager}, ...} in
M−>select(m | self.role−>intersection(m)−>size > 1)−>isEmpty()

This constraint correctly specifies mutual exclusion only if the association-end
role returns all the roles assigned to a user. This should include role assignments
explicitly depicted as well as those implicitly assigned to users under the role
hierarchy. The actual meaning of the association-end role depends, of course, on
the mapping between models and the corresponding instances of the metamodel.
Since the precise definition of this mapping is not given in [1,13,12], readers
(and tool users) must speculate on the meaning of such expressions and thereby
the correctness of their OCL specifications. (Notice that, if the mapping used
in [1,13,12] is the “ straightforward” one, the association-end role will only return
the roles explicitly assigned to a user.)

In our setting, mutual exclusion can be specified using OCL as follows:

context User inv:
let M : Set = {{accounts payable manager, purchasing manager}, ...}
in M−>select(m | self.hasrole.superrolePlus()−>intersection(m)−>size > 1)

−>isEmpty()

From our definition of superrolePlus in Section 4.2, it is clear that this expression
denotes all the roles assigned to a user, including those implicitly assigned to
the user under the specified role hierarchy.

OCL has also been used to analyze models of other modeling languages, not
only security modeling languages. For example, consider the use of OCL to
define metrics, originally proposed by [4]. These approaches share the problems
we elaborated in Section 2: without a precise relation between the graphical
models and the corresponding metamodel, and a precise relation to the semantic
domain, the meaning and validity of OCL formulas is unclear.

Future Work. One direction for future work is tool support for handling queries
involving system state. SecureUML includes the possibility of constraining per-
missions with authorization constraints (OCL formulas), which restrict the per-
missions to those system states satisfying the constraints. An example of a state-
ful query for a design metamodel that includes access to the system date is
“which operations are possible on week days that are impossible on weekends?”
Alternatively, in a banking model, we might ask “which actions are possible on
overdrawn bank accounts?” Such queries cannot currently be evaluated as they
require reasoning about consequences of OCL formulas and this involves theo-
rem proving as opposed to model checking, i.e., determining the satisfiability of
formulas in a concrete model.

Another interesting direction would be to use our approach to analyze the
consistency of different system views. In [2] we showed how one can combine
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SecureUML with different modeling languages (i.e., ComponentUML and Con-
trollerUML) to formalize different views of multi-tier architectures. In this
setting, access control might be implemented at both the middle tier (implement-
ing a controller for, say, a web-based application) and a back-end persistence tier.
If the policies for both of these tiers are formally modeled, we can potentially
answer question like “will the controller ever enter a state in which the persis-
tence tier throws a security exception?” Again, carrying out such analysis would
require support for theorem proving.
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J.-M., Hussmann, H., Cook, S. (eds.) UML 2002. LNCS, vol. 2460, pp. 412–425.
Springer, Heidelberg (2002)

9. Kleppe, A., Bast, W., Warmer, J.B., Watson, A.: MDA Explained: The Model
Driven Architecture–Practice and Promise. Addison-Wesley, Reading (2003)

10. Lodderstedt, T., Basin, D.A., Doser, J.: SecureUML: A UML-based modeling lan-
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Abstract. Alloy is a formal language, which has been applied to mod-
elling of systems in a wide range of application domains. It is supported
by Alloy Analyzer, a tool, which allows fully automated analysis. As a
result, creating Alloy code from a UML model provides the opportunity
to exploit analysis capabilities of the Alloy Analyzer to discover possible
design flaws at early stages of the software development. Our research
makes use of model based techniques for the automated transformation
of UML class diagrams with OCL constraints to Alloy code. The paper
demonstrates challenging aspects of the model transformation, which
originate in fundamental differences between UML and Alloy. We shall
discuss some of the differences and illustrate their implications on the
model transformation process. The presented approach is explained via
an example of a secure e-business system.

1 Introduction

The Unified Modelling Language (UML) [1] is the de-facto language used in
the industry for specifying the requirements and the design of software systems.
Detecting faults during the early stages of the software development lifecycle,
instead of the later stages, provides a significant saving in cost and effort. This
necessitates analysing the requirements and design specifications for potential
errors and inconsistencies before the system has been developed. Manual analysis
is error-prone and tedious. A number of approaches have been proposed in the
literature [2,3,4] for analysing UML specifications. These analyses rely mainly
on using theorem provers. Theorem provers are hard to use, require expertise,
and the analysis requires manual intervention. Consequently, such approaches
are not very suitable for use in real-world applications.

In this paper, we advocate the use of Alloy [5] for analysing UML specifica-
tions. Alloy is a modelling language for expressing complex structural constraints
and behaviour. It has a well-designed syntax most suitable for Object Oriented
modelling. Moreover, Alloy is supported by a software infrastructure [6], which
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provides fully automatic analysis of models in the form of simulation and check-
ing the consistency of specifications. Alloy has received considerable attention
in the research community. For example, it has been successfully applied to
modelling and analysis of protocols in distributed systems [7], networks [8] and
mission critical systems [9].

There are clear similarities between Alloy and UML languages such as class
diagrams and OCL. From a semantic point of view both Alloy and UML can
be interpreted by sets of tuples [5,10]. Alloy is based on first-order logic and is
well suited for expressing constraints on Object Oriented models. Similarly, OCL
has extensive constructs for expressing constraints as first-order logic formulas.
Considering such similarities, model transformation from UML class diagrams
and OCL to Alloy seems straightforward. However, UML and Alloy have funda-
mental differences, which are deeply rooted in their underlying design decisions.

For example, Alloy makes no distinction between sets, scalars and relations,
while the UML makes a clear distinction between the three. This has grave
consequences in the transformation between the two languages. The current
state of model transformation techniques is not dealing with such issues. In this
paper we reflect on such differences and their effect on the transformation.

We have incorporated the ideas presented in this paper in a tool called
UML2Alloy. UML2Alloy which has been applied to the analysis of discrete event
systems [11] and the architecture of enterprise web applications [12].

The next section provides an overview of basic concepts used in this paper.

2 Preliminaries

This section provides a brief introduction to the basic concepts of the MDA and
Alloy, which will be used in the rest of the paper.

Model Driven Architecture: The method adopted in this paper makes use
of Model Driven Architecture (MDA) [13] techniques for defining and imple-
menting the transformations from models captured in the UML class diagram
and OCL into Alloy. Central to the MDA is the notion of metamodels [14]. A
metamodel defines the elements of a language, which can be used to represent
a model of the language. In the MDA a model transformation is defined by
mapping the constructs of the metamodel of a source language into constructs
of the metamodel of a destination language. Then every model, which is an
instance of the source metamodel, can be automatically transformed to an in-
stance of the destination metamodel with the help of a model transformation
framework [15].

Alloy: Alloy [5] is a textual modelling language based on first-order relational
logic. An Alloy model consists of a number of signature declarations, fields, facts
and predicates. Each signature denotes to a set of atoms, which are the ba-
sic entities in Alloy. Atoms are indivisible (they can not be divided into smaller
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parts), immutable (their properties remain the same over time) and uninterpreted
(they do not have any inherent properties) [5]. Each field belongs to a signature
and represents a relation between two or more signatures. Such a relation denotes
to a set of tuples of atoms. In Alloy facts are statements, which define constraints
on the elements of the model. Parameterised constraints, which are referred to
as predicates, can be invoked from within facts or other predicates.

Alloy is supported by a fully automated constraint solver, called Alloy Ana-
lyzer [6], which allows analysis of system properties by searching for instances
of the model. It is possible to check that certain properties of the system (as-
sertions) are satisfied. This is achieved by automated translation of the model
into a Boolean expression, which is analysed by SAT solvers embedded within
the Alloy Analyzer. A user-specified scope on the model elements bounds the
domain. If an instance that violates the assertion is found within the scope, the
assertion is not valid. However, if no instance is found, the assertion might be
invalid in a larger scope. For more details on the notion of scope, please refer
to [5, Sect. 5].

One important characteristic of Alloy is that it treats scalars and sets as rela-
tions. For example, a relation between two atoms A1 and A2 is represented by
the pair: {(A1, A2)}. A set like: {A1, A2} is represented by a set of unary rela-
tions: {(A1), (A2)}. Finally a scalar, is represented as a singleton unary relation.
For example, the scalar A1, will be represented in Alloy as: {(A1)}.

Treating both scalars and sets as relations, is an interesting property of Al-
loy, which makes it distinguishable from other popular modelling notations and
particularly UML. Hence it introduces additional complexity into the definition
of the transformation rules. The following section discusses our MDA based ap-
proach to transform UML class diagrams annotated with OCL constraints to
Alloy.

3 Model Transformation from the UML to Alloy

This section presents a brief description of our work. We use an MDA compliant
methodology to transform a subset of UML class diagram models enriched with
OCL constraints to Alloy.

Figure 1 depicts an outline of our approach. Using the EBNF representation of
the Alloy grammar [5], we shall first generate a MOF compliant [14] metamodel
for Alloy. We then select a subset of the class diagrams [16] and OCL [17] meta-
models. To conduct the model transformation, a set of transformation rules has
been defined. The rules map elements of the metamodels of class diagrams and
OCL into the elements of the metamodel of Alloy. The rules have been imple-
mented into a prototype tool called UML2Alloy. If a UML class diagram, which
conforms to the subset of UML we support is provided as input to UML2Alloy,
an Alloy model is automatically generated by the tool.

The next section illustrates our work on transforming the EBNF representa-
tion of Alloy’s grammar into a MOF compliant metamodel.
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Fig. 1. Outline of the transformation method

3.1 EBNF to MOF

Alloy is a textual language and its syntax is defined in terms of its EBNF [18]
grammar [5, Ap. B]. The grammar represents the concrete syntax of the Alloy
language. In order to use the MDA, we need to convert the concrete syntax of
the Alloy language to a MOF compliant abstract syntax representation. Wimmer
and Kramler [19] have already proposed a method for generating a metamodel
of a language, based on the EBNF representation of its syntax. We utilised
their approach with some simplifications, since some of their proposals were not
required in the case of Alloy. For example, we did not use annotations to give
additional semantics to the Alloy metamodel that was generated.

Figure 2 depicts a portion of the Alloy metamodel we constructed for signa-
ture declarations. A signature declaration (SigDecl) is an abstract metaclass. It
can either be an ExtendSigDecl or an InSigDecl, used for subtyping and subset-
ing signatures respectively. A SigDecl has a signature body (SigBody). It can
contain a sequence of constraints (ConstraintSequence). A signature declaration
can also specify a number of declarations (Decl). Declarations are used to define
signature fields. They declare one or more variables (VarId) and are related to
a declaration expression (DeclExp). A declaration expression can either declare
a binary relation between signatures (DeclSetExp) or a relation that associates
more than two signatures (DeclRelExp). Similarly, we have defined the parts of
the Alloy metamodel which represent expressions, constraints and operations.

Since the construction of the metamodel was an intermediate step to utilise
the MDA technology, we did not use OCL to specify well-formedness rules on
the elements of the metamodel, an approach which is adopted by the UML spec-
ification. Instead well-formedness rules were embedded in the transformation,
ensuring that the generated Alloy models are well-formed.

3.2 Mapping Class Diagram and OCL to Alloy

This section presents a brief introduction on the transformation rules from UML
to Alloy. It provides an informal correspondence between elements of the UML
and Alloy metamodels, as a basis on which to present the challenges of the
transformation. A more detailed description of the transformation rules can be
found in [11]. Due to space limitations the UML and OCL metamodels are
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Fig. 2. Part of the Alloy metamodel used to represent signature declarations

not presented here. An extensive explanation can be found in the respective
specification documents [16, p. 29] [17].

Table 1 provides an informal correspondence between the most crucial ele-
ments of the UML and OCL metamodels and Alloy. More specifically a UML
Class is translated to an Alloy signature declaration (ExtendsSigDecl), which
defines a SigId with the same name as the class name. If the class is not a spe-
cialization the Alloy signature is not related to any SigRef. Otherwise it will be
related to a SigRef, which references the signature it might extend.

For example, the Client class in the UML model of Fig. 3 is transformed to an
ExtendsSigDecl, which declares a SigId, whose name is Client. Because it doesn’t
represent a subclass, it is not related to any SigRef. Similarly the SoftwareClient
and WebClient are transformed to an ExtendsSigDecl. Unlike the Client class
though, they are related to a SigRef, which refers to the SigId generated to
represent the Client class.

The next section presents an example UML class diagram, which will be used
to illustrate the challenges of the transformation from UML to Alloy.

Table 1. Informal mapping between UML and Alloy metamodel elements

UML+OCL metamodel element Alloy metamodel element

Class ExtendsSigDecl

Property DeclExp

Operation Predicate

Parameter Decl

Enumeration ExntedsSigDecl

EnumerationLiteral ExtendsSigDecl

Constraint Expression

4 Example UML Class Diagram

Figure 3 depicts a UML class diagram that represents the login service of an
e-commerce application. The e-commerce system allows clients (i.e. Client) to
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Fig. 3. Partial model of the SSL protocol included in the e-commerce system login
service

context Client::abortLoginAttempt (): Boolean
post abortLoginAttempt:

self.loginAborted = ResultType::r_true and
self.resultPage = ResultPageType::nullPage

Fig. 4. OCL specification of the abortLoginAttempt operation of the Client class

purchase goods over the internet. It is therefore susceptible to various attacks,
including a man-in-the-middle attack that allows an attacker to intercept infor-
mation that may be confidential. The login service has therefore been augmented
with the SSL (Secure Sockets Layer [20]) authentication and confidentiality pro-
tocol. We model the man-in-the-middle attack in our example by adding an
Attacker class that intercepts all communications between the Client and the
e-commerce server, Server, possibly changing message content prior to passing
them onto the intended recipient. The SSL protocol works the same whether the
Client is a SoftwareClient or a WebClient, but the SoftwareClient provides some
extra functionality to the user. If the SSL handshake completes successfully, a
secret session key that can be used for message encryption and decryption will
have been exchanged between Client and Server. All further communication be-
tween them will be encrypted, and thus confidential. If the handshake fails, all
communication is aborted between Client and Server.

Figure 3 depicts a high level representation of the system, where attributes
of the classes hold the values of the messages exchanged between the entities
that participate in the interactions. Due to space limitations some user defined
types, such as the EncryptedDigestType are not represented in this diagram. For
an extended study of this model, please refer to [21].
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Figure 4 depicts an excerpt of the OCL specification of the abortLoginAttempt
method, which will be used later on to demonstrate the differences between OCL
and Alloy.

5 Differences Between UML and Alloy Which Influence
the Transformation

Although both UML and Alloy are designed to be used in Object-Oriented (OO)
paradigm, the two languages have different approaches to some of the fundamen-
tal issues of OO such as inheritance, overloading and predefined types [22]. Some
of these differences directly influence the model transformation process. In this
section, we shall discuss such differences and explain how our approach deals
with them.

Inheritance: Both UML and Alloy support inheritance. In the UML, a child
class inherits and can specialise the properties of one or more classes [16, p. 126].
The UML standard uses the term ‘redefines ’ to denote attribute or operation
overriding.

In Alloy a signature can extend another signature and the elements of the
subsignature are a subset of the elements of the supersignature. However, a sub-
signature can’t declare a field whose name is the same as the name of a field of
its supersignature. Thus a subsignature can’t override the fields of a supersigna-
ture. In our transformation we have resolved this shortcoming, by renaming all
Alloy fields which have naming conflicts. This is explained with the help of an
example.

Consider the SoftwareClient class of Fig. 3. It has an attribute name, which
overloads the attribute name of the Client class. In order to transform this model,
we need to create a field with a unique name in Alloy and change all references,
which refer to the name attribute of the SoftwareClient class, to reference the
uniquely named field. However, this brings additional complications. According
to the UML specification constraints of a superclasses are propagated to the
subclasses. In particular it is mentioned that: ‘A redefining element... can add
specific constraints or other details that are particular to instances of the spe-
cializing redefinition context that do not contradict invariant constraints in the
general context.’ [16, p. 126]. Let us assume the following constraint: self.name
<> NameType::null exists in the Client class and the constraint self.name <>
NameType::aName exists in the SoftwareClient. During the transformation the
name attribute of the SoftwareClient is renamed to name1. The original con-
straint is then translated to a signature constraint: name1 ! = aName in Alloy.
However, this allows for the field name1 to have a null value, which is not ac-
ceptable in the original UML model. Therefore another constraint (i.e. name1
! = null) needs to be injected in the translated Alloy model to reflect the con-
straints applied to the name attribute of the Client class. A similar approach is
followed when dealing with operation overriding.
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Namespace: All UML model elements are defined in a namespace [17, p. 72]. For
example, classes in a class diagram are usually defined in the namespace of the
package, while attributes are defined in the namespace of the class they belong to.

Model elements of an Alloy model also belong to a namespace [5, p. 254].
However, the notion of a namespace in Alloy and UML are slightly different.
For example, the UML specification defines that: ‘The set of attribute names
and class names need not be disjoint ’ [17, p. 178]. In Alloy on the other hand
signature names, have to be distinct from their field names.

Therefore we need to ensure that during the transformation a unique name is
created for Alloy elements that belong to the same namespace. In our approach
we first identify elements in the UML metamodel, which belong to different
UML namespaces, but are translated to the same Alloy namespace (e.g. class
operations). If those elements do not have a unique name, we make sure to assign
to them a unique name during the transformation to Alloy. All references to those
elements in the original UML model, are changed during the transformation to
reference the unique names in the generated Alloy model.

Another issue is that in OCL the instance of the class on which the operation is
applied, can be accessed using the self keyword. In Alloy there is no such concept
for predicates, making it difficult to reference the instance of the signature on
which the Alloy predicate is applied. As a solution we pass the instance as a
parameter to the predicate. For an example of a solution to this problem, consider
the abortLoginAttempt() operation of the Client. Its OCL specification makes use
of the self keyword and is depicted in Fig. 4. Following our transformation rules,
we translate it in Alloy to the following predicate, where act, which is an instance
of the signature Client, is passed as a parameter to the predicate:

pred abortLoginAttempt(act:Client){
act.loginAborted = r_True && act.resultPage = nullPage }

Sets, Scalars, Relations and Undefinedness: Alloy treats sets and scalars as
relations. In particular in Alloy a relation denotes to a set of tuples. The number
of elements in each tuple depends on the arity of the relation. For example,
a binary relation is represented by a 2-tuple. A set is represented as a unary
relation and a scalar is a singleton unary relation [5, p. 45].

In UML on the other hand, sets and scalars have the standard meaning they
have in set theory. The equivalent of relations in UML is an association between
classes, which is represented as a set of tuples [17, p. 184].

These differences in the two languages stem from the fact that UML and Al-
loy have different design philosophies. More specifically one of the purposes of
UML is to represent Object Oriented programming concepts, where the distinc-
tions between scalars and sets is clear. On the other hand Alloy was designed
for analysing abstract specifications and the uniform way it deals with sets,
scalars and relations contributes to its succinct syntax and leverages its expres-
siveness [23].

To explain this consider the navigation dot (.). In Alloy it is treated as the
relational join [5, p. 59]. As a result navigating over an empty relation denotes to



444 K. Anastasakis et al.

an empty set. Consequently Alloy doesn’t need to address the problem of partial
functions by introducing a special undefined value, like in UML [17, Ap. A.2.1.1].
More specifically let us assume in the model of Fig. 3 we have the following OCL
statement.

context Client inv: self.at.name = self.at.lm.name (1)

In UML if the instance of the Client in which this OCL invariant is evaluated
is related to no Attacker, the part self.at.name of this statement will denote
to an undefined value. The result of the invariant will then be undefined. In an
equivalent Alloy model, however, if the Client was related to no Attacker, such
a constraint would always denote to true! This is because the left hand side part
of the expression, that is self.at.name, would denote to an empty set relation.
Similarly the right hand side, self.at.lm.name would evaluate to an empty set.
Therefore the invariant will always evaluate to true.

This has serious implications because the statement will produce a different
outcome in Alloy than in OCL. To overcome the problem, we check if an OCL
statement can evaluate to an undefined value. To check for undefinedness, the
oclIsUndefined() OCL operation is used. For example, the OCL statement of (1)
will become:

context Client
inv: if not self.at.name.oclIsUndefined() and

not self.at.lm.name.oclIsUndefined() then
self.at.name = self.at.lm.name

else false endif

In this case the modeller has specified that if any part of the expression is
undefined, the invariant should evaluate to false. This ensures that the OCL
statement will either evaluate to true or false, but not undefined. Such an ex-
pression is transformed to Alloy using our standard UML to Alloy transformation
rules.

Predefined Types: The UML specification defines a number of primitive types
(e.g. String, Real, etc.). Those types can be used when developing UML models.
For example, the attribute browser of the WebClient class in Fig. 3 is of type
String.

On the other hand, Alloy has a simple type system and the only predefined
type it supports is Integers. However, some of the rest of UML’s predefined types,
can be modelled in Alloy. For example, a String, can be modelled as a sequence
of characters and each character can be represented by an atom.

One consequence of this approach, is that while in UML primitive types and
their operations are part of the metamodel, in Alloy they need to be defined on
the model level (i.e. a String has to declared as an Alloy signature). Our trans-
formation rules do this automatically for certain attribute types (e.g. String).
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UML’s extension mechanism: UML provides two extensions mechanisms [1,
p. 11]. One is to create a profile and another one is to extend the UML meta-
model. If UML has been extended, we need to incorporate the rules involving
the new elements into the transformation.

Our current transformation deals with a subset of the standard UML and OCL
metamodels. If the metamodels have been extended, the new semantics need to
be incorporated into the transformation. For example, let’s assume that UML
has been extended with the ability to define a Singleton stereotype. This stereo-
type, when used on a class, restricts the class to have only one instance. This is
expressed with the following invariant in OCL: self.allInstances() → size() =1.
In such a case the transformation rules need to be adjusted accordingly. In par-
ticular, whenever a Singleton stereotype is found on a class, a constraint needs
to be injected in the produced Alloy model, to impose that the transformed sig-
nature will have only one instance. The implementation of our transformation
rules, is modular and uses the SiTra [15] transformation engine, which can be
easily augmented to accommodate for any extensions.

Aggregation and Composition: The UML treats aggregation and composi-
tion as special kinds of associations [1, p. 112]. Alloy doesn’t directly support
notions like aggregation and composition. Fortunately [24] present a methodical
way of refactoring aggregation and composition as an association with additional
OCL constraints that represent the semantics of aggregation and composition.
We utilise this approach, as it allows us to use transformation rules for binary
associations and OCL constraints we have already defined.

Static vs Dynamic Models: Models in Alloy are static, i.e. they capture the
entities of a system, their relationships and constrains about the system. An
Alloy model defines an instance of a system where the constraints are satisfied.
However, Alloy models do not have an inherent notion of states. In particular,
Alloy does not have any built in notion of statemachine [5, Ap. B.5.1]

In UML the term ‘static’ is used to describe a view of the system, that rep-
resents the structural relations between the elements as well as the constraints
and the specification of operations with the help of pre and post conditions. In
UML, unlike Alloy, static models have an inherent notion of states. A system
state is made of the values of objects, links and attributes in a particular point
in time [17, p. 185].

Hence UML has an implicit notion of states, while Alloy does not support
it directly. This introduces additional complexity in the transformation. Let
us assume the following OCL statement is the definition of the receiveResult()
operation of the Client:

context Client::receiveResult():void
pre: self.resultPage = ResultPageType::nullPage
post: self.resultPage = ResultPageType::homePage

To evaluate this expression two consecutive states are required, one to repre-
sent the state before the execution of the operation (precondition) and another
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to represent the state after the execution of the operation (postcondition). The
OCL standard formally specifies the environment on which pre and postcondi-
tions are evaluated [17, p. 210].

If the specification of the receiveResult() operation, was directly translated to
Alloy it would translate to:

pred receiveResult(act:Client){ act.resultPage = nullPage
act.resultPage = homePage }

However, such an Alloy specification leads to an inconsistent model. This is
because the value nullPage and homePage are assigned to the resultPage field,
at the same time. This leads to a logical inconsistency, as both statements can
not be true (i.e. resultPage will either be the nullPage or homepage, but not
both at the same time).

One solution, which has been proposed is to introduce the notion of a state
at the model level [5,25]. This is a standard way of modelling dynamic systems
in Alloy. Our approach uses this pattern of modelling dynamics in Alloy, to
translate UML models to Alloy. This allows us to have two consecutive states and
evaluate the preconditions of each operation on the first state, while evaluating
the postcondition of an operation on the next state.

6 Analysis, Discussion and Future Work

This section presents a brief overview on the results of the analysis we conducted
on the example UML model. It also provides a discussion on further issues that
were encountered and suggests directions for future work.

6.1 Analysis Via Alloy

We applied our model transformation rules from UML to Alloy on the example
model presented in Sect. 4. We checked the produced Alloy model, using the
Alloy Analyzer. The assertion that must be validated is that if the Attacker
obtains the secret session key, the handshake should always fail. This assertion
can be specified using OCL:

context Client
inv sameKeySuccess: Client.allInstances() -> forAll(ac:Client |

ac.loginAborted = ResultType::r_false implies (
ac.cKey = SessionKeyType::symmKey and
ac.at.sKey = SessionKeyType::symmKey
and ac.at.aKey <> SessionKeyType::symmKey))

This OCL statement was automatically transformed to the following Alloy
assertion:

assert sameKeySuccess{ all ac:Client | ac.loginAborted = r_false
implies (ac.cKey = symmKey && ac.at.lm.sKey = symmKey &&
ac.at.aKey != symmKey) }
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This assertion was checked for a scope [5, p. 140] of six. A scope of six means
that the Alloy Analyzer will attempt to find an instance that violates the as-
sertion, using up to six instances for each of the entities defined in the class
diagram of Fig. 3 (for example, Client, Attacker, Server). The assertion pro-
duced no counterexample, meaning that it is valid for the given scope.

6.2 Discussion and Future Work

This section briefly presents a discussion on further practical issues we had to
deal with, when defining the transformation rules. Moreover it suggests directions
for future work.

A difficulty that was encountered when defining the transformation rules, was
that parts of the UML specification are inconsistent with the UML informative
semantics section of the specification [17, An. A]. For example, even though
the UML standard allows for overloading of attributes and operations [16, Sect.
7.3.46], the UML formal semantics part of the specification seems to adopt a
different stance [17, p. 182]. In particular it doesn’t allow for attributes or oper-
ations of a subclass to have the same name as the attributes and operations of its
superclass. As explained in Sect. 5 we made use of the informal semantics in our
transformation rules, since attributes and operations overriding is an important
facility provided in object oriented modelling.

Another issue we had to overcome, originates in the nature of OCL. In par-
ticular the transformation rules had to be invoked recursively. For example, the
definition of the abstract syntax of If expressions [17, p. 45] allows for any type
of an OCL expression to be part of the condition clause. As a result, when
defining the transformations someone needs to check the type of the condition
expression and invoke the corresponding transformation rule, which will be used
to transform that specific kind of expression to Alloy. This problem is dealt by
the SiTra [15] transformation framework we used for our implementation. SiTra
allows for recursive calls of transformation rules with dynamic type checking.
Therefore depending on the type of the expression, the corresponding rule is
automatically invoked.

The UML specification defines a number of concepts (e.g. ordered and subsets
annotations of association ends, package import), which are not formally defined.
For some of those concepts the semantics are not clear (e.g. package merge) [26].
Transformation rules for such concepts have not been defined yet. Modellers can
define their interpretation of the semantics of such concepts on the model level
using OCL.

While Alloy is a purely declarative language, OCL has an imperative flavour.
For instance, the OCL standard allows for recursion: ‘We therefore allow recur-
sive invocations as long as the recursion is finite’ [17, p. 205]. Alloy on the other
hand does not directly support recursion. It might be possible to represent some
cases of recursion, using the expressiveness of the Alloy language as suggested
in [22]. How this might be incorporated into our transformation rules in order
to provide support for recursion, remains an issue for future research.
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As we use Alloy to formalise UML, our approach admits some of the inher-
ent limitations of the Alloy language. Some UML primitive types (such as Real
numbers) can not be directly transformed to Alloy. Therefore it is not feasible to
check whether certain properties involving real values are satisfied. Additionally
the UML offers a number of collection types (e.g. Sequence, Bag), which can
not be directly represented in Alloy. Moreover, since Alloy is a first-order lan-
guage, it does not support nested collections. The possibility of representing the
capabilities of UML collection types in Alloy remains to be investigated further.

7 Related Work

Formalising UML for the purpose of analysis is a popular approach. Evans et al
[4] propose the use of Z [27] as the underlying semantics for UML. Marcano and
Levy [2] advocate the use of B [28], while Kim [3] makes use of an MDA method to
translate a subset of UML to Object-Z. These methods rely on theorem provers
to carry out the analysis, which complicates the process.

A number of UML tools also provides support for analysis. For example, the
USE tool (UML Specification Environment) [10] is a powerful instance evaluator
with the ability of simulation.

Using Alloy to formalise UML has also received considerable attention. More
specifically Denis et al [9] use Alloy to expose hidden flaws in the UML design of a
radiation therapy machine. Georg et al [8] have used Alloy to analyse the runtime
configuration of a distributed system. Unlike our work, those approaches conduct
the translation from UML to Alloy manually, a procedure which is tedious and
error prone.

Additionally there have been studies on the comparison of languages of UML
and Alloy [22,29]. However, they do not use model driven approaches to demon-
strate the differences.

Finally transformations from a three-valued logic language to a two-valued
logic language, such as ours from UML to Alloy have been applied to the field
of database semantics. For example, [30] propose the use of an interpretation
operator to treat statements with undefined values in databases either as true
or false.

8 Conclusions

Model transformations in the context of MDA are predominantly used for code
generation. Model transformations can be used for the creation of analysable
models, allowing the discovery of possible flows in the design of a system. Lan-
guages used for creation of analysable models have strong formal foundations.
Hence, a model transformation from the UML to such languages is highly non
trivial.

In this paper we have reflected on the lessons learned from the model transfor-
mation from UML class diagrams to Alloy. We discussed some of the differences
between UML and Alloy. For example, the different perspectives on inheritance,
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functions, static and dynamic models. We also studied the implications of such
differences in the model transformation. Our proposed solutions to such chal-
lenges were presented. The method is implemented in a prototype tool called
UML2Alloy. The approach is illustrated with the help of an example from the
security domain.
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Abstract. Detecting errors early within the development process for an
embedded system assists a developer in avoiding excessive error correc-
tion costs and minimizing catastrophic losses resulting from failures in
deployed systems. Towards that end, this paper presents i2MAP, an iter-
ative and incremental goal-driven process for constructing an analysis-
level UML model of an embedded system. The UML model is formally
analyzed for adherence to the behavioral properties captured in a com-
panion goal model. The process uses goal modeling to capture the
requirements of the system, and uses UML to capture analysis-level
structural and behavioral information. Both types of i2MAP models can
be used to drive a rigorous approach to model-driven development of
embedded systems. In this paper, we illustrate the i2MAP process and
the accompanying tool suite in the development of an embedded system
model for an adaptive light control system.

1 Introduction

The cost of correcting errors introduced early in the development process is
significantly more expensive than the cost of correcting errors introduced in
later stages [1]. To further exacerbate this problem, the increasingly popular
model-driven development, such as that promoted for use in the model driven-
architecture (MDA) by the OMG [2], successively refines models from analysis to
design and eventually to code. Thus, undetected errors may be propagated from
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analysis models created early in the development process to code, potentially
resulting in expensive correction costs. Within the embedded systems domain,
the detection of errors is particularly important, not only because of the high
costs of error detection and correction, but also because failures of embedded
systems may lead to catastrophic losses [3]. In addition to correctness, embedded
systems also need to balance several, often contradictory non-functional system
qualities, such as performance and development cost [4]. This paper presents
i2MAP (iterative and incremental Modeling and Analysis Process), an iterative
and incremental process for constructing an analysis-level UML model of an em-
bedded system, which is guided by an accompanying goal model. While the UML
model contains structural and behavioral information, the goal model captures
high-level requirements and behavioral properties to which the model should
adhere. As part of i2MAP, the UML model is formally analyzed for adherence
to the behavioral properties.

Iterative and incremental development practices are advocated by numerous
software development processes, such as the Spiral Model [5] and the Rational
Unified Process (RUP) [6]. Generally, iterative development constructs increas-
ingly more complex versions of software development artifacts [7], such as UML
models or code. Using this strategy, these processes enable developers to detect
errors and conceptual misunderstandings of requirements sooner, and incorpo-
rate feedback from previous iterations. Several researchers have attempted to
combine iterative development practices with the use of formal methods [8, 9, 10].
In contrast to our approach, they have either focused on specification languages
other than UML [8] or do not support formal analysis [9, 10]. In addition, none
of the aforementioned approaches includes support for goal modeling.

i2MAP uses two different types of models to capture complementary informa-
tion. A goal model is used to capture high-level functional and non-functional re-
quirements and their rationale. Behavioral properties to which the system should
adhere are captured as constraint goals in the goal model, which are specified in
terms of formally-analyzable natural language properties. In addition, a UML
model is used to capture an operationalization of the requirements in terms of
structural and behavioral UML diagrams. Both of these models are realized in
increments, where each increment represents the addition of specific functional-
ity to the models. Specifically, the goal model is augmented with goals to cap-
ture the functionality that is required for the current increment, while the UML
model is extended with structural and behavioral diagram elements realizing the
increment’s functionality. These modifications to the models are performed in it-
erations, each of which comprises three phases: (1) the goal model is augmented,
(2) the UML model is extended to adhere to the goal model, and (3) both models
are formally analyzed for behavioral consistency. In addition, traceability tech-
niques are used to check the models for syntactic consistency [11]. If errors in
either the goal or UML model are uncovered during the analysis, then these
errors need to be corrected in a subsequent iteration before progressing to the
next increment. The process is complete when all requirements for the system
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have been captured in the models. Requirements that have not been realized yet
are evident as goals missing from the goal model.

i2MAP leverages and extends several previously developed methods and tools
to create a comprehensive modeling and analysis process supported by a re-
search prototype tool suite. To assist the developer in augmenting the models
for realizing an increment, we have developed Cobra (Constraints and Objects
for Requirements Analysis) patterns [12] that provide goal model templates and
UML diagram templates to capture analysis-level structural and behavioral in-
formation of the system. The details of the Cobra patterns are described in [12];
here we only overview the patterns. The goal model template declaratively spec-
ifies the functional and non-functional requirements of the embedded system
using softgoals, and refines the requirements into system constraints using a
structured natural language. The UML model template operationally specifies,
at the requirements-analysis level, UML elements that satisfy the requirements.
Structural information is captured using UML class diagrams, while behavioral
information is captured using UML state diagrams. Syntactic consistency can
be established between the goal model and the UML structural diagrams using
traceability techniques [11]. Behavioral consistency can be established between
the goal model and the UML behavioral diagrams by formally analyzing the
UML models for adherence to the constraints from the goal model. In order
to translate UML models to formal specifications, we use Hydra [13], a pre-
viously developed metamodel-based UML formalization framework. To trans-
late the natural language constraints into formal specifications, we leverage Spi-

der [14], a customizable natural language specification environment, to generate
the corresponding temporal logic formulae. In this paper, we illustrate the i2MAP
approach and tool suite through the development of an adaptive light control
system.

Overall, i2MAP combines UML and goal modeling, the accessibility of natural
language descriptions, and the rigor of formal analysis to support an incremen-
tal process for creating and refining requirements-level models. The remainder
of the paper is organized as follows. Section 2 briefly overviews Cobra pat-
terns. Section 3 describes the i2MAP process and presents our supporting tool
suite. Section 4 applies the process to the development of an adaptive light con-
trol system. Section 5 examines related work. Finally, in Section 6 we present
conclusions and discuss directions for future work.

2 Cobra Patterns

Cobra patterns have been designed to assist developers in the creation of com-
plementary UML and goal models for the requirements analysis of embedded
systems. Specifically, the goal model captures non-functional requirements and
declaratively specifies functional requirements and constraints and the UML
model operationally specifies behavior that satisfies the requirements. To date,
the Cobra patterns have focused on capturing sensors and actuators, specifying
the behavior of important system components, and capturing interaction with



454 S. Konrad, H.J. Goldsby, and B.H.C. Cheng

the user. While this section briefly overviews the Cobra patterns, details of the
patterns are described in [12].

Goal models, in general, specify both functional and non-functional system
objectives and the relationships between objectives. Developers can use goal
models to evaluate alternative solutions and to document the rationale behind
requirements [15]. Our Cobra patterns contain goal model templates specified
using the Non-Functional Requirements (NFR) modeling notation [16]. Four
types of goals are specified with NFR: softgoals (non-functional goals whose
satisfaction cannot be fully achieved usually), functional goals (describing func-
tional objectives of the system that can be achieved), softgoal operationalizations
(identifying an applicable Cobra pattern and its instantiation), and constraint
goals (describing system objectives to which the system should adhere). Con-
tribution relationships (depicted as a line with the word “helps” or “hurts”)
connect an element to a softgoal and indicate whether the element helps or
hurts, respectively, the realization of the softgoal. Due to space constraints, this
paper focuses on the constraint goals and their relationships to the UML model.
Other elements of the goal model are described in more detail in [12]. In order
to enable the formal analysis of constraint goals, these goals are specified as
structured natural language properties that are amenable to formalization using
Spider [14].

Thus far, the Cobra pattern repository consists of eleven patterns. Table 1
overviews the main functional goals of the patterns and shows how the Co-

bra patterns can be evaluated for their contribution to some non-functional
requirements. Each Cobra pattern has a primary functional goal that describes
the basic functionality captured by the pattern, which is further elaborated by
a number of a softgoals that describe the impact of applying the pattern. In
general, the developer can select an appropriate pattern to apply based on the
primary functional goal. However, if two patterns, such as the Passive Sensor
and Active Sensor , have similar functional goals, then the softgoals can be used
to assist the developer in evaluating the alternatives. For example, the primary
functional goal of both the Passive Sensor and Active Sensor Cobra patterns
is to Monitor environment (as seen in Table 1). However, in the Active Sensor pat-
tern, a sensor always sends the information to the computing component when
the value changes (information push). As such, the computing component always
has the most current value when performing a computation. Nevertheless, the
system has to be able to handle the potentially increased number of messages
sent by the sensors when a value changes often, which may affect the system
cost. In the Passive Sensor pattern, the computing component only requests a
sensor value when it is actually needed (information pull). However, the decision
process for making the request and executing the request takes time and may
impact the performance of the system.

Figure 1 depicts an elided portion of the goal model template for the Passive
Sensor pattern. As denoted in Table 1 and Figure 1, the softgoal (A) Perfor-
mance is hurt, while the softgoals (B) Affordability and (C ) Reusability are helped
by the (D) Passive sensor pattern. This pattern is AND-refined by (E) Passive
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sensor name, which provides context by naming the pattern instance. This goal
is AND-refined by its functional goals, which include (F ) Sense environment and
(G) Restrict to legal values. Each of the functional goals are, in turn, AND-refined
by constraint goals that describe specific, analyzable properties that the UML
model should realize. AND-refinement requires all child goals to hold for the par-
ent goal to be satisfied, while OR-refinement only requires one child goal to hold.

Table 1. Cobra pattern evaluation table

Pattern Name Classification Primary Functional Goal NFR

P
e
rf

o
rm

a
n
c
e

M
o
d
ifi
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il
it
y

A
ff
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rd

a
b
il
it
y

R
e
u
sa

b
il
it
y

Active Sensor Structural Monitor environment; broadcast of envi-
ronment information (push)

+ - +

Passive Sensor Structural Monitor environment; requires explicit re-
quest for environment information (pull)

- + +

Actuator Structural Influence environment by setting an actu-
ator value

+

Control Structural Receive information from user + - +
Controller Decompose Structural Decompose system into components +
Indicator Structural Provide information to user + - +
Communication Link Behavioral Interact with external device, e.g., for

fault diagnostics
- +

Computing Component Behavioral Distribute computational tasks - +
Corrector Behavioral Correct faults - + -
Detector Behavioral Detect faults - + -
Fault-Handler Behavioral Centralized handling of faults - + -

Instantiating a goal model template has two steps. First, the developer should
customize the template by replacing the generic text of the goal model elements
with information about the specific embedded system under development.1 We
use underlining in the goals to highlight generic text that needs to be customized.
Second, the developer should relate the customized goal model template to the
goal model for the overall embedded system by establishing a hurt or help rela-
tionship between the softgoal describing the pattern and a softgoal of the goal
model (e.g., the hurt relationship between (D) Passive sensor pattern and softgoal
(A) Performance in Figure 1).

The Cobra patterns also provide UML model templates. Specifically, the
Cobra patterns use UML class diagrams to capture structural information, and
sequence and state diagrams to capture behavioral information. Due to space
constraints, we do not present UML model templates for the Cobra patterns
(please refer to [12] for more details), but we do include example instantiations
of UML model templates in the case study description.

1 Customizing a natural language template refers to replacing the underlined text
with free-form text to apply the goal to a specific system. The property can then be
instantiated by replacing the underlined text with Boolean propositions in terms of
UML model elements.
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Fig. 1. Passive Sensor pattern goal model template

3 Process

In this section, we present i2MAP and describe the supporting i2MAP tool suite.
Specifically, i2MAP guides a developer in the cooperative construction of a goal
model and an analysis-level UML model of the embedded system in increments,
where an increment is a unit of functionality. An increment is realized by declar-
atively specifying the functionality, including constraints, in the goal model and
operationally specifying the functionality with structural and behavioral elements
in the UML model. Realizing an increment may require several iterations, each
of which is a single attempt to declaratively and operationally specify the incre-
ment. The realization is complete when the UML model adheres to the constraints,
specified as part of the goal model. If discrepancies are detected, then these dis-
crepancies need to be corrected during a subsequent iteration within the current
increment. An increment may correspond to the application of a Cobra pattern,
which provides goal and UML model templates to assist the developer in the spec-
ification of the increment functionality. In order to identify suitable patterns, a
developer reviews the Cobra pattern repository to look for goals that capture
the functional and non-functional requirements needed for the current increment.

To begin the process, the developer seeds the goal model with a high-level
objective of the system. Specifically, the primary goal of the system is identi-
fied and then decomposed into subgoals until each child goal describes the unit
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of functionality realizable in one increment, such as what can be matched by
the objective of a Cobra pattern. The relationship between the softgoals and
operationalized softgoals added during the refinement process is denoted by con-
tribution relationships that are labeled with the keywords “helps” or “hurts”.
The developer has two options for realizing an increment: (1) using one or more
Cobra patterns or (2) without Cobra patterns. In general, the process is sim-
plified if an increment is realized using a Cobra pattern. But it is also possible
to use i2MAP without the Cobra patterns. In those cases, there is more bur-
den placed on the developer to develop UML model refinements and goal model
refinements without guidance from patterns and templates. For simplicity, we
assume in the remainder of the paper that an increment corresponds to the
application of one Cobra pattern.

In addition to seeding the goal model, the developer uses the child goals to
identify a preliminary list of increments and an initial realization order. Empirical
studies [17] have shown that the order in which increments are completed (i.e.,
specific pattern applications) may affect the complexity of formal analysis, since
there may be dependencies between increments. Resolving these dependencies
in a suboptimal order could result in large and complex models earlier than
necessary.

Once a preliminary increment realization order has been determined, the de-
veloper begins to realize increments, where each increment has three phases:
(1) planning (augmenting the goal model), (2) modeling (extending the UML
model to adhere to the goal model), and (3) analysis (formally analyzing the
goal and UML model to determine whether the increment has been completed
successfully). Figure 2 gives a data flow diagram overviewing the i2MAP tool
suite supporting the process, where ovals represent processes, arrows denote
data flow, two parallel lines depict data stores, and external entities are rep-
resented by rectangles.2 Numbers are used to indicate which components are
used in which phase. We next explain each phase in detail and show how it is
supported in our tool suite.

3.1 Planning

In the planning phase, the developer augments the goal model by including op-
erationalized softgoals describing the non-functional requirements affected by
the current increment; and functional and constraint goals are used to capture
functional requirements. Since we assume a developer realizes an increment by
applying a Cobra pattern, the goal model template provided by the pattern is
used to guide the planning phase. Instantiating a goal model template has two
steps. First, each goal in the template is customized by replacing the generic un-
derlined text with information about the specific embedded system under devel-
opment. The customized constraint goals specify properties to be satisfied by the
UML model. In the i2MAP tool suite, this specification is created in structured
natural language (NL) [14] using the Increment Specifier (Process 1 in Figure 2).
2 We use a data flow diagram rather than a UML activity diagram to highlight the

flow of data between the different phases of the process.
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Fig. 2. Abstract view of i2MAP key steps

Second, the developer links the instantiated goal model template to the goal
model for the overall embedded system by establishing a helps contribution
relationship between the softgoal naming the pattern instance (e.g., (D) Passive
sensor name) and a softgoal in the system goal model. Currently, this association
needs to be done manually in the companion goal model and is not supported by
our tool suite. Techniques exist for establishing the correctness of goal models [18,
19], however, it is outside the scope of our current work.

3.2 Modeling

Next, the UML model is augmented to include the functionality required by the
goals. To create the UML model, the developer uses a UML CASE tool (En-
tity 2 in Figure 2). For instance, our i2MAP tool suite currently uses Rational
XDE [20]. The structure of the system is captured using UML class diagrams
and behavior is captured in terms of UML state and sequence diagrams. To facil-
itate this process, the Cobra patterns provide templates to guide the creation
and refinement of the UML diagrams. These diagram templates are designed
to realize the properties specified by the constraint goals for a selected Cobra

pattern. To denote a specific instance of the system that should be analyzed, an
object diagram is created instantiating the class diagram.

3.3 Analysis

Once the modeling phase is complete, the analysis phase begins. In order to de-
termine whether an increment has been completed successfully, we formalize the
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constraint goals and analyze the UML model for adherence to these goals. An in-
crement is considered successful if sufficient constraint goals are satisfied so that
(1) for each goal with AND child goals, all child goals are satisfied and (2) for
each goal with OR child goals, at least one child goal is satisfied. Two tasks need
to be performed before the properties specified by the constraint goals can be ana-
lyzed. First, constraint goals of the goal model need to be instantiated with model-
specific elements. For this purpose, the developer replaces the underlined text in
the placeholders of the structured natural language specifications with Boolean
expressions describing specific system conditions (extracted from the class and
state diagrams). In the i2MAP tool suite, the natural language properties specified
in the constraint goals are instantiated by the Property Instantiator (Process 3a in
Figure 2), which leveragesSpider [14] to perform the instantiation and formaliza-
tion (i.e., translate the natural language properties to LTL). To facilitate this pro-
cess, Spider provides user assistance to generate Boolean expression fragments
based on information automatically extracted from a UML model. For details on
these capabilities, please refer to previously published work [14, 21]. Second, the
UML model is translated to a formal system model for the targeted formal analy-
sis tool. In our tool suite, this translation is performed using the UML Formalizer
(Process 3b in Figure 2). Here, Hydra [13] translates the UML diagrams into a
formal model to be analyzed with the Spin model checker [22].

After the properties are instantiated and formalized and the formal system
model is created, the UML system model is analyzed for adherence to the con-
straint goals. The analysis is initiated by the Model Analyzer (Process 3c in
Figure 2), which iteratively performs the analysis of the formal model for ad-
herence to all constraint goals. The Model Analyzer also processes the output
received from the formal analysis tool and creates sequence diagram visualiza-
tions of the generated error traces. The visualizations can assist a developer in
determining the source of each error. If a more interactive visualization is desired,
then the developer may alternatively use Theseus [23], a tool that visualizes the
model checker error trace in terms of animations on the original UML diagrams.
If errors are uncovered during the analysis, then the source of the error needs to
be determined and the error must be corrected in another iteration before the
increment can be considered complete. As such, this analysis enables develop-
ers to find and correct errors quickly, whether the errors were newly introduced
in the most recent increment or were introduced in earlier increments but re-
vealed by the latest increment. However, since the size of the system model (in
UML) and the number of properties that need to be analyzed is increasing with
each iteration, the analysis phase also represents the greatest overhead of our
process.

Finally, if no errors are found in the analysis phase, the developer has specified
all of the properties for the goal model, as well as constructed all the UML
elements for an increment, then the process proceeds to the next increment, or
ends when the goal model captures all requirements and, therefore, all increments
have been completed.
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4 Example Application

Next, we describe the application of i2MAP to the modeling and analysis of
an adaptive light control system (ALCS). The ALCS attempts to achieve a
user-specified brightness in a single room. The user can select a desired bright-
ness value between 0 and 1000 lux, and the system then attempts to maintain
this brightness level. In order to achieve this goal, the system is equipped with
a brightness sensor that measures the brightness in the room; and should the
brightness be insufficient, the system can activate a dimmer to achieve the de-
sired brightness level. The system is also equipped with a motion sensor. Using
the motion sensor, the system can determine whether the controlled room is
occupied. If the room is vacant, then the controller will turn off the light after
a timeout period. In addition to the automatic mode, the controller also offers
a manual mode. When a user activates the manual mode, the controller will set
the dimmer to the maximum value for a period of time, and then switch back
to automatic mode.

To begin the process, the developer seeds the goal model with the primary
goal Provide adaptive light control and child goals. Each child goal corresponds to
an increment that can be realized using a Cobra pattern. Note that a given
Cobra pattern may be used for realizing more than one child goal. Table 2
enumerates the ALCS increments. Specifically, it shows one possible realization
order, the increment description, and the name of the Cobra pattern used to
realize the increment. In the first few increments, the ability to sense and influ-
ence the environment via sensors and actuators is modeled. Next, the Indicator
pattern provides the functionality needed to indicate the current state of the
system to the user. Finally, automatic and manual control are realized using the
Computing Component pattern.

Table 2. Increment realization order for ALCS

No Increment Name Applied Cobra Pattern
1 Detect motion Passive Sensor pattern

2 Measure brightness Passive Sensor pattern

3 Control dimmer Actuator pattern

4 Display status information Indicator pattern

5 Automatic control Computing Component pattern

6 Manual control Computing Component pattern

For illustration purposes, we describe next the realization of an intermediate
increment, (2) Measure brightness, instead of the initial or final increment.

Planning. At this point, the developer has successfully realized one increment:
(1) Detect motion (to model the motion sensing functionality). For the second
increment (2) Measure brightness, the developer needs to model the brightness
sensor to measure the brightness level of a room. For this increment, the devel-
oper has decided to apply the Passive Sensor Cobra pattern (refer to Table 2).
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Modeling. The UML model of the ALCS is refined to include the functional-
ity required by the current increment Measure brightness. As a result, the class
diagram (depicted in Figure 3(a)) is augmented to include a BrightnessSen-
sor, which will monitor the brightness level of a room. The BrightnessSensor’s
behavior is elaborated by a state diagram (depicted in Figure 3(b)).
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Fig. 3. UML models for the ALCS

Analysis. Once the modeling for the increment Measure brightness is com-
plete, analysis begins. The developer uses Hydra to formalize the UML model
and Spider to instantiate and formalize the constraint goals specified by the
goal model. However, formal analysis of the second increment Measure bright-
ness reveals that two constraint goals for this increment (shown in Expres-
sion 1(a) and 2(a), which are instantiations of the constraint goals (I ) Glob-
ally, it is never the case that a sensor value exceeds its maximum. and (H ) Globally,
it is never the case that a sensor value is less than its minimum. in Figure 1) are
violated:

1(a) Globally, it is never the case that BrightnessSensor.brightnessValue >
1000.

and

2(a) Globally, it is never the case that BrightnessSensor.brightnessValue < 0.

After inspection of the UML model and the violation trace provided by the
analysis tool, the cause for the violation was determined to be the following
UML model error: “When the model of the brightness sensor was created, the
developer forgot to have the brightness sensor v alidate the value returned by the
Environment, enforcing upper and lower bounds.” Therefore, it was possible for
the Environment to return a brightness value greater than 1000 lux or less than
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0 lux. This error can be seen in the elided state diagram of the BrightnessSensor
depicted in Figure 3(b), where the BrightnessSensor sends the ComputingCom-
ponent the value that was received in state ValueReceived, without performing
any validity checks on the value. The corrected state diagram for the Bright-
nessSensor is depicted in Figure 4, where the shaded transitions, state, and
variable name indicate corrections. Once these changes were made to the model,
further analysis did not detect any violations. Due to the analysis of all con-
straint goals after each iteration, this error was uncovered early in the process.
If this error had been detected in subsequent increments, then determining the
source of the error would have been more complicated due to a more complex
system model. If this error had not been detected in the subsequent increments,
it could have potentially been propagated into subsequent development phases
and, possibly, even the final product, since even testing techniques may have
missed the subtle error.
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Fig. 4. Elided revised state diagram for the BrightnessSensor

5 Related Work

A wide variety of incremental and iterative development processes exists, such
as the Spiral Model [5], the Rational Unified Process [6], the Agile Unified
Process [24], Agile Model Driven Development [25], Agile Model Driven Ar-
chitecture [26], and Extreme Programming (XP) [27]. Our iterative and incre-
mental modeling and analysis process shares several characteristics with these
approaches, such as incremental development and rapid feedback. However,
i2MAP is tailored to the construction of analysis-level goal and UML models
for embedded systems and to ensuring structural and behavioral consistency
between the UML model and accompanying goal model.

Several complementary techniques have been developed to combine the use
of formal methods and iterative development approaches. Suhaib et al. [8] cre-
ated a modeling and analysis process termed extreme formal modeling (XFM).
Although their approach is similar to ours, they focus on prescriptive formal
hardware models specified in Promela [22] instead of UML models, and do not
include patterns or goal modeling. Suhaib et al. [8] also investigated the effect of
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different increment orderings on models created using XFM and report results
similar to what we have obtained in our empirical studies [17]: Some orders may
result in a larger state space earlier than necessary, hindering the performance
of an iterative modeling and analysis approach.

Other approaches exist that integrate iterative and incremental software de-
velopment and formal methods. SLAM [28] is a technique that uses an object-
oriented formal specification language, termed SLAM-SL, to model sequential
software programs. Formulae can be used to assert conditions during the ex-
ecution of a program and, thereby, replace unit tests. In addition, pre- and
post-conditions can be used to prove that a program still adheres to all spec-
ified requirements after an incremental development step. Henzinger et al. [29]
have developed an approach termed extreme model checking and implemented
the approach into an Eclipse plug-in [30]. In this approach, they use the BLAST
model checker [29] to implement an efficient regression verification environment
for C programs. In contrast to our approach, neither SLAM nor Extreme Model
Checking applies to UML models.

Other incremental modeling approaches using UML have been proposed.
Boger et al. [9] propose extreme modeling, in which they apply principles of
extreme programming to the modeling phase of software development. To make
their models executable and testable, they use a mapping of UML structural and
dynamic diagrams to Petri nets. Related to extreme modeling, Hayashi et al. [31]
introduce the SMART modeling system, which uses action semantics and offers
test-driven behavioral guidance. Differing from our approach, extreme modeling
and SMART focus on executability and testing of UML diagrams, while our goal
is the formal analysis of adherence to properties.

In summary, none of the aforementioned approaches combines the use of goal
models to capture functional and non-functional properties, the rigor of formal
analysis, guidance of modeling and analysis, and an analysis process that facili-
tates systematic incremental change and rapid feedback.

6 Conclusions

This paper described i2MAP, a process for the iterative construction of concep-
tual UML models and goal models for embedded systems. The process has been
implemented in the i2MAP tool suite and we illustrated its use in the develop-
ment of models for an embedded system. Overall, i2MAP enables the incremental
development of UML models and accompanying goal models. In order to sup-
port the process, Cobra patterns [12] may be used. Behavioral consistency
is achieved by formally analyzing the UML model for adherence to constraint
goals.

Numerous directions for future work are possible. We are currently working
on facilitating the identification of suitable Cobra patterns for realizing in-
crements by developing a browser for the patterns. The process and tool suite
could also be extended to include real-time information, where we will leverage



464 S. Konrad, H.J. Goldsby, and B.H.C. Cheng

real-time extended versions of our property templates [32] and UML formaliza-
tion framework [33]. could lead to new Cobra patterns, as well as promote the
generalization of already existing patterns. Additionally, further empirical eval-
uation of the process could be performed, in which its impact could be assessed
by comparing models created by different user groups using different processes.
Such a study could also be used to investigate how the usability of the tool
support could be enhanced. Finally, the formalization framework could be ex-
tended to support model checkers other than Spin [22], such as Kronos [34],
UPPAAL [35], and Hytech [36].
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Abstract. This paper introduces the Object-Oriented Hypermedia Function 
Points (OO-HFP), which is a functional size measurement procedure for Web 
projects developed using the Object-Oriented Hypermedia (OO-H) method. 
This method provides model-driven and transformation-based support for the 
development of Web applications. Using OO-HFP, a size measure is obtained 
once a Web application’s conceptual model is completed. We follow the steps 
of a process model for software measurement in order to detail the design and 
automation of OO-HFP. Finally, we present the validation of OO-HFP for Web 
effort estimation by comparing the prediction accuracy that it provides to the 
accuracy provided by another set of validated size measures (the Tukutuku 
measures) that was found to be a good effort predictor. The results of a study 
using industrial data show that the effort estimates obtained for projects that are 
sized using OO-HFP were similar to those using the Tukutuku measures, thus 
suggesting that the OO-HFP is a suitable effort predictor. 

Keywords: Model-driven development, Web Engineering, Functional Size 
Measurement, Web Effort Estimation, OO-H. 

1   Introduction 

Developing Web applications is significantly different from traditional software 
development. The nature of Web development forces project managers to focus 
primarily on the time variable in order to achieve the required short cycle times.  

In this context, Model-Driven Architecture (MDA) approaches [16] seem to be 
very promising since Web development can be viewed as a process of transforming a 
                                                           
* This research is supported by the Generalitat Valenciana, with ref. ACOMP07-216. 
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model into another model until it can be executed in a development environment. 
Over the last few years, several Web development methods that provide some support 
to MDA have been proposed (i.e., OOHDM [18], WebML [2], and OO-H [5]). 
Adopting such methods, however, poses new challenges to the Web project manager, 
in particular with respect to resource estimation and project planning.  

A fundamental problem in this context is the size estimation of the future Web 
application based on its conceptual model. The functional size measurement (FSM) 
methods used in industry (mainly Function Point Analysis (FPA) [7]) date from a pre-
Web era. None of the ISO-standardized FSM methods (e.g., FPA, COSMIC [4]) were 
designed taking the particular features of Web applications into account. Hence, 
existing FSM methods need to be adapted or extended to cope with Web projects.  

Some approaches for sizing Web sites and applications [6] [3] [17] have been 
proposed. The main limitation of these approaches is that they cannot be used early in 
the Web development lifecycle as they rely on implementation decisions. In addition, 
for project estimation purposes, measurements of this type come too late. Also, some 
approaches are not automated [1] [3] [6] [17], which limit their use and adoption.  

To address these limitations, this paper introduces a model-driven measurement 
procedure2 for Web applications called Object-Oriented Hypermedia Function Points 
(OO-HFP). The aim of OO-HFP is to size Web projects that are developed or 
maintained using the Object-Oriented Hypermedia (OO-H) method [5].  

We present the definition and automation of OO-HFP using a process model for 
software measurement (see Fig. 1) [10]. According to this process, a measurement 
method is designed, that is, the concept to be measured is defined and the 
measurement rules are devised. Then, the measurement method is applied. The results 
of the method are then presented and verified. Such verification includes determining 
whether the value that is produced is the result of a correct application and 
interpretation of the measurement rules. Finally, the results are used to build different 
types of models (e.g, productivity analysis models, effort estimation models).  

Design of the 
measurement 

method

Application of the 
measurement 
method rules

Exploitation of the 
measurement 

results

Measurement 
method results

 

Fig. 1. Measurement process steps (Source: [10]) 

We detail how the four steps of the process model were conducted to design and 
automate OO-HFP. The verification of the measurement results (e.g, evaluation of the 
reproducibility and accuracy of the results) is out of the scope of this work. This kind 
of validation is less relevant for automated measurement procedures. More important 
is the conformity evaluation and the validity of the results for building productivity or 
effort estimation models. Thus, we analyze the validation of OO-HFP for Web effort 
estimation by comparing the prediction accuracy that it provides to the accuracy 
provided by another set of Web size measures (the Tukutuku measures) [12] [13] that 
has already been validated in the past and that was found to be a good effort predictor.  

                                                           
2 It is defined as a “set of operations, described specifically, used in the performance of 

particular measurements according to a given method of measurement” [9]. 
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The reason to validate OO-HFP lies in the need to provide an accurate size 
measure that is automatically obtained once the Web application conceptual model is 
completed. Different from the Tukutuku measures, OO-HFP is compliant to a widely 
used ISO-standard FSM method. Hence, the size obtained is directly comparable to a 
large amount of projects existing in industry (e.g., ISBSG repository, www.isbsg.org). 

This paper is organized as follows. Section 2 presents an overview of the OO-H 
development process. Section 3 presents the design of OO-HFP followed by its 
automation in Section 4. Section 5 shows the validation of OO-HFP against the 
Tukutuku measures. Finally, section 6 presents the conclusions and further work.  

2   The OO-H Development Process 

The OO-H (Object-Oriented Hypermedia) method [5] provides designers with the 
semantics and notation for developing Web applications. The method includes: a 
design process, a pattern catalog, a Navigation Access Diagram (NAD), and an 
Abstract Presentation Diagram (APD). The VisualWADE tool automates the entire 
OO-H development process. 

The OO-H design process defines the phases that must be carried out to build a 
functional interface that fulfills user requirements. The main feature of the OO-H 
method is the model-driven and transformation–based support for the development of 
Web applications. Following the approach presented in [11], Fig. 2 depicts the OO-H 
development process as a stereotyped UML activity diagram. Models are represented 
with object flow states, and transformations are represented as stereotyped activities 
(circular icon). The control flow is defined by a set of transformations. The process 
starts by defining a Requirements Model to represent the system’s functionality. 
Platform-independent models (PIMs) are then obtained from these requirements. 

CIM

PIM
<<CIM to PIM>>  

Req2Domain
<<CIM to PIM>>
Req2Navigation

:Class Model :Navigation Model (NAD)

<<PIM to PIM>>
Domain&Navigation2Integration

:Integration Model (APD)

<<PIM to PSM>>
Integration2J2EE

<<PIM to PSM>>
Integration2PHP

<<PIM to PSM>>
Integration2.NET

:Model for J2EE :Model for PHP :Model for .NET

PIM

PSM

Model Compilers

:Requirements Model

 

Fig. 2. The OO-H development process  

 



470 S. Abrahão et al. 

 

The set of conceptual models represents the different concerns of a Web 
application: the specification of content requirements (Class Model) and the 
specification of functional requirements in terms of navigation needs (Navigation 
Model, NAD). A merge between the class and navigation models results in an 
integrated PIM model (APD), which covers the relevant aspects of a Web application. 
Finally, platform-specific models (PSMs) are automatically obtained from the 
Integration Model (APD), from which source code can be generated. The aim of such 
a process is to automate model transformations based on a set of transformation rules. 
The approach follows a translationist MDA approach (i.e., the code is generated from 
PIM models using model compilers). 

2.1   The OO-H Metamodel 

Fig. 3 shows an excerpt of the OO-H Metamodel [5] including the main concepts used 
to represent navigational properties. The navigation model of a Web application is 
defined by a set of navigational maps.  

 

Fig. 3. A portion of the OO-H metamodel 

Each navigational map structures the navigational view of the system for a specific 
kind of user and has a unique entry point that indicates the starting point of the 
navigation process. A navigational map is made up of a set of navigational elements 
that can be specialized as navigational nodes and/or navigational links. A 
navigational node represents a view over the class diagram. A navigational node can 
be a navigational_target, a navigational_class, or a collection. A navigational target 
groups elements of the model (i.e. navigational classes, navigational links, 
collections) that collaborate in the coverage of a user navigational requirement. A 
navigational class represents a view over a set of attributes (navigational_attribute) 
and operations (navigational_operation) of a class from the class diagram. A 
collection is a hierarchical structure that groups a set of navigational links. A 
navigational link defines valid node attainability inside the navigational map. 
Navigational links define the navigation paths that the user can follow through the 
user interface. Each navigational link has an origin (org) node and its corresponding 
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destination (dst) node. There are two types of links: internal links to define the 
navigation path inside a navigational map, and service links to show the services 
available to the user associated to that navigational map.  

In addition, OO-H allows the use of the Object Constraint Language (OCL) to 
define constraints over the class diagram and the NAD. In the NAD, such constraints 
are expressed by means of filters defined upon links.  

3   The Design of OO-HFP  

In the first step of the process model described in Fig. 1, four activities are suggested 
for a complete design of a measurement method [10]: definition of the objectives, 
characterization of the concept to be measured, definition or selection of the 
metamodel, and definition of the numerical assignment rules. 

The goal of this work is: to design a FSM procedure for the purpose of 
automatically sizing OO-H conceptual models with respect to their functional size 
from the point of view of the researcher. The context is that this procedure should 
conform to the IFPUG method version 4.1 (ISO/IEC 20926 [7]). 

The entity to be measured consists of an OO-H conceptual model. It is composed 
of a UML Class diagram and a Navigation Access Diagram (NAD) that capture the 
structural and the navigational views of a Web application, respectively. These views 
contain all the elements that contribute to the functional size of a Web application. 
The attribute to be measured is functional size, which is defined in ISO/IEC 14143-1 
[8] as the size of the software derived by quantifying the functional user requirements. 

The selection of the metamodel and the definition of the numerical assignment 
rules are described in the following sections. 

3.1   Selection of the Metamodel  

Metamodeling is a key concept of the MDA paradigm and is used in Software 
Engineering to describe the basic abstractions that define the models and their 
relationships. The metamodel of a FSM method provides a precise basis to design the 
measurement rules that identify and measure these concepts.  

As OO-HFP is intended to conform to the IFPUG method [7], it assumes the same 
metamodel as FPA. Fig. 4 shows the FPA metamodel for the IFPUG method. It 
illustrates the information that must be captured in order to size a software project.  

Measuring a project basically includes the following activities: i) the determination 
of the type of count (new project, enhanced project or running application), ii) the 
identification of the counting scope and application boundary, iii) the identification of 
data and transactional functions (FunctionType), and iv) the determination of the 
complexity of each identified function type. The IFPUG method [7] provides several 
tables to determine the complexity levels of each function type. The counting scope 
defines the functionality that is included in a particular function point count. It defines 
a (sub) set of the project being sized.  

The boundary separates the software system being measured from its environment, 
which contains the users of the system and may include external systems.  
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Fig. 4. The FPA metamodel for the IFPUG method 

A data function consists of both internal logical files (ILF) that are maintained by 
the system and external interface files (EIF) that are referenced by the system. A 
transactional function consists of external input functions (EI), external output 
functions (EO), and external inquiry functions (EQ) that use or modify data functions. 

The complexity of a data function is a function of the number of Data Element 
Types (DET_Data) and the number of Record Element Types (RET). A DET is a 
unique, user recognizable, non-repeated field. Note that only the functions that have at 
least one DET must be identified. The complexity of a transactional function is a 
function of the number of Data Element Types (DET_Transaction) and the number of 
File Types Referenced (FTR). A FTR is a data function that is referenced during the 
execution of a transactional function. The amount and complexity of data and 
transactional functions determine the amount of functionality that this piece of 
software delivers, hence its functional size. 

3.1.1   Definition of the Mapping Rules  
The mapping rules help identify the elements in an OO-H conceptual model that 
contribute to the functional size of the Web application. These rules (see Table 1) are 
defined as a mapping between the concepts of the FPA metamodel onto the concepts 
in the UML/OO-H metamodel [5] [15]. 

First, Rules 1 to 4 are applied to establish the counting scope and the boundary of 
the Web application. Then, the data (ILF and EIF) and transactional (EI, EO, and EQ) 
functions are identified by applying Rules 5 to 11. 

An ILF is a user identifiable group of logically related data or control information 
maintained within the boundary of the system. In OO-H, this corresponds to a class. 
that encapsulates a set of data items (attributes). Aggregation and composition 
hierarchies can also be considered an ILF since they represents a unique group of 
logically related data. 
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Table 1. Mapping rules  

FPA 
Metamodel 

UML/OO-H Metamodels 

Counting 
scope 

Rule 1. The scope corresponds to an OO-H conceptual model including a UML class 
diagram and a Navigation Access Diagram (NAD). 

Boundary Rule 2. Accept each class with the «actor» stereotype as a user of the application. 
Rule 3. Accept each class with the «legacy» stereotype as an external application. This 
class contains the expected object behavior or the connection with existing applications. 
Rule 4. The boundary corresponds to an imaginary line traced in the UML class 
diagram. The «actor» and «legacy» classes are considered to be outside the boundary, 
whereas the other classes are considered to be inside the boundary.  

ILF Rule 5. Accept each aggregation hierarchy as an ILF, since aggregation represents “is 
part of” relationships. 
Rule 6 Accept each composition hierarchy as an ILF. Composition is stronger than 
aggregation since the whole and the parts have coincident lifetimes. 
Rule 7. Accept each class of the class diagram that does not participate in an 
aggregation or composition hierarchy as an ILF. 

EIF Rule 8: Accept each class with the «legacy» stereotype of the class diagram as an EIF. 
EI Rule 9: Accept each method of a class in the class diagram as an EI.  
EQ Rule 10: Accept each navigational target of a NAD (and each abstract page derived 

from it) as an EQ. 
EO Rule 11: Accept each navigational target of a NAD (and each abstract page derived 

from it) as an EO. It must contain a class with a derived attribute or method. 

 
An EIF is a user identifiable group of logically related data or control information 

referenced by the system, but maintained within the boundary of another system. In 
OO-H, this is a special type of class with the «legacy» stereotype that allows the 
connection with existing application logic modules. 

An EI is an elementary process that manipulates data or control information that 
comes from outside the system boundary. Its goal is to maintain one or more ILFs 
and/or to alter the behavior of the system. In OO-H, this corresponds to a method 
class since it always changes the state of the objects of the class. A method must be 
identified only once (in the declared class), even if it is inherited. 

An EQ is an elementary process that sends data or control information outside the 
system boundary. Its goal is to present information to a user through the retrieval of 
data. In OO-H, this corresponds to a navigational target defined in the NAD. A 
navigational target may derive one or several abstract pages depending on the value 
of the property ‘effect’ of a navigational link. The value source (a light arrow) 
indicates that the information specified in the navigational target will be presented in 
the current abstract page, while the value target (a dark arrow) indicates that the 
information will be presented in a different abstract page.  

Finally, an EO has the same definition as an EQ, but its processing logic must 
contain at least one mathematical formula or calculation, or it has to create derived 
data. In OO-H, this also corresponds to the concept of navigational target. However, 
a class in the navigational target must include at least one derived attribute or method. 

3.2   Definition of the Numerical Assignment Rules 

The purpose of this phase is to produce a quantitative value that represents the Web 
application functional size. This is accomplished by applying two sets of rules that are 
introduced in the following subsections. 
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3.2.1   Definition of the Measurement Rules  
According to the FPA metamodel, the complexity of a class (ILF) or «legacy» class 
(EIF) is determined by counting the number of data element types (DET) and record 
element types (RET). Table 2 describes the measurement rules proposed to identify 
the DETs and RETs of a class. 

A DET is identified for each single attribute of a class, and a RET is identified for 
the class itself. In addition, we consider both aggregations/compositions and 
generalization/specialization relationships as contributing to the complexity of a class. 
This is because the IFPUG method suggests counting a DET for each piece of data 
that indicates a relationship with another ILF or EIF.  

Associations, aggregations, and compositions are measured according to the 
multiplicity property of the relationship. This property specifies the lower/upper 
number of objects that can be associated to a single object of the class. If the number 
of instances in the target relationship is one, a DET is counted. Otherwise, if the 
number of instances in the target relationship is greater than one, a RET is identified.  

Table 2. Measurement rules for the complexity of a class and class hierarchies 

Rules for DET Rules for RET 
Rule 12. Count 1 DET for each single attribute 
type of the class (i.e., String, Integer). 

Rule 17. Count 1 RET for the class. 

Rule 13. Count 1 DET for each association with a 
class or «legacy» class having a maximum 
multiplicity of 1.  

Rule 18. Count 1 RET for each association 
relationship with a class or «legacy» class having a 
maximum multiplicity of *. 

Rule 14. Count 1 DET for each aggregation with 
a class having a maximum multiplicity of 1.  

Rule 19. Count 1 RET for each aggregation 
relationship with a class having a maximum 
multiplicity of *. 

Rule 15. Count 1 DET for each composition with 
a class having a maximum multiplicity of 1.  

Rule 20. Count 1 RET for each composition 
relationship with a class having a maximum 
multiplicity of *. 

Rule 16. Count 1 DET for each super class in an 
inheritance relationship.  

Rule 21. Count 1 RET for each class in an 
aggregation, composition or inheritance hierarchy. 

 
Specialization relationships are measured in the subclasses by counting a DET for 

each super class. Finally, the complexity of aggregation, composition, or inheritance 
hierarchies is measured by counting a RET for each class in the hierarchy.  

The complexity of a method (EI) or navigational target (EO and EQ) is determined 
by counting the number of data element types (DET) and file types referenced (FTR). 

Table 3 shows some representative measurement rules for the complexity of a class 
method. Each single argument of a method is counted as a DET, and each object-
valued argument is counted as a FTR. Two DETs are counted in order to be compliant 
to the IFPUG method: one DET for the capability of the application to send a 
response message outside the boundary (error, confirmation, control), and another 
DET for the ability to specify an action to be taken. An FTR is also counted for the 
class where the method is declared. Other FTRs are also counted for the classes that 
appear in the OCL formula (e.g., precondition, postcondition) specified in the method 
class.  
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Table 3. Some representative measurement rules for the complexity of a class method  

Rules for DET Rules for FTR 
Rule 30. Count 1 DET for each single 
argument of the method.  

Rule 33. Count 1 FTR for the class in which the method 
is declared. 

Rule 31. Count 1 DET for the capability of 
the application to send a message outside the 
boundary. 

Rule 34. Count 1 FTR for each complex argument 
(object of a class*).  

Rule 32. Count 1 DET for the ability of the 
application to specify an action to be taken. 

Rule 35. Count 1 FTR for each class* in the OCL 
formula of a precondition. 

 Rule 36. Count 1 FTR for each new class* in the OCL 
formula of a postcondition. 

( * ) Only if the class has not been counted yet. 

 
Table 4 shows some representative measurement rules for the complexity of a 

navigational target. A navigational target groups elements (navigational classes, 
navigational links, and collections) to fulfill a user navigational requirement. 

A DET is counted for each element in a collection that implies navigating to 
another collection. Additional DETs are counted for each visible attribute or 
method of a navigational class. A DET is counted for each link between 
navigational classes. This is because the IFPUG method suggests counting a DET 
for each piece of data that indicates a relationship with another group of data. Two 
other DETs are counted to be compliant to the IFPUG method: one DET for the 
capability of the application to send a response message and another for the ability 
to specify an action to be taken. 

A FTR is counted for each navigational class of the navigational target. 
Additional FTRs are counted for the classes that appear in the OCL formula of a 
navigational class or navigational link (precondition, filter). There are also other 
measurement rules for navigational patterns (e.g., index, guided tour) that can be 
specified in a navigational link. The complete set of rules is described in the OO-H 
measurement guideline available at: www.dsic.upv.es/~sabrahao/OO-HFP. 

Table 4. Some representative measurement rules for the complexity of a navigational target 

Rules for DETs Rules for RETs 
Rule 46. Count 1 DET for each element (link) of a 
collection that implies navigating to a collection. 

Rule 58. Count 1 FTR for each navigational class.  

Rule 47. Count 1 DET for each visible attribute of 
a navigational class. 

Rule 59. Count 1 FTR for each class* in the OCL 
formula of a filter defined upon navigational links. 

Rule 48. Count 1 DET for each method of a 
navigational class. 

Rule 60. Count 1 FTR for each class* in the OCL 
formula of a precondition defined upon links. 

Rule 50. Count 1 DET for each navigational link 
between two navigational classes. 

Rule 61. Count 1 FTR for each class* in the OCL 
formula of a navigational class. 

Rule 56. Count 1 DET for the capability of the 
application to send a message. 

 

Rule 57. Count 1 DET for the ability of the 
application to specify an action to be taken. 

 

( * ) Only if the class has not been counted yet. 
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3.2.2   FPA Counting Rules  
Once the DETs, RETs and FTRs have been counted, the FPA counting rules are 
applied to do the following: to classify the function complexity (low, average, high); 
to assign weights to the functions; and to aggregate the assigned values into an overall 
functional size value for the Web application.  

The IFPUG method [7] provides several tables to determine the complexity levels 
of a function type. Table 5 shows the table to determine the complexity of an EO. 

Table 5. Complexity weights for EO (navigational target)  

FTRs 1-5 DETs 6-19 DETs 20 or more DETs 
0-1 Low Low Average 
2-3 Low Average High 
4 or more Average High High 

 
Then, a value in Function Points (FP) is assigned to each function depending on its 

type and complexity level. The IFPUG method also provides several tables to assign 
FP values for the identified functions. For instance, the values assigned to an EO are 
the following: low = 4 FP, average = 5 FP, and high = 7 FP. 

The function points assigned to each ILF (class or class hierarchy) and EIF (legacy 
class) are summed to obtain the functional size for the data functions (OO-HFPD). The 
function points assigned to each EI (class method), EO and EQ (navigational target) 
are summed to obtain the functional size for the transactional functions (OO-HFPT). 

Finally, the values are summed to produce the functional size of the Web 
application in unadjusted function points: OO-HFP = OO-HFPD + OO-HFPT  

3.3   A Measurement Example 

Fig. 5 shows an example of a navigational target (Concerts) that is part of an e-
commerce application for concert ticket sales. It allows the user to see a list of 
concerts including information about their sessions, artists, and the room where the 
concert will be held. It also allows navigation to three other navigational targets.  

By applying the OO-H mapping rules (see section 3.1.1), the Concerts 
navigational target is classified as an EO since the Room class includes the capacity 
derived attribute. As all the navigational links end in light arrows, only one EO is 
identified.  

Then, the OO-H measurement rules (see section 3.2.1) are applied to determine the 
complexity of the navigational target. All the attributes of the navigational classes and 
the relationships among them (dotted arrows) are counted as DETs. Since the 
relationship between classes and navigational targets (dark arrows) indicates 
navigation among navigational targets (allows the user to access another EQ), one 
DET for each link is also counted. Finally, two additional DETs are counted in order 
to be compliant to the FPA counting rules. A FTR for each class in the navigational 
target is counted. In total, the Concerts navigational target has 16 DETs and 4 FTRs. 

Once the DETs and FTRs have been counted, the FPA counting rules (see section 
3.2.2) are applied to classify the function complexity (low, average or high) and to 
assign a function point value. According to Table 5, the Concert navigational target 
has a high complexity, which corresponds to 7 FP. 
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Fig. 5. Concerts Navigational Target  

4   The Automation of OO-HFP in VisualWADE 

In the second step of the process model described in Fig. 1, three activities are 
suggested for the manual application of a measurement method or procedure: 
software documentation gathering, construction of the software model, and 
application of the numerical assignment rules. The automation of OO-HFP was 
conducted in VisualWADE by automating these three activities. VisualWADE is 
extensible by means of plug-ins, which allow the analyst to package the customization 
and automation of several features through the OO-H metamodel. 

 

Fig. 6. The OO-HFP plug-in in the VisualWADE tool suite 

In the software documentation gathering activity, a conceptual model is specified 
using the OO-H method. The tool stores “on the fly” all the relevant information that 
is needed to get the functional size. In the construction of the software model activity, 
the OO-HFP mapping rules (see section 3.1.1) are used to obtain the FPA view on the 
functional size for the conceptual model. This step consists in identifying the elements 
in the OO-H conceptual model that contribute to functional size. Since the metamodel 
is expressed in python language, the tool can access the stored metamodel. Finally, in 
the application of the numerical assignment rules activity, a functional size value is 
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obtained through the application of the OO-HFP measurement rules (see section 
3.2.1) and the FPA counting rules (see section 3.2.2). The plug-in performs the 
queries to the metamodel to get the values to calculate the functional size.  

A running example of an OO-H conceptual model being sized with OO-HFP is 
shown in Fig. 6. The plug-in can be activated from the GUI of VisualWADE, giving 
the analyst a real-time detailed report of both the number of function points per 
function type and the number of function points for the overall Web application.  

5   The Validation of OO-HFP for Effort Estimation 

The validation of OO-HFP for Web effort estimation is done by comparing the 
prediction accuracy that it provides to the accuracy provided by another set of 
validated size measures (the Tukutuku measures) [13]. This corresponds to the 
“Exploitation of the measurement result” step of the process model shown in Fig. 1. 

The Tukutuku size measures (see Table 6) can be used early on in a Web 
development life cycle whenever needed, or during the requirements gathering phase. 

Table 6. Tukutuku Size measures  

Variable name Scale Description 
TotWP Ratio Number of Web pages (new and reused). 
NewWP Ratio Number of new Web pages.  
TotImg Ratio Number of images (new and reused).  
NewImg Ratio Number of new images created. 
Fots Ratio Number of features reused without any adaptation. 
HFotsA Ratio Number of reused high-effort features/functions adapted. 
Hnew Ratio Number of new high-effort features/functions. 
totHigh Ratio Number of high-effort features/functions 
FotsA Ratio Number of reused low-effort features adapted. 
New Ratio Number of new low-effort features/functions. 
totNHigh Ratio Number of low-effort features/functions 

 
The measures were based on the results of a survey investigation [12] [13], using 

data from 133 on-line Web forms aimed at giving quotes on Web development 
projects. In addition, these measures were also confirmed by an established Web 
company and a second survey involving 33 Web companies in New Zealand. These 
Web size measures are part of the Tukutuku project, which aims to collect data about 
Web projects, to be used to develop Web cost estimation models and to benchmark 
productivity across and within Web Companies. These Web size measures are a 
subset of those described in Mendes et al. [13]. These measures have been empirically 
validated as good Web effort predictors (see e.g. [12]). 

5.1   Selecting the Estimation Technique 

Case-Based Reasoning (CBR) was the technique chosen to obtain effort estimates 
because it has provided good effort estimates in the past. The results presented here 
were obtained using the commercial tool CBR-Works. CBR is a branch of Artificial 
Intelligence where knowledge of similar past cases is used to solve new cases [19]. 
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CBR predicts the effort of a new project by considering similar projects that were 
previously developed. Specifically, completed projects are characterized in terms of a 
set of p size features (e.g. totWP) and make up the case base. The new project is also 
characterized in terms of the same p size attributes and is referred to as the target case. 
Then, the similarity between the target case and the other cases in the p-dimensional 
feature space is measured. The most similar cases are used (possibly with adaptations) 
to obtain a prediction for the target case. To apply the method, the following were 
selected: the relevant project features, the appropriate similarity function, the number 
of analogies to select the similar projects to be estimated, and the analogy adaptation 
strategy for generating the estimation. Our effort estimates were based on the effort of 
the most similar project in the case base, which was identified using the Euclidean 
distance, with no different weights for attributes or adaptations of the estimated effort. 
This seemed to provide the best results when applying different CBR combinations 
[14].  

5.2   Results 

The analysis presented in this paper was based on data coming from 12 Web projects 
volunteered by a Spanish Web development company. All the projects were 
developed using the OO-H method. Projects had their size measured using OO-HFP 
and the Tukutuku size measures. Their descriptive statistics are presented in Table 7. 
They also include the OO-HFP and the Tukutuku size measures. This dataset size has 
also been previously used in other Web cost estimation studies. 

Table 7. Descriptive statistics for the 12 Web Projects  

Variable name Mean Median Std. Dev. Min. Max. 
OO-HFP 675.25 200.50 788.853 24 2400 
TotEff 1304.33 132 1557.00 16 3644 
TotWP 71.08 23.5 76.25 3 200 
NewWP 6.83 3.5 9.50 0 30 
TotImg 63.17 12.5 118.94 1 405 
NewImg 6.67 0 12.31 0 40 
Fots 7.50 7.5 2.61 5 10 
HFotsA 148.50 28 196.09 2 611 
Hnew 0.00 0 0.00 0 0 
totHigh 148.50 28 196.09 2 611 
FotsA 3.00 0 5.72 0 20 
New 6.08 4.5 5.48 0 15 
totNHigh 9.08 5 10.28 0 35 

 
The statistics for OO-HFP show that the functional size of the projects ranges from 

24 FP to 2400 FP. The medians for TotEff, TotWP, TotImg and totNHigh suggest that 
most projects were small with regard to the number of pages and images and their 
duration. However, despite being small with short durations, they reused (with 
adaptation) a comparatively large number of high effort features/functions. This trend 
is of no surprise given that many of the Web applications developed today reuse 
components and are focused on functionality. Note that these applications were 
automatically generated using VisualWADE, hence their short duration.  
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Next, the effort estimation models were built using CBR. The prediction accuracy 
of models was checked by omitting a group of projects (8 projects) and predicting the 
effort for the group of omitted projects (4 projects). The rationale was to use different 
sets of projects to build and to validate a model. Finally the prediction accuracy of 
each model was measured using the Mean MRE (MMRE), Median MRE (MdMRE), 
and Pred(25). We also compared each model with predictions obtained using the 
mean and median efforts of the training set in order to have a benchmark. Statistical 
significance was checked using the Wilcoxon Signed Ranks test, with α = 0.05.  

Our case base contained the eight projects in our training set, and used the 11 
Tukutuku size measures and TotEff as attributes. Each of the four projects in the 
validation set was used in turn to obtain its equivalent most similar project, which was 
measured using the Euclidean distance. The prediction accuracy measures for CBR 
(see Table 8) indicated that the CBR-based predictions were poor. CBR-based 
accuracy was not significantly better than predictions based on the median (p = 0.461) 
or mean (p = 0.461) of the data set. 

Table 8. Accuracy statistics for Tukutuku size measures and the OO-HFP 

Tukutuku size measures  OO-HFP Accuracy 
measures (%) CBR Mean Effort Median Effort CBR Mean Effort Median Effort 
MMRE 3,614.4 1,532.5 156.51 3,514.4 1,532.5 156.51 
MdMRE 1,864.2 786.4 94.8 1,763.2 786.4 94.8 
Pred(25) 25 0 0 25 0 0 

 
When CBR was applied to OO-HFP, the same procedure as described above was 

used. However, the attributes used were OO-HFP and TotEff. The prediction accuracy 
measures for CBR (see Table 8) indicated a very similar pattern to those obtained 
using the Tukutuku size measures. CBR-based accuracy was not significantly better 
than predictions based on the median or mean of the data set. What these results 
suggest is that using effort estimates based on early Web size measures (OO-HFP or 
Tukutuku size measures) provides similar accuracy to using estimates based on the 
mean or median of past projects.  

6   Conclusions and Further Work 

This paper has introduced a model-driven measurement procedure for sizing Web 
applications (OO-HFP). The procedure is compliant to the IFPUG method, which is a 
widely used FSM method in industry. Since the OO-HFP was designed as a mapping 
between the IFPUG and the OO-H metamodels, a conformity evaluation was made 
during the design stage assuring that all the concepts were properly dealt with.  

OO-HFP was also automated in VisualWADE. Thus, a size measure of a Web 
project can be easily calculated when the OO-H conceptual model is specified. This 
avoids the ambiguity of interpreting the FPA counting rules and the need for special 
training to count function points in an accurate and repeatable way. In addition, 
MDA-based methods provide good support for size estimation given the explicit 
traceability between model elements. Therefore, the size estimated at the PIM level 
can be representative of the size of the final system obtained.  Finally, we validated 
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the use of OO-HFP for Web effort estimation by comparing the prediction accuracy 
that it provides to the accuracy provided by the Tukutuku size measures. The results 
showed that both measures presented similar accuracy, which was also not different 
from the predictions obtained using the mean and median effort of past projects. The 
main limitation of the study was the small data set used (only 20 projects). We plan to 
replicate this study using a broad data set and other effort estimation techniques (e.g., 
Stepwise regression) and size measures. 

References 

1. Cândido, E.J.D., Sanchez, R.: Estimating the size of web applications by using a simplified 
function point method. In: Proc. of the WebMedia/LA-WEB 2004, pp. 98–105 (2004) 

2. Ceri, S., Fraternali, P., Bongio, A.: Web Modeling Language (WebML): a modeling 
language for designing Web sites. In: WWW 2000. Proc. of the 9th Word Wide Web 
Conference, Amsterdam, The Netherlands, pp. 137–157 (2000) 

3. Cleary, D.: Web-Based Development and Functional Size Measurement. In: Proceedings 
of IFPUG Annual Conference, San Diego, USA (2000) 

4. COSMIC-FFP Measurement Manual version 2.2 (2003) 
5. Gomez, J., Cachero, C., Pastor, O.: Conceptual Modeling of Device-Independent Web 

Applications. IEEE MultiMedia 8(2), 26–39 (2001) 
6. IFPUG: Hints to Counting Web Sites: IFPUG White Paper (1998) 
7. ISO: ISO/IEC 20926: Software engineering - IFPUG 4.1. Unadjusted functional size 

measurement method - Counting practices manual (2003)  
8. ISO, ISO/IEC 14143-1- Information Technology - Software measurement - Functional 

Size Measurement. Part 1: Definition of Concepts (1998)  
9. ISO: International Vocabulary of Basic and General Terms in Metrology, 2nd edn. (1993)  

10. Jacquet, J.P., Abran, A.: From Software Metrics to Software Measurement Methods: A 
Process Model. In: ISESS’97. 3rd International Standard Symposium and Forum on 
Software Engineering Standards, Walnut Creek, USA (1997) 

11. Koch, N., Zhang, G., Escalona, M.J: Model transformations from requirements to web 
system design. In: ICWE 2006. Proc. of the 6th International Conference on Web 
Engineering, Palo Alto-CA, USA, pp. 281–288 (2006) 

12. Mendes, E., Mosley, N., Counsell, S.: Investigating Web Size Metrics for Early Web Cost 
Estimation. Journal of Systems and Software 77(2), 157–172 (2005) 

13. Mendes, E., Mosley, N., Counsell, S.: Investigating Early Web Size Measures for Web 
Cost Estimation. In: EASE 2003. Proc. of the 7th Conference on Evaluation & Assessment 
in Software Engineering, Keele, UK (2003) 

14. Mendes, E., Watson, I., Triggs, C., Mosley, N., Counsell, S.: A Comparative Study of Cost 
Estimation Models for Web Hypermedia Applications. Empirical Software Engineering 
8(2), 163–196 (2003) 

15. OMG: UML 2.1 Unified Modeling LanguageTM  (2006) 
16. OMG: MDA Guide, Version 1.0.1 (2003), http://www.omg.org/docs/omg/03-06-01.pdf 
17. Reifer, D.: Web Development: Estimating Quick-to-Market Software. IEEE Software 

17(6), 57–64 (2000) 
18. Schwabe, D., Rossi, G.: The Object-Oriented Hypermedia Design Model. Communi- 

cations of the ACM 38(8), 45–46 (1995) 
19. Shepperd, M.J., Kadoda, G.: Using Simulation to Evaluate Prediction Techniques. In: 

Proceedings IEEE Metrics Symposium, pp. 349–358. IEEE Computer Society Press, Los 
Alamitos (2001) 



Model-Driven Engineering for Software

Migration in a Large Industrial Context

Franck Fleurey1,2, Erwan Breton2, Benoit Baudry1, Alain Nicolas2,
and Jean-Marc Jézéquel1
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Abstract. As development techniques, paradigms and platforms evolve
far more quickly than domain applications, software modernization and
migration, is a constant challenge to software engineers. For more than
ten years now, the Sodifrance company has been intensively using Model-
Driven Engineering (MDE) for both development and migration projects.
In this paper we report on the use of MDE as an efficient, flexible and
reliable approach for a migration process (reverse-engineering, transfor-
mation and code generation). Moreover, we discuss how MDE is eco-
nomically profitable and is cost-effective over the migration through
out-sourced manual re-development. The paper is illustrated with the
migration of a large-scale banking system from Mainframe to J2EE.

1 Introduction

Positioned from the mid 80’s on IT servicies dedicated to Banks and Insur-
ance Companies, Sodifrance has developed a strong legacy modernization exper-
tise based on software solutions to industrialize transformation projects. Since
1994, Sodifrance has adopted and promoted model-driven engineering (MDE)
approaches for modernization projects. It has industrialized model-driven tech-
niques for reverse-engineering, code analysis and transformation and for repre-
senting and manipulating information systems. These solutions allow the com-
pany to propose efficient and profitable solutions for migration and moderniza-
tion of software legacy systems.

In this paper we first present an original model-driven process, developed
at Sodifrance, for software migration. This process includes automatic analysis
of the existing code, reverse engineering of abstract high-level models, model
transformation to target platform models and code generation. We detail the
different meta-models and transformations that are produced for the automation
of these steps. We also discuss what artefacts can be directly reused and which
ones need to be adapted from one project to another. Sodifrance has developed
a tool suite for model manipulation called Model-In-Action (MIA) that is used
as a basis for automating the migration.
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A second contribution of this paper is an industrial feedback on the benefits
and issues of MDE for migration. First, we present data for a migration project
of a large-scale banking system from Mainframe to J2EE. These data are used
to discuss the improvements with respect to efficiency, flexibility and reliabil-
ity that are introduced with a model-driven solution migration. Moreover, we
compare MDE and complete manual re-development, and discuss how MDE is
economically profitable and is cost-effective.

2 Model-Driven Migration Process

The constant evolution of software technology leads to continuous migrations
of software components. These projects may be motivated by different reasons
such as the obsolescence of a technology, the pressure of users, or the need to
build a single coherant information system when merging companies. Most of
the time software migration is achieved through the full re-developement of the
legacy application. Model-driven software developement offers an oportunity for
increasing the automation in software migration.

The full automation of migration is difficult to achieve not only because of
the distance between the legacy platform and the new platform but also in order
to ensure the quality of the new application. Most of the time, the objective of
migration is not to simply ”compile” the legacy application to a new platform
but to create a new version of the application using state of the art development
techniques. This is necessary to ensure the maintainability of the new application
and to leverage the latest technologies in terms of graphical user interfaces,
distribution and mobility.

In the following, section 2.1 first presents the general process developed by
Sodifrance for model-driven migration, section 2.2 discusses the automation of
the process and section 2.3 details how this process is adapted in practice along
the phases of a migration project.

2.1 Migration General Process

Figure 1 presents the general process developed by Sodifrance for model-driven
migration. This process is mainly divided in four steps.

The first step is the parsing of the code of the legacy application, to build
a complete model of the code of the application. This step can be divided into
two stages: first a parser builds an abstract syntax tree from the code and,
then this syntax tree is processed by a transformation to build an actual model
that conforms to the meta-model of the legacy language. During the second
stage, all the symbols such as types, variables or function calls are resolved and
properly bound to the appropriate model elements. This is a necessary step to
allow for a efficient analysis of the legacy system. The meta-model denoted L on
figure 1 corresponds to the meta-model of the legacy application implementation
language.

The second step is a reverse-engineering from the code model to a platform
independent model. The role of this step is to abstract high-level views from the
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Fig. 1. Model-driven migration priciple

model of the code. This step is implemented by model transformations from the
legacy language meta-model (L) to a pivot meta-model. The pivot meta-model
used by Sodifrance is a platform independent meta-model called ANT which
contains packages to represent:

– Static data structures (close to the UML class diagram).
– Actions and algorithms (it includes an imperative action language).
– Graphical user interfaces and widgets.
– Application navigation.

The navigation is the most high level view of the ANT meta-model. Figure 2
shows an excerpt of this meta-model. It connects dialog elements which cor-
respond to GUI forms, transitions between forms and their GUI events with
operations in the class model.

All ANT views have to be created through model transformations from the
model of the code of the legacy application. In order to be able to create high-
level views, such as a model of the graphical user interface of the legacy appli-
cation, the model transformations have to rely on a knowledge of the libraries
of the legacy platform and on coding conventions (or code patterns introduced
by tools) that were used during the development of the legacy application. This
is the reason why, even if the legacy platforms for several migration projects are
similar, the legacy code must be carefully studied in order to properly adapt the
migration tools to every single project.

The third step is the transformation of the ANT model into a platform
specific model of the application. This step is implemented using model trans-
formations from the ANT meta-model to the UML meta-model. These transfor-
mations are design transformations which refine the platform independant views
of the pivot model to fit the target platform. Again at this stage, it is impor-
tant to adapt the transformation to meet the requirements of every customer.
This issue is discussed with more details and illustrated on a specific project in
section 4.
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Fig. 2. Excerpt of the ANT navigation meta-model

The last step is the generation of the code of the new application from the
platform specific model. To implement this step, Sodifrance uses template-based
text generation tools in order to be able to easily customize code generation
acording to the customers requirements. The specific tools used by Sodifrance for
the implementation of model-transformations and code generation are presented
section 3.

2.2 Automation in the Migration Process

To reduce the cost of migration the goal is to achieve an optimum automation
in the migration process. However, this should not impact the quality in terms
of design, performances or maintainability of the resulting application. Since the
legacy application is fully-executable and the target platform is usually powerful
enough, one could argue that the migration should be completely automated. It
is theoretically possible: it would be the equivalent of writing a compiler for the
legacy language that targets the new platform.

However, as stated in the previous section, migration, and especially in the
context of modernization, is more than just creating an executable version of
the application on top of the new platform. The goal is to design the application
for the new platform in order to make it more efficient, more reliable, easier to
maintain or easier to extend than the legacy application. In practice this means
that the new code should respect the coding standards and best practices of the
target platform languages, it should take into account the specific requirements
related to the software development process used by the customer company,
there should be models for the new application, etc.

In the migration process implemented by Sodifrance the first two steps (as
presented on figure 1) are usually completely automated, i.e. all the information
from the legacy system is represented in the pivot model. This is to concen-
trate the manual effort on the transformation from the pivot model to the new
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Fig. 3. Model-driven migration project phases

application and avoid having to deal manually with the legacy code as a whole.
If some elements of the legacy code cannot fit properly in the pivot model, these
elements are captured as notes or tags and presented to the developer when the
corresponding parts of the application are transformed or generated.

To maximize the efficiency of the migration process, the tasks that are left to
the developer have to be clearly identified and the developer should be provided
with all the information he or she needs. This is taken into account in the design
of the transformations and code generators. For example in the case of a Java
code generator, TODO directives can be generated for every piece of code that
requires manual inspection, re-factoring or completion. This TODO directive
can contain the kind of work that has to be done and references to the model
elements that are relevant to it. The TODO directives are summarized into a
task list which gives the developer a clear view of what has to be done.

2.3 Migration Project Phases

Prior to the actual migration and implementation of the new application, the
design, the implementation and the validation of a project specific migration
process must be completed. This includes the parsing of legacy languages, re-
verse engineering transformations, high-level design of the new application and
mappings between the structures of the legacy application and the concepts of
the target platform. All these tasks require some effort due to their complexity
and their overall influence on the migration project. In the project structure
used by Sodifrance, as represented on figure 3, there are three project phases
before the actual migration can start.

The first phase represented on figure 3 is a technical analysis. Its objective is
to study the legacy platform, define the target platform and specify the tools
that are needed by the migration process. This phase is crucial for the migration
project. It is used to estimate the effort that would be required for the develop-
ment of the tools and the total effort that would be required for the migration.
At the end of the technical study a total contractual price is proposed to the cus-
tomer. During the technical study a small component of the legacy application
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is usually migrated using generic tools and manually completed to match the
code that would be produced using the final tools. This serves as a test for the
tool specifications and as a demonstration of the resulting code the customer can
expect. If both the price proposed by Sodifrance and the quality of the migrated
code are satisfactory to the customer, the project can carry on.

The second phase represented on figure 3 is a tool development phase. The
objective is to develop all the tools that have been specified for the migration
process. Most of the time the tools do not have to be developed from scratch
but are rather re-used or adapted from previous projects. However, most of the
time even if the language is the same, the language version and the coding style
might be different and require some adaptation.

The third phase represented on figure 3 is a pilot project. The objective of the
pilot project is to validate and fine tune the migration process and the tools it
uses. It also serves as a demonstration of the viability of the process and allows
measuring its efficiency precisely. During this phase, a component of the legacy
application is used as a benchmark for the migration process. This component
has to be chosen to be as representative as possible of the components of legacy
application. In practice the development of the pilot project is truly a testing and
debugging phase for the migration tools. For this reason it is usually a lot longer
than the migration of a comparable component once the migration process is
fully-functional. At the end of the pilot project, the customer is provided with
a final price for the project and has a sample of how the new application would
look like.

Projects seldom have to stop after the pilot project: the actual migration
usually starts shortly afterwards. The preparation of a model-driven migration
process can be quite long (the three phases described previously usually require
around 6 months to complete but can last up to a year on specific projects such
as the one described in section 4), but once the process is up and running, the
migration rate can be far more rapid than with any competing techniques. This
is discussed in section 5, but before that, the next section presents the model-
driven engineering tools used by Sodifrance to practically implement model-
driven migration.

3 Model-In-Action (MIA) Tool Suite

Implementing the migration process presented in the previous section requires
advanced, scalable and reliable tools for model transformation and code gen-
eration. For both the needs of migration project and development projects,
Sodifrance has developed Model-In-Action (MIA) [1], a suite of model-driven
engineering tools. This section gives a quick overview of these tools.

Figure 4 presents a simplified architecture diagram for the MIA tools. One of
the essential requirement for a company like Sodifrance is to be able to adapt
to any specific modeling technology used by their clients. In the design of MIA
this has been taken into account by creating a generic modeling platform that
can connect through various drivers to existing repositories and modelers. On
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Fig. 4. Model-In-Action tool suite architecture

top of this generic modeling layer the suite is composed of two main products:
MIA-Transformation for model-to-model transformation and MIA-Generation
for code generation. Each of these tools is divided in three types of components:

– Core engines for model transformations and code generation. These com-
ponents are on top of the meta-modeling API and do not have any user
interface. They are responsible for the execution of model transformations
and code generators.

– Development environments for model transformations and code generators
(MIA Architect environments). These environments are used by software ar-
chitects to design and implement the model transformations and code gen-
erators required by MDE projects.

– User environments for model transformation and code generators (MIA de-
veloper environments). There are not only standalone versions of these tools
but also plug-in versions that integrate directly in the IDEs and modelers of
the software developers.

MIA-Transformation is a rule-based model-to-model transformation engine.
A model transformation is defined by a set of rules defined between some input
meta-models and some output meta-models. Each rule is composed of three
elements:

– A context: it corresponds to the set of declared variables and parameters.
– A query: it is an expression that calculates the set of model elements to be

processed by the rule.
– An action: it can be a creation, a modification or a deletion of model elements

and is performed for each model element returned by the query.

When using MIA-Transformation, alternative languages may be used for express-
ing transformation rules. MIA-Transformation includes both a fully declarative
language (close to the declarative form of QVT) and an imperative language.



Model-Driven Engineering for Software Migration 489

The two languages can even be mixed in a single transformation rule: the query
can be written using the declarative language and the action implemented im-
peratively. In addition, as rule based transformation has some limitations, it is
possible to define transformation services in Java and use them in transformation
rules.

MIA-Generation is a template based model-to-text transformation engine.
The idea of MIA-Generation is to attach text generation scripts directly in meta-
models in order to define how each model element should be generated. There
are two kinds of scripts:

– Templates that textually describe the piece of code to be generated.
– Macros that allow more complex operations such as string handling or model

navigation.

The macros are defined directly in Java and can be called from the template. The
fact that the generation scripts are directly attached to the meta-model makes
MIA text generators easy to understand, adapt and maintain. In addition, the
generation engine can keep track of the execution of each generation script and
the text it has produced. This provides the developer with all the information
required to tune or fix a code generator.

4 Migration of a Large-Scale Banking Application

This section reports on how the migration process described in section 2 is
applied in the context of a large-scale banking application. The migration of this
application is part of the modernization of the information systems of a French
bank1. The objective of the project was to migrate a mainframe system made
of around a million lines of code to J2EE in order to ease the maintenance and
future evolutions of the system. The overall system is composed of:

– 42 applications (for a total of 800 forms and 7500 events)
– 99 prints and exports using Cristal Report
– 990 server services
– 20 batch processes

Sodifrance (and their model-driven migration approach) was chosen by the bank
for the migration of this system not only because of the quality assurance pro-
vided by the use of automation but also for pricing reasons. After an initial study
of the project by Sodifrance and several competing companies, the price pro-
posed by Sodifrance was significantly lower than the price of any brute-force re-
development strategy (out-sourced or not). In the following, section 4.1 presents
the customer’s requirements and the migration process that has been developed,
section 4.2 details the project schedule and section 4.3 discusses the problem of
the validation of the migrated application.

1 For confidentiality reasons, and for the protection of Sodifrance customers, this paper
does not provide specific details on the migrated application.
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Fig. 5. Banking application migration process

4.1 Specific Requirements and Migration Process

For the modernization of its information system both the servers and the client
applications of the bank had to be migrated. The whole legacy application had
been developed using the COOLGEN IDE. COOLGEN provides an intermediate
programming language and produces executable application by compiling this
language to a combination of C code and COBOL code. For the modernization
of the system, the servers had to be migrated to plain COBOL because the code
generated by COOLGEN was difficult to maintain and had some performances
issues. The 42 client applications had to be migrated from COOLGEN to J2EE
web applications. The applications and the servers would communicate through
a COBOL/Java middleware. The following focuses on the migration of the 42
client applications from COOLGEN to J2EE.

An important requirement of the customer for this project was the strict re-
spect of its internal development standards. All the new applications developed
by this bank are generated from Rational Rose UML models. All the models
conform to a UML profile developed by the bank itself and specific code genera-
tors are used. As a result of the migration process the bank expected to be able
to round-trip between models and code using its usual profiles, tools and code
generators. The model-driven migration process had to be adapted to take this
specific requirement into account.

Figure 5 presents the migration process that is applied to each of the 42 ap-
plications of the legacy system. Steps 1 and 2, which correspond to the parsing
and reverse-engineering of the application, are similar to the two first phases of
the general process presented in section 2. These two phases produce an ANT
model of the legacy application which includes all the information contained in
the code of the applications (windows, widgets, statements, expressions). Step 3
(also quite similar to the third step of the general process) does the mapping
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Fig. 6. Banking application migration time schedule and cost breakdown

between the source architectural concepts and the target ones to produce a
complete platform specific model of the target application.

Steps 4, 5, and 6 of the process presented figure 5 are specific to the banking
system migration and designed to produce customer-specific synchronized UML
models and source code for the target application. Firstly, step 4 is a model
transformation that extracts a UML-profiled model from the ANT application
model. The elements of the target application, such as statements, that do not fit
in the UML-profiled model are ignored. Then, step 5 consists in using the regular
code generator used in all the development projects of the bank to produce code
skeletons from the UML model. In regular projects these skeletons have to be
filled manually but here the role of step 6 is to automatically generate the final
application code in the code skeletons. The manual phase of the migration can
then be carried out: the model transformations and the code generators have left
notes in the UML model and comments in the code wherever a manual migration
task has to be accomplished.

4.2 Project Time Schedule and Cost Breakdown

This section details the organization and cost breakdown for the banking system
migration. The overall project required a total of 9315 days of work including
7815 for the migration of the 42 client applications. As discussed in section 2
any model-driven migration project has several mandatory initialization phases
to design a specific migration process and adapt or develop the required tools.
Figure 6 presents the scheduling and the cost (in terms of days of work) for each
phase of the banking system migration project.

The first preliminary phase of the project is the technical study. In the case
of the banking system it took 3 months and required a total of 209 days of work
(which represents about 2.5% of the project effort). Then, the tool development
phase and the pilot project took 7 months to complete and required an approx-
imate effort of 800 days of work (around 10% of the project effort). For the
pilot project, a representative client application has been chosen among the 42
application that had to be migrated. The delivery of the pilot project occurred
10 months after the beginning of the project and after about 12% of the project
effort has been spent.

The important investment and delay before the first delivery is specific to
model-driven migration. Moreover, because the preliminary tasks are difficult to



492 F. Fleurey et al.

parallelize and because the developers need to have a global view of the project
to accomplish these tasks, using a large team of developers cannot really help
reducing the duration of preliminary work. The developer team for these tasks
have to be small (3 to 8 developers for most Sodifrance projects) and should
include experts of the source platform, experts of the target platform and model
transformation experts.

On the banking application the industrial migration of the 41 remaining ap-
plication started 3 months after the end of the pilot project. This phase required
a total of 19 months to complete. During this industrial phase of the project
the migration is performed in parallel by three independent teams of around
15 developers each. Sodifrance migrates three applications at a time, and, dur-
ing the 19 month period of the industrial migration an average of 2 deliveries
are made per month. Contrary to the project preliminary phases that require a
small developer team, the industrial migration duration can easily be shortened
by increasing the number of developers.

4.3 Validation and Quality Assurance

Even with the use of automation, since there is still a significant part of the work
done by hand, the migrated application has to be carefully validated in order
to check its correctness, performance and integration in its new environment.
In practice this is achieved thanks to a strict non-regression testing process.
This test process is costly for the customers because they have to provide test
cases together with the legacy applications and they have to perform acceptance
testing2. It is also costly for Sodifrance who perform unit testing for the new
application and uses the test cases provided with the legacy application to do
regression testing. In the case of the banking application the total testing cost
is around 3500 days of work (around 1000 days for unit testing and 2500 for
regression testing). This represents 45% of the total project cost.

5 Discussion

This section compares model-driven migration with brute-force re-development
migration strategies. The most significant difference between the two approches
is the significative preliminary tasks required by model-driven techniques. This
section especially discusses the influence of these preliminary tasks on the sched-
ule and cost breakdown of migration projects and shows that for projects over a
critical size, the model-driven approach is more profitable than re-development.

Complete re-development has some advantages over automated migration.
Firstly the development process is similar to the development of any application
except that it has a fixed and non-ambiguous specification. This allows using
efficient software engineering techniques which is reassuring and unsurprising

2 The numbers provided in this section do not include this cost. Only the cost for
Sodifrance is taken into account.
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Fig. 7. Migrated code percentage in function of time

to the customer. Secondly, the target application can easily be re-designed, re-
factored and adapted to the new platform. Thirdly, evolutions to the legacy
application can be taken into account in the design of the new application. All
these advantages, most of the time combined with out-sourcing to cut workforce
cost, allow full re-development to be a common option for modernization.

In this context, thanks to model-driven migration, Sodifrance has managed
to provide a comparable quality of service at lower prices to its customers on a
number of modernization projects.

5.1 Migration Time Schedule

Figure 7 compares re-developpment and model-driven migration with respect
to the percentage of code migrated over time. For re-development the model
we use is linear: the components of the legacy application are re-developed one
by one. For model-driven migration the process is a little different: during the
first stage of the project (1) the objective is to develop the tools that will be
used to partially automate the migration. During this first stage no code of the
new application is produced at all but once the tools are fully functional they
typically allow generating about 70 percent of the final application code (2). The
actual migration can then begin (3), each component of the legacy application
is manually completed and delivered to the customer.

The most important difference between the two approaches is the first phase
of the model-based process which is an investment in specific tools that will
make the migration faster. One of the drawback of model-driven migration is
that for an initial period of time, no final code is produced and thus nothing can
be delivered to the customer. In the example of figure 7 the legacy application
has been divided in 8 components. Using a re-development strategy, the first
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Fig. 8. Project cost in function of it size

component can be delivered to the customer just after the beginning of the
project. On one the hand the first component is delivered after quite a long period
of time: using model-driven migration, when the first component is delivered, 3
components have already been finished with re-development. But on the other
hand, using model-driven migration, once the production of the new application
has started, the delivery rate can be faster than for re-development. Eventually,
the delivery of components developed using the model-driven approach can catch
up with the delivery of re-developed components (this is the case for components
7 and 8 on the figure).

In the case of the banking application described previously, the preliminary
tasks of the migration project required 10 months which represents about a third
of the total project duration. From an economical point of view, more than 10%
of the total migration cost was spent on these preliminary tasks. The next sub-
section discusses the profitability of this investment.

5.2 Migration Cost Repartition

To be profitable, the model-driven migration process must be applied on legacy
applications that have a sufficient size. Indeed, the effort that has to be invested
for developing migration tools mostly depends on the complexity of the input
and output platforms but not on the volume of code that has to be migrated.
Figure 8 presents an estimation of the cost of a migration project using both
model-driven migration and re-development.

In the case of re-development the cost is directly proportional to the size
of the legacy application. In the case of model-base migration, there is a fixed
initial cost related to the development of tools which is complemented by a
linear cost corresponding to manual migration efforts. The gradient of the func-
tion corresponding to model-driven migration is lower than the gradient for
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re-development because using migration tools reduces the manual effort that
has to be provided.

A general profitability threshold for model-driven migration cannot be esti-
mated accuratly because it really depends on the ratio of tools that have to be
developed for each project. In practice, the experience of Sodifrance on model-
driven migration shows that the profitability threshold for MDE in the context
of migration is quite low. Even for projects that require about 1000 days of
work, the initial overhead of developing tools pays off. On the migration of the
large banking application described previously, Sodifrance estimated that the
cost of re-development whould have been around twice the price of model-driven
migration.

5.3 Benefits and Limitation of Model-Driven Migration

The primary advantage of model-driven migration is to partly automate the
migration process. As discussed in the previous sections this allows Sodifrance
to significantly lower the prices and duration of migration projects. This is the
reason why Sodifrance is often chosen over competing companies that propose
full re-development.

The second advantage is to allow for reuse between migration project. This is
another element that allows cutting the cost of migration. All the transforma-
tions and tools that have been developed for a migration projects can be adapted
to future project that have similar input or output platforms.

The first limitation of model-driven migration is a commercial limitation re-
lated to the cost and time consumed by preliminary tasks. In the project pre-
sented in section 4 the first delivery of migrated code occured after 10 months.
This is a commercial issue because after the begining of the project the cus-
tomer has to wait for a long time without seeing the progression of the project.
To mitigate this issue, possible solution is to works in close collaboration with
the IT department of the customer and, if possible, to include members of the
customer company in the development team.

The second limitation is related to the cost of testing. This is not specific to
model-driven migration but is a general problem in software migration. For the
banking application discussed previously, testing represents 45% of the total mi-
gration cost. This cost does not include the cost of the production of regression
tests and acceptance testing which are the responsability of the customer 3. One
of the reasons of the important cost of testing tasks is that, for most migra-
tion project, they are mostly handled manually. In the same way model-based
techniques has been applied to smartly automate repetitives migration tasks,
Sodifrance is now studying model-based regression testing using meta-modeling
languages such as Kermeta [2] to reduce the cost of testing.

3 The production of the tests is a cost that has to be taken into account by the
client. However, this cost is usually far lower than the cost of providing the complete
specifications required for full re-development.
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6 Related Works

Software modernizaton has been identified by the OMG as an important applica-
tion field for model-driven architecture. The Architecture-Driven Modernization
(ADM) is an OMG task force dedicated to this topic [3] that aims at build-
ing standard metamodels and tools for software modernization. Reus et al. in
[4] propose a MDA process for software migration that is quite similar to ours.
They parse the text of the original system and build a model of the abstract
syntax tree. This model is then tranformed into a pivot language that can be
translated into UML. A prototype automates parts of this process using Arc-
Styler [5]. Bordbar et al. [6] propose a model-based approach for maintenance of
data-centric systems. Their MDA approach improves the evolution and mainte-
nance of databases in applications developed with java and modelled with UML.
In [7], Zou transforms legacy code towards object-oriented languages. Parts of
this process are implemented with automatic program transformations.

Another type of works related to the study presented in this paper concerns
feedbacks from industrial projects that have applied model-driven approaches.
In the last two editions of the MoDELS conference, two studies gave such feed-
back. In [8], Baker et al report on the significant improvements in productivity
and reliability gained with MDE techniques and also present the remaining is-
sues to profit more from those approaches. In [9], Staron presents a study on the
requirements for the adoption of MDE in software industries. The paper reports
on the observations of two companies that tried to MDE in their development
process. In [10] M1 Global solution compares MDE and off-shore development.
They conclude that MDE tool increased developer productivity by over 50 per-
cent and advocate a combination of MDE for automatic production of a large
part of the system and off-shore development for the parts that need to be man-
ually developed.

7 Conclusion

This paper has precisely presented a model-driven migration and modernization
process developed by the Sodifrance company. We have detailed the process and
the tools that automate this process. The paper has also dicussed the benefits
introduced by MDE in terms of reuse and automation, and also the issues that
are introduced to fully benefit from reusable transformations and generators.
Finally we have showed that, even if the process is not fully automated and
requires manual adaptation from one project to the other as well as manual
implementation of some parts of the final application, it is still viable compared
to manual re-development.

Even if model-driven engineering is already economically profitable for migra-
tion, there are still some important challenges that need to be tackled. A major
issue in terms of human effort is testing. Today, regression test is used to vali-
date the migration. However, the production of efficient regression test cases is
manual, ad-hoc and difficult to evaluate. Future work consists in adding, in the
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reverse-engineering phase, a step to reverse a model for high-level control flow
in the application in order to eveluate test coverage at use-case level. Moreover,
unit and integration test for the migrated code is also very expensive. A possi-
ble solution here could consist in generating test objectives when generating the
code.
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1 IRISA Rennes, Projet Triskell, IRISA - Campus de Beaulieu F-35042 Rennes Cedex
2 I3S Nice-Sophia Antipolis, Equipe Rainbow, I3S-UNSA

Les algorithmes, 2000 route des lucioles BP 121 F-06903 Sophia-Antipolis Cedex
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Abstract. Aspect-Oriented Modeling (AOM) approaches propose to
model reusable aspects, or cross-cutting concerns, that can be composed
in different systems at a model or code level. Building complex systems
with reusable aspects helps managing software complexity. But in gen-
eral, reusability of an aspect is limited to a particular context. On the one
hand, if the target model does not match the template point-to-point,
the aspect cannot be applied. On the other hand, even when it is actually
applied, it is woven into the target model always in the same way. In this
paper1, we point out the needs of variability in the AOM approaches and
introduce seamless variability mechanisms in an existing AOM approach
to improve reusability. Our aspects can fit various contexts and can be
composed into the base model in different ways. Introducing variability
into AOM approaches will turn standard aspects into highly reusable
aspects.

1 Introduction

The Aspect Oriented Software Development (AOSD) paradigm first appeared
at the code level a decade ago [7] with the most famous AOP language As-
pectJ [6]. The aspect paradigm offers a new way to construct complex systems
by composing crosscutting concerns with the base system. In the earlier stages
of the software life-cycle, several Aspect-Oriented Modeling approaches (AOM)
already exist [1,2,4,16], with various levels of abstraction (requirement, design,
architecture). In general, these approaches decrease the complexity of systems
by composing models that represents the different concerns of the system (busi-
ness, security, persistence . . . ). To help developers saving time designing sys-
tems and therefore reduce the time-to-market of these systems, models should
be reusable.

Currently, AOM approaches provide some means to design reusable and flex-
ible aspects. But, reusability and flexibility are often limited. In general, they

1 This work was partially supported by the French National Research Agency
(RNTL FAROS Project).
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describe one possible variant of an aspect and propose one possible way to in-
tegrate it. For example, a designer cannot model a design pattern in its full
genericity with these approaches: he can only model one specific implementa-
tion choice for this design pattern. Consequently, aspects are only reusable in
similar or very related contexts. In this paper, we argue that aspects must be
reusable in various contexts. Designing context independent aspects requires
seamless variability mechanisms for specifying the weaving, the pointcut expres-
sion, etc... . Such mechanisms will turn standard aspects into highly reusable
and flexible pieces of models. The contribution of this paper is to point out the
needs of variability in the AOM approaches, to provide some mechanisms to
support variability in one particular AOM approach and to illustrate these new
mechanisms on a concrete example. To address variability in software develop-
ment, Software product lines (SPL) offer some mechanisms to support functional
variability2 and to derive products that match the user’s needs. However, this
variability only concerns the software module specifications. In the case of AOM
approaches, variability should also be applied onto the composition mechanisms.

The remainder of this paper is organized as follows. Section 2 points out the
needs of variability in the AOM approaches with a motivating example. Section 3
presents an overview of an AOM approach. This approach is extended in the
section 4 to support variability mechanisms. Section 5 describes a metamodel
for this approach and the implementation of a modeling tool. Section 6 presents
related works and section 7 concludes and discusses future work.

2 Motivating Example

To illustrate the needs of variability in the AOM approaches, we use the example
of a mobile phone device. Figure 1 shows a simplified class diagram presenting
the main functionalities of an accountancy package for a mobile phone.

Fig. 1. A Simplified class diagram of the mobile phone

When the user is calling (resp. is called by) someone, the HistoryCall class
creates a new outgoing (resp. incoming) call and saves the duration. The class
GUI can display its local variable time which is initialized when switching on
the phone. The class Clock only contains a variable time which is incremented
every minute.
2 see Software Product Line Conferences : http://www.splc.net
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2.1 Matching Variability

Two optional requirements, total calls and total outgoing calls, can be added
to our mobile phone in order to compute the total duration of the (outgoing)
calls. We will use the Counter pattern [11] to realize these two requirements.

Fig. 2. The Counter pattern realizing the total calls requirement

In most of the AOM approaches [2,11,16], a template specifies the model
elements of the concern that have to be bound with target model elements.
Reusability is then limited to iso-structural target models because if the structure
does not match the template point-to-point, the aspect cannot be applied.

Figure 2 shows the Counter pattern composition into the mobile phone model.
In order to realize the total calls requirement, we use the existing HistoryCall
and Call classes to respectively act as Counter and Element. We now want to
realize the total outgoing calls requirement in a separate Counter class. This
requires the creation of a new class acting as a Counter and the insertion of a new
association between this class and the OutgoingCall class. Instead of modifying
the base model to this end, it would be more efficient that the Counter pattern
automatically introduces all these missing elements. However this is not possible
with classic AOM approaches [2,11,16] because the weaving process of the aspect
upon the base system can not vary depending on the bindings.

2.2 Adaptation Variability

One optional requirement, display time, can be added in order to display and
update the time every minute, when the internal clock is updated. The Observer
pattern will realize this requirement, notifying the GUI (Observer) that the
Clock (Subject) has been updated.

In most of the AOM approaches [2,11,16], aspects are composed into the target
model using one composition rule at a time, offering poor flexibility. Depending
on the context, it would be very useful to easily switch between different compo-
sition rules. In the context of embedded systems it may be preferable to reduce
the number of classes because of memory limitations, and completely merge the
aspect while in some other cases, it may be preferable to compose the aspect
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Fig. 3. The Observer pattern merged into the base model

by inheritance in order to improve readability. Figure 3 illustrates another com-
position rule where Subject is merged into Clock whereas GUI inherits from
Observer.

This motivating example has shown the needs of variability in two contexts i.e.
matching and adaptation. There is also a need for functional variability e.g. how
to design many versions of the Counter pattern (total or average for example).
Since Software Product Line approaches [17] can help modeling this kind of
variability, we do not cover them into this paper.

3 An AOM Approach Overview

The approach which is presented in this paper is only one among many possi-
ble approaches for addressing AOM [3,11]. It focuses on providing capabilities
for concerns (functional or extra-functional) to be reused. In this context, the
expressiveness of the concern modeling is not a primary objective. For exam-
ple, contrary to other non aspect-oriented approaches like [17], we do not offer
more capabilities for expressing the variability of concerns than the one provided
by the underlying metamodel used for the concern specification. The approach
called SmartAdapters had been applied first to Java programs [8] and more
recently to EMF models. It leverages the notions of subject [14] and aspect pro-
gramming [6,7]. Its key concepts are concerns, adapters, adaptations and
adaptation target. The main idea is the following: each concern identified as
reusable should go with an adapter which specifies a composition protocol,
that is a set of adaptations and adaptation targets describing how the concern
should be composed with other concerns when it is reused. This protocol will
guide the designer to identify the specific parts for reuse when composing a
reusable concern into a target concern.

We propose to explain this approach through the reuse of the Observer de-
sign pattern. First we define its composition protocol (see Figure 4). For better
readability, we use a concrete textual syntax in order to specify this composition
protocol. Details in the concrete syntax are not important and the syntax might
be slightly modified in the future.
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01 concern designpattern.observer
02 abstract adapter ObserverAdapter {
03
04 abstract Class target “class(es) representing an observer” : observerClass
05 abstract Class target “class(es) representing a subject ” : subjectClass
06 abstract Method target “ method(s) notifying changes ” : notifyingMethod
07 require notifyingMethod in subjectClass.*
08
09 adaptation becomeObserver “Modify class to make it an observer” :
10 inherit Observer in observerClass
11
12 adaptation becomeSubject “Modify class in order to make it a subject ” :
13 merge class subjectClass with Subject
14
15 adaptation introduceLink “introduce an association (subject to observer) ” :
16 introduce Association observers (subjectClass -¿ observerClass)
17
18 adaptation notifyingObserver
19 “ Alter notifyingMethods to tell observers about modification” :
20 extend method notifyingMethod( ... ) with after { changeValue(); }
21
22 abstract adaptation updateObserver “add an update facility to observers ” :
23 introduce method public void update(subjectClass s) in Observer
24
25 ... Protocol includes also :object initialization,observers registration,...

26 }
Fig. 4. Snippet of the composition protocol for the Observer design pattern

Let us now detail this example illustrated in Figure 4. Line 01 specifies the
concern to be reused. The adapter called ObserverAdapter describes its composi-
tion protocol (Line 02 ). When the composition protocol is defined the concern(s)
that may reuse it are not known so that we do not know the classes corresponding
to the objects acting as subjects and those acting as observers. The only thing
that we may assume is that there are classes that act as observers and subjects.
They are represented by the two abstract targets of type class: observerClass
and subjectClass (Lines 04 and 05 ). Each of these targets may be associated to
one or several classes at composition time.

Considering the design pattern Observer of Figure 3, any subject must in-
form an observer that its content has been modified by calling the method
changeValue. For the same reasons that the classes mentioned above are not
known the method(s) playing this role are also not known but they should exist
and be declared in the subjectClass (Lines 06 and 07 ). To ensure that the call to
changeValue is performed by the method(s) notifyingMethod, the composition
protocol specifies an adaptation of type interception which adds this call at
the end of the corresponding method(s) (Lines 18 to 20 ).

More generally this kind of adaptation deals with some actions to be taken when
a classifier member (attributes, methods...) is accessed or called. These adapta-
tions allow the designer to add behavior at the beginning, end or around some
existing methods but also to add some treatment when an exception is triggered.
For attributes, interception may occur when the attribute is read or modified.

Let us continue with our example. To be able to call changeValue or any
other feature of class Subject, it is necessary to have access to it from within
the classes corresponding to subjectClass. This means that we have to specify
another adaptation. Two possibilities could be chosen: to merge all the features
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of class Subject into subjectClass, or to make subjectClass inherit from Subject.
Here we choose an adaptation of type Merging (Lines 12 and 13 ).

Such adaptations deal mainly with packages, classifiers features and asso-
ciations. Method merging is particularly interesting if there is a support for
describing the behavior (programming constructs in Kermeta [13], Sequence
diagrams in UML, etc.). At present time merging policies are mainly execution
of one method before the other; the handling of interlaced method bodies could
be inspired by approaches like [9]. Merging classifiers is either straightforward
(no conflict, name of features to be merged are identical, feature appear only
in one of the classes,. . . ) or may need more information in order to relate the
features of the classifiers that need to be merged [2,16].

All these adaptations were dealing with the subjects. It is then necessary to
address observers and to also insert class Observer at the right place(s) in the
target concern. We chose here to inherit from it (Lines 09 and 10 ). Such adap-
tation is of type Introduction . It deals not only with superclass introduction
as it is the case here but also with adding classifier members (new attributes or
methods), as well as association. It is also possible to add a classifier invariant
or a method assertion (Precondition or postcondition).

We use the same type of adaptation to insert the association between subject
and observer classes as specified in the design pattern. Depending on the asso-
ciation to be introduced we may provide additional information. For example,
in the current case the association is unidirectional from subjects to observers
(Lines 15 and 16 ).

It only remains one thing to do: to add to the observerClass class(es) a method
update (also an adaptation of type Introduction), that reacts to the changes
made in the subject object. At this time we do not know the content of this
feature because we do not know what the purpose of the target concern is. This
is why the adaptation is abstract. The advantage to plan this adaptation in the
composition protocol is to guide and control the reuse of the design pattern.

This composition protocol continues with the description of the initialization
and the registration of observers but for space reasons we do not include it.

Let us suppose now that this concern is reused by the concern described
in Figure 1 (Section 2) dealing with mobile phones. So we need to compose
these two concerns. The information which is imcomplete into the composition
protocol (abstract targets and adaptations) is described into a concrete adapter
ApplicationPhone which specializes the adapter ObserverAdapter as it is shown
in Figure 5. Please note that, in this example, the insertion is in situ. It means
that adaptations are performed within the concern application.phone. In some
cases, it is better to make the composition ex situ that is to say to compose the
two concerns into a new one.

In the above composition protocol (Figure 4) we made several assumptions
about the target concern. For example, we suppose that the association does
not yet exist between the classes GUI (the observer) and Clock (the subject).
This is a drawback because if the composition does not deal with a concern
which satisfies these assumptions, it will be impossible to reuse the composition
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01 concern application.phone
02 compose designpattern.observer with application.phone
03 adapter ApplicationPhone extends ObserverAdapter {
04
05 target typeOfValue = Time
06 target subjectClass = application.phone.Clock
07 target observerClass = application.phone.GUI
08 target notifyingMethod = application.phone.Clock .incrementTime()
11
12 adaptation observerUpdate :
13 introduce method public void update (subjectClass s) in observerClass {
14 setTime(time++)
14 displayTime()
15 }
16 }

Fig. 5. Reuse of Design Pattern Observer for a mobile phone

protocol in another context. Thus, we reach the conclusion that we need to
introduce some variability within the composition protocol. This is the purpose
of section 4.

4 Extension to Support Variability

In Section 3 we proposed an overview of the SmartAdapters approach. We now
consider the needs of variability pointed out in Section 2. Our objective in this
section is to introduce matching and adaptation variability into the composition
protocol in order to make it more reusable and as consequence to make the
concern itself more reusable. SmartAdapters is a support for explaining our
approach but we plan to address other AOM approaches. Variability mechanisms
introduced are inspired by Software Product Lines approaches, especially [17].

Figure 6 shows what we should introduce in an adapter to better customize
the composition protocol. In Section 5 we will describe the metamodel containing
the capabilities that are suggested here.

We may note first that adapter ObserverAdapter is now preceded by the key-
word derivable (Line 02 ). This means that it may present several alternatives to
implement the composition and may consider some adaptation targets or adap-
tations as optional. This adapter acts as a template where some information
should be given in order to choose between possible variants or options.

A first possible customization is dealing with the insertion of the features pro-
vided by classes Subject and Observer. Depending on the target concern or more
generally on the context of reuse, it may be interesting to have the choice between
inheriting from those classes or merging their features into observerClass and sub-
jectClass. InFigure 4 a choice ismade a priori. InFigure 6, the choice is describedby
the Lines 09 to 24 through a clause Alternative InsertionChoices which specifies
here two variants (more variants could be defined if needed). A variant may con-
tain several adaptation target declarations and adaptations. Implicitly this means
that these targets and adaptations are dependent from each others.

Now, we can introduce the update method. If we merge the Subject and the Ob-
server, we need to introduce the update method in the class where the Observer
is merged i.e., observerClass (Lines 22 and 23 ). Subject is also merged in a target
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01 concern designpattern.observer
02 derivable adapter ObserverAdapter {
03
04 abstract Class target ‘‘class(es) representing an observer’’ : observerClass
05 abstract Class target ‘‘class(es) representing a subject ’’ : subjectClass

06 abstract Method target ‘‘ method(s) notifying changes ’’ : notifyingMethod
07 require notifyingMethod in subjectClass.*

08
09 Alternative InsertionChoices ‘‘ Choice between inheritance and merging’’ {
10 [Vinheritance] ‘‘ Inheritance variant ’’ :
11 adaptation becomeSubject ‘‘Modify class in order to make it a subject ’’ :
12 inherit class Subject in subjectClass

13 adaptation becomeObserver ‘‘Modify class to make it an observer’’ :
14 inherit Observer in observerClass

15 abstract adaptation updateObserver ‘‘add an update facility to observers ’’ :
16 introduce method public void update(Subject s) in Observer
17 or else [Vmerge] ‘‘ Merging variant ’’ :

18 adaptation becomeSubject ‘‘ Modify class in order to make it a subject ’’ :
19 merge class subjectClass with Subject

20 adaptation becomeObserver ‘‘Modify class to make it an observer’’ :
21 merge class observerClass with Observer

22 abstract adaptation updateObserver ‘‘add an update facility to observers ’’ :
23 introduce method public void update(subjectClass s) in observerClass
24 }
25
26 Alternative NotificationTime ‘‘ Choice of notification time’’ {
27 [Vbegin] ‘‘ Method beginning variant’’ :
28 adaptation notifyingObserver
29 ‘‘ Alter notifyingMethods to tell observers about modification’’ :

30 extend method notifyingMethod( ... ) with before { changeValue(); }
31 or else [Vend] ‘‘ Method ending variant’’ :

32 adaptation notifyingObserver
33 ‘‘ Alter notifyingMethods to tell observers about modification’’ :

34 extend method notifyingMethod( ... ) with after { changeValue(); }
35 }
36 ...Protocol includes also :object initialization,observers registration,...

37 }

Fig. 6. Composition protocol for the Observer with variability

class, therefore the parameter of the update method has the type of this target class
i.e. subjectClass. If the pattern is composed by inheritance, the update method is in-
troduced in the Observer class itself, and the parameter has the type Subject (Lines
15 and 16 ). The update method is very related to the composition variant, so we
integrate its introduction in the InsertionChoices alternative. Depending on the
chosen composition variant, the right update method will be introduced. In both
cases the contents of this method is not already known, that is why this method is
abstract.

A second possible customization is related to the location of the call to method
changeValue within notifyingMethod. Itmaybeusefuldepending on the target con-
cern to notify the subject changes to observers either at the beginning or at the end
of the execution of notifyingMethod. The corresponding variants are described by
the Lines 22 to 31 througha second clauseAlternative. Eachvariant corresponds
to a unique adaptation of type Interception.

In figure 7 we extend this protocol to experiment the combination of optional
and constraint clauses. We now address the association between observers and
subjects (called observers in the design pattern of Figure 2). It is very likely that
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01 concern designpattern.observer

02 derivable adapter ObserverAdapter {
03 ...

04
05 is optional AssociationExist ‘‘ association (observers to subject) may exist ’’ {
06 abstract Association target ‘‘ handling association mapping’’ :

07 subjectObserverAssociation
08 adaptation mergeLink ‘‘merge association with the Observer pattern one ’’ :

09 merge association subjectObserverAssociation with observers
10 require subjectObserverAssociation ⊂ (subjectClass -> observerClass)

11 }
12
13 is optional LinkModification1 ‘‘ Existing association may be renamed ’’ {
14 abstract adaptation renameLink ‘‘rename association-end of association ’’ :
15 rename association subjectObserverAssociation

16 is optional LinkModification2 ‘‘ Existing association may be redefined ’’ :
17 adaptation alterLink ‘‘add an association-end to association ’’ :
18 add association observers (subjectClass -> observerClass)

19 ...
20 constraint AssociationHandling ‘‘working on association implies it exists ’’ {
21 LinkModification1 depends on {AssociationExist}
22 LinkModification2 depends on {AssociationExist}
23 {LinkModification1, LinkModification2} are exclusive
24 }

25 }

Fig. 7. Options and matching variability

depending on the target concern this association may already exist in it. In order
to authorize both situations we propose some optional adaptations (Lines 05 to
18 ). A first optional clause assumes that the association exists in the target con-
cern and is identified by the target subjectObserverAssociation; it must be merged
with observers. Then it may be possible to specify a renaming adaptation because
nothing can ensure that it has the same association-end name in the target con-
cern. It is also possible to add an association-end when the association exists but
in the opposite way in this concern.

The example developed in Figures 6 and 7 especially illustrates the needs for
optional parts and variant definitions. In order to insure the consistency of the
composition protocol, the user can define mutual exclusion and dependency con-
straints. These constraints restrict the number of possible combinations to sen-
sible ones. In our example, we want to ensure that i) renaming and redefinition
may not be performed if the association between observers and subjects does not
exists in the target concern and, ii) renaming its association-end is incompatible
with adding observers. These contraints are expressed (Figure 7 - Lines 20 to 23 )
by introducing dependencies between LinkModification1, LinkModification2 and
AssociationExists options and a mutual exclusion between the first two options.

Now, we can compose the variable “Design Pattern Observer” into the mobile
phone base model. In addition to the tasks described in figure 5 it is necessary to
select options and variants (adaptation targets and adaptations) which are suit-
able for the concern “mobile phone”. Of course the abstract adaptation targets
and adaptations to concretize in the adapter ApplicationPhone depends on the
variants and options which are selected (Figure 8).

The selection is made through a clause derive (Lines 05 to 08 ). No association
can match the observers association in the target model, so the optional clauses
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01 concern application.phone
02 compose designpattern.observer with application.phone
03 adapter ApplicationPhone derives ObserverAdapter {
04
05 derive designpattern.observer with {
06 options: none
07 alternatives: InsertionChoices#[Vinheritance], NotificationTime#[Vend]
08 }
09
10 target typeOfValue = Time
11 target subjectClass = application.phone.Clock
12 target observerClass = application.phone.GUI
13 target notifyingMethod = application.phone.Clock.incrementTime()
14
15 adaptation observerUpdate :
16 introduce method public void update (Subject s) in observerClass {
17 setTime(time++)
18 displayTime()
19 }
20 }

Fig. 8. Reuse of Design Pattern Observer for a mobile phone

are not selected (note that an association exists in application.phone but in the
opposite way so that it would be possible to keep only one association selecting
AssociationExist and LinkModification2 ). We also select the two variants associ-
ated to the alternative clauses InsertionChoices and NotificationTime. Finally, we
have to concretize the update method, specifying that the GUI has to increment its
variable time and refresh the screen. Concretizing abstract methods in a concrete
adapter is close to the mechanism defined in the AOP approach of Hannemann et
al. [5]. Mandatory targets and adaptations of Figure 6 are processed normally in
the same way as it is done in Figure 5.

Figure 9 shows two types of composition i.e, merging and inheritance, in order
to realize the display time requirement. Inheritance corresponds to the adapter
we have derived above, while Merging corresponds to another possible derivation
provided by the protocol.

Fig. 9. Two possible compositions of the Observer pattern

In the motivating example, we were not able to realize the total outgoing calls
with the standard Counter pattern because the template approach was not flexible
enough. We can now realize the total calls and the total outgoing calls require-
ments using the same Counter pattern. Indeed, the Counter pattern now can be
applied either if the class acting as Counter is present or not in the base model. For
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space limitation, the derivable adapter and the concrete adapter are not shown but
the principle is similar to the Observer protocol (Figures 6, 7 and 8).

Finally, it is interesting to note that introducing variability did not affect the
guidance and the controls when reusing a derivable concern. On the contrary, the
choices induced by the addition of variability is also controlled and guided thanks
to the expressiveness of the composition protocol.

5 Metamodeling and Implementing AOM with Variability

This section proposes a metamodel of concerns that includes concepts for adapters
and variability illustrated in sections 3 and 4. This metamodel aims at giving a
precise formulation of concerns andmake it possible their integration intomodeling
tools. Figure 10 shows an excerpt of the metamodel where concepts introduced to
handle variability are identified with a circle at the upper left. The key concepts of
the metamodel are concern, adapter, target and adaptation.
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Fig. 10. Metamodel of SmartAdapter with variability

A reusable concern (class ReusableConcern) is associated to a package (class
PackageEntity)which contains the concern description3 and its protocol of compo-
sition (class AbstractAdapter). Concerns are not always reusable (class Concern).
3 We assume that a concern is described by a package of classes similarly to a UML class

diagram.
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For example the concern which describes the GUI of an application is rather spe-
cific and may not be reusable; such concerns do not have a composition protocol
but could be composed with other concerns. A concern refers to as many concrete
adapters (ConcreteAdapter) as there are concern to be integrated with it.

An adapter (class Adapter) is identified by a name and may inherit (i.e. special-
ize) from another adapter. An adapter may be abstract (class AbstractAdapter),
concrete (class ConcreteAdapter) or derivable (class DerivableAdapter). Each
adapter contains adaptations (class Adaptation)andadaptation targets (class Tar-
getDeclaration). A derivable adapter is an abstract adapter which supports vari-
ability: it allows the designer to customize the set of adaptations or/and the set
of adaptation targets by expressing options, alternatives, dependencies and exclu-
sions. Such an adapter is not intended to be used directly for composing concerns
but serves to derive an adapter. A derived adapter is obtained using the method
resolve of class DerivableAdapter which takes a derivation (class Derivation) pa-
rameter to select the adaptations and the adaptation targets among the options
and variants. This adapter may be concrete, abstract or derivable depending on
what is resolved by the derivation parameter.

Atargetdeclaration(classTargetDeclaration)specifiesanadaptationtargetthat
matches the entities on which the adaptations relies on. An adaptation target may
identify just one required element (class AbstractTargetDeclaration) (like the ob-
servers or the subjects in the design pattern Observer) or be fully specified (class
ConcreteTargetDeclaration) by referencing the real element (class, method, ...) to
adapt.

An adaptation (class Adaptation) specifies the action to be taken for an element
of the reusable concernwhen it is composed. Themetamodel includes a hierarchy of
adaptation classes that are typed according to the types of target entities (package,
classifier, method, attributes and association) and reflect the four kinds of adap-
tation currently proposed: interceptions, introduction, merging and redefinitions.
Figure 10 shows two of the adaptation classes used in the previous examples (class
ClassMerging and class MethodIntroduction).

To be able to take into account several variants for the integration of the concern,
the metamodel includes the concept of alternative entity (EntityAlternative). An
alternative entity may refer to several adaptations or adaptation targets (see xor
link) but only one will be selected at composition time.

Adaptations, adaptation targets and even alternatives can be optional in a
derivable adapter, that is to say that they are planned in the composition protocol
but they could be retained or not when the concern is composed with another one.
Optional elements of a derivable adapter are referenced by its options link.

Practically several adaptations or adaptations targets may be described in a
given variant or be declared as an optional block. For this purpose we propose a
way to group thoses entities (class EntityConjunction).

In a derivable adapter, classes EntityDependency and MutualExclusion allows
designers to specify that an AdapterElement (variant or option) may not be se-
lected with other ones or on the contrary must be selected if some others are se-
lected. These classes define constraints that are checked before deriving a derivable
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adapter, in order to insure the consistency of the derived adapter. If a derivation
does not respect these constraints then an exception is raised that asks the user to
modify the derivation.

The metamodel described above has been used to build a modeling tool inte-
grated in the Eclipse environment. This tool currently provides two main func-
tionalities: designing models of concerns and adapters; composing concerns from
their models. This tool has been implemented using the Eclipse Modeling Frame-
work (EMF) and the Kermeta language [13]. We have exploited EMF to define a
Ecore version of our metamodel, reusing the Ecore metamodel for the description
of concerns. The Kermeta language has been exploited to extend the Ecore ver-
sion of our metamodel with operational behavior. This behavior performs several
tasks related to the design and composition of concerns: it checks the consistency of
adapters, computes derived adapters and compose elements of concerns from a set
of adaptations. At this time, we are investigating the design of a concrete textual
syntax for our metamodel like the one used in the previous section and we plan to
build the concrete syntax tool using a meta-model centric approach as [12].

6 Related Work

There exists numerousAOM approaches but few of them support variabilitymech-
anisms at the composition level [4,16,1]. In [2], Clarke et al. model an aspect in
a template package specifying the structure and the behavior of the aspect with
a class diagram and sequence diagrams. The template is composed of model ele-
ments present in the concern’s class diagram and specifies the elements that have
to be matched in the target model. There is no functional or matching variabil-
ity mechanism. The composition relationship authorizes multiple bindings i.e. it
is possible to match several target model elements to the same concern model el-
ement. Adaptation lacks variability: concerns are indeed always merged into the
target model. Note that it is possible to generate AspectJ code to postpone the
weaving at code level. Our adaptation protocol allows the designer to define dif-
ferent variants of how the concern will be integrated in the target model. All the
variability mechanisms we have identified may be adapted to Theme.

Muller et al. [11] also propose an approach to compose a reusable model ex-
pressed as a template packagewith an existing model. To express this composition,
they introduce an apply operator that specifies the mapping between template pa-
rameters and elements of the targetmodel. Their approach addresses variability at
the composition level by giving the capacity to annotate the apply operator with
different strategies such as ”merge” or ”view”. Strategies are only provided to get
different resulting models. Compared to our proposal, this solution does not offer
any mechanism to express options and variants for the reusable model. It is also
less flexible as it does not offer finer grain mechanisms to control how elements of
reusable and target models must be composed.

France et al. [16] have developed a systematic approach for composing class
diagrams in which a default composition procedure based on name matching can
be customized by user-defined composition directives. These directives constrain
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how class diagrams are composed. The framework automatically identifies conflicts
between models that have to be composed and it solves them thanks to the compo-
sition directives. Contrary to Theme, composition directives address the weaving
only from the structural point of view. They consider the composition as a model
transformation. The variability can be addressed by designing several composi-
tion directives depending on the integration context. However, the definition of the
composition directive would then become messy and error-prone. Besides, it is a
symmetricAOM approach in which they do not differentiate between aspectmodel
and base model. Consequently, they do not currently provide a pointcut language
to manage the composition.

In [5],Hannemann et al. propose anAOP approach to implement designpatterns
with AspectJ. They propose up to seven different implementations for each design
pattern. The only variability mechanism is the generalization relationship between
an abstract aspect and an aspect. For example, the update method of the Observer
is declared abstract in an abstract aspect and its contents will be specified in a
concrete aspect. We also use this mechanism but the variability mechanisms we
introduced allow a concern to be applied in multiple contexts whereas we would
have to create a new aspect depending on the context with the Hannemann et al.
approach. Option and variant notions do not exist, reducing the reusability of the
aspects. Our concerns are adaptable and do not need modifications to be applied,
but only customization. Introducing the same variability mechanisms at the code
level code could enhance the expressiveness of AOP language such as AspectJ.

7 Conclusion

In this work, we propose an approach for introducing variability in aspect-oriented
modeling (AOM). To achieve this goal, two important parts of such an AOM ap-
proach were needed: A concern model and a weaver that support variability. In
this paper we mainly focus on the second one. Indeed, the variability in the con-
cern specification depends on the expressiveness of the meta-model dedicated to
concern modeling. Consequently, a reasonable solution to integrate variability in
the concern model can be inspired by product lines researches and more precisely
by [17].

To introduce variability in the weaving process, the composition meta-model of
our AOM approach has been extended. These extensions concern the adaptations
primitives and the pointcut specification. They are composed of a set of entities
specifying optional parts, alternatives, dependencies and mutual exclusion con-
straints. These extensions allow the user to design a family of aspects at the design
level that can be derived to be applied in a particular context.

One of the main benefits of building a composition protocol is the capability to
control and guide the software architect when he designs new applications. The
variability introduction does not affect the guidance and the control when reusing
a derivable concern. On the contrary, the choices induced by the addition of vari-
ability are also controlled and guided thanks to the expressiveness of the compo-
sition protocol.
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In the SmartAdapters platform, we plan to improve the pointcut language
and the target identification. One possible solution is to describe the pointcut with
a template model and to use pattern matching [15] to identify targets.We alsowant
to generalize theSmartAdapters to variousmetamodels, not only class diagrams
or Java programs. In [10], we have proposed and implemented a metamodel-driven
approach to generate domain-specific AOM frameworks that uses the aforemen-
tioned pointcut language. Finally, AOM approaches can be used to manage vari-
ability in software product line. Our work can be merged to these approaches to
show why variability is also needed in the aspects in order to use an AO approach
to build software product line.
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15. Ramos, R., Barais, O., Jézéquel, J.M.: Matching model-snippets. In: MoDELS ’07.
Model Driven Engineering Languages and Systems, 10th International Conference,
Nashville, Tennessee (2007)

16. Reddy,Y.R., Ghosh, S., France, R.B., Straw, G., Bieman, J.M., McEachen, N., Song,
E., Georg, G.: Directives for Composing Aspect-Oriented Design Class Models. In:
Rashid, A., Aksit, M. (eds.) Transactions on Aspect-Oriented Software Development
I. LNCS, vol. 3880, pp. 75–105. Springer, Heidelberg (2006)
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Abstract. The goal of aspect-oriented software development is to maintain a 
clear separation of concerns throughout the software lifecycle. Concerns that 
are separated, however, must be composed at some point. The hypothesis in this 
paper is that existing aspect-oriented modeling composition methods are not 
expressive enough for composing state-dependent behavioral models. The paper 
presents a new aspect composition language, SDMATA, for UML state 
diagrams. SDMATA supports a richer form of model composition than 
previous approaches to aspect-oriented modeling. Firstly, pointcuts are given as 
patterns which allows for sequence pointcuts, loop pointcuts, etc. Secondly, 
SDMATA supports rich forms of composition including parallel composition 
and alternative composition. The language is applied to the use case slice 
technique of Jacobson and Ng. The findings are that it is possible to maintain 
the separation of state-dependent models during software design and that 
expressive model composition methods are necessary to do this in practice.  

Keywords: aspect-oriented development, state machines, use cases. 

1   Introduction 

In software engineering, a concern is anything that is of interest to one or more 
stakeholders, such as a feature, a component or a non-functional requirement. 
Separation of concerns is the process of isolating key parts of a software system so 
that these elements can be developed and reasoned about independently. Separating 
concerns has been recognized as a way of tackling complexity in requirements 
engineering (e.g., viewpoints [1], aspect-oriented requirements engineering [2]), 
software architecture [3], software design (e.g., multi-dimensional separation of 
concerns MDSOC [4]) and coding (e.g., AspectJ [5], Hyper/J [6]).  
                                                           
∗ This author was partially supported by the AMPLE project (STREP IST-33710). 
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A key problem to solve is: How to specify the composition of a set of separated 
concerns? Concern composition (called weaving in aspect-oriented programming) is 
necessary so that the entire set of concerns can be executed as a whole.  

This paper focuses on concern composition during software design. We introduce a 
new aspect composition language, SDMATA1, for specifying the composition of 
aspect-oriented behavioral models given as UML state diagrams. Aspect-oriented 
behavioral modeling (AOBM) works as follows. An aspect model defines behavior 
that crosscuts a base model. A specification of an aspect includes three parts—a 
definition of the model elements in the base model affected by the aspect (often called 
the joinpoint model), a definition of the aspect model elements, and a definition of 
how behavior from the aspect model affects the base model elements (often called 
advices).  

SDMATA brings two advances over previous work on aspect-oriented modeling 
with state machines (e.g., [8-10]). Firstly, the joinpoint model is defined by a state 
diagram pattern which allows for very expressive joinpoints. For example, a joinpoint 
may define a sequence of transitions, a loop, or a set of orthogonal regions. This is in 
contrast to most previous approaches to AOBM that only allow pointcuts to be single 
model elements, such as a transition or an event. Secondly, SDMATA supports rich 
composition types. For example, an aspect state diagram can be composed in parallel 
with the base, as an alternative to the base, or, in fact, in any way allowed by the 
underlying state diagram syntax. Previous work has often been limited to the before, 
after, around advices of AspectJ.  

An additional contribution of this paper is that we apply SDMATA to composition 
specification in the use case slice technique by Jacobson and Ng [11]. Use case slices 
are a way of maintaining a use case-based decomposition throughout the development 
lifecycle. For state diagrams, this means that each use case maintains its own state 
diagram and these diagrams are composed to obtain the overall design.  

To evaluate both SDMATA and the use case slice approach, we used SDMATA to 
specify state diagram compositions for seven student design solutions. These 
solutions were UML designs that were created as part of a graduate course on 
software design. They were originally produced following a traditional use case-based 
methodology. The solutions were re-engineered to keep separate the state diagrams 
derived from different use cases and our composition technique was applied to 
compose the state diagrams. This exercise provided evidence that an expressive 
composition language is necessary for practical UML designs and that our 
composition language is sufficiently expressive. 

The remainder of this paper is structured as follows. Section 2 introduces 
motivation for our work. Section 3 presents SDMATA. Section 4 applies SDMATA 
to the use case slice method. Section 5 compares related work and is followed by 
suggestions for future work in Section 6. 

                                                           
1 MATA (Modeling Aspects Using a Transformation Approach) is a more general aspect-

oriented modeling approach that includes class diagrams, sequence diagrams and state 
diagrams. This paper describes the language features for state diagrams, hence the name 
SDMATA. [7] describes other language features applied to modeling software product lines. 
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2   Motivation 

Figure 1 is an example of using UML state diagrams to maintain separation of 
concerns in a distributed application. The left-hand-side (LHS) is a use case for 
calling a remote service and consists of a state dependent class ServiceController and 
a state diagram that defines its behavior. Similarly, the right-hand-side (RHS) is a use 
case for handling a network failure, which contains the same class ServiceController, 
but with a different set of attributes and a different state diagram. This second use 
case describes a limited number of attempts to retry a service.  

Call Remote 
Service

ServiceController

S1

S3
entry: logReturnValue(..)

entry: updateGUI(..) 
entry: enableGUI()

serviceRequest/
disableGUI()

ServiceController

retries : int;
MAX : int;

T1

T2

[retries>MAX]remoteException/

[retries<=MAX]
remoteException/
callRemoteService(…);retries++

/retries:=0

Handle 
Network
Failure

S2
entry:callRemoteService(…)

ack(..)/

 

Fig. 1. Aspect-Oriented Modeling with State Diagrams 

S1

S2
entry:callRemoteService(…)

serviceRequest/
disableGUI(); retries:=0

ServiceController

retries : int;
MAX : int;

entry: enableGUI()

[retries>MAX]
remoteException/

[retries<=MAX]
remoteException/
callRemoteService(…);retries++

ack(..)/logReturnValue(…);
updateGUI()

 

Fig. 2. Desired Composition of State Diagrams from Figure 1 

The RHS crosscuts the LHS in the sense that whenever callRemoteService appears 
on the LHS, the RHS behavior should be used to handle a failure. This is a non-trivial 
example of crosscutting behavior. Prior to calling the remote service on the LHS, a 
GUI is disabled (via the action disableGUI). The GUI is only re-enabled (via the 
action enableGUI) once the remote service has been called successfully—the service 
call succeeds, a log is taken, and the GUI is updated before the GUI is re-enabled.  

Now consider the desired result from composing the RHS with the LHS—this is 
shown in Figure 2. Note that when failure-handling is incorporated, what is now 
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needed is that the GUI should be re-enabled whether the calling of the remote service 
succeeds or not. That is, even if the maximum number of retries is exceeded, 
enableGUI must still occur. Furthermore, logging and updating must only occur if the 
service call succeeds. 

Capturing this composition is very difficult if a composition model based on that of 
AspectJ is used. Existing work on aspect-oriented modeling might, for example, 
define a pointcut as the occurrence of the action callRemoteService. But there is then 
no way to insert behavior after or around this pointcut in such a way that enableGUI 
is called whether or not the service call succeeds, and that logging/updating is not 
called in the failure scenario.  

The example illustrates that it is not enough to consider a single action as a 
pointcut. In fact, the pointcut must be a sequence of actions and events. If one could 
specify that the pointcut is the sequence of actions/events between callRemoteService 
and enableGUI, then we get closer to the desired composition of Figure 2. Sequence 
pointcuts are not currently possible with most aspect-oriented modeling (AOM) 
approaches2, although some AOP languages do support them [12]. 

More generally, when composing crosscutting state diagrams, it may be desirable 
to use advices that are more expressive than before, after or around. For example, an 
aspect state diagram may need to be composed in parallel with a base state diagram, 
or an aspect state diagram may need to be inserted inside a state in the base diagram 
(i.e., the base state becomes a composite state). It may also be useful to insert the 
aspect state diagram after a base state but then return to the base state once the aspect 
has completed—in other words, the aspect and base are composed in a loop. In fact, 
composition should allow two diagrams to be composed using any of the syntactic 
constructs of the modeling language. In the case of state diagrams, for example, 
composition could be achieved using orthogonal regions, composite states, or even 
history states. 

In other words, aspect-oriented model composition may require models to be 
composed in complex ways rather than just before or after each other. It is for this 
reason that we propose a new model composition language in this paper.  

3   SDMATA: Aspects for UML State Diagrams 

In this section, we present SDMATA, a language for composing aspect-oriented UML 
state diagrams. Although we apply this language to UML state diagrams in this paper, 
the approach can be adapted to other UML diagrams (see, for example, [7]). 
SDMATA is given semantics in terms of graph transformations and so we briefly 
present background on graph transformations.  

3.1   Graph Transformations 

A graph consists of a set of nodes and a set of edges. A graph transformation is a 
graph rule r: L → R from a left-hand-side (LHS) graph L to a right-hand-side (RHS) 
graph R. The process of applying r to a graph G involves finding a graph 
                                                           
2 The only known approach that does allow this is join point designation diagrams (JPDDs) [9] 

but JPDDs do not support expressive advices. 
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monomorphism, h, from L to G and replacing h(L) in G with h(R). Graph 
transformations may also be defined over attributed typed graphs. A typed graph is a 
graph in which each node and edge belongs to a type. Types are defined in a type 
graph. An attributed graph is a graph in which each node and edge may be labeled 
with attributes where each label is a (value, type) pair giving the value of the attribute 
and its type. In a graph rule, variables may be used to capture a set of possible values 
and/or a set of possible types.  

State

isComposite : 
Boolean

Region

Transition

0..1

*

1

*

1

1

* *

source
target

*

0..1

substates

subregions Trigger
0..1

1

namedElement

name : String

Action

0..1 *

StateMachine

0..1
1..*

*
0..1

 

Fig. 3. UML State Machine Metamodel 

where ts is a set of copies of t

s1 : State
isComposite
= true

regions: 
Region

subs: State

t : Transition

source

s2 : State

target

source

: Transition : Trigger

name = 
triggerName

tr : Trigger

name = 
triggerName

s1 : State
isComposite = 
true

regions: 
Region

subs: State

source

ts: Transitions

s2 : State
target

tr : Trigger
name = 
triggerName

subregions

subregions

substates

substates

 

Fig. 4. Graph Rule to Move Down Transitions 

Graph rules have previously been used for transforming UML models (e.g., UML 
refactorings [13]). Such work requires that UML models be represented as graphs. 
The usual approach is to define node types as the metaclasses in the UML metamodel. 
Graph rules can then be shown graphically using object diagrams.  
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As an example, Figure 3 shows a (simplified) fragment of the UML state machine 
metamodel. A state machine contains 1 or more (orthogonal) regions, each of which 
contains states. Each transition is from a source to a target state and has a trigger and 
actions. States may also have actions. A state may contain 0 or more regions. A state 
is composite if it contains 1 or more regions. If it contains 2 or more regions, then the 
regions in this state are orthogonal. The State metaclass has an attribute isComposite 
indicating whether or not the state is composite. Finally, states, triggers and actions 
have names (as represented by a generalization relationship to namedElement).  

Figure 4 is an example graph transformation which moves all outgoing transitions 
from a composite state to its substates. The notation used to define this graph 
transformation is that of [13]. (We defer to [13] for the subtleties of this notation.) 
Nodes in the graph are given as rectangles. Nodes are attributed and typed so UML 
object diagram notation can be used to represent them. There are two additional 
notations. First, a set of nodes of a certain type is shown by a stacked rectangle. For 
example, regions is a set of Regions associated with a composite state. Secondly, the 
cross in the figure is a negative application condition and says that any match against 
the LHS graph cannot have a substate with a transition trigger called triggerName. 
The LHS in Figure 4 matches any graph with at least one composite state with an 
outgoing transition. Furthermore, there should not be a transition on any of the 
substates with the same trigger. The RHS redirects the matched transition to all 
substates (by creating copies) thus moving the transition down in the state hierarchy. 

3.2   SDMATA 

Given a base state diagram, SB, crosscut by an aspect state diagram, SA, an SDMATA 
composition rule merges SA and SB to produce a composed model SAB. The merge could 
be specified simply using a graph rule, r:  SB  SA → SAB. However, SDMATA does not 
take this approach because graph rules are specified at the meta-level. A requirement 
of SDMATA is that it can be used by working software modelers. Modelers typically 
do not have the in-depth knowledge of the UML metamodel required to specify a 
graph rule—Figure 4, for example, is hard to get right. Therefore, although SDMATA 
is based on graph transformations, it uses the concrete syntax of UML wherever 
possible. This means that SDMATA is not as expressive as graph transformations over 
UML (since metaclasses cannot be accessed) but it is tailored to aspect composition in 
a way that is accessible to software engineers. The semantics of SDMATA is given by 
mapping the language to the equivalent meta-level graph rule. Standard graph 
matching and rule execution semantics can then be used.  

A SDMATA composition rule consists of two parts. Firstly, the rule specifies 
which part of SB is crosscut by SA. This is done by a state diagram pattern that 
identifies a sub-diagram of SB. Secondly, composition operators specify how 
crosscutting behavior from SB is combined with the behavior from SA. State diagram 
patterns can be thought of as the joinpoint model of SDMATA and the composition 
operators can be thought of as the advices. 

3.3   State Diagram Patterns 

State diagram patterns resemble the concrete syntax of UML state diagrams very 
closely. This concrete syntax is familiar to developers and is therefore more 
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accessible. A state diagram pattern is an abstract representation of a family of state 
diagrams and contains pattern variables. Pattern variables are typed over state 
diagram metaclasses and are marked with multiplicities. Pattern variables are regular 
expressions prefixed with a vertical bar ‘|’ to denote that they are variables. A pattern 
variable |X has a multiplicity of one. A pattern variable |X+ has a multiplicity of one or 
more. A state diagram pattern matches a state diagram if all the pattern variables can 
be instantiated to elements of the state diagram in a way that preserves the variable’s 
metaclass and multiplicity. 

 
State Diagram Pattern Syntax. We denote the type of a pattern variable by (|X : T). 
Only the metaclasses in the list below are allowed to be types for pattern variables. 
We assume the metamodel of Figure 3 in the remainder of this paper.  

1. (|X : State) matches against a single state. (|X+ : State) matches against one or 
more states and also matches the transitions between these states. 

2. (|X : StateMachine) matches a single state machine. (|X+ : StateMachine) is not 
allowed. 

3. (|X : Action) matches a single action. (|X+: Action) matches a sequence of one 
or more actions. 

4. (|X : Trigger) matches a single event. (|X+: Trigger) matches a sequence of one 
or more events. 

5. (|X : Region) matches a single orthogonal region. (|X+: Region) matches one or 
more regions within the same composite state. 

a |X b

Matches any state diagram with
states a,b separated by a single 
state

a |X+ b

Matches any state diagram with
states a,b separated by any number 
of states and transitions (i.e. another
state machine)

|X

|Y

Matches any composite state
with exactly 2 orthogonal regions

|X

|Y+

Matches any composite state
with at least 2 orthogonal regions

entry: |X+
e/|Y+

Matches any state with one or more 
entry actions and an outgoing transition
with event e and one or more actions

Matches any composite state, i.e.,
any state that contains one or more
states and transitions

(a)

(f)(e)

(d)
(c)

(b)

|X+

 

Fig. 5. State Diagram Pattern Examples 
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PatternElement

isPattern : Boolean
patternName : String

PatternMultiplicity
0..1

isOne : Boolean

 

Fig. 6. Pattern Elements 

Whenever possible, the concrete syntax of a pattern variable is the same as the 
UML concrete syntax of its type. See Figure 5 for examples.  

Figure 5(a), for example, matches any sequence of states starting with a state 
named a, ending with a state named b, and with another state in between (different 
from a and b). In contrast, the variable |X+ in Figure 5(b) matches one or more states 
in between a and b as well as any transitions between those states. This means that |X+ 
represents any number of states and transitions with at least one of those states 
connected to the incoming transition shown, and at least one state connected to the 
outgoing state shown. In a similar way, Figures 5(c) and 5(d) show how to match 
against a specific number of regions and one or more regions, respectively. Figure 
5(e) is self-explanatory. Figure 5(f) matches a state which contains a state machine |X, 
i.e., there must be at least one substate, but the composite state may contain any 
number of substates and transitions. 

New notation is introduced only to match composite states (see Figure 5(f)). The 
latter is necessary because composite states are given by a meta-attribute in the UML 
state machine metamodel (isComposite in Figure 3) so it is not possible to distinguish 
a simple or composite state based purely on the concrete syntax of state. Note also 
that state diagram patterns need not be valid state diagrams—Figure 5(e), for 
example, has no target state.  

The abstract syntax of state diagram patterns is defined by an extension of the 
metamodel in Figure 3 and their semantics is given by mapping them to the notation 
used in Figure 4—this notation is more or less standard for graph rules and so existing 
graph matching algorithms can then be used. A metamodel for state diagram patterns 
can be defined in terms of Figure 3. (Due to space limitations, we limit the discussion 
to syntactic elements defined in Figure 3). We introduce a new abstract metaclass, 
PatternElement, which is a generalization of StateMachine, State, Region, Trigger and 
Action. Note that Transition is not a PatternElement. Also, we introduce a 
PatternMultiplicity metaclass. PatternElement has two attributes. isPattern denotes 
whether a model element is a pattern or not. If it is, it has a pattern name which is a 
regular expression prefixed by ‘|’. PatternMultiplicity has a single attribute, isOne, 
that denotes whether the multiplicity is exactly one, or one or more. The new 
metaclasses are defined in Figure 6.  

 
State Diagram Pattern Semantics. The pattern matching semantics for state patterns 
is given by mapping each pattern to a typed graph consisting of instances of the 
appropriate metaclasses. Standard graph matching algorithms (e.g., [14]) can then be 
used. If a pattern element has a multiplicity of one, it maps to a single instance of its 
metaclass. If it has multiplicity one or more, it maps to a set of instances. To illustrate, 
Figure 7 shows the mapping to metaclass instances for the patterns given in 
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Figure 5(c) and (d). The first pattern will match any composite state with exactly two 
orthogonal regions. The second pattern will match any state with at least 2 regions.  

A slight complication is introduced by the use of |X+ to match against a set of states 
and transitions in Figure 5(b) and (f). In Figure 5(f), for example, instead of mapping 
|X+ to a set of instances of State, it must be mapped to an instance of Region 
containing any number of instances of State and Transition. This issue arises because 
of the peculiarities of the UML metamodel. The full details of the mapping to 
metaclass instances cannot be given here due to space limitations. 

3.4   State Diagram Pattern Example 

Figure 8 shows the state diagram pattern required in the example from Section 2. 
Recall that a sequence pointcut was required. The figure illustrates how to specify a 
sequence from callRemoteService to enableGUI. The pattern variable |X+ matches 
against any number of actions in the target state of the transition but will not match 
against enableGUI(). The effect is that the state diagram pattern matches any 
sequence starting with the callRemoteService(…) action, followed by a transition, 
followed by one or more entry actions, and ending with the action enableGUI(). 

isComposite
= true

isComposite
= true

:State

:State

|X

|Y

|X

|Y+

:Region

:Region

:Region

:Region

 

Fig. 7. Metaclass Instance Representation of Patterns 

entry:callRemoteService(…)

entry: |X+
entry: enableGUI()

 

Fig. 8. State Diagram Pattern for Figure 1 

3.4   Composition Operators 

State diagram patterns identify model elements in the base model that are crosscut by 
the aspect model. SDMATA also gives a way to define how model elements from the 
aspect should be composed with model elements from the base. This is done using a 
language based on graph transformations. SDMATA represents a graph rule r: L → 
R, where L and R are UML models, as a single UML model in which model elements 
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may be annotated with one of three stereotypes—<<create>>, <<delete>> or 
<<context>>.  

Given a pointcut definition given as a state diagram pattern, model elements from 
the aspect that should be added to the state diagram pattern are marked with the 
<<create>> stereotype. Similarly, elements may be removed using the <<delete>> 
stereotype. Simple examples are shown in Figure 9. In (a), the pointcut is any state 
and the aspect elements added are a state, a, and a transition to a. In (b), the pointcut 
is any pair of states and the aspect element is a superstate that is added so that it 
contains these states. In general, <<create>> and <<delete>> can be used to add (or 
remove) any kind of aspectual model element. For example, an aspect could be added 
as an orthogonal region to an existing base model that matches a state pattern—see 
Figure 9(c). The use of <<create>> is “optimized” in the sense that if a state is 
stereotyped as <<create>> then any of its substates or transitions are also created. 
Hence, in Figure 9(a), the transition is created but does not need to explicitly be given 
a stereotype. This optimization reduces the number of stereotypes a user must specify. 
However, in Figures 9(b) and 9(c), the user wants to wrap a composite state around 
existing states. To stop these substates from being created, they are stereotyped as 
<<context>>.  

<<create>> and <<delete>> are a way of representing both the LHS and RHS of a 
graph rule on the same diagram—the familiar LHS → RHS notation can be obtained 
by taking the LHS as all elements without a stereotype and the RHS as the LHS but 
with the <<create>> elements added and the <<delete>> elements removed. This idea 
comes from VIATRA [15]. The <<context>> stereotype is unique to MATA.  

<<create>>
a

(a) (b)

ev/act
<<context>> <<context>>

<<create>>

(c)

<<context>> a

<<create>>

 

Fig. 9. Examples of Composition Operators 

3.5   Applying SDMATA Rules 

An SDMATA rule consists of (apart from the models themselves) a state diagram 
pattern and composition operators specified as above. An SDMATA rule can be 
translated into a graph rule. Hence, existing graph rule execution engines can be used 
to actually compose an aspect state diagram with its base. Currently, we use AGG 
[16] to execute aspect composition. We have implemented a tool to allow users to 
specify aspects and aspect composition rules in IBM Rational Software Modeler. 
AGG is then used to seamlessly execute the composition and the composed models 
are presented to the user for inspection or refinement.  

3.6   SDMATA Example 

Figure 10 shows the SDMATA rule definition that will merge the two models from 
Figure 1 and produce the composed model as given in Figure 2. To make it easier to 
read, elements that are created or deleted are in bold italics. Note that a SDMATA 
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rule contains the state diagram pattern to match against, the aspect model elements, 
and the composition operators that detail how those aspect elements are merged with 
the base. The effect of applying this rule is that: (1) a match is found in the base 
model with the state diagram pattern, and (2) the matched submodel of the base is 
modified by creating and deleting elements according to the <<create>> and 
<<delete>> composition operators.  

entry:callRemoteService(…)

entry: |X+ <<delete>>
entry: enableGUI()

<<create>>[retries>MAX]
remoteException/

<<create>>[retries<=MAX]
remoteException/
<<create>>callRemoteService(…);
<<create>>retries++

/ <<create>>|X+

 

Fig. 10. SDMATA Example 

The SDMATA rule in Figure 10 contains both the aspect (the RHS of Figure 1) as 
well as a specification of how the aspect should be composed with the base (the LHS 
of Figure 1). The rule essentially defines a sequence pointcut to match against and 
then creates and deletes elements, which, in effect, composes the aspect with the base. 
Note that a combination of <<create>> and <<delete>> is used to move the actions 
that match against |X+.   

4   Application to Use Case Slices 

SDMATA is more expressive than existing aspect-oriented behavioral modeling 
(AOBM) techniques.  Broadly, there have been two types of approaches to AOBM. 
The first is to reuse the joinpoint model and advices from AspectJ. The second is to 
use a generic merge algorithm (that can be tailored) to compose an aspect and a base 
model. The second approach will be referred to as the MDSOC-like approach because 
it is inspired by MDSOC programming models [4]. The most notable example of this 
approach is Theme/UML [17].  

For SDMATA, the question remains whether the additional expressiveness is 
actually required in practice. To answer this question, we undertook an investigation 
of existing design solutions to see which kinds of compositions are needed in practice. 
Our experiment attempted to answer the following question. In practical examples, 
are model composition mechanisms based on AspectJ-like or MDSOC-like 
approaches expressive enough? Moreover, is our approach expressive enough? The 
investigation was undertaken for the use case slice technique of Jacobson and Ng 
[11]. Use case slices are a way of maintaining a use case-based decomposition 
throughout the development lifecycle. For state diagrams, this means that each use 
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case maintains its own state diagram and these state diagrams are composed during 
late design or implementation to obtain the overall design.  

In [11], Jacobson and Ng do not adequately address how to compose use case 
slices during design. Their approach is to apply AspectJ-like composition operators. 
The hypothesis of this paper is that such operators are not expressive enough. To test 
this hypothesis, we examined existing UML designs, refactored those designs to 
reflect the use case slice technique of Jacobson and Ng, and then investigated the 
level of expressiveness required to compose state diagrams from different use case 
slices. Because of availability of the models, we chose to study seven student team 
design solutions, each expressed in UML consisting of use cases, class diagrams, 
interaction diagrams and state diagrams. Only the use cases and state diagrams were 
relevant to the study. Projects were conducted by teams of three to four students. Each 
of the seven projects tackled the same problem statement using the same set of use 
cases. The scale of the student solutions is clearly not industrial in size and the results 
offered here are meant to be just the first step.  

Based on an analysis of the compositions required in the state-dependent use case 
slices, we identified four categories of composition.  
 
C1: One-to-One State Matching. The first category includes model compositions 
that can be expressed using simple matching of states. In other words, for two state 
diagrams, S1 and S2, with state sets Σ1 and Σ2, the composed state diagram S1• S2, 
can be obtained by defining a one-to-one mapping θ: Σ1 → Σ2. Figure 11(a) gives an 
example. In the student solutions, this case occurred typically when two state 
diagrams defined sequences that were joined together into a loop.  

C2: Many-to-many state matching. This category is an extension of the previous 
one whereby states in the two state diagrams have a many-to-many relationship, i.e., 
θ(σ) is a set for any state σ. This allows a much richer form of composition. In 
particular, it allows for the creation of composite states (see Figure 11(b)).  

C3: State diagram refactoring. In this category, one or more of the state diagrams 
must be refactored to enable composition to take place. In other words, one state 
diagram cannot be inserted in its entirety into the other. Rather, it must be broken up 
before being inserted in multiple places. This type cannot be handled by state 
matching because matching cannot refactor a state diagram. Figure 11(c) illustrates. 

C4: State diagram refinement. In this type of composition, additional behavior (i.e., 
states and transitions) must be added when composition takes place. Clearly, state 
matching does not apply because state matching cannot refine behavior. This type of 
composition is necessary in cases where two use case slices have been developed 
independently but where there are dependencies between the slices that must be 
resolved when the slices are composed. A typical example concerns access to data. If 
a single use case slice reads from a data object, then no data access synchronization is 
required. However, if another use case slice writes to this data object, when the two 
use case slices are composed, an access synchronization mechanism such as mutual 
exclusion must be added. Figure 11(d) gives an example. 



526 J. Whittle et al. 

A B C D

B/C A/D

A=D
B=C

e/a f/b

f/b

e/a(a) (b)

(c) (d)

A B C D

B

A=C=D

e/a f/b

e/aC D
f/b

A

A B C D
e/a f/b

E

A B
e/a

C
f/b

D

E

g/c

g/c

f/b

A B C D
e/a f/b

A B
e/a

C D

[IN(A)]f/b

[not IN(A)]f/wait

 

Fig. 11. Composition Categories 

Based on the student design solutions, we found that all four categories of 
composition occur for use case slice development. The relative frequency for the four 
categories was as follows: 13%, 39%, 46%, 2%. Of the three approaches 
considered—AspectJ-like, MDSOC and SDMATA—only SDMATA is expressive 
enough to support all four categories. The MDSOC approach supports only category 
C1 although it can be easily extended to support C2 (as was done in [18]). The 
AspectJ-approach does not support either category C1 or C2 because both categories 
allow complex interleavings that cannot be expressed using just before/after advices. 
Some compositions in C3 could be supported by the AspectJ approach if the aspect 
state diagram is first refactored into multiple state diagram fragments. Each fragment 
can then be inserted at a different place. However, we view this as a non-optimal 
approach to composition because it involves representing fragments of a state diagram 
separately which leads to problems in reusability and readability.  

SDMATA supports all categories because the entire state machine diagram syntax 
is available. For example, two use case slices can be merged in parallel using UML 
orthogonal regions. The results of the investigation reveal that, at least for use case 
slice composition, a greater degree of expressiveness is required in practice. Further 
investigation is required, of course, to see if these results are true for other aspect-
oriented software development methods.  

5   Related Work 

There is a large body of work on aspect-oriented modeling, although much of this has 
been restricted to structural models. Work of note that considers behavioral models is 
the Motorola WEAVR tool for state machines [10], Song et al.’s work on weaving 
security aspects into sequence diagrams [19], and Jézéquel et al.’s work on semantic 
composition for interaction diagrams [20]. Although expressive pointcut mechanisms, 
such as sequence pointcuts, have been considered for aspect-oriented programming 
(e.g., [12]), to the authors’ knowledge, this paper is the first work to bring expressive 
pointcuts to behavioral models. Furthermore, the vast majority of existing work on 
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aspect-oriented behavior modeling (e.g., [9]) considers a limited set of composition 
operators based on those of AspectJ. 

This paper considers joinpoints to be static in the sense that the runtime semantics 
of state diagrams is not taken into consideration. Dynamic join points can also be 
defined for state diagrams. However, since models are most commonly used for 
communication and documentation, and are not necessarily executed, static joinpoints 
are perhaps more useful in current modeling practices. It would be interesting to 
extend SDMATA to dynamic join points, however. A related issue is that of 
semantic-based aspect composition in which the fragile pointcut problem is addressed 
by capturing pointcuts according to their semantics rather than their syntax. The first 
work applying this idea to behavioral models is [20], although the concept has also 
been applied in early aspect requirements engineering [21]. The pointcuts in this 
paper are purely syntactic and the authors recognize the limitations of this.  

6   Conclusion 

This paper presents a novel language, SDMATA, for defining aspect compositions for 
UML state diagrams in a way that offers very expressive composition. As shown by 
the study in this paper, SDMATA is more expressive than existing model composition 
techniques in the AOSD field. Furthermore, this richer expressiveness is required in 
practice—even relatively small design solutions would require it.  

We have implemented an execution engine for SDMATA, although the support for 
patterns is still under development. This tool allows users to specify UML models and 
aspects in IBM Rational Software Modeler. Composed models may be viewed in the 
same tool. The tool is being used in a number of research projects for applying 
aspects in product line development and for adaptive systems. The use of graph 
transformations as an underlying formalism also provides some support for the aspect 
interaction problem—whereby application of multiple compositions may have 
unexpected effects. We are investigating the use of critical pair analysis to assist users 
by detecting some kinds of aspect interactions automatically. 

References 

1. Nuseibeh, B., Kramer, J., Finkelstein, A.: ViewPoints: meaningful relationships are 
difficult! In: ICSE. International Conference on Software Engineering, Portland, Oregon, 
pp. 676–683 (2003) 

2. Moreira, A., Rashid, A., Araújo, J.: A Multi-Dimensional Separation of Concerns in 
Requirements Engineering. In: RE. International Conference on Requirements 
Engineering, pp. 285–296. IEEE Computer Society, Paris, France (2005) 

3. Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Nord, R., Stafford, J.: 
Documenting Software Architectures: Views and Beyond. Addison-Wesley, Reading 
(2002) 

4. Tarr, P.L., Ossher, H., Harrison, W.H., Sutton, S.M.: N Degrees of Separation: Multi-
Dimensional Separation of Concerns. In: ICSE. International Conference on Software 
Engineering, Los Angeles, CA, pp. 107–119 (1999) 



528 J. Whittle et al. 

5. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An 
Overview of AspectJ. In: Knudsen, J.L. (ed.) ECOOP 2001. LNCS, vol. 2072, pp. 327–
353. Springer, Heidelberg (2001) 

6. Ossher, H., Tarr, P.L.: Hyper/J: Multi-Dimensional Separation of Concerns for Java. In: 
ICSE. International Conference on Software Engineering, Limerick, Ireland, pp. 737–737 
(2000) 

7. Jayaraman, P., Whittle, J., Elkhodary, A., Gomaa, H.: Model Composition and Feature 
Interaction Detection in Product Lines using Critical Pair Analysis. In: Engels, G., 
Opdyke, B., Weil, F. (eds.) MODELS. International Conference on Model Driven 
Engineering, Languages and Systems, Springer, Nashville, TN (2007) 

8. Katara, M., Katz, S.: Architectural Views of Aspects. Aspect-Oriented Software 
Development (AOSD), Boston, Massachusetts 1–10 (2003) 

9. Stein, D., Hanenberg, S., Unland, R.: Expressing Different Conceptual Models of Join 
Point Selections in Aspect-Oriented Design. Aspect-Oriented Software Development 
(AOSD), Bonn, Germany, 15–26 (2006) 

10. Cottenier, T., van den Berg, A., Elrad, T.: Motorola WEAVR: Model Weaving in a Large 
Industrial Context. Aspect-Oriented Software Development (AOSD), Vancouver, Canada 
(2007)  

11. Jacobson, I., Ng, P.-W.: Aspect Oriented Software Development with Use Cases. Addison-
Wesley Professional, Reading (2004) 

12. Douence, R., Fritz, T., Loriant, N., Menaud, J.-M., Segura-Devillechaise, M., Sudholt, M.: 
An Expressive Aspect Language for System Applications with Arachne. Aspect-Oriented 
Software Development (AOSD), Chicago, Illinois, 27–38 (2005) 

13. Markovic, S., Baar, T.: Refactoring OCL Annotated UML Class Diagrams. In: Briand, 
L.C., Williams, C. (eds.) MoDELS 2005. LNCS, vol. 3713, pp. 280–294. Springer, 
Heidelberg (2005) 

14. Zuendorf, A.: Graph Pattern Matching in PROGRES. In: Cuny, J., Engels, G., Ehrig, H., 
Rozenberg, G. (eds.) Graph Grammars and Their Application to Computer Science. LNCS, 
vol. 1073, pp. 454–468. Springer, Heidelberg (1996) 

15. Balogh, A., Varro, D.: Advanced Model Transformation Language Constructs in the 
VIATRA2 Framework. In: ACM Symposium on Applied Computing (Model 
Transformation Track), pp. 1280–1287. ACM Press, Dijon, France (2006) 

16. Taentzer, G.: AGG: A Graph Transformation Environment for Modeling and Validation of 
Software. In: Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003. LNCS, vol. 3062, pp. 
446–453. Springer, Heidelberg (2004) 

17. Clarke, S., Baniassad, E.: Aspect-Oriented Analysis and Design: The Theme Approach. 
Addison-Wesley, Reading (2005) 

18. Araújo, J., Whittle, J., Kim, D.-K.: Modeling and Composing Scenario-Based 
Requirements with Aspects. In: RE. International Conference on Requirements 
Engineering, Kyoto, Japan, pp. 58–67 (2004) 

19. Song, E., Reddy, R., France, R.B., Ray, I., Georg, G., Alexander, R.: Verifiable 
Composition of Access Control and Application Features. In: SACMAT. ACM 
Symposium on Access Control Models and Technologies, Stockholm, Sweden, pp. 120–
129. ACM Press, New York (2005) 

20. Klein, J., Helouet, L., Jézéquel, J.-M.: Semantic-Based Weaving of Scenarios. Aspect-
Oriented Software Development (AOSD), Vancouver, Canada, 27–38 (2006) 

21. Chitchyan, R., Rashid, A., Rayson, P., Waters, R.: Semantics-Based Composition for 
Aspect-Oriented Requirements Engineering. Aspect-Oriented Software Development 
(AOSD), Vancouver, Canada, 36–48 (2007) 



Enhancing UML State Machines with Aspects

Gefei Zhang, Matthias Hölzl, and Alexander Knapp�

Ludwig-Maximilians-Universität München
{gefei.zhang, matthias.hoelzl, alexander.knapp}@pst.ifi.lmu.de

Abstract. Separation of Concerns (SoC) is an important issue to reduce the com-
plexity of software. Recent advances in programming language research show
that Aspect-Oriented Programming (AOP) may be helpful for enhancing the SoC
in software systems: AOP provides a means for describing concerns which are
normally spread throughout the whole program at one location. The arguments
for introducing aspects into programming languages also hold for modeling lan-
guages. In particular, modeling state-crosscutting behavior is insufficiently sup-
ported by UML state machines. This often leads to model elements addressing
the same concern scattered all over the state machine. We present an approach
to aspect-oriented state machines, which show considerably better modularity in
modeling state-crosscutting behavior than standard UML state machines.

1 Introduction

Separation of Concerns (SoC) is an important issue in software engineering. A clear
SoC could improve the modularity of software artefacts, reduce the complexity of soft-
ware systems, and thus make them less error-prone and better maintainable.

Recent advances in programming language research propose the use of Aspect-
Oriented Programming (AOP [11]) to achieve a better SoC in programs. AOP helps in
particular to solve the problem of “scattered code”: code, that would be otherwise scat-
tered all over the program, may be collected together in a new language construct called
aspect. This way, AOP is particularly helpful for separating cross-cutting concerns, i.e.
concerns that are involved in other concerns, like logging or transaction management.

However, not only code may be scattered all over a program, but also model ele-
ments all over a software design model. In particular, the Unified Modeling Language
(UML [16]), the lingua franca in object-oriented software analysis and design, lacks
aspect-like language constructs to address the problem of “scattered model elements”
by centralizing model elements involved in one concern at a dedicated location.

We propose to extend the UML with aspect-oriented language concepts. In particular,
we present a design of aspect-oriented state machines. Aspect-oriented state machines
show considerably better modularity in, among others, the design of state-crosscutting
behavior, such as state synchronization and trace-based behavior.

The remainder of this work is organized as follows: in Sect. 2 we summarize the
syntax and semantics of UML state machines and in Sect. 3 we demonstrate some of
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their weaknesses w.r.t. SoC. In Sect. 4 we present our proposal to aspect-oriented state
machines and show how they may be used to achieve a better SoC by modularizing state
interaction and trace-based behavior. An algorithm for for translating aspects into UML
state machines is presented in Sect. 5. Related work is discussed in Sect. 6. Finally, we
conclude and outline some future work.

2 UML State Machines

A UML state machine provides a behavioral view of its context. Figure 1 shows a state
machine of a process which contains two parallel threads. After creation, the process is
first initialized in the state Init, then the two threads run parallel in the state Running,
until they receive the events astop and bstop while they are in the states A3 and B3,
respectively. In this case each thread waits for the other to receive his stop signal in
waiting states A4 and B4, respectively, before the threads terminate conjointly.

We briefly review the syntax and semantics of UML state machines according to the
UML specification [16] by means of Fig. 1. A UML state machine consists of regions
which contain vertices and transitions between vertices. A vertex is either a state, where
the state machine may dwell in and which may show hierarchically contained regions;
or a pseudo state regulating how transitions are compound in execution. Transitions
are triggered by events and describe, by leaving and entering states, the possible state
changes of the state machine. The events are drawn from an event pool associated with
the state machine, which receives events from its own or from different state machines.
The context of a state machine, a UML classifier, describes the features, in particular,
the attributes, which may be used and manipulated in execution.

A state of a state machine is simple, if it contains no regions (such as Init and all
states contained in Running in Fig. 1); a state is composite, if it contains at least one
region; a composite state is said to be orthogonal if it contains more than one region,
visually separated by dashed lines (such as Running). Each state may show an entry
behavior (like actB2 in B2), an exit behavior (like actA2 in A2), which are executed on
activating and deactivating the state, respectively; a state may also show a do activity
(like in Init) which is executed while the state machine sojourns in this state. Transitions
are triggered by events (a12, a23), show guards (condB), and specify actions to be
executed when a transition is fired (actA23). Completion transitions (transition leaving

A1 A3 A4

B1 B4B3

b3 / actB3

b32

exit / actA2

a12 A2

a32

a23 / actA23

a31

aStop

Running

entry / actB2

b12 B2 b23

[condB][else]

do / init
a12 / defer

Init

bStop

Fig. 1. State machine of a process containing two parallel threads
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Init) are triggered by an implicit completion event emitted when a state completes all its
internal activities. Events may be deferred (as a12 in Init), that is, put back into the event
pool, if they are not to be handled currently but only later on. By executing a transition
its source state is left and its target state entered; transitions, however, may also be
declared to be internal to a state (b3 / actB3), thus skipping the activation-deactivation
scheme. An initial pseudo state, depicted as a filled circle, represents the starting point
for the execution of a region. A final state, depicted as a circle with a filled circle inside,
represents the completion of its containing region; if all regions of a state machine are
completed the state machine terminates. Junction pseudo states, also depicted as filled
circles (see lower region of Running), allow for case distinctions. Transitions to and
from different regions of an orthogonal composite state can be synchronized by fork
and join pseudo states, presented as bars. For simplicity, we omit the other pseudo state
kinds (entry and exit points, shallow and deep history, and choice).

During runtime, a state gets active when entered and inactive when exited as a result
of a transition. The set of currently active states is called the active state configuration.
When a state is active, so is its containing state. The active state configuration is thus a
set of trees starting from the states in the top-level regions down to the innermost active
substates. The execution of a state machine consists in changing its active state config-
uration in dependence of the current active states and a current event dispatched from
the event pool. We call the change from one state configuration to another an execution
step. First, a maximally consistent set of prioritized, enabled compound transitions is
chosen. Transitions are combined into compound transitions by eliminating their link-
ing pseudo states; for junctions this means to combine the guards on a transition path
conjunctively, for forks and joins to form a fan-out and fan-in of transitions. A com-
pound transition is enabled if all of its source states are contained in the active state
configuration, its trigger is matched by the current event, and its guard is true. Two
enabled compound transitions are consistent if they do not share a source state; an en-
abled compound transition takes priority over another enabled compound transition if
its source states are below the source states of the other transition in the active state con-
figuration. For each compound transition in the set, its least common ancestor (LCA)
is determined, i.e. the lowest composite state containing all the compound transition’s
source and target states. The compound transition’s main source state, i.e., the direct
substate of the LCA containing the source states, is deactivated, the transition’s actions
are executed, and its target states are activated.

Given a state machine M , we denote by the sets states(M), transitions(M),
compounds(M) and events(M) the states, transitions, compound transitions and
events of M . Given a state s ∈ states(M), we write compounds(M, s) for the com-
pound transitions leaving s. Given a transition t ∈ states(M) we write trigger (t) for
the event triggering t and guard(t) for the guard of t.

3 Pervasive Modification of State Machines

UML state machines work fine as long as the only form of communication among states
is the activation of the subsequent state via a transition. More often than not, however,
an active state has to know how often some other state has already been active and/or if
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Login
exit / l = inputLevel()

SelectLevel

setLevel

inputAnswer

again

[right]
Right

Wrong

[else]

next

key

ShowKey
next

newLevel

end

ShowQuestion

Fig. 2. State machine of an e-learning system

other states (in other regions) are also active. Unfortunately, behavior that depends on
such information cannot be modeled modularly in UML state machines.

For an example, consider an e-learning system as modeled in Fig. 2: the user first
logs in, selects a level of difficulty, and then proceeds to answering questions of this
level. The system tells him whether his answer is right or not, if it is right, the user may
proceed to the next question; if not, he may choose to try again, to see the key to the
question, or to proceed to the next question. Instead of answering the current question,
the user may also choose to go to another level.

Suppose the selection of a level l > 0 should be allowed only if the user has already
answered minRight questions of level l−1 in a row, otherwise the system should give an
error message. Figure 3 shows how this restriction might be modeled in a standard UML
state machine: a new attribute variable crir is introduced for counting the length of the
current stroke of correct answers (current right in a row), it is incremented in state Right
and reset to 0 once Wrong is active. An array r is introduced to store the maximal length
of crir at each level. Once the user gives a wrong answer, the system has to check if this
record should be updated. In order to know whether the user has selected in SelectLevel
a different level than the current one or just continues with the same level, another new
variable cl stores the current level each time SelectLevel is entered. The transition from
SelectLevel to ShowQuestion is split into two to handle the cases whether the level
selected by the user is selectable or not. Finally, the variable crir has to be reset to 0
when the user has successfully changed to another level. Obviously, it is unsatisfactory

Login ShowQuestion
inputAnswer [right]

again

[else]

do / r[l] == max(r[l], crir);
crir = 0

next

key

ShowKey
next

do / crir ++

newLevel Right

Wrong

ShowError

entry / cl = l
exit / l = inputLevel()

SelectLevel

setLevel [r[l] >= minRight] / if (cl != l) crir = 0

setLevel [else]end

Fig. 3. Modeling the level selection restriction using standard UML
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a12 [inState(B2)] / defer

A1

a32 [inState(B2)] / defer

A3 A4

b12 [inState(A2)] / defer

B1 B4b12 [!inState(A2)]

entry / actB2

B2 b23

b32 [condB && inState(A2)] / defer

A3

b3 / actB3

bStop

[condB && !inState(A2)] b32[!condB]

a32 [!inState(B2)]

a12 [!inState(B2)]

exit / actA2

A2 a23 / actA23 aStop

Running

a31

Fig. 4. Mutual exclusion using standard UML

that the model elements involved in this one feature are scattered all over the state
machine, switching the feature on and off thus is difficult and requires modifications all
over the state machine. The state machine gets rather hard to understand and maintain.

Besides history-based behavior, state synchronization is also difficult to model in
UML state machines. Suppose for our state machine shown in Fig. 1 an additional
mutual exclusion rule that the states A2 and B2 must not be active at the same time:
before any thread entering any of these two states, the process must check if the other
critical state is active; the thread may only proceed if this is not the case, otherwise it
must wait for the other thread to leave the “blocking” state.

Figure 4 extends the state Running of the state machine shown in Fig. 1 with this rule:
The OCL [15] predicate inState is used for checking whether a particular state is active;
every transition leading to A2 and B2 must be guarded by such a predicate in order to
ensure that the A2 and B2 do not become active at the same time. Simultaneously, the
source states of these offending transitions defer the triggering event such that it will be
reconsidered if the activation condition of either A2 or B2 changes. (Note that we have
taken the liberty of adding a guard to the deferring of an event in order to make a peek to
the current event, which is not covered by the UML metamodel. However, this construct
can be replaced by adding an internal transition involving the negated deferring guard.)
Again, it is a tedious and error-prone task to model a simple thread synchronization rule
including no more than two states like this, since invasive modifications to the original
state machine are necessary almost everywhere in it.

In both examples, having to model interaction between several states by the pervasive
usage of sometimes intricate state machine features makes the resulting state machine
rather complex and no longer intuitively understandable, in contrast to what models in
a graphical modeling language are supposed to be.

4 Aspect-Oriented State Machines

Our answer to the problem of scattered model elements in UML state machines is, mo-
tivated by the success of aspect-oriented programming in solving the problem of scat-
tered code, to enhance UML state machines with aspects. We introduce a new language
construct, aspect, to the UML, which contains a pointcut and a piece of advice. The
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SelectLevel

Right
l == level − 1

Wrong
l == level − 1

ShowError

«pointcut»

«var»
level = l

«advice»

1

[0]

«before»

[minRight..*]

0

[else]

[a > 0]

{l > 0}
ShowQuestion

a = #

(a) Restricting level selection

A2

B2

«before»

«pointcut»

«advice»

waiting

(b) Mutual exclusion

Fig. 5. Aspects for a better separation of concerns

pointcut specifies some special point of time in the execution of a UML state machine,
which is called the base state machine. The advice defines some additional or alterna-
tive behavior. An aspect is thus a (graphical) statement expressing that at the special
point of time specified by the pointcut, the behavior defined by the advice should be
performed. The complete behavior of the context of the base state machine is there-
fore given by the composition of the base state machine and the aspect. The process of
composition is called weaving.

4.1 Concrete Syntax and Informal Semantics

We first define a new language construct, superstate, to be used in aspects. A super-
state contains a subset of the states of the base state machine and may be guarded by
constraints.

A pointcut is either a configuration pointcut or a transition pointcut. A configura-
tion pointcut consists of a superstate, stereotyped by �before� or �after�. It specifies,
depending on the stereotype, the point of time just before or just after any state config-
uration that contains all states in this superstate is active. A transition pointcut consists
of two superstates, connected by a transition with a stereotype �before� or �after�.
It specifies, depending on the stereotype, the point of time just before or just after this
transition is fired. In the aspect shown in Fig. 5(a), the transition from SelectLevel to
ShowQuestion is stereotyped �before� and guarded by a constraint l > 0. The pointcut
thus specifies the point of time just before the base state machine is about to change
from an active state configuration, which contains the state SelectLevel, to a new active
state configuration which would contain the state ShowQuestion, where the value of the
variable l is greater than zero.

The behavior to execute at the point of time specified by the pointcut is defined in the
advice. A piece of advice is a UML state machine enhanced with some pre-defined final
states. The variables of the base state machine may be used, the aspect may also define
local variables, in particular trace variables for counting the occurrences of a certain
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sequence of active state configurations in the execution history. The local variables may
also be used in the advice.

In Fig. 5(a), two variables are introduced: a normal variable level which stores the
current value of the variable l each time the advice is executed, and a trace variable a.
The value of a is the number of occurrences (indicated by #) of the sequence specified
by the pattern on the right hand side: it is a sequence that contains at least minRight
([minRight..*]) active state configurations in which Right is active while the variable l
has the value of level− 1, and that does not contain any active state configuration ([0])
where Wrong is active while l has the value of level−1. The terms l == level–1 are added
as constraints to the respective states. The advice in Fig. 5(a) checks whether such a
sequence can be found in the trace ([a > 0]) or not ([else]), and resumes the execution
of the base state machine (final state named 1) or prevents the base state machine from
firing the specified transition by making it stutter at the current state configuration (final
state named 0). As a whole, this aspect implements additively to the base state machine
that changing to level l > 0 is only allowed when the user has already answered l − 1
questions correctly in a row. Note that no more invasive modification to the base state
machine is necessary and that the model elements used are now gathered at a dedicated
location instead of scattered all over the state machine.

Figure 5(b) shows another aspect, which is applied to the state machine given in
Fig. 1 and implements the desired mutual exclusion. Its configuration pointcut contains
only one superstate and specifies the point of time just before (�before�) any state
configuration containing A2 and B2 gets active (this configuration should be avoided
according to the mutual exclusion requirement). The advice does not need any variable,
but simply makes the base state machine stutter (final named waiting). The difference
between 0 and waiting is that returning to the base state machine after 0 the event that
kicked off the aspect is consumed and the base state machine therefore needs explicity
another instance of this event if it should try again, while after waiting the base state
machine does not need such an event but will be waiting to complete the interrupted
transitions as soon as possible, e.g., as soon as the next active state configuration would
not be caught by the pointcut again. Figure 5(b) thus models the logic of mutual ex-
clusion highly modularly and non-invasively, switching on and off this feature is now a
very easy task.

4.2 Resuming from Advice

Note that waiting and 0 are not the only “stuttering” final states that may be used in the
advice. When the base state machine is told to stutter, it needs not only information on
whether it should try to resume the interrupted transition “automatically” or only upon
an explicit event, but also whether it should react to other events or not. For example,
suppose the base state machine shown in Fig. 1 tries to enter the state A2 from A3, but
has to stay in A3 since B2 is active, then what should it do when it now receives an a31
event? Should it proceed to A1 or not?

Therefore, we could distinguish four stuttering strategies:

1. The base state machine tries automatically to resume the interrupted transition with-
out any explicit event and reacts to other events; this is our case waiting.
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2. The base state machine needs an explicit event to make another try of the inter-
rupted transition and reacts to other events; this is our case 0.

3. The base state machine tries automatically to resume the interrupted transition with-
out any explicit event and does not react to other events. We say the base state ma-
chine is in this case “pinned” to the interrupted transition and model this case with
a final state with the name pinned.

4. The base state machine needs an explicit event to make another try of the inter-
rupted transition but does not react to other events.

We currently have no examples that require case 4 and therefore do not include it
in our aspect language. However, both assigning this case a name and extending our
implementation (see Sect. 5) are straightforward so that a simple extension would make
our language to cover this case as well.

We call final states with label 0 or 1 progressing and final states with labels waiting
or pinned inhibiting.

5 Translation of Aspects

The weaving process transforms a state machine and an aspect into a new state machine.
As combining several aspects presents a number of additional challenges we concen-
trate on weaving a single aspect into a state machine. Weaving proceeds in the following
stages which we describe in more detail in the rest of the section.

1. Normalize the state machine to eliminate syntactic variation.
2. Identify the states and transitions which have to be modified.
3. Construct the finite automata that track the relevant history.
4. Insert variables and actions.
5. Insert advice.

Normalization. UML state machines allow a number of notational variations. To sim-
plify the translation process we transform the state machine into an equivalent canoni-
cal state machine which is well-suited for the next stages of the translation process. We
require that the normalization process transform the state machine into a form where
all transitions that can lead to a state configuration in which the pointcut applies are
explicit. Hence the normalization process ensures that all states and transitions which
may potentially be modified by the introduction of the aspect can be determined from
the advice or a variable declaration.

Identification of Relevant States and Transitions. There are two different kinds of
relevant state machine elements: Some elements are necessary for inserting advice. We
call these elements advice-relevant and write arel(M,A) for the set of advice-relevant
elements of state machine M and aspect A. Other elements are relevant for keeping
track of the history of active state configurations; these are called history-relevant. The
set of all history-relevant elements is written as hrel(M,A). The set of elements which
are history-relevant for a single trace variable a is written hrel(M, a). It is, of course,
possible for an element to be both advice-relevant and history-relevant.

The advice-relevant elements can be found from the pointcut specification:
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(1,0) (2,0)
RightRight

Wrong

Wrong

Right

Wrong

Right

Right, Wrong

Fig. 6. Finite automaton for trace variable a

– If the stereotyped element of the pointcut is a state configuration and the stereotype
is �before�, then all simple states in this state configuration and all transitions
with such a state as target are advice-relevant. If the stereotype is �after�, then all
simple states in the state configuration and all transitions with one of these states as
source are advice-relevant.

– If the stereotyped element of the pointcut is a transition, then all the transitions in
the state machine which go directly from the source state of the stereotyped tran-
sition to its target state are advice-relevant; furthermore all simple states contained
in the source state of the stereotyped transition are advice-relevant.

A state is history relevant if and only if it appears on the right hand side of a variable
declaration. Transitions are never history-relevant.

Construction of History Automata. Aspect-oriented state machines can take deci-
sions based on their history of active state configurations. It would obviously be pro-
hibitively expensive to store and analyze the complete history of the state machine in
order to decide which transition to take. Therefore our aspect language is designed
such that the whole relevant history for unbounded executions can be stored in a finite
amount of memory unless the context variables referenced by trace variables in some
aspect take an infinite number of values.

This is possible because a trace pattern for a trace variable a defines a regular lan-
guage over the alphabet hrel(M, a). For example, the definition of the trace variable
a with minRight = 3 in Fig. 5(a) is translated into the non-deterministic finite au-
tomaton shown in Fig. 6. The initial state of this automaton accepts the whole alphabet
hrel(M, a); this represents the fact that we are looking for occurrences of the pattern
anywhere in the history. The automaton for recognizing a sequence of trace patterns
can be obtained by connecting the automata for the individual trace patterns with ε-
transitions.

The rest of this section is rather technical as it describes the construction of the non-
deterministic finite automaton (NFA) for integer trace variables of the form a = #(s)
for some superstate s.

We assume that the states in hrel(M, a) are numbered from 0 to n and write si for
the state with number i. If the constraint on a state s is of the form n1..n2 we call
min(s) := n1 the minimal and max(s) := n2 the maximal number of occurrences of
that state. If the constraint on s is of the form n..∗ we define min(s) := max(s) := n.
in this case we define infinite?(s) = true, otherwise infinite?(s) = false.

To distinguish states of the finite automaton from states of the state machine we
refer to the former as hstates. We define a hstate for each tuple (a0, . . . , an) with
0 ≤ ai ≤ max(si) and write hstate(ao, . . . , an) for this hstate. Furthermore we
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write tuple(H) = (a0, . . . , an) iff H = hstate(ao, . . . , an). For all other tuples
we define hstate(a0, . . . , an) = ⊥. We write H(A) for the set of all hstates, i.e.,
H(A) := hstate[Nn+1] \ {⊥}.

Algorithm 1. Computation of the transitions T
1: H ← H(A)
2: T ← ∅
3: h0 ← hstate(0, . . . , 0)
4: for all i, 0 ≤ i ≤ n do
5: T ← T ∪ {h0

si−→ h0}
6: end for
7: for all h ∈ H do
8: (a0, . . . , an) ← tuple(h)
9: for all k ← (a0, . . . , ai + 1, . . . , an), 0 ≤ i ≤ n do

10: if hstate(k) �= ⊥ then
11: T ← T ∪ {h si−→ hstate(k)}
12: else if infinite?(si) then
13: T ← T ∪ {h si−→ h}
14: else
15: T ← T ∪ {h si−→ ho}
16: end if
17: end for
18: end for

The set of transitions T is generated as described in Algorithm 1. This algorithm
inserts a transition with label si between hstates of the form hstate(a0, . . . , ai, . . . , an)
and hstate(a0, . . . , ai +1, . . . , an); it inserts a self-transition with label si for hstates of
the form hstate(a0, . . . , an) if ai = max(si) and si allows infinitely many repetitions,
otherwise it inserts a transition into the initial hstate h0. By inserting (non-deterministic)
transitions h0

s−→ h0 for all states s ∈ hrel(M, a) we ensure that the automaton keeps
track of all sequences of states in its history.

A hstate hstate(a0, . . . , an) is accepting if min(si) ≤ ai ≤ max(si) for all i with
0 ≤ i ≤ n. To achieve the desired semantics for the aspect-oriented state machine
we execute a transition of the automaton for each run to completion step of the state
machine. By construction the finite automaton enters an accepting state from a non-
accepting state for the n-th time precisely when the state machine is in the correspond-
ing superstate for the n-th time. The construction of the automaton described above
takes into account overlapping patterns, a slight modification of the construction of the
NFA and the functions described in the next section would disallow them.

Depending on the space/time trade-off for the state machine we can either convert
the NFA into a deterministic finite automaton (DFA) or simulate the execution of the
DFA with the NFA. For the sake of concreteness we assume that convert the NFA into
a DFA which we call the history automaton for a, H(a), with hstates states(H(a)),
transitions transitions(H(a)), initial hstate ha

0 (corresponding to the translation of
hstate(0, . . . , 0)), and accepting hstates accepting(H(a)). If h is a hstate of H(a) we
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write H(a)(h, s) to denote the result of executing the transition labeled s starting from
hstate h of the automaton H(a).

Insertion of Variables and Actions. Having defined the history automata for all trace
variables we are now in a position to introduce the necessary modifications for deciding
the applicability of aspects into the context of the base state machine. Let a be a trace
variable. We write vars(a) for the set of context variables in the trace patterns of a. For
example, in Fig. 5(a), vars(a) = {l}. We need to keep track of a separate history for
each value of each variable in vars(a). This is also the case when manually modifying
the state machine, as can be seen in Fig. 3 where an array r[l] is used to store the number
of correct answers for each level.

For each trace variable we therefore introduce the following elements into the context
of the base state machine:

– history : This is a finite function with domain vars(a) × E(a), where E(a) is the
set of environments for vars(a), i.e., the set of all assignments of a value to each
variable in vars(a). The value for each key is a pair 〈H(a), h〉, where h is the current
state of the state machine H(a) (for the values in e). The initial value for history is
the function mapping each value 〈a, e〉 in its domain to 〈H(a), ha

0〉.
– val : This is a finite function with domain vars(a) × E(a) as described above and

range N, evaluating the current value of a in environment e. The default value is a
function mapping each value in its to domain to 0

– updateHistory : This is a function with arguments 〈a, s, e〉, where a and e are as
described above and s is a state of the base state machine. This function updates the
result 〈H(a), h〉 of history(a, e) by executing transition s of H(a) in hstate h, i.e.,
history(a, e) is updated to 〈H(a), H(a)(h, s)〉. If h is not accepting and the result
of this transition is an accepting hstate of H(a), i.e., if h �∈ accepting(H(a)) and
H(a)(h, s) ∈ accepting(H(a)), then val (a, e) is incremented by one.

To keep track of the state machine’s history, it is now sufficient to add an entry action
updateHistory(a, s, e) (where e is the local environment for vars(a)) to every state s
in hrel(M, a) for each trace variable a. To evaluate an expression X in which a occurs
we replace a by val (a, e) (with the current environment e for vars(a)) in X , i.e., we
evaluate X [a/ val(a, e)].

Inserting Advice. The final step in the weaving process is the insertion of the advice
itself. We write init(A) for the initial transition of the advice, final(A, l) for the set of
final transitions of the advice with label l , source(t) for the source state of a transition
t, target(t) for the target state of a transition, and guard(t) for the guard of a transition.
We write source(t) ← s to denote the operation of replacing the source state of transi-
tion t with state s, similar for the target node. The operation copy(A) copies the advice
of an aspect; all states and transitions of the copy are disjoint from the original. We
write inhibited(s) for the set of all compound transitions leading from s to an inhibited
final state.

To simplify the translation algorithm we place the following restrictions on advice:
the advice itself may only contain a single region; for each compound transitions all
final states must either be progressing or inhibiting. The first restriction ensures that
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Algorithm 2. Inserting Advice
1: Told ← transitions(arel(M,A))
2: transitions(M) ← transitions(M) \ Told

3: for all t ∈ Told do
4: A ← copyAdvice(A)
5: source(init(A)) ← source(t); guard(init(A)) ← guard(t)
6: ADD BEHAVIOR FOR INHIBITED FINAL STATES(A)
7: UPDATE TRANSITION TARGETS(A, t)
8: end for
9: transitions(M) ← transitions(M) ∪ transitions(A)

10: states(M) ← states(M) ∪ states(A)

Algorithm 3. Adding behavior for inhibited final states
1: function ADD BEHAVIOR FOR INHIBITED FINAL STATES(A)
2: for all s ∈ states(A) do
3: ew ← ∅; ep ← ∅
4: ∀e ∈ events(A). (gw

e ← false; gp
e ← false)

5: for all t′ ∈ inhibited(s) do
6: g ←

��
inState(s′) ∧ constraints(s′) | s′ ∈ states(arel(M, A)) \ target(t′)

�

7: if t′ ∈ final(A, waiting) then
8: gw

e ← gw
e ∨ (guard(t′) ∧ g); ew ← ew ∪ {event(t′)}

9: else
10: gp

e ← gp
e ∨ (guard(t′) ∧ g); ep ← ep ∪ {event(t′)}

11: end if
12: guard(t′) ← guard(t′) ∧ ¬g
13: end for
14: for all e ∈ ew do
15: Add behavior e[gw

e ]/defer to s
16: end for
17: for all e ∈ ep do
18: Add entry behavior vs

e = false to s
19: Add the following behavior to s:
20: e[gp

e ]/vs
e = true; e[gp

e ∧ vs
e ]/defer

21: ∀e′ ∈ events(A) \ {e}. e′[gp
e ∧ vs

e ]/
22: end for
23: end for
24: end function

Algorithm 4. Updating transition targets
1: function UPDATE TRANSITION TARGETS(A, t)
2: for all t′ ∈ final(A, 1) ∪ final(A, waiting) ∪ final(A, pinned) do
3: target(t′) ← target(t)
4: end for
5: for all t′ ∈ final(A, 0) do
6: target(t′) ← source(t)
7: end for
8: end function
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compound transitions cannot have multiple final states, the second restriction simplifies
the introduction of guards in the weaving process.

Algorithms 2, 3 and 4 describe the process of inserting advice into the state machine
for configuration pointcuts: For each advice-relevant transition t we remove t from the
base state machine, attach the advice to the source state of t and connect the final states
of the advice with appropriate states of the state machine. We also modify the advice
relevant states of the resulting state machine to defer events for advice ending in a final
state with label waiting or pinned and disable the outgoing transitions once the advice
arrives in a pinned state. The algorithm for transition pointcuts is similar.

As an example of the weaving process consider Fig. 4 which is the result of weaving
the mutual exclusion advice in Fig. 5(b) into the base state machine in Fig. 1. The result
of manually extending the e-learning example in Fig. 3, however, differs from the result
of the automatic weaving process, as this process uses a history automaton for the trace
variables instead of explicitly manipulating counters.

6 Related Work

Our idea of dynamic aspects of state machines has been inspired by dynamic aspect-
oriented programming languages such as JAsCo [20] and Object Teams [9]. Such lan-
guages are recognized as useful for separation of concerns (cf. [7]); a recent example of
using control flow based aspects to build powerful debuggers is given in [4]. In partic-
ular, using trace variables to quantify over the trace is reminiscent to the trace aspects
of Arachne [6]. Aspect-oriented modeling, aiming at a better separation of concerns on
the level of software design, is still in its infancy. Most existing work (e.g. [1,17,19])
focuses on modeling aspect-oriented programs rather than making modeling languages
aspect-oriented.

In the realm of modeling languages and state machines in particular, Altisen et al. [2]
propose aspects for Mealy automata. Pointcuts are also defined as automata. In com-
parison, the weaving algorithm of our approach is due to the richer language constructs
of the UML much more elaborate. Thanks to the wider acceptance of the UML, our
approach is more tightly connected to common practice. Mahoney et al. [13] propose
to combine several state machines into one orthogonal composite state and to relate
by textual notations triggering events in different regions so that related transitions can
be fired jointly. This approach can be used to modularize the synchronization of state
machines, although having to declare all events of the wrapping state machine to be
executed before triggering transitions in the base state machine may lead to quite com-
plicated annotations. JPDD [8] is a pointcut language that facilitates the definition of
trace-based pointcuts. In comparison, our approach also allows the modeler to define
state machine synchronization modularly. Moreover, we have also defined a translation
semantics for our aspects including both pointcuts and advice.

Theme/UML [5] models different features in different models (called themes) and
uses UML templates to define common behavior of several themes. It does not contain a
pointcut language, model elements have to be bound to formal parameters explictly by
textual notations (A first step towards using JPDD as the pointcut language is presented
in [10], although there are still compatibility problems between these two approaches).
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The definition of history-based and modular modeling of state machine synchronization
does not seem possible.

7 Conclusions and Future Work

We have defined a syntax and a translation semantics of aspect-oriented state machines.
Using aspects may improve the modularity of UML state machines considerably by
separating state interaction and trace-based behavior from other concerns. Our weaving
algorithm works with a bounded amount of memory in realistic cases, i.e., as long as
the variables used in the constraints of superstates do not take infinite many values.

Both the pointcut language and the advice language may be extended. In particular,
it is expected to be straightforward yet useful to allow the pointcut to contain more than
two superstates and/or to quantify over variable traces (and thus allow data-oriented
aspects as proposed in [18]). It would also be interesting to allow the advice to make
the base state machine not only stutter, but jump into the past. This might be useful
for modeling compensations in long-running transactions in service-oriented systems.
Moreover, in order to allow the application of several aspects to a state machine, a
notation should be designed for defining the order of weaving in case of conflicts; the
implementation described in Sect. 5 should be extended as well.

Another important issue of future work is model validation. We plan first to extend an
existing UML model checker, such as Hugo/RT [12], to validate the weaving product. In
a second step, it would be interesting to investigate techniques of compositional valida-
tion, in order to allow validation of larger models. Finally, extending aspect-orientation
to other UML diagrams and generating aspect-oriented programs from aspect-oriented
models are also part of our future research.
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Abstract. Use cases are commonly used as notation for capturing func-
tional requirements through scenarios. The problem is that there is no
universal notation for use case contents which is capable of accommodat-
ing all the needs of software project participants. Business analysts and
stakeholders need understandability and informality, while for architects
and designers, precision and unambiguity are the most crucial features.
In this paper we propose a metamodel and concrete syntax for three com-
plementary representations of use case scenarios. These representations
present the same information, but put emphasis on different aspects of
it thus accommodating for different readers. This metamodel utilises the
idea of separation of requirements as such from their representations as
well as the idea of clear distinction between description of the system’s
behaviour and of the problem domain.

Keywords: use cases, requirements, scenarios, activity diagrams, inter-
action diagrams.

1 Introduction

In a typical software development project, several roles with sparse background
have to maintain and read the requirements specification. For business people,
requirements need to be understandable. Designers necessitate precision and
unambiguity. Unfortunately, most notations for requirements do not offer both
of these characteristics. Notations that are capable of being handled by machines
for transforming into design are usually hard to read by “ordinary people”.
Natural language notations are human readable, but leave too much space for
interpretation and lack rigour needed by technical people. The ideal notation
should allow for getting as diverse group of people as possible better involved in
the process of eliciting, modelling, communicating and agreeing requirements,
thus improving the quality of the resulting system. This issue has been widely
discussed in the literature (see [1,2,10] for example).

It seems that an ideal notation should be a model – one that is understandable
for the users (diagrammatic or in simple structured language) and precise enough
to be handled by developers or even machines.
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A commonly used notation for requirements in the modelling world are use
cases. Unfortunately, there are numerous problems with use case notation –
mainly with their representations. Use cases and relationships between them,
as defined in UML [11] have quite vague semantics (see [4] for a discussion).
This results in multitude of notations for their contents (see [6] for a survey)
and is source for confusion and misunderstandings (as explained in [15]). Lack
of clear separation of use case scenarios from problem domain description causes
inconsistencies in requirements specifications (see [13,16]).

Thus, in this paper we propose a notation that would unify sparse approaches
to use case representation and allow for comprehension by different participants
in a software project. This notation consists of three separate but complementary
scenario-based representations of use cases. At the basis of the notation lies the
idea of separation of requirements as such from their representations as well
as the idea of clear distinction between description of the behaviour and the
domain vocabulary. In the following sections, concrete and abstract syntax as
well as semantics of the notation are explained.

2 Use Case Scenarios Based on Domain Vocabulary

Before we present the various use case scenario representations, we shall start
with providing a definition of a use case that seems most suitable for our purpose.
From among tens of definitions which can be found in the literature, we shall use
the one that is most representative and does not relate to any concrete notation.
Such a definition of a use case was introduced by Cockburn in [3]. According to
this definition a use case is:

“A collection of possible scenarios between the system under discussion
and external actors, characterized by the goal the primary actor has
toward the system’s declared responsibilities, showing how the primary
actor’s goal might be delivered or might fail.”

Now, we need a definition for a scenario as a use case component. Again, referring
to [3], a scenario is:

“A sequence of interactions happening under certain conditions, to
achieve the primary actor’s goal, and having a particular result with
respect to that goal. The interactions start from the triggering action
and continue until the goal is delivered or abandoned, and the system
completes whatever responsibilities it has with respect to the interac-
tion.”

Above definitions are the basis on which we have designed three complemen-
tary use case scenario representations suitable for people having various roles
in a software project and thus looking at a use case from different points of
view. While designing these representations we took into account two important
issues. First, we had to resolve the problem of precise control flow semantics
for use cases. It can be argued that the semantics of “include” and “extend”
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relationships in UML is disadvantageous ([14], [9]). Thus, we substituted UML
relationships with “invoke” relationship. Its semantics and modified use case
metamodel have been described in details in [16]. In the following section we
summarise briefly this solution as it influences scenario representations intro-
duced in this paper. The second important issue that applies to our approach
is separation of use case scenario representations describing the system’s be-
haviour from the description of problem domain. This allows to eliminate many
inconsistencies from requirements specifications ([16,17]). In-depth research in
above mentioned areas is being carried on as a part of the ReDSeeDS project
(www.redseeds.eu). Below we present some results of this work concerning use
case representations.

2.1 Redefined Use Case and Types of Scenario Sentences

As defined above, use case is a set of scenarios with the same goal. There must
be at least one scenario that reaches the goal (basic scenario). There can be
also any number of alternate scenarios which end either with success or failure
in reaching the goal. Every scenario is a sequence of actions forming a dialogue
between the primary actor and the system. Every such action can be expressed
by a single sentence in a simple SVO grammar 1 (see [5] for an original idea).
In addition to action sentences, we need to introduce two additional sentence
types: condition and control sentences. They are used in a scenario to express
the flow of control between alternative scenarios of the same use case as well as
between scenarios of different use cases (see [8,18]).

Fig. 1. Simple use case model with “invoke” relationships

Introducing control sentences needs prior redefinition of vague control flow
semantics for use cases presented in UML. Figure 1 shows a simple use case model
where one use case invokes two another use cases. In this model the “invoke”
relationship denotes that another use case (actually, one of its scenarios) can be
invoked from within currently performed use case. After performing one of the
final actions in the invoked use case, the flow of control returns to the invoking
use case right after the point of invocation to perform the remaining actions
of the base use case scenario. There are two types of invocation: conditional
and unconditional. A use case is invoked conditionally when explicitly requested
1 A sentence in SVO grammar consists of a subject, a verb and an object. Optionally

it can have a second indirect object.
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Fig. 2. Metamodel for scenario sentences

by an actor or under a certain condition on the system state. A use case is
invoked unconditionally every time the scenario of the base use case containing
appropriate invocation sentence is performed. The type of the invocation, the
name of a use case to be invoked and the exact point of invocation is defined by
a special kind of control sentence in the invoking use case scenario.

Now we will describe the semantics of specific scenario sentences that is com-
mon for all use case representations. Figure 2 shows a fragment of the meta-
model that deals with scenario sentences. There are three main types of sen-
tences that can be used in a scenario: SVOScenarioSentence, ConditionSentence
and ControlSentence. All these sentences are subtypes of an abstract Scenario-
Sentence which has a sequence number that defines the sentences position in
the scenario. SVOScenarioSentence describes a single scenario step (an action)
in the form of a sentence in the SVO grammar – it derives the whole syntax
from SVOSentence described in details in the following section. A scenario step
represented by this sentence can be performed by an actor or by the system.

As every action can be performed under certain condition, we need to intro-
duce ConditionSentence which is a special kind of ScenarioSentence that controls
the flow of scenario execution. ConditionSentence is a point of conditional con-
trol flow: the following scenario step can be executed only when the condition
expressed by the sentence is met, otherwise a sentence from alternative scenario
is executed.

Another type of a scenario sentence we need is a ControlSentence. It is a
type of ScenarioSentence which controls the flow of scenario execution in sit-
uations when the control enters or leaves a use case. This abstract class is a
superclass for concrete classes: PreconditionSentence, PostconditionSentence and
InvocationSentence. PreconditionSentence is an initial sentence of every use case
scenario indicating where the flow of control of every use case scenario starts.
There are two types of PreconditionSentences: insert and request defined in Inclu-
sionType enumeration. PreconditionSentence of type request is always performed
when the actor triggers a use case directly or requests invoking a use case (see
InvocationSentence) from another use case scenario through initial actor action
(first SVOScenarioSentence in the scenario). When a use case is invoked by insert-
ing its scenario into the flow of invoking use case, the initial action is omitted. In
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this case PreconditionSentence of type insert is performed. PreconditionSentence
may contain an associated condition which must be fulfilled before executing the
scenario.

PostconditionSentence is a final sentence of every scenario. It indicates if the
goal of a use case has been reached or not.

InvocationSentence denotes the invocation of another use case scenario from
within the currently performed use case scenario. There are two types of Invo-
cationSentence: insert and request. Insert means that the system invokes another
use case by executing its scenario sentences every time the flow of control reaches
the point of invocation in invoking use case scenario. Request means that the
actor or the system explicitly requests invoking another use case – it depends ei-
ther on the actor’s decision or system state (a certain condition is met) whether
scenario sentences of invoked use case will be executed or not. After performing
all scenario steps of the invoked use case, the flow of execution returns to the in-
voking use case scenario to execute the remaining sentences. InvocationSentences
are related to appropriate PreconditionSentences in invoked use case’s scenario.

2.2 Sentences in SVO Grammar with Separated Domain
Vocabulary

Sentences in the SVO grammar, as mentioned above, are used in scenarios to ex-
press actions performed by the actor or by the system. Experience shows that this
simple grammar is sufficient to express interactions in a scenario, eg. “Customer
submits sign-up for exercises” or “System signs up customer for exercises”. This
grammar combines informality with necessary precision (see [15]). The biggest
strength of this grammar, is that SVO sentences only allow for describing the
behaviour – no interleaving of domain element definitions are allowed. Such a
separation makes requirements specifications unambiguous and consistent.

Considering the above, we need means for creating a separate specification of
the domain and the way to link notions used in sentences with their definitions
in the domain vocabulary. This issue has been resolved in the Requirements
Specification Language (RSL) which has been developed recently as a part of
the ReDSeeDS project (see [7]). Below we will explain how the separation is
done by presenting a simplified metamodel.

A domain element from the domain vocabulary is usually a noun along with
its definition in the context of the problem domain. A noun can be preceded by
a modifier which can change the meaning of the noun, e.g. “registered user”. In
addition to nouns, the domain vocabulary can also contain verbs. Verbs do not
have their own definitions - they are related to nouns as their meaning depends
on the context of a noun. Verbs are treated as behavioural features of related
nouns. For example, “choose exercise” has a different meaning than “choose time
from time schedule”.

In order to use such constructs in SVO sentences, we introduced the concept
of phrases. Figure 3 shows an SVOSentence composed of one Subject and one
Predicate. These two classes are kind of hyperlinks that can be embedded in
SVOSentences linking it with phrases which are part of domain specification.
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Fig. 3. The structure of SVOSentences

Phrases are building blocks of SVOSentence and depending on the type, they
are composed of nouns (in the role of objects), modifiers, verbs and prepositions
(see Figure 4 for phrases metamodel).

Every Phrase consists of at least one noun, optionally preceded by a mod-
ifier. Phrases occurs in SVOSentences in the role of ‘subject’s. In the role of a
‘verbWithObjects’ there can be used a ComplexVerbPhrase or a SimpleVerbPhrase.
SimpleVerbPhrase extends Phrase by adding a verb which precedes the noun (with
an optional modifier). This makes it possible to express constructs like “shows
registered customers”. ComplexVerbPhrase contains a preposition which links the
SimpleVerbPhrase pointed by the phrase with a contained noun (again, with an
optional modifier). This type of phrase can express constructs like “adds regis-
tered customers to customer list”, where “registered customer” is a direct objects
and “customer list” is an indirect object.

All phrases that refer to the same noun are grouped within a domain element,
where the noun is the element’s name. Every phrase grouped in a domain element
has its own definition. Elements together with their relationships form the do-
main specification, which should be partially created during the problem domain
analysis. While writing scenarios, the writer should be able to browse through
the domain specification to search appropriate domain elements and their phrases
and insert them directly into scenario sentences. The writer should also be able to
add new elements to the domain specification as needed. Such an approach signif-
icantly improves the quality of the final requirements specification.

2.3 Introducing Complementary Scenarios Representations

Now, as we have precisely defined use case scenarios and all necessary types of
scenario sentences, we can introduce complementary representations of use case
scenarios:

Fig. 4. Phrases metamodel



550 M. Śmia�lek et al.

– constrained language representation,
– activity representation,
– interaction representation.

Each of these representations is capable of expressing exactly the same sce-
narios but it puts emphasis on some aspects of interactions while suppressing
some others, thus making it usable for diverse groups of people having different
roles in the software project. Due to the precise metamodel, every representation
is directly transformable one into another.

The constrained language representation is a purely textual representation,
where scenarios are written as sequences of numbered sentences in the SVO
grammar, interlaced with condition and control sentences. A single scenario rep-
resents a single story without alternative paths. This representation is most read-
able for “ordinary people” like users or stakeholders who are usually reluctant to
any technical notation. Some people, usually analysts, prefer precise structure
for use case scenarios in a graphical form. Activity representation shows all sce-
narios of a single use case (main path and all alternative paths) as one activity
diagram. This precisely reflects the flow of control in a use case as a single unit
of functional requirement. Interaction representation presents a single scenario
as a sequence of messages send between the system, the actors and other use
cases in the form of a sequence diagram. This representation clearly reflects tem-
poral interaction of the actors with the system as well as actions performed by
the system in response to the actors’ interaction. It seems to be most suitable
for designers as it prepares them for transformation into design level interaction
diagrams.

Fig. 5. Three complementary representations of use case scenarios

The metamodel in Figure 5 shows metaclasses representing the three intro-
duced representations of use cases. UseCase derives from the Requirement meta-
class, which can have any number of RequirementRepresentations (abstract meta-
class). Such a separation of requirements and their representations gives us the
possibility of representing requirements in different forms depending on the cur-
rent needs. For example, draft requirements can be represented with a natural
language description while detailed requirements can be represented in more
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Fig. 6. Example of concrete syntax for all complementary representations of the same
scenario: a) constrained language b) interaction c) activity

formal way, e.g. a constrained language description with relation to the domain
vocabulary. Representations of a use case are concrete subclasses of Requirement-
Representation and they subset representations pointed to from a Requirement.

Figure 6 shows examples of concrete syntax for these three representations.
Figure 6a presents one of scenarios of a use case in constrained language. In
Figure 6b, the interaction representation of the same scenario is shown. We
can see that all sentences from the constrained language scenario have their
equivalents in the interaction scenario in the form of messages between lifelines.
The activity scenario representation in Figure 6c shows all scenarios of the use
case in one diagram. Scenario sentences are presented as activity nodes or edges
(in case of condition sentences). For comparison of concrete syntax for particular
scenario sentence types for all three representations please refer to Table 1.

Figure 7 shows details of SVO sentence’s subjects and predicates. In constrained
language representation, both subject and predicate, while using an appropriate
tool, could be shown as hyperlinks leading to their descriptions in the domain vo-
cabulary. In activity representation predicate is delineated as an activity action’s
name, while subject is represented as an activity partition – subject name is placed
in parenthesis above the action name. In interaction representation subject of a
sentence is depicted as a lifeline (see Customer’s and System’s lifeline in the exam-
ple). Predicate of every SVO sentence, in turn, is depicted as a message with its
name above. It starts from the subject’s lifeline and goes either to another subject’s
lifeline or comes back to the same lifeline it starts from.

Condition and control scenario sentences have also different concrete syntax
in different representations (see Table 1). A condition sentence in textual repre-
sentation is a text expressing the condition preceded with “⇒cond:” prefix. In
activity and interaction representation it is shown as a text in square brackets
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Fig. 7. Concrete syntax for SVO subject/predicate

Table 1. Examples of concrete syntax for particular scenario sentences in different use
case representations

Sentence Textual Activity Interaction
SVO System shows

time schedule

condition ⇒cond: exercises
available

invoke/insert ⇒invoke/insert:
Change location

invoke/request ⇒invoke/request:
Change location

precondition precondition:
Customer must to
be logged in

postcondition final: success
postcondition:
Customer is
registered for
choosen exercises

attached to a control flow edge in activity diagram or to a message in sequence
diagram. Sentences of invoke type are presented in textual representation as in-
voking use case name preceded with a prefix denoting the type of invocation:
“⇒invoke/request:” or “⇒invoke/insert:”. In activity representation, this type
of sentences is depicted as an action node with the name of invoking use case
inside and an appropriate stereotype: “invoke/request” or “invoke/insert”. In
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Fig. 8. Constrained language scenario representation

case of insertion, the incoming control edge comes from preceding action and
the outgoing control edge goes to the action representing consecutive scenario
sentence. In case of request, the outgoing control edge goes back to the action
the incoming edge came from. In interaction representation, both invoke sen-
tences are presented as “create” message from the actor’s or system’s lifeline
to the invoking use case’s lifeline. The type of invocation is shown as the mes-
sage’s text. Precondition and postcondition sentences are presented in textual
representation as a text with “precondition:” or “postcondition:” prefix. In two
another representations, sentences of these types are shown as constraints at-
tached to start/final node in case of activity or lost/found message in case of
interaction representation. In all representations, a postcondition sentence con-
tains also “success” or “failure” text, indicating whether the goal of a use case
has been reached or not.

3 Metamodel of Complementary Scenarios
Representations

In the following sections we introduce the metamodel defining the abstract syn-
tax for three complementary representations of a use case scenarios. This meta-
model is expressed by the means of MOF ([12]). It refers to elements defined in
UML 2.0 Superstructure ([11]), mainly from BasicActivities and BasicInteractions
packages. Due to the scope of this paper, we present only the most essential con-
structs from our metamodel. Some high-level elements of this metamodel have
already been introduced in previous sections. For more details, please refer to
the language specification ([7]).

3.1 Constrained Language Scenario Representation

Constrained language scenario representation can be treated as a basis represen-
tation. Its syntax, both concrete and abstract, is the least complex in compar-
ison with two remaining representations which extend the basic syntax mainly
by specialising from UML elements.

As shown in Figure 8, ConstrainedLanguageScenario is composed of Scenario-
Sentences as its scenarioSteps. ScenarioSentence is an abstract metaclass that
defines seqNumber which is an order number of a sentence in a scenario. This
general metaclass is a base for subclasses representing scenario sentences of spe-
cific types like SVOScenarioSentence, ConditionSentence and ControlSentence. The
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abstract syntax as well as the semantics of these metaclasses has been described
in section 2.1. Examples of the concrete syntax for metaclasses forming con-
strained language representation as well as other representations are shown in
Figure 6 and in Table 1.

3.2 Activity Scenario Representation

Activity scenario representation utilises UML activity diagrams to present use
case scenarios. In this way, it allows for showing all possible scenario paths
of a single use case in one picture. In order to utilise activity diagrams for
this purpose, elements of the metamodel for this representation specialise from
appropriate UML elements defined in BasicActivities and IntermediateActivities
packages (see [11]).

Fig. 9. Activity scenario representation

ActivityScenario extends Activity and it can contain three types of scenario
sentences. Metaclasses representing these sentences combine syntax and seman-
tics derived from sentences metaclasses from constrained language representation
and from appropriate UML metaclasses (Figure 9).

An ActivitySVOScenarioSentence represents a single scenario action in the
form of ActivityNode which it derives from. It means that these actions can
have incoming and outgoing ControlFlows showing possible execution sequences.
ActivitySVOScenarioSentence also derives from SVOScenarioSentence what means
that the action it represents is described by SVO sentence (see Figure 10).
ActivitySVOScenarioSentence redefines subject and verbWithObjects derived from
SVOSentence with ActivitySubject and ActivityPredicate respectively. Redefined
ActivitySubject derives from UML’s ActivityPartition which is a kind of activity
group for identifying actions that have some characteristic in common. In case
of scenarios, it identifies whether an action is performed by an actor or by the
system. In the diagram, subject is represented as a text in parentheses, placed
inside action above its name (see Figure 7).

An ActivityControlSentence represents ControlSentence in ActivityScenario in
the form of ActivityNode which is its superclass. It has three concrete sub-
classes: ActivityPreconditionSentence, ActivityPostconditionSentence and Activity-
InvocationSentence. Each of these three subclasses corresponds to the appropriate
ControlSentences subclass.
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Fig. 10. Realisation of Subject and Predicate in SVO sentence in activity representa-
tion

An ActivityPreconditionSentence shows the starting point of a scenario on an
activity diagram. ActivityPreconditionSentence can have the precondition of a sce-
nario attached as a constraint. It has semantics similar to PreconditionSentence.
Additionally it has the semantics of UMLs InitialNode.

The end point of a scenario on activity diagram is represented by an Activity-
PostconditionSentence. It shows, if a scenario ends with success or failure. It can
also have the postcondition of a scenario attached as a constraint. It has seman-
tics similar to PostconditionSentence and additionally it derives the semantics
from UML’s FinalNode.

In activity representation, points where another use cases scenarios are in-
voked are shown as ActivityInvocationSentence. ActivityInvocationSentence is a
subtype of ActivityControlSentence and InvocationSentence. In addition to that,
it indirectly specialises from ActivityNode which makes it possible to be presented
on activity diagrams.

3.3 Interaction Scenario Representation

Interaction representation of use case scenarios aims at emphasising the temporal
sequence of interaction messages exchanged between an actor and the system
as described in section 2.3. To achieve this, interaction representation utilises
UML’s sequence diagrams to represent scenarios. This means that elements of
the metamodel for this representation specialise from appropriate UML elements
defined in BasicInteractions packages (see [11]).

Figure 11 presents a fragment of the metamodel, handling InteractionSVO-
ScenarioSentence. It derives from SVOScenarioSentence and is composed of
SubjectLifeline and PredicateMessage. Both derive from Subject and Predicate
respectively and redefine subject and verbWithObjects. Realisation of scenario
sentences is based on UML’s Interaction model. Interaction has a set of Messages
connected to Lifelines by MessagesEnds (see Figure 12). Every message is depicted
as an arrow pointing from one lifeline to another or to the same lifeline.
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Fig. 11. Interaction SVO Scenario Sentence

Fig. 12. Realisation of Predicate in interaction representation

Subject of InteractionSVOScenarioSentence acts as a lifeline in a sequence di-
agram. SubjectLifeline derives from UML’s interaction lifeline. This metaclass is
abstract and it is the base class for two concrete subclasses: ActorLifeline and
SystemElementLifeline. The first metaclass represents subjects of sentences per-
formed by use case’s Actor. The latter, corresponds to subjects of sentences
performed by SystemElement. Both are kind of DomainElement (see Figure 13
for more details).

Predicate of InteractionSVOScenarioSentence acts as a message. It indirectly de-
rives from Interaction’s Message. Predicate message can be connected to System-
ElementLifeline or actor’s lifeline (through respective MessagesEnds). As it is
shown in Figure 12, Predicate has sendEvent and receiveEvent redefined with
SystemElementMessageEnd and ActorMessageEnd. Those two message ends are
covered by ActorLifeline and SystemLifeline.
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Fig. 13. Realisation of SVO Subject in interaction representation

4 Conclusions and Future Work

Presented notations for use case scenarios as part of the requirements specifi-
cation language, has already been validated by students during software engi-
neering courses at the Carlos III University of Madrid and Warsaw University of
Technology. The results of case studies prepared by students showed that pro-
posed approach makes capturing and specifying of system requirements easier.
Students had no problems with understanding and discussing the resulting mod-
els. Created requirements specifications appear to be much more consistent and
precise than specifications written in natural language. They also appear to be a
good basis for further development process. The next step to prove usability of
the language is validation in real-life projects by the industrial partners involved
in the ReDSeeDS project. This validation is currently in progress.

Full utilisation of capabilities of proposed language calls for a tool support. A
tool supporting a simplified concept behind the RSL was already developed (see
[16]). Development of a tool covering the whole RSL language is in the scope of
the ReDSeeDS project.
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15. Śmia�lek, M.: Accommodating informality with necessary precision in use case sce-
narios. Journal of Object Technology 4(6), 59–67 (2005)
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Abstract. Time and timing features are an important aspect of mod-
ern electronic systems, often of embedded nature. We argue here that in
early design phases, time is often of logical (rather than physical) nature,
even possibly multiform. The compilation/synthesis of heterogeneous ap-
plications onto architecture platforms then largely amounts to adjusting
the former logical time(s) demands onto the latter physical time abili-
ties. Many distributed scheduling techniques pertain to this approach of
“time refinement”.

We provide extensive Time and Allocation metamodels that open the
possibility to cast this approach in a Model-Driven Engineering light.
We give a UML representation of these concepts through two subpro-
files, parts of the foundations of the forthcoming OMG UML Profile for
Modeling and Analysis of Real-Time and Embedded systems (MARTE).
Time modeling also allows for a precise description of time-related enti-
ties and their associated timed properties.

Keywords: UML profile, real-time embedded.

1 Introduction

Modeling of Time should be a central concern in Model-Driven Engineering for
Real-Time Embedded systems. Nevertheless, (too?) many modeling frameworks
consider Time annotations as to be considered in timing/schedulability/perfor-
mance, and accordingly build uninterpreted stereotypes and label locations with
insightful names only for the future analysis tool (and no meaning at all for the
time augmented profile). Given that the default operational semantics of the
UML is inherently untimed, and rightfully so since there is no Time information
in the ground metamodel, one can reach the situation where the same model can
be understood differently depending on whether it is considered from the UML
causality model or the intended timed analysis viewpoint. Our primary goal here
is to lay the foundation for a Time model which could be deeply embedded in
UML as a profile allowing the subsequent clean and precise definition of a timed
causality model enforcing timed operational semantics of events and actions.

Following some works on dedicated Models of Computation and Communica-
tion (MoCCs) for real-time embedded systems [1,2,3], we view Time in a very
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broad sense. It can be physical, and considered as continuous or discretized, but
it can also be logical, and related to user-defined clocks. For instance, durations
could be counted in terms of numbers of execution steps, or clock cycles on a
processor or even more abstract time bases, without a strong relation to the
actual physical duration (which may not be known at design time, or fluctuate,
or be a parameter that allows the same model to be instantiated under differ-
ent contexts and speeds). With modern embedded designs where, for low-power
reasons, the actual processor clock can be shut down and altered at times, such
usage of logical time in the application design will certainly become customary.
In our approach, time can even be multiform, allowing different time threads to
progress in a non-uniform fashion.

This approach looks certainly non-standard, but is getting increasing inter-
est from a number of directions. A mostly untimed concurrent application can
be considered as comprising several unrelated (or loosely coupled) time threads
(thereafter called “clocks”, not to be confused with the physical measurement
device which we will never consider). The process of allocating the various opera-
tions/functions/actions of such a concurrent model onto an embedded execution
platform comprises aspects of spatial distribution and temporal scheduling. This
is accomplished by resolving the mutual sets of timing constraints imposed by
the designer of the time scales of the application, the target architecture, and
the real-time requirements to be met. We call the approach one of Time refine-
ment.

A number of existing transformation techniques can be cast in this framework.
Nested loop scheduling and parallelization [4,5] in high-performance comput-
ing, software pipe-lining, SoC synthesis phases from so-called transactional level
(TLM) down to cycle-accurate RTL level, to mention a few. In all cases, the pur-
pose is to progressively refine the temporal structure, which starts with a number
of degrees of freedom, to attain a fully scheduled and precisely cycle-allocated
version, with predictable timing. In that sense our model allows, and it is in fact
its primary aim, to describe formal clock relations in a simple mathematical way.

We provide a UML model for Time in its different guises, physical/logical,
dense/discrete, single/multiple, and some useful basic operators and relations to
combine timed events or clocks. From this set of primitives, we hope to build
explicit representation of MoCCs, and to provide a Timed causality model to
endow the timed models with a timed semantics, according to the one that would
be considered by analysis tools. When the relation are simple enough (periodic
or regular), the system of contraints imposed by these relations can be solved,
and the schedule itself becomes an explicit modeling element, traceable to the
designer. In other, more complex cases, the constraints embody a given schedul-
ing policy, which can be analyzed with corresponding schedulability analysis
techniques when applicable.

After describing some existing time and allocation models (Section 2), Sec-
tion 3 introduces our contribution, the MARTE1 subprofiles for time and allo-
cation. Section 4 briefly illustrates their use.

1 a preliminary version is available at www.promarte.org
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2 Existing Time and Allocation Models

2.1 Time Modeling

This subsection focuses on time models and time-related concepts in use in the
UML and some of its profiles.

UML. In UML [6] Time is seldom part of the behavioral modeling, which
is essentially untimed (by default, events are handled in the same order as
they arrive in event handlers). UML describes two kinds of behaviors [7]: the
intra-object behavior—the behavior occurring within structural entities—and
the inter-object behavior, which deals with how structural entities communicate
with each other. The CommonBehaviors package defines the relationship between
structure and behavior and the general properties of the behavior concept. A
subpackage called SimpleTime adds metaclasses to represent time and duration,
as well as actions to observe the passing of time. This is a very simple time model,
not taking account of problems induced by distribution or by clock imperfections.
In particular the UML causality model, which prescribes the dynamic evaluation
mechanisms, does never refer to time (stamps). Instead, the UML specification
document explicitly states that “It is assumed that applications for which such
characteristics are relevant will use a more sophisticated model of time provided
by an appropriate profile”. Our contribution can be seen as providing the means
for building such sophisticated time models.

SPT. The UML Profile for Schedulability, Performance, and Time (SPT) [8]
aimed at filling the lacks of UML 1.4 in some key areas that are of particular
concern to real-time system designers and developers. SPT introduces a quantifi-
able notion of time and resources. It annotates model elements with quantitative
information related to time, information used for timeliness, performance, and
schedulability analyses.

SPT only considers (chrono)metric time, which makes implicit reference to
physical time. It provides time-related concepts: concepts of instant and dura-
tion, concepts for modeling events in time and time-related stimuli. SPT also
addresses modeling of timing mechanisms (clocks, timers), and timing services.
SPT, which relies on UML 1.4, had to be aligned with UML 2.1. This is one of
the objectives of the MARTE profile, presented in Section 3.

Non OMG Profiles. Several “unofficial” UML profiles are also considering
time modeling. We mention a few, developed for different purposes, as work
related to ours.

EAST-EEA is an ITEA project on Embedded Electronic Architecture [9]. It
provides a development process and automotive-specific constructs for the design
of embedded electronic applications. Temporal aspects in EAST are handled
by requirement entities. The concepts of Triggers, Period, Events, End to End
Delay, physical Unit, Timing restriction, can be applied to any behavioral EAST
elements. It is compliant with UML2.0, the intent is to deliver a UML2 profile.
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The UML profile Omega-RT [10] focuses on analysis and verification of time
and scheduling related properties. It is a refinement of the SPT profile. The
profile is based on a specific concept of event making it easy to express duration
constraints between occurrences of events. The concept of observer, which is a
stereotype of state machine, is a convenient way for expressing complex time
constraints. It would have to be aligned with UML2.0.

Summary. The abovementioned profiles introduce relationships between Time
and Events or Actions. They annotate the UML model with quantitative infor-
mation about time. None consider logical and multiform time.

2.2 Allocation Models

These are concerned with the mapping of application elements onto architectural
platform resources and services. The following frameworks are currently untimed.
It is in fact our main goal that a Time Model can be used to select and optimize
such mapping according to the timing demands of both sides (and possibly
additional real-time requirements).

UML Deployments. UML deployments consist in assigning concrete software
elements of the physical world (artifacts) to nodes. Nodes can represent either
hardware devices or software execution environments. Artifacts are physical piece
of information—a file or a database entry—and model elements are stored in
resources specified by artifacts. The MARTE allocation mechanism is comple-
mentary to the UML deployment mechanism, the differences are described in
section 3.2.

SysML Allocation. SysML[11] provides a mechanism to represent, at an ab-
stract level, cross-associations among model elements with the broadest meaning.
A SysML allocation is expected to be the precursor of more concrete relation-
ships. It differentiates three of the many possible and not exclusive categories:
behavior, flow and structure allocations. Behavior allocations separate the func-
tions from the structure; they provide a way to allocate a behavior to a behavioral
feature. Flow allocations have many usages; they include allocations of activity
transitions (SysML flows) to connectors of structured activities (SysML blocks).
Structure allocations acknowledge the needs for a mapping relation of logical
parts to more physical ones. The MARTE allocation is inspired from the SysML
allocation and the differences are described in section 3.2. One reason for this
choice is that we want to be able to define, in the most convenient way, how
various durations and clock streams are connected in the course of the alloca-
tion. This can easily fit some of SysML constraints/parametrics and requirements
modeling features, which were originally used to model physical constraints or
uninterpreted requirement engineering information respectively.

2.3 Timed Allocation Models

We believe that suitable models for real-time and embedded systems design and
analysis should support both time and allocation. We give here a brief insight
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of the Society of Automotive Engineer(SAE)’s Architecture Analysis & Design
Language(AADL) standard [12].

The temporal semantics of AADL concepts is defined using ”hybrid automata”.
These automata are hierarchical finite state machines with real-valued variables
that denote the time. Temporal constraints, expressed as state invariants and
guards over transitions, define when the discrete transitions occur. Concurrent
executions are modeled using threads managed by a scheduler. The dispatch pro-
tocol (periodic, aperiodic, sporadic and background) determines when an active
thread executes its computation. AADL supports multiform time models. How-
ever, it lacks model elements to describe the application itself, independently of
the resources. UML activities allow for a description of the application, actions
executed sequentially or concurrently, without knowing, at first, whether actions
are executed by a periodic thread or a subprogram. This important information
is brought by an orthogonal process, the allocation. After several iterations, anal-
ysis, the threads are eventually deployed (or bound) to the execution platform.

AADL offers a binding mechanism to assign software components (data,
thread, process, etc.) to execution platform components (memory, processor,
buses, etc.). Each software component can define several possible bindings and
properties may have different values depending on the actual binding. This bind-
ing mechanism encompasses both the UML deployment and the MARTE allo-
cation, while sometimes it is useful to separate the two concepts.

3 MARTE

MARTE is a response to the OMG RFP to provide a UML profile for real-time
and embedded systems [13]. MARTE is a successor of SPT, aligned with UML 2,
and with a wider scope. MARTE introduces a number of new concepts, including
time and allocation concepts, which are central to this paper.

3.1 MARTE Time Model

Time in SPT is a metric time with implicit reference to physical time. As a
successor of SPT, MARTE supports this model of time. However, MARTE goes
beyond this quantitative model of time and adopts more general time models
suitable for system design. In MARTE, Time can be physical, and considered
as dense or discretized, but it can also be logical, and related to user-defined
clocks. Time may even be multiform, allowing different times to progress in a
non-uniform fashion, and possibly independently to any (direct) reference to
physical time.

Concept of time structure. Figure 1 shows the main concepts introduced
in MARTE to model time. This is a conceptual view, or in the UML profile
terminology, a domain view. The corresponding UML representations will be
presented later. The building element in a time structure is the TimeBase. A
time base is a totally ordered set of instants. A set of instants can be discrete or
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Fig. 1. Time structure (Domain view)

dense. The linear vision of time represented by a single time base is not sufficient
for most of the applications, especially in the case of multithreaded or distributed
applications. Multiple time bases are then used. A MultipleTimeBase consists of
one or many time bases. A time structure contains a tree of multiple time bases.

Time bases are a priori independent. They become dependent when instants
from different time bases are linked by relationships (coincidence or precedence).
The abstract class TimeInstantRelation in Figure 1 has CoincidenceRelation and
PrecedenceRelation as concrete subclasses. Instead of imposing local dependencies
between instants, dependencies can be directly imposed between time bases. A
TimeBaseRelation (or more precisely one of its concrete subclasses) specifies many
(possibly an infinity of) individual time instant relations. This will be illustrated
later on some time base relations. TimeBaseRelation and TimeInstantRelation have
a common generalization: the abstract class TimeStructureRelation. As a result of
adding time structure relations to multiple time bases, time bases are no longer
independent and the instants are partially ordered. This partial ordering of in-
stants characterizes the time structure of the application.

This model of time is sufficient to check the logical correctness of the appli-
cation. Quantitative information, attached to the instants, can be added to this
structure when quantitative analyses become necessary.

Clock. In real world technical systems, special devices, called clocks, are used
to measure the progress of physical time. In MARTE, we adopt a more general
point of view: a clock is a model giving access to the time structure. Time may be
logical or physical or both. MARTE qualifies a clock refering to physical time as a
chronometric clock, emphasizing on the quantitative information attached to this
model. A Clock makes reference to a TimeBase. Clocks and time structures have
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mathematical definitions introduced below. This formal modeling is transparent
to the user of the profile.

The mathematical model for a clock is a 5-tuple (I, �,D, λ, u) where I is a
set of instants, � is an order relation on I, D is a set of labels, λ : I → D is a
labeling function, u is a symbol, standing for a unit. For a chronometric clock,
the unit can be the SI time unit s (second) or one of its derived units (ms, us. . . ).
The usual unit for logical clocks is tick, but user-defined units like clockCycle,
executionStep . . . may be chosen as well. To address multiform time, it is even
possible to consider other physical units like angle degrees (this is illustrated
in an application of our time model to an automotive application [14]). Since a
clock refers to a TimeBase, (I,≺) is an ordered set.

A Time Structure is a 4-tuple (C,R,D, λ) where C is a set of clocks, R is a
relation on

⋃
a,b∈C,a�=b (Ia × Ib), D is a set of labels, λ : IC → D is a labeling

function. IC is the set of the instants of a time structure. IC is not simply the
union of the sets of instants of all the clocks; it is the quotient of this set by the
coincidence relation induced by the time structure relations represented by R.

Time-related concepts. Events and behaviors can be directly bound to time.
The occurrences of a (timed) event refer to points of time (instants). The exe-
cutions of a (timed) behavior refer to points of time (start and finish instants)
or to segments of time (duration of the execution). In MARTE, Instant and Du-
ration are two distinct concepts, specializations of the abstract concept of Time.
TimedEvent (TimedBehavior, resp.) is a concept representing an event (a behavior,
resp.) explicitly bound to time through a clock. In this way, time is not a mere
annotation: it changes the semantics of the timed model elements.

MARTE Time profile. The time structure presented above constitutes the
semantic domain of our time model. The UML view is defined in the “MARTE
Time profile”. This profile introduces a limited number of powerful stereotypes.
We have striven to avoid the multiplication of too specialized stereotypes. Thanks
to the sound semantic grounds of our styereotypes, modeling environments may
propose patterns for more specific uses.

The main sterotypes are presented in figures 2 to 4. ClockType is a stereotype of
the UML Class. Its properties specifies the kind (chronometric or logical) of clock,
the nature (dense or discrete) of the represented time, a set of clock properties
(e.g., resolution, maximal value. . . ), and a set of accepted time units. Clock
is a sterotype of InstanceSpecification. An OCL rule imposes to apply the Clock
stereotype only to instance specifications of a class stereotyped by ClockType.
The unit of the clock is given when the stereotype is applied. Unit is defined in
the Non Fonctional Property modeling (NFPs) subprofile of MARTE, it extends
EnumerationLiteral. It is very convenient since a unit can be used like any user-
defined enumeration literal, and conversion factors between units can be specified
(e.g., 1ms = 10−3s). TimedElement is an abstract stereotype with no defined
metaclass. It stands for model elements which reference clocks. All other timed
stereotypes specialize TimedElement.
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«stereotype»

TimedElement
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UML::Classes::Kernel::

InstanceSpecification

«stereotype»
Clock

«stereotype»

NFPs::Unit

«stereotype»
TimedDomain
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UML::Classes::Kernel::
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on 1..*
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0..1
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1

«metaclass»
UML::Classes::Kernel::

EnumerationLiteral

Fig. 2. MARTE TimeModeling profile: Clock

Clock constraints. ClockConstraint is a stereotype of the UML Constraint. The
clock constraints are used to specify the time structure relations of a time do-
main. In turn, these relations characterize theR relation of the underlying math-
ematical model of the time structure.

The context of the constraint must be a TimedDomain. The constrained ele-
ments are clocks of this timed domain and possibly other objects. The specifi-
cation of a clock constraint is a set of declarative statements. This raises the
question of choosing a language for expressing the clock constraints. A natu-
ral language is not sufficiently precise to be a good candidate. UML encour-
ages the use of OCL. However, our clocks usually deal with infinite sets of
instants, the relations may use many mathematical quantifiers, which are not
supported by OCL. Additionnally, OCL [15] is made to be evaluatable, while
our constraints often have to be processed altogether to get a set of possible
solutions. So, we have chosen to define a simple constraint expression language
endowed with a mathematical semantics. The specification of a clock constraint
is a UML::OpaqueExpression that makes use of pre-defined (clock) relations, the
meaning of which is given in mathematical terms, outside the UML. Our Con-
straint Specification Language is not normative. Other languages can be used,
so long as the semantics of clocks and clock constraints is respected.

TimedEvent and TimedProcessing. In UML, an Event describes a set of
possible occurrences; an occurrence may trigger effects in the system. A UML2
TimeEvent is an Event that defines a point in time (instant) when the event
occurs. The MARTE stereotype TimedEvent extends TimeEvent (Figure 3). Its
instant specification explicitly refers to a clock. If the event is recurrent, a rep-
etition period—duration between two successive occurrences of the event—and
the number of repetitions may be specified.

In UML, a Behavior describes a set of possible executions; an execution is
the performance of an algorithm according to a set of rules. MARTE associates
a duration, an instant of start, an instant of termination with an execution,
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Fig. 3. MARTE TimeModeling profile: TimedEvent
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Fig. 4. MARTE TimeModeling profile: TimedProcessing

these times being read on a clock. The stereotype TimedProcessing (Figure 4)
extends the metaclasses Behavior, Action, and also Message. The latter extension
assimilates a message tranfer to a communication action.

Note that, StateMachine, Activity, Interaction being Behavior, they can be stereo-
typed by TimedProcessing, and thus, can be bound to clocks.

3.2 MARTE Allocation Model

Allocation of functional application elements onto the available resources (the
execution platform) is main concern of real-time embedded system design. This
comprises both spatial distribution and temporal scheduling aspects, in order to
map various algorithmic operations onto available computing and communica-
tion resources and services.

The MARTE profile defines application and execution platform models. A
MARTE allocation is an association between a MARTE application and a
MARTE execution platform. Application elements may be any UML element
suitable for modeling an application, with structural and behavioral aspects. An
execution platform is represented as a set of connected resources, where each
resource provides services to support the execution of the application. So, re-
sources are basically structural elements, while services are rather behavioral
elements. Application and Execution platform models are built separately, be-
fore they are paired through the Allocation process. Often this requires prior
adjustment (inside each model) to abstract/refine its components so as to al-
low a direct match. Allocation can be viewed as a “horizontal” association, and
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abstraction/refinement layering as a “vertical” one, with the abstract version
relying on constructs introduced in the more refined model. While different in
role, allocation and refinement share a lot of formal aspects, and so both are
described here.

Application and Execution platform elements can be annotated with time
information based on logical or chronometric clocks (Section 3.1). Allocation and
refinement provide relations between these timings under the form of constraints
between the clocks and their instants. Other similar non-functional properties
such as space requirement, cost, or power consumption are also considered.

In MARTE, we use the word allocation rather than deployment (as in UML)
since allocation does not necessarily imply a physical distribution and could
simply represent a logical distribution or scheduling. Execution platform mod-
els can be abstract at some points and not necessarily seen as concretization
models. For instance, two pieces of an algorithm could be allocated to two dif-
ferent processor cores, while the executable file containing both pieces would be
deployed on the memory of the processor and the source file containing the spec-
ification of the algorithm would be deployed on a hard disk. This dual function
was recognized in SPT, where allocation was called realization, while refinement
was used as such. MARTE allocation and refinement are complementary to the
UML deployment; we prefer to keep the three concepts separated. This is not
the case of AADL that provides a single mechanism—the binding—for all three
concepts. The allocation mechanism proposed by MARTE is actually very close
to the structure allocations of SysML because it allocates logical parts to more
physical ones. However, MARTE makes it explicit that both the logical and
physical parts could be either of a behavioral or structural nature. Contrary to
SysML, MARTE makes a difference between allocation—from application model
elements to execution platform model elements—and refinement of an abstract
model elements (logical or physical) into more specific elements.

The stereotype Allocate. A MARTE allocation is materialized by the stereo-
type Allocate (Figure 5), which extends the UML metaclass Abstraction, and can
be associated with NFP constraints. Allocation can be structural, behavioral,
or hybrid. Structural allocation associates a group of structural elements and a
group of resources. Behavioral allocation associates a set of behavioral elements
and a service provided by the execution platform. When clear from context, hy-
brid allocations are allowed (e.g., when an implicit service is uniquely defined
for a resource). At the finer level of detail, behavioral allocation deals with the
mapping of UML actions to resources and services.

The stereotype Allocated. MARTE advocates the need to differentiate the
potential sources of an allocation from the targets. Each model element involved
in an allocation is annotated with the stereotype Allocated (as in SysML), which
extends the metaclass NamedElement or rather one of its specializations (Fig-
ure 6). The stereotype ApplicationAllocationEnd, noted by the
keyword �ap allocated�, denotes a source of an allocation. The stereotype Exe-
cutionPlatformAllocationEnd, noted by the keyword �ep allocated�, represents the
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Fig. 5. The stereotype �allocate�

target of an allocation. The stereotype Allocated is not abstract to ensure com-
patibility with SysML, but one of its specializations should be preferred. The
property allocatedTo, respectively allocatedFrom, is a derived property resulting
from the process of creating the abstraction (allocation); they facilitate the iden-
tification of the targets, respectively the sources, of the allocation when all model
elements cannot be drawn on the same diagram.

«stereotype»
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«metaclass»

NamedElement

«stereotype»

ApplicationAllocationEnd

«stereotype»
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/allocatedTo

*/allocatedFrom

*

Fig. 6. The stereotype �allocated�

4 Illustrative Examples

4.1 Chronometric Clocks

The MARTE TimeLibrary provides a model for the ideal time used in physical
laws: idealClk, which is an instance of the class IdealClock, stereotyped by ClockType
(Fig. 7). idealClk is a dense time clock, its unit is the SI time unit s.

Starting with idealClk, the user can define new discrete chronometric clocks
(Fig. 8). First, the user specifies Chronometric—a class stereotyped by ClockType—
which is discrete, not logical (therefore chronometric), and with a read only
attribute (resolution). Clocks belong to timed domains. In Fig. 8, a single time
domain is considered. It owns 3 clocks: idealClk, cc1 and cc2, two instances of
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currentTime( ): Real

«clockType»
{ nature = dense, unitType = TimeUnitKind,

getTime = currentTime  }
IdealClock

«clock»
{ unit = s }

idealClk:IdealClock currentTime( ): Real

resolution: Real {readOnly}

«clockType»
{ nature = discrete, 

unitType = TimeUnitKind,
resolAttr=resolution, 

getTime = currentTime  }
Chronometric

Fig. 7. Ideal and Chronometric clocks

Chronometric that both use s (second) as a time unit; and whose resolution is
0.01 s. The three clocks are a priori independent. A clock constraint specifies
relationships among them.

The first statement of the constraint defines a clock c local to the constraint.
c is a discrete time clock derived from idealClk by a discretization relation. The
resolution of this clock is 1 ms. The next two statements specify that cc1 and cc2
are subclocks of c with a rate 10 times slower than c. The fourth and fifth state-
ments indicate that cc1 and cc2 are not perfect clocks. Flaws are characterized
by non functional properties like stability and offset. Their rate may have small
variations (a stability of 10−5 implicitly measured on idealClk). The last state-
ment claims that the two clocks are out of phase, with an offset value between
0 and 5 ms measured on idealClk. Note that even if cc1 and cc2 look alike, they
are not identical because relations are not necessarily functional.

resolution = 0.01

«clock»
{ unit = s }

cc1:Chronometric

resolution = 0.01

«clock»
{ unit = s }

cc2:Chronometric

«clockConstraint»
{ Clock c is idealClk discretizedBy0.001;
   cc1 isPeriodicOn c period10;

   cc2 isPeriodicOn c period10;

   cc1 hasStability1E-5;

   cc2 hasStability 1E-5;

   cc1,cc2 haveOffset [0..5] ms on idealClk;
}

«clock»
{ unit = s }

idealClk:IdealClock

«timeDomain»
ApplicationTimeDomain

Fig. 8. Clock constraints

4.2 AADL Communication

To explain its port-based communication semantics, the AADL specification
takes the example of a thread Read that captures a sample and sends it to a sec-
ond thread Control. The two threads are assumed to be dispatched at the same
time. Several cases are studied, the case where the two threads are dispatched
with the same period, the case where Read is dispatched twice faster than Control
(undersampling), and the case where Read is dispatched twice slower than Control



Modeling Time(s) 571

(oversampling). These cases are studied first with an immediate communication
(the output value is available as soon as the thread Read completes) and then
with a delayed communication (the output value is available only at the next
dispatch of the thread Read).

«timedProcessing»
{ on = rClk }

Read

«timedProcessing»
{ on = cClk }

Control

«dataStore»
Sample

Process

«clock»
t1:Thread

«clock»
t2:Thread

s:SharedVariable

«allocate» «allocate»«allocate»

«clockConstraint»
rClk alternatesWith t1

«clockConstraint»
cClk alternatesWith t2

«clockConstraint»
{ Clock c is idealClk 
           discretizedBy0.01;

   t1 = c filteredBy(1.04);
   t2 = c filteredBy(1.09);
}

Fig. 9. Clock constraints

To compare our approach to AADL, we take the case of an immediate com-
munication, which is the more challenging, with undersampling. As said before,
the main difference of our approach is that we separate the application mod-
els from the execution platform models. The application is described with a
UML activity diagram (Fig. 9) using purely logical clocks and stereotyped by
�TimedProcessing�. The behavior of Read and Control are executed repetitively,
they communicate through a datastore object node that allows for multiple read-
ings of the same sample.

In a second step, the application is allocated to the model of an execution
platform, a process containing two threads that communicate through a shared
variable. In our model, t1 and t2, or rather their dispatch time, are considered as
clocks. These two harmonic clocks are defined using a local 100Hz-clock c. Then
t1 and t2 are derived from c with respective frequency 20Hz and 10Hz.

Additional clock constraints are associated with the allocate dependency to
map the application clocks to the platform clocks. All these constraints define
a partial order. In the case of a delayed communication, these would have been
enough to have an equivalence of all possible schedulings. With an immediate
communication, an additional constraint is required to guarantee the same be-
havior than AADL. This constraint would follow a greedy scheduling in order
to execute Control as soon as possible. Our constraint model allows for delaying
subjective choices as much as possible in order to avoid overspecification.

5 Conclusion

We presented a UML profile for comprehensive Time Modeling. Time here can
be of discrete or dense, physical or logical. Logical time allows to model various
time threads sustaining asynchronous or loosely time-related concurrent pro-
cesses. This philosophy (of assigning logical clocks in order to explicitly handle
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time rates) borrows to foundational notions in embedded MoCC design. To this
we add a kernel language of clock constraint relations, as well as timed events
constraint relations. This constraint language, while currently simple, allows to
define most useful clock relations (such as being periodic). While the profile can
be considered as a “creative” translation of existing ideas on tagged systems to
a UML setting (with all the alignments it required that were far from trivial),
the clock constraint language and its use as a formal specification of classical
time relation notions is original, to the best of our knowledge.

Time annotation can then be applied to behavioral elements, leading
TimedEvent and TimedProcessing, and to structural elements, leading to clocked
Classes and clocked Objects. This can be performed on application models and
architecture models of the embedded design. Then the system dynamics should
run according to (partial) timing constraints, if possible, according to a timed
operational semantics. Providing timed constructs in UML behavioral models
(state diagrams and activity diagrams mostly) would be the next step here. Nu-
merous examples exist (outside the UML) of timed languages and calculi under
the form of MoCC constructors inside the proper time domain. Model transfor-
mation tools could extract the time properties, feed them into timing analysis
tools and bring the result back into UML within a UML simulator. In that sense,
our profile would give the time semantics of UML models.

Clock constraints provide partial scheduling information, and an actual sched-
ule can be obtained by solving such a set of constraints, some of which originate
from the application model, some from the execution platform model, and some
from the system’s real-time requirements. The same formalisms of clock relations
can also be used in some case to represent the result of the scheduling decisions,
and display them to the designer.

We provided modeling instances and case studies to illustrate and motivate
the modeling framework. We showed how it allows to introduce a number of
useful time predicates on events. We also showed the intent behind logical time
by considering examples with various clocks running at unrelated speeds.
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Abstract. Many safety-related, certification standards exist for developing 
safety-critical systems. System safety assessments are common practice and 
system certification according to a standard requires submitting relevant 
software safety information to appropriate authorities. The airworthiness 
standard, RTCA DO-178B, is the de-facto standard for certifying aerospace 
systems containing software. This research introduces an approach to improve 
communication and collaboration among safety engineers and software 
engineers by proposing a Unified Modeling Language (UML) profile that 
allows software engineers to model safety-related concepts and properties in 
UML, the de-facto software modeling language. Key safety-related concepts are 
extracted from RTCA DO-178B, and then a UML profile is defined to enable 
their precise modeling. We show that the profile improves the line of 
communication between safety engineers and software engineers, for instance 
by allowing the automated generation of certification-related information from 
UML models. This is illustrated through a case study on developing an 
aircraft’s navigation controller subsystem. 

Keywords: UML, UML Profile, Airworthiness, RTCA DO-178B, Safety, 
Safety-Critical, Safety Assessment, Certification, Certification Authority. 

1   Introduction 

Safety-critical software must exhibit safe behaviour that does not contribute to 
hazards within the context in which it is used. For example, an aircraft must only 
allow the pilot to lift up the landing gears if it is airborne. If the landing gears were 
lifted while the aircraft is on ground, then there would be a hazard, which is likely to 
result in damaging the aircraft and hurting its occupants. A hazard is a state of the 
system that could ultimately lead to an accident that may result in a loss in human life.  

Many standards require that a safety assessment be performed when designing or 
modifying a safety-critical system. Safety assessments, which have some similarities 
with risk assessments [8] and are performed using similar methods, produce a list of 
safety requirements and constraints that the system must fulfil. RTCA DO-178B [14], 
also known as the “airworthiness” standard, is the de-facto safety-related standard for 
commercial and military aerospace software. 
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Due to safety-related requirements, and the need for safety assessment and 
thorough software analysis, developing safety-critical software is more expensive 
than developing non-safety-critical software (in the order of 20 to 30 times more 
expensive [10]). One of the challenges, besides actually designing and implementing 
safety and certification requirements of the system, is to be able to accurately 
communicate safety aspects among the different stakeholders involved in software 
development. This has already been documented in [4], where the authors reported on 
an extensive survey, performed by the NASA Langley Research Center (in 
collaboration with the Federal Aviation Administration (FAA)), to identify the 
challenges in developing safety-critical software for aerospace systems. The authors 
identified “the challenge of accurately communicating requirements between groups 
of people” as “the root of many of the current challenges” in software aspects during 
certification. They presented this challenge as a combination of the following two 
major communication channels: (a) Among regulatory people (e.g. certification 
authorities) and systems people (e.g. systems engineers and safety engineers); (b) 
Among systems people and software people (e.g. software engineers). The authors 
also found out that “requirements definition is difficult”, which undoubtedly 
contributes to the communication challenges among the various groups. For example, 
safety engineers, who are rarely software engineers, may define requirements that 
software engineers find infeasible or expensive. If software engineers better 
understand the needs behind the requirements, then they may be able to propose 
solutions that are more practical and cost effective. On the other hand, software 
engineers may misinterpret the requirements due to their lack of experience in safety.  

In this paper, we report on an approach to address these communication challenges. 
Acknowledging that the Unified Modeling Language (UML) [13] is now the de-facto 
standard for developing (object-oriented) software systems, and is actually used in the 
aerospace industry, we aim at extending the UML notation with safety concepts by 
defining a new profile. In this research, because of our focus on aerospace software, 
the airworthiness standard [14] is analyzed to extract a list of key safety-related 
concepts that are of interest to both safety engineers and software engineers. We show 
that if those concepts are properly represented in UML models of software, then 
software engineers can document their decisions (that relate to safety) and a tool can 
automatically generate reports containing safety and certification-related information 
about the software. This provides safety engineers with better insights into the 
software compliance with safety requirements, which they can easily track over time. 
Those reports could also be used as evidence of software compliance with the 
airworthiness requirements, which can then be presented to the external certification 
authority. Furthermore, such safety UML profile will increase the software engineers’ 
awareness of safety-related issues, which will enable them to implement safer 
software and better communicate with safety engineers. Using stereotypes and tagged 
values, our focus in this paper is to first model safety and certification information in 
class diagrams. However, future work will tailor the stereotypes and tagged values to 
other diagrams such as sequence diagrams and state machines. 

The remainder of the paper is structured as follows. We shortly introduce safety 
assessment for aerospace systems in Section 2. We then present the requirements that 
a UML profile should have to adequately facilitate the definition and use of safety 
information in an aerospace context (Section 3). Section 4 discusses existing  
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UML-based techniques to specify safety concepts, in the light of the information 
requirements specified in Section 3. We then discuss our profile in Section 5 on a case 
study, using a number of representative examples, and show how it can indeed 
address the communication challenges reported in [4]. Conclusions are drawn in 
Section 6. 

2   Safety Assessment of Aerospace Systems 

Many industrial standards exist for system and software safety. Some are common to 
all industry sectors (e.g., IEC 61508-3 [6]) whereas others are industry specific (e.g., 
CENELEC 50128 for Railway applications [1]). Hermann provides a high-level 
summary of those standards in [5], and we discuss in [15] those that relate directly or 
indirectly to safety. One of those standards, RTCA DO-178B [14], also known as the 
airworthiness standard, is the de-facto safety-related standard for developing 
aerospace software systems.  

RTCA DO-178B takes into account the fact that not all software components in an 
airborne system have the same impact on the safety of the aircraft and its occupants. 
For example, the failure of software that controls the altitude of an aircraft is less 
acceptable than the failure of the software that stores and displays geographical 
information maps for navigation, since the failure of the former may significantly 
reduce the aircraft’s chances of a safe flight and landing. The failure of the latter, 
however, introduces inconveniences that the pilots may be able to cope with. As a 
result, DO-178B classifies software failure conditions into the following five 
categories [14]: Catastrophic, Hazardous/Severe-Major, Major, Minor, and No 
Effect; depending on the impact of the failure conditions on the safety of the flight or 
landing of the aircraft. According to these categories, a software component is 
determined to belong to a specific software or airworthiness level: A, B, C, D, or E. 

It should be noted that there exists a difference between the concepts of 
“airworthiness” and “safety”. The airworthiness standard defines failure condition 
categories and software levels based on the “severity of failure conditions on the 
aircraft and its occupants” [14]. This is more specific than Leveson’s definition of 
safety, which was stated as “the freedom from accidents or losses” [8]. Airworthiness 
is concerned with accidents or losses regarding the aircraft and its occupants and is a 
subset of safety: safe software is airworthy but airworthy software is not necessarily 
safe.  

3   Requirements for an Airworthiness Profile 

Based on the communication challenges reported in [4], we first identify in Section 
3.1 how safety information, if included in analysis and design (UML) models, could 
be used by the different stakeholders involved in the development of safety-critical 
software (e.g., safety engineers, software engineers, certification authority). In Section 
3.2, we perform a careful analysis of the safety concepts involved in the airworthiness 
standard, thereby identifying and precisely modeling the information requirement that 
an airworthiness UML profile should satisfy.  
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3.1   Usage Scenarios of Safety Information 

Stakeholders use safety information as depicted by the use case diagram in Fig. 1. 

Usage 1—Provide Safety Requirements: Safety engineers perform a safety assessment 
of the system being developed. This results in safety requirements, a subset of which 
is allocated to software and communicated to software engineers.  

Usage 2—Design Safety Requirements in Systems: Software engineers design the 
software system according to the safety requirements allocated to software.  

Usage 3—Record and Justify Design Decisions: Software engineers record and justify 
their design decisions. Traditionally, architectural and major design decisions have 
been recorded in documents separate from the software model and, furthermore, 
detailed design decisions have often appeared as plain text comments in the source 
code. In practice, this makes it hard to automatically retrieve justifications for design 
decisions.  

Usage 4—Monitor Safety: Safety engineers continuously monitor the safety of the 
system, including the software, over the project’s lifecycle. In order to do so, they 
need to identify how software engineers designed the software (Usage 2) according to 
the safety requirements they were provided with (Usage 1). The software engineers’ 
justifications for the design decisions (Usage 3) are also considered. Safety engineers 
can then assess this information and discuss any issue with software engineers, thus 
ensuring that the software’s safety is continuously improving during the software’s 
lifecycle so that it meets the final safety objectives of the system.  

Usage 5—Get Safety Information: Safety and certification information is submitted to 
the certification authorities for certification, which usually occurs towards the end of 
the development lifecycle. This information includes the safety requirements (Usage 
1), the software design (Usage 2), the justification of the software design (Usage 3) 
given the safety requirements of the software, and the process used to continuously 
monitor the system and software safety over the development lifecycle (Usage 4).  

Usage Scenarios for Safety Information

USAGE 1
Provide Safety Requirements

Certification Authorities
(3rd Parties)

Safety Engineers
Airworthiness Engineers

Software Engineers

USAGE 2
Design Safety Requirements 

in Systems

USAGE 3
Record and Justify Design 

Decisions

USAGE 4
Monitor Safety

USAGE 5
Get Safety Information

  

Fig. 1. Usage scenarios of safety information 

Those usage scenarios would be greatly facilitated if safety information is captured 
in the lifecycle UML models already in use to support development. In other words, a 
UML model could play a central role in the communication of safety information 
across engineering groups. Software engineers record safety information in UML 
models. Safety engineers can monitor safety information by automatically generating 
reports, using appropriate tool support to query UML models. Therefore, they need 
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not understand the specifics of UML because any tool that extracts safety information 
from the model can present it in a model-independent format. To certify the system, 
safety and certification information can be automatically extracted from the UML 
models, using a tool that could produce the required information in a format suitable 
for submission to the certification authorities. Our approach is therefore to extend the 
UML notation with safety information, through the definition of a profile [13]. 

3.2   Safety Information Requirements 

We identify airworthiness-related concepts from the airworthiness standard [14] that 
should be part of the UML profile to be defined. Since airworthiness is a subset of 
safety (Section 2), all of the airworthiness-related concepts we identified are also 
safety-related concepts and are referred to as such in the remainder of this document. 
Though not restricted to airworthiness, those concepts are however clearly not the 
only ones needed for other safety-critical applications including transportation, 
medical, and nuclear.  

A careful analysis of the airworthiness standard led us to identify 65 safety-related 
concepts that were found relevant for developing airworthiness-compliant software.  
Those safety-related concepts are not solely safety concepts, and hence the rationale 
behind using the term “safety-related concepts” rather than simply “safety concepts” – 
in fact, many of those concepts are primarily non-safety concepts, such as reliability 
concepts (e.g. fault-tolerance), performance concepts, and certification concepts. 

In order to prepare for the definition of the profile, this set of concepts was then 
refined and restructured to: 

1. Remove duplicate concepts: Seemingly different concepts sometimes appear in 
the airworthiness standard where, in reality, they represent a single concept or 
term. For instance, Multiple-Version Dissimilar Software and Software 
Redundancy describe the same concept or idea of using multiple software 
components that have the same functionality but different implementations. 

2. Group concepts: Some concepts are in fact examples of a more general concept. 
For instance, Safety Monitoring, Fault Detection, Integrity Check are 
applications of a single software-concept that is “Monitor”, which monitors the 
activity of other components to detect unusual, potentially hazardous, events. 
Thus, they are grouped into a single concept, and they are differentiated through 
attributes (i.e. a “Monitor” concept with a “Kind” attribute that is to “Safety” for 
Safety Monitoring, “Reliability” for Fault Detection, and “Integrity” for 
Integrity Check). 

3. Precisely define concepts: Each concept is clearly defined, with attributes each 
describing a single aspect of the concept. For instance, when defining the 
“Safety Requirement” concept, we give it an attribute called “Specification” that 
can be used to specify the details of the requirement. We use a precise template 
for concept definition, adapting templates used in existing UML profiles (e.g., 
[11, 12]): concept definition, attribute definition, relations to other concepts, 
reference to the original airworthiness concept. 

This resulted in the definition of 27 safety-related concepts, 48 attributes, and inter-
concept relationships. Their various combinations can represent all of the original 65 
safety-related concepts plus additional details. These refined concepts and their 
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relationships were defined using the abovementioned template and formalized under 
the form of a conceptual model, i.e., a UML class diagram (Fig. 2). Broadly speaking, 
the concepts in Fig. 2 cover the notions of safety criticality, 
event/reaction/handler/monitor, replication, configurable component, partitioning and 
requirement. It is worth noting from the list of concepts in Fig. 2 that they are not 
specific to airworthiness, which suggests that the profile we describe later in this 
paper could be used (and perhaps extended) in other safety-critical domains. 

The 27 safety concepts are not detailed here due to space constraints but can be 
found in [15]. Nevertheless, Fig. 3 shows the definition of the “Safety Critical” 
concept as an example. Notice that the concept has a “Criticality Level” attribute 
whose definition refers to the airworthiness standard as well as the IEC 61508 
standard [6]. This illustrates our conscious effort to be as general as possible while 
focusing on the airworthiness standard. Additionally, the attributes’ values are not 
fixed and can be organization (or project) specific, e.g., the “High”, “Medium” and 
“Low” values for attribute “Confidence Level” can be assigned specific meanings. 
This will translate into a flexible UML profile, with customizable tagged values. 

As discussed and illustrated in Section 5, these concepts correspond to stereotypes 
in our airworthiness profile. Some of those concepts will therefore be presented in 
Section 5, as we discuss the corresponding stereotypes such as Event, Reaction, 
Rationale, Monitor, Handler, and Safety Critical. 

Nature

Requirement

*

Rationale*

Partition
*

*

*

1 .. *

*

*
*Is Requirement 

Of

Interface
Simulator

1 .. *

Monitor Concurrent
**

Defensive0 .. 1

* 1 .. *

1 .. * *

1 .. *

Configurator
1 .. *1 .. *

1 .. *1 .. *

1 .. * 1 .. *

* 1 .. *11 .. *

1 .. *1 .. *

1 *

Is Loadable On

LoadsConfigures

Produces

Requires

Is Configurable To

Is Defaulted To

Replicated

Comparator

1

2 .. *

Compares

Formalism

Complexity

Strategy

Triggers1 .. *

*

1 .. *Monitors

*
Detects* 1 .. *

Performs
*

1 .. *

Handles*

1 .. *
1 .. *Notifies

*

1 .. *

Is Consequence 
Of *

Performs

Triggers

References

Is Partitioned 
From

References

References

Simulates

Is Interface For

Implementation Style*

* 1 .. *

Behavioural Style

References

*

*

References
Deviation

1 .. * 0 .. 1
Describes Design Of

1 .. * 0 .. 1
Describes Formalism Of

1 .. * 0 .. 1
Describes Complexity Of

StyleStyle

1

1

2 .. *
Owns

Safety CriticalSafety Critical

Replication Group

1

Owns

EventEvent

ReactionReactionHandlerHandler

ConfigurableConfigurable LoadableLoadable

ConfigurationConfiguration   

Fig. 2. Conceptual model for safety-related concepts 

After defining the safety concepts and their inter-concept relationships in detail, we 
developed a list of information requirements [15]. These information requirements 
identified the information that a suitable mechanism, or profile, must be able to model  
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Definition: 
The “Safety Critical” concept represents a safety-critical design (element) that impacts safety. It also 
identifies the safety or airworthiness level of design elements. 

Attributes: 
Name Description Examples 
Criticality 
Level 

Indicates the level of criticality (e.g. 
airworthiness level, Safety Integrity Level 
(SIL)), on some pre-defined scale, such as the 
software level or the failure condition category 

For RTCA DO-178B: “A”, “B”, “C”, 
“D”, “E” 

For IEC 61508: “SIL 1”, “SIL 2”, 
“SIL 3”, “SIL 4” 

Confidence 
Level 

Indicates the level of confidence, on some pre-
defined scale, that the criticality level is satisfied 

“High”, “Medium”, “Low”, “80%”, 
“50%”, … etc 

Relationships: 
Name Description 
Triggers Identifies zero or more “Event” instance that the “SafetyCritical” instance may trigger 

Original Safety-Related Concepts 
Safety-Critical, Software Level, Level of Confidence, Failure Condition Category  

Fig. 3. Template description of the “Safety Critical” concept 

in UML. Therefore, they became the basis upon which a mechanism, or profile, to 
model safety concepts in UML was assessed. 

4   Existing UML-Based Solutions 

There exist a number of UML-based approaches that can be considered for adding 
safety information to UML diagrams. 

The Object Management Group (OMG) released a profile to model Quality of 
Service (QoS) for high-quality and Fault-Tolerant (FT) systems [11]. It includes 
frameworks to describe quality of service, risk assessment, and fault tolerance. The 
quality of service part can be used to model safety. The risk assessment framework 
provides mechanisms for modeling risk contexts, stakeholders, weaknesses, 
opportunities and threats, unwanted incidents, risk quantification, risk mitigation and 
treatments. The fault tolerance framework includes mechanisms for describing fault-
tolerant software architectures in general as a technical solution to reliability 
requirements, and focuses on modeling software redundancy, or software replication. 

The Schedulability, Performance, and Time (SPT) profile [12], which provides 
mechanisms to model concepts of importance to real-time systems was also released 
by the OMG. It includes frameworks to model resources, time, concurrency, 
schedulability, performance … and allows developers to perform model-based 
performance analysis. It does not focus primarily on safety. 

The High Integrity Distributed Object-Oriented Real-Time Systems (HIDOORS) 
was a European project [9]. One of its goals was to introduce SPT profile-compliant 
mechanisms for modeling safety-critical and embedded real-time applications. 
Although aimed at safety-critical applications, it specialised SPT concepts such as 
triggers, actions, resources, and scheduling jobs without strongly focusing on safety. 

Jan Jürjens presented a UML profile [7] that aimed at modeling reliability aspects 
regarding transmitting messages (e.g., maximum failure rates for message 
communication). Jürjens argued that since failures related to lost, delayed, or 
corrupted messages have an impact on safety in safety-critical applications, the profile 
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can be used for developing safety-critical applications. It included mechanisms to 
model risks, crashes, guarantees, redundancy, safe links, safe dependencies, safety 
critical elements, safe behaviours, containment, and error handling. 

Based on the IEC 61508 standard [6], Hansen and Gullesen presented a series of 
UML patterns that can be used to model some aspects of safety-critical systems [3]. 
The patterns allowed modeling safety quality of service, software diversity and 
voting, partial diversity with built-in diagnostic or monitoring, “safe” communication 
protocols, and some other topics such as testing, hazard analysis and quality 
development. They include mechanisms to model, in use cases, redundancy, 
monitoring, and voting based on multiple output comparisons.  

We evaluated how the UML-based solutions discussed above score with respect to 
addressing the information requirements identified in Section 3.2. Each profile’s score 
was calculated based on how many information requirements it met (Section 3.2). We 
observed (see details in [15]) that none of the existing techniques that were evaluated 
achieved more than 31% of the maximum score. In fact, all of the profiles combined 
only met 44% of the information requirements. For instance: reactions and events can 
be modeled in HIDOORS and SPT [9, 12], but not in the other three approaches; 
monitors can only be modeled in [7, 12]; a model element’s contribution to failure 
conditions (i.e., criticality levels in the airworthiness standard) is only handled in [3, 
7, 12]; the implementation style (e.g., recursion, dynamic memory allocation), 
hardware/software interfaces, and configurable components cannot be modeled by 
any of the existing approaches. We therefore decided to develop our own UML 
profile, as described in the next section. 

5   The Airworthiness Profile by Examples 

From the 27 safety-related concepts (and 48 attributes) we identified, we defined a 
UML profile containing 32 stereotypes1 (with 80 tagged values). These stereotypes 
and tagged values clearly cannot be all described in details in this article. Instead, we 
refer the interested reader to [15] for all the details, and present a number of 
representative examples of the use of the profile on a realistic case study, thereby 
illustrating a subset of the profile. The goal is to demonstrate, through a realistic case 
study, the usefulness of the profile in the context of the usage scenarios we defined 
(Section 3.1). Stereotypes and tagged values are shown in the figures for illustrative 
purposes, but modeling tools can capture this without cluttering the diagrams. 

We considered, as a safety-critical system, the Navigation Controller (NC) 
subsystem of an aircraft’s navigation system. Note that this case study has been 
conducted for the purpose of evaluating the profile only and does not correspond to a 
certified (e.g., by the FAA) system, though the first author is involved in the 
development of similar systems. We, however, followed every standard practices [14] 
when designing this controller. 

The NC subsystem is used to control the aircraft’s flight paths through both 
automatic pilot and manual input from the pilots. In autopilot mode, the subsystem 
                                                                 
1 Each of the 27 safety-related concepts translates into a stereotype and we added stereotypes 

such as <<ReliabilityContext>> and <<ConcurrencyContext>> that were used to 
stereotype diagrams containing reliability and concurrency information, respectively. 
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can choose an appropriate flight path based on the source and destination of the 
aircraft, and guide the aircraft by generating appropriate commands to the aircraft’s 
ailerons and spoilers (on the wings), rudder (on the vertical tail), and engines to 
change the speed and heading (i.e. direction) as required. In custom flight mode, the 
subsystem can accept commands from the pilots such as a specific position’s latitude 
and longitude. Then, it controls the aircraft’s speed and heading to get to the desired 
position that was indicated by the pilot. 

In order to perform such functionality, the NC subsystem needs to have continuous 
input from the aircraft’s navigation system, which reports the current position and 
altitude of the aircraft at all times. In addition, it needs to be able to command the 
aircraft’s ailerons, spoilers, rudders, and engines to change the speed and heading. 

When designing the subsystem, we followed the procedures required in the DO-
178B [14]. We first identified five high-level functional requirements (main 
functionalities) for the subsystem, referred to as FREQ1 to FREQ5, e.g., the 
subsystem shall be able to list pre-determined flight paths for a requested 
source/destination pair (FREQ1). We then performed a safety assessment, using four 
standard, complementary methods (namely Action Error Analysis, Failure Modes and 
effects Analysis, Hazards and Operability Analysis, and Interface Analysis [8]). This 
generated eleven safety requirements, referred to as SREQ 1 to SREQ 7 (SREQ 6 is 
further decomposed into SREQ 6.1 to SREQ 6.5), e.g., the subsystem shall disable the 
autopilot when the pilot is flying the aircraft (using the mechanical and steering stick 
subsystem), and re-enable it when the pilot stops doing so (SREQ 1). We then 
designed the subsystem while recording design decisions (in particular safety-related 
ones) using our profile. Last, we evaluated the resulting design documents with 
respect to the usage scenarios discussed in Section 3.1. 

Below we detail the design of the controller subsystem in two steps. We first 
identify the events the controller subsystem has to handle, and the reactions it has to 
take, according to the functional and safety requirements (Section 5.1). Second, we 
discuss the design of the subsystem itself (Section 5.2). In both cases, we record 
design decisions using our profile. Last, we show how the safety engineers and third 
party certification authorities can use this information (Section 5.3). 

5.1   Identification of Events and Reactions 

As part of the design, we first identified all the events received and the reactions 
performed by the NC subsystem that could have safety implications. To identify the 
events, one needs to determine which inputs to the system, or changes in its state, may 
impact its safety. To identify the reactions, one needs to determine how the system 
should behave when any of the identified events occurs.  

The answers to those questions are found in the safety requirements. For example, 
one can identify at least two events of interest from safety requirement SREQ 1 
above: (1) The event of when the pilot starts using the mechanical and steering stick 
subsystem; (2) The event of when the pilot stops using this subsystem. Also from this 
requirement, one can identify at least the following reactions: (1) Disabling the 
autopilot when the pilot starts using the mechanical and steering stick subsystem; (2) 
Enabling the autopilot when the pilot stops using this subsystem. 
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<<Reaction>>
SystemReaction

<<Reaction>>
ReactionToDependentSubsystemEvent

<<Reaction>>
{ConsequenceOf=HeadingAndSpeedConnectionLost,

ConsequenceOf=HeadingAndSpeedControlledByOtherSubsystem,
ConsequenceOf=…

EffectOnSafetyDirection=Positive}
<<Rationale>> {Reference=“SREQ 1”, Reference=“SREQ 6”}

DisableController

<<Reaction>> {ConsequenceOf=HeadingAndSpeedConnectionEstablished,
ConsequenceOf=HeadingAndSpeedNotControlledByOtherSubsystem,

ConsequenceOf=…
When=‘Connections Available to Functional Subsystems’, 

EffectOnSafetyDirection=Positive}
<<Rationale>> {Reference=“SREQ 1”, Reference=“SREQ 6”}

EnableController

<<Event>>
SystemEvent

<<Event>>
DependentSubsystemEvent

<<Event>>
HeadingAndSpeedEvent

<<Event>
{EffectOnSafetyDirection=Positive}

HeadingAndSpeedNotControlledByOtherSubsystems

<<Event>
{EffectOnSafetyDirection=Negative,

EffectOnSafetyContext=‘Autopilot is ON’}
HeadingAndSpeedControlledByOtherSubsystem  

Fig. 4. Excerpt of the <<Event>> and <<Reaction>> hierarchies 

Such an analysis of the requirements led to the identification of an inheritance 
hierarchy of 27 events classes (stereotyped <<Event>>) and an inheritance hierarchy 
of 12 reactions (stereotyped <<Reaction>>). Excerpts of the two hierarchies appear 
in Fig. 4, showing the events and reactions identified from SREQ 1. The <<Event>> 
hierarchy shows two concrete classes, namely HeadingAndSpeedControlledBy-
OtherSubsystem and HeadingAndSpeedNotControlledByOtherSubsystem, 
sent to the NC subsystem when the pilot is using the mechanical and steering stick 
subsystem, or when she is not using it, to control the aircraft heading and speed, 
respectively. The <<Event>> stereotype has two tagged values: one provides 
information on the impact of receiving the event on the safety of the subsystem 
(EffectOnSafetyDirection), and the other provides some context under which 
the event can be sent (EffectOnSafetyContext). When the subsystem receives 
these events, it performs either of two reactions: DisableController or 
EnableController (Fig. 4). The <<Reaction>> stereotype has a number of 
tagged values to: refer to the event(s) that the reaction is a consequence of 
(ConsequenceOf), indicate the impact of the reaction on safety 
(EffectOnSafetyDirection), and indicate the condition(s) under which the 
reaction occurs (When). (Reactions DisableController and EnableController 
are also consequences of events other than the previously mentioned two, which are 
not shown in Fig. 4 to focus our discussion.) The two <<Reaction>> classes are also 
stereotyped <<Rationale>> to record the design decisions. The <<Rationale>> 
stereotype has a tagged value, namely Reference, to refer to the requirements that 
justify the existence of the reactions (here, safety requirements SREQ 1 and SREQ 6). 

5.2   Controller Subsystem Design 

The design (class diagram) of the controller subsystem appears in Fig. 5, and selected 
stereotypes are applied to the model for illustrative purposes. The diagram itself is 
stereotyped <<SafetyCritical>> to indicate that it contains information that is 
relevant to safety. It is also stereotyped <<Requirement>> to indicate the functional 
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and safety requirements that are relevant to the diagram (tagged values Kind and 
Specification). Note that, in the context of a modeling tool that would fully 
support the profile, the user would have the option to filter the profile information and 
associate a graphical notation to the various stereotypes, thus avoiding cluttering the 
class diagram and making the profile key elements clearly and graphically visible.  

Class Controller is the key and central element of the subsystem. It is 
stereotyped with <<SafetyCritical>> and assigned software level C 
(CriticalityLevel tagged value), because its failure results in the failure of the 
entire subsystem, which is assigned software level C itself (the identification of the 
different subsystems and their criticality levels can be found in [15]). Since 
Controller depends on classes PathProjector, HeadingAndSpeedInterface, 
NavigationDatabaseInterface, and NavigationInterface, these four classes 
are also safety critical with level C. (According to the airworthiness standard [14], 
when component X depends on component Y, Y must be assigned a criticality level at 
least as high as the level of X.) 

Class Controller is also stereotyped with <<Handler>> with tagged value 
HandleableEvent equal to PilotInputEvent to indicate that it handles all 
concrete events that are subclasses of class PilotInputEvent (stereotyped 
<<Event>> but not shown in Fig. 4). In addition to normal code execution (e.g., 
changing the flight path in response to a ChangeFlightPath input event), 
Controller also executes the InvestigateFuelShortage reaction to decide 
whether the changes requested by the pilots will result in a fuel shortage or not.  

Class Controller is also stereotyped <<state dependent control>>, 
indicating it is a control class with a state-dependent behaviour. This stereotype, as 
well as the <<algorithm>>, <<coordinator>>, and <<system interface>> 
are not part of our profile. They were defined in [2]. 

The controller subsystem interacts with the HeadingAndSpeedSubsystem, the 
NavigationDatabaseSubsystem, and the NavigationSubsystem (subsystem 
decomposition not shown here). Therefore, the Controller class is associated with 
three <<system interface>> classes, namely HeadingAndSpeedInterface, 
NavigationDatabaseInterface, and NavigationInterface. These interface 
classes are stereotyped <<Rationale>>, thereby relating the design decision of 
having those subsystems to functional and safety requirements. They are also 
stereotyped <<Interface>> to indicate the kind of interface they correspond to (i.e., 
software-software, or software-hardware). (Note that identifying the software-
hardware interfaces is a requirement of the DO-178B [14].) Class Controller can 
receive events from these subsystems (through the corresponding interface classes). 
These events are monitored by three <<Monitor>> classes (i.e., 
HeadingAndSpeedMonitor, NavigationDatabaseMonitor, Navigation-
Monitor), which all interact with one handler to perform the required reactions, 
namely ExternalSubsystemsEventHandler (bottom of Fig. 5). The 
<<Monitor>> stereotype indicates that those monitors are safety monitors (Kind 
tagged value equals to Safety). It also specifies the monitored entity (tagged value 
MonitoredEntity), the detectable event from this entity (tagged value 
DetectableEvent), and the handler for those events (tagged  
value EventHandler). In particular, referring to the already discussed safety 
requirement SREQ 1, class HeadingAndSpeedMonitor monitors class  
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<<system interface>>

<<SafetyCritical>> {CriticalityLevel=C}

<<Rationale>> {Reference=“FREQ 2, FREQ 3”}

<<Interface>> {IsBetweenHardwareAndSoftware=true,
InterfaceFor=HeadingAndSpeedSubsystem}

HeadingAndSpeedInterface

<<coordinator>>

<<Monitor>> {Kind=Safety,
MonitoredEntity=NavigationDatabaseInterface,
DetectableEvent=NavigationDatabaseEvent,

EventHandler=ExternalSubsystemsEventHandler}

<<Rationale> {Reference=“SREQ 6.2”}

NavigationDatabaseMonitor
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<<Monitor>> 
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DetectableEvent=NavigationEvent,
EventHandler=ExternalSubsystemsEventHandler}

<<Rationale>>
{Reference=“SREQ 6.3, SREQ 6.5, SREQ 7”}
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EventHandler=ExternalSubsystemsEventHandler}
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<<SafetyCritical>> {CriticalityLevel=C}

<<Rationale>> {Reference=“FREQ 2, 
FREQ 3, SREQ 3”}

PathProjector

<<system interface>>

<<SafetyCritical>> {CriticalityLevel=C}

<<Interface>>
{InterfaceFor=NavigationControllerSubsystem}

ControllerInterface

Monitors MonitorsMonitors

Notifies

Monitors

Reads and Writes Reads StatusCommands and Reads Status

Queries and
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Commands
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Executes

Executes

Reads Status
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Specification=‘Fulfills all FREQs’}
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Specification=‘Fulfills all SREQs’}
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<<state dependent control>>

<<SafetyCritical>> {CriticalityLevel=C}

<<Handler>> {HandelableEvent=PilotInputEvent,
PerformedReaction=InvestigateFuelShortage}

<<Rationale>> {Reference=“FREQ 1, FREQ 2, FREQ 3, 
FREQ 4, FREQ 5, SREQ 2, SREQ 3, SREQ 4”}

Controller

<<system interface>>

<<SafetyCritical>> {CriticalityLevel=C}

<<Rationale>> {Reference=“FREQ 2, FREQ 3, 
FREQ 4, FREQ 5, SREQ 4”}

<<Interface>> {IsBetweenHardwareAndSoftware=true,
InterfaceFor=NavigationSubsystem}

NavigationInterface

<<algorithm>>

<<SafetyCritical>> {CriticalityLevel=C}

<<Rationale>> {Reference=“SREQ 2, SREQ 3”}

SafePointDeterminator

<<coordinator>>

<Monitor>> {Kind=Safety, MonitoredEntity=Controller,
DetectableEvent=IndependentSubsystemEvent,

EventHandler=ControllerMonitorAndHandler}

<<Handler>> {HandelableEvent=IndependentSubsystemEvent,
PerformedReaction=ReactionToIndependentSubsystemEvent}

<Rationale>> {Reference=“SREQ 4, SREQ 5, SREQ 7”}

ControllerMonitorAndHandler

<<system interface>>

<<SafetyCritical>> {CriticalityLevel=C}

<<Rationale>> {Reference=“FREQ 1”}

<<Interface>> {IsBetweenHardwareAndSoftware=false,
InterfaceFor=NavigationDatabaseSubsystem}

NavigationDatabaseInterface

<<state dependent control>>

<<Handler>> {HandleableEvent=DependentSubsystemEvent,
PerformedReaction=ReactionToDependentSubsystemEvent}

<<Rationale>> {Reference=“SREQ 1, SREQ 6, SREQ 7”}

ExternalSubsystemsEventHandler  

Fig. 5. Controller Subsystem Design 

HeadingAndSpeed-Interface to detect HeadingAndSpeedControlledBy 
OtherSubsystem and HeadingAndSpeedNotControlledByOtherSubsystem 
events and then notifies ExternalSubsystemsEventHandler that triggers the 
DisableController or EnableController reactions accordingly. (The 
PerformedReaction tagged value of the <<Handler>>’s stereotype indicates that 
the handler performs actions that are subclasses of 
ReactionToDependentSubsystemEvent, which is the case of 
DisableController and EnableController—Fig. 4). Classes HeadingAnd-
SpeedMonitor and ExternalSubsystemsEventHandler are therefore 
stereotyped <<Rationale>>, and the Reference tagged value shows SREQ 1. 

5.3   Safety Monitoring and Certification 

In this section, we revisit the usage scenarios discussed in Section 3.1 (Fig. 1) with 
the help of the NC subsystem case study. When designing a safety critical system 
with our airworthiness profile, software engineers have to relate their design decisions 
to functional as well as non-functional (safety) requirements. This is done in our 
profile by using the <<Rationale>> stereotype. Each model element that 
implements at least one safety (or functional) requirement is stereotyped with 
<<Rationale>> in Fig. 5. Thus, the design is explicitly and precisely related to the 
safety requirements, which then supports usage scenario 3 in Fig. 1 (record and justify 
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design decisions). The <<Rationale>> stereotype has an Explanation tagged 
value. The events, reactions, and monitors classes, as well as links between classes 
and requirements (Reference tagged value of stereotype <<Rationale>>) clearly 
show which class is responsible for what. Note that other stereotypes and tagged 
values were defined in the profile but were not used in Fig. 5 though they further 
facilitate usage scenario 3 (Fig. 1) [15]. Documenting design decisions is also 
possible for replications (see the Replicated, Comparator, and 
ReplicationGroup concepts in Fig. 2) and configurable parts of the system (see the 
Configurator, Configuration, Loadable, and Configurable concepts in Fig. 
2). 

Another major advantage is that software engineers will likely better consider 
safety requirements if they have to explicitly relate the design model elements to them 
(usage scenario 2: design safety requirements). By decomposing safety requirements 
into events, reactions and monitors, designing safety requirements in the system 
reduces to ensuring that safety-related events are detected and that the relevant 
reactions are properly executed. This helps the software engineer ensure that all 
identified safety requirements are accounted for in the design. The <<Rationale>> 
stereotype and its Reference tagged value, as well as the <<Reaction>> stereotype 
and its EffectOnSafetyDirection tagged value (which can be Positive or 
Negative), also play an important role in ensuring this. 

Since design decisions are documented in the diagram, simple queries on the UML 
diagram can help safety engineers monitor safety (usage scenario 4 in Fig. 1). Using 
adequate tool support to query the UML model, a safety engineer can for instance 
check whether all safety requirements are handled by at least one class, that all the 
safety-related events correspond to some reaction and are handled in the design. Thus, 
safety engineers can determine how safety requirements are designed into the system 
(usage scenario 2 in Fig. 1), and how design decisions are justified (usage scenario 3 
in Fig. 1). It is worth mentioning that reports from such query do not need to refer to 
UML terminology and concepts. This is important as safety engineers are usually not 
experienced in UML, object-orientation or programming. Additionally, although we 
have not developed a prototype tool that supports the profile and implements such 
queries, we ensured that the technology exists. For instance, the Rational Software 
Architect tool provides an OCL query engine to query a UML model, which could 
also benefit software engineers, e.g., they could use them to ensure for instance that 
all safety requirements are handled. 

Similar querying mechanisms could also be developed for certification purposes, to 
prove compliance with airworthiness requirements (usage scenario 5 in Fig. 1). Here 
are a number of examples, extracted from the standard [14]. Certifying authorities 
require for instance that each safety requirement be implemented. This was discussed 
above (events/reactions). Certification authorities also require that software levels and 
hardware/software interfaces be clearly specified. Software levels can be obtained by 
querying the model for all the model elements with the <<SafetyCritical>> 
stereotype and reading its CriticalityLevel tagged value. Hardware/software 
interfaces can be obtained by querying the model for all model elements with the 
<<Interface>> stereotype and reading its IsBetweenHardwareAndSoftware 
tagged value. Certification authorities require that partitions be clearly specified, and 
our profile has a <<Partition>> stereotype. More complex queries could also be 
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implemented. For instance, a query could ensure that the software level of a 
component be equal to at least that of the highest software level for all the 
components that depend on it. 

In conclusion, our profile clearly supports all but one (usage scenario 1) of the 
usage scenarios discussed in Section 3.1, which described how safety information is 
used in practice. 

6   Conclusion 

Communication and collaboration among safety stakeholders, namely safety 
engineers and software engineers, has been found to be a major challenge when 
building safety-critical software. To address this issue, we have first focused on one 
specific domain, specifically commercial and military aerospace systems. We first 
identified and modeled, from the RTCA DO-178B standard (a.k.a. the airworthiness 
standard), the information that both engineering groups have to exchange and how 
they would use such information in practice (usage scenarios): safety engineers 
communicate safety requirements to software engineers, software engineers design 
software with safety in mind and record design decisions, safety engineers monitor 
safety during design and prepare reports for certification. We modeled this 
information in terms of 27 safety-related concepts (and 48 attributes) and their 
relationships thus leading to a conceptual model (class diagram). Although primarily 
focussing on aerospace software systems, we made sure that those concepts would 
also be usable for other safety critical software systems. 

Because we focus on embedding safety information in UML models, the de-facto 
standard for designing object-oriented software, we used the defined safety conceptual 
model to compare existing UML-based approaches (e.g., existing profiles). Our 
conclusion was that existing UML-based approaches are far from being adequate for our 
purpose: they only capture a small portion of the safety concepts in our conceptual 
model. We therefore defined our own UML profile, composed of 32 stereotypes and 80 
tagged values, focusing first on adding safety information to class diagrams. 

This profile was applied on a realistic case study, a navigation controller subsystem 
that can control an aircraft’s flight paths through both automatic pilot and manual 
input from the pilots. We designed the controller subsystem using our profile, i.e., 
embedding safety information in the model, following standard procedures required 
by the airworthiness standard (e.g., we performed a safety analysis of the controller 
subsystem). We then showed that our profile can indeed facilitate communication 
between software engineers and safety engineers and the certification process (the 
usage scenarios). 

Future work should first focus on (1) providing full automation for the profile, (2) 
extending it to other diagrams such as sequence diagrams and state machines, and (3) 
evaluating its usefulness in practice through additional case studies. 
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Abstract. Software bugs occur in model-driven development, just as
they do with traditional development techniques. We explore the types
of bugs that occur in model transformations and identify debugging ap-
proaches that can be applied or adapted to a model-driven context. In-
vestigation shows that the detailed source-to-target traceability avail-
able with model transformations enables effective post-hoc, or forensic,
debugging. Forensic debugging techniques are introduced for automated
bug localisation in model transformations. The methods discussed are
grounded with examples using the Eclipse Modeling Framework (EMF)
and Tefkat, a declarative model transformation engine.

1 Introduction

As model-driven engineering techniques have become widely adopted in com-
mercial environments the need for related high quality, pragmatic engineering
processes has become very apparent. A key aspect of this is the need for efficient
and effective debugging techniques.

Model transformations form the backbone of model-driven engineering, and
correspondingly become a primary point of failure. Transformation development
faces similar challenges to traditional programming; specifically, the possibility
of human error in any stage of the development life-cycle, thus the need for
debugging.

Debugging is readily classified into three parts, identifying the existence of
a problem, fault localisation and the actual correction of the problem [1]. Gen-
erally, once a problem is located, a developer who is adequately experienced
with the technology can correct the problem with minimal effort. Traditionally
the majority of effort is spent on bug localisation [1,2,3] and the case in model
transformations is no different. Based on the premise that automation of bug
localisation will provide the greatest benefit to the developer or modeler, we
describe debugging primarily in terms of this localisation.

In this paper we address bug localisation for model transformations in four
key parts: the identification of questions that are asked when debugging model
transformations; the classification of model transformation bugs into a set of bug
classes and patterns; the exploration of debugging approaches that can be applied
or adapted to these types of bugs; and, the demonstration of these approaches
to automate bug localisation in model transformations.
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2 Concepts and Context

The goal of a model transformation is to produce one or more target models,
from an input of one or more source models. When talking about source and
target models in the context of a model transformation, there are two parts, the
meta-model that describes, or defines, the model and the model instance, which
is a specific occurrence of the meta-model.

2.1 Model Transformation Tools

There are a number of model transformation tools available which utilise dif-
ferent techniques to solve the transformation problem. The defining characteris-
tics [4,5,6] of these techniques include:

– how the transformation is specified; as a general purpose language or as a
problem specific language.

– the transformation approach; either an imperative or declarative approach.
– what needs to be transformed; the types, described by a meta-model or free

text; the number of models involved, 1..m source and 1..n target models
– the traceability between transformation artifacts; firstly the detail of the

traceability (if any) and secondly the directionality, i.e. can the trace be
followed source-to-target, target-to-source or both.

– the level of automation; applied programatically or manually.

To look at debugging problems, the transformation approach and traceabil-
ity of the transformation are the most important characteristics. It is assumed
that most practical transformations will achieve an adequate level of automation
and that both source and target models are instances of a well defined meta-
model. The number of models involved in the transformation is disregarded as
the debugging concepts should extend to any number of models.

Using these characteristics as a guide, we have utilised the Eclipse Modeling
Framework (EMF) [7] and the Tefkat [8] model transformation engine. Tefkat
uses a declarative approach to model transformations. It has a formal trace
model, which links the target, source and transformation. Another important
feature of Tefkat is that the abstract syntax of a transformation is represented
as a model, with corresponding meta-model. This allows the trace model to
accurately reference the transformation as well as the source and target models.

Declarative approaches, like Tefkat, concentrate on what relationships exist
between the source and target, compared with imperative approaches which con-
centrate on how to explicitly transform from the source to target. By defining
only the relationships, declarative transformations allow for complete and correct
transformations to occur without concern for execution order, source traversal
and target creation. The use of a declarative approach does introduce complex
concepts that make traditional imperative debugging techniques difficult. The
most obtrusive of these is the lack of a pre-defined execution order. This makes
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interactive or step-through debugging difficult as the execution order is indepen-
dent from the concrete syntax.

2.2 The Model Transformation Environment

To identify and localise bugs in model transformations, the model transforma-
tion environment must be understood. This environment may vary depending
on the specific model transformation technologies, however similar concepts are
applicable to most types of transformation. The core artifacts in the model
transformation environment are the source model(s), the target model(s), the
transformation and any available trace information. The Tefkat model transfor-
mation environment (figure 1) is comprised of:

– Source extents: One or more source model instances and their meta-models.
– Target extents: One or more target model instances and their meta-models.
– The transformation: The model transformation and its meta-model.
– The trace extent: A trace model instance and meta-model that links tar-

get objects to the source objects that contributed to their creation and the
transformation rule involved (see figure 2).

Fig. 1. The model transformation environment

The trace extent is a key enabling factor for the techniques presented in this
paper. Source-to-target traceability was identified as a key requirement in early
model research [9,10,11]. Gerber et al. [12] even noted the possibility of utilising
trace information for tasks such as debugging, change propagation and round-
trip engineering. As discussed further in section 4, this trace information is yet
to be fully exploited for debugging.

The information contained in the trace extent can be leveraged for more effec-
tive post-hoc debugging techniques than is possible with traditional languages.
Figure 2 provides a visual representation of the information contained by the
Tefkat trace model. Each trace object references a target object, the transfor-
mation rule which created the target object and the source object(s) which
contributed to its creation.
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Fig. 2. Model trace environment

3 Model Transformation Bugs

To start identifying model transformation bugs, the first step is to understand
the questions which MDD practitioners ask when something goes wrong or just
doesn’t look correct. These debugging questions, and the resultant classes of
bugs are derived from a combination of the author’s experience in model trans-
formations and the analysis of transformation problems raised by the Tefkat user
community. The identified questions aims to be a complete view of the informa-
tion required to identify and localise bugs in model transformations. However, as
the questions are based upon experience, it is expected that the set of questions
will evolve in the future; as model-transformation techniques are improved and
adopted in wider areas of software development.

3.1 The Debugging Questions

The debugging questions commonly asked by a modeler can be divided into
two high-level categories. These categories are characterised by model transfor-
mations that produce incorrect output, logical bugs, compared with those that
produce invalid output, well-formedness bugs.

Logical bugs, category A, can be identified by the violation of a relationship
constraint between the source and target of a given transformation. Commonly
these are only informal or implicit constraints, such as, we expect a few x’s in the
target as we know there are some y’s in the source. There are several ways which
these constraints could be provided. The first, the constraint could be provided
by an oracle, the modeler, as a direct input to the debugging process. Next the
constraint could possibly be inferred from the transformation itself. Finally, the
constraint could be specified as a part of a formal testing or validation framework.
This paper only deals with the first case, but recognises the benefits of, and the
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requirement for, more formal specification and/or automated discovery of this
type of constraint. The set of logical bug related questions:

A.1 Why are there no objects of type t in the target?
A.2 Why are there so many objects of type t in the target?
A.3 Why is there only one object of type t in the target?
A.4 Why didn’t source type, t, result in any target objects being created?
A.5 Why doesn’t object x contain any references?
A.6 Why does a particular reference point to object x?
A.7 Why isn’t reference r set?
A.8 Why are references r1 to rn out of order?
A.9 Why does attribute a have value v?

A.10 Why isn’t attribute a set?

Well-formedness bugs, category B, can be identified by violation of the con-
straints specified by the target meta-model(s). Handling a model which is invalid
with respect to its defining meta-model is a more difficult problem than the in-
correct output case. To address this set of questions, debugging tools shall require
special case handling and dynamic discovery of the structure of model instances.
Dealing with invalid output models is out of scope for this paper, however it is
an important direction for future model-transformation debugging research.

The set of well-formedness bugs:

B.1 Why isn’t object x contained?
B.2 Why was the single valued reference, r, assigned more than once?
B.3 What violated meta-model constraint c?
B.4 Why is there no target model at all, i.e. no output compared with

empty output as described by question A.1?
B.5 Why is there an instance, x, of an abstract class c?
B.6 Why is there an instance, x, that has been created with two different

classes c1 and c2?

The questions provided for categories A and B are parametrised, indicating
the requirement for a debugging context to be well defined and provided as in-
put to the question. The problem of identifying this debugging context results in
the definition of a third set of questions, analysis questions. Analysis questions,
category C, encompass two sub-groups, bug smells or static-analysis questions,
category C.I, and information-discovery questions, category C.II. These ques-
tions are more about refinement of the problem than debugging questions but
they are relevant to localising bugs.

Bug smells represent a pattern or relationship between the source, target
and transformation that are commonly the result of a bug. It is important to
note that these smells are not always bugs, sometimes there will be a legitimate
reason for a bug smell pattern to be found. An example of a bug smells question
is question C.I.1.

C.I.1 Which source objects did not contribute to any target objects?
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Bug smell questions often need to be refined to produce more meaningful
output. In the example (question C.I.1), there may be a lot of cases where it
is acceptable for a source object to not contribute to any target objects. An
example of this is where a transformation is not completely exhaustive for the
source meta-model. Any objects not referenced by the transformation will not
contribute to the target, but is clearly not a bug. This process leads to questions
aimed at refining the output. Extending the example in question (question C.I.1).

C.I.2 For all source types, which source objects of the selected type did not
contribute to the creation of any target objects?

As these debugging questions evolve, it is apparent that there is a need for sup-
plementary information to use as input to the parametrised debugging questions.
This supplementary information is gathered by asking information-discovery
questions, category C.II. The information required to answer these questions
is often directly available in the trace model, however in large transformations
it can still be quite time consuming and error prone to access the information
without tool support. The category C.II questions identified are.

C.II.1 Given a target object, what source objects contributed to its creation?
C.II.2 Given a source object, what target objects did it contribute to?
C.II.3 Given an object type, which transformation rules reference the type?
C.II.4 Given a target object, what are the relevant slices of the transformation

that could effect its creation and/or attributes?
C.II.5 Which source objects contributed to the creation of target objects?

Figure 3 gives an overview of the debugging question categories that have
been defined. The next step in identifying model transformations is to turn
these debugging questions into a set of bug categories.

Fig. 3. Question categories

3.2 Classes of Bugs

The debugging questions raised in section 3.1 allow the classification of possible
bugs in model transformations. The bug classes identified can be used to facili-
tate several decision making processes, including allowing appropriate debugging
approaches to be linked to specific bug scenarios. Following is a set of bug classes
with descriptions to identify the different bug scenarios.
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Existence bugs: Existence relationships often exist between the source and tar-
get, e.g. for all source objects of type x there will be only one target object
of type y. These bugs are characterised by the debugging questions A.1-4. Exis-
tence relationships are often specified as informal requirements rather than strict
rules, which can make them more difficult to identify.
Containment bugs: Meta-models which define containment references expect a
strict set of semantics to be adhered to. There are two bugs which result in a
containment reference being violated. An object that should be contained is not,
or too many objects are contained by a single container.
Bi-directional reference bugs: A common bug pattern with bi-directional ref-
erences is where both ends of the reference don’t point back at each other.
Bi-directional constraints are enforced by EMF; this means that a bi-directional
reference bug will only result from a bug in the meta-model.
Range bugs: Range bugs occur where there are invalid values in the target
instance with respect to the constraints defined by the target meta-model.
Completeness bugs: Completeness bugs occur when some non-optional part of
the target is not generated as a part of the transformation.
Well-formedness bugs: Well-formedness bugs are closely related to the category
B debugging questions which result from invalid output. A well-formedness bug
occurs when the target model instance does not conform to the target meta-
model. Well-formedness bugs are a superset of a number of other bug categories,
including completeness bugs and containment reference bugs.
Technology specific bugs: Technology specific bugs occur as a result of the
model transformation tools and techniques used. This paper limits the discussion
of technology specific bugs as there is limited benefit in approaching technology
specific problems from a generic model-driven development perspective.

Using these types of bugs as a reference, debugging techniques will now by an-
alyzed to determine effective approaches to bug localisation that may be applied
to model transformations.

4 Debugging Techniques

Localisation is the key facet of any debugging process. Figure 4 visualises the
goal of bug localisation. The before snapshot represents a situation of a buggy
transformation, the developer knows there is a bug. However, there is a large
area (represented in white) of unexplored code where the bug may be located.
The after snapshot shows how a debugging process can be applied to narrow the
unknown area, and inturn help pinpoint the bugs location. It is important to note
that a realistic goal of bug localisation is not to pinpoint the precise problem,
merely to localise the possible causes to a minimum area. It is accepted that
there may always be some level of developer interaction required to go from a
localised bug to the correct solution.
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Fig. 4. Before and after localisation of potential problems

To achieve this bug localisation there are two primary categories which can
encapsulate most techniques: post-hoc or forensic debugging, and interactive or
live debugging.

4.1 Forensic vs Live Debugging

The key difference between forensic and live debugging is that live debugging re-
quires access to a complete runtime environment that is not required for forensic
debugging. Live debugging may always be required to solve more complex bugs.
However in model-driven engineering, the inherent traceability and the well-
understood nature of the source and target in model transformations provide a
unique opportunity for forensic debugging techniques. Leveraging the additional
traceability and artifacts available, a higher level of detail and most importantly
automation can be achieved with forensic debugging of model transformations
compared with traditional programming languages.

This paper concentrates on a static or forensic approach to bug localisation.
There are many advantages in pursuing the forensic case over live debugging.
These include:

– The time and effort cost for the developer usually associated with in-
teractive debugging.

– In a software development community where automation is contin-
ually being pursued, forensic debugging can save valuable resources
by using information from failed builds or tests to track down prob-
lems rather than relying on developers to re-run the problematic pro-
gram/transformation to perform live debugging tasks.

– Offline debugging means that bugs can be localised in inaccessible en-
vironments, such as production environments where live debugging is
often impossible.

– Transient errors or heisenbugs1 can be difficult or impossible to repro-
duce in a live debugging environment.

To assist in the development of debugging techniques that can take advantage
of these aspects of forensic debugging we look to past debugging research in
comparative areas of software development.
1 A bug that disappears or changes its behavior when debugging [13].
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4.2 Learning from the Past

There has been no significant research into the post-hoc debugging possibilities
specific to model transformation. However, the declarative paradigm used by
Tefkat and many other transformation engines is not new to software develop-
ment. They share similar debugging problems as those seen in fifth generation
and logic languages such as Prolog and Mercury. The difficulty in debugging
these declarative languages is well-understood, with significant research into
debugging techniques such as program slicing [14,15] and algorithm debug-
ging [16,17,18,19,20].

Many traditional automated debugging techniques such as anomaly detec-
tion [21], test based fault localisation [3], statistical based fault localisation [22]
and nearest neighbour queries [23] struggle with the paradigm shift from an
imperative to declarative approach. However, there is also a portion of auto-
mated debugging research which can apply equally, or at least be adapted, to
suit both imperative and declarative programs. These approaches include using
data-flow analysis to help with program slicing [24], predicate switching [25] and
knowledge-based localisation [1].

5 Localisation of Model Transformation Bugs

To address the debugging questions, section 3.1, we present two forensic de-
bugging approaches: analysis and re-enactment. These approaches adapt and
extends the techniques discussed above in section 4.2, to best suit forensic de-
bugging of model transformations.

5.1 Analysis

Analysis involves gathering evidence from the artifacts available in the normal
model transformation environment (see figure 1). At its simplest level this is
simply a collation and refinement of the available data. Analysis is best suited
to addressing category C debugging questions by identifying bug smells, and
gathering evidence to be used as input to the re-enactment processes. All the in-
formation is readily available, however the volume and complexity of the output
can prevent viable manual processing.

We have experimented in the use of analysis techniques to gather the informa-
tion required for bug-localisation. To implement and automate the information
gathering required, we have used two different methods. Firstly, programatically
through the EMF API and secondly, as a Tefkat transformation where the static
environment; the original source, target, transform and trace; form the trans-
form inputs and the transform output is a reference or set of references which
answer the query. Both techniques have been successful, and the best choice of
implementation depends greatly on the specific tools and automation techniques
that are being utilised.

The following sections describe, in generic terms, how the model transforma-
tion environment can be utilised to answer some of the debugging question using
analysis.
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Tracing from a target object to its contributers. To address question
C.II.1, the required information is readily provided by the trace model (TRM).
A direct look-up for each target object will find the rule which created it and
the source objects which contributed to its creation.

Tracing from source objects to target objects. Question C.II.2 is effec-
tively addressed by the algorithm specified for question C.II.1, with the source
and target roles reversed.

Source objects that contributed to the creation of target objects. The
source references in the trace model (TRM), (TRM [source-references]), is a
subset of the source model (SM). Using this, question C.II.5 is addressed by
finding the intersection of all the source references in the trace model and the
objects in the source model.

x = TRM [source-references]∩ SM

Source objects that did not contribute to the creation of a target
object. Similarity, question C.I.1 is addressed by determining the relative com-
plement of all the source references in the trace model and those in the source
model.

y = TRM [source-references]− SM

As discussed in section 3.1 and presented in question C.I.2, the output of
this question must be refined to produce a useful result. An additional filter is
applied to reduce the output; the objects found by the first process that have a
type referenced by the transformation (TFM).

z = {o | o ε y ∧ o.class ε TFM [MOFInstance]}

Analysis of the model transformation environment has provided enough infor-
mation to answer straight forward, query based questions. Re-enactment extends
this information to pinpoint specific rules and/or terms in rules that trigger a
bug.

5.2 Re-enactment

Re-enactment involves the selective re-execution of logical parts of the model
transformation in a controlled runtime environment to gather knowledge about
specific problems. Typically there are two parts to the re-enactment, determining
a part of the transformation which could potentially cause a given problem,
and executing that part in isolation. The execution phase of the re-enactment
will utilise program slicing [14,15] and predicate switching [25] to narrow down
possible failures over a number of iterations.

The re-enactment process developed involves executing modified slices of the
transformation in isolation. The transformation slices shall be created using pred-
icate switching to replace irrelevant or at least suspected irrelevant parts of the
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transformation. The predicate switching is implemented by replacing conditional
terms with an explicit TRUE term. The re-enactment algorithms have been de-
signed with automation in mind. As such, they utilise only information available
in the model-transformation environment and they do not rely on any additional
knowledge to be provided by the user.

Re-enactment is best suited to answering category A debugging questions.
For the following examples it is assumed that the output is always valid, but is
not the expected output.

Choosing a slice. The process of choosing a slice is dependent on the con-
straint being tested. Currently this research assumes that a slice has already
been identified. There is space for future work in this area, as it may be possi-
ble to choose a slice using a heuristics based approach for selecting rules from
the transformation or by interacting with a test framework that uses formal
constraints to identify bugs.

An example. The first example, figure 5, shows a Tefkat transformation rule.

RULE FindPersistentClasses
FORALL UMLClass uml
WHERE uml.kind = "persistent" AND uml.parent.kind = "persistent"
MAKE UMLClass result
SET result.name = uml.name, result.kind = uml.kind,

result.parent = uml.parent;

Fig. 5. Simple Tefkat rule containing a bug

This rule is working with a simplified UML meta-model, figure 6. The rule is
attempting to locate all persistent classes, that is classes with a kind attribute
of “persistent” or a parent with a kind attribute of “persistent”.

The rule contains a bug in the conditional logic. The use of AND instead of
OR prevents the finding any persistent classes. The modeler knows that there
are some persistent classes in his input model, so he asks debugging question
A.1,“why are there no UMLClasses in my output?”. To answer this question
re-enactment is used.

A simple slice. To answer the question posed, a head-first or tail-first predi-
cate switching approach can be applied to this problem. Our experiments have
identified benefits to both approaches. An important point to note when evalu-
ating each approach is that the head or tail is logical only, to re-iterate the point
in section 2, there is no explicit execution order so the terms in the rule may
be re-ordered by the transformation engine as required. The choice of starting
from the head or tail is arbitrary, but draws on techniques commonly applied
by developers attempting to localise a bug.

The head-first switching algorithm is shown in figure 7. This approach replaces
all conditional terms with a TRUE term, adding the conditions back one at a
time until the transformation output goes from the correct output to the buggy
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Fig. 6. Simple UML meta-model

output. The last term switched is identified as a potential problem. If no terms
made a difference to the output it indicates that the input to the rule actually
caused it to produce the unexpected output.

The tail-first switching algorithm is shown in figure 8. Tail-first switching
iterates through each conditional term, replacing it with a TRUE term until the
transformation goes from the “buggy” output to the “correct” output. Similar to
the head-first approach, if no terms made a difference to the output it indicates
that the input to the rule actually caused it to produce the unexpected output.

To produce a complete picture it is possible to combine both approaches.
Often both approaches will return the same result, but it is possible that two
potential problems can be identified. An advantage of using both approaches
is the removing terms in different orders helps the elimination of down-stream
bugs; those which would not occur except for a problem earlier on in the rule.

In the uml example, applying both of these rules highlights the uml.parent
.kind = "persistent" term. As highlighted by figure 4 and section 5 this may
not be the root cause of the bug, however it localises the problem sufficiently to
realise that it doesn’t make sense that the term always has to be true and the
bug can be corrected by modifying the AND to an OR.

1 Select source term for rule (current slice)
2 mofInstances <- new list, conditions <- new list
3 For each term

3.1 If source term is a MOFInstance, add to mofInsances
3.2 Otherwise term is potentially a condition, add to conditions

4 For each condition in conditions
4.1 Replace condition with TRUE term

5 Execute new version of rule
6 If result contains NO required objects, the input is at fault,

return mofInstances as potential bug
7 For each condition in conditions (from head to tail)

7.1 Replace TRUE term with condition
7.2 Execute new version of rule
7.3 If result contains NO required objects, return condition

8 return Rule is OK

Fig. 7. Head-first predicate switching
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1 Select source term for rule (current slice)
2 mofInstances <- new list, conditions <- new list
3 For each term

3.1 If source term is a MOFInstance, add to mofInsances
3.2 Otherwise term is potentially a condition, add to conditions

4 For each condition in conditions (from tail to head)
4.1 Replace condition with TRUE
4.2 Execute new version of rule
4.3 If result contains any of required object, return condition

5 No terms effected output, the input is at fault,
return mofInstances as potential bug

Fig. 8. Tail-first predicate switching

There are a number of caveats to this approach. Most importantly, it is not
possible to easily differentiate between a source term that will bind a variable
and one that acts as a condition or filter. This means that removing the source
term could break the injection part of the rule and cause the transformation
to flounder2. To address this problem the transformation rule can be modified
to not depend on any variables possibly bound in the source term. The first
step to this is eliminating all target conditions (SET clause in the example). The
second step is to eliminate all non-default injections. The example does not have
any non-default injections, which take the form of a MAKE/FROM clause. These
changes to the transformation rule do not affect the algorithms in figures 7 and
8 as, although some values will differ from the “correct” output, there will be
no changes to the objects that are created.

An advanced slice. The algorithms presented in figures 7 and 8 address
a simple case where all the effecting logic is encapsulated within a single rule
and with no branching. A more realistic example would involve the use of an
OR condition, IF/THEN/ELSE statement, PATTERN use or implicit dependencies
between rules created by LINKS/LINKING terms. These more complex structures
require additional checks that must be made to ensure a complete set of results
is determined. For example, in the case of OR, a potential problem could be
identified for each branch within the rule.

Figure 9 shows the recursive execution of the predicate tail first switching
algorithm on each branch of the OR condition. This algorithm can be inserted
at step 7.1 in figure 7 or step 4.1 in figure 8. The first additional check is for an
OR condition. If either of these statements are encountered, each of its branches
must be traversed separately. It is possible that the conditional statement will
result in 0, 1 or 2 additional results.

Other advanced constructs; IF/THEN/ELSE statements, PATTERNs and LINKS/
LINKING statements; can be approached with similar predicate switching algo-
rithms. The IF/THEN/ELSE case is identical to the OR case where each branch
is replaced then the whole statement is replaced. Patterns can be addressed by
identifying and recursively applying the predicate switching to each PATTERN

2 The transformation can not complete execution as a rule is dependent on variable
that is never bound.
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1. If the condition is an ’OR’ term
1.1 Replace the first nested term with FALSE and recursive apply

predicate switching algorithm to right hand side of ’OR’ term
1.2 Replace the second nested term with FALSE and recursive apply

predicate switching algorithm to left hand side of ’OR’ term
1.3 Replace entire ’OR’ term with TRUE

2. Otherwise continue normal predicate switching algorithm

Fig. 9. Handling multiple branches

declaration, and finally to the PATTERN use. This approach can be used to iden-
tify any terms inside the PATTERN declaration that effect the output.

Dependencies between rules, normally identified by the LINKS construct in
Tefkat, present additional problems. In the simple slice example it was noted
that floundering could be prevented by modifying the MAKE and SET clauses
to only depend on variables that are not bound by the terms involved in the
predicate switching. A rule containing a LINKS term may not depend on any
other input and as a result the LINKS term can not be switched out. There
are two approaches to handling this situation. Firstly, the LINKS term can be
processed last (similar to the MOFInstances in the simple slice). If none of the
other terms affect the output then it can be said the rule does not produce the
expected output as no dependent objects were created. This information can be
used to identify the rules which create those dependent objects, allowing the
debugging questions to be asked again for the new rule. The second approach is
to ensure that the dependency always exists. This approach is useful when there
is more than one LINKS term that must be processed.

6 Conclusion

The key to addressing the debugging problem, with respect to model transforma-
tions, is understanding the types of questions raised when a problem is identified.
In section 3.1, we presented a framework, as a set of questions, to define the goals
of model-tranformation debugging.

Utilising forensic debugging approaches we have addressed a number of the
model transformation debugging questions highlighted. We have demonstrated
the potential that leveraging the trace available in model transformations brings
to forensic debugging. We have also demonstrated the adaptability of previously
live debugging approaches into forensic algorithms.

Analysis techniques do benefit from leveraging the current trace information.
However as the research has progressed it has highlighted the potential for im-
provements to the information provided by the trace model. Some of these pos-
sible enhancements include linking target objects to the specific injection that
created them and also the rules that resulted in the objects’ attributes being set.

The re-enactment approach is able to greatly extend the value which forensic
debugging can provide. However, it is important to realise that the re-enactments
can rarely (if ever) provide a definitive answer to its queries without help from the
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user. That said, it contributes significantly towards solving the original problem
of localising the fault and minimising developer debugging effort.
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Abstract. Finding runtime faults in object-oriented code can be very difficult
even with the aid of modern runtime debuggers. Failures may manifest them-
selves due to decisions in the code that were executed much earlier in the pro-
gram. Tracing execution paths and values backward from a failure to the faulty
code can be a daunting task. We propose a fault finding approach that uses unit
tests to exercise source code in order to trace object-method execution paths.
This is similar to reverse-engineering techniques used to create Sequence Dia-
grams from code. It is often too complex to debug a program using a large set
of reverse-engineered Sequence Diagrams each obtained from an individual ex-
ecution. Therefore, our approach partitions and aggregates individual execution
paths into into fault and non-fault revealing categories. By examining the differ-
ences between fault and non-fault paths, we are left with a simplified graph. The
graph can then be transformed into a useful Sequence Diagram that may reveal
the location of the faulty code.

1 Introduction

A fault can be defined as missing or incorrect code. A failure is the observable inability
of a system or component to perform a function due to a fault [3]. A runtime failure is
a failure that is revealed by running the code. Tests may reveal where a runtime failure
occurs, but they often do not reveal the location of the fault responsible for the failure.
We provide an approach that aids in finding runtime faults by using reverse-engineered
UML Sequence Diagrams.

The current approach to finding runtime faults relies on using a debugger usually
built into an integrated development environment (IDE). Debuggers allow users to ex-
ecute and observe the state of their program. Debuggers provide a friendly interface
for observing the stack frames of an executing program. Variables can be flagged for
observation, which is called setting a watch. A user can choose to execute the program
one line at a time known as stepping through code or set a break point which allows
the program to execute up to a pre-specified location and then halt. The user can than
start the execution again if needed. Usually a combination of breakpoints and stepping
are called for. Once a failure manifests itself, the following steps can be taken using a
debugging tool:

1. Place a watch on suspicious variables.
2. Set break points.

G. Engels et al. (Eds.): MoDELS 2007, LNCS 4735, pp. 605–619, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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3. Execute the suspicious code segment and observe variables.
4. Step through code as needed.

This process is repeated until the error is found or the user gives up.

2 Hard to Find Faults

The traditional approach to finding runtime faults works reasonably well if the failure
occurs in close proximity to the underlying fault. This is the situation, for example,
when both fault and failure occur within the same method. As the distance between
failure and fault increases, however, the traditional approach of setting break points and
stepping through executing code becomes much more difficult.

2.1 Notions of Distance

A straightforward notion of distance beteween the failure and the fault could be mea-
sured as lines of executed code; we call this syntactic distance. Intuitively, syntactic
distance between fault and failure has an obvious relationship on the difficulty of a
particular debugging task. The larger this distance, the more code must be examined.
Worse, since the developer will be examining source code (as opposed to an execu-
tion trace), they must reconstruct (either mentally, or through repeated execution) how
decisions made at each branch point in the source code conspired to create the ob-
served failure. As the syntactic distance between fault and failure grow, the number
of branches that must be examined will likewise increase. Without accurately knowing
which branch has been taken during a particular execution, this effect will lead to an
exponential growth in the code base relevant to this search.

A second notion of distance is based on the developer’s intuitive beliefs about where
a particular fault may be located compared to the actual location of the fault. These intu-
itions can be viewed as creating a priority-queue of source-code locations that the devel-
oper will examine. We call the location of the true fault in this priority-queue heuristic
distance. That is, as the developer’s intuition guides them down incorrect paths, the
heuristic distance is large. However, as more and more possibile locations are elimi-
nated, the location of the true fault will necessarily rise toward the top of the priority
queue and the heuristic distance will likewise decrease. The heuristic distance is thus
critically related to how much time the debugging task is likely to require.

In the traditional approach to debugging, there is an important interplay between
syntactic distance and heuristic distance. As syntactic distance increases, the developer
will have to incrementally set break points further and further back from the failure.
Because the number of branches that may need to be explored will be high, the heuristic
distance is also likely to be initially high and will be higher still if the fault occurs in a
seemingly unrelated area of the source code. In other words, as the syntactic distance
increases, the developer is likely to spend significantly more time looking for the fault.

The correlation between syntatic and heuristic distance is not fundamental. We be-
lieve that given an appropriate set of tools it is possible to substantially reduce or even
remove the correlation between these two measures. In the following section, we pro-
vide a detailed illustration of one failure situation in which the heuristic distance is
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likely to be relatively high. Then, we present a new tool that can be used to quickly
isolate sections of the source code that are likely contributors to the failure. By visu-
ally identifying these potentially problematic sections, our tool is able to decouple the
relationship between syntactic and heuristic distance, thus making hard-to-find faults
readily apparent.

2.2 Cache (In)Consistency: An Example

Consider two objects: a DataSource that provides a volatile dataset based on its
own internal state (see Listing 1.1); and a DataConsumer that examines the datasets
provided by multiple DataSource objects.

Listing 1.1. DataSource

public class DataSource {

Version version = new Version();

// two internal state values impact the results
// returned by getData()
private int type; // internal state
private double initialvalue; // internal state

public int getVersion() {
// the version is used to indicate changes to the
// DataSource’s internal state. So long as the
// version remains unchanged, calls to getData()
// should return the consistent results.
return version;

}
public DataSet getData(int n) {
// do something potentially complicated based on the
// internal state and return a dataset with n elements...

// source code continues...

DataSource’s job of generating the dataset may be complex, requiring significant
computational overhead. If this is the case, it may make sense for the DataConsumer
to store these datasets in a cache. In this way, the DataConsumer can control how
storage is allocated, optimizing the caching policy for its own purposes. The object in
Listing 1.2 follows this model. Note also that two DataConsumer methods
(invert() andsetInitialValues())manipulate the underlyingDataSource
objects. This, in turn, impacts the datasets that will be produced by the getData()
method.
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Listing 1.2. DataConsumer

public class DataConsumer {
DataSource[] srcs;
// the cache maps DataSets to their DataSource and keeps a
// Version number to quickly check if the DataSet is stale
Cache<DataSource,DataSet,Version> cache;

public void setInitialValues(double d) {
srcs[0].setInitialValue(d);
srcs[1].setInitialValue(d);

}

public void invert() {
int t = srcs[0].getType();
srcs[0].setType(srcs[1].getType());
srcs[1].setType(t);

}
// source code continues...

TheDataConsumeruses thecache in itsgetPoint()method.ThegetPoint()
method is illustrated in Listing 1.3 and is intended to retrieve a particular data point for
one of the datasets.

Listing 1.3. DataConsumer.getPoint()

public Point2D getPoint(int s, int n) {
CacheEntry e = cache.get(srcs[s]);
DataSet ds;
Version dsVersion = srcs[s].getVersion();

if ( e == null ) {
// if the dataset is not in the cache, fetch it
ds = srcs[s].getData(size);
cache.put( srcs[s], ds, dsVersion );

}
else if ( !e.getVersion().equals(dsVersion) ) {
// inconsistency detected -- cache is stale, refresh it
ds = srcs[s].getData(size);
cache.put( srcs[s], ds, dsVersion );

}
else {
// cache seems consistent
ds = e.getData();

}
return (Point2D)ds.get(n);

}
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The cache relies on a simple method for determining cache consistency. Each time
a dataset is obtained from a DataSource, the version is also obtained and stored in
the cache. So, to retrieve a data point, getPoint() first looks for a cache entry. If
an entry is found whose version matches the DataSource’s current version, the entry
is determined to be consistent and the point is fetched directly from the cache. Other-
wise, DataSource.getData() is invoked to get a new copy of the dataset thereby
refreshing the cache and providing the return results.

This approach relies on DataSource.getVersion() to indicate when the
DataSource has changed in a manner that will affect the dataset it produces. A prob-
lem arises if this assumption is violated. Consider the two methods below, both of which
change the internal state of a DataSource object.

Listing 1.4. DataSource methods

public void setInitialValue( double v ) {
initialvalue = v;
version = version.next();

}

public void setType( int t ) {
// BUG: setting the type affects the data that an instance
// would produce. We should increment the version number
// to indicate such a change.
type = t;

}

Listing 1.4 illustrates a type of fault that may be quite difficult to identify, espe-
cially given the context of how the DataSource object will be used. Because the
setType()method does not appropriately increment the version, it makes any cached
dataset susceptible to inconsistency. Moreover, since setType() is otherwise cor-
rect, a fault will only occur when this method is invoked between calls to the Data-
Consumer’s getPoint() method. The net result is that syntactic distance is likely
to be quite high. The fault will not occur in the same method that the stale data is used,
nor will backtracing to the invert() method reveal the fault. Rather, the developer’s
search will need to continue back to setType().

In addition to the syntatic distance between fault and failure, there is also likely to be
significant heuristic distance in this situation. Consider the two unit tests in Listing 1.5.

In both tests, identical methods are invoked, yet only one test (testFailure) pro-
duces a failure. This of course, is because invert() calls setType() and since this
method is invoked between calls to getPoint() the DataConsumer’s cache be-
comes inconsistent. A developer having noticed the success of the first test, might be
inclined to assume that invert() and all of the methods it calls all work correctly.
This would place a large heuristic distance between failure and fault and may mean that
a considerable time is spent before the developer notices that it is invert()’s under-
lying calls to setType() which are actually responsible for the erronous behavior.



610 O. Pilskalns, S. Wallace, and F. Ilas

Listing 1.5. Unit Tests

public void testSuccess() {
// this test exercises the code
consumer.invert();
for( int i = 1; i < nTests; i++ ) {
consumer.setInitialValues( i );
// check end points
assertEquals( new Point2D.Double( 0.0, i ),

consumer.getPoint( 1, 0 ) );
assertEquals( new Point2D.Double( 3, i+6 ),

consumer.getPoint( 1, 3 ) );
assertEquals( new Point2D.Double( 3, i-9 ),

consumer.getPoint( 0, 3 ) );
}

}

public void testFail() {
// this test exercises the code
consumer.setInitialValues( 1 );
assertEquals( new Point2D.Double( 3, 7),

consumer.getPoint( 0, 3 ) );
assertEquals( new Point2D.Double( 3, -8),

consumer.getPoint( 1, 3 ) );
consumer.invert();
// fails! cache is out of sync!
assertEquals( new Point2D.Double( 3, 7 ),

consumer.getPoint( 1, 3 ) );
assertEquals( new Point2D.Double( 3, -8),

consumer.getPoint( 0, 3 ) );

}

3 The Approach

Our approach relies on differentiating between successful code execution and fault re-
vealing code execution. By tracing code execution of both successful and fault revealing
unit tests, we can create directed acyclic graphs that show the differences. These graphs
can be transformed into Unified Modeling Language (UML) Sequence Diagrams. UML
Sequence Diagrams are often used by Software Engineers to represent the behavior of
program in the design phase. Here we use Sequence Diagrams to reveal faults while
eliminating the unnecessary clutter of code-level detail. The following steps outline our
approach:

1. Create Unit Tests
2. Instrument the source code so message paths (and associated objects) can be traced.
3. Execute the tests and record objects and message paths.
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4. Partition paths into fault and non-fault revealing partitions.
5. Aggregate all paths into a single graph and differentiate based on fault partitions.
6. Generate Sequence Diagram from differentiated graph.
7. Use Sequence Diagram to reason about fault.

3.1 Unit Tests

Our approach relies upon unit tests that provide coverage of the code that produces the
fault. Additional unit tests are needed to provide coverage of the code using test cases that
do not fail. Therefore, our method is applicable when the application is mature enough
that some unit tests succeed, but no so mature as to pass all of the unit tests.

Test coverage is important since our objective is to differentiate between successful
code and faulty code. If the coverage is inadequate then a failed unit test may have little
in common with successful tests negating the usefulness of differentiating the two. Ide-
ally, adequate coverage would reveal localized differences in the object method traces
of successful and failed unit tests. It is reasonable to assume that as test coverage in-
creases so should our success rate. However, there is the possibility that the fault exists
at a lower level (statement level) of the code.

3.2 Instrument the Code

Instrumenting the code is the process of inserting tracing code that records the method
execution calls between objects. This can be accomplished by inserting code that logs
each method call, the calling object’s id, and the calling object’s class type. Logging
could be done at the source code level, but would require tools for both inerting and
removing the instrumentation code. We take an alternate approach that simplifies the
process for the developer by automatically inserting tracing methods into the Java Byte
code. After the debugging process is complete, the Java Byte code can be discarded, and
the (unmodified) source simply recompiled.

Since our goal is to create Sequence Diagrams, we chose to track method calls. How-
ever, we could choose a lower or high granularity level. For example we could choose to
track the execution sequence line by line, or we could only track messages between com-
ponents. Additional empirical work and the creation of a fault model will be necessary
to see the shorting coming or benefits of choosing method calls.

Our analysis tool uses the utilities in org.apache.bcel java library in order to ac-
complish the instrumentation of the byte code. Classes selected for instrumentation are
loaded and injected with a reference to a static object named LumberJack. LumberJack
uses a static counter to keep track of method calls and inserts trace code for each method
call and each method return. The tracing code keeps track of the following information
in the bytecode:

1. method contains information such as class name, method name and method signa-
ture (returned type and arguments);

2. location tracks the line number where the method occurs in the source code and
indicates if the method is a return call or an initial call;

3. runtime tracks the order of calls during execution;

In addition, the LumberJack class provides tools for printing an XML representation
of the trace logs.
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3.3 Execute the Tests

During the execution process, the instrumented byte code is traversed using the unit
tests. For this example, the unit tests provide branch coverage of the code. Each unit test
generates an object-method trace through the code, which is recorded to an XML trace
file. Listing 5 shows a sample of the data recorded in the trace file after the unit tests
have been executed on the Cache Example. Each unit test trace is tagged as successful
or unsuccessful based on the outcome of the test.

Listing 1.6. trace.xml

. . .
<v e r t e x>

<method>DataConsumer . i n v e r t ( )V< / method>
< l o c a t i o n>c a l l e d : DataConsumer . j a v a : 4 0
< / l o c a t i o n>
<r u n t i m e>myCal lCount=1< / r u n t i m e>

< / v e r t e x>

<v e r t e x>
<method>DataS ource . ge tT ype ( ) I< / method>
< l o c a t i o n>c a l l e d : Da taS ource . j a v a : 4 7
< / l o c a t i o n>
<r u n t i m e>myCal lCount=1< / r u n t i m e>

< / v e r t e x>

<v e r t e x>
<method>DataS ource . ge tT ype ( ) I< / method>
< l o c a t i o n> r e t u r n : Da taS ource . j a v a : 4 7
< / l o c a t i o n>
<r u n t i m e>myCal lCount=1< / r u n t i m e>

< / v e r t e x>

<v e r t e x>
<method>DataS ource . ge tT ype ( ) I< / method>
< l o c a t i o n> r e t u r n : Da taS ource . j a v a : 4 7
< / l o c a t i o n>
<r u n t i m e>myCal lCount=1< / r u n t i m e>

< / v e r t e x>

. . .

<method>DataConsumer . i n v e r t ( )V< / method>
< l o c a t i o n> r e t u r n : DataConsumer . j a v a : 4 5
< / l o c a t i o n>
<r u n t i m e>myCal lCount=1< / r u n t i m e>

< / v e r t e x>

. . .
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3.4 Partition Paths

The previous step provides enough information to allow us to differentiate between suc-
cessful and failed code execution. The generated trace files contain information about
each test and thus potentially the fault. Given such information it is trivial to partition the
paths into what we have named fault and non-fault revealing partitions. Thus, the trace
files associated with successful tests are classified as non-fault revealing and likewise
unsuccessful tests are classified as fault revealing.

3.5 Aggregate Paths

The merging algorithm aggregates all the trace paths generated during the unit test ex-
ecution. Merging results in an acyclic graph where the vertices represent the actual
method calls and the directed links between vertices specify the order of the method calls.
Figure 1 displays the acyclic graph obtained for the Cache example. Every vertex in the
graph contains the following information: id, method, location. Before merging every
vertex id is named based on the unit test name and the index of the vertex in the trace
path. After merging the vertex, the id may be renamed with a unique alpha-numeric
symbol beginning with m to indicate that two vertices have been merged.

Trace paths are aggressively merged by looking for object-method calls that coexist
between traces. Merging the results of two identical unit tests results in a linear graph
with no branching. If two unit tests traverse different object-method calls, however, the
process will introduce branches into the graph which may later merge back to the same
path.

The merge algorithm iteratively processes object-method call traces. At each step, a
new trace ti is added to the graph G. Note that both ti and G are directed acyclic graphs
but ti has a branching factor of exactly one. When the algorithm begins, the graph G
consists of only a single root node with the label start. When the algorithm is complete,
G is the aggregation of all execution paths through the unit tests. The process follows
five steps:

1. Initially, set mg to the root of G and mt to the root of ti.
2. Place a pointer pg at mg and another pointer pt at mt.
3. For each child of the node pointed to by pg, scan foward in ti for a matching object-

method call.
4. If a matching pair is not found, repeat the scan forward in ti from mt trying all

descendents of pg in a breadth-first fashion. If no match is found, add the directed
graph rooted at mt as a new child of the node pointed to by mg . The algorithm is
now complete; no new merging has occured.

5. Otherwise, the nodes at pg and pt are the same object-method call and represent a
“rejoining” of the graph G and the trace ti. Splice a new branch between mg and tg
that includes the sequence between mt and pt exclusive of these endpoints. Repeat
from step 2.

The algorithm above aggressively merges traces to reduce the number of branches
in the aggregate representation. This results in a less complex and smaller graph than
would be created if braches were not allowed to merge back to one another.
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Start
r0-01

DataConsumerSuccessTest2.xml.0
DataConsumer.invert ()
called:  DataConsumer.java:40

DataConsumerSuccessTest2.xml.9
DataConsumer.invert ()
return:  DataConsumer.java:45

DataConsumerSuccessTest2.xml.10
DataConsumer.size ()
called:  DataConsumer.java:50

DataConsumerSuccessTest2.xml.11
DataConsumer.size ()
return:  DataConsumer.java:50

m1
DataConsumer.setInitialValues (D)
called:  DataConsumer.java:32

m6
DataConsumer.setInitialValues (D)
return:  DataConsumer.java:35

DataConsumerFailureTest.xml.6
DataConsumer.size ()
called:  DataConsumer.java:50

DataConsumerFailureTest.xml.7
DataConsumer.size ()
return:  DataConsumer.java:50

m7
DataConsumer.getPoint (II)
called:  DataConsumer.java:32

Fig. 1. Acyclic graph

Figure 1 illustrates the result of merging two traces: one successful and one un-
successful unit test. The resulting graph is rooted at the node labeled start. A branch oc-
curs immediately, indicating that the initial execution paths of the successful and failed
unit tests differ. A dotted line indicates that a sequence of events has been collapsed
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and hidden from view for display purposes. The user interface allows us to examine
the method calls in details if required. After calls to and returns from invert() and
size() the execution traces merge and execute the methodsetInitialValues()
which is the first object-method call in the failed execution trace. Both traces return from
that method before once again diverging briefly.

In Figure 2, the trace continues with a new branching after getPoint(). During
the first four DataConsumer.getPoint() method calls the graphs correspond, and thus
the nodes in the two unit tests merge together as expected. A new branching occurs
caused by two different method calls in the unit tests as shown in the Figure 2. The right
branch corresponds to the successful partition. The left side branch corresponds to the
fault revealing partition. The method call DataConsumer.invert() will cause cache incon-
sistency for the DataConsumerFailureTest unit test. Therefore during the next method
call DataConsumer.getPoint() the normal code execution fails after the method Data-
Source.getVersion() returns a value different from the actual cache version. The success-
ful unit test trace continues with the vertices corresponding to the method calls from the
DataConsumerSuccessTest2.

3.6 Generate Sequence Diagrams

A UML Sequence Diagram is a behavioral representation of objects interacting with
each other via method calls. In the previous steps we created an acyclic graph represent-
ing both successful and fault revealing unit tests. The graph is also a representation of
objects interacting with each other. Therefore we can use the graph to generate UML
Sequence Diagrams. We generate a Sequence Diagram for each branched segment of
the direct acyclic graph that that contains a failed test. Each branch is visualized as a
combined fragment. A combined fragment is used to visually display the conditional
flow in a Sequence Diagram. Thus Sequence Diagrams are systematically generated by
traversing each vertex, v, in the graph and using the following steps:

1. When a vertex contains more then one child and at least one child represents a failed
test, create a new Sequence Diagram (if not already created) and create a combined
fragment for each child vertex. Each child vertex should be represented as an object
in the Sequence Diagram.

2. For each newly added child vertex, check its children, if is contains only one child,
add the child vertex to the combined fragment and connect to the parent vertex using
the method call in the previous vertex (label appropriately). If it contains more than
one child return to step one.

Using this algorithm we created the Sequence Diagram in Figure 3 which represents
the branched segment in the directed acyclic graph shown in Figure 2.

3.7 Reason About Fault

The Sequence Diagram shows where we can find the section of code responsible for the
failure of the unit test. It now seems obvious that the method invert() with it’s underlying
call setType() causes the undesired behavior. The DataConsumer’s cache becomes incon-
sistent when this method is invoked between calls to getPoint(). Therefore the heuristic
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m88
DataConsumer.getPoint (II)
return: DataConsumer.java:73

DataConsumerFailureTest.xml.90
DataConsumer.invert ()
called: DataConsumer.java:40

DataConsumerFailureTest.xml.91
DataSource.getType ()
called: DataSource.java:47

DataConsumerFailureTest.xml.92
DataSource.getType ()
return: DataSource.java:47

DataConsumerFailureTest.xml.93
DataSource.getType ()
called: DataSource.java:47

DataConsumerSuccessTest2.xml.100
DataConsumer.setInitialValues (D)
called: DataConsumer.java:32

DataConsumerSuccessTest2.xml.101
DataSource.setInitialValues(D)
called: DataSource.java:22

DataConsumerSuccessTest2.xml.102
DataSource.setInitialValues(D)
return: DataSource.java:25

DataConsumerSuccessTest2.xml.103
DataSource.setInitialValues(D)
called: DataSource.java:22

DataConsumerFailureTest.xml.94
DataSource.getType ()
return: DataSource.java:47

DataConsumerFailureTest.xml.95
DataSource.setType ()
called: DataSource.java:34

DataConsumerFailureTest.xml.96
DataSource.setType ()
return: DataSource.java:36

DataConsumerFailureTest.xml.97
DataSource.setType ()
called: DataSource.java:34

DataConsumerFailureTest.xml.98
DataSource.setType ()
return: DataSource.java:36

DataConsumerFailureTest.xml.99
DataConsumer.invert ()
return: DataConsumer.java:45

m89
DataConsumer.getPoint (II)
called: DataConsumer.java:73

DataConsumerSuccessTest2.xml.104
DataSource.setInitialValues(D)
return: DataSource.java:25

DataConsumerSuccessTest2.xml.105
DataConsumer.setInitialValues (D)
return: DataConsumer.java:35

Fig. 2. Successful and Fault Partitions
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DataConsumerSuccessTest consumer

invert()

DataConsumerFailureTest sources[0]

t:=getType()

temp:=getType()

setType(temp)

setType(t)

setInitialValues

setInitialValue

setInitialValue

FailureTest: 

SuccessfulTest: 

sources[1]

Fig. 3. UML Sequence Diagram

distance between failure and fault is mitigated. We can easily find where the actual fault
occurs. The diagrams do not reveal why this method causes the inconsistency. Once
the fault location is found, the developer can examine the source code and develop a
solution.

4 Related Work

Telles et al. [17] describe debugging as the process of understanding the behavior of
a system to facilitate the removal of bugs. Our approach assumes that extracting ob-
ject level information and reducing it to a set of Sequence Diagram is useful in un-
derstanding the behavior of the system. In a case study, Vans et al. [18] have shown
that up to 46% of the debugging task was spent trying to understand the software at
the design level. Many have created approaches for visualizing code either using graphs
[5,8,19] or the UML [7,4,14] for the purpose of better understanding a system. These
approaches have focused on round-trip engineering and program comprehension. Our



618 O. Pilskalns, S. Wallace, and F. Ilas

approach builds upon this work, by using the reverse engineering techniques for building
Sequence Diagrams. However we focus on differentiating paths in order to reduce the
amount of information needed to find a fault.

Our approach of isolating code is similar to the techniques employed by [1,20,6,9],
who use color to differentiate between successful and failed code, and use brightness to
indicate the percentage of tests that successfully or unsuccessfully traversed the code.
Coloring may isolate the location of a fault but it does not provide a behavioral rep-
resentation of the fault and eliminate unnecessary detail. We differ in our approach by
focusing on design level information and thus ignoring the minutiae of individual state-
ments. Another advantage is the ability of our tool to find bugs where a sequence of
events collaborate to create a failed test, whereas the other approaches are focused on
finding broken statements. In addition, we provide design level information, hopefully
resulting better comprehension of the events and objects that caused the failure.

References

1. Agrawal, H., Horgan, J., London, S., Wong, W.: Fault Localization using Execution Slices and
Dataflow Tests. In: Proceedings of the IEEE International Symposium on Software Reliability
Engineering, pp. 143–151. IEEE Computer Society Press, Los Alamitos (1995)

2. Briand, L., Labiche, Y., Miao, Y.: Towards the Reverse Engineering of UML Sequence Dia-
grams. In: IEEE 10th Working Conference on Reverse Engineering, IEEE Computer Society
Press, Los Alamitos (2003)

3. Binder, R.: Testing Object-Oriented Systems Models, Patterns, and Tools. Object Technology
Series. Addison Wesley, Reading, Massachusetts (1999)

4. Briand, L., Labiche, Y.: A UML-based Approach to System Testing. In: Gogolla, M., Kobryn,
C. (eds.) UML 2001. LNCS, vol. 2185, pp. 194–208. Springer, Heidelberg (2001)

5. De Pauw, W., Jensen, E., Mitchell, N., Sevitsky, G., Vlissides, J., Yang, J.: Visualizing the
Execution of Java Programs. In: Diehl, S. (ed.) Software Visualization. LNCS, vol. 2269,
pp. 151–162. Springer, Heidelberg (2002)

6. Eagan, J., Harrold, M.J., Jones, J., Stasko, J.: Technical note: Visually Encoding Program Test
Information to Find Faults in Software. In: Proceedings of IEEE Information Visualization,
pp. 33–36. IEEE Computer Society Press, Los Alamitos (2001)

7. Jacobs, T., Musial, B.: Interactive Visual Debugging with UML. In: SoftVis ’03. Proceedings
of the 2003 ACM Symposium on Software Visualization, pp. 115–122. ACM Press, New
York (2003)

8. Jerding, D.F., Stasko, J.T., Ball, T.: Visualizing Interactions in Program Executions. In: Pro-
ceedings International Conference on Software Engineering, pp. 360–370 (1997)

9. Jones, J., Harrold, M., Stasko, J.: Visualization of Test Information to Assist Fault Local-
ization. In: Proceedings of the 24th International Conference on Software Engineering, pp.
467–477 (2002)

10. Kollman, R., Gogolla, M.: Capturing Dynamic Program Behavior with UML Collaboration
Diagrams. In: Proceedings CSMR, pp. 58–67 (2001)

11. Larman, C.: Applying UML and Patterns, 3rd edn. Prentice-Hall, Englewood Cliffs (2005)
12. DeMillo, R., Pan, H., Spafford, E.: Failure and Fault Analysis For Software Debugging. In:

Proceedings of the Computer Software and Applications Conference, pp. 515–521 (1997)
13. Object Management Group, UML 2.0 Draft Specification (2005),

http://www.omg.org/uml

http://www.omg.org/uml


Runtime Debugging Using Reverse-Engineered UML 619

14. Oechsle, R., Schmitt, T.: JAVAVIS: Automatic Program Visualization with Object and Se-
quence Diagrams Using the Java Debug Interface (JDI). In: Diehl, S. (ed.) Software Visual-
ization. LNCS, vol. 2269, pp. 176–190. Springer, Heidelberg (2002)

15. Richner, T., Ducasse, S.: Using Dynamic Information for the Iterative Recovery of Collab-
orations and Roles. In: Proceedings International Conference on Software Maintenance, pp.
34–43 (2002)

16. Systa, T., Koskimies, K., Muller, H.: Shimba – An Environment for Reverse Engineering
Java Software Systems. Software – Practice and Experience 31(4), 371–394 (2001)

17. Telles, M., Hsieh, Y.: The Science of Debugging, The Coriolis Group, Scottsdale, AZ (2001)
18. Vans, M., von Mayrhauser, A., Somlo, G.: Program Understanding Behavior during Correc-

tive Maintenance of Large-scale Software. Int. Journal Human-Computer Studies 51, 31–70
(1999)

19. Walker, R.J., Murphy, G.C., Freeman-Benson, B., Wright, D., Swanson, D., Isaak, J.: Visu-
alizing Dynamic Software System Information through High-Level Models. In: Proceedings
OOPSLA, pp. 271–283 (1998)

20. xSlice: A Tool for Program Debugging,
http://xsuds.argreenhouse.com/html-man/coverpage.html

http://xsuds.argreenhouse.com/html-man/coverpage.html


Formally Defining a Graphical Language for

Monitoring and Checking Object Interactions

Kai Xu and Donglin Liang
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University of Minnesota, Minneapolis, Minnesota 55455

Abstract. Monitoring and checking object interactions is an impor-
tant activity for testing/debugging scenario implementation in an object-
oriented system. In our previous work, we proposed behavior view
diagrams (BVD) as a graphical language for writing programs that auto-
mate such monitoring and checking process. In this paper, we illustrate
the formal definition of the syntax and the semantics of an extended ver-
sion of BVD that can also be used to describe multi-threaded scenarios.
This formal definition provides a critical foundation both for understand-
ing the language and for building its tool support.

1 Introduction

Software testing and debugging often require software developers to exercise the
system with appropriate inputs, monitor the program execution, and compare
the observed behaviors of the software with the expected behaviors to detect
and to investigate bugs. In modern software development methodologies (e.g.,
[9]), the expected behaviors for a system or a subsystem are often identified and
documented as scenarios during requirements analysis and design. Therefore,
testing and debugging at the system or subsystem level should focus on moni-
toring program actions and verifying properties relevant to the progress of these
scenarios. This scenario-based monitoring approach allows software developers
to effectively utilize their knowledge of scenarios built during analysis and design
to detect and pinpoint problems in the program.

Existing testing and debugging techniques provide inadequate support for the
scenario-based monitoring. Assertions have been widely used in testing and de-
bugging to check whether the program behaves as intended (e.g., [2,15]). However,
because the assertions are often specified independent of the execution history,
they are not suitable for specifying properties specific to particular scenarios, es-
pecially those that are related to several steps of object interactions in a scenario.
Existing debugging techniques provide various supports for execution monitoring.
Source level debugging mechanisms, such as breakpoints, allow software develop-
ers to interactively inspect the program states when the program control reaches
specific code locations. Event-based debugging techniques (e.g., [1,3,13]), on the
other hand, allow the software developers to specify the inspections to be auto-
matically performed when specific execution events occur. However, because these
techniques do not emphasize on correlating the monitoring of the program actions
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at different points of time during execution, these techniques provide inadequate
support for scenario observation and inspection.

The goal of our research is to develop better techniques to support scenario-
based execution monitoring. To achieve this goal, we propose an intuitive graph-
ical language, behavior view diagrams (BVD), for specifying expected object
interaction scenario, and a tool suite that can automatically check the actual
progresses of these scenarios against BVD specifications. For a specific scenario,
a BVD precisely specifies the runtime objects that are involved, the sequence
of object interactions among these objects, and the properties that must hold
when specific object interactions occur. Thus, it is a powerful mechanism for
software developers to compare the actual behaviors of the system with their
expectation. We have implemented a prototype that can translate simple BVD
specifications into execution monitors. These execution monitors can detect rel-
evant execution events and examine the states of the target programs based on
the BVD specifications. Our limited experience shows that, with tool support,
using BVD may improve the effectiveness of testing and debugging.

In our previous work [11], we have proposed a simplified version of BVD for
monitoring and checking sequential scenarios. In this paper, we formally define
the syntax and the operational semantics of an extended version of BVD that can
also be used to specify multi-threaded scenarios. The formal definition provides a
critical foundation for understanding this language and for building tool support.

Formally defining the operational semantics of BVD is challenging. First, it
is difficult to build a mathematical model that is required by the operational se-
mantics based on the 2-D BVD drawings. Second, BVD has a hierarchical name
space. For a multi-threaded BVD, more than one instance of child name spaces
may exist concurrently within the instance of a parent name space. To address
these challenges, we first transform a BVD specification into an algebraic expres-
sion. We then build a mathematical model on top of the algebraic expression
by combining each of its sub-expression that represents a block structure in the
BVD drawing with its corresponding name space instance to model the states of
an execution monitor generated from the BVD specification. Finally, we define
a set of semantic rules over this mathematical model to specify the possible be-
havior of the execution monitor. We expect that these treatments may provide
inspirations for defining other similar graphical languages.

In the rest of the paper, Section 2 gives an overview of testing and debugging
with BVDs. Section 3 presents the monitoring profile. Section 4 presents the
operational semantics. Section 5 discusses the related work. Section 6 concludes
the paper and discusses future work.

2 Testing and Debugging with Behavior View Diagrams

BVD is a high-level graphical language for writing monitoring and checking
programs. It extends UML 2.0 sequence diagrams with new elements to facilitate
runtime monitoring for investigating the runtime behaviors and the states of the
objects in the target program. In a previous work [11], we have introduced a
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(a) (b)

Fig. 1. An example BVD specification

preliminary version of this language for monitoring sequential object interaction
scenarios. In this section, we will use a simplified example to illustrate the key
features of an improved version of this language that can be used to monitor
multi-threaded scenarios.

Fig. 1 shows the example BVD specification. The specification contains two
bvds that define how to monitor an implementation of a concurrent state-space-
exploration algorithm [4]. This implementation uses two threads to explore a
state-space tree concurrently. To balance the work-load, one thread will ask
the other thread for un-explored states when it finishes its current work. The
algorithm terminates when all states have been explored.

The bvds in Fig. 1 shows how the two threads should interact to implement
the algorithm.1 In Fig. 1(a), the two thread objects are represented by the two
life-lines, each of which is marked with a formal parameter name. This indi-
cates that the two objects will be identified by the formal parameters. This
object-identification mechanism is referred to as the parameter-based binding for
life-lines. According to Fig. 1(a), assign() should be invoked to assign work
to thread t0 before t0 is started. The two threads can be started by run() in
any order. Once t1 is started, it waits for a notification from t0 indicating that
t0 has been started and is ready to distribute un-explored states. After that,
the two threads explore the state space concurrently. When one of the thread
objects runs out of states (this mode is called idle), it requests an un-explored
state from the other thread object by invoking method getState(). This inter-
action is specified by another bvd in Fig. 1(b), and is referred to by the bvd in
Fig. 1(a) through interaction use constructs (the constructs marked with ref).

Fig. 1(b) illustrates some other features in BVD. The first life-line in
Fig. 1(b) has a rounded-rectangle head. This life-line represents the same ob-
ject as that represented by the life-line covered by the interaction use construct
that refers to this bvd. For example, the object represented by the life-line t0 in

1 Due to the space limitation, the diagrams omit many other important interactions
and properties.
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Fig. 2. A meta-model for sequence diagrams

Fig. 1(a) will be passed into the bvd in Fig. 1(b) that is referred to by the
through the interaction use construct on the left side of Fig. 1(a). It will be
binded with the life-line MyThread. This object-identification mechanism is re-
ferred to as position-based binding. When more than one life-line is covered by
an interaction use construct, the position-based bindings are determined by the
relative positions of the covered life-lines. The comment box (referred to as the
monitoring block) associated with getState() in Fig. 1(b) checks, by invoking
the pure method isIdle() in the target program, whether the requesting thread
object is idle when the getState() invocation is detected. The label “?v” on
the return arrow for method getState() instructs the monitor to extract the
return value of this method and store it into variable “v”. This value can then
be used to determine whether the requesting thread should quit the loop.

This example illustrates that BVD provides an effective notation for specifying
runtime checkable design intention. With the tools that we are developing, a BVD
specification can be translated into execution monitors. The execution monitors
can recognize relevant events and perform various inspections based on the BVD
specification. Comparing to other testing and debugging techniques, using BVD
allows the software developers to focus on checking the important milestones
and scenario-specific properties during the scenario progress. It is suitable for
debugging when the final output is not useful for determining the root cause.
It is also suitable for testing incomplete programs when the final output is not
available or meaningful.

3 Defining BVD Syntax with UML Profile

UML 2.0 uses meta-models to define the syntax of UML diagrams. It offers
profiles as a mechanism to extend the meta-model for specialize the syntax of
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Fig. 3. The monitoring profile

the diagrams for modeling in a specific domain. In this section, we will define
the syntax for BVD with a profile to the meta-model of sequence diagrams. We
refer to such a profile as the monitoring profile.

Figure 2 shows a simplified meta-model defining sequence diagrams (see [14]
for a complete description of the meta-model). In the meta-model, a sequence
diagram is an interaction. It contains a set of life-lines, a set of messages, and an
ordered set of interaction fragments. An interaction fragment can be one of the
following types. An occurrence specification represents the sending or receiving
event of a message, or the end of a method invocation. An execution specifica-
tion is the thin box holding together the events belonging to a particular method
invocation. A combined fragment is a control element. It contains one or more
interaction operands, each of which contains its own ordered set (or sequence) of
interaction fragments. An interaction use refers to another interaction. It stands
as a place holder for the sequences defined by the referred interaction. An inter-
action use may contain an ordered set of actual gates that are corresponding to
the formal gates defined in the referred interaction. These gates allow the sending
event and the receiving event of a message to be specified in different interac-
tions. A general ordering specifies a ordering constraint between two occurrence
specifications.

Note that, in UML 2.0, all life-lines are owned by interactions. However, if
a life-line is covered only by the interaction fragments within an interaction
operand, making this life-line local to this operand may improve the modularity.
Thus, in Figure 2, we extend the meta-model specified in UML 2.0 so that
interaction operands can contain local life-lines.

The monitoring profile. The monitoring profile defines how the meta-classes
for sequence diagrams can be extended to specify BVD. Figure 3 shows the major
features of this profile. We extend both Interaction and InteractionOperand
with stereotype BVDBlock for holding the declarations of local monitoring vari-
ables. The stereotyped construct is thus refers to as a bvd block. We extend
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Message with stereotype Augmented for adding an extra property mBlock that
specifies the monitoring block associated with the message. We also extend
Message with stereotype Indirect for specifying indirect messages, and with
stereotype notify for specifying the notification from one thread to another.
We further define three stereotypes for LifeLine to indicate the mechanismsfor
identifying the runtime object that will be represented by a life-line. We refer to
these approaches as the binding approaches.

Stereotypes PositionBased or ParameterBased are used to annotate life-lines
that use position-based binding or parameter-based binding, respectively. Such
life-lines have been illustrated in Fig. 1. Stereotype Unbound is used to annotate
a life-line whose binding will be determined when the first message pointing to
this life-line is detected. The first message can be a creation message or a call
message. In both cases, the target object of the message will be bound to the
life-line. To allow more flexible bindings, we also introduce a a special kind of
message, the binding message, that is marked with stereotype bind. The label
of a binding message has a binding expression whose value will be used as a
reference to find the object to be bound to the target life-line. To re-use the
syntactic constructs of UML sequence diagrams, we define the binding message
as a stereotype of the creation message.

The monitoring profile also specifies important constraints that have been
imposed on an interaction and its elements to make it a BVD. For example, a
combined fragment in a BVD must have stereotype Restricted. The operator
of such a combined fragment can only be alt, opt, loop, or par. Other types
of operators are excluded because they are less common or their meanings are
still under debate (e.g., assert and neg [5])2. The monitoring profile further
specifies constraints for defining well-formed BVDs. E.g., a combined fragment
cannot contain gates. The well-formness is critical for defining the semantics.

The discussion above shows that defining BVD syntax with a profile allows us
to reuse the UML 2.0 meta-model. Such a reuse simplifies the syntax specification
for BVD. Potentially, it would also allow software developers to use a profile-
aware UML editor to write BVD specifications. This reuse of tools paves the
way for a quick adoption of BVD in the future.

4 The Operational Semantics of BVD

A BVD specification is used for monitoring and checking the object interac-
tions. For this purpose, the monitor created from the specification must be able
to recognize the relevant object interactions and to perform various inspection
to determine whether the interactions progress as expected. The operational
semantics for BVD defines the behavior for such a monitor.

The operational semantics for a specification language is typically defined by
a mathematical model that consists of a domain of configurations and a set of
rules that define the possible transitions among these configurations. For BVD,
the configurations are used to represent the states of the monitor. Intuitively,
2 The neg can be simulated in BVD by using assert(false) in the monitoring block.
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scn expr ::= term | scn expr ◦ term
term ::= event | action | alt

| loop | parallel | bvd use
| bvd inst | operand | ⊥

alt ::= altl(operand list)

| altl(gopd list)
gopd ::= GUARD ⇒ operand

loop ::= loopl(operand)

| loopl(gopd)
parallel ::= parl(operand list)

operand ::= opdl(condition){scn expr}
bvd use ::= usel(NAME, PARAM list)

bvd inst ::= bvdl{scn expr}
l ::= LIFELINE NAME list

Fig. 4. The grammar rules for the syntax of scenario expressions, where X list stands
for a list of grammar symbol X. To save space, the opt element is considered as special
case of alt, and the rules about condition are not listed. Finally, we assume that ⊥ is
automatically eliminated from a scenario expression if this term is connected to other
terms in the rest of the paper.

a state of the monitor contains two important pieces of information: the object
interactions yet to be observed and the sequencing constraints among them; the
current bindings of the life-lines and the values of the monitoring variables. The
rules define how the relevant object interactions are recognized and how the
monitor state changes when a relevant object interaction is recognized.

In the rest of this section, we first explain how to represent BVDs with expres-
sions in Section 4.1, then explain how to represent data environments and the
configurations in Section 4.2. Finally, we present the major operational semantic
rules in section 4.3.

4.1 Encoding Sequencing Constraints with Scenario Expressions

In BVD, the sequencing constraints among object interactions are specified by
the 2-D spatial relations among different elements. Although spatial relations
are easy for human to understand, directly using them in a configuration may
complicate the specification of the operational rules. We thus translate these
spatial relations into an algebraic expression. We refer to such an expression as a
scenario expression. With the semantic rules that will be shown in the following,
the sequencing constraints defined by the spatial relations will be enforced.

Fig. 4 shows the major grammar rules that define how a scenario expression
can be composed. A scenario expression is a sequence of terms connected with
weak sequencing connectors, denoted as ◦. Each term in the scenario expres-
sion represents a BVD element in a BVD specification. It is associated with a
superscript l, which is the set of names of the lifelines that are covered by its
corresponding BVD element. Terms have different types. Event terms represent
message arrows and the terminations of methods. Action terms represent variable
declarations, assertions, and value-based life-line binding constructs. Compound
terms represent box elements (e.g., loop, alt, par, and their operands). A com-
pound term may also be used to represent an interaction use construct or a
bvd instance that in-lines the content of the used bvd. From the perspective of
the operational semantics, an interaction use construct is similar to a function
call-site in a functional language, and a bvd instance is similar to the in-lining
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of the function body in the place of the call-site. Finally, an empty term ⊥ is
introduced to represent an “empty” BVD element.

A BVD specification can be translated into a scenario expression through the
following process. Initially, the top-level elements in a BVD are considered. Each
of these elements will be represented by a term. The order in which these terms
are connected in the expression is determined by a topological sorting among
these top-level elements.3 This ordering approach ensures that, if an element A
appears above element B on a common life-line, then A must be sorted before
B. As a next step in the process, a term is created for each top-level element.
If this element is a box element, a sub-scenario-expression will be created by
recursively invoking this process on the internal of this box element.

Thus, BVD LoadBalancing in Fig. 1(a) can be translated as

a ◦ r1 ◦ r2 ◦ n ◦ uset0(ReqState, (t1)) ◦ uset1(ReqState, (t0)) ◦ r′1 ◦ r′2 (1)

by following this process, where a represents the call-message arrow assign, r1

represents the call message arrow run to t0, r2 represents the call message arrow
run to t1, n represents the notification, and r′1, r′2 represent the corresponding
returns of r1 and r2, respectively.

4.2 Encoding the Data Environment

BVD has a hierarchical data environment. The nodes in this hierarchy is the
local data environments of BVD blocks. In a multi-threaded BVD, different child
BVD blocks of a parent BVD block may be active concurrently. Moreover, the
statements in BVD may have side-effects. Hence, it is challenging to maintaining
correctly the data environment in the operational semantics.

To deal with this complexity, in the configurations for our operational seman-
tics, we break the bindings between the names and their values into two different
kinds of mappings. The first kind of mapping is called an environment, denoted
as β or α, which is a partial function that maps a set of names to individual
locations. The second kind of mapping is called a global store, denoted as σ,
which is a partial function that maps valid locations to values. This treatment
is common for defining semantics for language with side-effects.

We use two different types of environments. A local environment for a BVD
block maps the names declared inside this block to locations. A contextual envi-
ronment for a BVD block maps, to locations, all the names that are visible from
outside of this block. The actual environment that contains the names visible for
an element in the block can be obtained by composing the local and contextual
environments, β and ρ, respectively, in the following way:

ρ[β] = (ρ \ {n �→ v | n ∈ names(β)}) ∪ β

where names(β) is the set of names in β. This formula respects the shadowing
of names declared in nesting scopes. In the rest of this paper, when we say that
3 This topological sorting can be obtained by simply sorting the top y-coordinates of

these elements. Due to the space limitation, we will not show the proof here.
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α is a local (or contextual) environment for a scenario expression, we refers to
the corresponding environment for the innermost block that contains all the
elements represented by this expression.

The two different types of environments for a block are computed differently
by the monitor. A local environment for a block is initially empty (denoted as
∅). It will be populated when the monitor processes the action terms that rep-
resent the life-line/variable declarations in this block. The local environment
may change when this sub-scenario expression is being processed. In contrast,
the contextual environment for the internal of a compound term in a block is
computed when the monitor begins to process the compound term. Such an
environment will remain unchanged when the internal of a compound term
is being processed. For this reason, a transition is represented in the form of
ρ � 〈X : β, σ〉 e→ 〈X ′ : β′, σ′〉, where X and X ′ are annotated scenario ex-
pressions, σ and σ′ are global stores, β (β′) and ρ are the local and contextual
environments, respectively, for X and X ′. It reads: under the contextual envi-
ronment ρ, configuration 〈X : β, σ〉 can transit to configuration 〈X ′ : β′, σ′〉
by observing runtime event e. In an annotated scenario expression, each sub-
scenario expression in a compound term is associated with its local environment
(initially ∅). As we will see in the operational rules, this arrangement allows the
monitor to handle the name spaces correctly.

4.3 Operational Semantic Rules

Monitoring with a BVD specification starts when a monitoring controller creates
a monitor that is generated from this BVD specification. The state of the monitor,
called a configuration, is a tuple of a annotated scenario expression X : β, a global
store σ, and a contextual environment ρ. Initially, the expression part X of the an-
notated scenario expression is the scenario expression transformed from the BVD
specification. The environment part β and the global store σ contain the mapping
that binds the names of the formal parameters and the life-lines with their initial
values, which are set by the monitoring controller. The contextual environment at
this time is the global environment ρ0 that maps the names of available BVDs to
the scenario expressions that represent the bodies of such BVDs. Once the monitor
has been created, it will use a set of deduction rules presented in this subsection to
process the events. The monitor will stop when the scenario expression in its con-
figuration is empty or when it is terminated by the monitoring controller. During
its life-time, when a relevant event is detected, the monitor will attempt to match
this event with an event term in the scenario expression. If a match can be found,
the monitor will perform the monitoring action associated with the matched term
and update its configuration. Otherwise, the monitor will ignore such an event.

In many cases, the first term in a scenario expression is not an event term. In
this case, the internal of this term will be explored to find a match, or the first
term will be moved across and the next term will be considered if this does not
violate the sequencing constraints.4 In the rest of this subsection, we will discuss
4 An example for the latter case is when one tries to recognize the invocation t1.run()

using the scenario expression shown in (1).
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t is an event term, (match(t,e,ρ[β],σ,Δe)=σ′) �=error

Δe,ρ�〈t:β,σ〉 e→〈⊥:β,σ′〉
(ME1)

Δe,ρ�〈t:β,σ〉 e→〈t′:β,σ′〉
Δe,ρ�〈altL

(t,S):β,σ〉 e→〈t′:β,σ′〉
(MAu1)

Δe, ρ � 〈t : β, σ〉
e

�→,

Δe, ρ � 〈altL(S) : β, σ〉 e→ 〈t′ : β, σ′〉
Δe,ρ�〈altL

(t,S):β,σ〉 e→〈t′:β,σ′〉
(MAu2)

true = eval(g, ρ[β], σ, Δe),

Δe, ρ � 〈t : β, σ〉 e→ 〈t′ : β, σ′〉
Δe,ρ�〈altL

(g⇒t,S):β,σ〉 e→〈t′:β,σ′〉
(MAg1)

false = eval(g, ρ[β], σ, Δe),

Δe, ρ � 〈altL(S) : β, σ〉 e→ 〈t′ : β, σ′〉
Δe,ρ�〈altL

(g⇒t,S):β,σ〉 e→〈t′:β,σ′〉
(MAg2)

Δe,ρ�〈t:β,σ〉 e→〈t′:β,σ′〉
Δe,ρ�〈loopL

(t):β,σ〉 e→〈t′◦loopL
(t):β,σ′〉

(MLu)

true = eval(g, ρ[β], σ, Δe),

Δe, ρ � 〈t : β, σ〉 e→ 〈t′ : β, σ′〉
Δe, ρ � 〈loopL(g ⇒ t) : β, σ〉 e→

〈t′ ◦ loopL(g ⇒ t) : β, σ′〉
(MLg)

Δe,ρ�〈t:β,σ〉 e→〈t′:β,σ′〉
Δe, ρ � 〈parL(t, S) : β, σ〉 e→

〈parL(t′, X) : β, σ′〉
(MP1)

Δe, ρ � 〈t : β, σ〉
e

�→,

Δe, ρ � 〈parL(S) : β, σ〉 e→
〈parL(S′) : β, σ′〉

Δe,ρ�〈parL(t,S):β,σ〉 e→〈parL(t,S′):β,σ′〉
(MP2)

Δe,ρ[β]�〈X:α,σ〉 e→〈X′:α′,σ′〉
Δe,ρ�〈opdL{X:α}:β,σ〉 e→〈opdL{X′:α′}:β,σ′〉

(MO)

ρ0(n) = bvd(x1, · · · , xn, pl1, · · · plm){X′},
α′ = {xi �→ eval(expri, ρ[β], σ, Δe) | 1 ≤ i ≤ n} ∩ {pli �→ ρ[β](L[j]) | 1 ≤ j ≤ n}
Δe, ρ0 � 〈bvdL{X′ : α′} : β, σ〉 e→ 〈bvdL{X : α} : β, σ′〉

Δe,ρ�〈useL(n,expr1,···exprn):β,σ〉 e→〈bvdL{X:α}:β,σ′〉
(MU)

Δe,ρ0�〈X:α,σ〉 e→〈X′:α′,σ′〉
Δe,ρ�〈bvdL{X:α}:β,σ〉 e→〈bvdL{X′:α′}:β,σ′〉

(MB) Δe,ρ�〈X:β,σ〉 e→〈X′:β′,σ′〉
Δe,ρ�〈X◦t:β,σ〉 e→〈X′◦t:β′,σ′〉

(MR)

Fig. 5. Matching rules for various terms

the rules for these two choices separately. We refer to the first set of rules as
the matching rules and the second set of rules as the permission rules. Such a
distinction is inspired by the deduction rules presented in [12].

Matching rules. The matching rules define the matching transition relations
among configurations. A matching transition relation between two configurations
s and s′ is denoted as Δe, ρ � s

e→ s′. Δe represents the current state of the
target program being monitored. Namely, it means the values of the variables
visible from the location of the target program where the event e occurred.

Fig. 5 shows the key rules for deriving the matching transition relations. Rule
(ME1) defines that a runtime event can be recognized as an event term if their
descriptions match. If they do, the match function in rule (ME1) will execute the
monitoring action associated with the event term and return the updated global
store. The event term, then, will be removed from the scenario expression to
reflect the monitoring history. Rule (MR) defines how to propagate the effect of
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recognizing the runtime event e in the prefix of a scenario expression to its end.
The rest of the rules in this figure deal with compound terms. Rules (MAu1) and
(MAu2) express how to recognize a runtime event within an alternative combined
fragment with no guard conditions. If the runtime event can be recognized in
the branches, then the interactions in the chosen branch should be observed in
the future. Therefore, the alt term in the configuration should be replaced with
the opd term representing this branch. The rules also enforce that priorities are
given to the branches based on the order of appearance. Similarly, rules (MAg1)
and (MAg2) express how to recognize a runtime event within an alternative
combined fragment with guard conditions. In this case, a particular branch can
be chosen to recognize the event only if its guard is evaluated true in addition.

Rules (MLu) and (MLg) are used to explore un-guarded or guarded loops,
respectively. In both cases, if the runtime event can be recognized in the internal
operand, then a new iteration of the loop will begin. Rules (MP1) and (MP2)
express how to recognize a runtime event within a parallel combined fragment.
If the event can be recognized in one branch of the parallel, this branch will
be updated. If the event can be recognized in more than one branch, a non-
deterministic choice will be made as both (MP1) and (MP2) can be applied.
Rules (MO) expresses how an interaction operand can be explored to recognize
the event. If a match can be found in the sub-scenario expression under the inner
environment ρ[β], then the opd term will be updated accordingly.

Rule (MU) expresses how an interaction use can be replaced by the referred
bvd for recognizing an event. This involves several actions. First, the specification
of the referred bvd is looked up from the global environment, ρ0. Second, the local
environment of the new instance of the referred bvd is prepared by evaluating
the actual parameters of the interaction use and assigning them to the formal
parameters, and passing the bindings of the life-lines covered by the interaction
use to the life-lines with PositionBased stereotypes in the referred BVD. Third, a
bvd term that represents an instance of the referred BVD is explored to recognize
the event with the prepared local environment. Note that this exploration is done
under ρ0, instead of the actual environment ρ[β] because the referred bvd cannot
access the names in the referring bvd. If the event is recognized successfully, then
the resulting bvd term replaces the use term in the configuration. Once a bvd term
is introduced in the configuration, rule (MB) can be used to continue exploring
within the bvd instance for recognizing future events.

Permission rules. The permission rules are used for moving across terms in a
scenario expression before finding a matching term. Intuitively, a monitor may
move across the terms in the prefix prior to a term t in a scenario expression if
the terms in the prefix do not specify an event that must occur before t. That
is, this prefix “permits” a matching to be found in t, or term t is “permitted” by
its prefix in the scenario expression. Note that, in some cases, moving across a
term may require a transformation of this term. For example, when the monitor
moves across an action term that represents a variable declaration, it will remove
this term from the scenario expression and update the local environment to
include the new variable. Therefore, the permission rules are specified as rules
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Δe,ρ�〈X:β,σ〉
e
�→, Δe,ρ�〈X:β,σ〉

�(c)
···→〈X′:β′′,σ′′〉, Δe,ρ�〈t:β′′,σ′′〉 e→〈t′:β′,σ′〉

Δe,ρ�〈X◦t:β,σ〉 e→〈X′◦t′:β′,σ′〉
(M1)

�(t) ∩ L = ∅,

Δe, ρ � 〈X : β, σ〉 L· · · → ˙
X′ : β′, σ′¸

ρ�〈(X◦t):β,σ〉 L···→〈(X′◦t):β′,σ′〉
(PR1)

�(t) ∩ L �= ∅,

Δe, ρ � 〈X : β, σ〉 L∪�(t)· · · → ˙
X′ : β′′, σ′′¸

,

Δe, ρ � ˙
t : β′′, σ′′¸ L· · · → ˙⊥ : β′, σ′¸

Δe,ρ�〈(X◦t):β,σ〉 L···→〈X′:β′,σ′〉
(PR2)

�(t)∩L=∅

Δe,ρ�〈t:β,σ〉 L···→〈t:β,σ〉
(PT )

�(t) ∩ L �= ∅, t is an action term, (β′, σ′) = exec(t, ρ[β], σ, Δe)

Δe,ρ�〈t:β,σ〉 L···→〈⊥:β′,σ′〉
(PX)

true = eval(g, ρ[β], σ, Δe),

Δe, ρ � 〈t : β, σ〉 L′
· · · → 〈⊥ : β, σ′〉

Δe,ρ�〈altL′
(g⇒t,S):β,σ〉 L···→〈⊥:β,σ′〉

(PAg1)

false = eval(g, ρ[β], σ, Δe),

Δe, ρ � 〈altL′
(S) : β, σ〉 L· · · → 〈⊥ : β, σ′〉

Δe,ρ�〈altL′
(g⇒t,S):β,σ〉 L···→〈⊥:β,σ′〉

(PAg2)

L′ ∩ L �= ∅,

Δe, ρ �L 〈t : β, σ〉 L· · · → 〈⊥ : β, σ′〉
Δe,ρ�〈altL′

(t,S):β,σ〉 L···→〈⊥:β,σ′〉
(PAu1)

L′ ∩ L �= ∅,

Δe, ρ � 〈altL′
(S) : β, σ〉 L· · · → 〈⊥ : β, σ′〉

Δe,ρ�〈altL′
(a,S):β,σ〉 L···→〈⊥:β,σ′〉

(PAu2)

L′ ∩ L �= ∅, true = eval(g, ρ[β], σ, Δe),

Δe, ρ � 〈t : β, σ〉 L′
· · · → 〈⊥ : β, σ′′〉,

Δe, ρ � 〈loopL′
(g ⇒ t) : β, σ′′〉

L· · · → 〈⊥ : β, σ′〉
Δe,ρ�〈loopL′

(g⇒t):β,σ〉 L···→〈⊥:β,σ′〉
(PL1)

L′ ∩ L �= ∅,
false = eval(g, ρ[β], σ, Δe)

Δe,ρ�〈loopL′
(g⇒t):β,σ〉 L···→〈⊥:β,σ′〉

(PL2)

L′∩L �=∅
Δe,ρ�〈loopL′

(t):β,σ〉 L···→〈⊥:β,σ〉
(PL3)

L′ ∩ L �= ∅, Δe, ρ � 〈t : β, σ〉 L′
· · · → 〈⊥ : β, σ′′〉,

Δe, ρ � 〈parL
′
(S) : β, σ′′〉 L· · · → 〈⊥ : β, σ′〉

Δe,ρ�〈parL′ (t,S):β,σ
L···→〈⊥:β,σ′〉

(PP1)

L′ ∩ L �= ∅,

Δe, ρ � 〈t : β, σ〉 L′
· · · → 〈⊥ : β, σ′〉

Δe,ρ�〈parL′ (t):β,σ〉 L···→〈⊥:β,σ′〉
(PP2)

L′∩L �=∅, ρ[β],Δe�〈X:α,σ〉 L′
···→〈⊥:α′,σ′〉

Δe,ρ�〈opdL′
{X:α}:β,σ〉 L···→〈⊥:β,σ′〉

(PO) L′∩L �=∅, Δe,ρ0�〈X:α,σ〉 L′
···→〈⊥:β,σ′〉

Δe,ρ�〈bvdL′
{X:α}:β,σ〉 L···→〈⊥:β,σ′〉

(PB)

Fig. 6. Permission relation rules for matching a term in a sequence

for deriving a transformation relationship among configurations. We refer to such
a relationship as a permission relationship.

A permission relation between two configurations s and s′ is denoted as
Δe, ρ � s

L· · · → s′, where L is a set of life-lines. It means that, under the
context of (Δe, ρ), s can be transformed into s′, without violating the sequenc-
ing constraints defined in s, such that the life-lines in L are not covered by any
term in s′. As stated in Rule (M1) of Fig. 6, if the prefix X can be transformed
into X ′ with respect to the life-lines covered by a term t (i.e., �(t)), then t can
be used to match an event without violating the sequencing constraints defined
by X ◦ t. That is, the monitor can safely move across the terms in the prefix X .

(M1) also contains a clause, Δe, ρ � 〈X : β, σ〉
e

�→, to ensure that e cannot be
matched with the prefix X . This clause is in place to prevent the monitor from
“moving across” the terms in a scenario expression too aggressively.
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Rules (PR1) and (PR2) in Fig. 6 specify how the transformation can be
applied recursively to a scenario expression w.r.t. a set L of life-lines. Rule (PR1)
handles the case in which the right-most term t of the expression does not cover
any life-line in L. In this case, if the prefix X can be transformed to X ′ such
that X ′ does not contain any element that covers life-lines in L, X ′ ◦ t will
not contain any element that covers life-lines in L. Thus, there is a permission
relation between X ◦ t and X ′ ◦ t. Rule (PR2) handles the case in which the
right-most term t of the expression covers some life-lines in L. Intuitively, if
X can be transformed to X ′, and t contains a path that does not include any
event element under the new environment β′, then there is a permission relation
between X ◦ t and X ′.

The rest of the rules in Figure 6 define how an individual term may be trans-
formed w.r.t. a set of life-lines L. Rule (PT) deals with the case in which the
term t does not cover any life-line in L. In this case, t will not be changed. The
other rules deal with the case in which the term does cover some life-lines in
L. In this case, there must be a path through the bvd construct represented
by this term such that this path does not contain any event specification. The
rules can thus be viewed as exploring the paths through the bvd construct while
avoiding event specification. If such a path can be found, then this term will be
transformed to ⊥. The rules for various terms are quite self-explained. Due to
the space limitation, we will not go through each individual rule in this paper.

General orderings and gated messages. To ease the explanation, the rules
discussed in this subsection do not consider the general orderings and messages
involving gates (gated messages). The idea of handling general orderings is the
following. General ordering can be recorded in the scenario expressions by adding
a toBefore attribute to event terms. In addition, each event term will have a id
attribute that contains an id that is unique within the scope of a bvd. A general
ordering starting from a and ending with b can be represented by adding a.id to
b.toBefore. With the additional attributes, the matching rules can be enhanced
to ensure that an event term can be used to match a runtime event only if its
toBefore attribute is empty. When an event term has been matched with an
event, additional rules can be introduced to remove the id of this event term
from the toBefore attributes of other event terms.

In the presence of gates to an interaction use, a message may go from a life-line
to an actual gate, a formal gate to an actual gate, or a formal gate to a life-line.
The basic idea for handling such messages is to use separate terms to represent
the sending and the receiving of such messages and then to use general orderings
to connect the sending to the receiving. In this case, both the matching rules
and permission rules must be extended to handle these cases. Due to the space
limitation, we will not discuss the details in this paper.

5 Related Works

Kiviluoma et. al. [10] proposed a behavior profile of UML diagrams for specifying
architecturally significant behaviors that can be automatically checked during
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runtime. The behavior profile differs from BVD in at least two aspects. First, the
behavior profile can only be used to specify the sequencing constraints of object
interactions. In contrast, BVD can also be used to specify monitoring actions for
inspecting the states of the target program. This broader monitoring capability
is important for detecting and locating state-related bugs. Second, the behavior
profile applies the monitoring to all the objects that match the role description.
BVD allows software developers to precisely specify the runtime objects to be
monitored and the period of time in which the monitoring should be deployed.
This precision is important for investigating a specific bug in a program.

UML 2 sequence diagrams [14] and MSC [7,8] are widely used to describe ob-
ject interactions and process communications. Presumingly, by using bi-
simulation, these notations can be used to check the sequencing constraints of
object interactions. However, because the semantics (e.g., [12]) of these notations
often emphasize on trace generation, they do not consider the inter-dependencies
between states and sequencing constraints. Such inter-dependencies could be
quite sophisticated, and thus, must be inspected during testing and debugging.
BVD provides several mechanisms for dealing with such inter-dependencies.
BVD allows objects of interest to be selected dynamically during monitoring.
BVD also allows state information extracted from the target program to be be
used to determine scenario paths. BVD further allows to verify properties over
the state information extracted from multiple steps during monitoring. Such
capability is important for investigating state-related bugs.

Live Sequence Charts (LSC) [6], an extended form of MSCs, offer syntax
and semantics for monitoring scenario-specific properties. However, there is a
paradigm difference between LSC and BVD. LSC follows a rule-based composi-
tion paradigm: different LSCs are specified as relatively independent rules, and
are implicitly composed together through event unification. In contrast, BVD fol-
low a call-based composition paradigm: different BVDs are composed explicitly
through interaction uses. BVD allows a hierarchical way for specifying complex
interaction scenarios. In addition, because testing and debugging OO programs
is not the design goal of LSC, it does not provide the same level of support for
this task as BVD does (e.g., the value-based binding and monitoring actions).

The permission relations presented in this paper is inspired by the semantics
framework proposed for MSC’96 by Mauw and Reniers [12]. However, because
BVD must support monitoring actions and states, as well as block-scoped decla-
ration of facility variables, the configurations and the deduction rules presented
in this paper are richer than that proposed by Mauw and Reniers.

6 Conclusion

This paper formally defines BVD—a graphical language for automatically mon-
itoring and checking object interaction scenarios. With the tools that we are
developing, automatic execution monitors can be generated from BVD specifi-
cations. Initial experiences [16] show that this capability has the potential to
improve both the effectiveness and the efficiency of testing and debugging.



634 K. Xu and D. Liang

Providing a formal definition to BVD is one step in our ongoing effort of
building a tool suite in supporting scenario-driven monitoring methodologies.
We have built a prototype that can read BVD models in the standard XMI for-
mat and generate execution monitors for Java programs. The generated runtime
monitors can detect method call/return events through Java Debugging Inter-
face, and can check the ordering of the detected events as well as the state of
the target Java program when the events are detected. So far, only sequential
BVDs that contains no combined fragments can be accepted by the prototype.
In our future work, we will extend this prototype to fully support the syntax
and semantics presented in this paper, and explore efficient methods of event
detection. We will also continue our empirical studies to evaluate the usefulness
of this language and the usability of our tools.
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Abstract. Modeling systems based on semi-formal graphical formalisms,
such as Statecharts, have become standard practice in the design of
reactive embedded devices. Statecharts are often more intuitively under-
standable than equivalent textual descriptions, and their animated simu-
lation can help to visualize complex behaviors. However, in terms of
editing speed, project management, and meta-modeling, textual descrip-
tions have advantages.

As alternative to the standard WYSIWYG editing paradigm, we
present an approach that is also graphical but oriented on the under-
lying structure of the system under development, and another approach
based on a textual, dialect-independent Statechart description language.
These approaches have been implemented in a prototypical modeling
tool, which encompasses automatic Statechart layout. An empirical study
on the usability and practicability of our Statechart editing techniques,
including a Statechart layout comparison, indicates significant perfor-
mance improvements in terms of editing speed and model comprehension
compared to traditional modeling approaches.

1 Introduction

Statecharts [1] constitute a widely accepted formalism for the specification of
concurrent reactive systems. They extend classical finite-state machines and
state transition diagrams by incorporating hierarchy, orthogonality, compound
events, and a broadcast mechanism for communication between concurrent com-
ponents. Statecharts provide an effective graphical notation, not only for the
specification and design of reactive systems, but also for the simulation of the
modeled system behavior. Statecharts have also been incorporated into the Uni-
fied Modeling Language (UML) and are supported by several commercial tools,
e. g., Rational Rose, Matlab/Simulink/Stateflow, or Esterel Studio. Since the
inception of Statecharts some twenty years ago, significant progress has been
achieved concerning their semantics, formal analysis and efficient implemen-
tation. Concerning the practical handling of Statecharts, however, it appears
that comparatively little progress has been made since the very first Statechart
modeling tool set [2]. Specifically, the construction, modification, and revision
management of Statecharts tend to become increasingly burdensome for larger
models, and we feel that in this respect Statecharts are still at a disadvantage

G. Engels et al. (Eds.): MoDELS 2007, LNCS 4735, pp. 635–649, 2007.
� Springer-Verlag Berlin Heidelberg 2007
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relative to other development activities, such as classical programming. This
observation, corroborated in numerous discussions with practitioners and mod-
eling experiences ranging from small, academic models to industrial projects,
has motivated the work presented in this paper.

A commonly touted advantage of graphical formalisms such as Statecharts is
their intuitive usage and the good level of overview they provide—according to
the phrase “one picture is worth ten thousand words.” However, when moving
from toy examples to realistic systems, one is quickly confronted with large and
unmanageable graphics originating from a high number of components or from
intricate interactions and interdependencies.

As an alternative to the graphical modeling one can also develop reactive
systems using textual notations. There exist a couple of languages that either
describe Statecharts directly (e. g., SCXML [3], SVM [4]) or indirectly (e. g., Es-
terel [5,6]). Consequently the developer of reactive systems may choose between
the textual and the graphical approach to specify systems. In principle, they
offer the same expressiveness and the same level of abstraction. However, there
are notable differences in terms of practical use, and both approaches have their
benefits. Graphical models benefit from intuitiveness and are good for higher
level context. Textual languages can represent precise details very well and they
permit powerful macro capabilities (e. g., using generic scripting or preprocess-
ing languages such as perl or m4) and allow a detailed revision management
(e. g., applying the UNIX diff utility to compare different versions).

In summary, textual as well as graphical languages have their specific domains
and advantages. The traditional model-based design flow starts with entering a
graphical model of the System Under Development (SUD), from which textual
programs are synthesized; however, as we argue here, it would combine the ad-
vantages of both techniques to allow the designer to work with textual and
graphical representations of the SUD simultaneously.

Statecharts are commonly created using some what you see is what you get
(WYSIWYG) editor, where the modeler is responsible for the graphical layout,
and subsequently a Statechart appears the way a designer has modeled it. We
believe that the WYSIWYG construction paradigm, which leaves the task of
graphical layout to the human designer, has so far been a limiting factor in the
practical usability of Statecharts, or graphical modeling in general. The premise
of this paper is that this paradigm may have been justified at some point, but
advances in layout algorithms and processing power today make it feasible to
free the designer from this burden.

The main contributions of this paper are:

– an analysis of the graphical editing process using WYSIWYG editors and
the identification of generic Statechart editing patterns;

– the presentation of two alternative Statechart construction paradigms—a
macro-based and a text-based technique—that let the modeler focus on the
modification of the Statechart structure, rather than their layout;
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– a textual Statechart language, called KIel statechart extension of doT (KIT),
which is concise and Statechart-dialect independent and supports the text-
based construction of Statecharts; and

– an empirical study that evaluates the proposed construction techniques and
shows their practicability and efficiency.

The rest of the paper is organized as follows. The remainder of this section
discusses related work, and introduces the prototypical Kiel Integrated Environ-
ment for Layout (KIEL) tool, which serves as an evaluation platform for our
proposals. Sect. 2 presents the analysis of WYSIWYG editing patterns. The
macro-based and text-based Statechart construction approaches and the KIT
language are discussed in Sect. 3. Sect. 4 summarizes the findings of our empir-
ical study, Sect. 5 concludes and discusses possible future extensions.

1.1 Related Work

As indicated above, there is to our knowledge little published work that is di-
rectly related to the pragmatics of Statechart construction. However, the work
presented here cuts across several related areas that have been studied already,
namely textual Statechart description languages, the layout of Statecharts,
graphical editors, and cognitive studies on the effectiveness of graphical and
textual languages. Each of these areas is briefly discussed in the following.

The SCXML [3] Statechart description language has a comprehensible struc-
ture, but the required tags and their hierarchical dependencies call for spe-
cific XML editors. Alternative Statechart descriptions such as SVM [4] and the
UMC [7] Statecharts use explicit declarations of Statechart objects, which re-
duces the readability especially for large Statecharts. This provides the advan-
tages of textual entry, but does not offer the Statechart dialect-independent,
concise constructs as available in KIT. These Statechart description languages
generally serve as an intermediate format synthesized from manually edited
Statecharts; to our knowledge, none of these languages has been used so far
for Statechart synthesis, as we propose to do here. An exception is the RSML
approach [8], which synthesizes a graphical view of the topology using a very
simple, but surprisingly effective layouting scheme, which inspired KIEL’s al-
ternating linear layout. However, RSML still keeps much information that is
normally part of the graphical model instead in textual AND/OR tables.

Castelló et al. [9] have developed a framework for the automatic generation
of layouts of Statecharts based on floor planning. Harel and Yashchin [10] have
investigated the optimal layout of blobs, which are edge-less hierarchical struc-
tures that correspond to Statecharts without transitions. KIEL offers several
layout mechanisms, some employ the GraphViz [11] layout framework, others
are developed from scratch.

A well-established technique to obtain consistency between model artifacts
produced at different stages of the model life-cycle are transformational model-
ing approaches. DiaGen [12] and AToM3 [13] employ graph grammars to gen-
erate graphical editors for visual languages. GenGEd [14] uses graph grammars
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to modify visual languages using graph productions. The visual language is pro-
duced by a priori specified production sequences; we here instead propose inter-
active manipulations of the model. The graph grammar based tools use graphical
constraints for placing graphical elements; we perform an automatic layout from
scratch.

Several experimental studies address the comprehensibility of textual and vi-
sual programs; e. g., Green and Petre [15] performed an experimental study to
evaluate the usability of textual and graphical notations using LabView. They
determined that visual programs can be harder to read than textual ones. Pur-
chase et al. [16] have evaluated the aesthetics and comprehension of UML class
diagrams. We are not aware of any experimental studies on the effectiveness of
editing visual languages.

1.2 The KIEL Modeling Environment

The Kiel Integrated Environment for Layout (KIEL) is a prototypical modeling
environment that has been developed for the exploration of complex reactive
system design [17]. As the name suggests, a central capability of KIEL is the
automatic layout of graphical models, which makes KIEL a suitable testbed
for the construction paradigms presented here. The following paragraph briefly
summarizes KIEL’s capabilities.

The tool’s main goal is to enhance the intuitive comprehension of the behav-
ior of the SUD. While traditional Statechart development tools merely offer a
static view of the SUD during simulation, apart from highlighting active states,
KIEL provides a simulation based on the dynamic focus-and-context visualiza-
tion paradigm [17]. It employs a generic concept of Statecharts which can be
adapted to specific notations and semantics, and it can import Statecharts that
were created using other modeling tools. The currently supported dialects are
those of Esterel Studio, Stateflow, and the UML via the XMI format, as, e. g.,
generated by ArgoUML [18]. Alternatively, KIEL can synthesize graphical SSMs
from (textual) Esterel v5 programs [6]. KIEL also provides an automated check-
ing framework, which checks compliance to robustness rules [19].

2 The WYSIWYG Statechart Editing Process

To analyze and educe improvements in developing Statecharts, we inspected the
common WYSIWYG editing process. We identified nine main editing schemata,
which can be grouped into three categories: Statechart creation, modification of
Statechart elements, and deletion of elements. Fig. 1 illustrates some of these
editing schemata. For example, to apply the schema “add hierarchical successor
state” (Fig. 1d), the modeler has to perform the following steps: (1) select the
state to supplement, (2) add a new hierarchical state, (3) insert an inner initial
connector, (4) insert an inner state, and (5) insert connecting transitions.

When using conventional Statechart editors, none of the editing schemata can
be realized as a single action. Generally, each editing schema using WYSIWYG
editors passes the following action sequence:
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⇒
(a) Insertion of a simple successor state.

⇒
(b) Modification of transition direction.

⇒
(c) Deletion of a Statechart element.

⇒

(d) Insertion of hierarchical successor state.

⇒

(e) Insertion of a parallel region.

Fig. 1. Exemplary generic editing schemata derived from a typical editing process
using WYSIWYG editors

1. If needed, create free space (e. g., expand hierarchical states for new sub-
elements, move existing elements for placing new elements).

2. Focus on a Statechart element for modification resp. supplementation (move
pointer, select per mouse click).

3. Apply an editing schema.
4. If needed, rearrange the modified chart to improve readability.

It is a common experience that the modeler spends much time with the layout-
related activities of steps 1 and 4. For Statecharts developed from scratch, this
effort may be small. In contrast, if an existing chart has to be modified, the
work for arranging the elements increases roughly with the number of State-
chart elements and Statechart complexity. Quoting a practitioner: “I quite often
spend an hour or two just moving boxes and wires around, with no change in
functionality, to make it that much more comprehensible when I come back to
it” [20]. Furthermore, each editing schema requires the modeler to perform a
sequence of low-level editing steps. The alternative proposals presented in the
next section aim to improve both of these points.

3 Proposals for Enhancements in Statechart Editing

The basic idea of our approach is to automate the editing process as far as
possible. Specifically, we propose to reduce the effort of re-arranging Statechart
elements by applying automatic Statechart layout mechanisms. This produces
Statecharts laid out according to a Statechart Normal Form (SNF) [17], which
is compact and makes systematic use of secondary notations to aid readability.
Due to the application of an automatic layout mechanism, the editing action
sequence of Sect. 2 is reduced to:

1. Focus on a Statechart element for modification resp. supplementation;
2. Apply an editing schema.

Both editing actions remain under control of the modeler and will be treated by
the following editing proposals.
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3.1 Macro-Based Modeling

Using WYSIWYG editors, a simple editing action (e. g., placement of a state)
scarcely needs time; but applying a complete editing schema (cf. Sect. 2) re-
quires multiple mouse and keyboard actions. Our proposal to optimize this is
to directly manipulate the Statechart structure, uncoupled from its graphical
representation.

The schemata described in Sect. 2 can be interpreted as Statechart produc-
tions. Before applying a production (a schema), the modeler selects the location
for the modification (the focus), which corresponds to the left-hand side of the
production. If the production pattern matches, the application of the schema
replaces the focus with the right-hand side of the production. The set of pro-
ductions constitutes a Statechart grammar, which has the nice property that
every application of a production results in a syntactically correct Statechart.
Hence, a design does not go through meaningless intermediate editing stages,
which frees the modeler from time-consuming syntax-checking. (An exception
to this are productions that delete model elements, which may result in isolated
states; KIEL does provide syntax checks that detect these, however.)

Concerning step 1, the setting of the focus, we propose to not only provide
the traditional mouse-oriented mechanism, but also to allow a structure-oriented
navigation, similar to text editors. E. g., in the KIEL macro editor (see Sect. 3.3),
(1) the right/left key navigates through state sequences, (2) the up/down key
navigates among sibling elements (e. g., multiple outgoing transitions from a
state object), and (3) the page up/down keys navigate up resp. down in state
hierarchies. Fig. 2a illustrates some navigation examples.

Concerning step 2, the selection of an editing schema, the designer may select a
schema from a pull-down menu or by pressing a keyboard shortcut. E. g. in KIEL
Ctrl+I generates a new successor state with a connecting transition and adjusts
if necessary the priorities associated with transitions (cf. Fig. 2b). Afterwards
a rearrangement of the Statechart elements will be performed automatically,
according to the SNF.

3.2 Text-Based Modeling

Macro-based modeling works directly on the Statechart topology, combining sev-
eral simple editing actions. As another, alternative structure-based Statechart
editing technique we propose to employ a textual Statechart structure descrip-
tion. The KIel statechart extension of doT (KIT) combines implicit declarations
as used in dot [11], the hierarchy construction as used in textual Argos [21], and
the orthogonal construction as used in Esterel [22] with the ability to describe
different dialects of Statecharts.

Fig. 3 presents a KIT example with the equivalent graphical model of a Safe
State Machine (SSM), the Statechart-dialect implemented in Esterel Studio. Fig.
3a lists the KIT code, which is shortly described in the following. The Statechart
preamble is listed in Line 1, containing the Statechart name and the model type
and version, which determine the Statechart dialect and the accompanying graph-
ical Statechart representation of the targeted modeling tool. Lines 2–5 declare the
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→
→

→
Page ↑

Page ↓Page ↓

↓

↓

(a) Navigation with key strokes.

Ctrl + I
=========⇒

(b) Example of applying the “insert simple
successor state” schema. Before applying
the schema, state S2 is selected; afterwards
the inserted state S4 remains selected for
further editing operations.

Fig. 2. Editing actions and navigation using the macro-based modeling approach

1 statechart abro[model="Esterel Studio";version="5.0"]{
2 input A;
3 input B;
4 input R;
5 output O;
6 {
7 ->ABO;
8 ABO{
9 AB{

10 ->A;
11 A->AF[type=sa;label="A"];
12 AF[type=final];
13 ||
14 ->B;
15 B->BF[type=sa;label="B"];
16 BF[type=final];
17 };
18 ->AB;
19 AB->Program_Terminated[type=nt;label="/ O"];
20 Program_Terminated[type=final];
21 };
22 ABO->ABO[type=sa;label="R"];
23 };
24 };

(a) KIT description representation. (b) SSM representation.

Fig. 3. Textual and graphical representations of the ABRO example [22]

signal events. Afterwards, Lines 7–23 declare Statechart elements and their rela-
tions. State objects are implicitly identified by their state names, (cf. Line 8), curly
braces define the scope of hierarchical relations (e. g., state AB, cf. Line 9–17),
transitions are written as -> (cf. Line 11), and the || operator denotes parallel re-
gions (cf. Line 13). KIT includes a couple of shorthand notations; e. g., a transition
without a source node determines an initial connector (cf. Line 7), a transition of
type sa abbreviates the SSMs strong abortion (cf. Line 11).

3.3 Implementation in KIEL

We have implemented the above proposed Statechart editing techniques in KIEL,
which resulted in the KIEL macro editor and the KIT editor. Both editors
are accessible simultaneously and are arranged side by side so that they allow
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Fig. 4. Screenshot of KIEL displaying the Statechart tree-structure, the graphical
model, and the KIT editor

alternative views on the same SUD, as can be seen in Figure 4. The user may
thus chose to manipulate either the textual or the graphical view, and the tool
keeps both views automatically and continuously consistent.

The KIEL macro editor is implemented as an extension of the graphic display-
ing window; there the modeler marks and modifies graphical elements directly.
The KIT code is kept in sync with the graphical model. In the opposite direc-
tion, if the modeler is using the KIT editor, the graphical model is synthesized
from KIT code. This employs a parser/synthesizer generated by SableCC [23].
A similarly generated tool performs the application of the production rules us-
ing the KIEL macro editor. The productions are specified using an underlying
grammar; the set of production can be easily extended with further production
rules. Figure 5 depicts the tool chain of the KIT editor and the KIEL macro
editor and their integration within KIEL.

4 Experimental Evaluation

We have used successive generations of KIEL in the classroom since 2005, in-
cluding the macro-based and text-based editors presented here. The feedback on
these editing approaches has been generally quite positive, also in comparison
to the classical editing paradigms employed by the other, commercial modeling
tools also used in classes. However, to gain a better, objective insight into the
effectiveness of our modeling approaches, we have performed an experiment to
investigate differences in editing performance between the conventional WYSI-
WYG approach, the KIT editor, and the KIEL macro editor. As mentioned in
Sect. 3.3, KIEL provides a mechanism that automatically produces our preferred
Statecharts arrangements; in the following we call this the alternating dot layout
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KIEL KIT Editor

KIT

KIT Parser

KIEL
Textual KIT Editor

KIEL
Statechart Data Structure

KIEL
Graphical Statechart Browser

Java
Token Tree Java

Transformation

KIT Synthesizer

SableCC
Parser Generator KIEL

Statechart Auto-Layouter

KIT Grammar

KIEL
Statechart Macro Manipulator

SableCC
Parser Generator

KIEL Macro Editor

Statechart Grammar

Fig. 5. Integration of the KIT editor and the KIEL macro editor into KIEL. The
solid lines characterize the information flow during runtime, the dashed lines represent
dependencies during compile-time of KIEL.

(ADL) (see Fig. 6a). Hence, a further goal of the experiment was to compare
the readability of the ADL with other layout strategies.

4.1 Experiment design

The participants in the experiment (the subjects) were graduate-level students
attending the lecture “Model-Based Design and Distributed Real-Time Systems”
in the Winter Semester 2006/071. Most of them were not familiar with the
Statechart formalism in advance. The experiment consisted of two parts. The
first part took place early in the semester, after two lecture units introducing
the Statechart formalism. The subjects had by then also solved a first home-
work on understanding Statechart semantics. The second part proceeded after
the final lecture unit at the end of the semester. In the meantime the subjects
had gained practical experiences in modeling Statecharts; furthermore, they had
learned about the importance of modeling paradigms, such as maintainability
and co-notation of Statecharts. 24 students participated in the first experiment,
19 took the second one. In the following we refer to the participants of the first
experiment as novices and to the participants of the second experiment as ad-
vanced. Furthermore, we define as experts the modelers that have significant
practical experience beyond course work. Both experiments have similar design
and consist of three parts:

Modeling Technique Evaluation: The subjects had to create Statecharts of vary-
ing complexity using different Statechart modeling techniques: a graphical
WYSIWYG Statechart editor (we decided to employ Esterel Studio), the
KIEL macro editor, and the KIT editor. Afterwards the created Statechart
had to be extended and modified. A one-page reference card per modeling

1 URL: http://www.informatik.uni-kiel.de/rtsys/teaching/ws06-07/v-model/

http://www.informatik.uni-kiel.de/rtsys/teaching/ws06-07/v-model/
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(a) Alternating dot layout (ADL). (b) ADL backwards (ADBL).

(c) Linear
layer layout
(LLL).(d) Alternating linear layout

(ALL).
(e) Arbitrary layout (AL).

Fig. 6. Different Statechart layouts for experimental comparison. The layouts in Fig.
6a, 6b, and 6d were automatically generated from the KIEL layout mechanism; the
Statechart models in Fig. 6c and 6e were drawn manually.

tool instructed the subjects. As editing performance metric the elapsed time
was measured.

Subjective Layout Evaluation: The subjects were asked to score readability and
comprehensibility of five different Statechart layouts without understanding
(cf. Fig. 6).

Objective Layout Evaluation: In this experiment the subjects had to analyze
different Statechart models, constructing a sequence of active states and
upcoming signal events according to the semantics of SSMs. The elapsed
time of each Statechart reading was measured for performance evaluation.

Each subject had to process a personal randomized experiment assignment
(see Sect. 4.3), containing the tasks described above. The study was realized
as a controlled experiment, i. e., the experiment leader checked and rejected
the solutions of Parts A and C in case of incorrectness. Each of the subject’s
experiments was performed in a single session of one to two hours; the sessions
were videotaped.

4.2 Hypotheses

The main questions asked in this experiment are the following: “Do the macro-
based and text-based editing techniques make the Statechart construction
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process easier and faster than the conventional WYSIWYG method? Are the
resulting Statecharts more readable and comprehensible?” To guide the analysis
of the results it is useful to formulate some explicit expectations in form of hy-
potheses about the differences that might occur. Hence, the experiment should
investigate the hypotheses as follows:

1. Statechart Creation: We expect that novices will need less time to create a
Statechart using the WYSIWYG editor compared to the usage of the KIEL
macro editor or the KIT editor. However, the Statechart creation times of
advanced modelers using the KIT editor should be less than when using the
WYSIWYG editor.

2. Statechart Modification: We expect that modification of an existing State-
chart using the KIT editor or the KIEL macro editor is faster than using the
WYSIWYG editor.

3. Aesthetics: Statecharts are sensed as aesthetic if their elements are arranged
conforming to a certain layout style guide. We expect the best scores for
Statecharts laid out according to the ADL (see Fig. 6a).

4. Comprehension: We suppose that well arranged Statecharts influence the
readability. Hence, we expect a faster comprehension of the ADL compared
to other Statechart layouts.

4.3 Validity

Concerning the internal validity, all relevant external variables (subjects’ State-
chart modeling experience, maturation, aptitude, motivation, environmental
condition, etc.) were equalized between appropriate groups by randomized group
assignment. Regarding the external validity, there are several sources of differ-
ences between the experimental and real Statechart modeling situations that
limit the generalization of the experiments: In real situations, there are modelers
with more experience, often working in teams, and there are Statechart models
of different size or structure. However, we do not consider this to invalidate the
basic findings of the experiment.

4.4 Results

This section presents and interprets the results of the experiments. The analysis
is organized according to the hypotheses listed in Sect. 4.2. Box plots present the
obtained statistical data; the comparison of means will be assisted by the two
sample t-test. The test compares the difference of sample means from two data
series to an hypothesized difference of the series means. It computes the p-value,
which indicates statistically significance. We will call a difference significant if
p < 0.05. The analysis and plots were performed with R v. 2.4.0 [24].

Evaluation of Modeling Techniques. The plots in Fig. 7a corroborate our
Hypothesis 1 for novices. Due to the novelty of the KIEL macro editor and KIT
editor, the novices sought advice in the reference card (cf. Sect. 4.1); in contrast
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(a) Distribution of times for creating a
new Statechart. Novices: The Statechart
creation times using a WYSIWYG editor
are smaller than using the KIEL macro
editor (t-test p = 0.04) and tend to be
smaller using the KIT editor (t-test p =
0.25). Advanced: The Statechart creation
times using a WYSIWYG editor tend to
be smaller than using the KIEL macro ed-
itor (t-test p = 0.12); time differences be-
tween WYSIWYG editor and KIT editor
are not significant (t-test p = 0.46).
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(b) Distribution of times for modifying
an existing Statechart. Novices and Ad-
vanced: The needed times for Statechart
modification using the KIEL macro edi-
tor or using the KIT editor are smaller
than the times using the WYSIWYG ed-
itor (both: t-test p = 0.00).
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(c) Distribution of subjective Statechart
layout scores. Novices and Advanced: The
ADL scores better than all other State-
chart layouts (all layouts: t-test p = 0.00).
Score meaning: 1.0: strong preference,
−1.0: strong rejection.
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(d) Distribution of Statechart comprehen-
sion times. Novices: Less time is needed
for comprehending Statechart according
to ADL (ADBL: t-test p = 0.02, oth-
ers: t-test p = 0.00). Advanced: ADL
times tend to be smaller than times of the
ADBL (t-test p = 0.1); less time is needed
for other layouts (ALL: t-test p = 0.04,
LLL: t-test p = 0.03, AL: t-test p = 0.03).

Fig. 7. Distribution of times for modeling Statecharts and distribution of Statechart
layout assessments. The box plots denote quartiles, small circles indicate outliers.
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the WYSIWYG editor could be used intuitively and without any reference card.
Hence, on average the novices needed less time for creating Statecharts using
the WYSIWYG editor than using the KIT editor or the KIEL macro editor.
For advanced learners, however, the mean times are slightly less using the KIT
editor. We suppose that for experts in Statechart creation this difference would
increase further.

Fig. 7b illustrates the efficiency using the KIT editor and the KIEL macro
editor in Statechart modification; this corroborates Hypotheses 2. With the KIT
editor and the KIEL macro editor the modeler only works on the Statechart
structure, while KIEL’s Statechart auto-layouter arranges the graphical model.
In contrast, using the WYSIWYG editor the subjects spent most of the time
with making room for new Statechart elements and re-arranging the existing
ones to make the developed chart readable. Despite the fewer operations needed
using the KIEL macro editor, the subjects needed more time to modify a State-
chart. The time was largely due to frequent consultations of the reference cards.
Hence, for experts we suppose that the KIEL macro editor would provide the
fastest modeling method.

Evaluation of Statechart Layouts. The scores of subjective Statechart layout
assessment (cf. Fig. 7c) clearly show the subjects’ preference for Statecharts laid
out according to the ADL; hence, hypothesis 3 can be retained. Apparently it is
not sufficient that layouts underlie an automatic layout; in fact Statechart layouts
have to satisfy certain aesthetics to be assessed as good layouts. Accordingly,
subjects stated that “transitions must be short and traceable” and “the element
structure has to follow the Statechart meaning”. E. g., due to unnecessary long
transitions the ALL scores lower than the LLL.

Figure 7d demonstrates that a proper layout enhances the readability of State-
charts; Statecharts laid out according to the ADL are faster comprehensible than
other Statechart layouts, which corroborates hypothesis 4. This results from
the accompanying proper micro layout (e. g., label placement) as well as proper
macro layout (e. g., compact and white-space avoiding element arrangement).

5 Conclusion and Future Work

Embedded devices are proliferating, and their complexity is ever increasing.
Statecharts are a well established formalism for the description of the reactive
behavior of such devices. However, there is evidence that the current use of this
formalism is not optimal, in particular as models get more complex.

We have presented a description language called KIT that was developed with
the intention to describe topological Statechart structures. The KIEL tool com-
bines the ability of easy textual editing and simultaneous viewing of the result-
ing graphical Statechart model. As another alternative to the classic, low-level
WYSIWYG graphical editing paradigm, the graphical model can be modified
using high-level editing schemata. This technique employs Statechart produc-
tion rules that ensure the syntax-consistency through the whole editing process.
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The user feedback on this has been generally very positive, and this has been
supported by experimental data.

In the future we intend to experiment further with the simultaneous display of
textual and graphical representation of the SUD. E. g., for a better traceability
an indexing mechanism between elements of the textual and the graphical models
could be useful. Beyond, we intend to apply the graphical model synthesis from
a textual description, in combination with layout and simultaneous display, to
data-flow languages such as SCADE/LUSTRE.
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9. Castelló, R., Mili, R., Tollis, I.G.: A Framework for the Static and Interactive
Visualization for Statecharts. Journal of Graph Algorithms and Applications 6(3),
313–351 (2002)

10. Harel, D., Yashchin, G.: An Algorithm for Blob Hierarchy Layout. The Visual
Computer 18, 164–185 (2002)

http://www.w3.org/TR/scxml/
http://citeseer.nj.nec.com/berry92esterel.html


Statechart Development Beyond WYSIWYG 649

11. Gansner, E.R., North, S.C.: An open graph visualization system and its appli-
cations to software engineering. Software—Practice and Experience 30(11), 1203–
1234 (2000), URL: http://www.research.att.com/sw/tools/graphviz/GN99.pdf

12. Minas, M.: Specifying Statecharts with DiaGen. In: HCC ’01 – 2001 IEEE Sym-
posia on Human-Centric Computing Languages and Environments, Symposium
on Visual Languages and Formal Methods, Statechart Modeling Contest (Septem-
ber 2001), http://www2.informatik.uni-erlangen.de/VLFM01/Statecharts/
minas.pdf&e=7%47

13. de Lara, J., Vangheluwe, H., Alfonseca, M.: Meta-modelling and graph gram-
mars for multi-paradigm modelling in AToM3. Software and Systems Modeling
(SoSyM) 3(3), 194–209 (2004)

14. Bardohl, R.: GenGEd – A visual environment for visual languages. Science of
Computer Programming (special issue of GraTra ’00) (2002)

15. Green, T.R.G., Petre, M.: When Visual Programs are Harder to Read than Textual
Programs. In: Human-Computer Interaction: Tasks and Organisation, Proceedings
ECCE-6 (6th European Conference Cognitive Ergonomics) (1992),
URL: http://citeseer.nj.nec.com/green92when.html

16. Purchase, H.C., McGill, M., Colpoys, L., Carrington, D.: Graph drawing aesthet-
ics and the comprehension of UML class diagrams: an empirical study. In: ACM
International Conference Proceeding Series archive, Australian symposium on In-
formation visualisation, pp. 129–137. ACM Press, New York (2001)

17. Prochnow, S., von Hanxleden, R.: Comfortable Modeling of Complex Reactive
Systems. In: DATE’06. Proceedings of Design, Automation and Test in Europe,
Munich (March 2006)

18. ArgoUML: Tigris.org. Open Source Software Engineering Tools,
URL: http://argouml.tigris.org/

19. Prochnow, S., Schaefer, G., Bell, K., von Hanxleden, R.: Analyzing Robustness of
UML State Machines. In: Proceedings of the Workshop on Modeling and Analysis
of Real-Time and Embedded Systems (MARTES’06), held in conjunction with
the 9th International Conference on Model Driven Engineering Languages and
Systems, MoDELS/UML 2006, Genua (October 2006)

20. Petre, M.: Why looking isn’t always seeing: readership skills and graphical pro-
gramming. Communications of the ACM 38(6), 33–44 (1995)

21. Maraninchi, F.: The Argos language: Graphical representation of automata and
description of reactive systems. In: IEEE Workshop on Visual Languages, IEEE
Computer Society Press, Los Alamitos (1991)

22. Berry, G.: The Foundations of Esterel. In: Plotkin, G., Stirling, C., Tofte, M. (eds.)
Proof, Language and Interaction: Essays in Honour of Robin Milner (2000)

23. Gagnon, E.M., Hendren, L.J.: SableCC, an object-oriented compiler framework.
In: TOOLS (26), pp. 140–154. IEEE Computer Society, Los Alamitos (1998)

24. R Development Core Team: R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, Vienna, Austria (2006),
URL: http://www.R-project.org

http://www.research.att.com/sw/tools/graphviz/GN99.pdf
http://www2.informatik.uni-erlangen.de/VLFM01/Statecharts/minas.pdf&e=7%47
http://www2.informatik.uni-erlangen.de/VLFM01/Statecharts/minas.pdf&e=7%47
http://citeseer.nj.nec.com/green92when.html
http://argouml.tigris.org/
http://www.R-project.org


Model-Based Design of Computer-Controlled
Game Character Behavior

Jörg Kienzle, Alexandre Denault, and Hans Vangheluwe

McGill University, Montreal, QC H3A 2A7, Canada
{Joerg.Kienzle, Alexandre.Denault, Hans.Vangheluwe}@mcgill.ca

Abstract. Recently, the complexity of modern, real-time computer
games has increased drastically. The need for sophisticated game AI,
in particular for Non-Player Characters, grows with the demand for re-
alistic games. Writing consistent, re-useable and efficient AI code has
become hard. We demonstrate how modeling game AI at an appropri-
ate abstraction level using an appropriate modeling language has many
advantages. A variant of Rhapsody Statecharts is proposed as an ap-
propriate formalism. The Tank Wars game by Electronic Arts (EA) is
used to demonstrate our concrete approach. We show how the use of
the Statecharts formalism leads quite naturally to layered modeling of
game AI and allows modelers to abstract away from choices between, for
example, time-slicing and discrete-event time management. Finally, our
custom tools are used to synthesize efficient C++ code to insert into the
Tank Wars main game loop.

1 Introduction

Recently, global sales of the world’s computer game industry have grown higher
than those of the movie industry. Consequently, there is a growing demand for
technology which supports rapid, re-usable game development accessible to non
software experts. Computer games can be roughly classified into two categories:
turn-based games (such as board games, adventures, and some role playing
games) and real-time games (such as action or arcade games, and real-time
strategy games). The kind of artificial intelligence found in computer games is
different for turn-based and real-time games.

Board games are usually computerized versions of existing board games. Real
board games typically require 2 or more players, but in a computerized version
the computer can play the opponent. A good example of a board game that
has seen many successful computerized implementations is Chess [6]. In turn-
based games and particularly in board games, an artificial intelligence component
that plans the moves of a player typically uses advanced search algorithms and
heuristics to evaluate many possible future game situations. It then chooses as
the current move the one that maximizes the likelihood of winning the game in
the future. Timing is not that critical. Since the game is turn-based, the state of
the game does not change until a player makes a move. Usually, waiting several
seconds for an artificial intelligence component to make a move is acceptable.

G. Engels et al. (Eds.): MoDELS 2007, LNCS 4735, pp. 650–665, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Real-time games are very different in nature. The state of the game changes
continuously (or in tiny increments), and the screen is continuously updated
to present the new game state to the player. Modern computer games usually
provide at least 30 frames-per-second updates. In real-time games (with the
exception of real-time strategy games) the player usually controls one character
(or a small number of characters), and plays within a game environment against a
set of computer controlled characters (or in multiplayer games against characters
controlled by other players).

In such games, the term artificial intelligence is used to designate the algo-
rithms that specify the behavior of computer-controlled game characters, often
also called non-player characters (NPC). The ultimate goal is to make the NPCs’
own actions and reactions to game events seem as intelligent and natural as pos-
sible. For example, a guard protecting a building might walk back and forth
in front of the main door. If he ever hears shots nearby, he should not simply
continue this behavior, but for instance seek cover and call for backup. In its
simplest form, such AI can be specified with scripts or rules that specify the
NPC’s behavior case by case. More realism can be achieved if the NPC has the
ability to analyze a situation and evaluate different options, taking into account
even the game history.

We believe that the specification of such advanced real-time AI should not
be done within a programming language, but at a higher level of abstraction
using visual modeling formalisms. Since the main focus of the models is to de-
fine reactions to game events, an event-based formalism seems to be the most
natural choice. We decided to use our own variant of Rhapsody statecharts [5],
a combination of state diagrams and class diagrams, for our experiments.

Our paper is structured as follows. Section 2 describes our approach to mod-
eling game AI, and explains the details by designing a game AI that controls
the behavior of a tank. Section 3 shows how we used our model to generate code
that executes within the EA Tank Wars environment. Section 4 presents some
related work and section 5 discusses the benefits of our approach and concludes.

2 Modeling Game AI

In games or simulations, a character perceives the environment through his senses
or sensors, and reacts to it through actions or actuators. For instance, a charac-
ter might observe an obstacle with his eyes, and subsequently decide to turn left.
Our AI modeling framework follows this control-inspired philosophy. The trans-
formation from sensor input to actuator output is described by means of simple
components. Each component’s structure is modeled by a class, and its behavior
by a statechart. The main mechanism of communication between the components
is the asynchronous sending/receiving of events. This lowers the coupling between
components and hence makes reconfiguration and reuse easier. In some situations,
a component may also synchronously invoke an operation of another component.

The architecture of our AI models is described in Fig. 1. The first level con-
tains components that represent the sensors that allow the character to observe
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the environment as well as its own state. The sensors filter the abundant informa-
tion and send events of interest on to the next levels. The second level contains
components that analyze or correlate the events from individual sensors, which
might lead to the generation of further events. The memorizer components keep
track of the history of events. The strategic decider components are conceptu-
ally at the highest level of abstraction. They have to decide on a strategy for
the character based on the current state and memory. At the next level, the
tactical deciders plan how to best pursue the current strategy. The executors
then translate the decisions of the tactical components to low-level commands
according to the constraints imposed by the game or simulation. Coordinator
components understand the inter-relationships of actuators and might refine the
low-level commands further. Finally, the actuators perform the desired action.

To illustrate the power of our approach, we show in the following sections how
we modeled the AI of a computer-controlled tank.

2.1 Modeling the State of a Tank
Sensors
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Fig. 1. AI Model Architecture

A tank is a heavy armored fighting vehicle car-
rying guns and moving on a continuous artic-
ulated metal track. When developing a model
of a real-world object such as a tank, the mod-
eler abstracts away certain details depending
on the context in which the model is going to
be used.

Some games actually model game objects
such as vehicles and their physical interactions
with the environment in great detail. These
games are typically called simulators, such as flight simulators, helicopter simu-
lators and tank simulators. Simulating the physics of a tank requires a detailed
model of the physical components of a tank (physical shape, material, mass) and
equations describing the physical interactions of these components.

In this paper, our interest is to reason about the behavior of a tank pilot.
Therefore we can model a tank at a much higher level of abstraction (see Fig. 2).
In the particular game that our AI is going to be playing, a tank has a given
physical size, approximated by a bounding rectangle. The gun is mounted on
a rotating turret anchored in the middle of the tank. A tank also has a set of
sensors that relay information about the state of the tank and the surrounding
environment to the pilot. The instruments in the cockpit tell the driver the
position of the tank, in which direction the tank is facing, what speed it is going
at, and at what angle the turret is currently positioned. A fuel indicator shows
the current fuel level of the tank, and a status indicator reports on the current
damage. Finally, two radars, one mounted in the front of the tank, and the other
one on the turret, scan the environment for enemies and obstacles. The tank has
also an advanced weapon detection system, which informs the pilot when the
tank is under attack, and from what position the enemy attack is originating.
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Fig. 3. Modeling the State of a Tank with Class Diagrams

The above mentioned state of a tank can naturally be modeled using class
diagrams as shown in Fig. 3. Each sensor of the tank, such as the radar, can be
modeled as a stand-alone class. The composition association is then used to con-
nect the different components together to form the complete state of a particular
tank. The advantage of using hierarchical composition is easy to see: models of
tanks with different components, for example with 2 turrets, can easily be con-
structed by combining the individual components in different configurations.

2.2 Sensors – Generating Important Game Events

During a game or simulation, the state of the tank and the states of its com-
ponents evolve (according to the game rules or laws governing the simulation).
As mentioned in the introduction, a tank pilot (or a computer player) pursues a
specific high level goal and performs actions that work towards the achievement
of that goal. High level goals usually remain the same as long as no significant
changes in the tank’s state or in its environment occur.

We suggest to explicitly model the generation of significant events using state
diagrams. The state diagrams are attached to the class that has access to all the
state needed to generate the event. The events are generated either by inspecting
the values of the attributes of the current class, or by looking at attributes of
other classes associated by composition relationships.

A simple example is shown in Fig. 4. The FuelTank class encapsulates an
attribute that stores the current fuel level of the tank. Fuel is essential for the
tank to function, but the exact fuel level is not of great importance. Hence
we abstract from the continuous fuel level to two discrete states, FuelLevelOK
and FuelLow. Only when the fuel is low, the tank pilot should take appropriate
measures. We can model the generation of a fuelLow event in case the fuel level
crosses a certain threshold by attaching a state diagram to the FuelTank class.
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fuelLevel
FuelTank FuelLevelOK

MonitorTank [fuelLevel < 10%] / fuelLow

<<behavior>>
FuelLow

[fuelLevel = 100%] / fuelFull

Fig. 4. Generating FuelLow and FuelFull Events

boolean enemyPresent()
position getEnemyPos()
boolean enemyInFront()
distance enemyDistance()
boolean obstaclePresent()
position[] getObstacles()

radarData myData
range myRange
direction myDirection
position myPosition

Radar Announcements

<<behavior>>

AnnouncingEnemyAndObstacles

NoEnemy EnemySighted

[enemyPresent()] / enemySighted(getEnemyPos())

[not enemyPresent()] / enemyLost

Checking Waiting

[obstaclePresent()] / wallSighted

after(1)

Fig. 5. Generating Events based on Simple Computations

Note that this simple behavior introduces hysteresis: once the fuel level drops
below 10%, the FuelLow state is entered, to only be exited once the level reaches
100% again.

A more complicated example is shown in Fig. 5. In this case, the Radar com-
ponent wants to signal EnemySighted and EnemyLost event when an enemy
enters/exits the radar surveillance zone. This behavior is described in the first or-
thogonal component of the statechart Announcements. Analyzing the radar data
for enemy presence, and calculating the enemy position are both operations that
require a small computation. They can be modeled as simple operations such as
getEnemyPos() attached to the Radar class. The state diagram attached to the
Radar class can use these operations to trigger the transition that sends the de-
sired EnemySighted and EnemyLost events. The orthogonal AnnounceObstacles
component also shown in Fig. 5 performs similar event generation for detected
obstacles.

2.3 Analyzers – Correlating Sensor Events

Some significant events can only be detected or calculated based on the state of
several tank components. For instance, to determine if the enemy is in range,
information from the turret as well as the turret radar is needed. The InRangeDe-
tector state diagram shown in Fig. 6 takes care of this. While in the Seeking state,
if the front radar ray of the turret radar detects an enemy, and the distance is
smaller than the turret range, then the ReadyToShoot event is sent.
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Seeking

InRangeDetector [turretRadar.enemyInFront() &&
turretRadar.enemyDistance <= turret.range] / readyToShoot

<<behavior>> InRange

after(1)]

InRangeDetector

Radar
1    turretRadar

Turret
1    turret

Fig. 6. Generating Events based on the State of Several Components
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Fig. 7. Remembering the Position of the Enemy

2.4 Memorizers – Modeling Memory

A tank pilot does not only react to current events, but also makes decisions
based on events/state from the past. In order to remember interesting state or
events for future strategical decisions, we need to add state to the model that
acts as the tank pilot’s “memory”.

Occurrences of events can be remembered using boolean or enumeration fields,
or states in a statechart. An example of the latter is shown in Fig. 7, which depicts
an EnemyTracker class that contains an enemyPosition field that remembers
at what position the enemy has last been seen, even if the enemy is not within
range of one of the radars anymore.

While the enemy is in range of at least one of the radars (# received ene-
mySighted events > # received enemyLost events), the enemyMoved operation
compares the enemy position of the EnemyTracker with the position obtained
from the two radars. If the positions differ by a significant amount, the stored
position is updated and an enemyPosChanged event is sent.

Remembering complex state, for instance geographical information, is less
trivial, and usually requires the construction of an elaborate data structure that
stores the state to be remembered in an easy-to-query form. This is done in
the ObstacleMap class shown in Fig. 8. It reacts to the WallDetected events
sent by the radars and updating the map data structure accordingly. The actual
algorithm is not shown here, but abstracted within the updateMap() operation.

2.5 Strategic Deciders – Deciding on a High-Level Goal

Now that we have the event generation (based on environment sensors, current
state of the tank and memory) in place, it is possible to model the high level
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updateMap()
position[] obstacles

ObstacleMap
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wallSighted / updateMap()

UpdateMap
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Fig. 8. Creating a Map of the World
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Fig. 9. The Tank Pilot Strategy

strategy of the tank pilot. This is depicted in Fig. 9. At the highest level of
abstraction, a tank pilot switches between different operating modes based on
events. He starts in Exploring mode, and switches to Attacking mode once the
enemy position is known (and there is still enough fuel). If at any point in time
the sustained damage is too high, then, if the location of the repair station is
known, he switches to Repairing mode. Otherwise, Fleeing is the best strategy.
In the event that the fuel is low, if the location of the fuel station is known, the
tank pilot chooses to switch to Refueling mode. Otherwise, it is best to continue
Exploring, hoping to find a fuel station soon. When the fueltank is full, the pilot
switches back to whatever he was doing before he was interrupted.

The mode changes are announced by sending corresponding events: when
Exploring is entered, the explore event is sent, when Attacking is entered, the
attack event is sent, etc.

2.6 Tactical Deciders – Planning how to Achieve the Goal

The high-level goals sent by the pilot strategy component have to be translated
into lower-level commands that can be understood by the different actuators
of the tank, such as the motor and the turret. This translation is not trivial,
since it can require complex tactical planning decisions to be made. In addition,
the planning should take into account the history of the game, i.e. consult the
memorizers for important game state or events that happened in the past.

Each strategy of the pilot should have a corresponding planner component.
Fig. 10 illustrates how the AttackPlanner decides to carry out an attack:
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Fig. 10. Attack Movement Strategy

setDestination()
calculatePath(position)
boolean moreWaypoints()

position[] waypoints
position destination

Pathfinder

Idle

newDestination(p) / calculatePath(p)PathFinder

<<behavior>>

Map
1

/ newWaypoint

obstacleAhead / calculatePath(destination)

waypointReached

    [moreWaypoints()]
/ newWaypoint

          [not moreWaypoints()]
/ destinationReached

Fig. 11. Pathfinding

whenever the tank is ready to shoot, a shoot event is sent. The movement strat-
egy is also simple: the planner chooses to move the tank to the position of the
enemy. Whenever the enemy position changes, it sends out a newDestination
event.

The Pathfinding component, shown in Fig. 11, knows how to perform obstacle
avoidance. It translates the newDestination event into a list of waypoints by
analyzing the current world information obtained from the Map. The Pathfinding
component then announces the first waypoint by sending an event. Whenever
the tank reaches a waypoint, the next waypoint is announced.

2.7 Executors – Mapping the Decisions to Actuator Commands

The executors map the decisions of the tactical deciders to events that the actu-
ators can understand. The mapping of events is constrained by the rules of the
game or simulation. There is typically one executor for each actuator.

In our case the Steering component shown in Fig 12translates the waypoints
into events that the MotorControl understands. Every second, depending on
whether the waypoint is ahead of, left of, right of or behind the tank, the cor-
responding command event is sent to the MotorControl. A more sophisticated
Steering component would take into account the dynamics of the tank such as
speed, mass, and acceleration.
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Fig. 12. Steering the Tank
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TurretTankMovementCoordinator

Fig. 13. Coordinating and Controlling the Turret

2.8 Coordinators – Resolving Undesired Actuator Interactions

For modularity and composability reasons, executors individually map tactical
decisions to actuator events. This mapping can result in inefficient and maybe
even incorrect behavior when the effects of actuator actions are correlated. In
such a case it is important to add an additional coordinator component that
deals with this issue.

For example, while attacking, the turret should turn until it is facing the
enemy tank and then shoot. However, the optimal turning strategy depends
on whether the tank itself is also turning or not. Fig. 13 illustrates a Turret-
TankMovementCoordinator class that performs this coordination step. The cal-
culations required to determine if it is faster to turn right or turn left based on the
current turning decisions of the motor are done in the operations
reachTurnLeft() and reachTurnRight().

2.9 Actuators – Signaling the Action to the Game

At our level of abstraction, the tank actuators are very simple. A tank pilot
can decide whether to advance or move the tank backwards at different speeds,
and whether to turn left or right. Likewise, a turret can be turned left or right,
and shots can be fired at different distances. Finally, commands can be given to
refuel or repair, if the tank is currently located at a fuel or repair station. We
suggest to model each actuator as a separate Control class.
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Fig. 14. The Motor Actuator
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Fig. 15. The Tank AI Components

Fig. 14 shows the MotorControl class, an actuator that controls the movement
of the tank. The state diagram shows how the motor reacts to turnLeft, turn-
Right, stopTurn, forward, backward and stop events. How this action is finally
executed within the game or simulation is going to be discussed in section 3.

2.10 Tank AI Model Summary

The detailed architecture that shows all the components of our tank AI is de-
picted in Fig. 15. Most communication is done using events, and hence the indi-
vidual components are only loosely coupled. Only when conceptually necessary,
i.e. when a component’s functionality depends on data from another component,
synchronous communications must occur. In this case, the dependency between
the involved classes is shown with directed associations.

Fig. 16 shows a possible sequencing of events in case the PilotStrategy compo-
nent decides to attack. The AttackPlanner (concurrently) sets a new destination
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Fig. 16. Possible Event Sequence in Case of an Attack

and tells the turret to aim at the enemy. The Pathfinder calculates new way-
points by consulting the ObstacleMap and instructs the Steering component to
move towards the first waypoint. The Steering component instructs the Motor
to move in the appropriate direction. Simultaneously, the TurretSteering com-
ponent instructs the turret to turn by an absolute angle to face the enemy. The
turning is coordinated with the tank movement by the TurretTankMovementCo-
ordinator. In our example, the tank is moving left (maybe to avoid an obstacle),
and the turret turns right to compensate and then stops.

The following events could interrupt the current movement at any time:

• A waypointReached event sent by the WaypointDetector component
when it detects that the tank reached its current waypoint causes the
Pathfinder to announce the next waypoint.

• An obstacleAhead sent by the ObstacleDetector causes the Pathfinder
to calculate a new path and announce the first waypoint.

• A fuelLow event sent by the FuelTank causes the PilotStrategy to tran-
sition into the refueling state and send the refuel event, which causes
the RefuelPlanner to announce the position of the fuel station as the
new destination.

• Similarly, a damageHigh event sent by the Tank can cause the pilot to
decide to repair.

3 Mapping to an Execution Platform

3.1 The EA Tank Wars Simulation Environment

In 2005, Electronic Arts announced the EA Tank Wars competition [2], in which
Computer Science students compete against each other by writing artificial in-
telligence (AI) components that control the movements of a tank. EA released
a simulation environment written in C++, prepared to compile on Windows,
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Linux and MacOS X, in which, two tanks, both controlled by an AI component,
fight a one-on-one battle in a 100 by 100 meter world. In Tank Wars, a tank is
equipped with sensors and actuators identical to our example model of section 2
(see also Fig. 2). During the simulation, an animation shows the moving tanks,
their radar ranges and their state.

The Tank Wars simulation environment is time-sliced (as opposed to discrete-
event). Every time slice, the AI component of the tank is given the current state
of the world as seen by the tank sensors. The AI then has to decide whether
to change the speed of the tank, whether to turn, whether to turn the turret,
whether to fire and how far, and whether to refuel or repair, if possible. Each
turn lasts 50 milliseconds. If the AI does not make a decision when the time
limit elapsed, the tank does not move during that time slice.

3.2 Time-Slicing vs. Continuous Time

The simulation in Tank Wars is built on a time-sliced architecture. Every 50ms,
the new state of the environment is sent to the AI component. Statecharts on
the other hand are purely event-based. At the modeling level, as well as when
the model is simulated, time is continuous, i.e. infinite time precision is available.
There is no time-slicing: a transition that is labeled with a time delay such as
after(t) means that the transition should fire exactly after the time interval
t has elapsed, t being a real number. Continuous time is most general, and is
most appropriate at this level of abstraction for several reasons:
• Modeling freedom: The modeler is not unnecessarily constrained or en-

cumbered with implementation issues, but can focus on the logic of the
model.

• Symbolic analysis: Using timed logic it is possible to analyze the model
to prove properties.

• Simulation: Simulation can be done with infinite accuracy (accuracy of
real numbers on a computer) in simulation environments.

• Reuse: Continuous time is the most general formalism, and can therefore
be used in any simulation environment.

When a model is used in a specific environment, actual code has to be synthe-
sized, i.e. the continuous time model has to be mapped to the time model used in
the target simulation. In games that are event-based such a mapping is straight-
forward. This is however not the case for Tank Wars, in which an approximation
has to take place: the synthesized code can execute at most once every time-
slice. Fortunately, if the time slice is small enough compared to the dynamics of
the system to be modeled (such as the motion of a tank), the approximation is
acceptable and the resulting simulation close to equivalent to a continuous time
simulation.

3.3 Bridging the Time-Sliced – Event-Driven Gap

In order to use event-based reasoning in a time sliced environment, a bridge
between the two worlds has to be built. In Tank Wars, at every time slice, the
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: AI: Tank Wars : Tank : TurretRadar : FuelTank

AI(...)
setPosition(p)

setRadarData(d)

setLevel(l)...

: FrontRadar

setDirection(d)

setRadarData(d)

...

Fig. 17. Converting Time Sliced Execution to Events

Fig. 18. Wall Encounter Execution Trace

framework calls the C++ function static void AI (const TankAIInput in,
TankAIInstructions & out) of an AI object. We implement the bridge between
the time-sliced game environment and our statechart model in this function.

In section 2.1, we modeled the state of the sensors in separate classes. The
in parameter of the AI function contains a data structure that describes the
current state of all sensors. Our custom code within the AI function proceeds by
storing the new sensor states in the appropriate objects (see Fig. 17).

The mapping to events is done at the level of the sensor objects according to
the attached statecharts. After the operation updated the state of the sensor,
the guards in the statechart are evaluated, and the corresponding event is fired,
if any. For instance, according to the statechart shown in Fig. 4, the execution
of the setLevel operation of the FuelTank might generate a fuelLow event in
case the fuel level sinks below 10%.

From then on, propagation of events and triggering of actions is entirely done
within the statechart formalism. After all events have been processed, or at least
just before the 50 ms deadline expires, the state in the actuator objects is copied
into the out struct of the AI function and returned to the Tank Wars simulation.

3.4 ATOM3 and Code Generation

To validate our approach, we built our tank model in our AToM3 visual meta-
modeling and model transformation environment [1]. We compiled the model
into C++ code with our own custom-built Statechart compiler. After inserting
this code into the Tank Wars game (in the AI function), realistic behavior is
observed as shown in Fig. 18. The figure shows a trace of a scenario where a
tank encounters a wall, initiates turning until the wall is no longer in the line of
sight, and finally continues on its way.
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4 Related Work

The use of visual modeling environments is not new to the gaming industry. Also
known under the name of Visual Scripting Languages, finite state machines and
other formalisms have been used to model various features of games, including
cinematics and story narratives [8]. The main objective of developing such sys-
tems is to offload work from the programmers to the game designers and the
animators, allowing them to participate to the development of the game without
requiring any programming or scripting knowledge [4].

More interesting is the use of modeling environment to define the behavior of
agents, as proposed by Simbionic and its toolset which allow a developer to de-
scribe the behavior of intelligent agents using finite state machines [3]. Although
similar to our approach, the Simbionic toolset represents states as actions, tran-
sitioning from one action to another solely through the use of conditions and
guards. In addition, the toolset functions exclusively in a time-slice fashion, ab-
stracting time as simple clock ticks.

Viusal modeling environments can also be found in commercial engines. The
Unreal Engine 3 [9] includes UnrealKismet, a visual scripting system, which
provides artists and level designers the freedom to design stories and action
sequences for non player characters within a game without the need for pro-
gramming. One key feature of UnrealKismet is the support for hierarchy of com-
ponents, which makes it possible to structure complicated behavior descriptions
nicely. The difference with our approach is that the models in UnrealKismet es-
sentially describe the decision making steps of an AI algorithm graphically. Our
approach does not model the control flow explicitly. The behavior emerges based
on the components that listen for and react to events.

Also worth mentioning is ScriptEase [7], a textual tool for scripting sequences
of game events and reactions of non player characters. Although it doesn’t use
a visual formalism, ScriptEase introduces a pattern template system – a library
of frequently used sequences of events – that allows designers to put together
complex sequences with little programming.

5 Discussion and Conclusion

In this section, we situate our efforts into the broader context of Model-Based
Design and highlight the benefits of this approach. The core idea of Model-
Based Design is to explicitly model the structure and behavior of systems under
study. Such models can be described at different levels of abstraction or detail
as well as by means of different formalisms. The particular formalism and level
of abstraction chosen depends on the background and goals of the modeler as
much as on the system modeled.

Working at the Appropriate Level of Abstraction. In general, the process
of abstraction can be considered a type of transformation that preserves some
invariant properties (usually behavioral) of the system. In the case of our Tank
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Wars example, several types of abstraction take place. First of all, there is the
explicit layering of levels of abstraction. At the lowest levels (most detailed data,
closest to the physical entities/game engine) are sensors and actuators. At the
highest level is the strategic planning level. Intermediate levels help bridge the
information gap between these levels. Different levels of abstraction are crossed
quite naturally by means of event aggregation and synthesis.

Abstraction is also applied to data. Sensors filter the large amounts of data
and propagate only salient events to higher abstraction layers. As is common in
object-oriented design, an abstraction is made by choosing only relevant prop-
erties to be modeled as object attributes.

Appropriate Formalism and Visual Notation. Orthogonal to the choice
of model abstraction level is the selection of suitable formalisms in which the
models are described. The choice of formalism is related to the abstraction level,
the intended audience, and the availability of solvers/simulators/code generators
for that formalism. In the case of our Tank Wars example, a variant of Rhapsody
Statecharts was chosen as the main formalism. This formalism allows for modular
description of both structure (in the form of Class Diagrams) and behavior (in
the form of associated Statecharts) of the different components described above.
Statecharts have been used extensively to model behavior of reactive systems. It
is hence no surprise that this formalism is a natural choice to model the types
of modern computer games we are interested in. The formalism has an intuitive
visual notation which makes it suitable for use by non software experts. It also
allows us to almost perfectly encapsulate the individual components.

During the modelling (and analysis and possibly simulation) stage of devel-
opment, Statecharts allow us to ignore implementation details such as whether
the game engine uses time-slicing or event-scheduling time management. This is-
sue, albeit very important, is taken care of transparently by the model compiler.
Thus, the game AI modeler is no longer burdened with making coding detail
decisions, but only with higher-level choices. This shows the power of working
at an appropriate level of abstraction, using appropriate formalism(s). Note that
complexity does of course never disappear. In Model-Based Design, accidental
complexity is kept to a minimum and is factored out and encoded in formalism
transformation models (the model compiler in this case).

Enhanced Modularization. There is the more detailed de-composition,
within each abstraction layer, of structure and behavior into easily identifiable
components. These components either correspond to physical entities (such as
a Turret) or to conceptual entities such as an AttackPlanner. This high degree
of modularity allows both for independent development and understanding of
components. While working on a specific component within a well-defined ab-
straction level, a developer is maximally focused on the task at hand.

Enhanced Evolution and Reuse. The abstraction layers we presented are
commonly found in a variety of modern computer games and provide a concep-
tual framework within which models can easily be formulated and (re-)used. For
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instance, the AttackPlanner could be easily reused within a game in which a
computer-controlled knight has to decide how to attack an enemy soldier.

The elegant breakup into loosely coupled components makes it easy to evolve
an AI by simply replacing an existing component with a more sophisticated
component that provides similar functionality. For instance, the performance of
our tank AI could be enhanced by using a better Pathfinder or an enhanced
AttackPlanner that hides behind an obstacle to ambush the enemy.

Finally, the loose coupling makes it very easy to create AI for tanks with
different sensors and actuators by removing or adding individual components.
For instance, a tank could have a better radar, or just one radar, or 2 turrets.
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Abstract. Proof-Carrying Code (PCC) and Certifying Model Checking
(CMC) are established paradigms for certifying the run-time behavior of
programs. While PCC allows us to certify low-level binary code against
relatively simple (e.g., memory-safety) policies, CMC enables the certifi-
cation of a richer class of temporal logic policies, but is typically restricted
to high-level (e.g., source) descriptions. In this paper, we present an auto-
mated approach to generate certified software component binaries from
UML Statechart specifications. The proof certificates are constructed us-
ing information that is generated via CMC at the specification level and
transformed, along with the component, to the binary level. Our tech-
nique combines the strengths of PCC and CMC, and demonstrates that
formal certification technology is compatible with, and can indeed ex-
ploit, model-driven approaches to software development. We describe an
implementation of our approach that targets the Pin component tech-
nology, and present experimental results on a collection of benchmarks.

1 Introduction

Today, off-the-shelf programs are increasingly available as modules or compo-
nents that are attached to an existing infrastructure. Often, such plug-ins are
developed from high-level component specifications (such as UML Statecharts),
but distributed in executable machine code, or “binary” form. In this article
we present a framework for generating trustworthy “binaries” from component
specifications, and for proving that such binaries satisfy specific policies. A more
detailed exposition of this work is available as a technical report [1].

Our approach builds on two existing paradigms for software certifica-
tion: proof-carrying code and certifying model checking. Proof-Carrying Code
(PCC) [2] constructs a proof that machine code respects a desired policy, pack-
ages the proof with the code so that the validity of the proof and its relation to
the code can be independently verified before the code is deployed. In contrast,
Certifying Model Checking (CMC) [3] is an extension of model checking [4] for
generating “proof certificates” for finite state models against a rich class of tem-
poral logic policies. In recent years, CMC has been augmented with iterative
abstraction-refinement to enable the certification of C source code [5,6].

PCC and CMC have complementary strengths and limitations. Specifically,
while PCC operates directly on binaries, its applications to date have been
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restricted to relatively simple memory safety1 policies. The progress of PCC
has also been hindered by the need for manual intervention, e.g., to specify loop
invariants. In contrast, CMC is able to certify programs against a richer class of
temporal logic policies (which subsumes both safety and liveness), and is auto-
mated. However, CMC is only able to certify source code (for example “C”) or
other forms of specification languages.

Finally, while PCC and CMC both require a small trusted computing base–
usually consisting of a verification condition generator and a proof checker–they
both tend to generate prohibitively large proofs. This can pose serious practi-
cal obstacles in using PCC in resource constrained environments. Unfortunately,
embedded software (e.g., in medical devices) that might benefit from the high
confidence obtained with PCC are almost certainly going to be resource con-
strained. In this context, our approach has the following salient features:

1. Expanded Applicability: We generate certified binaries directly from
component specifications expressed in a subset of UML Statecharts. The
key technique involved is a process of translating “ranking functions”, along
with the component itself, from one language to the next. Thus, our ap-
proach bridges the two domains of model-driven software development and
formal software certification.

2. Rich Policies: As with CMC, we certify components against a rich class of
temporal logic policies that subsumes both safety and liveness. We use the
state/event-based temporal logic called SE-LTL [7] developed at the SEI.

3. Automation: As with CMC, we employ iterative refinement in combination
with predicate abstraction and model checking to generate appropriate in-
variants and ranking functions required for certificate and proof construction
in an automated manner.

4. Compact Proofs: We use state-of-the-art Boolean satisfiability (SAT) tech-
nology to generate extremely small proofs. Our results indicate that the use
of SAT yields proofs of manageable size for realistic examples.

2 Basic Concepts

In this section, we present the basic concepts of components, policies, ranking
functions, verification conditions, certificates, etc., that we use later.
Logical Foundation. We assume a denumerable set of variables Var , and a
set of expressions Expr constructed using Var and the standard C operators.
We view every expression as a formula in quantifier-free first order logic with
C interpretations for operators and truth values (0 is false and anything else is
true). Thus, we use the terms “expression” and “formula” synonymously and
apply concepts of validity, satisfiability, etc. to both expressions and formulas.
Component. We deal with several forms of a component—their Construction
and Composition Language (CCL) form, C implementation form, analysis form,
1 Informally, a safety policy stipulates a condition that must never occur, while a

liveness policy stipulates a condition that must eventually occur.
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and their binary (assembly language) form. The syntax and semantics of CCL
have been presented elsewhere [8], and we use the PowerPC assembly language.
Hence, we only describe the other two (analysis and C implementation) forms.

In its analysis form, a component is simply a control flow graph (CFG) with
a specific entry node. Each node of the component is labeled with either an
assignment statement, a branch condition, or a procedure call. The outgoing
edges from a branch node are labeled with THEN and ELSE to indicate flow of
control. For any component C , we write Stmt(C ) to denote the set of nodes
of C since each node corresponds to a component statement. Figure 1 shows a
component on the left and its representation in C syntax on the right.

x = getc()

y = z + 1 y = fact(z)

z = x + y

ELSETHEN

if(x) x = getc();
if(x) y = z + 1;
else y = fact(z);
z = x + y;

Fig. 1. Component in Analysis (Left) and C (Right) Forms

The C implementation is generated from CCL, and contains both the logical
behavior specified by Statecharts, and the infrastructure imposed by the Pin [9]
component model. However, we impose several strong restrictions on the C code
itself. For instance, we disallow recursion so that the entire component is inlined
into a single CFG. We also disallow internal concurrency. Variable scopes and
return statements are not considered. All variables are assumed to be of integral
type, and pointers and other complicated data types are disallowed.

While these are severe restrictions when viewed from the full generality of
ANSI-C, they are not so severe when viewed from the more restrictive vantage
of CCL specifications. In particular, a CCL specification for a component with
a single reaction (the CCL unit of concurrency) obeys the above restrictions
by definition. Even when a restriction is violated (e.g., CCL allows statically
declared fixed size arrays), simple transformations (e.g., representing each array
element by a separate variable) are possible. Since all C programs and binaries
we consider are obtained via some form of semantics-preserving translation of
CCL specifications, they obey our restrictions as well.
Policy. Policies are expressed in CCL specifications as SE-LTL formulas. Prior
to verification, however, the policy is transformed into an equivalent Büchi au-
tomaton. Thus, for the purpose of this paper, a policy ϕ is to be viewed simply
as a Büchi automaton. The theoretical details behind the connection between
SE-LTL and Büchi automata can be found elsewhere [7], and are not crucial to
grasp the main ideas presented here.
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Ranking Function. Ranking functions are a technical device used to construct
proofs of liveness, which require a notion of progress toward some objective O .
The essential idea is to assign ranks—drawn from an ordered set R with no
infinite decreasing chains—to system states. Informally, the rank of a state is a
measure of its distance from O . Then, proving liveness boils down to proving
that with every transition, the rank of the current system state decreases appro-
priately, i.e., the system makes progress toward O . Since there are no infinite
decreasing chains in R, the system must eventually attain O . In our case, it
suffices to further restrict R to be a finite set of integers with the usual ordering.

Definition 1 (Ranking Function). Given a component C , a policy ϕ, and a
finite set of integral ranks R, a ranking function RF is a mapping from Expr to
R. The expressions in the domain of RF represent states of the composition of
C and ϕ, using additional variables to encode the “program counter” of C and
the states of ϕ. Given any ranking function RF , C and ϕ are known implicitly.

Definition 2 (Verification Condition). Given a ranking function RF , we
can effectively compute a formula called the verification condition of RF , and
denoted by VC (RF ), using an algorithm called VC-Gen.

Ranking functions, verification conditions, and software certification are related
intimately, as expressed in Fact 1. Note that we write C |= ϕ to mean component
C respects policy ϕ, and that a formula is valid if it is true under all possible
variable assignments.

Fact 1 (Soundness) For any component C and policy ϕ, if there exists a rank-
ing function RF : Expr → R such that VC (RF ) is valid, then C |= ϕ.

We will not go into a detailed proof of Fact 1 since it requires careful formaliza-
tion of the semantics of C and ϕ. In addition, proofs of theorems that capture
the same idea have been presented elsewhere [2,6].

Definition 3 (Certificate). For any component C and policy ϕ, a certificate
for C |= ϕ is a pair (RF , Π) where RF : Expr → R is a ranking function over
some finite set of ranks R, and Π is a resolution proof of the validity of VC (RF ).

Indeed, if such a certificate (RF , Π) exists, then, by the soundness of resolution2,
we know that VC (RF ) is valid, and hence, by Fact 1, C |= ϕ. This style of
certification, used in both PCC and CMC, has several tangible benefits:

– Any purported certificate (RF , Π) is validated by the following effective (i.e.,
automatable) procedure: (i) compute VC (RF ) using VC-Gen, and (ii) verify
that Π is a correct proof of VC (RF ) using a proof checker.

– Necula and Lee demonstrated that this effective procedure satisfies a fun-
damental soundness theorem: any program with a valid certificate satisfies
the policy for which the certificate is constructed [2]. This fact is not altered

2 More details on resolution can be found in our technical report [1].
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even if the binary program, the proof certificate, or both, are tampered with.
A binary program may exhibit different behavior in its modified form than
in its original form. However, this new behavior will still be guaranteed to
satisfy the published policy if its proof certificate is validated.

– The policy, VC-Gen, and proof checking algorithms are public knowledge.
Their mechanism does not depend in any way on secret information. The
certificate can be validated independently and objectively. The soundness of
the entire certification process is predicated solely upon the soundness of the
underlying logical machinery (which is time tested), and the correctness of
the “trusted computing base” (TCB), as discussed later.

– The computational complexity of the certification process is shouldered by
the entity generating the certificate. In the case of software components, this
entity is usually the component supplier who has the “burden of proof”.

Overall, the existence of a valid certificate implies that C |= ϕ irrespective of
the process by which the certified component was created or transmitted. This
feature makes our certification approach extremely attractive when incorporat-
ing components derived from unknown and untrusted sources.

3 Framework for Generating Certified Binaries

Figure 2 depicts our infrastructure for certified component binary generation.
Key elements are numbered for each of reference and are correlated with the
steps of the procedure described in this section. The flow of artifacts involved
in generating a certified binary is indicated via arrows. Certified component
binaries are generated step-wise as follows:
Step 1. A component is specified in CCL [8]. CCL uses a subset of UML 2.0
Statecharts that excludes features that are not particularly useful given the Pin
component model as a target. The specification Spec contains a description of
the component as well as the desired SE-LTL policy ϕ that the component is to
be certified against.
Step 2. Spec is transformed (“interpreted” [10]) into a component C , that can
be processed by a model checker. C is comprised of a C program along with
finite state machine specifications for procedures invoked by the program. This
step was implemented by augmenting prior work [11] so that C contains ad-
ditional information relating its line numbers, variables and other data struc-
tures with those of Spec. This information is crucial for the subsequent reverse-
interpretation of ranking functions in Step 4.
Step 3. C is input to Copper, a state-of-the-art certifying software model
checker that interfaces with theorem provers (TP) and boolean satisfiability
solvers (SAT). The output of Copper is either a counterexample (CE) to the
desired policy ϕ, or a ranking function RF1 : Expr → R, over some set of ranks
R, such that VC (RF1 ) is valid.
Step 4. The certificate RF1 only certifies C (the result of the interpretation)
against the policy ϕ. It is reverse-interpreted into a certificate RF2 : Expr → R
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Fig. 2. Framework for Generating Certified Binaries

such that VC (RF2 ) is valid. This process is enabled by the additional informa-
tion generated during interpretation to connect Spec with C in Step 2.
Step 5. Spec and RF2 are transformed into Pin/C component code that can be
compiled and deployed in the Pin runtime environment [9]. We augmented an
existing Pin/C code generator to also create a ranking function, using RF2 , and
embed it in the generated code. In essence, we transform the ranking function,
and the component, from CCL to the Pin/C formalism.
Step 6. The final step consists of three distinct sub-steps.

Step 6.1. The component with the embedded ranking function is compiled
from Pin/C to binary form. In our implementation we use GCC3 (targeting
the PowerPC instruction set) for this step. Let RF3 be the ranking function
embedded in the binary obtained as a result.

Step 6.2. We compute VC (RF3 ) using VC-Gen.
Step 6.3. We obtain a proof Π of VC (RF3 ) using a proof-generating theorem

prover. In our implementation we use a SAT-based theorem prover for this step.
In essence, we convert ¬VC (RF3 ) (i.e., the logical negation of VC (RF3 )) to
a Boolean formula φ. We then check if φ is unsatisfiable using ZChaff [12]. If
¬VC (RF3 ) is unsatisfiable, i.e., if VC (RF3 ) is valid, then the resolution proof
emitted by ZChaff serves as Π . The use of SAT enables us to obtain extremely
compact proofs [6] in practice. Finally, the certificate (RF , Π) along with the
binary is emitted as the end result—the certified binary for Spec.
Trusted Computing Base. It is instructive to discuss the artifacts that must
be trusted for our approach to be effective. In essence, the TCB is comprised
of: (1) VC-Gen, (2) the procedure for converting ¬VC (RF3 ) to φ, and (3) the

3 http://gcc.gnu.org
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procedure for checking that Π refutes φ. All of these procedures are computa-
tionally inexpensive and can be implemented by small programs. Thus, they are
more trustworthy (and more verifiable) than the rest of the programs of Figure 2.
Note that the interpreter, the certifying model checker, the reverse-interpreter,
the code generator, the compiler, and the theorem prover are not in the TCB.
Each of these tools is quite complex, and their elimination from the TCB raises
considerably the degree of confidence of our certification method.

How the TCB is demarcated and how its size and complexity is reduced
is an important theoretical and practical concern for future applications of
PCC. There are several approaches to this concern. For example, “foundational”
PCC [13] aims to reduce the TCB to its bare minimum of logic foundations. We
adopt the more systems-oriented approach pioneered by Necula and Lee which
does not seek a pure foundation, but rather seeks to achieve a practical com-
promise [14]. Even this more “pragmatic” approach can achieve good results. In
our own implementation, the TCB is over fifteen times smaller in size (30 KB
vs. 450 KB) than the rest of the infrastructure.

4 Certifying Model Checking

The infrastructure for performing certifying model checking corresponds to steps
1-4 from Figure 2. We begin with component specifications expressed in CCL.
Overview of CCL. CCL is a simple composition language for describing com-
ponent behavior and how components are wired together into assemblies for
deployment. In CCL, a component is viewed as a collection of potentially con-
current units of computation called reactions, each of which describes how the
component responds to stimuli on its sink pins and under what circumstances it
initiates interactions on its source pins. Figure 3 shows a CCL specification for a
component comp with a single reaction R. The reaction R reacts to stimuli from
its environment on its incr sink pin by incrementing an internal counter (up
to a maximum and then reseting to a minimum) and informing its environment
of the new value on its value source pin. The semantics of the state machine
provided for each reaction is based on the UML 2.0 semantics of Statecharts.
Aside from the obvious syntactic differences, CCL differs from Statecharts in
two important ways:

1. CCL does not permit some concepts defined in UML Statecharts, most sig-
nificantly hierarchical states and concurrent sub-states (within a reaction).

2. CCL provides more specific semantics for elements of the UML standard
that are identified as semantic variation points (e.g., the queuing policy for
events queued for consumption by a state machine). These refined semantics
are based on the execution semantics of the Pin component technology, the
target of our code generator.

Interpreting CCL to C. CCL specifications are transformed into an equiv-
alent representation in C and FSP [15] for use with Copper, a software model
checker. This corresponds to Step 2 from Figure 2. In the interpreted form, each
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component comp () {
sink asynch incr ();
source asynch value (produce int v);
threaded react R (incr, value) {

int i = min;
start -> idle { }
idle -> incrementing {trigger ^incr;}
incrementing -> idle {trigger $value; action $incr();}
state incrementing {

if (i < max) i++;
else i = min;
^value(i);

}
} // end of react R

} // end of component comp

Fig. 3. CCL Specification for a Simple Component

state of the specification state machine is implemented in a correspondingly la-
beled program block; guards are represented by if statements; transitions are
completed using goto statements; and so on. The equivalence is straightforward,
particularly given CCL’s use of C syntax for actions. Two elements that are less
intuitive are the representation of events used for interaction (communication)
between components and annotations used to facilitate reverse interpretation
(expressing model checking results in terms of the original CCL specification
instead of the interpreted C program).

Communication between concurrent units (representations of interacting com-
ponents) in Copper is primarily handled using event semantics based on FSP.
Our interpretation uses events to model message-based interactions between
components in the Pin component technology. In Pin, interactions occur in syn-
chronous or asynchronous modes, and the initiation and completion of an inter-
action are differentiated syntactically by a P̂in for initiation on a pin Pin, or a
$Pin for completion on a pin Pin. These phenomena are mapped to FSP-style
events as part of the interpretation.

For example, initiation of an interaction over a source pin (̂ value) is
represented by a begin value event. This event is denoted in the inter-
preted C program using the COPPER HANDSHAKE () function. Representing a
choice among several events, however, is more difficult. Thus, when a com-
ponent is willing to engage in an interaction over any of several sink pins
(i.e., pull the next message from its queue and respond accordingly), this
corresponds to a willingness to synchronize over one of several FSP-style
events. This concept is not as easily represented in C, and we use Cop-
per’s ability to provide specifications of functions. We insert a call to an
fsp exernalChoice() function and provide a specification of that function’s
behavior as an FSP process that allows a choice among a specific set of events
and returns an integer indicating the event with which the process synchronized.
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The annotations used to simplify reverse interpretation are inserted via
CCL NODE(x) function calls. The parameter passed to each such call denotes the
node in the CCL abstract syntax tree (AST) of the CCL specification that cor-
responds to C statement that follows the annotation. These calls are known to
Copper, and are stripped from the program prior to verification. When used for
certifying model checking, however, Copper retains the parameter values and
includes them in the ranking functions emitted upon successful verification.
Ranking Function Generation by Copper. Copper uses iterative-predicate-
abstraction-refinement for verification. This paradigm has been presented in de-
tail elsewhere [16,17,18,1] and we only present its relevant features here. The key
idea is that conservative models of the C program are constructed via predicate
abstraction, verified, and refined iteratively until either the verification succeeds,
or a real counterexample is found. Let M be the model verified successfully. Then
each state of M is of the form (l, V ) where l is a location in the C program, and
V is a valuation of the set of predicates used to construct M . Each valuation V
has a concretization γ(V ) ∈ Expr . Also, for any two distinct valuations V and
V ′, γ(V ) and γ(V ′) are logically disjoint.

We now describe the ranking function generated by Copper. The ranking
function is generated as a set of triples of the form ((l, I), s, r) where: (i) I is an
invariant, i.e., the concretization of a predicate valuation V such that (l, V ) is a
reachable state of M4, (ii) s is a state of the Büchi automaton corresponding to
the policy, and (iii) r is a rank. The procedure for constructing an appropriate
ranking function is presented elsewhere [6] and we do not describe it further.

Recall, from Definition 1, that a ranking function is a mapping from expres-
sions to ranks. Each triple ((l, I), s, r) emitted by Copper corresponds to an entry
in this mapping as follows. Let PC and SS be special variables representing the
program location (i.e., program counter) and the policy state respectively. Then,
the triple ((l, I), s, r) denotes a mapping in the ranking function from the expres-
sion I && (PC == l) && (SS = s) to the rank r. Note that, for any two triples
((l, I), s, r) and ((l′, I ′), s′, r′) emitted by Copper, either l �= l′ or I and I ′ are
disjoint (since they are the concretizations of two distinct predicate valuations).
Hence, the ranking function emitted is always well-formed.

Figure 4 shows an excerpt from the ranking function generated for our example
CCL specification and a policy asserting that min <= i <= max is always true
(RF 1 from Figure 2). Each line denotes a triple ((l, I), s, r). The first field is
the CCL AST node number, corresponding to the location l. The second and
third fields (which, in the excerpt, are always 8 and 0) correspond to the policy
automaton state s and the rank r respectively. The last field is the invariant I.

The final step in certifying model checking is to relate the ranking function
back to the original CCL specification. This is achieved via a process of map-
ping elements from the interpreted C program back to CCL elements. For exam-
ple, variable names are “demangled” and replaced with references to AST node

4 Strictly speaking, an invariant at location l is the disjunction of the concretizations
of all predicate valuations V such that (l, V ) is a reachable state of M . We use a
slightly looser definition of invariant for simplicity.
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104 : 8 : 0 [(-1 < P0::R__i ),(P0::R__i < 7 )]
106 : 8 : 0 [(P0::R__i < 7 ),(-2 < P0::R__i ),(P0::R__i != -1 )]
116 : 8 : 0 [(-1 < P0::R__i ),(P0::R__i < 7 )]

Fig. 4. Ranking Function in terms of Interpreted C Program

numbers and predicates relating to variables that were introduced during inter-
pretation are stripped or remapped to the appropriate CCL concepts. At the
conclusion of certifying model checking, if a component is known to satisfy all of
its policies, we obtain evidence to that effect in the form of a ranking function
expressed in terms of nodes of the AST for the component’s CCL specification.

5 Certified Source Code Generation

The infrastructure for generating certified source code corresponds to Step 5
from Figure 2. We begin with a component specification expressed in CCL and
a ranking function expressed in terms of nodes of its AST. From previous work,
we have a code generator for CCL that generates C code targeted for deployment
in the Pin component technology (Pin/C). To support certified code generation,
we extended this code generator to embed invariants from the ranking function
in the generated Pin/C code. The key decision was choosing how to embed this
information to maintain a correlation between the location of these invariants in
the Pin/C code and the assembly code resulting from compilation.

__begin__();

__inv__((n > =0) && (n < 10));

1: bl __begin__
2: li %r0,0
3: stw %r0,16(%r31)
4: lwz %r0,8(%r31)
5: cmpwi %cr7,%r0,0
6: blt %cr7,.L5
7: lwz %r0,8(%r31)
8: cmpwi %cr7,%r0,9
9: bgt %cr7,.L5
10: li %r0,1
11: stw %r0,16(%r31)

.L5:
12: lwz %r3,16(%r31)
13: crxor 6,6,6
14: bl __inv__

Fig. 5. Invariants in Pin/C Code (Left) and Assembly Code (Right)

The convention we chose (shown in Figure 5) encodes invariants using a pair
of function calls inserted in the Pin/C code prior to the location associated
with each invariant. The invariant itself is used as the argument to the second
function of the pair. When such code is compiled, pairs of recognizable assembly
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call instructions appear in the assembly code and the instructions necessary to
represent the invariant appear between these calls.

We extended the Pin/C code generator to insert these pairs of calls at any
locations for which the ranking function provides invariants (a short excerpt
from the generated code is shown in Figure 6). The code generator also adds
an additional predicate to each invariant in the ranking function, an encoding
of the current state of the state machine. At the conclusion of certified source
code generation, we have C source code that includes the invariants necessary for
generating a proof that the binary form of this component satisfies the desired
policy. An important point to note is that the generated certified source code
contains at least one call to __begin__() and __inv__(...) inside every loop.
This is crucial for effective computation of the certified binary, as presented in
the next section, without having to supply loop invariants.

else if (_THIS_->R_CURRENT_STATE == 1) {
__begin__();
__inv__(((__pcc_claim__ == 0 && __pcc_specstate__ == 8 &&

__pcc_rank__ == 0 && ((-2 < _THIS_->R_i ) &&
(_THIS_->R_i != -1 ) && (_THIS_->R_i < 7 )) &&
_THIS_->R_CURRENT_STATE == 1))); /* 52 */

if (pMessage->sinkPin == 0 /* ^incr */ ) {
...

Fig. 6. Excerpt from Generated Pin/C Code

6 Certified Binary Generation

In this section we describe the process of obtaining the end-product of our ap-
proach, the certified binary code. To this end, we present the procedure for
constructing the two components of the certified binary—the binary itself, and
a certificate which is essentially the proof of a verification condition.

The certified binary is obtained by simply compiling this C source code with
any standard compiler. In our implementation, we used GCC targeted at the
PowerPC instruction set for this step of our procedure. The binary generated by
the compiler contains assembly instructions, peppered with calls to __begin__()
and __inv__(...). Let us refer to an assembly fragment starting with a call to
__begin__(), and extending up to the first following call to __inv__(...), as
a binary invariant. Note that in any binary invariant, the code between the calls
to __begin__() and __inv__(...) effectively compute and store the value of
the argument being passed to __inv__(...) in register r3.

To construct the certificate, we first construct the verification condition VC .
This is done one binary invariant at a time. Specifically, for each binary invariant
β, we compute the verification condition for β, denoted by VC (β). Let BI be the
set of all binary invariants in our binary. Then, the overall verification condition
VC is defined as follows: VC =

∧
β∈BI VC (β).
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The technique for computing VC (β) is based on computing weakest precondi-
tions, the semantics of the assembly instructions, and the policy that the binary
is being certified against. It is similar to the VC-Gen procedure used in PCC.
The main difference is that our procedure is parameterized by the policy, and is
thus general enough to be applied to any policy expressible in SE-LTL. In con-
trast, the VC-Gen procedure used in PCC has a “hard-wired” safety policy, viz.,
memory-safety. It is also noteworthy that our procedure does not require loop
invariants since every loop in the binary contains at least one binary invariant.

Once we have VC , the certificate is obtained by proving VC with a proof-
generating theorem prover. We leverage our previous work on using a theorem-
prover based on Boolean satisfiability (SAT) [6] to generate extremely compact
certificates as compared to existing non-SAT-based proof-generating theorem
provers. In addition, it enables us to be sound with respect to bit-level C seman-
tics, which is crucial when certifying safety-critical software.

Given a binary B and an associate certificate C, we validate B as follows.
We first compute the verification condition VC using the technique described
above. We then check that C is a correct proof of the validity of VC . Validation
succeeds if and only if C turns out to be indeed a proper proof of VC .

Note that once a certified binary has been validated successfully, the embedded
binary invariants are stripped off before the binary is actually deployed. This is
crucial for both correctness (since what we really certify is the binary without
the invariants) and performance. Finally, it is noteworthy that our choice of
mechanism for carrying invariants from C code to assembly code is sensitive
to compiler optimizations. Certain optimizations (e.g., code reordering across
the boundaries demarcated by calls to __begin__ and __inv__) may break this
correspondence. Fortunately, the fundamental soundness theorem still holds. In
the worst case, such a reordering might result in a failure in proof checking, but
will never validate a proof for a program that violates a policy.

7 Related Work

PCC was proposed by Necula and Lee [19,2,20] for certifying memory safety poli-
cies on binaries. PCC works by hard-coding the desired safety policies within
the machine instruction semantics, while our approach works at the specification
level and encodes the policy as a separate automaton. Foundational PCC [13,21]
attempts to reduce the trusted computing base of PCC to include only the foun-
dations of mathematical logic. Bernard and Lee [22] propose a new temporal
logic to express PCC policies for machine code. Non-SAT-based techniques for
minimizing PCC proof sizes [23,24] have also been proposed. Whalen et al. [25]
describe a technique for synthesizing certified code. They augment the AUTO-
BAYES synthesizer to add annotations based on “domain knowledge” to the
generated code. Their approach is not based on CMC, and generates certified
source code rather than binaries.

Certifying model checkers [3,26] emit an independently checkable certificate of
correctness when a temporal logic formula is found to be satisfiable by a finite state
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model. Namjoshi [27] has proposed a two-step technique for obtaining proofs of
Mu-Calculus policies on infinite state systems. In the first step, a proof is obtained
via certifying model checking. In the second step, the proof is “lifted” through
an abstraction. Namjoshi’s approach is still restricted to certifying source code
while our work aims for low-level binaries. Iterative refinement has been applied
successfully by several software model checkers such as SLAM [16], BLAST [17]
and MAGIC [18]. While SLAM and MAGIC do not generate any proof certifi-
cates, BLAST implements a method [5] for lifting proofs of correctness. However,
BLAST’s certification is limited to source code and purely safety properties. As-
surance about the correctness of binaries can also be achieved by proving the cor-
rectness of compilers (which is difficult and yet to be widely adopted) or via trans-
lation validation [28] (which still assumes that the source code is correct). In con-
trast, our approach requires no such correctness assumptions.

In previous work, we developed an expressive linear temporal logic called
SE-LTL [7] that can be used to express both safety and liveness claims of
component-based software. In the work reported here, we modified SE-LTL to
express certifiable policies. Also previously, we developed an infrastructure to
generate compact certificates for C source code against SE-LTL claims in an
automated manner [29]. There, the model checker is used to generate invariants
and ranking functions that are required for certificate and proof construction.
Compact proofs were obtained via state-of-the-art Boolean satisfiability (SAT)
technology [6]. In the current work, we extend this framework to generate cer-
tified binaries from component specifications. Finally, we build on the PACC
infrastructure for analyzing specifications of software component assemblies and
generating deployable machine code for such assemblies.

8 Experimental Results

We implemented a prototype of our technology and experimented with two kinds
of examples. First, we created a simple CCL specification of a component that
manipulates an integer variable and the policy that the variable never becomes
negative. Our tool was able to successfully prove, and certify at the assembly code
level that the implementation of the component does indeed satisfy the desired
claim. The CCL file size was about 2.6 KB, while the generated Pin/C code was
about 20 KB. In contrast, the assembly code was about 110 KB while the proof
certificate size was just 7.7 KB. The entire process took about 5 minutes with
modest memory requirements.

To validate the translation of a certified C component to a certified binary (Step
6 in Figure 2), we conducted additional experiments with Micro-C, a lightweight
operating system for embedded real-time applications. The OS source code con-
sists of about 6000 lines of C (97 KB) and uses a semaphore to ensure mutually
exclusive access to shared kernel data structures. Using out approach we were able
to certify that all kernel routines follow the proper locking order when using the
semaphore. The total certification time was about one minute, and the certificate
size was about 11 KB, or roughly 11% of the operating system source code size.
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We also experimented with the C implementation of the “tar” program in
the Plan 95 operating system. Specifically, we certified, using our approach,
that a particular buffer will never overflow when the program is executed. The
source code was manually annotated in order to generate the appropriate proof
certificates. While our experiments show that our approach is viable, we believe
that a more robust implementation and more realistic case studies are needed
in order to push our technique amongst a wider user base.

9 Conclusion

In this paper, we presented an automated approach for generating certified bina-
ries from software component specifications. Our technique is based on, and com-
bines the strengths of, two existing paradigms for formal software certification—
PCC and CMC. It also demonstrates that a model driven approach can be
combined effectively with formal certification methodologies. In addition, we de-
veloped and experimented with a prototypical implementation of our technique.
Our implementation, and our overall approach, does have limitations which we
like to classify into the following two broad categories:
Deferred Features. Some of the missing features from our implementation are
not difficult conceptually, but are best deferred until a target environment has
been selected. For example, we did not define the format of certified binaries—in
particular how the proof object is packaged with executable code.
Technical Limitations. CCL currently supports only a primitive assortment
of types, and, as a consequence, the implementation supports a limited range
of C language features (e.g., pointers, structs, and arithmetic types other than
int and float are not supported). We have also not implemented our own proof
checker or SAT formula generator, even though these are key elements of a TCB.
Instead, we rely on (in principle) untrusted publicly available implementations.
However, both of these are relatively simple to implement. Also, Copper is only
able to generate ranking functions that involve a finite and strictly ordered set
of ranks, and thus is able to certify a restricted set of programs. More general
ranking functions are generated by other tools such as Terminator5.

Nevertheless, we believe that our work marks a positive and important step
toward the development of rigorous, objective and automated software certifica-
tion practices, and the reconciliation of formal and model-driven approaches for
software development. Our experiment results are preliminary, but realistic and
encouraging, and therefore underline the need for further work in this direction.
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1 Introduction

Following the tradition of previous instances of the MODELS conference series,
also in 2007 a number of workshops and symposia were hosted. 11 workshops
and two symposia complemented the main conference by providing room for
important subject areas and enabling a high degree of interactivity.

The selection of the workshops has been organized like in former instances of
the MODELS conference series by a workshop selection committee. The following
well known experts agreed to serve on this committee:

– Gabor Karsai, Vanderbilt University, USA
– Thomas Kühne, Darmstadt University of Technology, DE
– Jochen Küster, IBM Research Zurich, CH
– Henry Muccini, University of L’Aquila, IT
– Sebastian Uchitel, Imperial College London, UK

The workshops provided collaborative forums for particular topics. They enabled
a group of participants to exchange recent and/or preliminary results, to con-
duct intensive discussions, or to coordinate efforts between representatives of a
technical community. They served as forums for lively discussion of innovative
ideas, recent progress, or practical experience on model-driven engineering for
specific aspects, specific problems, or domain-specific needs.

In addition, like in previous editions there have been a Doctoral Symposium
and an Educators’ Symposium. The Doctoral Symposium provided specific sup-
port for Ph.D. students to discuss their work and receive useful guidance for the
completion of the dissertation research. The Educators’ Symposium addressed
how to educate students as well as practitioners to move from the traditional
thinking to an engineering approach based on models.

A more detailed description of the workshops and symposia is provided in the
following two sections. A corresponding satellite-event proceeding will be pub-
lished in the LNCS series by Springer after the conference, featuring summaries
as well as revised selected papers from the workshops, the Doctoral Symposium,
and the Educators’ Symposium.
� Currently a visiting professor at the Hasso-Plattner-Institut, University of Potsdam,

Germany.

G. Engels et al. (Eds.): MoDELS 2007, LNCS 4735, pp. 682–690, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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2 Detailed List of Workshops

W1: Aspect-Oriented Modeling

Organizers: Omar Aldawud (Lucent Technologies, USA), Walter Cazzola
(University of Milano, Italy), Tzilla Elrad (Illinois Institute of Technology,
USA), Jeff Gray (University of Alabama at Birmingham, USA), Jörg Kienzle
(McGill University, Canada), Dominik Stein (University of Duisburg-Essen,
Germany)

Abstract: Aspect-orientation is a rapidly advancing technology. New and
powerful aspect-oriented programming techniques are presented at many
international venues every year. However, it is not clear what features
of such techniques are “common aspect-oriented concepts” and what
features are rather language-specific specialties. Research in aspect-oriented
modeling has the potential to help find such common characteristics
from a perspective that is at a more abstract level (i.e., programming
language-independent). The Aspect-Oriented Modeling (AOM) Workshop
brings together researchers and practitioners from two communities, aspect-
oriented software development (AOSD) and model-driven engineering. This
workshop provides a forum for presenting new ideas and discussing the
state of research and practice in modeling various kinds of crosscutting
concerns at different levels of abstraction. The goals of the workshop are to
identify and discuss the impacts of aspect-oriented technologies on model
engineering to provide aspect-oriented software developers with general
modeling means to express aspects and their crosscutting relationships onto
other software artifacts.

URL: http://www.aspect-modeling.org/models07/

W2: Language Engineering

Organizers: Jean-Marie Favre (University of Grenoble, France), Dragan
Gas̆ević (Athabasca University, Canada), Ralf Lämmel (Microsoft, USA),
Andreas Winter (University of Mainz, Germany)

Abstract: The workshop on Language Engineering, which is held as the 4th
edition of the ATEM Workshop series, brings together researchers from
different communities to study the disciplined engineering and application
of various language descriptions in order to further expand frontiers of their
synergetic use in model-driven engineering. The importance of metamodels,
schemas, grammars, and ontologies (or “language descriptions”) is generally
acknowledged by the model-driven engineering community, but, as yet, the
study of these artifacts lacks a common umbrella. Language Engineering (in
the context of software engineering) promotes language descriptions to first
class citizens, just like programs, data, and models based on the systematic,
programmatic analysis and manipulation of these language descriptions.
To have a deeper focus on the Language Engineering perspective of MDE,

http://www.aspect-modeling.org/models07/
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ATEM2007 pays attention to the fact that language descriptions, which
are used in developing software systems, can be defined in different ways
and used to define for different software artifacts, but still they have to be
used together in integrated software life cycle. Thus, we need ways that
enable us to fully support the Language Engineering life cycle including
(but not limiting to), requirement analysis, design, implementation, testing,
deployment, application, re-engineering, reverse engineering, and evolution
of language descriptions. Since most of language descriptions have rather
different technological, research and cultural origins, the synergic use is
rather a complex task that requires join efforts of different communities.

URL: http://www.planetmde.org/atem2007/

W3: Model Driven Development of Advanced User Interfaces

Organizers: Andreas Pleuß (University of Munich, Germany), Jan Van den
Bergh (Hasselt University, Belgium), Heinrich Hußmann (University of
Munich, Germany), Stefan Sauer (University of Paderborn, Germany),
Daniel Görlich (University of Kaiserslautern, Germany)

Abstract: The user interface of an application is often one of the core fac-
tors determining its success. While model-based user interface development
is an important line of research in the human-computer-interaction (respec-
tively human-machine-interaction) community, model-driven application de-
velopment is an important area in the software engineering community. This
workshop aims at integrating the knowledge from both domains, leading
to a model-driven development of user interfaces. Thereby, the focus of the
workshop lies on advanced user interfaces corresponding to the current state-
of-the-art in human-computer interaction, like e.g. multimedia or context-
sensitive user interfaces or multimodal interaction techniques.

This is the third workshop in this series, building up on the results
of its predecessor held at MODELS 2006. In particular, it addresses
challenges identified on the preceding events, such as better integration
of model-driven user interface development and creative design, model
transformations which allow a better control of the usability of the resulting
user interface and advanced usage of models at runtime for adaptation of
user interfaces.

URL: http://planetmde.org/mddaui2007/

W4: Model Size Metrics

Organizers: Michel Chaudron [Workshop Chair] (Technische Universiteit
Eindhoven), Betty H.C. Cheng (Michigan State University), Christian F.J.
Lange (Technische Universiteit Eindhoven), Jacqueline McQuillan (National
University of Ireland, Maynooth), Andrij Neczwid (Motorola Software
Group), Frank Weil (Motorola Software Group)

http://www.planetmde.org/atem2007/
http://planetmde.org/mddaui2007/
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Abstract: Within the MODELS community a standardized method of deter-
mining sizing concepts for software models that allows the effective base
lining and comparison of model concepts is needed. Such metrics are cru-
cial for effective estimation and quality management of model development.
Additionally measuring the model size is important to provide context in-
formation for empirical studies using models.

One of the most commonly used measures of source code program size is
the source lines of code (SLOC) metric. However, the concept of lines of code
does not readily apply to modeling languages such as UML and SDL. Fur-
thermore, software models are heterogeneous in nature (consisting of several
different types of diagrams), can exist at varying levels of abstraction and
can be created using different modeling styles. As a result, researchers face
many challenges when trying to define the size of a software model.

The aims of the workshop are to bring together practical experience and
research results related to sizing techniques for software models, to build
a community of researchers and practitioners that share software design
artefacts for the purpose of empirical studies, and to identify a research
agenda in the area of model size measurement.

URL: http://www.win.tue.nl/∼clange/MSM2007/

W5: Model-Based Design of Trustworthy Health Information Systems

Organizers: Elske Ammenwerth (University for Health Sciences, Medical
Informatics and Technology, Austria), Ruth Breu (Universität Innsbruck,
Austria), Ruzena Bajcsy (University of California, Berkeley, USA), John C.
Mitchell (Stanford University, USA), Alexander Pretschner (ETH Zürich,
Switzerland), Janos Sztipanovits (Vanderbilt University, USA)

Abstract: While many information-intensive industries have developed and
deployed standards-based information infrastructures, healthcare has been
characterized as a “trillion dollar cottage industry” that, in its current
state, is heavily dependent on paper records and fragmented, error-prone
approaches to service delivery. In response, Health Information Systems
(HIS) are emerging as a new and significant application domain for
information technologies to capture and promote interactions between
patients and healthcare providers. However, the ingratiation of information
systems into the complex world of healthcare generates unique technology
challenges. A primary concern is that privacy and security requirements for
HIS are frequently expressed in vague, as well as contradictory, complex
laws and regulations. To address this problem, model-based methods offer a
revolutionary way to formally and explicitly integrate privacy and security
goals into HIS architectures. End-to-end architecture modeling, integrated
with formal privacy and security models, offer new opportunities for HIS
system designers and end users. This workshop intends to bring computer
scientists, medical experts, and legal policy experts together to discuss
research results in the development and application of model-based methods

http://www.win.tue.nl/~clange/MSM2007/
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for representing, analyzing and integrating, architectures, privacy and
security policies, computer security mechanisms, web authentication, and
human factors engineering.

URL: http://mothis.isis.vanderbilt.edu/

WS6: Model-Driven Engineering, Verification and Validation

Organizers: Benoit Baudry (IRISA/INRIA, France), Alain Faivre (CEA-
LIST, France), Sudipto Ghosh (Colorado State University, USA), Alexander
Pretschner (ETH Zurich, Switzerland)

Abstract: Model-Driven Engineering (MDE) is a development process that ex-
tensively uses models and automatic model transformations to handle com-
plex software developments. Many software artifacts, tools, environments
and modeling languages need to be developed to make MDE a reality. Con-
sequently, there is a crucial need for effective V&V techniques in this new
context. Furthermore, the novelty of this development paradigm gives rise
to questions concerning its impacts on traditional V&V techniques, and how
they can leverage this new approach. The objective of this workshop is to
offer a forum for researchers and practitioners who are developing new ap-
proaches to V&V in the context of MDE.

Major questions that cross-cut V&V and MDE include: Is the result of
a transformation really what the user intended? Is the model correct with
respect to the expected security, time, and structural constraints? What
models can be used for validation or verification? Does the implementation
generated after several model transformations conform to the initial require-
ments?

The workshop will discuss V&V of model transformations and code
generation; techniques for validating a model or generating test cases from
models including simulation, model-checking, and model-based testing;
application of MDE to validation, testing, and verification; tools and
automation; case studies and experience reports.

URL: http://www.modeva.org/2007

W7: Modeling and Analysis of Real-Time and Embedded Systems

Organizers: Sébastien Gérard (CEA, List, France), Susanne Graf (Verimag,
France), Øystein Haugen (SINTEF and University of Oslo, Norway), Iulian
Ober (IRIT), Bran Selic (IBM/Rational, Canada)

Abstract: The Model Driven Architecture (MDA) initiative of the OMG puts
forward the idea that future process development will be centered on models,
thus keeping application development and underlying platform technology
as separate as possible. In the area of DRES (distributed, Real-time and Em-
bedded Systems), this model-oriented trend is also very active and promising.
But DRES are different from general-purpose systems. The purpose of this

http://mothis.isis.vanderbilt.edu/
http://www.modeva.org/2007
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workshop is to serve as an opportunity to gather researchers and industri-
als in order to survey some existing experiments related to modeling and
model-based analysis of DRES. Moreover in order to be able to exchange
models with the aim to apply formal validation tools and to achieve in-
teroperability, it is important to have also a common understanding of the
semantics of the given notations. Other important issues in the domain of
real-time are methodology and modeling paradigms allowing breaking down
the complexity, and tools which are able to verify well designed systems.

URL: http://www.martes.org/

W8: Ocl4All: Modelling Systems with OCL

Organizers: David H. Akehurst (University of Kent at Canterbury, UK),
Martin Gogolla (Technische Universität Bremen, Germany), Steffen Zschaler
(Technische Universität Dresden, Germany)

Abstract: The requirements that the modelling community now wants to see
supported by OCL go far beyond its initial requirements. When OCL was
conceived it was designed as a language for supporting precise modelling.
The advent of the MDA (Model Driven Architecture) vision and the rapid
acceptance of MDE (Model Driven Engineering) approaches emphasize new
application domains (like Semantic Web or Domain Specific Languages).
This increase in new modelling languages causes a need for new OCL-like
languages for systems modelling, frequently developed as extensions to the
original.

This workshop is a continuation of the well-established series of MODELS
workshops on OCL. As this year’s special focus, we wish to recognise,
officially, that OCL will be used as a basis for many text-based navigation
languages and to bring together the community that defines these extensions
in order to consolidate the experiences, successes and failures involved in
doing so. We also hope to discuss the potential for redesigning or at least
restructuring the OCL standard definition in order to better facilitate and
support third party extensions to the language. This workshop aims to
look specifically at how to apply the key software engineering principles of
modularity and reuse to the definition of OCL.

URL: http://st.inf.tu-dresden.de/Ocl4All2007/

W9: Models@run.time

Organizers: Nelly Bencomo (Lancaster University, UK), Gordon Blair (Lan-
caster University, UK), Robert France (Colorado State University, USA)

Abstract: In the design modelling community, research effort has focused on
using models at design, implementation, and deployment stages of devel-
opment. The complexity of adapting software during runtime has spawned
interest in how models can be used to validate, monitor and adapt runtime

http://www.martes.org/
http://st.inf.tu-dresden.de/Ocl4All2007/
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behaviour. The use of models during runtime extends the use of modelling
techniques beyond the design and implementation phases of development.
Model-driven software development would help providing the infrastructure
to reconfigure and adapt a runtime system based on input QoS and context
based values. The perspective of models at runtime consists in bringing this
model-based capability forward to the runtime. The goal of this workshop is
to look at issues related to developing appropriate model-driven approaches
to managing and monitoring the execution of systems. The workshop
aims to integrate and combine research ideas from relevant areas as
model-driven software development, software architectures, reflection, and
autonomic and self healing systems, and provide a “state-of-the-research” as-
sessment expressed in terms of research issues, challenges, and achievements.

URL: http://www.comp.lancs.ac.uk/∼bencomo/MRT07/

W10: Multi-Paradigm Modeling: Concepts and Tools

Organizers: Pieter Mosterman (The MathWorks, Inc., USA), Tihamér Lev-
endovszky (Budapest University, Hungary), Juan de Lara (Universidad
Autónoma de Madrid, Spain)

Abstract: Computational modeling has become the norm in industry to remain
competitive and be successful. As such, Model- Based Design of embedded
software has enterprise-wise implications and modeling is not limited to iso-
lated uses by a single engineer or team. Instead, it has reached a prolifera-
tion much akin to large software design, with requirements for infrastructure
support such as version control, configuration management, and automated
processing.

The comprehensive use of models in design has created a set of challenges
beyond that of supporting one isolated design task. In particular, the need
to combine, couple, and integrate models at different levels of abstraction
and in different formalisms is posing a set of specific problems that the field
of Computer Automated Multiparadigm Modeling (CAMPaM) is aiming to
address.

The essential element of multiparadigm modeling is the use of explicit
models throughout. This leads to a framework with models to represent the
syntax of formalisms used for modeling, models of the transformations that
represent the operational semantics, as well as model-to-model transforma-
tions for inter-formalism transformation.

These models are then used to facilitate generative tasks in language
engineering, such as evolving a domain specific modeling formalism as
its requirements change, but also in a tool engineering space, such as
automatic generation of integrated development environments. Moreover,
given an explicit model of a model transformation allows analyses such as
termination characteristics, consistency, and determinism.

URL: http://mpm07.aut.bme.hu/

http://www.comp.lancs.ac.uk/~bencomo/MRT07/
http://mpm07.aut.bme.hu/
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W11: Quality in Modeling

Organizers: Ludwik Kuzniarz (Blekinge Institute of Technology, Ronneby,
Sweden), Jean Louis Sourrouille (INSA Lyon, France), Miroslaw Staron (IT
University, Gothenburg, Sweden)

Abstract: Quality assessment and assurance is an important part of soft-
ware engineering. The issues of software quality management are widely
researched and approached from multiple perspectives and viewpoints. The
introduction of a new paradigm in software development – Model Driven De-
velopment (MDD) – raises new challenges in software quality management,
and as such should be given a special attention. The issues of early quality
assessment based on models at a high abstraction level and building predic-
tion models for software quality are important from the software engineering
perspective.

The workshop is intended to provide a premier forum for discussions related
to software quality and MDD. The discussions are to be organized around
addressing the following topics: assessment of quality, quality models and
best practices, quality checking and ensuring, software processes for ensuring
quality, impact of MDD on quality, experience reports and empirical studies
of quality in the context of MDD.

The workshop is built upon the experience and discussions during the
first workshop on Quality in Modeling at MODELS 2006 and a follow up
of a series of consistency workshops held annually at the UML conferences
and MDA-FA conference.

URL: http://www.ipd.bth.se/lku/Quality-in-Modeling-2007

3 Detailed List of Symposia

S1: Doctoral Symposium

Organizer: Claudia Pons (Universidad Nacional de La Plata, Argentina)

Abstract: The MODELS 2007 Doctoral Symposium is a forum for Ph.D. stu-
dents to discuss their goals, methodology and results at an early stage in
their research, in a critical but supportive and constructive environment. The
symposium will provide an opportunity for student participants to interact
with other students at a similar stage in their careers and with established
researchers in the broader software modeling community. The symposium
aims to provide useful guidance for the completion of the dissertation re-
search and motivation for a research career.

The symposium is intended for students who have already settled on
a specific research topic (closely related to model-driven engineering) and
have obtained initial results, but still have enough time remaining before
their final defense so that they can benefit from the symposium experience.
Students should be at least a year from completion of their dissertation (at
the time of the symposium), to obtain maximum benefit from participation.

http://www.ipd.bth.se/lku/Quality-in-Modeling-2007
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Each student that is invited to attend the symposium will be assigned
a specific mentor who will be in charge of leading the discussion after the
student’s presentation.

URL: http://www.modelsconference.org

S2: Educators’ Symposium

Organizer: Miroslaw Staron (IT University of Göteborg, Sweden)

Abstract: Software engineering is progressing towards using higher abstraction
levels to increase productivity of development teams and quality of software.
Software engineering industry needs to be supported by educating skilled
professionals who are able to use advanced modeling techniques directly
after graduating the university. Software engineering education is therefore
facing a challenge of efficient move from the traditional focus on computer
science to the focus on engineering techniques, in particular centered around
models rather than source code and textual design specifications.

The purpose of the Educators’ Symposium is to serve as a premiere forum
for discussions and exchange of experiences between researchers, practition-
ers, and teachers interested in problems of teaching modeling. This year’s
focus of the symposium is on the industrial relevance of university courses in
the area of modeling. The discussions during the symposium are intended to
stimulate exchange of good practices in teaching modeling and requirements
for industrially relevant and good courses in modeling. The leading topic for
the symposium in 2007 is transitioning from the traditional, programming
oriented, curricula and courses to modern, model based, software engineering
curricula and courses.

The best paper will be published in Elsevier Information and Software
Technology Journal.

URL: http://www.modelsconference.org
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Tutorials at MODELS 2007 

Jeff Gray 

Department of Computer and Information Sciences, University of Alabama at Birmingham 
1300 University Boulevard, Birmingham, Alabama 35294 USA 

gray@cis.uab.edu 

Abstract. The MODELS 2007 conference offered four high-quality tutorials 
from leading experts in the area of model-driven engineering. Each tutorial was 
presented as a half-day event that was organized during the first two days of the 
conference. This short overview provides an introduction to the tutorials 
program and a summary of each tutorial as submitted by the presenters. 

1   Introduction 

The MODELS 2007 tutorials provided conference attendees with a broad spectrum of 
opportunities to increase their knowledge about modeling practice and theory. The 
four tutorials that were selected cover topics on general modeling practice, specific 
application of modeling to particular domains, and an introduction to popular 
modeling toolsuites. The collection of tutorials offered something for every attendee – 
from first time participants and students looking for an overview of current practice, 
to seasoned practitioners and researchers seeking knowledge on new developments 
among popular tools. 

There were a large number of high quality tutorial proposals that were 
submitted to the MODELS 2007 conference, but space only permitted four 
tutorials to be selected. Each of the tutorial proposals received three reviews from 
the Selection Committee. Members of the MODELS 2007 tutorials Selection 
Committee were:  
 

Jean Bézivin, University of Nantes, France 
Jeff Gray, University of Alabama at Birmingham, USA 
Ivan Kurtev, Twente University, Netherlands 
Alfonso Pierantonio, University of L'Aquila, Italy 
Gianna Reggio, Universita' di Genova, Italy 
Antonio Vallecillo, University of Malaga, Spain 

 

The tutorials for the conference occurred during the first two days of the 
conference. More details about the dates, times, and locations of the tutorials can be 
found at the main MODELS 2007 conference web page:  

 

www.modelsconference.org 
 

A summary of the four tutorials can be found in the next section. 
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2   Tutorial Summaries 

This section provides an abstract of each tutorial. The abstracts are taken from the 
descriptions provided by each presenter during their initial submission. 
 
Tutorial T1: Effective Model Driven Engineering Patterns, Principles, and Practices 
 
Presenters: Bruce Trask and Angel Roman (MDE Systems, USA) 
 

Model Driven Engineering (MDE) brings together multiple technologies and 
critical innovations and formalizes them into the next wave of software development 
methods. This tutorial will cover the basic patterns, principles and practices of MDE. 
The three main MDE categories include the development of Domain-Specific 
Languages, Domain-Specific Editors (including Domain-Specific Visual Languages) 
and, Domain-Specific Transformation Engines or Generators. Expressed in terms of 
language development technology, these mirror the development of the Abstract 
Syntax, Concrete Syntax and Semantics of a new Domain-Specific Language. This 
tutorial will cover the basic effective patterns, principles and practices for developing 
these MDE software artifacts. The tutorial will show how to apply these concepts as 
effective means with which to both raise levels of abstraction and domain specificity 
and thus increase power and value of tools and languages that allow developers to 
tackle the complexities of today’s software systems. It will also show how to 
effectively leverage abstraction without sacrificing the ability to robustly and 
precisely refine these abstractions to solve real world problems. Additionally, this 
tutorial will cover the exact details of how to leverage the Eclipse Modeling 
Framework (EMF), the Eclipse Graphical Editor Framework (GEF), and the Eclipse 
Graphical Modeling Framework (GMF), to support the development of these three 
areas. These three frameworks provide a unique and integrated platform in which to 
learn the basics of Model-Driven Engineering (MDE) in full application not just in 
theory. Conversely, the tutorial provides an effective context in which to learn how to 
apply the power of these integrated Eclipse Frameworks developed to support MDE. 
 
Tutorial T2: Model-Driven Engineering for QoS Provisioning in Distributed Real-
Time and Embedded Systems 
 
Presenter: Aniruddha Gokhale (Vanderbilt University, USA) 
 

Distributed real-time and embedded (DRE) systems require multiple, simultaneous 
quality of service (QoS) properties, such as predictability, reliability and security. 
Assuring QoS properties for DRE systems is a hard problem due to the conflicting 
demands imposed by each dimension of QoS. On one hand, DRE domain experts face 
substantial challenges in defining the desired QoS properties for different parts of 
their DRE systems since they must first understand the impact of individual QoS 
dimensions on each other at a conceptual level. On the other hand, DRE system 
integrators face substantial challenges provisioning QoS properties on the platforms 
that host the DRE systems due to a lack of proper understanding of how choices of 
platform configurations they make will impact the overall QoS delivered to the 
system. Model-driven engineering (MDE) plays a vital role in addressing these 
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challenges. Domain-specific modeling languages (DSMLs) associated with MDE 
tools provide intuitive abstractions of QoS properties to DRE domain experts, who 
can use them to express the QoS properties they desire for their systems. Analysis 
tools associated with the MDE frameworks can provide vital feedback to the domain 
experts on the severity of conflicts between the QoS dimensions. For the systems 
integrators, the same MDE framework can provide automated mechanisms to map the 
QoS properties defined in the problem space to platform configurations in the solution 
space. This tutorial will illustrate these features of MDE using the CoSMIC MDE 
framework. A number of case studies and short demonstrations will be used to 
illustrate the challenges and the solutions provided by MDE tools. 
 
Tutorial T3: From Rapid Functional Prototypes to Robust Implementations to 
Product-Lines: A Model-Driven Software Factory Approach 
 
Presenter: Vinay Kulkarni (Tata Research, India) 
 

We describe an approach wherein one begins by capturing the functional 
specifications in the form of models and domain-specific languages. An interpretive 
approach helps quickly build a functional prototype from these specifications, and 
helps derive correct functional specifications by iterating until all stakeholder 
concerns are satisfied. An architectural prototyping exercise is carried out in parallel 
to arrive at a solution architecture that meets the non-functional requirements. The 
desired solution architecture is then ‘codified’ into a set of models and model 
transformation specifications leading to a set of tools. We define a purpose-specific 
software factory instance wherein these tools transform the functional specifications 
in successive stages of refinement culminating in a complete implementation that 
conforms to the desired solution architecture. We share our experience of using this 
approach, over the last twelve years, to deliver several large enterprise applications on 
a variety of technology platforms and implementation architectures. 
 
Tutorial T4: Putting MDA to Work on Eclipse with the AMMA Tool Suite 
 
Presenters: Mikaël Barbero (University of Nantes, France) and Frédéric Jouault 
(INRIA, France and University of Alabama at Birmingham, USA) 
 

As part of the OMG process for issuing common recommendations, a Request for 
Information (RFI) has recently been issued on “MDA Tool Capabilities.” The 
objective is to find what capabilities (e.g., functionalities, methodology definitions, 
and process guidance) of tools the MDA user community currently uses for their 
projects, and which new capabilities it would like to have. As part of the Eclipse 
foundation process, a new project called EMP (for Eclipse Modeling Project) has 
recently been created to foster the evolution and promotion of model-based 
development technologies within the Eclipse community. It does so by providing a 
unified set of modeling frameworks, tools, and standards implementations. This 
tutorial will investigate the multiple relations between the complementary OMG and 
Eclipse activities. There are modeling specifications and open source tool solutions 
that may be deployed to implement the MDA approach, which interact in many ways. 
Model-based and DSL-based practical solutions to software production and 
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maintenance will be presented. The various aspects of using modeling solutions to 
implement forward and reverse engineering will be particularly discussed. The 
tutorial will concretely show how a set of Eclipse open source components (namely: 
KM3, ATL, AM3, AMW, TCS, MoDisco) can be used to find new solutions to 
difficult problems. These components are part of a modeling platform named AMMA 
(ATLAS Model Management Architecture). The tutorial will conclude by revisiting 
the application scope of model engineering, seven years after the initial proposal of 
the MDA approach by OMG. 
 



Panels at MODELS 2007

Jean-Michel Bruel

LIUPPA
Université de Pau et des Pays de l’Adour

64000 Pau, France
Jean-Michel.Bruel@univ-pau.fr

Panel 1: The Future of Aspect Modeling: Will MDD
Absorb It?

Chair: João Araújo, Universidade Nova de Lisboa, Portugal

Currently there are some young and promising approaches in software develop-
ment, such as Model-Driven Development (MDD), and Aspect-Oriented Soft-
ware Development (AOSD). While MDD focuses on the systematic use of mod-
els, where the software is built through a chain of model transformations, AOSD
aims to offer enhanced mechanisms to identify, model and compose crosscutting
concerns. But what AOSD proposes doesn’t it involve just a specific kind of
modelling? And regarding composition, isn’t it a special kind of model transfor-
mation? If these questions are true, will MDD absorb AOSD in the end? If not,
what are then the true crosscutting relationships between MDD and AOSD?

Panel 2: Evaluating MDE Research: Are We Doing
Enough?

Chairs: Sudipto Ghosh and Robert France, CSU, Fort Collins, USA

Research papers typically describe novel results and convey new ideas to a com-
munity of researchers and practitioners. Authors should back their claims and
convince readers that the results are, in some sense, good. Pilot studies, case
studies, and experiments are some of the techniques used for evaluating ap-
proaches. Evaluations can range from small-scale, proof-of-concept studies in
academia to large-scale formal evaluations in industrial settings.

Since model driven engineering (MDE) is still in its infancy, researchers and
practitioners are faced with the dilemma of quickly publishing a novel approach
without much evaluation versus performing a formal, lengthy evaluation and
consequently delaying publication of results. In this panel we will discuss issues
and challenges related to the evaluation of MDE research results. The following
two questions will be the starting points for discussions in the panel:

1. What are the expectations on the nature and quality of evaluation for MDE
papers to get accepted to a workshop, conference, or journal?

2. What are the challenges in evaluating MDE research and how do we address
them?

G. Engels et al. (Eds.): MoDELS 2007, LNCS 4735, p. 695, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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