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Preface

This volume contains a selection of 71 refereed papers presented at the 17th

International Conference on Domain Decomposition Methods held at St. Wolf-
gang/Strobl, Austria, July 3 - 7, 2006.

1 Background of Conference Series

Domain Decomposition (DD) is an active, interdisciplinary research area
concerned with the development, analysis, and implementation of coupling
and decoupling strategies in mathematical and computational models aris-
ing in Computational Science and Engineering. Historically, it has emerged
from the analysis of partial differential equations, beginning with the work
of H. A. Schwarz in 1869, in which he established the existence of harmonic
functions in domains with complicated boundaries (see logo on the cover), con-
tinuing with the variational setting of the alternating Schwarz method by S.L.
Sobolev in 1934, and leading to the powerful “Schwarz machinery” developed
during the last two decades. Another historical origin of modern domain de-
composition methods (DDM) is the classical substructuring techniques which
were first developed by mechanical engineers for the finite element analysis
of complex structures in the 1960s. We note that the DD technologies are
also well suited for treating coupled field problems by hybrid discretization
techniques.

The appearance of parallel computers, in particular, of massively parallel
computers with distributed memory in the mid 1980s, led to an extensive
development of parallel algorithms for solving partial differential equations —
problems which play a fundamental role in computational sciences. Time was
therefore then right to organize the first international conference, which was
held in Paris in 1987. There are now conferences in this series with roughly
18-month intervals:

e Paris, France, 1987
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Los Angeles, CA, USA, 1988
Houston, TX, USA, 1989
Moscow, USSR, 1990
Norfolk, VA, USA, 1991
Como, Italy, 1992
University Park, PA, USA, 1993
Beijing, China, 1995
Ullensvang, Norway, 1996
Boulder, CO, USA, 1997
Greenwich, UK, 1998

Chiba, Japan, 1999

Lyon, France, 2000

Cocoyoc, Mexico, 2002
Berlin, Germany, 2003

New York, NY, USA, 2005
St. Wolfgang, Austria, 2006

The DD conferences are now not only attended by numerical analysts

and people interested in parallel computing, but also by scientists from all
computational sciences.

The activities of the domain decomposition community are coordinated by

the International Scientific Committee on Domain Decomposition Methods:

Petter Bjgrstad, Bergen

Roland Glowinski, Houston, TX

Ronald Hoppe, Augsburg and Houston, TX
Hideo Kawarada, Chiba, Japan

David Keyes, New York, NY

Ralf Kornhuber, Berlin

Yuri Kuznetsov, Houston, TX

Ulrich Langer, Austria

Jacques Periaux, Paris

Alfio Quarteroni, Lausanne, Switzerland
Zhong-Ci Shi, Beijing

Olof Widlund, New York, NY

Jinchao Xu, University Park, PA

Information on and proceedings of the domain decomposition conferences

and the ongoing activities of the domain decomposition community can be
found on the DDM home page

http://www.ddm.org .
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2 The Seventeenth Conference

The 17th International Conference on Domain Decomposition Methods
(DD17) was held at the Institute for Adult Education in St. Wolfgang/Strobl,
Austria, July 3 - 7, 2006. The DD17 was hosted by the Johann Radon
Institute for Computational and Applied Mathematics (RICAM), in coopera-
tion with the Special Research Program F013 (SFB F013) on “Numerical and
Symbolic Scientific Computing” and the Institute for Computational Mathe-
matics (NuMa) of the Johannes Kepler University Linz (JKU). The conference
was chaired by Ulrich Langer (NuMa, RICAM and SFB F013). 162 scientists
from 29 countries participated. Among the highlights were the talks of the 15
invited speakers:

e Mark Adams (Columbia University, USA): Algebraic Multigrid Methods
for Mechanical Engineering Applications,

e Mark Ainsworth (Strathclyde University, UK): Robustness of Some Sim-
ple Smoothers for Finite Element and Boundary Elements on Nonquasiu-
niform Meshes,

e Zoran Andjeli¢ (ABB Schweiz AG, SWITZERLAND): BEM: Opening the
New Frontiers in the Industrial Products Design,

e Martin Gander (University of Geneva, SWITZERLAND): Time Domain
Decomposition Methods,

e Laurence Halpern (University of Paris 13, FRANCE): Schwarz Waveform
Relaxation Algorithms: Theory and Applications,

e Matthias Heinkenschloss (Rice University, USA): Domain Decomposition
Methods for PDE Constrained Optimization,

e Hyea Hyun Kim (Courant Institute of Mathematical Sciences, New York
University, USA): Domain Decomposition Algorithms for Mortar Dis-
cretizations,

e Rolf Krause (University of Bonn, GERMANY): On the Multiscale Solution
of Constrained Problems in Linear Elasticity,

o Yuri Kuznetsov (University of Houston, USA): Domain Decomposition
Preconditioners for Anisotropic Diffusion,

e Raytcho Lazarov (Texas A&M University, USA): Preconditioning of Dis-
continuous Galerkin FEM of Second Order Elliptic Problems,

e Young-Ju Lee (University of California, Los Angeles, USA): Convergence
Theories of the Subspace Correction Methods for Singular and Nearly
Singular System of Equations,

e Giinter Leugering (Friedrich-Alexander-University of Erlangen-Niirnberg,
GERMANY): Domain Decomposition in Optimal Control of Partial Dif-
ferential Equations on Networked Domains,

e Jacques Périaux (CIMNE/UPC Barcelona, SPAIN): A Domain Decom-
position/Nash Equilibrium Methodology for the Solution of Direct and
Inverse Problems in Fluid Dynamics,

e Olaf Steinbach (Graz University of Technology, AUSTRIA): Boundary El-
ement Domain Decomposition Methods: Challenges and Applications,
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e Mary Wheeler (University of Texas at Austin, USA): A Domain Decom-
position Multiscale Mortar Mixed Method for Flow in Porous Media.

Ten minisymposia were organized on different topics. In addition, the many
contributed talks and posters contributed to the success of the DD17.
Sponsoring Organizations:

e Institute for Computational Mathematics (NuMa) of the Johannes Kepler
University, Linz (JKU)

e Johann Radon Institute for Computational and Applied Mathematics,
Linz (RICAM)
Linzer Hochschulfond
Special Research Program SFB F013 “Numerical and Symbolic Scientific
Computing”
Springer Verlag
Township St. Wolfgang
Township Strobl

Local Organizing Committee Members:

Sven Beuchler, JKU (Linz)

Alfio Borzi, University of Graz (Graz)

Martin Burger, JKU, SFB013 and JKU (Linz)

Heinz Engl, JKU, SFB013 and JKU (Linz)

Martin Gander, University of Geneva (Geneva)

Gundolf Haase, University of Graz (Graz)

Karl Kunisch, University of Graz (Graz) and RICAM (Linz)
Ulrich Langer, JKU, SFB013 and JKU (Linz)

Ewald Lindner, SFB013 and JKU (Linz)

Joachim Schéberl, RICAM and SFB013 (Linz)

Olaf Steinbach, Graz University of Technology (Graz)
Christoph Uberhuber, Vienna University of Technology (Vienna)
Walter Zulehner, JKU (Linz)

The International Scientific Committee would like to thank the members
of the Local Organizing Committee for organizing and managing the confer-
ence. Special thanks go to the conference secretaries, Magdalena Fuchs and
Marion Schimpl, the technical assistants, Wolfgang Forsthuber, Oliver Koch
and Markus Winkler, the program coordinators, Dr. Sven Beuchler, Dipl.-Ing.
David Pusch, and Dr. Satyendra Tomar, the manager of the social program,
Dr. Ewald Lindner, and, last but not least, to Dipl.-Ing. Peter Gruber and
Dr. Jan Valdman for producing the book of abstracts.

More information about the conference can be found on the DD17 home
page

http://www.ricam.oeaw.ac.at/dd17 .
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Problem Decomposition Methods in Computational Science and Engineer-
ing, STAM, Philadelphia, 1995.

D. Keyes and J. Xu, eds., Proc. Seventh Int. Conf. on Domain Decompo-
sition Methods for Partial Differential Equations (University Park, 1993),
AMS, Providence, 1995.
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V.G. Korneev and U. Langer, Domain Decomposition and Precondition-
ing, Chapter 22 in Volume 1 (Fundamentals) of the “Encyclopedia of
Computational Mechanics”, ed. by E. Stein, R. de Borst and Th.J.R.
Hughes, John Wiley & Sons, 2004.

R. Kornhuber, R. Hoppe, J. Periaux, O. Pironneau, O. Widlund and
J. Xu, eds., Proc. Fifteenth Int. Conf. on Domain Decomposition Methods
in Sciences and Engineering (Berlin, 2003), Springer, Heidelberg, 2004.
J. Kruis, Domain Decomposition Methods for Distributed Computing,
Saxe-Coburg Publication, Dun Eaglais, 2005.

C.-H.Lai, P.E. Bjgrstad, M. Cross, and O. Widlund, eds., Proc. Eleventh Int.
Conf. on Domain Decomposition Methods (Greenwich, 1999), DDM.org,
Bergen, 2000.

U. Langer and O. Steinbach, Coupled Finite and Boundary Element
Domain Decomposition Methods, In “Boundary Element Analysis: Math-
ematical Aspects and Application”, ed. by M. Schanz and O. Steinbach,
Lecture Notes in Applied and Computational Mechanic, Volume 29,
Springer, Berlin, pp. 29-59, 2007.

V.I. Lebedev and V.I. Agoshkov, Poincaré-Steklov operators and their
applications in analysis, Academy of Sciences USSR, Dept. of Numerical
Mathematics, Moskow, 1983, (In Russian).

P. Le Tallec, Domain Decomposition Methods in Computational Mechan-
ics, Computational Mechanics Advances, Vol. 1, No. 2, 1994, pp. 121-220.
J. Mandel, C. Farhat and X.-C. Cai, eds., Proc. Tenth Int. Conf. on
Domain Decomposition Methods in Science and Engineering (Boulder,
1997) AMS, Providence, 1998.

S. Nepomnyaschikh, Domain Decomposition Methods, In “Lectures on
Advanced Computational Methods in Mechanics”, ed. by J. Kraus and
U. Langer, Radon Series on Computational and Applied Mathematics,
de Gruyter, Berlin, 2007.

P. Oswald, Multilevel Finite Element Approzimation: Theory and Appli-
cations, Teubner Skripten zur Numerik, Teubner-Verlag, Stuttgart, 1994.
L. Pavarino and A. Toselli, Recent Developments in Domain Decomposi-
tion Methods. Proc. Workshop held in Zirich in 2001, Lecture Notes in
Computational Sciences and Engineering, Vol. 23, Springer, Heidelberg,
2002.

A. Quarteroni, J. Periaux, Y.A. Kuznetsov, and O. B. Widlund, eds.,
Proc. Sizth International Conference on Domain Decomposition Methods
in Science and Engineering (Como, 1992) AMS, Providence, 1994.

A. Quarteroni and A. Valli, Domain Decomposition Methods for Partial
Differential Equations, Oxford Sciences Publications, Oxford, 1999.

B. F. Smith, P. E. Bjgrstad and W. Gropp, Domain Decomposition:
Parallel Multilevel Methods for Elliptic Partial Differential Equations,
Cambridge University Press, Cambridge, 1996.
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29. O. Steinbach, Stability Estimates for Hybrid Coupled Domain Decomposi-
tion Methods, Lecture Notes in Mathematics, Vol. 1809, Springer, Berlin,
2003.

30. A. Toselli and O. Widlund, Domain Decomposition Methods — Algorithms
and Theory, Springer, New York, 2005.

31. O. Widlund and D.E. Keyes, eds., Proc. Sizteenth Int. Conf. on Domain
Decomposition Methods in Sciences and Engineering (New York City,
2005), Springer, Heidelberg, 2007.

32. B. Wohlmuth, Discretization Methods and Iterative Solvers Based on Do-
main Decomposition, Volume 17 of Lecture Notes in Computational Sci-
ence and Engineering, Springer, Berlin, Heidelberg, 2001.

33. J. Xu, lterative Methods by Space Decomposition and Subspace Correc-
tion: A unifying approach, SIAM Review, Vol. 34, No. 4, 1992, pp. 581—
613.

34. J. Xu and J. Zou, Some Nonoverlapping Domain Decomposition Methods,
SIAM Review, Vol. 40, No. 4, 1998, pp. 857-914.

4 Organization

Parts I and IIT of the proceedings collect the plenary and contributed presen-
tations, respectively; the papers appear in alphabetical order by the first-listed
author. In part II “Minisymposia’, the organizers of the minisymposia pro-
vide short introductions to the minisymposia. Within each minisymposium
section, the papers again appear in alphabetical order.

5 Acknowledgments

The editors would like to thank all authors for their contributions, the anony-
mous referees for their valuable work, and Dr. Martin Peters and Ms. Thanh-
Ha Le Thi from Springer for continuing support and friendly collaboration in
preparing these proceedings.

Linz, Ulrich Langer, Walter Zulehner
Lausanne, Marco Discacciati
New York, David E. Keyes, Olof B. Widlund

August 2007



Contents

Part I Plenary Presentations

BEM: Opening the New Frontiers in the Industrial Products
Design
Zoran Andjeli¢ .. ... ... 3

A Domain Decomposition/Nash Equilibrium Methodology

for the Solution of Direct and Inverse Problems in Fluid
Dynamics with Evolutionary Algorithms

Hong Quan Chen, Roland Glowinski, Jacques Périaux ................ 21

Preconditioning of Symmetric Interior Penalty Discontinuous
Galerkin FEM for Elliptic Problems
Veselin A. Dobrev, Raytcho D. Lazarov, Ludmil T. Zikatanov.......... 33

Nonlinear Convergence Analysis for the Parareal Algorithm
Martin J. Gander, Ernst Hairer ......... ... e iiininnnn... 45

Schwarz Waveform Relaxation Algorithms
Laurence Halpern . ... ... 57

Integration of Sequential Quadratic Programming

and Domain Decomposition Methods for Nonlinear Optimal
Control Problems

Matthias Heinkenschloss, Denis Ridzal . ....... ... ... ... .. ... ... .... 69

Domain Decomposition Algorithms for Mortar Discretizations
Hyea Hyun Kim ... ... e 81

On the Multiscale Solution of Constrained Minimization
Problems
Rolf Krause ... ... . e 93



XIV  Contents

Domain Decomposition Preconditioner for Anisotropic
Diffusion
Yuri A. Kuznetsov . ... e 105

Domain Decomposition of Constrained Optimal Control
Problems for 2D Elliptic System on Networked Domains:
Convergence and A Posteriori Error Estimates

GUnter Leugering .. .....oo oo e 119

Challenges and Applications of Boundary Element Domain
Decomposition Methods
Olaf Steinbach .. ... 131

Part II Minisymposia

MINISYMPOSIUM 1: Advanced Multigrid Methods
for Systems of PDEs
Organizers: Panayot S. Vassilevski, Ludmil T. Zikatanov.............. 145

Auxiliary Space AMG for H(curl) Problems
Tzanio V. Kolev, Panayot S. Vassilevski . ......... ... ... .. ... ... ... 147

A Multilevel Method for Discontinuous Galerkin
Approximation of Three-dimensional Elliptic Problems
Johannes K. Kraus, Satyendra K. Tomar ........... ... ... ... ..... 155

MINISYMPOSIUM 2: Domain Decomposition
Based on Boundary Elements
Organizers: Olaf Steinbach, Wolfgang Wendland . ... ........... ... ... 165

Scalable BETI for Variational Inequalities
Jiri Bouchala, Zdenék Dostal, Marie Sadowskd ...................... 167

Domain Decomposition Based H-Matrix Preconditioners
for the Skin Problem
Boris N. Khoromskij, Alexander Litvinenko ........... ... ... ....... 175

MINISYMPOSIUM 3: Domain Decomposition in Coupled
Engineering Phenomena with Multiple Scales
Organizers: Richard Fwing, Oleg Iliev, Raytcho D. Lazarov............ 183

Class of Preconditioners for Discontinuous Galerkin
Approximations of Elliptic Problems
Paola F. Antonietti, Blanca Ayuso ........c.oouiiii ... 185



Contents

Upscaling of Transport Equations for Multiphase
and Multicomponent Flows
Richard Fwing, Yalchin Efendiev, Victor Ginting, Hong Wang ........

MINISYMPOSIUM 4: Domain Decomposition Methods
Motivated by the Physics of the Underlying Problem
Organizers: Martin J. Gander, Laurence Halpern. ....... ... ... ... ...

An Optimized Schwarz Waveform Relaxation Algorithm

for Micro-Magnetics

Martin J. Gander, Laurence Halpern, Stéphane Labbé, Kévin
Santugini-Repiquet . ... ...

Discontinuous Galerkin and Nonconforming in Time
Optimized Schwarz Waveform Relaxation for Heterogeneous
Problems

Laurence Halpern, Caroline Japhet .. ....... . ... . 0. ..

Optimized and Quasi-optimal Schwarz Waveform Relaxation
for the One Dimensional Schrédinger Equation
Laurence Halpern, Jérémie Szeftel....... ... ... . . ...

A Moving Mesh Method for Time—dependent Problems
Based on Schwarz Waveform Relaxation
Ronald D. Haynes, Weizhang Huang, Robert D. Russell ...............

MINISYMPOSIUM 5: FETI, Balancing, and Related Hybrid
Domain Decomposition Methods
Organizers: Azxel Klawonn, Olof B. Widlund, Barbara Wohlmuth . . . .. ..

A Functional Analytic Framework for BDDC and FETI-DP
Susanne C. Brenmer. ... ... e

A Family of Energy Minimizing Coarse Spaces for Overlapping
Schwarz Preconditioners
Clark R. Dohrmann, Azel Klawonn, Olof B. Widlund ................

Extending Theory for Domain Decomposition Algorithms
to Irregular Subdomains
Clark R. Dohrmann, Axel Klawonn, Olof B. Widlund ................

Scalable FETI Algorithms for Frictionless Contact Problems
Zdenék Dostdl, Vit Vondradk, David Hordk, Charbel Farhat,
Philip AVETy. . .o

Balancing Domain Decomposition Methods for Discontinuous
Galerkin Discretization
Maksymilian Dryja, Juan Galvis, Marcus Sarkis ............... ... ...

XV



XVI Contents

Exact and Inexact FETI-DP Methods for Spectral Elements
in Two Dimensions
Azxel Klawonn, Oliver Rheinbach, Luca F. Pavarino .................. 279

On Multilevel BDDC
Jan Mandel, Bedrich Sousedik, Clark R. Dohrmann .................. 287

The All-floating BETI Method: Numerical Results
GUnther Of .. 295

MINISYMPOSIUM 6: Multiphysics Problems
Organizers: Ronald H-W. Hoppe, Ralf Kornhuber .................... 303

Modeling and Simulation of Piezoelectrically Agitated

Acoustic Streaming on Microfluidic Biochips

Harbir Antil, Andreas Gantner, Ronald H.W. Hoppe, Daniel Kdster,
Kunibert Siebert, Achim Wizforth ......... ... . ... . .. 305

Numerical Approximation of a Steady MHD Problem
Marco DiSCacCiati . . . ..o vt 313

Mortar and Discontinuous Galerkin Methods
Based on Weighted Interior Penalties
Paolo Zunino . .. ... ... 321

MINISYMPOSIUM 7: Optimized Schwarz Methods:
Promises and Challenges
Lahcen Laayoumnt . .. ... e 329

A New Domain Decomposition Method for the Compressible
Euler Equations Using Smith Factorization
Victorita Dolean, Frédéric Nataf........ .. .. .. .. 331

Optimized Domain Decomposition Methods
for Three-dimensional Partial Differential Equations
Lahcen Laayoumi . .. ... ..o e 339

Optimized Schwarz Methods with the Yin-Yang Grid
for Shallow Water Equations
Abdessamad Qaddouri . ......... .. 347

MINISYMPOSIUM 8: Robust Methods for Multiscale PDE
Problems
Organizers: Ivan G. Graham, Rob Scheichl ........ ... .. .. ... .. ... ... 355

Mixed-Precision Preconditioners in Parallel Domain
Decomposition Solvers
Luc Giraud, Azzam Haidar, Layne T. Watson ...................... 357



Contents XVII

Coefficient-explicit Condition Number Bounds
for Overlapping Additive Schwarz
Ivan G. Graham, Rob Scheichl. .. ... .. ... . . . . . . . . .. 365

Robust Norm Equivalencies and Preconditioning
Karl Scherer . ... 373

MINISYMPOSIUM 9: Subspace Correction Methods
Organizers: Ralf Hiptmair, Ralf Kornhuber, Jinchao Xu............... 381

Fast and Reliable Pricing of American Options with Local
Volatility
Ralf Forster, Ralf Kornhuber, Karin Mautner, Oliver Sander .......... 383

A New Kind of Multilevel Solver for Second Order
Steklov-Poincaré Operators
Qiya HU . o oo 391

MINISYMPOSIUM 10: Time Domain Decomposition
Methods for Evolution Problems
Organizer: Martin J. Gander ........... .. .. 399

Symplectic Parareal
Guillaume Bal, Qi Wu .. ... 401

Block Diagonal Parareal Preconditioner for Parabolic Optimal
Control Problems
Marcus Sarkis, Christian E. Schaerer, Tarek Mathew ................. 409

Part III Contributed Presentations

Boundary Value Problems in Ramified Domains with Fractal
Boundaries
Yves Achdou, Nicoletta Tchou ............c. ... 419

An Additive Schwarz Method for the Constrained
Minimization of Functionals in Reflexive Banach Spaces
Lori Badea . ... oo oot 427

Completions to Sparse Shape Functions for Triangular
and Tetrahedral p-FEM
Sven Beuchler, Veronika Pillwein . ......... . .. . . .. .. i .. 435

Finite Volume Method for Nonlinear Transmission Problems
Franck Boyer, Florence Hubert. ...... ... ... ... 443



XVIII Contents

An Overlapping Domain Decomposition Method
for Parameter Identification Problems
Xiao-Chuan Cai, St Liv, Jun Zow .. ..o

A Domain Decomposition Method for the Diffusion
of an Age-structured Population in a Multilayer Environment
Caterina Cusulin, Luca Gerardo-Giorda.............. ..o ..

Why Classical Schwarz Methods Applied to Certain
Hyperbolic Systems Converge Even Without Overlap
Victorita Dolean, Martin J. Gander ....... ... .. . .. ...

How to Use the Smith Factorization for Domain
Decomposition Methods Applied to the Stokes Equations
Victorita Dolean, Frédéric Nataf, Gerd Rapin ............ ... ... ....

p-Multigrid for Fekete Spectral Element Method
Victorita Dolean, Richard Pasquetti, Francesca Rapetti ...............

p-FEM Quadrature Error Analysis on Tetrahedra
Tino Eibner, Jens M. Melenk. .. ..... ... .. .. ...

A Direct Solver for the Heat Equation with Domain
Decomposition in Space and Time
Marc Garbey .. ... ...

Toward a Real Time, Image Based CFD
Marc Garbey, Bilel Hadri . ...

A Multilevel Method for Solution Verification
Mare Garbey, Christophe Picard ........... .. .. . ...

A Robust Preconditioner for the Hessian System in Elliptic
Optimal Control Problems

Etereldes Gongalves, Tarek P. Mathew, Markus Sarkis, Christian FE.
SCRAETET o e

A Schur Complement Method for DAE/ODE Systems
in Multi-Domain Mechanical Design
David Guibert, Damien Tromeur-Dervout .......... ... .. ... .......

PDE-based Parameter Reconstruction through Schur
and Schwarz Decompositions
Yuan He, David E. Keyes .. ...,

Numerical Method for Wave Propagation Problem by FDTD
Method with PML
Takashi Kako, Yoshiharu ORi.. ... ... ... ...



Contents XIX

Fast Domain Decomposition Algorithms for Discretizations
of 3-d Elliptic Equations by Spectral Elements
Vadim Korneev, A. Rytov .. ... 559

Reinforcement-Matrix Interaction Modeled by FETI Method
Jaroslav Kruis, Zdenék Bittnar ......... . . i 567

The Dilemma of Domain Decomposition Approaches

in Fluid-Structure Interactions with Fully Enclosed
Incompressible Fluids

Ulrich Kiittler, Wolfgang A. Wall .. ...... ... ... ... . . . .. .. ... 575

A FETI-DP Method for Mortar Finite Element Discretization
of a Fourth Order Problem
Leszek Marcinkowski, Nina Dokeva .. ....... ... . ... .. i .. 583

Concepts for an Efficient Implementation of Domain
Decomposition Approaches for Fluid-Structure Interactions
Miriam Mehl, Tobias Neckel, Tobias Weinzierl....................... 591

An Overlapping Additive Schwarz-Richardson Method
for Monotone Nonlinear Parabolic Problems
Marilena Munteanu, Luca F. Pavarino ......... ... ... .. . oo, 599

Parallel Numerical Solution of Intracellular Calcium
Dynamics
Chamakuri Nagaiah, Sten Riudiger, Gerald Warnecke, Martin Falcke . ..607

AMDIiS - Adaptive Multidimensional Simulations: Parallel
Concepts
Angel Ribalta, Christina Stoecker, Simon Vey, Axel Voigt ............. 615

Generalization of Lions’ Nonoverlapping Domain
Decomposition Method for Contact Problems
Taoufik Sassi, Mohamed Ipopa, Francois Xavier Roux................. 623

Multilevel Schwarz and Multigrid Preconditioners
for the Bidomain System
Simone Scacchi, Luca F. Pavarino ..............c.cu.uuiiiiininnn .. 631

Preconditioners for Low Order Thin Plate Spline
Approximations
Linda Stals, Stephen Roberts .. ...... ... 639

Domain Decomposition Algorithms for an Indefinite
Hypersingular Integral Equation in Three Dimensions
Ernst P. Stephan, Matthias Maischak, Thanh Tran ............... ... 647



Part I

Plenary Presentations



BEM: Opening the New Frontiers
in the Industrial Products Design

Zoran Andjeli¢

ABB Corporate Research
zoran.andjelic@ch.abb.com

Summary. Thanks to the advances in numerical analysis achieved in the last sev-
eral years, BEM became a powerful numerical technique for the industrial products
design. Until recent time this technique has been recognized in a praxis as a technique
offering from one side some excellent features (2D instead of 3D discretization, treat-
ment of the open-boundary problems, etc.), but from the other side having some se-
rious practical limitations, mostly related to the full-populated, often ill-conditioned
matrices. The new, emerging numerical techniques like MBIT (Multipole-Based In-
tegral Technique), ACA (Adaptive Cross-Approximations), DDT (Domain-Decom-
position Technique) seems to bridge some of these known bottlenecks, promoting
those the BEM in a high-level tool for even daily-design process of 3D real-world
problems.

The aim of this contribution is to illustrate the application of BEM in the design
process of the complex industrial products like power transformers or switchgears.
We shall discuss some numerical aspects of both single-physics problems appearing
in the Dielectric Design (Electrostatics) and multi-physics problems characteris-
tic for Thermal Design (coupling of Electromagnetic - Heat transfer) and Electro-
Mechanical Design (coupling of Electromagnetic - Structural mechanics).

Nomenclature

X - source point

y - integration point

I' := 912 - surface around the body

o¢ - electric surface charge density [As/m?]

p° - electric volume charge density [As/m?]

o™ - magnetic surface charge density [V's/m?]

p™ - magnetic volume charge density [V's/m3]

q - charge [As]

¢ - dielectric constant (permittivity, absolute) [F/m = As/V'm]

g0 - dielectric constant of free space (permittivity)=1/uoc3 ~ 0.885419¢ !
co - speed of electromagnetic waves (light) in vacuum= 2.2997925¢® [m/s]
e, - relative dielectric constant
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1 - magnetic permeability (absolute) [H/m]

o - magnetic permeability of the free space [H/m] = 47/107
Wy - relative magnetic permeability

o - electrical conductivity [Sm/mm?]

E - electrical field strength [V/m]

D - electrical flux (displacement) density [As/m?]

@ - electrical potential [V]

I - electrical current [A]

U - electrical voltage [V]

0! (I) - potential of the external electrostatic field [V]
H - magnetic field strength [A/m]

B - magnetic flux density [T]

F - force [N]

f, - volume force density [N/m?]

f,, - magnetic force density [IN/m?]

£ - “strain” magnetic force density [N/m?]

J - current density [A/m?]

Jo - exciting current density [A/m?]

S - Poynting vector

f - time-average force density [N/m?] (volume) or [N/m?] (surface)
O - solid angle

j - current density (complex vector) [A/m?]

w - angular velocity [rad/s]

f- frequency [H?z]

T - temperature [°C] or [K]

« - heat transfer coefficient [W/m?K]

1 Introduction

One of key challenges in a booming industrial market is to achieve a better
time2market performance. This marketing syntagma one could translate as:
“To be better (best) in a competition race, bring the product to the market in the
fastest way (read cheapest way), simultaneously preserving / improving its func-
tionality and reliability”. One of the nowadays unavoidable ways to achieve this
target is to replace partially (or completely) the traditional Ezperimentally-
Based Design (EBD) with the Simulation-Based Design (SBD) of industrial
products. Usage of SBD contributes in:

e Acceleration of the design process (avoiding prototyping),
e Better design through better understanding of the physical phenomena,
e Recognizability of the product’s weak points already at the design stage.

Introduction of the SBD in the design process requires accurate, robust and
fast numerical technologies for:
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e 3D real-world problems analysis, preserving the necessary structural
and physical complexity,

e ... but using the numerical technologies enough user-friendly to be ac-
cepted by the designers,

e ... and using the numerical technologies suitable for the daily design
process.

All these three items present quite tough requirements when speaking about
the industrial products that are usually featured by huge dimensions, huge as-
pect ratio in model dimensions, complex physics, complex materials. For the
class of the problems we are discussing here, there are basically two candidates
among many numerical methods that could potentially be used: FEM (Finite
Element Method) and BEM (Boundary Element Method). Our experience
shows that for the electromagnetic and electromagnetically-coupled problems
BEM has certain advantages when dealing with complex engineering design.

Without going into details, let us list some of the main BEM characteris-
tics:

e Probably the most important feature of BEM is that for linear classes of
problems the discretization needs to be performed only over the interfaces
between different media. This excellent characteristic of BEM makes the
discretisation/meshing of complex 3D problems more straightforward and
usable for simulations in a daily design process.

e Also, this feature is of utmost importance when dealing with the simulation
of moving boundary problems. Thanks to the fact that the space between
the moving objects does not need to be meshed, BEM offers an excellent
platform for the simulation of dynamics, especially in 3D geometry.

e Furthermore, the open boundary problem is treated easily with BEM, with-
out need to take into account any additionally boundary condition. When
using tools based on the differential approach (FEM, FDM), the open
boundary problem requires an additional bounding boxr around the object
of interest, which has a negative impact on both mesh size and computa-
tion error.

e Another important feature of BEM is its accuracy. Contrary to differential
methods, where adaptive mesh refinement is almost imperative to achieve
the required accuracy, with BEM it is frequently possible to obtain good
results even with a relatively rough mesh. But, at this point we also do
not want to say that “adaptivity” could not make life easier even when
using BEM.

In spite of the above mentioned excellent features of BEM, this method had
until recent time some serious limitations with respect to the practical design,
mostly related to the:

e full populated matrix,
e huge memory requirements,
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e bad matrix conditioning.

Multipol for matrix *Slow precondiioning
coel. calculation
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‘92 ‘28 03 05

e

Fig. 1. Paradigm change in BEM development

Thanks to the real breakthroughs happening in the last decade in BEM-related
applied mathematics, most of these bottlenecks have been removed. To au-
thor’s opinion the work done by Greengard and Rochlin, Greengard [10], is
probably one of the crucial ignitions contributing to this paradigm change,
Figure 1. Today we can say that this work, together with a number of cap-
ital contributions of other groups working with BEM, has lunched really a
new dimension in the simulation of the complex real-world problems. In the
following we shall try to illustrate it on some practical examples like:

e Dielectric design of circuit breakers,
e FElectro-mechanical design of circuit breakers,
e Thermal design for power transformers.

2 Dielectric Design of Circuit Breakers

Under Dielectric Design we usually understand the Simulation-Based De-
sign (SBD) of configurations consisting of one or more electrodes loaded with
either fized or floating potential and being in contact with one or more dielec-
tric media. From the physics point of view, here we deal with a single-physics
problem, which can be described either by a Laplace or Poisson equation.

2.1 Briefly About Formulation

For 3D BEM analysis of electrostatic problems, the equations satisfying the
field due to stationary charge distribution can be derived directly form the
Maxwell equations, assuming that all time derivatives are equal to zero. The
formulation can be reduced to the usage of I and II Fredholm integral equa-

tionst:

! The complete formulation derivation can be found in Tozoni [19], Koleciskij [15]
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o(z) = g (x Z / W) KT () (1)

471‘80

-2 Z [ o) e

m=1p

where ¢ = &g - ¢, is absolute permittivity with g9 = 8.85 - 107'2F/m the
permittivity of the free space and &, the relative permittivity or dielectric
constant, K; = |x1y| is a weakly singular kernel, ris a distance between
the calculation pomt 2 and integration point y, n is a unit normal vector in
point z directed into the surrounding medium, and A\ = ?‘—Ee

The equation (1) is usually applied for the points laying on the electrodes, and
the equation (2) is applied for the points positioned on the interface between
different dielectrics. Then the electrostatic field strength at any point in the

space can be determined as:

E(z) = —Vo() Z - VE1dT(y) (3)

m= 1
IYL

47r€0

whereby the position vector r = x — y in K; is pointed towards the collo-
cation point x. The discretization of equations (1) and (2) yields a densely
populated matrix, which is well known as the major bottleneck in BEM com-
putations. The amount of storage is of order O(N?), with N being the number
of unknowns. Furthermore, the essential step at the heart of the iterative so-
lution of this system is a matrix-vector multiplication and the cost of such
a multiplication is also of order O(N?). Thus a reduction of the complex-
ity to O(Nlog N) or O(N) would naturally be very desirable. Developments
started with a seminal paper by Greengard [10] that proposed a Fast Multi-
pole Method, which became highly popular in several numerical communities.
Another fundamental development was brought about by Hackbusch [11, 12].
In the following we present a brief description of MBIT? algorithm that is
used in our computations. The central idea is to split the discretized bound-
ary integral operator into a far-field and a near-field zone. The singularity of
the kernel of the integral operator is then located in the near-field, whereas
the kernel is continuous and smooth in the far-field. Compression can then
be achieved by a separation of variables in the far-field. In order to reach this
goal, the boundary in the first stage is subdivided into clusters of adjacent
panels that are stored in a hierarchical structure called the panel-cluster tree.
The first cluster is constructed from all elements/panels (the largest set of
elements/panes) and is denoted as xgg, Figure 2. We continue to subdivide
each existing cluster level successively into smaller clusters with cluster cen-
ters x;; through bifurcation, Figure 2a. After several bifurcations we obtain

2 Multipole-Based Integral Technique
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a cluster tree structure for the elements/panel set, Figure 2b. Then, in the

Fig. 2. a) Panel bifurcation, b) Panel cluster tree

second stage we collect all admissible pairs of clusters, i.e. pairs that fulfill the
admissibility condition |x — xo|+|x° — x§| < 1 |x¢ — x§| where 0 < 1 < 1 into
the far-field block. The centers of gravity of the panel clusters and node/vertex
clusters are here denoted by xo, x§, respectively. All other pairs of clusters
(the non-admissible ones) belong to the near-field. Then the matrix entries
corresponding to the near-field zone are computed as usual, whereas the ma-
trix blocks of the far-field are only approximated. This is achieved by an
expansion of the kernel function k(x,x¢) that occurs in the matrix entries

4y = / / 1 (x)k(x, )0, (x°)dT (2)dT () . )

The expansion:

F(%,X) & o (%, X% %0, XG) = Y K (6,X6) X (%, %0) V3 (x°,x6)  (5)
(p,v)ELm,

decouples the variables x and x¢ and must be done only in the far-field. Then,
the matrix-vector products can be evaluated as:

v=A-u=N- -u+ Z XI(Fy (Y, - u)). (6)
(o,7)EF

Several expansions can be used for this purpose: Multipole-, Taylor- and
Chebyshev-expansion. The procedures lead to a low rank approximation of
the far-field part and it is shown in Schmidlin [17] that one obtains exponen-
tial convergence for a proper choice of parameters. A more detailed elaboration
and comparison of all three type of expansions can also be found in the same
reference.
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Ezxample 1: SBD for a Generator Circuit-Breaker Design

In this example it is briefly shown how Simulation-Based Design of the Gen-
erator Circuit-Breaker (GCB) is performed using a BEM? module for electro-
static field computation.

portant components of electricity transmission
systems. Figure 4 (left) shows the complete as-
sembly of a GCB containing, beside the inter-
rupting chamber as a key component, all other
parts such as current and voltage transform-
ers, earthing switches, surge capacitors, etc. The

Generator circuit-breakers, Figure 3, are im-

simulation details for the above shown generator Fig. 3. ABB generator
circuit-breakers case were: circuit-breaker

The discretization of the model has been performed using second order
triangle elements.

The stiffness matrix has been assembled using an Indirect Ansatz with
collocation in the main triangle vertices, formulas (1) and (2). It has to
be mentioned here that in both the real design and consequently then
in the simulation model, geometrical singularities like edges and corners
have been removed through rounding. In the real design this is a common
practice in all high-voltage devices in order to prevent the occurrence of
dielectric breakdown. On the numerics side, this fact enables usage of the
nodal collocation method - which is also the fastest one - without violating
the mathematical correctness of the problem.

The coefficients of the stiffness matrix have been calculated using the mul-
tipole approach, Greengard [10], with monopole, dipole and quadropole
approximations for the far-field treatment, Andjelic [3]. Diagonal matriz
preconditioning has been used, which enables fast and reliable matrix solu-
tion using GMRES. This run has been accomplished without any matrix
compression, but using a parallelized version of the code, Blaszczyk [T7].
For a parallel run we used a PC cluster with 22 nodes. The data about
memory and CPU time are given in Table 1.

The calculated electrostatic field distribution is shown in Figure 4 (right).
It can be seen that the highest field strength appears on the small feature
details, such as screws.

Validation:

Replacement of the EBD with the SBD requires a number of field tests to con-
firm the simulation results by the experiments. Validation is one of important

3 This BEM module is a sub-module for electrostatic analysis in POLOPT

(http://www.poloptsoftware.com), a 3D BEM-based simulation package for single
and multi-physics computation.
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A

Fig. 4. GCB assembly (left). ABB Generator Circuit-Breaker: Electrostatic field
distribution, E[V/m)] (right)

Table 1. The analysis data for GCB example.

Elements|Nodes | Main vertices| Memory |CPU
145782 129158480230 42GByte|2h20’

steps to gain the confidence in the simulation tools. Figure 5 (right) shows the
experimental verification of the results obtained by the simulation of the GCB.

Note 1:
Calculated field distribution is just a “primary” information for the designers.
For complete judgment about the products behavior, it is usually necessary to
go one step forward, i.e. to evaluate the design criteria. Very often such criteria
are based on the analysis of the field lines, Figure 5 (left), that enables further
the conclusion about the breakdown probability in the inspected devices.

Fig. 5. Electric field strength distribution - detailed view including field lines traced
from the position of the maximal field values (left). Experimental verification of the
simulation results (right)
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3 Electro-Mechanical Design of Circuit Breakers

In Electro-Mechanical class of problems we are dealing with coupled electro-
magnetic / structural-dynamic phenomena. Better to say, we are seeking to
find out what is a mechanical response of the structure subjected to the ac-
tion of the electromagnetic forces. Coupling of these phenomena can be either
weak or strong. Under weak coupling we understand the sequential analysis
of each phenomena separately, coupled together via an iterative scheme. In
strong coupling we usually deal with the simultaneous solution of both prob-
lems, whereby the coupling is preserved on the equations level. In the present
material we deal with the weak coupling, that usually assumes two main steps:

e Calculation of electromagnetic forces
e (Calculation of mechanical response

Forces evaluation is a first step in this coupled simulation chain. Electromag-
netic forces appear in any device conducted by either DC or AC current, or
subjected to the action of an external electromagnetic field*:>. Force analysis
itself is a bright field and will not be treated in details within this material.
More info can be found in Andjelic [4]. Here we shall give only a brief overview
on the Workflow for coupled EM-ME simulation tasks, Figure 6. A very first

Changs of material parameters

= - dud o mechanical stresses - -l

v L}
Excitation Induced Force Mechanical
] Meld 4 c Meld o distributi — response
distribution distribution n

L, 1. Conductive / Non-
permeable structures

2. Conductive /
Permeable structures

- 3. Non-conductive / Non-
metallic structures

Fig. 6. Weak coupling scheme for EM-SM problems

step in the simulation chain is the calculation of the excitation current /
field distribution. The calculation of the stationary current distribution in the

4 In this material we shall not treat the electro-mechanical problems whereby the
force are of electrostatic origin.

® In certain applications (force sensors, pressure sensors, accelerometers) we are not
looking for mechanical response caused by the electromagnetic forces, but rather
for electrical response caused by the mechanical forces (piezoelectric problem).
This case will not be covered in the scope of this material. More information about
BEM treatment of these classes of problems can be found in Gaul [9], Hill [14].
Here we shall also not cover the topic of coupled Electro-Magnetic / Mechanics
problems related to magnetostriction phenomena (change of the shape of mag-
netostrictive material under the influence of a magnetic field). More information
for example in Whiteman [20].
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conductors assumes the solution of the Laplace problem, analogous to the
previously described electrostatic case. A detailed description of the formu-
lations for stationary current calculation can be found in Andjelic [4]. When
performing a coupled electromagnetic-structural mechanics analysis, we are
not interested in the total force, but rather in the local force density distrib-
ution. For stationary case the local force density (forces per unit volume,
[N/m?]) can be calculated as:

1
fm:JxB—§H2Vu—|—ffn. (7)

Usually in praxis we are interested in the time-averaged force density f
[N/m?]:

= 1
f= §Re {pP’E*+JI xB*" 4+ p"H"+ M x D"} (8)

where M = iwP™ = iwpo(pr — 1)H are the bounded magnetic currents, and

p™ are the bounded magnetic charges.

Basically, we can distinguish between the forces acting on:
conductive/non-permeable structures,
conductive/permeable structures®,
non-conductive/non-permeable structures”.

If we stay with the typical design cases appearing in the transformers
and circuit-breakers design, that the mostly encountered problems are related
to the forces in conductive/non-permeable structures (bus-bars, windings).
For time-average Lorentz force density in a non-permeable current-carrying
conductor (p=1), the equation (7) reduces to:

P %Re {JxB}. )

These local forces are then further passed as an external load for the analysis
of the mechanical quantities, last module in Figure 6. BEM formulations used
in our module for linear elasticity problems is described in more details in
Andjelic [4].

Ezxample 2: Electro-mechanical Design of Generator Circuit-Breaker

Let us consider now the coupled electromechanical loading of a switch found
in the generator circuit breaker (GCB) seen already in the previous example.
Following a current-distribution and eddy-current analysis, it is possible by
Biot-Savart calculation to find the body-forces arising out of Lorentz interac-
tions. In fact, these forces are often of interest only in a limited region of the

5 More on the force analysis on conductive/permeable structures can be found in
Henrotte [13].

" This class of problems is rather seldom and appears mostly in sensor design,
Andjelic [1].
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entire engineering system, typically in moving parts. In the GCB case pre-
sented here, a point of particular interest is the “knife” switch, where there is
a tendency for the generated Lorentz forces to act so as to open the switch.
Taking the example from earlier, for the mechanical part of the analysis only
a limited portion of the mesh needs to be evaluated. Results were calculated
using a mesh comprising 4130 triangular planar surface elements and 2063
nodes. The volume discretization (necessary for the body-force coupling) com-

Fig. 7. A detail of the earthing-switch in GCB carrying the current of 300-400 kA!
(left). Deformation of the earthing knife (overscaled), caused by the action of the
short-circuit forces (right).

prises 14000 tetrahedra. This model has been analyzed taking advantage of
the ACA approximation for the single and double layer potentials described
earlier in the outline of the formulation. Results from this analysis are shown
in Figure 7. Clearly visible is the effect of the coupling forces on the switch,
which has a tendency to move out of its closed position under the action of
the electromagnetic loading. This quantitative and qualitative information is
a valuable input into the design process leading to the development of complex
electromechanical systems.

4 Thermal Design for Power Transformers

When speaking about the Thermal Design we are usually looking for thermal
response of the structures caused by the electromagnetic losses. In reality,
the physics describing this problem is rather complex. There are three major
physical phenomena that should be taken into account simultaneously: the
electromagnetic part responsible for the losses generation, a fluid part respon-
sible for the cooling effects and thermal part responsible for the heat trans-
fer. Simulation of such problems, taking into account both complex physics
and complex 3D structures found in the real-world apparatus is still a chal-
lenge, especially with respect to the requirements mentioned at the beginning;:
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accuracy-robustness-speed. A common practice to avoid a complex analysis of
the cooling effects by a fluid-dynamics simulation is to introduce the Heat-
Transfer Coefficients (HTC) obtained either by simple analytical formulae,
(see for example Boehme [8]) or based on experimental observations. For this
type of analysis the link between the electromagnetic solver and heat-transfer
solver is throughout the losses calculated on the electromagnetic side and
passed further as external loads to the heat-transfer module.

4.1 Workflow

The Workflow used for the coupled simulation of electro-magnetic / thermal
problems is shown in Figure 8. Usually the very first step in thermal simula-

CAD geometry  Pre-processing BEM solvers

Meshing of T - T\
eshing ofthe N\ pre run to calculate i\  Calculate e ercat'l-:aé:!nhu‘uur
excitation I} eddy-cuments & ) =P ok |
curent/field [ eddy losses J
i L

- —~r
\ Import the CAD
! geometry

1\ Interfaces only,
/ BC, material data

using eddy-lossesas [
extemnal load

Fig. 8. EM-TH Workflow

tion the industrial products like power transformer is import of the geometry
from CAD tool, followed by meshing and setting appropriate boundary con-
ditions (BC) and material data. It has to be stressed again that thanks to the
excellent features of BEM, we can solve such complex diffusion problem by
meshing only the interfaces between different media, i.e. avoiding completely
any volume mesh® The solution phase consist of three major steps: calcula-
tion of the excitation current distribution, calculation of the eddy-currents /
losses distribution and finally calculation of the temperature distribution. Let
us give a brief outline on the eddy-current formulation, as one of the probably
most complicated problems in the computational electromagnetics. More info
on the formulations of excitation current as well as thermal calculation can
be found in Andjelic [4].

4.2 Eddy-current Analysis

There are a number of possible formulation that can be used for BEM-based
analysis of eddy-current problems. A useful overview of the available eddy-
current formulations can be found in Kost [16]. Here we follow the H — ¢
formulation, whereby for the treatment of the skin-effect problems an modified
version of this formulation is used, Andjelic [2]. The H —¢ formulation is based

8 This is valid so long we are working with linear problems. In the case when non-
linear problem has to be treated, than when using BEM it is necessary to apply
the volume mesh, but only for the parts having non-linear material behavior!
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on the indirect Ansatz, leading thus to the minimal number of 4 degrees of
freedom (DoF) per node®. This nice feature makes this formulation suitable
for the eddy-current analysis of complex, real-world problems. The H — ¢
formulation need to be used with a care in cases where the problem is multi-
valued, i.e. when the model belongs to the class multi-connected problems,
Tozoni [19]. The following integral representation is used!°:

f ) x (i) x VS Y ar(y)-

4
4wf0() ) x VdI(y) (10)
= fn(:c) X Hg(x)
%am(w)+4£r;fam(y)'n(m) v(L)dI(y)
= $n() (j(y) x VE) ar(y) (1)
r
= —n(z) - Ho(z).

This boundary integral equation system can be written in operator form:

A1 B1 j o —2n X HQ
|:BQ A2:| ((Tm B —2n.HO : (12)
For more details on a numerical side of this approach the reader is referred
to Schmidlin [18]. Solution of the equation system (12) gives the virtual mag-

netic charges ¢™ and virtual current density j. Then, the magnetic field in
conductive materials can be expressed as:

4i 74 V x [i(y)K (z,y)] dI (y); veQtyent (13)
T Jr
and

1

H (o) = Ho(0) - 1 § on0)VaGlap)il ) 2@ ye@ (14)
r

in the non-conductive materials. H is the primary magnetic field produced

by the exciting current Jo and K = e~ (+0kr /p G =1/

Fast BEM for Eddy-current Analysis

Although the above formulation is the minimal-order formulation for 3D eddy-
current analysis, it still reaches very fast the limits (both in memory and CPU)

9 With H —¢ formulation it is possible to work even with only 3 DoF /node, whereby
the eddy-currents on the surfaces are described in a surface coordinate system
instead of Cartesian, Yuan [21].

19 For complete derivation of the above formulations, please look in Kost [16],
Tozoni [19], Andjelic [2]
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when trying to apply it to the simulation of the complex real-world problems.
As said at the very beginning, the new emerging techniques like MBIT or ACA
have enabled the efficient usage of this (and other BEM-based formulations)
by removing most of the known bottlenecks (huge memory, big CPU, bad ma-
trix conditioning). MBIT has enabled the efficient matrix generation, together
with low-memory matrix compression. For a pity, when using MBIT an extra
preconditioner is necessary in the case of bad conditioned matrices (for exam-
ple Schur-complement). ACA from other side covers all three major critical
points. Beside fast matrix generation, excellent compression, ACA provides
also inherently the matrix preconditioning, Bebendorf [6], Bebendorf [5]. As
illustration, Figure 9 shows a comparison of MBIT and ACA versus dense
matrix solution.

450

400 3
g 350 @ Dense matrix
§ 300 @ Fast Multipoles Near-
E Field matrix
'g' 250 DACA matnx
-
g 200 PF
< O Schur Complement
2 150 Based Prec
g BACAILU
S 100 A | preconditioner
= B it i AR
04 = |

2M2 3608 5192
Matrix Size (DOFs)

Fig. 9. Memory requirements for various matrix compression and preconditioning
methods

Example 2: Thermal Design of Power Transformers

The procedure described above has been used for the analysis of a number
of power transformer problems, both single- and three-phase units, Figure 10
(left). Figure 10 (right) shows the distribution of the calculated excitation
field over the transformer tank wallfootnote, together with the three-phase
bus-bars structure. It has to be noted that typical transformers structures (for
example tank or turrets) usually consist of one or more components made of
different materials like magnetic or non-magnetic steel, copper or aluminum.
The numerical procedure that are used have to be careful selected in order to
properly resolve the penetration of electro-magnetic field into each of these
materials, depending on their magnetic permeability, electrical conductivity
and applied frequency. Calculation of eddy currents and losses is performed
using the above described numerical procedure. Figure 11 shows the distrib-
ution of the calculated eddy-currents.
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Fig. 10. 985 MVA Power Transformers, ABB (left). Excitation field distribution in
the three-phase transformer bus-bars (right)

Fig. 11. Eddy current distribution (complex magnitude)- detailed view to the inner
shielding details

Validation

As mentioned before, an important aspect of the practical usage of the sim-
ulation tools is its validation, i.e. its comparison with the measured data. In
the following example we present as illustration the comparison between sim-
ulated and measured temperature for an 400 MVA single-phase transformer
unit.!! More on BEM-based approach for temperature analysis can be found
in Andjelic [4]. The temperature calculation is obtained using previously cal-
culated eddy losses as the external load for thermal run. The impact of the
cooling effects is taken into account by the appropriate choice of the heat trans-
fer coefficients. The simulation output has been validated by comparison with
thermography recording done during the transformer operation. Figure 12
shows the comparison between the simulation results and the measured re-

1 The parts of the tank exposed to the thermal overheating are often made of the
non-magnetic steel. This allows usage of the linear Ansatz for eddy-current class
of problems.
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Raesiy semveers of POLOPT

Maximal calculated temperature on the tank Maximal measured temperature on the tank
wall is T8 +C. wall is 70.6 ~C.

Fig. 12. Validation

sults obtained by the thermography. It can be seen that the simulation results
have good agreement with the measured results. The difference between the
measured and calculated results (10% in this case) could be probably ex-
plained by the inaccurate estimation of the heat transfer coefficients used in
the simulation.

5 Some Concluding Remarks

In this paper we have tried to illustrate some BEM-based approaches for the
simulation of different problems appearing in engineering design praxis. The
excellent features of BEM for both single and multi-physics tasks are high-
lighted, together with some emerging numerical techniques like MBIT and
ACA, recognized as the major drivers leading to the real breakthrough in
BEM usage for practical design tasks.

But, beside these and many other good features of BEM, and staying at the
level of static or quasi-static simulation tasks, there are still a number of po-
tential improvements that could be made to achieve the “best in the class”
tool desired for the advanced simulations in the industrial design (strong cou-
pling formulations, non-linearity treatment, contact problems, preconditioning
etc.).

In spite of these and other open issues, the authors general opinion is that
the BEM already now offers an excellent platform for successful simulation of
3D real-world industrial problems. Especially when speaking about some of
the major requirements appearing in the Simulation-Based Design nowadays,
like:

assembly instead of component simulation,

simulation for the daily design process,

user-friendly simulation, but still preserving the full geometrical and phys-
ical complexity,
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BEM-based numerical technologies seems to fulfill the majority of the require-
ments needed today for efficient design of the industrial products.
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Summary. The main goal of this paper is to present the application of a decentral-
ization optimization principle from Game Theory to the solution of direct and inverse
problems in Fluid Dynamics. It is shown in particular that multicriteria optimization
methods “a la Nash” combine ideally with domain decomposition methods, with or
without overlapping in order to solve complex problems. The resulting methodology
is flexible and in the case of design problems has shown to perform well when using
adjoint based techniques or evolutionary algorithms for the optimization.

The above methodology is applied to the simulation and shape design optimiza-
tion for flows in nozzles and around aerodynamical shapes.The results of various
numerical experiments show the efficiency of the method presented here.

1 Introduction

In this paper we introduce a new methodology to solve inverse problems in
Fluid Dynamics using Genetic Algorithms and Game Theory. This method-
ology amounts to finding (suitable) Nash points for “local inverse problems”.
These Nash points are approximated by Genetic Algorithms (GAs) suitably
constructed. This is an example of a completely general method, presented in
[7] and [4]. GAs are different from traditional optimization tools and based on
digital imitation of biological evolution. Game Theory replaces here a global
optimization problem by a non-cooperative game based on Nash equilibrium
with several players solving local constrained sub-optimization tasks. The
main idea developed here is to consider two Nash applications of Game The-
ory under conflict introduced in a flow analysis solver (1) and a GAs optimizer
(2) as follows:
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(1) a flow analysis solver modeled by the potential equations uses over-
lapping domain decomposition methods (DDM). A variant of the classical
DDM Schwarz method is considered with optimal control/GAs techniques. It
uses the distance of local solutions on the overlapping regions as global fit-
ness function described in a previous paper with GAs [11]. Then a Nash/GAs
game whose decentralized players are in charge of the matching of local solu-
tions as multi fitness functions is associated to the global problem. During the
evolution process the search space of each genetic point at the interfaces of
overlapping domain is implemented on adapted interval. This new approach
is shown to request less information for convergence than the global one.

(2) the above DDM flow solver is then used to feed a Nash/GAs optimizer
for the surface pressure reconstruction of nozzle shapes parameterized with
local Bézier’s splines. During this Nash iteration, the information exchange
between DDM flow solver is nested to the shape-GAs optimizer.

Numerical experiments presented on inverse problems of a nozzle with
Laplace’s solver illustrate both the efficiency and robustness of decentralized
optimization strategies. The promising inherent parallel properties of Nash
games implemented with GAs on distributed computers and their possible
further extensions to non-linear flows are also discussed.

2 Nash and GAs

2.1 Generalities

Many multi objective optimization problems are still not solved perfectly and
some are found to be difficult to solve using traditional weighted objective
techniques [17, 6]. GAs have been shown to be both global and robust over
a broad spectrum of problems. Shaffer was the first to propose a genetic al-
gorithm approach for multi objectives through his Vector Evaluated Genetic
Algorithms (VEGA [15]), but it was biased towards the extreme of each ob-
jective. Goldberg proposed a solution to this particular problem with both
non dominance Pareto-ranking and sharing, in order to distribute the solu-
tions over the entire Pareto front [5]. This cooperative approach was further
developed in [16], and lead to many applications [14]. All of these approaches
are based on Pareto ranking and use either sharing or mating restrictions to
ensure diversity; a good overview can be found in [3]. Another non coopera-
tive approach with the notion of player has been introduced by J. Nash [10]
in the early 50’ for multi objective optimization problems originating from
Game Theory and Economics. The following section is devoted to an original
non cooperative multi objective algorithm, which is based on Nash equilibria.

2.2 Definition of a Nash Equilibrium

For an optimization problem with G objectives, a Nash strategy consists in
having G players, each optimizing his own criterion. However, each player has
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to optimize his criterion given that all the other criteria are fixed by the rest
of the players. When no player can further improve his criterion, it means that
the system has reached a state of equilibrium called Nash Equilibrium. Let E
be the search space for the first criterion and F' the search space for the second
criterion. A strategy pair (Z,7) € E X F is said to be a Nash equilibrium iff:

zel
=) — inf
fF(xay) ;IelFfF(‘ray)
It may also be defined by:
u = (uy,...,uq) is a Nash equilibrium iff: Vi, Vv,

Ji(U, oy Uim1, Wiy Uit 1, - ug) < Ji(Ut, oy Uim1, Vi, Uit - UG)

It may be difficult to exhibit such an equilibrium in particular for non
differentiable problems.

2.3 Description of a Nash/GAs

The following stage consists in merging GAs and Nash strategy in order to
make the genetic algorithm build the Nash Equilibrium for a complete de-
scription (see [13, 18]).

Let s = XY be the string representing the potential solution for a dual
objective optimization, where X corresponds to the first criterion and Y to
the second one. The first idea is to assign the optimization task of X to a
player called Player 1 and the optimization task of Y to Player 2. Thus,
as advocated by Nash theory, Player 1 optimizes s with respect to the first
criterion by modifying X, while Y is fixed by Player 2. Symmetrically, Player
2 optimizes s with respect to the second criterion by modifying Y while X is
fixed by Player 1 (see [13] for details).

The next step consists in creating two different populations, one for each
player. Player 1’s optimization task is performed by population 1 whereas
Player 2’s optimization task is performed by population 2.

Let Xx_1 be the best value found by Player 1 at generation k — 1, and
Yi_1 the best value found by Player 2 at generation k — 1. At generation
k, Player 1 optimizes X while using Y;_1 in order to evaluate s (in this
case, s = X;Yji_1). At the same time, Player 2 optimizes Y) while using
Xp—1 (s = Xp_1Y%). After the optimization process, Player 1 sends the best
value X to Player 2 who will use it at generation k + 1. Similarly, Player
2 sends the best value Y; to Player I who will use it at generation k + 1.
Nash equilibrium is reached when neither Player 1 nor Player 2 can further
improve their criteria.

This setting may seem to be similar to that of Island Models in Parallel
Genetic Algorithms (PGA [9]). However, there is a fundamental difference
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Fig. 1. Description of a nozzle with two subdomains

which lays in the notion of equilibrium for Nash approach. Nash equilibria do
not correspond only to robust convergence, but have also very good stability
properties compared to cooperative strategies. The mechanisms of the Nash-
GAs described here are directly used in the following sections.

3 An Implementation of Nash/GAs Game for the DDM
Flow Problem

3.1 Description of the DDM Flow Problem

The DDM optimization problem considered here concerns an incompressible
potential flow in a nozzle modeled by the Laplace equation with Dirichlet
boundary conditions at the entrance and exit and homogeneous Neumann
conditions on the walls. As shown in Fig. 1, the computational domain {2
is decomposed into two subdomains {27 and (25 with overlapping {215 whose
interfaces are denoted by 1 and 7. We shall prescribe potential values, ¢,
on v; and g2 on 7o, as extra Dirichlet boundary conditions in order to ob-
tain potential solutions @ in each subdomain. Using domain decomposition
techniques, the problem of the flow can be reduced to minimize the following
functional [2]:

TF(91,02) = 5 | #1(51) ~ Ba(gs) IP (1)

where @1 and P, are the solutions in the overlapping subdomain (219, || - || de-
notes an appropriate norm, whose choice will be made precise in the examples
which follow.

For the minimization problem (1), we have presented a variant of the
classical DDM Schwarz method with optimal control/GAs techniques [11] and
have made a further extension with genetic treatment at the interface of the
subdomains (for details, see [12]). In the following sections, an implementation
of Nash/GAs with decentralized players will be addressed.

3.2 Decentralized Multi-Fitness Functions

As mentioned above, in the previous work of references [11, 12], the global fit-
ness function used in GAs is the distance of local solutions on the overlapping
domains (see (1)), which could be
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1

TP =5 [ 1#1(m) — o) P )

In this paper, we use boundary integrals instead of the domain integral and
we choose for (2) the criteria introduced in (3). The minimization problem
(1) can be reduced to minimize the following function based on boundary
integral:

1

TFB(192) =5 | 1(00) - Balge) P+ 5 [ 181(00) ~ Balge) Pz, (3)

Being associated to the global fitness function JFB(g1,¢g2), the decentralized
multi fitness functions JFBi(g1,g2) and JFBs(g1,92) are defined with the
following two minimizations:

. . 1
1;111C JFB1(g1,92) with JFBi(g1,92) = 5/ D1(g1) — D2(g2)|*d1,
71

. . 1
inf JFBa(gr.g2) with JFBalgy,2) = 5 [ [81(01) = @algn) P, ()
2 Y2

The inf of the functionals (2) or (3) is zero. Therefore if in searching for a Nash
equilibrium (4) we find one such that inf, = 0 and inf,, = 0 then it is the
solution of inf (3). There could be other Nash points which would not solve
the problem if inf,, > 0 for instance. The global DDM solution can be found
through searching a Nash equilibrium between the above two minimizations
based on the treatments described in the next sections.

3.3 An Implementation of Nash/GAs Game

Following the description of section 2.3, we can simulate the DDM flow op-
timization problem as a Nash game with two decentralized players, Flow-
GA1 and Flow-GA2 in charge of objective functions JFBi(g1,92) and
JF By (g1, g2), respectively. Note that each player optimizes the corresponding
objective function with respect to non-underlined variables. After discretiza-
tion of the problem, we have g1 =g1; and g2 =g2;, ¢ = 1,ny (ny is mesh size
in y direction). Following the genetic treatment at the interface of reference
[12], for each interface, one point is binary encoded (for instance, g11 for vq
and go; for 3). Other values of g1; and go; (i > 2) are corrected by numerical
values (for details, see [12]). The whole structure of the implementation based
on the information exchange between players is described as follows:

Step 0: (Initialization) Given initial interval (gmin,gmaz) as search space for two
genetic points, gi11 and g21, and then start with two set of randomly created
genetic points to form two initial populations for each players, Flow-GA1 and
Flow-GA2.

Step 1: Flow-GA1 and Flow-GA2 run separately until the iteration number equals
the exchange frequency number.
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Step 2: Exchange current the fittest flow information between Flow-GA1 and Flow-
GA2.
Step 3: Repeat the Step 1 to Step 2 until no player can further improve his fitness.

It should be noted that Flow-GA1 operates for the left part and Flow-GA2
for the right part of the nozzle. In fact, we have prescribed §° = %(gmw —Gmin)
in the initialization step. In this paper, Flow-GA1 updates go from the fittest
individual of Flow-GA2. Besides, the search space of g1, is adapted with:

(921 — 0", go1 +0")

where g27 is the first component of vector go updated by other player, Flow-
G A2, through Nash-exchange and 6" = fad" !, where fa < 1. In other words,
0™ is adapted and gradually approached to a small value with the Nash gener-
ation, which can ensure accuracy similar to a real value encoding. Numerical
experiments have shown that this treatment is helpful for the present method
to have the Nash equilibrium. In the meantime Flow-GA2 player is doing the
same as Flow-GA1 player.

The significant extent of parallelism properties gained from the above
method has further improvement compared with previous work of reference
[11] or other flow solvers using Domain Decomposition techniques. This DDM
flow solver will be used to feed a Nash/GAs shape optimizer described in the
following section.

4 Shape Optimization Problem Using Nash/GAs
with DDM

The DDM shape optimization problem considered here involves the inverse
problem of a nozzle using a reconstruction technique and domain decompo-
sition method using Nash/GAs. For the inverse problem, the global shape
optimization is to find a shape (denoted, y = s(z), = € [A, B], see Fig. 1) of
a nozzle which realizes a prescribed pressure distribution on its boundary for
a given flow condition. This problem has the following formulation:

1

iI;f JS(s) with JS(s) = 3 /[AB] Ips — pi|*ds (5)

where p; is a given target pressure and ps the actual flow pressure on the shape
s. Let s1(x),z € [A, D] and sq(x), z € [C, B] be the split shapes, then if s(z) =
s1(x) | s2(x), we consider the two following local optimization problems:

1
inf J51(81782) with JSl(Sl,Sz) = */ ‘psl _pt|2d51
51 T o 2 [AD]

. . 1
inf JSs(s1,s2) with JSs(s1,s92) = 5/ [psy — Pe|*ds2 (6)
o2 [CB]
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with the constraint that s; = s, on interval C, D. Then inf JS; = 0 on s
and inf.JJSs = 0 on sz is the solution of (6) considered in the sequel. The
global shape optimization solution can be found through searching a Nash
equilibrium between the above two minimizations. The DDM flow problem
described in the section 3 will provide information to the shape optimization
problem using Nash strategy.

4.1 Parameterization of the Shape of the Nozzle

Using GAs, the candidate shapes of the inverse problem mentioned above are
represented by a Bézier curve of order n, which reads [1]:

n n
2(t) =Y ' (1=0)"" 2y, y(t) = ct'(1-1)""y
i=0 i=0

where ci = Z,(n"ill), and (x;,y;) are control points of the curve, t is the para-
meter whose values vary between [0,1]. To limit the size of the search space,
we vary the control points only in the y direction with fixed x; values. JS(s)
is used as fitness function and real coding is used for y;, which forms a string
denoted {yoy1Yy2---Yn—1Yn}- One site uniform crossover and non-uniform mu-
tation are used in the present work (for details, see the work of Michalewicz
[8]). The treatment of continuity between two split shapes mentioned above
will be described in the next section.

4.2 Solution Method and Its Implementation

Following the description of section 2.3, we can now play a practical game
of this DDM-shape optimization problem with two players, Shape-GA1 and
Shape-GA2 in charge of objective functions JS(s1,s2) and JSa(s1,s2), re-
spectively. With DDM, Shape-GA1 has a follower Flow-GA1 with objective
function JF (g1, g2) and Shape-GAZ2 has another follower Flow-GA2 with ob-
jective function JF5(g1,g2). Note that each player or follower optimizes the
corresponding objective function with respect to non-underlined variables.
The whole structure of the implementation based on the information exchange
between players is described as follows:

Step 0: (Initialization) Start with a randomly created shape s(z),z € [A, B] and
split it into two curves s1 and sz as starting curves for Shape-GA1 and Shape-
GA2

Step 1: Shape-GA1 and Shape-GA2 run separately until the iteration number
equals the exchange frequency number.

Step 2: Exchange current the fittest shape information between Shape-GA1 and
Shape-GA2.

Step 3: Repeat the Step 1 to Step 2 until no player can further improve his fitness.
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It is noted that Shape-GA1 operates for the left part and Shape-GA2 for
the right part of the nozzle. In this paper, Shape-GA 1 receives the y coordinate
value and slope of the point D from the fittest curve sp of Shape-GAZ2. This
value will be used for the end control point of the Bézier curve of s; in Shape-
GA1 for the next step. This treatment ensures continuity and is expected to
have smoothness at the overlapping segment CD. Shape-GA2 does the same
as Shape-GA1 meanwhile.

The calculation of each shape fitness requires to solve the flow equations
by CFD solvers over the whole domain. Combining DDM with the local geo-
metrical optimization, the flow field can be solved separately by two followers
Flow-GA1 and Flow-GA2 in each subdomain. The flow-GAs returns the cur-
rent fittest flow solution to Shape-GAs for computing fitness of each shape and
the information exchange between two followers happens during the exchange
between the shape players. We are satisfied when each local problem gives
“zero” (very small) for the local criteria.

The problem (6) with Shape-GA 1 and Shape-GAZ2is a Nash problem solved
with a floating point coded GA, whereas the problem (4) with Flow-GA1 and
Flow-GAZ2 is solved with a binary coded Nash GA. Problems (4) and (6) are
coupled since a precise solution of the DDM flow solver via (4) is necessary
to evaluate candidate solutions of optimization problem via (6).

5 Results and Analysis

With the method presented above, we have tested both the DDM flow problem
and the nozzle reconstruction problem, respectively. Exchange frequency for
Nash/GAs is 1. The potential values are predicted by a finite element Laplace’s
solver based on a direct Choleski method. The probability of crossover Pc =
0.85 and the probability of mutation Pm = 0.09 are not carefully selected
but are fixed for Flow-GAs. The parameters used in Shape-GAs are 0.6 for
crossover rate and 0.108 for mutation rate.

We first present the preliminary results of the DDM flow problem with the
Nash/GAs game described in the the section 3. The convergence histories of
the fittest individual are shown in Fig. 2. Following the trace of the domain
integral of the current fittest values of JF(¢1, g2), we find that the value of the
domain integral JF has been reduced from 1.2E-2 to 1.6E-7, which confirms
that the present Nash/GAs method works well for the test case.

The numerical results of the method described in the section 4 tested for
a nozzle reconstruction problem are presented in Figs. 3-5. As the pressure
distribution C'p matches the target, the corresponding nozzle shape is recon-
structed successfully (see Fig. 5).
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Fig. 2. Convergence histories: (a) Flow-GA1l and (b) Flow-GA2
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Fig. 3. Successive Cp distributions: (a) left part and (b) right part

6 Conclusion and Possible Extensions

From the experiments described in this paper, it is clear that GAs and DDM
may provide robust tools to solve complex distributed optimization problems.
It is shown that one can decompose a “global” cost function into a sum of
“local” cost functions and under circumstances it is sufficient to look for Nash
equilibrium points (or special Nash points). The multi objective techniques
with decentralized players discussed here demonstrate convincingly that com-
bining ideas from Economics or Game Theory with GAs may lead to power-
ful distributed optimization methods for Engineering problems. A significant
saving in the above process in terms of elapsed time in a distributed parallel
networked environment is anticipated by replacing expensive global commu-
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Fig. 5. Successive shapes: (a) left part and (b) right part

nication (standard strong collective optimality) by local communication (non
standard weaker individual optimality).

The preliminary results presented above should be checked on many sub-
domains in dimension 3 and extended to non linear flow situations. Very
many other problems can be considered by related methods. Some of them
are indicated in the CRAS note by the authors [7] and several papers are in
preparation.
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Summary. Thisis a further development of [9] regarding multilevel preconditioning
for symmetric interior penalty discontinuous Galerkin finite element approximations
of second order elliptic problems. We assume that the mesh on the finest level is a
results of a geometrically refined fixed coarse mesh. The preconditioner is a multilevel
method that uses a sequence of finite element spaces of either continuous or piece-
wise constant functions. The spaces are nested, but due to the penalty term in
the DG method the corresponding forms are not inherited. For the continuous finite
element spaces we show that the variable V-cycle provides an optimal preconditioner
for the DG system. The piece-wise constant functions do not have approximation
property so in order to control the energy growth of the inter-level transfer operator
we apply W—cycle MG. Finally, we present a number of numerical experiments that
support the theoretical findings.

1 Introduction

Consider the following model second order elliptic problem on a bounded
domain with a polygonal boundary 2 C R%, d = 2,3:

=V - (a(z)Vu) = f(z) in 2, wu(z)=g on df. (1)

Here a is a uniformly positive in §2 and piece-wise W1 (£2)-function that may
have jumps along some interfaces. The theoretical results can be easily ex-
tended to a coefficient matrix a and more general boundary conditions.

Our goal is to study iterative methods for a symmetric interior penalty
discontinuous Galerkin finite element approximations of (1) over a partition
T of {2 into finite elements denoted by x. We assume that the partition is
quasi uniform and regular. For a finite element £ we denote by hx its size
and h = maxxe7 hxc. Further, we use the following notations concerning 7 :
E° is the set of all interior edges/faces, £ is the set of the edges/faces on
the boundary 92 and £ = £° U £°. In fact, T, &, etc are sets depending on
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the mesh-size h. However, in order to avoid proliferation of indices and since
we are dealing exclusively with algebraic problems we shall not explicitly
denote this dependence on the mesh-size. We also use a hierarchy of meshes
Ty C --+- C Ty which are obtained by geometric refinement of a coarse mesh
Ty. Thus, 7 = 7; and 7}, is the mesh generated after k — 1 levels of refinement
of 7;. When the index k, showing the dependence on the refinement level, is
suppressed this means that the quantities are defined on the finest level.
We introduce the spaces

H¥(T)={veL*):v|x € H (k) Yk €T}, for s >0 (2)
and for r > 0 integer we define the finite element space
V:=V(T):={vel*N):v|xcP(x), ccT}, (3)

where P, is the set of polynomials of total degree at most r restricted to «.
On V we define the bilinear forms

(aVu, Vo) = Z / aVu, Vv dz, (p,q)e = Z pq ds.
KeT 7K ece’e
On e = K1 N Ko € £ we define the jump of a scalar function v € V by
V], i, + vlic,nk,, € =K1 NKa, ie ec€ &Y
[v]. = { v|eng, e=kNON, ie.ec &l
and the average value of the traces of aVuv for v € V:

H{aVul, + aVol,}, e=K1NKy, ie. e€ &0,

{aVulile = {

aVvli, e=KkNoN, ie. ce &L,

Here ni is the external unit vector normal to the boundary dx of k € 7.
Next, we define the piecewise constant function hg on £ as

hg:hg(x):|e|ﬁ, forzee, ec&,d=2,3. (4)
And finally, we introduce the following mesh-dependent norm on V:
2 _
0" = (aVv, Vo)1 + (hg're o], [o]), - ()

The stabilization factor ke is weighted by the coefficient a, namely, kg =
k{{a}}, where {{a}} is the average value of a from both sides of e € £. This
choice of the penalty gives rise to a DG bilinear form (7) that is equivalent to
the norm (5) with constants independent of the jumps of a.

We consider the following symmetric interior penalty discontinuous Galer-
kin (SIPG) finite element approximation of (1) (see, e.g. [1, 2]):

find w, €V such that A(up,v) = L(v) Yv €V, (6)
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where V is the finite element space and A(-,-), £(:) are bilinear and linear
forms on V defined by

A(up,v) = (aVup, Vo)r —({aVunl, [vl)e —([un], {aVol})e
+ <h§1/fg [ur] s [[v}]>5

and
L(v) = /Q fodx + /Em(hglngv —aVv-n)gds. (8)

It is known (see, e.g. [2]) that SIPG (6) — (8) is stable for sufficiently large
k > 0 and has optimal convergence in H'-like norm (5). This is just one
example of a large number of DG FEM approximations of second order elliptic
problems that have been introduced and studied in the last several years (see,
e.g. [2,9]).

The aim of this paper is to introduce and study multilevel iterative meth-
ods for the corresponding algebraic problems. Note that the condition number
of the DG FE system grows like O(h~2) on a quasi uniform mesh with mesh-
size h. Therefore construction of optimal solution methods, i.e. with arithmetic
work proportional to the numbers of unknowns, that is robust with respect
to large variations of the coefficient a is an important problem from both
theoretical and practical points of view.

The work of Gopalakrishnan and Kanschat [10], the first one we are aware
of, studied the variable V-cycle multigrid operator as a preconditioner of the
symmetric DG system. Under certain weak regularity assumptions on geomet-
rically nested meshes it was shown in [10] that the condition number of the
preconditioned system is O(1), i.e. bounded independently of h. The analysis
of the preconditioner is based on the abstract multigrid theory [7] for non-
inherited bilinear forms and the estimates for interior penalty finite element
method. Further, Brenner and Zhao [8] studied V-cycle, W-cycle, and F-cycle
algorithms for the symmetric DG FE schemes on rectangular meshes and
showed that they produce uniform preconditioners for sufficiently many pre-
and post smoothing steps. Their analysis is based on certain mesh dependent
norms and a relationship of the discontinuous FE spaces to some higher order
continuous finite element spaces. Our approach is slightly different, it could
be seen as the classical two-level method applied to the DG linear systems.
We explore two different possibilities for a choice of the second level, namely,
continuous piece-wise polynomial functions and piece-wise constant functions.

2 MG Preconditioner Using Spaces of Continuous
Functions

We assume that we have a sequence of nested globally quasi-uniform tri-
angulations 7, k = 1,...,J, of the domain {2 with 7; being the coarsest
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triangulation. According to the convention from the introduction the set of
all edges/faces of elements in 7}, is denoted by &, the sets of the interior and
boundary edges/faces are denoted by &P and 5,?, respectively, and hy is the
diameter of a typical element in 7; and hg, is defined by (4) on &. Then
H#(Ti) and Vj are the spaces (2) and (3), respectively, defined on 7;. The
corresponding continuous discrete spaces are defined as V¢ =V, N C(£2).

For functions u and v in H*(7g), s > %, we define the interior penalty
(SIPG) bilinear and linear forms according to (7) for the mesh 7j:

A (u,v) = (aVu, Vo)1, + <hgk1/£g [u] , [[v]]>£k
= (HaVul}, [v])e, — (HaVol}, [ul)e, ,

£k(’l}) = / fo+ <hgk1f$£gav>5h - <a’vv -1, g>$}j :
_Q k

With these definitions, the interior penalty discontinuous Galerkin method
for the elliptic problem (1) reads: find uj, € V; such that

Aj(up,v) = L;(v), YveV;. 9)

Let [||-|l, be the norm (5) defined on the mesh 7j. It is well known that
there exists kg such that for kK > kg the following norm equivalence on Vj
holds Ay (v,v) ~ |||v|||i, Yv € Vi, with constants in the norm equivalence

independent of hy, i.e. Ak(v,v)% is a norm on Vj.

Lemma 1. Consider the case of homogeneous boundary condition, g = 0, and
assume that the solution u of (1) belongs to H'*(£2) for some + < o < 1.
Let uy, € Vi, (or V§) be the solution of Ap(uk,v) = Li(v), Vv € Vi (VF). Then
the following error estimate holds

llw = wurll, < Chillulliia
with a constant C independent of hy.

Sketch of the proof. To prove this estimate one can use the Galerkin or-
thogonality, the boundedness of Ag(-,-) in the norm [[ull,, = ull? +
Y ket h%o‘|u|%_~_a7,C for u € H*®(7};) and the approximation properties of
the space V. Note that in contrast to the work [10] instead of using the quan-
tity Ak (-, ~)%, which in general is not a norm on H'*%(7;), we work directly
in the norm |||ul||,, ;-

Now we define the variable V-cycle MG preconditioner.

3 Variable V-Cycle Multigrid Preconditioner

In this Section we shall follow the general theory of multigrid methods as
presented by Bramble and Zhang in [7, Chapter II, Section 7]. We will use the
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following sequence of nested spaces: Myy1 = V, i.e. this is the space where
the SIPG method is defined; for k = 1,...,J we take M}, = V{ the continuous
finite element space. The corresponding bilinear forms Ag(-,-) are defined
above for k=1,...,J; for k=J + 1 we let Ay1(u,v) = A(u,v). Define the
operators Ay : My — My, Qp : L2(£2) — My, and Py : My — My by

(Agu,v) = Ag(u,v), Yve Mg, k=1,...,J+1,
(Qru,v) = (u,v), Yve Mg, k=1,...,J+1,
Ak (Pru,v) = Agy1(u,v), Yo e My, k=1,...,J,

where (-,-) denotes the inner product in L?({2). Note that because of the
penalty term the forms Ay (u,v) defined on the spaces Vi vary. Assume we
are given the smoothing operators Ry : My — M) that satisfy appropriate
smoothing property (see, [7, Chapter II, Section 7, p. 260]). One can show
that scaled Jacobi and Gauss-Seidel iterations satisfy this requirement.

Let By be the operator of the MG method based on the sequence of spaces
My C--- C My C My;1, with my, pre- and post-smoothing steps with the
smoother Ry. Note that to retain the symmetry of certain operators on odd
steps we apply Ry, while on even steps we apply R., where the transposition
is with respect to the (-, -)-inner product.

The following assumption will be used in the study of the MG method.

Assumption A.1: For any f € H=1P(£2) with % < p<1andg=0 the
problem (1) has a unique solution u € H**?(2) and |u||gi+r < Collfllzg-1+»
with a constant CJ,.

For this setting, we prove the following main result (see, e.g. [7]):

Theorem 1. Let the Assumption A.1 hold. Assume also that for some 1 <
Bo < (1 we have Bomy < mp_1 < Bymyg. Then there is a constant M inde-
pendent of k such that

My " Ar(v,v) < Ap(BrAgv,v) < mp Ae(v,0), Yo € My

. M x .
with n, = ;amk and « as in Lemma 1.
k

Sketch of the proof. The proof essentially checks the conditions (of “smoothing
and approximation”) from [7] under which this theorem is proved. The first
condition essentially requires that Ry is a smoother. It is well known that
Gauss-Seidel or scaled Jacobi satisfy this condition.

Now we outline the main steps in the proof of the second condition which
is: for some « € (0, 1] there is a constant C'p independent of k such that

v 2 *
AW — Pe_)ov)] < Cp (W) o, o) (10)

where )\ is the largest eigenvalue of the operator Ag. This is established in
several steps.
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First, we show that under the Assumption A.1 for all u € M, k =
2,...,J+1 wehave ||lu — Py_jul|, < Chy||Arul|—14,, where H||||J+1 =l ;-
Next, we show that

[Arull -2 < Clllulll,,  Vu e My (11)

and
llu— Picyull, < CH Al -1p < CHE)| Al 7 Agull”. (12)

Finally, using the estimates (12) and (11) and the fact that H—17(£2) is an
intermediate space between H~1(§2) and L?(§2) we obtain

| Ark(u = Piyu,u)| < ChE|| Aul 57| Awull” llulll,

L
JAwulle op o ARul? -
< oS 7 =0 (S5 ) A

which is exactly the required result with o = p/2.

Remark 1. This results is quite similar to the results of [10] and [8] in the
sense that it proves the convergence of the variable V-cycle MG and ensures
better convergence for smoother solutions. The difference is the choice of the
hierarchy of finite element spaces used on the consecutive levels and the proof
of the fundamental estimate (10). After closer inspection of the proof one can
see easily that one can take M; = Vg, for all £ > kg > 1. In fact, making
this choice with ko = 1 will lead to the result of [10] (with a slightly different
proof).

4 Multigrid W-Cycle for Piecewise-Constant Spaces

In this section we consider a method for the solution of the coarse problem,
when a two level method with coarse space, denoted here with M ;, of piece-
wise constant functions. We will also take a standard multilevel hierarchy of
this space, given by the subspaces My, of piecewise constant functions on grids
with size hi. Let us note that such two level algorithm is attractive, because
of its simplicity and low number of degrees of freedom. However, it is well
known that using the hierarchy given by M} and applying standard V-cycle
on M ; does not lead to an optimal algorithm.

In this section we briefly describe how a general v-fold cycle can be applied
to solve the coarse grid problem when piece-wise constant functions are used
to define this problem. Note that on general meshes the piecewise constant
functions do not provide approximation and one cannot apply the theory of
MG methods in a manner used in [5] for cell-centered schemes on regular
rectangular meshes. To introduce the v-fold MG cycle algorithm, we consider
the recursive definition of a general multilevel method as in [7]. Assuming that
we know the action of By_1 on My_1, for a given f € M}, we define the action
By f as follows.

Recursive definition of a multilevel algorithm:



Preconditioning of DG Methods 39

1. x = Ryg.
2. y=a+4 ZpBr1Qr-1(f — Agx).
3. Bpf =y+ Ri(9— Ary).

Now, for a fixed e € M}, we consider Ere = (I — BrAg)e. It is easy to derive
the following error equation:

Eke = (I - R};Ak)(l - ZkkalAkflpkfl)(I - RkAk)e.

In the case, when {Mk},‘gzl are the spaces of discontinuous piece-wise constant
functions we shall define Zj, using the techniques from [12, 3, 4], namely we
shall choose Zj to be a polynomial in (By_1Ak—_1). Indeed, in such case the
second term in the product form of the error equation is as follows.

Xy =1—-2ZyByp_1Ax1Py1 =1— (I —p,(Br-14k-1))Pr_1.

Usually, p,(t) is of degree less than or equal to v, p,(t) is non-negative for
t € [0,1], and p,(0) = 1. Taking p,(t) = (1 — )" gives the v-fold MG cycle.
For v = 1 this is the V-cycle and for v = 2, this is the W-cycle. Note also that,
for p,(t) = (1 —1t)”, we have Xy, = I — Py,_1 + E}_, Py_1. Hence, if the degree
of the polynomial is sufficiently large and Ey_; is a contraction on Mj_q,
then the corresponding v-fold cycle can be made as close as we please to a
two-level iteration. As it is well known, the two level iteration, is uniformly
convergent [9].

We would like to point out that an adaptive choice of the polynomials p,,
is possible, and we refer to [12, 3, 4] for strategies how to make such choices
and also for many theoretical results for these methods.

A crucial property of the coarser spaces, that determines the convergence
of such multilevel process, in general, is the stability of projections on coarser
spaces. A basic assumption in the analysis is the existence of constants ¢ > 1
and C (both independent of k£ and /) and such that

IQul® < C¢*|lvlla,, Vv €My, k>L (13)

Clearly, if ¢ = 1, then the resulting V-cycle algorithm has convergence rate
depending only logarithmically on the mesh size, without any regularity as-
sumptions on the underlying elliptic equation (see [6]). The v-fold cycle, how-
ever, works even in cases, when ¢ > 1, by increasing the polynomial degree v
when needed. Since the goal is to construct an optimal algorithm, the overall
computational complexity gives a restriction on v. Practical values are v = 2
or v = 3. In case v = 2 (W-cycle), which we have used in most of our nu-
merical experiments in the next section, a uniform convergence result can be
proved in a fashion similar to the case of variable V-cycle. In such analysis, an
essential ingredient are bounds on ¢ from (13) and such estimates for piece-
wise constant spaces on uniformly refined hexahedral, quadrilateral as well as
simplicial grids are given in [11, 9].
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5 Numerical Experiments

We present three test problems of elliptic equation with homogeneous Dirichlet
boundary conditions:

Test Problem 1: The equation —Au = 1 in the cube 2 = (0,1)?;

Test Problem 2: The equation —V - (aVu) = 1 in £2 = (0,1)3\ [0.5,1)3 where
the coefficient @ has jumps (a 3-D chess-board pattern) as follows: a = 1, in
(Il x Iy XIl)U(IQ x Iy XIl)U(Il x Iy XIQ)U(IQ x Iy XIQ) and a = €, in the
other parts of 2, where I = (0,0.5] and I, = (0.5, 1], and we vary the value
of € according to the data in the Tables;

Test Problem 3: The equation —Awu = 1 in the domain shown on Figure 1.

The second test problem is designed to check the robustness of the methods
with respect to jumps of the coefficient a. The mesh of test problem 3 has a
number of finite elements of high aspect ration and the aim was to see how
the iteration methods perform on such grids.

For all test examples we have used a coarse tetrahedral mesh which is uni-
formly refined to form a sequence of nested meshes. In SIPG we use linear and
quadratic finite elements. The value of the penalty term was experimentally
chosen to be k = 15 for linear, and x = 30 for quadratic finite elements (cf.

(5), (7))-

g
SN

DOV
\J 4‘%’,,,&
WY

Fig. 1. Coarse meshes for the second (left) and third (right) test problems.

We test the following multilevel preconditioners for the SIPG method:

1. the V-cycle preconditioner based on continuous elements with one pre-
and one post-smoothing Gauss-Seidel iteration.

2. W-cycle preconditioner based on piecewise constant coarse spaces using
one pre- and post-smoothing steps of symmetric Gauss-Seidel smoother.

3. variable V-cycle preconditioner based on continuous elements described
in Section 3 with one pre- and post-smoothing Gauss-Seidel iteration on
the finest level and double the pre- and post-smoothing iteration on each
consecutive coarser level.

The numerical results are summarised below. In each table we give the number
of iterations in the PCG algorithm and the corresponding average reduction
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factor for each test run. In addition we include the number of degrees of
freedom (DOF) in the DG space, V, and the DOF for the first coarse space
(defined on the finest mesh) of either continuous piecewise polynomial func-
tions or piecewise constants.

Table 1. Numerical results for SIPG with linear FE: V-cycle based on continuous
linear FE and W-cycle based on piece-wise constant functions with one pre- and one
post-smoothing Gauss-Seidel iteration.

Test Problem 1 Level 2 | Level 3 | Level 4 | Level 5 | Level 6 ‘
DOF SIPG 3072 24 576 196 608 |1 572 864 (12 582 912
preconditioner DOF 189 1241 9 009 68 705 536 769
continuous FE  |14/0.2556|14/0.2614|14/0.2572(14/0.2487| 13/0.2344
preconditioner DOF 768 6 144 49 152 | 393 216 | 3 145 728
piecewise constant |24/0.4493|29/0.5238|30/0.5374|30/0.5342| 29/0.5276

Table 2. Numerical results for SIPG with quadratic FE: V-cycle preconditioner
based on continuous FE and W-cycle preconditioner based on piecewise constant
functions each with one pre- and one post-smoothing Gauss-Seidel iteration.

Test Problem 1 Level 1 | Level 2 | Level 3 | Level 4 | Level 5
DOF SIPG 960 7 680 61 440 | 491 520 |3 932 160
preconditioner DOF 189 1241 9 009 68 705 | 536 769
continuous FE  |10/0.1414|11/0.1717(11/0.1747{11/0.1657|10/0.1514
preconditioner DOF 96 768 6 144 49 152 | 393 216
piecewise constant [22/0.4315(35/0.5810|42/0.6442|43/0.6509|43,/0.6496

In Tables 1 and 2 we present the computational results for test problem 1.
These results show that both preconditioners, the V-cycle, that uses contin-
uous finite elements, and the W-cycle, that uses piece-wise constant function
on all coarser levels are optimal with respect to the number of iterations. The
W-cycle preconditioner, based on piecewise constant functions, performs ac-
cording to the W-cycle theory. However, it needs two times more iterations
compared with the V-cycle, based on continuous functions. While the former
has a matrix of size about 6 times larger than size of the matrix of the latter
(for linear FE), one should have in mind that in the case of piece-wise constant
functions the corresponding matrix has only five nonzero entries per row, i.e.
it is about five times sparser than the matrix produced by continuous linear
elements. Unfortunately, we do not have a theory for the V-cycle.

It is known that the choice of the stabilization factor kg could affect the
properties of the method. To test sensitivity of the preconditioners with re-
spect to the jumps of the coefficient ¢ we considered two different choices,
ke = k{{a}}, as defined in the SIPG method, and kg = klla|p~ = 15,
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Table 3. V-cycle and variable V-cycle based on continuous coarse spaces for the
SIPG with linear elements and stabilization factor kg that does not depend on the
jumps of a.

Test Problem 2 Level 1 | Level 2 | Level 3 | Level 4
DOF of SIPG 1344 10 752 86 016 | 688 128
precond. DOF - continuous linear 117 665 4 401 31 841
e =1, V-cycle 15/0.2750(16/0.2946{15/0.2908|15/0.2838
e =0.1, V-cycle 17/0.3322(19/0.3645(19/0.3717|19/0.3675
e = 0.01, V-cycle 17/0.3219(19/0.3632|19/0.3746/19/0.3713
€ = 0.001, V-cycle 15/0.2929(17/0.3377|18/0.3527|18/0.3488
e = 1, variable V-cycle 15/0.2738(15/0.2900(15/0.2850{15/0.2759
€ = 0.1, variable V-cycle 17/0.3310{18/0.3593|19/0.3658|18/0.3566
€ = 0.01, variable V-cycle 17/0.3211{18/0.3568|19/0.3684|18/0.3582
€ = 0.001, variable V-cycle 15/0.2919(17/0.3333|18,/0.3457|17/0.3337

which obviously is independent of the jumps. As shown in Table 3 the vari-
able V-cycle preconditioner, covered by our theory, gives the same number of
iterations as the V-cycle. Both preconditioners are not sensitive to the choice
of kg. From Table 3 one can see that the preconditioners based on continuous
coarse spaces are robust in this case with respect to the jumps in a. However,
this is not the case for the preconditioners based on piece-wise constant coarse
spaces. We observe this in Table 4 where the performance of the W-cycle is
given. From these experiments we see that a proper weighting of the jumps is
essential for the performance of the W-cycle iteration based on piece-wise con-
stant functions. In Table 5 we present results for test problem 2 with properly

Table 4. W-cycle based on piece-wise constant coarse spaces for the SIPG with
linear elements and stabilization factor ke that does not depend on the jumps of a

Test Problem 2 Level 1 Level 2 Level 3 Level 4

DOF of SIPG 1344 10 752 86 016 688 128

precond. DOF - piecewise constant 336 2 688 21 504 172 032
e =1, W-cycle 22/0.4151| 27/0.4940 | 29/0.5224 | 29/0.5297
e = 0.1, W-cycle 38/0.6106| 72/0.7706 | 85/0.8027 | 91/0.8160
e = 0.01, W-cycle 48/0.6804(157,/0.8869(210,/0.9156|238,/0.9255

scaled stabilization parameter: kg = k {{a}}. We tested the following precon-
ditioners: V-cycle and variable V-cycle based on continuous coarse spaces and
W-cycle based on piece-wise constant coarse spaces. Once again one can see
that V-cycle and variable V-cycle based on continuous coarse spaces perform
almost identically. Note that the iteration counts are slightly larger than those
of the case kg = kl|a||p~ (cf. Table 3) but they are insensitive to large jumps.
In the case of piece-wise constant coarse spaces (W-cycle) the advantage of
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the weighted stabilization is evident — the numerical experiments show that

the number of PCG iterations is essentially independent of the jumps.

Table 5. Numerical results for Test Problem 2: SIPG with linear elements and
stabilization parameter ke = x {{a}}.

Test Problem 2 Level 1 | Level 2 | Level 3 | Level 4 | Level 5
DOF of SIPG 1 344 10 752 86 016 | 688 128 |5 505 024

precond. DOF - continuous 117 665 4 401 31 841 | 241 857
e =1, V-cycle 15/0.2750(16,/0.2946|15/0.2908|15,/0.2838(15/0.2766
e = 0.1, V-cycle 16/0.3161{20/0.3812{21/0.4105|22/0.4187(22/0.4196
e = 0.01, V-cycle 20/0.3800(24/0.4539|29/0.5228|31/0.5518|33/0.5687
e = 0.001, V-cycle 19/0.3782{24,/0.4603[30/0.5377(33/0.5674|36/0.5957
e= 107, V-cycle 18/0.3546(24,/0.4535(30/0.5312{32/0.5622(34/0.5753
e=10"°, V-cycle 18/0.3411{23/0.4488(28,/0.5100{30/0.5405(32/0.5622
e=10"5, V-cycle 17/0.3279(23/0.4416{26,/0.4911{29/0.5298(30/0.5375
e =1, var. V-cycle 15/0.2738(15/0.2900{15/0.2850{15/0.2759(14/0.2628

e = 0.1, var. V-cycle 16/0.3157|20/0.3782{21/0.4038|21/0.4107(21/0.4056
e = 0.01, var. V-cycle 20/0.3796/|24,/0.4508|29/0.5170(31/0.5448|32/0.5559
e = 0.001, var. V-cycle 19/0.3779(24/0.4574(30/0.5329(33/0.5612(35,/0.5886

precond. DOF - p.w. constant 336 2 688 21 504 | 172 032 |1 376 256
e =1, W-cycle 22/0.4151|27,/0.4940|29/0.5224|29/0.5297|29/0.5251

e = 0.1, W-cycle 23/0.4400(28/0.5057|29/0.5284(30/0.5357|30/0.5343

e = 0.01, W-cycle 22/0.4300(28/0.5012|30,/0.5321|30/0.5385|31/0.5420

e = 0.001, W-cycle 23/0.4410(28/0.5001|30/0.5332|30/0.5403|31/0.5438
e=10"%, W-cycle 22/0.4302|27,/0.4980|30/0.5333|30/0.5405(31/0.5442

€= 1077, W-cycle 22/0.4209|26,/0.4880|30,/0.5333|30/0.5405(31/0.5442
e=10"% W-cycle 21/0.4112|25/0.4730|30/0.5333|30/0.5405|31/0.5442

Table 6. Numerical results for Test Problem 3 for V-cycle and W-cycle for the
SIPG with linear elements.

Test Problem 3 Level 1 | Level 2 | Level 3 Level 4

precond. DOF of SIPG 24 032 | 192 256 |1 538 04812 304 384
precond. DOF of cont. FE 1445 9 693 70 633 538 513

V-cycle 18/0.3530{18/0.3559(18/0.3529| 19/0.3785
precond. DOF p.w. constants| 6 008 48 064 | 384 512 | 3 076 096
W-cycle 35/0.5907(40/0.6307|45/0.6578| 48/0.6788

Finally, in Table 6 we present the results iteration for V-cycle and W-cycle
preconditioners for test Problem 3. The mesh of this example has a number
of finite elements with high aspect ratio. The computations show that the
preconditioner based on piecewise constant functions is slightly more sensitive
with respect to the aspect ratio.
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1 Introduction

Time domain decomposition methods have a long history: already [10] made
the following visionary statement:

“For the last 20 years, one has tried to speed up numerical computa-
tion mainly by providing ever faster computers. Today, as it appears
that one is getting closer to the maximal speed of electronic com-
ponents, emphasis is put on allowing operations to be performed in
parallel. In the near future, much of numerical analysis will have to
be recast in a more “parallel” form.”

Nievergelt proposed a parallel algorithm based on a decomposition of the
time direction for the solution of ordinary differential equations. While his
idea targeted large scale parallelism, [9] proposed a little later a family of
naturally parallel Runge Kutta methods for small scale parallelism:

“It appears at first sight that the sequential nature of the numerical
methods do not permit a parallel computation on all of the processors
to be performed. We say that the front of computation is too narrow
to take advantage of more than one processor... Let us consider how
we might widen the computation front.”

Waveform relaxation methods, introduced in [6] for the large scale simulation
of VLSI design, are another fundamental way to introduce time parallelism
into the solution of evolution problems. For an up to date historical review
and further references, see [4].

The present research was motivated by the introduction of the parareal
algorithm in [7]. We show in this paper a general superlinear convergence
result for the parareal algorithm applied to a nonlinear system of ordinary
differential equations.
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2 Derivation of the Parareal Algorithm

The parareal algorithm is a time parallel algorithm for the solution of the
general nonlinear system of ordinary differential equations

u'(t) = f(u(t)), t€(0,T), u(0)=nu’ (1)

where f : RM — RM and u: R — RM,

To obtain a time parallel algorithm for (1), we decompose the time domain
2 =(0,T) into N time subdomains 2, = (T, Tp+1), n =0,1,... N —1, with
0=Ty<Th <...<Tny_1<Tyn =T, and AT}, := Ty,4+1 — T}, and consider
on each time subdomain the evolution problem

u; (t) = f(lln(t)), le (TnaTnJrl)v un(Tn) =U,, n=0,1,...,N — 1, (2)

"

where the initial values U,, need to be determined such that the solutions on
the time subdomains {2, coincide with the restriction of the solution of (1) to
(2,, i.e. the U,, need to satisfy the system of equations

UO :u07 Un:‘PAT",l(Unflm n = 17"'7N_17 (3)

where ¢ a7, (U) denotes the solution of (1) with initial condition U after
time AT,,. This time decomposition method is nothing else than a multiple
shooting method for (1), see [3]. Letting U = (UZ,... UL _|)T, the system
(3) can be written in the form

Uo —uO

F(U) = U, - ¢:ATo (Uo) _o, (4)

Un_1 —pary_,(Un_2)

where F : RMN — RM-N_ System (4) defines the unknown initial values U,
for each time subdomain, and needs to be solved, in general, by an iterative
method. For a direct method in the case where (1) is linear and the system
(4) can be formed explicitly, see [1].

Applying Newtons method to (4) leads after a short calculation to

k+1 _ -0
Uy, =u’,

(5)
UI:LJFl = LPATH—I(U’]ICL—I) + SOIATn,l(UiCL—l)(U’:Ltll - Ufb—1)a

where n = 1,..., N —1. Chartier and Philippe [3] showed that the method (5)
converges quadratically, once the approximations are close enough to the so-
lution. However in general, it is too expensive to compute the Jacobian terms
in () exactly. An interesting recent approximation is the parareal algorithm,
which uses two approximations with different accuracy: let F(T5,, T,—1, Up—1)
be an accurate approximation to the solution @ ar,_, (Up—1) on time subdo-
main 2,1, and let G(T,,,T,,—1, Up,—_1) be a less accurate approximation, for
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example on a coarser grid, or a lower order method, or even an approximation
using a simpler model than (1). Then, approximating the time subdomain
solves in (5) by war,_,(Uk_,) ~ F(T,,T,—1,Uk_,), and the Jacobian term
by

‘PIATn_l(Uﬁfl)(Uﬁtll - Uﬁfl) ~ G(TnaTnflvaill) - G(TnaTnflvUﬁfl)v
we obtain as approximation to (5)

U§+1 —u°

’ 6
U»]rcl—i_l = F(T’ru Tn—17 U]»rifl) + G(Tn; Tn—17 Uﬁt%) - G(T'ru Tn—17 Uﬁfl)a ( )
which is the parareal algorithm, see [7] for a linear model problem, and [2]

for the formulation (6). A natural initial guess is the coarse solution, i.e.
UY = G(T,,T,,-1,0°%_,).

3 Convergence Analysis

To simplify the exposition, we assume in this section that all the time subdo-
mains are of the same size, AT,, = AT := %, n=20,1,...,N — 1, and that
F is the exact solution, i.e. F(T,,,T,_1,UF_|) = par, ,(Uk_,). We also as-
sume that the difference between the approximate solution given by G and

the exact solution can be expanded for AT small,
F(T,, Tn-1,7) — G(T,, Ty—1,7) = cpy1(2) ATP T 4 cp o (2) ATP 2 4., (T)

which is possible if the right hand side function f in (1) is smooth enough, and
G is a Runge Kutta method for example. We finally assume that G satisfies
the Lipschitz condition

IG(t+ AT t,x) — G(t + AT t,y)|| < (1 + C2AT)[[x —y|. (8)

Theorem 1. Let F(T,,, T,,—1,U%_|) = par,_,(UE_)) be the exact solution
on time subdomain 2,_1, and let G(T,,, T,—1, Uk _|) be an approzimate so-
lution with local truncation error bounded by C3ATPTL, and satisfying (7),
where the c;, j =p+1,p+2,... are continuously differentiable, and assume
that G satisfies the Lipschitz condition (8). Then, at iteration k of the parareal
algorithm (6), we have the bound

p+1\k+1
|u(T;,) — UZH < %w

k
<G gD GAT T (=)

Jj=0

Cs (ClTn)k+1ng(Tn—Tk+1)ATp(k+1).
01 (B+1)!
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Proof. From the definition of the parareal algorithm (6), we obtain, using that
F is the exact solution and adding and subtracting G(7,,, T,,—1,u(T,,—1))

u(Tn) - Uﬁ+1 = F(TnyTn—la u(Tn—l)) - G(Tn’Tn—l’ u(Tn_l))
- (F(Tn7Tn—17 Uk ) - G(Tn’Tn_hUk ))

n—1 n—1

+ G(TnaTn—h u(Tn—l)) - G(TnaTn—laU:t]i)

Now using expansion (7) for the first two terms on the right hand side, and
(8) on the last one, we obtain on taking norms

[w(T,) = URF| < CLATPH [u(Ty—1) = Uy [+ (1+Co AT [u(T,—1) Uy i |
This motivates to study the recurrence relation
et =aen_y+Beyt e =7+ By, (9)

where o = C1ATPHL 3 =1+ CoAT and v = C3ATPHL since eF is then an
upper bound on ||u(7,,) —U¥||. Multiplying (9) by (" and summing over n, we
find that the generating function py(¢) := Y, -, ef(™ satisfies the recurrence

relation

(€)= aGpr(O) + B0 Q). €)= + Bomlc)

Solving for pg(¢), we obtain after induction

i Ck+1 1

PeQ) =10 T T poE

Replacing the factor 1 — ¢ in the denominator by 1 — 8¢ only increases the
coefficients in the power series of pi(¢). Using now the binomial series expan-

sion ) 1
t147) gies
T30z = 2 ( : )5 ¢’
(150 = j
we obtain for the n-th coefficient e* the bound
ko« nokgn—k—1( T
)]

which concludes the proof.

4 Numerical Experiments

We show now several numerical experiments, first for small systems of ordinary
differential equations, where the only potential for parallelization lies in the
time direction, and then also for a partial differential equation, namely the
viscous Burgers equation.
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4.1 Brusselator

The brusselator system of ordinary differential equations models a chain of
chemical reactions and is given by

i=A+2% — (B+1)x, § = Bz — z°y.

We chose for the parameters A = 1 and B = 3, and since B > A% + 1,
the system will form a limit cycle, see [5]. We start the simulation with the
initial conditions z(0) = 0, y(0) = 1, and compute an approximate solution
over the time interval ¢ € [0,T = 12] using the classical fourth order Runge
Kutta method with coarse time step AT = 312, and fine time step At = %,
which gives a solution with an accuracy of 5.62¢ — 6. In Figure 1, we show the
initial guess from the coarse solver, and the first five iterates of the parareal
algorithm in the phase plane, and also the difference between the parareal
approximation and the complete fine approximation as a function of time.
The larger dot in the phase plane, and the vertical line in the error plots
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Fig. 1. Parareal approximation of the solution of the Brusselator problem.

indicate how far one could have computed the fine solution sequentially in
the same computation time, neglecting the cost of the coarse solve. The fine
dashed line indicates the accuracy of the fine grid solution. Clearly there is
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a parallel speedup with this type of time parallelization: with 32 processors,
one could have computed the numerical approximation to the same accuracy
of 5.62e — 6 about eight times faster than with one processor.

4.2 Arenstorf Orbit

Arenstorf orbits are closed orbits of a light object (e.g. a satellite) moving
under the influence of gravity of two heavy objects (e.g. planets, moons). The
equations of motion for the example of two heavy objects are

T+a x—b . . Y Y

o
TEEA Ay = Dy D, "D,

where D;, j = 1,2 are function of x and y,
Dy = ((z+a)’ +y7)%, Dy = ((x = b)* +9°)2.

If the parameters are a = 0.012277471 and b = 1 —a, and the initial conditions
are chosen to be z(0) = 0.994, z = 0, y(0) = 0, y(0) = —2.00158510637908,
then the solution is a nice closed orbit with period T' = 17.06521656015796,
see [5]. There have been earlier attempts to compute planetary orbits in par-
allel, see [11], where a multiple shooting method was developed. We use again
the parareal algorithm to compute the Arenstorf orbit in parallel, with the
classical fourth order Runge Kutta method and coarse time step AT = %,
and fine time step At = ﬁ, such that the fine trajectory has an accuracy
of 9.98¢ — 6. We show in Figure 2 the initial guess and the first five iterations
of the parareal algorithm, as in the case of the brusselator problem. While
the initial guess is completely off, and simply spirals outward, the first itera-
tion already reveals the shape of the Arenstorf orbit, and the algorithm has
converged to the precision of the fine time step approximation after four iter-
ations. Neglecting the cost of the coarse grid solve, one could have computed
this trajectory with 250 processors about 62 times faster in parallel, than with
one processor sequentially. The fact that the initial guess is so off is due to
the tremendous sensitivity of the solution to the initial conditions, so it would
be better to use an adaptive method here. We are currently studying the use
of adaptivity in the context of the parareal algorithm.

4.3 Lorenz Equations

Weather prediction could be an important application of the parareal algo-
rithm, since predictions have to be made in real time. If a large scale parallel
computer is available, and the parallelization in space of the partial differ-
ential equation modeling the evolution of the weather is already saturated,
the only way to speed up the computation is to try to parallelize the time
direction. A very simple model for weather prediction is the model given by
the Lorenz equations,
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Fig. 2. Parareal approximation of the Arenstorf orbit.

r=—-ox+oy, y=-xz4+rr—y, Z=uzxy— Dbz

These equations were first studied by Lorenz [8], who discovered that in certain
cases approximations to their solution are very sensitive to small changes in
the initial data (he noticed this when he interrupted a computation and wrote
the current position of the solution down by hand to continue the next day,
but his notes included only the first four digits, and not the full precision). A
legend then says that looking at the solution of his equations, which looks on
the attractor like a butterfly, Lorenz concluded that the wings of a butterfly
in Europe could create a thunderstorm in the US.

We chose for the parameters in the Lorenz equations o = 10, » = 28 and
b= %, such that the system is in the chaotic regime, and trajectories converge
to the butterfly attractor. We start with the initial conditions (z,y, 2)(0) =
(20,5, —5), and compute with the parareal algorithm an approximate solution
on the time interval [0,7 = 10], using again the classical fourth order Runge
Kutta method with coarse time step AT = 1%0, and fine time step At = ﬁ,
which leads to an accuracy in the fine trajectory of 2.4e — 6. We show in
Figure 3 the initial guess and the first five iterations of the parareal algorithm,
together with error curves for the coordinates, as a function of time. One can
see that for the first two iterations, the approximate parareal trajectory is not
in the same wing of the butterfly attractor as the converged trajectory. At
iteration three, the situation changes and the parareal approximation follows
now the converged trajectory. From this iteration on, the algorithm converges
on the entire time interval, as one can see in Figure 4, where we show iteration
six to eleven. At iteration ten, an overall accuracy of le —6, which corresponds
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Fig. 3. Initial guess and first five parareal approximations of the solution of the
Lorenz equations.

to the fine grid solution accuracy, is achieved. Neglecting the cost of the coarse
solver, one could therefore have computed a fine grid accurate solution with
180 processors about 18 times faster than sequentially, as indicated by the
dots and the vertical line on the graphs.
In Figure 5 on the left, we show how the difference of the parareal ap-
proximation and the converged solution, measured in the L?-norm in space,
and in the L°°-norm in time, diminishes as a function of the iterations of the
parareal algorithm. One can clearly see that the convergence is superlinear.
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Fig. 4. Sixth to eleventh parareal approximation of the solution of the Lorenz
equations.

In the context of the Lorenz equations, it is interesting to investigate the
behavior of the parareal algorithm with respect to the chaotic nature of the
system. In Figure 5, we show on the right the convergence behavior of the
parareal algorithm for an implementation with variable precision arithmetic,
using 16, 32 and 48 digits of accuracy. One can see that the theoretical re-
sult of superlinear convergence stops at a certain level before the numerical
precision has been reached, and the algorithm stagnates, or in other words,
the trajectory has converged to a different solution from the one computed
sequentially, due to roundoff errors.
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Fig. 5. Convergence behavior of the parareal algorithm applied to the Lorenz equa-
tions.

4.4 Viscous Burgers Equation

We finally show numerical experiments for a non-linear partial differential
equation, the viscous Burgers equation,

Ut + Uy = VUgy 0 2 =[0,1], wu(x,0)=sin(2rz),

with homogeneous boundary data, such that the solution forms Friedrich’s
N-wave. We chose for the viscosity parameter v = %, used a centered finite
difference discretization with spatial step Ax = %, and a backward Euler
discretization in time. We only parallelized the solution in time using the
parareal algorithm, with coarse time step AT = %, and fine time step At =
1—(1)0, which gives a numerical accuracy of 4e—2. We show in Figure 6 on the left
the converged solution over a short time interval, [0,7 = 0.1], where one can
see how the N-wave is forming, and on the right the same solution over a longer
time interval, [0,7 = 1]. In Figure 7, we show on the left the convergence

N
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solution
o

0.1

Fig. 6. Converged approximate solution for the Burgers equation over a short and
long time interval.
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behavior of the parareal algorithm applied to the Burgers equation, when the
problem is posed over time intervals of various length. Again we measure the
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Fig. 7. Convergence behavior of the parareal algorithm applied to Burgers equation,
on the left for various lengths of the time interval, and on the right when the accuracy
of the discretization is increased.

error in the L?-norm in space, and the L>-norm in time. Over short time
intervals, the convergence of the parareal algorithm is faster than over long
time intervals. In the case of T'= 0.1, the algorithm converges at step two to
the accuracy of the discretization error, and one could therefore, neglecting
the coarse solve, compute this approximation with ten processors five times
faster in parallel than with one processor. Note also that as one continues to
iterate, the algorithm converges further toward the fine grid solution, until
the roundoff error accuracy is reached at step 10, as indicated by Theorem
1. Over longer time intervals, for example T = 1, with the same parareal
configuration, the acc