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Preface

This volume contains a selection of 71 refereed papers presented at the 17th

International Conference on Domain Decomposition Methods held at St. Wolf-
gang/Strobl, Austria, July 3 - 7, 2006.

1 Background of Conference Series

Domain Decomposition (DD) is an active, interdisciplinary research area
concerned with the development, analysis, and implementation of coupling
and decoupling strategies in mathematical and computational models aris-
ing in Computational Science and Engineering. Historically, it has emerged
from the analysis of partial differential equations, beginning with the work
of H. A. Schwarz in 1869, in which he established the existence of harmonic
functions in domains with complicated boundaries (see logo on the cover), con-
tinuing with the variational setting of the alternating Schwarz method by S.L.
Sobolev in 1934, and leading to the powerful “Schwarz machinery” developed
during the last two decades. Another historical origin of modern domain de-
composition methods (DDM) is the classical substructuring techniques which
were first developed by mechanical engineers for the finite element analysis
of complex structures in the 1960s. We note that the DD technologies are
also well suited for treating coupled field problems by hybrid discretization
techniques.

The appearance of parallel computers, in particular, of massively parallel
computers with distributed memory in the mid 1980s, led to an extensive
development of parallel algorithms for solving partial differential equations —
problems which play a fundamental role in computational sciences. Time was
therefore then right to organize the first international conference, which was
held in Paris in 1987. There are now conferences in this series with roughly
18-month intervals:

• Paris, France, 1987
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• Los Angeles, CA, USA, 1988
• Houston, TX, USA, 1989
• Moscow, USSR, 1990
• Norfolk, VA, USA, 1991
• Como, Italy, 1992
• University Park, PA, USA, 1993
• Beijing, China, 1995
• Ullensvang, Norway, 1996
• Boulder, CO, USA, 1997
• Greenwich, UK, 1998
• Chiba, Japan, 1999
• Lyon, France, 2000
• Cocoyoc, Mexico, 2002
• Berlin, Germany, 2003
• New York, NY, USA, 2005
• St. Wolfgang, Austria, 2006

The DD conferences are now not only attended by numerical analysts
and people interested in parallel computing, but also by scientists from all
computational sciences.

The activities of the domain decomposition community are coordinated by
the International Scientific Committee on Domain Decomposition Methods:

• Petter Bjørstad, Bergen
• Roland Glowinski, Houston, TX
• Ronald Hoppe, Augsburg and Houston, TX
• Hideo Kawarada, Chiba, Japan
• David Keyes, New York, NY
• Ralf Kornhuber, Berlin
• Yuri Kuznetsov, Houston, TX
• Ulrich Langer, Austria
• Jacques Periaux, Paris
• Alfio Quarteroni, Lausanne, Switzerland
• Zhong-Ci Shi, Beijing
• Olof Widlund, New York, NY
• Jinchao Xu, University Park, PA

Information on and proceedings of the domain decomposition conferences
and the ongoing activities of the domain decomposition community can be
found on the DDM home page

http://www.ddm.org .
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2 The Seventeenth Conference

The 17th International Conference on Domain Decomposition Methods
(DD17) was held at the Institute for Adult Education in St. Wolfgang/Strobl,
Austria, July 3 - 7, 2006. The DD17 was hosted by the Johann Radon
Institute for Computational and Applied Mathematics (RICAM), in coopera-
tion with the Special Research Program F013 (SFB F013) on “Numerical and
Symbolic Scientific Computing” and the Institute for Computational Mathe-
matics (NuMa) of the Johannes Kepler University Linz (JKU). The conference
was chaired by Ulrich Langer (NuMa, RICAM and SFB F013). 162 scientists
from 29 countries participated. Among the highlights were the talks of the 15
invited speakers:

• Mark Adams (Columbia University, USA): Algebraic Multigrid Methods
for Mechanical Engineering Applications,

• Mark Ainsworth (Strathclyde University, UK): Robustness of Some Sim-
ple Smoothers for Finite Element and Boundary Elements on Nonquasiu-
niform Meshes,

• Zoran Andjelić (ABB Schweiz AG, SWITZERLAND): BEM: Opening the
New Frontiers in the Industrial Products Design,

• Martin Gander (University of Geneva, SWITZERLAND): Time Domain
Decomposition Methods,

• Laurence Halpern (University of Paris 13, FRANCE): Schwarz Waveform
Relaxation Algorithms: Theory and Applications,

• Matthias Heinkenschloss (Rice University, USA): Domain Decomposition
Methods for PDE Constrained Optimization,

• Hyea Hyun Kim (Courant Institute of Mathematical Sciences, New York
University, USA): Domain Decomposition Algorithms for Mortar Dis-
cretizations,

• Rolf Krause (University of Bonn, GERMANY): On the Multiscale Solution
of Constrained Problems in Linear Elasticity,

• Yuri Kuznetsov (University of Houston, USA): Domain Decomposition
Preconditioners for Anisotropic Diffusion,

• Raytcho Lazarov (Texas A&M University, USA): Preconditioning of Dis-
continuous Galerkin FEM of Second Order Elliptic Problems,

• Young-Ju Lee (University of California, Los Angeles, USA): Convergence
Theories of the Subspace Correction Methods for Singular and Nearly
Singular System of Equations,

• Günter Leugering (Friedrich-Alexander-University of Erlangen-Nürnberg,
GERMANY): Domain Decomposition in Optimal Control of Partial Dif-
ferential Equations on Networked Domains,

• Jacques Périaux (CIMNE/UPC Barcelona, SPAIN): A Domain Decom-
position/Nash Equilibrium Methodology for the Solution of Direct and
Inverse Problems in Fluid Dynamics,

• Olaf Steinbach (Graz University of Technology, AUSTRIA): Boundary El-
ement Domain Decomposition Methods: Challenges and Applications,
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• Mary Wheeler (University of Texas at Austin, USA): A Domain Decom-
position Multiscale Mortar Mixed Method for Flow in Porous Media.

Ten minisymposia were organized on different topics. In addition, the many
contributed talks and posters contributed to the success of the DD17.

Sponsoring Organizations:

• Institute for Computational Mathematics (NuMa) of the Johannes Kepler
University, Linz (JKU)

• Johann Radon Institute for Computational and Applied Mathematics,
Linz (RICAM)

• Linzer Hochschulfond
• Special Research Program SFB F013 “Numerical and Symbolic Scientific

Computing”
• Springer Verlag
• Township St. Wolfgang
• Township Strobl

Local Organizing Committee Members:

• Sven Beuchler, JKU (Linz)
• Alfio Borzi, University of Graz (Graz)
• Martin Burger, JKU, SFB013 and JKU (Linz)
• Heinz Engl, JKU, SFB013 and JKU (Linz)
• Martin Gander, University of Geneva (Geneva)
• Gundolf Haase, University of Graz (Graz)
• Karl Kunisch, University of Graz (Graz) and RICAM (Linz)
• Ulrich Langer, JKU, SFB013 and JKU (Linz)
• Ewald Lindner, SFB013 and JKU (Linz)
• Joachim Schöberl, RICAM and SFB013 (Linz)
• Olaf Steinbach, Graz University of Technology (Graz)
• Christoph Überhuber, Vienna University of Technology (Vienna)
• Walter Zulehner, JKU (Linz)

The International Scientific Committee would like to thank the members
of the Local Organizing Committee for organizing and managing the confer-
ence. Special thanks go to the conference secretaries, Magdalena Fuchs and
Marion Schimpl, the technical assistants, Wolfgang Forsthuber, Oliver Koch
and Markus Winkler, the program coordinators, Dr. Sven Beuchler, Dipl.-Ing.
David Pusch, and Dr. Satyendra Tomar, the manager of the social program,
Dr. Ewald Lindner, and, last but not least, to Dipl.-Ing. Peter Gruber and
Dr. Jan Valdman for producing the book of abstracts.

More information about the conference can be found on the DD17 home
page

http://www.ricam.oeaw.ac.at/dd17 .
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3 Conference Proceedings, Selected Books, and Survey
Articles

1. P.E. Bjørstad, M.S. Espedal, and David E. Keyes, eds., Proc. Ninth Int.
Conf. on Domain Decomposition Methods for Partial Differential Equa-
tions (Ullensvang, 1997), Wiley, New York, 1999.

2. T.F. Chan, R. Glowinski, J. Périaux, and O. B. Widlund, eds., Proc. Sec-
ond Int. Conf. on Domain Decomposition Methods for Partial Differential
Equations (Los Angeles, 1988), SIAM, Philadelphia, 1989.

3. T.F. Chan, R. Glowinski, J. Périaux, and O. B. Widlund, eds., Proc.
Third Int. Conf. on Domain Decomposition Methods for Partial Differ-
ential Equations (Houston, 1989), SIAM, Philadelphia, 1990.

4. T.F. Chan, T. Kako, H. Kawarada, and O. Pironneau, eds., Proc. Twelfth
Int. Conf. on Domain Decomposition Methods in Sciences and Engineer-
ing (Chiba, 1999), DDM.org, Bergen, 2001.

5. T.F. Chan and T.P. Mathew, Domain Decomposition Algorithms, Acta
Numerica, 1994, pp. 61–143.

6. N.Débit,M.Garbey,R.Hoppe,D.Keyes,Yu.A.Kuznetsov and J.Périaux,
eds., Proc. Thirteenth Int. Conf. on Domain Decomposition Methods in
Sciences and Engineering (Lyon, 2000), CINME, Barcelona, 2002.

7. C. Farhat and F.-X. Roux, Implicit Parallel Processing in Structural Me-
chanics, Computational Mechanics Advances, Vol. 2, 1994, pp. 1–124.

8. R. Glowinski, G. H. Golub, G. A. Meurant and J. Périaux, eds., Proc.
First Int. Conf. on Domain Decomposition Methods for Partial Differen-
tial Equations (Paris, 1987), SIAM, Philadelphia, 1988.

9. R. Glowinski, Y.A. Kuznetsov, G. Meurant, J. Périaux and O. B. Widlund,
eds., Proc. Fourth Int. Conf. on Domain Decomposition Methods for Partial
Differential Equations (Moscow, 1990), SIAM, Philadelphia, 1991.

10. R. Glowinski, J. Périaux and Z. Shi, eds., Proc. Eighth Int. Conf. on
Domain Decomposition Methods in Sciences and Engineering (Beijing,
1995), Wiley, Strasbourg, 1997.

11. I. Herrera, D. Keyes, O. Widlund and R. Yates, eds., Proc. Fourteenth
Int. Conf. on Domain Decomposition Methods in Sciences and Engineer-
ing (Cocoyoc, Mexico, 2002), National Autonomous University of Mexico
(UNAM), Mexico City, 2003.

12. D. Keyes, T.F. Chan, G. Meurant, J.S. Scroggs and R.G. Voigt, eds.,
Proc. Fifth Int. Conf. on Domain Decomposition Methods for Partial
Differential Equations (Norfolk, 1991), SIAM, Philadelphia, 1992.

13. D. Keyes, Y. Saad and D. G. Truhlar, eds., Domain-based Parallelism and
Problem Decomposition Methods in Computational Science and Engineer-
ing, SIAM, Philadelphia, 1995.

14. D. Keyes and J. Xu, eds., Proc. Seventh Int. Conf. on Domain Decompo-
sition Methods for Partial Differential Equations (University Park, 1993),
AMS, Providence, 1995.
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15. V.G. Korneev and U. Langer, Domain Decomposition and Precondition-
ing, Chapter 22 in Volume 1 (Fundamentals) of the “Encyclopedia of
Computational Mechanics”, ed. by E. Stein, R. de Borst and Th.J.R.
Hughes, John Wiley & Sons, 2004.

16. R. Kornhuber, R. Hoppe, J. Periaux, O. Pironneau, O. Widlund and
J. Xu, eds., Proc. Fifteenth Int. Conf. on Domain Decomposition Methods
in Sciences and Engineering (Berlin, 2003), Springer, Heidelberg, 2004.

17. J. Kruis, Domain Decomposition Methods for Distributed Computing,
Saxe-Coburg Publication, Dun Eaglais, 2005.

18. C.-H.Lai,P.E.Bjørstad,M.Cross, andO.Widlund, eds.,Proc.Eleventh Int.
Conf. on Domain Decomposition Methods (Greenwich, 1999), DDM.org,
Bergen, 2000.

19. U. Langer and O. Steinbach, Coupled Finite and Boundary Element
Domain Decomposition Methods, In “Boundary Element Analysis: Math-
ematical Aspects and Application”, ed. by M. Schanz and O. Steinbach,
Lecture Notes in Applied and Computational Mechanic, Volume 29,
Springer, Berlin, pp. 29-59, 2007.

20. V.I. Lebedev and V.I. Agoshkov, Poincaré-Steklov operators and their
applications in analysis, Academy of Sciences USSR, Dept. of Numerical
Mathematics, Moskow, 1983, (In Russian).

21. P. Le Tallec, Domain Decomposition Methods in Computational Mechan-
ics, Computational Mechanics Advances, Vol. 1, No. 2, 1994, pp. 121–220.

22. J. Mandel, C. Farhat and X.-C. Cai, eds., Proc. Tenth Int. Conf. on
Domain Decomposition Methods in Science and Engineering (Boulder,
1997) AMS, Providence, 1998.

23. S. Nepomnyaschikh, Domain Decomposition Methods, In “Lectures on
Advanced Computational Methods in Mechanics”, ed. by J. Kraus and
U. Langer, Radon Series on Computational and Applied Mathematics,
de Gruyter, Berlin, 2007.

24. P. Oswald, Multilevel Finite Element Approximation: Theory and Appli-
cations, Teubner Skripten zur Numerik, Teubner-Verlag, Stuttgart, 1994.

25. L. Pavarino and A. Toselli, Recent Developments in Domain Decomposi-
tion Methods. Proc. Workshop held in Zürich in 2001, Lecture Notes in
Computational Sciences and Engineering, Vol. 23, Springer, Heidelberg,
2002.

26. A. Quarteroni, J. Periaux, Y.A. Kuznetsov, and O. B. Widlund, eds.,
Proc. Sixth International Conference on Domain Decomposition Methods
in Science and Engineering (Como, 1992) AMS, Providence, 1994.

27. A. Quarteroni and A. Valli, Domain Decomposition Methods for Partial
Differential Equations, Oxford Sciences Publications, Oxford, 1999.

28. B. F. Smith, P. E. Bjørstad and W. Gropp, Domain Decomposition:
Parallel Multilevel Methods for Elliptic Partial Differential Equations,
Cambridge University Press, Cambridge, 1996.
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29. O. Steinbach, Stability Estimates for Hybrid Coupled Domain Decomposi-
tion Methods, Lecture Notes in Mathematics, Vol. 1809, Springer, Berlin,
2003.

30. A. Toselli and O. Widlund, Domain Decomposition Methods – Algorithms
and Theory, Springer, New York, 2005.

31. O. Widlund and D.E. Keyes, eds., Proc. Sixteenth Int. Conf. on Domain
Decomposition Methods in Sciences and Engineering (New York City,
2005), Springer, Heidelberg, 2007.

32. B. Wohlmuth, Discretization Methods and Iterative Solvers Based on Do-
main Decomposition, Volume 17 of Lecture Notes in Computational Sci-
ence and Engineering, Springer, Berlin, Heidelberg, 2001.

33. J. Xu, Iterative Methods by Space Decomposition and Subspace Correc-
tion: A unifying approach, SIAM Review, Vol. 34, No. 4, 1992, pp. 581–
613.

34. J. Xu and J. Zou, Some Nonoverlapping Domain Decomposition Methods,
SIAM Review, Vol. 40, No. 4, 1998, pp. 857–914.

4 Organization

Parts I and III of the proceedings collect the plenary and contributed presen-
tations, respectively; the papers appear in alphabetical order by the first-listed
author. In part II “Minisymposia”, the organizers of the minisymposia pro-
vide short introductions to the minisymposia. Within each minisymposium
section, the papers again appear in alphabetical order.

5 Acknowledgments

The editors would like to thank all authors for their contributions, the anony-
mous referees for their valuable work, and Dr. Martin Peters and Ms. Thanh-
Ha Le Thi from Springer for continuing support and friendly collaboration in
preparing these proceedings.

Linz, Ulrich Langer, Walter Zulehner
Lausanne, Marco Discacciati
New York, David E. Keyes, Olof B. Widlund
August 2007
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BEM: Opening the New Frontiers
in the Industrial Products Design

Zoran Andjelić

ABB Corporate Research
zoran.andjelic@ch.abb.com

Summary. Thanks to the advances in numerical analysis achieved in the last sev-
eral years, BEM became a powerful numerical technique for the industrial products
design. Until recent time this technique has been recognized in a praxis as a technique
offering from one side some excellent features (2D instead of 3D discretization, treat-
ment of the open-boundary problems, etc.), but from the other side having some se-
rious practical limitations, mostly related to the full-populated, often ill-conditioned
matrices. The new, emerging numerical techniques like MBIT (Multipole-Based In-
tegral Technique), ACA (Adaptive Cross-Approximations), DDT (Domain-Decom-
position Technique) seems to bridge some of these known bottlenecks, promoting
those the BEM in a high-level tool for even daily-design process of 3D real-world
problems.

The aim of this contribution is to illustrate the application of BEM in the design
process of the complex industrial products like power transformers or switchgears.
We shall discuss some numerical aspects of both single-physics problems appearing
in the Dielectric Design (Electrostatics) and multi-physics problems characteris-
tic for Thermal Design (coupling of Electromagnetic - Heat transfer) and Electro-
Mechanical Design (coupling of Electromagnetic - Structural mechanics).

Nomenclature

• x - source point
• y - integration point
• Γ := ∂Ω - surface around the body
• σe - electric surface charge density [As/m2]
• ρe - electric volume charge density [As/m3]
• σm - magnetic surface charge density [V s/m2]
• ρm - magnetic volume charge density [V s/m3]
• q - charge [As]
• ε - dielectric constant (permittivity, absolute) [F/m = As/V m]
• ε0 - dielectric constant of free space (permittivity)=1/µ0c

2
0 ≈ 0.885419e−11

• c0 - speed of electromagnetic waves (light) in vacuum= 2.2997925e8 [m/s]
• εr - relative dielectric constant
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• µ - magnetic permeability (absolute) [H/m]
• µ0 - magnetic permeability of the free space [H/m] = 4π/107

• µr - relative magnetic permeability
• σ - electrical conductivity [Sm/mm2]
• E - electrical field strength [V/m]
• D - electrical flux (displacement) density [As/m2]
• ϕ - electrical potential [V ]
• I - electrical current [A]
• U - electrical voltage [V ]
• ϕext(I) - potential of the external electrostatic field [V]
• H - magnetic field strength [A/m]
• B - magnetic flux density [T ]
• F - force [N ]
• fv - volume force density [N/m3]
• fm - magnetic force density [N/m3]
• fs

m - “strain” magnetic force density [N/m3]
• J - current density [A/m2]
• J0 - exciting current density [A/m2]
• S - Poynting vector
• f̄ - time-average force density [N/m3] (volume) or [N/m2] (surface)
• Θ - solid angle
• j - current density (complex vector) [A/m2]
• ω - angular velocity [rad/s]
• f - frequency [Hz]
• T - temperature [oC] or [K]
• α - heat transfer coefficient [W/m2K]

1 Introduction

One of key challenges in a booming industrial market is to achieve a better
time2market performance. This marketing syntagma one could translate as:
“To be better (best) in a competition race, bring the product to the market in the
fastest way (read cheapest way), simultaneously preserving / improving its func-
tionality and reliability”. One of the nowadays unavoidable ways to achieve this
target is to replace partially (or completely) the traditional Experimentally-
Based Design (EBD) with the Simulation-Based Design (SBD) of industrial
products. Usage of SBD contributes in:

• Acceleration of the design process (avoiding prototyping),
• Better design through better understanding of the physical phenomena,
• Recognizability of the product’s weak points already at the design stage.

Introduction of the SBD in the design process requires accurate, robust and
fast numerical technologies for:
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• 3D real-world problems analysis, preserving the necessary structural
and physical complexity,

• ... but using the numerical technologies enough user-friendly to be ac-
cepted by the designers,

• ... and using the numerical technologies suitable for the daily design
process.

All these three items present quite tough requirements when speaking about
the industrial products that are usually featured by huge dimensions, huge as-
pect ratio in model dimensions, complex physics, complex materials. For the
class of the problems we are discussing here, there are basically two candidates
among many numerical methods that could potentially be used: FEM (Finite
Element Method) and BEM (Boundary Element Method). Our experience
shows that for the electromagnetic and electromagnetically-coupled problems
BEM has certain advantages when dealing with complex engineering design.

Without going into details, let us list some of the main BEM characteris-
tics:

• Probably the most important feature of BEM is that for linear classes of
problems the discretization needs to be performed only over the interfaces
between different media. This excellent characteristic of BEM makes the
discretisation/meshing of complex 3D problems more straightforward and
usable for simulations in a daily design process.

• Also, this feature is of utmost importance when dealing with the simulation
of moving boundary problems. Thanks to the fact that the space between
the moving objects does not need to be meshed, BEM offers an excellent
platform for the simulation of dynamics, especially in 3D geometry.

• Furthermore, the open boundary problem is treated easily with BEM, with-
out need to take into account any additionally boundary condition. When
using tools based on the differential approach (FEM, FDM), the open
boundary problem requires an additional bounding box around the object
of interest, which has a negative impact on both mesh size and computa-
tion error.

• Another important feature of BEM is its accuracy. Contrary to differential
methods, where adaptive mesh refinement is almost imperative to achieve
the required accuracy, with BEM it is frequently possible to obtain good
results even with a relatively rough mesh. But, at this point we also do
not want to say that “adaptivity” could not make life easier even when
using BEM.

In spite of the above mentioned excellent features of BEM, this method had
until recent time some serious limitations with respect to the practical design,
mostly related to the:

• full populated matrix,
• huge memory requirements,
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• bad matrix conditioning.

Fig. 1. Paradigm change in BEM development

Thanks to the real breakthroughs happening in the last decade in BEM-related
applied mathematics, most of these bottlenecks have been removed. To au-
thor’s opinion the work done by Greengard and Rochlin, Greengard [10], is
probably one of the crucial ignitions contributing to this paradigm change,
Figure 1. Today we can say that this work, together with a number of cap-
ital contributions of other groups working with BEM, has lunched really a
new dimension in the simulation of the complex real-world problems. In the
following we shall try to illustrate it on some practical examples like:

• Dielectric design of circuit breakers,
• Electro-mechanical design of circuit breakers,
• Thermal design for power transformers.

2 Dielectric Design of Circuit Breakers

Under Dielectric Design we usually understand the Simulation-Based De-
sign (SBD) of configurations consisting of one or more electrodes loaded with
either fixed or floating potential and being in contact with one or more dielec-
tric media. From the physics point of view, here we deal with a single-physics
problem, which can be described either by a Laplace or Poisson equation.

2.1 Briefly About Formulation

For 3D BEM analysis of electrostatic problems, the equations satisfying the
field due to stationary charge distribution can be derived directly form the
Maxwell equations, assuming that all time derivatives are equal to zero. The
formulation can be reduced to the usage of I and II Fredholm integral equa-
tions1:
1 The complete formulation derivation can be found in Tozoni [19], Koleciskij [15]
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ϕ(x) = ϕext(x) +
1

4πε0

M∑
m=1

∫
Γm

σe(y)K1dΓm(y) (1)

σe(x) =
λ

2π

M∑
m=1

∫
Γm

σe(y)
r · n
r3

dΓm(y) (2)

where ε = ε0 · εr is absolute permittivity with ε0 = 8.85 · 10−12F/m the
permittivity of the free space and εr the relative permittivity or dielectric
constant, K1 = 1

r = 1
|x−y| is a weakly singular kernel, r is a distance between

the calculation point x and integration point y, n is a unit normal vector in
point x directed into the surrounding medium, and λ = εi−εe

εi+εe
.

The equation (1) is usually applied for the points laying on the electrodes, and
the equation (2) is applied for the points positioned on the interface between
different dielectrics. Then the electrostatic field strength at any point in the
space can be determined as:

E(x) = −∇ϕ(x) = − 1
4πε0

M∑
m=1

∫
Γm

σe(y) · ∇K1dΓm(y) (3)

whereby the position vector r = x − y in K1 is pointed towards the collo-
cation point x. The discretization of equations (1) and (2) yields a densely
populated matrix, which is well known as the major bottleneck in BEM com-
putations. The amount of storage is of order O(N2), with N being the number
of unknowns. Furthermore, the essential step at the heart of the iterative so-
lution of this system is a matrix-vector multiplication and the cost of such
a multiplication is also of order O(N2). Thus a reduction of the complex-
ity to O(N logN) or O(N) would naturally be very desirable. Developments
started with a seminal paper by Greengard [10] that proposed a Fast Multi-
pole Method, which became highly popular in several numerical communities.
Another fundamental development was brought about by Hackbusch [11, 12].
In the following we present a brief description of MBIT2 algorithm that is
used in our computations. The central idea is to split the discretized bound-
ary integral operator into a far-field and a near-field zone. The singularity of
the kernel of the integral operator is then located in the near-field, whereas
the kernel is continuous and smooth in the far-field. Compression can then
be achieved by a separation of variables in the far-field. In order to reach this
goal, the boundary in the first stage is subdivided into clusters of adjacent
panels that are stored in a hierarchical structure called the panel-cluster tree.
The first cluster is constructed from all elements/panels (the largest set of
elements/panes) and is denoted as x00, Figure 2. We continue to subdivide
each existing cluster level successively into smaller clusters with cluster cen-
ters xij through bifurcation, Figure 2a. After several bifurcations we obtain
2 Multipole-Based Integral Technique
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a cluster tree structure for the elements/panel set, Figure 2b. Then, in the

Fig. 2. a) Panel bifurcation, b) Panel cluster tree

second stage we collect all admissible pairs of clusters, i.e. pairs that fulfill the
admissibility condition |x− x0|+ |xc − xc

0| ≤ η |x0 − xc
0| where 0 ≤ η < 1 into

the far-field block. The centers of gravity of the panel clusters and node/vertex
clusters are here denoted by x0, xc

0, respectively. All other pairs of clusters
(the non-admissible ones) belong to the near-field. Then the matrix entries
corresponding to the near-field zone are computed as usual, whereas the ma-
trix blocks of the far-field are only approximated. This is achieved by an
expansion of the kernel function k(x,xc) that occurs in the matrix entries

aij =
∫
Γ

∫
Γ

ϕ̂i(x)k(x,xc)ϕj(xc)dΓ (x)dΓ (xc) . (4)

The expansion:

k(x,xc) ≈ km(x,xc;x0,xc
0) =

∑
(µ,ν)∈Im

k(µ,ν)(x,xc
0)Xµ(x,x0)Yν(xc,xc

0) (5)

decouples the variables x and xc and must be done only in the far-field. Then,
the matrix-vector products can be evaluated as:

ν = Ã · u = N · u+
∑

(σ,τ)∈F

XT
σ (Fσ,τ (Yτ · u)) . (6)

Several expansions can be used for this purpose: Multipole-, Taylor- and
Chebyshev-expansion. The procedures lead to a low rank approximation of
the far-field part and it is shown in Schmidlin [17] that one obtains exponen-
tial convergence for a proper choice of parameters. A more detailed elaboration
and comparison of all three type of expansions can also be found in the same
reference.
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Example 1: SBD for a Generator Circuit-Breaker Design

In this example it is briefly shown how Simulation-Based Design of the Gen-
erator Circuit-Breaker (GCB) is performed using a BEM3 module for electro-
static field computation.

Generator circuit-breakers, Figure 3, are im-

Fig. 3. ABB generator
circuit-breaker

portant components of electricity transmission
systems. Figure 4 (left) shows the complete as-
sembly of a GCB containing, beside the inter-
rupting chamber as a key component, all other
parts such as current and voltage transform-
ers, earthing switches, surge capacitors, etc. The
simulation details for the above shown generator
circuit-breakers case were:

• The discretization of the model has been performed using second order
triangle elements.

• The stiffness matrix has been assembled using an Indirect Ansatz with
collocation in the main triangle vertices, formulas (1) and (2). It has to
be mentioned here that in both the real design and consequently then
in the simulation model, geometrical singularities like edges and corners
have been removed through rounding. In the real design this is a common
practice in all high-voltage devices in order to prevent the occurrence of
dielectric breakdown. On the numerics side, this fact enables usage of the
nodal collocation method - which is also the fastest one - without violating
the mathematical correctness of the problem.

• The coefficients of the stiffness matrix have been calculated using the mul-
tipole approach, Greengard [10], with monopole, dipole and quadropole
approximations for the far-field treatment, Andjelic [3]. Diagonal matrix
preconditioning has been used, which enables fast and reliable matrix solu-
tion using GMRES. This run has been accomplished without any matrix
compression, but using a parallelized version of the code, Blaszczyk [7].
For a parallel run we used a PC cluster with 22 nodes. The data about
memory and CPU time are given in Table 1.

• The calculated electrostatic field distribution is shown in Figure 4 (right).
It can be seen that the highest field strength appears on the small feature
details, such as screws.

Validation:

Replacement of the EBD with the SBD requires a number of field tests to con-
firm the simulation results by the experiments. Validation is one of important

3 This BEM module is a sub-module for electrostatic analysis in POLOPT
(http://www.poloptsoftware.com), a 3D BEM-based simulation package for single
and multi-physics computation.
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Fig. 4. GCB assembly (left). ABB Generator Circuit-Breaker: Electrostatic field
distribution, E[V/m] (right)

Table 1. The analysis data for GCB example.

Elements Nodes Main vertices Memory CPU

145782 291584 80230 42GByte 2h20’

steps to gain the confidence in the simulation tools. Figure 5 (right) shows the
experimental verification of the results obtained by the simulation of the GCB.

Note 1:
Calculated field distribution is just a “primary” information for the designers.
For complete judgment about the products behavior, it is usually necessary to
go one step forward, i.e. to evaluate the design criteria. Very often such criteria
are based on the analysis of the field lines, Figure 5 (left), that enables further
the conclusion about the breakdown probability in the inspected devices.

Fig. 5. Electric field strength distribution - detailed view including field lines traced
from the position of the maximal field values (left). Experimental verification of the
simulation results (right)
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3 Electro-Mechanical Design of Circuit Breakers

In Electro-Mechanical class of problems we are dealing with coupled electro-
magnetic / structural-dynamic phenomena. Better to say, we are seeking to
find out what is a mechanical response of the structure subjected to the ac-
tion of the electromagnetic forces. Coupling of these phenomena can be either
weak or strong. Under weak coupling we understand the sequential analysis
of each phenomena separately, coupled together via an iterative scheme. In
strong coupling we usually deal with the simultaneous solution of both prob-
lems, whereby the coupling is preserved on the equations level. In the present
material we deal with the weak coupling, that usually assumes two main steps:

• Calculation of electromagnetic forces
• Calculation of mechanical response

Forces evaluation is a first step in this coupled simulation chain. Electromag-
netic forces appear in any device conducted by either DC or AC current, or
subjected to the action of an external electromagnetic field4,5. Force analysis
itself is a bright field and will not be treated in details within this material.
More info can be found in Andjelic [4]. Here we shall give only a brief overview
on the Workflow for coupled EM-ME simulation tasks, Figure 6. A very first

Fig. 6. Weak coupling scheme for EM-SM problems

step in the simulation chain is the calculation of the excitation current /
field distribution. The calculation of the stationary current distribution in the

4 In this material we shall not treat the electro-mechanical problems whereby the
force are of electrostatic origin.

5 In certain applications (force sensors, pressure sensors, accelerometers) we are not
looking for mechanical response caused by the electromagnetic forces, but rather
for electrical response caused by the mechanical forces (piezoelectric problem).
This case will not be covered in the scope of this material. More information about
BEM treatment of these classes of problems can be found in Gaul [9], Hill [14].
Here we shall also not cover the topic of coupled Electro-Magnetic / Mechanics
problems related to magnetostriction phenomena (change of the shape of mag-
netostrictive material under the influence of a magnetic field). More information
for example in Whiteman [20].
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conductors assumes the solution of the Laplace problem, analogous to the
previously described electrostatic case. A detailed description of the formu-
lations for stationary current calculation can be found in Andjelic [4]. When
performing a coupled electromagnetic-structural mechanics analysis, we are
not interested in the total force, but rather in the local force density distrib-
ution. For stationary case the local force density (forces per unit volume,
[N/m3]) can be calculated as:

fm = J×B− 1
2
H2∇µ+ fs

m . (7)

Usually in praxis we are interested in the time-averaged force density f̄
[N/m3]:

f̄ =
1
2
Re {ρeE∗ + J×B∗ + ρmH∗ + M×D∗} (8)

where M = iωPm = iωµ0(µr − 1)H are the bounded magnetic currents, and
ρm are the bounded magnetic charges.
Basically, we can distinguish between the forces acting on:

• conductive/non-permeable structures,
• conductive/permeable structures6,
• non-conductive/non-permeable structures7.

If we stay with the typical design cases appearing in the transformers
and circuit-breakers design, that the mostly encountered problems are related
to the forces in conductive/non-permeable structures (bus-bars, windings).
For time-average Lorentz force density in a non-permeable current-carrying
conductor (µ=1), the equation (7) reduces to:

f̄ =
1
2
Re {J×B∗} . (9)

These local forces are then further passed as an external load for the analysis
of the mechanical quantities, last module in Figure 6. BEM formulations used
in our module for linear elasticity problems is described in more details in
Andjelic [4].

Example 2: Electro-mechanical Design of Generator Circuit-Breaker

Let us consider now the coupled electromechanical loading of a switch found
in the generator circuit breaker (GCB) seen already in the previous example.
Following a current-distribution and eddy-current analysis, it is possible by
Biot-Savart calculation to find the body-forces arising out of Lorentz interac-
tions. In fact, these forces are often of interest only in a limited region of the
6 More on the force analysis on conductive/permeable structures can be found in

Henrotte [13].
7 This class of problems is rather seldom and appears mostly in sensor design,

Andjelic [1].
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entire engineering system, typically in moving parts. In the GCB case pre-
sented here, a point of particular interest is the “knife” switch, where there is
a tendency for the generated Lorentz forces to act so as to open the switch.
Taking the example from earlier, for the mechanical part of the analysis only
a limited portion of the mesh needs to be evaluated. Results were calculated
using a mesh comprising 4130 triangular planar surface elements and 2063
nodes. The volume discretization (necessary for the body-force coupling) com-

Fig. 7. A detail of the earthing-switch in GCB carrying the current of 300-400 kA!
(left). Deformation of the earthing knife (overscaled), caused by the action of the
short-circuit forces (right).

prises 14000 tetrahedra. This model has been analyzed taking advantage of
the ACA approximation for the single and double layer potentials described
earlier in the outline of the formulation. Results from this analysis are shown
in Figure 7. Clearly visible is the effect of the coupling forces on the switch,
which has a tendency to move out of its closed position under the action of
the electromagnetic loading. This quantitative and qualitative information is
a valuable input into the design process leading to the development of complex
electromechanical systems.

4 Thermal Design for Power Transformers

When speaking about the Thermal Design we are usually looking for thermal
response of the structures caused by the electromagnetic losses. In reality,
the physics describing this problem is rather complex. There are three major
physical phenomena that should be taken into account simultaneously: the
electromagnetic part responsible for the losses generation, a fluid part respon-
sible for the cooling effects and thermal part responsible for the heat trans-
fer. Simulation of such problems, taking into account both complex physics
and complex 3D structures found in the real-world apparatus is still a chal-
lenge, especially with respect to the requirements mentioned at the beginning:
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accuracy-robustness-speed. A common practice to avoid a complex analysis of
the cooling effects by a fluid-dynamics simulation is to introduce the Heat-
Transfer Coefficients (HTC) obtained either by simple analytical formulae,
(see for example Boehme [8]) or based on experimental observations. For this
type of analysis the link between the electromagnetic solver and heat-transfer
solver is throughout the losses calculated on the electromagnetic side and
passed further as external loads to the heat-transfer module.

4.1 Workflow

The Workflow used for the coupled simulation of electro-magnetic / thermal
problems is shown in Figure 8. Usually the very first step in thermal simula-

Fig. 8. EM-TH Workflow

tion the industrial products like power transformer is import of the geometry
from CAD tool, followed by meshing and setting appropriate boundary con-
ditions (BC) and material data. It has to be stressed again that thanks to the
excellent features of BEM, we can solve such complex diffusion problem by
meshing only the interfaces between different media, i.e. avoiding completely
any volume mesh8! The solution phase consist of three major steps: calcula-
tion of the excitation current distribution, calculation of the eddy-currents /
losses distribution and finally calculation of the temperature distribution. Let
us give a brief outline on the eddy-current formulation, as one of the probably
most complicated problems in the computational electromagnetics. More info
on the formulations of excitation current as well as thermal calculation can
be found in Andjelic [4].

4.2 Eddy-current Analysis

There are a number of possible formulation that can be used for BEM-based
analysis of eddy-current problems. A useful overview of the available eddy-
current formulations can be found in Kost [16]. Here we follow the H − ϕ
formulation, whereby for the treatment of the skin-effect problems an modified
version of this formulation is used, Andjelic [2]. TheH−ϕ formulation is based

8 This is valid so long we are working with linear problems. In the case when non-
linear problem has to be treated, than when using BEM it is necessary to apply
the volume mesh, but only for the parts having non-linear material behavior!
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on the indirect Ansatz, leading thus to the minimal number of 4 degrees of
freedom (DoF) per node9. This nice feature makes this formulation suitable
for the eddy-current analysis of complex, real-world problems. The H − ϕ
formulation need to be used with a care in cases where the problem is multi-
valued, i.e. when the model belongs to the class multi-connected problems,
Tozoni [19]. The following integral representation is used10:

1
2 j(x) + 1

4π

∮
Γ

n(x)×
(
j(y)×∇ e−(1+i)k·r

r

)
dΓ (y)−

1
4π

∮
Γ

σm(y)(n(x)×∇ 1
rdΓ (y)

= −n(x)×H0(x)

(10)

1
2σ

m(x) + 1
4π

∮
Γ

σm(y) · n(x) · ∇(1
r )dΓ (y)+

µ
4πµ0

∮
Γ

n(x)
(
j(y)×∇ e−(1+i)k·r

r

)
dΓ (y)

= −n(x) ·H0(x) .

(11)

This boundary integral equation system can be written in operator form:[
A1 B1

B2 A2

](
j
σm

)
=
(
−2n×H0

−2n ·H0

)
. (12)

For more details on a numerical side of this approach the reader is referred
to Schmidlin [18]. Solution of the equation system (12) gives the virtual mag-
netic charges σm and virtual current density j. Then, the magnetic field in
conductive materials can be expressed as:

H+(x) =
1
4π

∮
Γ

∇× [j(y)K(x, y)] dΓ (y); x ∈ Ω+; y ∈ Ω+ (13)

and

H−(x) = Ho(x)− 1
4π

∮
Γ

σm(y)∇xG(x, y)dΓ (y) x ∈ Ω−; y ∈ Ω− (14)

in the non-conductive materials. H0 is the primary magnetic field produced
by the exciting current J0 and K = e−(1+i)k·r/r, G = 1/r .

Fast BEM for Eddy-current Analysis

Although the above formulation is the minimal-order formulation for 3D eddy-
current analysis, it still reaches very fast the limits (both in memory and CPU)
9 WithH−ϕ formulation it is possible to work even with only 3 DoF/node, whereby

the eddy-currents on the surfaces are described in a surface coordinate system
instead of Cartesian, Yuan [21].

10 For complete derivation of the above formulations, please look in Kost [16],
Tozoni [19], Andjelic [2]
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when trying to apply it to the simulation of the complex real-world problems.
As said at the very beginning, the new emerging techniques like MBIT or ACA
have enabled the efficient usage of this (and other BEM-based formulations)
by removing most of the known bottlenecks (huge memory, big CPU, bad ma-
trix conditioning). MBIT has enabled the efficient matrix generation, together
with low-memory matrix compression. For a pity, when using MBIT an extra
preconditioner is necessary in the case of bad conditioned matrices (for exam-
ple Schur-complement). ACA from other side covers all three major critical
points. Beside fast matrix generation, excellent compression, ACA provides
also inherently the matrix preconditioning, Bebendorf [6], Bebendorf [5]. As
illustration, Figure 9 shows a comparison of MBIT and ACA versus dense
matrix solution.

Fig. 9. Memory requirements for various matrix compression and preconditioning
methods

Example 2: Thermal Design of Power Transformers

The procedure described above has been used for the analysis of a number
of power transformer problems, both single- and three-phase units, Figure 10
(left). Figure 10 (right) shows the distribution of the calculated excitation
field over the transformer tank wallfootnote, together with the three-phase
bus-bars structure. It has to be noted that typical transformers structures (for
example tank or turrets) usually consist of one or more components made of
different materials like magnetic or non-magnetic steel, copper or aluminum.
The numerical procedure that are used have to be careful selected in order to
properly resolve the penetration of electro-magnetic field into each of these
materials, depending on their magnetic permeability, electrical conductivity
and applied frequency. Calculation of eddy currents and losses is performed
using the above described numerical procedure. Figure 11 shows the distrib-
ution of the calculated eddy-currents.
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Fig. 10. 985 MVA Power Transformers, ABB (left). Excitation field distribution in
the three-phase transformer bus-bars (right)

Fig. 11. Eddy current distribution (complex magnitude)- detailed view to the inner
shielding details

Validation

As mentioned before, an important aspect of the practical usage of the sim-
ulation tools is its validation, i.e. its comparison with the measured data. In
the following example we present as illustration the comparison between sim-
ulated and measured temperature for an 400 MVA single-phase transformer
unit.11 More on BEM-based approach for temperature analysis can be found
in Andjelic [4]. The temperature calculation is obtained using previously cal-
culated eddy losses as the external load for thermal run. The impact of the
cooling effects is taken into account by the appropriate choice of the heat trans-
fer coefficients. The simulation output has been validated by comparison with
thermography recording done during the transformer operation. Figure 12
shows the comparison between the simulation results and the measured re-

11 The parts of the tank exposed to the thermal overheating are often made of the
non-magnetic steel. This allows usage of the linear Ansatz for eddy-current class
of problems.
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Fig. 12. Validation

sults obtained by the thermography. It can be seen that the simulation results
have good agreement with the measured results. The difference between the
measured and calculated results (10% in this case) could be probably ex-
plained by the inaccurate estimation of the heat transfer coefficients used in
the simulation.

5 Some Concluding Remarks

In this paper we have tried to illustrate some BEM-based approaches for the
simulation of different problems appearing in engineering design praxis. The
excellent features of BEM for both single and multi-physics tasks are high-
lighted, together with some emerging numerical techniques like MBIT and
ACA, recognized as the major drivers leading to the real breakthrough in
BEM usage for practical design tasks.
But, beside these and many other good features of BEM, and staying at the
level of static or quasi-static simulation tasks, there are still a number of po-
tential improvements that could be made to achieve the “best in the class”
tool desired for the advanced simulations in the industrial design (strong cou-
pling formulations, non-linearity treatment, contact problems, preconditioning
etc.).
In spite of these and other open issues, the authors general opinion is that
the BEM already now offers an excellent platform for successful simulation of
3D real-world industrial problems. Especially when speaking about some of
the major requirements appearing in the Simulation-Based Design nowadays,
like:

• assembly instead of component simulation,
• simulation for the daily design process,
• user-friendly simulation, but still preserving the full geometrical and phys-

ical complexity,
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BEM-based numerical technologies seems to fulfill the majority of the require-
ments needed today for efficient design of the industrial products.
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Summary. The main goal of this paper is to present the application of a decentral-
ization optimization principle from Game Theory to the solution of direct and inverse
problems in Fluid Dynamics. It is shown in particular that multicriteria optimization
methods “à la Nash” combine ideally with domain decomposition methods, with or
without overlapping in order to solve complex problems. The resulting methodology
is flexible and in the case of design problems has shown to perform well when using
adjoint based techniques or evolutionary algorithms for the optimization.

The above methodology is applied to the simulation and shape design optimiza-
tion for flows in nozzles and around aerodynamical shapes.The results of various
numerical experiments show the efficiency of the method presented here.

1 Introduction

In this paper we introduce a new methodology to solve inverse problems in
Fluid Dynamics using Genetic Algorithms and Game Theory. This method-
ology amounts to finding (suitable) Nash points for “local inverse problems”.
These Nash points are approximated by Genetic Algorithms (GAs) suitably
constructed. This is an example of a completely general method, presented in
[7] and [4]. GAs are different from traditional optimization tools and based on
digital imitation of biological evolution. Game Theory replaces here a global
optimization problem by a non-cooperative game based on Nash equilibrium
with several players solving local constrained sub-optimization tasks. The
main idea developed here is to consider two Nash applications of Game The-
ory under conflict introduced in a flow analysis solver (1) and a GAs optimizer
(2) as follows:
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(1) a flow analysis solver modeled by the potential equations uses over-
lapping domain decomposition methods (DDM). A variant of the classical
DDM Schwarz method is considered with optimal control/GAs techniques. It
uses the distance of local solutions on the overlapping regions as global fit-
ness function described in a previous paper with GAs [11]. Then a Nash/GAs
game whose decentralized players are in charge of the matching of local solu-
tions as multi fitness functions is associated to the global problem. During the
evolution process the search space of each genetic point at the interfaces of
overlapping domain is implemented on adapted interval. This new approach
is shown to request less information for convergence than the global one.

(2) the above DDM flow solver is then used to feed a Nash/GAs optimizer
for the surface pressure reconstruction of nozzle shapes parameterized with
local Bézier’s splines. During this Nash iteration, the information exchange
between DDM flow solver is nested to the shape-GAs optimizer.

Numerical experiments presented on inverse problems of a nozzle with
Laplace’s solver illustrate both the efficiency and robustness of decentralized
optimization strategies. The promising inherent parallel properties of Nash
games implemented with GAs on distributed computers and their possible
further extensions to non-linear flows are also discussed.

2 Nash and GAs

2.1 Generalities

Many multi objective optimization problems are still not solved perfectly and
some are found to be difficult to solve using traditional weighted objective
techniques [17, 6]. GAs have been shown to be both global and robust over
a broad spectrum of problems. Shaffer was the first to propose a genetic al-
gorithm approach for multi objectives through his Vector Evaluated Genetic
Algorithms (VEGA [15]), but it was biased towards the extreme of each ob-
jective. Goldberg proposed a solution to this particular problem with both
non dominance Pareto-ranking and sharing, in order to distribute the solu-
tions over the entire Pareto front [5]. This cooperative approach was further
developed in [16], and lead to many applications [14]. All of these approaches
are based on Pareto ranking and use either sharing or mating restrictions to
ensure diversity; a good overview can be found in [3]. Another non coopera-
tive approach with the notion of player has been introduced by J. Nash [10]
in the early 50’ for multi objective optimization problems originating from
Game Theory and Economics. The following section is devoted to an original
non cooperative multi objective algorithm, which is based on Nash equilibria.

2.2 Definition of a Nash Equilibrium

For an optimization problem with G objectives, a Nash strategy consists in
having G players, each optimizing his own criterion. However, each player has
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to optimize his criterion given that all the other criteria are fixed by the rest
of the players. When no player can further improve his criterion, it means that
the system has reached a state of equilibrium called Nash Equilibrium. Let E
be the search space for the first criterion and F the search space for the second
criterion. A strategy pair (x, y) ∈ E × F is said to be a Nash equilibrium iff:

fE(x, y) = inf
x∈E

fE(x, y)

fF (x, y) = inf
y∈F

fF (x, y)

It may also be defined by:
u = (u1, . . . , uG) is a Nash equilibrium iff: ∀i,∀vi

Ji(u1, .., ui−1, ui, ui+1, ..uG) ≤ Ji(u1, .., ui−1, vi, ui+1, ..uG)

It may be difficult to exhibit such an equilibrium in particular for non
differentiable problems.

2.3 Description of a Nash/GAs

The following stage consists in merging GAs and Nash strategy in order to
make the genetic algorithm build the Nash Equilibrium for a complete de-
scription (see [13, 18]).

Let s = XY be the string representing the potential solution for a dual
objective optimization, where X corresponds to the first criterion and Y to
the second one. The first idea is to assign the optimization task of X to a
player called Player 1 and the optimization task of Y to Player 2. Thus,
as advocated by Nash theory, Player 1 optimizes s with respect to the first
criterion by modifying X, while Y is fixed by Player 2. Symmetrically, Player
2 optimizes s with respect to the second criterion by modifying Y while X is
fixed by Player 1 (see [13] for details).

The next step consists in creating two different populations, one for each
player. Player 1’s optimization task is performed by population 1 whereas
Player 2’s optimization task is performed by population 2.

Let Xk−1 be the best value found by Player 1 at generation k − 1, and
Yk−1 the best value found by Player 2 at generation k − 1. At generation
k, Player 1 optimizes Xk while using Yk−1 in order to evaluate s (in this
case, s = XkYk−1). At the same time, Player 2 optimizes Yk while using
Xk−1 (s = Xk−1Yk). After the optimization process, Player 1 sends the best
value Xk to Player 2 who will use it at generation k + 1. Similarly, Player
2 sends the best value Yk to Player 1 who will use it at generation k + 1.
Nash equilibrium is reached when neither Player 1 nor Player 2 can further
improve their criteria.

This setting may seem to be similar to that of Island Models in Parallel
Genetic Algorithms (PGA [9]). However, there is a fundamental difference
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Fig. 1. Description of a nozzle with two subdomains

which lays in the notion of equilibrium for Nash approach. Nash equilibria do
not correspond only to robust convergence, but have also very good stability
properties compared to cooperative strategies. The mechanisms of the Nash-
GAs described here are directly used in the following sections.

3 An Implementation of Nash/GAs Game for the DDM
Flow Problem

3.1 Description of the DDM Flow Problem

The DDM optimization problem considered here concerns an incompressible
potential flow in a nozzle modeled by the Laplace equation with Dirichlet
boundary conditions at the entrance and exit and homogeneous Neumann
conditions on the walls. As shown in Fig. 1, the computational domain Ω
is decomposed into two subdomains Ω1 and Ω2 with overlapping Ω12 whose
interfaces are denoted by γ1 and γ2. We shall prescribe potential values, g1
on γ1 and g2 on γ2, as extra Dirichlet boundary conditions in order to ob-
tain potential solutions Φ in each subdomain. Using domain decomposition
techniques, the problem of the flow can be reduced to minimize the following
functional [2]:

JF (g1, g2) =
1
2
‖ Φ1(g1)− Φ2(g2) ‖2 (1)

where Φ1 and Φ2 are the solutions in the overlapping subdomain Ω12, ‖ · ‖ de-
notes an appropriate norm, whose choice will be made precise in the examples
which follow.

For the minimization problem (1), we have presented a variant of the
classical DDM Schwarz method with optimal control/GAs techniques [11] and
have made a further extension with genetic treatment at the interface of the
subdomains (for details, see [12]). In the following sections, an implementation
of Nash/GAs with decentralized players will be addressed.

3.2 Decentralized Multi-Fitness Functions

As mentioned above, in the previous work of references [11, 12], the global fit-
ness function used in GAs is the distance of local solutions on the overlapping
domains (see (1)), which could be
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JF (g1, g2) =
1
2

∫
Ω12

|Φ1(g1)− Φ2(g2)|2dΩ . (2)

In this paper, we use boundary integrals instead of the domain integral and
we choose for (2) the criteria introduced in (3). The minimization problem
(1) can be reduced to minimize the following function based on boundary
integral:

JFB(g1, g2) =
1
2

∫
γ1

|Φ1(g1)−Φ2(g2)|2dγ1 +
1
2

∫
γ2

|Φ1(g1)−Φ2(g2)|2dγ2. (3)

Being associated to the global fitness function JFB(g1, g2), the decentralized
multi fitness functions JFB1(g1, g2) and JFB2(g1, g2) are defined with the
following two minimizations:

inf
g1
JFB1(g1, g2) with JFB1(g1, g2) =

1
2

∫
γ1

|Φ1(g1)− Φ2(g2)|2dγ1,

inf
g2
JFB2(g1, g2) with JFB2(g1, g2) =

1
2

∫
γ2

|Φ1(g1)− Φ2(g2)|2dγ2. (4)

The inf of the functionals (2) or (3) is zero. Therefore if in searching for a Nash
equilibrium (4) we find one such that infg1 = 0 and infg2 = 0 then it is the
solution of inf (3). There could be other Nash points which would not solve
the problem if infg1 > 0 for instance. The global DDM solution can be found
through searching a Nash equilibrium between the above two minimizations
based on the treatments described in the next sections.

3.3 An Implementation of Nash/GAs Game

Following the description of section 2.3, we can simulate the DDM flow op-
timization problem as a Nash game with two decentralized players, Flow-
GA1 and Flow-GA2 in charge of objective functions JFB1(g1, g2) and
JFB2(g1, g2), respectively. Note that each player optimizes the corresponding
objective function with respect to non-underlined variables. After discretiza-
tion of the problem, we have g1 =g1i and g2 =g2i, i = 1, ny (ny is mesh size
in y direction). Following the genetic treatment at the interface of reference
[12], for each interface, one point is binary encoded (for instance, g11 for γ1

and g21 for γ2). Other values of g1i and g2i (i ≥ 2) are corrected by numerical
values (for details, see [12]). The whole structure of the implementation based
on the information exchange between players is described as follows:

Step 0: (Initialization) Given initial interval (gmin, gmax) as search space for two
genetic points, g11 and g21, and then start with two set of randomly created
genetic points to form two initial populations for each players, Flow-GA1 and
Flow-GA2.

Step 1: Flow-GA1 and Flow-GA2 run separately until the iteration number equals
the exchange frequency number.
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Step 2: Exchange current the fittest flow information between Flow-GA1 and Flow-
GA2.

Step 3: Repeat the Step 1 to Step 2 until no player can further improve his fitness.

It should be noted that Flow-GA1 operates for the left part and Flow-GA2
for the right part of the nozzle. In fact, we have prescribed δ0 = 1

2 (gmax−gmin)
in the initialization step. In this paper, Flow-GA1 updates g2 from the fittest
individual of Flow-GA2. Besides, the search space of g11 is adapted with:

(g21 − δn, g21 + δn)

where g21 is the first component of vector g2 updated by other player, Flow-
GA2, through Nash-exchange and δn = faδn−1, where fa < 1. In other words,
δn is adapted and gradually approached to a small value with the Nash gener-
ation, which can ensure accuracy similar to a real value encoding. Numerical
experiments have shown that this treatment is helpful for the present method
to have the Nash equilibrium. In the meantime Flow-GA2 player is doing the
same as Flow-GA1 player.

The significant extent of parallelism properties gained from the above
method has further improvement compared with previous work of reference
[11] or other flow solvers using Domain Decomposition techniques. This DDM
flow solver will be used to feed a Nash/GAs shape optimizer described in the
following section.

4 Shape Optimization Problem Using Nash/GAs
with DDM

The DDM shape optimization problem considered here involves the inverse
problem of a nozzle using a reconstruction technique and domain decompo-
sition method using Nash/GAs. For the inverse problem, the global shape
optimization is to find a shape (denoted, y = s(x), x ∈ [A,B], see Fig. 1) of
a nozzle which realizes a prescribed pressure distribution on its boundary for
a given flow condition. This problem has the following formulation:

inf
s
JS(s) with JS(s) =

1
2

∫
[AB]

|ps − pt|2ds (5)

where pt is a given target pressure and ps the actual flow pressure on the shape
s. Let s1(x), x ∈ [A,D] and s2(x), x ∈ [C,B] be the split shapes, then if s(x) =
s1(x)

⋃
s2(x), we consider the two following local optimization problems:

inf
s1
JS1(s1, s2) with JS1(s1, s2) =

1
2

∫
[AD]

|ps1 − pt|2ds1

inf
s2
JS2(s1, s2) with JS2(s1, s2) =

1
2

∫
[CB]

|ps2 − pt|2ds2 (6)
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with the constraint that s1 = s2 on interval C,D. Then inf JS1 = 0 on s1
and inf JS2 = 0 on s2 is the solution of (6) considered in the sequel. The
global shape optimization solution can be found through searching a Nash
equilibrium between the above two minimizations. The DDM flow problem
described in the section 3 will provide information to the shape optimization
problem using Nash strategy.

4.1 Parameterization of the Shape of the Nozzle

Using GAs, the candidate shapes of the inverse problem mentioned above are
represented by a Bézier curve of order n, which reads [1]:

x(t) =
n∑

i=0

cint
i(1− t)n−ixi, y(t) =

n∑
i=0

cint
i(1− t)n−iyi

where cin = n!
i!(n−i)! and (xi, yi) are control points of the curve, t is the para-

meter whose values vary between [0,1]. To limit the size of the search space,
we vary the control points only in the y direction with fixed xi values. JS(s)
is used as fitness function and real coding is used for yi, which forms a string
denoted {y0y1y2...yn−1yn}. One site uniform crossover and non-uniform mu-
tation are used in the present work (for details, see the work of Michalewicz
[8]). The treatment of continuity between two split shapes mentioned above
will be described in the next section.

4.2 Solution Method and Its Implementation

Following the description of section 2.3, we can now play a practical game
of this DDM-shape optimization problem with two players, Shape-GA1 and
Shape-GA2 in charge of objective functions JS1(s1, s2) and JS2(s1, s2), re-
spectively. With DDM, Shape-GA1 has a follower Flow-GA1 with objective
function JF1(g1, g2) and Shape-GA2 has another follower Flow-GA2 with ob-
jective function JF2(g1, g2). Note that each player or follower optimizes the
corresponding objective function with respect to non-underlined variables.
The whole structure of the implementation based on the information exchange
between players is described as follows:

Step 0: (Initialization) Start with a randomly created shape s(x), x ∈ [A,B] and
split it into two curves s1 and s2 as starting curves for Shape-GA1 and Shape-
GA2

Step 1: Shape-GA1 and Shape-GA2 run separately until the iteration number
equals the exchange frequency number.

Step 2: Exchange current the fittest shape information between Shape-GA1 and
Shape-GA2.

Step 3: Repeat the Step 1 to Step 2 until no player can further improve his fitness.
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It is noted that Shape-GA1 operates for the left part and Shape-GA2 for
the right part of the nozzle. In this paper, Shape-GA1 receives the y coordinate
value and slope of the point D from the fittest curve s2 of Shape-GA2. This
value will be used for the end control point of the Bézier curve of s1 in Shape-
GA1 for the next step. This treatment ensures continuity and is expected to
have smoothness at the overlapping segment ĈD. Shape-GA2 does the same
as Shape-GA1 meanwhile.

The calculation of each shape fitness requires to solve the flow equations
by CFD solvers over the whole domain. Combining DDM with the local geo-
metrical optimization, the flow field can be solved separately by two followers
Flow-GA1 and Flow-GA2 in each subdomain. The flow-GAs returns the cur-
rent fittest flow solution to Shape-GAs for computing fitness of each shape and
the information exchange between two followers happens during the exchange
between the shape players. We are satisfied when each local problem gives
“zero” (very small) for the local criteria.

The problem (6) with Shape-GA1 and Shape-GA2 is a Nash problem solved
with a floating point coded GA, whereas the problem (4) with Flow-GA1 and
Flow-GA2 is solved with a binary coded Nash GA. Problems (4) and (6) are
coupled since a precise solution of the DDM flow solver via (4) is necessary
to evaluate candidate solutions of optimization problem via (6).

5 Results and Analysis

With the method presented above, we have tested both the DDM flow problem
and the nozzle reconstruction problem, respectively. Exchange frequency for
Nash/GAs is 1. The potential values are predicted by a finite element Laplace’s
solver based on a direct Choleski method. The probability of crossover Pc =
0.85 and the probability of mutation Pm = 0.09 are not carefully selected
but are fixed for Flow-GAs. The parameters used in Shape-GAs are 0.6 for
crossover rate and 0.108 for mutation rate.

We first present the preliminary results of the DDM flow problem with the
Nash/GAs game described in the the section 3. The convergence histories of
the fittest individual are shown in Fig. 2. Following the trace of the domain
integral of the current fittest values of JF (g1, g2), we find that the value of the
domain integral JF has been reduced from 1.2E-2 to 1.6E-7, which confirms
that the present Nash/GAs method works well for the test case.

The numerical results of the method described in the section 4 tested for
a nozzle reconstruction problem are presented in Figs. 3-5. As the pressure
distribution Cp matches the target, the corresponding nozzle shape is recon-
structed successfully (see Fig. 5).
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Fig. 2. Convergence histories: (a) Flow-GA1 and (b) Flow-GA2
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6 Conclusion and Possible Extensions

From the experiments described in this paper, it is clear that GAs and DDM
may provide robust tools to solve complex distributed optimization problems.
It is shown that one can decompose a “global” cost function into a sum of
“local” cost functions and under circumstances it is sufficient to look for Nash
equilibrium points (or special Nash points). The multi objective techniques
with decentralized players discussed here demonstrate convincingly that com-
bining ideas from Economics or Game Theory with GAs may lead to power-
ful distributed optimization methods for Engineering problems. A significant
saving in the above process in terms of elapsed time in a distributed parallel
networked environment is anticipated by replacing expensive global commu-
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nication (standard strong collective optimality) by local communication (non
standard weaker individual optimality).

The preliminary results presented above should be checked on many sub-
domains in dimension 3 and extended to non linear flow situations. Very
many other problems can be considered by related methods. Some of them
are indicated in the CRAS note by the authors [7] and several papers are in
preparation.
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Summary. This is a further development of [9] regarding multilevel preconditioning
for symmetric interior penalty discontinuous Galerkin finite element approximations
of second order elliptic problems. We assume that the mesh on the finest level is a
results of a geometrically refined fixed coarse mesh. The preconditioner is a multilevel
method that uses a sequence of finite element spaces of either continuous or piece-
wise constant functions. The spaces are nested, but due to the penalty term in
the DG method the corresponding forms are not inherited. For the continuous finite
element spaces we show that the variable V-cycle provides an optimal preconditioner
for the DG system. The piece-wise constant functions do not have approximation
property so in order to control the energy growth of the inter-level transfer operator
we apply W–cycle MG. Finally, we present a number of numerical experiments that
support the theoretical findings.

1 Introduction

Consider the following model second order elliptic problem on a bounded
domain with a polygonal boundary Ω ⊂ Rd, d = 2, 3:

−∇ · (a(x)∇u) = f(x) in Ω, u(x) = g on ∂Ω. (1)

Here a is a uniformly positive in Ω and piece-wise W 1
∞(Ω)-function that may

have jumps along some interfaces. The theoretical results can be easily ex-
tended to a coefficient matrix a and more general boundary conditions.

Our goal is to study iterative methods for a symmetric interior penalty
discontinuous Galerkin finite element approximations of (1) over a partition
T of Ω into finite elements denoted by K. We assume that the partition is
quasi uniform and regular. For a finite element K we denote by hK its size
and h = maxK∈T hK. Further, we use the following notations concerning T :
E0 is the set of all interior edges/faces, Eb is the set of the edges/faces on
the boundary ∂Ω and E = E0 ∪ Eb. In fact, T , E , etc are sets depending on
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the mesh-size h. However, in order to avoid proliferation of indices and since
we are dealing exclusively with algebraic problems we shall not explicitly
denote this dependence on the mesh-size. We also use a hierarchy of meshes
T1 ⊂ · · · ⊂ TJ which are obtained by geometric refinement of a coarse mesh
T1. Thus, T = TJ and Tk is the mesh generated after k−1 levels of refinement
of T1. When the index k, showing the dependence on the refinement level, is
suppressed this means that the quantities are defined on the finest level.

We introduce the spaces

Hs(T ) =
{
v ∈ L2(Ω) : v|K ∈ Hs(K), ∀K ∈ T

}
, for s ≥ 0 (2)

and for r ≥ 0 integer we define the finite element space

V := V(T ) := {v ∈ L2(Ω) : v|K ∈ Pr(K), K ∈ T }, (3)

where Pr is the set of polynomials of total degree at most r restricted to K.
On V we define the bilinear forms

(a∇u,∇v)T :=
∑
K∈T

∫
K
a∇u,∇v dx, 〈p, q〉E :=

∑
e∈E

∫
e

pq ds.

On e = K̄1 ∩ K̄2 ∈ E we define the jump of a scalar function v ∈ V by

[[v]]e :=

{
v|K1nK1 + v|K2nK2 , e = K̄1 ∩ K̄2, i.e. e ∈ E0,

v|KnK, e = K̄ ∩ ∂Ω, i.e. e ∈ Eb

and the average value of the traces of a∇v for v ∈ V:

{{a∇v}} |e :=

{
1
2{a∇v|K1 + a∇v|K2}, e = K̄1 ∩ K̄2, i.e. e ∈ E0,

a∇v|K, e = K̄ ∩ ∂Ω, i.e. e ∈ Eb.

Here nK is the external unit vector normal to the boundary ∂K of K ∈ T .
Next, we define the piecewise constant function hE on E as

hE = hE(x) = |e| 1
d−1 , for x ∈ e, e ∈ E , d = 2, 3. (4)

And finally, we introduce the following mesh-dependent norm on V:

|||v|||2 = (a∇v,∇v)T +
〈
h−1
E κE [[v]] , [[v]]

〉
E . (5)

The stabilization factor κE is weighted by the coefficient a, namely, κE =
κ {{a}}, where {{a}} is the average value of a from both sides of e ∈ E . This
choice of the penalty gives rise to a DG bilinear form (7) that is equivalent to
the norm (5) with constants independent of the jumps of a.

We consider the following symmetric interior penalty discontinuous Galer-
kin (SIPG) finite element approximation of (1) (see, e.g. [1, 2]):

find uh ∈ V such that A(uh, v) = L(v) ∀v ∈ V, (6)
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where V is the finite element space and A(·, ·), L(·) are bilinear and linear
forms on V defined by

A(uh, v) ≡ (a∇uh,∇v)T −〈{{a∇uh}} , [[v]]〉E −〈[[uh]] , {{a∇v}}〉E
+
〈
h−1
E κE [[uh]] , [[v]]

〉
E

(7)

and
L(v) =

∫
Ω

fvdx+
∫

∂Ω

(h−1
E κEv − a∇v · n) g ds. (8)

It is known (see, e.g. [2]) that SIPG (6) – (8) is stable for sufficiently large
κ > 0 and has optimal convergence in H1-like norm (5). This is just one
example of a large number of DG FEM approximations of second order elliptic
problems that have been introduced and studied in the last several years (see,
e.g. [2, 9]).

The aim of this paper is to introduce and study multilevel iterative meth-
ods for the corresponding algebraic problems. Note that the condition number
of the DG FE system grows like O(h−2) on a quasi uniform mesh with mesh-
size h. Therefore construction of optimal solution methods, i.e. with arithmetic
work proportional to the numbers of unknowns, that is robust with respect
to large variations of the coefficient a is an important problem from both
theoretical and practical points of view.

The work of Gopalakrishnan and Kanschat [10], the first one we are aware
of, studied the variable V-cycle multigrid operator as a preconditioner of the
symmetric DG system. Under certain weak regularity assumptions on geomet-
rically nested meshes it was shown in [10] that the condition number of the
preconditioned system is O(1), i.e. bounded independently of h. The analysis
of the preconditioner is based on the abstract multigrid theory [7] for non-
inherited bilinear forms and the estimates for interior penalty finite element
method. Further, Brenner and Zhao [8] studied V-cycle, W-cycle, and F-cycle
algorithms for the symmetric DG FE schemes on rectangular meshes and
showed that they produce uniform preconditioners for sufficiently many pre-
and post smoothing steps. Their analysis is based on certain mesh dependent
norms and a relationship of the discontinuous FE spaces to some higher order
continuous finite element spaces. Our approach is slightly different, it could
be seen as the classical two-level method applied to the DG linear systems.
We explore two different possibilities for a choice of the second level, namely,
continuous piece-wise polynomial functions and piece-wise constant functions.

2 MG Preconditioner Using Spaces of Continuous
Functions

We assume that we have a sequence of nested globally quasi-uniform tri-
angulations Tk, k = 1, . . . , J , of the domain Ω with T1 being the coarsest
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triangulation. According to the convention from the introduction the set of
all edges/faces of elements in Tk is denoted by Ek, the sets of the interior and
boundary edges/faces are denoted by E0

k and Eb
k, respectively, and hk is the

diameter of a typical element in Tk and hEk
is defined by (4) on Ek. Then

Hs(Tk) and Vk are the spaces (2) and (3), respectively, defined on Tk. The
corresponding continuous discrete spaces are defined as Vc

k = Vk ∩ C(Ω).
For functions u and v in Hs(Tk), s > 3

2 , we define the interior penalty
(SIPG) bilinear and linear forms according to (7) for the mesh Tk:

Ak(u, v) = (a∇u,∇v)Tk
+
〈
h−1
Ek
κE [[u]] , [[v]]

〉
Ek

− 〈{{a∇u}} , [[v]]〉Ek
− 〈{{a∇v}} , [[u]]〉Ek

,

Lk(v) =
∫

Ω

fv +
〈
h−1
Ek
κEg, v

〉
Eb

k

− 〈a∇v · n, g〉Eb
k
.

With these definitions, the interior penalty discontinuous Galerkin method
for the elliptic problem (1) reads: find uh ∈ VJ such that

AJ(uh, v) = LJ (v), ∀v ∈ VJ . (9)

Let |||·|||k be the norm (5) defined on the mesh Tk. It is well known that
there exists κ0 such that for κ > κ0 the following norm equivalence on Vk

holds Ak(v, v) � |||v|||2k , ∀v ∈ Vk, with constants in the norm equivalence
independent of hk, i.e. Ak(v, v)

1
2 is a norm on Vk.

Lemma 1. Consider the case of homogeneous boundary condition, g = 0, and
assume that the solution u of (1) belongs to H1+α(Ω) for some 1

2 < α ≤ 1.
Let uk ∈ Vk (or Vc

k) be the solution of Ak(uk, v) = Lk(v), ∀v ∈ Vk (Vc
k). Then

the following error estimate holds

|||u− uk|||k ≤ Chα
k‖u‖1+α

with a constant C independent of hk.

Sketch of the proof. To prove this estimate one can use the Galerkin or-
thogonality, the boundedness of Ak(·, ·) in the norm |||u|||α,k = |||u|||2k +∑

K∈Tk
h2α

k |u|21+α,K for u ∈ H1+α(Tk) and the approximation properties of
the space Vk. Note that in contrast to the work [10] instead of using the quan-
tity Ak(·, ·) 1

2 , which in general is not a norm on H1+α(Tk), we work directly
in the norm |||u|||α,k.

Now we define the variable V-cycle MG preconditioner.

3 Variable V -Cycle Multigrid Preconditioner

In this Section we shall follow the general theory of multigrid methods as
presented by Bramble and Zhang in [7, Chapter II, Section 7]. We will use the
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following sequence of nested spaces: MJ+1 = V, i.e. this is the space where
the SIPG method is defined; for k = 1, . . . , J we take Mk = Vc

k the continuous
finite element space. The corresponding bilinear forms Ak(·, ·) are defined
above for k = 1, . . . , J ; for k = J + 1 we let AJ+1(u, v) = A(u, v). Define the
operators Ak : Mk →Mk, Qk : L2(Ω)→Mk, and Pk : Mk+1 →Mk by

(Aku, v) = Ak(u, v), ∀v ∈Mk, k = 1, . . . , J + 1,
(Qku, v) = (u, v), ∀v ∈Mk, k = 1, . . . , J + 1,

Ak(Pku, v) = Ak+1(u, v), ∀v ∈Mk, k = 1, . . . , J,

where (·, ·) denotes the inner product in L2(Ω). Note that because of the
penalty term the forms Ak(u, v) defined on the spaces Vk vary. Assume we
are given the smoothing operators Rk : Mk → Mk that satisfy appropriate
smoothing property (see, [7, Chapter II, Section 7, p. 260]). One can show
that scaled Jacobi and Gauss-Seidel iterations satisfy this requirement.

Let Bk be the operator of the MG method based on the sequence of spaces
M1 ⊂ · · · ⊂ MJ ⊂ MJ+1, with mk pre- and post-smoothing steps with the
smoother Rk. Note that to retain the symmetry of certain operators on odd
steps we apply Rk, while on even steps we apply Rt

k, where the transposition
is with respect to the (·, ·)-inner product.

The following assumption will be used in the study of the MG method.
Assumption A.1: For any f ∈ H−1+ρ(Ω) with 1

2 < ρ ≤ 1 and g = 0 the
problem (1) has a unique solution u ∈ H1+ρ(Ω) and ‖u‖H1+ρ ≤ CΩ‖f‖H−1+ρ

with a constant CΩ .
For this setting, we prove the following main result (see, e.g. [7]):

Theorem 1. Let the Assumption A.1 hold. Assume also that for some 1 <
β0 ≤ β1 we have β0mk ≤ mk−1 ≤ β1mk. Then there is a constant M inde-
pendent of k such that

η−1
k Ak(v, v) ≤ Ak(BkAkv, v) ≤ ηkAk(v, v), ∀v ∈Mk

with ηk = M+mα
k

mα
k

and α as in Lemma 1.

Sketch of the proof. The proof essentially checks the conditions (of “smoothing
and approximation”) from [7] under which this theorem is proved. The first
condition essentially requires that Rk is a smoother. It is well known that
Gauss-Seidel or scaled Jacobi satisfy this condition.

Now we outline the main steps in the proof of the second condition which
is: for some α ∈ (0, 1] there is a constant CP independent of k such that

| Ak((I − Pk−1)v, v)| ≤ CP

(‖Akv‖2
λk

)α

[Ak(v, v)]1−α, (10)

where λk is the largest eigenvalue of the operator Ak. This is established in
several steps.
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First, we show that under the Assumption A.1 for all u ∈ Mk, k =
2, . . . , J+1 we have |||u− Pk−1u|||k ≤ Chρ

k‖Aku‖−1+ρ, where |||·|||J+1 = |||·|||J .
Next, we show that

‖Aku‖−1 ≤ C |||u|||k , ∀u ∈Mk (11)

and
|||u− Pk−1u|||k ≤ Chρ

k‖Aku‖−1+ρ ≤ Chρ
k‖Aku‖1−ρ

−1 ‖Aku‖ρ. (12)

Finally, using the estimates (12) and (11) and the fact that H−1+ρ(Ω) is an
intermediate space between H−1(Ω) and L2(Ω) we obtain

| Ak(u− Pk−1u, u)| ≤ Chρ
k‖Aku‖1−ρ

−1 ‖Aku‖ρ |||u|||k

≤ C
‖Aku‖ρ

λ
ρ/2
k

|||u|||2−ρ
k = C

(‖Aku‖2
λk

) ρ
2

Ak(u, u)1−
ρ
2

which is exactly the required result with α = ρ/2.

Remark 1. This results is quite similar to the results of [10] and [8] in the
sense that it proves the convergence of the variable V-cycle MG and ensures
better convergence for smoother solutions. The difference is the choice of the
hierarchy of finite element spaces used on the consecutive levels and the proof
of the fundamental estimate (10). After closer inspection of the proof one can
see easily that one can take Mk = Vk, for all k ≥ k0 ≥ 1. In fact, making
this choice with k0 = 1 will lead to the result of [10] (with a slightly different
proof).

4 Multigrid W -Cycle for Piecewise-Constant Spaces

In this section we consider a method for the solution of the coarse problem,
when a two level method with coarse space, denoted here with MJ , of piece-
wise constant functions. We will also take a standard multilevel hierarchy of
this space, given by the subspaces Mk, of piecewise constant functions on grids
with size hk. Let us note that such two level algorithm is attractive, because
of its simplicity and low number of degrees of freedom. However, it is well
known that using the hierarchy given by Mk and applying standard V-cycle
on MJ does not lead to an optimal algorithm.

In this section we briefly describe how a general ν-fold cycle can be applied
to solve the coarse grid problem when piece-wise constant functions are used
to define this problem. Note that on general meshes the piecewise constant
functions do not provide approximation and one cannot apply the theory of
MG methods in a manner used in [5] for cell-centered schemes on regular
rectangular meshes. To introduce the ν-fold MG cycle algorithm, we consider
the recursive definition of a general multilevel method as in [7]. Assuming that
we know the action of Bk−1 on Mk−1, for a given f ∈Mk we define the action
Bkf as follows.

Recursive definition of a multilevel algorithm:
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1. x = Rkg.
2. y = x+ ZkBk−1Qk−1(f −Akx).
3. Bkf = y +Rt

k(g −Aky).

Now, for a fixed e ∈Mk, we consider Eke = (I −BkAk)e. It is easy to derive
the following error equation:

Eke = (I −Rt
kAk)(I − ZkBk−1Ak−1Pk−1)(I −RkAk)e.

In the case, when {Mk}Jk=1 are the spaces of discontinuous piece-wise constant
functions we shall define Zk, using the techniques from [12, 3, 4], namely we
shall choose Zk to be a polynomial in (Bk−1Ak−1). Indeed, in such case the
second term in the product form of the error equation is as follows.

Xk = I − ZkBk−1Ak−1Pk−1 = I − (I − pν(Bk−1Ak−1))Pk−1.

Usually, pν(t) is of degree less than or equal to ν, pν(t) is non-negative for
t ∈ [0, 1], and pν(0) = 1. Taking pν(t) = (1 − t)ν gives the ν-fold MG cycle.
For ν = 1 this is the V -cycle and for ν = 2, this is the W -cycle. Note also that,
for pν(t) = (1− t)ν , we have Xk = I −Pk−1 +Eν

k−1Pk−1. Hence, if the degree
of the polynomial is sufficiently large and Ek−1 is a contraction on Mk−1,
then the corresponding ν-fold cycle can be made as close as we please to a
two-level iteration. As it is well known, the two level iteration, is uniformly
convergent [9].

We would like to point out that an adaptive choice of the polynomials pν

is possible, and we refer to [12, 3, 4] for strategies how to make such choices
and also for many theoretical results for these methods.

A crucial property of the coarser spaces, that determines the convergence
of such multilevel process, in general, is the stability of projections on coarser
spaces. A basic assumption in the analysis is the existence of constants q ≥ 1
and C (both independent of k and l) and such that

‖Qlv‖2 ≤ Cqk−l‖v‖Ak
, ∀v ∈Mk, k > l. (13)

Clearly, if q = 1, then the resulting V-cycle algorithm has convergence rate
depending only logarithmically on the mesh size, without any regularity as-
sumptions on the underlying elliptic equation (see [6]). The ν-fold cycle, how-
ever, works even in cases, when q > 1, by increasing the polynomial degree ν
when needed. Since the goal is to construct an optimal algorithm, the overall
computational complexity gives a restriction on ν. Practical values are ν = 2
or ν = 3. In case ν = 2 (W -cycle), which we have used in most of our nu-
merical experiments in the next section, a uniform convergence result can be
proved in a fashion similar to the case of variable V -cycle. In such analysis, an
essential ingredient are bounds on q from (13) and such estimates for piece-
wise constant spaces on uniformly refined hexahedral, quadrilateral as well as
simplicial grids are given in [11, 9].
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5 Numerical Experiments

We present three test problems of elliptic equation with homogeneous Dirichlet
boundary conditions:
Test Problem 1: The equation −∆u = 1 in the cube Ω = (0, 1)3;
Test Problem 2: The equation −∇ · (a∇u) = 1 in Ω = (0, 1)3 \ [0.5, 1)3 where
the coefficient a has jumps (a 3-D chess-board pattern) as follows: a = 1, in
(I1× I1× I1)∪ (I2× I2× I1)∪ (I1× I2× I2)∪ (I2× I1× I2) and a = ε, in the
other parts of Ω, where I1 = (0, 0.5] and I2 = (0.5, 1], and we vary the value
of ε according to the data in the Tables;
Test Problem 3: The equation −∆u = 1 in the domain shown on Figure 1.

The second test problem is designed to check the robustness of the methods
with respect to jumps of the coefficient a. The mesh of test problem 3 has a
number of finite elements of high aspect ration and the aim was to see how
the iteration methods perform on such grids.

For all test examples we have used a coarse tetrahedral mesh which is uni-
formly refined to form a sequence of nested meshes. In SIPG we use linear and
quadratic finite elements. The value of the penalty term was experimentally
chosen to be κ = 15 for linear, and κ = 30 for quadratic finite elements (cf.
(5), (7)).

Fig. 1. Coarse meshes for the second (left) and third (right) test problems.

We test the following multilevel preconditioners for the SIPG method:

1. the V -cycle preconditioner based on continuous elements with one pre-
and one post-smoothing Gauss-Seidel iteration.

2. W -cycle preconditioner based on piecewise constant coarse spaces using
one pre- and post-smoothing steps of symmetric Gauss-Seidel smoother.

3. variable V -cycle preconditioner based on continuous elements described
in Section 3 with one pre- and post-smoothing Gauss-Seidel iteration on
the finest level and double the pre- and post-smoothing iteration on each
consecutive coarser level.

The numerical results are summarised below. In each table we give the number
of iterations in the PCG algorithm and the corresponding average reduction
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factor for each test run. In addition we include the number of degrees of
freedom (DOF) in the DG space, V, and the DOF for the first coarse space
(defined on the finest mesh) of either continuous piecewise polynomial func-
tions or piecewise constants.

Table 1. Numerical results for SIPG with linear FE: V -cycle based on continuous
linear FE andW -cycle based on piece-wise constant functions with one pre- and one
post-smoothing Gauss-Seidel iteration.

Test Problem 1 Level 2 Level 3 Level 4 Level 5 Level 6

DOF SIPG 3 072 24 576 196 608 1 572 864 12 582 912

preconditioner DOF 189 1 241 9 009 68 705 536 769
continuous FE 14/0.2556 14/0.2614 14/0.2572 14/0.2487 13/0.2344

preconditioner DOF 768 6 144 49 152 393 216 3 145 728
piecewise constant 24/0.4493 29/0.5238 30/0.5374 30/0.5342 29/0.5276

Table 2. Numerical results for SIPG with quadratic FE: V -cycle preconditioner
based on continuous FE and W -cycle preconditioner based on piecewise constant
functions each with one pre- and one post-smoothing Gauss-Seidel iteration.

Test Problem 1 Level 1 Level 2 Level 3 Level 4 Level 5

DOF SIPG 960 7 680 61 440 491 520 3 932 160

preconditioner DOF 189 1 241 9 009 68 705 536 769
continuous FE 10/0.1414 11/0.1717 11/0.1747 11/0.1657 10/0.1514

preconditioner DOF 96 768 6 144 49 152 393 216
piecewise constant 22/0.4315 35/0.5810 42/0.6442 43/0.6509 43/0.6496

In Tables 1 and 2 we present the computational results for test problem 1.
These results show that both preconditioners, the V -cycle, that uses contin-
uous finite elements, and the W -cycle, that uses piece-wise constant function
on all coarser levels are optimal with respect to the number of iterations. The
W -cycle preconditioner, based on piecewise constant functions, performs ac-
cording to the W -cycle theory. However, it needs two times more iterations
compared with the V -cycle, based on continuous functions. While the former
has a matrix of size about 6 times larger than size of the matrix of the latter
(for linear FE), one should have in mind that in the case of piece-wise constant
functions the corresponding matrix has only five nonzero entries per row, i.e.
it is about five times sparser than the matrix produced by continuous linear
elements. Unfortunately, we do not have a theory for the V -cycle.

It is known that the choice of the stabilization factor κE could affect the
properties of the method. To test sensitivity of the preconditioners with re-
spect to the jumps of the coefficient a we considered two different choices,
κE = κ {{a}}, as defined in the SIPG method, and κE = κ‖a‖L∞ = 15,
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Table 3. V -cycle and variable V -cycle based on continuous coarse spaces for the
SIPG with linear elements and stabilization factor κE that does not depend on the
jumps of a.

Test Problem 2 Level 1 Level 2 Level 3 Level 4

DOF of SIPG 1 344 10 752 86 016 688 128

precond. DOF - continuous linear 117 665 4 401 31 841

ε = 1, V -cycle 15/0.2750 16/0.2946 15/0.2908 15/0.2838

ε = 0.1, V -cycle 17/0.3322 19/0.3645 19/0.3717 19/0.3675

ε = 0.01, V -cycle 17/0.3219 19/0.3632 19/0.3746 19/0.3713

ε = 0.001, V -cycle 15/0.2929 17/0.3377 18/0.3527 18/0.3488

ε = 1, variable V -cycle 15/0.2738 15/0.2900 15/0.2850 15/0.2759

ε = 0.1, variable V -cycle 17/0.3310 18/0.3593 19/0.3658 18/0.3566

ε = 0.01, variable V -cycle 17/0.3211 18/0.3568 19/0.3684 18/0.3582

ε = 0.001, variable V -cycle 15/0.2919 17/0.3333 18/0.3457 17/0.3337

which obviously is independent of the jumps. As shown in Table 3 the vari-
able V -cycle preconditioner, covered by our theory, gives the same number of
iterations as the V -cycle. Both preconditioners are not sensitive to the choice
of κE . From Table 3 one can see that the preconditioners based on continuous
coarse spaces are robust in this case with respect to the jumps in a. However,
this is not the case for the preconditioners based on piece-wise constant coarse
spaces. We observe this in Table 4 where the performance of the W -cycle is
given. From these experiments we see that a proper weighting of the jumps is
essential for the performance of the W -cycle iteration based on piece-wise con-
stant functions. In Table 5 we present results for test problem 2 with properly

Table 4. W -cycle based on piece-wise constant coarse spaces for the SIPG with
linear elements and stabilization factor κE that does not depend on the jumps of a

Test Problem 2 Level 1 Level 2 Level 3 Level 4

DOF of SIPG 1 344 10 752 86 016 688 128

precond. DOF - piecewise constant 336 2 688 21 504 172 032

ε = 1, W -cycle 22/0.4151 27/0.4940 29/0.5224 29/0.5297

ε = 0.1, W -cycle 38/0.6106 72/0.7706 85/0.8027 91/0.8160

ε = 0.01, W -cycle 48/0.6804 157/0.8869 210/0.9156 238/0.9255

scaled stabilization parameter: κE = κ {{a}}. We tested the following precon-
ditioners: V -cycle and variable V -cycle based on continuous coarse spaces and
W -cycle based on piece-wise constant coarse spaces. Once again one can see
that V -cycle and variable V -cycle based on continuous coarse spaces perform
almost identically. Note that the iteration counts are slightly larger than those
of the case κE = κ‖a‖L∞ (cf. Table 3) but they are insensitive to large jumps.
In the case of piece-wise constant coarse spaces (W -cycle) the advantage of
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the weighted stabilization is evident – the numerical experiments show that
the number of PCG iterations is essentially independent of the jumps.

Table 5. Numerical results for Test Problem 2: SIPG with linear elements and
stabilization parameter κE = κ {{a}}.

Test Problem 2 Level 1 Level 2 Level 3 Level 4 Level 5

DOF of SIPG 1 344 10 752 86 016 688 128 5 505 024

precond. DOF - continuous 117 665 4 401 31 841 241 857

ε = 1, V -cycle 15/0.2750 16/0.2946 15/0.2908 15/0.2838 15/0.2766

ε = 0.1, V -cycle 16/0.3161 20/0.3812 21/0.4105 22/0.4187 22/0.4196

ε = 0.01, V -cycle 20/0.3800 24/0.4539 29/0.5228 31/0.5518 33/0.5687

ε = 0.001, V -cycle 19/0.3782 24/0.4603 30/0.5377 33/0.5674 36/0.5957

ε = 10−4, V -cycle 18/0.3546 24/0.4535 30/0.5312 32/0.5622 34/0.5753

ε = 10−5, V -cycle 18/0.3411 23/0.4488 28/0.5100 30/0.5405 32/0.5622

ε = 10−6, V -cycle 17/0.3279 23/0.4416 26/0.4911 29/0.5298 30/0.5375

ε = 1, var. V -cycle 15/0.2738 15/0.2900 15/0.2850 15/0.2759 14/0.2628

ε = 0.1, var. V -cycle 16/0.3157 20/0.3782 21/0.4038 21/0.4107 21/0.4056

ε = 0.01, var. V -cycle 20/0.3796 24/0.4508 29/0.5170 31/0.5448 32/0.5559

ε = 0.001, var. V -cycle 19/0.3779 24/0.4574 30/0.5329 33/0.5612 35/0.5886

precond. DOF - p.w. constant 336 2 688 21 504 172 032 1 376 256

ε = 1, W -cycle 22/0.4151 27/0.4940 29/0.5224 29/0.5297 29/0.5251

ε = 0.1, W -cycle 23/0.4400 28/0.5057 29/0.5284 30/0.5357 30/0.5343

ε = 0.01, W -cycle 22/0.4300 28/0.5012 30/0.5321 30/0.5385 31/0.5420

ε = 0.001, W -cycle 23/0.4410 28/0.5001 30/0.5332 30/0.5403 31/0.5438

ε = 10−4, W -cycle 22/0.4302 27/0.4980 30/0.5333 30/0.5405 31/0.5442

ε = 10−5, W -cycle 22/0.4209 26/0.4880 30/0.5333 30/0.5405 31/0.5442

ε = 10−6, W -cycle 21/0.4112 25/0.4730 30/0.5333 30/0.5405 31/0.5442

Table 6. Numerical results for Test Problem 3 for V -cycle and W -cycle for the
SIPG with linear elements.

Test Problem 3 Level 1 Level 2 Level 3 Level 4

precond. DOF of SIPG 24 032 192 256 1 538 048 12 304 384

precond. DOF of cont. FE 1 445 9 693 70 633 538 513
V -cycle 18/0.3530 18/0.3559 18/0.3529 19/0.3785

precond. DOF p.w. constants 6 008 48 064 384 512 3 076 096
W -cycle 35/0.5907 40/0.6307 45/0.6578 48/0.6788

Finally, in Table 6 we present the results iteration for V -cycle and W -cycle
preconditioners for test Problem 3. The mesh of this example has a number
of finite elements with high aspect ratio. The computations show that the
preconditioner based on piecewise constant functions is slightly more sensitive
with respect to the aspect ratio.
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1 Introduction

Time domain decomposition methods have a long history: already [10] made
the following visionary statement:

“For the last 20 years, one has tried to speed up numerical computa-
tion mainly by providing ever faster computers. Today, as it appears
that one is getting closer to the maximal speed of electronic com-
ponents, emphasis is put on allowing operations to be performed in
parallel. In the near future, much of numerical analysis will have to
be recast in a more “parallel” form.”

Nievergelt proposed a parallel algorithm based on a decomposition of the
time direction for the solution of ordinary differential equations. While his
idea targeted large scale parallelism, [9] proposed a little later a family of
naturally parallel Runge Kutta methods for small scale parallelism:

“It appears at first sight that the sequential nature of the numerical
methods do not permit a parallel computation on all of the processors
to be performed. We say that the front of computation is too narrow
to take advantage of more than one processor... Let us consider how
we might widen the computation front.”

Waveform relaxation methods, introduced in [6] for the large scale simulation
of VLSI design, are another fundamental way to introduce time parallelism
into the solution of evolution problems. For an up to date historical review
and further references, see [4].

The present research was motivated by the introduction of the parareal
algorithm in [7]. We show in this paper a general superlinear convergence
result for the parareal algorithm applied to a nonlinear system of ordinary
differential equations.
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2 Derivation of the Parareal Algorithm

The parareal algorithm is a time parallel algorithm for the solution of the
general nonlinear system of ordinary differential equations

u′(t) = f(u(t)), t ∈ (0, T ), u(0) = u0, (1)

where f : RM −→ RM and u : R −→ RM .
To obtain a time parallel algorithm for (1), we decompose the time domain

Ω = (0, T ) into N time subdomains Ωn = (Tn, Tn+1), n = 0, 1, . . . N −1, with
0 = T0 < T1 < . . . < TN−1 < TN = T , and ∆Tn := Tn+1 − Tn, and consider
on each time subdomain the evolution problem

u′
n(t) = f(un(t)), t ∈ (Tn, Tn+1), un(Tn) = Un, n = 0, 1, . . . , N − 1, (2)

where the initial values Un need to be determined such that the solutions on
the time subdomains Ωn coincide with the restriction of the solution of (1) to
Ωn, i.e. the Un need to satisfy the system of equations

U0 = u0, Un = ϕ∆Tn−1(Un−1), n = 1, . . . , N − 1, (3)

where ϕ∆Tn
(U) denotes the solution of (1) with initial condition U after

time ∆Tn. This time decomposition method is nothing else than a multiple
shooting method for (1), see [3]. Letting U = (UT

0 , . . .U
T
N−1)

T , the system
(3) can be written in the form

F(U) =

⎛⎜⎜⎜⎝
U0 − u0

U1 −ϕ∆T0(U0)
...

UN−1 −ϕ∆TN−2(UN−2)

⎞⎟⎟⎟⎠ = 0, (4)

where F : RM ·N −→ RM ·N . System (4) defines the unknown initial values Un

for each time subdomain, and needs to be solved, in general, by an iterative
method. For a direct method in the case where (1) is linear and the system
(4) can be formed explicitly, see [1].

Applying Newtons method to (4) leads after a short calculation to

Uk+1
0 = u0,

Uk+1
n = ϕ∆Tn−1(U

k
n−1) + ϕ′

∆Tn−1
(Uk

n−1)(U
k+1
n−1 −Uk

n−1),
(5)

where n = 1, . . . , N−1. Chartier and Philippe [3] showed that the method (5)
converges quadratically, once the approximations are close enough to the so-
lution. However in general, it is too expensive to compute the Jacobian terms
in (5) exactly. An interesting recent approximation is the parareal algorithm,
which uses two approximations with different accuracy: let F(Tn, Tn−1,Un−1)
be an accurate approximation to the solution ϕ∆Tn−1(Un−1) on time subdo-
main Ωn−1, and let G(Tn, Tn−1,Un−1) be a less accurate approximation, for
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example on a coarser grid, or a lower order method, or even an approximation
using a simpler model than (1). Then, approximating the time subdomain
solves in (5) by ϕ∆Tn−1(U

k
n−1) ≈ F(Tn, Tn−1,Uk

n−1), and the Jacobian term
by

ϕ′
∆Tn−1

(Uk
n−1)(U

k+1
n−1 −Uk

n−1) ≈ G(Tn, Tn−1,Uk+1
n−1)−G(Tn, Tn−1,Uk

n−1),

we obtain as approximation to (5)

Uk+1
0 = u0,

Uk+1
n = F(Tn, Tn−1,Uk

n−1) + G(Tn, Tn−1,Uk+1
n−1)−G(Tn, Tn−1,Uk

n−1),
(6)

which is the parareal algorithm, see [7] for a linear model problem, and [2]
for the formulation (6). A natural initial guess is the coarse solution, i.e.
U0

n = G(Tn, Tn−1,U0
n−1).

3 Convergence Analysis

To simplify the exposition, we assume in this section that all the time subdo-
mains are of the same size, ∆Tn = ∆T := T

N , n = 0, 1, . . . , N − 1, and that
F is the exact solution, i.e. F(Tn, Tn−1,Uk

n−1) = ϕ∆Tn−1(U
k
n−1). We also as-

sume that the difference between the approximate solution given by G and
the exact solution can be expanded for ∆T small,

F(Tn, Tn−1, x)−G(Tn, Tn−1, x) = cp+1(x)∆T p+1 + cp+2(x)∆T p+2 + . . . , (7)

which is possible if the right hand side function f in (1) is smooth enough, and
G is a Runge Kutta method for example. We finally assume that G satisfies
the Lipschitz condition

‖G(t+∆T, t,x)−G(t+∆T, t,y)‖ ≤ (1 + C2∆T )‖x− y‖. (8)

Theorem 1. Let F(Tn, Tn−1,Uk
n−1) = ϕ∆Tn−1(U

k
n−1) be the exact solution

on time subdomain Ωn−1, and let G(Tn, Tn−1,Uk
n−1) be an approximate so-

lution with local truncation error bounded by C3∆T
p+1, and satisfying (7),

where the cj, j = p+ 1, p+ 2, . . . are continuously differentiable, and assume
that G satisfies the Lipschitz condition (8). Then, at iteration k of the parareal
algorithm (6), we have the bound

‖u(Tn)−Uk
n‖ ≤

C3

C1

(C1∆T
p+1)k+1

(k + 1)!
(1 + C2∆T )n−k−1

k∏
j=0

(n− j)

≤ C3

C1

(C1Tn)k+1

(k + 1)!
eC2(Tn−Tk+1)∆T p(k+1).
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Proof. From the definition of the parareal algorithm (6), we obtain, using that
F is the exact solution and adding and subtracting G(Tn, Tn−1,u(Tn−1))

u(Tn)−Uk+1
n = F(Tn, Tn−1,u(Tn−1))−G(Tn, Tn−1,u(Tn−1))
−
(
F(Tn, Tn−1,Uk

n−1)−G(Tn, Tn−1,Uk
n−1)

)
+ G(Tn, Tn−1,u(Tn−1))−G(Tn, Tn−1,Uk+1

n−1).

Now using expansion (7) for the first two terms on the right hand side, and
(8) on the last one, we obtain on taking norms

‖u(Tn)−Uk+1
n ‖ ≤ C1∆T

p+1‖u(Tn−1)−Uk
n−1‖+(1+C2∆T )‖u(Tn−1)−Uk+1

n−1‖.

This motivates to study the recurrence relation

ek+1
n = αek

n−1 + βek+1
n−1, e0n = γ + βe0n−1, (9)

where α = C1∆T
p+1, β = 1 + C2∆T and γ = C3∆T

p+1, since ek
n is then an

upper bound on ‖u(Tn)−Uk
n‖. Multiplying (9) by ζn and summing over n, we

find that the generating function ρk(ζ) :=
∑

n≥1 e
k
nζ

n satisfies the recurrence
relation

ρk+1(ζ) = αζρk(ζ) + βζρk+1(ζ), ρ0(ζ) = γ
ζ

1− ζ + βζρ0(ζ).

Solving for ρk(ζ), we obtain after induction

ρk(ζ) = γαk ζk+1

(1− ζ)
1

(1− βζ)k+1
.

Replacing the factor 1 − ζ in the denominator by 1 − βζ only increases the
coefficients in the power series of ρk(ζ). Using now the binomial series expan-
sion

1
(1− βζ)k+2

=
∑
j≥0

(
k + 1 + j

j

)
βjζj ,

we obtain for the n-th coefficient ek
n the bound

ek
n ≤ γαkβn−k−1

(
n

k + 1

)
,

which concludes the proof.

4 Numerical Experiments

We show now several numerical experiments, first for small systems of ordinary
differential equations, where the only potential for parallelization lies in the
time direction, and then also for a partial differential equation, namely the
viscous Burgers equation.
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4.1 Brusselator

The brusselator system of ordinary differential equations models a chain of
chemical reactions and is given by

ẋ = A+ x2y − (B + 1)x, ẏ = Bx− x2y.

We chose for the parameters A = 1 and B = 3, and since B > A2 + 1,
the system will form a limit cycle, see [5]. We start the simulation with the
initial conditions x(0) = 0, y(0) = 1, and compute an approximate solution
over the time interval t ∈ [0, T = 12] using the classical fourth order Runge
Kutta method with coarse time step ∆T = T

32 , and fine time step ∆t = T
640 ,

which gives a solution with an accuracy of 5.62e−6. In Figure 1, we show the
initial guess from the coarse solver, and the first five iterates of the parareal
algorithm in the phase plane, and also the difference between the parareal
approximation and the complete fine approximation as a function of time.
The larger dot in the phase plane, and the vertical line in the error plots
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Fig. 1. Parareal approximation of the solution of the Brusselator problem.

indicate how far one could have computed the fine solution sequentially in
the same computation time, neglecting the cost of the coarse solve. The fine
dashed line indicates the accuracy of the fine grid solution. Clearly there is
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a parallel speedup with this type of time parallelization: with 32 processors,
one could have computed the numerical approximation to the same accuracy
of 5.62e− 6 about eight times faster than with one processor.

4.2 Arenstorf Orbit

Arenstorf orbits are closed orbits of a light object (e.g. a satellite) moving
under the influence of gravity of two heavy objects (e.g. planets, moons). The
equations of motion for the example of two heavy objects are

ẍ = x+ 2ẏ − bx+ a

D1
− ax− b

D2
, ÿ = y − 2ẋ− b y

D1
− a y

D2
,

where Dj , j = 1, 2 are function of x and y,

D1 = ((x+ a)2 + y2)
3
2 , D2 = ((x− b)2 + y2)

3
2 .

If the parameters are a = 0.012277471 and b = 1−a, and the initial conditions
are chosen to be x(0) = 0.994, ẋ = 0, y(0) = 0, ẏ(0) = −2.00158510637908,
then the solution is a nice closed orbit with period T = 17.06521656015796,
see [5]. There have been earlier attempts to compute planetary orbits in par-
allel, see [11], where a multiple shooting method was developed. We use again
the parareal algorithm to compute the Arenstorf orbit in parallel, with the
classical fourth order Runge Kutta method and coarse time step ∆T = T

250 ,
and fine time step ∆t = T

80000 , such that the fine trajectory has an accuracy
of 9.98e− 6. We show in Figure 2 the initial guess and the first five iterations
of the parareal algorithm, as in the case of the brusselator problem. While
the initial guess is completely off, and simply spirals outward, the first itera-
tion already reveals the shape of the Arenstorf orbit, and the algorithm has
converged to the precision of the fine time step approximation after four iter-
ations. Neglecting the cost of the coarse grid solve, one could have computed
this trajectory with 250 processors about 62 times faster in parallel, than with
one processor sequentially. The fact that the initial guess is so off is due to
the tremendous sensitivity of the solution to the initial conditions, so it would
be better to use an adaptive method here. We are currently studying the use
of adaptivity in the context of the parareal algorithm.

4.3 Lorenz Equations

Weather prediction could be an important application of the parareal algo-
rithm, since predictions have to be made in real time. If a large scale parallel
computer is available, and the parallelization in space of the partial differ-
ential equation modeling the evolution of the weather is already saturated,
the only way to speed up the computation is to try to parallelize the time
direction. A very simple model for weather prediction is the model given by
the Lorenz equations,
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Fig. 2. Parareal approximation of the Arenstorf orbit.

ẋ = −σx+ σy, ẏ = −xz + rx− y, ż = xy − bz.

These equations were first studied by Lorenz [8], who discovered that in certain
cases approximations to their solution are very sensitive to small changes in
the initial data (he noticed this when he interrupted a computation and wrote
the current position of the solution down by hand to continue the next day,
but his notes included only the first four digits, and not the full precision). A
legend then says that looking at the solution of his equations, which looks on
the attractor like a butterfly, Lorenz concluded that the wings of a butterfly
in Europe could create a thunderstorm in the US.

We chose for the parameters in the Lorenz equations σ = 10, r = 28 and
b = 8

3 , such that the system is in the chaotic regime, and trajectories converge
to the butterfly attractor. We start with the initial conditions (x, y, z)(0) =
(20, 5,−5), and compute with the parareal algorithm an approximate solution
on the time interval [0, T = 10], using again the classical fourth order Runge
Kutta method with coarse time step ∆T = T

180 , and fine time step ∆t = T
14400 ,

which leads to an accuracy in the fine trajectory of 2.4e − 6. We show in
Figure 3 the initial guess and the first five iterations of the parareal algorithm,
together with error curves for the coordinates, as a function of time. One can
see that for the first two iterations, the approximate parareal trajectory is not
in the same wing of the butterfly attractor as the converged trajectory. At
iteration three, the situation changes and the parareal approximation follows
now the converged trajectory. From this iteration on, the algorithm converges
on the entire time interval, as one can see in Figure 4, where we show iteration
six to eleven. At iteration ten, an overall accuracy of 1e−6, which corresponds
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Fig. 3. Initial guess and first five parareal approximations of the solution of the
Lorenz equations.

to the fine grid solution accuracy, is achieved. Neglecting the cost of the coarse
solver, one could therefore have computed a fine grid accurate solution with
180 processors about 18 times faster than sequentially, as indicated by the
dots and the vertical line on the graphs.

In Figure 5 on the left, we show how the difference of the parareal ap-
proximation and the converged solution, measured in the L2-norm in space,
and in the L∞-norm in time, diminishes as a function of the iterations of the
parareal algorithm. One can clearly see that the convergence is superlinear.
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Fig. 4. Sixth to eleventh parareal approximation of the solution of the Lorenz
equations.

In the context of the Lorenz equations, it is interesting to investigate the
behavior of the parareal algorithm with respect to the chaotic nature of the
system. In Figure 5, we show on the right the convergence behavior of the
parareal algorithm for an implementation with variable precision arithmetic,
using 16, 32 and 48 digits of accuracy. One can see that the theoretical re-
sult of superlinear convergence stops at a certain level before the numerical
precision has been reached, and the algorithm stagnates, or in other words,
the trajectory has converged to a different solution from the one computed
sequentially, due to roundoff errors.
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4.4 Viscous Burgers Equation

We finally show numerical experiments for a non-linear partial differential
equation, the viscous Burgers equation,

ut + uux = νuxx in Ω = [0, 1], u(x, 0) = sin(2πx),

with homogeneous boundary data, such that the solution forms Friedrich’s
N-wave. We chose for the viscosity parameter ν = 1

50 , used a centered finite
difference discretization with spatial step ∆x = 1

50 , and a backward Euler
discretization in time. We only parallelized the solution in time using the
parareal algorithm, with coarse time step ∆T = 1

10 , and fine time step ∆t =
1

100 , which gives a numerical accuracy of 4e−2. We show in Figure 6 on the left
the converged solution over a short time interval, [0, T = 0.1], where one can
see how the N-wave is forming, and on the right the same solution over a longer
time interval, [0, T = 1]. In Figure 7, we show on the left the convergence
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Fig. 6. Converged approximate solution for the Burgers equation over a short and
long time interval.
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behavior of the parareal algorithm applied to the Burgers equation, when the
problem is posed over time intervals of various length. Again we measure the
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Fig. 7. Convergence behavior of the parareal algorithm applied to Burgers equation,
on the left for various lengths of the time interval, and on the right when the accuracy
of the discretization is increased.

error in the L2-norm in space, and the L∞-norm in time. Over short time
intervals, the convergence of the parareal algorithm is faster than over long
time intervals. In the case of T = 0.1, the algorithm converges at step two to
the accuracy of the discretization error, and one could therefore, neglecting
the coarse solve, compute this approximation with ten processors five times
faster in parallel than with one processor. Note also that as one continues to
iterate, the algorithm converges further toward the fine grid solution, until
the roundoff error accuracy is reached at step 10, as indicated by Theorem
1. Over longer time intervals, for example T = 1, with the same parareal
configuration, the accuracy of the discretization error is reached at iteration
four. Computing with one hundred processors in parallel, this solution could
have been obtained 25 times faster than sequentially on one processor.

In Figure 7 on the right, we show how the discretization error affects
the parareal algorithm. For T = 0.1, we computed more and more refined
solutions, both in space and time, with truncation error 4e−2, 1e−2, 2.5e−3
and 6.2e− 4, using the parareal algorithm with 10 coarse time intervals. The
convergence plot shows that the convergence rate becomes independent of the
mesh parameters, as it was proved for the linear case in [4].

5 Conclusions

We showed that the parareal algorithm applied to a nonlinear system of or-
dinary differential equations converges superlinearly on any bounded time
interval. We illustrated this result with four non-linear examples coming from
chemical reactions, planetary orbits, weather forecast and fluid flow problems.
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These examples show that parallel speedup in time is possible, although not
at the same level as in space, where one often asks for perfect speedup, i.e. the
computation with one hundred processors should be one hundred times faster.
For time parallelization with the parareal algorithm, one has to be satisfied
with less, but if this is the only option left to speedup the solution time, it
might be worthwhile considering it.
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Summary. Optimized Schwarz Waveform Relaxation algorithms have been devel-
oped over the last few years for the computation in parallel of evolution problems.
In this paper, we present their main features.

1 Introduction

Model complexity in today’s computation emphasizes the need for coupling
models in different geographical zones. For evolution problems, it is desirable
to design a coupling process where, the lesser subdomain boundary informa-
tion is exchanged the better. This goal is different from the usual domain
decomposition purpose, where either the scheme is explicit, and the exchange
of information takes place every time-step, or the scheme is implicit (leading
to a steady problem, usually elliptic), and domain decomposition techniques
can be used, see [16] and [18].

The Schwarz Waveform Relaxation algorithms take their name from the
waveform relaxation algorithms, developed in circuit simulation, see [3], and
Schwarz method for solving in parallel, partial differential equations of elliptic
type, see [17, 12]. The purpose is to solve the space-time partial differential
equation in each subdomain in parallel, and to transmit domain boundary
information to the neighbors at the end of the time interval. The basic idea
comes from the world of absorbing boundary conditions: for a model prob-
lem, approximations of the Dirichlet-Neumann map are developed, which can
be written in the Fourier variables. These approximations lead to transmis-
sion conditions which involve time and tangential derivatives. The coefficients
in these transmission conditions are in turn computed so as to optimize the
convergence factor in the algorithm. This process can be written as a com-
plex best approximation problem of a homographic type, and solved either
explicitly or asymptotically. This gives a convergent algorithm that we call
Optimized Schwarz Waveform Relaxation algorithm, which outperforms the
classical one, i.e. where transmission is made only by exchange of Dirichlet
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data. It can be performed with or without overlap, and convergence is in any
case much faster. It can be used with any high performance numerical method
in the subdomains, extended to variables coefficients by a freezing process,
[14], and to systems of equations, [13]. Finally, it can be used to couple differ-
ent discretizations in different subdomains, and acts as a preconditioner for
the full interface problem in space time [4].

The purpose of this paper is to present the main features of the optimized
Schwarz waveform relaxation algorithms, to give a few proofs which are un-
published and which illustrate our mathematical techniques. For an extensive
historical presentation, see [1], and for examples of applications see [9].

2 Description of the Schwarz Waveform Relaxation
Algorithm

Suppose we want to solve an evolution equation Lu = f in the domain Ω on
the time domain (0, T ), with initial data u0, and boundary conditions which
will not be considered in this paper. Ω is split into subdomains Ωj , 1 ≤ j ≤ J ,
overlapping or non-overlapping. For each index j, V(j) is the set of indices of
the neighbors of Ωj , and we write for k ≥ 1⎧⎨⎩

Luk
j = f in Ωj × (0, T ),

uk
j (·, 0) = u0 in Ωj ,

Bjlu
k
j = Bjlu

k−1
l on ∂Ωj ∩ Ω̄l × (0, T ), l ∈ V(j),

(1)

with an initial guess Bjlu
0
l on the interfaces. This algorithm can be viewed as a

Jacobi type iterative method, or as a preconditioner for an interface problem.
We are only interested here in discussing the transmission conditions.

3 Classical Schwarz Waveform Relaxation Algorithm

As presented in the original paper [17], and analyzed in [12], the method con-
cerns the Laplace equation and Dirichlet transmission conditions, i.e. Bj ≡ I
and subdomains overlap. The algorithm is convergent, and the larger the
overlap, the faster the method. In the evolution case, this algorithm is also
convergent, but the mode of convergence depends on the type of equation.
The starting point of our research was the example of the advection-diffusion
equation, presented in DD11, [8]. The convergence curve exhibits a linear be-
havior for large time intervals, and is superlinear for small time intervals. The
behavior is similar in higher dimension, [14].

For the wave equation, due to the finite speed of propagation, the conver-
gence takes place in a finite number of steps n0 > cT

L , where c is the wave
speed, and L the size of the overlap. We showed in [7] an example, with a
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finite differences discretization, which shows that the error decays very slowly
until iteration n0, and reaches 10−12 at iteration n0.

The case of the Schrödinger equation is also very interesting, and has been
addressed in [11]. See also the contribution by J. Szeftel in the minisymposium
“Domain Decomposition Methods Motivated by the Physics of the Underlying
Problem” in this issue. The Dirichlet transmission creates a highly oscillatory
solution, and the convergence begins late, and this phenomenon gets worse as
the final time increases.
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Fig. 1. Schrödinger equation: error with Dirichlet transmission conditions as a
function of the iteration number for several final times.

We now describe a strategy to obtain more efficient transmission between
subdomains.

4 Optimal Transmission Conditions

Let L denote a partial differential operator in time and space, which is elliptic
in the space variables. For a domain Ω in Rn, the Dirichlet-Neumann map
TΩ maps a function h defined on ∂Ω × (0, T ) to the normal derivative ∂u

∂n
where n is the unit exterior normal to ∂Ω, and u the solution of Lu = 0
in Ω × (0, T ), with vanishing initial data. The importance of this map lies
in the important result concerning a domain decomposition in layers: if it is
used as transmission operator on the boundaries of the subdomains, then the
convergence is achieved in J iterations, see in [15] a formal proof for an elliptic
problem.

4.1 Example: the Advection-Diffusion Equation

We consider the operator

L = ∂t + (a · ∇)− ν∆+ cId,
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with a = (a,b), a ∈ R+,b ∈ Rn−1. We search for the Dirichlet-Neumann map
for a half-space R± × Rn−1, and denote by x the first coordinate, and y the
(n − 1)−dimensional coordinate. By Fourier transform t ↔ ω,y ↔ ζ, we see
that the Fourier transform ŵ = Fw of any solution of Lw = 0 is solution of
the ordinary differential equation

−ν ∂
2ŵ

∂x2
+ a

∂ŵ

∂x
+
(
i(ω + b · ζ) + ν|ζ|2 + c

)
ŵ = 0, (2)

with characteristic roots

r±(ζ, ω) =
a±

√
δ(ζ, ω)

2ν
, δ(ζ, ω) = a2 + 4ν(i(ω + b · ζ) + ν|ζ|2 + c). (3)

The complex square root in this text is always with strictly positive real part.
In order to work with at least square integrable functions in time and space,
we seek for solutions which do not increase exponentially in time. Since the
real parts of the roots, �r±, are such that �r+ > 0 and �r− < 0, the Dirichlet-
Neumann map T+ for (L,+∞)×Rn−1 (resp. T− for (−∞, L)×Rn−1) is given
by

FT±(h)(ζ) = r∓(ζ, ω)Fh(ζ),

T± =
a∓

√
a2 + 4ν(∂t + b · ∇− ν∆y + c)

2ν
.

(4)

Since the operator L has constant coefficients, the Dirichlet-Neumann maps
do not depend on L. We consider J subdomains Ωj = (aj , bj) × Rn−1, with
a1 = −∞, bJ = +∞, and aj ≤ bj−1 < bj for 1 ≤ j ≤ J , and transmission
operators of the form

Bij ≡ ∂x − Sij(∂y, ∂t).

The Fourier transform of the error ek
j = u−uk

j in each subdomain is given by

Fek
j = αk

j e
r+x + βk

j e
r−x, 1 ≤ j ≤ J, (5)

with βk
1 = 0 and αk

J = 0.

Theorem 1. With the transmission conditions Sjj−1 = T−, Sjj+1 = T+, the
algorithm is optimal: the convergence is achieved in J iterations.

Proof. Inserting (5) in the transmission conditions, we get at each step k a
system of 2J equations with 2J unknowns (αk

j , β
k
j ). In the case of the theorem,

the system reduces to αk
j = αk−1

j+1 and βk
j = βk−1

j−1 . Since β1
1 = 0 and α1

J = 0,
we deduce that αJ

j = 0 and βJ
j = 0 for all j. Thus at iteration J , the solution

of the algorithm is equal to u in each subdomain.

Note that the result still holds for any partial differential equation with con-
stant coefficients, like Schrödinger equations (see [11]), or even systems, like
the shallow-water system, see [13].
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4.2 The Quasi Optimal Algorithm in One Dimension

The transparent operator is global in time and space. When used in the con-
text of absorbing boundary conditions, enormous efforts have been made for
the approximation of the Dirichlet-Neumann map by local operators, in order
to obtain sparse matrices in the actual computations (see [10] in the context
of parabolic equations). However in one dimension, we have to transmit infor-
mations on the interface over the whole time interval. Therefore we can afford
to use pseudodifferential operators in time. For the advection-diffusion equa-
tion, we find in [6] a discrete Dirichlet-Neumann map for several numerical
schemes, e.g. Euler and Crank-Nicolson. We have used this strategy for the
Schrödinger equation, and we have shown that the convergence is achieved in
very few iterations, even with non constant potential, see [11]. We intend to
explore this direction in higher dimension.

5 Optimized SWR Algorithm
for the Advection-Diffusion Equation

We now try to improve locally the transmission between the subdomains.
Therefore we restrict ourselves to the case of two subdomains, and we develop
the analysis in Rn × (0, T ).

5.1 Partial Differential Transmission Conditions

In this part, we write differential transmission conditions as follows. We re-
place in r± the square root by a polynomial of degree lower than or equal to
1, i.e. we set

r̃∓ =
a±

(
p+ q

(
i(ω + b · ζ) + ν|ζ|2

))
2ν

,

with real parameters p and q to be chosen. This defines the new transmission
operators

B̃ii+1 = ∂x −
a− pii+1

2ν
+ qii+1(∂t + b · ∇− ν∆y),

B̃ii−1 = ∂x −
a+ pii−1

2ν
− qii−1(∂t + b · ∇− ν∆y),

with real parameters pij and qij to be chosen. In the case where qij = 0,
the transmission condition reduces to Robin transmission condition, which is
already used as a preconditioner for domain decomposition in the steady case.
We call it transmission condition of order 0, whereas when qij �= 0, we talk
about first order transmission condition.
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5.2 Well-Posedness and Convergence of the Algorithm

We examine in details the Robin case. It was proved in [14] that in the case of
two half-spaces with only one coefficient p > 0, the boundary value problems
are well-posed in suitable Sobolev spaces, and the algorithm is convergent.
The proof relies on Lebesgue Theorem in the overlapping case. In the non
overlapping case, the proof uses energy estimates as in [5], and therefore holds
for space varying advection. We prove below that this result holds in any
reasonable geometry, as depicted in Figure 2.

Wj

Fig. 2. Decomposition in space with nonoverlapping subdomains

The operators Bjl are given by

Bjl =
∂

∂nj

− a · nj − pjl

2ν
, (6)

where nj is the normal to ∂Ωj , exterior to Ωj .

Theorem 2. In the nonoverlapping case, the domain decomposition algorithm
(1) with transmission conditions (6) converges for any choice of the positive
coefficients pjl with pjl = plj, provided each domain is visited infinitely many
times.

Proof. In order to shorten the proof, we work here with the heat equation.
We write the equation for the error ek

j = u− uk
j in Ωj . We multiply it by ek

j

and integrate by parts:

1
2
d

dt
‖ek

j ‖2Ωj
+ ν‖ek

j ‖2Ωj
−

∑
l∈V(j)

∫
Γjl

ν
∂ek

j

∂nj

ek
j ds = 0.

We rewrite the boundary term as

−ν
∫

Γjl

∂e

∂nj

e ds =
1

2pjl

[∫
Γjl

(
ν
∂e

∂nj

− pjl

2
e

)2

ds−
∫

Γjl

(
ν
∂e

∂nj

+
pjl

2
e

)2

ds

]
,

and obtain
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1
2
d

dt
‖ek

j ‖2Ωj
+ ν‖ek

j ‖2Ωj
+

∑
l∈V(j)

∫
Γjl

1
2pjl

[
ν
∂ek

j

∂nj

− pjl

2
ek

j

]2

ds

=
∑

l∈V(j)

∫
Γjl

1
2pjl

[
ν
∂ek

j

∂nj

+
pjl

2
ek

j

]2

ds.

We use on the right hand side the transmission condition:

1
2
d

dt
‖ek

j ‖2Ωj
+ ν‖ek

j ‖2Ωj
+

∑
l∈V(j)

∫
Γjl

1
2pjl

[
ν
∂ek

j

∂nj

− pjl

2
ek

j

]2

ds

=
∑

l∈V(j)

∫
Γjl

1
2pjl

[
ν
∂ek−1

l

∂nj

+
pjl

2
ek−1

l

]2

ds

=
∑

l∈V(j)

∫
Γjl

1
2pjl

[
−ν ∂e

k−1
l

∂nl

+
pjl

2
ek−1

l

]2

ds.

Summing up on all domains, we have on the left a boundary term at step k
and on the right the same term at step k− 1. Summing up on all steps k, we
obtain

d

dt

K∑
k=0

J∑
j=1

‖ek
j ‖2Ωj

+2ν
K∑

k=0

J∑
j=1

‖ek
j ‖2Ωj

+
J∑

j=1

∑
l∈V(j)

∫
Γjl

1
pjl

[
ν
∂eK

j

∂nj

−pjl

2
eK

j

]2

ds

=
J∑

j=1

∑
l∈V(j)

∫
Γjl

1
pjl

[
ν
∂e0l
∂nl

− pjl

2
e0l

]2

ds.

which proves that
∑J

j=1‖ek
j ‖2L∞(0,T ;Ωj)

+ 2ν
∑J

j=1‖ek
j ‖2L2(0,T ;Ωj)

is bounded.
By assumption, we have an infinite sequence ek

j , and for every j, ek
j tends to

0 as k tends to infinity.

There is no proof available for the overlapping domains in general geometry.
Concerning the case q �= 0, there is a proof of well-posedness and convergence
for the layered case in [2]. The well-posedness in general geometry, even in the
nonoverlapping case, has not yet been addressed.

5.3 Optimization of the Convergence Factor

In order to improve the performances of the method, it is important to op-
timize the convergence between two subdomains. In this case, the notations
are much simpler, there are only two parameters p and q, and we write

Fek+2
j (0, ζ, ω) = ρ(ζ, ω, P, L)Fek

j (0, ζ, ω),
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with the convergence factor defined for a polynomial P ∈ Pn by

ρ(ζ, ω, P, L) =

(
P
(
i(ω + b · ζ) + ν|ζ|2

)
−
√
δ(ζ, ω)

P (i(ω + b · ζ) + ν|ζ|2) +
√
δ(ζ, ω)

)2

e−2 L
ν

√
δ(ζ,ω).

The convergence factor has two terms: the exponential one comes from the
overlap, and kills the high frequencies in time or space, whereas the fractional
term comes from the transmission condition and tends to 1 as frequencies in
time or space become high. Since the overlap has to be small for computational
reasons, and also since it is of interest to have a nonoverlapping strategy, we
want to make the fractional part as small as possible. In a real computation,
only frequencies supported by the grid are relevant, ω and ζ live in the compact
set

K = {(ω, ζ), ωm ≤ |ω| ≤ ωM , ζj,m ≤ |ζj | ≤ ζj,M , j = 1, · · · , n− 1}.

with ωm = π/T , ωM = π/∆t, where ∆t is the time step, and similarly ζj,m =
π/Yj , ζj,M = π/∆yj , where Yj is the length in the yj direction and ∆yj the
mesh size. The optimization of the convergence factor is formulated as a best
approximation problem in Pn for n = 0 or 1,

sup
(ζ,ω)∈K

|ρ(ζ, ω, P ∗
n)| = inf

P∈Pn

sup
(ζ,ω)∈K

|ρ(ζ, ω, P )|. (7)

Problem (7) has been solved in a more general setting in [2], and exact formu-
las in the one-dimensional case, together with asymptotic results, have been
given. A general result asserts that the infimum is strictly small than 1, the
problem has a unique solution, and furthermore, the solution is a real polyno-
mial, and is the solution of the best approximation problem set in the space of
real polynomials. Here we study Problem (7) for n = 0, which corresponds to
Robin transmission conditions, and for L = 0, which means without overlap.
In particular we have p∗ > 0. We are going now to characterize p∗.

We choose new variables τ = ω + b · ζ, η =
√
a2 + 4νc+ 4ν|ζ|2, and use

ξ = �
√
δ. With the new notations we have

|ρ(ζ, ω, p)|=R(τ, η, p)=
(ξ − p)2 + ξ2 − η2

(ξ + p)2 + ξ2 − η2
, ξ(τ, η)=

√
(η2 +

√
τ2 + η4 )/2 ,

and the best approximation problem for ρ has the same solution as the one
for R in the subspace of R2, D = [ηm, ηM ]× [τm, τM ], with τm = 0. A point M
in the plane will be defined by its coordinates (η, τ) and we will call Aj the
edges of D: A1 = (ηm, τm), A2 = (ηM , τm), A3 = (ηM , τM), A4 = (ηm, τM). We
will interchangeably use R(M,p) or R(τ, η, p).

The upper bounds τM , ηM are inversely proportional to the time and space
steps. Depending on whether an explicit or implicit scheme is used, we can
have ∆t of the order of ∆y or ∆y2, respectively. Therefore we assume here
that τM = Cηβ

M , with β = 1 or 2.
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Theorem 3. For n = 0 and L = 0, problem (7) has a unique solution p∗ > 0.
If ηM is large and τM = Cηβ

M , it is given by

p∗ =

√
ξ(A1)

√
τ2

M+η4
M −ξ(A3)

√
τ2

m+η4
m

ξ(A3)−ξ(A1)
if β = 1, or β = 2 and C < C0,

p∗ =
√
η2

m + 2ηmξ(A4) if β = 2 and C > C0.

Proof. We proceed in several steps.

Lemma 1. For any positive p, the maximum of (τ, η) �→ R(τ, η, p) on D is
reached on one of the edges of D.

The analytic function ρ can reach extrema only on the boundary of the do-
main. The partial derivatives of R with respect to τ and η delimit regions in
the plane, see Figure 3, from which we infer that an extremum on any segment
of the boundary, distinct from the edges, can only be a minimum.

∂τR <0

∂τ R > 0

∂ηR < 0

∂ηR > 0

τ

ηp

p2

p√
3

Fig. 3. Regions delimited by the zeros of the partial derivatives of R

Lemma 2. If either ηM or τM is large, there exists a unique p∗ > 0, such that
R(A1, p∗) = R(A3, p∗), and it is given by

p∗ =

√
ξ(A1)

√
τ2

M + η4
M − ξ(A3)

√
τ2
m + η4

m

ξ(A3)− ξ(A1)
.

Further, there exists a unique p∗∗ > 0, such that R(A1, p∗∗) = R(A4, p∗∗), and
it is given by

p∗∗ =
√
η2

m + 2ηmξ(A4).

This can be seen by writing for any points M1,M2 in D,

R(M1, p)−R(M2, p) = 4p(ξ(M2)−ξ(M1))
D(M1,M2)

[
Q(M1,M2)− p2

]
,

Q(M1,M2) = 2ξ(M2)ξ(M1) + ξ(M2)η
2
1−ξ(M1)η

2
2

ξ(M2)−ξ(M1)
,

with a positive denominator D(M1,M2), and discussing the sign of Q.
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Lemma 3. For large ηM we have:

1. If β = 1, or β = 2 and C < C0, sup
M∈D

R(M,p∗) = R(A1, p∗) = R(A3, p∗),

p∗ ∼ C∗
√
ηmηM , sup

M∈D
R(M,p∗) ∼ 1− 4

ηm

p∗
,

C∗ = 1 if β = 1, C∗ =

(
2(C2 + 1)

1 +
√

(C2 + 1)

)1/4

if β = 2.

2. If β = 2 and C > C0, sup
M∈D

R(M,p∗∗) = R(A1, p∗∗) = R(A4, p∗∗),

p∗∗ ∼ (2C)1/4√ηmηM , sup
M∈D

R(M,p∗) ∼ 1− 4
ηm

p∗
.

C0 is the only positive root of the equation
C2 + 1

1 +
√

(C2 + 1)
= C.

These results are obtained by comparing the asymptotic values of R at the
edges.

Lemma 4. The values p∗ and p∗∗ in Lemma 3 are in each case a strict local
minimum for the function p �→ sup

(τ,η)∈D

R(τ, η, p).

Proof. For any positive p, we define R̄(p) = sup(τ,η)∈D R(τ, η, p), and µ(p) =
1+R̄(p)
1−R̄(p)

. We write

R(τ, η, p)− R̄(p) = (1− R̄(p))
Q̄(τ, η, p, µ)

(ξ + p)2 + ξ2 − η2

with Q̄(τ, η, p, µ) = 2ξ2 − 2µpξ − η2 + p2. In the sequel, we will consider Q̄ as
a polynomial in the independent variables τ, η, p and µ. Defining µ∗ = µ(p∗)
we have

Q̄(A1, p∗, µ∗) = Q̄(A2, p∗, µ∗) = 0,

and Q̄(M,p∗, µ∗) ≤ 0 for any M in D. Now for p∗ to be a strict local minimum,
it is sufficient that there exists no variation (δp, δµ) with δµ < 0, such that
Q̄(Aj , p∗ + δp, µ∗ + δµ) < 0. By the Taylor formula, it is equivalent to proving
that for j = 1 and j = 3, we can not have δp(p∗−µ∗ξj)−p∗ξjδµ < 0 for δµ < 0.
From the asymptotic behavior, we see that for j = 1, it gives δp − δµ < 0,
and for j = 3, it gives −δp− δµ < 0, which together contradicts the fact that
δµ < 0. The arguments hold in all cases.

Another general result in [2] asserts that any strict local minimum is a global
minimum. Therefore p∗ is a global minimum, and equal to p∗, which concludes
the proof of the theorem in the first case. The second proof is similar.
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5.4 Numerical Results

To show that the optimization process is indeed important, we draw in Figure
4, for eight subdomains in one dimension, the convergence rates of the algo-
rithm with Dirichlet transmission conditions compared to the same algorithm
with the new optimized transmission conditions of zeroth or first order. The
convergence curves are similar in the 2D case [14].
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Fig. 4. Convergence rates

6 Conclusion

We have presented the main features of the Optimized Schwarz Waveform
Relaxation algorithms, specifically for the advection-diffusion equation. Ex-
tension to nonlinear equations, and application to real problems in ocean
modeling or combustion or waste disposal simulations will be the next step.
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[17] H.A. Schwarz. Über einen Grenzübergang durch alternierendes Ver-
fahren. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich,
15:272–286, May 1870.

[18] A. Toselli and O.B. Widlund. Domain Decomposition Methods - Al-
gorithms and Theory, volume 34 of Springer Series in Computational
Mathematics. Springer, 2005.



Integration of Sequential Quadratic
Programming and Domain Decomposition
Methods for Nonlinear Optimal Control
Problems
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Summary. We discuss the integration of a sequential quadratic programming
(SQP) method with an optimization-level domain decomposition (DD) precondi-
tioner for the solution of the quadratic optimization subproblems. The DD method
is an extension of the well-known Neumann-Neumann method to the optimization
context and is based on a decomposition of the first order system of optimality con-
ditions. The SQP method uses a trust-region globalization and requires the solution
of quadratic subproblems that are known to be convex, hence solving the first order
system of optimality conditions associated with these subproblems is equivalent to
solving these subproblems. In addition, our SQP method allows the inexact solution
of these subproblems and adjusts the level of exactness with which these subprob-
lems are solved based on the progress of the SQP method. The overall method is
applied to a boundary control problem governed by a semilinear elliptic equation.

1 Introduction

Optimization algorithms for PDE constrained optimization problems which
use second order derivative information require the solution of large-scale lin-
ear systems that involve linearizations of the governing PDE and its adjoint.
Domain decomposition methods can be used to effectively solve these sub-
problems. In this paper we discuss the integration of a sequential quadratic
programming (SQP) method with an optimization-level domain decomposi-
tion (DD) preconditioner for the quadratic optimization subproblems arising
inside the SQP method.
† Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed

Martin Company, for the United States Department of Energy’s National Nuclear
Security Administration under Contract DE-AC04-94-AL85000.
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As an example problem we consider the following boundary control prob-
lem with states y and controls u.

Minimize
1
2

∫
Ω

l(y(x), x)dx+
α

2

∫
∂Ωc

u2(x)dx (1a)

subject to

−ε∆y(x) + g(y(x), x) = 0, x ∈ Ω, (1b)
y(x) = 0, x ∈ ∂Ω \ ∂Ωc, (1c)

ε
∂

∂n
y(x) = u(x), x ∈ ∂Ωc. (1d)

Here α > 0 is a given parameter. Because of page restrictions, we limit our
presentation to semilinear elliptic optimal control problems in which the func-
tions g, l and the problem data are such that the optimal control problem (1)
has a solution y ∈ H1(Ω), u ∈ L2(∂Ωc). Furthermore, we assume that the
state equation and the objective functional are twice Fréchet differentiable in
H1(Ω)×L2(∂Ωc), that the linearized state equation has a unique solution in
H1(Ω) that depends continuously on the right hand side and boundary data,
and that a second order sufficient optimality condition is satisfied at the solu-
tion. These assumptions are satisfied for the example problem considered in
Section 4 as well as those discussed, e.g., in [8, 11, 10, 16]. To establish Fréchet
differentiability and second order optimality conditions for other semilinear
elliptic optimal control problems, however, a more involved setting and analy-
sis is required. See, e.g., [17, 24]. Our approach can be adapted to many of
those problems. We note that our approach can also be applied to the opti-
mal control of incompressible Navier-Stokes equations. However, since these
are systems of PDEs and because the compatibility conditions that are implied
by the incompressibility condition require a careful treatment, the presenta-
tion of our approach for the optimal control of incompressible Navier-Stokes
equations is too lengthy and will be given elsewhere.

In this work we use the optimization-level DDM introduced in [3, 13] for
the solution of convex quadratic subproblems arising in the solution of (1).
These optimization-level DDMs are extensions of the well known Neumann-
Neumann methods (see, e.g., [20, 22, 23]) or the Robin-Robin methods for
problems with advection (see, e.g., [1, 2]) from the PDE to the optimization
context. In particular, all subproblem solves that arise in our DDM corre-
spond to the solution of subdomain optimal control problems, which are es-
sentially smaller copies of the original one. We note that our DDM is not
the only optimization-level DDM. By ‘optimization-level’ we mean that the
DDM is applied directly to the optimization problem, not individually to
the state and adjoint PDEs. For example the DDM used in [18, 19] may be
viewed as the optimization-level version of the restrictive additive Schwarz
method discussed, e.g., in [6]. Heinkenschloss and Nguyen [12] analyze an
optimization-level additive Schwarz method. Overall, however, the theoretical
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properties of optimization-level DDMs are still relatively poorly understood.
We also point out that many optimization-level DDMs, including ours and
the ones in [18, 19] are obtained by applying DDM to the system of optimal-
ity conditions, the so-called KKT system. This is only possible if the system
of optimality conditions is necessary and sufficient, i.e., if the optimization
problem is convex. This restriction is not always made explicit enough and is
typically important for nonlinear PDE constrained optimization problems.

SQP algorithms coupled with DDMs have been discussed in [4, 5, 18, 19].
Our SQP method builds on the works [15, 21]. There are important fea-

tures that distinguish our SQP from those in [4, 5, 18, 19]. First, all quadratic
subproblems that arise in our SQP method are known a-priori to be con-
vex. This allows us to apply optimization-level DDMs to these subproblems,
which are based on a decomposition of the first order optimality conditions,
the so-called KKT conditions. Since our subproblems are convex, solving these
optimality systems is equivalent to solving the quadratic optimization prob-
lems. Secondly, we allow the inexact solution of the large scale linear KKT
systems that arise as subproblems inside the SQP algorithms, and provide a
rigorous way to control the level of inexactness with which these systems have
to be solved. The level of inexactness is coupled to the progress of the SQP al-
gorithm, which enables us to apply coarse, more inexpensive solves away from
the solution. Our DDM is used as a preconditioner for the large scale linear
KKT systems that arise in the SQP algorithm. Other preconditioners could be
used as well. In particular, it is possible to incorporate the DD Krylov-Schur
preconditioner used by [4, 5] or (restricted) additive Schwarz preconditioners
as used by [18, 19].

2 Optimal Control of Advection Diffusion Equations

We begin with a discussion of our DD approach for convex linear-quadratic
optimal control problems governed by an advection diffusion equation. The
example problem is given as follows.

Minimize
1
2

∫
Ω

(y(x)− ŷ(x))2dx+
α

2

∫
∂Ωc

u2(x)dx (2a)

subject to

−ε∆y(x) + a(x) · ∇y(x) + r(x)y(x) = f(x), x ∈ Ω, (2b)
y(x) = 0, x ∈ ∂Ω \ ∂Ωc, (2c)

ε
∂

∂n
y(x) = u(x), x ∈ ∂Ωc, (2d)

where ∂Ωc is the control boundary, a, f, g, r, ŷ are given functions, ε, α > 0 are
given scalars, and n denotes the outward unit normal. Our main interest is not
in this particular optimal control problem. As we will see in more detail later,
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our SQP method applied to (1) requires the repeated solution of convex linear-
quadratic optimal control subproblems governed by linear elliptic PDEs. The
governing PDEs in these linear-quadratic subproblems are of the form (2b-d),
with a, r, and f determined by the SQP algorithm. The objective function in
these subproblems is slightly different from (2a) and is given by a quadratic
model of the Lagrangian associated with (1). However, the problem structure
of the SQP subproblems and that of (2) are close enough so that a study of
(2) reveals how to deal with the subproblems arising in our SQP method for
(1).

The system of necessary and sufficient optimality conditions for (2) is given
by the adjoint equations

−ε∆p(x)− a(x) · ∇p(x)
+(r(x)−∇ · a(x))p(x) = −(y(x)− ŷ(x)), x ∈ Ω, (3a)

p(x) = 0, x ∈ ∂Ω \ ∂Ωc, (3b)

ε
∂

∂n
p(x) + a(x) · n(x) p(x) = 0, x ∈ ∂Ωc, (3c)

by the equation
p(x) = αu(x) x ∈ Ωc, (4)

and by the state equation (2b-d).
We apply DD to the system of optimality conditions (2b-d), (3), (4). For

simplicity, we consider the two-subdomain case only. Everything can be ex-
tended to more than two subdomains following the discussions in [3, 13]. We
decompose Ω into two subdomains Ω1, Ω2 with interface Γ = Ω1 ∩ Ω2. The
outer unit normal for subdomain i is denoted by ni. By γΓ we denote the
trace operator and we define VΓ = {γΓ v : v ∈ H1(Ω), v = 0 on ∂Ω \ ∂Ωc}
We now split (2b-d), (3), (4) as follows. Given yΓ , pΓ ∈ VΓ and i ∈ {1, 2} we
consider the system

−ε∆yi(x) + a(x) · ∇yi(x) + r(x)yi(x) = f(x) in Ωi, (5a)
yi(x) = 0 on ∂Ωi ∩ ∂Ω \ ∂Ωc, (5b)

ε
∂

∂n
yi(x) = ui(x), on ∂Ωi ∩ ∂Ωc, (5c)

yi(x) = yΓ (x) on Γ, (5d)

−ε∆pi(x)− a(x) · ∇pi(x)
+(r(x)−∇ · a(x))pi(x) = −(yi(x)− ŷ(x)) in Ωi, (5e)

pi(x) = 0, on ∂Ωi ∩ ∂Ω \ ∂Ωc, (5f)

ε
∂

∂n
pi(x) + a(x) · n(x) pi(x) = 0, on ∂Ωi ∩ ∂Ωc, (5g)

pi(x) = pΓ (x) on Γ, (5h)
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αui(x)− pi(x) = 0 on ∂Ωc ∩ ∂Ωi. (5i)

The system (5) together with the interface conditions(
ε ∂

∂ni
− 1

2a(x)ni

)
yi(x) = −

(
ε ∂

∂nj
− 1

2a(x)nj

)
yj(x) x ∈ ∂Ωi ∩ ∂Ωj ,(

ε ∂
∂ni

+ 1
2a(x)ni

)
pi(x) = −

(
ε ∂

∂nj
+ 1

2a(x)nj

)
pj(x) x ∈ ∂Ωi ∩ ∂Ωj ,

(6)

on Γ are equivalent to the original optimality system (2b-d), (3), (4).
It can be shown that for given yΓ , pΓ ∈ VΓ the system (5) has a unique

solution (yi, pi, ui). If we view (yi, pi, ui), i = 1, 2, as a function of yΓ , pΓ ∈ VΓ

defined through (5), then (6) becomes an equation in yΓ , pΓ . Since yΓ , pΓ ∈
VΓ , i = 1, 2, depends on yΓ , pΓ in an affine linear way, (5), (6) can be written
as

(S1 + S2)
(
yΓ

pΓ

)
= r1 + r2, (7)

where Si, i = 1, 2, is applied to yΓ , pΓ by first solving (5) with f = 0 and
then evaluating

(
ε ∂

∂ni
− 1

2a(x)ni

)
yi(x),

(
ε ∂

∂ni
+ 1

2a(x)ni

)
pi(x). The right

hand side is computed by solving (5) with yΓ = pΓ = 0 and then evaluating(
ε ∂

∂ni
− 1

2a(x)ni

)
yi(x),

(
ε ∂

∂ni
+ 1

2a(x)ni

)
pi(x).

One can show that (5) is the system of optimality conditions for a subdo-
main optimal control problem that is essentially a restriction of (2) to subdo-
main Ωi, but with the additional interface boundary condition (5d) and with
an additional interface normal derivative term in the objective that leads to
(5h). See [3, 13].

One can also show that the subdomain operators Si, i = 1, 2, are invertible
and that

S−1
i

(
ru
Γ

rλ
Γ

)
=
(
γΓ yi

γΓ pi

)
,

where γΓ denotes the trace operator and where yi, pi are obtained by solving

−ε∆yi(x) + a(x) · ∇yi(x) + r(x)yi(x) = 0 in Ωi, (8a)
yi(x) = 0 on ∂Ωi ∩ ∂Ω \ ∂Ωc, (8b)

ε
∂

∂n
yi(x) = ui(x), on ∂Ωi ∩ ∂Ωc, (8c)

ε
∂

∂ni
yi(x)− 1

2a(x) · niyi(x) = ry
i (x) on Γ, (8d)
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−ε∆pi(x)− a(x) · ∇pi(x)
+(r(x)−∇ · a(x))pi(x) = −(yi(x)− ŷ(x)) in Ωi, (8e)

pi(x) = 0, on ∂Ωi ∩ ∂Ω \ ∂Ωc, (8f)

ε
∂

∂n
pi(x) + a(x) · n(x) pi(x) = 0, on ∂Ωi ∩ ∂Ωc, (8g)

ε
∂

∂ni
pi(x) + 1

2a(x) · nipi(x) = rp
i (x) on Γ, (8h)

αui(x)− pi(x) = 0 on ∂Ω ∩ ∂Ωi. (8i)

See [3, 13]. One can show that (8) is the system of optimality conditions for
a subdomain optimal control problem that is essentially a restriction of (2)
to subdomain Ωi, but with the additional interface boundary condition (8d)
and with an additional interface boundary term in the objective that involves
yir

λ
Γ which leads to (8h).
We solve (7) using a preconditioned Krylov subspace method such as GM-

RES or sQMR with preconditioner S−1
1 +S−1

2 . As we have mentioned earlier,
everything can be extended to the case of many subdomains. See [3, 13]. One
can show that the discrete versions of Si are Schur complements. They are
symmetric and highly indefinite. The number of positive and negative eigen-
values is proportional to the number of discretized states yi on the interface.
While the observed performance of these methods is comparable to that of
Neumann-Neumann (Robin-Robin) methods for elliptic PDEs, there is no
theoretical explanation for this observed behavior in the optimization case
yet.

3 Inexact Trust-Region-SQP Method

Many nonlinear optimal control problems can abstractly be written as a non-
linear programming problem (NLP) in Hilbert space,

min f(x) (9a)
s.t. c(x) = 0, (9b)

where f : X → R and c : X → Y for some Hilbert spaces X and Y. In
our example problem (1) we have x = (y, u), X = H1(Ω) × (L2(∂Ωc))2

and Y = (H1(Ω))′, where ′ is used to denote the dual, and c(x) = 0
represents the weak formulation of the semilinear elliptic equations (1b-d).
The corresponding Lagrangian functional L : X × Y → R is given by
L(x, λ) = f(x) + 〈λ, c(x)〉Y . We use subscript x to denote Fréchet deriva-
tives with respect to x. Given estimates xk, λk for the solution of (9) and
corresponding Lagrange multiplier, SQP methods approximately solve

min
1
2
〈Hksk, sk〉X + 〈∇xL(xk, λk), sk〉X (10a)

s.t. cx(xk)sk + c(xk) = 0 (10b)
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and use the solution sk to obtain a better approximation of the solution of
(9). In (9) Hk is the Hessian ∇xxL(xk, λk) of the Lagrangian or a replacement
thereof, obtained, e.g., using a quasi-Newton method. If xk is sufficiently close
to the solution and if a second order sufficiency condition is satisfied at the
solution, then xk+1 = xk + sk can be used at the new iterate. To ensure
global convergence and to deal with possible negative curvature of Hk when
xk is away from the solution, we add a trust-region constraint ‖sk‖X ≤ ∆k

to (10), where ∆k > 0 is the trust-region radius, which is adapted by the
optimization algorithm. To deal with the possible incompatibility of the trust-
region constraint and (10b), we use a composite step algorithm (see [7, Ch. 15]
for an overview). The trial step sk is decomposed as sk = nk + tk, where
for a given parameter ξ ∈ (0, 1), the so-called quasi-normal step nk is an
approximate solution of

min ‖cx(xk)n+ c(xk)‖Y (11a)
s.t. ‖n‖X ≤ ξ∆k, (11b)

and the so-called tangential step tk is an approximate solution of

min
1
2
〈Hkt, t〉X + 〈∇xL(xk, λk) +Hknk, t〉X (12a)

s.t. cx(xk)t = 0 (12b)
‖t‖X ≤ ∆k − ‖nk‖X . (12c)

Once the trial step sk = nk + tk is computed, an augmented Lagrangian
merit function and a quadratic approximation of it are used to decide whether
to accept the trial step, i.e, set xk+1 = xk + sk, or to reject it, i.e., set
xk+1 = xk, and how to update the trust-region radius. The rules are fairly
easy to implement, but their precise description is lengthy. Because of page
limitations, we refer to [15, 21] for the details and instead focus on the issue
of linear system solves that relates to the use of DD methods.

One way to compute an approximate solution of the quasi-normal step sub-
problem (11) that is suitable for use within our SQP method is the so-called
dog-leg approach, which requires the computation of the minimum norm solu-
tion of min ‖cx(xk)n+c(xk)‖Y . The minimum norm solution can be computed
by solving (

I cx(xk)∗

cx(xk) 0

)(
n
y

)
=
(

0
−c(xk)

)
(13)

for y ∈ Y, n ∈ X . The quasi-normal step is then computed as a linear combi-
nation of the minimum norm solution n and of −cx(xk)∗c(xk) or by a simple
scaling of the minimum norm solution. For a detailed description of the quasi-
normal step computation see, e.g., [7, Sec. 15.4.1.2], [21]. In our context it is
important to note that the quasi-normal step computation requires the solu-
tion of (13), which in our example application (1) leads to a subproblem of the
type (2). Note that (13) is the system of necessary and sufficient optimality
conditions for the quadratic problem
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min
1
2
‖n‖2X (14a)

s.t. cx(xk)n+ c(xk) = 0. (14b)

With a bounded linear operatorWk whose range is the null space of cx(xk),
we can eliminate (12b). Various such operators exist. We use the orthogonal
projection onto the null space. In this case Wk = W ∗

k = W 2
k ∈ L(X ,X ) and

s = Wkw can be computed by solving the system(
I cx(xk)∗

cx(xk) 0

)(
s
z

)
=
(
w
0

)
. (15)

Using this operator, (12) can be written equivalently as

min
1
2
〈WkHkWkt, t〉X + 〈∇xL(xk, λk) +Hknk,Wkt〉X (16a)

s.t. ‖t‖X ≤ ∆k − ‖nk‖X . (16b)

An approximate solution of (16) that is suitable for use within our SQP
method can be computed using the Steihaug-Toint modification of the con-
jugate gradient method (see, e.g., [7]). With Wk given by (15), the Steihaug-
Toint CG method can be implemented in an elegant way that in each CG
iteration requires the application of Wk. See, e.g., [9]. Note that each applica-
tion of Wk requires the solution of (15), which is the system of necessary and
sufficient optimality conditions for

min
1
2
‖s‖2X − 〈w, s〉X (17a)

s.t. cx(xk)s = 0. (17b)

We remark that it is easy to apply a preconditioned Steihaug-Toint CG
method by replacing I in (15) by H̃k, where H̃k is a selfadjoint operator that
is strictly positive on the null-space of cx(xk) and approximates Hk. (One can
even set H̃k = Hk, if it is strictly positive on the null-space of cx(xk).) In this
case ‖s‖2X in (17) has to be replaced by 〈H̃ks, s〉X . The requirements on H̃k

guarantee that the modified quadratic program (17) remains convex.
We conclude by noting that each iteration of our trust-region SQP method

requires the solution of systems of the type (13) and (15) or, equivalently,
the solution of convex quadratic programs of the type (14) and (17). The
solves are done iteratively. Consequently, the SQP algorithm needs to provide
stopping tolerances to the linear system solvers. These stopping tolerances
need to be chosen to guarantee convergence of the overall algorithm, but at
the same time it is desirable to choose them as large as possible to make the
solution of these subproblems as inexpensive as possible. A rigorous approach
that accomplishes this is detailed in [14, 15, 21]. It is used to generate the
numerical results shown in the following section.
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4 Optimal Control of a Semilinear Elliptic Equation

Our example problem (1) is a special case of (9) and is solved using the trust-
region SQP method with inexact linear system solves outlined in the previous
section. Each iteration of our trust-region SQP method requires the iterative
solution of convex quadratic programs of the type (14) and (17). For the ex-
ample problem (1) these quadratic programs are essentially of the form (2),
with a, r, f given by the current state and control determined by the SQP
algorithm. The objective function in these subproblems is slightly different
from (2a), but the domain decomposition approach outlined in Section 2 can
easily be applied to these subproblems. We remark that all quadratic pro-
grams arising in our trust-region SQP method are known to be convex. Hence
our optimization-level domain decomposition approach which decomposes the
system of first order optimality conditions can be safely applied.

For our numerical example, we solve

minimize
1
2

∫
Ω

(y − ŷ)2 dx+
α

2

∫
∂Ω

u2 ds (18a)

subject to

−∆y + y3 − y = f in Ω,
∂y

∂n
= u on ∂Ω. (18b)

See, e.g., [11, 24]. We use Ω = (0, 1)2, α = 1, ŷ(x) = cos(πx1) cos(πx2), and
f(x) = cos(πx1) cos(πx2)(2π2 + cos2(πx1) cos2(πx2)− 1).

The problem (18) is discretized using piecewise linear finite elements for
states and controls. The domain Ω is subdivided into triangles by first subdi-
viding it into squares of size h× h and then subdividing each square into two
triangles. The domain Ω is subdivided into square subdomains of size H×H.

Tables 1 and 2 show the behavior of our SQP method with a one-level
and two-level optimization-level Neumann-Neumann DD preconditioner for
varying mesh and subdomain sizes. The number of outer SQP iterations is
constant over varying mesh sizes and subdomain sizes. This is not too sur-
prising (although not yet proven for our class of SQP methods), since we use
an SQP method with exact second order derivative information and there are
known mesh independence results for many Newton-like methods.

Within each iteration of the SQP method, a KKT-type system has to be
solved for the computation of a Lagrange multiplier estimate, to compute the
quasi-normal step (cf., (14)), and within each iteration of the Steihaug-Toint
CG algorithm used to compute the tangential step (cf., (16)). Tables 1 and 2
show only a mild increase in the number of calls to GMRES as the number
of subdomains is increased or the mesh size is decreased.

A significant difference is seen in the average number of GMRES iterations
used to solve a KKT-type system depending on whether a one-level Neumann-
Neumann DD preconditioner is used or a two-level preconditioner. This is
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Table 1. One-level preconditioner: Number of SQP iterations, number of calls to
GMRES, the total number of GMRES iterations, and the average number of GMRES
iterations per call.

1/h 64× 64 128× 128
1/H 2× 2 4× 4 8× 8 2× 2 4× 4 8× 8

SQP iter’s 5 5 5 5 5 5
GMRES calls 36 41 45 40 50 53
GMRES total 195 1313 4733 197 1719 5895
GMRES avg 5.4 32.0 105.2 4.9 34.4 111.2

Table 2. Two-level preconditioner: Number of SQP iterations, number of calls to
GMRES, the total number of GMRES iterations, and the average number of GMRES
iterations per call.

1/h 64× 64 128× 128
1/H 2× 2 4× 4 8× 8 2× 2 4× 4 8× 8

SQP iter’s 5 5 5 5 5 5
GMRES calls 36 41 44 40 49 50
GMRES total 96 348 393 132 515 574
GMRES avg 2.7 8.5 8.9 3.3 10.5 11.5

expected since the performance of the one-level Neumann-Neumann DD pre-
conditioner deteriorates as the number of subdomains increases, whereas the
performance of the two-level preconditioner is insensitive to the number of
subdomains. For single PDEs, this is shown theoretically as well as numer-
ically, see, e.g., [22, 23]. For the optimization case this has been observed
numerically ([13]), but not yet proven theoretically.

Figure 1 shows the relative residual stopping tolerances required for GM-
RES during its calls within the Steihaug-Toint CG algorithm used to compute
the tangential step (cf., (16)). Each box/star indicates one call to GMRES,
each box indicates a new SQP iteration. This figure shows that our SQP al-
gorithm adjusts the stopping tolerance and has the capability to coarsen the
relative residual stopping tolerance. We note that the dynamic adjustment is
particularly beneficial over using a fixed stopping tolerance when the precon-
ditioner is less effective and many GMRES iterations have to be executed to
achieve a lower tolerance.
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and DMS-0511624.
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Fig. 1. Relative stopping tolerances for every call to GMRES within the Steihaug-
Toint CG algorithm. One CG iteration corresponds to one GMRES call. The empty
square indicates the beginning of a new SQP iteration
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Summary. Mortar discretizations have been developed for coupling different ap-
proximations in different subdomains, that can arise from engineering applications
in complicated structures with highly non-uniform materials. The complexity of
the mortar discretizations requires fast algorithms for solving the resulting lin-
ear systems. Several domain decomposition algorithms, that have been success-
fully applied to conforming finite element discretizations, have been extended to
the linear systems of mortar discretizations. They are overlapping Schwarz methods,
FETI-DP (Dual-Primal Finite Element Tearing and Interconnecting) methods, and
BDDC (Balancing Domain Decomposition by Constraints) methods. The new re-
sult is that complete analysis, providing the optimal condition number estimate, has
been done for geometrically non-conforming subdomain partitions and for problems
with discontinuous coefficients. These algorithms were further applied to the two-
dimensional Stokes and three-dimensional elasticity. In addition, a BDDC algorithm
with an inexact coarse problem was developed.

1 Introduction

Mortar discretizations were introduced in [2] to couple different approxima-
tions in different subdomains so as to obtain a good global approximate
solution. They are useful for modeling multi-physics, adaptivity, and mesh
generation for three dimensional complex structures. The coupling is done
by enforcing certain constraints on solutions across the subdomain interface
using Lagrange multipliers. We call these constraints the mortar matching
conditions.

The complexity of the discretizations requires fast algorithms for solving
the resulting linear systems. We focus on extension of several domain decom-
position algorithms, that have been successfully applied to conforming finite
element discretizations, to solving such linear systems. They are overlapping
Schwarz methods, FETI-DP (Dual-Primal Finite Element Tearing and In-
terconnecting) methods, and BDDC (Balancing Domain Decomposition by
Constraints) methods, see Section 3 of [19], [5, 4], and [16, 17].
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The new result is that complete analysis, providing the optimal condition
number bound, was done for geometrically non-conforming subdomain parti-
tions and for problems with discontinuous coefficients. These algorithms are
further extended to the Stokes problem and three-dimensional elasticity. In
addition, using an inexact solver for the coarse problem the BDDC method
was extended to a three–level algorithm.

Throughout this paper, hi and Hi denote the mesh size and the subdo-
main diameter, and C is a generic positive constant independent of the mesh
parameters and problem coefficients.

2 Mortar Discretization

We consider a model elliptic problem,

−∇ · (ρ(x)∇u(x)) = f(x), x ∈ Ω,
u(x) = 0, x ∈ ∂Ω, (1)

where Ω is a polyhedral domain in R3, f(x) is a square integrable func-
tion in Ω, ρ(x) is a positive and bounded function. We decompose Ω into a
non-overlapping subdomain partition {Ωi}i, that can be geometrically non-
conforming. In a geometrically non-conforming partition, a subdomain can
intersect its neighbors in a part of a face, a part of an edge, or a vertex. This
allows a subdomain partition that is not necessarily a triangulation of Ω. We
then introduce a triangulation Ti to each subdomain Ωi and denote by Xi

the conforming piecewise linear finite element space associated to the trian-
gulation Ti. These triangulations can be non matching across the subdomain
interface Γ =

⋃
i,j(∂Ωi ∩ ∂Ωj). We can select a set of subdomain faces of

which union covers Γ , see [18, Section 4.1]. We then denote those faces {Fn}n
and call them nonmortar faces.

A subdomain Ωi, with a nonmortar face Fn as its face, can intersect more
than one neighbors {Ωj}j through Fn. This gives a partition {Fn(i,j)}j to
Fn, where Fn(i,j) is the common part of Ωi and Ωj . We call Fn(i,j) mortar
faces. We note that the mortar faces can be only part of subdomain faces
while nonmortar faces are a full subdomain face. On each nonmortar Fn ⊂ Ω,
we introduce a Lagrange multiplier space M(Fn) based on the finite element
space Xi, see [2, 22, 6] for the detailed construction.

We define a product space

X =
∏

i

Xi,

and introduce a mortar matching condition on (v1, · · · , vN ) ∈ X∫
Fn

(vi − φ)ψ ds = 0, ∀ψ ∈M(Fn), (2)
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where φ = vj on Fn(i,j) ⊂ Fn. A mortar finite element space is defined by

X̂ = {v ∈ X : v satisfies (2)} ,

and mortar discretization is to approximate the solution u of (1) in the mortar
finite element space X̂. The approximation error is given by

N∑
i=1

‖u− uh‖2H1(Ωi)
≤ C

N∑
i=1

h2
i |log(hi)|‖u‖2H2(Ωi)

,

where uh is the approximate solution, see [1]. The additional log factor does
not appear when the subdomain partition is geometrically conforming.

3 An Overlapping Schwarz Method

To build an overlapping Schwarz preconditioner, we introduce two auxiliary
partitions of Ω. They are an overlapping subregion partition {Ω̃j}j and a
coarse triangulation {Tk}k of Ω.

For each subregion Ω̃j , we introduce a finite element space X̃j as a subspace
of X̂ in the following way. Among the nodes in the finite element space X, we
define by genuine unknowns the nodes that are not contained in the interior
of the nonmortar faces. The space X̃j is then built from the basis functions
of each genuine unknowns, that are supported in Ω̃j . By assigning values of
the basis functions at the nodes on the nonmortar faces using the mortar
matching condition (2), we can obtain the resulting basis elements contained
in X̂.

Similarly, we can construct a coarse finite element space X̃0 that belongs to
X̂. Let XH be the piecewise linear conforming finite element space associated
to the coarse triangulation {Tk}k. First we interpolate a function v ∈ XH to
the produce space X using the nodal interpolant Ih : XH → X such that

Ih(v) = (Ih
1 (v), · · · , Ih

N (v)),

where Ih
i (v) denote the nodal interpolant of v to the space Xi. We then modify

values of Ih(v) at the nodes on the nonmortar faces using the mortar matching
condition so that obtain the resulting interpolant Im(v) contained in X̂. The
coarse finite element space X̃0 is given by

X̃0 = Im(XH) ⊂ X̂.

The two–level overlapping Schwarz algorithm consists of solving the local
and coarse (when j = 0) problems; find Tju ∈ X̃j such that

a(Tju, vj) = a(u, vj), ∀vj ∈ X̃j (j ≥ 0).

For the overlapping Schwarz algorithm applied to the mortar discretization
of the elliptic problem (1), we proved the condition number estimate, see [13].
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Theorem 1. We assume that the diameter of Ωi is comparable to any coarse
triangle Tk that intersects Ωi and the diameter Hi of Ωi satisfy Hi ≤ CH̃j,
where H̃j is the diameter of subregion Ω̃j that intersects Ωi. In addition, we
assume that the mesh sizes of subdomains that intersect along a common face
are comparable. We then obtain the condition number bound for the overlap-
ping Schwarz algorithm,

κ(
J∑

j=0

Tj) ≤ C max
j,k

{(
1 +

H̃j

δj

)(
1 + log

Hk

hk

)}
,

where δj are the overlapping width of the subregion partition {Ω̃j}j, and
Hk/hk denote the number of nodes across subdomain Ωk.

4 BDDC and FETI–DP Algorithms

In this section, we construct BDDC and FETI–DP algorithms for the mortar
discretization. We first derive the primal form of the mortar discretization
and then introduce a BDDC algorithm for solving the primal form. Secondly
we introduce the dual form and build a FETI–DP algorithm that is closely
related to the BDDC algorithm.

We separate unknowns in the finite element space Xi into interior and
interface unknowns and after selecting appropriate primal unknowns among
the interface unknowns we again decompose the interface unknowns into dual
and primal unknowns,

Xi = X
(i)
I ×X

(i)
Γ , X

(i)
Γ = W

(i)
∆ ×W (i)

Π , (3)

where I, Γ , ∆, and Π denote the interior, interface, dual, and primal un-
knowns, respectively.

The primal unknowns are related to certain primal constraints selected
from the mortar matching condition (2). They result in a coarse component
of the BDDC preconditioner so that a proper selection of such constraints is
important in obtaining a scalable BDDC algorithm. We consider {ψij,k}k, the
basis functions in M(Fn) that are supported in Fn(i,j), and introduce

ψij =
∑

k

ψij,k.

We assume that at least one such basis function ψij,k exists for each Fn(i,j) ⊂
Fn. On each interface Fn(i,j), we select the primal constraints for (w1, · · · , wN )
∈ XΓ (=

∏
i X

(i)
Γ ) as ∫

Fn(i,j)

(wi − wj)ψij ds = 0. (4)
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For the case of a geometrically conforming partition, i.e., when Fn(i,j) is a full
face of two subdomains, the above constraints are the face average matching
condition because ψij = 1. We can change the variables to make the primal
constraints explicit, see [14, Sec. 6.2], [15, Sec. 2.3], and [9, Sec. 2.2]. We then
separate the unknowns in the space Xi as described in (3). We will also assume
that all the matrices and vectors are written in terms of the new variables.

Throughout this paper, we use the notation V for the product space of
local finite element spaces V (i). The same applies to the vector notations v
and v(i). In addition, we use the notation V̂ for the subspace of V satisfying
mortar matching condition (2) and the notation Ṽ for the subspace satisfying
only the primal constraints (4). For example, we can represent the space

X̃Γ = {w ∈ XΓ : w satisfies the primal constraints (4)} ,

in the following way,
X̃Γ = W∆ × ŴΠ .

We further decompose the dual unknowns into the part interior to the non-
mortar faces and the other part to obtain

W∆ = W∆,n ×W∆,m,

where n and m denote unknowns at nonmortar faces (open) and the other
unknowns, respectively.

After enforcing the mortar matching condition (2) on functions in the
space X̃Γ , we obtain the matrix representation,

Bnwn +Bmwm +BΠwΠ = 0. (5)

Here we enforced the mortar matching condition using a reduced Lagrange
multiplier space, since the functions in the space X̃Γ satisfy the primal con-
straints selected from the mortar matching condition (2). The reduced La-
grange multiplier space is obtained after eliminating one basis element among
{ψij,k}k for each Fij ⊂ Fl so that the matrix Bn in (5) is invertible. There-
fore the unknowns wn of the nonmortar part are determined by the other
unknowns, wm, and wΠ , which are called genuine unknowns. We define the
space of genuine unknowns by

WG = W∆,m × ŴΠ

and define the mortar map,

R̃Γ =

⎛⎝−B−1
n Bm −B−1

n BΠ

I 0
0 I

⎞⎠ , (6)

that maps the genuine unknowns in WG into the unknowns in X̃Γ which
satisfy the mortar matching condition.
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To derive the linear system of the mortar discretization, we introduce sev-
eral matrices. The matrix S(i)

Γ is the local Schur complement matrix obtained
from the local stiffness matrix A(i) by eliminating the subdomain interior
unknowns,

S
(i)
Γ = A

(i)
ΓI(A

(i)
II )−1(A(i)

ΓI)
T =

(
S

(i)
∆∆ (S(i)

Π∆)t

S
(i)
Π∆ S

(i)
ΠΠ

)
,

where ∆ and Π stand for the blocks corresponding to dual and primal un-
knowns, respectively. We define extensions of the spaces by

WG
R̃Γ−→X̃Γ

RΓ−→XΓ ,

where R̃Γ is the mortar map in (6) and RΓ is the product of restriction maps,

R
(i)

Γ : X̃Γ → X
(i)
Γ .

We next introduce the matrices SΓ and S̃Γ , the block diagonal matrix and
the partially assembled matrix at the primal unknowns, respectively, as

SΓ = diagi(S
(i)
Γ ), S̃Γ = R

t

ΓSΓRΓ .

The linear system of the mortar discretization is then written as:
find uG ∈WG such that

R̃t
Γ S̃Γ R̃ΓuG = R̃t

Γ gG, (7)

where gG ∈ WG is the part of genuine unknowns, i.e., the unknowns other
than the nonmortar part, of g ∈ XΓ , that is given by

g(i) = f
(i)
Γ −A

(i)
ΓI(A

(i)
II )−1f

(i)
I .

Here f (i) =

(
f

(i)
I

f
(i)
Π

)
is the local force vector. In the BDDC algorithm, we solve

(7) using a preconditioner M−1 of the form,

M−1 = R̃t
D,Γ S̃

−1
Γ R̃D,Γ ,

where the weighted extension operator R̃D,Γ is given by

R̃D,Γ = DR̃Γ =

⎛⎝Dn 0 0
0 Dm 0
0 0 DΠ

⎞⎠ R̃Γ .

Later, we will specify the weight Dn, Dm, and DΠ .
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We now develop a FETI–DP algorithm closely related to the BDDC al-
gorithm. In the FETI–DP algorithm, we solve the dual form of the mortar
discretization that is derived from the constrained minimization problem,

min
w∈X̃Γ

{
1
2
wtS̃Γw − wtg̃

}
,

with w satisfying the mortar matching condition (5). The mixed form to the
constrained minimization problem gives

S̃Γw +Btλ = g̃,

Bw = 0,

where B = (Bn, Bm, BΠ). After eliminating w, we obtain the dual form,

BS̃−1
Γ Btλ = BS̃−1

Γ g̃. (8)

We solve the equations of the dual form (8) iteratively using a preconditioner,

F̂−1
DP = BΣS̃ΓB

t
Σ ,

where

Bt
Σ = ΣBt =

⎛⎝Σn 0 0
0 Σm 0
0 0 ΣΠ

⎞⎠Bt.

As a result, we have obtained the two algorithms for solving the mortar
discretization and we write them into

BDDC = R̃t
D,Γ S̃

−1
Γ R̃D,Γ R̃

t
Γ S̃Γ R̃Γ , FDP = BΣS̃ΓB

t
ΣBS̃

−1
Γ Bt.

The convergence of the two algorithms depends on the condition number of
BDDC and FDP . We now show a close connection between them and then
provide weights D and Σ leading to scalable preconditioners. Let

PΣ = Bt
ΣB, ED = R̃Γ R̃

t
D,Γ .

Theorem 2. Assume that PΣ and ED satisfy
1. ED + PΣ = I,
2. E2

D = ED, P
2
Σ = PΣ ,

3. EDPΣ = PΣED = 0.
Then the operators FDP and BDDC have the same spectra except the eigen-
values 0 and 1.

The same result was first shown by [17] and later by [15] for the conforming
finite element discretizations. We are able to extend the result to the mortar
discretizations.
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The Neumann-Dirichlet preconditioner for the FETI-DP algorithms
suggested by [10] was shown to be the most efficient for the problems with
discontinuous coefficients, see [3]. The weight of the Neumann-Dirichlet pre-
conditioner is given by

Σn = (Bt
nBn)−1, Σm = 0, ΣΠ = 0, (9)

and the condition number of the FETI-DP algorithm was shown to be

κ(FDP ) ≤ C(1 + log(H/h))2,

when the subdomain with smaller ρi is selected as the nonmortar side.
When the weight of the BDDC preconditioner is selected to be

Dn = 0, Dm = I, DΠ = I, (10)

the ED and PΣ satisfy the assumptions in Theorem 2. Therefore, the BDDC
algorithm equipped with the weight in (10) has the condition number bound,

κ(BDDC) ≤ C(1 + log(H/h))2,

and the BDDC algorithm is as efficient as the FETI-DP algorithm.

5 Applications of the BDDC and FETI-DP Algorithms

The BDDC and FETI-DP algorithms introduced in the previous section can
be generalized to the mortar discretizations of the Stokes problem and three
dimensional compressible elasticity problems. For these cases, the selection of
primal constraints is important in obtaining a scalable preconditioner.

We assume that the subdomain partition is geometrically conforming. We
denote the common face (edge) of two subdomains Ωi and Ωj by Fij in three
(two) dimensions. An appropriate Lagrange multiplier space M(Fij) is then
provided for the nonmortar part of Fij . We note that the space M(Fij) con-
tains the constant functions.

For the Stokes problem, we select the average matching condition across
the interface as the primal constraints, namely,∫

Fij

vi ds =
∫

Fij

vj ds,

where Fij is the common face (edge) of ∂Ωi and ∂Ωj in three (two) dimensions.
For the elasticity problems, we select∫

Fij

vi · IMij
(rk) ds =

∫
Fij

vj · IMij
(rk) ds, k = 1, · · · , 6,
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where rk are the six rigid body motions and IMij
(rk) is the nodal interpolant

of rk to the Lagrange multiplier space M(Fij) provided for the nonmortar
face Fij .

With the selection of the primal constraints, we showed the condition
number bound of the two algorithms

FDP ≤ C

(
1 + log

H

h

)2

, BDDC ≤ C

(
1 + log

H

h

)2

,

when the weight are given by (9) and (10); see [11] and [7, 8]. The BDDC and
FETI-DP algorithms of the elasticity can be extended to the geometrically
nonconforming subdomain partitions as well. For such a case, the Lagrange
multiplier space M(Fij) is the span of basis elements ψl of M(Fn) that are
supported in Fn(i,j). Here Fn(⊂ ∂Ωi) is the nonmortar face that is partitioned
by its mortar neighbors {Ωj}j .

We note that the BDDC preconditioner consists of solving local problems
and the coarse problem,

M−1 = R̃t
DS̃

−1
Γ R̃D,

= R̃t
D

(
I 0

−SΠ∆S
−1
∆∆ I

)(
S−1

∆∆ 0
0 F−1

ΠΠ

)(
I −S−1

∆∆S∆Π

0 I

)
R̃D.

As the increase of the number of subdomains, the cost for solving the coarse
component becomes a bottleneck of the computation. By solving the coarse
problem inexactly, we can speed up the total computational time.

BDDC algorithms with an inexact coarse problem were developed by [21,
20] for conforming finite element discretizations of elliptic problems in both
two and three dimensions. The idea is to group subdomains into a subregion
and to obtain a subregion partition. Using the additional level, we construct
a BDDC preconditioner of the coarse component FΠΠ in M−1. The resulting
preconditioner, called a three-level BDDC preconditioner, is given by

M
−1

= R̃t
DS

−1

Γ R̃D,

where S
−1

Γ denotes the matrix that is the part F−1
ΠΠ of S̃−1

Γ is replaced by
a BDDC preconditioner using the additional subregion level. The condition
number bound of the three–level BDDC algorithm was shown to be

κ(M
−1
R̃t

Γ S̃R̃Γ ) ≤ C

(
1 + log

Ĥ

H

)2 (
1 + log

H

h

)2

,

where Ĥ, H, and h denote the subregion diameters, subdomain diameters,
and mesh sizes, respectively.

We obtain a subregion partition {Ω(j)}Nc
j=1, where each subregion Ω(j) is

the union of Nj subdomains Ω(j)
i . An example of a subregion partition, that is
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Fig. 1. A subregion partition (left) and unknowns at a subregion (right) when

Ĥ/H = 4; small rectangles are subdomains in the left.

obtained from a geometrically non-conforming subdomain partition, is shown
in Fig. 1.

In the subregion partition, we define faces as the intersection of two subre-
gions and vertices (or edges) as the intersection of more than two subregions.
Finite element spaces for the subregions are given by the primal unknowns
of the two–level algorithm so that the subregion partition is equipped with
a conforming finite element space, for which the unknowns match across the
subregion interface. On this new level, the mortar discretization is no longer
relevant. We can then develop the theory and algorithm for the subregion
partition as in the two–level BDDC algorithm done for the conforming finite
element discretization. Analysis and numerical computations of the three-level
BDDC algorithm for mortar discretizations will be found in [12].
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1 Introduction

For the constrained minimization of convex or non-convex functionals on the
basis of multilevel or domain decomposition methods, different strategies have
been proposed within the last decades. These include nonlinear and monotone
multigrid methods, see [5, 9, 12, 16, 20], multilevel optimization strategies and
multilevel Trust-Region methods, see [8, 21], nonlinear domain decomposition
methods [1, 6, 22, 23], multigrid methods as linear solvers in the framework
of interior point based methods, see [4, 24] and multigrid methods applied
in the framework of primal-dual active set strategies or semi-smooth Newton
methods, see [11] for the latter. For a nonlinear multigrid method for smooth
problems we refer to [10]. We remark that the references given here are far
from exhaustive and refer the reader to the references cited therein.

From the multiscale point of view, two features might be employed in
order to distinguish between the different methods. The first one is the way
the constraints are incorporated into the multiscale hierarchy. The second one
is the way the nonlinearity is intertwined with the multiscale structure.

On the one hand, in case interior point methods, active set strategies or
semi-smooth Newton methods are used as solution method, domain decompo-
sition or multilevel methods are often used as an inner linear solver within an
outer smooth or non-smooth iteration process. Then, the outer iteration pro-
vides the convergence of the iterates to a minimizer whereas the inner solver
is only applied to linear problems. In order to accelerate the overall itera-
tion process, often the arising linear subproblems are solved inexactly. In this
case, the choice of the linear solution method can also effect the convergence
of the overall nonlinear scheme significantly, since the approximate correction
given by the iterative linear solver might provide a completely different de-
scent direction then the solution of the linear system itself. As a consequence,
even if the original nonlinear constrained minimization problem is reduced to
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a sequence of linear subproblems, the nonlinearity shows also up within the
linear subproblems.

On the other hand, following nonlinear domain decomposition and multi-
level strategies, the nonlinear iteration process can in contrast be carried out
within the subspaces provided by the considered splitting, see [1, 14, 23]. In
case of a multilevel method, for example, the nonlinearity might be evaluated
on all levels of the multilevel hierarchy. The resulting information gathered
on the multilevel hierarchy can then be used to provide faster convergence
of the nonlinear iteration process. A possible drawback of this approach is
that spurious coarse grid corrections might spoil the convergence of the non-
linear method, cf. [17]. A remedy can be found in adapting the multilevel
decomposition to the nonlinearities by, e.g. using solution dependent interpo-
lation operators and bilinear forms. Although this requires at least partially
reassembling of the coarse grid stiffness matrices, the additional effort is eas-
ily justified by the resulting gain in robustness and convergence speed of the
multilevel method.

2 Constrained Minimization

Let H be a Hilbert space and ∅ �= K ⊂ H a closed and convex subset. We
consider the constrained minimization Problem: find u ∈ K

J(u) ≤ J(v) , v ∈ K , (1)

where J : H −→ R is a convex and l.s.c. functional. Under this assumptions,
a minimizer exists, which is also unique of J is strictly convex, see, e.g. [7].
By introducing the characteristic functional

χK(v) =
{

0 , if v ∈ K ,
∞ , else,

the constraints can be translated into the non-smooth and nonlinear functional
χK, leading to the unconstrained minimization problem: find u ∈ H

(J + χK)(u) ≤ (J + χK)(v) , v ∈ H . (2)

Since the resulting non-smooth energy J + χK prevents the straight forward
application of, e.g. a gradient method or Newton’s method, often the func-
tional J+χK is replaced by a differentiable one, e.g. J+χα

K, α a regularization
parameter. This allows for applying Newton’s method to the resulting first or-
der conditions for a minimum

(J + χα
K)′(uα)(v) = 0 , v ∈ H . (3)

A different and non-smooth approach can be found by formulating the neces-
sary conditions for a minimizer of J as variational inequality. In this case, the
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energy functional J is generated by the H-elliptic bilinear form a(·, ·) and by
the linear functional f on H as

J(u) =
1
2
a(u, u)− f(u) , (4)

the minimization problem (1) can equivalently be reformulated as the varia-
tional inequality: find u ∈ K

a(u, v − u) ≥ f(v − u) , v ∈ K , (5)

see [7]. The advantage of the latter formulation is that the non-smooth struc-
ture of the minimization problem (1) is preserved. Numerical methods based
on (5) therefore can be expected to give results with higher accuracy.

After discretization of (1) by, e.g. finite elements, we obtain the finite
dimensional minimization problem: find uL ∈ KL

J(uL) ≤ J(v) , v ∈ KL , (6)

where the closed and convex set ∅ �= KL ⊂ SL approximates K and SL is a
finite dimensional subspace of H. Here, the index L serves as discretization
parameter. We remark that instead of solving the nonlinear problem (6) in
finite dimensions it is also possible to apply, e.g. an interior point method in
the function space H directly, see [24]. The approximate computation of the
resulting Newton corrections then gives rise to linear subproblems, which can
be solved by linear multigrid methods. Here, we do not follow this approach
but rather focus on the efficient computation of a solution to the finite dimen-
sional constrained minimization problem (6). This solution can be obtained
by either applying, e.g. a semi-smooth Newton method or a primal dual ac-
tive set strategy to the necessary first order conditions, cf. (5), or by attacking
the minimization problem (6) directly. Consequently, a multigrid method can
either be used as a solver or preconditioner for the linearized problem, or it
can serve as a nonlinear solver by itself.

3 Low Frequency Representation of Constraints

Here, as an example for (1), let us consider a contact problem in elastic-
ity. Subject to volume and surface forces, an elastic body is pressed against
a rigid foundation which cannot be penetrated, see, e.g., Figure 1. The ac-
tual zone of contact γC depends on the sought deformations and is unknown
in advance. We identify the elastic body in its reference configuration with
the (polyhedral) domain Ω ⊂ R3 and set as solution space H = (H1(Ω))3.
The boundary ∂Ω is decomposed into three disjoint parts, ΓD, the Dirich-
let boundary with meas2(ΓD) > 0, ΓN , the Neumann boundary and ΓC , the
possible contact boundary. We assume γC � ΓC . At ΓC , we enforce the lin-
earized non-penetration condition u ·n ≤ g, cf. [13], with respect to the outer



96 R. Krause

normal n. Here, g is the distance in normal direction to the obstacle in the ref-
erence configuration. The normal and tangential displacements, respectively,
are un = u · n and uT = u− un · n. We use boldface symbols for tensor and
vector quantities and the summation convention is enforced on indices running
from 1, . . . , 3. The stresses σ are given by Hooke’s law σij(u) = Eijml ul,m,
where Hooke’s tensor (Eijml)3i,j,l,m=1, Eijlm ∈ L∞(Ω), 1 ≤ i, j, l,m ≤ 3 is
assumed to be sufficiently smooth, symmetric and uniformly positive definite
and ε(u) = 1

2 (∇u + (∇u)T ) is the linearized strain tensor. The minimization
problem (1) now constitutes the elastic contact problem without friction, if
we define the set of admissible displacements by

K = {u ∈ H |u · n ≤ g on ΓC} (7)

and choose J to be the quadratic elastic energy

J(v) =
1
2
a(v,v)− f(v) =

1
2

∫
Ω

σ(v) : ε(v) dx−
∫
Ω

fv dx , (8)

see [13]. Here f ∈ L2(Ω) accounts for the volume forces and surface tractions.
The finite dimensional minimization problem (6) is now obtained by discretiz-
ing by finite elements. To this end, let T = (T �)L

�=0 denote a family of nested
and shape regular meshes with discretization parameter h�. Here, L > 0 is
the index of the finest level and h� is the mesh-size of T �. The meshes may
consist of tetrahedrons, hexahedrons, pyramids or prisms. We denote the set
of all nodes of T � by N � and the nodes on the possible contact boundary ΓC

are C� = ΓC ∩N �. By S� ⊂ SL we denote the spaces of first order Lagrangian
finite elements on Level �.

Multilevel methods for this type of problem have been considered by [3,
5, 12, 20] for scalar problems and by [16] for the system given above.

Construction of Subspaces and Coarse Level Energies

We first give the algorithmic formulation for a nonlinear and non-smooth
multigrid method which has been implemented in the C++–toolbox Ob-
sLib++, cf. [17].

Algorithm 1 (Non-smooth Multigrid Method)
(1) Initialize uL

0 . For k = 0, . . . , kmax do:

(2) Compute an approximate solution cL of the problem: find wL ∈ SL, such that

(J + χKL)(uL
k + wL) ≤ (J + χKL)(uL

k + w) , v ∈ SL.

Set ūL = uL
k + cL.

(3) For � < L do:

Choose subspace X �
ūL , convex set D�

ūL , ūl ∈ D�
ūL and functional Q�

ūL

Coarse grid correction: find c� ∈ D�
ūL , such that

Q�
ūL(ūl + c�) ≤ Q�

ūL(ūl + v) , v ∈ D�
ūL .

(5) Set uL
k = PL(ūL +

∑
�<L c�)
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Here, in order to allow for an adaptation of the coarse grid basis to the actual
iterate, we have replaced the multilevel decomposition induced by the spaces
S� by the subspaces {X �

ūL}�<L which may depend on the smoothed iterate ūL

obtained after the leading fine grid smoothing (2) in Algorithm 1. The convex
sets D�

ūL provide a multilevel decomposition of KL, see [1, 16, 23]. By means
of the mapping PL : SL −→ SL, the feasibility of the iterates is ensured.
Examples are global damping of the coarse grid corrections or line search. In
case, the coarse grid corrections are feasible by construction of D�

ūL , PL will
be the identity. In case of a parallel multiscale method, PL may also serve as a
non-linear synchronization which is necessary for synchronizing the different
iterates obtained on the different processors. For an example, we refer to
Figure 2 and Table 3. Finally, on each Level 0 ≤ � < L, the correction in X �

ūL is
computed with respect to the possibly level dependent convex functional Q�

ūL .
This step requires either the restriction of the linear or nonlinear defect or the
projection of the smoothed iterate ūL onto X �

ūL in order to obtain the start
iterate ū�. Concerning the construction of the coarse grid models, the straight
forward approach would be to set Q�

ūL = J+χK� . However, the characteristic
functional χKL in general cannot be represented on the coarser grids � < L. As
a consequence, coarse grid corrections originating from Q�

ūL = J +χK� might
interfere in an undesirable way with J+χKL , thus spoiling the convergence or
efficiency of the multilevel method, see [17]. Therefore, a suitable multiscale
representation of the non-smooth nonlinearities has to be constructed, which
guarantees the nonlinear convergence of our multiscale method as well as their
efficiency and robustness.

For the contact problem, the leading minimization step (2) in Algorithm 1
can be realized by applying a nonlinear Gauß-Seidel method. By means of the
resulting smoothed iterate ūL, we can define the set

AL
ūL = {p ∈ CL | ūL(p) · n(p) = g(p)} (9)

of active nodes on level L. In order to ensure the feasibility of the coarse grid
corrections, they must at least vanish at all active nodes p ∈ AL

ūL in normal
direction. In general, using the standard nodal multilevel basis this is not
possible. We now show how suitable subspaces XL

ūL can be obtained. Let λ�
p

be the standard nodal hat function for p ∈ N � and let {Ei}1≤i≤3 denote the
Cartesian basis vectors of Rd. We replace the standard nodal basis functions
λ�

p = (λ�
p ·E1, . . . , λ

�
p ·Ed)T of S� for p ∈ C� by

{λ�
p · e1(p), . . . , λ�

p · ed(p)} , (10)

where {ei}1≤i≤3 is an orthonormal basis associated with p ∈ CL and with
e1(p) = n(p). As a consequence of (10), the first component of the displace-
ments at the nodes p ∈ C� is always the displacement in normal direction. Let
now I�+1

� : Sl → Sl+1 denote the interpolation operator with respect to the lo-
cal transformation (10). The algebraic representation I�+1

� = (ipq)p∈N l+1,q∈N l

of I�+1
� is a rectangular matrix with the 3 × 3 blocks ipq ∈ R3×3. We note
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that due to (10) for p ∈ CL the blocks ipq in general are not diagonal, if the
normals differ along ΓC . Now, we introduce the sets A� ⊂ C� × {1, . . . , d}
of active degrees of freedom for each Level � ≤ L. On Level L, we set
AL = {(p, 1) | p ∈ AL

ūL}. On the coarser levels, the spaces X �
ūL can be de-

fined by removing the degrees of freedom in A� from the nodal basis of S�.
Possible choices for the multiscale representation of the set AL include now
(1 ≤ i, j ≤ 3)

1. A� = {(q, 1) | q ∈ C� and ūL(q) · n(q) = g(q)}.
2. Set recursively for � < L: A� = {(q, 1) | ∃(p, 1) ∈ A�+1 : (i�+1

� )11pq �= 0}.
3. Set recursively for � < L: A�−1 = {(q, j) | ∃(p, i) ∈ A�+1 : (i�+1

� )ij
pq �= 0}.

In addition to 1—3, we employ truncated basis functions {µ�
q}q∈N � , see [16].

For � < L, they can be defined by

µ�
q = λ�

q −
∑

p∈int suppλ�
q∩AL

ūL

ωqp λ
L
p · n(p) ,

where the weights ωqp are such that for all active nodes p ∈ AL
ūL it holds for

� ≤ L that µ�
q(p) · n(p) = 0. Thus, the resulting multilevel basis provides a

multiscale representation of the active constraints AL
ūL on all coarser levels

� < L. We remark that the search directions µ�
q are never explicitly com-

puted, since the corresponding stiffness matrix can be obtained recursively by
modifying the interpolation operator and using local reassembling.

Global Convergence

Despite the coarse grid spaces, we also have to choose the coarse grid ener-
gies Q�

ūL and the convex sets of feasible corrections D�
ūL . Using the multigrid

method as nonlinear solver by itself, following the idea of monotone multigrid
methods, see [14], global convergence is achieved by guaranteeing that during
the multigrid iteration process the convex functional J+χKL always decreases.
The minimizer of (6) is sought by successive minimization in direction of all
basis functions of the subspaces X �

ūL originating from the truncated basis. In
order to ensure the feasibility of the coarse grid corrections, inner approxima-
tions D�

ūL of the set KL are constructed for � < L. Choosing Q�
ūL = J , then

the monotonicity of the iteration guarantees the global convergence of the
resulting monotone multigrid method for contact problems, see [16]. In the
following, we denote this method by M-MG.

For unconstrained convex minimization problems, [21] has shown the con-
vergence of a multilevel optimization method if the coarse grid problems are
solved “accurately enough”. Then, it can be guaranteed that a descent direc-
tion is provided by the coarse grid corrections. In [8], Trust-Region strategies
are intertwined with multilevel optimization methods. In all cases, the suf-
ficient decrease of the functional J is used to ensure the convergence of the
multilevel method. Let us remark that the convergence proof in [10] for a
smooth nonlinear multigrid method is also based on a minimization property.
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Influence of the Multilevel Splitting

As an alternative to using the multigrid method as nonlinear solution method,
it can also be applied as linear solver or as a preconditioner within a nonlinear
strategy as, e.g. a primal dual active set strategy. We therefore consider the
influence of the multilevel decompositions X �

ūL given above in the context of
a monotone multigrid method as well as in the context of a primal dual active
set strategy. Let us define the active set of uL

k by AL
k = {p ∈ CL | sn(p) +

ρ(uL
k (p) · n(p) − g(p)) > 0}, where sn(p) = a(uL

k , λ
L
p · n(p)) − f(λL

p · n(p))
are the discrete normal stresses and ρ > 0 is an algorithmic parameter. An
inexact multigrid based primal-dual active set strategy can be obtained from
Algorithm 1 by replacing χKL in step (2) by the characteristic functional of
the set XL

uL
k−1

= {v ∈ SL |v(p) · n(p) = 0, p ∈ AL
k−1} and by using the linear

coarse grid corrections induced by setting Q�
ūL = J and X �

ūL = D�
ūL . In each

step k, the steps (2) and (3) in Algorithm 1 amount to the inexact solution
of a linear sub-problem of the form: find c ∈ XL

uL
k−1

, such that

a(c,v) = (f ,v)− a(w,v), v ∈ XL
uL

k−1
, (11)

where w ∈ SL and w(p) · n(p) = g(p) for p ∈ AL
k−1.

Primal-dual active set strategies are known to converge superlinearly, if
the initial iterate uL

0 is sufficiently close to the solution. If, in addition the
stiffness matrix is an M -matrix and the linear systems (11) are solved exactly,
also global convergence can be shown, see [11]. Global convergence can also
be obtained using Trust-Region Strategies. As a matter of fact, in case the
linear sub-problems (11) are solved only inexactly, the choice of the employed
multilevel decomposition strongly influences the convergence of the overall
nonlinear strategy. We illustrate this for a Hertzian contact problem in 3d.
Here, a sphere is pressed in z-direction against the rigid plane {z = 0}. The
material parameters are E = 105 and ν = 0.3 and we have L = 5 levels of
adaptive refinement and 659.409 degrees of freedom on Level 5. In Table 1,
the resulting numbers of W(3, 3)-cycles are shown for this multigrid based
active set strategy. We use the coarse grid spaces induced by the active sets
A� given on the previous page and the truncated basis as well as the globally
convergent monotone multigrid method M-MG with the truncated basis. The
iteration is stopped, if ‖uL

k+1−uL
k ‖a/‖uL

k−uL
k−1‖a ≤ 10−12, ‖u‖a = a(u, u)1/2.

The initial iterate uL
0 is given by random values in the interval [−0.2,−0.1].

For the definition of the set KL we consider two different cases. Firstly, the
case of constant normal direction at ΓC , i.e. we take as normal direction a
n(p) = (0, 0,−1)T for all p ∈ CL (“equal normals”), and secondly, n(p) the
outer normal at p ∈ CL (“outer normals”). As can be seen from Table 1,
for the case of the outer normals, the constraints at the interface are locally
not decoupled and spurious corrections from the coarser grids can spoil the
convergence. We emphasize that the truncated basis functions showed to pro-
vide the best nonlinear search directions with respect to both, efficiency and



100 R. Krause

robustness. As a by product, they can also be used for the multilevel rep-
resentation of Dirichlet values. The slightly higher iteration numbers for the
monotone multigrid method show the influence of the multilevel decomposi-
tion of the set KL, since for M-MG the feasibility of the coarse grid corrections
is enforced by the construction of the sets D�

ūL .
Summing up, regardless of using a multigrid method as inexact solver

within a non-smooth solution method or as nonlinear solver by itself, the
multilevel decomposition has to be adapted to the active constraints in order
to provide a fast and robust method.

4 Low Frequency Representation of Nonlinearities

Approximation by Quadratic Functionals

We now consider the case where the functional to be minimized is non-
quadratic and non-differentiable. As example we choose elastic contact with
Tresca friction. The corresponding minimization problem, after discretization,
is given by: find u ∈ KL

(J + jL
sn

)(uL) ≤ (J + jL
sn

)(v) , v ∈ KL . (12)

Here, J is the elastic energy (8) and the friction functional jL
sn

is given by

jL
sn

(v) =
∑

p∈CL

F |sp,n| |vp,T | , (13)

| · | the Euclidean norm in R2 and sn = (sp,n)p∈CL are the prescribed
scaled boundary stresses, and F > 0 is the coefficient of friction. We write
up,n = un(p) and up,T = uT (p). Tresca’s friction law induces a non-smooth
relationship between tangential displacements and tangential stresses, cf. [13].
Taking into account the efficiency and robustness of SQP-methods, the con-
struction of the coarse level functionals Q�

ūL might be based on a quadratic
approximation of J + jL

sn
. However, since jL

sn
is non-differentiable, this turns

out to be a non-trivial task. We therefore proceed as follows, see [15, 17]. After
ūL in Algorithm 1 has been obtained, the subsequent coarse grid corrections
are restricted to a neighborhood DL

ūL of ūL where ūL
T �= 0 and therefore the

energy J + jL
sn

is smooth. In contrast to the Trust-Region techniques given
in [8], here the neighborhood DL

ūL is locally defined by box constraints. This
allows us to construct the coarse grid models Q�

ūL on the basis of the quadratic
approximation

QūL(v) =
1
2
(
a(v,v) + j′′ūL(ūL)(v,v)

)
−
(
f(v)− j′ūL(ūL)(v) + j′′ūL(ūL)(ūL,v)

)
(14)



On the Multiscale Solution of Constrained Minimization Problems 101

of J + jL
sn

on DL
ūL , where we have set

jūL(v) =
∑

p∈BL

F|sp,n||vp,T | , v ∈ SL . (15)

Here, BL ⊂ CL denotes the set of all sliding nodes w.r.t. ūL, i.e. all nodes
p ∈ CL with ūL

p,T �= 0. As coarse grid model we use Q�
ūL = QūL from (14). For

the construction of the subspaces X �
ūL we again use the truncated basis func-

tions. At all sticky nodes, i.e. p ∈ CL with ūp,T = 0, truncation is em-
ployed in all directions, such that µ�

q · ei(p) = 0 for 1 ≤ i ≤ 3. Now setting
D�

ūL = {v ∈ X �
ūL | (ūL

p,T ,vp,T ) ≥ 0 , p ∈ CL} the global convergence of the
resulting multigrid method can be shown, see [18]. Again, the convergence
proof relies on the successive minimization of the frictional energy, but now
the coarse grid functionals Q�

ūL are different from the fine grid functional.
Since the sliding directions ūL

p,T differ along ΓC , we again equilibrate the
constraints by applying a basis transformation as in (10), but now only in the
tangential space span{e2(p),e3(p)}. This allows for a better representation of
the sets D�

ūL in X �
ūL .

As an example, we consider an elastic block pressed onto a rigid plane.
A coarse triangulation of a cube with eight hexahedrons is refined adaptively
until 190, 888 elements are obtained on Level L = 6. In Figure 1, the resulting
number of iterates of M-MG on Level 6 are shown if this additional basis
transformation is applied (lower line) or not (upper line), again for the stop-
ping criterion given above. As can be seen, adapting the spaces X �

ūL to the
nonlinearity jsn

improves the robustness and efficiency of the method. For
details, we refer to [18]. As an additional example, Figure 1 shows a torus
in contact with a rigid foundation and the tangential stresses for F = 0.3 at
the contact interface. As can be seen, the sharp interface between sliding and
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Fig. 1. Torus in contact with a rigid foundation Left: Deformed geometry. Middle:
First component of the tangential stresses. Right: Block on plane: Robustness w.r.t
to the coefficient of friction. Influence of coarse grid spaces X �

ūL

sticky nodes in the tangential stresses is perfectly resolved by our non-smooth
minimization approach.
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Semi-smooth Approach

The regularized problem (3) motivates another possibility to ensure that the
coarse grid corrections provide a descent direction for the minimization prob-
lem (6). To enforce the pointwise given constraints un ≤ g for our contact
problem, one could use the classical logarithmic barrier function to obtain the
smooth energy functional

(J + χKL
µ
)(u) = J(u)− µ

∑
p∈CL

ln(g(p) + ε− un(p)) , (16)

µ > 0, ε ≥ 0 parameters. The disadvantage of this formulation is that ill-
conditioning of the resulting Hessian may occur. Moreover, due to the regu-
larization, the solution of the minimization problem (6) is only obtained in
the limit µ→ 0 and therefore some accuracy is lost. However, in the context
of our nonlinear multigrid method, this approach can be used to construct the
coarse grid energies Q�

ūL for � < L on the basis of the formulation (16). To
this end, on Level L, the leading minimization step (2) in Algorithm 1 is done
by means of a non-smooth method as, e.g. a nonlinear Gauß-Seidel method.
Then, the spaces X �

ūL are constructed using the truncated basis functions
w.r.t (9). As coarse grid energies, we use the quadratic approximation (14)
for the smooth energy (16). By means of this semi-smooth method, the coarse

Fig. 2. Cube with hole in contact with a rigid cylinder inside Left: Parallel decom-
position with 16 subdomains. Middle: Grid on Level � = 1. Right: Normal stresses.

grid corrections are encouraged to stay within the feasible set, which gives
rise to a “better” descent direction. In addition, the regularization does not
influence the accuracy of the results, since it is only applied on the coarser
grids. In Table 2, the resulting number of iterates for the contact problem
from Figure 2 for µ = 10−4 and ε = 10−7 are shown. Here, we compare the
monotone multigrid method using the truncated basis functions with (M-MG)
and without (NL-MG) enforcing the feasibility of the coarse grid corrections
with the combined approach (C-MG). In order to stress the nonlinear iter-
ation process, the components of the initial iterate uL

0 are chosen randomly
in [−100, 100]. For the coarse grid problems, the respective method as alge-
braic multigrid method is used. As can be seen, the inner approximation of
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Table 1. Iteration numbers illustrating the resolution of constraints for the different
multilevel splittings given in Section 3

Level 5 Splitting 1 Splitting 2 Splitting 3 trc. Basis M-MG

equal normals 15 34 34 15 17

outer normals no conv. no conv. >100 15 25

Table 2. Non-smooth and combined non-smooth and regularization approach for
randomly chosen initial iterate

Level # it. M-MG # it. NL-MG # it C-MG # dof # contacts

1 34 34 34 5,016 228

2 44 24 23 22,326 854

3 70 140 35 142,146 3,226

Table 3. Iteration numbers illustrating the scalability for the parallelized non-
smooth multigrid method M-MG. Nested iteration, example from Figure 2.

Level � #it. 1 Processor #it. 2 Proc. #it. 4 Proc. #it. 8 Proc. #it. 16 Proc.

2 16 17 17 17 16

3 17 18 18 18 18

the feasible set in M-MG requires additional iterations to identify the contact
boundary. Setting D�

ūL = X �
ūL , as in NL-MG, in contrast to the previous sec-

tion, here does not improve the convergence speed. However, the combined
approach C-MG provides a good multilevel search strategy for bad initial it-
erates. We remark that in case of a better start iterate, all three strategies
show similar iteration numbers. Our numerical experiments have been carried
out in the framework of the finite element toolbox [2] and the C++–toolbox
ObsLib++, see [17]. The hexahedral grids have been created using the Cubit
grid generator, see [19].
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Domain Decomposition Preconditioner
for Anisotropic Diffusion

Yuri A. Kuznetsov

Department of Mathematics, University of Houston, 651 Philip G. Hoffman Hall,
Houston, TX 77204–3008, USA. kuz@math.uh.edu

Summary. We propose and investigate two-level preconditioners for the diffusion
equations with anisotropic coefficients in model polyhedral domains. Precondition-
ers are based on a partitioning of the mesh in (x, y)-plane into non-overlapping
subdomains and on a special coarsening algorithm in each of the mesh layers. The
condition number of the preconditioned matrix does not depend on the coefficients
in the diffusion operator. Numerical experiments confirm the theoretical results.

1 Introduction

In this paper, we propose and investigate a new approach to the construction
of two-level preconditioners for the diffusion equation with anisotropic diffu-
sion tensor. We consider the case of special polyhedral domains and special
prismatic meshes. The diffusion tensor is assumed to be a diagonal matrix,
and the simplest version of the finite volume method is used for the discretiza-
tion of the diffusion equation. The choice of the domain, the meshes, and the
discretization method are motivated by applications in reservoir simulation.
We can also use for the discretization the polyhedral “div–const” mixed finite
element method, see [4].

The paper is organized as follows. In Section 2, we describe the model
problem and the matrices which arise in the simplest version of the finite
volume method.

In Section 3, we propose a special coarsening procedure based on the parti-
tioning of the mesh domain in (x, y)-plane into non-overlapping subdomains.
This procedure is a special modification of the algorithm earlier proposed
in [6] and utilized in [2]. We prove that the condition number of the precondi-
tioned matrix is independent of the values of the coefficients in the diffusion
equation, i.e. it does not depend on an anisotropy in the diffusion tensor.

An implementation algorithm in the form of a two-step iterative method is
considered in Section 4. It is based on the idea of the matrix iterative methods
in subspaces, see [3, 5]. The algorithm naturally leads to a coarse mesh system.
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In Section 5, we design another two-level preconditioner which is much
cheaper with respect to the arithmetic implementation cost than the previous
one. Another advantage of the second preconditioner is that it allows a mul-
tilevel extension. Numerical results in Section 6 demonstrate the efficiency of
the second preconditioner. They confirm the theoretical results in Sections 3
and 5.

2 Formulation of Model Problem

We consider the Neumann boundary value problem for the diffusion equation

−∇ ·
(
a∇p

)
+ c p = f in Ω(

a∇p
)
· n = 0 on ∂Ω

(1)

where Ω = Ωxy × (0; 1) is a prismatic domain in R3, n is the outward unit
normal to ∂Ω, and Ωxy is a polygon in the (x, y)-coordinate plane. An example
of Ω is given in Figure 1. The diffusion tensor a is a diagonal 3×3 matrix with
coinciding diagonal entries in (x, y)-plane, i.e. a = diag {axy, axy, az}, and
c is a non-negative function. The domain Ω is partitioned into subdomains
Ωl = Ωxy,l×(Z(l)

B ;Z(l)
T ) where Ωxy,l are convex polygons, 0 ≤ Z

(l)
B < Z

(l)
T ≤ 1,

l = 1, m, and m is a positive integer. We assume that axy and az are positive
constants and c is a non-negative constant in each of the subdomains Ωxy,l,
l = 1, m. We also assume that the coefficient c is positive in at least one
subdomain Ωl, 1 ≤ l ≤ m.

Let Ωxy,h be a conforming polygonal mesh in Ωxy, and Zh be a partitioning
of [0; 1] into segments [zk−1; zk], k = 1, nz, where nz is a positive integer.
Then, Ωh = Ωxy,h×Zh is a prismatic mesh in Ω. We assume that the mesh Ωh

is conforming with respect to the boundaries ∂Ωl of subdomains Ωl, l = 1, m.
We also assume that the interfaces between neighboring cells in Ωxy,h are
always straight segments.

To discretize diffusion equation we utilize the simplest version of the finite
volume method. In the case of uniform rectangular or hexagonal meshes Ωxy,h

this discretization is sufficiently accurate. We may also assume that Ωxy,h is
a Voronoi mesh. The simplest finite volume method results in the system of
linear algebraic equations

K p̄ = f̄ (2)

with a symmetric positive definite ñ × ñ matrix K where ñ = ñxy × nz and
ñxy is the total number of polygonal cells in Ωxy,h. System (2) can be easily
hybridized algebraically by introducing additional degrees-of-freedom (DOF)
λ on the interfaces between all or selected neighboring mesh cells in Ωxy,h as
well as on the edges of cells in Ωxy belonging to the boundary ∂Ωxy of Ωxy. In
terms of old variables p and new variables λ the underlying system of linear
algebraic equations can be written as follows:
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Fig. 1. An example of Ω partitioned into subdomains Ωl, l = 1, m

A

[
p̄
λ̄

]
≡

(
Ap Apλ

Aλp Aλ

) [
p̄
λ̄

]
= F . (3)

The matrix

K = Ap − Apλ A
−1
λ Aλp (4)

in (2) is the Schur complement of A, and

F =
[
f̄
0

]
. (5)

The definition of λ is based on the observation that the three-point finite
difference equation (2a1

h1
+

2a2

h2

)
w +

(
p2 − p1

)
= 0 (6)

for the flux equation w + ∂p/∂ξ = 0 on the interface between two cells is
equivalent to three equations

2a1
h1

w1 − p1 − λ = 0,
2a2
h2

w2 + p2 + λ = 0,
w1 − w2 = 0

(7)

with w = w1 = w2. Then, we use the standard condensation procedure to
derive system (3).

Let us present the matrix K as the sum of two matrices:



108 Y.A. Kuznetsov

K = Kxy + Kz (8)

where Kxy corresponds to the discretization of the operator

Lxy = − ∂

∂x

(
axy

∂

∂x

)
− ∂

∂y

(
axy

∂

∂y

)
(9)

and Kz corresponds to the discretization of the operator

Lz = − ∂

∂z

(
az

∂

∂z

)
+ c. (10)

Then,

A = Axy + Az (11)

where

Axy =
(
Axy,p Apλ

Aλp Aλ

)
, Az =

(
Kz 0
0 0

)
, (12)

and

Kxy = Axy,p − Apλ A
−1
λ Aλp (13)

is the Schur complement of the matrix Axy.
We observe that with an appropriate permutation matrix P the ma-

trix PAxyP
T is a block diagonal matrix, i.e.

P Axy P
T = A(1)

xy ⊕ · · · ⊕ A(nz)
xy (14)

where the submatrices A(k)
xy correspond to the above hybridized discretization

of the operator Lxy in (9) in the mesh layers Ωxy,h × [zk−1; zk], k = 1, nz.
In the next section, we shall derive a preconditioner H for the matrix A

in (3). Let us assume that A and B are symmetric and positive definite ma-
trices and the inequalities

α
(
B v̄, v̄

)
≤

(
A v̄, v̄

)
≤ β

(
B v̄, v̄

)
(15)

hold for all v̄ ∈ Rn with some positive coefficients α and β, where n is the size
of A. We present the matrix H = B−1 in the block form similar to (3):

H =
(
Hp Hpλ

Hλp Hλ

)
. (16)

Then, the inequalities

1
β

(
Hp q̄, q̄

)
≤

(
K−1 q̄, q̄

)
≤ 1

α

(
Hp q̄, q̄

)
(17)

hold for all q̄ ∈ Rñ. Thus, with respect to estimates (15) the matrix Hp is not
a worse preconditioner for the matrix K than the preconditioner H = B−1

for the matrix A.
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3 Two-Level Preconditioner

Let Ωxy,h be partitioned into non-overlapping mesh subdomains Gh,s, s =
1, t, where t is a positive integer. We assume that this partitioning is conform-
ing with respect to the boundaries of subdomains Ωxy,l, i.e. the boundaries of
Ωxy,l are subsets of the union of the boundaries of subdomains Gh,s, s = 1, t,
l = 1, m. It follows from the above assumptions that the coefficients axy and
az are positive constants ak,s

xy and ak,s
z , respectively, and the coefficient c is a

non-negative constant ck,s in each of the mesh subdomains Gh,s × [zk−1; zk],
s = 1, t, k = 1, nz.

We assume that the additional DOF λ are imposed only on the interface
boundaries between mesh subdomains Gh,s and Gh,s′ , s′ �= s, s, s′ = 1, t, and
on the boundary ∂Ωxy. Then, assembling matrices Ns, s = 1, t, exist such
that

A(k)
xy = hz,k

t∑
s=1

ak,s
xy Ns Axy,s N

T
s (18)

where hz,k = zk − zk−1, k = 1, nz, and Axy,s represents the hybridized
discretization of the operator Lxy in mesh subdomain Gh,s, s = 1, t. The
matrices Axy,s are symmetric and positive semi-definite, and ker Axy,s (null-
space of Axy,s) is the span of ēs ∈ Rns where ēs =

(
1, . . . , 1

)T and ns is
the size of Axy,s, s = 1, t.

Let Ds be a diagonal ns×ns matrix with positive entries on the diagonal,
1 ≤ s ≤ t. Consider the eigenvalue problem

Axy,s w̄ = µDs w̄, w̄ ∈ Rns . (19)

Then the spectral decomposition of Axy,s is defined as follows:

Axy,s = Ds Ws Λs W
T
s Ds (20)

where

Λs = diag
{
µ

(s)
1 , µ

(s)
2 , · · · , µ(s)

ns

}
(21)

is a diagonal matrix, and

Ws =
(
w̄s,1, w̄s,2, . . . , w̄s,ns

)
. (22)

Here, 0 = µ
(s)
1 < µ

(s)
2 ≤ · · · ≤ µ

(s)
ns are the eigenvalues, and w̄s,1, w̄s,2, . . . ,

w̄s,ns
are the corresponding Ds-orthonormal eigenvectors. It is obvious that

w̄s,1 = σ−1
s ēs with σs =

(
Dsēs, ēs

)1/2.
Let us define the matrices

Bxy,s = µ̂s

[
Ds − Ds w̄s,1 w̄

T
s,1Ds

]
(23)
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where µ̂s are arbitrary positive numbers, s = 1, t. It can be easily shown that
the inequalities

µ
(s)
2

(
Bxy,s v̄, v̄

)
≤ µ̂s

(
Axy,s v̄, v̄

)
≤ µ(s)

ns

(
Bxy,s v̄, v̄

)
(24)

hold for all v̄ ∈ Rns , s = 1, t.
We define the matrices

B(k)
xy = hz,k

t∑
s=1

ak,s
xy Ns Bxy,s N

T
s , (25)

k = 1, nz, the matrix

Bxy = PT
(
B(1)

xy ⊕ · · · ⊕ B(nz)
xy

)
P, (26)

and, finally, the matrix

B = Bxy + Az. (27)

The matrix B in (27) may be considered as the first candidate to precon-
dition the matrix A in (3).

It can be easily proved that for the matrix B in (27) inequalities (15) hold
with

α = min
{

1; min
1≤s≤t

µ
(s)
2

µ̂s

}
, β = max

{
1; max

1≤s≤t

µ
(s)
ns

µ̂s

}
(28)

where µ
(s)
2 and µ

(s)
ns are the minimal non-zero and the maximal eigenvalues

in (19), respectively.
Let condA(B−1A) be the condition number of the matrix B−1A with re-

spect to the norm generated by the matrix A. Then, the estimate

condA

(
B−1A

)
≤ ν (29)

holds with ν = β/α where the values of α and β are given in (28). We observe
that the value of ν does not depend on the values of the coefficients axy, az,
and c in diffusion equation (1) as well as on the mesh Zh.

To define a proper diagonal matrix Ds in (19) we have to analyze the
matrix Axy,s and the restriction of the mesh Ωxy,h onto the subdomain Gh,s,
1 ≤ s ≤ t. The matrices Axy,s and Ds can be presented in the 2 × 2 block
form by

Axy,s =
(
Ap Apλ

Aλp Aλ

)
, Ds =

(
Dp 0
0 Dλ

)
(30)

where the index “s” in the blocks is omitted. Here, diagonal blocks Ap and
Dp are associated with the cell-centered DOFs, and diagonal blocks Aλ and
Dλ are associated with the interface DOFs. Let E be a polygonal cell in Gh,s.
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Then, the diagonal entry of the matrix Dp in (30), associated with E, is equal
to the area of E. The boundary of Gh,s is the union of edges of polygonal
cells E in Gh,s. We assigned with each of such edges one DOF in λ̄, and
with each DOF in λ̄ we associate the length of the underlying edge in Gh,s.
Moreover, the boundary of Gh,s consists of the interfaces Γs,j , j = 1, ls,
between Gh,s and neighboring subdomains Gh,s′ , s′ �= s, as well as of the
interfaces between Gh,s and ∂Ωxy where ls is a positive integer. We assume
that each of the interfaces is a simply connected subset of the boundary of
Gh,s. We assign for each of the interfaces Γs,j a positive number ds,j , j =
1, ls. We assume that for the interfaces Γs,j = Γs′,j′ between neighboring
subdomains Gh,s and Gh,s′ , s′ �= s, the values ds,j and ds′,j′ are equal to each
other. Now, we define the diagonal entries of the matrix Dλ in (30). Let λ be
a DOF in λ̄ assigned for a segment γ belonging to interface Γs,j , 1 ≤ j ≤ ls.
Then, the associated with λ the diagonal entry of Dλ is the product of the
length of γ and ds,j .

To derive estimates for α and β in (28), we assume that the mesh Ωxy,h and
the partitioning of Ωxy,h into subdomains Gh,s, s = 1, t, are quasi-uniform
and regular shaped. On the basis of the latter assumptions we introduce two
parameters:

hf = ñ−1/2
xy and hc = t−1/2. (31)

It is clear that hf and hc can be called as the fine mesh step size and the
coarse mesh step size, respectively. We assume that ds,j = hf in the definition
of the diagonal entries of the submatrices Dλ in (30), j = 1, ls, s = 1, t.

It can be proved that under the above assumptions the estimates

min
1≤s≤t

µ
(s)
2 ≥ c1 h

−2
c

max
1≤s≤t

µ
(s)
ns ≤ c2 h

−2
f

(32)

hold, where c1 and c2 are positive constants independent of the mesh Ωxy,h

and subdomains Gh,s, s = 1, t.
Let us choose µ̂s = h−2

c , s = 1, t. Then, combining (28), (29), and (32)
we get the following result.

Proposition 1. Under assumptions made the estimate

condA

(
B−1A

)
≤ c3

( hc

hf

)2

(33)

holds where c3 is a positive constant independent of the coefficients axy, az,
and c in (1), mesh Ωh, and the subdomains Gh,s, s = 1, t.

Thus, the proposed preconditioner is robust with respect to the diffusion ten-
sor but it is not optimal with respect to the mesh in the case hc � hf .
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4 Implementation Algorithm

In this Section, we derive a solution algorithm for an algebraic system

B v̄ = ḡ (34)

with the matrix B defined in (27) and a right hand side vector ḡ ∈ Rn.
The solution algorithm is based on the splitting

B = B0 − C0 (35)

of the matrix B into the matrices

B0 = Az + D (36)

and

C0 = PT
[
C

(1)
0 ⊕ . . . ⊕ C(nz)

0

]
P. (37)

Here,

D = PT
[
D̃1 ⊕ . . . ⊕ D̃nz

]
P, (38)

is a diagonal matrix with diagonal submatrices

D̃k = hz,k

t∑
s=1

µ̂s a
k,s
xy Ns Ds N

T
s , (39)

k = 1, nz, and

C0 = D − Bxy, (40)

where Bxy is defined in (25), (26).
The implementation algorithm consists of two steps. At the first step, we

compute the solution vector of the system

B0 v̄1 = ḡ. (41)

With a proper permutation matrix Pz the matrix PzB0P
T
z is a block diagonal

matrix. Each diagonal block of this matrix is either a tridiagonal matrix (for
p-variables) or a diagonal matrix (for λ-variables). The total number of blocks
is equal to nxy.

At the second step, we are looking for the vector

v̄2 = v̄1 + η̄ (42)

where η̄ is the solution vector of the system

B η̄ = −
(
B v̄1 − ḡ

)
, (43)
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or of the equivalent system

B η̄ = ξ̄ (44)

with the right hand side vector

ξ̄ = C0B
−1
0 ḡ. (45)

It is obvious that the vector v̄2 in (42) is the solution of system (34).
The vector ξ̄ in (45) belongs to the image of the matrix C0. We observe

that the rank of C0 is equal to t × nz. It is much smaller than the size of
system (44).

The crucial observation for the implementation algorithm is that the com-
ponents of the solution vector η̄ in (44) have a special structure. Namely, in
mesh layer Ωxy,h× [zk−1; zk] all the components of the solution vector η̄ corre-
sponding to the interior of Gh,s, 1 ≤ s ≤ t, are equal, and all the components
of η̄, corresponding to the interfaces Γs,j , 1 ≤ j ≤ ls, between neighboring
subdomains Gh,s and Gh,s′ , s′ �= s, or between Gh,s and the boundary of Ωxy,
are equal.

For instance, if Gh,s is a polygon with six interfaces Γs,j , j = 1, 6, then
the components of the subvector of η̄ assigned for this subdomain may take
only seven different values.

In the matrix form, the above property of the vector η̄ in (44) can be
presented by the formula

η̄ = R ψ̄ (46)

where ψ̄ ∈ Rnc and R is an n×nc matrix. Here, nc = nxy,c×nz where nxy,c is
equal to the total number of subdomains Gh,s and different interfaces Γs, j,
j = 1, ls, s = 1, t. It is clear that the matrix R has only one non-zero entry
in each row, and this entry is equal to one. Thus, system (44) can be replaced
by an equivalent system

Bc ψ̄ = φ̄ (47)

where

Bc = RT BR and φ̄ = RT ξ̄. (48)

Here, Bc is said to be a coarse mesh matrix.
The above implementation algorithm can be presented in the form of the

two-step iterative procedure: v̄0 = 0,

v̄1 = v̄0 − B−1
0

(
B v̄0 − ḡ

)
,

v̄2 = v̄1 − RB−1
c RT

(
B v̄1 − ḡ

) (49)

where v2 = B−1ḡ is the solution vector of system (34).
Let us introduce the matrix
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T =
(
I − RB−1

c RT B
) (
I − B−1

0 B
)
. (50)

Then we get

v̄2 =
(
I − T

)
B−1 ḡ (51)

where I is the identity n× n matrix. Because v̄ = v̄2 we get the formula

H ≡ B−1 =
(
I − T

)
B−1. (52)

It follows immediately that T is the null matrix.

5 A Better Two-Level Preconditioner

In this Section, we derive another preconditioner for the matrix A in (3) which
is spectrally equivalent to preconditioner H in (52) but its implementation is
much cheaper.

Let us complement iterative procedure (49) with one additional iteration
step:

v̄3 = v̄2 − B−1
0

(
B v̄2 − ḡ

)
. (53)

It is obvious that v̄3 = v̄2. Thus, we derived an alternative representation

B−1 =
[
I −

(
I − B−1

0 B
)
T
]
B−1 (54)

for the matrix H = B−1.
Let a matrix B̂c be spectrally equivalent to the matrix Bc in (48), i.e. the

inequalities

q1
(
B̂cū, ū) ≤

(
Bcū, ū) ≤ q2

(
B̂cū, ū) (55)

hold for all ū ∈ Rnc with positive constants q1 and q2 independent of the
coefficients of the diffusion operator in (1) and the mesh Ωh.

Let us introduce the matrix

T̂ =
(
I − B−1

0 B
)
(I − q3R B̂−1

c RT B
) (
I − B−1

0 B
)

(56)

where q3 is a positive constant independent of the coefficients in (1) and the
mesh Ωh, and satisfying the inequality q3 < 2/q2. Then, the matrix

Ĥ = I − T̂ (57)

is spectrally equivalent to the matrix H in (52).
To describe the derivation procedure for a matrix B̂c we consider a polyg-

onal subdomain Gh,s with interface boundaries Γs,j , j = 1, ls, 1 ≤ s ≤ t. In
this case, we have
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σ2
s = |Gh,s| + hf

ls∑
j=1

|Γs,j |. (58)

Here, |Gh,s| is the area of Gh,s and |Γs,j | is the length of Γs,j , j = 1, ls,
1 ≤ s ≤ t.

To define the matrix B̂c, we replace each submatrix

RT
s

(
Ds − Ds w̄1,s w̄

T
1,s Ds

)
Rs (59)

in the matrix Bc, where Rs is the underlying block in R, by the matrix

hf |Gh,s|
σ2

s

(
D̂s − Ďs Qs Ďs

)
(60)

where D̂s = diag
{ ls∑

j=1

|Γs,j |, |Γs,1|, . . . , |Γs,ls |
}
, Ďs = diag

{
1, |Γs,1|, . . . , |Γs,ls |

}
,

and

Qs =

⎛⎜⎜⎜⎝
0 1 . . . 1
1 0 . . . 0
...

...
...

1 0 . . . 0

⎞⎟⎟⎟⎠ ∈ R(ls+1)×(ls+1). (61)

It can be proved that the matrix B̂c is spectrally equivalent to the ma-
trix Bc with

q1 = 1 and q2 = 1 + max
1≤s≤t

hf

ls∑
j=1

|Γs,j |

|Gh,s|
. (62)

Due to the regularity and quasiuniformity assumptions about the mesh Ωxy,h

and the partitioning of Ωxy,h into subdomains Gh,s, s = 1, t, the value of q2
in (62) is bounded from above by a positive constant c4 which is independent
of the coefficients axy, az, and c in (1) as well as of the mesh Ωh. Thus, the
matrix Ĥ in (56), (57) with q3 < 2/c4 is spectrally equivalent to the matrix
H = B−1.

Numerical results in Section 6 are given for the PCG method with the
preconditioner (56), (57) defined in this Section.

Let us denote the matrix B̂c by Ac, i.e. Ac = B̂c. The matrix Ac can
be presented as the 2 × 2 block matrix similar to presentation (3) for the
matrix A:
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Ac =
(
Ac,p Ac,pλ

Ac,λp Ac,λ

)
(63)

where Ac,λ is a diagonal matrix. It can be easily shown that the Schur com-
plement

Kc = Ac,p − Ac,pλ A
−1
c,λ Ac,λp (64)

of the matrix Ac has the same structure as the original matrix K in (2).

Remark 1. The size of the matrix Kc in (64) is at least 2.5 times smaller than
the size of the matrix Bc in (48). To this end, the Cholesky factorization of the
matrix Kc is at least fifteen times cheaper than the same factorization of the
matrix Bc. Thus, it can be shown that in the case hc ∼

√
hf the PCG-method

with the preconditioner Ĥ proposed in this Section is more efficient than with
the preconditioner H proposed in Sections 3 and 4.

Remark 2. Due to the structure of the matrix Kc in (64), we can design a two-
level preconditioner Hc,p for this matrix using the same coarsening technique.
Replacing the matrix K−1

c in the definition of Ĥ by the matrix Hc,p we get a
three-level preconditioner.

Remark 3. The number of iterations of the PCG method with the proposed
preconditioner is O(h−1

f hc| ln hf |). The factorization of the matrices Bc and
B̂c defined in (48) and (58)-(62), respectively, requires O(h−6

c h−1
f ) arithmetic

operations. Then, the solution of algebraic systems with factorized matrices
Bc and B̂−1

c requires O(h−4
c h−1

f ) arithmetic operations. The PCG method
is faster for smaller values of hc but implementation algorithms are more
expensive. A reasonable choice is hc =

√
hf . In this case, the factorization

of the matrices Bc and B̂c requires O(h−4
f ) arithmetic operations, and the

implementation of the PCG with the factorized matrices Bc and B̂c requires
O(h−7/2

f | ln hf |) arithmetic operations.

6 Numerical Results

To demonstrate the performance of the proposed two-level preconditioner
we consider two examples. For both examples we compare the number of
iterations and the total CPU time of the PCG-method with two-level pre-
conditioner (TLP) and with the block Jacobi preconditioner (BJP). Both
preconditioners are applied to system (2). The block Jacobi preconditioner is
defined by

BJ = Dxy + Kz (65)

where Dxy is the diagonal of the matrix Kxy in (8).
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In the first example, the cubic domain Ω is partitioned into eight equal
subcubes Ωl, l = 1, 8. The coefficients az and c are equal to one. The coeffi-
cient axy is equal to one in four subdomains. In the other four subdomains the
value of the coefficient axy is shown in Table 1. The distribution of two different
values of the coefficient axy is based on the 3D-chess ordering of the subdo-
mains. The mesh Ωh is cubic with the mesh step size h = 10−2. The square
domain Ωxy is partitioned into 100 square subdomains Gh,s, s = 1, 100. The
coarse mesh matrix Kc is a block tridiagonal matrix (100 blocks, each block
is a 10 × 10 matrix). The stopping criterion is to reduce the K-norm of the
original error vector in 106 times.

Table 1. Variable a
(2)
xy , cubic mesh

TLP z-line Speed up

hc =
√
hf BJP TLP vs. BJP

a
(2)
xy #it CPU #it CPU

10 64 23.2 984 212. 9.3

100 62 22.7 2336 491. 22.0

1000 61 22.2 6793 1450. 66.5

In the second example, Ωxy,h is a uniform hexagonal mesh, and the shape
of Ωxy depends on the mesh. The domain Ω is again partitioned into eight
subdomains as shown in Figure 2. The coefficients az and c are equal to one.
The coefficient axy is equal to one in four subdomains and is equal to 100
in four others. The distribution of two values for axy is done in the 3D-chess
order similar to Example 1. The mesh Ωxy,h is partitioned into t identical sub-
domains Gh,s, s = 1, t, where t is equal to 36, 64, 100, and 144. In Table 2, the
number of iterations and CPU time for the proposed two-level preconditioner
on a sequence of meshes are given versus to the block Jacobi preconditioner.

Table 2. Sequence of hexagonal meshes Ωxy,h

TLP z-line Speed up

hc =
√
hf BJP TLP vs. BJP

1/hf #it CPU #it CPU

36 44 0.62 839 8.42 13.5

64 56 7.33 1463 90.3 12.3

100 68 25.5 2346 545. 21.4

144 81 116. 3391 2466. 21.3

The numerical results confirm the theoretical statements in Section 3: the
number of iterations does not depend on the values of the coefficients, and
the condition number of the matrix HpK is proportional to

(
hc/hf

)2.
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Fig. 2. Domain Ω with hexagonal mesh Ωxy,h

More detailed description of implementation algorithms as well as other
results of numerical experiments can be found in [1].
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Summary. We consider optimal control problems for elliptic systems under control
constraints on networked domains. In particular, we study such systems in a format
that allows for applications in problems including membranes and Reissner-Mindlin
plates on multi-link-domains, called networks. We first provide the models, derive
first order optimality conditions in terms of variational equations and inequalities
for a control-constrained linear-quadratic optimal control problem, and then intro-
duce a non-overlapping iterative domain decomposition method, which is based on
Robin-type interface updates at multiple joints (edges). We prove convergence of the
iteration and derive a posteriori error estimates with respect to the iteration across
the interfaces.

1 Introduction

Partial differential equations on networks or networked domains consisting
of 1-d, 2-d and possibly 3-d sub-domains linked together at multiple joints,
edges or faces, respectively, arise in many important applications, as in gas-,
water-, traffic- or blood-flow in pipe-, channel-, road or artery networks, or in
beam-plate structures, as well as in many micro-, meso- or macro-mechanical
smart structures. The equations governing the processes on those multi-link
domains are elliptic, parabolic and hyperbolic, dependent on the application.
Problems on such networks are genuinely subject to sub-structuring by the
way of non-overlapping domain decomposition methods. This remains true
even for optimal control problems formulated for such partial differential equa-
tions on multi-link domains. While non-overlapping domain decompositions
for unconstrained optimal control problems involving partial differential equa-
tions on such networks have been studied in depth in the monograph [5], such
non-overlapping domain decompositions for problems with control constraints
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have not been discussed so far. This is the purpose of these notes. In order
to keep matters simple but still provide some insight also in the modeling,
we study elliptic systems only. The time-dependent case can also be handled,
but is much more involved, see [5] for unconstrained problems. The ddm is in
the spirit of [1]. See also [9] for a general reference, and [2] for vascular flow
in artery networks, where Dirichlet-Neumann iterates are considered. See also
[3] and [4] for ddm in the context of optimal control problems. Decomposi-
tion of optimality systems corresponding to state-constrained optimal control
problems seem not to have been discussed so far. This is ongoing research of
the author.

2 Elliptic Systems on 2-D Networks

As PDEs on networks are somewhat unusual, we take some effort in order
to make the modeling and its scope more transparent. Unfortunately, this
involves some notation. A two-dimensional polygonal network P in IRN is a
finite union of nonempty subsets Pi, i ∈ I, such that

(i) each Pi is a simply connected open polygonal subset of a plane Πi in IRN ;
(ii)

⋃
i∈I Pi is connected;

(iii) for all i, j ∈ I, Pi

⋂Pj is either empty, a common vertex, or a whole
common side.

The reader is referred to [8], whose notation we adopt, for more details about
such 2-d networks. For each i ∈ I we fix once and for all a system of coordi-
nates in Πi. We assume that the boundary ∂Pi of Pi is the union of a finite
number of linear segments Γ ij , j = 1, . . . , Ni. It is convenient to assume that
Γij is open in ∂Pi. The collection of all Γij are the edges of P and will be
denoted by E . An edge Γij corresponding to an e ∈ E will be denoted by Γie

and the index set Ie of e is Ie = {i| e = Γie}. The degree of an edge is the
cardinality of Ie and is denoted by d(e). For each i ∈ Ie we will denote by νie

the unit outer normal to Pi along Γie.

Fig. 1. A star-like multiple link-subdomain
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The coordinates of νie in the given coordinate system of Pi are denoted
by (ν1

ie, ν
2
ie). We partition the edges of E into two disjoint subsets D and N ,

corresponding respectively to edges along which Dirichlet conditions hold and
along which Neumann or transmission conditions hold. The Dirichlet edges
are assumed to be exterior edges, that is, edges for which d(e) = 1. The
Neumann edges consist of exterior edges N ext and interior edges N int :=
N\N ext. Let m ≥ 1 be a given integer. For a function W : P �→ IRm, Wi

will denote the restriction of W to Pi, that is Wi : Pi �→ IRm : x �→ W (x).
We introduce real m ×m matrices Aαβ

i , Bβ
i , Ci, i ∈ I, α, β = 1, 2, where

Aαβ
i = (Aβα

i )∗, Ci = C∗
i and where the * superscript denotes transpose. For

sufficiently regular W, Φ : P �→ IRm we define the symmetric bilinear form

a(W,Φ) =
∑
i∈I

∫
Pi

[Aαβ
i (Wi,β +Bβ

i Wi) · (Φi,α +Bα
i Φi) + CiWi · Φi] dx, (1)

where repeated lower case Greek indices are summed over 1,2. A subscript
following a comma indicates differentiation with respect to the correspond-
ing variable, e.g., Wi,β = ∂Wi/∂xβ . The matrices Aαβ

i , Bβ
i , Ci may depend

on (x1, x2) ∈ Pi and a(W,Φ) is required to be V-elliptic for an appropriate
function space V specified below. We shall consider the variational problem

a(W,Φ) =
〈
F,Φ

〉
V
, ∀Φ ∈ V, 0 < t < T, (2)

where V is a certain space of test functions and F is a given, sufficiently regular
function. The variational equation (2) obviously implies, in particular, that
the Wi, i ∈ I, formally satisfy the system of equations

− ∂

∂xα
[Aαβ

i (Wi,β +Bβ
i Wi)] + (Bα

i )∗Aαβ
i (Wi,β +Bβ

i Wi)

+ CiWi = Fi in Pi, i ∈ I. (3)

To determine the space V, we need to specify the conditions satisfied by W
along the edges of P. These conditions are of two types: geometric edge con-
ditions, and mechanical edge conditions. As usual, the space V is then defined
in terms of the geometric edge conditions. At a Dirichlet edge we set

Wi = 0 on e when Γie ∈ D. (4)

Further, along each e ∈ N int we impose the condition

QieWi = QjeWj on e when Γie = Γje, e ∈ N int, (5)

where, for each i ∈ Ie, Qie is a real, nontrivial pe ×m matrix of rank pe ≤ m
with pe independent of i ∈ Ie. If pe < m additional conditions may be im-
posed, such as

ΠieWi = 0 on e, ∀ i ∈ Ie, e ∈ N int, (6)
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where Πie is the orthogonal projection onto the kernel of Qie. (Note that
(5) is a condition on only the components Π⊥

ieWi, i ∈ Ie, where Π⊥
ie is the

orthogonal projection onto the orthogonal complement in IRm of the kernel
of Qie.) For definiteness we always assume that (6) is imposed and leave to
the reader the minor modifications that occur in the opposite case. Thus the
geometric edge conditions are taken to be (4) - (6), and the space V of test
functions consists of sufficiently regular functions Φ : P �→ IRm that satisfy
the geometric edge conditions. Formal integration by parts in (2) and taking
proper variations shows that, in addition to (3), Wi must satisfy

να
ieA

αβ
i (Wi,β +Bβ

i Wi) = 0 on e when Γie ∈ N ext. (7)

For each Γie ∈ N int write Φi = ΠieΦi +Π⊥
ieΦi, and let Q+

ie denote the gener-
alized inverse of Qie, that is Q+

ie is a m × pe matrix such that QieQ
+
ie = Ipe

,
Q+

ieQie = Π⊥
ie . Then we deduce that∑
i∈Ie

(Q+
ie)

∗να
ieA

αβ
i (Wi,β +Bβ

i Wi) = 0 on e if e ∈ N int. (8)

Conditions (7) and (8) are called the mechanical edge conditions. We also re-
fer to (5) and (8) as the geometric and mechanical transmission conditions,
respectively. To summarize, the edge conditions are comprised of the geo-
metric edge conditions (4) - (6), and the mechanical edge conditions (7), (8).
The geometric transmission conditions are (5) and (6), while the mechanical
transmission conditions are given by (8).

2.1 Examples

Example 1. (Scalar problems on networks) Suppose that m = 1. In this case
the matrices Aαβ

i , Bα
i , Ci, Qie reduce to scalars aαβ

i , bαi , ci, qie, where aαβ
i =

aβα
i . Set Ai =

(
aαβ

i

)
, bi = col

(
bαi
)
. The system (3) takes the form

−∇ · (Ai∇Wi) + [−∇ · (Aibi) + b∗iAibi + ci]Wi = Fi. (9)

Suppose that all qie = 1. The geometric edge conditions (4), (5) are then
Wi=0 on e when e ∈ D, Wi = Wj on e when e ∈ N int while the mechanical
edge conditions are∑

i∈Ie

[νie · (Ai∇Wi) + (νie ·Aibi)Wi] = 0 on e when e ∈ N .

Example 2. (Membrane networks in IR3.) In this case m = N = 3. For each
i ∈ I set ηi3 = ηi1 ∧ ηi2, where ηi1, ηi2 are the unit coordinate vectors in Πi.
Suppose that Bi = Ci = 0, Qie = I3, where I3 denotes the identity matrix
with respect to the {ηik}3k=1 basis. With respect to this basis the matrices Aαβ

i

are given by
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A11
i =

⎛⎝2µi + λi 0 0
0 µi 0
0 0 µi

⎞⎠ , A22
i =

⎛⎝µi 0 0
0 2µi + λi 0
0 0 µi

⎞⎠ ,

A12
i =

⎛⎝ 0 λi 0
µi 0 0
0 0 0

⎞⎠ , A21
i =

⎛⎝ 0 µi 0
λi 0 0
0 0 0

⎞⎠
Write Wi =

3∑
k=1

Wikηik, wi = Wiαηiα, εαβ(wi) = 1
2 (Wiα,β + Wiβ,α),

σαβ
i (wi) = 2µiεαβ(wi) + λiεγγ(wi)δαβ . The bilinear form (1) may be written

a(W,Φ) =
∑
i∈I

∫
Pi

[σαβ
i (wi)εαβ(φi) + µiWi3,αΦi3,α] dx

where Φi =
3∑

k=1

Φikηik := φi + Φi3ηi3. The geometric edge conditions (4), (5)

are as above, but now in a vectorial sense. The mechanical edge conditions
are obtained as usual.

The corresponding system models the small, static deformation of a net-
work of homogeneous isotropic membranes {Pi}i∈I in IR3 of uniform den-
sity one and Lamé parameters λi and µi under distributed loads Fi, i ∈ I;
Wi(x1, x2) represents the displacement of the material particle situated at
(x1, x2) ∈ Pi in the reference configuration. The reader is referred to [6] where
this model is introduced and analyzed.

Also networks of Reissner-Mindlin plates can be considered in this framework
see [6, 5]. Networks of thin shells, such as Naghdi-shells or Cosserat-shells do
not seem to have been considered in the literature. Such networks are subject
to further current investigations.

2.2 Existence and Uniqueness of Solutions

In this section existence and uniqueness of solutions of the variational equation
(2) are considered. It is assumed that the elements of the matrices Aαβ

i , Bβ
i , Ci

are all in L∞(Pi). For a function Φ : P �→ IRm we denote by Φi the restriction
of Φ to Pi and we set

Hs(P) = {Φ : Φi ∈ Hs(Pi), ∀i ∈ I}

‖Φ‖Hs(P) =

(∑
i∈I
‖Φi‖2Hs(Pi)

)1/2

,

where Hs(Pi) denotes the usual (vector) Sobolev space of order s on Pi. Set
H = H0(P) and define a closed subspace V of H1(P) by
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V = {Φ ∈ H1(P)| Φi = 0 on e when Γie ∈ D,
QieΦi = QjeΦj on e when Γie = Γje,

ΠieΦi = 0 on e when e ∈ N int, i ∈ I}.

The space V is densely and compactly embedded in H. It is assumed that
a(Φ,Φ) is elliptic on V: there are constants k ≥ 0, K > 0, such that

a(Φ,Φ) + k‖Φ‖2H ≥ K‖Φ‖2H1(P), ∀Φ ∈ V. (10)

Let F = {Fi}i∈I ∈ H. It follows from standard variational theory and the
Fredholm alternative that the variational equation (2) has a solution if and
only if F is orthogonal in H to all solutions W ∈ V of a(W,Φ) = 0, ∀Φ ∈ V.
If it is known that a(Φ,Φ) ≥ 0 for each Φ ∈ V, the last equation has only the
trivial solution if, and only if, (10) holds with k = 0.

3 The Optimal Control Problem

We consider the following optimal control problem.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
f∈Uad

1
2

∫
P
‖W −Wd‖2dx+

∑
i∈I

∑
e∈N ext

i

κ
2

∫
Γie

‖fie‖2dΓ, subject to

− ∂
∂xα

[
Aαβ

i

(
Wi,β +Bβ

i Wi

)]
+ (Bα

i )∗Aαβ
i

(
Wi,β +Bβ

i Wi

)
+CiWi = Fi in Pi,

Wi = 0 on Γie when e ∈ D
να

ieA
αβ
i (Wi,β +Bβ

i Wi) + αieWi = fie on Γie when e ∈ N ext

ΠieWi = 0 on Σie, ∀i ∈ Ie, e ∈ N int

QieWi = QjeWj on Γie when Γie = Γje, e ∈ N int∑
i∈Ie

(Q+
ie)

∗να
ieA

αβ
i (Wi,β +Bβ

i Wi) = 0 on Γie if e ∈ N int.

(11)

where
U =

∏
i∈I

∏
e∈N ext

i

L2(Γie) (12)

and
Uad =

{
f ∈ U : fie ∈ Uie, i ∈ I, e ∈ N ext

i

}
, (13)

where, in turn, the sets Uie are all convex. Also notice that we added extra
freedom on the external boundary, in order to allow for Robin-conditions.
Instead of the strong form of this linear quadratic control constrained optimal
control, we consider the weak formulation.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
min

f∈Uad

1
2

∫
P
‖W −Wd‖2dx+

∑
i∈I

∑
e∈N ext

i

κ
2

∫
Γie

‖fie‖2dΓ, subject to

a(W,Φ) + b
(
W,Φ

)
=
(
F,Φ

)
H +

∑
i∈I

∑
e∈N ext

i

∫
Γie

fie · Φi dΓ, ∀Φ ∈ V, 0 < t < T,
(14)
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where
b(W,Φ) =

∑
i∈I

∑
e∈N ext

i

∫
Γie

αieWi · Φi dΓ. (15)

We may simplify the notation even further by introducing the inner product
on the control space U :

〈f, Φ〉U =
∑
i∈I

∑
e∈N ext

i

∫
Γie

fie · ΦidΓ

{
min

f∈Uad

1
2‖W −Wd‖2 + κ

2 ‖f‖2U , subject to

a(W,Φ) + b
(
W,Φ

)
= 〈f, Φ〉+ (F,Φ)H, ∀Φ ∈ V.

(16)

Existence, uniqueness of optimal controls and the validity of the following first
order optimality condition follow by standard arguments.⎧⎨⎩a(W,Φ) + b(W,Φ) = 〈f, Φ〉+ (F,Φ)H ∀Φ ∈ V

a(P, Ψ) + b(P, Ψ) = (W −Wd, Ψ), ∀Ψ ∈ V
〈P + κf, v − f〉 ≥ 0, ∀v ∈ Uad

(17)

4 Domain Decomposition

Some preliminary material is required in order to properly formulate the sub-
systems in the decomposition. Let Hi, Vi, and ai(Wi, Vi) be the spaces asso-
ciated with the bilinear form

ai(Wi, Φi) =
∫
Pi

[Aαβ
i (Wi,β +Bβ

i Wi) · (Φi,α +Bα
i Φi) + CiWi · Φi] dx, (18)

It is assumed that ai(Φi, Φi) ≥ Ki‖Φi‖2H1(Pi)
,∀Φi ∈ Vi, for some constant

Ki > 0. We may then define a norm on Vi equivalent to the induced H1(Pi)
by setting ‖Φi‖Vi

=
√
ai(Φi, Φi). We identify the dual of Hi with Hi and

denote by V∗
i the dual space of Vi with respect toHi. We define the continuous

bilinear functional bi on Vi by

bi(Wi, Φi) =
∑

e∈N ext
i

∫
Γie

αieWi · Φi dΓ +
∑

e∈N int
i

∫
Γie

βeQieWi ·QieΦi dΓ. (19)

where βe is a positive constant independent of i ∈ Ie. For each i ∈ I we
consider the following local problems for functions Wi defined on Pi:

ai(Wi, Φi) + bi(Wi, Φi)

=
(
Fi, Φi

)
Hi

+
∑

e∈N ext
i

∫
Γie

fie · Φi dΓ +
∑

e∈N int
i

∫
Γie

(gie + λn
ie) ·QieΦi dΓ,

∀Φ ∈ Vi, (20)
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where the inter-facial input λn
ie is to be specified below. We are going to

consider the following local control-constrained optimal control problem.⎧⎪⎪⎪⎨⎪⎪⎪⎩
min
fi,gi

J(fi, gi) := 1
2‖Wi −Wdi‖2 + κ

2

∑
e∈N ext

i

∫
Γie

|fie|2dΓ

+
∑

e∈N int
i

1
2γe

∫
Γie

|gie|2 + |γeQieWi + µn
ie|2dΓ

subject to (20), fie ∈ Uad,i,

(21)

where gie ∈ L2(Γie) serve as virtual controls. By standard arguments, we
obtain the local optimality system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ai(Wi, Φi) + bi(Wi, Φi

)
=
(
Fi, Φi

)
Hi

+
∑

e∈N ext
i

∫
Γie

fie · Φi dΓ

+
∑

e∈N int
i

∫
Γie

(λn
ie − γeQiePi) ·QieΦi dΓ, ∀Φi ∈ Vi,

ai(Pi, Φi) + bi(Pi, Φi

)
= (Wi −Wd,i, Φ)

+
∑

e∈N int
i

∫
Γie

(µn
ie + γeQieWi) ·QieΦi dΓ, ∀Φ ∈ Vi,∑

e∈N ext
i

∫
Γie

(κfie + Pi) · (f̂i − fie)dΓ ≥ 0, ∀fi ∈ Uad .

(22)

We proceed to define update rules for λn
ie, µ

n
ie at the interfaces. To simplify the

presentation, we introduce a ‘scattering’-type mapping Se for a given interior
joint e:

Se(u)i :=
2
de

∑
j∈Ie

uj − ui, i ∈ Ie .

We obviously have S2
e = Id. We set{

λn+1
ie = Se(2βeQ·eWn

· + 2γeQ·ePn
· )i − Se(λn

· )i, i ∈ Ie ,
µn+1

ie = Se(2βeQ·ePn
· − 2γeQ·eWn

· )i − Se(µn
· )i, i ∈ Ie .

(23)

If we assume convergence of the sequences λn
ie, µ

n
ie,W

n
i , P

n
i , and if we use

the properties of Se in summing up the equations in (23) we obtain∑
i

ai(Wi, Φi) =
∑

i

(
Fi, Φi

)
Hi

+
∑

i

∑
e∈N ext

i

∫
Γie

fie · Φi dΓ, (24)

for all Φ = Φ|Pi
∈ V, and similarly for Pi. Thus the limiting elements

Wi, Pi, i ∈ I satisfy the global optimality system. Therefore, by the do-
main decomposition method above we have decoupled the global optimality
system into local optimality systems, which are the necessary condition for lo-
cal optimal control problems. In other words, we decouple the globally defined
optimal control problem into local ones of similar structure.
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5 Convergence

We introduce the errors ⎧⎨⎩
W̃n

i = Wn
i −Wi|Pi

P̃n
i = Pn

i − Pi|Pi

f̃n
ie = fn

ie − fie,

(25)

where Wn
i , P

n
i and Wi, Pi solve the iterated system and the global one, re-

spectively. By linearity, W̃n
i , P̃

n
i solve the systems⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ai(W̃n
i , Φi) + bi(W̃n

i , Φi

)
=

∑
e∈N ext

i

∫
Γie

f̃n
ie · Φi dΓ

+
∑

e∈N int
i

∫
Γie

(λ̃n
ie − γeQieP̃

n
i ) ·QieΦi dΓ, ∀Φ ∈ Vi,

ai(P̃n
i , Φi) + bi(P̃n

i , Φi

)
= (W̃i, Φi)

+
∑

e∈N int
i

∫
Γie

(µ̃ie
n + γeQieW̃

n
i ) ·QieΦi dΓ, ∀Φ ∈ Vi,

(26)

and the variational inequality

∑
e∈N ext

i

∫
Γie

(κfn
ie + Pn

i ) · (f̂ie − fn
ie)dΓ ≥ 0, ∀f̂ie ∈ Uad,i, (27)

and a similar one for fi. Upon choosing proper functions f̂ie we obtain the
inequality ∑

e∈N ext
i

∫
Γie

P̃n
i · f̃n

iedΓ ≤ −κ
∑

e∈N ext
i

∫
Γie

|f̃n
ie|2dΓ . (28)

We now introduce the space X at the interfaces

X =
∏
i∈I

∏
e∈N int

i

L2(Γie), X = (λie, µie), i ∈ I, e ∈ N int
i

together with the norm

‖X‖2X =
∑
i∈I

∑
e∈N int

i

1
2γe

∫
Γie

|λ̃ie|2 + |µ̃ie|2dΓ .

The iteration map is now defined in the space X as follows:⎧⎨⎩ T : X → X
T X : {(Se(2βeQ·eW· + 2γeQ·eP·)i − Se(λ·e)i);

Se((2βeQ·eP· − 2γeQ·eW·)i − Se(µ·e)i)

⎫⎬⎭ . (29)
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We now consider the errors X̃n and the norms of the iterates. Indeed, for
the sake of simplicity, we assume that γe, βe, αe are independent of e. After
considerable calculus, we arrive at

‖T (X̃)n‖2X = ‖X̃n‖2X − 2
γ
β
∑

i

[
ai(P̃n

i , P̃
n
i ) + ai(W̃n

i , W̃
n
i )
]

− 2
γ

∑
e∈N ext

i

∫
Γie

|W̃n
i |2 + |P̃n

i |2dΓ (30)

+
2
γ

∑
e∈N ext

i

∫
Γie

[
βf̃n

ie · W̃n
i + γf̃n

ie · P̃n
i

]
dΓ

+
2
γ
β
∑

i

(W̃n
i , P̃

n
i )− 2(W̃n

i , W̃
n
i ) .

We distinguish two cases: β = 0 and β > 0. In the first case we obtain using
(28) the inequality

‖T (X̃)n
i ‖2X ≤ ‖X̃‖2X − 2κ

∑
e∈N ext

i

∫
Γie

|f̃ie|2dΓ − 2
∑

i

‖W̃n
i |2Hi

. (31)

Iterating (31) to zero we obtain the following result.

Theorem 1. Let the parameters in (30)be independent of e, and let in par-
ticular βe = β = 0, ∀e ∈ N int and αe = α = 0, ∀e ∈ N ext then⎧⎨⎩

i.) {X̃n}n is bounded
ii.) W̃n

i → 0 strongly in L2(Pi)
iii.) f̃n

ie → 0 strongly in L2(Γie) .
(32)

While this result can be refined by exploiting the first statement further, it
gives convergence in the L2-sense, only. In order to obtain convergence in
stronger norms also for the adjoint variable, we need to take positive Robin-
boundary- and interface parameters α, β into account. We thus estimate (30)
in that situation as follows.

‖T X̃n‖2X ≤ ‖X̃n‖2X (33)

−2β
γ

∑
i

{
ai(P̃n

i , P̃
n
i ) + a(W̃n

i , W̃
n
i )

+(
γ

β
− 1

2ε
)‖W̃n

i ‖2 −
ε

2
‖P̃n

i ‖2
}
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− b
γ

∑
e∈N ext

i

(2α− 1
ε
)
∫

Γie

|W̃n
i |2dΓ −

2αβ
γ

∑
e∈N ext

i

|P̃n
i |2dΓ

−β
γ

∑
e∈N ext

i

(
2κγ
β
− ε)

∫
e∈N ext

i

|f̃n
ie|2dΓ .

Theorem 2. Let the parameters αe = α, βe = β, γe = γ with α, β, γ > 0 such
that γ

β is sufficiently large. Then the iterates in (33) satisfy⎧⎪⎪⎪⎨⎪⎪⎪⎩
i.) ai(P̃n

i , P̃
n
i )→ 0 ∀i

ii.) ai(W̃n
i , W̃

n
i )→ 0 ∀i

iii.) P̃n
i |Γie

→ 0 in L2(Γie), i ∈ N ext

iv.) f̃n
ie → 0 in L2(Γie), i ∈ N ext .

(34)

6 A Posteriori Error Estimates

We are going to derive a posteriori error estimates with respect to the domain
iteration, similar to those developed in [5] for unconstrained problems and
single domains, as well as for time-dependent problems and time-and-space
domain decompositions. The a posteriori error estimates derived in this section
refer to the transmission conditions across multiple joints, only. A posteriori
error estimates for problems without control and serial in-plane interfaces have
first been described by [7]. To keep matters simple, we consider αe = βe = 0
and γe = γ. We consider the following error measure∑

i

{
ai(W̃n+1

i , vi) + ai(W̃n
i , yi) + ai(P̃n+1

i , ui) + ai(P̃n
i , zi)

}
=

∑
e∈N ext

∑
i∈Ie

∫
Γie

[f̃n+1
ie · vid+ f̃n

i · yid]dΓ −
∑

i

[(W̃n+1
i , ui) + (W̃n

i , zi)]

+
∑

e∈N int

∑
i∈Ie

∫
Γie

[
γQieP̃

n
i − λ̃n

ie

]
· [Se(Q·ev·)i −Qieyi] dΓ

+
∑

e∈N int

∑
i∈Ie

∫
Γie

[
γQieW̃

n
i + µ̃n

ie

]
· [Qiezi − Se(Q·eu·)i] dΓ

+
∑

e∈N int

∑
i∈Ie

∫
Γie

[
Se(γQ·eP̃

n
· )i − γQ·eP̃

n+1
i )Qievi

]
dΓ

+
∑

e∈N int

∑
i∈Ie

∫
Γie

[
γQ·eW̃

n+1
i − Se(γQ·eW̃

n
· )i

]
·QieuidΓ .

We first choose vi = W̃n+1
i , yi = W̃n

i , ui = P̃n+1
i , zi = P̃n

i and then vi =
P̃n+1

i , yi = P̃n
i , ui = −W̃n+1

i , zi = −W̃n
i . Then, after substantial calculations
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and estimations we obtain the following error estimate, where the details may
be found in a forthcoming publication.

Theorem 3. Let βe = αe = 0 for all e. There exists a positive number
C(κ, γ,Ω) such that the total error satisfies the a posteriori error estimate∑

i

{
‖W̃n+1

i ‖Vi
+ ‖W̃n

i ‖Vi
+ ‖P̃n+1

i ‖Vi
+ ‖P̃n

i ‖Vi

}
≤ C(κ, γ,Ω)

∑
e∈N int

i

∑
i∈Ie

{
‖Se(Q·eW

n+1
i )i −QieW

n
i ‖L2(Γie)

+‖Se(Q·eP
n+1
i )i −QieP

n
i ‖L2(Γie)

}
.
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Challenges and Applications of Boundary
Element Domain Decomposition Methods
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Summary. Boundary integral equation methods are well suited to represent the
Dirichlet to Neumann maps which are required in the formulation of domain de-
composition methods. Based on the symmetric representation of the local Steklov–
Poincaré operators by a symmetric Galerkin boundary element method, we describe
a stabilized variational formulation for the local Dirichlet to Neumann map. By
a strong coupling of the Neumann data across the interfaces, we obtain a mixed
variational formulation. For biorthogonal basis functions the resulting system is
equivalent to nonredundant finite and boundary element tearing and interconnect-
ing methods. We will also address several open questions, ideas and challenging tasks
in the numerical analysis of boundary element domain decomposition methods, in
the implementation of those algorithms, and their applications.

1 Introduction

Boundary element methods are well established approximation methods to
solve exterior boundary value problems, or to solve partial differential equa-
tions with (piecewise) constant coefficients considered in complicated sub-
structures and in domains with moving boundaries. For a state of the art
overview on recent advances on mathematical aspects and engineering ap-
plications of boundary integral equation methods, see, for example, [15]. For
more general partial differential equations, e.g. with nonlinear coefficients, the
coupling of finite and boundary element methods seems to be an efficient tool
to solve complex problems in complicated domains. For the formulation and
for an efficient solution of the resulting systems of equations, domain decom-
position methods are mandatory.

The classical approach to couple finite and boundary element methods is
to use only the weakly singular boundary integral equation with single and
double layer potentials, see, e.g., [1, 7], and [20]. In [3] a symmetric coupling
of finite and boundary elements using the so–called hypersingular boundary
integral operator was introduced. This approach was then extended to sym-
metric Galerkin boundary element methods, see, e.g., [5]. Appropriate precon-
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ditioned iterative strategies were later considered in [2], while quite general
preconditioners based on operators of the opposite order were introduced in
[18]. Boundary element tearing and interconnecting (BETI) methods were de-
scribed in [10] as counterpart of FETI methods while in [9] these methods were
combined with a fast multipole approximation of the local boundary integral
operators involved. For an alternative approach to boundary integral domain
decomposition methods see also [8].

Here we will give a quite general setting of tearing and interconnecting, or
more general, hybrid domain decomposition methods. The local partial differ-
ential equation is rewritten as a local Dirichlet to Neumann map which can
be realized either by domain variational formulations or by using boundary
integral formulations. Since the related function spaces are fractional Sobolev
spaces, one may ask for the right definition of the associated norms. It turns
out that the used norms which are induced by the local single layer potential
or its inverse allows for almost explicit spectral equivalence inequalities, and
an appropriate stabilization of the singular Steklov–Poincaré operators. The
modified Dirichlet to Neumann map is then used to obtain a mixed varia-
tional formulation allowing a weak coupling of the local Dirichlet data. How-
ever, staying with a globally conforming method and using biorthogonal basis
functions we end up with the standard tearing and interconnecting approach
as in FETI and in BETI.

The aim of this paper is to sketch some ideas to obtain advanced formu-
lations in boundary integral domain decomposition methods, to propose to
use special norms in the numerical analysis, and to state some challenging
tasks in the implementation of fast boundary element domain decomposition
algorithms to solve challenging problems from engineering and industry.

2 Boundary Integral Equation DD Methods

As a model problem we consider the Dirichlet boundary value problem of the
potential equation,

−div[α(x)∇u(x)] = f(x) for x ∈ Ω, u(x) = g(x) for x ∈ Γ (1)

where Ω ⊂ R3 is a bounded domain with Lipschitz boundary Γ = ∂Ω. We
assume that there is given a non–overlapping domain decomposition

Ω =
p⋃

i=1

Ωi, Ωi ∩Ωj = ∅ for i �= j, Γi = ∂Ωi. (2)

The domain decomposition as considered in (2) may arise from a piecewise
constant coefficient function α(x) due to the physical model, in particular we
may assume α(x) = αi for x ∈ Ωi. However, to construct efficient solution
strategies in parallel, one may also introduce a domain decomposition (2)
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when considering the Laplace or Poisson equation in a complicated three–
dimensional structure. A challenging task is to find a domain decomposition
(2) which is based on boundary informations only, i.e., without any additional
volume meshes. Using ideas as used in fast boundary element methods, i.e. by
a bisection algorithm it is possible to decompose a given boundary mesh into
two separate surface meshes. While this step seems to be simple, the delicate
task is the definition of the new interface mesh which should take care of the
given geometric situation, i.e. one should avoid the intersection of the new
interface with the original boundary. We have already applied this algorithm
to find a suitable domain decomposition of the Lake St. Wolfgang domain as
shown in Figure 1.

Fig. 1. Domain Decomposition of the Lake St. Wolfgang Domain.

It seems to be an open problem to find and to implement a robust
algorithm for an automatic domain decomposition of complicated three–
dimensional structures which is based on surface informations only. Such a
tool is essentially needed when considering boundary element domain decom-
position methods. Preliminary results on this topic will be published elsewhere
[12]. A similar approach was already used in [6] to design an automatic domain
decomposition approach for unstructured grids in three dimensions. There, the
remeshing of the new interface is done within the splitting hyperplane without
considering the robustness of the algorithm for complicated geometries.

Instead of the global boundary value problem (1) we now consider the
local boundary value problems

−αi∆ui(x) = fi(x) for x ∈ Ωi, ui(x) = g(x) for x ∈ Γi ∩ Γ (3)

together with the transmission boundary conditions

ui(x) = uj(x), αiti(x) + αjtj(x) = 0 for x ∈ Γij = Γi ∩ Γj , (4)

where ti = ni ·∇ui is the exterior normal derivative of ui on Γi. Since the solu-
tion ui of the local boundary value problem (3) is given via the representation
formula
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ui(x) =
1
4π

∫
Γi

ti(y)
|x− y|dsy −

1
4π

∫
Γi

ui(y)
∂

∂ny

1
|x− y|dsy +

1
αi

1
4π

∫
Ωi

fi(y)
|x− y|dy

for x ∈ Ωi, it is sufficient to find the complete Cauchy data [ui, ti]|Γi
which

are related to the solutions ui of the local boundary value problems (3). The
appropriate boundary integral equations to derive a boundary integral repre-
sentation of the involved Dirichlet to Neumann map are given by means of
the Calderon projector(

ui

ti

)
=

(
1
2I −Ki Vi

Di
1
2I +K ′

i

)(
ui

ti

)
+

1
αi

(
Ñ0fi

Ñ1fi

)
,

where Vi is the single layer potential, Ki is the double layer potential, Di

is the hypersingular boundary integral operator, and Ñjfi are some Newton
potentials, respectively. Hence, we find the Dirichlet to Neumann map as

αiti(x) = αi(Siui)(x)− (Nifi)(x) for x ∈ Γi (5)

with the Steklov–Poincaré operator

(Siui)(x) = V −1
i (

1
2
I +Ki)ui(x) (6)

=
[
Di + (

1
2
I +K ′

i)V
−1
i (

1
2
I +Ki)

]
ui(x) for x ∈ Γi, (7)

and with the local Newton potential

Nifi = V −1
i Ñ0fi = (

1
2
I +K ′

i)V
−1
i Ñ0fi − Ñifi on Γi.

Replacing the partial differential equation in (3) by the related Dirichlet to
Neumann map (5) this results in a coupled formulation to find the local
Cauchy data [ui, ti]|Γi

such that

αiti(x) = αi(Siui)(x)− (Nifi)(x) for x ∈ Γi,
ui(x) = g(x) for x ∈ Γi ∩ Γ,
ui(x) = uj(x) for x ∈ Γij ,

αiti(x) + αjtj(x) = 0 for x ∈ Γij .

(8)

In what follows we first have to analyze the local Steklov–Poincaré operators
Si : H1/2(Γi) → H−1/2(Γi). Since we are dealing with fractional Sobolev
spaces H±1/2(Γi) one may ask for appropriate norms to be used. It turns out
that norms which are induced by the local single layer potentials Vi may be
advantageous. In particular,

‖ · ‖Vi
=
√
〈Vi·, ·〉Γi

, ‖ · ‖V −1
i

=
√
〈V −1

i ·, ·〉Γi
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are equivalent norms in H−1/2(Γi) and in H1/2(Γi), respectively. With the
contraction property of the double layer potential [19],

‖(1
2
I +Ki)vi‖V −1

i
≤ cK,i‖vi‖V −1

i
for all vi ∈ H1/2(Γi) (9)

where the constant

cK,i =
1
2

+

√
1
4
− cDi

1 cVi
1 < 1

is only shape sensitive, we have

‖Sivi‖Vi
= ‖(1

2
I +Ki)vi‖V −1 ≤ cK,i ‖vi‖V −1

i
for all vi ∈ H1/2(Γi)

as well as

〈Sivi, vi〉Γi
≥ (1− cK,i) ‖vi‖2V −1

i
for all vi ∈ H1/2(Γi), vi⊥1.

In particular, the constants form the non–trivial kernel of the local Steklov–
Poincaré operators Si, i.e., Si1 = 0 in the sense of H−1/2(Γi). To realize
the related orthogonal splitting of H1/2(Γi) we introduce the natural density
weq,i ∈ H−1/2(Γi) as the unique solution of the local boundary integral equa-
tion Viweq,i = 1. Then we may define the stabilized hypersingular boundary
integral operator S̃i : H1/2(Γi) → H−1/2(Γi) via the Riesz representation
theorem by the bilinear form

〈S̃iui, vi〉Γi
= 〈Siui, vi〉Γi

+ βi〈ui, weq,i〉Γi
〈vi, weq,i〉Γi

, βi ∈ R+. (10)

Theorem 1. Let S̃i : H1/2(Γi) → H−1/2(Γi) be the stabilized Steklov–
Poincaré operator as defined in (10). Then there hold the spectral equivalence
inequalities

cS̃i
1 〈V −1

i vi, vi〉Γi
≤ 〈S̃ivi, vi〉Γi

≤ cS̃i
2 〈V −1

i vi, vi〉Γi

for all vi ∈ H1/2(Γi) with positive constants

cS̃i
1 = min{1− cK,i, βi〈1, weq,i〉Γi

}, cS̃i
2 = max{cK,i, βi〈1, weq,i〉Γi

}.

Therefore, an optimal scaling is given for

βi =
1

2〈1, weq,i〉Γi

, cS̃i
1 = 1− cK,i, cS̃i

2 = cK,i.

Hence, the Dirichlet to Neumann map (5) can be written in a modified vari-
ational formulation as

αi〈ti, vi〉Γi
= 〈S̃iũi, vi〉Γi

− 〈Nifi, vi〉Γi
for all vi ∈ H1/2(Γi) (11)
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when assuming the local solvability conditions

αi〈ti, 1〉Γi
+ 〈Nifi, 1〉Γi

= 0 . (12)

In particular, inserting vi = 1 into the modified Dirichlet to Neumann map
(11), we obtain from the solvability condition (12)

0 = αi〈ti, 1〉Γi
+ 〈Nifi, 1〉Γi

= 〈Siũi, 1〉Γi
+ βi〈ũi, weq,i〉Γi

〈1, weq,i〉Γi

and therefore the scaling condition

〈ũi, weq,i〉Γi
= 0 (13)

due to

〈Siũi, 1〉Γi
= 〈ũi, Si1〉Γi

= 0, 〈1, weq,i〉Γi
= 〈1, V −1

i 1〉Γi
> 0.

In fact, the scaling condition (13) is the natural characterization of functions
ũi ∈ H1/2(Γi) which are orthogonal to the constants in the sense ofH−1/2(Γi).
Hence, the local Dirichlet datum is given via

ui = ũi + γi, γi ∈ R.

Now, the coupled formulation (8) can be rewritten as

αiti(x) = αi(S̃iũi)(x)− (Nifi)(x) for x ∈ Γi,
ũi(x) + γi = g(x) for x ∈ Γi ∩ Γ,
ũi(x) + γi = ũj(x) + γj for x ∈ Γij ,

αiti(x) + αjtj(x) = 0 for x ∈ Γij ,
αi〈ti, 1〉Γi

+ 〈Nifi, 1〉Γi
= 0

(14)

where we have to find ũi ∈ H1/2(Γi), ti ∈ H−1/2(Γi), and γi ∈ R, i = 1, . . . , p.
Hereby, the variational formulation of the modified Dirichlet to Neumann map
reads: Find ũi ∈ H1/2(Γi) such that

αi〈S̃iũi, vi〉Γi
− αi〈ti, vi〉Γi

= 〈Nifi, vi〉Γi
(15)

is satisfied for all vi ∈ H1/2(Γi), i = 1, . . . , p. The Neumann transmission
conditions in weak form are

〈αiti + αjtj , vij〉Γij
=

∫
Γij

[αiti(x) + αjtj(x)]vij(x)dsx = 0 (16)

for all vij ∈ H1/2(Γij). Taking the sum over all interfaces Γij , this is equiva-
lent to

p∑
i=1

αi〈ti, v|Γi
〉Γi\Γ = 0 for all v ∈ H1/2(ΓS), (17)
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where ΓS = ∪p
i=1Γi is the skeleton of the given domain decomposition. The

Dirichlet transmission conditions in (14) can be written as

〈[ũi+γi]−[ũj+γj ], τij〉Γij
= 0 for all τij ∈ H̃−1/2(Γij) = [H1/2(Γij)]′, (18)

while the Dirichlet boundary conditions in weak form read

〈ũi + γi, τi0〉Γi∩Γ = 〈g, τi0〉Γi∩Γ for all τi0 ∈ H̃−1/2(Γi ∩ Γ ). (19)

In addition we need to have the local solvability conditions

αi〈ti, 1〉Γi
+ 〈Nifi, 1〉Γi

= 0. (20)

The coupled variational formulation (15)–(20) is in fact a mixed (saddle point)
domain decomposition formulation of the original boundary value problem (1).
Hence we have to ensure a certain stability (LBB) condition to be satisfied,
i.e., a stable duality pairing between the primal variables ũi and the dual
Lagrange variable ti along the interfaces Γij . Note that we also have to incor-
porate the additional constraints (20) and their associated Lagrange multipli-
ers γi. While the unique solvability of the continuous variational formulation
(15)–(20) follows in a quite standard way, as, e.g. in [16], the stability of an as-
sociated discrete scheme is not so obvious. Clearly, the Galerkin discretization
of the coupled problem (15)–(20) depends on the local trial spaces to approx-
imate the local Cauchy data [ũ, ti]. In particular, the variational formulation
(15)–(20) may serve as a starting point for Mortar domain decomposition
or three–field formulations as well (see [16] and the references given therein).
However, here we will consider only an approach which is globally conforming.

Let S1
h(ΓS) be a suitable trial space on the skeleton ΓS , e.g., of piecewise

linear basis functions ϕk, k = 1, . . . ,M , and let S1
h(Γi) denote its restriction

onto Γi, where the local basis functions are ϕi
k, k = 1, . . . ,Mi. In particular,

Ai ∈ RMi×M are connectivity matrices linking the global degrees of freedom
u ∈ RM ↔ uh ∈ S1

h(ΓS) to the local ones, ui = Aiu ∈ RMi ↔ uh|Γi
∈ S1

h(Γi).
Moreover, let S0

h(Γij) be some trial space to approximate the local Neumann
data ti and tj along the interface Γij , for example we may use piecewise
constant basis functions ψij

s . In the same way we introduce basis functions
ψ0

s ∈ S0
h(Γ ) to approximate the Neumann data along the Dirichlet boundary

Γ . The trial spaces S0
h(Γij) and S0

h(Γ ) define a global trial space S0
h(ΓS) of

piecewise constant basis functions ψι implying λh ∈ S0
h(ΓS) ↔ λ ∈ RN , i.e.,

we have λh|Γij
∈ S0

h(Γij) ↔ λij ∈ RNij and λh|Γ ∈ S0
h(Γ ) ↔ λ0 ∈ RN0 . For

the global trial space

S0
h(ΓS) =

⋃
i<j

S0
h(Γij) ∪ S0

h(Γ ) = span{ψι}Nι=0,

we define the restrictions ψij
s = rij

ι ψι with rij
ι = 1, rji

ι = −1 for i < j, and
ψ0

s = r0ιψι, r0ι = 1 for x ∈ Γ . Hence we can also introduce a local mapping
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ti =
1
αi
Riλ ∈ RNi for λ ∈ RN

satisfying
Ri[si, ι] = rij

ι = 1, Rj [sj , ι] = rji
ι = −1

for ι = 1, . . . , N, si = 1, . . . , Ni, i < j, and Ri[si, ι] = r0ι = 1 for x ∈ Γ . For
the associated approximations ti,h ∈ S0

h(Γi)↔ ti ∈ RNi , we then find

αiti,h(x) + αjtj,h(x) = 0 for x ∈ Γij ,

i.e., the Neumann transmission conditions (16) are satisfied in a strong sense.
The Galerkin approximation of the Dirichlet transmission condition (18)

can now be written as∫
Γij

⎧⎨⎩
[

Mi∑
k=1

ũi,kϕ
i
k(x) + γi

]
−

⎡⎣Mj∑
k=1

ũj,kϕ
j
k(x) + γj

⎤⎦⎫⎬⎭ψij
σ (x)dsx = 0

for σ = 1, . . . , Nij , and i < j, or for ι = 1, . . . , N

∫
Γij

⎧⎨⎩
[

Mi∑
k=1

ũi,kϕ
i
k(x) + γi

]
rij
ι ψι(x) +

⎡⎣Mj∑
k=1

ũj,kϕ
j
k(x) + γj

⎤⎦ rji
ι ψι(x)dsx

⎫⎬⎭ = 0.

Correspondingly, the Galerkin discretization of the Dirichlet boundary condi-
tion (19) reads∫

Γi∩Γ

[
Mi∑
k=1

ũi,kϕ
i
k(x) + γi

]
r0ιψι(x)dsx =

∫
Γi∩Γ

g(x)r0ιψι(x)dsx.

Combining both the Galerkin discretization of the Dirichlet transmission and
of the Dirichlet boundary conditions, we can write

p∑
i=1

Biũi +Gγ = g (21)

where Bi ∈ RM×Mi are defined by

Bi[ι, k] =
∫

Γij

ϕi
k(x)rij

ι ψι(x)dsx, Bi[ι, k] =
∫

Γi∩Γ

ϕi
k(x)r0ιψι(x)dsx.

In addition, the matrix G = (G1, . . . , Gp) ∈ RM×p and the vector g ∈ RM of
the right hand side are defined correspondingly, i.e.

Gi[ι, i] =
∫

Γij

rij
ι ψι(x)dsx, Gi[ι, i] =

∫
Γi∩Γi

r0ιψι(x)dsx.
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In particular, we have Gi = Bi1i where 1i ∈ RMi is the coefficient vector
which is related to the constant function 1 ∈ H1/2(Γi). Moreover, from the
solvability conditions (20) we obtain

G

i λ = qi = −〈Nifi, 1〉Γi

for i = 1, . . . , p.

The Galerkin discretization of the local Dirichlet to Neumann map (15) finally
gives

αiS̃i,hũi −B

i λ = f

i
,

where we have to approximate the exact stiffness matrix S̃i,h including the
local Steklov–Poincaré operator Si, e.g., in the symmetric representation (7),
by some boundary element discretization,

S̃i,h = Di,h + (
1
2
M


i,h +K

i,h)V −1

i,h (
1
2
Mi,h +Ki,h) + βiaia



i ,

where the local boundary element matrices are given as

Di,h[�, k] = 〈Diϕ
i
k, ϕ

i
�〉Γi

, Ki,h[ν, k] = 〈Kiϕ
i
k, ϑ

i
ν〉Γi

,

Vi,h[ν, µ] = 〈Viϑ
i
µ, ϑ

i
ν〉Γi

, Mi,h[ν, k] = 〈ϕi
k, ϑ

i
ν〉Γi

, ai,k = 〈ϕi
k, weq,i〉Γi

for k, � = 1, . . . ,Mi, µ, ν = 1, . . . , N̄i where span{ϑi
µ}N̄i

µ=1 ⊂ H−1/2(Γi) is some
local boundary element trial space to approximate the local Neumann data
which are needed in the definition of the approximate Steklov–Poincaré oper-
ator. Note that the basis functions ϑi

µ can be defined in an almost arbitrary
way, we only have to assume some approximation property to ensure conver-
gence of the discrete scheme. The simplest choice would be to identify the
basis functions ϑi

µ with ψij
s which are defined along the skeleton. In an analo-

gous manner, one may even define an approximate Steklov–Poincaré operator
by using local finite elements, see, e.g., [11]. Summarizing the above, we end
up with a global system of linear equations,⎛⎜⎜⎜⎜⎜⎝

α1S̃1,h −B

1

. . .
...

αpS̃p,h −B

p

B1 · · · Bp G
G


⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
ũ1
...
ũp

λ
γ

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
f

1
...
f

p

g
q

⎞⎟⎟⎟⎟⎟⎠ . (22)

The unique solvability of the linear system (22) and therefore of the coupled
variational problem (15)–(20) follows from some stability (LBB) condition
linking the local trial spaces S1

h(Γi) and S0
h(Γij) along the coupling interface

Γij . Here, we only consider the special case where the basis functions ϕi
k and

ψij
s are biorthogonal, i.e.
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∫
Γij

ϕi
k(x)ψij

s (x)dsx =
{

1 for s = k,
0 for s �= k.

Then, the entries of the matrices Bi consist just of zeros and ±1 describing
a nodal coupling of the associated primal degrees of freedom. In particular,
the use of biorthogonal basis functions ensures the LBB condition which is
related to the block matrices Bi in (22), see, e.g., [21]. Moreover, the use
of biorthogonal basis functions to discretize the coupled variational problem
(15)–(20) is equivalent to a redundant finite or boundary element tearing and
interconnecting approach for a standard domain decomposition formulation,
see, e.g., [11].

While for matching grids the described formulation is a conforming dis-
cretization scheme, it may be generalized to different local grids and different
local trial spaces as well. This leads immediately to hybrid or mortar domain
decomposition methods where the choice of local trial spaces is essential to
ensure the local stability conditions, see, e.g., [21] and the references given
therein. Since the approximation of the local Dirichlet to Neumann maps can
be done by any available discretization scheme, the presented formulation al-
lows the coupling of different discretization schemes such as finite and bound-
ary element methods, and the coupling of locally different meshes and trial
spaces. When considering a boundary element approximation of the Steklov–
Poincaré operator

Siui = [Di + (
1
2
I +K ′

i)V
−1
i (

1
2
I +Ki)]ui = Diui + (

1
2
I +K ′

i)wi

the local Neumann data wi = V −1
i ( 1

2I+Ki) coincide with the Neumann data
ti as used in the coupled formulation (14). It seems to be an open problem how
this relation can be used to find further advanced boundary element domain
decomposition formulations, in particular to find more efficient preconditioned
iterative strategies to solve the resulting linear systems of equations in parallel.

3 Conclusions

For the numerical analysis of standard boundary element methods see, for ex-
ample, [17]. Since the discretization of non–local boundary integral operators
with singular kernel functions leads to dense stiffness matrices, the use of fast
boundary element methods is an issue. For an overview of those methods, and
for the implementation and for the application of the Adaptive Cross Approx-
imation approach, see [14]. Other possible fast boundary element methods are
the Fast Multipole Method, see, e.g., [13] and the references therein, or Hier-
archical Matrices, see, e.g., [4]. The iterative solution of the linear system (22)
of the boundary element tearing and interconnecting approach can be done by
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a projected preconditioned conjugate gradient method in a special inner prod-
uct since the system matrix has a two fold saddle point structure, see also [9],
where we have also described appropriate preconditioning strategies. While
the potential equation (1) is just a model problem, the methodology given in
this paper can be extended to more advanced problems in a straightforward
way, e.g., for problems in linear elastostatics, for almost incompressible ma-
terials and for the Stokes problem. More challenging are the handling of the
Helmholtz equation or of the Maxwell system where more advanced formu-
lations are needed to obtain boundary integral equations which are unique
solvable for all wave numbers.

Acknowledgement. This work has been partially supported by the German Research
Foundation (DFG) under the Grant SFB 404 Multifield Problems in Continuum
Mechanics.
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The main theme of the minisymposium was centered around the construction
of advanced multigrid techniques for the solution of large scale linear systems
that typically arise from the discretization of systems of PDEs. Examples
of such PDEs are found in numerical models used in electromagnetics, flow
simulation, and elasticity. In the present proceedings two papers are included;
one deals with a multilevel hierarchical basis preconditioner for 3D elliptic
problems discretized by the DG (discontinuous Galerkin) method, whereas
the second one deals with a new auxiliary space preconditioning method for
(semi–)definite time domain Maxwell (H(curl)) problems.
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1 Introduction

The search for efficient preconditioners for H(curl) problems on unstructured
meshes has intensified in the last few years. The attempts to directly construct
AMG (algebraic multigrid) methods had some success, see [10, 1, 6]. Exploit-
ing available multilevel methods on auxiliary mesh for the same bilinear form
led to efficient auxiliary mesh preconditioners to unstructured problems as
shown in [7, 4]. A computationally more attractive approach was recently
announced in [5]. Their method borrows the main tool from the above men-
tioned auxiliary mesh preconditioners, namely, the interpolation operator Πh

that maps functions from H(curl) into the lowest order Nédélec finite element
space Vh. The method of [5] and its motivation are outlined in Section 2. In
particular, we describe briefly their Nédélec space decomposition, which is the
basis of the auxiliary space AMG preconditioners.

In the present paper we consider several options for constructing unstruc-
tured mesh AMG preconditioners for H(curl) problems and report a sum-
mary of computational results from [8, 9]. In contrast to [5], we apply AMG
directly to variationally constructed coarse-grid operators, and therefore no
additional Poisson matrices are needed on input. We also consider variable co-
efficient problems, including some that lead to a singular matrix. Both types
of problems are of great practical importance, and are not covered by the
theory of [5].

The main Section 3 consists of an extensive set of numerical experiments
that illustrate the behavior of various auxiliary space AMG preconditioners.

∗ This work was performed under the auspices of the U. S. Department of Energy by
University of California Lawrence Livermore National Laboratory under contract
W-7405-Eng-48. UCRL-PROC-223798
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2 The Auxiliary Spaces and Operators

We are interested in solving the following variational problem stemming from
the definite Maxwell equations:

Find u ∈ Vh : (α curlu, curlv) + (β u,v) = (f ,v) , for all v ∈ Vh . (1)

Here we consider α > 0 and β ≥ 0 which are scalar coefficients, but extensions
to (semi)definite tensors are possible. We allow β to be zero in part or the
whole domain (in which case the resulting matrix is only semidefinite, and
for solvability the right-hand side should be chosen to satisfy compatibility
conditions). Let Ah be the stiffness matrix corresponding to (1), where Vh is
the (lowest order) Nédélec space associated with a triangulation Th.

Let Sh be the space of continuous piecewise linear finite elements associ-
ated with the same mesh Th as Vh, and Sh be its vector counterpart. Let Gh

and Πh be the matrix representations of the mapping ϕ ∈ Sh �→ ∇ϕ ∈ Vh

and the nodal interpolation from Sh to Vh, respectively. Note that Gh has
as many rows as the number of edges in the mesh, with each row having two
nonzero entries: +1 and −1 in the columns corresponding to the edge ver-
tices. The sign depends on the orientation of the edge. Furthermore, Πh can
be computed based only on Gh and on the coordinates of the vertices of the
mesh.

The auxiliary space AMG preconditioner for Ah is a “three-level” method
utilizing the subspaces Vh, GhSh, and ΠhSh. Its additive form reads (cf. [11])

Λ−1
h +GhB

−1
h GT

h + ΠhB−1
h ΠT

h , (2)

where Λh is a smoother for Ah, while Bh and Bh are efficient preconditioners
for GT

h AhGh and ΠT
h AhΠh respectively. Since these matrices come from el-

liptic forms, the preconditioner of choice is AMG (especially for unstructured
meshes).

If β is identically zero, one can skip the subspace correction associated
with Gh, in which case we get a two-level method.

The motivation for (2) is that any finite element function uh ∈ Vh allows
for decomposition of the form (cf., [5]) uh = vh +Πhzh +∇ϕh with vh ∈ Vh,
zh ∈ Sh and ϕh ∈ Sh such that the following stability estimates hold,

h−1‖vh‖0 + ‖zh‖1 ≤ C ‖ curluh‖0 and ‖∇ϕh‖0 ≤ C ‖uh‖0. (3)

3 Numerical Experiments

In this section we present results from numerical experiments with different
versions of the auxiliary space AMG method used as a preconditioner in PCG.

We set Λ−1
h to be a sweep of symmetric Gauss-Seidel, and consider the

following preconditioners:
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{1} Multiplicative version of (2) with Bh and Bh implemented as one AMG
V-cycle for GT

h AhGh and ΠT
h AhΠh respectively.

{2} Additive preconditioner using the same components as {1} and extra
smoothing.

{3} Multiplicative preconditioner with Bh and Bh implemented using a
sweep of geometric multigrid for Poisson problems, as described in [5].

{4} Additive preconditioner using the same components as {3} and extra
smoothing.

{5} The preconditioner {3} using AMG instead of geometric multigrid.

The AMG algorithm we used is a serial version of the BoomerAMG solver
from the hypre library. For more details see [2].

We report the number of preconditioned conjugate gradient iterations with
the above preconditioners and relative tolerance 10−6, i.e. the iterations were
stopped after the preconditioned residual norm was reduced by six orders
of magnitude. In a few of the tests we also tried the corresponding two-level
methods (using exact solution in the subspaces) and listed the iteration counts
in parentheses following the V-cycle results.

3.1 Constant Coefficients

First we consider several simple constant coefficients problems with α = β = 1.
We test both two-dimensional triangular and three-dimensional tetrahedral
meshes. The results are listed in Tables 1–6, where the following notation
was used: � is the refinement level of the mesh, N is the size of the problem,
and n1 to n5 give the iteration count for each of the auxiliary space AMG
preconditioners {1} to {5}. When available, the error in L2 is also reported.

The experiments show that all considered solvers result in uniform and
small number of iterations, which is in agreement with the theoretical results
from [5, 9]. One can also observe that the multilevel results are very close in
terms of number of iterations to the two-level ones.

Note that the first two methods (based on the original form) appear to
work the same, independently of how complicated the geometry is. This is
particularly interesting in the case of the third problem, where the assump-
tion that the boundary is connected (needed to establish the decomposition
in [5]) is violated. In contrast, the third and forth methods (based on Pois-
son subspace solvers) consistently result in higher number of iterations, and
perform much worse on the third problem.

3.2 Variable Coefficients

In Tables 7–8 we report results from a test where α and β are piecewise
constant coefficients. Note that this case is not covered by the theory in [5].
However, the modifications to the Poisson-based preconditioners are straight-
forward, namely they assemble matrices corresponding to the bilinear forms
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Table 1. Initial mesh and numerical results for the problem on a square.

� N n1 n2 n3 n4 ‖e‖L2

2 896 4 (3) 9 (9) 10 (9) 16 (15) 0.011898
3 3520 4 (3) 10 (9) 11 (10) 17 (16) 0.005953
4 13952 4 (3) 10 (9) 12 (11) 18 (15) 0.002977
5 55552 4 (3) 10 (9) 13 (11) 18 (16) 0.001489
6 221696 4 (3) 10 (8) 13 (11) 18 (16) 0.000744
7 885760 5 10 13 18 0.000372
8 3540992 5 11 13 19 0.000186

Table 2. Initial mesh and numerical results for the problem on a disk.

� N n1 n2 n3 n4

1 736 4 (2) 9 (8) 7 (7) 11 (11)
2 2888 4 (3) 10 (9) 7 (7) 12 (11)
3 11440 4 (3) 10 (9) 7 (7) 12 (11)
4 45536 5 (3) 11 (9) 7 (7) 12 (11)
5 181696 5 (3) 11 (8) 8 (7) 12 (11)
6 725888 5 11 8 12
7 2901760 5 12 8 11

Table 3. Initial mesh and numerical results for the problem on a square with a
circular hole.

� N n1 n2 n3 n4

2 972 6 (3) 11 (9) 21 (20) 33 (31)
3 14976 6 (3) 12 (9) 23 (21) 33 (31)
4 59520 7 (3) 12 (9) 23 (17) 35 (23)
5 237312 6 13 24 35
6 947712 7 13 25 35
7 3787776 7 14 25 35

Table 4. Initial mesh and numerical results for the problem on a cube.

� N n1 n2 n3 n4 ‖e‖L2

0 722 3 (3) 9 (7) 6 (6) 11 (11) 0.6777
1 5074 4 (3) 10 (9) 9 (9) 16 (15) 0.3776
2 37940 5 (4) 11 (10) 12 (11) 20 (19) 0.2152
3 293224 5 (4) 11 (10) 14 (12) 22 (20) 0.1096
4 2305232 5 11 15 23 0.0549
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Table 5. Initial mesh and numerical results for the problem on a ball.

� N n1 n2 n3 n4

0 704 3 (3) 9 (7) 5 (5) 9 (9)
1 4669 4 (3) 10 (9) 7 (7) 13 (12)
2 37940 5 (4) 12 (10) 8 (8) 15 (14)
3 255700 6 (5) 13 (12) 9 (8) 15 (14)
4 1990184 7 14 10 16

Table 6. Initial mesh and numerical results for the problem on a union of two
cylinders.

� N n1 n2 n3 n4

0 1197 3 (3) 10 (8) 7 (7) 13 (13)
1 8248 4 (4) 11 (10) 10 (9) 17 (16)
2 60940 5 (5) 12 (11) 12 (11) 19 (18)
3 467880 6 (5) 12 (11) 13 (12) 21 (19)
4 3665552 6 13 14 22

(β∇u,∇v) and (α∇u,∇v) + (βu,v). Here we concentrated only on the mul-
tiplicative AMG methods.

For the problem illustrated in Table 7 (where the jumps are simple), we
observe stable number of iterations with respect to both the mesh size and the
magnitude of the jumps. Note that this setup was reported to be problematic
for geometric multigrid in [3]. As before, the method based on the original
form outperforms the one based on AMG Poisson subspace solvers.

3.3 Singular Problems

Tables 9–10 present results for the problem corresponding to α = 1, β = 0,
i.e., to the bilinear form (curlu, curlv). In this case the matrix is singular, and
the right-hand side, as well as the solution, belong to the space of discretely
divergence free vectors (the kernel of GT

h ). Since β = 0, the solvers were
modified to skip the correction in the space GhSh. This leads to a simpler
preconditioner, which in additive form reads

Λ−1
h + ΠhB−1

h ΠT
h . (4)

The results in Tables 9–10 are quite satisfactory and comparable to those
from Tables 3 and 6. This is not surprising, since (3) implies that any [uh]
in the factor space Vh/∇Sh, has a representative ũh ∈ [uh], such that ũh =
uh −∇ϕh = vh + Πhzh and
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Table 7. Numerical results for the problem on a cube with α and β having different
values in the shown regions (cf. [3]). Multiplicative preconditioner with AMG V-
cycles in the subspaces.

� N p
−8 −4 −2 −1 0 1 2 4 8

n1 for α = 1, β ∈ {1, 10p}
1 716 3 3 3 3 3 4 4 4 4
2 5080 4 4 4 4 4 4 5 6 6
3 38192 5 5 5 5 5 5 5 6 6
4 296032 5 5 5 5 5 5 6 6 6
5 2330816 5 5 5 5 5 6 6 6 6

n1 for β = 1, α ∈ {1, 10p}
1 716 6 6 5 4 3 4 4 4 4
2 5080 6 6 6 5 4 5 5 5 5
3 38192 7 7 7 5 5 5 6 6 6
4 296032 8 8 7 6 5 6 6 6 6
5 2330816 8 9 7 6 5 6 6 6 6

Table 8. Numerical results for the problem from Table 7 using multiplicative pre-
conditioner with Poisson subspace solvers based on algebraic multigrid.

� N p
−8 −4 −2 −1 0 1 2 4 8

n5 for α = 1, β ∈ {1, 10p}
1 716 7 (7) 7 (7) 7 (7) 7 (7) 7 (7) 6 (6) 6 (6) 5 (5) 5 (5)
2 5080 10 (10) 10 (10) 10 (10) 10 (10) 10 (10) 10 (10) 9 (9) 9 (9) 9 (9)
3 38192 11 (11) 11 (11) 11 (11) 11 (11) 11 (11) 11 (11) 10 (10) 11 (11) 12 (11)
4 296032 12 (12) 12 (12) 12 (12) 12 (12) 12 (12) 12 (12) 12 (12) 13 (13) 14 (13)
5 2330816 14 14 14 14 14 13 13 14 15

n5 for β = 1, α ∈ {1, 10p}
1 716 7 (7) 7 (7) 7 (7) 7 (7) 7 (7) 7 (7) 7 (7) 7 (7) 6 (6)
2 5080 10 (9) 9 (9) 10 (10) 10 (10) 10 (10) 10 (10) 10 (10) 10 (10) 9 (9)
3 38192 11 (11) 11 (11) 12 (12) 12 (12) 11 (11) 12 (12) 12 (12) 12 (12) 12 (12)
4 296032 13 (13) 13 (13) 14 (14) 14 (14) 12 (12) 15 (14) 15 (15) 15 (15) 14 (14)
5 2330816 15 15 16 16 14 16 17 17 17

h−1‖vh‖0 + ‖zh‖1 ≤ C ‖ curl ũh‖0 = C ‖ curl [uh]‖0 .

In Table 11 we also consider the important practical case when β is zero
only in part of the region. For this test we used a preconditioner based on
(2) instead of (4). Even though the problem is singular and β has jumps,
the iterations counts are comparable to the case of constant coefficients. For
example, the number of iterations for α = 1, β = 1 given to the right of the
table is almost identical to those when α = 1, β = 0.
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Table 9. Initial mesh and numerical results for the singular problem on a square
with circular hole.

� N n1 n2 n3 n4

2 972 7 12 19 28
3 14976 6 12 19 28
4 59520 7 12 19 28
5 237312 7 12 20 29
6 947712 7 11 20 29
7 3787776 7 12 21 29

Table 10. Initial mesh and numerical results for the singular problem on a union
of two cylinders.

� N n1 n2 n3 n4

0 1197 5 11 9 17
1 8248 6 13 12 19
2 60940 7 15 13 22
3 467880 7 15 14 23
4 3665552 8 15 15 23

Table 11. Initial mesh and numerical results for the problem on a cube with β = 0
outside the interior cube. Multiplicative preconditioner with AMG V-cycles in the
subspaces.

� N p
−8 −4 −2 −1 0 1 2 4 8

n1 for α = 1, β ∈ {0, 10p}
1 485 2 3 3 2 4 2 3 3 3 (4)
2 3674 5 5 5 6 5 6 6 6 7 (6)
3 28692 8 7 8 7 7 8 8 10 10 (7)
4 226984 7 7 7 7 7 9 8 9 9 (7)
5 1806160 8 8 8 8 8 8 9 10 11 (8)
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Summary. We construct optimal order multilevel preconditioners for interior-
penalty discontinuous Galerkin (DG) finite element discretizations of 3D elliptic
boundary-value problems. A specific assembling process is proposed which allows
us to characterize the hierarchical splitting locally. This is also the key for a local
analysis of the angle between the resulting subspaces. Applying the correspond-
ing two-level basis transformation recursively, a sequence of algebraic problems is
generated. These discrete problems can be associated with coarse versions of DG
approximations (of the solution to the original variational problem) on a hierarchy
of geometrically nested meshes. The presented numerical results demonstrate the
potential of this approach.

1 Introduction

Discontinuous Galerkin (DG) finite element (FE) methods have gained much
interest in the last decade due to their suitability for hp-adaptive techniques.
They offer several advantages, e.g. the ease of treatment of meshes with hang-
ing nodes, elements of varying shape and size, polynomials of variable degree,
parallelization, preservation of local conservation properties, etc. An excellent
overview and a detailed analysis of DG methods for elliptic problems can be
found in [1]. Unfortunately, DG discretizations result in excessive number of
degrees of freedom (DOF) as compared to their counter-part, i.e. the standard
FE methods. Developing efficient preconditioning techniques, which yield fast
iterative solvers, thus becomes of significant importance.

Optimal-order preconditioners obtained from recursive application of two-
level FE methods have been introduced and extensively analyzed in the
context of conforming methods, see e.g., [2, 3, 4]. For DG discretizations geo-
metric multigrid (MG) type preconditioners and solvers for the linear system
of equations have been considered in [6, 9]. However, our approach falls into
the category of algebraic multilevel techniques. The method is obtained from
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recursive application of the two-level algorithm. A sequence of FE spaces is
created using geometrically nested meshes. A specific splitting of the bilinear
terms is proposed which results in an assembling process similar to that of the
conforming methods. In this approach one avoids the projection onto a coarse
(auxiliary) space [7, 13], where the auxiliary space is related to a standard
Galerkin discretization, and instead, generates a sequence of algebraic prob-
lems associated with a hierarchy of coarse versions of DG approximations of
the original problem.

The content of this paper is summarized as follows. In Section 2 we state
our model problem and discuss the DG approximation. Discrete formulation
and matrix assembly, based on the splitting proposed in [12], are parts of
Section 3. In Section 4 we comment on the construction of a proper hierarchical
basis transformation for the linear systems arising from DG discretization. The
analysis of the angle between the induced subspaces is the subject of Section
5. Finally, numerical experiments are presented in Section 6.

2 Model Problem and DG Approximation

Consider a second order elliptic problem on a bounded Lipschitz domain
Ω ⊂ R3:

−∇ · (A (x)∇u) = f (x) in Ω, (1a)

u(x) =uD on ΓD, (1b)
A∇u · n =uN on ΓN . (1c)

Here n is the exterior unit normal vector to ∂Ω ≡ Γ . The boundary is assumed
to be decomposed into two disjoint parts ΓD and ΓN , and the boundary data
uD, uN are smooth. For the DG formulation below we shall need the existence
of the traces of u and A∇u ·n on the faces in Ω, and the solution u is assumed
to have the required regularity. It is assumed that A is a symmetric positive
definite matrix such that

c1 |ξ|2 ≤ Aξ · ξ ≤ c2 |ξ|2 ∀ξ ∈ R3.

Let Th be a non-overlapping partition of Ω into a finite number of elements
e. For any e ∈ Th we denote its diameter by he and the boundary by ∂e. Let
F = ē+∩ ē− be a common face of two adjacent elements e+, and e−. Further,
let h = maxe∈Th

he denote the characteristic mesh size of the whole partition.
The set of all the internal faces is denoted by F0, and FD and FN contain the
faces of finite elements that belong to ΓD and ΓN , respectively. Finally, F is
the set of all the faces, i.e., F = F0 ∪FD ∪FN . We assume that the partition
is shape-regular. We allow finite elements to vary in size and shape for local
mesh adaptation and the mesh is not required to be conforming, i.e. elements
may possess hanging nodes. Further, the face measure hf is constant on each
face F ∈ F such that hf = |F| 12 , for F ∈ F .
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On the partition Th we define a broken Sobolev space:

V := H2(Th) = {v ∈ L2(Ω) : v|e ∈ H2(e),∀e ∈ Th}.
Note that the functions in V may not satisfy any boundary condition. By

Vh := Vh(Th) = {v ∈ L2(Ω) : v|e ∈ Pr(e),∀e ∈ Th},
where Pr is the set of polynomials of degree r ≥ 1, we define a finite dimen-
sional subspace of V. Obviously, Vh = Πe∈Th

Pr(e). For ease of notations in
what follows, on V we introduce the following forms

(A∇huh,∇hvh)Th
:=

∑
e∈Th

∫
e

A∇huh · ∇hvhdx, 〈p, q〉Fg :=
∑

F∈Fg

∫
F
p · qds,

where Fg is one of the sets F , F0, FD, FN or any of their combinations.
Let us now recall the DG formulation for second order elliptic problems. In

recent years a large number of DG FEM were developed for elliptic boundary
value problems, for review see, e.g. [1] and the references therein. Below, we
consider the standard interior penalty (IP) DG method, see, e.g., [1]. For the
problem (1), the primal IP-DG formulation can be stated as follows:
Find uh ∈ V such that

A(uh, vh) = L(vh), ∀vh ∈ V, (2a)

where the bilinear form A(·, ·) : V × V → R and the linear form L(·) : V → R

are defined by the relations

A(uh, vh) =(A∇huh,∇hvh)Th
+ αh−1

f 〈[[uh]] , [[vh]]〉F0∪FD

− 〈{{A∇huh}} , [[vh]]〉F0∪FD
− 〈[[uh]] , {{A∇hvh}}〉F0∪FD

, (2b)

L(vh) =
∫

Ω

fvhdx+ αh−1
f 〈uD, vh〉FD

− 〈uDn, A∇hvh〉FD
+ 〈uN , vh〉FN

.

(2c)

Here {{·}} and [[·]] denote the trace operators for average and jump, respec-
tively, and α is a parameter which is to be defined to guarantee the coercivity
of the bilinear form A, see e.g. [1, 11].

As usual, we assume that the Dirichlet boundary conditions are defined
by a given function uD ∈ H1(Ω) in the sense that the trace of u− uD on ΓD

is zero. For the sake of simplicity, we also assume that uD is such that the
boundary condition can be exactly satisfied by the approximations used. For
the coercivity, boundedness, and convergence properties of the bilinear form
A the reader can refer, e.g., [1, 11].

3 Discrete Formulation and Matrix Assembly

The weak formulation (2) is transformed into a set of algebraic equations by
approximating uh and vh using trilinear polynomials in each cubic element as
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ue,h =
7∑

j=0

ũe,jNe,j (x) , ve,h =
7∑

j=0

ṽe,jNe,j (x) , x ∈ e ⊂ R3. (3)

Here ũe,j ∈ R8 and ṽe,j ∈ R8 are the expansion coefficients of uh and the
test function vh in the element e, respectively, and Ne,j are trilinear basis
functions.

We now briefly show the computation of the element stiffness matrix.
Consider a general element e with all its face internal. Let its neighboring
elements, which share a face with this element, be denoted by e+1 , e+2 , e+3 , e+4 ,
e+5 , and e+6 . Here ·+ represents the neighboring element and digits 1, . . . , 6
represent the face number with which the neighboring element is attached.

Using the definition of the trace operators {{·}} and [[·]] and the specific
splitting of the bilinear terms proposed in [12] the resulting elemental bilinear
form reads

Ae(uh, vh) =
∫

e

A∇huh · ∇hvhdx−
1
2

6∑
f=1

∫
Ff

((
vene + ve+

f
ne+

f

)
·A∇hue

+A∇hve ·
(
uene + ue+

f
ne+

f

))
ds

+
αh−1

f

2

6∑
f=1

∫
Ff

(
vene + ve+

f
ne+

f

)
·
(
uene + ue+

f
ne+

f

)
ds. (4)

In this approach, the DOF of the element e are connected with only those
DOF of its neighboring elements e+f which are at the common face.

Now let N = 8Ne denote the total number of DOF in the system. Using the
polynomial approximation (3) into the weak form (2), with elemental bilinear
form (4), we get the following linear system of equations

Ax = b, (5)

where x ∈ RN , A ∈ RN×N with N2
e blocks of size 8× 8, and b ∈ RN , denote

the vector of expansion coefficients, the global stiffness matrix, and the right
hand side data vector, respectively.

4 Generalized Hierarchical Basis

In this section we discuss the two-level hierarchical basis (HB) transformation
which is used in the construction of the multilevel preconditioner. Let us
consider a hierarchy of partitions Th�

⊂ Th�−1 ⊂ . . . ⊂ Th1 ⊂ Th0 of Ω, where
the notation Thk

= Th ⊂ TH = Thk−1 points out the fact that for any element e
of the fine(r) partition Th there is an element E of the coarse(r) mesh partition
TH such that e ⊂ E. For the construction of the preconditioner of the linear
system (5) resulting from the IP-DG approximation of the basic problem (1)
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its DOF are partitioned into a fine and a coarse (sub-) set, indicated by the
subscripts 1 and 2, respectively. The partitioning is induced by a regular mesh
refinement at every level (k − 1) = 0, 1, . . . , �− 1. In other words, by halving
the mesh size, i.e., h = H/2, each element is subdivided into eight elements
of similar shape, herewith producing the mesh at levels k = 1, 2, . . . , �. Hence,
the linear system (5) can be represented in the 2× 2 block form as[

A11 A12

A21 A22

](
x1

x2

)
=
(

b1

b2

)
(6)

where A21 = AT
12. By using the two-level transformation matrix

J =
[
I11 P12

0 I22

]
, (7)

the system to be solved in the new basis has the representation

Â x̂ = b̂, (8)

where Â and its submatrices Â11, Â12 Â21, Â22 are given by

Â = JTAJ =

[
Â11 Â12

Â21 Â22

]
, (9a)

Â11 = A11, Â12 = A11P12 +A12, Â21 = PT
12A11 +A21, (9b)

Â22 = PT
12A11P12 +A21P12 + PT

12A12 +A22. (9c)

The vectors x̂ and b are transformed according to x = J x̂ and b̂ = JT b,
where

x1 = x̂1 + P12x̂2, x2 = x̂2, (10a)

b̂1 = b1, b̂2 = PT
12b1 + b2. (10b)

If the interpolation matrix P12 in (7) is chosen in such a way that the ma-
trix Â22 in (9c) corresponds to a coarse discretization of the original problem
then P12 (and thus J) will constitute an HB transformation. In order to apply
a local analysis, see the next Section, P12 is to be defined for a set of macro
elements {E} that covers the whole mesh. The general macro element we are
using to define the local interpolation matrix PE is simply the union of eight
elements that share one vertex. The macro element accumulates 160 DOF, 32
of which define then an element on the next coarser level. The interpolation
weights are simply taken to be 1/8 for the 8 interior fine DOF, 1/4 for the 48
fine DOF located at the face centers of the macro-element, and 1/2 for the 72
fine DOF associated with macro-element edges.
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5 Local Estimation of the Constant in the CBS
Inequality

It is known that the constant γ in the Cauchy-Bunyakowski-Schwarz (CBS)
inequality, which is associated with the abstract angle between the two sub-
spaces induced by the two-level hierarchical basis transformation, plays a key
role in the derivation of optimal convergence rate estimates for two- and mul-
tilevel methods. Moreover, the value of the upper bound for γ ∈ (0, 1) is part
of the construction of a proper stabilization polynomial in the linear algebraic
multilevel iteration (AMLI) method, see [3, 4].

For the constant γ in the strengthened CBS inequality, the following rela-
tion holds

γ = cos(V1, V2) = sup
u ∈ V1, v ∈ V2

A(u, v)√
A(u, u)A(v, v)

, (11)

where A(·, ·) is the bilinear form given by (2b). If V1 ∩ V2 = {0} then γ is
strictly less than one. As shown in [8], the constant γ can be estimated locally
over each macro-element E ∈ TH , i.e. γ ≤ max

E
γE , where

γE = sup
u ∈ V1(E), v ∈ V2(E)

AE(u, v)√
AE(u, u)AE(v, v)

, v �= const.

The above mentioned spaces Vm(E), m = 1, 2, contain the functions from Vm

restricted to E and AE(u, v) corresponds to A(u, v) restricted to the macro
element E.

Evidently, the global two-level stiffness matrix Â can be assembled from
the macro-element two-level stiffness matrices ÂE , which are obtained from
assembling the element matrices for all elements e contained in E in the (local)
hierarchical basis. In simplified notation this can be written as

Â = JTAJ =
∑

E∈TH

ÂE =
∑

E∈TH

JT
EAE JE .

Like the global matrix, the local matrices are also of the following 2× 2 block
form

ÂE =

[
ÂE,11 ÂE,12

ÂE,21 ÂE,22

]
= JT

E

[
AE,11 AE,12

AE,21 AE,22

]
JE , (12)

where the local macro-element two-level transformation matrix JE is de-
fined by

JE =
[
I PE

0 I

]
, (13)

and the transformation-invariant (local) Schur complement is given by



A Multilevel Method for DG Approximation of Elliptic Problems 161

SE = ÂE,22 − ÂE,21Â
−1
E,11ÂE,12 = AE,22 −AE,21A

−1
E,11AE,12. (14)

In the present context the choice of PE is based on simple averaging, see [11].
We know from the general framework of two-level block (incomplete) factor-
ization methods that it suffices to compute the minimal eigenvalue λE;min of
the generalized eigenproblem (cf. [8, Theorem 6])

SEvE,2 = λEÂE,22vE,2, vE,2 ⊥ (1, 1, . . . , 1)T , (15)

in order to conclude the following upper bound for the constant γ in (11):

γ2 ≤ max
E∈TH

γ2
E = max

E∈TH

(1− λE;min). (16)

This relation then implies condition number estimates for the corresponding
two-level preconditioner (of additive and multiplicative type), see, e.g., [2].

The analysis of multilevel methods obtained by recursive application of the
two-level preconditioner necessitates the establishment of this kind of (local)
bounds for each coarsening step since the two-level hierarchical basis transfor-
mation is also applied recursively. This requires the knowledge of the related
(macro) element matrices on all coarse levels. For the hierarchical basis trans-
formation, as described in detail in [11], we have a very simple recursion rela-
tion for the element matrices. This recursion relation shows that the sequence
of (global) coarse-grid matrices can be associated with coarse-discretizations
of the original problem but with an exponentially increasing sequence of sta-
bilization parameters α(j). In the following Lemma and Theorem we state the
relation between the element matrices at successive levels and provide a local
estimate for the CBS constant. For the proof the reader is referred to [11].

Lemma 1. Let Â(�) := (J (�))TAJ (�) denote the stiffness matrix from (5) in
hierarchical basis, where A =

∑
e∈Th

Ae and Ae = Ae(α) =: A(0)
e (α) ∀e ∈

Th denotes the element matrix. Let us further assume that Ae has the same
representation over all the elements of the domain. Then, if one neglects the
correction matrices related to the boundary conditions, the coarse-grid problem
at level (�− j), j = 1, . . . , �, (involving the matrices J (�), J (�−1), . . . , J (�−j+1))
is characterized by the element matrix

A(j)
e (α) = Ae(α(j)) = Ae(2j α). (17)

In other words, the stabilization parameter α after j applications of the HB
transformation equals 2j α.

Theorem 1. Consider the HB macro-element matrix Â(j)
E (α) associated with

the eight elements defining the macro-element as a cube with side 2h�−j where
the element matrix A

(j)
e (α) from Lemma 1 is used in the standard way to

assemble A(j)
E (α). Then for the eigenvalues of (15) we have the lower bound
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λ
(j)
E;min = λE;min(α(j)) ≥ 1

16

(
1− 1√

2α(j)

)
=

1
16

(
1− 1√

2 2j α

)
(18)

for all α ≥ 3/2, and thus the following relation holds for γE

γE ≤
√

15
16

+
1

16
√

2α(j)
. (19)

Remark 1. The bound (19) in Theorem 1 tells us that the condition number
of the multiplicative preconditioner (with exact inversion of the A11-block)
can be stabilized using Chebyshev polynomials of degree five. However, as
illustrated in the numerical examples below, this goal can also be achieved by
employing four inner generalized conjugate gradient iterations.

6 Numerical Results

In this section we present numerical results which demonstrate the capabilities
of the method. The computations are performed on Sun Fire V40z workstation
with 4 AMD Opteron 852 CPUs (2.6GHz) with 32 GB RAM. For approximat-
ing u in all the examples we use trilinear elements i.e. linear shape functions
for each of the variables x, y, and z. The stabilization parameter α is taken
as 10. The pivot block in the multilevel preconditioner is approximated using
incomplete LU (ILU) factorization based on a drop tolerance tol [12, 14]. For
both the examples below we take Ω as a unit cube (0, 1)× (0, 1)× (0, 1).

Example 1. Consider the Poisson problem with homogeneous Dirichlet bound-
ary conditions and choose f such that the analytic solution of the problem is
given by u = x (1− x) y (1− y) z (1− z) exp (2x+ 2y + 2z). The tolerance tol
is taken as 10−2.

Example 2. Consider the model problem (1) with homogeneous Dirichlet
boundary conditions, f = 1, and the coefficient A as follows:

A =
{

1 in (I1 × I1 × I1)
⋃

(I2 × I2 × I1)
⋃

(I2 × I1 × I2)
⋃

(I1 × I2 × I2)
ε elsewhere

}
,

where I1 = (0, 0.5] and I2 = (0.5, 1), and ε = {0.1, 0.01, 0.001}. In this example
the tolerance tol is chosen heuristically by relating it to the parameter ε as
ε× 10−2.

For solving the linear system arising from various examples with varying h
we employ the nonlinear algebraic multilevel iteration method (NLAMLI), see
[5, 10, 12]. The stabilization of the condition number is achieved by using some
fixed small number ν of inner generalized conjugate gradient (GCG) iterations.
Here we choose ν = 4 in all computations. The starting vector for the outer
iteration is the zero vector and the stopping criteria is ‖r(nit)‖/‖r(0)‖ ≤ δ =
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10−6, where nit is the number of iterations we report in the tables below.
The coarsest mesh in all computations is of size 4×4×4 and has 512 DOF.
The finer meshes for 1/h = 8, 16, 32, 64 consist of 4096, . . . , 2097152 DOF,
respectively.

Table 1. Numerical results

1/h nit ρ sec

8 27 0.59 0.47

16 27 0.60 4.76

32 27 0.60 44.27

64 27 0.60 422.09

(a) Example 1

ε = 0.1 ε = 0.01 ε = 0.001

1/h nit ρ nit ρ nit ρ

8 25 0.57 25 0.56 25 0.56

16 28 0.61 28 0.60 28 0.61

32 30 0.62 29 0.62 30 0.62

64 30 0.62 29 0.62 30 0.63

(b) Example 2

In Table 1(a) we present the number of iterations, the average convergence
factor ρ and the total CPU time (including the time for the construction of
the preconditioner) for Example 1. We observe that the number of iterations
is constant and the CPU time is proportional to the problem size which shows
that the overall solution process is of optimal order of computational complex-
ity. The same holds for Example 2, cf. Table 1(b). These results also indicate
the robustness of the preconditioner with respect to the jumps in the coeffi-
cient A.

Acknowledgement. The authors acknowledge the support by the Austrian Academy
of Sciences.
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For non–overlapping domain decomposition methods the Steklov–Poincaré op-
erator or its inverse play a decisive role to represent the Dirichlet to Neumann
of the Neumann to Dirichlet map. In corresponding research during the last
decades remarkable achievements have been made by using boundary integral
and boundary element methods. In the minisymposium several aspects were
discussed.

In particular for exterior boundary value problems the coupling of fi-
nite and boundary element methods seems to be mandatory. In the case of
spherical domains one may use an explicit representation of the Dirichlet to
Neumann map as it was considered in the talk of Yu Dehao on the natural
boundary reduction and the domain decomposition method in unbounded
domains. Coupled finite and boundary element tearing and interconnecting
methods for nonlinear potential problems in unbounded regions were consid-
ered by C. Pechstein. Since the boundary integral formulation of Helmholtz
and Maxwell boundary value problems may involve non–trivial eigensolutions,
i.e. spurious modes, special care has to be taken. Therefore, R. Hiptmair pre-
sented a resonance free interface coupled BEM for the Maxwell system. A
boundary element tearing and interconnecting approach for the numerical so-
lution of variational inequalities was presented by Z. Dostál. Finally, A. Litvi-
nenko discussed the use of hierarchical matrices as domain decomposition
preconditioner for the skin problem.
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Summary. We briefly review our first results concerning the development of scal-
able BETI based domain decomposition methods adapted to the solution of varia-
tional inequalities such as those describing the equilibrium of a system of bodies in
mutual contact. They exploit classical results on the FETI and BETI domain de-
composition methods for elliptic partial differential equations and our recent results
on quadratic programming. The results of the numerical solution of a semicoercive
model problem are given that are in agreement with the theory and illustrate the
numerical scalability of our algorithm.

1 Introduction

The FETI (Finite Element Tearing and Interconnecting) domain decompo-
sition method proposed by Farhat and Roux turned out to be one of the
most successful methods for a parallel solution of linear problems described
by elliptic partial differential equations and discretized by the finite element
method (see [11]). Its key ingredient is a decomposition of the spatial domain
into non-overlapping subdomains that are “glued” by Lagrange multipliers,
so that, after eliminating the primal variables, the original problem is reduced
to a small, typically equality constrained, quadratic programming problem
that is solved iteratively. The time that is necessary for both the elimination
and iterations can be reduced nearly proportionally to the number of the sub-
domains, so that the algorithm enjoys parallel scalability. Since then, many
preconditioning methods were developed which guarantee also numerical scal-
ability of the FETI methods (see, e.g., [15]). Recently Steinbach and Langer
(see [13]) adapted the FETI method to the solution of problems discretized
by the boundary element method. They coined their new BETI (Boundary
Element Tearing and Interconnecting) method and proved its numerical scal-
ability.

The FETI based results were recently extended to the solution of elliptic
boundary variational inequalities, such as those describing the equilibrium
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of a system of elastic bodies in mutual contact. Using the so-called “natural
coarse grid” introduced by Farhat, Mandel, and Roux (see [10]) and new
algorithms for the solution of special quadratic programming problems (see
[9, 4, 5]), Dostál and Horák modified the basic FETI algorithm and proved its
numerical scalability also for the solution of variational inequalities (see [7]).

The latter algorithms turned out to be effective also for the solution of
problems discretized by boundary elements (see [8, 2, 3]). In this paper, we
review our BETI based algorithm for the solution of variational inequalities
and report our theoretical results that guarantee the scalability of BETI with
a natural coarse grid. Theoretical results are illustrated by numerical experi-
ments.

2 Model Problem and Domain Decomposition

Let us consider the domain Ω = (0, 1) × (0, 1) and let us denote Γc =
{(0, y) : y ∈ [0, 1]} and Γf = ∂Ω \ Γc. Moreover, let f ∈ L2(Ω) satisfy∫

Ω

f(x) dx < 0 (1)

and g ∈ L2(Γc). We shall look for a sufficiently smooth function u satisfying

−�u = f in Ω,
∂u

∂n
= 0 on Γf (2)

together with the Signorini conditions

u− g ≥ 0,
∂u

∂n
≥ 0,

∂u

∂n
(u− g) = 0 on Γc. (3)

Let us decompose the domain Ω into p non-overlapping subdomains,

Ω =
p⋃

i=1

Ωi, Ωi ∩Ωj = ∅ for i �= j, Γi = ∂Ωi, Γi,j = Γi ∩ Γj , Γs =
p⋃

i=1

Γi.

We assume that each subdomain boundary Γi is Lipschitz, and that for each
subdomain Ωi we have

diamΩi < 1. (4)

We now reformulate the problem (2), (3) as a system of local subproblems

−�ui = f in Ωi, λi =
∂ui

∂n
= 0 on Γi ∩ Γf , (5)

ui − g ≥ 0, λi ≥ 0, λi(ui − g) = 0 on Γi ∩ Γc (6)

together with the so-called transmission conditions
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ui = uj and λi + λj = 0 on Γi,j . (7)

We introduce the local single layer potential operator Vi, the double layer
potential operator Ki, the adjoint double layer potential operator K ′

i, and the
hypersingular boundary integral operator Di defined by

(Viλi)(x) =
∫

Γi

U(x, y)λi(y) dsy, Vi : H−1/2(Γi) �→ H1/2(Γi),

(Kiui)(x) =
∫

Γi

∂

∂ny
U(x, y)ui(y) dsy, Ki : H1/2(Γi) �→ H1/2(Γi),

(K ′
iλi)(x) =

∫
Γi

∂

∂nx
U(x, y)λi(y) dsy, K ′

i : H−1/2(Γi) �→ H−1/2(Γi),

(Diui)(x) = − ∂

∂nx

∫
Γi

∂

∂ny
U(x, y)ui(y) dsy, Di : H1/2(Γi) �→ H−1/2(Γi),

x ∈ Γi. The function U denotes the fundamental solution of the Laplace
operator in R2 and it is defined by

U(x, y) = − 1
2π

log ‖x− y‖ for x, y ∈ R2.

From the assumption (4) it follows that the operator Vi is H−1/2(Γi)-elliptic,
and therefore its inversion is well-defined. Now let us define the local Dirichlet
to Neumann map as

λi(x) = (Siui)(x)− (Nif)(x), x ∈ Γi,

where Si denotes the local Steklov-Poincaré operator given by

(Siui)(x) =
[
Di + (

1
2
I +K ′

i)V
−1
i (

1
2
I +Ki)

]
ui(x), x ∈ Γi,

and Nif denotes the local Newton potential given by

(Nif)(x) = V −1
i (N0,if) (x), x ∈ Γi,

with (N0,if)(x) =
∫

Ωi
U(x, y)f(y) dy. It can be further shown that the local

Steklov-Poincaré operator Si : H1/2(Γi) �→ H−1/2(Γi) is bounded, symmetric,
and semi-elliptic on H1/2(Γi). More details on the properties of the Steklov-
Poincaré operator may be found, e.g., in [14].

3 Boundary Variational Formulation and Discretization

The boundary weak formulation of the problem (5), (6), (7) may be equiva-
lently rewritten as the problem of finding u ∈ K =

{
v ∈ H1/2(Γs) : v − g ≥ 0

on Γc} such that
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J (u) = min {J (v) : v ∈ K}, (8)

J (v) =
p∑

i=1

[
1
2

∫
Γi

(Siv|Γi
)(x)v|Γi

(x) dsx −
∫

Γi

(Nif)(x)v|Γi
(x) dsx

]
.

The coercivity of the functional J follows (see [12]) from the condition (1).
We shall now follow the technique of Langer and Steinbach (see [13]). Let us
define the local boundary element space

Zi,h = span
{
ψi

k

}Ni

k=1
⊂ H−1/2(Γi)

to get suitable approximations S̃i and Ñif of Si and Nif . The exact defini-
tions and results on stability can be found, e.g., in [14]. Let us further define
the boundary element space on the skeleton Γs and its restriction on Γi as

Wh = span {ϕm}M0
m=1 ⊂ H1/2(Γs) and Wi,h = span

{
ϕi

m

}Mi

m=1
⊂ H1/2(Γi),

respectively. After the discretization of problem (8) by the Ritz method, we
get the minimization problem

J(u) = min {J(v) : v ∈ RM , BIv ≤ cI , BEv = o}, (9)

J(v) =
1
2
vT S̃v − vT R̃

with M =
∑p

i=1Mi and with a positive semidefinite block diagonal stiffness
matrix S̃. The blocks of S̃ and the relevant blocks of R̃ are given by

S̃i,h = Di,h + (
1
2
Mi,h + Ki,h)T V−1

i,h(
1
2
Mi,h + Ki,h) and

R̃i,h = MT
i,hV−1

i,hN0,i,h,

respectively. The boundary element matrices and the vector N0,i,h are defined
by

Vi,h[l, k] =
〈
Viψ

i
k, ψ

i
l

〉
L2(Γi)

, Mi,h[l, n] =
〈
ϕi

n, ψ
i
l

〉
L2(Γi)

,

Ki,h[l, n] =
〈
Kiϕ

i
n, ψ

i
l

〉
L2(Γi)

, Di,h[m,n] =
〈
Diϕ

i
n, ϕ

i
m

〉
L2(Γi)

,

N0,i,h[l] =
〈
N0,if, ψ

i
l

〉
L2(Γi)

for k, l = 1, . . . , Ni; m, n = 1, . . . ,Mi and i = 1, . . . , p. The inequality con-
straints are associated with the non-penetration condition across Γi∩Γc, while
the equality constraints arise from the continuity condition across the auxil-
iary interfaces Γi,j .

4 Dual Formulation and Natural Coarse Grid

We shall now use the duality theory to replace the general inequality con-
straints by the bound constraints. Let S̃+ be a generalized inverse of S̃ sat-
isfying S̃ = S̃S̃+S̃ and let R be a matrix whose columns span the kernel of
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S̃. By introducing the Lagrange multipliers λI and λE associated with the
inequalities and equalities, respectively, and denoting

λ =
[
λT

I , λT
E

]T
, B =

[
BT

I , BT
E

]T
, and c =

[
cT

I ,o
T
]T
,

we can equivalently replace problem (9) by

Θ(λ) = min {Θ(λ) : λI ≥ o and G̃λ = ẽ}, (10)

Θ(λ) =
1
2
λT Fλ− λT d̃, F = BS̃+BT , d̃ = BS̃+R̃− c,

G̃ = RT BT , ẽ = RT R̃.

The solution u of (9) then may be evaluated by

u = S̃+(R̃−BT λ) + Rα and α = (RT B̃T B̃R)−1RT B̃T (c̃− B̃S̃+(R̃−BT λ)),

where B̃ = [B̃T
I , BT

E ]T and c̃ = [c̃T
I ,o

T ]T , and the matrix [B̃I , c̃I ] is formed
by the rows of [BI , cI ] corresponding to the positive entries of λI . Now let us
denote by T a regular matrix such that the matrix G = TG̃ has orthonormal
rows. Then (see, e.g., [6]) problem (10) is equivalent to the following problem

Λ(λ) = min {Λ(λ) : λI ≥ −λ̃I and Gλ = o}, (11)

Λ(λ) =
1
2
λT PFPλ− λT Pd, P = I− Q, Q = GT G,

d = d̃− Fλ̃, λ̃ = GT e, e = Tẽ.

The matrices P and Q are orthogonal projectors on the kernel of G and the
image of GT , respectively, and they define the so-called natural coarse grid.

The key ingredient in the next development is the observation that there
are positive constants C1, C2 such that

C1‖Pλ‖2 ≤ λT PFPλ ≤ C2H/h. (12)

This nontrivial estimate is a corollary of two well-known results. The first one
is the classical estimate of Farhat, Mandel, and Roux (see [10]) which gives
that if FFETI and PFETI denote the matrices arising by an application of
the above procedures to the problem discretized by sufficiently regular finite
element grid with the discretization and decomposition parameters h and H,
respectively, then there are positive constants C3, C4 such that the spectrum
σ(FFETI |ImPFETI) of the restriction of FFETI to ImPFETI satisfies

σ(FFETI |ImPFETI) ⊆ [C3, C4H/h].

The second result is due to Langer and Steinbach, in particular, Lemma 3.3 of
[13] which guarantees that F|ImP is spectrally equivalent to FFETI |ImPFETI .
Combining these two results, it is possible to prove (12). We shall give more
details elsewhere.
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5 Algorithms and Optimality

To solve the bound and equality constrained problem (11), we use our re-
cently proposed algorithms MPRGP by Dostál and Schöberl (see [9]) and
SMALBE (see [4, 5]). The SMALBE, a variant of the augmented Lagrangian
method with adaptive precision control, enforces the equality constraints by
the Lagrange multipliers generated in the outer loop, while auxiliary bound
constrained problems are solved approximately in the inner loop by MPRGP,
an active set based algorithm which uses the conjugate gradient method to
explore the current face, the fixed steplength gradient projection to expand
the active set, the adaptive precision control of auxiliary linear problems,
and the reduced gradient with the optimal steplength to reduce the active
set. The unique feature of SMALBE with the inner loop implemented by
MPRGP when used to (11) is the rate of convergence in bounds on spec-
trum of the regular part of the Hessian of Λ (see [5]). Combining this result
with the estimate (12), we get that if H/h is bounded, then there is a bound
on the number of multiplications by the Hessian of Λ that are necessary to
find an approximate solution λh,H of (11) discretized with the decomposition
parameter H and the discretization parameter h which satisfies

‖gP (λh,H)‖ ≤ ε1‖Ph,Hdh,H‖ and ‖Gh,Hλh,H‖ ≤ ε2‖Ph,Hdh,H‖, (13)

where gP denotes the projected gradient, whose nonzero components are those
violating the KKT conditions for (11) (see, e.g., [1]).

6 Numerical Experiment

Let f(x, y) = −1 for (x, y) ∈ Ω and g(0, y) =
√

1/4− (y − 1/2)2 − 1 for y ∈
[0, 1]. We decompose Ω into identical square subdomains with the side length
H. All subdomain boundaries Γi were further discretized by the same regular
grid with the element size h. The spaces Wi,h and Zi,h were formed by piece-
wise linear and piecewise constant functions, respectively. For the SMALBE
algorithm we used the parameters η = ||Pd||, β = 10, and M = 1. The penalty
parameter ρ0 and the Lagrange multipliers µ0 for the equality constraints were
set to 10 ‖PFP‖ and o, respectively. For the MPRGP algorithm we used pa-
rameters α = ‖PFP + ρkQ‖−1 and Γ = 1. Our initial approximation λ0 was
set to −λ̃. The stopping criterion of the outer loop was chosen as∥∥gP (λk,µk, ρk)

∥∥ ≤ 10−4 ‖Pd‖ and
∥∥Gλk

∥∥ ≤ 10−4 ‖Pd‖ .
The results of our numerical experiments are given in Table 1. We conclude
that the scalability may be observed in the solution of realistic problems.

7 Comments and Conclusions

We combined the BETI methodology with preconditioning by the “natural
coarse grid” to develop a scalable algorithm for the numerical solution of



Scalable BETI for Variational Inequalities 173

Table 1. Performance with the constant ratio H/h = 32.

h H primal dim. dual dim. outer iter. CG iter.

1/64 1/2 512 197 2 48
1/128 1/4 2048 915 2 58
1/256 1/8 8192 3911 2 52
1/512 1/16 32768 16143 2 45
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Fig. 1. Solution of the model problem with h = 1/256 and H = 1/8. On the right
we emphasize the particular local solutions.

variational inequalities. The algorithm may be used for the solution of both
coercive and semicoercive contact problems. Though we have restricted our
exposition to a model variational inequality, our arguments are valid also for
2D and 3D contact problems of elasticity.
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Summary. In this paper we propose and analyse a new hierarchical Cholesky (H-
Cholesky) factorization based preconditioner for iterative solving the elliptic equa-
tions with highly jumping coefficients arising in the so-called skin-modeling problem
in 3D [8]. First, we construct the block-diagonal approximation to the FE stiffness
matrix, which is well suited to the “perforated” structure of the coefficients. We ap-
ply the H-Cholesky factorization of this block-diagonal matrix as a preconditioner
in the PCG iteration. It is shown that the new preconditioner is robust with respect
to jumps in the coefficients and it requires less storage and computing time than the
standard H-Cholesky factorization.

1 Introduction

In papers [1, 9, 11] the authors successfully applied the PCG, GMRES,
BiCGStab iterations with H-matrix based preconditioners to different types
of second order elliptic differential equations. In some cases H-matrix inverse
can be used even as a direct solver [6, 4]. In this paper we consider the elliptic
equation with highly jumping coefficients,

−div(α(x)∇u) = f(x) x ∈ Ω ⊂ Rd, d = 2, 3,
u = 0 x ∈ γ,
∂u
∂n = g x ∈ Γ \ γ,

(1)

where Γ = ∂Ω, γ ⊂ ∂Ω corresponds to a piece of the boundary with the
Dirichlet boundary condition. This equation was used for the numerical mod-
eling of the so-called skin problem that describes penetration of drugs through
the skin (cf. [8]). To simplify the model we choose Ω as a fragment with 8 cells
Ωc and the lipid layer Ωl (see Fig. 2), where Ω = Ωc ∪ Ωl, Ωc = ∪8

i=1Ωc,i,
Ωl is a closed set. Fig. 1 (right) shows cells and the lipid layer in between.
Typical feature for the skin problem is the highly jumping coefficients: the
penetration coefficient inside the cells is very small, α(x) = ε ∈ [10−5−10−3],
but it is relatively large in the lipid layer (α(x) = 1). In this problem the
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α = ε

α = 1

x1

x 2

x 3

)b)a

Fig. 1. (left) A skin fragment consists of the lipid layer and disjoint cells. (right)
The simplified model of a skin fragment contains 8 cells with the lipid layer in
between. Ω = [−1, 1]3, α(x) = ε inside the cells and α(x) = 1 in the lipid layer.

Dirichlet boundary condition describes the presence of drugs on the bound-
ary γ of the skin fragment. The nonzero Neumann condition on Γ\γ specifies
the penetration through the surface Γ\γ. The right-hand side in (1) presents
external forces.

It is known that for problems with jumping coefficients (see (1)) the
condition number cond(A) of the FE stiffness matrix A is proportional to
h−2 supx,y∈Ω α(x)/α(y), where α(x) denotes the jumping coefficient and h is
the step size of a finite element scheme. In the case of a large condition number
one requires the efficient preconditioner W , so that cond(W−1A) � 1.

The rest of this paper is structured as follows. In Section 2 we describe the
FEM discretization of (1). We recall the main idea of the H-matrix techniques
in Section 3. Section 4 describes the new preconditioner and presents the
condition number estimates. Numerics for the 3D model problem is discussed
in Section 5.

2 Discretization by FEM

We choose a rectangular quasi-uniform triangulation τh which is compatible
with the lipid layer, i.e., τh := τ l

h ∪ τ c
h, where τ l

h is a triangulation of the lipid
layer and τ c

h is a triangulation of cells (see Fig. 2). In the presented example
Ωl contains only two grid layers.

Let Vh := span{b1, ..., bn} be the set of piecewise linear functions with
respect to τh such that

Vh ⊂ H1
0,γ(Ω) := {u ∈ H1(Ω) : u|γ = 0}, (2)

where bj , j ∈ IΩ := {1, ..., n}, is the set of corresponding hat-functions. The
related Galerkin discretization of the problem (1) reads as:

find uh ∈ Vh, so that a(uh, v) = c(v) for all v ∈ Vh (3)

with respective bilinear form a and linear functional c given by
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h

h

)b)a

Fig. 2. a) A 2D grid of the lipid layer of width h (bounded by bold lines). b)
Fragments of four cells (α = ε). The finite elements restricted by dotted lines in (a)
and (b) are needed for constructing the stiffness matrices A11 and A22, respectively.

a(u, v) =
∫

Ω

α(x)(∇u,∇v)dx, c(v) :=
∫

Ω

fvdx+
∫

Γ\γ

gvdΓ . (4)

The system of linear algebraic equations for the coefficients vector u reads as

Aεu = c, where Aε = {a(bj , bi)}i,j∈IΩ
∈ Rn×n, c = {c(bi)}i∈IΩ

∈ Rn. (5)

The lipid layer Ωl between the cells specifies the natural decomposition of Ω.
The thickness of this layer is proportional to the step size h. Note that with
the proper ordering of the index set IΩ , we can represent the global stiffness
matrix in the following block form

Aε =
[
A11 εA12

εA21 εA22

]
, A11 = A0 + εB11. (6)

Here A11, εA22 are the stiffness matrices which correspond to the lipid layer
and to the rest of the domain, respectively, εA12 and εA21 are coupling ma-
trices. In turn, A0 discretizes the Neumann problem in Ωl with homogeneous
Neumann data on the inner boundaries ∂Ωc. In the case ε = 1, the matrix Aε

corresponds to the discrete Laplace operator.
In the following we focus on a construction of the efficient preconditioner

to the matrix Aε, while the analysis of the discretization accuracy remains
beyond the scope of the present paper. However, the error analysis can be
based on the standard FEM theory under certain regularity assumptions.

3 Hierarchical Matrices

The hierarchical matrices (H-matrices) (cf. [3]) provide the efficient data-
sparse representation of fully-populated matrices arising in a wide range of
FEM/BEM applications. The main idea of H-matrices is to approximate cer-
tain subblocks R ∈ Rn×m of a given matrix by the rank-k matrices, i. e.,
R ∼= ABT , with A ∈ Rn×k and B ∈ Rm×k, k  min(n,m). The storage
requirement for both matrices A and B is k(n + m) instead of n ·m for the
matrix R. The advantage of the H-matrix technique is that the complexity of
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the H-matrix addition, multiplication and inversion is O(kn logq n), q = 1, 2
(see [3, 5]). Let I be an index set. To build an H-matrix M ∈ RI×I one needs
an admissible block partitioning (see Fig. 3) built on a block cluster tree TI×I

by means of an admissibility condition (see [3, 2]). The admissible block par-
titioning indicates which blocks can be approximated by low-rank matrices.

H-matrixvertices

finite elements

cluster tree block
cluster tree 

admissibility
condition

admissible
partitioning

H-Cholesky
factorization

Fig. 3. The scheme of building an H-matrix and its H-Cholesky factorization.

Definition 1. We define the set of H-matrices with the maximal rank k as
H(TI×I , k) := {M ∈ RI×I | rank(M |b) ≤ k, for all admissible leaves b of
TI×I}.

Suppose that A =
[
A11 A12

A21 A22

]
=

[
L11 0
L21 L22

] [
U11 U12

0 U22

]
. The algorithm that

computes the H-LU factorization (cf. [10, 1]) is the following:

1. compute L11 and U11 as H-LU factorization of A11;
2. compute U12 from L11U12 = A12 (recursive block forward substitution);
3. compute L21 from L21U11 = A21 (recursive block backward substitution);
4. compute L22 and U22 as H-LU factorization of L22U22 = A22 − L21U12.

Note that all the steps are executed approximately via truncation to the class
of H-matrices.

4 Block H-LU Preconditioner W̃2

Let us introduce the H-Cholesky factorization of the following symmetric
matrices

Aε =
[
A11 εA12

εA21 εA22

]
∼= L1L

T
1 =: W̃1, W2 :=

[
A11 0
0 εA22

]
∼= L2L

T
2 =: W̃2. (7)

H-Cholesky factorization L1L
T
1 was successfully applied in [1, 9]. As a new

preconditioner we use the H-Cholesky factorization of W2, which we denote
by W̃2. Examples of the H-Cholesky factors L1 and L2 are shown in Fig. 4.

Remark 1. Note that W̃−1/2
2 AεW̃

−1/2
2 = L−T

2 AεL
−1
2 , i.e., W̃−1/2

2 AεW̃
−1/2
2 is

positive definite and symmetric (the same holds for W̃1). Thus, for solving the
initial problem (5) one may apply the PCG method with preconditioner W̃2.
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Lemma 1. For a symmetric and positive definite matrix A =
[
A11 A12

A21 A22

]
and

any vectors u1 and u2 of the respective size it holds that

|(A12u2, u1)| ≤ (A11u1, u1)1/2 · (A22u2, u2)1/2.

Lemma 2. For any u ∈ Rn we have (Aεu, u) ≤ 2(W2u, u) with W2 defined
by (7).

Proposition 1. Let the component u2 be discrete harmonic extension of u1

into Ωc ⊂ Ω. Then ∃c1 > 0 : c1(A11u1, u1) ≥ (A22u2, u2) with c1 independent
of h.

Proof. This estimate corresponds to the case of the Laplace operator in Ω and
can be verified by using standard properties of the harmonic elliptic extension
operator and trace estimates. Applying Theorem 4.1.3 in [12], where we set
Ω1 = Ωl and Ω2 = Ωc, leads to the desired bound with constant c1 depending
only on the geometry.

Lemma 3. Assume that Proposition 1 holds. Then ∃ε0 ∈ (0, 1) such that
∀ε ∈ (0, ε0] we have ((Aε − cW2)u, u) ≥ 0 with c = 1−ε

1+c1ε , where c1 is defined
in Proposition 1.

Proof. We choose c = 1−ε
1+c1ε and then apply Lemma 1 to obtain

((Aε − cW2)u, u) = (1− c)(A11u1, u1) + ε(1− c)(A22u2, u2) + 2ε(A12u2, u1)
≥ (1− c)(A11u1, u1) + ε(1− c)(A22u2, u2)− 2ε|(A12u2, u1)|
≥ (1− c)((A11u1, u1) + ε(A22u2, u2))− ε((A11u1, u1) + (A22u2, u2))
≥ (1− c− ε)(A11u1, u1)− cε(A22u2, u2).

Now Proposition 1 ensures

((Aε − cW2)u, u) ≥ (A11u1, u1)(1− c− ε− c1cε) = 0.

Thus, ((Aε − cW2)u, u) ≥ 0 holds with c = 1−ε
1+c1ε .

Notice that the constant c = 1−ε
1+c1ε depends on the geometry of Ω.

In Fig. 4 (right) one can see two blocks on the first level of the H-Cholesky
factorization of W2. The first block corresponds to the lipid layer Ωl, the
second one (with 8 subblocks) corresponds to 8 cells. The problems inside the
cells can be treated in parallel.

Remark 2. The set of all nodal points in the lipid layer (Fig. 1 (right)) can be
decomposed into 12 parts Ωl = ∪12

i=1Ωl,i, which will lead to further simplifi-
cations.
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Fig. 4. H-Cholesky factors of the global stiffness matrix Aε (left) and of the block
matrix W2 (right). The dark blocks ∈ R36×36 are dense matrices, the gray blocks
are low-rank matrices and the white blocks are zero ones. The steps in the grey
blocks show the decay of the singular values in a logarithmic scale. The numbers
inside the subblocks indicate the local ranks.

5 Numerical Tests

In this Section we present numerical results for the 3D Dirichlet problem (see
[7] for the 2D case). Figure 2 explains the discretization of the lipid layer. For
simplicity the width of the lipid layer is chosen as h, but it can be a multiple
of h.

Table 1 gives the theoretical estimates on the sequential and parallel com-
plexities of W̃1 and W̃2.

Table 1. Computational complexities of the preconditioners W̃1 and W̃2. The num-
ber of processors is p. The number of degrees of freedom in the lipid layer is nI

(handled by one processor) and the number of dofs on each processor is n0 := n−nI
p−1

.

Sequential Complexity Parallel Complexity

W̃1 O(n log2 n) O(n log2 n)

W̃2 O(nI log2 nI) +O((n− nI) log2(n− nI)) max{O(nI log2 nI) +O(n0 log2 n0)}

Remark 3. The sparsity constant Csp is an important H-matrix parameter
that effects all H-matrix complexity estimates (see [3, 5]). The smaller Csp

the better complexity bound is. For instance, for the problem with 453 dofs
Csp(Aε) = 108, while Csp(W2) = 30. For the model geometry with a larger
number of cells the difference between the sparsity constants will be even more
significant.
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Table 2. Comparison of W̃1 and W̃2 in 3D, 403 dofs, ‖Aεu− c‖ = 10−8, ε = 10−5.

rank k time t(1), t(2) storage S(1), S(2) iter(1),(2)

1 34.6, 18.7 2e+2, 1e+2 69, 99
2 81.3, 35 3.8e+2, 1.8e+2 46, 91
4 220.5, 81.5 7.5e+2, 3.5e+2 17, 60
6 565.7, 149 1.1e+3, 5.1e+2 11, 74

Table 2 illustrates storage requirements (denoted by S(1), S(2) and measured
in MB) and computing times (denoted by t(1), t(2) and measured in sec)
for the preconditioners W̃1 and W̃2, respectively, depending on the H-matrix
rank k. The columns t(1), t(2) contain the total computing times for setting up
the preconditioners W̃1 and W̃2 and for performing the PCG iterations. The
columns iter(1) and iter(2) show the number of PCG iterations in both cases
(see [7] for more details). One can see that the preconditioner W̃2 requires less
storage (S(1) > S(2)) and less computing time (t(1) > t(2)). Notice that the
computation with a smaller rank k in the H-matrix arithmetic (but with a
larger number of iterations) leads to a better performance than in the case with
a larger k (but with a smaller number of iterations). Table 3 illustrates linear-
logarithmic scaling of the computational time and storage in the problem size
n (with fixed maximal rank k = 5). Choosing the smaller maximal rank k leads
to almost linear complexities. Table 4 shows the number of iterations and the
computing times depending on the coefficient α. The number of iterations is
relatively large since we use the low-rank H-matrix approximation with k = 1.
The computing time in the case of W̃2 is in a factor two smaller than in the
case of W̃1. This factor is getting larger for problems with increasing number
of cells.

Table 3. Dependence of the computing time and storage requirements on the prob-
lem size, ‖Aεu− c‖ = 10−8, max. rank= 5 (see Def. 1).

dofs time t(2)(sec.) memory S(2)(Mb) iter(2)

2200 0.27 5.4 33
15600 7.9 90 59
91100 119.4 1007 98

Table 4. The number of iterations and the computing times depending on the
coefficient α for 403 dofs, ‖Aεu− c‖ = 10−8, k = 1.

ε 1 10−1 10−2 10−4 10−6 10−8

 iter(1), iter(2) 86, 89 77, 100 79, 113 79, 113 82, 116 85, 120

t(1), t(2) sec. 70, 33 67, 35 63, 37 65, 37 67, 37 67, 38
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We conclude that the preconditioner W̃2 is efficient and robust with respect
to the small coefficient α = ε characterising the skin problem (see Tables 1,
4). It requires less storage and computing time than W̃1 (see Tables 2, 3).
The preconditioner W̃2 becomes more efficient for problems with increasing
number of cells. The possible disadvantage of W2 could be a relatively large
number of PCG iterations, but it is compensated by their low computational
cost (see Table 2).
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The intent of the minisymposium was to discuss the state of the art and the
perspectives in approximation and solution strategies related to Domain De-
composition methods for coupled phenomena in physics and engineering that
involve multiple models and/or multiple space and time scales. Six from the
presented eight talks were devoted to various aspects of the algorithms for
solving multiscale problems. These works reflected the common roots of do-
main decomposition methods and some of the recent approaches for solving
multiscale problems, such as Multiscale Finite Element Method, Multiscale
Finite Volume Method, etc. The talks covered a wide spectrum of problems
related to domain decomposition algorithms for coupled problems, construc-
tion and theoretical analysis of a number of algorithm for multiscale problems,
and their applications to engineering and industrial problems. The last two
talks were devoted to Discontinuous Galerkin Method, which is considered to
be suitable for multiphysics problems because of its potential for coupling dif-
ferent discretizations PDE or system of PDEs, as well as for coupling different
types of physical models.

The intensive discussions after the talks and during the breaks contributed
to creating a nice working atmosphere and to productive exchange of new
ideas.
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Summary. We present a class of Schwarz preconditioners for discontinuous Galerkin
approximations of elliptic problems. We provide a unified framework for the con-
struction and analysis of two-level methods which share the features of the classical
Schwarz techniques for conforming finite element discretizations. Numerical experi-
ments confirming the theoretical results are also included.

1 Introduction

Domain decomposition (DD) methods provide powerful preconditioners for
the iterative solution of the large algebraic linear systems of equations that
arise in finite element approximations of partial differential equations. Many
DD algorithms can conveniently be described and analyzed as Schwarz meth-
ods, and, if on the one hand a general theoretical framework has been previ-
ously developed for classical conforming discretizations (see, e.g., [7]), on the
other hand, only few results can be found for discontinuous Galerkin (DG)
approximations (see, e.g., [6, 4, 2, 1]). Based on discontinuous finite element
spaces, DG methods have become increasing popular thanks to their great
flexibility for providing discretizations on matching and non-matching grids
and their high degree of locality. In this paper we present and analyze, in the
unified framework based on the flux formulation proposed in [3], a class of
Schwarz preconditioners for DG approximations of second order elliptic prob-
lems. Schwarz methods for a wider class of DG discretizations are studied
in [2, 1]. The issue of preconditioning non-symmetric DG approximations is
also discussed. Numerical experiments to asses the performance of the pro-
posed preconditioners and validate our convergence results are presented.

2 Discontinuous Galerkin Methods for Elliptic Problems

We consider the following model problem
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−∆u = f in Ω , u = 0 on ∂Ω , (1)

where Ω ⊂ Rd, d = 2, 3, is a convex polygon or polyhedron and f a given
function in L2(Ω). Let Th be a shape-regular quasi-uniform partition of Ω
into disjoint open elements T (with diameter hT ), where each T is the affine
image of a fixed master element T̂ , i.e., T = FT (T̂ ), and where T̂ is either the
open unit d-simplex or the d-hypercube in Rd, d = 2, 3. We define the mesh
size h by h = maxT∈Th

hT . We denote by E I and E B the sets of all interior
and boundary faces of Th, respectively, and set E = E I ∪ E B . For a given
approximation order �h ≥ 1, we define the discontinuous finite element spaces
Vh = {v ∈ L2(Ω) : v|T ◦ FT ∈ M�h(T̂ ) ∀T ∈ Th} and Σh = [Vh]d, where
M�h(T̂ ) is either the space of polynomials of degree at most �h on T̂ , if T̂ is
the reference d-simplex, or the space of polynomials of degree at most �h in
each variable on T̂ , if T̂ is the reference d-hypercube.

For any internal face e ∈ E I shared by two adjacent elements T± with
outward normal unit vectors n±, we define the jump and weighted average
operators, with δ ∈ [0, 1], by:

[[τ ]] = τ+ · n+ + τ− · n−, [[v]] = v+n+ + v−n−, e ∈ E I ,

{{τ}}δ = δτ+ + (1− δ)τ−, {{v}}δ = δv+ + (1− δ)v−, e ∈ E I ,
(2)

where τ± and v± denote the traces on ∂T± taken from the interior of T± of
the (regular enough) functions τ and v. On a boundary face e ∈ E B , we set

[[τ ]] = τ · n, [[v]] = v n, {{τ}}δ = τ , {{v}}δ = v, e ∈ E B. (3)

For δ = 1/2 we write {{·}} in lieu of {{·}}1/2.

The DG discretization based on the flux formulation proposed in [3] is
defined by introducing an auxiliary variable σ = ∇u and rewriting problem
(1) as a first order system of equations. Further elimination of σ, gives the
primal formulation of DG methods:

find uh ∈ Vh such that Ah(uh, vh) =
∫

Ω

fvh dx ∀ vh ∈ Vh . (4)

Adopting the convention
∫

E vh ds =
∑

e∈E

∫
e
vh ds, Ah(·, ·) is given by

Ah(uh, vh) =
∫

Ω

∇huh · ∇hvh dx+
∫

E

[[û− uh]] · {{∇hvh}}ds

+
∫

E I

{{û− uh}} [[∇hvh]] ds−
∫

E

{{σ̂}} · [[vh]] ds−
∫

E I

[[σ̂]] {{vh}}ds , (5)

where û and σ̂ are the scalar and vector numerical fluxes and ∇h denotes the
elementwise application of the operator ∇. By defining the numerical fluxes
û and σ̂ as suitable linear combinations of averages and jumps of uh and σh,
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we obtain different DG methods (see Table 1 for the choices considered in this
work). The stability is achieved by penalizing the jumps of uh over each face
e ∈ E . Therefore, Ah(·, ·) contains the stabilization term Sh(·, ·) defined by

Sh(u, v) =
∑
e∈E

∫
e

αh−1
e [[u]] · [[v]] ds ∀ u, v ∈ Vh ,

where he is the diameter of the face e ∈ E . Here α ≥ 1 is a parameter
(independent of the mesh size) that, for all but the LDG and NIPG methods,
has to be chosen large enough to ensure the coercivity of the bilinear form.
From now on, we drop the subindex h from the finite element functions. In
matrix notation, problem (4) is written as the linear system Au = f .

Table 1. Numerical fluxes on interior faces.

Method û(uh) σ̂(σh, uh) Symmetry

SIPG {{uh}} {{∇huh}} − αh−1
e [[uh]] Yes

SIPG(δ) {{uh}}(1−δ) {{∇huh}}δ − αh−1
e [[uh]] Yes

NIPG {{uh}}+ [[uh]] · nT {{∇huh}} − αh−1
e [[uh]] No

IIPG {{uh}}+ 1/2 [[uh]] · nT {{∇huh}} − αh−1
e [[uh]] No

LDG {{uh}} − β · [[uh]] {{σh}}+ β · [[σh]]− αh−1
e [[uh]] Yes

Remark 1. The results we present here apply to more general elliptic equations
with possibly smooth variable coefficients, and remain valid for more general
partitions (non necessarily matching).

3 Non-Overlapping Schwarz Methods

We consider three level of nested partitions of the domain Ω satisfying the
previous assumptions: a subdomain partition TNs

made of Ns non-overlapping
subdomains Ωi, a coarse partition TH (with mesh size H) and a fine partition
Th (with mesh size h). For each subdomain Ωi ∈ TNs

we denote by Ei the
set of all faces of E belonging to Ωi, and set E I

i = {e ∈ Ei : e ⊂ Ωi},
E B

i = {e ∈ Ei : e ⊂ ∂Ωi∩∂Ω}. The set of all (internal) faces belonging to the
skeleton of the subdomain partition will be denoted by Γ, i.e., Γ =

⋃Ns

i=1 Γi

with Γi = {e ∈ E I
i : e ⊂ ∂Ωi}. For i = 1, . . . , Ns, we define the local

spaces by V i
h = {u ∈ L2(Ωi) : v|T ◦ FT ∈ M�h(T̂ ) ∀T ∈ Th, T ⊂ Ωi}

and Σi
h = [V i

h ]d, and the prolongation operators RT
i : V i

h −→ Vh as the
classical inclusion operators from V i

h to Vh. For vector-valued functions RT
i

is defined componentwise. We observe that Vh = RT
1 V

1
h ⊕ . . .⊕ RT

Ns
V Ns

h and
Σh = RT

1 Σ1
h⊕· · ·⊕RT

Ns
ΣNS

h . The restriction operators Ri, are defined as the
transpose of RT

i with respect to the L2–inner product.
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Local solvers: we consider the DG approximation of the problem:

−∆ui = f |Ωi
in ∂Ωi, ui = 0 on Ωi .

In view of (5), the local bilinear forms Ai : V i
h × V i

h −→ R are defined by

Ai(ui, vi) =
∫

Ωi

∇hui · ∇hvi dx+
∫

Ei

[[ûi − ui]] · {{∇hvi}}ds

+
∫

E I
i

{{ûi − ui}} [[∇hvi]] ds−
∫

Ei

{{σ̂i}} · [[vi]] ds−
∫

E I
i

[[σ̂i]] {{vi}}ds,

where ûi and σ̂i are the local numerical fluxes. On e ∈ E I
i , ûi and σ̂i are

defined as the numerical fluxes û, σ̂ of the global DG method on interior
faces, and on e ∈ E B

i ∪ Γi as û and σ̂ on boundary faces. Note that, each
e ∈ Γi is a boundary face for the local partition but an interior face for the
global partition. From the definition of Ai(·, ·), and taking into account the
different definition (2)-(3) of the average operator on interior and boundary
faces (implying that {{RT

i vi}}δ = δvi but {{vi}}δ = vi on e ∈ Γi), it follows that
we are using approximate local solvers, that is, Ah(RT

i ui, R
T
i ui) ≤ ωAi(ui, ui),

with ω �= 1.
Coarse solver: for all u0, v0 ∈ V 0

h = {vH ∈ L2(Ω) : vH |T ∈ M�H (T ) ∀T ∈
TH}, with 0 ≤ �H ≤ �h, the coarse solver A0 : V 0

h × V 0
h −→ R is defined by

A0(u0, v0) = Ah(RT
0 u0, R

T
0 v0), where RT

0 is the classical injection operator.

Remark 2. We notice that, in all the previously proposed Schwarz methods
(see, e.g., [6, 4]) exact local solvers were employed.

3.1 Schwarz Methods: Variational and Algebraic Formulations

For i = 0, . . . , Ns, and for all vi ∈ V i
h , we define the projection operators

P̃i : Vh −→ V i
h by Ai(P̃iu, vi) = Ah(u,RT

i vi) and set Pi = RT
i P̃i : Vh −→ Vh.

The additive and multiplicative Schwarz operators we consider are defined by

Pad =
Ns∑
i=0

Pi, Pmu = I − (I − PNs
)(I − PNs−1) · · · (I − P0),

respectively, where I : Vh −→ Vh is the identity operator. We also define
the error propagation operator ENs

= (I − PNs
)(I − PNs−1) · · · (I − P0) and

observe that Pmu = I − ENs
. The Schwarz methods can be written as the

product of a suitable preconditioners, namely Bad or Bmu, and A. In fact,
for i = 0, . . . , Ns, it is straightforward to note that the matrix representation
of the projection operators Pi, is given by Pi = RT

i A−1
i RiA. Then,

Pad =
Ns∑
i=0

Pi = BadA, Pmu = I− (I−PNs
) · · · (I−P0) = BmuA.
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The additive Schwarz operator Pad is symmetric for all symmetric DG ap-
proximations, while, the multiplicative operator Pmu is non symmetric (see
[1] for a symmetrized version). Therefore, suitable iterative methods have to
be used for solving the resulting linear systems: for the former case we use
the conjugate gradient method while for the latter case we use the generalized
minimal residual (GMRES) linear solver.

4 Convergence Results

In this section we present the convergence results for the proposed two-level
Schwarz methods. We refer to [2, 1] for their proofs and further discussions on
the convergence analysis. In what follows Nc denotes the maximum number of
adjacent subdomains a given subdomain can have, and C is a positive constant
independent of the mesh size.

Theorem 1. Let Ah(·, ·) be the bilinear form of a symmetric DG method given
in Table 1. Then, the condition number of Pad, κ(Pad), satisfies

κ(Pad) ≤ C α
H

h
(1 + ω(1 +Nc)) . (6)

Remark 3. Note that Theorem 1 shows that κ(Pad) depends linearly on the
penalty parameter α .

The multiplicative operator is non-symmetric and in Theorem 2, we show that
the energy norm of the error propagation operator is strictly less than one.

Theorem 2. Let Ah(·, ·) be the bilinear form of a symmetric DG method given
in Table 1. Then, there exists α̃ > 0 such that if α ≥ α̃

‖ENs
‖2A = sup

u∈Vh
u�=0

Ah(ENs
u,ENs

u)
Ah(u, u)

≤ 1− 2− ω
C α (1 + 2ω2(Nc + 1)2)

h

H
< 1.

Theorem 2 also guarantees that the multiplicative Schwarz method can be
accelerated with the GMRES linear solver (see [5]).

Remark 4. As in the classical Schwarz theory, our convergence result for Pmu

relies upon the hypothesis that ω ∈ (0, 2). Since we are using approximate local
solvers, we need a technical assumption on the size of the penalty parameter
to guarantee ω ∈ (0, 2). Nevertheless, we wish to stress that the assumed size
of α̃ is moderate (see [1] for details).

Remark on Schwarz methods for the non-symmetric NIPG and
IIPG approximations. In Table 2, we numerically demonstrate that the
minimum eigenvalue of the symmetric part of the additive and multiplicative
operators, denoted by λmin(Pad) and λmin(Pmu), respectively, might be nega-
tive. As a consequence, the [5] GMRES convergence theory cannot be applied
to explain the observed optimal performance of the proposed preconditioners
(see Sect. 5).
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Table 2. NIPG method (α = 1) : �h = �H = 1, Ns = 16, Cartesian grids.
Minimum eigenvalue of the symmetric part of Pad (left) and Pmu (right).

H ↓ h→ h0 h0/2 h0/4 h0/8

H0 0.06 -0.16 -0.31 -0.40
H0/2 0.64 0.01 -0.26 -0.40
H0/4 - 0.63 -0.02 -0.27
H0/8 - - 0.62 -0.05

(a) λmin(Pad)

H ↓ h→ h0 h0/2 h0/4 h0/8

H0 0.16 -0.09 -0.27 -0.38
H0/2 1.00 0.01 -0.21 -0.38
H0/4 - 1.00 0.09 -0.20
H0/8 - - 1.00 -0.03

(b) λmin(Pmu)

5 Numerical Results

We take Ω = (0, 1) × (0, 1) and we choose f so that the exact solution
of problem (1) (with non-homogeneous boundary conditions) is given by
u(x, y) = exp(xy). The subdomain partitions consist of Ns squares, Ns = 4, 16
(see Fig. 1 for Ns = 4). We consider both matching and non-matching Carte-
sian grids (see Fig. 1 where the initial coarse and fine non-matching grids are
depicted. The corresponding matching grids are obtained by gluing together
all the elements that have at least a hanging-node). We denote by H0 and
h0 the corresponding initial coarse and fine mesh sizes, respectively, and we
consider n successive global uniform refinements of these initial grids so that
the resulting mesh sizes are Hn = H0/2n and hn = h0/2n, with n = 0, 1, 2, 3.
The tolerance is set to 10−9.

Fig. 1. Sample of a Ns = 4 subdomain partition of Ω = (0, 1) × (0, 1) with the
initial coarse (left) and fine (right) non-matching meshes.

We first address the scalability of the proposed additive Schwarz method,
i.e., the independence of the convergence rate of the number of subdomains.
In Table 3 we compare the condition number estimates for the SIP method
(α = 10) with �h = �H = 1 obtained on non-matching Cartesian grids (see
Fig. 1) with Ns = 4, 16. As stated in Theorem 1, our preconditioner seems to
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be insensitive on the number of subdomains, and the expected convergence
rates are clearly achieved.

Table 3. SIPG method (α = 10): �h = �H = 1, non-matching Cartesian grids.

H ↓ h→ h0 h0/2 h0/4 h0/8

H0 31.4 65.9 137.2 277.8
H0/2 6.3 32.8 67.1 137.0
H0/4 - 6.3 33.0 67.1
H0/8 - - 6.4 33.0

κ(A) 4.3e3 1.7e4 7.0e4 2.8e5

(a) κ(Pad): Ns = 4

H ↓ h→ h0 h0/2 h0/4 h0/8

H0 29.3 63.3 133.9 272.9
H0/2 6.1 31.5 65.5 135.8
H0/4 - 6.4 32.8 66.9
H0/8 - - 6.4 33.0

κ(A) 4.3e3 1.7e4 7.0e4 2.8e5

(b) κ(Pad): Ns = 16

In Table 4 we compare the GMRES iteration counts obtained with
our additive and multiplicative Schwarz methods. More precisely, the re-
sults reported in Table 4 have been obtained on Cartesian grids with the
LDG method (α = 1, β = (0.5, 0.5)T ), by using �h = 2, �H = 1 and Ns = 16.
The crosses in the last row of Table 4 mean that the GMRES fails to converge
due to its large memory requirements. In both cases we observe optimal con-
vergence rates (we note however, that for the multiplicative preconditioner,
the hypothesis on the size of α required in Theorem 2 is not satisfied).

Table 4. LDG method (α = 1, β = (0.5, 0.5)T ): �h = 2, �H = 1, Cartesian grids.

H ↓ h→ h0 h0/2 h0/4 h0/8

H0 49 68 95 128
H0/2 33 46 64 88
H0/4 - 33 47 65
H0/8 - - 34 48

#iter(A) 112 210 403 x

(a) BadAu = Badf : Ns = 16

H ↓ h→ h0 h0/2 h0/4 h0/8

H0 22 30 40 53
H0/2 14 17 23 32
H0/4 - 12 16 21
H0/8 - - 10 13

#iter(A) 112 210 403 x

(b) BmuAu = Bmuf : Ns = 16

Finally, we present some numerical computations carried out with the
non-symmetric NIPG method (α = 1). In Table 5 we compared the GM-
RES iteration counts obtained with �h = �H = 1 on Cartesian grids and
by preconditioning with the proposed additive and multiplicative Schwarz
preconditioners. Clearly, the GMRES applied to the preconditioned systems
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converges in a finite number of steps and, as in the symmetric case, the iter-
ation counts remain unchanged whenever we decrease both the fine and the
coarse mesh keeping their ratio constant. In all the cases addressed, the mul-
tiplicative Schwarz method seems to be approximately twice faster than the
additive preconditioner.

Table 5. NIPG (α = 1): GMRES iteration counts, �h = �H = 1, Cartesian grids.

H ↓ h→ h0 h0/2 h0/4 h0/8

H0 25 26 29 36
H0/2 14 21 24 28
H0/4 - 14 20 23
H0/8 - - 14 19

#iter(A) 33 61 117 227

(a) BadAu = Badf : Ns = 16

H ↓ h→ h0 h0/2 h0/4 h0/8

H0 12 13 16 20
H0/2 1 9 11 14
H0/4 - 1 8 10
H0/8 - - 1 7

#iter(A) 33 61 117 227

(b) BmuAu = Bmuf : Ns = 16
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Summary. In this paper we discuss upscaling of immiscible multiphase and mis-
cible multicomponent flow and transport in heterogeneous porous media. The dis-
cussion presented in the paper summarizes the results of in Upscaled Modeling in
Multiphase Flow Applications by Ginting et al. (2004) and in Upscaling of Multi-
phase and Multicomponent Flow by Ginting et al. (2006). Perturbation approaches
are used to upscale the transport equation that has hyperbolic nature. Our numerical
results show that these upscaling techniques give an improvement over the existing
upscaled models which ignore the subgrid terms.

1 Introduction

The high degree of variability and multiscale nature of formation properties
such as permeability pose significant challenges for subsurface flow modeling.
Upscaling procedures are commonly applied to solve flow and transport equa-
tions in practice. On the fine (fully resolved) scale, the subsurface flow and
transport of N components can be described in terms of an elliptic (for incom-
pressible systems) pressure equation coupled to a sequence of N−1 hyperbolic
(in the absence of dispersive and capillary pressure effects) conservation laws.
Although there are various technical issues associated with subgrid models for
the pressure equation, the lack of robustness of existing coarse scale models
is largely due to the treatment of the hyperbolic transport equations. In this
paper, we discuss the use of perturbation approaches for correcting the ex-
isting upscaled models for transport equations. Two-phase immiscible flow as
well as miscible two-component flow are considered.

Previous approaches for the coarse scale modeling of transport in hetero-
geneous oil reservoirs include the use of pseudo relative permeabilities [2],
the application of nonuniform or flow-based coarse grids [5], and the use of
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volume averaging and higher moments [7, 6]. Our methodology for subgrid
upscaling of the hyperbolic (or convection dominated) equations uses volume
averaging techniques. In particular, a perturbation analysis is employed to de-
rive the macrodispersion that represents the effects of subgrid heterogeneities.
The macrodispersion, in particular, can be written as time integration of a
covariance between the velocity fluctuations and fine scale quantity that rep-
resents the length of fine scale trajectories. For the computation of fine scale
quantities, we use detailed information that is contained in multiscale basis
functions. We note that the resulting macrodispersion depends on the satu-
ration due to the functional dependence of the velocities on it. Thus, a mere
use of this macro-dispersion model would require saving the velocities for each
time. We discuss a procedure to overcome the aforementioned impracticality
by proposing a recursive relation relating the length of fine scale trajectories
to the velocities.

2 Fine and Coarse Models

In this section, we briefly present mathematical models for two-phase immisci-
ble and two-component miscible flow and transport. Because of the similarities
of the governing equations, we present both models using the same equations
(with some abuse of notations):

∇ · v = q

St + v · ∇f(S) = (S̃ − f(S))q, v = −d(S)k(x)∇p,
(1)

where p is the pressure, S is the saturation (or concentration), k(x) is a
heterogeneous permeability field, v is the velocity field and q is the source
term, and S̃ is the given saturation at the source term locations. The system
is subject to some initial and boundary conditions. We will discuss upscaling
techniques for (1). In further discussions, we refer to the first equation as
the pressure equation (p is the pressure) and to the second equation as the
saturation equation (S is the saturation or concentration).

For miscible two-component flow, d(S) = 1
µ(S) , where µ(S) is the viscosity

function and has the form µ(S) = µ(0)(
1−S+M

1
4 S

)4 , and f(S) = S, where S

is the concentration (will be referred as saturation in later discussions). For
immiscible displacement of two-phase flow,

d(S) =
kr1(S)
µ1

+
kr2(S)
µ2

, f(S) =
kr1(S)/µ1

kr1(S)/µ1 + kr2(S)/µ2
. (2)

Here kri(S) (i = 1, 2) are relative permeabilities of phase i (e.g., water and
oil), µi are viscosities of phase i.

Previous approaches for upscaling such systems are discussed by many au-
thors; e.g., [1]. In most upscaling procedures, the coarse scale pressure equation
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is of the same form as the fine scale equation, but with an equivalent grid block
permeability tensor k∗ replacing k. For a given coarse scale grid block, the
tensor k∗ is generally computed through the solution of the pressure equation
over the local fine scale region corresponding to the particular coarse block [4].
Coarse grid k∗ computed in this manner has been shown to provide accurate
solutions to the coarse grid pressure equation. We note that some upscaling
procedures additionally introduce a different coarse grid functionality for d,
though this does not appear to be essential in our formulation.

In this work, the proposed coarse model is the upscaling of the pressure
equation to obtain the velocity field on the coarse grid and use it in saturation
equation to resolve the concentration on the coarse grid. We will use multiscale
finite element method. The key idea of the method is the construction of
basis functions on the coarse grids such that these basis functions capture the
small scale information on each of these coarse grids. The method that we
use follows its finite element counterpart presented in [9]. The basis functions
are constructed from the solution of the leading order homogeneous elliptic
equation on each coarse element with some specified boundary conditions.
Thus, if we consider a coarse element K that has d vertices, the local basis
functions φi, i = 1, . . . , d, are set to satisfy the following elliptic problem:

−∇ · (k · ∇φi) = 0 inK, φi = gi on ∂K, (3)

for some functions gi defined on the boundary of the coarse element K. Hou
et al. [9] have demonstrated that a careful choice of boundary condition would
guarantee the performance of the basis functions to incorporate the local
information and, hence improve the accuracy of the method. In this paper,
the function gi for each i varies linearly along ∂K. Thus, for example, in
case of a constant diagonal tensor, the solution of (3) would be a standard
linear/bilinear basis function. We note that as usual we require φi(ξj) = δij .
Finally, a nodal basis function associated with the vertex ξ in the domainΩ are
constructed from the combination of the local basis functions that share this
ξ and zero elsewhere. These nodal basis functions are denoted by {ψξ}ξ∈Z0

h
.

We denote by V h the space of our approximate pressure solution which is
spanned by the basis functions {ψξ}ξ∈Z0

h
. A statement of mass conservation

on a control volume Vξ is formed from pressure equation, where now the
approximate solution is written as a linear combination of the basis functions.
To be specific, the problem now is to seek ph ∈ V h with ph =

∑
ξ∈Z0

h
pξψξ

such that ∫
∂Vξ

d(S)k∇ph · ndl =
∫

Vξ

q dA, (4)

for every control volume Vξ ⊂ Ω. Here n defines the normal vector on the
boundary of the control volume, ∂Vξ and S is the fine scale saturation field.

For the saturation equation, we will consider two different coarse models.
We will present these models based on a perturbation technique, where the
saturation, S, and the velocity v, on the fine scale are assumed to be the sum
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of their volume-averaged and fluctuating components,

v = v + v′, S = S + S′, f = f + f ′. (5)

Here the overbar quantities designate the volume average of fine scale quan-
tities over coarse blocks. For simplicity we will assume that the coarse blocks
are rectangular which allows us to state that (cf [11]) ∇f = ∇f . Substituting
(5) into the saturation equation and averaging over coarse blocks we obtain

∂S

∂t
+ v · ∇f + v′ · ∇f ′ = (S̃ − f)q. (6)

The term v′ · ∇f ′ represents subgrid effects due to the heterogeneities of con-
vection.

The first model is a simple/primitive model where subgrid term v′ · ∇f ′

is ignored:
∂S

∂t
+ v · ∇f(S) = (S̃ − f(S))q. (7)

This kind of upscaling technique in conjunction with the upscaling of absolute
permeability is commonly used in applications (see e.g. [5]). The difference of
our approach is that the coupling of the small scales is performed through the
finite volume element formulation of the global problem and the small scale
information of the velocity field can be easily recovered. Within this upscaling
framework we use S instead of S in (4). If the saturation profile is smooth this
approximation is of first order. In the coarse blocks where the discontinuities
of S are present we need to modify the stiffness matrix corresponding to
these blocks. The latter requires the values of the fine scale saturation. In our
computation we will not do this and simply use d(S) in (4).

To improve the primitive upscaled model, one can model the subgrid terms
v′ · ∇f ′ . First, we briefly review the results for f(S) = S and assume that the
perturbations are small. Equation (6) becomes:

∂S

∂t
+ v · ∇S + v′ · ∇S′ = (S̃ − S)q. (8)

The term v′ · ∇S′ represents subgrid effects due to the heterogeneities of con-
vection. This term can be modeled using the equation for S′ that is derived
by subtracting (8) from the fine scale equation

∂S
′

∂t
+ v · ∇S′ + v′ · ∇S + v′ · ∇S′ = v′ · ∇S′ − qS′.

This equation can be solved along the characteristics dx/dt = v by neglecting
higher order terms. Carrying out the calculations in an analogous manner
to the ones performed in [7] we can easily obtain the following coarse scale
saturation equation:
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∂S

∂t
+ v · ∇S = ∇ · (D(x, t)∇S(x, t)) + (S̃ − S)q, (9)

where D(x, t) is the dispersive matrix coefficient, whose entries are written as
Dij(x, t) =

[∫ t

0
v′i(x)v′j(x(τ))dτ

]
. Next it can be easily shown that the diffusion

coefficient can be approximated up to the first order by Dij(x, t) = v′i(x)Lj ,
where Lj is the displacement of the particle in j direction that starts at
the point x and travels with velocity −v. The diffusion term in the coarse
model for the saturation field (9) represents the effects of the small scales on
the large ones. Note that the diffusion coefficient is a correlation between the
velocity perturbation and the displacement. This is different from [7] where
the diffusion is taken to be proportional to the length of the coarse scale
trajectory. Using our upscaling methodology for the pressure equation we can
recover the small scale features of the velocity field that allows us to compute
the fine scale displacement.

For the nonlinear flux f(S) we can use similar argument by expanding
f(S) = f(S)+fS(S)S

′
+ · · · . In this expansion we will take into account only

linear terms and assume that the flux is nearly linear. This is similar to the
linear case and the analysis can be carried out in an analogous manner. The
resulting coarse scale equation has the form

∂S

∂t
+ v · ∇S = ∇ · fS(S)2D(x, t)∇S(x, t) + (S̃ − f(S))q, (10)

where D(x, t) is the macrodiffusion corresponding to the linear flow. This
formulation has been derived within stochastic framework in [10]. We note
that the higher order terms in the expansion of f(S) may result in other
effects which, to our best knowledge, have not been studied extensively. In [6]
the authors use similar formulation though their implementation is different
from ours.

We now turn our attention to the procedure of computing Dij . Let
Lj(x, t), j = 1, 2, be the trajectory length of the particle in xj-direction that
starts at point x computed as Lj(x, t) =

∫ t

0
v′j(x(τ), τ) dτ . Then Dij(x, t) ≈

v′i(x, t)Lj(x, t). To show this relation we note

Dij(x, t) = v′i(x, t)
∫ t

0

v′j(x(τ), τ) dτ . (11)

We remark that since the velocity depends on (x, t), so is the trajectory in (11),
i.e., we have x(τ) = r(τ |x, t) with x(t) = r(t|x, t) = x. Now let τ = tp < t. We
assume that tp is close to t. Then we may decompose the time integration in
(11) as the sum of two integrations, namely,∫ t

0

v′j(r(τ |x, t), τ) dτ =
∫ tp

0

v′j(r(τ |x, t), τ) dτ+
∫ t

tp

v′j(r(τ |x, t), τ) dτ = I1+I2.
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Suppose we denote by yp the particle location at time tp. Then r(τ |x, t) =
r(τ |yp, tp), 0 ≤ τ ≤ tp. Thus, I1 =

∫ tp

0
v′j(r(τ |yp, tp), τ) dτ = Lj(yp, tp). Fur-

thermore, since we have assumed that tp is close to t, the particle trajectory
is still close to x, which gives I2 ≈ (t− tp) v′j(x, t). By substituting these rep-
resentations back to (11) we obtain our macrodispersion, where now we have
Lj(x, t) = Lj(yp, tp) + (t − tp) v′j(x, t). Thus the macrodispersion coefficient
may be computed as

Dij(x, t) ≈ v′i(x, t)Lj(yp, tp) + (t− tp) v′i(x, t) v′j(x, t).

This relation also shows us how to numerically compute Dij . We note that the
fluctuation components v′i are obtained by subtracting the average vi from vi,
where vi is constructed from the informations embedded in the multiscale ba-
sis functions. Moreover, since tp < t, Lj(yp, tp) has been known. Thus we can
compute the macrodispersion coefficients incrementally for each time level.
This way, saving velocities information for all time levels may be avoided.
The calculation of two-point correlations in spatial framework can produce
oscillations. For this reason, the authors in [7] avoid computing two-point cor-
relations and introduce some simplifications. In our simulations, we compute
two-point correlation and smooth it to avoid the oscillation. In particular, the
obtained macro-dispersion is monotone in time and reaches an asymptote.

3 Numerical Results

In this section we present numerical results that give comparison between the
fine and the primitive coarse model, and the coarse model with macrodis-
persion that accounts for the subgrid effects on the coarse grid. It is ex-
pected to see possible improvement on the coarse model performance using
this extension. We consider a typical cross section in the subsurface, where
the system length in the horizontal direction x (Lx) is greater than the for-
mation thickness (Lz); in the results presented below, Lx/Lz = 5. The fine
model uses 120 × 120 rectangular elements. The absolute permeability is set
to be diag(k, k). All of the fine grid permeability fields used in this study are
120×120 realizations of prescribed overall variance (σ2) and correlation struc-
ture. The fields were generated using GSLIB algorithms [3] with a spherical
covariance model [3], for which we specify the correlation lengths lx and lz,
which are normalized by the system length in the corresponding direction.
The coarse models use 12× 12 elements which is a uniform coarsening of the
fine grid description. In the examples presented below, we consider side to
side flow flow. More precisely, we fix pressure and saturation (S = 1) at the
inlet edge of the model (x = 0) and zero pressure at the outlet (x = Lx). The
top and bottom boundaries are closed to flow.

We follow the standard practice for solving the two-phase immiscible flow
as well as miscible two-component flow which is known as the implicit pressure
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explicit saturation method. For each time step, the pressure equation is solved
first where the dependence of the elliptic equation on the saturation uses the
values from the previous time level. The Darcy Law is used to compute the
flux. Then the saturation equation is solved explicitly using these computed
flux as input. We note that in our upscaled model, the pressure equation
is solved by the multiscale finite volume element presented above, while the
saturation equation is solved on the coarse grid by standard finite volume
difference.

Results are presented in terms of fractional flow of displaced fluid (F ,
defined as fraction of the displaced fluid in the total produced fluid) versus
pore volumes injected (PVI). PVI is analogous to dimensionless time and is
defined as qt/Vp where q is the total volumetric flow rate, t is dimensional time
and Vp is the total pore volume of the system. Figure 1 shows typical results
from multicomponent miscible displacement. It uses an anisotropic field of
lx = 0.20, lz = 0.02. In all plots, the solid line represents the fine model run
on 120 × 120 elements which serves as a reference solution. The dashed line
represents the primitive coarse model (D = 0), while the dotted line represents
the coarse model with macrodispersion (with D). All coarse models are run
on the 12 × 12 elements. In this figure we show how the performance of our
coarse model varies with respect to the mobility ratio, M , and the overall
variance of the permeability, σ. The left plot corresponds to the coarse model
using M = 2 and σ = 1.5, the right plot corresponds to M = 5 and σ = 1.5.
In all these cases we see that the addition of the macrodispersion to our coarse
model improves the prediction of the breakthrough. Similar improvement has
been observed in two-phase immiscible flow as well as in saturation contours.
Due to page limitation, we do not include these results in the paper.
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Fig. 1. Comparison of fractional flow of displaced fluid at the production edge for
side to side flow. All coarse models are run on 12 × 12 elements. The permeability
has correlation lengths lx = 0.20, lz = 0.02. Left: M = 2, σ = 1.5, Right: M = 5,
σ = 1.5.
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Summarizing the results, we see that the correction to primitive upscaled
saturation equation using perturbation techniques gives an improvement.
When the flux, f(S), is a linear function, we do not need to perform lin-
earization of the fluxes and the errors are only due to perturbations of the
velocity field. The latter can be controlled by choosing adaptive grid or using
adaptive coordinate system. In particular, our results presented in [8] show
that in pressure-streamline coordinate system, perturbation techniques work
better because the grid is adapted to the flow. In the presence of sharp fronts,
one can use subgrid models away from these fronts and follow the front dynam-
ics separately. This approach is also implemented in [8] in pressure-streamline
coordinate system and we have observed further improvement in the perfor-
mance of the method.
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Domain decomposition methods are a powerful tool to handle very large sys-
tems of equations. They can however also be used to couple different physical
models or approximations, which one might want to do for various reasons: in
fluid structure coupling for example, the physical laws in the fluid differ from
the physical laws in the structure, and a domain decomposition method could
naturally take this into account. Even if the physical model is the same, one
might want to use a simplified equation in part of the domain, where certain
effects are negligible, like for example in aerodynamics, to save computation
time. Or one could simply want to use a much coarser mesh, like in combus-
tion away from the flame front, which again could be taken naturally into
account by a domain decomposition method that can handle non-matching
grids, possibly in space and time.

In the first paper, Gander, Halpern, Labbé and Santugini present an op-
timized Schwarz waveform relaxation algorithm for the parallel solution in
space-time of the equations of ferro-magnetics in the micro-magnetic model.
The algorithm uses Robin transmission conditions, and a numerical study of
the dependence of the optimized parameters on the physical properties of the
problem is presented.

In the second paper, Halpern and Japhet present a space-time decom-
position method for heterogeneous problems, with transmission conditions
adapted to the heterogeneity of the physical model. The algorithm is of
Schwarz waveform relaxation type with time windows, and discretized us-
ing a discontinuous Galerkin method in time, and a classical finite element
discretization in space. The performance of this new method is illustrated by
numerical experiments.

In the third paper, Halpern and Szeftel present a quasi-optimal Schwarz
waveform relaxation algorithm for the one dimensional Schrödinger equation.
This algorithm uses non-local interface conditions in time, which are exact
for the case of a constant potential. If the potential is not constant, a frozen
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coefficient approach is used. The authors compare the performance of this
new method to the performance of a classical Schwarz waveform relaxation
method, and an optimized one with Robin conditions.

In the fourth paper, Haynes, Huang and Russel present an innovative Mov-
ing Mesh Schwarz Waveform relaxation method. In this method, evolution
problems are decomposed in space, and on each subdomain, a moving mesh
method is used to solve the subdomain problem on a given time window, be-
fore information is exchanged across the interfaces between subdomains. The
method uses classical Dirichlet transmission conditions, and is both adaptive
in space, with the moving mesh method, and in time, with a step size control.
Its performance is well illustrated by numerical experiments for the viscous
Burgers equation.
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Summary. We present an optimized Schwarz waveform relaxation algorithm for
the parallel solution in space-time of the equations of ferro-magnetics in the micro-
magnetic model. We use Robin transmission conditions, and observe fast conver-
gence of the discretized algorithm. We show numerically the existence of an optimal
parameter in the Robin condition, and study its dependence on the various physical
and numerical parameters.

1 Introduction

Over the last decades, ferro-magnetics has been the subject of renewed in-
terest due to its omnipresence in industrial applications, and the need for
correctly predicting the behavior of ferro-magnets, which is best achieved
by numerical simulations, see the historical introduction in [11] and [1].
Since micro-magnetic simulations are very costly, we present in this paper
an optimized Schwarz waveform relaxation algorithm for the micro-magnetic
equation. These algorithms have the advantage of independent adaptive dis-
cretizations per subdomain both in space and time, and they are naturally
parallel, see [6, 7, 4, 5]. We present a numerical analysis of the algorithm with
Robin transmission conditions applied to the equation of ferro-magnetics for
a two subdomain decomposition, and study the dependence of the optimal
parameter on the various physical and numerical parameters.

2 The Micro-Magnetic Model

Let Ω be a bounded open set in R3 filled with a ferromagnetic material. The
magnetic state of the material is given by its magnetization vector m ∈ R3,
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vanishing outside Ω, with the non-convexity constraint

|m| = 1 a.e. in Ω. (1)

The behavior of m is modeled by the Landau-Lifschitz equation,

∂m

∂t
= L(m) := −m× h(m)− αm× (m× h(m)), (2)

where α > 0 is the dissipation parameter. As a first step toward real computa-
tions, we include only the exchange interaction, which is local, and produces
a magnetic excitation h(m) = A�m, where A > 0 is the exchange constant.
The equation in Ω × (0, T ) is subject to homogeneous Neumann boundary
conditions on the boundary of Ω, i.e. ∂m

∂ν = 0, where ν is the unit outward
normal on the boundary. Equation (2) is often used to compute the steady
states of the magnetization field; for more information, see [8].

3 Optimized Schwarz Waveform Relaxation Algorithm

We decompose the domain Ω into p non-overlapping subdomains (Ω̃i)i=1...p,⋃p
i=1 Ω̃i = Ω. We then derive from this non-overlapping decomposition an

overlapping one by choosing (Ωi)i=1...p such that Ω̃i ⊂ Ωi and
⋃p

i=1Ωi = Ω.
We define the interfaces and exterior boundary by

Γij = ∂Ωi ∩ Ω̃j , Γ e
i = ∂Ωi ∩ ∂Ω.

An optimized Schwarz waveform relaxation algorithm computes for n =
1, 2, . . . the iterates (mn

i )1≤i≤p defined by

∂mn
i

∂t
= L(mn

1 ) in Ωi × (0, T ),

mn
i (·, 0) = m0 on Ωi,

Bijm
n
i = Bijm

n−1
j on Γij × (0, T ),

∂mn
i

∂ν
= 0 on Γ e

i × (0, T ),

(3)

where the Bij are linear operators.
In [2, 5], several strategies for choosing these boundary operators are pro-

posed both in the case with and without overlap, and a complete convergence
analysis is provided for a linear advection-diffusion equation. Here, because
of the non-linearity, such an analysis is not yet available, and we use for our
numerical study for the non-overlapping case Robin transmission conditions,
which are robust and easy to implement, i.e. Bij = ∂

∂ν + βijI, where βij is a
positive real number to be chosen optimally for best convergence.
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4 Discretization

We use in space a finite difference discretization on a regular rectangular grid,
where the Laplace operator can be approximated by the standard five point
finite difference stencil. Since we use cell-centered nodes, the boundaries and
the interfaces are halfway in between two nodes, and hence values there can
be approximated using the mean of the two adjacent nodes, denoted by A
and B in Figure 1, whereas the normal derivative can be approximated by a
finite difference between the same nodes A and B.

Γ

�

�

�

�

�A B×X

Fig. 1. Position of the interface in our cell-centered finite difference discretization.

The Robin condition ∂νm + βm = g at point X in Figure 1 is thus
discretized by mB−mA

∆x + βmA+mB

2 = g, where ∆x is the space step-size.
This yields mB = (2∆xg + (2− β∆x)mA)/(2 + β∆x), which is then used to
complete the missing value at the node B in the five-point finite difference
stencil centered at A in Figure 1.

For the time discretization, we use the explicit second order scheme from
[9, 10],

mi+1 = mi +∆tF (mi) +
∆t2

2
DF (mi) · F (mi), (4)

where D is the differentiation operator and

F (mi) = −mi × h(mi)− αmi × (mi × h(mi)).

To satisfy the non-convexity constraint (1), we renormalize the magnetization
after each time step. Our implementation can use an optimized time step per
subdomain in order to maximize energy dissipation and speed up convergence
to the steady state, and thus the algorithm is truly non-conforming in time. To
study however the convergence to the discrete solution on the entire domain
Ω numerically, we use in the sequel fixed time steps in the subdomains.
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5 Numerical Study of the Algorithm

We consider a squared ferromagnetic thin plate of dimension 3.68e−6 ×
3.68e−6×∆x, with the parameter A = 4.06e−18. We also fix the parameter
α to be 1

2 .
We divide the domain into two subdomains, as shown in Figure 2. In this

non-overlapping case, Γ12 = Γ21 = Γ , and we consider the case β12 = β21 = β
only. We discretize the problem as shown in Section 4, and we first compute

Γ Ω1Ω2

Fig. 2. The two subdomain decomposition used for our numerical experiments.

the discrete solution on the entire domain. We then measure the relative
error between the mono-domain solution and each iteration of the optimized
Schwarz waveform relaxation algorithm in the l2h norm,

‖u‖2l2h =
N∑

i=1

|ωi‖|ui|2.

Since (ωi) is a rectangular mesh, |ωi| = |∆x|3.
We mesh the ferromagnetic domain with a space step of ∆x = 1.84e−7,

which yields a 20×20×1 mesh. A numerical experiment over long time shows
that for the physical parameters chosen above, the equilibrium state has not
yet been reached at T = 30000.

We first study the convergence behavior of the optimized Schwarz wave-
form relaxation algorithm. The simulations presented here are done without
overlap. We choose a final time of T = 500, and perform a series of compu-
tations for fixed ∆t, for various values of the parameter β. In Figure 3, we
show for the time discretization steps ∆t = 0.125 and ∆t = 5 the relative
error curves for a sequence of iterates as a function of the parameter β in
the Robin transmission condition. The algorithm is convergent, and there is
a numerically optimal choice βopt for β: in both cases, βopt ≈ 1.05e+7, which
indicates that βopt does not depend on the time step.

We now study the dependence of βopt on the space discretization step ∆x.
As the step size increases, βopt in the Robin transmission conditions decreases.
The least squared best fit shown in Figure 4 gives lnβopt ≈ 1.03−0.97 ln(∆x),
which indicates that
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Fig. 3. Convergence curves as function of the optimization parameter β for two
different time steps.

βopt ≈
2.8
∆x

. (5)
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Fig. 4. βopt as a function of the space discretization step

In the next sequence of numerical experiments, we study the dependence
of βopt on the physical parameters of the problem. In Figure 5, we show for
the final times T = 100 and T = 4000 the relative error curves for a sequence
of iterations as a function of the parameter β in the Robin transmission con-
dition. These results, and a large sample of final times between 1 and 4000
indicate that βopt does not seem to depend on the final time. This is somewhat
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Fig. 5. Convergence curves as function of the optimization parameter for two final
times.

unexpected, since for the linear heat equation, βopt depends on the final time,
see [3].

The fact that βopt does not depend on the final time of the simulation
implies that βopt does not depend on the physical parameter A in our case,
since dividing the entire equation by A shows that A can be interpreted as a
scaling factor for the final time. If however other exchange interactions were
present, such as the demagnetization field, this scaling argument would not
hold any more.

It remains to study the behavior of βopt when α varies. To this end, we
compute the convergence curves with parameters T = 200 and ∆x = 1.84e−7
for α ranging from 0.1 to 100. We present some of these results in Figure 6. For
small α, the algorithm converges very well and the βopt has an approximate
value of 1.05e+7. However as α increases, the value of βopt varies as shown in
Figure 7 and the optimal error increases, see Figure 7.

6 Conclusion

We presented an optimized Schwarz waveform relaxation algorithm for the
equations of ferro-magnetics in the micro-magnetic model. We studied nu-
merically the convergence behavior of the algorithm with Robin transmission
conditions. This study revealed that the algorithm converges very fast: after
only few iterations, an error reduction by a factor of 10−9 is achieved. Using
extensive numerical results, we determined a heuristic formula for the value
of βopt, in the non-overlapping case,

βopt ≈
g(α)
∆x

,

where g(α) is represented in Figure 7 on the left.
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Fig. 7. βopt and optimal error as functions of α

We are currently working on a convergence analysis of the algorithm, and
the extension to other interaction terms; in particular adding the demagneti-
zation field interaction is challenging, since it represents a global operator.
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Summary. We consider the question of domain decomposition for evolution prob-
lems with discontinuous coefficients. We design a method relying on four ingredients:
extension of the optimized Schwarz waveform relaxation algorithms as described in
[1], discontinuous Galerkin methods designed in [7], time windows, and a general-
ization of the projection procedure given in [6]. We so obtain a highly performant
method, which retains the approximation properties of the discontinuous Galerkin
method. We present numerical results, for a two-domains splitting, to analyze the
time-discretization error and to illustrate the efficiency of the DGSWR algorithm
with many time windows. This analysis is in continuation with the approach initi-
ated in DD16 [2, 5], with applications in climate modeling, or nuclear waste disposal
simulations.

1 Introduction

In order to be able to perform long time computations in highly discontinuous
media, it is of importance to split the computation into subproblems for which
robust and fast solvers can be used. This happens for instance in climate
modeling, where heterogeneous climatic models must be run in parallel, or
in nuclear waste disposal simulations, where different materials have different
behaviors.

Optimized Schwarz waveform relaxation algorithms have proven to provide
an efficient approach for convection-diffusion problems in one [1] and two
dimensions [8]. The SWR algorithms are global in time, and therefore are
well adapted to coupling models; they lead to fast and efficient solvers, and
they allow for the use of non conforming space-time discretizations. Based
on this approach, our final objective is to propose efficient algorithms with a
high degree of accuracy, for heterogeneous advection-diffusion problems. The
strategy we develop here is to split the time interval into time windows. In each
window we will perform a small number of iterations of an optimized Schwarz
waveform relaxation algorithm. The subdomain solver is the discontinuous
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Galerkin methods in time, and classical finite elements in space. The coupling
between the subdomains is done by the extension of a projection procedure
written in [6].

After defining our model problem in Section 2, we recall in Section 3 the
Schwarz waveform relaxation algorithm, with optimized transmission condi-
tions of order 1 in time, as introduced in [2, 5]. The general discontinuous
Galerkin formulation is given in Section 4. In Section 5, we introduce the dis-
crete algorithm in time in the nonconforming case. The projection between
arbitrary grids is performed by an efficient algorithm based on the method
introduced in [6]. In Section 6, numerical results illustrate the validity of our
approach, in particular the superconvergence result proved in [3] for the heat
equation and homogeneous Dirichlet boundary conditions is valid.

2 Model Problem

We consider the advection-diffusion problem in Ω = (a, b):

Lu ≡ ∂u

∂t
+

∂

∂x
(a(x)u)− ∂

∂x
(ν(x)

∂u

∂x
) = f in Ω × (0, T ),

u(·, 0) = u0 in Ω,
u(a, ·) = u(b, ·) = 0 in (0, T ).

(1)

The advection coefficient a(x), and the viscosity ν(x) are in L∞(Ω). ν is
bounded from below by a positive constant and we suppose here the advection
coefficient to be positive. We are interested in a coupling procedure for a
problem with discontinuities in the coefficients, and we suppose a and ν to be
continuous in subregions Ωj =]xj−1, xj [ of Ω, but possibly discontinuous at
interfaces xj . We shall write

a±j = lim
x→x±

j

a(x), ν±j = lim
x→x±

j

ν(x).

Problem (1) is equivalent to finding {uj} j=1,...,J solutions of the advection-
diffusion equation in each subdomain Ωj , with the physical transmission con-
ditions in (0, T )

uj(x−j , ·) = uj+1(x+
j , ·), (ν−j

∂

∂x
− a−j )uj(x−j , ·) = (ν+

j

∂

∂x
− a+

j )uj+1(x+
j , ·),

with uj = u|Ωj
. In view of applications for long-time computations, we split

the time domain into windows and we intend to design an algorithm which
requires very few iterations per time window. This will be achieved with an
optimized Schwarz waveform relaxation algorithm.
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3 Optimized Schwarz Waveform Relaxation with Time
Windows

The time interval is divided into time windows, [0, T ] = ∪Nw
N =0[TN , TN+1]. In

each window we perform successively nN iterations of the Schwarz waveform
relaxation algorithm with nN ≥ 2 as small a possible, taking as initial value
the final value of the last iterate of the algorithm in the previous window.
Suppose {ũj} is computed that way on (0, TN). We compute now {ũj} on the
next window by the algorithm, for n = 1, ..., nN :

Lun
j = f in Ωj × (TN , TN+1),

with the initial value un
j (·, TN) = ũj(·, T−

N ), and the transmission conditions
in (TN , TN+1),

(−ν+
j−1

∂

∂x
+ a+j−1Id+ S−

j )un
j (x+

j−1, ·) = (−ν−j−1

∂

∂x
+ a−j−1Id+ S−

j )un−1
j−1 (x−j−1, ·),

(ν−j
∂

∂x
− a−j Id+ S+

j )un
j (x−j , ·) = (ν+

j

∂

∂x
− a+j Id+ S+

j )un−1
j+1 (x+

j , ·).

It was proved in [5, 2] that a suitable choice of the operators S±
j , leads to

convergence in J iterations. However these “transparent” operators are not
easy to handle, and we use instead transmission operators of the form:

S−
j =

p−j − a−j
2

Id+
q−j
2

∂

∂t
, S+

j =
a+

j + p+
j

2
Id+

q+j
2

∂

∂t
. (2)

The initial guesses on the interfaces have to be prescribed, this will be done
on the discrete level in Section 6. We then define ũj on (TN , TN+1) by unN

j .
In order to reduce the number of iterations, we need to make the conver-
gence rate as small as possible. This can be achieved by choosing carefully
the parameters p±j and q±j such as to minimize the local convergence rate, i.e.
between two subdomains. Details for the optimization on the theoretical level
for continuous coefficients can be found in [1], and for preliminary results in
this case see [5]. For positive coefficients p±j and q±j , the convergence of the
algorithm can be proved by the method of energy.

4 Time Discontinuous Galerkin Method

We introduce the discretization of a subproblem in one time window I =
(TN , TN+1) and one interval Ωj . The subproblem at step n of the SWR pro-
cedure for an internal subdomain is to find v such that⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Lv = f in Ωj × I,
v(·, TN) = v0 in Ωj ,

(−ν+ ∂

∂x
+ β−Id+ γ−

∂

∂t
) v(x+

j−1, ·) = g− in I,

(ν−
∂

∂x
+ β+Id+ γ+ ∂

∂t
) v(x−j , ·) = g+

j in I.

(3)
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Subproblems at either end of the interval have one boundary condition re-
placed by a Dirichlet boundary condition. Let Vj = H1(Ωj). This problem
has the weak formulation: find v in C0(0, T ;L2(Ωj)) ∩ L2(0, T ;H1(Ωj)) such
that v(·, TN) = v0 and

((
dv

dt
(t), ϕ)) + b(v(t), ϕ) = (f(t), ϕ) + g−(t)ϕ(xj−1) + g+(t)ϕ(xj), ∀ϕ ∈ Vj ,

with (·, ·) the scalar product in L2(Ωj), and for ϕ,ψ in Vj :⎧⎪⎪⎨⎪⎪⎩
((ϕ,ψ)) = (ϕ,ψ) + γ−ϕ(xj−1)ψ(xj−1) + γ+ϕ(xj)ψ(xj),

b(ϕ,ψ) = (ν(x)
∂ϕ

∂x
,
∂ψ

∂x
) + (a(x)ϕ,

∂ψ

∂x
)

+ β−ϕ(xj−1)ψ(xj−1) + β+ϕ(xj)ψ(xj).

For positive β± and γ±, this problem is well-posed in suitable Sobolev spaces,
see [1]. For the discretization of (3) in time, we use the discontinuous Galerkin
method [7] which is a Galerkin method with discontinuous piecewise polyno-
mials of degree q ≥ 0 defined as follows. Let T be a decomposition of I into
I = ∪K

k=1Ik with Ik = [tk−1, tk], and ∆tk = tk − tk−1. For any space V , we
define

Pq(V ) = {ϕ : I → V, ϕ(t) =
q∑

i=0

ϕit
i, ϕi ∈ V }

Pq(V, T ) = {ϕ : I → V, ϕ|Ik
∈ Pq(V ), 1 ≤ k ≤ K}.

As the functions in Pq(V, T ) may be discontinuous at the mesh points tk, we
define ϕk,± = ϕ(tk ± 0). The discontinuous Galerkin Method, as formulated
in [7], defines recursively on the intervals Ik, an approximate solution U of
(4) in Pq(Vj , T ), by⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

U0,− = v0,

∀ϕ ∈ Pq(Vj) :
∫

Ik

[((
dU

dt
, ϕ)) + b(U,ϕ)] dt+ ((Uk−1,+, ϕk−1,+)) =∫

Ik

[(f(t), ϕ(t)) + g−(t)ϕ(xj−1) + g+(t)ϕ(xj)]dt+ ((Uk−1,−, ϕk−1,+)).

(4)

Theorem 1. For f ∈ L∞(0, T ;L2(Ωj)), g± ∈ L∞(0, T ), and β±, γ± > 0,
equation (4) has a unique solution U ∈ Pq(Vj , T ). Moreover, for sufficiently
smooth v, we have the error estimate:

‖v − U‖L∞(I;L2(Ωj)) ≤ CiCs
q ( max

1≤k≤K
Lk)‖∆tq+1v(q+1)‖L∞(I;L2(Ωj)), (5)

where ∆t is the local time step defined in Ik by ∆t(s) = ∆tk, Cs
q is a stability

constant related to the dG-discretization, independent of T, u, ∆t, and U . Ci

is an interpolation constant depending only on q, and Lk = 1 + log(tk/∆tk).
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Proof. Let H = L2(Ωj) × R × R with inner product (·, ·)H defined for
U1 = (ϕ1, α

−
1 , α

+
1 ) and U2 = (ϕ2, α

−
2 , α

+
2 ) in H by (U1, U2)H = (ϕ1, ϕ2) +

γ−j α
−
1 α

−
2 +γ+

j α
+
1 α

+
2 . Let D(A) = {U = (ϕ, α−, α+), ϕ ∈ H2(Ωj), ϕ(xj−1) =

α−, ϕ(xj) = α+}. Let A : D(A) ⊂ H → H defined by

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

− ∂

∂x
(ν
∂

∂x
) +

∂

∂x
(a Id) 0 0

ν+
j−1

γ−j

∂

∂x

β−
j

γ−j
0

ν−j
γ+

j

∂

∂x
0

β+
j

γ+
j

⎞⎟⎟⎟⎟⎟⎟⎟⎠
Then, the proof of Theorem 1 is based on the theoretical result in [4], since

A is the infinitesimal generator of an analytic, uniformly bounded semi-group.

Remark 1. An analogous result holds in higher dimension and for general
boundaries, as soon as they do not intersect.

5 The Discontinuous Galerkin Schwarz Waveform
Relaxation

Let us consider the case where the time steps are different in the subdomains:
in each Ωj , let Tj be a partition of the time interval into I = ∪K

k=1I
j
k with

Ij
k = [tjk−1, t

j
k]. Then, we need a projection procedure to transfer the bound-

ary values from one domain to his two neighbors. We now define the precise
procedure in domain Ωj . Let (g−,n−1

j , g+,n−1
j ) be given in Pq(R, Tj). Then,

one iteration of the SWR method consists in the following steps:

g−,n−1
j ∈ Pq(R, Tj) g+,n−1

j ∈ Pq(R, Tj)
↘ ↙

Un
j ∈ Pq(Vj , Tj)

↙ ↘

g̃−,n
j =(ν+

j−1∂x −a+j−1 +S+
j−1)U

n
j (x+

j−1, ·)

g̃−,n
j ∈ Pq(R, Tj)

g̃+,n
j =(−ν−j ∂x +a−j −S−

j+1)U
n
j (x−j , ·)

g̃+,n
j ∈ Pq(R, Tj)

↓ ↓

g+,n
j−1 = Pj,j−1g̃

−,n
j ∈ Pq(R, Tj−1) g−,n

j+1 = Pj,j+1g̃
+,n
j ∈ Pq(R, Tj+1)

Un
j is the solution of (4) in Ωj with coefficients β±

j and γ±j given by (2),
and data (g−,n−1

j , g+,n−1
j ). Pi,j is the orthogonal L2 projection on Pq(R, Tj),

restricted to Pq(R, Ti).
Note that the computations in different subdomains on the same time window
(TN , TN+1) can be done in parallel. One could even think of using multigrid
in time or asynchronous algorithm.
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6 Numerical Results

In order to see the effect of the coupling of discontinuous Galerkin with the
domain decomposition algorithm, we perform numerical simulations with two
subdomains only. We choose ν and a to be constant in each subdomain. For
the space discretization, we replace Vj by a finite-dimensional subspace V h

j

(standard P1 finite element space) of Vj in (4).
Our computations are performed with q = 1 in the discontinuous Galerkin
method. In that case a superconvergence result was proved in [3] for the
heat equation and homogeneous Dirichlet boundary conditions: under suitable
assumptions on the space and time steps, the accuracy is of order 3 in time
at the discrete time levels tk: let ‖ · ‖k,j = ‖ · ‖L∞(Ik;L2(Ωj)),

‖v(tk)− Uk,−‖L2(Ωj)

≤ Ck max
1≤k≤K

{
min

0≤�≤3
∆t�k‖∂

(�)
t v‖k,j + min

1≤�≤2
h�‖D�v‖k,j

}
, (6)

where h is the mesh size, Ck = C(Lk)
1
2 with C a constant independent of

T, v, ∆t, and U . Our numerical results will illustrate both estimates (5)
and (6).

In the sequel, we denote by “1-window converged solution”, the iterate
of the optimized Schwarz waveform relaxation algorithm in one time window
(the whole time interval), for which the residual on the boundary (i.e. ‖g±,n

j −
g±,n−1

j ‖) is smaller than 10−8.

6.1 An Example of Multidomain Solution with Time Windows

In this part, we consider Problem (1) on Ω =]0, 6[ with f ≡ 0, and the final
time is T = 2. The initial value is u0 = e−3(2.5−x).2 . Ω is split into two sub-
domains Ω1 = (0, 3) and Ω2 = (3, 6). In each subdomain the advection and
viscosity coefficients are constant, equal to a1 = 0.1, ν1 = 0.2, a2 = ν2 = 1.
The mesh size is h = 0.06 for each subdomain. The number of time grid
points in each window is n1 = 61 for Ω1, and n2 = 25 for Ω2. We denote
by “6-windows solution”, the approximate solution computed using 6 time
windows, with nN = 2 iterations of the optimized Schwarz waveform relax-
ation algorithm in each time window. The initial guess g±,0

j on the interface
in time window (TN , TN+1) is given at time TN by the exact discrete value
in the previous window, and is taken to be constant on the time interval. In
Figure 1 we observe that at the final time T = 2, the 6-windows solution and
the 1-window converged solution cannot be distinguished. Since the cost of
the computation is much less with time windows, this validates the approach.
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6.2 Error Estimates

Constant Coefficients

We first analyze the error in (4) for constant coefficients a ≡ 1, ν ≡ 1. The
exact solution is u(x, t) = cos(x) cos(t), in [−π/2, π/2]× [0, 2π]. The interface
is at x = 1. The mesh size is h = π ·10−4, for each subdomain. The time steps
are initially ∆t1 = 2π/4 in Ω1 and ∆t2 = 2π/6 in Ω2, and thereafter divided
by 2 several times. Let ∆t = max(∆t1,∆t2). Figure 2 shows the norms of
the error involved in the estimates (5) and (6). The numerical results fit the
theoretical estimates.

0 1 2 3 4 5 6
x

u(
x,

T
)

u1 at SWR iteration 2 
u2 at SWR iteration 2 
converged 1−window solution

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
6 time windows solution with 2 SWR iterations per window

Fig. 1. 1-window converged solution (solid line) and 6-windows solution (star line
for Ω1 and diamond line for Ω2), at time t=T=2.
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Fig. 2. Error in L∞(I;L2(Ωj))-norm (on the left) and in L2(Ωj)-norm at the final
time t = T (on the right), versus the time step ∆t, for Ω1 (star line) and for Ω2

(diamond line), in the case of constant coefficients.
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Fig. 3. L2(Ωj) error at the final time t = T versus the time step ∆t, for Ω1 (on the
left) and Ω2 (on the right), for the meshes Mesh 1,2,3,4 , in the case of discontinuous
coefficients.

Discontinuous Coefficients

We consider the configuration in Section 6.1 with one time window. We ob-
serve the error between the 1-window converged solution and a reference solu-
tion (the 1-window converged solution on a very fine space-time grid), versus
the time step. The mesh size is h = 3 · 10−4 for each subdomain. We consider
four initial meshes in time

• Mesh 1: a uniform conforming finner grid with ∆t1 = ∆t2 = T/6,
• Mesh 2: a nonconforming grid with ∆t1 = T/6 and ∆t2 = T/4,
• Mesh 3: a nonconforming grid with ∆t1 = T/4 and ∆t2 = T/6,
• Mesh 4: a uniform conforming coarser grid with ∆t1 = ∆t2 = T/4.

Thereafter ∆tj , j = 1, 2, is divided by two at each computation. Figure 3
shows the error versus the time step ∆t = max(∆t1,∆t2), for these four
meshes, in Ω1 (on the left) and in Ω2 (on the right). The results show that the
L2(Ωj) error at discrete time points tends to zero at the same rate as ∆t3, and
this fits with the error estimate (6). On the other hand, we observe that the two
curves corresponding to the nonconforming meshes are between the curves of
the conforming meshes. We obtain similar results for the L∞(I;L2(Ωj)) error,
which fits with (5).

7 Conclusions

We have proposed a new numerical method for the advection-diffusion equa-
tion with discontinuous coefficients. It relies on the splitting of the time inter-
val into time windows. In each window a few iterations of a Schwarz waveform
relaxation algorithm are performed by a discontinuous Galerkin method, with
projection of the time-grids on the interfaces of the spacial subregions. We have
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shown numerically that our method preserves the order of the discontinuous
Galerkin method.

References

[1] D. Bennequin, M.J. Gander, and L. Halpern. Optimized Schwarz Wave-
form Relaxation for convection reaction diffusion problems. Technical Re-
port 24, LAGA, Université Paris 13, 2004.
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Summary. We design and study Schwarz Waveform relaxation algorithms for the
linear Schrödinger equation with a potential in one dimension. We show that the
overlapping algorithm with Dirichlet exchanges of informations on the boundary is
slowly convergent, and we introduce two new classes of algorithms: the optimized
Robin algorithm and the quasi-optimal algorithm. Numerical results illustrate the
great improvement of these methods over the classical algorithm.

1 Introduction

We investigate the design of domain decomposition algorithms for the linear
Schrödinger equation with a real potential V , in one space dimension:{

i∂tu(t, x) + ∂2
xu(t, x) + V (x)u(t, x) = 0, t ≥ 0, x ∈ R,

u(0, x) = u0(x). (1)

This equation is an important model in quantum mechanics, in electromag-
netic wave propagation, and in optics (Fresnel equation). To our knowledge,
there is no study prior to the present work on domain decomposition methods
for the Schrödinger equation.

We first introduce the classical algorithm, with overlapping subdomains,
exchanging Dirichlet data on the boundaries. Its slow convergence emphasizes
the need for new algorithms.

The key point of these new algorithms is to notice that the convergence
in two iterations is obtained when using transparent boundary operators as
transmission operators between the subdomains, even in the non-overlapping
case. However, these operators are not available for a general potential. Thus,
we introduce a quasi-optimal algorithm using the transparent operators cor-
responding to the value of the potential on the boundary. We also study the
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possibility of using simpler transmission conditions on the boundary, of com-
plex Robin type.

We then introduce a discretization of the Robin algorithm and a discretiza-
tion of the quasi-optimal algorithm.

We finally illustrate the results through numerical simulations, for various
types of potentials, like constant, barrier, or parabolic. We show how slow the
convergence is with Dirichlet Schwarz Waveform Relaxation (SWR), and how
the optimized SWR greatly improves the convergence. We also show, that the
best results by far are obtained by the discrete quasi-optimal algorithm.

Remark 1. For a more detailed study, we refer the reader to [6].

2 Classical Schwarz Waveform Relaxation

Let L := i∂t + ∂2
x + V (x). We decompose the spatial domain Ω = R into

two overlapping subdomains Ω1 = (−∞, L) and Ω2 = (0,∞), with L > 0.
The overlapping Schwarz waveform relaxation algorithm consists in solving
iteratively subproblems on Ω1 × (0, T ) and Ω2 × (0, T ), using as a boundary
condition at the interfaces x = 0 and x = L the values obtained from the
previous iteration. The algorithm is thus for iteration index k = 1, 2, . . . given
by ⎧⎪⎨⎪⎩

Luk
1 = f in Ω1 × (0, T ),

uk
1(·, 0) = u0 in Ω1,

uk
1(L, ·) = uk−1

2 (L, ·),

⎧⎪⎨⎪⎩
Luk

2 = f in Ω2 × (0, T ),

uk
2(·, 0) = u0 in Ω2,

uk
2(0, ·) = uk−1

1 (0, ·).
(2)

Using the Fourier transform in time, we easily compute the convergence factor
of the classical algorithm in the case where the potential V is constant:

Θ(τ, L) = exp

⎡⎣−(
−τ + V +

√
1 + (τ − V )2

2

)1/2

L

⎤⎦ , (3)

where τ is the time frequency.
The convergence factor in (3) tends to 1 when the overlap L tends to

0, as all overlapping Schwarz methods do. But it also tends to 1 when τ
tends to infinity, which differs from what happens for wave equations [5] or
parabolic equations [3]. This deterioration of the convergence factor for high
frequencies suggests a poor performance of the classical algorithm for the
Schrödinger equation. This is confirmed by the numerical results. In figure 1,
we present the exact solution and the approximate solution computed with the
classical algorithm at various times for the free Schrödinger equation (V = 0).
The results are displayed after 200 iterations of the algorithm. We take two
subdomains Ω1 = (−5, 4∆x) and Ω2 = (0, 5), and the step sizes are ∆t =
0.00125, ∆x = 0.0125.
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Fig. 1. Exact solution (solid) and approximate solution computed with the classical
algorithm at iteration 200 (dashed). (a) t = 0.33, (b) t = 0.4, (c) t = 0.5

Although the algorithm works well for times up to t = 0.3, it then deteriorates
so that the approximate solution becomes extremely oscillating and does not
approximate the exact solution at all. Since this bad behavior happens after
200 iterations, this clearly demonstrates that one should avoid the classical
algorithm when computing the Schrödinger equation. This also motivates the
need for new algorithms, which we investigate in the next sections.

3 Optimal Schwarz Waveform Relaxation Algorithm

When V is constant, it is possible to compute the optimal algorithm. Let S1

and S2 be linear operators acting only in time. We introduce the algorithm⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Luk

1 = f in Ω1 × (0, T ),

uk
1(·, 0) = u0 in Ω1,

(∂x + S1)uk
1(L, ·)
= (∂x + S1)uk−1

2 (L, ·),

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Luk

2 = f in Ω2 × (0, T ),

uk
2(·, 0) = u0 in Ω2,

(∂x + S2)uk
2(0, ·)
= (∂x + S2)uk−1

1 (0, ·).

(4)

We define the symbol σj of Sj(∂t) by σj(τ) = Sj(iτ). Using Fourier transform
in time, we can prove that the algorithm (4) converges to the solution u of (1)
in two iterations independently of the size of the overlap L ≥ 0, if and only if
the operators S1 and S2 have the corresponding symbols

σ1 = (τ − V )1/2, σ2 = −(τ − V )1/2 (5)

with

(τ − V )1/2 =

{√
τ − V if τ ≥ V,

− i
√
−τ + V if τ < V.

(6)

For variable potentials, the optimal operators are in general not at hand.
We present here and will compare two approximations of those. The first one
is to use a “frozen coefficients” variant of these operators. The second one is to
replace them by a constant, obtaining “Robin type” transmission conditions,
and to optimize them by minimizing the convergence factor in the constant
case.
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4 The Quasi-optimal Algorithm

We use as transmission operators the optimal operators for the constant po-
tential equal to the value of V on the interface. The quasi-optimal algorithm
is thus for iteration index k = 1, 2, . . . given by⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Luk

1 = f in Ω1 × (0, T ),

uk
1(·, 0) = u0 in Ω1,

(∂x +
√
−i∂t − V (L))uk

1(L, ·) =

(∂x +
√
−i∂t − V (L))uk−1

2 (L, ·),

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Luk

2 = f in Ω2 × (0, T ),

uk
2(·, 0) = u0 in Ω2,

(∂x −
√
−i∂t − V (0))uk

2(0, ·) =

(∂x −
√
−i∂t − V (0))uk−1

1 (0, ·)

(7)

where
√
−i∂t − V (x) is the operator acting only in time with symbol given

by (6). Though being not differential, this operator is still easy to use numer-
ically [2].

We call the algorithm (7) quasi-optimal, since it is optimal for a constant
potential. Even for a non constant potential V , we are able to prove its con-
vergence when there is no overlap, i.e. L = 0, and when T = +∞ in the
following spaces:

(H1/4(0, T, L2(Ω1)) ∩H−1/4(0, T,H1(Ω1)))
×(H1/4(0, T, L2(Ω2)) ∩H−1/4(0, T,H1(Ω2))).

The proof is based on energy estimates and follows an idea from [7], which
has widely been used since (see [4, 8] for steady problems, [5] for evolution
equations). Here, the additional difficulty is to deal with the nonlocal operator√
−i∂t − V (0).

5 The Algorithm with Robin Transmission Conditions

A simple alternative to the previous approach is to use Robin transmission
conditions, i.e. to replace the optimal operators Sj by S1 = −S2 = −ipI
where p is a real number, which gives the algorithm⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Luk
1 = f in Ω1 × (0, T ),

uk
1(·, 0) = u0 in Ω1,

(∂x − ip)uk
1(L, ·)
= (∂x − ip)uk−1

2 (L, ·),

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Luk

2 = f in Ω2 × (0, T ),

uk
2(·, 0) = u0 in Ω2,

(∂x + ip)uk
2(0, ·)
= (∂x + ip)uk−1

1 (0, ·).

(8)

Remark 2. This algorithm is not the usual Robin algorithm as the constant ip
used here is complex, whereas the usual Robin algorithm uses a real constant.

Relying on energy estimates, we are able to prove the convergence even
for a non constant potential V when there is no overlap, i.e. L = 0, and for
any p > 0 in the following spaces:
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L∞(0, T ;L2(Ω1))× L∞(0, T ;L2(Ω2)).

Of course, the convergence taking place for any p > 0, we will optimize the
convergence rate with respect to p > 0 in order to accelerate the convergence.

6 Construction of the Discrete Algorithms

For the Robin algorithm, we use a finite volume discretization. In the interior,
it produces the Crank-Nicolson scheme, widely used in the linear and nonlinear
computations for the Schrödinger equation, whereas the Robin transmission
conditions are naturally taken into account. This idea was first introduced in
[5] for the wave equation in one dimension.

For the discretization of the quasi-optimal algorithm, we also use the
Crank-Nicolson scheme on the interior. Here, the main task is to discretize
the nonlocal transmission condition. We thus have to discretize the opera-
tor
√
−i∂t + V . We use the discrete transparent boundary condition designed

by Arnold and Ehrhardt precisely for the Crank-Nicolson scheme [2]. It is a
discrete convolution:√

−i∂t + V U(0, n) �
n∑

m=0

S(n−m)U(0,m),

where the convolution kernel S(m) is given by a recurrence formula (see [2]).

Remark 3. Other choices of discrete transparent boundary conditions (for ex-
ample the one designed in [1]) could be used to discretize the quasi-optimal
algorithm.

7 Numerical Results

The physical domain is (a, b) = (−5,+5). It is divided in two subdomains
of equal size. Our algorithms are implemented the Gauss-Seidel way, i.e. we
compute u1 with gL, then deduce g0 by u1 and give it to the right domain for
the computation of u2. Thus iteration #k in this section corresponds to the
computation of u2k−1

1 , u2k
2 in the theoretical setting.

7.1 The Free Schrödinger Equation

In the case of the free Schrödinger equation, the quasi-optimal algorithm co-
incides with the optimal one and converges in two iterations as expected by
the theory. It is thus the best algorithm, but we would still like to see how the
Robin algorithm behaves and to compare it with the classical algorithm. We
consider in Figure 2 an overlap of 2%. The error is the L2 norm of the error
on the boundary of Ω2. We clearly see the great improvement.
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Fig. 2. Convergence history: comparison of the Dirichlet and optimized Robin
Schwarz algorithm. δ = 2%.

7.2 Non Constant Potentials

We consider the interval (−5, 5), with a final time T = 1, discretized with
∆x = 0.05 and ∆t = 0.005. The size of the overlap is 4∆x. The potential is a
barrier equal to 20 times the characteristic function of the interval (−1, 1). In
figure 3, we draw the convergence history for Dirichlet and Robin algorithms.
In this case again, the Robin condition behaves much better than the Dirichlet
condition.
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Fig. 3. Convergence history: comparison of the Dirichlet and optimized Robin
Schwarz algorithm for a potential barrier. The overlap is equal to 4%.

The quasi-optimal algorithm is by far the most efficient. In all cases, even
when the potential is not constant, the precision 10−12 is reached in at most
five iterations with or without overlap. As an example, we show in Figure
4 the convergence history with an overlap of 8 grid points, for a parabolic
potential, for various mesh sizes. The convergence does not depend on the
mesh size.
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Fig. 4. Convergence history for the quasi-optimal Schwarz algorithm in presence of
a parabolic potential

Finally, we present the exact solution and the approximate solution com-
puted with the three algorithms at time t = 0.9 for a parabolic potential.
The results are displayed after only three iterations of the algorithm. We take
two subdomains Ω1 = (−5, 4∆x) and Ω2 = (0, 5), and the step sizes are
∆t = 0.0025 and ∆x = 0.025. As expected, the classical algorithm produces
a highly oscillating solution. The Robin algorithm behaves far better and
clearly approximates the exact solution. Finally, the quasi-optimal algorithm
is the best as we can not distinguish between the exact and the approximate
solution.
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Fig. 5. Exact solution (solid) and approximate solution computed with the three
algorithms after 3 iterations (dashed) at time t = 0.9. (a) Classical algorithm, (b)
Robin algorithm, (c) quasi-optimal algorithm

Remark 4. The Robin algorithm is very sensitive to the value of p > 0. In our
numerical experiments, we take the optimal value of p obtained for a constant
potential V which is given by an explicit formula.

Remark 5. As predicted by the theory, our numerical results indicate that the
Robin algorithm and the quasi-optimal algorithm both converge even without
overlap unlike the classical algorithm.



228 L. Halpern and J. Szeftel

8 Conclusion

We have presented here a general approach to design optimized and quasi-
optimal domain decomposition algorithms for the linear Schrödinger equation
with a potential in one dimension. It allows the use of any discretization, any
time and space steps in the subdomains. These algorithms greatly improve
the performances of the classical Schwarz relaxation algorithm. We intend to
extend our analysis to the two-dimensional case in a close future.
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1 Introduction

It is well accepted that the efficient solution of complex PDEs frequently
requires methods which are adaptive in both space and time. Adaptive mesh
methods for PDEs may be classified into one or more of the following broad
categories:

• r–refinement: moving a fixed number of mesh points to difficult regions of
the physical domain,

• p–refinement: varying the order of the numerical method to adapt to local
solution smoothness,

• h–refinement: mesh refinement and derefinement, depending upon the local
level of resolution.

These methods are applied in either a static fashion, where refining/coar-
sening or redistributing grids is done at fixed times during a simulation or in a
dynamic fashion, where the solution and mesh are computed simultaneously.

In this paper we are interested in a class of spatially adaptive moving
mesh PDE methods introduced in [17, 11] and [12]. Traditionally, moving
mesh methods have been implemented in a (moving) method of lines frame-
work — discretizing spatially and then integrating in time using a stiff initial
value problem (IVP) solver. This approach propagates all unknowns (mesh
and physical solution) forward in time using identical time steps. It is quite
common, however, for problems with moving interfaces or singular behavior
to have solution components which evolve on disparate scales in both space
and time.

Our purpose is to introduce and explore a natural coupling of domain
decomposition, in the Schwarz waveform context, and the spatially adaptive
moving mesh PDE methods. This will allow the mesh and physical solution
to be evolved according to local space and time scales.
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2 Moving Mesh Methods

We consider the solution of a PDE of the form

ut = L(u) 0 < x < 1, t > 0,

subject to appropriate initial and boundary conditions, where L denotes a
spatial differential operator. The assumption is that the solution of this PDE
has features which are difficult to resolve using a uniform mesh in the physical
coordinate x. We seek, for fixed t, a one–to–one coordinate transformation

x = x(ξ, t) : [0, 1]→ [0, 1], with x(0, t) = 0, x(1, t) = 1

such that u(x(ξ, t), t) is sufficiently smooth that a simple (typically uniform)
mesh ξi, i = 0, 1, . . . , N can be used to resolve solution features in the compu-
tational domain ξ ∈ [0, 1]. The mesh in the physical coordinate x is then spec-
ified from the coordinate transformation by xi(t) = x(ξi, t), i = 0, 1, . . . , N .

One standard way to perform adaptivity in space is to use the equidistri-
bution principle (EP), introduced by [3]. We assume for the moment that a
monitor function, M = M(t, x), measuring the difficulty or error in the nu-
merical solution, is given. Typically, its dependence on t and x is through the
physical solution u = u(t, x). Then, equidistribution requires that the mesh
points satisfy∫ xi

xi−1

M(t, x̃) dx̃ =
1
N

∫ 1

0

M(t, x̃)dx̃ for i = 1, ..., N,

or equivalently,∫ x(ξi,t)

0

M(t, x̃) dx̃ = ξi

∫ 1

0

M(t, x̃)dx̃ for i = 1, . . . , N.

The continuous generalization of this is that∫ x(ξ,t)

0

M(t, x̃) dx̃ = ξθ(t), (1)

where θ(t) ≡
∫ 1

0
M(t, x̃) dx̃ (e.g., see [11]). It follows immediately from (1)

that
∂

∂ξ

{
M(t, x(ξ, t))

∂

∂ξ
x(ξ, t)

}
= 0. (2)

Note that (2) does not explicitly involve the node speed ẋ. This is generally
introduced by relaxing the equation to require equidistribution at time t+ τ .
A number of parabolic moving mesh PDEs (MMPDEs) are developed using
somewhat subtle simplifying assumptions and their correspondence to various
heuristically derived moving mesh methods is shown in [17] and [11, 12]. A
particularly useful one is MMPDE5,
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ẋ =
1

τM(t, x(ξ, t))
∂

∂ξ

(
M(t, x(ξ, t))

∂x

∂ξ

)
. (MMPDE5)

The relaxation parameter τ is chosen in practice (cf. [10]) so that the mesh
evolves at a rate commensurate with that of the solution u(t, x).

A simple popular choice for M(t, x) is the arclength-like monitor function

M(t, x) =

√
1 +

1
α
|ux|2, (3)

based on the premise that the error in the numerical solution is large in regions
where the solution has large gradients. It is recommended in [10] (also see [1]
and [18]) that the intensity parameter α be chosen as

α =
[∫ 1

0

|ux|dx
]2

,

expecting that about one–half of mesh points are concentrated in regions of
large gradients. We note that there are other choices for the monitor function
for certain classes of problems, cf. [2] and [15].

Using the coordinate transformation x = x(ξ, t) to rewrite the physical
PDE in quasi-Lagrangian form, a moving mesh method is obtained by solving
the coupled system

u̇− uxẋ = L(u),

ẋ =
1
τM

(Mxξ)ξ ,
(4)

where u̇ is the total time derivative of u.
Initial and boundary conditions for the physical PDE come from the prob-

lem description. On a fixed interval the boundary conditions for the mesh can
be specified as ẋ0 = ẋN = 0. If the initial solution u(x, 0) is smooth then
it suffices to use a uniform mesh as the initial mesh. Otherwise, an adap-
tive initial mesh can be obtained by solving MMPDE5 for a monitor function
computed based on the initial solution u(x, 0) (cf. [13]).

A typical implementation (cf. [13]) to solve (4) involves spatial discretiza-
tion and solution of a nonlinear system of ODEs with a stiff ODE solver
like DASSL, see [16]. This becomes quite expensive in higher dimensions.
Instead we use an alternating solution procedure where the mesh PDE is in-
tegrated over a time step for the new mesh and then the physical PDE(s) is
integrated with available old and new meshes. The reader is referred to [14]
for a detailed description of the alternating solution procedure.

3 The Schwarz Waveform Implementation

Schwarz waveform relaxation methods have garnered tremendous attention
as a means of applying domain decomposition strategies to problems in both
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space and time. Convergence results for linear problems may be found in [7]
and [4] and for nonlinear problems in [6]. There are several ways to implement
Schwarz waveform relaxation and moving meshes together to design an effec-
tive solver. In [8] and [9] the classical Schwarz waveform algorithm is applied
to the coupled system of mesh and physical PDEs. Specifically, if xj and ξj de-
note the physical and computational meshes on each overlapping subdomain
Ωj and the physical solution on each subdomain is denoted by uj then

u̇k
j −

∂uk
j

∂x
ẋk

j = L(uk
j )

ẋk
j =

1
τM(t, xk

j )
∂

∂ξ

(
M(t, xk

j )
∂xk

j

∂ξ

) (5)

is solved for j = 1, . . . , D and k = 1, 2, . . .. The boundary values for uk
j and

xk
j are obtained from the values uk−1

j−1 , x
k−1
j−1 and uk−1

j+1 , x
k−1
j+1 from the previous

iteration on the respective boundaries of Ωj−1 and Ωj+1. If this Schwarz
iteration converges it will converge to the mono–domain solution for both the
mesh and physical solution.

In this paper we propose an alternate strategy. We apply a Schwarz iter-
ation solver to the physical PDE and obtain the solution by using a moving
mesh method on each subdomain, which allows one to use standard moving
mesh software. Instead of solving the coupled mesh and physical PDEs on
each subdomain, we use the approach mentioned in the previous section and
alternately solve for the physical solution and the mesh.

As in the fixed mesh case, the rate of convergence of the classical Schwarz
iteration is improved as the size of the overlap is increased, with the faster
convergence being offset by the increased computational cost per iteration.
Things are further complicated, however, by the desire to isolate difficult
regions of the solution from regions where there is little activity. As the overlap
is increased more subdomains become “active” requiring smaller time steps
in a larger proportion of the physical domain.

4 Numerical Results

In this section we highlight some particular aspects of the moving Schwarz
method described in the previous section with the viscous Burgers’ equation,
a standard test problem for moving mesh methods. Specifically we solve ut =
εuxx− 1

2 (u2)x, u(0, t) = 1, u(1, t) = 0 and u(x, 0) = c− 1
2 tanh((x−x0)/4ε). For

our experiments we choose c = 1/2, x0 = 1/10, and ε  1. The solution is a
traveling front of thickness O(ε) which moves to the right from x0 at speed c.

In Figure 1 we illustrate the mesh trajectories generated by a moving
mesh method on one domain. The plot shows the time evolution of all mesh
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Fig. 1. Mesh trajectories generated on one domain.

points. Initially the mesh points are concentrated at the initial front location
(x0 = 1/4). As the solution evolves we see mesh points move in and out of
the front location ensuring a sufficient resolution.

Figures 2 and 3 illustrate the meshes obtained using a two domain solu-
tion during the first two Schwarz iterations with 10% overlap. We see that
the mesh points in subdomain one concentrate and follow the front until it
passes into subdomain two. At that point the mesh in subdomain two, which
was initially uniform, reacts and resolves the front until it reaches the right
boundary. During the first Schwarz iteration the mesh points stay at the right
boundary of subdomain one. The right boundary condition for subdomain one
is incorrect during the first iteration and the solution presents itself as a layer.
During the second iteration, however, the boundary condition issue has basi-
cally been resolved and the mesh in subdomain one returns to an essentially
uniform state as the front moves into subdomain two.

Fig. 2. Mesh trajectories generated on
two domains during the first Schwarz it-
eration.

Fig. 3. Mesh trajectories generated on
two domains during the second Schwarz
iteration.
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In Figures 4, 5, and 6 we show solutions of Burgers’ equation using the
moving Schwarz method on two subdomains with a 10% overlap. Each Figure
shows the solution of the physical PDE on the left and the pointwise error
on the right. The left plot of each figure shows the computed solution on
subdomain one marked with circles and the solution on subdomain two marked
with diamonds. The error plots are annotated in the same way. At t = 0.8
during the first Schwarz iteration (Figure 4) the solutions on each subdomain
agree, at least qualitatively, with the one domain solution. By t = 1.4 (Figure
5), the front has moved across the subdomain boundary and the solution on
subdomain one is not correct. This is to be expected since boundary data
for subdomain one is incorrect during the first iteration. During the third
Schwarz iteration (Figure 6), however, the solutions on both subdomains now
agree with the one domain solution to within discretization error.
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Fig. 4. Solution (left) and pointwise error
(right) after Schwarz iteration 1 at t = 0.8.

x

u

2

1.5

0.5

−0.5

−1

0

1

100

10−2

10−6

10−10

10−12

10−8

10−4

0 0.2 0.4 0.6 0.8 1
x

0 0.2 0.4 0.6 0.8 1

E
rr

or

Fig. 5. Solution (left) and pointwise error
(right) after Schwarz iteration 1 at t = 1.4.
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Fig. 6. Solution (left) and pointwise error (right) after Schwarz iteration 3 at t = 1.4.
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In our experiments, total cpu time is increased as the overlap is increased.
Convergence of the Schwarz iteration is rapid for small ε (the regime of in-
terest for moving mesh methods), requiring only two or three iterations to
reach discretization error. This is consistent with the theoretical results of
[6]. Increasing the overlap for this model problem only serves to make each
subdomain active for a larger portion of the time interval. Any improvement
in the convergence rate is more than offset by the increased cpu time on each
subdomain as the overlap is increased.

5 Conclusions

In this paper we propose a moving mesh Schwarz waveform relaxation method.
In this approach, classical Schwarz waveform relaxation is applied to the phys-
ical PDE and a moving mesh method is used to facilitate the solution on each
subdomain. In this way a solution is obtained which benefits both from the
domain decomposition approach and the ability to dynamically refine meshes
within each subdomain. A careful comparison with previous approaches [9] is
ongoing. The benefits of such an approach are likely to be fully realized in
two or more space dimensions. This is certainly the subject of current work
and interest. The effects of higher order transmission conditions (cf. [5]) are
also being studied in this context.
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grant DMS–0410545.

References

[1] G. Beckett and J. A. Mackenzie. Uniformly convergent high order finite
element solutions of a singularly perturbed reaction-diffusion equation
using mesh equidistribution. Appl. Numer. Math., 39(1):31–45, 2001.

[2] C.J. Budd, W. Huang, and R.D. Russell. Moving mesh methods for
problems with blow-up. SIAM J. Sci. Comput., 17(2):305–327, 1996.

[3] C. de Boor. Good approximation by splines with variable knots. II. In
Conference on the Numerical Solution of Differential Equations (Univ.
Dundee, Dundee, 1973), pages 12–20. Lecture Notes in Math., Vol. 363.
Springer, Berlin, 1974.

[4] M. J. Gander and A. M. Stuart. Space–time continuous analysis of wave-
form relaxation for the heat equation. SIAM J. Sci. Comput., 19(6):2014–
2031, 1998.

[5] M.J. Gander. Optimized Schwarz methods. SIAM J. Numer. Anal.,
44(2):699–731, 2006.



236 R.D. Haynes et al.

[6] M.J. Gander and C. Rohde. Overlapping Schwarz waveform relaxation for
convection-dominated nonlinear conservation laws. SIAM J. Sci. Com-
put., 27(2):415–439, 2005.

[7] E. Giladi and H.B. Keller. Space-time domain decomposition for par-
abolic problems. Numer. Math., 93(2):279–313, 2002.

[8] R.D. Haynes. The Numerical Solution of Differential Equations: Grid
Selection for Boundary Value Problems and Adaptive Time Integration
Strategies. PhD thesis, Simon Fraser University, Burnaby, B.C. V5A 1S6,
2003.

[9] R.D. Haynes and R.D. Russell. A Schwarz waveform moving mesh
method. SIAM J. Sci. Comput., 2007. To Appear.

[10] W. Huang. Practical aspects of formulation and solution of moving mesh
partial differential equations. J. Comput. Phys., 171(2):753–775, 2001.

[11] W. Huang, Y. Ren, and R.D. Russell. Moving mesh methods based on
moving mesh partial differential equations. J. Comput. Phys., 113(2):279–
290, 1994.

[12] W. Huang, Y. Ren, and R.D. Russell. Moving mesh partial differential
equations (MMPDES) based on the equidistribution principle. SIAM J.
Numer. Anal., 31(3):709–730, 1994.

[13] W. Huang and R.D. Russell. A moving collocation method for solving
time dependent partial differential equations. Appl. Numer. Math., 20(1-
2):101–116, 1996.

[14] W. Huang and R.D. Russell. Moving mesh strategy based on a gradi-
ent flow equation for two-dimensional problems. SIAM J. Sci. Comput.,
20(3):998–1015, 1999.

[15] W. Huang and W. Sun. Variational mesh adaptation. II. Error estimates
and monitor functions. J. Comput. Phys., 184(2):619–648, 2003.

[16] L.R. Petzold. A description of DASSL: a differential/algebraic system
solver. In Scientific computing (Montreal, Que., 1982), IMACS Trans.
Sci. Comput., I, pages 65–68. IMACS, New Brunswick, NJ, 1983.

[17] Y. Ren and R.D. Russell. Moving mesh techniques based upon equidis-
tribution, and their stability. SIAM J. Sci. Statist. Comput., 13(6):1265–
1286, 1992.

[18] J. M. Stockie, J. A. Mackenzie, and R. D. Russell. A moving mesh method
for one-dimensional hyperbolic conservation laws. SIAM J. Sci. Comput.,
22(5):1791–1813, 2000.



MINISYMPOSIUM 5: FETI, Balancing,
and Related Hybrid Domain Decomposition
Methods

Organizers: Axel Klawonn1, Olof B. Widlund2, and Barbara Wohlmuth3

1 University of Duisburg-Essen, Department of Mathematics, Germany.
axel.klawonn@uni-due.de

2 Courant Institute, New York University, USA. widlund@cims.nyu.edu
3 University of Stuttgart,Institute for Applied Analysis and Numerical Simulation,

Germany. wohlmuth@ians.uni-stuttgart.de

The FETI and Balancing domain decomposition algorithms form two impor-
tant families of iterative methods. They have been implemented and tested
for very large applications and have been used extensively in academia as well
as in national laboratories in Europe and the United States. Over the years,
these methods have been improved and in the FETI family, FETI–DP (dual-
primal finite element tearing and interconnection) has proven to be a very
robust algorithm which also, when carefully implemented, respects the mem-
ory hierarchy of modern parallel and distributed computing systems. This is
essential for approaching peak floating point performance.

While the coarse component of these preconditioners typically only has
a dimension which is a small multiple of the number of subdomains of the
decomposition of the domain, it has become increasingly clear that it can
become a bottleneck when the number of subdomains is very large. Solutions
of this problem are quite nontrivial. Inexact, rather than exact, solvers of
the coarse problem have been developed successfully; see the contribution
by Klawonn et al. in which FETI-DP is applied to spectral elements. The
problem can also be approached by introducing a third or even more levels.
This is demonstrated for BDDC in the paper by Mandel et al..

The FETI–DP methods are very closely related to the BDDC (balancing
domain decomposition by constraints) algorithms and, in fact, it has been
established that the eigenvalues of the relevant operators essentially are the
same, given a pair of methods defined by the same set of constraints; see
the paper by Brenner. As demonstrated in the paper by Dostál, et al., the
FETI–DP algorithms have also proven quite successful for difficult mechan-
ical contact problems. Another extension from the original studies of linear
elliptic problems and lower order finite elements is exemplified by the work
by Klawonn et al., which demonstrates that these algorithms perform very
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well also for spectral element approximations. Still another extension of the
BDDC methods is the study of Dryja et al., which develops and analyzes
Discontinuous Galerkin Methods.

The basic ideas of the FETI algorithms have also inspired work on new
iterative methods for boundary integral methods. The contribution by Of
provides a sample of this important development.

Finally, there are two papers by Dohrmann et al., which represent a dif-
ferent development. They concern two issues. The first is the development of
a new family of two-level overlapping Schwarz methods with traditional local
solvers on overlapping subdomains but where the coarse level solver is inspired
by those of iterative substructuring methods, i.e., methods which are based
on a partition into non-overlapping subdomains. While the development of
theory is just beginning, these methods have proven successful in a number
of different applications. The second issue and paper concerns the extension
of the theory for one of these methods to the case when the subdomains have
quite irregular boundaries; so far these results are for two dimensions only.

We also note that the invited plenary talk by Hyea Hyun Kim concerned
BDDC and FETI–DP algorithms for mortar finite elements.
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1 Introduction

In this paper we present a concise common framework for the BDDC algorithm
(cf. [4, 8, 9]) and the FETI-DP algorithm (cf. [6, 5, 10]), using the mathemat-
ical language of function spaces, their dual spaces and quotient spaces, and
operators. This abstract framework will be illustrated in terms of the following
model problem.

Let Ω ⊂ Rd (d = 2 or 3) be a bounded polyhedral domain subdivided into
J nonoverlapping polyhedral subdomains Ω1, . . . , ΩJ , T be a triangulation of
Ω aligned with the boundaries of the subdomains, and V (Ω) ⊂ H1

0 (Ω) be the
P1 finite element space associated with T . For simplicity, we assume that the
subdomains are geometrically conforming, i.e., the intersection of the closures
of two distinct subdomains is either empty, a common vertex, a common edge
or a common face. The interface of the subdomains is Γ =

⋃J
j=1(∂Ωj \ ∂Ω).

The model problem is to find u ∈ V (Ω) such that

a(u, v) =
J∑

j=1

aj(uj , vj) =
∫

Ω

fv dx ∀ v ∈ V (Ω), (1)

where uj = u
∣∣
Ωj

, vj = v
∣∣
Ωj

,

aj(uj , vj) = αj

∫
Ωj

∇uj · ∇vj dx,

αj is a positive constant, and f ∈ L2(Ω).
The rest of the paper is organized as follows. The common framework for

BDDC and FETI-DP will be presented in Section 2, followed by a discussion of
the additive Schwarz formulations of these algorithms in Section 3. Condition
number estimates for BDDC and FETI-DP (applied to the model problem)
are then sketched in Section 4. Throughout the paper we use 〈·, ·〉 to denote
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the canonical bilinear form between a vector space V and its dual space V ′,
and the superscript t to denote the transpose of an operator with respect to
the canonical bilinear forms.

2 A Common Framework for BDDC and FETI-DP

After parallel subdomain solves, the model problem (1) is reduced to the
interface problem of computing uΓ ∈ V (Γ ) such that

a(uΓ , vΓ ) =
∫

Ω

fvΓ dx ∀ vΓ ∈ V (Γ ), (2)

where V (Γ ) ⊂ V (Ω) is the space of discrete harmonic functions whose mem-
bers satisfy

a(vΓ , w) = 0 ∀w ∈ V (Ω) that vanish on Γ .

The interface problem (2) is solved by the BDDC method through a pre-
conditioned conjugate gradient algorithm. In the FETI-DP approach, it is first
transformed to a dual-primal problem and then solved by a preconditioned
conjugate gradient algorithm.

The first ingredient in the common framework for BDDC and FETI-DP
is of course the space V (Γ ). The restriction of V (Γ ) to Ωj gives the space
Hj of discrete harmonic functions on Ωj . The second ingredient is a space
Hc ⊂ H1 × · · · × HJ of constrained piecewise discrete harmonic functions.
The subdomain components of a function in Hc share certain average values
(constraints) along the interface Γ . In particular, we have V (Γ ) ⊂ Hc. The
constraints (shared averages) are chosen so that (i) the bilinear form a(·, ·)
remains positive definite onHc, (ii) the bilinear form aj(·, ·) is positive definite
on the subspace of Hj whose members have vanishing constraints, and (iii) the
preconditioned systems in BDDC and FETI-DP have good condition numbers.
Example For the two-dimensional model problem, the constraints that de-
fine Hc are the values of the subdomain components at the corners of the
subdomains that are interior to Ω, i.e., Hc is the space of piecewise discrete
harmonic functions that are continuous at these interior corners (cross points).
For the three-dimensional model problem, the constraints are the averages
along the edges of the subdomains that are interior to Ω, i.e., Hc is the space
of piecewise discrete harmonic functions whose average along any interior edge
is continuous across the subdomains sharing the edge.

The third ingredient of the framework is the Schur complement operator
S : Hc −→ H′

c defined by

〈Sv, w〉 = a(v, w) ∀ v, w ∈ Hc.

Let IΓ : V (Γ ) −→ Hc be the natural injection. Then the interface problem
(2) can be written as SuΓ = φΓ , where
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S = It
Γ SIΓ (3)

and 〈φΓ , v〉 =
∫

Ω

fv dx ∀ v ∈ V (Γ ).

In the FETI-DP approach, the interface problem (2) is transformed to the
equivalent dual-primal problem of finding (uc, λ) ∈ Hc× [Hc/V (Γ )]′ such that

J∑
j=1

aj(uc
j , vj) + 〈λ,QΓ v〉 =

∫
Ω

fv dx ∀ v ∈ Hc

〈µ,QΓu
c〉 = 0 ∀µ ∈ [Hc/V (Γ )]′

(4)

where QΓ : Hc −→ Hc/V (Γ ) is the canonical projection, and [Hc/V (Γ )]′

plays the role of the space of Lagrange multipliers that enforce the continuity
of the constraints along Γ for functions in Hc. Eliminating uc from (4), we
find S†λ = QΓ S−1φc, where the operator S† : [Hc/V (Γ )]′ −→ [Hc/V (Γ )] is
defined by

S† = QΓ S−1Qt
Γ (5)

and 〈φc, v〉 =
∫

Ω

fv dx ∀v ∈ Hc.

The final ingredient of the framework is a operator PΓ that projects Hc

onto V (Γ ). We can then define the preconditioners BBDDC : V (Γ )′ −→ V (Γ )
and BFETI−DP : [Hc/V (Γ )] −→ [Hc/V (Γ )]′ by

BBDDC = PΓ S−1P t
Γ , BFETI−DP = Lt

Γ SLΓ , (6)

where the lifting operator LΓ : Hc/V (Γ ) −→ Hc is given by

LΓ (v + V (Γ )) = v − IΓPΓ v ∀ v ∈ Hc. (7)

Example For our model problems the projection operator PΓ is defined by
weighted averaging:

(PΓ v)(p) =
( 1∑

j∈σp
αγ

j

) ∑
�∈σp

αγ
� v�(p) ∀ p ∈ NΓ , (8)

where NΓ = the set of nodes on Γ , σp = the index set for the subdomains
that share p as a common boundary node, and γ is any number ≥ 1/2. The
key property of this weighted averaging is that

αkα
γ
� /(

∑
j∈σp

αγ
j ) ≤ α� ∀ k, � ∈ σp. (9)

In summary, the system operators for the BDDC and FETI-DP methods
and their preconditioners are defined in terms of the four ingredients V (Γ ),
Hc, S and PΓ through (3) and (5)–(7).
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It is easy to see that

PΓ IΓ = IdV (Γ ), QΓLΓ = IdHc/V (Γ ) and IΓPΓ + LΓQΓ = IdHc
. (10)

The following result (cf. [9, 7, 3]) on the spectra of BBDDCS and BFETI−DPS
†

follows from the three relations in (10).

Theorem 1. It holds that λmin(BBDDCS) ≥ 1, λmin(BFETI−DPS
†) ≥ 1, and

σ(BBDDCS)\{1} = σ(BFETI−DPS
†)\{1}. Furthermore, the multiplicity of any

common eigenvalue different from 1 is identical for BBDDCS and BFETI−DPS
†.

3 Additive Schwarz Formulations

The additive Schwarz formulations of BBDDC and BFETI−DP involve the spaces
H̊j = {v ∈ Hj : Ejv ∈ Hc}, where Ej is the trivial extension operator defined
by

Ejv =

{
v on Ωj

0 on Ω \Ωj

, (11)

and the Schur complement operators Sj : H̊j −→ H̊′
j defined by

〈Sjv, w〉 = aj(v, w) ∀ v, w ∈ H̊j .

Example H̊j is precisely the space of discrete harmonic functions on Ωj

whose interface constraints are identically zero. For the 2D model problem
these functions vanish at the corners of Ωj . For the 3D model problem, they
have zero averages along the edges of Ωj . Note that aj(·, ·) is positive definite
on H̊j .

We can now introduce the coarse space

H0 = {v ∈ Hc : aj(vj , wj) = 0 ∀wj ∈ H̊j , 1 ≤ j ≤ J},

and define the Schur complement operator S0 : H0 −→ H′
0 by

〈S0v, w〉 = a(v, w) ∀ v, w ∈ H0.

Lemma 1. The inverse of S can be written as

S−1 =
J∑

j=0

EjS
−1
j Et

j , (12)

where Ej for 1 ≤ j ≤ J is defined in (11) and E0 : H0 −→ Hc is the natural
injection.
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Proof. Let v ∈ Hc be arbitrary. Then we have a unique decomposition
v =

∑J
k=0Ekvk, where v0 ∈ H0 and vk ∈ H̊k for 1 ≤ k ≤ J , and

[ J∑
j=0

EjS
−1
j Et

j

]
Sv =

[ J∑
j=0

EjS
−1
j Et

j

]
S

[ J∑
k=0

Ekvk

]

=
J∑

j=0

EjS
−1
j Et

jSEjvj =
J∑

j=0

Ejvj = v,

where we have used the facts that Et
jSEk = 0 if j �= k and Sj = Et

jSEj .

It follows from (6) and (12) that

BBDDC =
J∑

j=0

(PΓEj)S−1
j (PΓEj)t. (13)

Let H̊ =
∑J

j=1EjH̊j be the subspace of Hc whose members have zero
interface constraints. Note that the lifting operator defined by (7) actually
maps Hc/V (Γ ) to H̊, since the interface constraints of a function v ∈ Hc are
preserved by the weighted averaging operator PΓ . Therefore we can factorize
LΓ as

LΓ = I̊ ◦ L̊Γ ,

where L̊Γ : Hc/V (Γ ) −→ H̊ is defined by the same formula in (7) and the
operator I̊ : H̊ −→ Hc is the natural injection. We can then write

BFETI−DP = L̊t
Γ (I̊tSI̊)L̊Γ . (14)

The following lemma can be established by arguments similar to those in
the proof of Lemma 1.

Lemma 2. We have

I̊tSI̊ =
J∑

j=1

Rt
jSjRj , (15)

where Rj : H̊ −→ H̊j is the restriction operator.

It follows from (14) and (15) that

BFETI−DP =
J∑

j=1

(RjL̊Γ )tSj(RjL̊Γ ). (16)

The formulations (13) and (16) allow both algorithms to be analyzed by
the additive Schwarz theory (cf. [2, 11] and the references therein).
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4 Condition Number Estimates

In view of Theorem 1, the preconditioned systems in the BDDC and FETI-DP
methods have similar behaviors. Here we will sketch the condition number
estimates for the BDDC method applied to our model problem. Since we
already know that λmin(BBDDCS) ≥ 1, it only remains to find an upper bound
for λmax(BBDDCS) using the following formula from the theory of additive
Schwarz preconditioners (cf. [2]):

λmax(BBDDCS) = max
v∈V (Γ )\{0}

〈Sv, v〉

min
v=

∑J
j=0 PΓ Ejvj

v0∈H0, vj∈H̊j (1≤j≤J)

J∑
j=0

〈Sjvj , vj〉
(17)

Let w be a discrete harmonic function on a subdomain Ωj and the geo-
metric object G be either a corner c (dim G = 0), an open edge e (dim G = 1) or
an open face f (dim G = 2) of Ωj . We will denote by wG the discrete harmonic
function that agrees with w at the nodes on G and vanishes at all other nodes.
The following estimate (cf. [2, 11] and the references therein) is crucial for the
condition number estimate of the model problem:

|wG |
2
H1(Ωj)

≤ C
(
1 + ln

Hj

hj

)3−d+dimG
|w|2H1(Ωj)

, (18)

where d = 2 or 3, Hj is the diameter of Ωj , and hj is the mesh size of the
quasi-uniform triangulation which is the restriction of T to Ωj . We assume
that w vanishes at one of the corners of Ωj when d = 2 and that w has zero
average along one of the edges of Ωj . (Henceforth we use C to denote a generic
positive constant that can take different values at different occurrences.)

Furthermore, if w ∈ V (Γ ), then it follows from the equivalence of |w|H1(Ωj)

and |w|H1/2(∂Ωj) (cf. [2, 11]) that

|wG |H1(Ωk) ≤ C|wG |H1(Ω�) (19)

if Ωk and Ω� share the common geometric object G.
Let v ∈ V (Γ ) be arbitrary and v =

∑J
j=0 PΓEjvj be any decomposition

of v, where v0 ∈ Hc and vj ∈ H̊j for 1 ≤ j ≤ J . We want to show

〈Sv, v〉 ≤ C
(
1 + ln

H

h

)2 J∑
j=0

〈Sjvj , vj〉, (20)

where H/h = max1≤j≤J(Hj/hj).
Observe first that

〈Sv, v〉 = 〈S
J∑

j=0

PΓEjv,

J∑
k=0

PΓEkv〉
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≤ 2
[
〈SPΓE0v0, PΓE0v0〉+ 〈S

J∑
j=1

PΓEjvj ,

J∑
j=k

PΓEkv〉
]

(21)

≤ C
J∑

j=0

〈SPΓEjv, PΓEjv〉,

where we have used the fact that each vj (1 ≤ j ≤ J) only interacts
with functions from a few subdomains. Therefore, it remains only to relate
〈SPΓEjvj , PΓEjvj〉 to 〈Sjvj , vj〉.

Let w = v0 − PΓE0v0. Then w vanishes at the corners of the subdomains
when d = 2 and has zero averages along the edges of the subdomains when
d = 3. We can write

w =
∑

1≤j≤J

( ∑
c∈Cj

wc +
∑
e∈Ej

we +
∑
f∈Fj

wf

)
where Cj (resp. Ej and Fj) is the set of the corners (resp. edges and faces) of
Ωj (Cj = ∅ = Fj for d = 2), and apply (8), (9), (18) and (19) to obtain the
estimate

〈Sw,w〉 ≤ C

J∑
j=1

(
1 + ln

Hj

hj

)2

αj |v0|2H1(Ωj)
≤ C

(
1 + ln

H

h

)2

〈S0v0, v0〉,

which together with the triangle inequality implies that

〈SPΓE0v0, PΓE0v0〉 ≤ C
(
1 + ln

H

h

)2

〈S0v0, v0〉. (22)

Similarly, we have the estimate

〈SPΓEjvj , PΓEjvj〉 ≤ C
(
1 + ln

Hj

hj

)2

〈Sjvj , vj〉 for 1 ≤ j ≤ J. (23)

The estimate (20) follows from (21)–(23).
We see from (20) that

〈Sv, v〉 ≤ C
(
1 + ln

H

h

)2

min
v=

∑J
j=0 PΓ Ejvj

v0∈H0, vj∈H̊j (1≤j≤J)

J∑
j=0

〈Sjvj , vj〉. (24)

Combining (17) and (24) we have the estimate

λmax(BBDDCS) ≤ C
(
1 + ln

H

h

)2

and hence the following theorem on the condition number of BBDDCS, which
has also been obtained in [8] and [9] by a different approach.



246 S.C. Brenner

Theorem 2. For the model problem we have

κ(BBDDCS) =
λmax(BBDDCS)
λmin(BBDDCS)

≤ C
(
1 + ln

H

h

)2

,

where the positive constant C is independent of hj, Hj, αj and J .

Finally we remark that for the model problem the estimate

κ(BFETI−DPS
†) ≤ C

(
1 + ln

H

h

)2

follows from Theorem 1 and Theorem 2. A direct analysis of BFETI−DPS
† by

the additive Schwarz theory can also be found in [1].
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Summary. A simple and effective approach is presented to construct coarse spaces
for overlapping Schwarz preconditioners. The approach is based on energy mini-
mizing extensions of coarse trace spaces, and can be viewed as a generalization
of earlier work by Dryja, Smith, and Widlund. The use of these coarse spaces
in overlapping Schwarz preconditioners leads to condition numbers bounded by
C(1 +H/δ)(1 + log(H/h)) for certain problems when coefficient jumps are aligned
with subdomain boundaries. For problems without coefficient jumps, it is possible
to remove the log(H/h) factor in this bound by a suitable enrichment of the coarse
space. Comparisons are made with the coarse spaces of two other substructuring
preconditioners. Numerical examples are also presented for a variety of problems.

1 Introduction

In order to introduce the subject of this paper, consider the linear system

Ax = b, (1)

where A is a coefficient matrix, x is a vector of unknowns, and b is a known vector.
The coarse space for x can be defined as the range of an interpolation matrix Φ.
The vector of unknowns for overlapping subdomain i can be expressed as Rix, where
each row of the restriction matrix Ri has a single nonzero entry of unity. We can now
express a two-level, additive, overlapping Schwarz preconditioner for A concisely as

M−1 = ΦA−1
0 Φ

T +
N∑

i=1

RT
i A

−1
i Ri, (2)

where N is the number of subdomains, and

A0 = ΦTAΦ, Ai = RiAR
T
i . (3)

Detailed introductions to overlapping Schwarz preconditioners can be found in [15]
and [16]. If restriction matrices Ri are available, we see from (2) and (3) that the
only missing ingredient for M−1 is the interpolation matrix Φ. The subject of this
paper is an approach to constructing Φ.
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If A in (1) originates from a finite element discretization of an elliptic partial
differential equation, then Φ can be constructed using the shape functions of a coarser
discretization. One obvious shortcoming of such an approach is that it requires an
auxiliary finite element mesh. To address this shortcoming, algebraic approaches
have been developed that do not require a second mesh. Examples of these include
smoothed aggregation [1, 8] and partition of unity methods [12]. The approach
presented here is also an algebraic approach and can be viewed as a generalization
of earlier work in [6]; see also Section 5.4.3 of [16] for a description.

A common perception is that condition number bounds for iterative substructur-
ing approaches are superior to those of their overlapping Schwarz counterparts for
problems with large jumps in material properties. Although proofs are not provided
here, it can be shown, under the usual assumptions for substructuring, that use of
the subject coarse spaces in overlapping Schwarz preconditioners leads to condition
number bounds that are competitive with iterative substructuring for certain prob-
lems. In addition, for problems with constant material properties, the coarse spaces
can be enriched to give the classic bounds for two-level overlapping Schwarz pre-
conditioners whose coarse spaces are based on coarse triangulations. We note that
some other coarse spaces well suited for overlapping Schwarz preconditioners and
problems with jumps in material properties can be found in [5, 13, 7, 14].

The paper is organized as follows. The subject approach for constructing coarse
spaces is described in Section 2. Comparisons with two different substructuring
preconditioners are given in Section 3. Some of the theoretical results available to
date are summarized in Section 4. Section 5 provides numerical examples for the
Poisson equation, elasticity, plate bending, and problems in H(curl;Ω).

2 Our Approach

Consider a finite element mesh, and let Ω1, . . . , ΩN denote a partitioning of its
elements into nonoverlapping subdomains. Thus, each element is contained in exactly
one subdomain. Decomposing a mesh into subdomains can be readily done using
graph partitioning software.

Given a decomposition into nonoverlapping subdomains, the only other required
input is a coarse matrix G. This matrix has the same number of rows as x in (1)
and its number of columns is flexible. The most important feature of G is that its
columns span the rigid body modes of each subdomain. We note that the coarse
space in Algorithm 6.10 of [6] and Algorithm 5.16 of [16] is identical to the present
one for the special case of scalar partial differential equations and G chosen as a
vector with all entries equal to unity. Accordingly, we use the acronym GDSW for
generalized Dryja, Smith, Widlund coarse space.

As in (1), let x denote the vector of degrees of freedom (dofs) for the original
problem. Similarly, let xΓ denote the vector of dofs in x shared by two or more
subdomains. We then have xΓ = RΓx, where each row of the restriction matrix RΓ

has exactly one nonzero entry of unity. The vector xΓ can be expressed in partitioned
form as

xΓ =
M∑

j=1

RT
Γj
xΓj , (4)
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where xΓj = RΓjxΓ . As with the other subscripted R matrices, each row of RΓj

contains exactly one nonzero entry equal to unity. The partitioning in (4) is chosen
such that all dofs in xΓj are connected and common to the same set of subdomains.
Thus, the dofs in xΓj form an equivalence class.

The coarse approximation of xΓj is expressed as

xΓjc = GΓj qj (5)

for some qj , where the columns of GΓj form a basis for the columns of RΓjRΓG.
Accordingly, from (4) and (5) the coarse approximation of xΓ is given by

xΓc =
M∑

j=1

RT
Γj
GΓj qj = ΦΓ q (6)

for some q. The coarse space for the remaining dofs, not on subdomain boundaries,
is obtained from energy minimizing extensions of xΓc into subdomain interiors. We
note that these extensions require either exact or approximate (with some care) solu-
tions of subdomain problems with nonhomogeneous essential boundary conditions.
All of these problems are local to each subdomain and can be solved in parallel.
Notice that the support of coarse basis functions associated with GΓj only includes
those subdomains having Γj a part of their boundaries. Thus, the coarse basis func-
tions have local support.

To obtain an explicit expression for the interpolation matrix Φ, define

xc = RT
ΓxΓc +RT

I xI , (7)

where RI is a restriction matrix to subdomain interiors and xI is the corresponding
vector of interior dofs. Substituting (6) into (7) and minimizing the potential xT

c Axc

with respect to xI then leads to

xc = (RT
ΓΦΓ +RT

I ΦI)q = Φq,

where
ΦI = −(RIAR

T
I )−1RIAR

T
ΓΦΓ .

3 Comparisons

In this section we make some broad comparisons with the coarse spaces for the
BDD, [10] and BDDC, [2, 11] approaches. The results are summarized in Table 1.
Regarding Point 3, the sparsity of the coarse stiffness matrix for BDD is not as nice
as the other two because coupling can occur between nonadjacent subdomains. Of
the three approaches compared, notice that the present one (GDSW) is the only
one not requiring individual subdomain matrices. Concerning Point 8, the problem
considered is a unit cube decomposed into N cubic subdomains. Notice that the
coarse problem dimension is significantly larger for GDSW than for the other two
approaches. We note, however, that the 9N figure for BDDC would be somewhat
larger to effectively handle certain problems with large material property jumps.
Regarding Point 9, we comment that special considerations must be made in order
for BDD and BDDC to effectively handle nearly incompressible elasticity problems.
In contrast, no special considerations are needed for GDSW. The primary reason
for this can be linked to the large coarse space dimension of GDSW.
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Table 1. Comparisons of coarse spaces for three different approaches. Results under
the heading GDSW are for the present approach.

Point BDD BDDC GDSW

1 well suited for elasticity problems yes yes yes
2 well suited for plate bending problems yes yes yes
3 nice coarse problem sparsity no yes yes
4 individual subdomain matrices required yes yes no
5 null space information required yes no yes
6 simple multilevel extensions no yes yes
7 theory for coefficient jumps yes yes yes
8 3D elasticity coarse problem dimension 6N 9N 36N
9 well suited for nearly incompressible elasticity yes yes yes

4 Theory

Theoretical results for two-level overlapping Schwarz preconditioners which use the
subject coarse spaces have been obtained for the Poisson equation and for isotropic
elasticity provided the Poisson ratio ν is bounded away from 1/2. Because of space
limitations, additional details and proofs are given elsewhere [3]. Under the usual
assumptions for substructuring given in Section 4.2 of [16], we have the condition
number bound

κ(M−1A) ≤ C(1 +H/δ)(1 + log(H/h)), (8)

provided the columns of the coarse matrix G of Section 2 span the rigid body modes
of the problem operator. The constant C is independent of both the number of
subdomains and possible jumps in material properties across subdomain boundaries.
The term H/h is the ratio of the subdomain diameter to that of the elements and
H/δ is the typical ratio of H and overlap widths. For problems without coefficient
jumps, the log(H/h) term in (7) can be removed anytime the columns of G span all
linear functions of the spatial coordinates.

For stable, mixed finite element formulations of elasticity that are based on
continuous interpolation of displacement and discontinuous interpolation of pressure,
the pressure dofs can be eliminated at the element level provided ν < 1/2. Such an
elimination process results in a finite element with only displacement dofs. Numerical
results and initial theoretical work for problems that use such elements suggest
that condition number bounds exist which are insensitive to ν being arbitrarily
close to the incompressible limit of 1/2. The bound in (8), however, has an (H/δ)3

dependence [4].
The coarse spaces considered here have also proven useful in the analysis of

overlapping Schwarz [3] and iterative substructuring [9] methods on irregular sub-
domains in two dimensions. Efforts are underway to extend these results to irregular
subdomains in three dimensions.

Numerical results in the next section suggest that the coarse spaces also work
well for plate bending and H(curl;Ω) problems in 2D, but we presently have no
supporting theory. In addition, a suitable coarse space for H(curl;Ω) problems in
3D has not yet been identified.
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5 Numerical Examples

Results are presented for unit square domains with homogeneous essential boundary
conditions on all four sides. The stable Q2−P1 element is used in the nearly incom-
pressible elasticity examples. This element uses continuous biquadratic interpolation
of displacement and discontinuous linear interpolation of pressure. Moreover, its
pressure dofs are eliminated at the element level. The standard bilinear element Q1

is used for all the other elasticity and Poisson equation examples. The plate bending
examples use the discrete Kirchoff triangular element and the lowest-order quadri-
lateral edge element is used for the H(curl;Ω) examples. Except for the H(curl;Ω)
examples, the columns of the coarse matrix G described in Section 2 span the rigid
body modes of the problem operator.

Equation (1) is solved to a relative residual tolerance of 10−8 for a random vector
b using preconditioned conjugate gradients. In addition to numbers of iterations,
condition number estimates obtained from the conjugate gradient iterations are
also reported. The overlap width δ is defined as the minimum distance between a
subdomain boundary and the boundary of its overlapping extension. Unless stated
otherwise, the values of the elastic modulus and Poisson ratio ν are 1 and 0.3,
respectively. The elasticity results are for plane strain conditions.

5.1 Poisson Equation, Compressible Elasticity, Plate Bending

Results for fixed values of H/h, H/δ, and increasing numbers of square subdomains
are shown in Table 2. Good scalability with respect to the number of subdomains
N is evident for all three problem types. We now fix N = 16 and H/δ = 4 while
increasing the ratio H/h. The slow growth in iterations and condition numbers
shown in Table 3 is consistent with the estimate in (8). Results for a problem with
the elastic modulus equal to σ in a square centered region of length 1/2 and equal to 1
elsewhere are shown in Table 4. Material property jumps are aligned with subdomain
boundaries and there is no great sensitivity to σ in the numerical results.

Table 2. Iterations (iter) and condition number estimates (cond) for increasing
numbers of subdomains N . Fixed values of H/h = 8 and H/δ = 4 are used.

N Poisson Equation Linear Elasticity Plate Bending

iter cond iter cond iter cond

16 24 8.97 24 6.93 41 17.7
64 27 10.0 26 7.52 48 19.8
256 28 10.3 28 8.01 51 21.1
1024 30 10.4 29 8.28 55 21.7

5.2 Nearly Incompressible Elasticity

Results for a fixed value of H/δ are shown in Table 5 for three different values of
the Poisson ratio ν. As noted earlier, the stable Q2 − P1 element is used. Good
scalability with respect to the number of subdomains is evident for all three values
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Table 3. Results for N = 16 and H/δ = 4.

H/h Poisson Equation Linear Elasticity Plate Bending

iter cond iter cond iter cond

8 24 8.97 24 6.93 41 17.7
16 25 10.5 25 7.87 46 23.4
24 25 11.3 26 8.38 48 26.2
32 26 11.9 27 8.73 50 28.0
40 26 12.3 27 8.99 48 29.4

Table 4. Results for elastic modulus equal to σ in a square centered region and 1
elsewhere. Fixed values of N = 16, H/h = 8, and H/δ = 4 are used.

σ Poisson Equation Linear Elasticity Plate Bending

iter cond iter cond iter cond

10−4 23 6.93 24 6.02 38 13.7
10−2 23 7.05 23 6.05 40 15.4

1 24 8.97 24 6.93 41 17.7
102 24 10.5 26 7.72 39 17.3
104 24 10.5 27 7.74 38 15.3

of ν. Table 5 also shows results for 16 subdomain and different values of H/h. As
in the previous examples, the number of iterations and condition number estimates
grow slowly as H/h increases. Notice in all the examples that the ratio H/δ has
been fixed. Although the relevant numerical results are not presented here, we have
observed a stronger dependence on H/δ than in (8) for problems with ν very close
to 1/2.

Table 5. Plane strain results for H/δ = 4.

H/h = 8 N = 16

N ν = 0.3 ν = 0.4999 ν = 0.49999 H/h ν = 0.3 ν = 0.4999 ν = 0.49999

iter cond iter cond iter cond iter cond iter cond iter cond

16 25 8.05 31 10.6 33 10.6 8 25 8.05 31 10.6 33 10.6
64 29 8.93 32 11.2 34 11.2 16 27 8.89 33 12.3 34 12.3

256 32 9.67 34 11.6 35 11.7 24 28 9.35 34 13.4 36 13.4
1024 33 10.1 34 11.7 35 11.7 32 28 9.67 35 14.1 36 14.1
4096 34 10.3 34 11.7 35 11.8 40 28 9.90 34 14.6 36 14.7

5.3 H(curl; Ω) Examples

We now consider examples for the bilinear form

a(u,v) =

∫
Ω

(α(∇× u) · (∇× v) + βu · v)dx,
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where α ≥ 0, β > 0, and ∇×u denotes the curl of u. We assume that edge element
shape functions are scaled so that the integral of the tangential component along
each edge of an element is unity. Assuming a consistent sign convention for each
element edge of a subdomain edge, the matrix G is chosen as a vector with all
entries equal to unity.

To simplify the computer implementation, an overlapping subdomain is chosen
to include all edges a graph distance m or less from the edges of the nonoverlapping
subdomain. Results for fixed values of β, H/h, and m are shown in Table 6 for
different values of α and N . Similar results for increasing values of H/h are shown
in Table 7. In contrast to the previous examples, monotonic growth of condition
number estimates with H/h is not evident. This may be caused by our choice of
overlapping subdomains, but the results are quite acceptable.

Table 6. H(curl;Ω) results for H/h = 8, m = 1, and β = 1.

N α = 0.0 α = 10−2 α = 1 α = 102 α = 104

iter cond iter cond iter cond iter cond iter cond

16 6 3.01 20 5.28 25 7.38 28 7.48 30 7.49
32 6 3.01 22 5.96 26 7.47 28 7.53 31 7.54
64 6 3.01 23 6.43 26 7.52 29 7.56 31 7.57
100 6 3.01 24 6.77 27 7.58 30 7.61 32 7.62

Table 7. H(curl;Ω) results for N = 16, H/(mh) = 8, and β = 1.

H/h α = 0.0 α = 10−2 α = 1 α = 102 α = 104

iter cond iter cond iter cond iter cond iter cond

8 6 3.01 20 5.28 25 7.38 28 7.48 30 7.49
16 4 3.00 21 5.61 25 7.46 28 7.52 30 7.53
24 4 3.00 21 5.76 25 7.39 27 7.41 29 7.45
32 4 3.00 21 5.85 25 7.47 26 7.52 29 7.53
40 3 3.00 21 5.88 25 7.30 27 7.45 29 7.49

6 Conclusions

A simple and effective approach to constructing coarse spaces for overlapping
Schwarz preconditioners has been presented. Initial numerical and theoretical re-
sults suggest that it could be a viable approach for a variety of problem types.
There remain several opportunities for future discovery and development from both
a theoretical and practical point of view.
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[1] M. Brezina and P. Vanĕk. A black box iterative solver based on a two-level
Schwarz method. Computing, 63:233–263, 1999.

[2] C. R. Dohrmann. A preconditioner for substructuring based on constrained
energy minimization. SIAM J. Sci. Comput., 25(1):246–258, 2003.

[3] C. R. Dohrmann, A. Klawonn, and O. B. Widlund. Domain decomposition for
less regular subdomains: Overlapping Schwarz in two dimensions. Technical
Report TR2007–888, Department of Computer Science, Courant Institute of
Mathematical Sciences, New York University, March 2007.

[4] C. R. Dohrmann and O. B. Widlund. An overlapping Schwarz preconditioner
for almost incompressible elasticity. In preparation, 2007.

[5] M. Dryja, M. V. Sarkis, and O. B. Widlund. Multilevel Schwarz methods for
elliptic problems with discontinuous coefficients in three dimensions. Numer.
Math., 72(3):313–348, 1996.

[6] M. Dryja, B. F. Smith, and O. B. Widlund. Schwarz analysis of iterative
substructuring algorithms for elliptic problems in three dimensions. SIAM J.
Numer. Anal., 31(6):1662–1694, 1994.

[7] I. G. Graham, P. Lechner, and R. Scheichl. Domain decomposition for multi-
scale pdes. Technical report, Bath Institute for Complex Systems, 2006.

[8] E. W. Jenkins, C. E. Kees, C. T. Kelley, and C. T. Miller. An aggregation-
based domain decomposition preconditioner for groundwater flow. SIAM J.
Sci. Comput., 23(2):430–441, 2001.

[9] A. Klawonn, O. Rheinbach, and O. B. Widlund. An analysis of a FETI-DP
algorithm on irregular subdomains in the plane. Technical Report TR2007–889,
Department of Computer Science, Courant Institute of Mathematical Sciences,
New York University, April 2007.

[10] J. Mandel. Balancing domain decomposition. Comm. Numer. Methods Engrg.,
9:233–241, 1993.

[11] J. Mandel and C. R. Dohrmann. Convergence of a balancing domain decompo-
sition by constraints and energy minimization. Numer. Linear Algebra Appl.,
10(7):639–659, 2003.

[12] M. Sarkis. Partition of unity coarse spaces and Schwarz methods with harmonic
overlap. Lecture Notes in Computational Science and Engineering, 23:77–94,
2002.

[13] M. Sarkis. Partition of unity coarse spaces: Enhanced versions, discontin-
uous coefficients and applications to elasticity. In I. Herrera, D. E. Keyes,
O. B. Widlund, and R. Yates, editors, Fourteenth International Conference on
Domain Decomposition Methods, 2003.

[14] R. Scheichl and E. Vainikko. Additive Schwarz and aggregation-based coars-
ening for elliptic problems with highly variable coefficients. Technical report,
Bath Institute for Complex Systems, 2006.

[15] B. Smith, P. Bjørstad, and W. Gropp. Domain Decomposition: Parallel Multi-
level Methods for Elliptic Partial Differential Equations. Cambridge University
Press, 1996.

[16] A. Toselli and O. Widlund. Domain Decomposition Methods – Algorithms and
Theory. Springer Series in Computational Mathematics. Springer, 2005.



Extending Theory for Domain Decomposition
Algorithms to Irregular Subdomains

Clark R. Dohrmann1, Axel Klawonn2, and Olof B. Widlund3

1 Sandia National Laboratories, Albuquerque, USA. crdohrm@sandia.gov
2 Universität Duisburg-Essen, Essen, Germany. axel.klawonn@uni-due.de
3 Courant Institute, New York University, New York, USA.
widlund@cims.nyu.edu

1 Introduction

In the theory of iterative substructuring domain decomposition methods, we typi-
cally assume that each subdomain is quite regular, e.g., the union of a small set of
coarse triangles or tetrahedra; see, e.g., [13, Assumption 4.3]. However, this is often
unrealistic especially if the subdomains result from using a mesh partitioner. The
subdomain boundaries might then not even be uniformly Lipschitz continuous. We
note that existing theory establishes bounds on the convergence rate of the algo-
rithms which are insensitive to even large jumps in the material properties across
subdomain boundaries as reflected in the coefficients of the problem. The theory for
overlapping Schwarz methods is less restrictive as far as the subdomain shapes are
concerned, see e.g. [13, Chapter 3], but little has been known on the effect of large
changes in the coefficients; see however [11] and recent work [6] and [12].

The purpose of this paper is to begin the development of a theory under much
weaker assumptions on the partitioning. We will focus on a recently developed over-
lapping Schwarz method, see [4], which combines a coarse space adopted from an
iterative substructuring method, [13, Algorithm 5.16], with local preconditioner com-
ponents selected as in classical overlapping Schwarz methods, i.e., based on solving
problems on overlapping subdomains. This choice of the coarse component will al-
low us to prove results which are independent of coefficient jumps. We note that
there is an earlier study of multigrid methods [5] in which the coarsest component
is similarly borrowed from iterative substructuring algorithms.

We will use nonoverlapping subdomains, and denote them by Ωi, i = 1, . . . , N ,
as well as overlapping subdomains Ω′

j , j = 1, . . . , N ′. The interface between the Ωi

will be denoted by Γ.
So far, complete results have only been obtained for problems in the plane.

Although our results also hold for compressible plane elasticity, we will confine
ourselves to scalar elliptic problems of the following form:

−∇ · (ρ(x)∇u(x)) = f(x), x ∈ Ω ⊂ IR2, (1)

with a Dirichlet boundary condition on a measurable subset ∂ΩD of ∂Ω, the bound-
ary of Ω, and a Neumann condition on ∂ΩN = ∂Ω \ ∂ΩD. The coefficient ρ(x) is
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strictly positive and assumed to be a constant ρi for x ∈ Ωi. We use piecewise lin-
ear, continuous finite elements and triangulations with shape regular elements and
assume that each subdomain is the union of a set of quasi uniform elements. The
weak formulation of the elliptic problem is written in terms of a bilinear form,

a(u, v) :=
N∑

i=1

ai(u, v) :=
N∑

i=1

ρi

∫
Ωi

∇u · ∇vdx.

Our study requires the generalization of some technical tools used in the proof
of a bound of the convergence rate of this type of algorithm; see [3, 8]. Some of
the standard tools are no longer available and we have to modify the basic line of
reasoning in the proof of our main result. Three auxiliary results, namely a Poincaré
inequality, a Sobolev-type inequality for finite element functions, and a bound for
certain edge terms, will be required in our proof; see Lemmas 2, 3, and 4. We will
work with John domains, see Section 2, and will be able to express our bounds on
the convergence of our algorithm in terms of a few geometric parameters.

2 John Domains and a Poincaré Inequality

We first give a definition of a John domain; see [7] and the references therein.

Definition 1 (John domain). A domain Ω ⊂ IRn – an open, bounded, and con-
nected set – is a John domain if there exists a constant CJ ≥ 1 and a distinguished
central point x0 ∈ Ω such that each x ∈ Ω can be joined to it by a curve γ : [0, 1] → Ω
such that γ(0) = x, γ(1) = x0 and dist(γ(t), ∂Ω) ≥ C−1

J |x− γ(t)| for all t ∈ [0, 1].

This condition can be viewed as a twisted cone condition. We note that certain
snowflake curves with fractal boundaries are John domains and that the length of
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Fig. 1. The subdomains are obtained by first partitioning the unit square into
smaller squares. We then replace the middle third of each edge by the other two
edges of an equilateral triangle, increasing the length by a factor 4/3. The middle
third of each of the resulting shorter edges is then replaced in the same way and
this process is repeated until we reach the length scale of the finite element mesh.
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the boundary of a John domain can be arbitrarily much larger than its diameter;
see Figure 1.

In any analysis of any domain decomposition method with more than one level,
we need a Poincaré inequality. This inequality is closely related to an isoperimetric
inequality; see [10].

Lemma 1 (Isoperimetric inequality). Let Ω ⊂ IRn be a domain and let f be
sufficiently smooth. Then,

inf
c∈IR

(∫
Ω

|f − c|n/(n−1) dx

)(n−1)/n

≤ γ(Ω,n)
∫

Ω

|∇f | dx,

if and only if,
[min(|A|, |B|)]1−1/n ≤ γ(Ω,n)|∂A ∩ ∂B|. (2)

Here, A ⊂ Ω is arbitrary, and B = Ω \ A; γ(Ω,n) is the best possible constant and
|A| is the measure of the set A, etc.

We note that the domain does not need to be star-shaped or Lipschitz. For two
dimensions, we immediately obtain a standard Poincaré inequality by using the
Cauchy-Schwarz inequality.

Lemma 2 (Poincaré’s inequality). Let Ω ⊂ IR2 be a domain. Then,

inf
c∈IR

‖u− c‖2L2(Ω) ≤ (γ(Ω, 2))2|Ω|‖∇u‖2L2(Ω), ∀u ∈ H1(Ω).

For n = 3 such a bound is obtained by using Hölder’s inequality several times. In
Lemma 2, we then should replace |Ω| by |Ω|2/3. The best choice of c is ūΩ , the
average of u over the domain.

Throughout, we will use a weighted H1(Ωi)−norm defined by

‖u‖2H1(Ωi)
:= |u|2H1(Ωi)

+ 1/H2
i ‖u‖2L2(Ωi) :=

∫
Ωi

∇u · ∇udx + 1/H2
i

∫
Ωi

|u|2dx.

Here, Hi is the diameter of Ωi. The weight originates from a dilation of a domain
with diameter 1. We will use Lemma 2 to remove L2−terms from full H1−norms.

3 The Algorithm, Technical Tools, and the Main Result

The domain Ω ⊂ IR2 is decomposed into nonoverlapping subdomains Ωi, each of
which is the union of finite elements, and with the finite element nodes on the
boundaries of neighboring subdomains matching across the interface Γ , which is the
union of the parts of the subdomain boundaries which are common to at least two
subdomains. The interface Γ is composed of edges and vertices. An edge Eij is an
open subset of Γ , which contains the nodes which are shared by the boundaries
of a particular pair of subdomains Ωi and Ωj . The subdomain vertices Vk are end
points of edges and are typically shared by more than two; see [9, Definition 3.1]
for more details on how these sets can be defined for quite general situations. We
denote the standard finite element space of continuous, piecewise linear functions
on Ωi by V h(Ωi) and assume that these functions vanish on ∂Ωi ∩ ∂ΩD.
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We will view our algorithm as an additive Schwarz method, as in [13, Chapter
2], being defined in terms of a set of subspaces. To simplify the discussion, we will
use exact solvers for both the coarse problem and the local ones. All that is then
required for the analysis of our algorithm is an estimate of a parameter in a stable
decomposition of any elements in the finite element space; see [13, Assumption 2.2
and Lemma 2.5]. Thus, we need to estimate C2

0 in

N′∑
j=0

a(uj , uj) ≤ C2
0a(u, u), ∀u ∈ V h,

for some {uj}, such that

u =
N′∑
j=0

RT
j uj , uj ∈ Vj .

Here RT
j : Vj −→ V h is an interpolation operator from the space of the j-th

subproblem, defined on Ω′
j , into the space V h. By using [13, Lemmas 2.5 and 2.10],

we find that the condition number κ(Pad) of the additive Schwarz operator can
be bounded by (NC + 1)C2

0 where NC is the minimal number of colors required
to color the subdomains Ω′

j such that no pair of intersecting subdomains have the
same color.

Associated with each space Vj is a projection Pj defined by

a(P̃ju, v) = a(u, v), ∀v ∈ Vj , and Pj = RT
j P̃j .

The additive Schwarz operator, the preconditioned operator used in our iteration,
is

Pad =

N′∑
j=0

Pj .

The coarse space V0, which is described differently in [4], is spanned by functions
defined by their values on the interface and extended as discrete harmonic functions
into the interior of the subdomains Ωi. The discrete harmonic extensions minimize
the energy; see [13, Section 4.4]. There is one basis function, θVk(x), for each sub-
domain vertex; it is the discrete harmonic extension of the standard nodal basis
function. There is also a basis function, θEij (x), for each edge Eij , which equals 1
at all nodes on the edge and vanishes at all other interface nodes. The vertex and
edge functions provide a partition of unity.

The local spaces Vj , j = 1, . . . N ′, are defined as

Vj = V h(Ω′
j) ∩H1

0 (Ω′
j).

This is the standard choice as in [13, Chapter 3]. We assume that each Ω′
j has a

diameter comparable to those of the subdomains Ωi which intersect Ω′
j ; we also

assume that neighboring subdomains Ωi and Ωj have comparable diameters. The
overlap between the subdomains is characterized by parameters δj , as in [13, As-
sumption 3.1]; δj is the minimum width of the subset Ωj,δj of Ω′

j which is also
covered by neighboring overlapping subdomains. We will assume that the width of
Ωj,δj is on the order of δj everywhere; our arguments can easily be extended to a
more general case.
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We can now formulate our main result, which is also valid for compressible
elasticity with piecewise constant Lamé parameters, provided that the coarse space
is enriched as in [4].

Theorem 1 (Condition number estimate). Let Ω ⊂ IR2 be an arbitrary John
domain with a shape regular triangulation. The condition number then satisfies

κ(Pad) ≤ C (1 +H/δ)(1 + log(H/h))2,

where C > 0 is a constant which only depends on the John and Poincaré parame-
ters, the number of colors required for the overlapping subdomains, and the shape
regularity of the finite elements.

Here, H/h is shorthand for maxi(Hi/hi), as in many domain decomposition papers;
hi is the diameter of the smallest element of Ωi. Similarly, H/δ is the largest ratio
of Hi and the smallest of the δj of the subregions Ω′

j that intersect Ωi.
The logarithmic factors of our main result can be improved to a first power if a

sufficiently large subset of each subdomain edge is Lipschitz. If the coefficients do
not have large jumps across the interface, the coarse space is suitably enriched, and
the subregions satisfy [13, Assumption 4.3], we can eliminate the logarithmic factors
altogether.

To prove this theorem, we need two auxiliary results, in addition to Poincaré’s
inequality. The first is a discrete Sobolev inequality:

Lemma 3 (Discrete Sobolev inequality).

‖u‖2L∞(Ωi) ≤ C(1 + log(H/h))‖u‖2H1(Ωi)
, ∀u ∈ V h(Ωi). (3)

The constant C > 0 depends only on the John parameter and the shape regularity of
the finite elements.

The inequality (3) is well-known in the theory of iterative substructuring meth-
ods. Proofs for domains satisfying an interior cone condition are given in [1] and in
[2, Sect. 4.9].

The second important tool provides estimates of the edge functions.

Lemma 4 (Edge functions). The edge function θEij can be bounded as follows:

‖θEij‖2H1(Ωi)
≤ C(1 + log(Hi/hi)), (4)

and
‖θEij‖2L2(Ωi) ≤ CH

2
i (1 + log(Hi/hi)). (5)

Proofs of Lemmas 3 and 4 are given in [3] and [8], respectively. We note that in-
equality (4) can be established using ideas similar to those in [13, Section 4.6.3].
The proof of inequality (5) requires a new idea. We note that a uniform L2−bound
holds for more regular edges or if all angles of the triangulation are acute.
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4 Proof of Theorem 1

As in many other proofs of results on domain decomposition algorithms, we can
work on one subdomain at a time. With local bounds, there are no difficulties in
handling variations of the coefficients across the interface.

We recall that the coarse space is spanned by the θVk , the discrete harmonic
extensions of the restrictions of the standard nodal basis functions to Γ , and the edge
functions θEij . The vertex basis functions have bounded energy, while, according to
(4), the edge functions have an energy that grows in proportion to (1 + log(H/h)).
The coarse space component u0 ∈ V0 in the decomposition of an arbitrary finite
element function u(x) is chosen as

u0(x) =
∑

k

u(Vk)θVik (x) +
∑
ij

ūEijθEij (x).

Here, ūEij is the average of u over the edge. This interpolation formula is the two-
dimensional analog of [13, Formula (5.13)] and it reproduces constants. In the case
of regular edges, we can estimate the edge averages by using the Cauchy–Schwarz
inequality and an elementary trace theorem. In our much more general case, we
instead get two logarithmic factors by estimating the edge averages by ‖u‖L∞ and
using Lemmas 3 and 4. The norms of the vertex terms of u0 are bounded by one
logarithmic factor. Replacing u(x) by u(x)− ūΩi and using Lemma 2, to remove the
L2−terms of the H1−norms, we find that

|u0|2H1(Ωi)
≤ C(1 + log(H/h))2|u|2H1(Ωi)

,

and
a(u0, u0) ≤ C(1 + log(H/h))2a(u, u).

Similarly, we can prove

‖u− u0‖2L2(Ωi) ≤ C(1 + log(H/h))2H2
i |u|2H1(Ωi)

. (6)

In the case of regular subdomain boundaries, or if all angles of the triangulation are
acute, no logarithmic factors are necessary in (6).

We now turn to the estimate related to the local spaces. Again, we will carry out
the work on one subdomain Ωi at a time. Let w := u−u0 and define a local term in
the decomposition by uj = Ih(θjw). We will borrow extensively from [13, Sections
3.2 and 3.6]. Thus, Ih interpolates into V h and the θj , supported in Ω′

j , provide
a partition of unity. These functions vary between 0 and 1 and their gradients are
bounded by |∇θj | ≤ C/δj and they vanish outside the areas of overlap.

We note only a fixed number of Ω′
j intersect Ωi; we will only consider the con-

tribution from one of them, Ω′
j . As in our earlier work, the only term that requires

a careful estimate is ∇θjw. We cover the set Ωj,δj with patches of diameter δj and
note that on the order of Hi/δj of them will suffice. Just as in the proof of [13,
Lemma 3.11], we have∫

Ωi

|∇θjw|2 ≤ C/δ2j
(
δ2j |w|2H1(Ωi)

+ (Hi/δj)δ
2
j ‖w‖2H1(Ωi)

)
.

The proof is completed by using (6) and the bound on the energy of u0.
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Summary. We review our FETI based domain decomposition algorithms for the
solution of 2D and 3D frictionless contact problems of elasticity and related theo-
retical results. We consider both cases of restrained and unrestrained bodies. The
scalability of the presented algorithms is demonstrated on the solution of 2D and
3D benchmarks.

1 Introduction

The Finite Element Tearing and Interconnecting (FETI) method was originally pro-
posed by Farhat and Roux (see [15]) as a parallel solver for problems described
by elliptic partial differential equations. The computational domain is decomposed
(teared) into non-overlapping subdomains that are “glued” by Lagrange multipliers,
so that, after eliminating the primal variables, the original problem is reduced to a
small, relatively well-conditioned, possibly equality constrained quadratic program-
ming problem that is solved iteratively. The time that is necessary for both the
elimination and iterations can be reduced nearly proportionally to the number of
the subdomains, so that the algorithm enjoys parallel scalability. Since then, many
preconditioning methods were developed which guarantee also numerical scalability
of the FETI methods (see, e.g., [18]). The equality constraints can be avoided by
using the Dual-Primal FETI method (FETI–DP) introduced by Farhat et al., see
[13]. The continuity of the primal solution at crosspoints is implemented directly
into the formulation of the primal problem by considering one degree of freedom
per variable at each crosspoint. Across the rest of the subdomain interfaces, the
continuity of the primal solution is once again enforced by Lagrange multipliers.
After eliminating the primal variables, the problem is again reduced to a small,
unconstrained, relatively well conditioned, strictly convex quadratic programming
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problem that is solved iteratively. An attractive feature of FETI–DP is that the lo-
cal problems are nonsingular. Moreover, the conditioning of the resulting quadratic
programming problem may be further improved by preconditioning, see [17], and
the method performs better than the original FETI method on the fourth order
problems.

Though the FETI and FETI-DP domain decomposition methods were originally
developed for solving efficiently large-scale linear systems of equations arising from
the discretization of the problems defined on a single domain Ω, it was soon ob-
served that they can be even more efficient for the solution of multidomain contact
problems, see e.g. [12, 5], and [1]. The reason is that the duality in this case not only
reduces the original discretized problem to a smaller and better conditioned prob-
lem, but it also transforms the more general inequalities describing non-penetration
into the bound constraints that can be treated much more efficiently. Moreover, since
the FETI method treats naturally such subdomains, this approach is well suited for
the solution of semicoercive contact problems with “floating” subdomains. These
observations were soon confirmed by numerical experiments ([12, 5], and [1]). Re-
cently, using new results in development of quadratic programming (see [11, 4]), the
experimental evidence was supported by theory (see [3, 6, 9, 10]). There are also
references to some other development of scalable algorithms for contact problems.
See also [16] or the paper by Krause in this proceedings.

In this paper, we review our work related to the development of scalable algo-
rithms for the solution of multibody contact problems by FETI–DP based methods
with a special stress on the solution of 3D problems. For the sake of simplicity, we
consider only the frictionless problems of linear elasticity with the linearized, possi-
bly non-matching non-interpenetration conditions implemented by mortars, but the
results may be exploited also for the solution of the problems with friction or large
deformations with more sophisticated implementation of the kinematic constraints,
see e.g. [8].

2 FETI and Contact Problems

Assuming that the bodies are assembled from the subdomains Ω(s), the equilibrium
of the system may be described as a solution u of the problem

min j(v) subject to

Ns∑
s=1

B
(s)
I v(s) ≤ gI and

Ns∑
s=1

B
(s)
E v(s) = o, (1)

where j(v) is the energy functional defined by

j(v) =

Ns∑
s=1

1

2
v(s)T

K(s)v(s) − v(s)T
f (s),

v(s) and f (s) denote the admissible subdomain displacements and the subdomain
vector of prescribed forces, K(s) is the subdomain stiffness matrix, B(s) is a block of

the matrix B =
[
BT

I ,B
T
E

]T
that corresponds to Ω(s), and gI is a vector collecting

the gaps between the bodies in the reference configuration. The matrix BI and the
vector gI arise from the nodal or mortar description of non-penetration conditions,
while BE describes the “gluing” of the subdomains into the bodies.
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To simplify the presentation of basic ideas, we can describe the equilibrium in
terms of the global stiffness matrix Kg, the vector of global displacements ug, and
the vector of global loads fg. In the original FETI methods, FETI I and FETI II,
we have

Kg = diag(K(1), . . . ,K(Ns)), ug =

⎡⎢⎣ u(1)

...

u(Ns)

⎤⎥⎦ , and fg =

⎡⎢⎣ f (1)

...

f (Ns)

⎤⎥⎦ ,
where K(s) is a positive definite or positive semidefinite matrix.

A distinctive feature of the FETI-DP method is that the continuity of the com-
ponents of the displacement field at some “corner” interface nodes is not enforced by
the Lagrange multipliers, but is achieved by defining the corner unknowns only at
the global level, while defining all other displacement unknowns at the subdomain
level. If the subscripts c and r are chosen to designate all the degrees of freedom
that correspond to the corners and remainders, respectively, then the subdomain
and global stiffness matrices have the form

K(s) =

[
K

(s)
rr K

(s)
rc

K
(s)
cr K

(s)
cc

]
and Kg =

[
Kg

rr Kg
rc

Kg
cr Kg

cc

]
, Kg

rr = diag(K(1)
rr , . . . ,K

(Ns)
rr ),

where Kg
rr = diag(K

(1)
rr , . . . ,K

(Ns)
rr ) is nonsingular and Kg

cc is a positive definite or
semidefinite small matrix.

Whichever variant of the domain decomposition we use, the energy function
reads

j(vg) =
1

2
vT

g Kgvg − fT
g vg

and the vector of global displacements ug solves

min j(vg) subject to BIvg ≤ gI and BEvg = o. (2)

Alternatively, the global equilibrium my be described by the Karush-Kuhn-
Tucker conditions (e.g. [2])

Kgug = fg − BT λ, λI ≥ o, λT
I (BIu− gI) = o, (3)

where g =
[
gT

E ,o
T
]T

, and λ =
[
λT

I ,λ
T
E

]T
denotes the vector of Lagrange multipliers

which may be interpreted as the reaction forces. The problem (3) differs from the
linear problem by the non-negativity constraint on the components of reaction forces
λI and by the complementarity condition.

We can use the left equation of (3) and the sparsity pattern of Kg to eliminate
the displacements. We shall get the problem to find

max Θ(λ) s.t. λI ≥ o and RT (fg − BT λ) = o, (4)

where

Θ(λ) = −1

2
λT BK†

gBT λ + λT (BK†
gfg − g)− 1

2
fgK†

gfg, (5)

K†
g denotes a generalized inverse that satisfies KgK†

gKg = Kg, and R denotes the full
rank matrix whose columns span the kernel of Kg. Recalling the FETI notation
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F = BK†
gBT , e = RT fg, G = RT BT , P = GT (GGT )†G, d = BK†

gfg − g,

denoting Q = I − P, and observing that Qλ = λ for any feasible λ, we can modify
(4) to

min θ(λ) s.t. λI ≥ 0 and Gλ = e, (6)

where

θ(λ) =
1

2
λT QFQλ − λT Q d.

Alternatively, the Lagrange multipliers of the solution are determined by the KKT
conditions for (4) which read

Fλ − d + GT α = o, λI ≥ o, and Gλ = e. (7)

For details concerning the matrices and parallel implementation, see e.g. in [8,
12], and [1].

3 Algorithms

We implemented two FETI based algorithms for the solution of contact problems,
using the research software which is being developed in Stanford. The first one,
FETI-DPC, is based on FETI-DP domain decomposition method. The algorithm
uses the Newton-like method which solves the equilibrium equation (7) in Lagrange
multipliers in the inner loop, while feasibility of each step is ensured in the outer
loop by the primal and dual planning steps. The algorithm exploits standard FETI
preconditioners, namely the Schur and lumped ones. The additional speedup of con-
vergence is achieved by application Krylov type acceleration scheme. The algorithm
exploits a globalization strategy in order to achieve monotonic global convergence.

The second algorithm is based on the TFETI domain decomposition (see [7]), a
variant of the FETI-I domain decomposition method (see [14]), which treats all the
boundary conditions by Lagrange multipliers, so that all the subdomains are floating,
and their kernels are known a priori and can be used in construction of the natural
coarse grid. It exploits our recently proposed algorithms MPRGP (Modified Propor-
tioning with Reduced Gradient Projection) by Dostál and Schöberl (see [11]) and
SMALBE (Semimonotonic Augmented Lagrangians for Bound and Equality con-
strained problems) (see [3, 4]). The SMALBE, a variant of augmented Lagrangian
method with adaptive precision control for the solution of quadratic programming
problems with bound and equality constraints, is applied to (6). It enforces the
equality constraints by the Lagrange multipliers generated in the outer loop, while
the auxiliary bound constrained problems are solved approximately in the inner loop
by MPRGP, an active set based algorithm which uses the conjugate gradient method
to explore the current face, the fixed steplength gradient projection to expand the
active set, the adaptive precision control of auxiliary linear problems, and the re-
duced gradient with the optimal steplength to reduce the active set. The unique
feature of SMALBE with the inner loop implemented by MPRGP when used to (6)
is the rate of convergence in bounds on spectrum of the regular part of the Hessian
of θ, so that using the classical results by Farhat, Mandel, and Roux (see [14]), the
algorithm has been proved to be numerically scalable (see [6]).
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4 Numerical Experiments

Algorithms described in this paper were tested and their results compared on two
model contact problems.

The first 2D problem involves 6 rectangles in mutual contact as it is depicted
in Figure 1 (left). The left rectangles are fixed on the left side (blue arrows) while
the right ones are free and they are loaded (red arrows represent forces in oppo-
site direction) such a way that the problem has unique solution. Each rectangle
were further decomposed to the 4 subrectangles and therefore the original problem
were decomposed to 24 subdomains (Figure 1 (middle)). The performance of the
algorithms FETI-DPC and SMALBE is compared in Table 1. Outer iterations are
used only in the case of SMALBE method while the number of subiterations is used
only in methods FETI-DP. The number of dual plannings and primal plannings
of FETI-DPC methods corresponds to the number of expansion and proportioning
steps in the case of SMALBE method. Therefore they share the same column for
each methods. The numbers on the left side of the slashes represent the number of
iterations for 6 subdomains problem and the numbers on the right sides represent
the number of iterations for 24 subdomains problem. The resulting deformation with
distribution of the stresses are depicted in Figure 1 (right).

Fig. 1. 2D problem: decomposition in 6 subdomains (left), in 24 subdomains (mid-
dle), and computed stress distribution (right)

Table 1. Algorithms performance for 2D semicoercive problem with 6 and 24 sub-
domains.

Outer iter. Main iter. subiter. Primal plan. Dual plan.
(Exp. step) (Proport.)

FETI-DPC - 17/32 0/0 2/2 0/0
SMALBE 1/21 9/68 - 0/18 1/3
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The second 3D model problem consists of two bricks in mutual contact. The
bottom brick is fixed in all degrees of freedom while the upper one is fixed only in such
a way, that only vertical rigid body movement is allowed. This situation is depicted
in Figure 2 (left and middle). The forces are chosen so that not all constraints
are active on the contact interface as in Figure 2 (right). We have analyzed two
cases. The first one, with matching grid on the contact interface prescribes node-to-
node contact conditions. The second one allows non-matching grids and the mortar
elements were used for assembling of contact conditions. The resulting performance
of algorithms is collected in the Table 2. Columns in this table have the same meaning
as in 2D case.

Fig. 2. 3D problem with matching grids (left), with non-matching grids (middle),
and computed solution using non-matching grids (right)

Table 2. Algorithms performance for 3D problem with matching/non-matching grid
on contact interface.

Outer iter. Main iter. subiter. Primal plan. Dual plan.
(Exp. step) (Proport.)

FETI-DPC - 24/26 11/10 7/8 0/0
SMALBE 13/10 29/29 - 20/20 0/0

5 Comments and Conclusions

The FETI method turned out to be a powerful engine for the solution of contact
problems of elasticity. Results of numerical experiments comply with recent theo-
retical results and indicate high efficiency of the methods presented here. Future
research will include adaptation of the standard preconditioning strategies to the
solution of inequality constraint problems, problems with friction (see e.g. [8]), and
dynamic contact problems.



Scalable FETI Algorithms for Frictionless Contact Problems 269

Acknowledgement. The research of the first three authors was supported by the
grants 101/05/0423 and 101/04/1145 of the GA CR and by the projects AVO
Z2076051, 1ET400300415, and ME641 of the Ministry of Education of the Czech
Republic. The research of the last two authors was supported by the Sandia National
Laboratories under Contract No. 31095.

References

[1] P. Avery, G. Rebel, M. Lesoinne, and C. Farhat. A numerically scalable dual-
primal substructuring method for the solution of contact problems. I: the fric-
tionless case. Comput. Methods Appl. Mech. Engrg., 193(23-26):2403–2426,
2004.

[2] D. P. Bertsekas. Nonlinear Optimization. Athena Scientific - Nashua, 1999.
[3] Z. Dostál. Inexact semimonotonic augmented Lagrangians with optimal fea-

sibility convergence for convex bound and equality constrained quadratic pro-
gramming. SIAM J. Numer. Anal., 43(1):96–115, 2005.

[4] Z. Dostál. An optimal algorithm for bound and equality constrained quadratic
programming problems with bounded spectrum. Computing, 78:311–328, 2006.

[5] Z. Dostál and D. Horák. Scalability and FETI based algorithm for large dis-
cretized variational inequalities. Math. Comput. Simulation, 61:347–357, 2003.

[6] Z. Dostál and D. Horák. Theoretically supported scalable FETI for numerical
solution of variational inequalities. SIAM J. Numer. Anal., 2006. In press.
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Summary. A discontinuous Galerkin (DG) discretization of a Dirichlet problem
for second order elliptic equations with discontinuous coefficients in two dimensions
is considered. The problem is considered in a polygonal region Ω which is a union
of disjoint polygonal substructures Ωi of size O(Hi). Inside each substructure Ωi, a
triangulation Thi(Ωi) with a parameter hi and a conforming finite element method
are introduced. To handle nonmatching meshes across ∂Ωi, a DG method that uses
symmetrized interior penalty terms on the boundaries ∂Ωi is considered. In this pa-
per we design and analyze Balancing Domain Decomposition (BDD) algorithms for
solving the resulting discrete systems. Under certain assumptions on the coefficients
and the mesh sizes across ∂Ωi, a condition number estimate C(1 + maxi log2 Hi

hi
)

is established with C independent of hi, Hi and the jumps of the coefficients. The
algorithm is well suited for parallel computations and can be straightforwardly ex-
tended to three-dimensional problems. Results of numerical tests are included which
confirm the theoretical results and the imposed assumption.

1 Introduction

DG methods are becoming more and more popular for approximation of PDEs since
they are well suited for dealing with complex geometries, discontinuous coefficients
and local or patch refinements; see [2, 4] and the references therein. There are also
several papers devoted to algorithms for solving DG discrete problems. In particular
in connection with domain decomposition methods, we can mention [9, 10, 1] where
overlapping Schwarz methods were proposed and analyzed for DG discretization of
elliptic problems with continuous coefficients. In [4] a non optimal multilevel additive
Schwarz method is designed and analyzed for the discontinuous coefficient case. In
[3] a two-level ASM is proposed and analyzed for DG discretization of fourth order

∗ This work was supported in part by Polish Sciences Foundation under grant
2P03A00524.
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problems. In those works, the coarse problems are based on polynomial coarse basis
functions on a coarse triangulation. In addition, ideas of iterative substructuring
methods and notions of discrete harmonic extensions are not explored, therefore,
for the cases where the distribution of the coefficients ρi is not quasimonotonic, see
[7], these methods when extended straightforwardly to 3-D problems have condition
number estimates which might deteriorate as the jumps of the coefficients get more
severe. To the best of our knowledge [5] is the only work in the literature that deals
with iterative substructuring methods for DG discretizations with discontinuous
coefficients, where we have successfully introduced and analyzed BDDC methods
with different possible constraints on the edges. A goal of this paper is to design
and analyze BDD algorithms, see [11, 8] and also [12], for DG discrete systems with
discontinuous coefficients.

The paper is organized as follows. In Section 2, the differential problem and its
DG discretization are formulated. In Section 3, the problem is reduced to a Schur
complement problem with respect to the unknowns on ∂Ωi, and discrete harmonic
functions defined in a special way are introduced. In Section 4, the BDD algorithm
is designed and analyzed. The local problems are defined on ∂Ωi and on faces of ∂Ωj

common to Ωi, while the coarse space, restriction and prolongation operators are
defined via a special partitioning of unity on the ∂Ωi. Sections 5 and 6 are devoted
to numerical experiments and final remarks, respectively.

2 Differential and Discrete Problems

Consider the following problem: Find u∗ ∈ H1
0 (Ω) such that

a(u∗, v) = f(v) for all v ∈ H1
0 (Ω) (1)

where a(u, v) =

N∑
i=1

∫
Ωi

ρi∇u∇vdx and f(v) =
∫

Ω
fvdx.

We assume that Ω̄ = ∪N
i=1Ω̄i and the substructures Ωi are disjoint shape regular

polygonal subregions of diameter O(Hi) that form a geometrically conforming parti-
tion of Ω, i.e., for all i �= j the intersection ∂Ωi ∩∂Ωj is empty, or a common vertex
or face of ∂Ωi and ∂Ωj . We assume f ∈ L2(Ω) and for simplicity of presentation let
ρi be a positive constant, i = 1, . . . , N .

Let us introduce a shape regular triangulation in each Ωi with triangular ele-
ments and the mesh parameter hi . The resulting triangulation on Ω is in general
nonmatching across ∂Ωi. Let Xi(Ωi) be a finite element (FE) space of piecewise
linear continuous functions in Ωi. Note that we do not assume that the functions in
Xi(Ωi) vanish on ∂Ωi ∩ ∂Ω. Define

Xh(Ω) = X1(Ω1)× · · · ×XN (ΩN ).

The discrete problem obtained by the DG method, see [2, 4], is of the form: Find
u∗h ∈ Xh(Ω) such that

ah(u∗h, v) = f(v) for all v ∈ Xh(Ω) (2)

where
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ah(u, v) ≡
N∑

i=1

bi(u, v) and f(v) ≡
N∑

i=1

∫
Ωi

fvidx, (3)

bi(u, v) ≡ ai(u, v) + si(u, v) + pi(u, v), (4)

ai(u, v) ≡
∫

Ωi

ρi∇ui∇vidx, (5)

si(u, v) ≡
∑

Fij⊂∂Ωi

∫
Fij

ρij

lij

(
∂ui

∂n
(vj − vi) +

∂vi

∂n
(uj − ui)

)
ds, (6)

pi(u, v) ≡
∑

Fij⊂∂Ωi

∫
Fij

ρij

lij

δ

hij
(uj − ui)(vj − vi)ds, (7)

di(u, v) ≡ ai(u, v) + pi(u, v), (8)

with u = {ui}N
i=1 ∈ Xh(Ω) and v = {vi}N

i=1 ∈ Xh(Ω). We set lij = 2 when
Fij ≡ ∂Ωi ∩∂Ωj is a common face of ∂Ωi and ∂Ωj , and define ρij = 2ρiρj/(ρi +ρj)
as the harmonic average of ρi and ρj , and hij = 2hihj/(hi +hj). In order to simplify
the notation we include the index j = 0 and set li0 = 1 when Fi0 ≡ ∂Ωi ∩ ∂Ω has a
positive measure, and set u0 = 0 and v0 = 0, and define ρi0 = ρi and hi0 = hi. The
outward normal derivative on ∂Ωi is denoted by ∂

∂n
and δ is the positive penalty

parameter.
It is known that there exists a δ0 = O(1) > 0 such that for δ > δ0, we obtain

2|si(u, u)| < di(u, u) and therefore, the problem (2) is elliptic and has a unique
solution. An error bound of this method is given in [2] for continuous and in [4, 5]
for discontinuous coefficients.

3 Schur Complement Problem

In this section we derive a Schur complement problem for the problem (2).

Define
o

Xi (Ωi) as the subspace of Xi(Ωi) of functions that vanish on ∂Ωi.
Let u = {ui}N

i=1 ∈ Xh(Ω). For each i = 1, . . . , N , the function ui ∈ Xi(Ω) can be
represented as

ui = P̂iu+ Ĥiu, (9)

where P̂iu is the projection of u into
o

Xi (Ωi) in the sense of bi(., .). Note that since

P̂iu and vi belong to
o

Xi (Ωi), we have

ai(P̂iu, vi) = bi(P̂iu, vi) = ah(u, vi). (10)

The Ĥiu is the discrete harmonic part of u in the sense of bi(., .), where Ĥiu ∈
Xi(Ωi) is the solution of

bi(Ĥiu, vi) = 0 vi ∈
o

Xi(Ωi), (11)

with boundary data given by

ui on ∂Ωi and uj on Fji = ∂Ωi ∩ ∂Ωj . (12)

We point out that for vi ∈
o

Xi (Ωi) we have
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bi(Ĥiu, vi) = (ρi∇Ĥiu,∇vi)L2(Ωi)
+

∑
Fij⊂∂Ωi

ρij

lij
(
∂vi

∂n
, uj − ui)L2(Fij). (13)

Note that Ĥiu is the classical discrete harmonic except at nodal points close to ∂Ωi.
We will sometimes call Ĥiu by discrete harmonic in a special sense, i.e., in the sense
of bi(., .) or Ĥi. Hence, Ĥu = {Ĥiu}N

i=1 and P̂u = {P̂iu}N
i=1 are orthogonal in the

sense of ah(., .). The discrete solution of (2) can be decomposed as u∗h = P̂u∗h + Ĥu∗h
where for all v ∈ Xh(Ω), ah(P̂u∗h, P̂v) = f(P̂v) and

ah(Ĥu∗h, Ĥv) = f(Ĥv). (14)

Define Γ ≡ (∪i∂Ωihi) where ∂Ωihi is the set of nodal points of ∂Ωi. We note
that the nodes on both side of ∪i∂Ωi belong to Γ . We denote the space V = Vh(Γ )
as the set of all functions vh in Xh(Ω) such that P̂vh = 0, i.e., the space of discrete
harmonic functions in the sense of Ĥi. The equation (14) is the Schur complement
problem associated to (2).

4 Balancing Domain Decomposition

We design and analyze a BDD method [11, 12] for solving (14) and use the general
framework of balancing domain decomposition methods; see [12]. For i = 1, . . . , N ,
let Vi be auxiliary spaces and Ii prolongation operators from Vi to V , and define
the operators T̃i : V → Vi as

bi(T̃iu, v) = ah(u, Iiv) for all v ∈ Vi.

and set Ti = IiT̃i. The coarse problem is defined as

ah(P0u, v) = ah(u, v) for all v ∈ V0.

Then the BDD method is defined as

T = P0 + (I − P0)

(
N∑

i=1

Ti

)
(I − P0). (15)

We next define the prolongation operators Ii and the local spaces Vi for i =
1, ..., N , and the coarse space V0. The bilinear forms bi and ah are given by (4) and
(3), respectively.

4.1 Local Problems

Let us denote by Γi the set of all nodes on ∂Ωi and on neighboring faces F̄ji ⊂ ∂Ωj .
We note that the nodes of ∂Fji (which are vertices of Ωj) are included in Γi. Define
Vi as the vector space associated to the nodal values on Γi and extended via Ĥi

inside Ωi. We say that u ∈ Vi if it can be represented as u := {u(i)
l }l∈#(i), where

#(i) = {i and ∪ j : Fij ⊂ ∂Ωi}. Here u
(i)
i and u

(i)
j stand for the nodal value of

u on ∂Ωi and F̄ji. We write u = {u(i)
l } ∈ Vi to refer to a function defined on Γi,

and u = {ui} ∈ V to refer to a function defined on all Γ . Let us define the regular
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zero extension operator Ĩi : Vi → V as follows: Given u ∈ Vi, let Ĩiu be equal to
u on the nodes of Γi and zero on the nodes of Γ\Γi. Then we associate with each
Ωk, k = 1, · · · , N , the discrete harmonic function uk inside each Ωk in the sense of
Ĥk.

A face across Ωi and Ωj has two sides, the side inside Ω̄i, denoted by Fij , and
the side inside Ω̄j , denoted by Fji. In addition, we assign to each face one master
side m(i, j) ∈ {i, j} and one slave side s(i, j) ∈ {i, j}. Then, using the interface
condition, see below, we show that Theorem 1 holds, see below, with a constant C
independent of the ρi, hi and Hi.

The Interface Condition. We say that the coefficients {ρi} and the local mesh
sizes {hi} satisfy the interface condition if there exist constants C0 and C1, of order
O(1), such that for any face Fij = Fji the following condition holds

hs(i,j) ≤ C0hm(i,j) and ρs(i,j) ≤ C1ρm(i,j). (16)

We associate with each Ωi, i = 1, · · · , N , the weighting diagonal matrices D(i) =
{D(i)

l }l∈#(i) on Γi defined as follows:

• On ∂Ωi (l = i)

D
(i)
i (x) =

⎧⎨⎩
1 if x is a vertex of ∂Ωi,
1 if x is an interior node of a master face Fij

0 if x is an interior node of a slave face Fij

(17)

• On ∂Ωj (l = j)

D
(i)
j (x) =

⎧⎨⎩
0 if x is an end point of Fji,
1 if x is an interior node of a slave face Fji

0 if x is an interior node of a master face Fji

(18)

• For x ∈ Fi0 we set D
(i)
i (x) = 1.

The prolongation operators Ii : Vi → V , i = 1, . . . , N , are defined as Ii = ĨiD
(i)

and they form a partition of unity on Γ described as

N∑
i=1

IiĨ
T
i = IΓ . (19)

4.2 Coarse Problem

We define the coarse space V0 ⊂ V as

V0 ≡ Span{IiΦ(i), i = 1, ..., N} (20)

where Φ(i) ∈ Vi denotes the function equal to one at every node of Γi.

Theorem 1. If the interface condition (16) holds then there exists a positive con-
stant C independent of hi, Hi and the jumps of ρi such that

ah(u, u) ≤ ah(Tu, u) ≤ C(1 + log2 H

h
)ah(u, u) ∀u ∈ V, (21)

where T is defined in (15). Here log H
h

= maxi log Hi
hi

. (See [6].)
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5 Numerical Experiments

In this section, we present numerical results for the preconditioner introduced in
(15) and show that the bounds of Theorem 1 are reflected in the numerical tests. In
particular we show that the interface condition (16) is necessary and sufficient.

We consider the domain Ω = (0, 1)2 divided into N = M ×M squares subdo-
mains Ωi and let H = 1/M . Inside each subdomain Ωi we generate a structured
triangulation with ni subintervals in each coordinate direction and apply the dis-
cretization presented in Section 2 with δ = 4. In the numerical experiments we
use a red and black checkerboard type of subdomain partition. On the black sub-
domains we let ni = 2 ∗ 2Lb and on the red subdomains ni = 3 ∗ 2Lr , where Lb

and Lr are integers denoting the number of refinements inside each subdomain Ωi.

Hence, the mesh sizes are hb = 2−Lb

2N
and hr = 2−Lr

3N
, respectively. We consider

−div(ρ(x)∇u∗(x)) = 1 in Ω with homogeneous Dirichlet boundary conditions. In
the numerical experiments we run PCG until the l2 initial residual is reduced by a
factor of 106.

In the first test we consider the constant coefficient case ρ = 1. We consider
different values of M ×M coarse partitions and different values of local refinements
Lb = Lr, therefore, keeping constant the mesh ratio hb/hr = 3/2. We place the
master on the black subdomains. Table 1 lists the number of PCG iterations and
in parenthesis the condition number estimate of the preconditioned system. We
note that the interface condition (16) is satisfied. As expected from Theorem 1, the
condition numbers appear to be independent of the number of subdomains and grow
by a logarithmical factor when the size of the local problems increases. Note that in
the case of continuous coefficients the Theorem 1 is valid without any assumption
on hb and hr if the master sides are chosen on the larger meshes.

Table 1. PCG/BDD iterations count and condition numbers for different sizes of
coarse and local problems and constant coefficients ρi.

M↓ Lr → 0 1 2 3 4 5

2 13 (6.86) 17 (8.97) 18 (12.12) 19 (16.82) 21 (22.23) 22 (28.25)
4 18 (8.39) 22 (11.30) 26 (14.74) 30 (19.98) 33 (26.64) 36 (34.19)
8 20 (8.89) 24 (11.57) 28 (14.82) 32 (20.03) 37 (26.64) 42 (34.04)
16 19 (9.02) 24 (11.63) 27 (14.83) 32 (20.05) 37 (26.67) 42 (34.06)

We now consider the discontinuous coefficient case where we set ρi = 1 on the
black subdomains and ρi = µ on the red subdomains. The subdomains are kept fixed
to 4 × 4. Table 2 lists the results on runs for different values of µ and for different
levels of refinements on the red subdomains. On the black subdomains ni = 2 is kept
fixed. The masters are placed on the black subdomains. It is easy to see that the
interface condition (16) holds if and only if µ is not large, which it is in agreement
with the results in Table 2.
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Table 2. PCG/BDD iterations count and condition numbers for different values of
the coefficients and the local mesh sizes on the red subdomains only. The coefficients
and the local mesh sizes on the black subdomains are kept fixed. The subdomains
are also kept fixed to 4× 4.

µ ↓ Lr → 0 1 2 3 4

1000 90 (2556) 133 (3744) 184 (5362) 237 (7178) 303 (9102)
10 33 (29.16) 40 (42.31) 47 (58.20) 52 (75.55) 57 (94.59)
0.1 17 (8.28) 19 (8.70) 19 (9.21) 19 (9.50) 19 (9.65)

0.001 18 (8.83) 18 (8.95) 18 (9.46) 18 (9.83) 18 (10.08)

6 Final Remarks

We end this paper by mentioning extensions and alternative Neumann-Neumann
methods for DG discretizations where the Theorem 1 holds: 1) The BDD algo-
rithms can be straightforwardly extended to three-dimensional problems; 2) Addi-
tive Schwarz versions and inexact local Neumann solvers can be considered; see [6];
3) On faces Fij where hi and hj are of the same order, the values of (17) and (18)

at interior nodes x of the faces Fij and Fji can be replaced by
√

ρi√
ρi+

√
ρj

. 4) Simi-

larly, on faces Fij where ρi and ρj are of the same order, we can replace (17) and
(18) at interior nodes x of the faces Fij and Fji by hi

hi+hj
. Finally, we remark the

conditioning of the preconditioned systems deteriorates as we increase the penalty
parameter δ to large values.
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1 Introduction

High-order finite element methods based on spectral elements or hp-version finite
elements improve the accuracy of the discrete solution by increasing the polynomial
degree p of the basis functions as well as decreasing the element size h. The discrete
systems generated by these high-order methods are much more ill-conditioned than
the ones generated by standard low-order finite elements. In this paper, we will
focus on spectral elements based on Gauss-Lobatto-Legendre (GLL) quadrature and
construct nonoverlapping domain decomposition methods belonging to the family
of Dual-Primal Finite Element Tearing and Interconnecting (FETI-DP) methods;
see [4, 9, 7]. We will also consider inexact versions of the FETI-DP methods, i.e.,
irFETI-DP and iFETI-DP, see [8]. We will show that these methods are scalable
and have a condition number depending only weakly on the polynomial degree.

2 Spectral Element Discretization of Second Order
Elliptic Problems

Let Tref be the reference square (−1, 1)d, d = 2, and let Qp(Tref) be the set of
polynomials on Tref of degree p ≥ 1 in each variable. We assume that the domain
Ω can be decomposed into Ne nonoverlapping finite elements Tk of characteristic
diameter h, Ω =

⋃Ne
k=1 T k, each of which is an affine image of the reference square

or cube, Tk = φk(Tref), where φk is an affine mapping (more general maps could
be considered as well). Later, we will group these elements into N nonoverlapping
subdomains Ωi of characteristic diameter H, forming themselves a coarse finite ele-
ment partition of Ω, Ω =

⋃N
i=1Ωi, Ωi =

⋃Ni
k=1 T k. Hence, the fine element partition

{Tk}Ne
k=1 can be considered a refinement of the coarse subdomain partition {Ωi}N

i=1,
with matching finite element nodes on the boundaries of neighboring subdomains.

We consider linear, selfadjoint, elliptic problems on Ω, with zero Dirichlet bound-
ary conditions on a part ∂ΩD of the boundary ∂Ω:

Find u ∈ V = {v ∈ H1(Ω) : v = 0 on ∂ΩD} such that
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a(u, v) =

∫
Ω

ρ(x)∇u · ∇v dx =

∫
Ω

fv dx ∀ v ∈ V. (1)

Here, ρ(x) > 0 can be discontinuous, with very different values for different subdo-
mains, but we assume this coefficient to vary only moderately within each subdomain
Ωi. In fact, without decreasing the generality of our results, we will only consider
the piecewise constant case of ρ(x) = ρi, for x ∈ Ωi.

Conforming spectral element discretizations consist of continuous, piecewise
polynomials of degree p in each element:

V p = {v ∈ V : v|Ti ◦ φi ∈ Qp(Tref), i = 1, . . . , Ne}.

A convenient tensor product basis for V p is constructed using Gauss-Lobatto-Legen-
dre (GLL) quadrature points; see Figure 1. Let {ξi}p

i=0 denote the set of GLL points

−1 −0.8 −0.6 −0.4 0.6 0.8 1−0.2 0.40.20

1

−1

0.8

−0.8

0.6

−0.6

0.4

−0.4

0.2

−0.2

0

Fig. 1. Quadrilateral mesh defined by the Gauss-Lobatto-Legendre (GLL) quadra-
ture points with p = 16 on one square element.

on [−1, 1] and σi the associated quadrature weights. Let li(·) be the Lagrange inter-
polating polynomial which vanishes at all the GLL nodes except ξi, where it equals
one. The basis functions on the reference square are defined by a tensor product
as li(x1)lj(x2), 0 ≤ i, j ≤ p. This basis is nodal, since every element of Qp(Tref)
can be written as u(x1, x2) =

∑p
i=0

∑p
j=0 u(ξi, ξj)li(x1)lj(x2). Each integral of the

continuous model (1) is replaced by GLL quadrature over each element

(u, v)p,Ω =
∑Ne

k=1

∑p
i,j=0(u ◦ φk)(ξi, ξj)(v ◦ φk)(ξi, ξj)|Jk|σiσj , (2)

where |Jk| is the determinant of the Jacobian of φk. This inner product is uni-
formly equivalent to the standard L2−inner product on Qp(Tref). Applying these
quadrature rules, we obtain the discrete elliptic problem:

Find u ∈ V p such that ap(u, v) = (f, v)p,Ω ∀v ∈ V p, (3)

with discrete bilinear form ap(u, v) =
∑Ne

k=1(ρk∇u,∇u)p,Tk and each quadrature
rule (·, ·)p,Tk defined as in (2). Having chosen a basis for V p, the discrete problem
(3) is then turned into a linear system of algebraic equations Kgug = fg, with Kg

the globally assembled, symmetric, positive definite stiffness matrix; see [2] for more
details.
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3 The FETI-DP Algorithms

Let a domain Ω ⊂ IR2 be decomposed into N nonoverlapping subdomains Ωi of
diameter H, each of which is the union of finite elements with matching finite
element nodes on the boundaries of neighboring subdomains across the interface
Γ :=

⋃
i�=j ∂Ωi ∩ ∂Ωj , where ∂Ωi, ∂Ωj are the boundaries of Ωi, Ωj , respectively.

The interface Γ is the union of edges and vertices. We regard edges in 2D as open
sets shared by two subdomains, and vertices as endpoints of edges; see, e.g., [11,
Chapter 4.2]. For a more detailed definition of faces, edges, and vertices in 2D and
3D; see [9, Section 3] and [7, Section 2].

For each subdomain Ωi, i = 1, . . . , N , we assemble the local stiffness matrices
K(i) and load vectors f (i). We denote the unknowns on each subdomain by u(i). We
then partition the unknowns u(i) into primal variables u

(i)
Π and nonprimal variables

u
(i)
B . As we only treat two dimensional problems here, the primal variables u

(i)
Π will

be associated with vertex unknowns whereas the nonprimal variables are interior
(u

(i)
I ) and dual (u

(i)
∆ ) unknowns. We will enforce the continuity of the solution in

the primal unknowns u
(i)
Π by global subassembly of the subdomain stiffness matrices

K(i). For all other interface variables u
(i)
∆ , we will introduce Lagrange multipliers to

enforce continuity. We partition the stiffness matrices according to the different sets
of unknowns,

K(i) =

[
K

(i)
BB K

(i) T
ΠB

K
(i)
ΠB K

(i)
ΠΠ

]
, K

(i)
BB =

[
K

(i)
II K

(i) T
∆I

K
(i)
∆I K

(i)
∆∆

]
,

and f (i) = [f
(i)
B f

(i)
Π ], f

(i)
B = [f

(i)
I f

(i)
∆ ].

3.1 The Exact FETI-DP Algorithm

We define the block matrices

KBB = diagN
i=1(K

(i)
BB), KΠB = diagN

i=1(K
(i)
ΠB), KΠΠ = diagN

i=1(K
(i)
ΠΠ),

and right hand sides fT
B = [f

(1) T
B , . . . , f

(N) T
B ], fT

Π = [f
(1) T
Π , . . . , f

(N) T
Π ].

By assembly of the local subdomain matrices in the primal variables using the
operator RT

Π = [R
(1) T
Π , . . . , R

(N) T
Π ] with entries 0 or 1, we have the partially assem-

bled global stiffness matrix K̃ and right hand side f̃ ,

K̃ =

[
KBB K̃

T
ΠB

K̃ΠB K̃ΠΠ

]
=

[
IB 0
0 RT

Π

] [
KBB K

T
ΠB

KΠB KΠΠ

] [
IB 0
0 RΠ

]
,

f̃ =

[
fB

f̃Π

]
=

[
IB 0
0 RT

Π

] [
fB

fΠ

]
.

Choosing a sufficient number of primal variables u
(i)
Π , i.e., all vertex unknowns, to

constrain our solution, results in a symmetric, positive definite matrix K̃.
To enforce continuity on the remaining interface variables u

(i)
∆ we introduce a

jump operator BB with entries 0,−1 or 1 and Lagrange multipliers λ.
We can now formulate the FETI-DP saddle-point problem,
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T
ΠB B

T
B

K̃ΠB K̃ΠΠ 0
BB 0 0

⎤⎦⎡⎣ uB

ũΠ

λ

⎤⎦ =

⎡⎣ fB

f̃Π

0

⎤⎦ . (4)

By eliminating uB and uΠ from the system (4), we obtain an equation system

Fλ = d, where (5)

F = BBK
−1
BBB

T
B +BBK

−1
BBK̃BΠ S̃

−1
ΠΠK̃ΠBK

−1
BBB

T
B and

d = BBK
−1
BBfB −BBK

−1
BBK̃

T
ΠBS̃

−1
ΠΠ(f̃Π − K̃ΠBK

−1
BBfB). Let us define

KII = diagN
i=1(K

(i)
II ), K∆I = diagN

i=1(K
(i)
∆I), K∆∆ = diagN

i=1(K
(i)
∆∆).

The theoretically almost optimal Dirichlet preconditioner MD is then defined

by M−1
D = BB,D(RB

∆)T (K∆∆ −K∆IK
−1
II K

T
∆I)R

B
∆B

T
B,D, where

RB
∆ = diagN

i=1(R
B (i)
∆ ). The matrices R

B (i)
∆ are restriction operators with entries 0

or 1 which restrict the nonprimal degrees of freedom u
(i)
B of a subdomain to the

dual part u
(i)
∆ . The matrices BD are scaled variants of the jump operator B where

the contribution from and to each interface node is scaled by the inverse of the
multiplicity of the node. The multiplicity of a node is defined as the number of
subdomains it belongs to. It is well known that for heterogeneous problems a more
elaborate scaling is necessary, see, e.g., [9].

The original or standard, exact FETI-DP method is the method of conjugate
gradients applied to the symmetric, positive definite system (5) using the precondi-
tioner M−1

D .

3.2 Inexact FETI-DP Algorithms

We will denote (4) as Ax = F ,

where A =

⎡⎣KBB K̃
T
ΠB B

T
B

K̃ΠB K̃ΠΠ 0
BB 0 0

⎤⎦ , x =

⎡⎣ uB

ũΠ

λ

⎤⎦ , F =

⎡⎣ fB

f̃Π

0

⎤⎦ .
We also write this equation [

K̃ BT

B 0

] [
u
λ

]
=

[
f̃
0

]
, (6)

where B =
[
BB 0

]
, uT = [uT

B ũ
T
Π ] , f̃T = [fT

B f̃
T
Π ]. Eliminating uB by one step of

block elimination, we obtain the reduced system[
S̃ΠΠ −K̃ΠBK

−1
BBB

T
B

−BBK
−1
BBK̃

T
ΠB −BBK

−1
BBB

T
B

] [
ũΠ

λ

]
=

[
f̃Π − K̃ΠBK

−1
BBfB

−BBK
−1
BBfB

]
, (7)

where S̃ΠΠ = K̃ΠΠ − K̃ΠBK
−1
BBK̃

T
ΠB . For (7), we will also use the notation

Arxr = Fr, where xT
r := [ũT

Π λT ], and
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Ar =

[
S̃ΠΠ −K̃ΠBK

−1
BBB

T
B

−BBK
−1
BBK̃

T
ΠB −BBK

−1
BBB

T
B

]
, Fr :=

[
f̃Π − K̃ΠBK

−1
BBfB

−BBK
−1
BBfB

]
.

The inexact FETI-DP methods are given by solving the saddle point problems
(4) and (6) iteratively, using block triangular preconditioners and a suitable Krylov
subspace method. For the saddle point problems (6) and (7), we introduce the block

triangular preconditioners B̂L and B̂r,L, respectively, as

B̂−1
L =

[
K̂−1 0

M−1BK̂−1 −M−1

]
, B̂−1

r,L =

[
Ŝ−1

ΠΠ 0

−M−1BBK
−1
BBK̃

T
ΠBŜ

−1
ΠΠ −M−1

]
,

where K̂−1 and Ŝ−1
ΠΠ are assumed to be spectrally equivalent preconditioners for K̃

and S̃ΠΠ , respectively, with bounds independent of the discretization parameters
h,H. The matrix block M−1 is assumed to be a good preconditioner for the FETI-
DP system matrix F and can be chosen as the Dirichlet preconditioner M−1

D or any
spectrally equivalent preconditioner. Our inexact FETI-DP methods are now given
by using a Krylov space method for nonsymmetric systems, e.g., GMRES, to solve
the preconditioned systems

B̂−1
L Ax = B̂−1

L F , and B̂−1
r,LArxr = B̂−1

r,LFr,

respectively. The first will be denoted iFETI-DP and the latter irFETI-DP. Let us
note that we can also use a positive definite reformulation of the two preconditioned
systems, which allows the use of conjugate gradients, see [8] for further details.

4 Convergence Estimates

As shown in [11] for the two main families of overlapping Schwarz methods (Ch.
7.3) and iterative substructuring methods of wirebasket and Neumann-Neumann
type (Ch. 7.4), the main domain decomposition results obtained for finite element
discretizations of scalar elliptic problems can be transferred to the spectral element
case; see [11, Ch. 7] for further details. The same tools can be used here to obtain
the following estimate, see [10, 6] for further details.

Theorem 1. The minimum eigenvalue of the FETI-DP operator is bounded from be-

low by 1 and the maximum eigenvalue is bounded from above by C

(
1+log

(
p
H

h

))2

,

with C > 0 independent of p, h,H and the values of the coefficients ρi of the elliptic
operator.

Similar convergence estimates hold for the inexact versions of FETI-DP, i.e.,
i(r)FETI-DP, if spectrally equivalent preconditioners are used instead of the direct
solvers and GMRES instead of cg; see [8].

5 Numerical Results

We first investigate the growth of the condition number for an increasing number
of subdomains. We expect to see the largest eigenvalue, and thus also the condi-
tion number, approaching a constant value, independent of coefficient jumps but
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dependent on the polynomial degree. We have used PETSc, the Portable Extensi-
ble Toolkit for Scientific Computing, see [1], for the parallel results in this section.
In Table 1 we see the expected behavior for different polynomial degrees and fixed
H/h = 1. From these results we choose to use a number of N ≥ 256 subdomains in
our experiments to study the asymptotic behavior of the condition number. In Table
2 we choose a sufficient number of subdomains and increase the polynomial degree
from 2 to 32. We see that the condition number grows only slowly. In Table 2, we
have also shown the CPU timings and iteration counts of irFETI-DP, additionally
to the ones of FETI-DP. For irFETI-DP, we have used GMRES as Krylov sub-
space method and BoomerAMG [5] to precondition the FETI-DP coarse problem.
BoomerAMG is a highly scalable distributed memory parallel algebraic multigrid
solver and preconditioner; it is part of the high performance preconditioner library
hypre [3]. From the table we see that also for spectral elements irFETI-DP compares
very well with standard FETI-DP.

We report on the parallel scalability for 2 to 16 processors in Table 4 for FETI-
DP and irFETI-DP. Both methods show basically the same performance and same
scalability. Nevertheless, we expect irFETI-DP to be superior if coarse problems
much larger than the ones here need to be solved. This will be the case for large
numbers of subdomains, especially in 3D.

Table 1. One spectral element (p=2–32) per subdomain, N=4–576 subdomains, ho-
mogeneous problem and a problem with jumps, random right hand side, rtol=10−10.

FETI-DP

ρij = 1 ρij = 10(i−j)/4 ρij = 1 ρij = 10(i−j)/4

N It λmax λmin It λmax λmin It λmax λmin It λmax λmin

p=2 p=2 p=8 p=8
4 2 1.05 1 2 1.05 1 4 1.89 1 4 1.89 1

16 6 1.45 1.0026 6 1.46 1.0018 12 4.38 1.0007 12 4.37 1.0004
64 8 1.61 1.0014 8 1.61 1.0013 16 4.86 1.0013 18 4.86 1.0009

256 8 1.64 1.0028 8 1.62 1.0013 17 5.00 1.0014 19 4.97 1.0008
576 8 1.66 1.0032 8 1.63 1.0016 17 5.01 1.0015 20 4.98 1.0009

p=3 p=3 p=16 p=16
4 3 1.21 1 3 1.21 1 5 2.57 1 5 2.57 1

16 8 2.10 1.0007 8 2.10 1.0004 14 6.65 1.0009 15 6.63 1.0008
64 11 2.32 1.0006 11 2.31 1.0006 21 7.42 1.0013 21 7.38 1.0008

256 11 2.37 1.0006 12 2.36 1.0004 21 7.58 1.0017 25 7.53 1.0009
576 11 2.38 1.0006 13 2.35 1.0006 21 7.62 1.0016 26 7.55 1.0006

p=4 p=4 p=32 p=32
4 3 1.37 1 3 1.37 1 6 3.42 1 6 3.42 1

16 9 2.65 1.0018 10 2.65 1.0008 16 9.48 1.0012 17 9.44 1.0009
64 12 2.95 1.0022 13 2.94 1.0011 25 10.58 1.0012 25 10.52 1.0009

256 13 3.01 1.0020 14 3.00 1.0013 25 10.81 1.0017 31 10.74 1.0008
576 13 3.03 1.0020 15 3.00 1.0005 25 10.86 1.0018 33 10.77 1.0005
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Table 2. Homogeneous problem (ρ = 1). Increasing polynomial degree (p=2–
32). Fixed subdomain sizes (H/h=1,2,4). FETI-DP and inexact reduced FETI-DP
(irFETI-DP, GMRES). irFETI-DP uses one iteration of BoomerAMG with parallel
Gauss-Seidel smoothing to precondition the coarse problem, rtol=10−7.

FETI-DP irFETI-DP
H/h N p It λmax λmin Time It Time dof

(16 Proc) (16 Proc)

1 4096 2 7 1.66 1.0074 2s 7 2s 16 129
4 10 3.05 1.0217 4s 9 3s 65 025
8 13 5.03 1.0067 6s 11 4s 261 121

12 15 6.48 1.0260 11s 13 8s 588 289
16 16 7.64 1.0121 23s 14 16s 1 046 529
20 17 8.62 1.0114 53s 14 37s 1 635 841
24 18 9.46 1.0138 94s 16 81s 2 356 225
28 18 10.21 1.0183 155s 16 130s 3 207 681
32 19 10.89 1.0227 256s 17 228s 4 190 209

2 1024 2 9 2.35 1.0020 1s 8 1s 16 129
4 12 4.03 1.0146 2s 11 2s 65 025
8 15 6.31 1.0232 4s 12 3s 261 121

12 17 7.93 1.0177 10s 15 7s 588 289
16 18 9.21 1.0133 23s 17 20s 1 046 529
20 19 10.28 1.0186 43s 17 38s 1 635 841
24 20 11.21 1.0247 83s 18 76s 2 356 225
28 21 12.03 1.0294 164s 18 146s 3 207 681
32 22 12.76 1.0230 276s 18 244s 4 190 209

4 256 2 11 3.18 1.0150 1s 11 1s 16 129
4 14 5.14 1.0146 1s 14 1s 65 025
8 18 7.70 1.0230 4s 17 4s 261 121

12 19 9.49 1.0143 9s 18 9s 588 289
16 20 10.89 1.0223 21s 20 20s 1 046 529
20 21 12.05 1.0267 45s 20 42s 1 635 841
24 22 13.05 1.0253 86s 21 84s 2 356 225
28 23 13.94 1.0188 170s 22 164s 3 207 681
32 23 14.73 1.0191 328s 21 280s 4 190 209

Table 3. Fixed polynomial degree (p=32), fixed subdomain sizes (H/h=1), increas-
ing number of subdomains, ρ = 1, random right hand side, rtol=10−7. Inexact FETI-
DP for the block matrices using BoomerAMG and GMRES, local problem/coarse
problem/Dirichlet preconditioner : (in)exact/(in)exact/(in)exact.

iFETI-DP FETI-DP

p N It (i/i/i) It (i/i/e) It (i/e/e) It (e/e/e) It λmin λmax

32 4 13 13 13 6 6 3.42 1.0000
16 22 21 20 16 17 9.48 1.0012
64 30 30 29 24 25 10.57 1.0012

100 30 30 30 24 24 10.69 1.0018
144 30 29 30 24 25 10.75 1.0016
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Table 4. Parallel scalability for p=20, N=256, H/h=4, rtol=10−7.

FETI-DP irFETI-DP

Proc It Time It Time

2 22 337s 20 309s
4 22 172s 20 156s
8 22 89s 20 82s

16 22 45s 20 42s
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1 Introduction

The BDDC method [2] is the most advanced method from the BDD family [5].
Polylogarithmic condition number estimates for BDDC were obtained in [6, 7] and
a proof that eigenvalues of BDDC and FETI-DP are same except for an eigenvalue
equal to one was given in [7]. For important insights, alternative formulations of
BDDC, and simplified proofs of these results, see [1] and [4].

In the case of many substructures, solving the coarse problem exactly is becoming
a bottleneck. Since the coarse problem in BDDC has the same form as the original
problem, the BDDC method can be applied recursively to solve the coarse problem
approximately, leading to a multilevel form of BDDC in a straightforward manner [2].
Polylogarithmic condition number bounds for three-level BDDC (BDDC with two
coarse levels) were proved in [10, 9]. This contribution is concerned with condition
number estimates of BDDC with an arbitrary number of levels.

2 Abstract Multispace BDDC

All abstract spaces in this paper are finite dimensional. The dual space of a linear
space U is denoted by U ′, and 〈·, ·〉 is the duality pairing. We wish to solve the
abstract linear problem

u ∈ U : a(u, v) = 〈f, v〉 , ∀v ∈ U, (1)

for a given f ∈ U ′, where a is a symmetric positive semidefinite bilinear form on
some space W ⊃ U and positive definite on U . The form a (·, ·) is called the energy
inner product, the value of the quadratic form a (u, u) is called the energy of u, and

∗ Partially supported by the NSF under grant CNS-0325314.
† Partially supported by the Grant Agency of the Czech Republic under grant

106/05/2731 and by the Program of the Information Society 1ET400300415.
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the norm ‖u‖a = a (u, u)1/2 is called the energy norm. The operator A : U �→ U ′

associated with a is defined by

a(u, v) = 〈Au, v〉 , ∀u, v ∈ U.

Algorithm 1 (Abstract multispace BDDC) Given spaces Vk and operators Qk

(k = 1, . . . ,M) such that

U ⊂ V1 + · · ·+ VM ⊂W, Qk : Vk → U,

define a preconditioner B : r ∈ U ′ �−→ u ∈ U by

B : r �→
M∑

k=1

Qkvk, vk ∈ Vk : a (vk, zk) = 〈r,Qkzk〉 , ∀zk ∈ Vk.

The following estimate can be proved from the abstract additive Schwarz theory
[3]. The case when M = 1, which covers the existing two-level BDDC theory set in
the spaces of discrete harmonic functions, was given in [8].

Lemma 1. Assume that the subspaces Vk are energy orthogonal, the operators Qk

are projections, and

∀u ∈ U : u =
M∑

k=1

Qkvk if u =
M∑

k=1

vk, vk ∈ Vk. (2)

Then the abstract multispace BDDC preconditioner from Algorithm 1 satisfies

κ =
λmax(BA)

λmin(BA)
≤ ω = max

k
sup

vk∈Vk

‖Qkvk‖2a
‖vk‖2a

.

Note that (2) is a type of decomposition of unity property.

3 BDDC for a 2D Model Problem

Let Ω ⊂ R2 be a bounded polygonal domain, decomposed into N nonoverlapping
polygonal substructures Ωi, i = 1, ..., N , which form a conforming triangulation.
That is, if two substructures have a nonempty intersection, then the intersection is
a vertex, or a whole edge. Let Wi be the space of Lagrangian P1 or Q1 finite element
functions with characteristic mesh size h on Ωi, and which are zero on the boundary
∂Ω. Suppose that the nodes of the finite elements coincide on edges common to two
substructures. Let

W =W1 × · · · ×WN ,

U ⊂ W be the subspace of functions that are continuous across the substructure
interfaces, and

a (u, v) =
N∑

i=1

∫
Ωi

∇u∇v, u, v ∈W.
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We are interested in the solution of the problem (1).
Substructure vertices will be also called corners, and the values of functions from

W on the corners are called coarse degrees of freedom. Let W̃ ⊂W be the space of all
functions such that the values of any coarse degrees of freedom have a common value
for all relevant substructures and vanish on ∂Ω. Define UI ⊂ U ⊂W as the subspace
of all functions that are zero on all substructure boundaries ∂Ωi, W̃∆ ⊂ W as the
subspace of all function such that their coarse degrees of freedom vanish, define W̃Π

as the subspace of all functions such that their coarse degrees of freedom between
adjacent substructures coincide, and such that their energy is minimal. Then

W̃ = W̃∆ ⊕ W̃Π , W̃∆ ⊥a W̃Π . (3)

Functions that are a-orthogonal to UI are called discrete harmonic. In [7] and
[8], the analysis was done in spaces of discrete harmonic functions after eliminating

UI ; this is not the case here, so W̃ does not consist of discrete harmonic functions
only.

Let E : W̃ → U be the operator defined by taking the average over the sub-
structure interfaces.

Algorithm 2 (Original BDDC) Define the preconditioner r ∈ U ′ �−→ u ∈ U as
follows. Compute the interior pre-correction:

uI ∈ UI : a (uI , zI) = 〈r, zI〉 , ∀zI ∈ UI , (4)

updated the residual:

rB ∈ U ′, 〈rB , v〉 = 〈r, v〉 − a (uI , v) , ∀v ∈ U

compute the substructure correction and the coarse correction:

u∆ = Ew∆, w∆ ∈ W̃∆ : a (w∆, z∆) = 〈rB , Ez∆〉 , ∀z∆ ∈ W̃∆

uΠ = EwΠ , wΠ ∈ W̃Π : a (wΠ , zΠ) = 〈rB , EzΠ〉 , ∀zΠ ∈ W̃Π (5)

and the interior post-correction:

vI ∈ UI : a (vI , zI) = a (u∆ + uΠ , zI) , ∀zI ∈ UI .

Apply the interior post-correction and add the interior pre-correction:

u = uI + (u∆ + uΠ − vI) . (6)

Denote by P the energy orthogonal projection from U to UI . Then I − P is
known as the projection onto discrete harmonic functions.

Lemma 2. The original BDDC preconditioner from Algorithm 2 is the abstract mul-
tispace BDDC from Algorithm 1 with M = 3 and

V1 = UI , V2 = (I − P )W̃∆, V3 = (I − P )W̃Π ,

Q1 = I, Q2 = Q3 (I − P )E,

and the assumptions of Lemma 1 are satisfied.
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Because of (3) and and the fact that ‖I‖a = 1, we only need an estimate of

‖(I − P )Ew‖a on W̃ , which is well known [6].

Theorem 1. The condition number of the original BDDC algorithm satisfies κ ≤ ω,
where

ω = sup
w∈W̃

‖(I − P )Ew‖2a
‖w‖2a

≤ C
(

1 + log
H

h

)2

. (7)

4 Multilevel BDDC and an Abstract Bound

The substructuring components from Section 3 will be denoted by an additional
subscript 1, as Ωi

1, i = 1, . . . N1, etc., and called level 1. The spaces and operators
involved can be written concisely as a part of a hierarchy of spaces and operators:

U
�

UI1

P1
←
⊂ U1

E1
←
⊂ W̃1 ⊂ W1

�

Ũ2
I2
← W̃Π1 ⊕ W̃∆1

�

UI2

P2
←
⊂ U2

E2
←
⊂ W̃2 ⊂ W2

�

Ũ3
I3
← W̃Π2 ⊕ W̃∆2

�

...
�

UI,L−1

PL−1
←
⊂ UL−1

EL−1
←
⊂ W̃L−1 ⊂ WL−1

�

ŨL
IL
← W̃Π,L−1 ⊕ W̃∆,L−1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8)

We will call the coarse problem (5) the level 2 problem. It has the same finite

element structure as the original problem (1) on level 1, so we have U2 = W̃Π1. Level
1 substructures are level 2 elements, level 1 coarse degrees of freedom are level 2
degrees of freedom. The shape functions on level 2 are the coarse basis functions in
W̃Π1, which are given by the conditions that the value of exactly one coarse degree
of freedom is one and others are zero, and that they are energy minimal in W̃1. Note
that the resulting shape functions on level 2 are in general discontinuous between
level 2 elements. Level 2 elements are then agglomerated into nonoverlapping level
2 substructures, etc. Level k elements are level k − 1 substructures, and the level k
substructures are agglomerates of level k elements. Level k substructures are denoted
by Ωi

k, and they are assumed to form a quasiuniform conforming triangulation with
characteristic substructure size Hk. The degrees of freedom of level k elements are
given by level k − 1 coarse degrees of freedom, and shape functions on level k are
determined by minimization of energy on each level k − 1 substructure separately,
so Uk = W̃Π,k−1. The mapping Ik is an interpolation from the level k degrees of

freedom to functions in another space Ũk. For the model problem, Ũk will consist
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of functions which are (bi)linear on each Ωi
k. The averaging operators on level k,

Ek : W̃k → Uk, are defined by averaging of the values of level k degrees of freedom
between level k substructures Ωi

k. The space UIk consists of functions in Uk that
are zero on the boundaries of all level k substructures, and Pk : Uk → UIk is the
a−orthogonal projection in Uk onto UIk. For convenience, let Ωi

0 be the original
finite elements, H0 = h, and I1 = I.

Algorithm 3 (Multilevel BDDC) Given r ∈ U ′
1, find u ∈ U1 by (4)–(6), where

the solution coarse problem (5) is replaced by the right hand side preconditioned by
the same method, applied recursively. At the coarsest level, (5) is solved by a direct
method.

Lemma 3. The multilevel BDDC preconditioner in Algorithm 3 is the abstract mul-
tispace BDDC preconditioner (Algorithm 1) with M = 2L − 2 and the spaces and
operators

V1 = UI1, V2 = (I − P1)W̃∆1, V3 = UI2, V4 = (I − P2)W̃∆,2, . . .

V2L−4 = (I − PL−2)W̃∆,L−2, V2L−3 = UI,L−1, V2L−2 = (I − PL−1)W̃L−1,

Q1 = I, Q2 = Q3 = (I − P1)E1, . . .

Q2L−4 = Q2L−3 = (I − P1)E1 · · · (I − PL−2)EL−2,

Q2L−2 = (I − P1)E1 · · · (I − PL−1)EL−1,

satisfying the assumptions of Lemma 1.

The following bound follows from writing of multilevel BDDC as multispace
BDDC in Lemma 3 and the estimate for multispace BDDC in Lemma 1.

Lemma 4. If for some ωk ≥ 1,

‖(I − Pk)Ekwk‖2a ≤ ωk ‖wk‖2a , ∀wk ∈ W̃k, k = 1, . . . , L− 1, (9)

then the multilevel BDDC preconditioner satisfies κ ≤ ∏L−1
k=1ωk.

5 Multilevel BDDC Bound for the 2D Model Problem

To apply Lemma 4, we need to generalize the estimate (7) to coarse levels. From

(7), it follows that for some C̃k and all wk ∈ Uk, k = 1, . . . , L− 1,

min
uIk∈UIk

‖IkEkwk − IkuIk‖2a ≤ C̃k

(
1 + log

Hk

Hk−1

)2

‖Ikwk‖2a . (10)

Denote |w|a,Ωi
k

=
(∫

Ωi
k
∇w∇w

)1/2

.

Lemma 5. For all k = 0, . . . , L− 1, i = 1, . . . , Nk,

ck,1 |Ik+1w|2a,Ωi
k
≤ |w|2a,Ωi

k
≤ ck,2 |Ik+1w|2a,Ωi

k
, ∀w ∈ W̃Πk, ∀Ωi

k, (11)

with ck,2/ck,1 ≤ Ck, independently of H0,. . . , Hk+1.
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Proof. For k = 0, (11) holds because I1 = I. Suppose that (11) holds for some k <

L− 2 and let w ∈ W̃Π,k+1. From the definition of W̃Π,k+1 by energy minimization,

|w|a,Ωi
k+1

= min
w∆∈W̃∆,k+1

|w + w∆|a,Ωi
k+1
. (12)

From (12) and the induction assumption, it follows that

ck,1 min
w∆∈W̃∆,k+1

|Ik+1w + Ik+1w∆|2a,Ωi
k+1

(13)

≤ min
w∆∈W̃∆,k+1

|w + w∆|2a,Ωi
k
≤ ck,2 min

w∆∈W̃∆,k+1

|Ik+1w + Ik+1w∆|2a,Ωi
k

Now from [10, Lemma 4.2], applied to the piecewise linear functions of the form
Ik+1w on Ωi

k+1,

c1 |Ik+2w|2a,Ωi
k+1

≤ min
w∆∈W̃∆,k+1

|Ik+1w + Ik+1w∆|2a,Ωi
k+1

≤ c2 |Ik+2w|2a,Ωi
k+1

(14)

with c2/c1, bounded independently of H0, . . . , Hk+1. Then (12), (13) and (14) imply
(11) with Ck = Ck−1c2/c1.

Theorem 2. The multilevel BDDC with for the model problem with corner corner
coarse degrees of freedom satisfies the condition number estimate

κ ≤ ∏L−1
k=1Ck

(
1 + log

Hk

Hk−1

)2

.

Proof. By summation of (11), we have

ck,1 ‖Ikw‖2a ≤ ‖w‖
2
a ≤ ck,2 ‖Ikw‖2a , ∀w ∈ Uk,

with ck,2/ck,1 ≤ Ck, so from (10),

‖(I − Pk)Ekwk‖2a ≤ Ck

(
1 + log

Hk

Hk−1

)2

‖wk‖2a , ∀wk ∈ W̃k,

with Ck = CkC̃k. It remains to use Lemma 4.

For L = 3 we recover the estimate by [10]. In the case of uniform coarsening,
i.e. with Hk/Hk−1 = H/h and the same geometry of decomposition on all levels
k = 1, . . . L− 1, we get

κ ≤ CL−1 (1 + logH/h)2(L−1) . (15)

6 Numerical Examples and Conclusion

A multilevel BDDC preconditioner was implemented in Matlab for the 2D Laplace
equation on a square domain with periodic boundary conditions. For these boundary
conditions, all subdomains at each level are identical and it is possible to solve very
large problems on a single processor. The periodic boundary conditions result in a
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Table 1. 2D Laplace equation results for H/h = 2. The number of levels is Nlev
(Nlev = 2 for the standard approach), the number iterations is iter, the condition
number estimate is κ, and the total number of degrees of freedom is ndof.

Nlev corners only corners and faces ndof

iter κ iter κ

2 2 1.5625 1 1 16
3 8 1.8002 5 1.1433 64
4 11 2.4046 7 1.2703 256
5 14 3.4234 8 1.3949 1,024
6 17 4.9657 9 1.5199 4,096
7 20 7.2428 9 1.6435 16,384
8 25 10.5886 10 1.7696 65,536

Table 2. 2D Laplace equation results for H/h = 4.

Nlev corners only corners and faces ndof

iter κ iter κ

2 9 2.1997 6 1.1431 256
3 14 4.0220 8 1.5114 4,096
4 21 7.7736 10 1.8971 65,536
5 30 15.1699 12 2.2721 1,048,576

Table 3. 2D Laplace equation results for H/h = 8.

Nlev corners only corners and faces ndof

iter κ iter κ

2 14 3.1348 7 1.3235 4,096
3 23 7.8439 10 2.0174 262,144
4 36 19.9648 13 2.7450 16,777,216

stiffness matrix with a single zero eigenvalue, but this situation can be accommo-
dated in preconditioned conjugate gradients by removing the mean from the right
hand side of Ax = b. The coarse grid correction at each level is replaced by the
BDDC preconditioned coarse residual.

Numerical results are in Tables 1-3. As predicted by Theorem 2, the condition
number grows slowly in the ratios of mesh sizes for a fixed number of levels L. How-
ever, for fixed Hi/Hi−1 the growth of the condition number is seen to be exponential
in L. With additional constraints by side averages, the condition number is seen to
grow linearly. Our explanation is that a bound similar to Theorem 2 still applies,
though possibly with (much) smaller constants, so the exponential growth of the
condition number is no longer apparent.
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Summary. The all-floating BETI method considers all subdomains as floating sub-
domains and improves the overall asymptotic complexity of the BETI method. This
effect and the scalability of the method are shown in numerical examples.

1 Introduction

The boundary element tearing and interconnecting (BETI) method has been de-
rived by [9] as the boundary element counterpart of the well-known FETI methods
introduced by [4]. In the standard BETI method, floating and non-floating subdo-
mains have to be treated differently. This is rather easy for the potential equation,
but in linear elastostatics it gets more involved since the number of rigid body
motions which have to be considered may vary from one subdomain to another.
The FETI–DP methods, see [3], introduce some global primal variables to guar-
antee the invertibility of all local Steklov-Poincaré operators. The choice of these
primal variables is important for the performance and gets more involved in lin-
ear elastostatics; see [7]. The all-floating BETI method overcomes these difficulties
and improves the overall asymptotic complexity. The idea is to consider all subdo-
mains as floating subdomains by tearing off the Dirichlet boundary conditions. This
gives a unified treatment for all subdomains and an “optimal” preconditioning of
the Steklov-Poincaré operators. At the DD17 Conference a similar approach was
presented for the FETI method, called TotalFETI; see [2].

2 Boundary Element Tearing and Interconnecting Method

As model problem the Dirichlet boundary value problem

−div[α(x)∇u(x)] = 0 for x ∈ Ω
u(x) = g(x) for x ∈ Γ = ∂Ω

of the potential equation is considered. Ω ⊂ R3 is a bounded Lipschitz domain
decomposed into p non-overlapping subdomains Ωi with Lipschitz boundaries Γi =
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∂Ωi. Further, the coefficient function α(·) is piecewise constant such that α(x) =
αi > 0 for x ∈ Ωi, i = 1, . . . , p. Instead of the global boundary value problem, the
corresponding local boundary value problems may be considered for local functions
ui with transmission conditions

ui(x) = uj(x) and αi
∂

∂ni
ui(x) + αj

∂

∂nj
uj(x) = 0

for x ∈ Γij = Γi∩Γj and i ≤ j. ni denotes the outer normal vector of the subdomain
Ωi. The Dirichlet domain decomposition method is based on a strong coupling of
the Dirichlet data across the coupling interfaces by introducing a global function
u ∈ H1/2(Γs) on the skeleton ΓS :=

⋃p
i=1 Γi. A weak coupling of the Neumann data

is applied using a variational formulation. After the discretization, the global system
of linear equations

S̃hũ =

p∑
i=1

A	
i S̃i,hAiũ =

p∑
i=1

A	
i f i (1)

has to be solved. The connectivity matrices Ai ∈ RMi×M map the global nodes to
the local nodes and the global vector ũ to the local vectors ũi = Aiũ. The coefficients
of the vectors f i of the right-hand side are given by

f i[k] = −
∫

Γi

(Sig̃)(x)ϕ
i
k(x)dsx.

Here, the potential u = ũ + g̃ is split into an extension g̃ of the given Dirichlet
data g and into the unknown part ũ. A matching discretization of the boundaries Γi

into plane triangles is used. The potentials ui are approximated by piecewise linear
and continuous basis functions {ψi

n}Ni
n=1 on each subdomain. Piecewise constant

basis functions {ϕi
k}Mi

k=1 are used for the approximation of the local fluxes ti. The
matrices

S̃i,h = Di,h + (
1

2
M	

i,h +K	
i,h)V −1

i,h (
1

2
Mi,h +Ki,h)

are discrete approximations of the local Steklov-Poincaré operators Si, the so-called
Dirichlet to Neumann maps. The boundary element matrices

Vi,h[�, k] = 〈Viϕ
i
k, ϕ

i
�〉Γi , Ki,h[�, n] = 〈Kiψ

i
n, ϕ

i
�〉Γi ,

Di,h[m,n] = 〈Diψ
i
n, ψ

i
m〉Γi , Mi,h[�, n] = 〈ψi

n, ϕ
i
�〉Γi

are realized by the fast multipole method, see [5], using integration by parts for the
matrix Di,h of the hypersingular operator; see [12]. The use of the fast multipole
method reduces the quadratic effort for a matrix times vector multiplication and
the quadratic memory requirements of a standard boundary element method to
almost linear ones up to some polylogarithmic factor. The involved boundary integral
operators are the single layer potential Vi, the double layer potential Ki and the
hypersingular operator Di defined by

(Viti)(x) =

∫
Γi

U∗(x, y)ti(y)dsy,

(Kiui)(x) =

∫
Γi

∂

∂ni,y
U∗(x, y)ui(y)dsy,
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(Diui)(x) = − ∂

∂ni,x

∫
Γi

∂

∂ni,y
U∗(x, y)ui(y)dsy.

The global system of linear equations (1) is preconditioned by

C−1

S̃
=

p∑
i=1

A	
i Vi,lin,hAi

in the conjugate gradient method. This preconditioner provides a good precondi-
tioning of the local Steklov-Poincaré operators Si; see [14].

2.1 Standard BETI Method

Instead of the global system (1), the equivalent minimization problem

F (ũ) = min
ṽ∈�M

p∑
i=1

[
1

2
(S̃i,hAiṽ, Aiṽ)− (f i, Aiṽ)

]
(2)

is considered in the BETI method. Introducing local vectors ṽi := Aiṽ tears off
the local potentials ṽi at the coupling interfaces. Therefore, only local minimization
problems have to be considered. The interconnection is done by introducing the
constraints

p∑
i=1

Bivi = 0 (3)

to reinforce the continuity of the potentials across the coupling interfaces. Each line
of a matrix Bi has at most one non-zero entry. This entry is either 1 or −1. At a
global node with r adjacent subdomains r−1 constraints are used to guarantee that
the corresponding local coefficients of these subdomains are equal. So non redundant
Lagrange multipliers are used. It remains to solve p local minimization problems with
the constraints (3). Introducing Lagrangian multipliers λ gives the system of linear
equations ⎛⎜⎜⎜⎝

S̃1,h −B	
1

. . .
...

S̃p,h −B	
p

B1 . . . Bp 0

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

ũ1

...
ũp

λ

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
f1

...
fp

0

⎞⎟⎟⎟⎠ . (4)

The local Steklov-Poincaré operators of the subdomains which share a piece with
the Dirichlet boundary Γ are invertible, i.e., ũi = S̃−1

i,h (f i +B
	
i λ). The local Steklov-

Poincaré operators of the other subdomains, called floating subdomains, are singular.
For suitable compatibility and normalization conditions, the local solutions can be
given by ũi = Ŝ−1

i,h (f i + B	
i λ) + γi with some arbitrary constants γi and modified

local Steklov-Poincaré operators defined by

〈Ŝiu, v〉 := 〈Siu, v〉+ βi〈u, 1〉Γi〈v, 1〉Γi .

The parameters βi of this stabilization can be chosen suitably; see [13]. If the first q
subdomains are floating subdomains and the remaining are non-floating, the system
(4) can be written as the Schur complement system
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i=1

BiŜ
−1
i,hB

	
i +

p∑
i=q+1

BiS
−1
i,hB

	
i

]
λ +Gγ =

q∑
i=1

BiŜ
−1
i,h f i +

p∑
i=q+1

BiS
−1
i,h f i (5)

or in the compact form

Fλ +Gγ = d with G	λ = ((f i,1))i=1:q

and G = (B11, . . . , Bq1). As [6], the Lagrangian multipliers λ and the constants γ
are determined by

P	Fλ = P	d and γ = (G	QG)−1G	Q(d− Fλ)

with the orthogonal projection P = I −QG(G	QG)−1G	. Using the scaled hyper-
singular BETI preconditioner, see [9],

C−1 = (BC−1
α B	)−1BC−1

α DhC
−1
α B	(BC−1

α B	)−1

with appropriate scaling matrices Cα, see [1, 6], the condition number of the pre-
conditioned BETI system can be estimated by

κ(C−1F ) ≤ c (1 + logH/h)2

independent of jumps in the coefficients αi; see [9].

2.2 All-floating BETI Method

A disadvantage of the BETI formulation (4) is that the condition number for the
inversion of the local Steklov-Poincaré operator of non-floating subdomains is in-
creasing logarithmically for the used preconditioning by the single layer potential
as a boundary integral operator of opposite order; see [10]. The all-floating BETI
method considers all subdomains as floating subdomains by tearing off the Dirichlet
boundary conditions. This gives a simple unified treatment for all subdomains and
a “optimal” preconditioning of the local Steklov-Poincaré operators.

As in the case of the standard BETI method, the global minimization problem
(2) is split into local minimization problems

F (ũi) = min
ṽi

1

2
(S̃i,hṽi, ṽi) + (S̃i,hg̃i, ṽi)

by introducing the local vectors ṽi = Aiṽ. Now, the unknown part ṽi of the local
Dirichlet datum and the known part g̃i given by the Dirichlet boundary conditions
are reunited in the function vi = ṽi + g̃i. The coefficients of these local functions can
be determined by equivalent local minimization problems

F̃ (ui) = min
vi∈�Mi

1

2
(S̃i,hvi,vi).

Additional local constraints are used to guarantee that the Dirichlet boundary con-
ditions are satisfied, i.e.,

∑p
i=1 B̃ivi = b. These constraints include the constraints

of the standard BETI method, for which the entries of the right hand side b are
zero. The additional local constraints are of the type vi[k] = g(xk) where k is the

local index of a Dirichlet node xk. Then the corresponding line of the matrix B̃i has
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one non-zero entry equal to one and the entry of the right hand side b is given by
g(xk). Again, Lagrangian multipliers λ are introduced to get the system of linear
equations ⎛⎜⎜⎜⎜⎝

S̃1,h −B̃	
1

. . .
...

S̃p,h −B̃	
p

B̃1 . . . B̃p 0

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎝

u1

...
up

λ

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
0
...
0
b

⎞⎟⎟⎟⎠ .
The corresponding Schur complement system has the simpler structure

p∑
i=1

B̃iŜ
−1
i,h B̃

	
i λ +Gγ = b.

This system can be solved as described for the standard BETI method, but now all
subdomains are floating subdomains. The all-floating approach can be extended to
mixed boundary value problems and linear elastostatics; see [11].

The BETI system and the all-floating system are solved as two-fold saddle point
problems, which are derived by reintroducing the local fluxes. In these formulations,
no interior inversions of the local Steklov-Poincaré operators and of the single layer
potentials are needed. Therefore, this is the fastest way to solve the BETI systems;
see [8]. If the used algebraic multigrid preconditioners of the local single layer poten-
tials are optimal and the two-fold saddle point formulations are used, the number
of iterations of the conjugate gradient method for the standard BETI method is
bounded by O((1 + log(H/h))2) and the total complexity is of order O(Ni log4Ni),
since the fast multipole method has a complexity of order O(Ni log2Ni). In this
notation, h is the global mesh-size and H denotes the diameter of the subdomains.
For the all-floating BETI method, the number of iterations is reduced to the order of
O(1 + log(H/h)) and the number of arithmetic operations is of order O(Ni log3Ni)
correspondingly. This will be proven in an upcoming paper for linear elastostatics.

3 Numerical Results

As an academic test example, the domain decomposition is given by a cube subdi-
vided into eight smaller cubes with boundaries of 24 triangles each. The robustness of
the preconditioner with respect to jumping coefficients has been shown in a previous
paper; see [8]. Here, a constant coefficient α = 1 for all subdomains is considered. In
Table 1, the computational times t1 and t2 for setting up the system and for solving
in seconds and the numbers of iterations It of the conjugate gradient method with
a relative accuracy of 10−8 are compared for the standard Dirichlet domain decom-
position method (1) and for the twofold saddle point formulations of the standard
and of the all-floating BETI methods are compared for six uniform refinement steps.
Note that the problem sizes of the local subproblems with Ni boundary elements
are large.

On the first refinement levels, there is an overhead of the iteration numbers
and the times for solving the system of the all-floating method in comparison to the
standard BETI method. This effect is due to the larger number of degrees of freedom
of the all-floating method. The improved asymptotic complexity of the all-floating
formulation pays off for the last three refinement levels, as the numbers of iterations
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Table 1. Comparison of the BETI methods

DDD (1) BETI all-floating
L Ni t1 t2 It. t1 t2 It. t1 t2 It.

0 24 1 0 4( 1) 2 1 11 2 2 28
1 96 1 1 14( 8) 3 2 37 3 3 40
2 384 5 4 20(10) 4 6 40 8 7 40
3 1536 14 25 22(11) 15 38 45 22 38 43
4 6144 77 167 24(11) 76 243 50 93 227 46
5 24576 333 1626 26(11) 333 2036 56 342 1798 48
6 98304 1443 9262 29(12) 1445 10130 62 1477 8693 51

are reduced. Finally, the all-floating method is faster than the standard domain
decomposition method. The Dirichlet problem is the most challenging problem for
the all-floating method, since the Dirichlet problem gives more additional constraints
than a mixed boundary value problem. Therefore, the speedup by the all-floating
method is better for mixed boundary value problems; see [11].

Finally, a test of the scalability of the all-floating method is presented. The
results of a domain decomposition of the cube into 64 subcubes are compared to
the results of a domain decomposition into eight subcubes. The triangulation of the
surfaces of the eight cubes is finer with 96 instead of 24 triangles per subcube on the
coarsest level, such that the triangulations of the whole cube are the same for both
decompositions. Therefore, the decompositions are comparable. The results for five
refinement steps are given in Table 2.

Table 2. Scalability of the all-floating BETI method

8 finer subdomains 64 subdomains
L Ni #duals t1 t2 It. D-error Ni #duals t1 t2 It. D-error

0 96 221 4 3 29 1.35e− 2 24 613 5 6 32 1.10e− 2
1 384 753 8 7 36 3.88e− 3 96 1865 7 5 37 3.45e− 3
2 1536 2777 21 34 41 9.91e− 4 384 6481 11 10 47 9.09e− 4
3 6144 10665 82 194 46 2.28e− 4 1536 24161 23 48 52 2.22e− 4
4 24576 41801 287 1811 53 6.13e− 5 6144 93313 90 307 60 4.67e− 5
5 98304 165513 1358 10485 62 1.61e− 5 24576 366785 312 2658 70 1.40e− 5

The iteration numbers of the decomposition into 64 subdomains are slightly
increased compared to the eight subdomains, but this may be caused by the more
complex coupling with up to 26 neighbors instead of seven. Except for the first three
levels, the computational times for the 64 subdomains are about four times faster
than for the eight subdomains. This is the most one can expect, since the additional
coupling interfaces double the numbers of local degrees of freedom. Due to these
additional local degrees of freedom, the more accurate approximations of the local
Steklov-Poincaré operators give a reduced L2 error for the approximation of the
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potential. The total numbers of degrees of freedom are 1345177 for the decomposition
into eight subdomains and 2726209 for the decomposition into 64 subdomains.

4 Conclusion

The all-floating BETI method simplifies the treatment of floating and non-floating
subdomains and improves the asymptotic behavior of the BETI method. In com-
bination with a fast multipole boundary element method, it provides an almost
optimal complexity with respect to the number of iterations, the arithmetical com-
plexity and the memory requirements. The all-floating BETI method has already
been extended to mixed boundary value problems and linear elastostatics.
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Summary. Biochips, of the microarray type, are fast becoming the default tool for
combinatorial chemical and biological analysis in environmental and medical stud-
ies. Programmable biochips are miniaturized biochemical labs that are physically
and/or electronically controllable. The technology combines digital photolithogra-
phy, microfluidics and chemistry. The precise positioning of the samples (e.g., DNA
solutes or proteins) on the surface of the chip in pico liter to nano liter volumes can
be done either by means of external forces (active devices) or by specific geomet-
ric patterns (passive devices). The active devices which will be considered here are
nano liter fluidic biochips where the core of the technology are nano pumps featuring
surface acoustic waves generated by electric pulses of high frequency. These waves
propagate like a miniaturized earthquake, enter the fluid filled channels on top of
the chip and cause an acoustic streaming in the fluid which provides the transport of
the samples. The mathematical model represents a multiphysics problem consisting
of the piezoelectric equations coupled with multiscale compressible Navier-Stokes
equations that have to be treated by an appropriate homogenization approach. We
discuss the modeling approach and present algorithmic tools for numerical simula-
tions as well as visualizations of simulation results.

1 Introduction

Microfluidic biochips and microarrays are used in pharmaceutical, medical and foren-
sic applications as well as in academic research and development for high throughput
screening, genotyping and sequencing by hybridization in genomics, protein profiling
in proteomics, and cytometry in cell analysis (see [7]). Traditional technologies such
as fluorescent dyes, radioactive markers, or nanoscale gold-beads only allow a rela-
tively small number of DNA probes per assay, and they do not provide information
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about the kinetics of the processes. With the need for better sensitivity, flexibil-
ity, cost-effectiveness and a significant speed-up of the hybridization, the current
technological trend is to integrate the microfluidics on the chips itself. A new type
of nanotechnological devices are Surface Acoustic Wave (SAW) driven microfluidic
biochips (cf. [4, 9]).

Fig. 1. Microfluidic biochip with network of microchannels (left), and sharp jet
created by surface acoustic waves (right)

The experimental technique is based on piezoelectrically actuated Surface
Acoustic Waves (SAW) on the surface of a chip which transport the droplet
containing probe along a lithographically produced network of microchannels to
marker molecules placed at prespecified surface locations (cf. Fig. 1 (left)). These
microfluidic biochips allow the in-situ investigation of the dynamics of hybridization
processes with extremely high time resolution.
The SAWs are excited by interdigital transducers and are diffracted into the device
where they propagate through the base and enter the fluid filled microchannel cre-
ating a sharp jet on a time-scale of nanoseconds (cf. Fig. 1 (right)). The acoustic
waves undergo a significant damping along the microchannel resulting in an acoustic
streaming on a time-scale of milliseconds. The induced fluid flow transports the
probes to reservoirs within the network where a chemical analysis is performed.

2 Modeling of SAW Driven Microfluidic Biochips

Mathematical models for SAW biochips are based on the linearized equations of
piezoelectricity in Q1 := (0, T1)×Ω1

ρ1
∂2ui

∂t2
− ∂

∂xj
cijkl

∂uk

∂xl
− ∂

∂xj
ekij

∂Φ

∂xk
= 0 , (1a)

∂

∂xj
ejkl

∂uk

∂xl
− ∂

∂xj
εjk

∂Φ

∂xk
= 0 (1b)

with appropriate initial conditions at t = 0 and boundary conditions on Γ1 := ∂Ω1.
Here, ρ1 and u = (u1, u2, u3)

T denote the density of the piezoelectric material and
the mechanical displacement vector. Moreover, ε = (εij) stands for the permittivity
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tensor and Φ for the electric potential. The tensors c = (cijkl) and e = (eikl) refer
to the forth order elasticity tensor and third-order piezoelectric tensor, respectively.
The modeling of the micro-fluidic flow is based on the compressible Navier-Stokes
equations in Q2 := (0, T2)×Ω2

ρ2
(∂v
∂t

+ (v · ∇)v
)

= −∇p+ η ∆v +
(
ζ +

η

3

)
∇(∇ · v) , (2a)

∂ρ2
∂t

+∇ · (ρ2 v) = 0 , (2b)

v(x+ u(x, t), t) =
∂u

∂t
(x, t) on (0, T2)× Γ2 (2c)

with suitable initial conditions at t = 0 (see, e.g., [1, 2]). In the model, com-
pressible and non-linear effects are the driving force of the resulting flow. Here,
ρ2,v = (v1, v2, v3)

T and p are the density of the fluid, the velocity, and the pres-
sure. η and ζ refer to the shear and the bulk viscosity. The boundary conditions
include the time derivative ∂u/∂t of the displacement of the walls Γ2 = ∂Ω2 of
the microchannels caused by the surface acoustic waves. Therefore, the coupling
of the piezoelectric and the Navier-Stokes equations is only in one direction. No
back-coupling of the fluid onto the SAWs is considered. It has to be emphasized
that the induced fluid flow involves extremely different time scales. The damping
of the sharp jets created by the SAWs represents a process with a time scale of
nanoseconds, whereas the resulting acoustic streaming reaches an equilibrium on a
time scale of milliseconds.
SAWs are usually excited by interdigital transducers located at Γ1,D ⊂ Γ1 operating
at a frequency f ≈ 100 MHz with wavelength λ ≈ 40 µm. The time-harmonic ansatz
leads to the saddle point problem:
Find (u, Φ) ∈ V × W , where V ⊂ H1(Ω1)

3,W ⊂ H1(Ω1), such that for all
(w, Ψ) ∈ V ×W∫

Ω1

cijklεkl(u)εij(w̄)dx− ω2

∫
Ω1

ρ1uiw̄idx+

∫
Ω1

ekij
∂Φ

∂xk
εij(w̄)dx = < σn,w >,

∫
Ω1

eijk εij(u)
∂Ψ̄

∂xk
dx −

∫
Ω1

εij
∂Φ

∂xi

∂Ψ̄

∂xj
dx = < Dn, Ψ > .

Here, (εij(u)) stands for the linearized strain tensor and ω = 2πf . The elastic

and electric Neumann boundary data are supposed to satisfy σn ∈ H− 1
2 (Γσ)2 and

Dn ∈ H− 1
2 (ΓD) with < ·, · > in the above system denoting the respective dual

products. Then, the following results holds true (cf. [3]):

Theorem 1. For the above saddle point problem, the Fredholm alternative holds
true. In particular, if ω2 is not an eigenvalue of the associated eigenvalue problem,
there exists a unique solution (u, Φ) ∈ V ×W .

In order to cope with the two time-scales character of the fluid flow in the
microchannels (penetration of the SAWs within nanoseconds and induced acoustic
streaming within milliseconds), we perform a separation of the time-scales by ho-
mogenization. In particular, we consider an expansion of the velocity v in a scale
parameter ε > 0 representing the max́ımal displacement of the walls
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v = v0 + ε v′ + ε2 v′′ + O(ε3)

and analogous expansions of the pressure p and the density ρ2. We set v1 :=
εv′,v2 := ε2v′′ and define pi, ρ2,i, 1 ≤ i ≤ 2, analogously. Collecting all terms
of order O(ε) results in the linear system

ρ2,0
∂v1

∂t
− η ∆v1 −

(
ζ +

η

3

)
∇(∇ · v1) + ∇p1 = 0 in Q2 , (3a)

∂ρ2,1

∂t
+ ρ2,0 ∇ · v1 = 0 in Q2 , (3b)

p1 = c20 ρ2,1 in Q2 , v1 =
∂u

∂t
on Γ2 , (3c)

where c0 represents the small signal sound speed in the fluid. The system describes
the propagation of damped acoustic waves.
Collecting all terms of order O(ε2) and performing the time-averaging 〈w〉 :=

T−1
∫ t0+T

t0
w dt, where T := 2π/ω, we arrive at the Stokes system in Ω2

−η ∆v2 −
(
ζ +

η

3

)
∇(∇ · v2) +∇p2 = 〈−ρ2,1

∂v1

∂t
− ρ2,0[∇v1]v1〉 , (4a)

ρ2,0∇ · v2 = 〈−∇ · (ρ2,1v1)〉 , (4b)

v2 = − 〈[∇v1]u〉 on Γ2 . (4c)

The Stokes system describes the stationary flow pattern, called acoustic streaming,
resulting after the relaxation of the high frequency surface acoustic waves.
As far as analytical results for the Navier-Stokes equations (3a)-(3c) are concerned,
one can show existence and uniqueness of a weak periodic solution assuming the
forcing term to be a periodic function. Moreover, under some extra regularity as-
sumption it can be shown that the periodically extended solution converges to an
oscillating equilibrium state (see [5]).

Theorem 2. Assume that the forcing term is a periodic function of period T . Then,
the linear Navier-Stokes equations (3a)-(3c) have a unique weak periodic solution
(vper, pper) ∈ H1((0, T );H−1(Ω)3 × L2

0(Ω)).
Moreover, if (ṽ, p̃) resp. (ṽper, p̃per) are extensions of the solution resp. the periodic
solution of the Navier-Stokes equation with periodic forcing term to arbitrary large
τ > 0 and if (∂2

ttṽ, ∂
2
ttp̃), (∂

2
ttṽper, ∂

2
ttp̃per) ∈ L2((0, τ);H), where H := L2(Ω)3 ×

L2
0(Ω), then there holds

‖(ṽ(t), p̃(t))− (ṽper(t), p̃per(t))‖H = O(t−1/2) .

3 Simulation of the SAWs and the Microfluidic Flows

The time-harmonic acoustic problem is solved in the frequency domain by using P1

conforming finite elements with respect to a hierarchy of simplicial triangulations.
This leads to an algebraic saddle point problem(

Aω B
BT −C

)(
U
Φ

)
=

(
f
g

)
. (5)
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For the numerical solution of (5) we use multilevel preconditioned CG for the asso-
ciated Schur complementbased on a block-diagonal preconditioner

P−1 =

(
Ã−1

ω 0

0 C̃−1

)
(6)

with BPX- or hierarchical-type preconditioners for the stiffness matrices associated
with the mechanical displacement and electric potential, respectively (see [3] for
details).
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Fig. 2. Performance of the multilevel preconditioned CG compared with standard
CG in 2D (left) and 3D (right)

Fig. 2 displays the performance of the multilevel preconditioners compared to the
standard single-grid iterative solver both in 2D (on the left) and in 3D (on the right).
For the BPX-preconditioner we observe the expected asymptotic independence on
the refinement level (cf., e.g., [6]).

The Navier Stokes equations (3a)-(3c) with a periodic excitation on the boundary
Γ2 are discretized in time by the Θ-scheme (cf., e.g., [8]), until a specific condition
for periodicity of the pressure is met. The discretization in space is taken care of by
Taylor-Hood elements with respect to a hierarchy of simplicial triangulations. On
the other hand, for the discretization of the time-averaged Stokes system we use the
same techniques as for the time-harmonic acoustic problem (see [5] for details).

4 Numerical Simulation Results

The following simulation results are based on 2D computations that have been car-
ried out for LiNbO3 as the piezoelectric material and assuming the fluid in the
microchannels to be water at 20◦C. For a precise specification of the geometrical
and material data we refer to [3] and [5]. Fig. 3 shows the amplitudes of the electric
potential at an operating frequency of 100 MHz (left) and the polarized Rayleigh
waves by means of the displacement vectors (right). The amplitudes of the displace-
ment waves are in the region of nanometers. The SAWs are strictly confined to the
surface of the substrate. Their penetration depth into the piezoelectric material is
in the range of one wavelength. Rayleigh surface waves characteristically show an
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elliptical displacement, i.e., the displacements in the x1- and x2-direction are 90o out
of phase with one another. Additionally, the amplitude of the surface displacement
in the x2-direction is larger than that along the SAW propagation axis x1.

Fig. 3. Electric potential wave (100 MHz) (left) and mechanical displacement vec-
tors (right)

Fig. 4 (left) displays the effective force creating the sharp jet in the fluid (cf. Fig.
1 (right)) which can be easily computed by means of F := ρ2,0〈(v1·∇)v1+v1(∇·v1)〉,
where the brackets stand for the time average removing the fast oscillations of the
sound wave. Fig. 4 (right) contains a visualization of the associated velocity field.

Fig. 4. Effective force and associated velocity field

Fig. 5 shows the strong damping of the acoustic waves in the fluid where exci-
tation occurs through an SAW running from left to right along the lower edge at a
frequency of 100 MHz.
We have performed a model validation by a comparison of experimental data with
numerical simulation results. Fig. 6 (left) displays the measured streaming pattern
visualized by a fluorescence video microscope for an experimental layout consisting
of a typical biochip with an IDT placed on top of a standard YXl 128ô substrate (the
IDT is visible at the bottom right of Fig. 6 (left)). Fig. 6 (right) shows the result of a
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Fig. 5. Strong damping of the SAWs after penetration into the fluid

Fig. 6. Model validation: experimental measurements (left) and numerical simula-
tion results (right)

simulation run based on the data of the experimental setting. A similar qualitative
behavior can be observed. More importantly, for the resulting acoustic streaming
the simulation results are quantitatively in good agreement with the experimental
data.
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Summary. We consider a magnetohydrodynamic (MHD) problem which models
the steady flow of a conductive incompressible fluid confined in a bounded region
and subject to the Lorentz force exerted by the interaction of electric currents and
magnetic fields. We present an iterative method inspired to operator splitting to
solve this nonlinear coupled problem, and a discretization based on conforming finite
elements.

1 Introduction

MHD studies the interaction of electrically conductive fluids and electromagnetic
fields. One of the most interesting aspects of this interaction is the possibility to
generate the so-called Lorentz’s force, which permits to influence the motion of the
fluid in a completely contactless way. With this respect, an important application
of MHD occurs in the production of metals.

The mathematical modeling of the processes taking place in such industrial
plants is very involved since it requires to take into account many phenomena (multi-
phase and free-surface flows, electromagnetic fields, temperature effects, chemical
reactions, etc.). However, the core model describing the interaction between the
liquid metal and the magnetic fields is a nonlinear system formed by Navier-Stokes’
and Maxwell’s equations coupled by Ohm’s law and Lorentz’s force. The literature
concerning both the mathematical analysis and the finite element approximation of
this coupled problem is broad (see, e.g., [5, 7, 8, 9, 10] and references therein).

In this paper, we consider a formulation of a steady MHD problem as a nonlinear
coupled system in five unknowns, namely, magnetic field, velocity and pressure of
the fluid, electric currents and potential, which presents a “nested” saddle-point
structure. Moreover, following the common numerical approach in electromagnetism,
we express the magnetic field as the solution of a curl-curl problem, instead of using
the Biot-Savart law (see, e.g., [10]).

After briefly discussing the well-posedness of this problem (Sect. 2), we propose
and analyze an iterative solution method based on operator-splitting techniques
(Sect. 3). In Sect. 4, we present a conforming finite element approximation, and
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we discuss the algebraic form of the iterative schemes. Finally, we present some
numerical results (Sect. 5).

2 Setting and Well-Posedness of the Problem

We consider a bounded domain Ω ⊂ R3 of class C 1,1 (see, e.g., [1]), which contains
a bounded Lipschitz subdomain Ωf ⊂ Ω filled by an electrically conductive fluid.
An external conductor Ωs is attached to a part of the boundary Γs ⊂ ∂Ωf , in order
to inject an electric current into Ωf . Finally, let Ωe be an external device which
possibly generates a magnetic field Be. A schematic representation of the domain is
shown in Fig. 1.

Gs

Gs

Wf
WsWe

Fig. 1. Schematic representation of the computational setting

In Ωs we assign an electric current Js which originates a magnetic field, say B̄s.
This current is such that div Js = 0 in Ωs, Js ·n = 0 on ∂Ωs \Γs, and Js ·n = js on
Γs, where n denotes the unit normal vector directed outward of ∂Ωf . The (known)
function js ∈ L2(Γs) fulfills the compatibility condition

∫
Γs
js = 0. We suppose that

the contact interface Γs between Ωf and Ωs is perfectly conductive, i.e.

Js · n = js = Jf · n on Γs . (1)

In the fluid domain Ωf we have a current Jf which generates a magnetic field B̄f .
The global magnetic field B is thus due to the superposition of three components:
B = Be + B̄s + B̄f .

The motion of the incompressible conductive fluid in Ωf is described by the
steady Navier-Stokes’ equations:

−η�u + ρ(u · ∇)u +∇p− Jf ×B|Ωf = 0, div u = 0 in Ωf , (2)

where u and p are the velocity and the pressure of the fluid, respectively, while
η, ρ > 0 are the fluid viscosity and density. We supplement (2) with the Dirichlet
boundary condition u = g on ∂Ωf , g being an assigned velocity field such that∫

∂Ωf
g ·n = 0. Jf ×B|Ωf is the Lorentz force exerted on the fluid by the interaction

of the magnetic field B and the electric current Jf .
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Finally, the electric current Jf satisfies

σ−1Jf +∇φ− u×B|Ωf = 0, div Jf = 0 in Ωf , (3)

where φ is the electric potential and σ > 0 is the electric conductivity of the fluid.
We impose the boundary condition (1) on Γs, while we set Jf · n = 0 on ∂Ωf \ Γs.

In order to give a more useful representation of the magnetic field B, we consider
the divergence-free extension Esjs of js. Es is a continuous extension operator Es :
L2(Γs) → H(div;Ωf ), such that Esjs · n = 0 on ∂Ωf \ Γs, Esjs · n = js on Γs,
and div(Esjs) = 0 in Ωf (see [2]). Then, we decompose Jf = J0 + Esjs, with
J0 ∈ H(div;Ωf ), J0 · n = 0 on ∂Ωf .

Now, let us consider the currents

Js =

⎧⎨⎩
Esjs in Ωf ,
Js in Ωs,
0 in Ω \ (Ωf ∪Ωs),

and J0 =

{
J0 in Ωf ,
0 in Ω \Ωf ,

(4)

where J0 satisfies div J0 = 0 in Ω and J0 · n = 0 on ∂Ω. Then, the magnetic fields
Bs and B0 generated by Js and J0, respectively, can be represented as the solution
of the problems:

curl (µ−1Bs) = Js in Ω ,
div Bs = 0 in Ω ,
Bs · n = 0 on ∂Ω ,

and
curl (µ−1B0) = J0 in Ω ,

div B0 = 0 in Ω ,
B0 · n = 0 on ∂Ω .

(5)

µ > 0 is the magnetic permeability that we assume to be constant in Ω.
The usual approach to compute B0 is to introduce a vector potential A such

that curl A = B0, and to reformulate the corresponding problem (5) as

curl (µ−1curl A) + εA = J0 in Ω ,
A× n = 0 on ∂Ω .

(6)

Remark that the boundary condition A × n = 0 on ∂Ω implies B0 · n = 0 on ∂Ω,
and that the perturbation term of order O(ε), with 0 < ε � 1, has been added to
guarantee the uniqueness of the solution A, which otherwise would be defined only
up to gradients of arbitrary scalar functions.

Using these notations, we can rewrite the magnetic field B as B = Be + Bs +
curl A, A being the only unknown component which depends on the unknown
current J0.

Notice that the MHD problem (2), (3) and (6) would be nonlinear even if we
considered instead of (2) the Stokes equations:

−η�u +∇p− Jf ×B|Ωf = 0, div u = 0 in Ωf . (7)

Indeed, there is an intrinsic nonlinearity due to the coupling terms Jf ×B|Ωf and
u×B|Ωf . For simplicity, we illustrate our solution method avoiding for the moment
the nonlinearity due to the convection term (u · ∇)u in (2). Thus, from now on, we
regard (7), (3), (6) as our MHD problem.

The well-posedness of the MHD system can be proved using the Banach Con-
traction Theorem. In particular, we can state the following result (see [2]).
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Proposition 1. Assume that Be|Ωf
∈ (L3(Ωf ))3. If the physical parameters µ−1,

η, σ−1 are sufficiently large, whereas the boundary data g ∈ (H1/2(∂Ωf ))3, js ∈
L2(Γs) and the assigned magnetic field Be are small enough, the MHD problem has
a unique solution A ∈ H(curl;Ω), u ∈ (H1(Ωf ))3, p ∈ L2

0(Ωf ), Jf ∈ H(div;Ωf ),
φ ∈ L2

0(Ωf ).

The conditions imposed on the physical parameters are required to ensure the
existence of a solution and its uniqueness. From the proof in [2], we can see that
the larger the viscosity η of the fluid and the smaller its conductivity σ, the larger
the boundary data g and js may become.

3 Iterative Solution Methods

In this section, we consider possible methods to compute the solution of the MHD
problem by independently solving its fluid and magnetic-field subproblems. In par-
ticular, we first compute curl A in Ω, and then we linearize (7) and (3) in Ωf using
the magnetic field just obtained. The latter problems can be solved separately or in a
coupled fashion. Ad-hoc solution techniques known in literature may be used to deal
with each subproblem, and “reusage” of existing specific codes may be envisaged as
well.

Precisely, we propose the following algorithm.

Consider an initial guess J
(0)
0 for the electric current in Ωf , and set J

(0)
0 as in

(4). For k ≥ 0, until convergence,

1. solve (6) with J
(k)
0 as right-hand side to compute A(k).

2. Then, solve the problem in Ωf using one of the following strategies:
2a. Coupled approach: solve in Ωf the system

−η�u(k+1) +∇p(k+1) − (J
(k+1)
0 + Esjs)× (Be + Bs + curl A(k)) = 0, (8)

div u(k+1) = 0, (9)

σ−1(J
(k+1)
0 + Esjs) +∇φ(k+1) − u(k+1) × (Be + Bs + curl A(k)) = 0, (10)

div (J
(k+1)
0 + Esjs) = 0. (11)

2b. Split approach: solve first the Stokes problem (8)-(9) in Ωf , taking J
(k)
0

instead of J
(k+1)
0 . Then, using the velocity field u(k+1) just computed, solve

(10)-(11).
3. In both cases 2a/b, define the electric current at the successive step possibly

considering a relaxation: J
(k+1)
0 ← θ J

(k+1)
0 + (1− θ)J(k)

0 , 0 < θ ≤ 1.

Under the same hypotheses of Proposition 1, we can show that there exists a
positive radius ρJ > 0 such that J

(k)
0 converges with respect to the L2-norm in the

ball BJ = {J ∈ H(div;Ωf ) : ‖J‖L2(Ωf ) ≤ ρJ} (see [2]).
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4 Conforming Finite Element Approximation

Let Th be a regular triangulation of Ω made up of tetrahedra, such that the trian-
gulations induced on Ω \Ωf and Ωf are compatible on ∂Ωf .

We discretize the MHD system considering the H(curl;Ω)-conforming Nédélec
elements to approximate the vector potential A, the H(div;Ωf )-conforming Raviart-
Thomas elements for the electric current and potential, and the Taylor-Hood ele-
ments for the Stokes problem (see, e.g., [11] for a presentation of these spaces).
Thanks to the inf-sup stability enjoyed by the Raviart-Thomas and the Taylor-Hood
elements, it can be proved that also this compound finite element approximation is
inf-sup stable, without any further compatibility requirement (see [2]).

Finally, remark that using Raviart-Thomas and Nédélec elements we can deal in
a more natural way also with non-convex polyhedral domains, where the magnetic
field is in general not in H1, and it would be erroneously represented by elements
of Lagrangian type.

Let us now briefly consider the algebraic form of step 2 in the algorithm of
Sect. 3.

After computing the discrete field A
(k)
h (h denotes finite element approxima-

tions), we assemble the following matrix which realizes at the discrete level the
coupling between the fluid and the electric-current problems in Ωf :

C
(k)
ij = −

∫
Ωf

[Ji
h × (Bh

e + Bh
s + curl A

(k)
h )] · vj

h .

(Ji
h and vj

h denote basis functions for the discrete spaces of the electric currents and
fluid velocity, respectively.)

Then, in the coupled approach 2a, one has to solve the 4×4 block linear system:⎛⎜⎜⎝
A BT (C(k))T 0
B 0 0 0

−C(k) 0 D ET

0 0 E 0

⎞⎟⎟⎠
⎛⎜⎜⎜⎝

u
(k+1)
h

p
(k+1)
h

J
(k+1)
0,h

φ
(k+1)
h

⎞⎟⎟⎟⎠ = f , (12)

whose matrix presents a “nested” saddle-point structure.
On the other hand, the decoupled strategy 2b requires to solve first the linear

system (which corresponds to the Stokes problem):(
A BT

B 0

)(
u

(k+1)
h

p
(k+1)
h

)
=

(
−(C(k))T J

(k)
0,h

0

)
+ boundary terms, (13)

and then the system associated to (3):(
D ET

E 0

)(
J

(k+1)
0,h

φ
(k+1)
h

)
=

(
C(k)u

(k+1)
h

0

)
+ boundary terms. (14)

Thus, an iteration (13)-(14) corresponds to a Gauss-Seidel step for (12).
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5 Numerical Results

We consider a rectangular domain Ωf between two parallel conductive wires at 0.25
m from its lateral walls and bottom surface (Fig. 2, left). An electric current in
the wires originates a magnetic field Be (Fig. 2, right). We impose u = 0 on ∂Ωf ,
Jf · n = 0 on the lateral boundary, while we assign Jf · n = 20 A on the top and
bottom surfaces. The physical parameters are chosen to represent a melted metal.

y

z

3m
0.5m

1m

Jf .n

x

Wf

Conducting wires

Fig. 2. Schematic representation of the setting (left), and restriction of the field
lines of the magnetic field Be to Ωf (right)

We consider two uniform computational meshes made of tetrahedra, and few
possible choices of the degree of the polynomials used for the finite element
approximation. We apply the decoupled algorithm 2b, using a relaxation with
θ = 0.4. The stopping criterion is based on the relative increment of the un-
known Jf , with tolerance 10−5. The implementation has been done within NGSolve
(http://www.hpfem.jku.at/ngsolve/), while the linear systems have been solved us-
ing the direct solver PARDISO
(http://www.computational.unibas.ch/cs/scicomp/software/pardiso/).

As shown in Fig. 3, the interaction between the magnetic fields and the elec-
tric current Jf gives rise to a double symmetric rotational movement of the fluid
with larger velocity towards the bottom of Ωf . The iterations required to conver-
gence are reported in table 1. We observe that they remain bounded and essentially
independent of the number of unknowns.

6 Conclusions and Perspectives

The preliminary numerical results obtained using the decoupled iterative scheme
seem quite promising. However, a more thorough analysis of the convergence rate
is in order, especially concerning the dependence on the mesh size h and on the
degree of the polynomials used. Moreover, we are investigating effective techniques
for the saddle-point problem (12) (see [4]), with particular interest in applications to
optimal control, where problems with a similar structure are quite often encountered
when imposing the optimality (Karush-Kuhn-Tucker) conditions (see [3, 6]).
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1 Introduction

A wide class of discontinuous Galerkin (DG) methods, the so called interior penalty
methods, arise from the idea that inter-element continuity could be attained by mim-
icking the techniques previously developed for weakly enforcing suitable boundary
conditions for PDE’s, see [7]. Although the DG methods are usually defined by
means of the so called numerical fluxes between neighboring mesh cells, see [1], for
most of the interior penalty methods for second order elliptic problems it is possi-
ble to correlate the expression of the numerical fluxes with a corresponding set of
local interface conditions that are weakly enforced on each inter-element boundary.
Such conditions are suitable to couple elliptic PDE’s with smooth coefficients and it
seems that a little attention is paid to the case of problems with discontinuous data
or to the limit case where the viscosity vanishes in some parts of the computational
domain.

In this paper, we discuss the derivation of a DG method arising from a set of
generalized interface conditions, considered in [4], which are adapted to couple both
elliptic and hyperbolic problems. In order to obtain such method, it is necessary
to modify the definition of the numerical fluxes, replacing the standard arithmetic
mean with suitably weighted averages where the weights depend on the coefficients
of the problem. Even though the underlying ideas could be equivalently applied both
to mortars and DG methods, we privilege here the discussion of the latter case, since
the former has already been considered in [2].

In the framework of mortar finite-element methods, different authors have high-
lighted the possibility of using an average with weights that differ from one half, see
[8, 5]. These works present several mortaring techniques to match conforming finite
elements on possibly non conforming computational meshes. However, these works
do not consider any connection between the averaging weights and the coefficients
of the problem. More recently, Burman and Zunino [2] have introduced this depen-
dence for an advection-diffusion-reaction problem with discontinuous viscosity, and
they have shown that the application of the harmonic mean on the edges where the
viscosity is discontinuous improves the stability of the numerical scheme. In this
work, we aim to generalize the definition of such method and to apply it to the DG
case. After introducing the model problem and some notation, particular attention
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will be devoted here to illustrate how the definition of the scheme and the corre-
sponding numerical fluxes obey to the requirement of obtaining a method which is
well posed and robust not only in the elliptic regimen, but also in the presence of a
locally vanishing viscosity. A complete a-priori error analysis is not addressed here,
but we illustrate the behavior of the method by means of some numerical tests.

2 Derivation of the Numerical Method

We aim to find u, the solution of the following boundary value problem,{
∇·(−ε∇u+ βu) + µu = f in Ω ⊂ Rd, d = 2, 3,[
1
2

(
|β · n| − β · n

)
+ χ∂Ω(ε)

]
u = 0 on ∂Ω,

(1)

where Ω is a polygonal domain, n is the outer normal unit vector with respect
to ∂Ω and χ∂Ω(ε) ≥ 0, satisfying χ∂Ω(0) = 0, will be made precise later. Here
µ ∈ L∞(Ω) is a positive function and β ∈ [W 1,∞(Ω)]d is a vector function such that
µ + 1

2
(∇ · β) ≥ µ0 > 0, f ∈ L2(Ω) and ε is a nonnegative function in L∞(Ω). The

well posedness of problem (1), with ε ∈ W 1
∞(Ω), is addressed in [6] and references

therein.
For the numerical approximation of problem (1) we consider a shape regular

triangulation Th of the domain Ω, we denote with K an element in Th and with
n∂K its outward unit normal. We define a totally discontinuous approximation space,

Vh := {vh ∈ L2(Ω); ∀K ∈ Th, vh|K ∈ P
k}, with k > 0.

Let Γe be the set of the element edges e ⊂ ∂K such that e ∩ ∂Ω = ∅ and let ne

be the unit normal vector associated to e. Nothing is said hereafter depends on the
arbitrariness on the sign of ne. We denote with Γ∂Ω the collection of the edges on
∂Ω. For all e ∈ Γe ∪ Γ∂Ω let he be the size of the edge. For any vh ∈ Vh we define,

v∓h (x) := lim
δ→0+

vh(x∓ δne) for a.e. x ∈ e, with e ∈ Γe.

When not otherwise indicated, the v−h value is implied. Similar definitions apply to
all fields that are two-valued on the internal interfaces. The jump over interfaces is
defined as [[vh(x)]] := v−h (x)−v+h (x). We denote the arithmetic mean with {vh(x)} :=
1
2
(v−h (x) + v+h (x)). We also introduce the weighted averages for any e ∈ Γe and a.e.
x ∈ e,

{vh(x)}w := w−
e (x)v−h (x) + w+

e (x)v+h (x),

{vh(x)}w := w+
e (x)v−h (x) + w−

e (x)v+h (x),

where the weights necessarily satisfy w−
e (x)+w+

e (x) = 1. We say that these averages
are conjugate, because they satisfy the following identity,

[[vhwh]] = {vh}w[[wh]] + {wh}w[[vh]], ∀vh, wh ∈ Vh. (2)

The role of {·}w and {·}w can also be interchanged, but for symmetry this choice
does not affect the final setting of the method. Finally, there is no need to extend the
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definitions of jumps and averages on the boundary ∂Ω, because the contributions
of Γe and Γ∂Ω will be always treated separately.

To set up a numerical approximation scheme for problem (1), we assume for
simplicity that ε is piecewise constant on Th. We define σh(vh) := −ε∇vh + βvh

or simply σh if the flux is applied to the primal unknown uh, and we consider the
Galerkin discretization method in Vh, which originates from the following expression,∫

Ω

fvh =

∫
Ω

(
∇ · σhvh + µuhvh

)
=

∑
K∈Th

∫
K

(
∇ · σhvh + µuhvh

)
=

∑
K∈Th

[ ∫
K

(
− σh · ∇vh + µuhvh

)
+

∫
∂K

σh · n∂Kvh

]
, ∀vh ∈ Vh. (3)

Then, considering the identity,∑
K∈Th

∫
∂K

σh · n∂Kvh =
∑
e∈Γe

∫
e

[[σhvh]] · ne +
∑

e∈Γ∂Ω

∫
e

(σhvh) · n,

and replacing it into (3), owing to (2) we obtain,

∑
e∈Γe

∫
e

(
{σh}w · ne[[vh]] + [[σh]] · ne{vh}w

)
+

∑
e∈Γ∂Ω

∫
e

σh · nvh

+
∑

K∈Th

∫
K

(
− σh · ∇vh + µuhvh

)
=

∫
Ω

fvh, ∀vh ∈ Vh. (4)

We need now to apply suitable conditions on each inter-element interface and on
the boundary of the domain. To this aim, we define γe(ε, β) := 1

2

(
|β · ne| − ϕe(ε)β ·

ne

)
+ χe(ε)h

−1
e , where χe(ε) ≥ 0 such that χe(0) = 0 and |ϕe(ε)| ≤ 1 will be

defined later, and we set [[σh]] · ne = 0, γe(ε, β)[[uh]] = 0 on any e ∈ Γe. We also
set γ∂Ω(ε, β) := 1

2

(
|β · n| − β · n

)
+ χ∂Ω(ε)h−1

e . Introducing the boundary and local
interface conditions into (4) we obtain,

∑
K∈Th

∫
K

(
− σh · ∇vh + µuhvh

)
+

∑
e∈Γe

∫
e

{σh}w · ne[[vh]] +
∑

e∈Γ∂Ω

∫
e

σh · nvh

+
∑
e∈Γe

∫
e

γe(ε, β)[[uh]][[vh]] +
∑

e∈Γ∂Ω

∫
e

γ∂Ω(ε, β)uhvh =

∫
Ω

fvh, ∀vh ∈ Vh. (5)

The left hand side of equation (5) can be split in two parts. The former corresponds
to the symmetric terms and it reads as follows,

as
h(uh, vh) :=

∑
K∈Th

∫
K

[
ε∇uh · ∇vh +

(
µ+ 1

2
∇ · β

)
uhvh

+
∑
e∈Γe

∫
e

[
−{ε∇uh}w ·ne[[vh]]−{ε∇vh}w ·ne[[uh]] +

(
1
2
|β ·ne|+χe(ε)h

−1
e

)
[[uh]][[vh]]

]
+

∑
e⊂Γ∂Ω

∫
e

[
− ε∇uh · nvh − ε∇vh · nuh +

(
1
2
|β · n|+ χ∂Ω(ε)h−1

e

)
uhvh

]
,
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where we have added the new terms {ε∇vh}w ·ne[[uh]] on Γe and ε∇vh ·nuh on Γ∂Ω

to preserve symmetry. The remaining part of the bilinear form is,

ar
h(uh, vh) := −

∑
K∈Th

∫
K

[
(βuh) · ∇vh + 1

2
(∇ · β)uhvh

]
+

∑
e∈Γe

∫
e

[
{βuh}w · ne[[vh]]− 1

2
ϕe(ε)β · ne[[uh]][[vh]]

]
+

∑
e∈Γ∂Ω

∫
e

1
2
β · nuhvh.

Then, setting ah(uh, vh) := as
h(uh, vh) + ar

h(uh, vh) and F (vh) :=
∫

Ω
fvh our proto-

type of method reads as follows: find uh ∈ Vh such that,

ah(uh, vh) = F (vh), ∀vh ∈ Vh. (6)

Before proceeding, we choose the weights w−
e , w

+
e on each edge such that w−

e ε
− =

w+
e ε

+, and accordingly we define, ωe(ε) := 1
2
{ε}w = w−

e ε
− = w+

e ε
+. Together with

w+
e + w−

e = 1 this leads to the expressions,

w−
e =

ε+

ε− + ε+
, w+

e =
ε−

ε− + ε+
, if ε− + ε+ > 0,

or w−
e = w+

e = 1
2
, if ε− = ε+ = 0. (7)

Replacing (7) into {ε}w, we observe that it is equivalent to the harmonic mean of
the coefficient ε across the edges. In what follows, we will see how this is related to
the behavior of the method. For any admissible value of χe(ε) and ϕe(ε) we observe
that method (6) is by construction consistent with respect to the weak formulation
of problem (1). Now, the definition of χe(ε) and ϕe(ε) has to be made precise in
order to enforce that ah(·, ·) is coercive in the following norm,

|||vh|||2 := ‖ε 1
2∇vh‖20,Th

+ ‖µ
1
2
0 vh‖20,Th

+ ‖( 1
2
|β · ne|+ 1

2
{ε}wh

−1
e )

1
2 [[vh]]‖20,Γe

+ ‖( 1
2
|β · n|+ εh−1

e )
1
2 vh‖20,Γ∂Ω

,

where we have introduced the notation ‖vh‖20,Th
:=

∑
K∈Th

‖vh‖20,K , and ‖vh‖20,Γe
:=∑

e∈Γe
‖vh‖20,e, being ‖·‖0,K and ‖·‖0,e the L2-norms on K and e respectively. Then,

we consider the bilinear form ar
h(·, ·) that can be manipulated as follows,

ar
h(uh, uh) =

∑
e∈Γe

∫
e

[
β · ne{uh}w[[uh]]− β · ne{uh}[[uh]]− 1

2
β · neϕe(ε)[[uh]]2

]
= 1

2

∑
e∈Γe

∫
e

(2w−
e − ϕe(ε)− 1)β · ne[[uh]]2 = 0, (8)

provided that we set ϕe(ε) := (2w−
e − 1) or equivalently, owing to (7),

ϕe(ε) =
2ε+

ε+ + ε−
− 1 = − [[ε]]

2{ε} , if {ε} > 0, (9)

and ϕe(ε) = 0 if {ε} = 0. Definition (9) satisfies |ϕe(ε)| ≤ 1 and the expression
1
2

(
|β · ne| − ϕe(ε)β · ne

)
represents a natural generalization of the standard upwind

scheme. As a consequence of (8), the coercivity only depends on the properties of
as

h(·, ·). First of all, it is straightforward to verify that,
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K∈Th

∫
K

[
ε(∇uh)2 +

(
µ+ 1

2
∇ · β

)
u2

h

]
+

∑
e∈Γe

∫
e

(
1
2
|β · ne|+ χe(ε)h

−1
e

)
[[uh]]2 +

∑
e∈Γ∂Ω

∫
e

(
1
2
|β · n|+ χ∂Ω(ε)h−1

e

)
u2

h

≥ ‖ε 1
2∇uh‖20,Th

+ ‖µ
1
2
0 uh‖20,Th

+ ‖
(

1
2
|β · ne|+ χe(ε)h

−1
e

) 1
2 [[uh]]‖20,Γe

+ ‖
(

1
2
|β · n|+ χ∂Ω(ε)h−1

e

) 1
2 uh‖20,Γ∂Ω

. (10)

To treat the remaining terms of as
h(uh, uh), as usual for DG methods, we make use

of the following trace/inverse inequality,

he‖∇vh · ne‖20,e ≤ CI‖∇vh‖20,K , ∀K ∈ Th and ∀e ∈ ∂K,

where CI > 0 does not depend on he. Then, we obtain the following bounds,

2
∑
e∈Γe

∫
e

{ε∇uh}w · ne[[uh]] + 2
∑

e∈Γ∂Ω

∫
e

ε∇uh · nuh

=2
∑
e∈Γe

∫
e

ωe(∇u−h +∇u+
h ) · ne[[uh]] + 2

∑
e∈Γ∂Ω

∫
e

ε∇uh · nuh

≤
∑
e∈Γe

[
αhe

(
‖(ε−)

1
2∇u−h · ne‖20,e + ‖(ε+)

1
2∇u+

h · ne‖20,e

)
+

1

αhe
‖ω

1
2
e [[uh]]‖20,e

]
+

∑
e∈Γ∂Ω

[
αhe‖ε

1
2∇uh · n‖20,e +

1

αhe
‖ε 1

2 uh‖20,e

]
≤6αCI‖ε

1
2∇uh‖20,Th

+
1

α
‖( 1

2
{ε}w)

1
2 h

− 1
2

e [[uh]]‖20,Γe
+

1

α
‖ε 1

2 h
− 1

2
e uh‖20,Γ∂Ω

. (11)

The coercivity of ah(·, ·) in the norm |||·||| directly follows from the combination of
(8), (10) and (11) provided α is such that 6αCI < 1 and,

χe(ε) := 1
2
ζ{ε}w, χ∂Ω(ε) := ζε, (12)

where ζ is a suitable constant such that ζ > 1
α
. Due to (9) and (12) the method (6)

is completely determined.
By virtue of the second Strang lemma and owing to the continuity (not addressed

here), the consistency and the coercivity of the bilinear form ah(·, ·), it is possible
to prove optimal a-priori error estimates in the norm |||·||| for problem (6). This
analysis has been fully addressed in [3] in the case of a similar method applied to
anisotropic diffusivity.

3 Numerical Results and Conclusions

In order to pursue a quantitative comparison between our scheme and the standard
interior penalty method, we aim to build up a test problem featuring discontinuous
coefficients which allows us to analytically compute the exact solution. To this aim,
we consider the following test case, already proposed in [2]. We split the domain Ω
into two subregions, Ω1 = (x0, x 1

2
)× (y0, y1), Ω2 = (x 1

2
, x1)× (y0, y1) and we choose
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for simplicity x0 = 0, x 1
2

= 1, x1 = 2 while y0 = 0, y1 = 1
2
. The viscosity ε(x, y) is a

discontinuous function across the interface x = x 1
2
, for any y ∈ (y0, y1). Precisely, we

consider a constant ε(x, y) in each subregion with several values for ε1 in Ω1 and a
fixed ε2 = 1.0 in Ω2. In the case β = [1, 0], µ = 0, f = 0 and the boundary conditions
u1(x0, y) = 1, u2(x1, y) = 0 for simplicity, the exact solution of the problem on each
subregion Ω1, Ω2 can be expressed as an exponential function with respect to x
independently from y. The global solution u(x, y) is then provided by choosing the
value at the interface, u(x 1

2
, y), in order to ensure the continuity of both u(x, y) and

the normal fluxes with respect to the interface, namely −ε(x, y)∂xu(x, y). For the

corresponding explicit expressions of u
(
x 1

2
, y
)

and u1(x, y), u2(x, y), we remand to

[2].
In the following numerical simulations, our reference standard interior penalty

method (IP) is obtained by replacing the weights w−
e = w+

e = 1
2

into (6). To com-
pare the method proposed here (WIP) with IP we consider a uniform triangulation
Th with h = 0.05 and we apply piecewise linear elements. We perform a quantitative
comparison based on the energy norm of the error |||u − uh||| and on the follow-
ing indicator, ∆extr := max(|maxΩ(uh)−maxΩ(u)|, |minΩ(uh)−minΩ(u)|) which
quantifies to which extent the numerical solution exceeds the extrema of the exact
one. The results reported in table 1 and in figure 1 put into evidence that the WIP
scheme performs better than the standard IP method, particularly in those cases
where the solution is non smooth and at the same time the computational mesh
is not completely adequate to capture the singularities. This happens in particular
for the smallest value of ε1, precisely ε1 = 5 10−3, while in the other cases the two
methods are equivalent. In the case ε1 = 5 10−3 the weighted interior penalties
turn out to be very effective, since they allow the scheme to approximate the very
steep boundary layer at the interface x = x 1

2
with a jump. Conversely, the standard

interior penalty scheme computes a solution that is almost continuous. As can be ob-
served in figure 1, this behavior promotes the instability of the approximate solution
in the neighborhood of the boundary layer, because the computational mesh is not
adequate to smoothly approximate the very high gradients across the interface. The
quantity ∆extr shows that the the spurious oscillations generated in this case reach
the 40% of the maximum of the exact solution. The different behavior of the two
methods can also be interpreted observing that, disregarding the advective terms, in
the case of the standard IP scheme the satisfaction of the inter-element continuity is
proportional to {ε}, as the neighboring elements of each edge were ideally connected
by two adjacent springs of stiffness ε− and ε+. Conversely, in the WIP case the mor-
tar between elements is proportional to {ε}w, which is the harmonic mean of the
values ε−, ε+ and corresponds to the stiffness of two sequential springs of stiffness
ε− and ε+ respectively. The latter case seems to be more natural for problems with
discontinuous coefficients.
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In the last two decades, many investigations have been devoted to improve the
performance of the classical Schwarz methods. Optimized Schwarz methods (OSM)
are one of the competitive candidates among other modern domain decomposition
methods. OSM had significantly enhance the performance of the classical Schwarz
methods. Those improvements are based essentially on using different type of trans-
mission conditions between subdomains. The key idea is to exchange more informa-
tion between subdomains which corresponds to communicate solutions and theirs
derivatives instead of exchanging solutions only. Rigorous Fourier analysis for dif-
ferent decompositions and different differential equations had shown the efficiency
and robustness of OSM as promised. Now, the big challenges are to extend the per-
formances of optimized Schwarz methods to consider high dimensional differential
equations and systems of PDE’s with complicated geometries. In this minisympo-
sium we give some answers to different aspects of those challenges.
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Summary. In this work we design a new domain decomposition method for the
Euler equations in 2 dimensions. The starting point is the equivalence with a third
order scalar equation to whom we can apply an algorithm inspired from the Robin-
Robin preconditioner for the convection-diffusion equation [1]. Afterwards we trans-
late it into an algorithm for the initial system and prove that at the continuous
level and for a decomposition into 2 sub-domains, it converges in 2 iterations. This
property cannot be conserved strictly at discrete level and for arbitrary domain de-
compositions but we still have numerical results which confirm a very good stability
with respect to the various parameters of the problem (mesh size, Mach number, . . .).

1 Introduction

The need of using domain decomposition methods when solving partial differential
equations is nowadays more and more obvious. The challenge is now the acceleration
of these methods. Different possibilities were studied such as the use of optimized
interface conditions on the artificial boundaries between subdomains or the precon-
ditioning of a substructured system defined at the interface. The former were widely
studied and analyzed for scalar problems. The preconditioning methods have also
known a wide development in the last decade. The Neumann-Neumann algorithms
for symmetric second order problems have been the subject of numerous works. An
extension of these algorithms to non-symmetric scalar problems (the so called Robin-
Robin algorithms) has been done in [1] for advection-diffusion problems. As far as
optimized interface conditions are concerned, when dealing with supersonic flows,
whatever the space dimension is, imposing the appropriate characteristic variables as
interface conditions leads to a convergence of the algorithm which is optimal with re-
gards to the number of subdomains. This property is generally lost for subsonic flows
except for the case of one-dimensional problems, when the optimality is expressed
by the fact that the number of iterations is equal to the number of subdomains (see
[2] and [7] for more details). In the subsonic case and in two or three dimensions, we
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can find a formulation with classical (natural) transmission conditions in [7, 8] or
with more general interface conditions in [3] and optimized transmission conditions
in [5]. The analysis of such algorithms applied to systems proved to be very different
from the scalar case, see [4]. The generalization of the above domain decomposition
methods to the system of the Euler equations is difficult in the subsonic case in
dimensions equal or higher to two.

In this work, we consider a preconditioning technique for the system of the
compressible Euler equations in the subsonic case. The paper is organized as follows:
in Section 2 we will first show the equivalence between the 2D Euler equations
and a third order scalar problem, which is quite natural by considering a Smith
factorization of this system, see [9]. In Section 3 we define an optimal algorithm
for the third order scalar equation. It is inspired from the idea of the Robin-Robin
algorithm [1] applied to a convection-diffusion problem. Afterwards in Section 4
we back-transform it and define the corresponding algorithm applied to the Euler
system. All the previous results have been obtained at the continuous level and
for a decomposition into 2 unbounded subdomains. In the Section 5, numerical
results confirm the very good stability of the algorithm with respect to the various
parameters of the problem (mesh size, Mach number, . . .).

2 A Third Order Scalar Problem

In this section we will show the equivalence between the linearized and time dis-
cretized Euler system and a third order scalar equation. The motivation for this
transformation is that a new algorithm is easier to design for a scalar equation than
for a system of partial differential equations. The starting point of our analysis is
given by the linearized form of the Euler equations written in primitive variables
(p, u, v, S). In the following we suppose that the flow is isentropic, which allows us
to drop the equation of the entropy (which is totally decoupled from the others).
We denote by W = (P,U, V )T the vector of unknowns and by A and B the jacobian
matrices of the fluxes Fi(w) to whom we already applied the variable change from
conservative to primitive variables. In the following, we shall denote by c̄ the speed
of the sound and we consider the linearized form (we will mark by the bar symbol,
the state around which we linearize) of the Euler equations:

PW ≡ (βI +A∂x +B∂y)W = f (1)

where β = 1
∆t
> 0, characterized by the following jacobian matrices:

A =

⎛⎝ ū ρ̄c̄2 0
1/ρ̄ ū 0
0 0 ū

⎞⎠ B =

⎛⎝ v̄ 0 ρ̄c̄2

0 v̄ 0
1/ρ̄ 0 v̄

⎞⎠ . (2)

In Computational Fluid Dynamics, problems of the form (1) have to be solved
repeatedly. We shall design a new domain decomposition method for this purpose.
We build and analyze our method for the constant coefficient case (c̄, ū, v̄ and ρ̄ are
constants) and for only two subdomains. But the resulting algorithm can be applied
to the general case.

We first recall the Smith factorization of a matrix with polynomial entries ([9],
Theorem 1.4):
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Theorem 1. Let n be an positive integer and A a n × n matrix with polynomial
entries with respect to the variable λ: A = (aij(λ))1≤i,j≤n. Then, there exist matrices
E, D and F with polynomial entries satisfying the following properties:

• det(E), det(F ) are constants,
• D is a diagonal matrix uniquely determined up to a multiplicative constant,
• A = EDF .

We first take formally the Fourier transform of the system (1) with respect to y
(the dual variable is ξ). We keep the partial derivatives in x since in the sequel we
shall consider a domain decomposition with an interface whose normal is in the x
direction. We note

P̂ =

⎛⎝β + ū∂x + iξb ρ̄c̄2∂x iρ̄c̄2ξ
1
ρ̄
∂x β + ū∂x + iξb 0
iξ
ρ̄

0 β + ū∂x + ibξ

⎞⎠ (3)

We can perform a Smith factorization of P̂ by considering it as a matrix with
polynomials in ∂x entries. We have P̂ = EDF where

D =

⎛⎝ 1 0 0
0 1 0

0 0 L̂Ĝ

⎞⎠ , E =

⎛⎜⎜⎝
iρ̄c̄2ξ 0 0

0 ū 0

β + ū∂x + ibξ E2
c̄2 − ū2

iξρ̄c̄2

⎞⎟⎟⎠ (4)

and

F =

⎛⎜⎜⎜⎜⎜⎝
β + ū∂x + iξb

iξρ̄c̄2
∂x

iξ
1

∂x

ρ̄ū

β + ū∂x + iξb

ū
0

1

(β + iξb)(ū2 − c̄2)
ρ̄ū

(β + iξb)(ū2 − c̄2) 0

⎞⎟⎟⎟⎟⎟⎠ (5)

where

E2 = ū
(−ūc̄2 + ū3)∂xx + (2ū2 − c̄2)(β + iξb)∂x + ū((β + iξb)2 + ξ2c̄2)

c̄2(iβ + iξb)
,

and
L̂ = β2 + 2iξūb∂x + 2β(ū∂x + iξb) + (c̄2 − b2)ξ2 − (c̄2 − ū2)∂xx

Ĝ = β + ū∂x + iξb
(6)

Equation (4) suggests that the derivation of a domain decomposition method
(DDM) for the third order operator LG is a key ingredient for a DDM for the
compressible Euler equations.

3 A New Algorithm Applied to a Scalar Third Order
Problem

In this section we will describe a new algorithm applied to the third order operator
found in the section 2. We want to solve LG(Q) = g where Q is scalar unknown
function and g is a given right hand side. The algorithm will be based on the Robin-
Robin algorithm [1] for the convection-diffusion problem. Then we will prove its
convergence in 2 iterations. Without loss of generality we assume in the sequel that
the flow is subsonic and that ū > 0 and thus we have 0 < ū < c̄.
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3.1 The Algorithm for a Two-domain Decomposition

We consider now a decomposition of the plane R2 into two non-overlapping sub-
domains Ω1 = (−∞, 0)×R and Ω2 = (0,∞)×R. The interface is Γ = {x = 0}. The
outward normal to domain Ωi is denoted ni, i = 1, 2. Let Qi,k, i = 1, 2 represent the
approximation to the solution in subdomain i at the iteration k of the algorithm.
We define the following algorithm:

ALGORITHM 1 We choose the initial values Q1,0 and Q2,0 such that GQ1,0 =
GQ2,0. We compute (Qi,k+1)i=1,2 from (Qi,k)i=1,2 by the following iterative proce-
dure:
Correction step We compute the corrections Q̃1,k and Q̃2,k as solution of the
homogeneous local problems:{

LGQ̃1,k = 0 in Ω1,

(A∇− 1
2
a)GQ̃1,k · n1 = γk, on Γ,

⎧⎨⎩
LGQ̃2,k = 0 in Ω2,

(A∇− 1
2
a)GQ̃2,k · n2 = γk, on Γ,

Q̃2,k = 0, on Γ,

(7)

where γk = − 1
2

[
A∇GQ1,k · n1 +A∇GQ2,k · n2

]
.

Update step.We update Q1,k+1 and Q2,k+1 by solving the local problems:{
LGQ1,k+1 = g, in Ω1,

GQ1,k+1 = GQ1,k + δk, on Γ,

⎧⎨⎩
LGQ̃2,k+1 = g, in Ω2,

GQ2,k+1 = GQ2,k + δk, on Γ,

Q2,k+1 = Q1,k + Q̃1,k, on Γ,

(8)

where δk = 1
2

[
GQ̃1,k + GQ̃2,k

]
.

Proposition 1. Algorithm 1 converges in 2 iterations.

See [6] for the details of the proof.

4 A New Algorithm Applied to the Euler System

After having found an optimal algorithm which converges in two iterations for the
third order model problem, we focus on the Euler system by translating this algo-
rithm into an algorithm for the Euler system. It suffices to replace the operator LG
by the Euler system and Q by the last component F (W )3 of F (W ) in the boundary
conditions. The algorithm reads:

ALGORITHM 2 We choose the initial values W 1,0 and W 2,0 such that
GF (W 1,0)3 = GF (W 2,0)3 and we compute (W i,k+1)i=1,2 from (W i,k)i=1,2 by the
following iterative procedure:
Correction step We compute the corrections W̃ 1,k and W̃ 2,k as solution of the
homogeneous local problems:{
PW̃ 1,k = 0 in Ω1,

(A∇− 1
2
a)GF (W̃ 1,k)3 · n1 = γk on Γ,

⎧⎨⎩
PW̃ 2,k = 0 in Ω2,

(A∇− 1
2
a)GF (W̃ 2,k)3 · n2 = γk on Γ,

F̃ (W 2,k)3 = 0, Γ,
(9)
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where γk = − 1
2

[
A∇GF (W 1,k)3 · n1 +A∇GF (W 2,k)3 · n2

]
.

Update step.We update W 1,k+1 and W 2,k+1 by solving the local problems:

{
PW 1,k+1 = f, in Ω1,

GF (W 1,k+1)3 = GF (W 1,k)3 + δk on Γ,

⎧⎪⎪⎨⎪⎪⎩
PW̃ 2,k+1 = f, in Ω2,

GF (W 2,k+1)3 = GF (W 2,k)3 + δkon Γ,

F (W 2,k+1)3 = F (W 1,k)3
+ F (W̃ 1,k)3 on Γ,

(10)

where δk = 1
2

[
GF (W̃ 1,k)3 + GF (W̃ 2,k)3

]
.

This algorithm is quite complex since it involves second order derivatives of the
unknowns in the boundary conditions on GF (W )3. It is possible to simplify it.
We write it for a decomposition in two subdomains with an outflow velocity at the
interface of domain Ω1 but with an interface not necessarily rectilinear. In this way, it
is possible to figure out how to use for a general domain decomposition. In the sequel,
n = (nx, ny) denotes the outward normal to domain Ω1, ∂n = ∇ · n = (∂x, ∂y) · n
the normal derivative at the interface, ∂τ = (−∂y, ∂x) · n the tangential derivative,
Un = Unx +V ny and Uτ = −Uny +V nx are respectively the normal and tangential
velocity at the interface between the subdomains. Similarly, we denote ūn (resp.
ūτ ) the normal (resp. tangential) component of the velocity around which we have
linearized the equations.

ALGORITHM 3 We choose the initial values W i,0 = (P i,0, U i,0, V i,0), i = 1, 2
such that P 1,0 = P 2,0 and we compute W i,k+1 from W i,k by the iterative procedure
with two steps:
Correction step We compute the corrections W̃ 1,k and W̃ 2,k as solution of the
homogeneous local problems:

{
PW̃ 1,k = 0, in Ω1,

−(β + ūτ∂τ )Ũ1,n
n + ūn∂τ Ũ

1,k
τ = γk on Γ,

⎧⎨⎩
PW̃ 2,k = 0, in Ω2,

(β + ūτ∂τ )Ũ2,k
n − ūn∂τ Ũ

2,k
τ = γk, Γ

P̃ 2,k + ρ̄ūnŨ
2,k
n = 0 on Γ,

(11)

where γk = − 1
2

[
(β + ūτ∂τ )(U2,k

n − U1,k
n ) + ūn∂τ (Ũ1,k

τ − Ũ2,k
τ )

]
.

Update step.We compute the update of the solutionW 1,k+1 andW 2,k+1 as solution
of the local problems:

{
PW 1,k+1 = f1, in Ω1,

P 1,k+1 = P 1,k + δk on Γ,

⎧⎪⎪⎨⎪⎪⎩
PW 2,k+1 = f2, in Ω2,

P 2,k+1 = P 2,k + δk on Γ,

(P + ρ̄ūnUn)2,k+1 = (P + ρ̄ūnUn)1,k

+ (P̃ + ρ̄ūnŨn)1,k on Γ,
(12)

where δk = 1
2

[
P̃ 1,k + P̃ 2,k

]
.

Proposition 2. For a domain Ω = R2 divided into two non overlapping half planes,
algorithms 2 and 3 are equivalent and both converge in two iterations.

See [6] for the details of the proof.
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5 Numerical Results

We present here a set of results of numerical experiments on a model problem. We
compare the method proposed and the classical method defined in [4]. We consid-
ered a decomposition into different number of subdomains and for a linearization
around a constant or non-constant flow. The computational domain is given by the
rectangle [0, 4] × [0, 1] with a uniform discretization using 80 × 20 points. The nu-
merical investigation is limited to the resolution of the linear system resulting from
the first implicit time step using a Courant number CFL=100. In the following, for
the new algorithm, each iteration counts for 2 as we need to solve twice as much
local problems than the classical one. For an easier comparison of the algorithms,
the figures shown in the tables are the number of subdomains solves. We also used
substructuring (solving a system with interface variables only) and the iteration
number necessary to achieve convergence by means of a GMRES method is also
presented. We are solving the homogeneous equations verified by the error vector at
the first time step.

The first set of tests concerns a stripwise decomposition into 3 subdomains. The
same kind of tests are carried out as in the 2 subdomain case. Table 1 summa-
rizes the number of Schwarz iterations required to reduce the initial linear resid-
ual by a factor 10−6 for different values of the reference Mach number for the
new and the classical algorithm (the tangential velocity is given by the expres-
sion Mt(y) = 0.1(1 + cos(πy))). For a linearization around a variable state for

Table 1. Iteration count for different values of Mn

Mn Classical (iterative) Classical (GMRES) New DDM (iter) New DDM (GMRES)

0.001 32 26 20 16
0.01 31 26 20 16
0.1 29 21 18 16
0.2 25 19 18 16
0.3 23 16 18 16
0.4 21 15 16 16
0.5 19 13 16 14
0.6 16 12 16 14
0.7 14 11 16 14
0.8 13 11 16 14

a general flow at the interface where the tangential Mach number is given by
Mt = 0.1(1 + cos(πy)), and the initial normal velocity is given by the expression
Mn(y) = 0.5(0.2+0.04 tanh(y/0.2))), the same conclusion yield as in the two-domain
case. As of intermediate conclusion we can state that the iteration number is only
slightly increasing when going from 2 to 3 subdomains.

The next set of tests concerns a decomposition into 4 subdomains using a 2× 2
decomposition of a 40 × 40 = 1600 point mesh. No special treatment of the cross
points is done or coarse space added. This could be a reason why the iterative
version of the algorithm does not converge. Nevertheless, the accelerated algorithm
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by a GMRES method converges as showed in Table 2 which summarizes the number
if iterations for different values of the reference Mach number for both algorithms
(the tangential velocity is given by the expression Mt(y) = 0.1(1 + cos(πy)) and the
normal Mach number is constant at the interface). We can see the the new algorithm
behaves similarly as the classical one for low Mach numbers.

Table 2. Iteration count for different values of Mn

Mn Classical(iter) Classical (GMRES) New DDM (GMRES)

0.001 101 28 28
0.01 86 28 28
0.1 54 26 26
0.2 38 23 30
0.3 35 23 32

The latest results show clearly the need of a coarse space as this is done for the
FETI-DP methods, in order to improve the performance of the method which has
already shown promising results in the case of the stripwise decompositions.

6 Conclusion

In this paper we designed a new domain decomposition for the Euler equations
inspired by the idea of the Robin-Robin preconditioner applied to the advection-
diffusion equation. We used the same principle after reducing the system to scalar
equations via a Smith factorization. The resulting algorithm behaves very well for
the low Mach numbers, where usually the classical algorithm does not give very
good results. We can reduce the number of iteration by almost a factor 4 both for
linearization around a constant and variable state.
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Summary. Optimized Schwarz methods (OSM) have shown to be an efficient it-
erative solver and preconditioner in solving partial differential equations. Different
investigations have been devoted to study optimized Schwarz methods and many
applications have shown their great performance compared to the classical Schwarz
methods. By simply making slight modifications of transmission conditions between
subdomains, and without changing the size of the matrix, we obtain a fast and a
robust family of methods. In this paper we give an extension of optimized Schwarz
methods to cover three-dimensional partial differential equations. We present the
asymptotic behaviors of optimal and optimized Schwarz methods and compare it to
the performance of the classical Schwarz methods. We confirm the obtained theo-
retical results with numerical experiments.

1 Introduction

The classical Schwarz algorithm has a long history. In 1869, Jacob Schwarz intro-
duced an alternating procedure to prove existence and uniqueness of solutions to
Laplace’s equation on irregular domains. More than a century later the Schwarz
method was used as a computational method in [9]. The advent of computers with
parallel architecture give a wide popularity to this method. Recently, [6, 7] gives
a mathematical analysis of the Schwarz alternating method at the continuous level
and presented different versions of the method, including the extension to many sub-
domains decomposition. The method was investigated as a preconditioner for dis-
cretized problems in [2]. The convergence properties of the classical Schwarz methods
are well understood for a wide variety of problems, see e.g., [12, 11]. Recently a new
class of Schwarz methods know as optimized Schwarz methods have been introduced
to enhance the convergence properties of the classical Schwarz methods. They con-
verge uniformly faster than the classical Schwarz methods due to the exchange of
solution and its derivatives between subdomains. Many studies have been devoted
to OSM more specifically in 1d and 2d spaces, see e.g., [5, 3]. A convergence analysis
of OSM was done in [4], where a uniform convergence independently of the mesh
parameter h has been proved. Those methods have been investigated for problems
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with discontinuity and anisotropy, see e.g., [8], they were also analyzed for systems
of PDE’s see [1]. Some industrial applications of OSM in the domain of weather
predictions are shown in [10]. For a comparison of OSM with modern DDM like
direct Schur methods, FETI and their variants see, e.g. [3, 8]. In this paper we give
an extension of OSM to three-dimensional partial differential equations.

2 The Classical Schwarz Method

Throughout this paper we consider the following model problem

L(u) = (η −∆)(u) = f, in Ω = R
3, η > 0, (1)

where we require the solution to be bounded at the infinity. We decompose Ω into
Ω1 = (−∞, �) × R2, and Ω2 = (0,∞) × R2, where � ≥ 0 is the size of the overlap.
The Jacobi Schwarz method on this decomposition is given by

Lun
1 = f, in Ω1, un

1 (�, y, z) = un−1
2 (�, y, z),

Lun
2 = f, in Ω2, un

2 (0, y, z) = un−1
1 (0, y, z).

(2)

By linearity we consider only the case f = 0 and analyze convergence to the zero so-
lution. Taking a Fourier transform of the Schwarz algorithm (2) in y and z directions,
we obtain

(η + k2 +m2 − ∂xx)ûn
1 = 0, x < �, k ∈ R, m ∈ R, ûn

1 (�, k,m) = ûn−1
2 (�, k,m),

(η + k2 +m2 − ∂xx)ûn
2 = 0, x > 0, k ∈ R, m ∈ R, ûn

2 (0, k,m) = ûn−1
1 (0, k,m),

where k and m are the frequencies in y and z directions, respectively. Therefore the
solutions in the Fourier domain take the form

ûn
j (x, k,m) = Aj(k,m)eλ1(k,m)x +Bj(k,m)eλ2(k,m)x, j = 1, 2, (3)

where λ1(k,m) = κ and λ2(k,m) = −κ, with κ =
√
η + k2 +m2. Due to the

condition on the iterates at the infinity and using transmission conditions, we find
that

û2n
1 (0, k,m)=e−2�κû0

1(0, k,m) and û2n
2 (�, k,m)=e−2�κû0

2(�, k,m). (4)

Thus the convergence factor of the classical Schwarz method is given by

ρcla = ρcla(η, k,m, �) := e−2�κ ≤ 1, ∀k ∈ R, ∀m ∈ R. (5)

The convergence factor depends on the problem parameter η, the size of the overlap
� and on k and m. Figure 1 on the left shows the dependence of the convergence
factor on k and m for an overlap � = 1

100
and η = 1. This shows that the classical

Schwarz method damp efficiently high frequencies, whereas for low frequencies the
algorithm is very slow.
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Fig. 1. Left: The convergence factor ρcla compared to ρT0 and ρT2. Right: The
convergence factor ρcla compared to ρOO0 and ρOO2 and to the convergence factor
of two-sided optimized Robin method.

3 The Optimal Schwarz Method

We introduce the following modified algorithm

L(un
1 ) = f, inΩ1, (S1 + ∂x)(un

1 )(�, ., .) = (S1 + ∂x)(un−1
2 )(�, ., .),

L(un
2 ) = f, inΩ2, (S2 + ∂x)(un

2 )(0, ., .) = (S2 + ∂x)(un−1
1 )(0, ., .),

(6)

where Sj , j = 1, 2, are linear operators along the interface that depend on y and
z. As for the classical Schwarz method it suffices by linearity to consider the case
f = 0. Taking a Fourier transform of the new algorithm (6), we obtain

(η + k2 +m2 − ∂xx)ûn
1 = 0, x < �, k ∈ R, m ∈ R,

(σ1(k,m) + ∂x)(ûn
1 )(�, k,m) = (σ1(k,m) + ∂x)(ûn−1

2 )(�, k,m),
(7)

(η + k2 +m2 − ∂xx)ûn
2 = 0, x > 0, k ∈ R, m ∈ R,

(σ2(k,m) + ∂x)(ûn
2 )(0, k,m) = (σ2(k,m) + ∂x)(ûn−1

1 )(0, k,m),
(8)

where σj(k,m) is the symbol of the operator Sj(y, z). We proceed as in the case of
the classical Schwarz method and using transmission conditions, we obtain

û2n
1 (0, k,m) =

σ1(k,m)− κ
σ1(k,m) + κ

.
σ2(k,m) + κ

σ2(k,m)− κe
−2�κû0

1(0, k,m). (9)

Defining the new convergence factor ρopt by

ρopt = ρopt(η, k,m, �, σ1, σ2) :=
σ1(k,m)− κ
σ1(k,m) + κ

.
σ2(k,m) + κ

σ2(k,m)− κe
−2�κ. (10)

We compare the convergence factor ρopt(η, k,m, �, σ1, σ2) with the one of the classical
Schwarz method given in (5), and one can see that they differ only by the factor in
front of the exponential term. Choosing for the symbols

σ1(k,m) := κ and σ2(k,m) := −κ, (11)

the new convergence factor vanishes identically, ρopt ≡ 0, and the algorithm con-
verges in two iterations, independently of the initial guess, the overlap size � and
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the problem parameter η. This is an optimal result since convergence in less than
two iterations is impossible, due to the exchange information necessity between
the subdomains. Furthermore, with this choice of σj the exponential factor in the
convergence factor becomes irrelevant and one can have Schwarz methods without
overlap. In practice we need to back transform the transmission conditions with σ1

and σ2 from the Fourier domain to the physical domain to obtain S1 and S2. The
fact that σj contain a square-root, the optimal operators Sj are non-local operators.
In the next section we will approximate σj by polynomials in ik and im, so Sj would
consist of derivatives in y and z and thus be local operators.

4 Optimized Schwarz Methods

We approximate the symbols σj(k,m) found in (11) as follows

σapp
1 (k,m) = p1 + q1(k

2 +m2) and σapp
2 (k,m) = −p2 − q2(k2 +m2). (12)

Hence the convergence factor (10) of the optimized Schwarz methods becomes

ρ = ρ(η, k,m, �, p1, p2, q1, q2) :=
κ− p1 − q1(k2 +m2)

κ+ p1 + q1(k2 +m2)
.
κ− p2 − q2(k2 +m2)

κ+ p2 + q2(k2 +m2)
e−2�κ.

(13)

Theorem 1. The optimized Schwarz method (6) with transmission conditions de-
fined by the symbols (12) converges for pj > 0, qj ≥ 0, j = 1, 2, faster than the
classical Schwarz method (2), |ρ| < |ρcla| for all k and m.

Proof. The absolute value of the term in front of the exponential in the convergence
factor (13) of the optimized Schwarz method is strictly smaller than 1 provided
pj > 0, and qj ≥ 0 which shows that |ρ| < |ρcla| for all k and m.

Now, we introduce a low frequency approximations using a Taylor expansions about
zero. Expanding the symbols σj(k,m), j = 1, 2, we obtain

σ1(k,m) =
√
η + 1

2
√

η
(k2 +m2) +O1(k

4,m4),

σ2(k,m) = −√η − 1
2
√

η
(k2 +m2) +O2(k

4,m4),
(14)

where O1(k
4,m4) and O2(k

4,m4) contain high order terms in m and k. The con-
vergence factor ρT0 of the zeroth order Taylor approximation is defined by

ρT0(η, k,m, �) =

(
κ−√η
κ+

√
η

)2

e−2�κ, (15)

and the convergence factor ρT2 of the second order Taylor approximation would
have the form

ρT2(η, k,m, �) =

(
κ−√η − 1

2
√

η
(k2 +m2)

κ+
√
η + 1

2
√

η
(k2 +m2)

)2

e−2�κ. (16)

Figure 1 on the left shows the convergence factors obtained with this choice of
transmission conditions compared to the convergence factor ρcla. One can clearly see
that OSM are uniformly better than the classical Schwarz method, in particular the
low frequency behavior is greatly improved. Note that OSM converge even without
overlap. In particular, we have the following theorem.
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Theorem 2. The optimized Schwarz methods with Taylor transmission conditions
and overlap � have an asymptotically superior performance than the classical Schwarz
method with the same overlap. As � goes to zero, we have

max
|k|≤ π

�
,|m|≤ π

�

|ρcla(η, k,m, �)| = 1− 2
√
η�+O(�2),

max
|k|≤ π

�
,|m|≤ π

�

|ρT0(η, k,m, �)| = 1− 4
√

2η1/4
√
�+O(�),

max
|k|≤ π

�
,|m|≤ π

�

|ρT2(η, k,m, �)| = 1− 8η1/4
√
�+O(�).

Without overlap, the optimized Schwarz methods with Taylor transmission conditions
are asymptotically comparable to the classical Schwarz method with overlap �. As �
goes to zero, we have

max
|k|≤ π

�
,|m|≤ π

�

|ρT0(η, k,m, 0)| = 1− 4

√
η

π
�+O(�2),

max
|k|≤ π

�
,|m|≤ π

�

|ρT2(η, k,m, 0)| = 1− 8

√
η

π
�+O(�2).

Proof. The proof is based on a Taylor expansion of the convergence factors, where
we estimate the maximum frequency by π/�.

Zeroth Order Optimized Transmission Conditions

Using the same zeroth order transmission conditions on both sides of the interface,
p1 = p2 = p and q1 = q2 = 0, the convergence factor in (13) becomes

ρOO0(η, k,m, �, p) :=

(
κ− p
κ+ p

)2

e−2κ�. (17)

To find the optimal parameter p∗ of the associated Schwarz method, known as
Optimized of Order 0 (OO0), we need to solve the following min-max problem

min
p≥0

(max
k,m

|ρOO0(η, k,m, �, p)|) = min
p≥0

(
max
k,m

(
κ− p
κ+ p

)2

e−2κ�

)
. (18)

We introduce the minimum and the maximum frequencies fmin and fmax of all the
frequencies k and m. The asymptotic performance of the Optimized zeroth order
Schwarz method is given by the next theorem, where we omit the proof due to the
restriction on the present paper.

Theorem 3. (Robin asymptotic)
The asymptotic performance of the Schwarz method with optimized Robin transmis-
sion conditions and overlap �, as � goes to zero, is given by

max
k,m

fmin≤
√

k2+m2≤ π
�

|ρOO0(η, k,m, �, p
∗)| = 1− 4.21/6(f2

min + η)1/6�1/3 +O(�2/3). (19)

The asymptotic performance of OO0 without overlap is asymptotically equivalent to
the classical Schwarz method with overlap �, as � goes to zero, we have
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max
k,m

fmin≤
√

k2+m2≤ π
�

|ρOO0(η, k,m, 0, p
∗)| = 1− 4

(f2
min + η)1/4

√
π

√
�+O(�). (20)

Proof. The idea of the proof in the case of overlapping subdomains is based on the
ansatz p∗ = C�α, where α < 0 and Taylor expansion of the convergence factor with

p = p∗. A computation shows that p∗ =
(4(f2

min+η))1/3

2
�−1/3.

Second Order Optimized Transmission Conditions

Using the same second order transmission conditions on both sides of the interface,
p1 = p2 = p and q1 = q2 = q, the expression (13) of the convergence factor simplifies
to

ρOO2(η, k,m, �, p, q) =

(
κ− p− q(k2 +m2)

κ+ p+ q(k2 +m2)

)2

e−2κ�. (21)

To determine the optimal parameters p∗ and q∗ for OSM of Order 2 (OO2), we need
to solve the min-max problem

min
p,q≥0

(max
k,m

|ρOO2(η, k,m, �, p, q)|) = min
p,q≥0

(
max
k,m

(
κ− p− q(k2 +m2)

κ+ p+ q(k2 +m2)

)2

e−2κ�

)
.

(22)
We have the following.

Theorem 4. (Second order)
The asymptotic performance of the Schwarz method with optimized second order
transmission conditions and overlap �, as � goes to zero, is given by

max
k,m

fmin≤
√

k2+m2≤fmax

|ρOO2(η, k,m, �, p
∗, q∗)| = 1− 4.23/5(f2

min + η)1/10�1/5 +O(�2/5).

(23)
The asymptotic performance of OO2 without overlap is equivalent to the classical
Schwarz with overlap �. As � approaches zero, we obtain

max
k,m

fmin≤
√

k2+m2≤fmax

|ρOO2(η, k,m, 0, p
∗, q∗)| = 1− 4

√
2(f2

min + η)1/8

π1/4
�1/4 +O(�1/2).

(24)

Proof. We do a Taylor expansion of the convergence factor with p∗ = C1�
α and

q∗ = C2�
β , where α < 0 and β > 0, we show that p∗ = 2−3/5(f2

min + η)2/5�−1/5 and
q∗ = 2−1/5(f2

min + η)−1/5�3/5.

Figure 1 on the right shows a comparison of the convergence factors of the opti-
mized Schwarz methods with the classical Schwarz method. We also compare the
convergence factor of the classical Schwarz method with the convergence factor of
the two-sided optimized Schwarz method, where we use different Robin transmis-
sion conditions between the two subdomains. As one can see the optimized Schwarz
methods have a great performance compared to the classical Schwarz method.
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Fig. 2. Number of iterations required by the classical and the optimized Schwarz
methods, with overlap � = h. On the left the methods are used as iterative solvers,
and on the right as preconditioners for a Krylov method.
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Fig. 3. Number of iterations required by the optimized Schwarz methods without
overlap between subdomains. On the left the methods are used as iterative solvers,
and on the right as preconditioners for a Krylov method.

5 Numerical Experiments

We perform numerical experiments for our model problem (1) on the unit cube,
Ω = (0, 1)3. We decompose the unit cube Ω into two subdomains Ω1 = (0, b) ×
(0, 1)2 and Ω2 = (a, 1) × (0, 1)2, where 0 < a ≤ b < 1, so that the overlap is
� = b − a. We use a finite difference discretization with the classical seven-point
discretization and a uniform mesh parameter h. In practice, we usually use a small
overlap between subdomains, in our experiments we chose the overlap � to be exactly
the mesh parameter h, i.e., � = h. Figure 2 on the left shows the number of iterations
versus the mesh parameter h in the case of an overlap, for all the methods used as
an iterative solvers, on the right the methods are used as preconditioners for a
Krylov method. In figure 3 we show the number of iterations in the case of non-
overlapping subdomains. On the left the methods are used as iterative solvers, whilst
on the right the methods are used as preconditioners for a Krylov method. For both
decompositions the numerical results show the asymptotic behavior predicted by
the analysis.
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6 Conclusion

In this paper we presented an extension of the optimal and optimized Schwarz
methods to cover three-dimensional partial differential equations. We showed the
impact of transmission conditions on the convergence factor of Classical Schwarz
method. We also showed theoretically and numerically that the optimized Schwarz
methods are fast and have a great improved performance compared to the classical
Schwarz method.
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methods with an overset grid system for the shallow-water equations. Appl.
Numer. Math., 2007. In press.

[11] A. Quarteroni and A. Valli. Domain Decomposition Methods for Partial Dif-
ferential Equations. The Clarendon Press Oxford University Press, New York,
1999.

[12] B.F. Smith, P.E. Bjørstad, and W.D. Gropp. Domain Decomposition.
Cambridge University Press, Cambridge, 1996.



Optimized Schwarz Methods
with the Yin-Yang Grid for Shallow Water
Equations

Abdessamad Qaddouri
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Summary. An efficient implementation of the Schwarz method is used to solve the
2D linear system of shallow-water equations (SWEs) on the sphere with an overset
grid system named Yin-Yang. In this paper the convergence of optimized Schwarz
method for solving an elliptic problem is increased by substructuring the algorithm
in terms of interface unknowns. In this work we show, by numerical tests, that
the use of the Yin-Yang grid avoids the “poles problems” resulting from the global
latitude-longitude mesh convergence in the polar regions.

1 Introduction

The Yin-Yang overset grid (see Fig. 1) was suggested in [4] as a quasi-uniform
grid free from the polar singularity. This grid system is constructed by overlapping
two perpendicularly oriented identical parts of latitude-longitude grid. In [5] it was
shown that the Schwarz domain decomposition method can be successfully applied
to linear SWEs. In each subdomain the same system of equations is discretized
by an implicit time method using the same time step where at each time step an
elliptic problem is solved. In [5] this method was used to solve the 1D SWEs on
the circle and the elliptic problem was solved by the iterative optimized Schwarz
method (see [2] and references therein). In this paper we apply the same method to
the 2D linear SWEs on the Yin-Yang grid. We show that it is possible to increase
the convergence of the optimized Schwarz method for solving the elliptic problem
by using the substructuring formulation. Because the two subgrids of the Yin-Yang
grid do not match, the variable update at the subdomain interfaces is done by cubic
Lagrange interpolation. The complete 2D linear SWE solutions on the Yin-Yang
grid are compared to integrations using the spectral model on a Gaussian grid and
a finite-difference model on a latitude-longitude grid. The paper is organized as
follows: in Section 2, we present the 2D linear SWEs with their discretized form and
solution method, in Section 3 the 2D positive definite Helmhotz problem is solved on
the Yin-Yang grid, the solver is either an iterative formulation or an substructuring
formulation of the optimized Schwarz method, in Section 4 numerical results are
shown and finally concluding remarks are given in Section 5.



348 A. Qaddouri

Fig. 1. Yin-Yang grid system. The Yang grid is shown on the left, the Yin grid in
the middle, and their composition on the right

2 The 2D Linear Shallow Water Equations

In this section, we develop an implicit global linear shallow-water model on the
sphere by using a domain decomposition method on Yin-Yang grid. The major goal
of this work is the demonstration that this type of grid system removes the poles
problems. Each of two component of Yin-Yang overset grid spans the Subregion Sl,
l = 1, 2, defined by

S(l) = {(λ, θ); |θ| ≤ π
4

+ δ |λ| ≤ 3π

4
+ δ}, (1)

where (λ, θ) are the longitude and the latitude with respect to the local cartesian
referential (see [1]) and δ is the minimum overlap. The relationship between the Yin
coordinate and Yang coordinate is denoted in cartesian coordinates by

(x(l), y(l), z(l)) = (−x(3−l), z(3−l), y(3−l)) l = 1, 2. (2)

The governing equations for each subdomain l, l = 1, 2 are the linear SWEs on a
non rotating sphere of radius a[

∂U (l)

∂t
+

1

a2
∂φ(l)

∂λ

]
= 0, (3)[

∂V (l)

∂t
+

1

a2
cos θ

∂φ(l)

∂θ

]
= 0, (4)[

∂φ(l)

∂t
+ φ∗D(l)

]
= 0, (5)

where a is the Earth radius, (U , V ) are the wind images [wind multiplied by cos θ
a

],
φ the perturbation geopotential from the reference geopotential φ∗ and D is the
divergence defined by

D =
1

cos2 θ
(
∂U

∂λ
+ cos θ

∂V

∂θ
). (6)

The φ field gradient components and divergence D give rise to high frequency gravity
waves. They are always integrated implicitly in time, enabling the use of a long time
step ∆t. A time discretization of equations (3)-(5) is
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U (l)

τ
+

1

a2
∂φ(l)

∂λ

]
(λ, θ, t) = R

(l)
U =

[
U (l)

τ
− 1

a2
∂φ(l)

∂λ

]
(λ, θ, t−∆t) , (7)[

V (l)

τ
+

1

a2
cos θ

∂φ(l)

∂θ

]
(λ, θ, t) = R

(l)
V =

[
V (l)

τ
− 1

a2
cosθ

∂φ(l)

∂θ

]
(λ, θ, t−∆t) , (8)[

φ(l)

τ
+ φ∗D(l)

]
(λ, θ, t) = Rφ(l) =

[
φ(l)

τ
− φ∗D(l)

]
(λ, θ, t−∆t) , (9)

where τ = ∆t/2. As for the 1D SWEs in [5], the second order finite difference spatial
discretization is done on a staggered Arakawa C grid [1] where the variables U , V
and φ are carried at alternate points in space on (U -grid), (v−grid) and (φ-grid),
respectively. We use (N,M) grid points for the scalar (φ-grid), (N-1,M) grid points
for (U -grid) and (N,M-1) grid points for (V -grid). The discretized equations on each
subdomain l are

[
U

(l)
i,j

τ
+

1

a2
φ

(l)
i+1,j − φ

(l)
i,j

hλ

]
= R

(l)
U , i = 1, N − 1; j = 1,M (10)[

V
(l)

i,j

τ
+

1

a2
cos θj

φ
(l)
i,j+1 − φ

(l)
i,j

hθ

]
= R

(l)
V i = 1, N ; j = 1,M − 1 (11)[

φ
(l)
i,j

τ
+ φ∗D

(l)
i,j

]
= R

(l)
φ i = 2, N − 1; j = 2,M − 1 (12)

with

D
(l)
i,j =

1

cos2 θj
(
U

(l)
i,j − U

(l)
i−1,j

hλ
+ cos θj

V
(l)

i,j − V
(l)

i,j−1

hθ
), (13)

where hλ, hθ are the grid spacing along the longitudinal and latitudinal directions
respectively. The resulting equations (10)-(12) are combined to obtain a single dis-
cretized elliptic equation (14) for φ which is solved by the optimized Schwarz method
discussed in the following sub-sections, and the wind is updated by equations (3)-(4).
Then given fields U (l), V (l) and φ(l) at the previous time step, the solution method
is summarized as follows:

• The right-hand sides R
(l)
U , R

(l)
V and R

(l)
φ are calculated in parallel on the two

subdomains.
• The elliptic problem is solved and the geopotential φ(l) is updated on the two

subdomains. Interpolation and communication are required to obtain values at
subdomain interfaces.

• The wind vector fields (U (l),V (l)) are updated in parallel on the two subdomains.

2.1 Iterative Formulation of the Optimized Schwarz Method

Similar to the classical Schwarz method, we solve the discretized problems iteratively
in each subdomain

−2 + hθ tan θj
2h2

θ

φ
(l),k
i,j−1 −

1

cos2 θjh2
λ

φ
(l),k
i−1,j + (η +

2

cos2 θjh2
λ

+
2

h2
θ

)φ
(l),k
i,j

− 1

cos2 θjh2
λ

φ
(l),k
i+1,j −

2− hθ tan θj
2h2

θ

φ
(l),k
i,j+1 = R

(l),k
i,j , i = 1, . . . , N ; j = 1, . . . ,M,

(14)
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where η = a
φ∗∆t2

is a positive and constant parameter and R is the corresponding

right-hand-side function. Following the ideas of [2], we use the following discretiza-

tions of the higher order transmission conditions on each interface Γ
(l)
d (d = 1, · · · 4)

∂φ(l),k

∂νl
+ β

(l)
d φ

(l),k + α
(l)
d

∂2φ(l),k

∂τ2
l

=
∂φ(3−l),k−1

∂νl
+ β

(l)
d φ

(3−l),k−1 + α
(l)
d

∂2φ(3−l),k−1

∂τ2
l

.

(15)
The symbol ∂

∂νl
stands for the normal derivative of each subdomain and ∂

∂τl
is the

corresponding tangential derivative. The α
(l)
d , β

(l)
d are real parameters introduced to

optimize the performance of the method. We obtain these coefficients numerically,
assuming the coefficients α

(l)
d and β

(l)
d are independent of the boundary d and are

antisymmetric, i.e.
α

(1)
d = −α(2)

d , β
(1)
d = −β(2)

d . (16)

In Fig. 2 we represent the performance for the solution of the elliptic problem where
each subdomain consists of 90×30 grid points, the overlap δ is one grid point spacing
and the Helmhotz coefficient η is equal to one. For the approximate optimal values
of the parameters α

(l)
d and β

(l)
d , the corresponding methods (see Fig. 2) converge in a

small number of iterations and the convergence is much better than the convergence
of the classical Schwarz method. This gain more than compensates for the extra cost
of computing the needed additional derivatives.

2.2 Substructuring Formulation of the Optimized Schwarz Method

It is possible to both increase the robustness of the optimized Schwarz method and
its convergence speed by replacing the above fixed point iterative solver by a Krylov-
type method (see [2] and references therein). This is made possible by substructuring

the algorithm in terms of interface unknowns, that we denote here by T
(l)
d for each

subdomain l and interface d. We consider the substructuring formulation of the
elliptic problem in equations (14)-(15) where the unknowns T

(l)
d are equal to the

right-hand side of equation (15), and we rewrite the problem to be solved on each
subdomain as

A(l)φ(l) = R(l)

B
(l)
d φ

(l) = B
(l)
d φ

(3−l) = T
(l)
d ,

(17)

where B
(l)
d is the transmission operator which is the identity in the case of Dirichlet

conditions. In the previous iterative Schwarz method we solve iteratively, with iter-
ation number k = 1, . . . , kmax, in each subdomain the system of equations

A(l)φ(l),k = R(l) +B
(l)
d φ

(3−l),k−1 = R(l) + T
(l),k−1
d , (18)

where the matrix A(l) now includes the corrections from the transmission conditions.
The Schwarz method corresponds then to the solution for the interface problem
unknowns T

(l)
d by the Jacobi algorithm

T
(l),k
d = B

(l)
d (A(3−l))−1T

(3−l),k−1
d +B

(l)
d (A(3−l))−1R(3−l). (19)

We can improve the convergence by considering GMRES, or any other Krylov
method, in order to solve the interface system of equations
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I −B(l)

d (A(3−l))−1

−B(3−l)
d (A(l))−1 I

][
T

(l)
d

T
(3−l)
d

]
=

[
B

(l)
d (A(3−l))−1R(3−l)

B
(3−l)
d (A(l))−1R(l)

]
. (20)

The spectral radius of the left-hand-side matrix in equation (20) depends on the

choice of the interface conditions B
(l)
d . Once the interfaces functions T

(l)
d are known,

the subproblem solutions are updated in parallel. In Table 1 we consider the two
interface equation solvers, Jacobi and GMRES, and we give the number of iterations
so that the maximum error is smaller than 10−6. We see that the optimized Robin
or second-order transmission conditions give a significant improvement when using
either solver.

Iterations

M
ax

im
um

 E
rr

or

Dirichlet
Robin
Second order

105

100

10−5

10−10

0 5 10 15 20 25 30 35 40

Fig. 2. Convergence behavior for the iterative classical Schwarz and the iterative
optimized Schwarz methods, overlap = 1h and η = 1

Table 1. Number of iterations for 3 interface conditions and 2 solvers. Each panel
is 90 × 30, overlap= 1h and η = 1.

Boundary Cond. ASM GMRES

Dirichlet 116 26

Robin 20 12

Second order 16 9

3 Numerical Results

In order to assess the capability of the Yin-Yang grid to alleviate the pole problem,
we consider the solutions for the 2D linear SWEs on both a global latitude-longitude
grid and the Yin-Yang grid and we compare them with a spectral model solution
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which is free of the pole problem. We start from an initial state at rest (U and
V = 0) with the initial geopotential perturbation given by:

φ(λ, θ, t = 0) = 2 Ωau0 sin3(θ) cos(θ) sin(λ) (21)

where Ω = 0.00007292s−1, and u0 = 20m/s. If we expand φ in terms of truncated
series of spherical harmonics, its spectrum shows that the non-zero contributions
are only from total wavenumbers 2 and 4. We take a global lat-lon grid with the
resolution 80 ×40, Yin-Yang grid with resolution 60×20 in each panel, and we com-
pare with an equivalent spectral model with a truncation at wavenumber 39. There
must be no interaction between the time tendencies of different spectral coefficients.
No new spectral mode can appear during the evolution from the initial state. The
spectrum (not plotted here) of the perturbation of the geopotential given by the 3
models after 4 hours shows that for the spectral model the only non zeros are the
contributions from wavenumbers 2 and 4 and the initial energy, initially potential,
is now divided into kinetic and potential parts. In the spectrum of the perturbation
of the geopotential given by using the lat-lon grid and the Yin-Yang grid, there are
non zero contributions from wavenumbers other than 2 and 4, however the energy at
these wavenumbers is much smaller when using the Yin-Yang grid. We show in Fig.
3 the difference between the perturbation of the geopotential after 4 hours given by
using the lat-lon and Yin-Yang gridpoint models and by the spectral model. For lat-
lon we can see that the biggest difference is near the poles. The difference between
the solution on the Yin-Yang grid and the spectral model is the same everywhere
on the globe. The maximum difference after 24 hours (not shown here) between the
Yin-Yang gridpoint model and the spectral model solutions corresponds to only 1
m height difference. We can conclude that the use of the quasi-uniform Yin-Yang
grid eliminates the pole problem and gives much more accurate solutions than with
the standard lat-lon grid.

Fig. 3. Geopotential differences between spectral and Lat/lon (left), Yin-Yang and
spectral (right). The two subfigures have not the same scale

4 Conclusion

In this paper we have shown that the Schwarz domain decomposition methods are
practical for obtaining solutions of the linear SWEs on the sphere with the overset
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grid system Yin-Yang. In a previous study [5] the convergence analysis of the 1D it-
erative solution of the elliptic problem on the circle yielded an analytical formula for
the optimized coefficients of the transmission conditions. In this paper the optimized
coefficients for the 2D case on the Yin-Yang grid were found numerically and it was
possible to both increase the robustness of the optimized Schwarz method and its
convergence speed by using the substructuring formulation. We have demonstrated
that the use of the quasi-uniform Yin-Yang grid effectively eliminates the pole prob-
lem and gives more accurate solutions than when using the latitude-longitude grid.

We have not yet validated the full 2D SWEs model on the Yin-Yang grid, but
2D passive semi-Lagrangian advection has been thoroughly tested for this grid, see
[5, 6], and the results were comparable to the value in [3]. In future work we will
complete the validation of the SWEs with the Yin-Yang grid using the test set of
Williamson et al. [7], and finally we will consider the Yin-Yang grid system with
more than one regular subdomain in each panel.
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This minisymposium focused on recent developments in analysis and implementation
of preconditioners for elliptic problems with highly variable multiscale coefficients,
including cases where the coefficient variation cannot be effectively resolved by a
practical coarser mesh. Many examples arise, for example in deterministic and sto-
chastic models in hydrogeology, and in oil reservoir modeling. Standard coarsening
techniques based on polynomial interpolation do not work well for such problems
and in this minisymposium we will focus on recently proposed better techniques,
such as multiscale finite element coarsening, optimized interface preconditioners,
deflation, and algebraic approaches which are designed to accommodate coefficient
behavior.

The talks in the minisymposium covered various topics, including algebraic
coarsening methods for non-overlapping domain decompositions; a general theory of
robustness for multilevel methods; application of multiscale finite element methods
to coarsening; a new theory of aggregation methods for problems with highly vari-
able coefficients and application of multiscale methods in diffusion and absorption
in chloroplasts.
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1 Introduction

Motivated by accuracy reasons, many large-scale scientific applications and in-
dustrial numerical simulation codes are fully implemented in 64-bit floating-point
arithmetic. On the other hand, many recent processor architectures exhibit 32-bit
computational power that is significantly higher than for 64-bit. One recent and
significant example is the IBM CELL multiprocessor that is projected to have a
peak performance near 256 Gflops in 32-bit and “only” 26 GFlops in 64-bit compu-
tation. We might legitimately ask whether all the calculation should be performed
in 64-bit or if some pieces could be carried out in 32-bit. This leads to the de-
sign of mixed-precision algorithms. However, the switch from 64-bit operations into
32-bit operations increases rounding error. Thus we have to be careful when choos-
ing 32-bit arithmetic so that the introduced rounding error or the accumulation of
these rounding errors does not produce a meaningless solution. For the solution of
linear systems, mixed-precision algorithms (single/double, double/quadruple) have
been studied in dense and sparse linear algebra mainly in the framework of direct
methods (see [5, 4, 8, 9]). For such approaches, the factorization is performed in
low precision, and, for not too ill-conditioned matrices, a few steps of iterative re-
finement in high precision arithmetic is enough to recover a solution to full 64-bit
accuracy (see [4]). For nonlinear systems, though, mixed-precision arithmetic is the
essence of algorithms such as inexact Newton.

For linear iterative methods, we might wonder if such mixed-precision algorithms
can be designed. The most natural way, in Krylov subspace methods, is to implement
all but the preconditioning steps in high precision. The preconditioner is expected to
“approximatively” solve the original problem, so introducing a slight perturbation by
performing this step in low precision might not affect dramatically the convergence
rate of the iterative scheme. In this paper, we investigate the use of mixed-precision
preconditioners in parallel domain decomposition, where the 32-bit calculations are
expected to significantly reduce not only the elapsed time of a simulation but also
the memory required to implement the preconditioner.

The paper is organized as follows. In Section 2 we motivate using 32-bit rather
than 64-bit from a speed perspective. Section 3 is devoted to a brief exposition of
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the non-overlapping domain decomposition technique we consider for the parallel
numerical experiments discussed in Section 4.

2 Mixed-Precision Algorithms

Counter to the 64-bit RISC trend, for some recent architectures, a 64-bit operation is
more expensive than a 32-bit one. In particular, those that possess a SSE (streaming
SIMD extension) execution unit can perform either two 64-bit instruction or four
32-bit instructions in the same time. This class of chip includes for instance the IBM
PowerPC, the Power MAC G5, the AMD Opteron, the CELL, and the Intel Pentium.
Table 1 reports the performance of basic dense kernels involved in numerical linear
algebra: the GEMV BLAS-2 matrix-vector product and the POTRF/ POTRS
Lapack Cholesky factorization and backward/forward substitution. It can be seen
that 32-bit calculation generally outperforms 64-bit. For a more exhaustive set of
experiments on various computing platforms, refer to [8, 9]. The source of time
reduction is not only the processing units that perform more operations per clock-
cycle, but also a better usage of the complex memory hierarchy that provides ultra-
fast memory transactions by reducing the stream of data block traffic across the
internal bus and bringing larger blocks of computing data into the cache. This
provides a speed up of two in 32-bit compared to 64-bit computation for BLAS-3
operations in most Lapack routines.

Table 1. Elapsed time (sec) to perform BLAS-2 and Lapack routines on various
platforms when the size m of the matrices is varied.

CRAY XD1 AMD Opteron processor

n DGEMV SGEMV Ratio DPOTRF SPOTRF Ratio DPOTRS SPOTRS Ratio

2000 0.012 0.005 2.18 0.823 0.462 1.78 0.010 0.004 2.22
7000 0.121 0.056 2.16 29.41 16.04 1.83 0.116 0.056 2.07

MAC Power PC G5 processor VMX/AltiV ec extensions

n DGEMV SGEMV Ratio DPOTRF SPOTRF Ratio DPOTRS SPOTRS Ratio

2000 0.028 0.008 3.51 0.828 0.453 1.82 0.032 0.022 1.45
7000 0.354 0.122 2.90 23.71 13.27 1.78 0.372 0.355 1.05

Another advantage of 32-bit floating point arithmetic is that data storage is
reduced by half, providing an increase in data throughput. Similarly, in a distributed
memory environment, the message sizes are halved.

3 Exploiting 32-bit Calculation in Domain
Decomposition

Consider the following second order self-adjoint elliptic problem in the unit cube
Ω = (0, 1)3 ⊂ R3 :
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−∇(a(x, y, z)∇u) = f(x, y) in Ω,

u = 0 on ∂Ω,
(1)

where a(x, y, z) ∈ R3 is a positive definite symmetric matrix function. We assume
that the domain Ω is partitioned into N non-overlapping subdomains Ω1,..., ΩN

and boundary Γ = ∪ Γi, where Γi = ∂Ωi\∂Ω. We discretize (1) by using a finite
element method resulting in a symmetric positive definite linear system, Ahuh =
fh. Let I denote the union of the interior points in the subdomains, and let B
denote the interface points separating the subdomains. Then grouping the unknowns
corresponding to I in the vector uI and the unknowns corresponding to B in the
vector uB , we obtain the following reordering of the fine grid problem:(

AII AIB

AT
IB ABB

)(
uI

uB

)
=

(
fI

fB

)
. (2)

Eliminating uI in the second block row leads to the following reduced equation for
uB :

SuB = fB −AT
IBA

−1
II fI with S = ABB −AT

IBA
−1
II AIB , (3)

where S is referred to as the Schur complement matrix that is symmetric positive
definite if Ah is symmetric positive definite. Let RΓi : Γ → Γi be the canonical
point-wise restriction that maps full vectors defined on Γ into vectors defined on
Γi. The Schur complement matrix (3) can be written as the sum of elementary

matrices, S =

N∑
i=1

RT
Γi
S(i)RΓi , where S(i) = AΓiΓi−AΓiIiA

−1
IiIi
AIiΓi is a local Schur

complement. We define the assembled local Schur complement, S̄(i) = RΓiSRT
Γi

,
that corresponds to the restriction of the Schur complement to the interface Γi.
The assembled local Schur complement can be computed in a parallel environment
from the local Schur complement via a few neighbor to neighbor communications.

We define the additive Schwarz preconditioner by MAS =
∑N

i=1RT
Γi

(
S̄(i)

)−1

RΓi ,

(see [3]).
We propose to take advantage of the 32-bit speed and memory benefit and build

some part of the code in 32-bit. Our goal is to use costly 64-bit arithmetic only where
necessary to preserve accuracy. We consider here the simple approach of performing
all the steps of a Krylov subspace method except the preconditioning in 64-bit [10].
In this respect, it is important to note that the preconditioner only attempts to
approximate the inverse of the matrix S. Since our matrices are symmetric positive
definite, the Krylov subspace method of choice is conjugate gradient (CG). In our
mixed-precision implementation only the preconditioned residual is computed in 32-
bit. The import of this strategy is that the Gaussian elimination (factorization) of
the local assembled Schur complement (used as preconditioner), and the forward
and the back substitutions to compute the preconditioned residual, are performed
in 32-bit while the rest of the algorithm is implemented in 64-bit.

Since the local assembled Schur complement is dense, cutting the size of this ma-
trix in half has a considerable effect in terms of memory space. Another benefit is in
the total amount of communication that is required to assemble the preconditioner.
As for the memory required to store the preconditioner, the size of the exchanged
messages is also half that for 64-bit. Consequently, if the network latency is ne-
glected, the overall time to build the preconditioner for the 32-bit implementation
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should be half that for the 64-bit implementation. These improvements are illus-
trated by detailed numerical experiments with the mixed-precision implementation
reported in Section 4.

4 Numerical Results

The target computer is the Terascale computer system X located at Virginia Tech’s.
The system Xserve is a 1,100 dual G5 processor nodes ran at 2.3GHz; each node
has 4GB of main memory. The G5 cluster operates at 20.24 64-bit Teraflops peak,
and the networking consists both of standard Ethernet for “non-computational”
tasks, and special Mellanox Cougar InfiniBand 4x HCA networks for high-bandwidth
and low-latency communications. In a parallel distributed memory environment,
the domain decomposition strategy is followed to assign each local PDE problem
(subdomain) to one processor that works independently of other processors and
exchange data using MVAPICH (MPI for InfiniBand on VAPI Layer). The code is
written in Fortran 90 and compiled with the IBM compiler.

In what follows we start by taking a brief look at our parallel implementation
that relies on a unique feature of the multifrontal sparse direct solver Mumps (see [1,
2]); that offers the possibility to compute the Schur complement matrices S(i) at
an affordable memory and computational cost thanks to its multifrontal approach.
Those local Schur complement matrices computed explicitly on each processor are
then assembled using neighbor to neighbor communication, which is independent of
the number of processors. Then they are factorized using the dense linear Lapack
kernel, to construct the additive Schwarz preconditioners. Finally, we note that
the solution of this reduced linear system associated with the Schur complement is
typically performed by a distributed preconditioned conjugate gradient solver.

In this section we compare the performance of a fully 64-bit with a mixed-
precision implementation. For all the parallel experiments, we solve either the two-
dimensional or the three-dimensional elliptic PDE defined respectively in the unit
square or cube, using a uniform domain decomposition into equal sized squares or
cubes. Since the goal is to study the numerical efficiency of the preconditioner, we
only perform scaled experiments where the matrix size for the subdomains is kept
constant (i.e., constant H

h
where H is the diameter of the subdomains, and h is the

mesh size) when the number of subdomains is increased. In the table, we refer to
the fully 64-bit and mixed-precision experiments as Md and Mm, respectively.

In order to illustrate the effect on the convergence rate, we report in Table 2
the number of conjugate gradient iterations to reduce the scaled residual ‖rk‖

‖b‖ below

10−8, where b is the right-hand side of the Schur complement system. We consider
the smooth and not too ill-conditioned problems associated with the Poisson equa-
tion and a heterogeneous diffusion problem with coefficient jumps from 1 to 103 in
various places of the unit square or cube. This latter example gives rise to more
ill-conditioned linear systems to solve. Finally, while keeping constant the size of
the subdomains, we vary their numbers and consider two different subdomain sizes.

In Table 2, we report result observed on the two dimensional model. Because
only local preconditioner are considered, it can be seen that the number of iterations
grows with the number of subdomains. In terms of iterations, it can be seen that
for the two different problems Mm behaves closely to Md. With this choice of the
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mixed-precision, it can be expected a reduction of the global elapsed time as de-
scribed below. For the three dimensional case, the behavior of the preconditioners is
depicted in Table 2. The first observation, that we do not further develop, is that the
preconditioner, which does not implement any coarse space component to account
for the global coupling of the PDEs, does not scale too badly when the number of
subdomains is increased. Its scalability with respect to the size of the subdomains
is also acceptable as only a slight increase is observed when we go from subdomains
with about 15,000 degrees of freedom (dof) to subdomains with about 43,000 dof.
On the accuracy effect of the mixed-precision usage, it can be observed once again
that it only moderately increases the number of iterations, and the increase does not
depend much either on the number of subdomains or on the size of the subdomains.
As expected, the growth is also slightly larger on the ill-conditioned heterogeneous
problem as for the Poisson problem.

Table 2. Number of conjugate gradient iterations when the number of subdomains
and the subdomain grid is varied: 2D and 3D case.

2D experiments Poisson Problem Discontinuous Problem

subdomain grid 25 64 144 256 25 64 144 256

Md 15 24 33 40 23 33 55 61
35 × 35

Mm 15 26 33 41 23 34 55 62

Md 20 34 45 55 37 47 76 91
1000 × 1000

Mm 21 35 47 57 39 48 78 93

3D experiments Poisson Problem Discontinuous Problem

subdomain grid 27 64 125 216 27 64 125 216

Md 17 24 26 31 23 33 36 44
25 × 25 × 25

Mm 19 26 28 33 24 34 39 45

Md 19 26 30 33 25 35 40 47
35 × 35 × 35

Mm 21 29 30 35 25 37 42 49

In Table 3 we report on three-dimensional numerical experiments related to the
construction of the preconditioner for different problem sizes, varying the number
of processors from 27 up to 216 (i.e., varying the decomposition of the cube from
3×3×3 up to 6×6×6). We depict the preconditioner setup time for bothMd andMm.
The row entitled “init” corresponds to the calculation of the local Schur complement
using the Mumps package. The construction of the local Schur complements that
are involved in the matrix-vector product in the conjugate gradient algorithm is
performed in both cases in 64-bit arithmetic, so the cost is the same for the two
variants. The “setup precond” row is the time required to assemble and factorize,
using Lapack, the assembled local Schur complement. As might be expected, these
results show that the 32-bit preconditioner setup time is significantly smaller than
that for 64-bit. Note that the 32-bit arithmetic cut in half the time for assembling
the local Schur matrix, due to halving the amount of communication. Also the O(n3)
floating-point operations of the LLT factorization [S/D]POTRF are about a factor
of 1.8 faster in 32-bit.
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Table 3. Parallel performance for various steps of the preconditioned conjugate
gradient implementations (35× 35× 35 subdomain grid).

# proc 27 64 125 216
Md Mm Md Mm Md Mm Md Mm

init 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8
setup precond 21.2 12.3 21.2 12.3 21.3 12.3 21.4 12.4
time per iter 0.73 0.68 0.73 0.69 0.76 0.71 0.76 0.72

total 66.3 56.1 73.5 64.6 78.5 68.9 83.9 74.5

# iter 25 25 35 37 40 42 47 49

From a memory viewpoint, usingMm saves 150 MB of memory per processor for
the example with about 43,000 dof per subdomain. From a computational perspec-
tive, memory and CPU time, the saving is clear. It can be seen that the time per
iteration is almost constant and does not depend much on the number of processors
for both preconditioners. In terms of the overall computing time, the row entitled
“total” in Table 3 displays the overall elapsed time to solve the heterogeneous diffu-
sion problem with 43,000 dof per subdomain when the number of domains is varied.
These results show that on the most difficult problem the time saved by the use of
mixed-precision arithmetic still compensates for a slight increase in the number of
iterations, and that Mm outperforms Md.

64−bit calculation
mixed calculation
32−bit calculation

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

0 50 100 150

Fig. 1. Convergence history of ‖rk‖/‖b‖ (right) on a 15 000 dof problem in mixed
finite element device modeling simulation on a mosfet (left).

In Figure 1, we report the convergence history of PCG using entire 64/32-bits
and mixed arithmetic calculation on an unstructured 2D problem arising from mixed
finite element discretization in device modeling simulations (150 000 dof and 16 sub-
domains) [7]. This real life example exhibits similar numerical behavior as the ones
observed on the academic examples of Table 2. Namely, the pure 32-bit calculation
has a limiting accuracy much larger than the mixed and the full 64-bit computation.
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5 Concluding Remarks

In a linear iterative parallel domain decomposition solver, the use of 32-bit arith-
metic was limited to the preconditioning step. The main advantage of using mixed-
precision is that it reduces the data storage, the computational time, and the com-
munication overhead while only marginally degrading the convergence rate without
preventing to reach similar accuracy as full 64-bit calculation. This work is just a first
study of mixed arithmetic implementation, and other variants will be considered in
future work. While the current work is purely experimental, some theoretical studies
deserve to be undertaken following possibly some techniques presented in [11]. Fi-
nally, we mention that the one-level preconditioner presented here can be considered
in a two-level scheme, we refer to [6] for more details on that aspect.
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1 Introduction

In this paper we discuss new domain decomposition preconditioners for piecewise
linear finite element discretizations of boundary-value problems for the model elliptic
problem

−∇ · (A∇u) = f , (1)

in a bounded polygonal or polyhedral domain Ω ⊂ Rd, d = 2 or 3 with suitable
boundary data on the boundary ∂Ω. The tensor A(x) is assumed isotropic and
symmetric positive definite, but may vary with many orders of magnitude in an
unstructured way on Ω. Many examples arise in groundwater flow and oil reservoir
modeling.

Let T h be a conforming shape-regular simplicial mesh on Ω and let Sh(Ω) denote
the space of continuous piecewise linear finite elements on T h. The finite element
discretization of (1) in Vh (the n-dimensional subspace of functions in Sh(Ω) which
vanish on essential boundaries), yields the linear system:

Au = f , (2)

and it is well-known that the conditioning of A worsens when T h is refined or when
the heterogeneity (characterized by the range of A) becomes large. It is of interest
to find solvers for (2) which are robust to changes in the mesh width h as well as to
the heterogeneity.

While there are many papers which solve (2) for “layered media” in which dis-
continuities in A are simple interfaces that can be resolved by a coarse mesh (see
e.g. [4, 12] and the references therein), until recently there was no rigorously justi-
fied method for general heterogeneous media. We present here a summary of some
recent papers [6, 7, 10, 11] where a new analysis of domain decomposition meth-
ods for (2) (which have inherent robustness with respect to h) was presented. This
analysis indicates explicitly how subdomains and coarse spaces should be designed
in order to achieve robustness also with respect to heterogeneities. More precisely
this analysis introduces new “robustness indicators” (which depend on the choice of
subdomains and coarse space and in particular depend on the energy of the coarse
space basis functions) and proves that, if these indicators are controlled, then the
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preconditioner will be robust. Papers [6, 7] then go on to consider the use of mul-
tiscale finite elements to build coarse spaces for domain decomposition and prove a
number of results which indicate their robustness in cases where standard coarsening
methods fail to be robust. Papers [10, 11] consider aggregation-based coarsening (as
introduced e.g. in [13, 2]) and prove similar results as in the multiscale finite element
case.

The coarse spaces proposed in [6] yield coefficient-dependent prolongation oper-
ators, similar to those which have been tested empirically in the context of (Schur
complement based) domain decomposition methods in [3, 5]. The concept of energy-
minimizing coarse spaces also appears in several papers on the construction of al-
gebraic multigrid methods [14, 9, 15], but their behavior in the presence of hetero-
geneity is not analyzed. The use of multiscale finite elements as coarseners was also
proposed in [1], but again this was in the Schur-complement context and the analysis
depended on classical periodic homogenization theory. The analysis in [6] does not
require periodicity and does not appeal to homogenization theory. We are also not
aware of any theoretical results which make explicit the dependency of the condition
number on heterogeneities in A in the case of the aggregation-based coarse spaces
proposed in [10].

Given a finite overlapping open covering of subdomains {Ωi : i = 1, . . . , s} of Ω,
with each Ωi assumed to consist of a union of elements from T h , and a coarse basis
{Φj : j = 1, . . . , N} ⊂ Vh, we study two-level additive Schwarz preconditioners

M−1
AS =

s∑
i=0

RiA
−1
i R

T
i . (3)

Here, for i = 1, . . . , s, Ri denotes the restriction matrix from freedoms in Ω to
freedoms in Ωi and (R0)j,p = Φj(xp), where xp, p = 1, . . . , n, are the interior nodes
of the fine mesh T h. The matrices Ai are then defined via the Galerkin product
Ai := RiAR

T
i .

For the purposes of exposition we will only describe the theory for scalar A
in (1), i.e. A = α I, and restrict to the case of homogeneous Dirichlet boundary
conditions. For theoretical purposes, we shall also assume that α ≥ 1. This is no loss
of generality, since problem (2) can be scaled by (minx α(x))−1 without changing its
conditioning. Throughout the paper, the notation C � D (for two quantities C,D)
means that C/D is bounded above independently of the mesh parameters and of the
coefficient function α.

2 Coefficient-explicit Schwarz Theory I

The assumptions on the coarse space and on the overlapping subdomains made in
the papers [6, 7] and [10, 11] are different. We start in this section with the theory
presented in [10, 11]. Although there we only applied the theory to aggregation-
based coarsening, we will show here that it can also be applied in the case of the
multiscale coarsening introduced in [6, 7], leading to a slightly different condition
number bound than the one in [6, 7]. The key assumption in this section is that
the support of each coarse space basis function is fully contained in at least one
subdomain. For details and proofs see [10].
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We start with a linearly independent set {Φj : j = 1, . . . , NH} ⊂ Sh(Ω). This set
contains the functions defined above, but also some functions which do not vanish on
the boundary, so NH > N . We set ωj = interior (supp{Φj}) with diameter Hj . For
theoretical purposes we assume that the {ωj} form a shape-regular overlapping cover
of Ω and that the overlap between any support ωj and its neighbors is uniformly of
size δj . In addition we make the following assumptions:

(C1) For all j = 1, . . . , NH there is an ij ∈ {1, . . . , s} such that ωj ⊂ Ωij .

(C2)
∑NH

j=1 Φj(x) = 1, for all x ∈ Ω̄.

(C3) ‖Φj‖L∞(Ω) � 1 .

We assume that the functions Φj are numbered in such a way that Φj ∈ Vh for
all j ≤ N and Φj �∈ Vh for all j > N . Thus we can denote the coarse space by
V0 = span{Φj : j = 1, . . . , N} and we have V0 ⊂ Vh.

Note that although we have not directly made any assumptions on the overlap of
the subdomains, (C1) implies that the overlap of a subdomain Ωi and its neighbors
is always bounded from below by min{j : ωj⊂Ωi} δj .

It is known (see e.g. [12]) that in order to bound κ(M−1
ASA), we need to assume

some upper bounds on |Φj |2H1(Ω). We take a novel approach here and introduce a
quantity which also reflects how the coarse space handles the coefficient heterogene-
ity:

Definition 1. (Coarse space robustness indicator I).

γ∞(α) =
NH
max
j=1

{
δ2j ‖α|∇Φj |2‖L∞(Ω)

}
.

The quantity γ∞(α) appears in our estimates for the two–level preconditioner below.
Note that, roughly speaking, this robustness indicator is well-behaved if the Φj have
small gradient wherever α is large. The weight δ2i is chosen to make γ∞(α) � 1 when
α = 1.

We can now state one of the main results from [10] (Theorem 3.8):

Theorem 1. Assume that (C1)-(C3) hold true. Then

κ
(
M−1

ASA
)

� γ∞(α)

(
1 +

NH
max
j=1

Hj

δj

)
.

Example 1 (Linear Finite Element Coarsening). In the classical case, i.e. when {Φj}
is the standard nodal basis for the continuous piecewise linear functions on a coarse
simplicial mesh T H , we have δj ∼ Hj and γ∞(α) � maxx∈Ω α(x), and so γ∞(α) � 1
when α ∼ 1. When α(x) →∞ for some x ∈ Ω then Theorem 1 suggests that linear
coarsening may not be robust anymore. The numerical results in Table 1 (left) show
that this is indeed the case and that γ∞(α) is a good indicator for the loss of
robustness. The results in Table 1 are for Ω = [0, 1]2 and α(x) = α̂ on an “island”
in the interior of each coarse element K ∈ T H a distance O(H) away from ∂K, with
α(x) = 1 otherwise (for a precise description of α see [6, Example 5.1]). Also, there
is exactly one subdomain Ωij per coarse node xH

j with ωj ⊂ Ωij (to ensure (C1)).

However, our framework leaves open the possibility of choosing the Φj to depend
on α in such a way that γ∞(α) is still well-behaved. The next two examples give
two possible ways of constructing such Φj .
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Table 1. Standard additive Schwarz with linear coarsening (left) and with multiscale
coarsening (right) for h = 512−1 and H = 8h.

α̂ κ(M−1
ASA) γ∞(α)

100 5.2 2
101 9.1 20
102 58.1 200
103 471 2000
104 1821 20000

α̂ κ(M−1
ASA) γ∞(α)

100 5.2 2
101 5.2 9.5
102 5.2 14.2
103 5.2 14.9
104 5.2 15.0

Example 2 (Aggregation-based Coarsening). Let N = {x1, . . . , xn} be the degrees
of freedom on the fine mesh, and let {Wj : j = 1, . . . , NH} be a non-overlapping
partition of N (i.e. ∪{Wj : j = 1, . . . , NH} = N and Wj ∩Wj′ = ∅ ∀j �= j′). For
each j, we define a coefficient vector Φj ∈ Rn such that Φj

p = 1, if node xp ∈ Wj ,
and Φj

p = 0 otherwise. Let Φj ∈ Sh(Ω) be the linear finite element function with
nodal values Φj . Note that although the aggregates Wj are non-overlapping, the
supports ωj of the functions Φj are. The overlap essentially consists of one layer of
fine grid elements and so for quasi-uniform T h we have δj ∼ h. In [10] (see also
[2]) we go on to smooth these functions by using a simple damped Jacobi smoother.
This increases the overlap. However, here we will only consider the simplest case of
no smoothing.

It follows immediately from the above construction that the Φj are linearly
independent and satisfy (C2) and (C3). Therefore, if the covering {Ωi} is chosen
such that (C1) is satisfied, then Theorem 1 implies

κ
(
M−1

ASA
)

� γ∞(α)
NH
max
j=1

Hj

h
. (4)

The Φj have nonzero gradient only in the overlap of ωj and so, provided α is
well-behaved in the overlap, γ∞(α) can be bounded independent of maxx∈Ω α(x).
In [10] we present an algorithm to choose aggregates Wj which can be proved to
satisfy this for certain choices of “binary” coefficient functions α by using the idea
of strong connections in A from algebraic multigrid (AMG). Given an aggregation
“radius” r ∈ N and a threshold for strong connections, roughly speaking each of the
aggregatesWj is calculated by finding the strongly–connected graph r-neighborhood
of a suitably chosen seed node xH

j ∈ N . The aggregation procedure in [10] uses an
advancing front in the graph induced by A to choose good seed nodes. We refer to
[10] for details and numerical results with binary and random media.

Example 3 (Multiscale Finite Element Coarsening I). Let T H be a shape-regular
mesh of coarse simplices on Ω with a typical element of T H being the (closed) set
K, which we assume to consist of the union of a set of fine grid elements τ ∈ T h.
Also, let {xH

j : j = 1, . . . , NH} be the set of nodes of T H and let FH denote the set
of all (closed) faces of elements in T H . (In the 2D case “faces” should be interpreted
to mean “edges”.) Finally, introduce also the skeleton Γ = ∪{f : f ∈ FH}, i.e. the
set of all faces of the mesh, including those belonging to the outer boundary ∂Ω.

Here, each of the coarse space basis functions Φj is associated with a node xH
j

of T H . They are obtained by extending (via a discrete harmonic extension with
respect to the original elliptic operator (1)) predetermined boundary data on the
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faces which contain xH
j , into the interior of each element K. To introduce boundary

data for each j = 1, . . . , NH , we introduce functions ψj : Γ → R which are required
to be piecewise linear (with respect to the mesh T h on Γ ) and are required also to
satisfy the assumptions:

(M1) ψj(x
H
j′ ) = δj,j′ , j, j′ = 1, . . . , NH ,

(M2) 0 ≤ ψj(x) ≤ 1 , and
∑NH

j=1 ψj(x) = 1 , for all x ∈ Γ ,
(M3) ψj ≡ 0 on all faces f ∈ FH such that xH

j �∈ f .

Using ψj as boundary data, for each j = 1, . . . , NH , the basis functions Φj ∈ Sh(Ω),
are then defined by discrete α−harmonic extension of ψj into the interior of each
K ∈ T H . That is, for each K ∈ T H , Φj |K ∈ {vh ∈ Sh(K) : vh|∂K = ψj |∂K} is such
that ∫

K
α∇(Φj |K) · ∇vh = 0 for all vh ∈ Sh

0 (K) (5)

where Sh(K) and Sh
0 (K) are the continuous piecewise linear finite element spaces

with respect to T h restricted to K.
The obvious example of boundary data ψj satisfying (M1)–(M3) are the standard

hat functions on T H restricted to the faces (edges) of the tetrahedron (triangle) K.
However, these are not so appropriate if α varies strongly near the boundary ∂K.
The oscillatory boundary conditions suggested in [8] are more useful in this case
(see [6] for details).

This recipe specifies Φj ∈ Sh(Ω) which can immediately be seen to be linearly
independent and to satisfy the assumptions (C2) and (C3) (see [6]). Moreover, we
have δj ∼ Hj . Therefore, if the covering {Ωi} is chosen such that (C1) is satisfied,
then Theorem 1 implies

κ
(
M−1

ASA
)

� γ∞(α). (6)

The numerical results in Table 1 (right), obtained for the test problem introduced
in Example 1, show that additive Schwarz with multiscale coarsening can indeed be
robust even when the coarse mesh does not resolve discontinuities in α and that our
theory accurately predicts this (cf. (6)). For more numerical results with multiscale
coarsening see [6, 7].

3 Coefficient-explicit Schwarz Theory II

In practice, Assumption (C1) may be too restrictive, as it may require quite generous
overlap of the subdomains (e.g. in the case of multiscale coarsening). The theory in
[6, 7] does not require (C1). However, it requires an underlying coarse mesh and is
therefore not as easily applicable to other more general coarse spaces such as the
aggregation-based ones in Example 2. For details and proofs on this section see [6].

Let T H be a shape-regular coarse mesh as defined in Example 3, and for every
K ∈ T H let HK = diam(K). We will now replace Assumption (C1) by

(C1’) Φj(x
H
j′ ) = δj,j′ , j, j

′ = 1, . . . , NH , and supp(Φj) ⊂ ∪{K : xH
j ∈ K}.

This implies that the Φj are linearly independent and that V0 = span{Φj : j =
1, . . . , N} ⊂ Vh. However, even though we no longer need Assumption (C1) we do
still need a mild assumption on the relative size of the subdomains and the coarse
mesh. For shape-regular subdomains Ωi we can write this as
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(C4) HK � diam(Ωi) , for all K ∈ {K : K ∩ Ω̄i �= ∅} and i = 1, . . . , s,

although we note that in [6] this requirement is generalized to allow highly anisotropic
subdomains such as may arise in the application of mesh partitioning software. Note
that (C4) does not impose any direct structural relation between coarse mesh and
subdomains.

The condition number estimate in this section separates robustness with respect
to the coarse space from robustness with respect to the overlapping covering. We
therefore introduce two robustness indicators. Analogous to γ∞(α) we first introduce
a quantity which reflects how the coarse space handles the coefficient heterogeneity.
However, here we measure the “energy” of the coarse space basis functions in the
L2-norm instead of the L∞-norm.

Definition 2. (Coarse space robustness indicator II).

γ2(α) =
NH
max
j=1

{
H2−d

j |Φj |2H1(Ω),α

}
where Hj = diam(ωj) .

The second quantity which we introduce measures in a certain sense the ability
of the subdomains Ωi to handle the coefficient heterogeneity.

Definition 3. (Partitioning robustness indicator).

π(α) = inf
{χi}∈ Π({Ωi})

(
s

max
i=1

{
δ2i

∥∥α|∇χi|2
∥∥

L∞(Ω)

})
where δi is here the overlap for subdomain Ωi and Π({Ωi}) denotes the set of all
partitions of unity {χi} ⊂W 1

∞(Ω) subordinate to the cover {Ωi}.

Roughly speaking, π(α) is well-behaved if there is a partition of unity whose members
have small gradient wherever α is large. The weight δ2i is chosen to make π(α) � 1
when α = 1.

Using these two robustness indicators and under the assumptions made in this
section we can now state one of the main results from [6] (Theorem 3.9):

Theorem 2. Assume that (C1’) and (C2)-(C4) hold true. Then

κ
(
M−1

ASA
)

� π(α) γ2(1)

(
1 +

s
max
i=1

H(Ωi)

δi

)
+ γ2(α) .

where H(Ωi) = max{K : K∩Ω̄i �=∅}HK is the local coarse mesh diameter.

Note that, if in addition we assume (C1), this bound does not reduce to the bound in
Theorem 1. The results of Theorems 1 and 2 and the ways in which they are proved
are genuinely different. Since in either case a slightly different set of robustness
indicators is involved they provide two separate tools by which to establish the
robustness of a particular coarse space. We will discuss this in more detail below.

Example 4 (Multiscale Finite Element Coarsening II). By definition the multiscale
basis functions Φj constructed in Example 3 also satisfy (C1’). Therefore, if the
covering {Ωi} is chosen such that (C4) is satisfied, then Theorem 2 applies. As in [10]
in the case of aggregation-based coarsening, it is shown in [6] (under some technical
assumptions) that γ2(α) can be bounded independently of maxx∈Ω α(x). Moreover,
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the numerical experiments in [6] show that these bounds are sharp and that the new
preconditioner has greatly improved performance over standard preconditioners even
in the random coefficient case.

Finally, to compare the bounds in Theorems 1 and 2 in the case of multiscale
coarsening, let Ωj = ωj , for j = 1, . . . , NH . This implies that δj ∼ H(Ωj) and so

κ
(
M−1

ASA
)

� π(α) γ2(1) + γ2(α). (7)

However, in this case (C1) also holds true and we can apply Theorem 2 to obtain
κ
(
M−1

ASA
)

� γ∞(α) (cf. (6)). It is not clear which of the two bounds in (6) and in
(7) is sharper. Since the Φj form a partition of unity subordinate to the covering
{Ωj}, we could bound π(α) by γ∞(α) and apply a trivial bound to γ2(α) to obtain

κ
(
M−1

ASA
)

� γ2(1) γ∞(α). (8)

This would suggest that the bound in (6) is sharper than the one in (7). However,
the inequalities which we used to obtain (8) from (7) are known to be not sharp in
general, leaving open the possibility that (7) may be sharper for a particular choice
of α.

Linear algebra aspects of multiscale coarsening which also reveal a link to itera-
tive substructuring are considered in [7]. Extensions of the methods and the theory
to multiplicative, hybrid and deflation variants are also in [6, 7].
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Robust Norm Equivalencies
and Preconditioning

Karl Scherer

Institut für Angewandte Mathematik, University of Bonn, Wegelerstr. 6, 53115
Bonn, Germany

Summary. In this contribution we report on work done in continuation of [1, 2]
where additive multilevel methods for the construction of preconditioners for the
stiffness matrix of the Ritz- Galerkin procedure were considered with emphasis on
the model problem −∇ω∇u = f with a scalar weight ω.

We present an new approach leading to a preconditioner based on a modification
of the construction in [4] using weighted scalar products thereby improving that one
in [2]. Further we prove an upper bound in the underlying norm equivalencies which
is up to a fixed level completely independent of the weight ω, whereas the lower
bound involves an assumption about the local variation the coefficient function which
is still weaker than in [1]. More details will be presented in a forthcoming paper.

1 Preliminaries

1.1 Ritz -Galerkin-Method

Let Ω be a bounded domain in R2 and H1
0 (Ω) = Y be the Hilbert space defined

as the closure of C∞
0 (Ω) with respect to the usual Sobolev norm. Further let A be

an elliptic operator defined on H1
0 (Ω) with an associated coercive and symmetric

bilinear form a(u, v). The Lax-Milgram Theorem guarantees then a unique solution
u ∈ Y of

a(u, v) = (f, v) :=

∫
Ω

f · v dx, ∀v ∈ Y,

for any f ∈ L2(Ω). Define the Ritz -Galerkin approximation uh ∈ Vh ⊂ Y by

a(uh, v) = (f, v), ∀v ∈ Vh.

If ψ1, · · · , ψN is a basis of Vh, uh is obtained by the equations:

N∑
i=1

αi a(ψi, ψk) = (f, ψk), 1 ≤ k ≤ N, uh :=
N∑

i=1

αiψi.

These equations are solved iteratively in the form
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u(ν+1) = u(ν) − ω Cr(ν), ν = 0, 1, 2, · · · (1)

where r(ν) := Au(ν) − b with stiffness matrix A ≡ Aψ :=
(
a(ψi, ψk)

)
i,k

and

b := {(f, ψk)}. Further ω denotes a relaxation factor and C a preconditioner matrix.
The goal is to achieve κ(CA)� κ(A) or at least of order O(1) independent of N .

A basic fact is: If C is the matrix associated to operator C : V → V satisfying

γ (u , C−1 u) ≤ a(u, u) ≤ Γ (u , C−1 u), u ∈ V, (2)

then κ(CA) ≤ Γ/γ. Thus C can be taken as a discrete analogue of C or an approxi-
mative inverse of B = C−1.

In the theory of Additive Multi-level-Methods an approach to construct the bi-
linear form with associated B is to assume a hierarchical sequence of subspaces

V0 ⊂ V1 ⊂ · · · ⊂ VJ := Vh ⊂ Y ⊂ X := L2(Ω), (3)

and construct bounded linear projections Qj : V −→ Vj with

β0 a(u, u) ≤
J∑

j=0

d2j ||Qju−Qj−1u||2X ≤ β1 a(u, u), (4)

with Q0u := 0 and suitable coefficients {dj}. β0, β1 are constants not depending on
the dj , u ∈ Vh or J .
Then define the positive definite operator B = C−1 by

(u , B u) :=
J∑

j=1

d2j ||Qju−Qj−1u||2X , u ∈ V. (5)

2 A Diffusion Problem as a Model Problem

2.1 Spectral Equivalencies

Let T0 be an initial coarse triangulation of a region Ω ⊂ R2. Regular refinement of
triangles leads to triangulations T0 ⊂ T1 ⊂ · · · ⊂ TJ = T .

Each triangle in Tk is geometrically similar to a triangle of T0. We define then
the {Vj}J

j=1 in (3) as spaces of piecewise linear functions with respect to these
triangulations. Also its elements have to satisfy Dirichlet boundary conditions. In
particular there exists a nodal basis ψ

(j)
k for Vj = span{ψk}.

In the following we consider the model problem

a(u, v) :=

∫
Ω

ω (∇u,∇v) (6)

which correspond s to the differential operator A = ∇ · ω∇.
Observe that in case u, v ∈ Vj , j = 0, 1, · · · , J the bilinear form a(u, v) reduces in
view of ∇v = const. on T ∈ Tj to
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a(u, v) = aj(u, v) :=
∑

T∈Tj

ωT

∫
T

(∇u,∇v) (7)

with average weights

ωT :=
1

µ(T )

∫
T

ωdx, µ(T ) = area of T.

This leads to weighted norms

‖v‖2j,ω :=
∑

T∈Tj

ωT

∫
T

|v|2, ‖v‖ω := ‖v‖J,ω . (8)

Instead of the usual orthogonal projections Qj : V → Vj we define now in
contrast to [1] operators Qω

j : V → Vj with level-depending weights by

(Qω
j u, v)j,ω = (u, v), ∀v ∈ Vj (9)

and Aω
j : Vj → Vj for u ∈ Vj by

(Aω
j u, v)j,ω = a(u, v), ∀v ∈ Vj . (10)

Then the following modification of a well-known result in the theory of multilevel
methods (cf. surveys [3, 5] of J. Xu and H. Yserentant) can be proved.

Theorem 1. Suppose that there exists a decomposition u =
∑J

k=0 uk for u ∈ V with
uk ∈ Vk and positive definite operators Bω

k : Vk → Vk satisfying

J∑
k=0

(Bω
k uk, uk)k,ω ≤ K1 a(u, u), (11)

then Cω :=
∑J

k=0(B
ω
k )−1Qω

k satisfies λmin (CωA) ≥ 1/K1.
If the operators Bω

k further satisfy

a(
J∑

k=0

wk,
J∑

l=0

wl) ≤ K2

J∑
k=0

(Bω
kwk, wk)k,ω, wk := (Bω

k )−1Qω
kAu (12)

then λmax (CωA) ≤ K2, i.e. the operator Cω is spectrally equivalent to A.

The proof will be given in a forthcoming paper by M. Griebel and M.A. Schweitzer.

For the diffusion problem (6) we can choose the operator Bω
k now simply as

Bkuk := 4kuk for uk ∈ Vk, hence

C u :=

J∑
k=0

4−kQω
ku. (13)

This has several advantages over the approach in [1] which uses direct norm equiva-
lencies like in (4). For spectral equivalence of C with A one needs to prove the upper
inequality (11) in the form
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J∑
k=0

4k(uk, uk)k,ω ≤ K1 a(u, u), (14)

only for some decomposition u =
∑J

k=0 uk. However (12) has to be verified in the
form

a(

J∑
k=0

wk,

J∑
l=0

wl) ≤ K2

J∑
k=0

4k(wk, wk)k,ω, (15)

for any decomposition v =
∑J

k=0 wk, wk ∈ Vk.
These weighted Jackson- and Bernstein inequalities will be verified in the next sec-
tions in a robust form, i.e. the constants depend only weakly from the diffusion
coefficient ω.

Another advantage of the above theorem is that (13) leads to a practical form
for the preconditioning matrix C in (1), namely one shows that the operator C above
is spectrally equivalent to the operator

C̃ :=
J∑

k=0

4−kMω
k , Mω

k v :=
∑

i∈Nk

(v, ψ
(k)
i )

(1, ψ
(k)
i )k,ω

ψ
(k)
i

where {ψ(k)
i }Nk

i=1 denotes the nodal basis of Vk for k ≥ 1. Thus the operators Mω
k u

replace the operators Qω
k defined as in (9). The reason for this is that one can show

(up to an absolute constant)

(Qω
ku, u) ≈

∑
i∈Nk

(u, ψ
(k)
i )2

(1, ψ
(k)
i )k,ω

=

(
u,

∑
i∈Nk

(u, ψ
(k)
i )ψ

(k)
i

(1, ψ
(k)
i )k,ω

)
= (Mω

k u, u).

Details as well as the realization of this conditioner in optimal complexity will be
presented in the forthcoming paper by M. Griebel and M.A. Schweitzer.

We remark that it can be modified still further to obtain a preconditioner

Ĉu :=
J∑

k=0

∑
i∈Nk

(u, ψ
(k)
i )

a(ψ
(k)
i , ψ

(k)
i )

ψ
(k)
i .

2.2 A Weighted Bernstein-Type Inequality

According to (15) we consider here arbitrary decompositions

u =

J∑
k=0

wk, wk ∈ Vk (16)

of an element u ∈ VJ . In the following we employ the a−orthogonal operators
Qa

j : VJ → Vj defined by

a(Qa
ju, v) = a(u, v), u ∈ VJ , v ∈ Vj ,

so that the elements vj := Qa
ju−Qa

j−1u, v0 := Qa
0u satisfy
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u =

J∑
=0

vj , a(vk, vj) = δj,k, a(u, u) =

J∑
=0

a(vj , vj). (17)

We introduce then the following assumption on the weight ω : there exists a
constant Cω independent of j and a number ρ < 2 such that for all T ∈ Tj

sup{ωU/ωT : U ∈ Tk, U ⊂ T} ≤ Cω ρ
k−j , j ≤ k. (18)

Lemma 1. Under the above assumption on the weight ω there holds the “hybrid”
Bernstein type inequality

‖vj‖a ≤ 6
√

6 C1

√
C2Cω (2/ρ)j/2

J∑
k=j

(2ρ)k/2 ‖wk‖k,ω (19)

where C1 := maxT∈T0 diam(T ) ≥ maxT∈T0

√
µ(T ), and

C2 := maxT∈T0 diam(T )/
√
µ(T ) are constants which depend on the initial triangu-

lation T0 only.

Proof. In view of the representation u =
∑j−1

k=0 wk we have by (17)

a(vj , vj) = a(vj , u) =
J∑

k=j

a(vj , wk) . (20)

By integration by parts we obtain, keeping in mind that ∇wk,∇vj are constant on
U ∈ Tk and T ∈ Tj , respectively,

a(vj , wk) =
∑

U∈Tk

ωU

∫
U

(∇vj ,∇wk) =
∑

U∈Tk

ωU

∫
∂U

wk(∇vj , n∂U )

=
∑

T∈Tj

∑
U⊂T

ωU

∫
∂U

wk(∇vj , n∂U ) =
∑

T∈Tj

∑
U∈Sk(T )

ωU

∫
∂U

wk(∇vj , n∂U ),

where Sk(T ) denotes the boundary strip along ∂T consisting of triangles U ∈ Tk, U ⊂
T . Applying the Cauchy-Schwarz inequality gives

a(vj , wk) ≤
( ∑

T∈Tj

∑
U∈Sk(T )

ωU

∫
∂U

|wk|2
)1/2 ( ∑

T∈Tj

∑
U∈Sk(T )

ωU

∫
∂U

‖∇vj‖2
)1/2

.

(21)
Concerning the first double sum we note that∫

∂U

|wk|2 ≤ diam(U)[b21 + b22 + b23] ≤ 12 C2C1 2k

∫
U

|wk|2,

where we have used diam(U) ≤ C2C1 2k µ(U) and the formula∫
U

|wk|2 =
µ(U)

12
[b21 + b22 + b23 + (b1 + b2 + b3)

2]

for linear functions v on U with vertices b1, b2, and b3. It follows that
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T∈Tj

ωT

∫
∂T

|wk|2 ≤
∑

T∈Tj

ωT

∑
U∈Sk(T )

∫
∂U

|wk|2 ≤ 12C2C1 2k‖wk‖2k,ω. (22)

For the second factor in (21) note that by assumption (19) and by the fact that
µ(Sk(T ))/µ(T ) ≤ 6 · 2j−k (cf. [5])∑

T∈Tj

∑
U∈Sk(T )

ωU

∫
∂U

‖∇vj‖2 ≤ Cω ρ
k−j

∑
T∈Tj

∑
U∈Sk(T )

ωT

∫
∂U

‖∇vj‖2

≤ 3C12
k Cω ρ

k−j
∑

T∈Tj

∑
U∈Sk(T )

ωT

∫
U

‖∇vj‖2

≤ 18C12
k Cω (ρ/2)k−j

∑
T∈Tj

ωT

∫
T

‖∇vj‖2

Inserting this and (22) into (21) inequality (19) follows by (20).

With the help of this lemma the Bernstein-type inequality (15) can be established.
It improves the corresponding ones in [1, 2] in that assumption (18) is weaker and
at the same time more simple than those made there.

Theorem 2. Consider a sequence of uniformly refined triangulations Tj and the
respective sequence of nested spaces Vj of linear finite elements. Then, under as-
sumption (18) on the weight ω with ρ < 2 in (6) there holds the upper bound

a(u, u) ≤ 432C2
1C2Cω

2

(
√

2−√ρ)2
J∑

j=0

22j ‖wj‖2j,ω (23)

for wj given in (16).

Proof. By summing the estimate (18) according to (17) we get

a(u, u) =
J∑

j=0

‖vj‖2a ≤ 216C2
1 C2Cω (2/ρ)j

( J∑
k=j

(2ρ)k/2 ‖wk‖k,ω

)2

. (24)

From this an upper bound for a(u, u) follows by application of a Hardy inequality
to the latter double sum. If quantities sj , cj are defined by

sj :=

J∑
k=j

ak, s−1 := 0, cj :=

j∑
l=0

bl, cJ+1 := 0

with ak ≥ 0 and b > 1 such an inequality reads( J∑
j=0

bj s2j

)1/2

≤
√
b√

b− 1

( J∑
j=0

bj a2j

)1/2

.

Application of this with ak := (2ρ)k/2‖wk‖k,ω and b = 2/ρ to yields

J∑
j=0

(2/ρ)j
( J∑

k=j

(2ρ)k/2 ‖wk‖k,ω

)2

≤ 2

(
√

2−√ρ)2
J∑

j=0

22j ‖wj‖2j,ω

and after insertion into (24) the bound (23) for a(u, u).
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2.3 A Weighted Jackson-Type Inequality

The goal here is to establish inequality (11), i.e. to prove

J∑
k=0

4k‖vk‖k,ω ≤ K1 a(u, u), u ∈ VJ . (25)

By Theorem 2.1 we can employ a particular decomposition of u. We choose

u =
J∑

j=0

vk, vk := Qa
ju−Qa

j−1u as in (17). (26)

The basic idea is as in [1] to prove a local estimate for ‖vj‖j,ω on subdomains U ⊂ Ω
by modifying the duality technique of Aubin-Nitsche. The following result gives an
estimate which improves the corresponding one in [1] in that the constant does not
depend on the weight ω.

Lemma 2. Let U = suppψ
(j−1)
l be the support of a nodal function in Vj−1. There

holds
‖vj‖j,ω,U ≤ diam(U)

(
‖∇vj‖j,ω,U + 18CR ‖vj‖j,ω,U

)
, (27)

where CR is an absolute constant.

Proof: We give only a rough idea of it. For triangles S ∈ Tj with T ⊂ U consider
the Dirichlet problems

−∆φS = vj on S, φS |∂S = ψ
(j−1)
l |∂S .

Then |vj |2 = −vj ·∆φS on U . Partial integration on each S ⊂ U gives

||vj ||2j,ω,U =

∣∣∣∣∣∑
S⊂U

ωS

∫
S

(∇φS ,∇vj)−
∑
S⊂U

ωS

∫
∂S

vj(∇φS , n∂S)

∣∣∣∣∣ .
The rest of the proof consists in a careful estimate of both terms on the right hand
side. Concerning details we refer again to the forthcoming paper with by M. Griebel
and M.A. Schweitzer. We mention only that the constant CR above arises from the
well-known regularity result

‖φS‖2,2,S ≤ CR ‖vj‖20,S .

!"

Now by the assumption made on the triangulations there holds diam(U) ≤ C02
−j

with a constant C0 depending only on the initial triangulation. Then choose j0 as
the smallest integer with 2j0 = 27

√
3CRC0 and the second term on the right hand

side in (27) is ≤ (2/3)‖vj‖j,ω,U for all j ≥ j0.
If we insert this, square and multiply the resulting inequality with the factor 4j , the
summation with respect to U and j ≥ j0 yields
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Theorem 3. There holds the Jackson-type inequality

J∑
j=j0

4j‖vj‖2j,ω ≤ 9C2
0

J∑
j=j0

∑
U

a(vj , vj)U ≤ 9C2
0

J∑
j=j0

a(vj , vj) (28)

for j0 = log2 (27
√

3CRC0).

If one solves at first the Ritz-Galerkin equations up to level j0−1 the preconditioning
to the levels j ≥ j0 would be robust under condition (18) on the weight ω.

Another possibility would be to establish a bound of the remaining sum on
the left hand side up to level j0 − 1. Here one has to use a different argument at
the expense of a dependence of the corresponding constant on ω. However one can
achieve this under a condition which is weaker than (18).

Corollary 1. Under the condition (18) on the weight ω the discretized version of the
operator C̃ in (13) yields a robust preconditioning in (1) for the diffusion problem.

3 Concluding Remarks

The results represented here are concerned with the classical additive multi-level
method for solving Ritz-Galerkin equations with piecewise linear elements by pre-
conditioning. The proofs given or indicated here for the necessary norm equivalencies
simplify and improve those in [1]. They show that for the diffusion problem a simple
modification (13) of the classical preconditioner makes it robust for a large class of
diffusion coefficients ω. It covers all piecewise constant functions independent of the
location of jumps, their number or their frequency. In particular we do not require
the jumps to be aligned with the mesh on any level , i.e. no mesh must resolve the
jumps.

However the constants in the Jackson- and Bernstein type inequalities involve
the height of the maximal jump. If we assume that mω := minx∈Ω ω(x) = 1,Mω :=
maxx∈Ω ω(x) = ε−1 a bound for the constant Cω in assumption (13) is given by ε−1.
For most practical purposes it is therefore necessary to assume that Mω is not too
big. By the form of (13) one sees that even singularities of maximal height ρJ and
exponential growth limited by ρ are admissible.
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Subspace correction methods are well established as a unifying framework for multi-
grid and domain decomposition. It also serves as a powerful tool both for the
construction and the analysis of efficient iterative solvers for discretized partial dif-
ferential equations. This minisymposium provides an overview on recent results in
this field with special emphasis on linear and nonlinear systems.
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Summary. We present globally convergent multigrid methods for the nonsymmet-
ric obstacle problems as arising from the discretization of Black–Scholes models of
American options with local volatilities and discrete data. No tuning or regulariza-
tion parameters occur. Our approach relies on symmetrization by transformation
and data recovery by superconvergence.

1 Introduction

Since Black and Scholes published their seminal paper [3] in 1973, the pricing of
options by means of deterministic partial differential equations or inequalities has
become standard practice in computational finance. An option gives the right (but
not the obligation) to buy (call option) or sell (put option) a share for a certain value
(exercise price K) at a certain time T (exercise date). On the exercise day T , the
value of an option is given by its pay–off function ϕ(S) = max(K−S, 0) =: (K−S)+
for put options and ϕ(S) = (S −K)+ for call options. In contrast to European op-
tions which can only be exercised at the expiration date T , American options can be
exercised at any time until expiration. As a consequence, the pay–off function ϕ(S)
constitutes an a priori lower bound for the value V of American options which leads
to an obstacle problem for V . While Black and Scholes started off with a constant
risk–less interest rate and volatility, existence, uniqueness, and discretization is now
well understood even for stochastic volatility [1]. On the other hand, an explosive
growth of different kinds of equity derivatives on global markets has led to a great
variety of well–tuned local volatility models, where the volatility is assumed to be
a deterministic (and sometimes even smooth) function of time and space [5, 6]. As
such kind of models are used for thousands and thousands of simulations each day,
highly efficient and reliable solvers are an ongoing issue in banking practice. Partic-
ular difficulties arise from the spatial obstacle problems resulting from implicit time

∗ This work was supported in part by DFG as Project E7 of Matheon. We
gratefully acknowledge the stimulating collaboration with Prof. Dr. P. Deuflhard
(ZIB/FU Berlin) and with our project partners Dr. M. Overhaus and
Dr. A. Ferraris (DBQuant, Deutsche Bank London).
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discretization. The multigrid solver by Brandt and Cryer [4, 15, 16] lacks reliability
in terms of a convergence proof and might fail in actual computations. Globally
convergent multigrid methods with mesh–independent convergence rates [2, 12] are
available for symmetric problems. Such algorithms were applied in [11] after sym-
metrization of the underlying bilinear form by suitable transformation. However,
only constant coefficients were considered there.

In this paper, we present globally convergent multigrid methods for local volatil-
ity models with real–life data. To this end, we extend the above ‘symmetrization by
transformation’ approach to variable coefficients. No continuous functions but only
discrete market observations are available in banking practice. Therefore, we develop
a novel recovery technique based on superconvergence in order to provide sufficiently
accurate approximations of the coefficient functions and their derivatives. Finally,
we present some numerical computations for an American put option with discrete
dividends on a single share.

2 Continuous Problem and Semi–discretization in Time

The Black–Scholes model for the value V (S, t) of an American put option at asset
price S ∈ Ω∞ = [0,∞) and time t ∈ [0, T ) can be written as the following degenerate
parabolic complementary problem [1, 5]

− ∂V
∂t
− σ2

2
S2 ∂2V

∂S2 − µS ∂V
∂S

+ rV ≥ 0 , V − ϕ ≥ 0 ,(
− ∂V

∂t
− σ2

2
S2 ∂2V

∂S2 − µS ∂V
∂S

+ rV
)(
V − ϕ

)
= 0 ,

(1)

in backward time t with stopping condition V (·, T ) = ϕ and the pay–off function
ϕ(S) = (K −S)+ with exercise price K. The risk–less interest rate r(t), the strictly
positive volatility surface σ(S, t), and µ(t) = r(t) − d(t) with continuous dividend
yield d(t) are given functions.

Numerical computations require bounded approximations of the unbounded in-
terval Ω∞. Additional problems result from the degeneracy at S = 0. Hence, Ω∞ is
replaced by the bounded interval Ω = [Smin, Smax] ⊂ Ω∞, 0 < Smin < Smax < ∞.
Appropriate boundary conditions will now be discussed for the example of a put
option. Recall that a put option is the right to sell an asset for a fixed price K. If
the price of the asset S tends to infinity, the option becomes worthless, because the
holder would not like to lose an increasing amount of money by exercising it. Note
that ϕ(Smax) = 0 for sufficiently large Smax. On the other hand, if the asset price
tends to zero, then the holder would like to exercise the option almost surely to
obtain almost maximal pay–off ≈ K ≈ ϕ(Smin). Hence, we consider the truncation
of (1) with S ∈ Ω and boundary conditions

V (Smin) = ϕ(Smin) , V (Smax) = ϕ(Smax) . (2)

Note that the boundary conditions are consistent with the stopping condition
V (T, ·) = ϕ. As Smin → 0, Smax → ∞, the solutions of the resulting truncated
problem converge to the solution of the original problem [1].

As usual, we replace backward time t by forward time τ = T − t to obtain
an initial boundary value problem. We now apply a semidiscretization in time by
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the implicit Euler scheme using the given grid 0 = τ0 < τ1 < · · · < τN = T
with time steps hj := τj − τj−1. We introduce the abbreviations Vj = V (·, τj),
σj = σ(·, τj), µj := µ(τj), and rj := r(τj). Starting with the initial condition
V0 = ϕ, the approximation Vj on time level j = 1, . . . , N is obtained from the
complementary problem

−σ2
j

2
S2V ′′

j − µjSV
′

j + (h−1
j + rj)Vj − h−1

j Vj−1 ≥ 0 , Vj − ϕ ≥ 0 ,(
− σ2

j

2
S2V ′′

j − µjSV
′

j + (h−1
j + rj)Vj − h−1

j Vj−1

)(
Vj − ϕ

)
= 0 ,

(3)

on Ω with boundary conditions taken from (2). For convergence results see [1].

3 Symmetrization and Spatial Discretization

We now derive a reformulation of the spatial problem (3) involving a non–degenerate
differential operator in divergence form. To this end, we introduce the transformed
volatilities and the transformed variables

α(x) = σj(S(x)) , u(x) = e−β(x)Vj(S(x)) , S(x) = ex , x ∈ X , (4)

on the interval X = (xmin, xmax) with xmin = log(Smin), xmax = log(Smax), utilizing
the function

β(x) = 1
2
x+ log

(
α(x)

)
− log

(
α(0)

)
− µj

∫ x

0

ds

α2(s)
. (5)

Observe that α, β usually vary in each time step.

Theorem 1. Assume σj ∈ C2(Ω) and σj(S) ≥ c > 0 for all S ∈ Ω. Then the linear
complementary problem

−(au′)′ + bu− f ≥ 0 , u− ψ ≥ 0 ,
(
− (au′)′ + bu− f

)(
u− ψ

)
= 0 (6)

with coefficients

a = α2

2
, b = h−1

j + rj + 1
8α2

(
α2 − 2µj

)2 − α′′α2+2µjα′

2α
, (7)

right hand side f = h−1
j e

−βVj−1(S(·)), obstacle ψ = e−βϕ(S(·)), and boundary
conditions u(xmin) = ψ(xmin), u(xmax) = ψ(xmax) is equivalent to (3) in the sense
that u defined in (4) solves (6), if and only if Vj solves (3).

The proof follows from basic calculus. Observe that b might become negative for
strongly varying α(x) = σj(S(x)) due to the last term in the definition of b, which
could even lead to a stability constraint on the time step hj . We never encountered
such difficulties for realistic data.

For a given spatial grid xmin = x0 < x1 · · · < xM = xmax the finite element
discretization of (6) can be written as the discrete convex minimization problem

U = argmin
v∈K

∫
X

1
2

(
a(v′)2 + bv2

)
− fv dx (8)
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with K denoting the discrete, closed, convex set

K = {v ∈ C(X) | v|[xi−1,xi] is linear , v(xi) ≥ ψ(xi) ∀i = 1, . . . ,M,
v(x0) = ψ(x0), v(xM ) = ψ(xM )} .

The fast and reliable solution of (8) can be performed, e.g., by globally convergent
multigrid methods [2, 12].

4 Data Recovery

In reality, r(t), µ(t), and σ(S, t) are not available as given functions but have to
be calibrated from discrete market observations. To this end, it is common practice
in computational finance to introduce sufficient smoothness, e.g., by cubic spline
approximation of the local volatility [7, 14] which would suggest even C4–regularity
of σ(S, t). We refer to [1] for further information. From now on we assume that the
data are given in vectors or matrices of point values of sufficiently smooth functions.
The grid points usually have nothing to do with the computational grid.

Intermediate function values can be approximated to second order by piecewise

linear interpolation. As our transformation technique also requires ∂σ
∂S

and ∂2σ
∂S2 , we

now derive an algorithm for the approximation of higher derivatives by successive
linear interpolation in suitable superconvergence points. Note that superconvergence
has a long history in finite elements (cf., e.g., [13] and the literature cited therein).
For two–dimensional functions such as σ(S, t), this recovery technique can be applied
separately in both variables.

From now on, let wk = w(sk) denote given function values at given grid points
s0 < s1 < · · · < sK with mesh size h = maxk=1,...,K(sk−sk−1). Starting with

s
(0)
k = sk, we introduce a hierarchy of pivotal points

s
(n)
k =

sk + · · ·+ sk−n

n+ 1
, k = n, . . . ,K , n ≤ K . (9)

Note that s
(n)
n < s

(n)
n+1 < · · · < s

(n)
K with s

(n)
k ∈ (s

(n−1)
k−1 , s

(n−1)
k ) and

0 ≤ max
k=n+1,...,K

(s
(n)
k − s(n)

k−1) ≤ h . (10)

In the case of equidistant grids the pivotal points either coincide with grid points
(n even) or with midpoints (n uneven). Let

L
(n)
k−1(s) =

s
(n)
k − s

s
(n)
k − s(n)

k−1

, L
(n)
k (s) =

s− s(n)
k−1

s
(n)
k − s(n)

k−1

denote the linear Lagrange polynomials on the interval [s
(n)
k−1, s

(n)
k ]. We now introduce

piecewise linear approximations pn of w(n) by successive piecewise interpolation.
More precisely, we set

p0(s) =
k∑

j=k−1

w(sj)L
(0)
j (s) , pn(s) =

k∑
j=k−1

p′n−1(s
(n)
j )L

(n)
j (s) (11)

for s ∈ [sk−1, sk], k = 1, . . . ,K, and s ∈ [s
(n)
k−1, s

(n)
k ], k = n + 1, . . . ,K, respec-

tively. The approximation pn can be regarded as the piecewise linear interpolation
of divided differences.
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Lemma 1. The derivative p′n−1 has the representation

p′n−1(s
(n)
k ) = n! w[sk−n, . . . , sk] , k = n, . . . ,K , (12)

where w[sk−n, . . . , sk]denotes the divided differences of w with respect to sk−n, . . . , sk.

Proof. Recall that s
(n)
k ∈ (s

(n−1)
k−1 , s

(n−1)
k ). Using the definitions (9), (11), we imme-

diately get

p′n−1(s
(n)
k ) =

pn−1(s
(n−1)
k )− pn−1(s

(n−1)
k−1 )

s
(n−1)
k − s(n−1)

k−1

=
n
(
p′n−2(s

(n−1)
k )− p′n−2(s

(n−1)
k−1 )

)
sk − sk−n

so that the assertion follows by straightforward induction.

We are now ready to state the main result of this section.

Theorem 2. Assume that w ∈ Cn+2[s0, sK ] and let pn be defined by (11). Then

max
s∈[s

(n)
n ,s

(n)
K ]

|w(n)(s)− pn(s)| ≤ (n+ 1
2
)‖w(n+2)‖∞ h2

holds with ‖w(n+2)‖∞ = maxx∈[s0,sK ] |w(n+2)(x)|.

Proof. Let s ∈ [s
(n)
k−1, s

(n)
k ] and denote εn(s) = w(n)(s) − p′n−1(s). Exploiting the

linearity of interpolation and a well–known interpolation error estimate (cf., e.g., [8,
Theorem 7.16]), we obtain

w(n)(s)− pn(s) = w(n+2)(ζ)
2

(s− s(n)
k−1)(s− s

(n)
k ) +L

(n)
k−1(s)εn(s

(n)
k−1) +L

(n)
k (s)εn(s

(n)
k )

with some ζ ∈ (s
(n)
k−1, s

(n)
k ). In the light of (10), it is sufficient to show that

|εn(s
(n)
k−1)|+ |εn(s

(n)
k )| ≤ n‖w(n+2)‖∞h2. Utilizing (9) and Lemma 1, we get

εn(s
(n)
k ) = w(n)

(
1

n+ 1

k∑
i=k−n

si

)
− n! w[sk−n, . . . , sk] =: A−B .

The Hermite–Genocchi formula (cf., e.g., [8, Theorem 7.12]) yields

B = n!

∫
Σn

w(n)

(
k∑

i=k−n

xisi

)
dx ,

where Σn denotes the n–dimensional unit simplex

Σn = {x ∈ Rn+1|∑n
i=0 xi = 1 and xi ≥ 0} .

As |Σn| = 1/n!, the value A is just the centroid formula for the quadrature of the
integral B [9]. It is obtained by simply replacing the integrand by its barycentric
value. Using a well–known error estimate [10], we obtain

|εn(s
(n)
k )| ≤ ‖w(n+2)‖∞

2(n+ 1)(n+ 2)

k∑
i=k−n

|si − s(n)
k |2 .

Now the assertion follows from the straightforward estimate |si − s(n)
k | ≤ nh.
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Fig. 1. Local volatility σ and computed values V at time t = 0.

In the remaining boundary regions s ∈ [s0, s
(n)
n ] and s ∈ [s

(n)
K , sK ], the function

pn can still be defined according to (11) once a hierarchy of additional pivotal points

s
(n)
k for k = 0, . . . , n− 1 and k = K + 1, . . . ,K + n has been selected. However, the

approximation in such regions then reduces to first order, unless additional boundary
conditions of u at s0 and sK are incorporated.

5 Numerical Results

For confidentiality reasons, we consider an American put option on an artificial
single share with Euribor interest rates, strike price K = 10e, and an artificial but
typical volatility surface σ as depicted in the left picture of Figure 1 (see also [5, 6])
for the different expiry dates T = 3/12, 1, and 4 years. Discrete dividends of δi = 0.3
e are paid after ti = 4/12, 16/12, 28/12, 40/12 years. In order to incorporate discrete
dividend payments into our model (1), V (S) is replaced by Ṽ (S̃), ϕ, σ are replaced
by the shifted functions ϕ̃(S̃) = ϕ(S̃ +D), σ̃(S̃, ·) = σ(S̃ +D, ·) and we set d = 0.
Here, D(t) is the present value of all dividends yet to be paid until maturity [5,
p. 7f.]. We set S̃min = e−1 and S̃max = e3.5. Finally, V (S) = Ṽ (S−D) is the desired
value of the option.

Local volatility data are given on a grid S0 = 0.36 < S1 < · · · < SK = 100.
The transformed grid points xk = log(Sk) are equidistant for Sk < 4, Sk > 30
while the original grid points Sk are equidistant for 4 < Sk < 30 thus reflecting nicely
the slope of the volatility surface for small S. To approximate α′, α′′ occurring in
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Fig. 2. Iteration history and averaged convergence rates
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Theorem 1, we use the recovery procedure (11) with respect to an extension of the

hierarchy S
(2)
k as defined in (9), though second order accuracy is only guaranteed

for s ∈ [S
(2)
2 , S

(2)
K ] (cf. Theorem 2). For the actual data set, the coefficient b is

positive and thus the transformed problem (6) is uniquely solvable, if the time steps
satisfy hj < 0.35 years. Note that much smaller time steps are required for accuracy
reasons.

The transformed interval X = [−1, 3.5] is discretized by an equidistant grid with
mesh size H = 1/128 = 2−7 and we use the uniform time step h = T/100 years, for
simplicity. Such step sizes are typical as to desired accuracies. The solutions at time
t = 0 for the different expiry dates are depicted in the right picture of Figure 1.
Note that only the options with the long maturity of 1 or 4 years are influenced
by dividend payments until expiry date. The spatial problems of the form (6) were
solved by truncated monotone multigrid [12] with respect to J = 7 grid levels as
obtained by uniform coarsening. The initial iterates on time level j were taken from
the preceding time level for j > 1 and from the obstacle function ψ for j = 1. We
found that two or three V (1, 1) sweeps were sufficient to reduce the algebraic error
‖uj − uν

j ‖ in the energy norm below 10−10. The corresponding iteration history on
the initial time level is shown in the left picture of Figure 2. The iteration history
for H = 1/32768 = 2−15 and the averaged convergence rates as depicted in the right
picture illustrate the convergence behavior for decreasing mesh size.
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Summary. In this paper we are concerned with the construction of a preconditioner
for the Steklov-Poincaré operator arising from a non-overlapping domain decompo-
sition method for second-order elliptic problems in three-dimensional domains. We
first propose a new kind of multilevel decomposition of the finite element space on
the interface associated with a general quasi-uniform triangulation. Then, we con-
struct a multilevel preconditioner for the underlying Steklov-Poincaré operator. The
new multilevel preconditioner enjoys optimal computational complexity, and almost
optimal convergence rate.

1 Introduction

The construction of domain decomposition preconditioners has been investigated
in various ways in the literature, see, for example, [7]. This kind of preconditioner
involves a set of local solvers (Steklov-Poincaré or Poincaré-Steklov operators), which
result in dense stiffness matrices. It seems difficult to design cheap inexact solvers
(preconditioners) for Steklov-Poincaré operators, unless the underlying triangulation
has some particular structures (refer to [8]).

In the present paper, we propose a new kind of multilevel technique for precon-
ditioning Steklov-Poincaré operators. The two main ingredients of this technique are
the introduction of a multilevel domain decomposition for each local interface, and
the construction of a series of coarse solvers associated with such decomposition.
One of the main differences between the new method and the traditional multilevel
one is that a series of refined grids is unnecessary for the new method (compare
[5, 6] and [9]). It will be shown that the new multilevel method has almost optimal
convergence and optimal computational complexity.

The new idea advanced in this paper can be extended to some other non-
overlapping domain decomposition methods. For example, we can use the new tech-
nique to develop a class of substructuring methods with inexact solvers (refer to
[4]).
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2 Preliminaries

Let Ω be a bounded polyhedron in R3. Consider the model problem{
−div(a∇u) = f, in Ω,

u = 0, on ∂Ω,
(1)

where the coefficient a ∈ L∞(Ω) is a positive function.
Let Th = {τi} be a regular and quasi-uniform triangulation of Ω with τ ′is being

non-overlapping simplexes of size h. The set of nodes of Th is denoted by Nh. Then,
let Vh(Ω) be the piecewise linear finite element subspace of H1

0 (Ω) associated with
Th:

Vh(Ω) = {v ∈ H1
0 (Ω) : v|τ ∈ P1 ∀τ ∈ Th},

where P1 is the space of linear polynomials. The finite element approximation of (1)
is: find uh ∈ Vh(Ω) such that

(a∇uh, ∇vh) = (f, vh), ∀vh ∈ Vh(Ω). (2)

We will apply a non-overlapping domain decomposition method to solve (2). For
the ease of notation, we consider only the case with two subdomains (see [4] for the
general case).

Let Ω be decomposed into the union of two polyhedrons Ω1 and Ω2, which can
be written as the union of some elements in Th, and satisfy Ω1∩Ω2 = ∅. Without loss
of generality, we assume that the coefficient a(p) is a piecewise constant function,
and that each subdomain Ωk is chosen such that a(p) is equal to a constant ak in
Ωk (k = 1, 2). Set

Vh(Ωk) = {v|Ωk : ∀v ∈ Vh(Ω)} (k = 1, 2).

We denote by Γ the common face of Ω1 and Ω2 (i.e., Γ = ∂Ω1 ∩ ∂Ω2), and we
define

Vh(Γ ) = {v|Γ : ∀v ∈ Vh(Ω)}.
Let ϕh = uh|Γ denote the Dirichlet interface unknown. After eliminating the

interior variables from (2), one gets the interface equation (see [7] for the details)

Shϕh = gh. (3)

In the case of two subdomains, the operator Sh is the discrete Steklov-Poincaré
operator. It is easy to see that Sh results in a dense stiffness matrix.

In the following, we propose a new technique for preconditioning Sh based on a
multilevel domain decomposition for Γ .

3 Multilevel Decompositions for Vh(Γ )

This section is devoted to establishing a stable multilevel decomposition of Vh(Γ )
based on a multilevel domain decomposition of Γ .
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3.1 Multilevel Decomposition for Γ

The sketch of the multilevel decomposition can be described as follows. We first
decompose Γ into the union of several non-overlapping polygons, and then further
decompose each resulting polygon into the union of several smaller non-overlapping
polygons. We can repeat this process such that each polygon generated by the final
decomposition contains only a few nodes.

For convenience, a set of closed polygons on the same plane is called non-
overlapping if the intersection of two neighboring polygons of this set is a common
edge or vertex of the two polygons. Let J and mk (k = 1, · · · , J) be given positive
integers, and set Mk = m1 · · ·mk, for k = 1, · · · , J .

The first-level decomposition. Decompose Γ into the union of non-overlapping
closed polygons Γ

(1)
1 , . . . , Γ

(1)
m1 in the standard way. We assume that all the polygons

Γ
(1)
r have almost the same “size” d1.

Successively continuing this procedure, we get a hierarchical decompositions of
Γ .

The second-level decomposition. Let each Γ
(1)
r be further decomposed into the

union of m2 non-overlapping closed sub-polygons of Γ
(1)
r .

The k-level decomposition for 2 ≤ k ≤ J. After generating Γ k−1
r at the (k− 1)-

level decomposition, we decompose each Γ
(k−1)
r into the union ofmk non-overlapping

sub-polygons.
Finally, we get the multilevel decomposition for Γ

Γ =

m1⋃
r=1

Γ (1)
r =

M2⋃
r=1

Γ (2)
r = · · · =

MJ⋃
r=1

Γ (J)
r .

For a fixed k, the closed sub-polygons Γ
(k)
r (r = 1, · · · ,Mk) satisfy the following

conditions:
(a) each Γ

(k)
r has size dk for some dk ∈ (h, 1);

(b) the union of all Γ
(k)
r (r = 1, · · · ,Mk) constitutes a non-overlapping decom-

position for Γ .

Remark 1. Each Γ
(k)
r may not be the union of some elements of Γ , so the multilevel

decomposition described above can be constructed in a simple manner. Note that
there is no extra restriction on the triangulation on Γ (in fact the subdivision of the
interface Γ does not relate to the triangulation).

3.2 Multilevel Decomposition for Vh(Γ )

The desired multilevel decomposition involves a set of small local subspaces and a
series of coarse subspaces.
Small local subspaces. Let ϕp

Γ denote the nodal basis function of Vh(Γ ) associated
with the node p on Γ . Set

Vh(Γ (J)
r ) = span{ϕp

Γ : p ∈ Γ (J)
r } (r = 1, · · · ,MJ).

Coarse subspaces. For convenience, define M0 = 1 and Γ
(0)
1 = Γ . For k < J , let

F
Γ

(k)
r

, E
Γ

(k)
r

and V
Γ

(k)
r

denote respectively the set of the mk+1 sub-polygons, the set

of the edges and the set of vertices generated by the (k + 1)-th level decomposition
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Γ (k)
r =

mk+1⋃
l=1

Γ
(k+1)
mk+1(r−1)+l (r = 1, · · · ,Mk).

For a sub-polygon f ∈ F
Γ

(k)
r

, set fin = f\∂f and define the sub-polygon basis

ϕf ∈ Vh(Γ ) by 1

ϕf(p) =

{
1, if p ∈ fin ∩Nh,

0, if p ∈ (Γ\fin) ∩Nh.

When an edge e ∈ E
Γ

(k)
r

contains some nodes, we define the edge basis ϕe ∈
Vh(Γ ) by

ϕe(p) =

{
1, if p ∈ e ∩Nh,

0, if p ∈ (Γ\e) ∩Nh.

Similarly, when a vertex v ∈ V
Γ

(k)
r

is just a node, we define the vertex basis ϕv ∈
Vh(Γ ) by

ϕv(p) =

{
1, if node p = v,

0, if node p �= v.

Now, we define the coarse subspace

V 0
h (Γ (k)

r ) = span{ϕf, ϕe, ϕv : f ∈ F
Γ

(k)
r
, e ∈ E

Γ
(k)
r
, v ∈ V

Γ
(k)
r
}

(k = 0, · · · , J − 1; r = 1, · · · ,Mk).

Remark 2. In most situations, there is no node on an edge e, and a vertex v is not
a node. Then, the coarse subspace reduces to

V 0
h (Γ (k)

r ) = span{ϕf : f ∈ F
Γ

(k)
r
}.

In such case, we have that dim(V 0
h (Γ

(k)
r )) = mk+1.

With the local subspaces and the coarse subspaces defined above, we get the
multilevel space decomposition of Vh(Γ )

Vh(Γ ) =

J−1∑
k=0

Mk∑
r=1

V 0
h (Γ (k)

r ) +

MJ∑
r=1

Vh(Γ (J)
r ).

Remark 3. In applications, the above multilevel decomposition would be generated
in a suitable manner such that both each local subspace Vh(Γ

(J)
r ) and each coarse

subspace V 0
h (Γ

(k)
r ) have a low dimension.

1 Thanks to Prof. R. Hiptmair, who told the author that the basis ϕf can be also
defined using an aggregation framework. Our method seems to be cheaper than
the aggregation method (refer to Remark 1).
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3.3 Main Result

Let 〈·, ·〉 denote the inner product on Γ . For ease of notation, we define

‖ϕh‖2∗,Γ = 〈Shϕh, ϕh〉 ∼= (a1 + a2)|ϕh|2
H

1
2
00(Γ )

ϕh ∈ Vh(Γ ).

The following result follows from [4].

Theorem 1. For any φh ∈ Vh(Γ ), there exist functions

φ
(k)
r, 0 ∈W 0

h (Γ (k)
r ) (0 ≤ k ≤ J − 1) and φ(J)

r ∈ Vh(Γ (J)
r )

such that

φh =

J−1∑
k=0

Mk∑
r=1

φ
(k)
r ,0 +

MJ∑
r=1

φ(J)
r (4)

and

J−1∑
k=0

Mk∑
r=1

‖φ(k)
r ,0‖2∗,Γ +

MJ∑
r=1

‖φ(J)
r ‖2∗,Γ

<∼ J [1 + log(1/h)]2‖φh‖2∗,Γ (J ≥ 1). (5)

4 Multilevel Preconditioner for Sh

In this section, we construct a multilevel preconditioner for Sh based on the multi-
level decomposition introduced in the previous section.

4.1 Coarse Solvers

We want to consider a coarse solver M
(k)
r, 0 : V 0

h (Γ
(k)
r )→ V 0

h (Γ
(k)
r ) satisfying

〈(M (k)
r, 0)

−1Shφh, Shφh〉 ∼= 〈φh, Shφh〉, ∀φh ∈ V 0
h (Γ (k)

r ).

The desired coarse solver can be defined by

(M
(k)
r, 0)

−1φh =
1

λ′k

∑
f∈F

Γ
(k)
r

〈φh, ϕf〉ϕf +
∑

e∈e
Γ

(k)
r

1

λk
e
〈φh, ϕe〉ϕe

+
1

λ′′k

∑
v∈V

Γ
(k)
r

〈φh, ϕv〉ϕv, φh ∈ V 0
h (Γ (k)

r ).

Here,
λ′k = (a1 + a2)dk log(dk/h) ∼= 〈Shϕf, ϕf〉,
λk
e = (a1 + a2)‖ϕe‖20, e ∼= 〈Shϕe, ϕe〉

and
λ′′k = h(a1 + a2) ∼= 〈Shϕv, ϕv〉.
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4.2 Local Solvers

Inspired by the ideas in [3], we define the inverse of a local solver instead of the local
solver itself.

Precisely, let us define the operator

Kϕ(q) =
1

4π

∫
Γ

1

|p− q|ϕ(p)dp, q ∈ Γ.

Since
〈Kϕ,ϕ〉 ∼= ‖ϕ‖2− 1

2 ,Γ ∀ϕ ∈ H− 1
2 (Γ ),

we choose a local solver M
(J)
r : Vh(Γ

(J)
r ) → Vh(Γ

(J)
r ) such that

(M (J)
r )−1 ∼= (a1 + a2)

−1K|
Vh(Γ

(J)
r )
.

Thus, we can define (M
(J)
r )−1 by

〈(M (J)
r )−1ϕh, ψh〉 =

1

4π(a1 + a2)

∫
Γ

(J)
r

∫
Γ

(J)
r

ϕh(p)ψh(q)

|p− q| ds(p)ds(q),

ϕh ∈ Vh(Γ (J)
r ), ∀ψh ∈ Vh(Γ (J)

r ).

The above integrals can be calculated by the formulas introduced in [2]. Since

each Γ
(J)
r contains only a few nodes, it is cheap to calculate the stiffness matrix

of (M
(J)
r )−1.

4.3 The Final Preconditioner

As usual, we define the L2-projectors

Q
(k)
r, 0 : Vh(Γ ) → V 0

h (Γ (k)
r ), Q(J)

r : Vh(Γ ) → Vh(Γ (J)
r ).

Then, the desired preconditioner can be defined as follows

M−1
J =

J−1∑
k=0

Mk∑
r=1

(M
(k)
r, 0)

−1Q
(k)
r, 0 +

MJ∑
r=1

(M (J)
r )−1Q(J)

r . (6)

The following result can be proved as in [1] (by using Theorem 1).

Theorem 2. Assume that the sequence {mk} is uniformly bounded. Then, we have

cond(M−1
J Sh) ≤ CJ2[1 + log(1/h)]2. (7)

Hereafter, C is a constant independent of h, of dk and of the jumps of the coefficient
a(p) across the interface.

Remark 4. Our method can be extended to the case of multiple subdomains and
interfaces with “crossedges”. The two main changes in this extension are that we
need to construct a suitable coarse subspace involving the “crossedges”, and a mul-
tilevel decomposition for each interface (see [4] for the details). For this general case,
the term log(1/h) in (7) would be replaced by log(H/h), H being the “size” of the
subdomains.

Remark 5. We conjecture that the factor J in (7) (and (5)) can be dropped (see the
numerical results in Section 6). Unfortunately, we fail to prove this conjecture.
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5 Computational Complexity

Let nΓ = O((1/h)2) be the number of the nodes on Γ , and let NΓ (J) denote the
computational complexity for implementing the action of M−1(J).

Proposition 1. Let m ≥ 2 be a given positive integer. Set J = [logm nΓ ], and
choose mk by

m1 = m2 = · · · = mJ = m. (8)

Then,
NΓ (J) = O(nΓ ), (9)

which is optimal.

6 Numerical Experiments

Consider the elliptic problem (1) with Ω = [0, 2]× [0, 1]2, and

a(x, y, z) =

{
10−5, if (x, y, z) ∈ [0, 1]3,

1, otherwise.

The source function f is chosen in a suitable manner.
Decompose Ω into two cubes with edge length equal to 1, and use the standard

P1 elements on each cube. Finally, decompose each Γ
(k)
r (k ≤ J − 1) into four

squares with the same size (i.e., mk = 4). We solve the interface equation (3) by
PCG iteration with preconditioner M−1

J , considering a tolerance tol = 10−5. Some
numerical results are reported in table 1.

Table 1. Number of iterations

1/h J = 1 J = 2 J = 3 J = 4

8 11 11 / /

16 15 16 15 /

32 19 20 21 20

Table 1 shows that the number of iterations for the new methods depend slightly
on the ratio 1/h and is independent of the level J .

7 Conclusions

We have introduced a new multilevel preconditioner for Steklov-Poincaré operators.
Here, the traditional nested grids are unnecessary. The preconditioner not only fea-
tures almost optimal convergence, but also optimal computational complexity.

The future works will focus on developing a substructuring method with in-
exact solvers (almost finished, see [4] for an initial version), and on studying the
preconditioning similar operators.
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[3] Q. Hu. Preconditioning Poincaré-Steklov operators arising from domain decom-
positions with mortar multipliers. IMA J. Numer. Anal., 24:643–669, 2004.

[4] Q. Hu. Non-overlapping domain decomposition methods with a new class
of multilevel solvers. Research report, ICMSEC (China), No. ICM-05-22,
http://icmsec.cc.ac.cn, 2005.

[5] B. Smith and O. Widlund. A domain decomposition algorithm using hierarchical
basis. SIAM J. Sci. Stat. Comput., 11:1212–1220, 1990.

[6] C. Tong, T. Chan, and C. Kuo. A domain decomposition preconditioner based on
a change to a multilevel nodal basis. SIAM J. Sci. Stat. Comput., 12:1486–1495,
1991.

[7] A. Toselli and O. Widlund. Domain Decomposition Methods – Algorithms and
Theory. Springer, Berlin, 2005.

[8] J. Xu and S. Zhang. Preconditioning the Steklov-Poincaré operator by using
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Time Domain Decomposition methods are methods which decompose the time di-
mension of an evolution problem into time-subdomains, and then compute the solu-
tion trajectory in time simultaneously in all the time subdomains using an iteration.
The advent of the parareal algorithm by Lions, Maday and Turinici in 2001 sparked
renewed interest in these methods, and there are now several convergence results
available for them. In particular, these methods exhibit superlinear convergence on
bounded time intervals, a proof of which can be found in the paper of the plenary
lecture given by Gander in this volume. While the speedup with parallelization in
time is often less impressive than with parallelization in space, parallelization in time
is for problems with few spatial components, or when using very many processors,
often the only option, if results in real time need to be obtained. This reasoning also
led to the name parareal (parallel in real time) of the new algorithm from 2001.

In the first paper, Bal and Wu show that the parareal algorithm applied to
a Hamiltonian system is not symplectic, even if the fine and coarse solver in the
parareal algorithm are symplectic. They then present a new type of time splitting,
replacing the sum of coarse and fine approximate solutions in the parareal scheme by
the composition of symplectic coarse and fine approximations. This leads to a sym-
plectic time parallel method, and numerical experiments illustrate the effectiveness
of this new approach.

In the second paper, Sarkis, Schaerer and Mathew present a parareal precon-
ditioner for the solution of parabolic problems arising within an optimal control
problem. Using results by Gander and Vandewalle, they prove that the parareal
preconditioner is spectrally equivalent to the preconditioned problem, and numeri-
cal results confirm their analysis.
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New York NY, 10027. {qw2107,gb2030}@columbia.edu

1 Introduction

The parareal algorithm, recalled in section 2 below, allows one to solve evolution
equations on (possibly massively) parallel architectures. The two building blocks
of the algorithms are a coarse-discretization predictor (solved sequentially) and a
fine-discretization corrector (solved in parallel). First developed in [9] and slightly
modified in [3], which is the algorithm presented below, the parareal algorithm
has received quite a bit of attention lately; see e.g. [1, 2, 4, 5, 6, 7, 10] and their
references. Section 3 recalls some results on the parareal algorithm when it is used
to solve ordinary and partial differential equations. One of the main shortcomings
of the parareal algorithm is that, as a predictor corrector scheme, it may generate
high-frequency instabilities.

An area of great potential for the parareal algorithm may thus be the long time
evolution of not-too-large systems of ordinary differential equations as they may arise
e.g. in molecular dynamics and in the Keplerian problem. The parareal algorithm,
however, does not preserve geometric properties such as the symplecticity of the
continuous flow of a Hamiltonian system.

We propose in this note a framework to construct a symplectic parareal-type
algorithm. The framework is based on the introduction of an interpolating step be-
tween the predicting step and the correcting step. The resulting Interpolated Predic-
tor Corrector (IPC) scheme is presented in section 4. We first derive an IPC scheme
for arbitrary systems of ordinary differential equations. We then show how the IPC
can be rendered symplectic by using the interpolation of appropriate generating
functions. Section 5 provides proof of concept by showing numerical simulations for
a simple one-dimensional Hamiltonian system.

2 Parareal Algorithm

Let us consider a system of ordinary differential equations of the form

dX

dt
(t) = b(t,X(t)), t ∈ [0, T ], X(0) = X0. (1)
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Here X(t) ∈ Rd for some finite d. We assume that the above system admits a unique
solution. We set a time step ∆T > 0 and a discretization Tn = n∆T and introduce
the solution operator g(t, x) over the small interval∆T given by g(t,X) = X(t+∆T )
when X(t) = X. Let now g∆(t,X) be a discretization of g and define the coarse
solution

Xn+1
1 = g∆(Tn, Xn

1 ) for 0 ≤ n ≤ N − 1; X0
1 = X0. (2)

We introduce the correction operator δg(Tn, X) = g(Tn, X)− g∆(Tn, X).
Then we define iteratively the parareal approximations

Xn+1
k+1 = g∆(Tn, Xn

k+1) + δg(Tn, Xn
k ), k ≥ 1. (3)

Note that all the terms δg(Tn, Xn
k ) for 0 ≤ n ≤ N −1 may be performed in parallel.

Let us define the error εnk = Xn
k − X(Tn). Provided that g∆ provides a scheme of

order m and is such that g∆ and δg are Lipschitz continuous (see e.g. [2] for the
details), we obtain the following estimate:

|εnk | = |Xn
k −X(Tn)| ≤ C(∆T )k(m+1)

(
n

k

)
(1 + |X0|). (4)

For n = N and k = O(1) (the case of interest in practice), we thus obtain:

|XN
k −X(T )| ≤ CT (∆T )km(1 + |X0|). (5)

The iterative scheme (3) replaces a discretization of order m by a discretization of
order km after k− 1 iterations, involving k coarse solutions and k− 1 fine solutions
that can be calculated in parallel.

3 Two Remarks on the Parareal Algorithm

Provided that we seek a final solution at time T with an accuracy of order δt, we
have four parameters at our disposal: (i) the coarse time step ∆T ; (ii) the number
of parareal iterations k; (iii) the number N of successive uses of the parareal scheme
over intervals of size τ = T

N
and (iv) the number of available processors P . An

analysis of the choices for these parameters that maximize speedup and system
efficiency is presented in [2]. The main conclusions are as follows. When the number
of available processors is unlimited, i.e., at least of order (δt)−1/2, then an optimal
speedup is attained when ∆T , k, and N are chosen as ∆T ≈ (δT )1/2, k = 2, and
N = 1. Assuming that the number of processors is smaller and that it takes the
form P = (δt)−α for some 0 < α < 1/2, then optimality in the system efficiency
(i.e., in the use of all available processors) is achieved provided that the parameters
are chosen as ∆T ≈ (δT )(1+α)/3, k = 2, and N ≈ (δt)−2(1−2α)/2.

The parareal algorithm is therefore quite efficient when the number of parareal
iterations is k = 2, which means that the coarse solver is used twice in a sequential
fashion and that the fine solver is used once in parallel. Larger values of k may be
beneficial to obtain a better accuracy or to allow for more conservative choices of the
(a priori unknown) parameters ∆T and N . Subsequent modifications of the parareal
algorithm in this paper implicitly recognize that k = 2 is a reasonable choice.
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The second remark pertains to the use of the parareal algorithm to solve par-
tial differential equations. Several studies have shown that the parareal algorithm
performed well for parabolic equations but showed some instabilities for hyperbolic
equations; see e.g. [4, 6]. Analytical calculations performed for simple examples of
partial differential equations in [3, 1] provide some explanations for this behavior.
In the framework of equations with constant coefficients, we obtain in the Fourier
domain the following evolution equation

∂û

∂t
(t, ξ) + P (ξ)û(t, ξ) = 0, ξ ∈ R, t > 0, û(0, ξ) = û0(ξ), ξ ∈ R. (6)

We define δ(ξ) = P (ξ)∆T and the propagator g(δ(ξ)) = e−δ(ξ).
Assume that the symbol P (ξ) is approximated by PH(ξ) to model spatial dis-

cretization and that the time propagator g(δ) is approximated by g∆(δH), where
δH(ξ) = PH(ξ)∆T . We then define the parareal scheme as:

ûn+1
k+1(ξ) = g∆(δH(ξ))ûn

k+1(ξ) + δg(ξ)ûn
k (ξ), δg(ξ) = g(δ(ξ))− g∆(δH(ξ)), (7)

with û0
k+1(ξ) = û0(ξ) and ûn

0 (ξ) ≡ 0. We verify that we have:

ûn
k+1(ξ) =

k∑
m=0

(
n

m

)
(δg(ξ))mgn−m

∆ (δH(ξ))û0(ξ). (8)

The error term εnk (ξ) = ûn(ξ) − ûn
k (ξ) satisfies the following equation: εn+1

k+1(ξ) =

g∆(δH(ξ))εnk+1(ξ)+(g(δ(ξ))−g∆(δH(ξ)))εnk (ξ), with boundary conditions ε0k+1(ξ) =
0 and εn0 (ξ) = ûn(ξ). We may prove by induction that:

εnk (ξ) = (δg(ξ))k
n−1∑
p1=1

· · ·
pk−2−1∑
pk−1=1

pk−1−1∑
pk=0

gpk(δ)g
n−pk−k
∆ (δH)û0(ξ). (9)

This provides the following bound for the error estimate

|εnk (ξ)| � |δg(ξ)|k
(
n

k

)
sup

p
|g∆|n−p−k(δH)|g|p(δ)|û0(ξ)|. (10)

The above equation shows a different behavior of the error estimate for low and
for high frequencies. For low frequencies, |δg(ξ)|k is small by consistency and the
error term |εnk (ξ)| is of the same order as in (4)-(5). For high frequencies however,
all we can expect from |δg(ξ)|k is that it is bounded. The term

(
n
k

)
≈ nk for k � n

thus creates instabilities.
The lack of stability of the parareal scheme may be seen in (8). We observe that

for k + 1 ≥ 2, the large term
(

n
k

)
≈ nk can be compensated in three ways: when

|δg(ξ)|k is small, which happens for sufficiently small frequencies; when |g∆|(δH(ξ))
is small because the scheme is sufficiently damping at high frequencies; or when
û0(ξ) is small because u0(x) is sufficiently smooth. There are however many schemes
g∆(δH), which are stable, in the sense that un

1 remains bounded uniformly in n, and
yet which generate unstable parareal schemes; we refer to e.g. [1] for additional
details.
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4 Interpolated Predictor Corrector Scheme

A reasonable conclusion that can be drawn from what we have seen so far is that
the parareal algorithm is adapted to solving small systems of equations over long
times. Such systems do not possess instabilities caused by high frequencies and
could greatly benefit from the high accuracy obtained by the parareal algorithm. In
several practical applications of long term evolutions however, accuracy is not the
only constraint. Users may also want their numerical solutions to satisfy some of the
geometric constraints that the exact solutions verify. One such geometric constraint
is symplecticity in the solution of Hamiltonian evolution equations:

q̇ = ∇pH(p,q), ṗ = −∇qH(p,q), (11)

where the symplectic two-form dp ∧ dq is preserved by the flow.
It turns out that the parareal algorithm is not symplectic, even when g and g∆

are symplectic. The reason is that the sum of symplectic operators appearing in (3)
is in general not symplectic. In order to make a parallel algorithm such as parareal
symplectic, we need to replace the addition of jumps in (3) by compositions of
symplectic maps (since composition of symplectic maps is indeed clearly symplectic).

One way to do this gives rise to the following Interpolated Predictor Cor-
rector (IPC) scheme. Let us forget about symplectic structures for the moment and
consider an arbitrary system of ordinary differential equations such as (1). We still
define the coarse predictor Xn

1 as the solution of (2). Now instead of viewing the
exact propagator as g = g∆ + (g − g∆), which is the main ingredient used in the
parareal algorithm (3), we consider the following decomposition;

g = ψ∆ ◦ g∆, ψ∆ ≡ g ◦ g−1
∆ . (12)

This definition assumes that the approximation of identity g∆ is indeed invertible
on Rd. We suppress explicit time dependency to simplify.

Once Xn
1 is calculated sequentially for n ≥ 0, we can calculate ψ∆(Xn+1

1 ) for
all n ≥ 0 with the requested accuracy and in parallel for the sequence 0 ≤ n ≤
N − 1 provided that N processors are available. In the second step of the predictor-
corrector algorithm, we need to be able to evaluate ψ∆ ◦ g∆ at the points Xn

2

sequentially. Since ψ∆◦g∆ has only been evaluated at the pointsXn
1 , an interpolation

step is necessary.
Let us assume that the dynamical system has sufficiently smooth trajectories.

Then ψ∆ is a smooth function on Rd. In fact, it is an approximation of Identity of
order (∆T )m+1 if the coarse scheme g∆ is of orderm. The function ψ∆ : Rd → Rd can
then be approximated by an interpolated function, which we will denote by I(ψ∆).
Such an interpolation is chosen so that I(ψ∆)(Xn

1 ) = ψ∆(Xn
1 ) for all 0 ≤ n ≤ N−1.

Once an interpolation I(ψ∆) is chosen, we define the IPC scheme as:

Xn+1
2 = I(ψ∆) ◦ g∆(Xn

2 ), n ≥ 0, X0
2 = X0. (13)

See Fig. 1. We obtain the following result.

Theorem 1. Let us assume that I(ψ∆) − ψ∆ is a Lipschitz function on Rd with
Lipschitz constant of order (∆T )M+1. Then the IPC scheme is an accurate scheme
of order M , so that e.g. |X(N∆T )−XN

2 | ≤ CT (∆T )M (1 + |X0|).
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Fig. 1. Construction of the IPC scheme

The proof is classical: I(ψ∆) ◦ g∆ is consistent with an accuracy of order (∆T )M+1

while I(ψ∆) ◦ g∆ generates a stable, thus convergent, scheme.
The main ingredient in the construction remains to find an appropriate choice

for the interpolating operator I. Note however that ψ∆ is a smooth map of size
O(∆Tm+1), which is known at N nearby points along a trajectory. Under suffi-
cient geometric constraints, we may thus hope that polynomial interpolations may
converge to the true map ψ∆ with spectral accuracy in the vicinity of the discrete
trajectory Xn

1 . What would be the most accurate and least expensive way to obtain
this interpolation remains to be investigated. Note that M above is arbitrary and
not necessarily of the form 2m as for the parareal algorithm with k = 2. The two-
step IPC scheme can be arbitrarily accurate provided that the flow is sufficiently
smooth and the interpolation sufficiently accurate.

Symplectic scheme. We now come back to the original problem of devising a
parallel scheme that would preserve the symplecticity of the continuous equations.
The operator ψ∆ constructed above is clearly symplectic as a composition of sym-
plectic maps. The interpolation I however may not preserve symplecticity if e.g.
polynomial approximation is used. In order to construct a symplectic interpolation,
we use the concept of generating function; see [8].

We now assume that X = (q,p) ∈ R2n solves an equation of the form (11).
Because ψ∆ is an approximation of identity on R2d, there exists, at least locally [8],
a generating function S(q∗,p) = q∗ ·p+δ(q∗,p), where δ maps a subset in R2d to R

and where (q∗,p∗) = ψ∆(q,p). We assume here that S and δ are defined globally;
an assumption that can be alleviated by appropriate partition of unity of R2d. The
maps ψ∆ and S are then related by the following equations

q∗ = q− ∂δ
∂p

(q∗,p), p∗ = p +
∂δ

∂q∗ (q∗,p). (14)

The coarse scheme provides the set of N points (g∆(Xn
1 ), ψ∆(g∆(Xn

1 ))) of the form
((q,p), (q∗,p∗)) . We find an interpolation I(δ)(q∗,p) of δ(q∗,p) so that (14) is
exactly satisfied at such a set of points. Owing to (14), the interpolated generating
function I(δ) now implicitly generates a map on R2d, which we will call I(ψ∆). This
map is by construction symplectic, and provided that the interpolation I(δ) of δ is
accurate (say of order ∆TM+1), then so is the interpolation I(ψ∆). We may then
apply Theorem 1 and obtain a symplectic IPC scheme of order M .
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Note that the interpolation of the generating function may be performed locally
by appropriate choice of a partition of unity. The interpolated map I(δ) would
then take the form

∑
i∈I Ii(δi)φi with obvious notation. The astute reader may also

have noticed that the symplectic map I(ψ∆) so constructed depends on the coarse
trajectoryXn

1 and thus on its seedX0. When several trajectories are considered, then
the interpolations cannot be performed independently if one wants a truly symplectic
scheme. One may either perform one interpolation based on all coarse trajectories,
or make sure that the interpolation performed on a new trajectory is compatible
with the interpolations obtained from previous trajectories. Such complications also
arise when the symplectic IPC is restarted in the sense considered in section 3. When
the number N of successive uses of the symplectic IPC is greater than 2, then we
need to ensure that the interpolations generated at each restart of the algorithm are
compatible with each-other.

As we have noted earlier, the optimal way to perform the interpolation step is still
research to be done, whether in the framework of symplectic maps or that of more
general maps. In the next section, we show proof of concept by considering a one-
dimensional Hamiltonian system and a symplectic IPC schemes based on a global
interpolation. Such an interpolation is not optimal and may be computationally
prohibitively expensive in higher dimensions.

5 Numerical Simulations

We consider the one-dimensional Hamiltonian (pendulum) system (11) with

H(q, p) =
1

2
p2 + sin q. (15)

We choose a discretization g∆ which is second-order and symplectic. The N = 50
locations of the parareal solution Xn

2 presented in section 2 for 1 ≤ n ≤ N are shown
for several choices of the coarse time step ∆T = 0.5, ∆T = 0.65 and ∆T = 0.7,
respectively, in Fig. 2 (they correspond to different final times). The fine time step is

−2 0 2 −2 0 2 0 5 10 15

’∆  T = 0.5 ’∆  T = 0.65 ’∆  T = 0.7
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Fig. 2. Parareal solution Xn
2 for 1 ≤ n ≤ 50 and ∆T = 0.5, 0.65, and 0.7.

chosen sufficiently small so that the operator g is estimated almost exactly, also by
the second-order symplectic scheme. The parareal solution significantly departs from
the surface of constant Hamiltonian for large values of ∆T (as it would for larger
times and smaller values of ∆T ). This is an indication that the parareal scheme
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looses the symplectic structure of the flow, and this even though both g and g∆ are
symplectic.
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0

1
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0

1

2

−2

−1

0

1

2

−2 0 2 −2 0 2

∆T = 20, 50 fine points ∆T = 20, 500 fine points∆T = 0.7, 50 fine points

Fig. 3. Symplectic IPC parareal Xn
2 for 1 ≤ n ≤ 50 and ∆T = 0.7, 20, and 40.

Let now M be the number of discretization points per ∆T for the fine solu-
tion operator g. The solution of the IPC scheme Xn

2 presented in section 4 is
shown in Fig. 3 for values of (∆T,M) equal to (0.7, 50), (20, 50), and (20, 500),
respectively. The generating function S(q∗, p) is constructed globally on the square
(−2.8, 2.8)× (−2.3, 2.3). Its interpolation is a polynomial of sufficiently high degree
so that the 2N constraints in (14) generate an under-determined system of linear
equations, which is solved by standard least squares. The pseudo-inversion ensures
that the resulting interpolation satisfies the constraints exactly and is smooth. The
IPC scheme preserves symplecticity independent of ∆T and M . When the fine cal-
culation is not sufficiently accurate (M is too small), ψ∆ is not estimated accurately
and the resulting trajectory may deviate from the true trajectory. With M = 500,
the estimate of ψ∆ becomes more accurate and so is its (global) interpolation.
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Summary. We describe a block matrix iterative algorithm for solving a linear-
quadratic parabolic optimal control problem (OCP) on a finite time interval. We
derive a reduced symmetric indefinite linear system involving the control variables
and auxiliary variables, and solve it using a preconditioned MINRES iteration, with
a symmetric positive definite block diagonal preconditioner based on the parareal
algorithm. Theoretical and numerical results show that the preconditioned algorithm
converges at a rate independent of the mesh size h, and has parallel scalability.

1 Introduction

Let (t0, tf ) denote a time interval, let Ω ⊂ R2 be a polygonal domain of size of order
O(1) and let A be a coercive map from a Hilbert space L2(to, tf ;Y ) to L2(to, tf ;Y ′),
where Y = H1

0 (Ω) and Y ′ = H−1(Ω), i.e., the dual of Y with respect to the pivot
space H = L2(Ω); see [2]. Denote the state variable space as Y = {z ∈ L2(to, tf ;Y ) :
zt ∈ L2(to, tf ;Y ′)}, where it can be shown that Y ⊂ C0([to, tf ];H); see [2]. Given
yo ∈ H, we consider the following state equation on (t0, tf ) with z ∈ Y:{

zt +Az = Bv for to < t < tf ,

z(0) = yo.
(1)

The distributed control v belongs to an admissible space U = L2(to, tf ;U), where
in our application U = L2(Ω), and B is an operator in L(U , L2(to, tf ;H)). It can be
shown that the problem (1) is well posed, see [2], and we indicate the dependence
of z on v ∈ U using the notation z(v). Given a target function ŷ in L2(to, tf ;H)
and parameters q > 0, r > 0, we shall employ the following cost function which we
associate with the state equation (1):

J(z(v), v) :=
q

2

∫ tf

t0

‖z(v)(t, .)− ŷ(t, ·)‖2L2(Ω) dt+
r

2

∫ tf

t0

‖v(t, ·)‖2L2(Ω) dt. (2)

For simplicity of presentation, we assume that yo ∈ Y and ŷ ∈ L2(to, tf ;Y ), and
normalize q = 1. The optimal control problem for equation (1) consists of finding a
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controller u ∈ U which minimizes the cost function (2):

J(y, u) := min
v∈U

J(z(v), v). (3)

Since q, r > 0, the optimal control problem (3) is well posed, see [2].
Our presentation is organized as follows: In § 2 we discretize (3) using a finite el-

ement method and backward Euler discretization, yielding a large scale saddle point
system. In § 3, we introduce and analyze a symmetric positive definite block diago-
nal preconditioner for the saddle point system, based on the parareal algorithm [3].
In § 4, we present numerical results which illustrate the scalability of the algorithm.

2 The Discretization and the Saddle Point System

To discretize the state equation (1) in space, we apply the finite element method to its
weak formulation for each fixed t ∈ (to, tf ). We choose a quasi-uniform triangulation
Th(Ω) of Ω, and employ the P1 conforming finite element space Yh ⊂ Y for z(t, ·),
and the P0 finite element space Uh ⊂ U for approximating v(t, ·). Let {φj}q̂

j=1 and

{ψj}p̂
j=1 denote the standard basis functions for Yh and Uh, respectively. Throughout

the paper we use the same notation z ∈ Yh and z ∈ Rq̂, or v ∈ Uh and v ∈
Rp̂, to denote both a finite element function in space and its corresponding vector
representation. To indicate their time dependence we denote z and v.

A discretization in space of the continuous time linear-quadratic optimal control
problem will seek to minimize the following quadratic functional:

Jh(z, v) :=
1

2

∫ tf

to

(z − ŷ)T (t)Mh(z − ŷ)(t) dt+ r

2

∫ tf

to

vT (t)Rhv(t) dt (4)

subject to the constraint that z satisfies the discrete equation of state:

Mhż +Ah z = Bhv, for to < t < tf ; and z(to) = yh
o . (5)

Here (z − ŷh)(t) denotes the tracking error, where ŷh(t) and yh
0 belong to Yh and

are approximations of ŷ(t) and yo (for instance, use L2(Ω)-projections into Yh). The

matricesMh, Ah ∈ R
q̂×q̂
h , Bh ∈ Rq̂×p̂ and Rh ∈ Rp̂×p̂ have entries (Mh)ij := (φi, φj),

(Ah)ij := (φi,Aφj), and (Bh)ij := (φi,Bψj) and (Rh)ij := (ψi, ψj), where (·, ·)
denotes the L2(Ω) inner product.

To obtain a temporal discretization of (4) and (5), we partition [to, tf ] into l̂
equal sub-intervals with time step size τ = (tf − to)/l̂. We denote tl = to + l τ
for 0 ≤ l ≤ l̂. Associated with this partition, we assume that the state variable
z is continuous in [to, tf ] and linear in each sub-interval [tl−1, tl], 1 ≤ l ≤ l̂ with

associated basis functions {ϑl}l̂
l=0. Denoting zl ∈ Rq̂ as the nodal representation

of z(tl) we have z(t) =
∑l̂

l=0 zlϑl(t). The control variable v is assumed to be a
discontinuous function and constant in each sub-interval (tl−1, tl) with associated

basis functions {χl}l̂
l=1. Denoting vl ∈ Rp̂ as the nodal representation of v(tl−(τ/2)),

we have v(t) =
∑l̂

l=1 vlχl(t).
The corresponding discretization of the expression (4) results in:

Jτ
h (z,v) =

1

2
(z− ŷ)T K(z− ŷ) +

1

2
vT Gv + (z− ŷ)T g. (6)
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The block vectors z := [zT
1 , . . . , z

T
l̂

]T ∈ Rl̂q̂ and v := [vT
1 , . . . , v

T
l̂

]T ∈ Rl̂p̂ denote the
state and control variables, respectively, at all the discrete times. The discrete target

is ŷ := [ŷT
1 , . . . , ŷ

T
l̂

]T ∈ Rl̂q̂ with target error el = (zl − ŷh
l ) for 0 ≤ l ≤ l̂. Matrix

K = Dτ ⊗Mh ∈ R(l̂q̂)×(l̂q̂), where Dτ ∈ Rl̂×l̂ has entries (Dτ )ij :=
∫ tf

to
ϑi(t)ϑj(t)dt,

for 1 ≤ i, j ≤ l̂, while G = rτIl̂⊗Rh ∈ R(l̂p̂)×(l̂p̂), where ⊗ stands for the Kronecker

product and Il̂ ∈ Rl̂×l̂ is an identity matrix. The vector g = (gT
1 , 0

T , . . . , 0T )T where
g1 = τ

6
Mhe0. Note that g1 does not necessarily vanish because it is not assumed

that yh
0 = ŷh

0 .
Employing the backward Euler discretization of (5) in time, yields:

Ez + Nv = f , (7)

where the input vector is f := [(Mhy
h
0 )T , 0T , ..., 0T ]T ∈ Rl̂q̂. The block lower bidiag-

onal matrix E ∈ R(l̂q̂)×(l̂q̂) is given by:

E =

⎡⎢⎢⎢⎣
Fh

−Mh Fh

. . .
. . .

−Mh Fh

⎤⎥⎥⎥⎦ , (8)

where Fh = (Mh + τAh) ∈ Rq̂×q̂. The block diagonal matrix N ∈ R(l̂q̂)×(l̂p̂) is
given by N = −τIl̂ ⊗Bh. The Lagrangian Lh(z,v,q) for minimizing (6) subject to
constraint (7) is:

Lτ
h(z,v,q) = Jτ

h (z,v) + qT (Ez + Nv − f). (9)

To obtain a discrete saddle point formulation of (9), we apply optimality conditions
for Lh(·, ·, ·). This yields the symmetric indefinite linear system:⎡⎣ K 0 ET

0 G NT

E N 0

⎤⎦ ⎡⎣y
u
p

⎤⎦ =

⎡⎣Kŷ − g
0
f

⎤⎦ , (10)

where ŷ := [(ŷh
1 )T , . . . , (ŷh

l̂
)T ]T ∈ Rl̂q̂. Eliminating y and p in (10), and defining

b := NT E−T
(
KE−1f −Kŷ + g

)
yields the reduced Hessian system:

(G + NT E−T KE−1N)u = b. (11)

The matrix H := G+NT E−T KE−1N is symmetric positive definite and (u,Gu) ≤
(u,Hu) ≤ µ(u,Gu), where µ = O(1 + 1

r
); for details see [4]. As a result, the

Preconditioned Conjugate Gradient method (PCG) can be used to solve (11), but
each matrix-vector product with H requires the solution of two linear systems, one
with E and one with ET . To avoid double iterations, we define the auxiliary variable
w := −E−T KE−1Nu. Then (11) will be equivalent to the symmetric indefinite
system: [

EK−1ET N
NT −G

] [
w
u

]
=

[
0

−b

]
. (12)

The system (12) is ill-conditioned and will be solved using the MINRES algorithm
with a preconditioner of the form P := diag(E−T

n K̂E−1
n ,G

−1); see [5]. For a fixed
number of parareal sweeps n, E−1

n and E−T
n are linear operators. We next define

the operator E−1
n and then analyze the spectral equivalence between E−T KE−1 and

E−T
n K̂E−1

n .
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3 Parareal Approximation E−T
n K̂E−1

n

An application of E−T
n K̂E−1

n to a vector s ∈ R(l̂q̂)×(l̂q̂) is performed as follows: Step
1, apply E−1

n s :→ ẑn using n applications of the parareal method described below.

Step 2, multiply K̂zn :→ t̂ where K̂ := D̂τ ⊗Mh, D̂τ := blockdiag(D̂1
τ , . . . , D̂

k̂
τ ),

and the D̂k
τ are the time mass matrices associated to the sub-intervals [Tk−1, Tk].

And Step 3, apply E−T
n t̂n :→ x, i.e., the transpose of Step 1.

To describe En, we partition the time interval [to, tf ] into k̂ coarse sub-intervals
of length ∆T = (tf − to)/k̂, setting T0 = to and Tk = to + k∆T for 1 ≤ k ≤ k̂.
We define fine and coarse propagators F and G as follows. The local solution at
Tk is defined marching the backward Euler method from Tk−1 to Tk on the fine
triangulation τ with an initial data Zk−1 at Tk−1. Let m̂ = (Tk − Tk−1)/τ and

jk−1 =
Tk−1−T0

τ
. It it is easy to see that:

MhZk = FZk−1 + Sk, (13)

where F := (MhF
−1
h )m̂Mh ∈ Rq̂×q̂, Sk :=

∑m̂
m=1

(
MhF

−1
h

)m̂−m+1
sjk−1+m with

Z0 = 0. Imposing the continuity condition at time Tk, for 1 ≤ k ≤ k̂, i.e., MhZk −
FZk−1 − Sk = 0, we obtain the system:⎡⎢⎢⎢⎣

Mh

−F Mh

. . .
. . .

−F Mh

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
Z1

Z2

...
Zk̂

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
S1

S2

...
Sk̂

⎤⎥⎥⎥⎦ . (14)

The coarse solution at Tk with initial data Zk−1 ∈ Rq̂ at Tk−1 is given by
one coarse time step of the backward Euler method MhZk = GZk−1 where G :=
Mh(Mh +Ah∆T )−1Mh ∈ Rq̂×q̂. In the parareal algorithm, the coarse propagator G
is used for preconditioning the system (14) via:⎡⎢⎢⎢⎣

Zn+1
1

Zn+1
2

...
Zn+1

k̂

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
Zn

1

Zn
2

...
Zn

k̂

⎤⎥⎥⎥⎦ +

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣
Mh

−G Mh

. . .
. . .

−G Mh

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠

−1 ⎡⎢⎢⎢⎣
Rn

1

Rn
2

...
Rn

k̂

⎤⎥⎥⎥⎦ , (15)

where the residual vector Rn := [Rn
1

T , ..., Rn
k̂

T ]T ∈ Rk̂q̂ is defined in the usual way
from the equation (14).

We are now in position to define ẑn := E−1
n s. Let ẑn be the nodal representation

of a piecewise linear function ẑn in time with respect to the fine triangulation τ on
[to, tf ], however continuous only inside each coarse sub-interval [Tk−1, Tk], i.e., the
function ẑn can be discontinuous across the points Tk, 1 ≤ k ≤ k̂ − 1, therefore,

ẑn ∈ R(l̂+k̂−1)q̂. On each sub-interval [Tk−1, Tk], ẑn is defined marching the backward
Euler method from Tk−1 to Tk on the fine triangulation τ with initial condition Zn

k−1

at Tk−1.

Theorem 1. For any s ∈ R(l̂q̂)×(l̂q̂) and ε ∈ (0, 1/2), we have:

γmin

(
E−1s,KE−1s

)
≤
(
E−1

n s, K̂E−1
n s

)
≤ γmax

(
E−1s,KE−1s

)
,
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where

{
γmax := (1 +

ρ2
n(tf−to)

τε
+ 2ε)/(1− 2ε),

γmin := (1− ρ2
n(tf−to)

τε
− 2ε)/(1 + 2ε).

Proof. Let Vh := [v1, ..., vq̂] and Λh := diag{λ1, ..., λq̂] be the generalized eigenvectors
and eigenvalues of Ah with respect to Mh, i.e., Ah = MhVhΛhV

−1
h . Let z := E−1s

with z(t) =
∑q̂

q=1 αq(t)vq, and ẑn := E−1
n s with ẑn(t) =

∑q̂
q=1 α

n
q (t)vq. We note

that αn
q might be discontinuous across the Tk. Then:

(E−1s,KE−1s) = ‖z‖2L2(to,tf ;L2(Ω)) =
∑q̂

q=1 ‖αq‖2L2(to,tf ),

(E−1
n s, K̂E−1

n s) = ‖ẑn‖2L2(to,tf ;L2(Ω)) =
∑q̂

q=1 ‖αn
q ‖2L2(to,tf ),

and therefore:

‖αn
q ‖2L2(to,tf ) =

(
αn

q − αq, α
n
q + αq

)
L2(to,tf )

+ ‖αq‖2L2(to,tf )

≤ 1

4ε
‖αn

q − αq‖2L2(to,tf ) + ε‖αn
q + αq‖2L2(to,tf ) + ‖αq‖2L2(to,tf )

≤ 1

4ε
‖αn

q − αq‖2L2(to,tf ) + 2ε‖αn
q ‖2L2(to,tf ) + (1 + 2ε)‖αq‖2L2(to,tf ),

which reduces to:

(1− 2ε)‖αn
q ‖2L2(to,tf ) ≤ (1 + 2ε)‖αq‖2L2(to,tf ) + 1

4ε
‖αn

q − αq‖2L2(to,tf ).

For each tl ∈ [Tk−1, Tk] we have:

|αn
q (tl)− αq(tl)| = (1 + τλq)

−(tl−Tk−1)/τ |αn
q (Tk−1)− αq(Tk−1)|,

and since λq > 0 implies (1 + τλq)
−(tl−Tk−1)/τ ≤ 1, we obtain:

‖αn
q − αq‖2L2(Tk−1,Tk) ≤ ∆T |αn

q (Tk−1)− αq(Tk−1)|2.

Hence:

(1− 2ε)‖αn
q ‖2L2(to,tf ) ≤ (1 + 2ε)‖αq‖2L2(to,tf ) +

tf − to
4ε

max
0≤k≤k̂

|αn
q (Tk)− αq(Tk)|2.

Using the Lemma 1 (see below) with αq(T0) = 0 and initial guess α0
q(Tk) = 0, and

using

max
0≤k≤k̂

|αq(Tk)|2 = |αq(Tk′)|2 ≤ 4

τ
min

β
‖αq(Tk′) + βt‖2L2(Tk′ ,Tk′+τ)

we obtain:

max
0≤k≤k̂

|αn
q (Tk)− αq(Tk)|2 ≤ ρ2n max

0≤k≤k̂
|αq(Tk)|2 ≤ 4ρ2n

τ
‖αq‖2L2(to,tf ),

and the upper bound (16) follows. The lower bound follows similarly.
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Remark 1. Performing straightforward computations we obtain:

min
ε
γmax(ε) = 1 +

4√
1 + τ

ρ2
n(tf−to)

− 1
.

Hence, for small values of ρn, we have γmax − 1 ≈ 4

√
ρ2

n(tf−to)

τ
. The dependence

of γmax − 1 with respect to τ is sharp as evidenced in Table 1 (see below) since it
increases by a

√
2 factor when τ is refined by half.

Decompose Zk =
∑q̂

q=1 αq(Tk)vq and Zn
k =

∑q̂
q=1 α

n
q (Tk)vq, and denote

ζn
q (Tk) := αq(Tk)− αn

q (Tk). The convergence of the parareal algorithm for systems
follows from the next lemma which it is an extension of the results presented in [1].

Lemma 1. Let ∆T = (tf − to)/k̂ and Tk = to + k∆T for 0 ≤ k ≤ k̂. Then,

max
1≤k≤k̂

|αq(Tk)− αn
q (Tk)| ≤ ρn max

1≤k≤k̂
|αq(Tk)− α0

q(Tk)|,

where ρn := sup0<β<1

(
e1−1/β − β

)n
1
n!

∣∣∣∣ dn−1

dβn−1

(
1−βk̂−1

1−β

)∣∣∣∣ ≤ 0.2984n.

Proof. Using Theorem 2 from [1] we obtain:

ζn
q =

(
(1 + λqτ)

−∆T/τ − βq

)
T (βq)ζ

n−1
q , (16)

where βq := (1 + λq∆T )−1 and T (β) :=
{
βj−i−1 if j > i, 0 otherwise

}
is a

Toeplitz matrix of size k̂. Applying (16) recursively we obtain:

max
1≤k≤k̂

|ζn
q | ≤ ρq

n max
1≤k≤k̂

|ζ0q |,

where:
ρq

n :=
∥∥∥((1 + λqτ)

−∆T/τ − βq

)n

T n(βq)
∥∥∥

L∞
. (17)

Since λq > 0 and βq ≤ (1 + λq∆T )−∆T/τ ≤ e−λq∆T , we obtain

| (1 + λqτ)
−∆T/τ − βq| ≤ |e−λq∆T − βq| = |e1−1/βq − βq|, (18)

which yields:

ρq
n ≤ |e1−1/βq − βq|n‖T n(βq)‖L∞ ≤ sup

0<β<1
|e1−1/β − β|n‖T n(β)‖L∞ .

By considering ‖T n(β)‖∞ ≤ ‖T (β)‖n
∞ =

∣∣∣∣ 1−βk̂−1

1−β

∣∣∣∣n , a simpler upper bound for

ρn can be obtained:

sup0<β<1

∣∣∣e1−1/β − β
∣∣∣n ∣∣∣∣ 1−βk̂−1

1−β

∣∣∣∣n ≤ (
sup0<β<1

e1−1/β−β
1−β

)n

≈ 0.2984n,

and the maximum is attained around β∗ = 0.358, independently of n and k̂ (β∗
presents slight variation for 1 ≤ n and 6 ≤ k̂, cases of practical interest).
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4 Numerical Experiments

The optimal control problem we consider involves the 1D-heat equation:

zt − zxx = v, 0 < x < 1, 0 < t < 1,

with boundary conditions z(t, 0) = z(t, 1) = 0 for t ∈ [0, 1], and initial data z(0, x) =
0 for x ∈ [0, 1]. The control variable v(·) corresponds to the forcing term, and the
target function is the nodewise interpolation of the function ŷ(t, x) = x(1 − x)e−x.
We choose a tolerance tol ≤ 10−6 for the left preconditioned MINRES.

Table 1 lists the value of (γmax − 1) for different values of τ and n. The results
confirm Remark 1. Table 2 lists the number of MINRES iterations as ∆T and τ vary
while (∆T/τ) remains constant. Choosing n = 2, 4, 7 iterations for the Parareal, the
number of iterations for the MINRES basically remains constant when h or τ are
refined, and so the results indicate scalability. Table 3 lists the number of MINRES
iterations for n = 2 and τ = (1/512) for different values of (∆T/τ). It indicates also
scalability with respect to ∆T . Like in [4], we observe numerically that the number
of MINRES iterations grows logarithmically with respect to 1/r.

Table 1. Values of γmax−1 when τ is refined. Parameters h = 1/10 and ∆T = 1/20.

n \ l̂ 200 400 800 1600

n = 1 0.864415 1.449299 2.473734 4.371709
n = 2 0.070835 0.097852 0.136802 0.193845
n = 3 0.007760 0.010765 0.015141 0.021165
n = 4 0.000865 0.001224 0.001715 0.002397

Table 2. MINRES iterations using a parareal with n = 2/4/7 as preconditioners.
Parameters r = 0.0001 and ∆T/τ = 16.

k̂ 4 8 16 32

l̂ 64 128 256 512

h = 1/16 62 / 40 / 42 58 / 44 / 44 60 / 50 / 44 60 / 50 / 44
h = 1/32 60 / 42 / 42 58 / 44 / 44 60 / 50 / 44 62 / 50 / 44
h = 1/64 60 / 42 / 42 58 / 44 / 44 60 / 50 / 44 62 / 50 / 44

References

[1] M. J. Gander and S. Vandewalle. On the super linear and linear convergence
of the parareal algorithm. In Domain Decomposition Methods in Science and



416 M. Sarkis et al.

Table 3. MINRES iterations using the Parareal algorithm with n = 2 as precondi-
tioner. Parameters r = 0.001/0.0001/0.00001 and τ = 1/512.

k̂ 8 16 32 64

∆T/τ 64 32 16 8

h = 1/16 32 / 62 / 136 32 / 62 / 136 32 / 60 / 132 32 / 60 / 132
h = 1/32 32 / 62 / 136 32 / 62 / 136 32 / 62 / 132 32 / 60 / 132
h = 1/64 32 / 62 / 136 32 / 62 / 136 32 / 62 / 132 32 / 60 / 132

Engineering XVI, volume 55 of Lect. Notes Comput. Sci. Engrg., pages 291–298.
Springer, Berlin, 2007.

[2] J. L. Lions. Optimal Control of Systems Governed by Partial Differential Equa-
tions. Springer-Verlag, Berlin-Heidelberg-New York, 1971.

[3] J. L. Lions, Y. Maday, and G. Turinici. Résolution d’EDP par un schéma en
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Introduction

This work deals with some Poisson problems in a self-similar ramified domain of R2

with a fractal boundary (see Figure 1). We consider generalized Neumann condition
on the fractal boundary. The first goal is to give a rigorous functional setting. The
second goal is to propose a strategy for computing the solutions in simple subdo-
mains obtained by stopping the construction after a finite number of steps. When
the Neumann data belongs to the Haar basis associated to a dyadic decomposition
of the fractal boundary, we show that the solution can be found by solving a se-
quence of boundary value problems in an elementary cell, with nonhomogeneous and
nonlocal boundary conditions. For a general Neumann data g, the idea is to expand
g on the Haar basis and use the linearity of the problem for deriving an expansion
of the solution.
This work is an extension of [1], where the Hausdorff dimension of the fractal bound-
ary was 1. Related results for the Helmholtz equation are contained in [2]. The proofs
of the theoretical results below are given in [3].

1 The Geometry

Let a be a positive parameter. Consider the points of R2: P1 = (−1, 0), P2 = (1, 0),
P3 = (−1, 1), P4 = (1, 1), P5 = (−1+a

√
2, 1+a

√
2) and P6 = (1−a

√
2, 1+a

√
2). Let

Y 0 and Fi, i = 1, 2 be respectively the hexagonal subset of R2 and the similitudes
defined by the following:

Y 0 = Interior
(

Conv(P1, P2, P3, P4, P5, P6)
)
,

Fi(x) =
(
(−1)i

(
1− a√

2

)
+ a√

2

(
x1 + (−1)ix2

)
, 1 + a√

2
+ a√

2

(
x2 + (−1)i+1x1

))
.

The similitude Fi has the dilation ratio a and the rotation angle (−1)i+1π/4. To
prevent F1(Y

0) and F2(Y
0) from overlapping, one must choose a ≤

√
2/2.
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For n ≥ 1, we call An the set containing all the 2n mappings from {1, . . . , n} to
{1, 2}. We define

Mσ = Fσ(1) ◦ · · · ◦ Fσ(n) for σ ∈ An, (1)

and the ramified open domain, see Figure 1,

Ω = Interior

(
Y 0 ∪

(
∞
∪

n=1
∪

σ∈An

Mσ(Y 0)

))
. (2)

Stronger constraints must be imposed on a to prevent the sets Mσ(Y 0), σ ∈ An,
n > 0, from overlapping. It can be shown that the condition is 2

√
2a5 + 2a4 + 2a2 +√

2a− 2 ≤ 0, i.e. , a ≤ a∗ ∼ 0.593465 . . .
We call Γ∞ the self similar set associated to the similitudes F1 and F2, i.e. the
unique compact subset of R2 such that Γ∞ = F1(Γ

∞) ∪ F2(Γ
∞). The Hausdorff

dimension of Γ∞ can be computed since Γ∞ satisfies the Moran condition (open
set condition) (see [6, 5] ): dimH(Γ∞) = − log 2/ log a. For instance, if a = a∗, then
dimH(Γ∞) ∼ 1.3284371.
We split the boundary of Ω into Γ∞, Γ 0 = [−1, 1]×{0} and Σ = ∂Ω\(Γ 0∪Γ∞). We
define the polygonal open domain Y N obtained by stopping the above construction
at step N + 1,

Y N = Interior

(
Y 0 ∪

(
N
∪

n=1
∪

σ∈An

Mσ(Y 0)

))
. (3)

We also define the sets Γσ = Mσ(Γ 0) and ΓN = ∪σ∈ANΓ
σ.

−1 1

1

45◦

2a

Fig. 1. The ramified domain Ω (only a few generations are displayed).

2 Functional Setting

Let H1(Ω) be the space of functions in L2(Ω) with first order partial derivatives in
L2(Ω). We also define

V(Ω) =
{
v ∈ H1(Ω); v|Γ0 = 0

}
and V(n) =

{
v ∈ H1(Y n); v|Γ0 = 0

}
.
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Theorem 1. There exists a constant C > 0, such that

∀u ∈ H1(Ω), ‖u‖2L2(Ω) ≤ C
(
‖∇u‖2L2(Ω) + ‖u|Γ0‖2L2(Γ0)

)
. (4)

The embedding of H1(Ω) in L2(Ω) is compact.

For defining traces on Γ∞, we need the classical result, see [4]:

Theorem 2. There exists a unique Borel regular probability measure µ on Γ∞ such
that for any Borel set A ⊂ Γ∞,

µ(A) = 1/2µ
(
F−1

1 (A)
)

+ 1/2µ
(
F−1

2 (A)
)
. (5)

The measure µ is called the self-similar measure defined in the self similar triplet
(Γ∞, F1, F2). Let L2

µ be the Hilbert space of the functions on Γ∞ that are µ-

measurable and square integrable w.r.t. µ, with the norm ‖u‖L2
µ

=
√∫

Γ∞ u2dµ.

A Hilbertian basis of L2
µ can be constructed with e.g. Haar wavelets.

Consider the sequence of linear operators �n : H1(Ω)→ L2
µ,

�n(u) =
∑

σ∈An

(
1/|Γσ|

∫
Γ σ

u dx

)
1Mσ(Γ∞), (6)

where |Γσ| is the Lebesgue measure of Γσ.

Lemma 1. The sequence (�n)n converges in L(H1(Ω), L2
µ), to an operator that we

call �∞. The operator �∞ can be seen as a renormalized trace operator.

3 A Class of Poisson Problems

Take g ∈ L2
µ and u ∈ H 1

2 (Γ 0). We look for U(u, g) ∈ H1(Ω) s.t.

(U(u, g))|Γ0 = u, and

∫
Ω

∇(U(u, g)) · ∇v =

∫
Γ∞
g�∞(v) dµ, ∀v ∈ V(Ω). (7)

If it exists, then (U(u, g)) satisfies ∆(U(u, g)) = 0 in Ω, and ∂n(U(u, g)) = 0 on Σ.
We shall discuss the boundary condition on Γ∞ after the following:

Theorem 3. For g ∈ L2
µ and u ∈ H 1

2 (Γ 0), (7) has a unique solution.
Furthermore, if g = �∞(g̃), g̃ ∈ C1(Ω), if wq ∈ H1(Y q) is the solution of:

∆wq = 0 in Y q, wq|Γ0 = u, ∂nwq = 0 on ∂Yq\(Γ 0 ∪ Γ q+1),

∂nwq = (1/|Γ q+1|)g̃|Γ q+1 on Γ q+1,

then limq→∞ ‖(U(u, g))|Y q − wq‖H1(Y q) = 0.

Theorem 3 says in particular that (7) has an intrinsic meaning for a large class of
data g. From the definition of wq, we may say that U(u, g) satisfies a Neumann
condition on Γ∞ with datum g.
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4 A Strategy for Computing U(u, g)|Y n

4.1 The Case when g = 0.

We use the notation H(u) = U(u, 0). Call T the Dirichlet-Neumann operator from

H
1
2 (Γ 0) to (H

1
2 (Γ 0))′, Tu = ∂nH(u)|Γ0 . We remark that T ∈ O, the cone containing

the self-adjoint, positive semi-definite, bounded linear operators from H
1
2 (Γ 0) to

(H
1
2 (Γ 0))′ which vanish on the constants.

If T is available, the self-similarity implies that H(u)|Y 0 = w, where w is s.t.

∆w = 0 in Y 0,
∂w

∂n
|∂Y 0\(Γ0∪Γ1) = 0, (8)

w|Γ0 = u, (9)

∂w

∂n
+

1

a

(
T (w|Fi(Γ0) ◦ Fi)

)
◦ F−1

i = 0 on Fi(Γ
0), i = 1, 2. (10)

We stress the fact that (8)-(10) is well posed, from the observation on T above. Since
(10) allows computing H(u)|Y 0 , it is called a transparent boundary condition. The
construction may be generalized to H(u)|Y n−1 , n ≥ 1:

Proposition 1. For u ∈ H 1
2 (Γ 0), H(u)|Y n−1 can be found by successively solving

1 + 2 + · · ·+ 2n−1 boundary value problems in Y 0:
• Loop: for p = 0 to n− 1,
• • Loop : for σ ∈ Ap, (at this point, if p ≥ 1, (H(u))|Γ σ is known)
• •• Find w ∈ H1(Y 0) satisfying the boundary value problem (8), (10), and

either (9) if p = 0, or w|Γ0 = H(u)|Γ σ ◦Mσ if p > 0.
• •• Set H(u)|Y 0 = w if p = 0. If p > 0, set H(u)|Mσ(Y 0) = w ◦ (Mσ)−1.

We are left with computing T : in Theorem 4 below, we show that T can be obtained
as the limit of a sequence of operators constructed by a simple induction. This is
the consequence of the following result:

Proposition 2. There exists a constant ρ < 1 such that for any u ∈ H 1
2 (Γ 0),∑

σ∈Ap

∫
Ωσ

|∇H(u)|2 ≤ ρp

∫
Ω

|∇H(u)|2, ∀p > 0. (11)

In order to compute T , we introduce the mapping M : O �→ O: for any Z ∈ O,

∀u ∈ H 1
2 (Γ 0), M(Z)u = ∂nw|Γ0 , (12)

where w satisfies (8), (9) and ∂w
∂n

+ 1
a

(
Z(w|Fi(Γ0) ◦ Fi)

)
◦ F−1

i = 0 on Fi(Γ
0).

Theorem 4. The operator T is the unique fixed point of M. Moreover, if ρ, 0 < ρ <
1, is the constant appearing in (11), then, for all Z ∈ O, ∃C > 0 s.t.

‖Mp(Z)− T‖ ≤ Cρ
p
4 , ∀p ≥ 0. (13)

In what follows, we propose a method for computing (U(0, g))|Y n−1 , (n is some
fixed positive integer). We first distinguish the case when g belongs to the Haar
basis associated to the dyadic decomposition of Γ∞.
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4.2 The Case when g Belongs to the Haar Basis

The case when g is a Haar wavelet is particularly favorable because transparent
boundary conditions may be used, thanks to self-similarity.
Let us call eF = U(0, 1Γ∞).

We introduce the linear operator B, bounded from (H
1
2 (Γ 0))′ to L2(Γ 0), by: Bz =

− ∂w
∂x2
|Γ0 , where w ∈ V(Y 0) is the unique weak solution to

∆w = 0 in Y 0,
∂w

∂n
= 0 on ∂Y0\(Γ 0 ∪ Γ 1), (14)

∂w

∂x2
|Fi(Γ0) +

1

a

(
T (w|Fi(Γ0) ◦ Fi)

)
◦ F−1

i = −z ◦ F−1
i , i = 1, 2. (15)

The self-similarity in the geometry and the scale-invariance of the equations are the
fundamental ingredients for proving the following theorem:

Theorem 5. The normal derivative yF of eF on Γ 0 belongs to L2(Γ 0) and is the
unique solution to: yF = ByF and

∫
Γ0 yF = −1.

For all n ≥ 1, the restriction of eF to Y n−1 can be found by successively solving
1 + 2 + · · ·+ 2n−1 boundary value problems in Y 0, as follows:
•Loop: for p = 0 to n− 1,
• • Loop : for σ ∈ Ap, (at this point, if p > 0, eF |Γ σ is known)
• •• Solve the boundary value problem in Y 0: find w ∈ H1(Ω) satisfying (14),

with w|Γ0 = 0 if p = 0, w|Γ0 = eF |Γ σ ◦Mσ if p > 0, and

∂w

∂n
+

1

a

(
T (w|Fi(Γ0) ◦ Fi)

)
◦ F−1

i = − 1

2p+1a
yF ◦ F−1

i , on Fi(Γ
0), i = 1, 2.

• •• Set eF |Y 0 = w if p = 0, else set eF |Mσ(Y 0) = w ◦ (Mσ)−1.

When g is a Haar wavelet on Γ∞, the knowledge of T , eF and yF permits U(0, g)
to be computed: call g0 = 1F1(Γ∞) − 1F2(Γ∞) the Haar mother wavelet, and define
e0 = U(0, g0). One may compute e0|Y n by using the following:

Proposition 3. We have e0|Y 0 = w, where w ∈ V(Y 0) satisfies (14) and

∂w

∂n
+

1

a

(
T (w|Fi(Γ0) ◦ Fi)

)
◦ F−1

i =
(−1)i

2a
yF ◦ F−1

i on Fi(Γ
0), i = 1, 2, (16)

Furthermore, for i = 1, 2,

e0|Fi(Ω0) = (−1)i+1/2 eF ◦ F−1
i +

(
H(e0|Fi(Γ0) ◦ Fi)

)
◦ F−1

i . (17)

For a positive integer p , take σ ∈ Ap. Call gσ the Haar wavelet on Γ∞, defined by
gσ|Mσ(Γ∞) = g0 ◦ M−1

σ , and gσ|Γ∞\Mσ(Γ∞) = 0, and call eσ = U(0, gσ), and yσ

(resp. y0) the normal derivative of eσ (resp. e0) on Γ 0. The following result shows
that (eσ, yσ) can be computed by induction:

Proposition 4. The family (eσ, yσ) is defined by induction: assume that Mσ =
Fi ◦Mη for some i ∈ {1, 2}, η ∈ Ap−1, p > 1. Then eσ|Y 0 = w, where w ∈ V(Y 0)
satisfies (14) and

∂w

∂n
+

1

a

(
T (w|Fi(Γ0) ◦ Fi)

)
◦ F−1

i = − 1

2a
yη ◦ F−1

i on Fi(Γ
0), i = 1, 2. (18)
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Then, with j = 1− i, eσ|Ω\Y 0 is given by

eσ|Fi(Ω) =
1

2
eη ◦ F−1

i +
(
H(eσ|Fi(Γ0) ◦ Fi)

)
◦ F−1

i ,

eσ|Fj(Ω) =
(
H(eσ|Fj(Γ0) ◦ Fj)

)
◦ F−1

j .
(19)

If Mσ = Fi, i = 1, 2, then yη (resp. eη) must be replaced by y0 (resp. e0) in (18),
(resp.(19)).

What follows indicates that for n ≥ 0 fixed, ‖∇eσ‖L2(Y n), σ ∈ Ap, decays exponen-
tially as p→∞:

Theorem 6. ∃C > 0 and ρ, 0 < ρ < 1 s.t.

‖∇eσ‖L2(Y n) ≤ C2−nρp−n, ∀σ ∈ Ap, 0 ≤ n < p− 1. (20)

4.3 The General Case

Consider now the case when g is a general function in L2
µ. It is no longer possible to

use the self-similarity in the geometry for deriving transparent boundary conditions
for U(0, g). The idea is different: one expands g on the Haar basis, and use the
linearity of (7) with respect to g for obtaining an expansion of U(0, g) in terms of
eF , e0, and eσ, σ ∈ Ap, p > 1. Indeed, one can expand g ∈ L2

µ as follows:

g = αF 1Γ∞ + α0g
0 +

∞∑
p=1

∑
σ∈Ap

ασg
σ. (21)

The following result, which is a consequence of Theorem 6, says that (U(0, g))|Y n

can be expanded in terms of eF |Y n , e0|Y n , and eσ|Y n , σ ∈ Ap, p ≥ 1. Moreover,
a few terms in the expansion are enough to approximate (U(0, g))|Y n with a good
accuracy:

Proposition 5. Assume (21) and call rP the error rP = U(0, g)− αF eF − α0e
0 −∑P

p=1

∑
σ∈Ap

ασe
σ. ∃C (independent of g) s.t.

‖rP ‖H1(Y n) ≤ C
√

2−P ρP−n‖g‖L2
µ
, ∀n, P, 0 ≤ n < P − 1. (22)

Generalizations. Here we discuss possible generalizations of the example above.
The geometrical construction only depends on three basic elements: the elementary
cell Y 0 and the similitudes F1 and F2 (dilation ratii a1 and a2, 0 < ai < 1, rotation
angles α1 and α2). The following conditions must be satisfied: 1) the elementary cell
Y 0 is a Lipschitz domain. 2) The domain Ω defined by (2) is a connected open set.
3) For σ1, σ2 ∈ ∪n∈NAn, σ1 �= σ2, Mσ1(Y

0)∩Mσ2(Y
0) = ∅. If these conditions are

fulfilled, all the above results apply. The important point is to use the measure µ
defined in Theorem 2. Of course, one can consider constructions with to more than
two similitudes, i.e. Fi, i = 1, . . . , p, with respective dilation ratio ai > 0 and angles
αi.
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5 Numerical Results

To transpose the strategies described above to finite element methods, one needs to
use self-similar triangulations of Ω: we first consider a regular family of meshes T 0

h of
Y 0, with the special property that for i = 1, 2, the set of nodes of T 0

h lying on Fi(Γ
0)

is the image by Fi of the set of nodes lying on Γ 0. Then one can construct self-similar
meshes of Ω by Th = ∪∞

p=0 ∪σ∈Ap Mσ(T 0
h ), with self-explanatory notations. With

such meshes and conforming finite elements, one can transpose everything to the
discrete level.
An Example. The aim is to compute U(0, g)|Y 5 , with g(s) = (1s<0−1s>0) cos(3πs/2),
where s ∈ [−1, 1] is a parametrization of Γ∞. We first compute the operator T by
the method in § 4.1 and eσ|Y 5 , for σ ∈ Ap, p ≤ 5 by the method in § 4.2. Then we
expand g on the Haar basis and use the expansion in Proposition 5.
In the top of Figure 2, we plot two approximations of U(0, g)|Y 5 ; we have used
the expansion in Proposition 5., with P = 5 on the left, and P = 2 on the right.
We see that taking P = 2 is enough for approximating U(0, g)|Y 0 , but not for
U(0, g)|Y j , j ≥ 1. In the bottom of Figure 2, we plot (in log scales) the errors
‖
∑5

p=i

∑
σ∈Ap

ασeσh‖L2(Y j), for i = 2, 3, 4 and j = 0, 1, 2, 3, 4, where ασ are the
coefficients of the wavelet expansion of g. The behavior is the one predicted by
Proposition 5.
Again, we stress that there is no error from the domain truncation, and that we did
not solve any boundary value problem in Y 5, but a sequence of boundary problems
in Y 0. Nevertheless, the function smoothly matches at the interfaces between the
subdomains.

 1e-06
 1e-05
 1e-04
 0.001
 0.01
 0.1
 1

 1e-07
 2  2.5  3  3.5 4

"j=0"
"j=1"
"j=2"
"j=3"
"j=4"

Fig. 2. Top: Contours of the approximations of U(0, g)|Y 5 by taking P = 5(left) and
P = 2(right). Bottom: ‖∑5

p=i

∑
σ∈Ap

ασeσh‖L2(Y j) for i = 2, 3, 4 and j = 0, 1, 2, 3, 4.
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An Additive Schwarz Method for the
Constrained Minimization of Functionals
in Reflexive Banach Spaces
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Bucharest, Romania. lori.badea@imar.ro

Summary. In this paper, we show that the additive Schwarz method proposed in
[3] to solve one-obstacle problems converges in a much more general framework. We
prove that this method can be applied to the minimization of functionals over a
general enough convex set in a reflexive Banach space. In the Sobolev spaces, the
proposed method is an additive Schwarz method for the solution of the variational
inequalities coming from the minimization of non-quadratic functionals. Also, we
show that the one-, two-level variants of the method in the finite element space
converge, and we explicitly write the constants in the error estimations depending
on the overlapping and mesh parameters.

1 Introduction

The literature on the domain decomposition methods is very large. We can see,
for instance, the papers in the proceedings of the annual conferences on domain
decomposition methods starting with [5], or those cited in the books [10, 11] and
[13]. The multilevel or multigrid methods can be viewed as domain decomposition
methods and we can cite, for instance, the results obtained in [7, 9, 11].

In [3], an additive Schwarz method has been proposed for symmetric variational
inequalities. Although this method does not assume a decomposition of the convex
set according to the domain decomposition, the convergence proof is given only for
the one-obstacle problems. In Section 2 of this paper, we prove that the method
converges in a much more general framework, i.e. we can apply it to the minimiza-
tion of functionals over a general enough convex set in a reflexive Banach space. In
Section 3, we show that, in the Sobolev spaces, the proposed method is an additive
Schwarz method and it converges for variational inequalities coming from the min-
imization of non-quadratic functionals. Also, in Section 4, we show that the one-,
two-level variants of the method in the finite element space converge, and we ex-
plicitly write the constants in the error estimations depending on the overlapping
and mesh parameters. The convergence rates we find are similar with those ob-
tained in the literature for symmetric inequalities or equations, i.e. they are almost
independent on the overlapping and mesh parameters in the case of the two-level
method.
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2 General Convergence Result

Let us consider a reflexive Banach space V , some closed subspaces of V , V1, · · · , Vm,
and K ⊂ V a non empty closed convex subset. We make the following

Assumption 1 There exists a constant C0 > 0 such that for any w, v ∈ K there
exist vi ∈ Vi, i = 1, . . . ,m, which satisfy

v − w =
m∑

i=1

vi, w + vi ∈ K and
m∑

i=1

||vi|| ≤ C0||v − w||.

We consider a Gâteaux differentiable functional F : V → R, which is assumed
to be coercive on K, in the sense that F (v)

||v|| →∞, as ||v|| → ∞, v ∈ K, if K is not
bounded. Also, we assume that there exist two real numbers p, q > 1 such that for
any real number M > 0 there exist αM , βM > 0 for which

αM ||v − u||p ≤ 〈F ′(v)− F ′(u), v − u〉 and

||F ′(v)− F ′(u)||V ′ ≤ βM ||v − u||q−1
(1)

for any u, v ∈ V with ||u||, ||v|| ≤ M . Above, we have denoted by F ′ the Gâteaux
derivative of F , and we have marked that the constants αM and βM may depend
on M . It is evident that if (1) holds, then for any u, v ∈ V , ||u||, ||v|| ≤M , we have
αM ||v − u||p ≤ 〈F ′(v) − F ′(u), v − u〉 ≤ βM ||v − u||q. Following the way in [6], we
can prove that for any u, v ∈ V , ||u||, ||v|| ≤M , we have

〈F ′(u), v − u〉+
αM

p
||v − u||p ≤ F (v)− F (u) ≤ 〈F ′(u), v − u〉+

βM

q
||v − u||q. (2)

We point out that since F is Gâteaux differentiable and satisfies (1), then F is a
convex functional (see Proposition 5.5 in [4], p. 25).

We consider the minimization problem

u ∈ K : F (u) ≤ F (v), for any v ∈ K, (3)

and since the functional F is convex and differentiable, it is equivalent with the
variational inequality

u ∈ K : 〈F ′(u), v − u〉 ≥ 0, for any v ∈ K. (4)

We can use, for instance, Theorem 8.5 in [8], p. 251, to prove that problem (3) has
a unique solution if F has the above properties. In view of (2), for a given M > 0
such that the solution u ∈ K of (3) satisfies ||u|| ≤M , we have

αM

p
||v − u||p ≤ F (v)− F (u) for any v ∈ K, ||v|| ≤M. (5)

To solve the minimization problem (3), we propose the following additive sub-
space correction algorithm corresponding to the subspaces V1, . . . , Vm and the convex
set K.
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Algorithm 1 We start the algorithm with an arbitrary u0 ∈ K. At iteration n+ 1,
having un ∈ K, n ≥ 0, we solve the inequalities

wn+1
i ∈ Vi, u

n + wn+1
i ∈ K : 〈F ′(un + wn+1

i ), vi − wn+1
i 〉 ≥ 0,

for any vi ∈ Vi, u
n + vi ∈ K, (6)

for i = 1, · · · ,m, and then we update un+1 = un + ρ

m∑
i=1

wn+1
i , where ρ is chosen

such that un+1 ∈ K for any n ≥ 0.

A possible choice of ρ to get un+1 ∈ K, is ρ ≤ 1
m

. Indeed, if we write 0 < r =

ρm ≤ 1, then un+1 = (1− r)un + r
m∑

i=1

1

m
(un + wn+1

i ) ∈ K. Evidently, problem (6)

has an unique solution and it is equivalent with

wn+1
i ∈ Vi, u

n + wn+1
i ∈ K : F (un + wn+1

i ) ≤ F (un + vi),
for any vi ∈ Vi, u

n + vi ∈ K. (7)

Let us now give the convergence result of Algorithm 1.

Theorem 1. We consider that V is a reflexive Banach, V1, · · · , Vm are some closed
subspaces of V , K is a non empty closed convex subset of V satisfying Assumption
1, and F is a Gâteaux differentiable functional on K which is supposed to be coercive
if K is not bounded, and satisfies (1). On these conditions, if u is the solution of
problem (3) and un, n ≥ 0, are its approximations obtained from Algorithm 1, then
there exists M > 0 such that the following error estimations hold:

(i) if p = q we have

F (un)− F (u) ≤
(

C1

C1 + 1

)n [
F (u0)− F (u)

]
, (8)

||un − u||p ≤ p

αM

(
C1

C1 + 1

)n [
F (u0)− F (u)

]
, (9)

where C1 is given in (14), and
(ii) if p > q we have

F (un)− F (u) ≤ F (u0)− F (u)[
1 + nC2 (F (u0)− F (u))

p−q
q−1

] q−1
p−q

, (10)

||u− un||p ≤ p

αM

F (u0)− F (u)[
1 + nC2 (F (u0)− F (u))

p−q
q−1

] q−1
p−q

, (11)

where C2 is given in (18).

Proof. We first prove that the approximation sequence (un)n≥0 of u obtained from
Algorithm 1 is bounded for ρ = r

m
, 0 ≤ r ≤ 1. In view of the convexity of F and

equation (7), we get
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F (un+1) = F (un +
r

m

m∑
i=1

wn+1
i ) = F ((1− r)un +

m∑
i=1

r

m
(un + wn+1

i ))

≤ (1− r)F (un) +
r

m

m∑
i=1

F (un + wn+1
i ) ≤ F (un).

Consequently, using (3), we have F (u) ≤ F (un+1) ≤ F (un) ≤ · · · ≤ F (u0), and,
from the coercivity of F if K is not bounded, we get that there exists M > 0, such
that ||u|| ≤M and ||un|| ≤M , n ≥ 0.

In view of (2) and (6), we get αM
p
||wn+1

i ||p ≤ F (un)−F (un +wn+1
i ). Using this

equation in the place of (7), with a proof similar with the above one, we get

ρ
αM

p

m∑
i=1

||wn+1
i ||p ≤ F (un)− F (un+1) (12)

Now, writing ūn+1 = un +

m∑
i=1

wn+1
i in view of the convexity of F , we have

F (un+1) = F (un +
r

m

m∑
i=1

wn+1
i ) = F ((1− r

m
)un +

r

m
(un +

m∑
i=1

wn+1
i )

≤ (1− r

m
)F (un) +

r

m
F (un +

m∑
i=1

wn+1
i ) ≤ (1− r

m
)F (un) +

r

m
F (ūn+1).

With v := u and w := un, we get a decomposition vn
i ∈ Vi of u− un satisfying the

conditions of Assumption 1. Using this decomposition, the above equation, (2) and
inequalities (6),

F (un+1)− F (u) + ραM
p
||ūn+1 − u||p

≤ (1− ρ)(F (un)− F (u)) + ρ
(
F (ūn+1)− F (u) + αM

p
||ūn+1 − u||p

)
≤ (1− ρ)(F (un)− F (u)) + ρ〈F ′(ūn+1), ūn+1 − u〉

= (1− ρ)(F (un)− F (u)) + ρ
m∑

i=1

〈F ′(ūn+1), wn+1
i − vn

i 〉

≤ (1− ρ)(F (un)− F (u)) + ρ

m∑
i=1

〈F ′(un + wn+1
i )− F ′(ūn+1), vn

i − wn+1
i 〉

≤ (1− ρ)(F (un)− F (u)) + ρβM

(
m∑

i=1

||wn+1
i ||

)q−1 m∑
i=1

||vn
i − wn+1

i ||

≤ (1−ρ)(F (un)−F (u))+ρβMm
(p−1)(q−1)

p

(
m∑

i=1

||wn+1
i ||p

) q−1
p m∑

i=1

(||vn
i ||+ ||wn+1

i ||)

≤ (1− ρ)(F (un)− F (u))

+ ρβMm
(p−1)(q−1)

p

(
m∑

i=1

||wn+1
i ||p

) q−1
p

(
C0||u− un||+

m∑
i=1

||wn+1
i ||

)
≤ (1− ρ)(F (un)− F (u))

+ ρβMm
(p−1)(q−1)

p

(
m∑

i=1

||wn+1
i ||p

) q−1
p

(
C0||u− ūn+1||+ (1 + C0)

m∑
i=1

||wn+1
i ||

)
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≤ (1− ρ)(F (un)− F (u)) + ρβMC0m
(p−1)(q−1)

p

(
m∑

i=1

||wn+1
i ||p

) q−1
p

||u− ūn+1||

+ ρβM (1 + C0)m
(p−1)q

p

(
m∑

i=1

||wn+1
i ||p

) q
p

.

But, for any ε > 0 r > 1 and x, y ≥ 0, we have x
1
r y ≤ εx+ 1

ε
1

r−1
y

r
r−1 . Consequently,

we get

F (un+1)− F (u) + ραM
p
||ūn+1 − u||p

≤ (1− ρ)(F (un)− F (u)) + ρβM (1 + C0)m
(p−1)q

p

(
m∑

i=1

||wn+1
i ||p

) q
p

+ ρβMC0
m

(p−1)(q−1)
p

ε
1

p−1

(
m∑

i=1

||wn+1
i ||p

) q−1
p−1

+ ρβMC0εm
(p−1)(q−1)

p ||u− ūn+1||p .

With ε = αM
p

1

βM C0m
(p−1)(q−1)

p

, the above equations become

F (un+1)− F (u) ≤ 1−ρ
ρ

(F (un)− F (un+1)) + βM (1 + C0)m
(p−1)q

p

(
m∑

i=1

||wn+1
i ||p

) q
p

+

(
βMC0m

(p−1)(q−1)
p

) p
p−1

(
p

αM

) 1
p−1

(
m∑

i=1

||wn+1
i ||p

) q−1
p−1

.

In view of this equation and (12), we have

F (un+1)− F (u) ≤ 1− ρ
ρ

(
F (un)− F (un+1)

)
+

1

ρ
q
p

βM (1 + C0)m
(p−1)q

p

(αM
p

)
q
p

(
F (un)− F (un+1)

) q
p (13)

+
1

ρ
q−1
p−1

(
βMC0m

(p−1)(q−1)
p

) p
p−1

(
αM

p

) q
p−1

(
F (un)− F (un+1)

) q−1
p−1 .

We notice that because of (2) we must have p ≥ q. Also, using (5), we see that
error estimations in (9) and (11) can be obtained from (8) and (10), respectively.
Now, if p = q, from the above equation, we easily get equation (8), where

C1 =
1

ρ

⎛⎝1− ρ+mp−1 βM (1 + C0)
αM

p

+mp−1

(
βMC0

αM
p

) p
p−1

⎞⎠ . (14)

Finally, if p > q, from (13), we have

F (un+1)− F (u) ≤ C3

(
F (un)− F (un+1)

) q−1
p−1 (15)

where
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C3 =
1− ρ
ρ

(
F (u0)− F (u)

) p−q
p−1 +

m
(p−1)q

p

ρ
q
p

βM (1 + C0)

(αM
p

)
q
p

(
F (u0)− F (u)

) p−q
p(p−1)

+
mq−1

ρ
q−1
p−1

(βMC0)
p

p−1(
αM

p

) q
p−1

. (16)

From (15), we get F (un+1)− F (u) + 1

C

p−1
q−1
3

(
F (un+1)− F (u)

) p−1
q−1 ≤ F (un)− F (u),

and we know (see Lemma 3.2 in [12]) that for any r > 1 and c > 0, if x ∈ (0, x0]

and y > 0 satisfy y + cyr ≤ x, then y ≤
(

c(r−1)

crxr−1
0 +1

+ x1−r
) 1

1−r
. Consequently, we

have F (un+1)− F (u) ≤
[
C2 + (F (un)− F (u))

q−p
q−1

] q−1
q−p

, from which,

F (un+1)− F (u) ≤
[
(n+ 1)C2 +

(
F (u0)− F (u)

) q−p
q−1

] q−1
q−p

, (17)

where

C2 =
p− q

(p− 1) (F (u0)− F (u))
p−q
q−1 + (q − 1)C

p−1
q−1
3

. (18)

Equation (17) is another form of equation (10).

3 Additive Schwarz Method as a Subspace Correction
Method

The proofs of the results in this section are similar with those in the case of the
multiplicative Schwarz method which are given in [1] for the infinite dimensional
case, and in [2] for the one- and two-level methods. Detailed proofs for the additive
method will be given in a forthcoming paper.

Let Ω be an open bounded domain in Rd with Lipschitz continuous boundary
∂Ω. We take V =W 1,s

0 (Ω), 1 < s <∞, and a convex closed set K ⊂ V satisfying

Property 1. If v, w ∈ K and θ ∈ C1(Ω̄), with 0 ≤ θ ≤ 1, then θv + (1− θ)w ∈ K.

We consider an overlapping decomposition of the domain Ω, Ω = ∪m
i=1Ωi, in which

Ωi are open subdomains with Lipschitz continuous boundary. We associate to this
domain decomposition the subspaces Vi = W 1,s

0 (Ωi), i = 1, . . . ,m. In this case,
Algorithm 1 represents an additive Schwarz method. We can show that Assumption
1 holds for any convex set K having Property 1. Consequently, the additive Schwarz
method geometrically converges if the convex set has this property, but the constant
C0 in Assumption 1 depends on the domain decomposition parameters. Therefore,
since the constants C1 and C2 in the error estimations in Theorem 1 depend on C0,
then these estimations will depend on the domain decomposition parameters, too.

When we use the linear finite element spaces we introduce similar spaces to the
above ones, Vh and V i

h , i = 1, . . . ,m, which are considered as subspaces of W 1,s
0 . For

the one- and two-level additive Schwarz methods, we can show that Assumption 1
also holds for any closed convex set Kh satisfying
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Property 2. If v, w ∈ Kh, and if θ ∈ C0(Ω̄), θ|τ ∈ C1(τ) for any τ ∈ Th, and
0 ≤ θ ≤ 1, then Lh(θv + (1− θ)w) ∈ Kh.

We have denoted by Th the mesh partition of the domain, and by Lh the P1-
Lagrangian interpolation operator which uses the function values at the mesh nodes.
We can prove that Assumption 1 holds for any convex set Kh having Property 2.
Moreover, in this case, we are able to explicitly write the dependence of C0 on the
domain decomposition and mesh parameters.

In the case of the one-level method, this constant can be written as

C0 = Cm (1 + 1/δ) , (19)

where δ is the overlapping parameter and C is independent of the mesh parameter
and the domain decomposition. In the case of the two-level method, we introduce
a new subspace V 0

H associated with the coarse mesh TH . The constant C0 can be
written as

C0 = C(m+ 1) (1 +H/δ)Cd,s(H,h), (20)

where

Cd,s(H,h) =

⎧⎪⎨⎪⎩
1 if d = s = 1 or 1 ≤ d < s ≤ ∞(
ln H

h
+ 1

) d−1
d if 1 < d = s <∞(

H
h

) d−s
s if 1 ≤ s < d <∞.

(21)

We notice that, if the overlapping size δ and the mesh sizes H and h are chosen such
that H/h and H/δ are constant, then the convergence rate of the two-level additive
Schwarz method is independent of the mesh and domain decomposition parameters.
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1 Introduction

In this paper, we investigate the following boundary value problem: Let Ω ⊂ Rd,
d = 2, 3 be a bounded domain and let A be a matrix which is symmetric and
uniformly positive definite in Ω. Find u ∈ H1

Γ1(Ω) = {u ∈ H1(Ω), u = 0 on Γ1},
Γ1 ∩ Γ2 = ∅, Γ1 ∪ Γ2 = ∂Ω such that

a�(u, v) :=

∫
Ω

(∇u)TA∇v =

∫
Ω

fv +

∫
Γ2

f1v := 〈f, v〉Ω + 〈f1, v〉Γ2 (1)

holds for all v ∈ H1
Γ1(Ω). Problem (1) will be discretized by means of the hp-

version of the finite element method using triangular/tetrahedral elements �s, s =
1, . . . , nel, see e.g. [5, 8]. Let �̂d, d = 2, 3 be the reference triangle (tetrahedron) and
Fs : �̂ → �s be the (possibly nonlinear) isoparametric mapping to the element �s.
We define the finite element space M := {u ∈ H1

Γ1(Ω), u |�s= ũ(F−1
s (x, y, z)), ũ ∈

Pp}, where Pp is the space of all polynomials of maximal total degree p. By Ψ =
(ψ1, . . . , ψN ), we denote a basis for M. The Galerkin projection of (1) onto M leads
to the linear system of algebraic finite element equations

KΨu = f, where KΨ = [a∆(ψj , ψi)]
N
i,j=1 , f

p
= [〈f, ψi〉+ 〈f1, ψi〉Γ2 ]

N
i=1 . (2)

The global stiffness matrix KΨ can be expressed by the local stiffness matrices on
the elements, i.e.

KΨ =
nel∑
s=1

RT
s KsRs, (3)

where Ks is the stiffness matrix on the element �s and Rs denotes the connectivity
matrix for the numbering of the shape functions on �s and Ω. In the 2D and 3D
case, the choice of a basis which is optimal due to condition number and sparsity
of KΨ is not so clear. In [7], a new basis for triangular and tetrahedral elements
has been proposed. This basis is optimal w.r.t. the number of nonzero entries of
the element stiffness matrix, see [6]. A proof for the sparsity of the element stiffness
matrix with O(pd) nonzero entries is not known in the literature. In [4], another
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basis for the triangular case is proposed. Moreover, it is proved that the element
stiffness matrix has O(p2) nonzero entries. This paper is a completion to the papers
[4] and [3]. We will prove the sparsity for the Karniadakis-Sherwin basis, [7]. This
proof is similar to the proof for the basis in [4]. However, the proof requires some
additional relations for Jacobi polynomials which makes the proof more technical.

The outline of the paper is the following. In Section 2, we summarize the most
important properties for Jacobi polynomials. In Section 3, the 2D case is investi-
gated. In Section 4, the 3D case is investigated.

2 Properties of Jacobi Polynomials

For the definition of our basis functions on the reference element, Jacobi polynomials
are required, see [1, 2, 9] for more details.

Let

pα
n(x) =

1

2nn!(1− x)α

dn

dxn

(
(1− x)α(x2 − 1)n) n ∈ N0, α > −1 (4)

be the nth Jacobi polynomial with respect to the weight function (1 − x)α. pα
n(x)

is a polynomial of degree n, i.e. pα
n ∈ Pn((−1, 1)), where Pn is the space of all

polynomials of degree n on the interval. Moreover, let

p̂α
n(x) =

∫ x

−1

pα
n−1(y) dy n ≥ 1, p̂α

0 (x) = 1 (5)

be the nth integrated Jacobi polynomial.

Lemma 1. Let pα
n be defined via (4). Moreover, let j, l ∈ N0 and α > −1. Then, we

have

pα−1
n (x) =

1

α+ 2n
[(α+ n)pα

n(x)− npα
n−1(x)] . (6)

Moreover, the integral relations∫ 1

−1

(1− x)αpα
j (x)pα

l (x) dx = ρα
j δjl, where ρα

j =
2α+1

2j + α+ 1
, (7)∫ 1

−1

(1− x)αpβ
j (x)ql(x) dx = 0 ∀ql ∈ Pl, α− β ∈ N0, j > l + α− β (8)

are valid.

Proof. A proof can be found in [4].

The next lemma considers properties of the integrated Jacobi polynomials (5).

Lemma 2. Let l, j ∈ N0. Let pα
n and p̂α

n be defined via (4) and (5). Then, the
identities

p̂α
n(x) =

2n+ 2α

(2n+ α− 1)(2n+ α)
pα

n(x) +
2α

(2n+ α− 2)(2n+ α)
pα

n−1(x)
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− 2n− 2

(2n+ α− 1)(2n+ α− 2)
pα

n−2(x), n ≥ 2, (9)

p̂α
n(x) =

2

2n+ α− 1

(
pα−1

n (x) + pα−1
n−1(x)

)
, n ≥ 1 (10)

are valid.

Proof. The proof can be found in [4].

Finally, we present two properties of the Jacobi polynomials which have not been
presented in [4].

Lemma 3. Let l, j ∈ N0. Let pα
n and p̂α

n be defined via (4) and (5). Then, the
following assertions are valid for α > −1, j > 1:

(α− 1)p̂α
j (y) = (1− y)pα

j−1(y) + 2pα−2
j (y), (11)

(1− y)
(
(2− 2j)pα

j−2(y) + αpα
j−1(y)

)
(12)

+(α+ 2j − 2)(α− 1)p̂α
j (y) = 4(α+ j − 2)pα−2

j−1 (y) + (2α− 4)pα−2
j (y).

Proof. The proof can be found in [3].

3 The Triangular Case

In this section, we consider the case d = 2. Let �̂2 be the reference triangle with
the vertices (−1,−1), (1,−1) and (0, 1). We introduce

φij(x, y) = p̂0i

(
2x

1− y

)(
1− y

2

)i

p̂2i
j (y), i+ j ≤ p, i ≥ 2, j ≥ 1, (13)

as the interior bubble functions on �̂2. This is the basis proposed in [7], whereas
the basis with p̂2i−1

j (y) instead of p̂2i
j (y) in (13) has been investigated in [4]. The

vertex functions and edge bubbles are taken from [4]. Let A =

[
a b
b c

]
and let

K̂2 = [aij,kl](i,j);(k,l) =

[∫
�̂2

(∇φij(x, y))
TA∇φkl(x, y) d(x, y)

]
(i,j);(k,l)

(14)

be the stiffness matrix on �̂2 with respect to the basis (13).

Theorem 1. Let K̂2 be defined via (13)-(14). Then, the matrix K̂2 has O(p2)
nonzero matrix entries. More precisely, aij,kl = 0 if |i− k| > 2 or |i− k+ j− l| > 1.

Proof. First, we compute ∇φij . A simple computation shows that

∇φij =

⎡⎣ p0i−1

(
2x

1−y

) (
1−y
2

)i−1
p̂2i

j (y)

1
2
p0i−2

(
2x

1−y

) (
1−y
2

)i−1
p̂2i

j (y) + p̂0i

(
2x

1−y

) (
1−y
2

)i
p2i

j−1(y)

⎤⎦ , (15)

see [4]. Let

a
(y)
ij,kl =

∫
�̂2

∂φij

∂y
(x, y)

∂φkl

∂y
(x, y) d(x, y). (16)
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Using (15) and the Duffy transform z = 2x
1−y

, we obtain

a
(y)
ij,kl =

1

4

∫ 1

−1

p0i−2(z)p
0
k−2(z) dz

∫ 1

−1

(
1− y

2

)i+k−1

p̂2i
j (y)p̂2k

l (y) dy

+

∫ 1

−1

p̂0i (z)p̂
0
k(z) dz

∫ 1

−1

(
1− y

2

)i+k+1

p2i
j−1(y)p

2k
l−1(y) dy

+
1

2

∫ 1

−1

p0i−2(z)p̂
0
k(z) dz

∫ 1

−1

(
1− y

2

)i+k

p̂2i
j (y)p2k

l−1(y) dy

+
1

2

∫ 1

−1

p̂0i (z)p
0
k−2(z) dz

∫ 1

−1

(
1− y

2

)i+k

p2i
j−1(y)p̂

2k
l (y) dy

=: a
(y,1)
ij,kl + a

(y,2)
ij,kl + a

(y,3)
ij,kl + a

(y,4)
ij,kl .

With (9) for α = 0 we arrive at a
(y)
ij,kl = 0 if |i− k| �∈ {0, 2}.

Let k = i − 2. Then a
(y,1)
i,j,i−2,l and a

(y,4)
i,j,i−2,l vanish by repeated application of

(7) and (9). The remaining integrals can be simplified using (9) and by (7) be
evaluated to ∫ 1

−1

p̂0i (z)p̂
0
i−2(z) dz = − 2

(2i− 1)(2i− 3)(2i− 5)
,∫ 1

−1

p0i−2(z)p̂
0
i−2(z) dz =

2

(2i− 3)(2i− 5)
.

We insert now these relations into the expressions for a
(y,2)
ij,kl and a

(y,3)
ij,kl and use

relation (11). Then, we obtain

a
(y,2)
i,j,i−2,l + a

(y,3)
i,j,i−2,l = 2c0

∫ 1

−1

(
1− y

2

)2i−1

p2i
j−1(y)p

2i−4
l−1 (y) dy

−(2i− 1)c0

∫ 1

−1

(
1− y

2

)2i−2

p̂2i
j (y)p2i−4

l−1 (y) dy

= c0

∫ 1

−1

(
1− y

2

)2i−2 [
(1− y)p2i

j−1(y)− (2i− 1)p̂2i
j (y)

]
p2i−4

l−1 (y) dy

= 2c0

∫ 1

−1

(
1− y

2

)2i−2

p2i−2
j (y)p2i−4

l−1 (y) dy

with c−1
0 = −(2i− 1)(2i− 3)(2i− 5). Now, we apply (8) and obtain ai,j,i−2,l �= 0 if

−3 ≤ j − l ≤ −1.
The case k = i+2 can be proved by the same arguments. For i = k, we investigate

each term ay,s
ij,kl, s = 1, 2, 3, 4 separately. Using (6)-(10), the assertion can be proved.

This proof is similar to the proof given in [4].
Next, we consider

a
(xy)
ij,kl =

∫
�̂2

∂φij

∂x
(x, y)

∂φkl

∂y
(x, y) d(x, y). (17)

Using (15) and the Duffy transform z = 2x
1−y

again, we obtain
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a
(xy)
ij,kl =

1

2

∫ 1

−1

p0i−1(z)p
0
k−2(z) dz

∫ 1

−1

(
1− y

2

)i+k−1

p̂2i
j (y)p̂2k

l (y) dy

+

∫ 1

−1

p0i−1(z)p̂
0
k(z) dz

∫ 1

−1

(
1− y

2

)i+k

p̂2i
j (y)p2k

l−1(y) dy.

Using (7) and (9), a
(xy)
ij,kl = 0 if |i− k| �= 1. Let k = i+ 1. Then, we have

a
(xy)
i,j,i+1,l =

1

4i2 − 1

∫ 1

−1

(
1− y

2

)2i

p̂2i
j (y)

×
[
(2i+ 1)p̂2i+2

l (y)− (1− y)p2i+2
l−1 (y)

]
dy

= − 2

4i2 − 1

∫ 1

−1

(
1− y

2

)2i

p̂2i
j (y)p2i

l (y) dy.

Finally, we apply (7) and (9) to obtain a
(xy)
i,j,i+1,l �= 0 if −2 ≤ j − l ≤ 0. The case

k = i− 1 follows by the same arguments.

Remark 1. Since a
(y,2)
i,j,i−2,l �= 0 for all j > l, the sparsity of K̂ cannot be proved

with a direct evaluation of a
(y,2)
i,j,i−2,l and a

(y,3)
i,j,i−2,l. Only for i = k, the terms a

(y,s)
i,j,i,l,

s = 1, 2, 3, 4, can be considered separately.

4 The Tetrahedral Case

Let �̂3 be the reference tetrahedron with the vertices (−1,−1,−1), (1,−1,−1),
(0, 1,−1) and (0, 0, 1). The interior bubbles are

φijk(x, y, z) = p̂0i

(
4x

1− 2y − z

)(
1− 2y − z

4

)i

p̂2i
j

(
2y

1− z

)
×
(

1− z
2

)j

p̂2i+2j
k (z), i+ j + k ≤ p, i ≥ 2, j, k ≥ 1. (18)

The vertex functions, edge bubbles and face bubbles are taken from [3]. Let Â3 =⎡⎣ a11 a12 a13a12 a22 a23
a13 a23 a33

⎤⎦ ∈ �3×3 be a diffusion matrix with constant coefficients. We introduce

K̂3 = [aijk,i′j′k′ ]i+j+k=p,i′+j′+k′=p
i,i′=2,j,j′,k,k′=1

=

[∫
�̂3

(∇φijk)T Â3∇φi′j′k′

]
i,i′,j,j′,k,k′

(19)

as the part of the stiffness matrix that corresponds to the interior bubbles (18).

Theorem 2. Let K̂3 be defined via (19). Then, the matrix has (p−1)(p−2)(p−3)
6

rows

and columns. Moreover, the entry aijk,i′j′k′ of the matrix K̂3 is zero if |i− i′| > 2,
or |i+ j − i′ − j′| > 3, or |i+ j + k − i′ − j′ − k′| > 2.
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Proof. The proofs for
∫
�̂3

∂φijk

∂x

∂φi′j′k′
∂x

and
∫
�̂3

∂φijk

∂y

∂φi′j′k′
∂y

are similar to the tri-

angular case. For the computation of
∫
�̂3

∂φijk

∂z

∂φi′j′k′
∂z

, 16 different integrals have to

be considered, see [3]. For i = i′, all y-integrals can be considered separately, whereas
for |i − i′| = 2 we collect several integrals and use relation (12). To illustrate this
procedure we consider the following three integrands,

Î(14) = −(j − 1)c1 p̂
0
i (x)p̂

0
i′(x) wγy (y) p2i

j−2(y)p
2i′
j′−1(y)

×wγz (z) p̂2i+2j
k (z)p̂2i′+2j′

k′ (z),

Î(15) = i i′ c1p̂
0
i (x)p̂

0
i′(x) wγy (y) p2i

j−1(y)p
2i′
j′−1(y) wγz (z) p̂2i+2j

k (z)p̂2i′+2j′

k′ (z),

Î(17) = −i′c1 p0i−2(x)p̂
0
i′(x) wγy−1(y) p̂

2i
j (y)p2i′

j′−1(y)

×wγz (z) p̂2i+2j
k (z)p̂2i′+2j′

k′ (z),

where wγ(ζ) =
(

1−ζ
2

)γ
is the weight function for Jacobi polynomials pγ

n(ζ) and
γy = i + i′ + 1, resp. γz = i + j + i′ + j′. The constant c1 is given by c−1

1 =
4(i+j−1)(i′+j′−1). The numbering of the terms Î(14), Î(15), and Î(17) corresponds
to the numbering in [3]. These integrands are obtained after taking the partial
derivative in z-direction and performing the corresponding Duffy transformations,
compare [3]. The x-integrals can be evaluated as in the triangular case and for
i′ = i− 2 one obtains for h(y, z) =

∫ 1

−1
Î(14) + Î(15) + Î(17) dx, the equation

h(y, z) =c2 w2i−2(y)
[
(1− y)

(
(j − 1)p2i

j−2(y)− ip2i
j−1(y)

)
−(2i− 1)(i+ j − 1)p̂2i

j (y)
]
p2i−4

j′−1(y)wγz (z)p̂2i+2j
k (z)p̂2i′+2j′

k′ (z)

=:c2 h1(y)wγz (z)p̂2i+2j
k (z)p̂2i′+2j′

k′ (z),

where c−1
2 = 4(2i−5)(2i−3)(2i−1)(i+ j−3)(i+ j−1)/(i−2). The straightforward

approach is to evaluate these integrals by exploiting the orthogonality relation (7).
To do so, one has to rewrite all polynomials in terms of Jacobi polynomials with
parameter α corresponding to the appearing weight, i.e. α = 2i− 1 for the first two
summands and α = 2i−2 for the third one. This can easily be achieved for p2i−4

j′−1(y)

using identity (6) recursively. In order to expand p2i
j−2(y), p

2i
j−1(y) and p̂2i

j (y) in the
basis of Jacobi polynomials p2i−1

m (y) we need the coefficients am, bm of

p2i
n (y) =

n∑
m=0

am p
2i−1
m (y), resp. p̂2i

n (y) =
n∑

m=0

bm p
2i−1
m (y).

But for both transformations all n + 1 coefficients are nonzero. Hence we consider
these three integrals together and rewrite the expression in angular brackets using
identity (12) yielding,

h1(y) =
[
(1− y)

(
(j − 1) p2i

j−2(y)− i p2i
j−1(y)

)
−(2i− 1)(i+ j − 1) p̂2i

j (y)
]
p2i−4

j′−1(y)

=
[
2(2i+ j − 2) p2i−2

j−1 (y) + (2i− 2) p2i−2
j (y)

]
p2i−4

j′−1(y).

Using this substitution the y-integrand of h(y, z), h1(y) has the following form,
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h1(y) = w2i−2(y)
[
(2i+ j − 2) p2i−2

j−1 (y) + (i− 1) p2i−2
j (y)

]
p2i−4

j′−1(y). (20)

Finally we use identity (6) twice on p2i−4
j′−1(y),

p2i−4
j′−1(y) =

(j′ − 2)(j′ − 1)

2(i+ j′ − 3)(2i+ 2j′ − 5)
p2i−2

j′−3(y)

− (j′ − 1)(2i+ j′ − 4)

2(i+ j′ − 3)(i+ j′ − 2)
p2i−2

j′−2(y)

+
(2i+ j′ − 4)(2i+ j′ − 3)

2(i+ j′ − 2)(2i+ 2j′ − 5)
p2i−2

j′−1(y).

Hence we have to evaluate integrals of the form∫ 1

−1

w2i−2(y) p
2i−2
m (y)p2i−2

m′ (y) dy,

where the polynomial degrees range fromm ∈ {j−1, j} andm′ ∈ {j′−3, j′−2, j′−1}.
Now by orthogonality relation (7) it easily follows that the integral over (20) is
nonzero only for j′ = j, j + 1, j + 2, j + 3.
The evaluation of the z-integrals can be done by the same procedure as in the
triangular case. To finish the proof one has to consider also the off-diagonal terms,

i.e. integrals of the form
∫
�̂3

∂φijk

∂η

∂φi′j′k′
∂ζ

, η, ζ ∈ {x, y, z}, η �= ζ. These integrals
can be treated in complete analogy.

Our practical computations were performed using a program written in the envi-
ronment of the computer algebra software Mathematica. A description of the applied
algorithm can be found in [3].
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1 Introduction

Discrete Duality Finite Volume (DDFV) schemes have recently been developed to
approximate monotone nonlinear diffusion problems

−div(ϕ(z,∇u(z))) = f(z), in Ω, u = 0, on ∂Ω, (1)

on general 2D grids. The principle of such schemes is to introduce discrete unknowns
both at centers and vertices of any given primal mesh. A discrete gradient operator
is then built over the diamond cells associated to the mesh and finally, the discrete
flux balance equations are written on the primal and dual control volumes (see
Section 2). The main advantages of this approach is that few geometric assumptions
are needed for the grid (non conformal grids are allowed for instance), and that the
discrete problem inherits the main properties (monotonicity, symmetry, ...) of the
continuous one. In [1], it is proved that the scheme is well-posed and convergent.
Under suitable regularity assumptions on ϕ and u, some error estimates are also
obtained.

Application of these schemes to nonlinear transmission problems, that is when
ϕ presents some discontinuities with respect to the space variable z, were first in-
vestigated in [2] in the case where uniform growth and coercivity conditions for
ξ �→ ϕ(z, ξ) are assumed to hold over the domain.

We propose here to generalize this analysis to the case where these growth and
coercivity conditions are no more uniform on the domain. We can imagine for in-
stance that ϕ is linear with respect to ξ on a subdomain and fully nonlinear on its
complementary. Such situations arise for instance in bimaterial problems in elastic-
plastic mechanics (see [5, 8, 9]).

Let us precise the situation under study. Let Ω be a bounded polygonal open
set in R2, split into N open polygonal subdomains Ωi :

Ω = ∪N
i=1Ωi, Ωi ∩Ωj = ∅ if i �= j,

and that ϕ : Ω×R2 → R2 in equation (1) is a Caratheodory function, constant with
respect to z on each Ωi: ϕ(z, ξ) = ϕi(ξ), for all z ∈ Ωi and ξ ∈ R2. There exists a
family p = (pi){i=1,··· ,N}, pi ∈]1,∞[ and a constant Cϕ > 0 such that
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• Monotonicity on each subdomain Ωi: for all (ξ, η) ∈ R2 × R2

(ϕi(ξ)− ϕi(η), ξ − η) ≥ Cϕ|ξ − η|2(1 + |ξ|pi + |η|pi)
pi−2

pi , if pi ≤ 2.

(ϕi(ξ)− ϕi(η), ξ − η) ≥ Cϕ|ξ − η|pi , if pi > 2.
(H1)

• Coercivity on each subdomain Ωi: for all ξ ∈ R2

(ϕi(ξ), ξ) ≥ Cϕ(|ξ|pi − 1). (H2)

• Growth conditions : for all (ξ, η) ∈ R2 × R2,

|ϕi(ξ)− ϕi(η)| ≤ Cϕ|ξ − η|pi−1, if pi ≤ 2,

|ϕi(ξ)− ϕi(η)| ≤ Cϕ

(
1 + |ξ|pi−2 + |η|pi−2) |ξ − η|, if pi > 2.

(H3)

Remark that assumption (H3) implies that

|ϕi(ξ)| ≤ Cϕ(|ξ|pi−1 + 1), ∀ξ ∈ R
2. (H4)

We introduce Lp(Ω) = {u/u|Ωi
∈ Lpi(Ωi)}, W 1,p

0 (Ω) = {u ∈ W 1,1
0 (Ω)/∇u ∈

(Lp(Ω))2}, and for q = (qi)i=1,··· ,N , we denote ‖u‖q
Lp =

N∑
i=1

‖u|Ωi
‖qi

Lpi (Ωi)
. We

finally note pmin = min(pi) and pmax = max(pi).

Theorem 1. Under assumptions (H1), (H2), (H4), the problem (1) admits for all

f ∈ Lp′
min(Ω) a unique solution u ∈W 1,p

0 (Ω). (See [8].)

These problems can be approximated either by finite element method, whose
study is undertaken in particular in [9], or by the m-DDFV (“modified” Discrete
Duality Finite Volume) method developed for non-linear elliptic equations with dis-
continuities in [2].

2 The m-DDFV Scheme

Let Mi be a finite volume mesh on Ωi for i = 1, · · · , N and M = ∪N
i=1Mi. Note

that the mesh M can present non standard edges in particular on the bound-
aries ∂Ωi ∩ ∂Ωj . We associate to each control volume K ∈ M a point xK ∈ K,
called the center. Let M∗ be the dual mesh of M, that is the mesh whose con-
trol volumes K∗ ∈ M∗ are obtained by joining the centers of control volumes
around a vertex xK∗ (see Fig. 1). Note T = (M,M∗). The DDFV methods in-
volve both unknowns (uK) ∈ RM on M and (uK∗) ∈ RM∗

on M∗, we note
uT = (uK, uK∗) ∈ RM × RM∗

. Integrating equation (1) on both K ∈ M and
K∗ ∈ M∗, the classical DDFV scheme consists in approaching the nonlinear fluxes∫

∂K (ϕ(z,∇u(z)), νK) dz and
∫

∂K∗ (ϕ(z,∇u(z)), νK∗) dz by using a discrete gradient

∇T uT , piecewise constant on a partition D = (D)D∈D called the diamond cells, and
ϕD(∇T

Du
T ) = 1

|D|
∫
D ϕ(z,∇T

Du
T ) dz. Each diamond cell is a quadrangle whose diag-

onals are some edge σ = K|L and the edge σ∗ = (xK, xL). The set DΓij specifies the
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Ω1
Ω2

M∗ DM

Fig. 1. The three meshes M, M∗, D

diamond cells lying across two distinct subdomains Ωi and Ωj and DΓ = ∪ i,j
i�=j

DΓij .

The discrete gradient introduced in [3, 7, 4] reads

∇T uT =
∑
D∈D

∇T
Du

T 1D, ∇T
Du

T =
1

sinαD

(
uL − uK

|σ∗| ν +
uL∗ − uK∗

|σ| ν∗
)

(2)

with the notations of Fig. 2. The DDFV scheme is then defined by

|σL∗ |

|σK∗ |
xK

|σK|

αD
xL

xL∗

|σL|

xK∗ xK∗

xK

xL

xD

xL∗

QK,L∗

QL,K∗

QL,L∗

QK,K∗

ν∗ = νK∗,L∗

ν = νK,L

Fig. 2. Notations in a diamond cell D = ∪Q∈QDQ

{
−∑

Dσ,σ∗∩K �=∅ |σ|
(
ϕD(∇T

Du
T ),νK

)
=

∫
K f(z) dz, ∀K ∈ M,

−
∑

Dσ,σ∗∩K∗ �=∅ |σ∗|
(
ϕD(∇T

Du
T ),νK∗

)
=

∫
K∗ f(z) dz, ∀K∗ ∈ M∗,

(3)

and admits a unique solution. Convergence and error estimates in that case are given
in [1]. These error estimates are no more valid as soon as ϕi �= ϕj , since we loose
the consistency of the nonlinear fluxes across the edges on ∂Ωi ∩∂Ωj . To tackle this
problem, we proposed in [2] in the case pi = pj , ∀i,∀j to change the approximation
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of the nonlinearity on the diamond cells ϕD(∇T
Du

T ) into ϕN
D (∇T

Du
T ) in such a way

that enforce the consistency of the fluxes across all the edges. The new scheme reads{
−∑

Dσ,σ∗∩K �=∅ |σ|
(
ϕN

D (∇T
Du

T ),νK
)

=
∫
K f(z) dz, ∀K ∈ M,

−∑
Dσ,σ∗∩K∗ �=∅ |σ∗|

(
ϕN

D (∇T
Du

T ),νK∗
)

=
∫
K∗ f(z) dz, ∀K∗ ∈ M∗.

(4)

To define ϕN
D (∇T uT ), we introduce a new discrete gradient constant on the quarters

(Q)Q of the diamond cells (see Fig. 2)

∇NuT =
∑
Q∈Q

∇N
Q u

T , ∇N
D u

T =
∑

Q∈QD

1Q∇N
Q u

T ,

with ∇N
Q u

T = ∇T
Du

T +BQδD, where δD ∈ RnD are artificial unknowns (nD = 4 for
interior diamond cells and nD = 1 for boundary diamond cells) and (BQ)Q∈Q a set
of 2× nD matrices defined for interior diamond cells by

BQK,K∗ =
1

|QK,K∗ | (|σK|ν∗, 0, |σK∗ |ν, 0) , BQL,L∗ =
1

|QL,L∗ | (0,−|σL|ν∗, 0,−|σL∗ |ν) ,

BQK,L∗ =
1

|QK,L∗ | (−|σK|ν∗, 0, 0, |σL∗ |ν) , BQL,K∗ =
1

|QL,K∗ | (0, |σL|ν∗,−|σK∗ |ν, 0) .

Note that BQ depends only on the geometry of the diamond cell under study.
For Q ⊂ Ωi, we note ϕQ(ξ) = ϕi(ξ) and

ϕN
D (∇T

Du
T ) =

1

|D|
∑

Q∈QD

|Q|ϕQ(∇N
Q u

T ). (5)

For each D ∈ D, we choose δD ∈ RnD such that, the conservativity of the fluxes is
achieved, that is(

ϕQK,K∗ (∇T
Du

T +BQK,K∗ δD),ν∗
)

=
(
ϕQK,L∗ (∇T

Du
T +BQK,L∗ δD),ν∗

)
(
ϕQL,K∗ (∇T

Du
T +BQL,K∗ δD),ν∗

)
=
(
ϕQL,L∗ (∇T

Du
T +BQL,L∗ δD),ν∗

)
(
ϕQK,K∗ (∇T

Du
T +BQK,K∗ δD),ν

)
=
(
ϕQL,K∗ (∇T

Du
T +BQL,K∗ δD),ν

)
(
ϕQK,L∗ (∇T

Du
T +BQK,L∗ δD),ν

)
=
(
ϕQL,L∗ (∇T

Du
T +BQL,L∗ δD),ν

)
.

(6)

We then only have to solve for each diamond cell in DΓ a nonlinear problem and
∇N

D u
T can be seen as a nonlinear implicit function of ∇T

Du
T . Note that δD = 0 as

soon as D ⊂ Ωi for some i = 1, · · · , N .

Theorem 2. Under assumptions (H1)-(H3), for all uT ∈ RT and all diamond cell
D, there exists a unique δD(∇T

Du
T ) ∈ RnD satisfying (6). The scheme (4)-(6) admits

a unique solution.

For simplicity we state here error estimates obtained when u belongs to the space
E = {u ∈ C(Ω̄), u ∈ C2(Ωi)∀i}, even though the result can be extended to the
case where u|Ωi

∈W 2,pi(Ωi). We consider a family of meshes with convex diamond
cells. The geometrical regularity of the meshes is controlled by a quantity denoted
by reg(T ), see [2] for more details.
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Theorem 3. Assume that the flux ϕ satisfies (H1)-(H3). Let f ∈ Lp′
min(Ω) and

assume that the solution u to (1) belongs to E.
There exists C > 0 depending on u, on ‖f‖

L
p′
min

and on reg(T ) such that

‖u− uT ‖2Lp + ‖∇u−∇NuT ‖2Lp ≤ C size(T )2(pmin−1), if pmax ≤ 2

‖u− uT ‖p
Lp + ‖∇u−∇NuT ‖p

Lp ≤ C size(T )
pmax

pmax−1 , if pmin ≥ 2.

As usual, these error estimates (which do not use any geometric assumptions on the
solution) are pessimistic and numerical results given in Section 3 show that we can
expect a much better behavior of these schemes.

Theorems 2 and 3 can be proved by following similar arguments than the ones
presented in [2] for the case pi = pj , ∀i, ∀j.

3 Numerical Results

3.1 An Iterative Method to Solve the m-DDFV Scheme

We propose to solve the fully nonlinear discrete problem (4)-(6) by the following
decomposition-coordination algorithm (see [6, 2]). Let A = (AQ)Q∈Q be a family of
definite positive 2 × 2 matrices, playing the role of heterogeneous and anisotropic

augmented parameters and γ ∈
]
0, 1+

√
5

2

]
. The algorithm acts in three steps:

• Step 1: Find (uT ,n, δn
D) solution of∑

Q∈Q

|Q|AQ(∇T
Du

T ,n +BQδ
n
D − gn−1

Q ,∇T
Dv

T ) (7)

=
1

2

∑
K

|K|fKvK +
1

2

∑
K∗
|K∗|fK∗vK∗ +

∑
Q∈Q

|Q|(λn−1
Q ,∇T

Dv), ∀vT ∈ R
T .

∑
Q∈QD

|Q|tBQAQ(BQδ
n
D +∇T

Du
T ,n − gn−1

Q )−
∑

Q∈QD

|Q|tBQλ
n−1
Q = 0, ∀D ∈ D. (8)

Equation (8) gives, on each D, a formula for δn
D as a function of ∇T

Du
T ,n. It

follows that (7) is nothing but a global DDFV linear system to solve.
• Step 2: On each Q, find gn

Q ∈ R2 solution of

ϕQ(gn
Q) + λn−1

Q +AQ(gn
Q −∇T

Du
T ,n −BQδ

n
D) = 0. (9)

This is the unique nonlinear part of the algorithm and can be solved indepen-
dently on each quarter diamond cell, by using the Newton method for instance.

• Step 3: On each Q, compute λn
Q by

λn
Q = λn−1

Q + γAQ(gn
Q −∇T

Du
T ,n −BQδ

n
D). (10)

In [2] the following result is proven.

Theorem 4. Let T be a DDFV mesh on Ω. For any family (ϕQ)Q of strictly
monotonic continuous maps from R2 onto itself, for any augmentation matrices

family A and any γ ∈
]
0, 1+

√
5

2

]
, the algorithm (7)-(10) converges, when n goes to

infinity, towards the unique solution to the m-DDFV scheme (4)-(6).
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3.2 Numerical Examples

We illustrate the behavior of the m-DDFV scheme compared to the DDFV one, on
two academic examples for Ω = Ω1∪Ω2 with Ω1 =]0, 0.5[×]0, 1[ and Ω2 =]0.5[×]0, 1[
and ϕi(ξ) = |ξ|pi−2ξ:

Test 1 : u(x, y) =

⎧⎨⎩x
((
λ

p2−1
p1−1 − 1

)
(2x− 1) + 1

)
for x ≤ 0.5,

(1− x)((1 + λ)(2x− 1) + 1) for x ≥ 0.5,

Test 2 : u(x, y) =

{
sin(kπy)

((
2− 4

π

)
x+

(
4

kπ
− 1

))
for x ≤ 0.5,

sin(kπy)(1− x)
((

2 + 4
kπ

)
x− 1

)
for x ≥ 0.5.

In both cases the functions u, ϕ(z,∇u) ·n are continuous across the interface ∂Ω1∩
∂Ω2. The source terms is then computed by f = −div(ϕ(z,∇u)). For large values
of λ, test 1 provides an example of large jump of the gradient. Tables 1 and 2 show
that the DDFV method is first order in Lp norm whereas the m-DDFV is second
order for both meshes (see Fig. 3). Note that the order of the m-DDFV in W 1,p

norm is better on the mesh 2 (1.31) which is refined in the subdomain where p = 4
than for the regular triangular one (mesh 1 : 1.07).

Fig. 3. Example of meshes : mesh 1 (left), mesh 2 (right)

Table 1. Norm of the error for test 1 on mesh 1 with p1 = 2, p2 = 4, λ = 5.0

mesh size DDFV m-DDFV DDFV m-DDFV
Lp(Ω) Lp(Ω) W 1,p(Ω) W 1,p(Ω)

7.25E-02 4.70E-01 3.61E-02 2.5E+01 1.41
3.63E-02 2.36E-01 9.14E-02 2.03E+01 6.62E-01
1.81E-02 1.19E-01 2.24E-03 1.65E+01 3.11E-01
9.07E-03 6.01E-02 4.46E-04 1.34E+01 1.47E-01

Table 3 gives the convergence orders of the m-DDFV scheme for the test 2
for various values of (p1, p2) on the mesh 2. In this test the solution depends on
both variables x and y, but ∇u is continuous at the interface which explains that
DDFV and m-DDFV schemes have a similar behavior. Even though we get analogous
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Table 2. Norm of the error for test 1 on mesh 2 for p1 = 2, p2 = 4, λ = 5.0

mesh size DDFV m-DDFV DDFV m-DDFV
Lp(Ω) Lp(Ω) W 1,p(Ω) W 1,p(Ω)

8.83E-02 9.62E-01 9.93E-02 3.26E+01 2.52E+00
4.41E-02 4.82E-01 2.52E-02 2.62E+01 1.01E+00
2.21E-02 2.44E-01 6.31E-03 2.12E+01 4.09E-01
1.10E-02 1.23E-01 1.58E-03 1.71E+01 1.64E-01

convergence rate for (p1 = 2, p2 = 4) and (p1 = 4, p2 = 2), smaller global error is
obtained in the case when the mesh is more refined in the domain where pi is big.

4 Conclusions

We propose here a finite volume approach to approximate nonlinear transmission
problems on general 2D grids. The m-DDFV scheme we study is solved by means of
a decomposition-coordination method. Numerical results in the case of p−Laplacian
like operators illustrate the good behavior of the scheme especially in case of big
jumps of the gradient.

Table 3. Convergence rates in the two domains Ω1 and Ω2 for test 2 with k = 5

Lp1(Ω1) Lp2(Ω2) W 1,p1(Ω1) W 1,p2(Ω2)

p1 = 2, p2 = 1.5 2.00 1.99 1.49 1.69
p1 = 2, p2 = 4 2.00 2.00 1.56 1.20
p1 = 4, p2 = 2 2.04 1.98 1.20 1.60
p1 = 3, p2 = 4 2.11 2.02 1.30 1.19
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Summary. A parallel fully coupled one-level Newton-Krylov-Schwarz method is in-
vestigated for solving the nonlinear system of algebraic equations arising from the
finite difference discretization of inverse elliptic problems. Both L2 and H1 least
squares formulations are considered with the H1 regularization. We show numeri-
cally that the preconditioned iterative method is optimally scalable with respect to
the problem size. The algorithm and our parallel software perform well on machines
with modest number of processors, even when the level of noise is quite high.

1 Introduction

We consider an inverse elliptic problem [1, 6]: Find ρ(x), such that{
−∇ · (ρ∇u) = f, x ∈ Ω

u(x) = 0, x ∈ ∂Ω. (1)

When the measurement of u(x) is given, denoted as z(x), the inverse problem can
be transformed into a minimization problem:

minimize J(ρ, u) =
1

2

∫
Ω

(u− z)2dx+
β

2

∫
Ω

|∇ρ|2dx, (2)

which is usually referred to as the “L2 least squares formulation”. When the measure-
ment of ∇u(x) is given, denoted as ∇z(x), the inverse problem can be transformed
into another minimization problem:

minimize J(q, v) =
1

2

∫
Ω

ρ |∇u−∇z|2dx+
β

2

∫
Ω

|∇ρ|2dx, (3)

which is usually referred to as the “H1 least squares formulation”. Both minimization
problems (2) and (3) are subject to the constraint (1). We introduce the Lagrangian
functional

∗ The work of XCC and SL was partially supported by DOE DE-FC02-01ER25479,
NSF ACI-0305666 and ACI-0352334, the work of JZ was substantially supported
by the Hong Kong RGC grant, Project 404105.
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L(ρ, u, λ) =
1

2

∫
Ω

(u− z)2dx+ ((∇λ, ρ∇u)− (λ, f)) +
β

2

∫
Ω

|∇ρ|2dx (4)

for the L2 case, and

L(ρ, u, λ) =
1

2

∫
Ω

ρ|∇u−∇z|2dx+ ((∇λ, ρ∇u)− (λ, f)) +
β

2

∫
Ω

|∇ρ|2dx (5)

for the H1 case. The solution of both minimization problems can be obtained by
solving the corresponding saddle-point problem: Find (ρ, u, λ) such that (∇ρL)p =
0, (∇uL)w = 0, and (∇λL)µ = 0 for any (p,w, µ), which implies that⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−β∆ρ+∇u · ∇λ = 0

−∇ · (ρ∇λ) + (u− z) = 0

−∇ · (ρ∇u)− f = 0

(6)

in the L2 case. Similarly, in the H1 case, we have⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−β∆ρ+∇u · ∇λ+

1

2
|∇u−∇z|2 = 0

−∇ · (ρ∇λ) +∇ · (ρ∇z) + f = 0

−∇ · (ρ∇u)− f = 0.

(7)

Both systems share the same boundary conditions ∂ρ/∂n = 0, u = 0, λ = 0 on ∂Ω.
A derivation of the boundary conditions is given in [3]. The rest of the paper is
devoted to a Newton-Krylov-Schwarz method for solving the algebraic systems

F (U) = 0

arising from the finite difference discretization of (6) and (7) in a fully coupled
fashion [3, 4].

2 Newton-Krylov-Schwarz Method

The family of Newton-Krylov-Schwarz (NKS) methods [2] is a general-purpose par-
allel algorithm for solving a system of nonlinear algebraic equations. NKS has three
main components: an inexact Newton’s method for the nonlinear system; a Krylov
subspace linear solver for the Jacobian systems (restarted GMRES); and a Schwarz
type preconditioner [7]. Other related techniques can be found in [5]. We carry out
Newton iterations as following:

Uk+1 = Uk − λkJ(Uk)−1F (Uk), k = 0, 1, ... (8)

where U0 is an initial approximation to the solution and J(Uk) = F ′(Uk) is the
Jacobian at Uk, and λk is the steplength determined by a linesearch procedure.
The inexactness of Newton’s method is reflected by the fact that we do not solve
the Jacobian system exactly. The accuracy of the Jacobian solver is determined by
some ηk ∈ [0, 1) and the condition
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‖F (Uk) + J(Uk)sk‖ ≤ ηk‖F (Uk)‖. (9)

The vector sk is obtained by approximately solving the linear Jacobian system

J(Uk)M−1
k (Mksk) = −F (Uk),

where M−1
k is a one-level additive Schwarz right preconditioner. To formally define

M−1
k , we need to introduce a partition of Ω. We first partition the domain into

non-overlapping substructures Ωl, l = 1, · · · , N . In order to obtain an overlapping
decomposition of the domain, we extend each subregion Ωl to a larger region Ω′

l, i.e.,
Ωl ⊂ Ω′

l. Only simple box decomposition is considered in this paper – all subdomains
Ωl and Ω′

l are rectangular and made up of integral numbers of fine mesh cells. The
size of Ωl is Hx ×Hy and the size of Ω′

l is H ′
x ×H ′

y, where the H ′s are chosen so
that the overlap, ovlp, is uniform in the number of fine mesh cells all around the
perimeter, i.e., ovlp = (H ′

x − Hx)/2 = (H ′
y − Hy)/2 for interior subdomains. For

boundary subdomains, we simply cut off the part that is outside Ω.
On each extended subdomain Ω′

l, we construct a subdomain preconditioner Bl,
whose elements are extracted from the matrix J(Uk). Homogeneous Dirichlet bound-
ary conditions are used on the internal subdomain boundary ∂Ω′

l ∩Ω, and the origi-
nal boundary conditions are used on the physical boundary, if present. The additive
Schwarz preconditioner can be written as

M−1
k = I1B

−1
1 (I1)

T + · · ·+ INB−1
N (IN )T . (10)

Let n be the total number of mesh points, and n′l the total number of mesh points
in Ω′

l, then Il is an 3n×3n′l extension matrix that extends each vector defined on Ω′
l

to a vector defined on the entire fine mesh by padding an 3n′l × 3n′l identity matrix
with zero rows. The factor of 3 is included because each mesh point has 3 unknowns.

3 Numerical Experiments

We study the performance of the proposed algorithm using the following test case
with the observation function given as z(x, y) = sin(πx) sin(πy), Ω = (0, 1)× (0, 1),
and the right-hand side f chosen so that the elliptic coefficient to be identified is
ρ = 1 + 100(xy(1 − x)(1 − y))2. To test the robustness of the algorithms, we add
some noise to the observation data as

zδ = z + δ rand(x, y) (11)

or
∇zδ = ∇z + δ (rand(x, y), rand(x, y))T , (12)

depending on if the formulation is L2 or H1. Here rand(x, y) defines a random
scalar function. δ is responsible for the magnitude of the noise. Results with three
different levels of noise (δ = 0%, 1% and 10%) will be presented. Since u needs to
satisfy the elliptic equation, we assume that u and ∇u have some continuity and
differentiability. Therefore, we smooth z in the L2 formulation or ∇z in the H1

formulation before we start the Newton iteration. This is necessary especially when
the noise level is high. In particular, when the noise level is 10%, we replace the
value of z or ∇z by the average value around it using the following weights
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1
16

1
8

1
16

↘ ↓ ↙
1
8
→ 1

4
← 1

8

↗ ↑ ↖
1
16

1
8

1
16

We repeat this operation 3 times in all the experiments when δ = 10%. No smoothing
is applied when δ is smaller than 10%.

To measure the accuracy of the algorithm, we assume the exact solution of the
test problem is known, and erroru and errorρ are the normalized discrete L2 norms
of the errors defined as

erroru =
√∑

(uij − uexact
ij )2hxhy and errorρ =

√∑
(ρij − ρexact

ij )2hxhy,

where hx and hy are mesh sizes along x and y directions, respectively.
In our experiments, we choose the stopping conditions as follows: The relative

residual is less than 10−6 or the absolute residual is less than 10−10 for the nonlinear
system. The relative residual is less than 10−6 or the absolute residual is less than
10−10 for each linear solve in the nonlinear iteration. We do not have a systematic
way to pick β. Several values of β are tested in the range of 10−4 to 10−6. In Newton’s
method, we use the initial guess (ρ(0), u(0), λ(0))T = (1, z, 0)T for the L2 formulation.
For the H1 formulation, z is obtained as an integral of ∇xz or ∇yz along the x or
y direction from one of the boundary points. In our experiments, at the mesh point
(xi, yj),

z(xi, yj) = z(x0, yj) +

i∑
l=1

(∇xz)|xlhx

if we take the integral in the x direction, or a similar integral in the y direction.
We first test three meshes 40× 40, 80× 80, and 160× 160. When the Jacobian

systems are solved exactly with a Gaussian elimination, the total number of Newton
iterations ranges from 3 to 6, and the iteration numbers are not sensitive to the level
of noise, as shown in Table 1. The exact solution, and the numerical solutions for
both L2 and H1 formulations with 3 levels of noise are shown in Fig. 1.

We next look at the performance of the algorithm, in particular, we would like
to know how the convergence depends on the mesh size, the number of subdomains,
and the overlapping size. We solve the problem on a 320× 320 mesh using different
number of processors (np), and the results, in terms of the iteration number and
the total compute time, are in Table 2. The numbers of Newton iterations do not
change when we change the number of processors or the overlapping size.

If we fix the number of subdomains, which is the same as the number of proces-
sors, and increase the overlapping size, the number of GMRES iterations decreases.
The compute time decreases to a certain point and then begins to increase. This
suggests that an optimal overlapping size exists if the objective is to minimize the
total compute time when the number of processors is fixed. On a fixed mesh the
number of GMRES iterations increases as we use more processors. This is expected
since this is a single-level algorithm.

To check the h−scalability of the algorithm, we increase the mesh size and the
number of processors at the same ratio in order for each processor to have the
same number of mesh points. Table 3 shows the results with different mesh sizes for
np=4, 16 and 64. Both the number of Newton iterations and the number of GMRES
iterations are almost constants when the number of processors is fixed.
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4 Final Remarks

We developed a fully parallel domain decomposition method for solving the system
of nonlinear equations arising from the fully coupled finite difference discretization
of some inverse elliptic problems. Traditionally this type of problems are solved by
using Uzawa type of algorithms which split the system into two or three subsystems
and each subsystem is solved individually. Subiterations are required between the
subsystems. The subsystems are easier to solve than the global coupled system,
but the iterations between subsystems are sequential in nature. The focus of this
paper was to investigate a fully coupled approach without splitting the system into
subsystems. Such an approach is more parallel than the splitting method. We showed
numerically that with a powerful domain decomposition based preconditioner the
convergence of the iterative methods can be obtained even for some difficult cases
when the observation data has high level of noise. More details of the work will be
included in a forthcoming paper [3].

Table 1. Errors and the number of Newton iterations for three different meshes and
with different levels of noise.

erroru errorρ Newton

L2 formulation β = 10−6, δ = 0 0.000078 0.003163 3
40× 40 β = 10−5, δ = 1% 0.000765 0.010723 3

β = 10−4, δ = 10% 0.008222 0.038667 3

L2 formulation β = 10−6, δ = 0 0.000073 0.003177 3
80× 80 β = 10−5, δ = 1% 0.000532 0.010070 3

β = 10−4, δ = 10% 0.003849 0.029056 3

L2 formulation β = 10−6, δ = 0 0.000072 0.003203 3
160× 160 β = 10−5, δ = 1% 0.000504 0.009908 3

β = 10−5, δ = 10% 0.002064 0.026190 4

H1 formulation β = 10−5, δ = 0 0.000362 0.001744 6
40× 40 β = 10−5, δ = 1% 0.000355 0.006010 6

β = 10−4, δ = 10% 0.006980 0.022837 5

H1 formulation β = 10−5, δ = 0 0.000090 0.000406 4
80× 80 β = 10−5, δ = 1% 0.000109 0.003842 4

β = 10−4, δ = 10% 0.001921 0.011741 4

H1 formulation β = 10−5, δ = 0 0.000023 0.000187 3
160× 160 β = 10−5, δ = 1% 0.000030 0.002580 4

β = 10−4, δ = 10% 0.000473 0.007419 5
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Fig. 1. The top picture is the exact solution ρ. The following six pictures are the
numerical solution with δ = 0%, 1%, 10% on a 40 × 40 mesh. The left three are for
the L2 formulation and the right three are for the H1 formulation.



Domain Decomposition for Parameter Identification Problems 457

Table 2. The total number of Newton and the average number of GMRES iterations
are shown below for a 320× 320 mesh. The total compute time in seconds is in (·).

np Newton ovlp = 1 ovlp = 2 ovlp = 4 ovlp = 8 ovlp = 16

L2 formulation 1 3 1(374.33) 1(373.37) 1(375.98) 1(375.57) 1(374.62)

β = 10−6 4 3 46(108.93) 33(97.62) 18(80.87) 13(79.21) 8(80.46)
δ = 0% 16 3 66(32.43) 46(26.39) 34(23.92) 22(22.66) 14(26.75)

64 3 127(23.08) 92(19.22) 63(15.49) 42(14.83) 25(16.35)

L2 formulation 1 3 1(374.98) 1(374.23) 1(372.92) 1(372.35) 1(374.21)

β = 10−5 4 3 43(105.49) 26(86.60) 19(80.11) 14(79.02) 9(81.57)
δ = 1% 16 3 57(30.02) 45(25.89) 31(22.55) 22(23.44) 15(30.14)

64 3 134(24.71) 94(19.50) 62(15.28) 45(15.09) 25(15.79)

L2 formulation 1 5 1(623.39) 1(621.60) 1(627.58) 1(622.50) 1(629.40)

β = 10−5 4 6 61(260.45) 47(225.89) 27(182.45) 18(168.59) 12(172.45)
δ = 10% 16 6 110(97.01) 81(77.46) 59(67.06) 39(59.56) 24(70.57)

64 6 234(83.13) 162(62.44) 122(53.56) 78(45.28) 43(50.87)

H1 formulation 1 3 1(382.09) 1(381.11) 1(384.03) 1(382.27) 1(380.59)

β = 10−5 4 3 66(136.58) 41(106.42) 24(87.81) 17(84.60) 12(88.99)
δ = 0% 16 3 148(60.33) 96(43.64) 60(33.56) 37(30.11) 23(34.60)

64 3 290(47.59) 212(38.34) 121(27.61) 92(25.11) 55(27.08)

H1 formulation 1 4 1(505.06) 1(503.49) 1(501.99) 1(502.54) 1(504.08)
β = 10−5 4 4 53(158.88) 34(129.94) 20(110.25) 15(107.46) 10(111.08)
δ = 1% 16 4 110(63.29) 72(47.44) 47(38.10) 29(34.19) 20(40.42)

64 4 219(48.50) 142(35.01) 100(28.07) 58(22.82) 44(28.61)

H1 formulation 1 5 1(624.17) 1(629.97) 1(627.58) 1(629.90) 1(628.54)

β = 10−4 4 5 62(212.91) 47(178.81) 27(151.06) 18(139.06) 12(143.07)
δ = 10% 16 5 104(75.61) 82(65.45) 56(53.17) 36(47.70) 22(52.91)

64 5 221(60.96) 161(49.38) 122(41.46) 71(33.36) 52(38.88)

Table 3. Newton and GMRES iteration numbers are shown below for three different
meshes. The compute time in seconds is in (·). ovlp is 1/5 of the diameter of the
subdomain.

np Newton GMRES Newton GMRES Newton GMRES
80 × 80 mesh 160 × 160 mesh 320 × 320 mesh

L2 formulation 4 3 6(2.62) 3 6(14.72) 3 6(100.44)

β = 10−6 16 3 14(2.48) 3 14(6.33) 3 14(26.75)
δ = 0% 64 3 38(5.73) 3 40(7.28) 3 42(14.83)

L2 formulation 4 3 7(2.41) 3 7(14.22) 3 6(100.23)

β = 10−5 16 3 17(2.82) 3 16(6.60) 3 15(30.14)
δ = 1% 64 3 47(6.74) 3 45(7.68) 3 45(15.09)

L2 formulation 4 3 9(3.03) 3 8(15.79) 3 8(100.47)

β = 10−4 16 3 24(3.65) 3 23(8.02) 3 22(34.35)
δ = 10% 64 3 75(10.41) 3 72(11.47) 3 66(20.66)

H1 formulation 4 4 8(3.43) 3 8(1.54) 3 8(106.40)

β = 10−5 16 4 22(4.04) 3 24(7.47) 3 23(34.60)
δ = 0% 64 4 77(12.68) 3 81(12.14) 3 92(25.11)

H1 formulation 4 4 8(3.43) 4 8(20.69) 4 7(131.44)

β = 10−5 16 4 22(4.17) 4 19(9.25) 4 20(40.42)
δ = 1% 64 4 73(11.90) 4 75(11.89) 4 58(22.82)

H1 formulation 4 4 8(3.85) 5 8(26.33) 5 8(163.20)

β = 10−4 16 4 22(4.23) 5 21(12.14) 5 22(52.91)
δ = 10% 64 4 71(11.71) 5 69(16.88) 5 71(33.36)
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1 Introduction

The spatial spread of an age-structured population in an isolated environment is
commonly governed by a partial differential equation with zero-flux boundary con-
dition for the spatial domain. The variables involved are time, age and space, which
will be denoted in the following by t, a and x, respectively. We denote the spatial
domain by Ω ⊂ Rd (d = 1, 2, 3), and we assume the age of the population to be
bounded, i.e. there exists a† > 0 such that a ∈ [0, a†]. Denoting the population
density at time t per unit volume and age by p(t, a, x), the total population at time
t is given by

P (t) =

∫
Ω

∫ a†

0

p(t, a, x) da dx.

Let then T > 0, the population density p(t, a, x) satisfies the following model prob-
lem.

Find p(t, a, x) ∈ C(0, T ;L2(0, a†;H
1(Ω))) such that

pt + pa + µ(a) p− div (k(a, x)∇p) = g in (0, T )× (0, a†)×Ω
p(0, a, x) = p0(a, x) in (0, a†)×Ω

p(t, 0, x) =

∫ a†

0

β(a)p(t, a, x) da in (0, T )×Ω
n · (k(a, x)∇p) = 0 on (0, T )× (0, a†)× ∂Ω,

(1)

where n denotes the outward normal to ∂Ω, β(a) is the age-specific fertility, and
µ(a) is the age-specific mortality, such that∫ a†

0

µ(a) da = +∞. (2)

We refer to [7] and references therein for issues concerning existence and uniqueness
for the solution of problem (1).
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1.1 The Reduced Model

In order to avoid the difficulties entailed by the presence of an unbounded coefficient
in (1), it is usual to introduce the survival probability

Π(a) = exp

(
−
∫ a

0

µ(s) ds

)
,

and a new variable

u(t, a, x) =
p(t, a, x)

Π(a)
.

Owing to (2), the survival probability at age a† vanishes, ensuring that no individual
exceeds the maximal age.
With these positions, (1) is equivalent to the following reduced model problem.

Find u(t, a, x) ∈ C(0, T ;L2(0, a†;H
1(Ω))) such that

ut + ua − div (k(a, x)∇u) = f in (0, T )× (0, a†)×Ω
u(0, a, x) = u0(a, x) in (0, a†)×Ω

u(t, 0, x) =

∫ a†

0

m(a)u(t, a, x) da in (0, T )×Ω
n · (k(a, x)∇u) = 0 on (0, T )× (0, a†)× ∂Ω,

(3)

where u0(a, x) = p0(a, x)/Π(a), f = g/Π(a), and where m(a) = Π(a)β(a) is called
maternity function.

1.2 Space-time Discretization

Classical approaches to the numerical solution of (3) integrate along the character-
istics in age and time (see for instance [4, 5, 6]). However, the presence of different
time scales in the dynamics suggests the use of different steps in the discretization
of time and age (see [1, 2]).
Let us consider a discretization of the interval (0, T ) into N subintervals of length
∆t = T/N (for simplicity we consider a uniform discretization, adaptivity in time
being beyond the scope of this paper). For equation (3) we advance in time by means
of a backward Euler scheme, where the initial condition in age is computed at the
previous time step. At each time step, we solve the parabolic problem in age and
space:

Find un ∈ L2(0, a†;H
1(Ω)) such that⎧⎪⎨⎪⎩

d

da

〈
un+1, v

〉
+A(a;un+1, v) = (f, v) +

1

∆t
(un, v) ∀v ∈ H1(Ω)

un+1(0, x) =

∫ a†

0

m(a)un(a, x) da
(4)

where 〈·, ·〉 denotes the duality pairing between H1(Ω) and H−1(Ω), and where
A(a; ·, ·) is the bilinear form given by

A(a;w, v) =

∫
Ω

k(a, x)∇w · ∇v +
1

∆t

∫
Ω

wv.
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We discretize equation (4) in space by means of finite elements (see e.g. [8] for an
introduction to finite element methods). Let Ω =

⋃N
j=1Kj , where eachKj = TKj (E)

is an element of the triangulation, E is the reference simplex, and TKj is an invertible
affine map. The associated finite element space is then

Vh =
{
ϕh ∈ C0(Ω) |ϕh|Kj

◦ TKj ∈ P1(E)
}
,

where P1(E) is the space of polynomials of degree at most one in each variable on E.
A semi-discrete problem in space is then obtained by applying a Galerkin procedure
and choosing a finite element basis for Vh. Since the finite element basis functions
depend only on space, we can rewrite problem (4) as⎧⎪⎨⎪⎩

M
dun+1

h

da
+A(a)un+1

h = f +
1

∆t
Mun

un+1
h (0, x) =

∫ a†

0

m(a)un
h(a, x) da

(5)

where M is the mass matrix (Mij =
∫

Ω
ϕjϕi dx) and A(a) is the stiffness matrix

associated to the bilinear form A(a; ·, ·), ( (A(a))ij = A(a;ϕj , ϕi)).

2 Diffusion in a Multilayer Environment and Domain
Decomposition

We consider a population spreading in a stratified environment composed of m
layers, with zero flux boundary conditions. We refer the interested reader to [10] for
issues concerning the motivations of such model. We suppose that the age-specific
fertility and the age-specific mortality depend only on the layer, while the diffusion
coefficients depend both on the age and on the layer. On the interface between the
j-th and the (j + 1)-th layer we have to impose the continuity of the trace and the
normal flux, thus the equation in the j-th layer reads

∂tuj + ∂auj − div (kj(a, x)∇uj) = fj in (0, T )× (0, a†)×Ωj

uj(0, a, x) = u0,j(a, x) in (0, a†)×Ωj

uj(t, 0, x) =

∫ a†

0

mj(a)uj(t, a, x) da in (0, T )×Ωj

nj · (kj(a, x)∇uj) = 0 on (0, T )× (0, a†)× (∂Ω ∩ ∂Ωj)
uj(t, a, x) = uj−1(t, a, x) on (0, T )× (0, a†)× (Ωj ∩Ωj−1)

uj(t, a, x) = uj+1(t, a, x) on (0, T )× (0, a†)× (Ωj ∩Ωj+1)
nj · (kj∇uj) = nj · (kj−1∇uj−1) on (0, T )× (0, a†)× (Ωj ∩Ωj−1)
nj · (kj∇uj) = nj · (kj+1∇uj+1) on (0, T )× (0, a†)× (Ωj ∩Ωj+1)

(6)

A domain decomposition procedure to solve equation (6) is thus straightforward.
After time discretization we have to solve a parabolic problem: the age-space domain
is naturally decomposed in strips (0, a†)×Ωj and the global solution is obtained by
a standard waveform relaxation procedure (see e.g. [9]) we outline in the following
section.
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2.1 A Waveform Relaxation Procedure

For sake of simplicity in presentation, we give here the two-domain formulation of
the domain decomposition algorithm, and, in order to improve readability, we drop
any index referring to time discretization. We set Ω = Ω1 ∪ Ω2, we denote the in-
terface between the two subdomains by Γ = Ω1 ∩ Ω2, the space of traces on Γ of
functions in H1(Ω) by Λ = H1/2(Γ ), and we set Vi = H1(Ωi) (i = 1, 2). At each
time step, the coupled problem reads as follows:

Find u1 ∈ L2(0, a†;H
1(Ω1)) and u2 ∈ L2(0, a†;H

1(Ω2)) such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d

da
〈u1, v1〉+A1(a;u1, v1) = (f1, v1) ∀v1 ∈ V1

d

da
〈u2, v2〉+A2(a;u2, v2) = (f2, v2) ∀v2 ∈ V2

u1 = u2 on (0, a†)× Γ
d

da
〈u2, R2µ〉+A2(a;u2, R2µ) = ∀µ ∈ Λ

= (f,R2µ) + (f,R1µ)−
d

da
〈u1, R1µ〉 −A1(a;u1, R1µ),

(7)

where Ai(a; ·, ·) denotes the restriction of the bilinear form A(a; ·, ·) to Ωi, whereas
Riµ denotes any possible extension of µ to Ωi (i = 1, 2).
We apply a balancing Neumann-Neumann waveform relaxation procedure to enforce
the interface continuities of equation (7).

Step 1. At each time step, given an initial value λ0 ∈ L2((0, a†)× Γ ), solve:⎧⎪⎪⎪⎨⎪⎪⎪⎩
d

da
〈uk+1

1 , v1〉+A1(a;u
k+1
1 , v1) = (f1, v1) ∀v1 ∈ V1

uk+1
1 = λk on (0, a†)× Γ
uk+1

1 (0, x) = u0
1(x)

and ⎧⎪⎪⎪⎨⎪⎪⎪⎩
d

da
〈uk+1

2 , v2〉+A2(a;u
k+1
2 , v2) = (f2, v2) ∀v2 ∈ V2

uk+1
2 = λk on (0, a†)× Γ
uk+1

2 (0, x) = u0
2(x).

Step 2. Solve⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d

da
〈ψk+1

1 , v1〉+A1(a;ψ
k+1
1 , v1) = (f1, v1) ∀v1 ∈ V1

d

da
〈ψk+1

1 , R1µ〉+A1(a;ψ
k+1
1 , R1µ) = ∀µ ∈ Λ

=
d

da
〈uk+1

1 , R1µ〉+
d

da
〈uk+1

2 , R2µ〉
+A1(a;u

k+1
1 , R1µ) +A2(a;u

k+1
2 , R2µ)− (f,R2µ)− (f,R1µ)

ψk+1
1 (0, x) = 0
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and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d

da
〈ψk+1

2 , v2〉+A2(a;ψ
k+1
2 , v2) = (f2, v2) ∀v2 ∈ V2

d

da
〈ψk+1

2 , R2µ〉+A2(a;ψ
k+1
2 , R2µ) = ∀µ ∈ Λ

=
d

da
〈uk+1

1 , R1µ〉+
d

da
〈uk+1

2 , R2µ〉
+A1(a;u

k+1
1 , R1µ) +A2(a;u

k+1
2 , R2µ)− (f,R2µ)− (f,R1µ)

ψk+1
2 (0, x) = 0.

Step 3. Set

λk+1 = λk − ϑ
(

k1
k1 + k2

ψk+1
1 − k2

k1 + k2
ψk+1

2

)
|(0,a†)×Γ

and iterate until convergence.

For a more detailed description of the algorithm we refer to [3].

3 Numerical Results

In this section we consider a population spreading in a one dimensional environment
constituted of two layers. We solve problem (7) on the domain Ω = [0, 1], and we
assume a† = 100 as maximal age. In the numerical tests we choose ∆a = 2, as
well as ∆t = 1. We let Ω = Ω1 ∪ Ω2, with Ω1 = (0, α), Ω2 = (α, 1), and we
discretize problem (7) in space via P1 finite elements. We solve each subproblem
by computing the integral in (5) via a Simpson quadrature rule, and by advancing
implicitly in age (5) via a backward Euler scheme. For a more detailed description
of the numerical approximation of (3) in a single domain we refer to [2]. We consider

m
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Fig. 1. Maternity function (left) and age-space initial profile (right) for the test
cases

diffusion coefficients that are uniform in age and heterogeneous in space, with the
ratio δk = k1/k2 up to 104. The maternity function and initial profile are given in
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Fig. 1. In Table 1 and 2 we report the iteration counts at different time levels for
two different positions of the interface, α = 0.5 and α = 0.7, with a mesh size of h =
1/100 in both subdomains. The stopping criterion is given by ‖λk+1−λk‖0/‖λk‖0 <
10−6. The number of iterations increases with the amplitude of the jumps in the
diffusive coefficients, but the algorithm appears to be robust with respect to the
position of the interface and with respect to the evolution in time. In Table 3 we
report the iteration counts at different time levels for different mesh sizes in Ω1

and Ω2. We choose k1 = .1, k2 = .01 and the interface is α = .6. The algorithm
appears insensitive to the difference of mesh sizes between the two subdomains.
In Figure 2 we report the time evolution of the space profile of individuals of age
20 with δk = 100 and the evolution of the iteration counts (with α = 0.5 and
δk = 1, 10, 100) for a longer simulation, with stopping criterion set at 10−10. The
jump in the normal derivative due to the high heterogeneity of the spatial medium
is clearly visible, and the robustness of the algorithm with respect to the evolution
in time is evident. Finally, in Figure 3 we report the age-space profile of the solution
at time T = 5, with δk = 100.
The numerical tests are performed with MATLABR© 6.1. A more detailed description
of the test cases as well as further numerical results in two dimensions in space can
be found in a forthcoming paper ([3]).

Table 1. Two subdomains, α = 0.5, h1 = h2 = 1/100: iteration counts per time
step: ‖λk+1 − λk‖0/‖λk‖0 < 10−6.

δk T = 1 T = 3 T = 6 T = 9 T = 12 T = 15 T = 20

1 13 11 11 10 10 10 10

10 17 15 14 14 14 14 13

102 23 20 20 20 19 19 19

103 26 23 23 23 22 22 22

104 32 27 27 26 26 25 25

Table 2. Two subdomains, α = 0.7, h1 = h2 = 1/100: iteration counts per time
level: ‖λk+1 − λk‖0/‖λk‖0 < 10−6.

δk T = 1 T = 3 T = 6 T = 9 T = 12 T = 15 T = 20

1 17 11 11 10 10 10 10

10 22 14 14 14 14 13 13

102 32 20 19 19 19 18 18

103 37 23 22 22 22 21 21

104 44 26 26 25 25 25 25
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Table 3. Two subdomains, α = 0.6, ν1 = .1, ν2 = .01: iteration counts per time
level: ‖λk+1 − λk‖0/‖λk‖0 < 10−6.

h1/h2 T = 1 T = 3 T = 6 T = 9 T = 12 T = 15 T = 20

1 19 14 14 14 14 13 13

10 19 14 14 14 14 13 13

50 19 14 14 14 14 13 13

T=1 T=2
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Fig. 2. Time evolution of the profile at age a = 20 (left, δk = 100) and Iterations
count vs Time evolution (right, α = 0.5, ‖λk+1 − λk‖0/‖λk‖0 < 10−10).

Fig. 3. Age-space profile at time T = 5, δk = 100.
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4 Conclusions

We proposed here a balancing Neumann-Neumann procedure to approximate the
solution of the diffusion of an age-structured population in a multilayer environment.
The proposed algorithm appears to be very robust in terms of iteration counts with
respect to the mesh size, the position of the interface, and the heterogeneities in the
viscosity coefficients.
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Summary. Overlap is essential for the classical Schwarz method to be conver-
gent when solving elliptic problems. Over the last decade, it was however observed
that when solving systems of hyperbolic partial differential equations, the classical
Schwarz method can be convergent even without overlap. We show that the classical
Schwarz method without overlap applied to the Cauchy-Riemann equations which
represent the discretization in time of such a system, is equivalent to an optimized
Schwarz method for a related elliptic problem, and thus must be convergent, since
optimized Schwarz methods are well known to be convergent without overlap.

1 Introduction

The classical Schwarz method applied to scaler partial differential equations has been
widely studied, as one can see from the many contributions in the proceedings of the
international conferences on domain decomposition methods. Over the last decade,
optimized variants of this method have been developed, which use absorbing condi-
tions as transmission conditions at the interfaces between subdomains, and converge
significantly faster than the classical Schwarz methods, see [7] and references therein.
Less is known about the behavior of the classical Schwarz method applied to systems
of partial differential equations; for the Euler equations, see [8, 9, 2] and [4, 5].

We show in this paper that the classical Schwarz method, which uses character-
istic Dirichlet transmission conditions between subdomains, applied to the Cauchy
Riemann equations is equivalent to an optimized Schwarz method applied to a well
known equivalent elliptic problem. This explains why the classical Schwarz method
in that case can be convergent even without overlap, and it allows us to develop
more effective Schwarz methods for systems of partial differential equations. The
extension of this idea to the more realistic case of Maxwell’s equations, both in the
time-harmonic and time-discretized case, can be found in [3].
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2 Cauchy-Riemann Equations and Scalar Equivalent

To analyze the relationship between Schwarz methods for scalar partial differential
equations (PDEs) and systems of PDEs, we use the Cauchy-Riemann equations

Lu :=
√
ηu +

[
−1 0
0 1

]
∂xu +

[
0 1
1 0

]
∂yu = f :=

(
f
g

)
, u :=

(
u
v

)
, (1)

on Ω = [0, 1]× R, with boundary conditions

v(0, y) = r(y), u(1, y) = s(y), y ∈ R. (2)

The equations (1) can be interpreted as the time discretization of the hyperbolic
system

∂tu +

[
−1 0
0 1

]
∂xu +

[
0 1
1 0

]
∂yu = 0, on Ω = [0, 1]× R× R+.

At each time step, the resolution of equations of the type (1) is needed. Imposing
the unknowns entering along the characteristics at the boundaries of the domain Ω
like in (2) leads to a well-posed problem.

The scalar partial differential equation

L̃ũ ≡ ηũ−∆ũ = f̃ , in Ω, (3)

with the boundary conditions

(∂x −
√
η)ũ(0, y) = r̃(y), ũ(1, y) = s̃(y), y ∈ R (4)

is very much related to the Cauchy-Riemann equations:

Proposition 1. If f̃ = (
√
η + ∂x)f − ∂yg, r̃ = ∂yr − f(0, ·) and s̃ = s, then the

velocity component u of the Cauchy-Riemann equations (1) with boundary conditions
(2) coincides with the solution ũ of the elliptic problem (3) with boundary conditions
(4) for all x, y ∈ Ω.

A similar elliptic PDE can also be derived for v, but we will not need it for what
follows.

3 Classical Schwarz Algorithm

We decompose the domain Ω into two overlapping or non-overlapping subdomains
Ω1 = (0, b)× R and Ω2 = (a, 1)× R, and we denote the overlap by L := b− a ≥ 0.
A classical Schwarz algorithm for the Cauchy-Riemann equations (1) on these two
subdomains is then defined by

Lun
1 = f , in Ω1, Lun

2 = f , in Ω2,
vn
1 (0, y) = r(y), y ∈ R, un

2 (1, y) = s(y), y ∈ R,
un

1 (b, y) = un−1
2 (b, y), y ∈ R, vn

2 (a, y) = vn−1
1 (a, y), y ∈ R,

(5)

where un
j = (un

j , v
n
j ) denotes the n-th iterate of u in domain Ωj , j = 1, 2. Note that

in this classical form of the Schwarz algorithm for the system of PDEs, we respected
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in the transmission conditions the information exchange along the characteristic
directions, which is the most natural approach to follow when applying domain
decomposition methods to hyperbolic problems, see for example [1, 9].

From the relation between the Cauchy-Riemann equations (1) and the associated
elliptic problem (3) stated in Proposition 1, the related Schwarz algorithm for the
elliptic problem is

L̃ũn
1 = f̃ , in Ω1 L̃ũn

2 = f̃ , in Ω2

Bũn
1 (0, y) = r̃(y), y ∈ R, ũn

2 (1, y) = s̃(y), y ∈ R,
ũn

1 (b, y) = ũn−1
2 (b, y), y ∈ R, Bũn

2 (a, y) = Bũn−1
1 (a, y), y ∈ R

(6)

where B = (∂x −√η).
Theorem 1. If algorithm (6) is started with the initial guess ũ0

1 = u0
1 and ũ0

2 = u0
2,

then the iterates of algorithm (6) and algorithm (5) coincide, un
l (x, y) = ũn

l (x, y) for
all (x, y) ∈ Ωl, l = 1, 2 and n ≥ 1.

Proof. The proof is by induction. Proposition 1 shows the result for n = 1. Assume
then that the result is true at iteration n − 1. Let u1,n, v1,n, u2,n, and v2,n be the
iterates of the Schwarz algorithm applied to the Cauchy-Riemann equations. We
then have, on the one hand

u1,n(b, y) = u2,n−1(b, y) = ũ2,n−1(b, y) = ũ1,n(b, y).

On the other hand, differentiating the interface condition on v in (5) with respect
to y and using the first Cauchy-Riemann equation, we get

(∂x −
√
η)u2,n − f = ∂yv

2,n = ∂yu
1,n−1 = (∂x −

√
η)u1,n−1 − f.

When evaluating the above expression at x = a, the f terms cancel, and we obtain

(∂x −
√
η)u2,n = (∂x −

√
η)u1,n−1 = (∂x −

√
η)ũ1,n−1 = (∂x −

√
η)ũ2,n.

Since the boundary conditions at (0, y) and (1, y) stay the same, the result follows
from Proposition 1.

This theorem shows why the classical Schwarz algorithm (5) with characteristic
Dirichlet transmission conditions for the Cauchy Riemann equations can converge
even without overlap: it is equivalent to an optimized Schwarz method for a related
elliptic PDE, and optimized Schwarz methods are also convergent without overlap,
see [7].

We analyze now the convergence rate of Algorithm (5) when the domain is the
entire plane, Ω = R2, and the subdomains are Ω1 = (−∞, L)×R and Ω2 = (0,∞)×
R, L ≥ 0. Let en

l (x, y) = (dn
l (x, y), enl (x, y))t := u(x, y) − un

l (x, y), l = 1, 2 denote
the error at iteration n. Then the en

l satisfy the homogeneous version of Algorithm
(5), which after a Fourier transform F in y with parameter k, ên

l := F(en
l ), gives

L̂ên
1 = 0, in Ω1, L̂ên

2 = 0, in Ω2,

ên1 (−∞, k) = 0, k ∈ R, d̂n
2 (∞, k) = 0, k ∈ R,

d̂n
1 (L, k) = d̂n−1

2 (L, k), k ∈ R, ên2 (0, k) = ên−1
1 (0, k), k ∈ R,

(7)

and L̂ denotes the action of the operator L after the Fourier transform in y, i.e.

L̂û := F(Lu) =
√
ηû +

[
−1 0
0 1

]
∂xû +

[
0 1
1 0

]
ikû.
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Theorem 2. If the initial error on the interfaces contains the Fourier components
ê0
1(L, k) and ê0

2(0, k), k ∈ R, then for any overlap L ≥ 0, algorithm (5) converges
for all k,

|ê2n
1 (L, k)|+ |ê2n

2 (0, k)| ≤ (ρ(η, L, k))2
(
|ê0

1(L, k)|+ |ê0
2(0, k)|

)
, (8)

and the convergence factor is given by

ρ(η, L, k) =

√√√√√
η + k2 −√η√
η + k2 +

√
η
e−L

√
η+k2

< 1, ∀k ∈ R. (9)

Proof. Solving (7) at iteration n+ 1, we obtain

ê1,n+1 =αn+1eλ(x−L)

(√
η + k2+

√
η

−ik

)
, ê2,n+1 =βn+1e−λx

( −ik√
η + k2+

√
η

)
, (10)

where λ =
√
η + k2, and αn+1 and βn+1 are determined by the interface conditions

to be

αn+1 = βn −ik√
η + k2 +

√
η
e−
√

η+k2L, βn+1 = αn −ik√
η + k2 +

√
η
e−
√

η+k2L.

Performing a double step, this leads to the square of the convergence factor

ρ(η, L, k)2 :=
αn+1

αn−1
=
βn+1

βn−1
= −

√
η + k2 −√η√
η + k2 +

√
η
e−2L

√
η+k2

,

which implies the result by induction on n.

4 Optimized Schwarz Algorithm

Algorithm (6) is a rather unusual optimized Schwarz algorithm for the elliptic prob-
lem (3), since it still uses Dirichlet transmission conditions at one of the interfaces.
The guiding principle behind optimized Schwarz methods is to use absorbing trans-
mission conditions, i.e. approximations of transparent boundary conditions at the
interfaces between subdomains. The Robin transmission condition on one of the in-
terfaces in (6) can be interpreted as a zeroth order low frequency approximation of a
transparent condition, see [6]. In order to find better transmission conditions for the
Cauchy-Riemann equations, we now derive their associated transparent boundary
conditions.

To this end, we consider the Cauchy-Riemann equations (1) on the domain
Ω = (0, 1) × R, with f = (f, g)T compactly supported in Ω, but with the new
boundary conditions

(v + S1u)(0, y) = 0, (u+ S2v)(1, y) = 0, y ∈ R, (11)

where the operators Sl, l = 1, 2 are general, pseudo-differential operators acting in
the y direction.
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Lemma 1. If the operators Sl, l = 1, 2, have the Fourier symbol

σl := F(Sl) =
ik

√
η +

√
η + k2

, l = 1, 2, (12)

then the solution of the Cauchy-Riemann equations (1) on the domain Ω = (0, 1)×R

with boundary conditions (11) coincides with the restriction to the domain Ω of the
solution of the Cauchy-Riemann equations (1) posed on R2.

Proof. It suffices to show that the difference between the solution of the global
problem and the solution of the restricted problem vanishes. This difference, denoted
by e, satisfies the homogeneous counterpart of (1) with boundary conditions (11),
and its Fourier transform is

ê(x, k) = αe
√

η+k2x

(√
η + k2 +

√
η

−ik

)
+ βe−

√
η+k2x

( −ik√
η + k2 +

√
η

)
. (13)

Now the first boundary condition in (11) implies β
√
η + k2 = 0, and hence β = 0,

and the second one implies α
√
η + k2e−

√
η+k2

= 0, which gives α = 0, and hence
ê ≡ 0.

Remark 1. The symbols (12) can be written in several mathematically equivalent
forms,

σl =
ik

√
η +

√
η + k2

=

√
η −

√
η + k2

ik
=

√√√√√
η −

√
η + k2

√
η +

√
η + k2

. (14)

The first form contains a local and a non-local term in k, since multiplication with
ik corresponds to derivation in y, which is a local operation (as the application of
any polynomial in ik would be), whereas the term containing the square-root of k2 is
a non-local operation. The second form contains two non-local operations, since the
division by ik corresponds to an integration. This integration can however be passed
to the other variable in (11) by multiplication with ik. The last form contains only
non-local terms. These different forms motivate different local approximations of
the transparent boundary conditions, and thus lead to different optimized Schwarz
methods, as we will show in the sequel.

We now consider the associated elliptic equations (3) on the domain Ω = (0, 1)×R,
with f compactly supported in Ω, but with the new boundary conditions

(∂x − S̃1)u(0, y) = 0, (∂x + S̃2)u(1, y) = 0, y ∈ R, (15)

where the operators S̃l, l = 1, 2 are general, pseudo-differential operators acting in
the y direction.

Lemma 2. If the operators S̃l, l = 1, 2, have the Fourier symbol

σ̃l := F(S̃l) =
√
η + k2, l = 1, 2, (16)

then the solution of (3) on the domain Ω = (0, 1)×R with boundary conditions (15)
coincides with the restriction to Ω of the solution of (3) on R2.

Proof. The proof follows as in Lemma 1 using Fourier analysis.
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Proposition 2. The velocity component u of the solution of the Cauchy-Riemann
equations (1) with boundary conditions (11), (12) coincides with the solution ũ of the
elliptic problem (3) with boundary conditions (15), (16) for all x, y ∈ Ω = (0, 1)×R.

Proof. We have already seen in Proposition 1 that the equations inside the do-
main coincide. It therefore suffices to show that the boundary conditions are also
equivalent. By using the first Fourier transformed equation inside the domain, i.e.
ikv̂ = (∂x−√η)û, the boundary condition at x = 1, i.e. (

√
η +

√
η + k2)û+ ikv̂ = 0,

becomes (∂x +
√
η + k2)û = 0, which is the transparent boundary condition for the

elliptic equation. The same argument applies to the other boundary condition: using
the first Fourier transformed equation, the boundary condition at x = 0 becomes
(
√
η +

√
η + k2)(∂x −√η)û − k2û = 0. Taking into account that k2 = (

√
η + k2 +

√
η)(

√
η + k2−√η), we further obtain (

√
η + k2 +

√
η)(

√
η + k2− ∂x)û = 0, which

is equivalent to the transparent boundary condition for the scalar equation at x = 0.

We generalize now the classical Schwarz algorithm (5) by changing the transmission
conditions at the interfaces,

Lun
1 = 0, in Ω1,

un
1 (L, y) + S1v

n
1 (L, y) = un−1

2 (L, y) + S1v
n−1
2 (L, y),

Lun
2 = 0, in Ω2,

vn
2 (0, y) + S2u

n
2 (0, y) = vn−1

1 (0, y) + S2u
n−1
1 (0, y).

(17)

Proceeding as in Theorem 2, the convergence factor for a double iteration is

ρopt(η, L, k, σ1, σ2) =

∣∣∣∣−ik+σ1(
√

η+k2+
√

η)√
η+k2+

√
η−ikσ1

−ik+σ2(
√

η+k2+
√

η)√
η+k2+

√
η−ikσ2

e−2
√

η+k2L

∣∣∣∣ 1
2

. (18)

A good choice of σl, l = 1, 2 is a choice that makes the convergence factor ρopt small
for all values of k, and from (18), we see that the choice (12) is optimal, since then
ρopt ≡ 0 for all k. But a good choice should also lead to transmission conditions
which are as easy and inexpensive to use as the classical characteristic Dirichlet
conditions. Guided by the equivalence with the scalar case, we will compare the
following cases:

Case 1: σ1 = σ2 = 0, the classical algorithm (5) with convergence factor (9).

Case 2: σ1 = ik√
η+p

, σ2 =
√

η−p

ik
, p > 0, a mixed case, where the first form of the

exact symbol in (14) is used to approximate σ1 and the second form is used to
approximate σ2. This corresponds to first order transmission conditions, since
ik corresponds to a derivative in y and the division by ik can be avoided by
multiplying the entire transmission condition by ik. The convergence factor is

ρ2(η, L, k, p) =

∣∣∣∣∣
(√

η + k2 − p√
η + k2 + p

)2

e−2
√

η+k2L

∣∣∣∣∣
1
2

, (19)

which is equivalent to the algorithm in the elliptic case with Robin transmission
conditions ∂x ± p, see [6].

Case 3: σ1 = σ2 = σ = ik√
η+p

, p > 0, where only the first form of the exact symbol

(14) has been used to approximate both σ1 and σ2. The resulting convergence
factor is



Schwarz Methods for Hyperbolic Systems 473

ρ3(η, L, k, p) =

∣∣∣∣∣
√
η + k2 −√η√
η + k2 +

√
η

∣∣∣∣∣
1
2

ρ2(η, L, k, p) < ρ2(η, L, k, p), (20)

and thus the convergence factor is smaller than in Case 2 by the same factor
that was gained in Case 1 over the classical elliptic case.
Choosing the second form of the symbol (14) to approximate both σ1 and σ2

is not a good idea, since it inverts the additional low frequency factor, which is
less than one in (20).

Case 4: σ1 = ik√
η+p1

, σ2 =
√

η−p2
ik

, p1,2 > 0, a choice motivated by Remark 1, which

leads to the convergence factor

ρ4(η, L, k, p1, p2) =

∣∣∣∣∣
√
η + k2 − p1√
η + k2 + p1

·
√
η + k2 − p2√
η + k2 + p2

e−2
√

η+k2L

∣∣∣∣∣
1
2

. (21)

This corresponds to the two-sided Robin transmission conditions in the elliptic
case in [6], which are of the form ∂x − p1 for the first subdomain and ∂x + p2
for the second one.

Case 5: σ1 = ik√
η+p1

, σ2 = ik√
η+p2

, p1,2 > 0, which gives the even better convergence

factor

ρ5(η, L, k, p1, p2)=

∣∣∣∣∣
√
η + k2 −√η√
η + k2 +

√
η

∣∣∣∣∣
1
2

ρ4(η, L, k, p1, p2) < ρ4(η, L, k, p1, p2).

In the cases with parameters, the best choice for the parameters is in general the
one that minimizes the convergence factor for all k ∈ K, where K denotes the set of
relevant numerical frequencies, for example K = [kmin, kmax]. One therefore needs
to solve the min-max problems

min
p>0

max
k∈K

ρj(η, L, k, p), j = 2, 3, min
p1,p2>0

max
k∈K

ρj(η, L, k, p1, p2), j = 4, 5. (22)

In Case 2 and 4, the solution of the problem is already given in [6] for the equivalent
elliptic case, and can therefore directly be used for the Cauchy-Riemann equations.
The other cases are specific to the Cauchy-Riemann equations and an asymptotic
analysis similar to the one shown in [6] leads to the results given in Table 1, where
the estimate kmax = C

h
, C a positive constant, was used (a reasonable value would

be C = π).
One can clearly see in this table that there are much better transmission condi-

tions than the characteristic ones for the Cauchy-Riemann equations: for a Schwarz
algorithm with overlap of the order of the mesh parameter, L = h, the characteris-
tic transmission conditions lead to a convergence factor 1−O(

√
h), which depends

strongly on h, whereas with better transmission conditions, one can achieve the

convergence factor 1 − O(h
1
6 ), which now depends only very weakly on h, at the

same cost per iteration. Similar results also hold for the Schwarz algorithm without
overlap, as shown in Table 1.

5 Numerical Experiments

We now show numerical experiments for the Cauchy-Riemann equations solved on
the unit square Ω = (0, 1) × (0, 1). We decompose the unit square into two sub-
domains Ω1 = (0, b) × (0, 1) and Ω2 = (a, 1) × (0, 1), where 0 < a ≤ b < 1, and
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Table 1. Asymptotic convergence rate and optimal choice of the parameters in the
transmission conditions for the five variants of the optimized Schwarz method ap-
plied to the Cauchy-Riemann equations, when the overlap L or the mesh parameter
h is small, and the maximum numerical frequency is estimated by kmax = C

h
.

with overlap, L > 0 without overlap, L = 0

Case ρ parameters ρ parameters

1 1− 2η
1
4
√
L none 1−

√
η

C
h none

2 1−2
13
6 η

1
6L

1
3 p = 2

− 1
3 η

1
3

L
1
3

1− 4η
1
4
√

h√
C

p =
√

Cη
1
4√

h

3 1− 2
3
2 η

1
8L

1
4 p = η

1
4√
L

1− 2
4
3 η

1
6

C
1
3
h

1
3 p = 2

1
3 C

2
3 η

1
6

h
2
3

4 1−2
4
5 η

1
10L

1
5 p1=

η
1
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2
2
5 L

3
5

, p2=
η

2
5

16
1
5 L

1
5

1−
√

2η
1
8

C
1
4
h

1
4 p1 =

√
2C

3
4 η

1
8

h
3
4

, p2 = C
1
4 η

3
8

√
2h

1
4

5 1− 2η
1
12L

1
6 p1 = η

1
3

L
1
3

, p2 = η
1
6

L
2
3

1− 2
4
5 η

1
10

C
1
5
h

1
5 p1=

(2C)
4
5 η

1
10

h
4
5

, p2=
(2C)

2
5 η

3
10

h
2
5

therefore the overlap is L = b − a, and we consider both decompositions with and
without overlap. We discretize the equations using the finite volume method on a
uniform mesh with mesh parameter h. In all comparisons that follow, we simulate
directly the error equations, f = 0, and we use a random initial guess to ensure that
all the frequency components are present in the iteration.

Table 2 shows the iteration count for all Schwarz algorithms considered, in the
overlapping and non-overlapping case, and when the mesh is refined.

Table 2. Number of iterations to attain convergence for different interface conditions
and different mesh sizes in the overlapping and non-overlapping case. The tolerance
is fixed at ε = 10−6.

with overlap, L = 3h without overlap, L = 0

h 1/32 1/64 1/128 1/256 1/32 1/64 1/128 1/256

Case 1 16 24 34 48 131 203 355 593
Case 2 11 14 17 22 51 78 107 157
Case 3 10 12 14 16 18 25 41 131
Case 4 11 13 14 17 27 30 35 43
Case 5 9 10 11 13 17 19 23 31

These results are in good agreement with the theoretical results in Table 1: the
classical algorithm has the strongest dependence on the mesh parameter, and the
other algorithms become less and less dependent.

6 Conclusions

We have shown for the Cauchy-Riemann equations that the classical Schwarz al-
gorithm with characteristic Dirichlet transmission conditions can be convergent
even without overlap. This is because it corresponds to a simple optimized Schwarz
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method for an equivalent elliptic problem, and optimized Schwarz methods are con-
vergent without overlap. We then showed that there are more effective transmission
conditions than the characteristic Dirichlet conditions, and we analyzed an entire
hierarchy of transmission conditions with better and better performance.

Since the Cauchy-Riemann equations can be interpreted as a time discretiza-
tion of a hyperbolic system of equations, our analysis indicates that more effective
transmission conditions than the characteristic ones can be found for hyperbolic
problems, and for their time discretized counterparts. Convergence almost indepen-
dent of the mesh parameter can be achieved with and without overlap. We have
extended these ideas to Maxwell’s equations, see [3], and also obtained a similar
hierarchy of methods with better and better performance.
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Summary. In this paper we demonstrate that the Smith factorization is a powerful
tool to derive new domain decomposition methods for vector valued problems. Here,
the factorization is applied to the two-dimensional Stokes system. The key idea is the
transformation of the Stokes problem into a scalar bi-harmonic problem. We show
how a proposed domain decomposition method for the bi-harmonic problem leads
to an algorithm for the Stokes equations which inherits the convergence behavior of
the scalar problem.

1 Introduction

The last decade has shown that Neumann-Neumann type algorithms, FETI, and
BDDC methods are very efficient domain decomposition methods for scalar sym-
metric positive definite second order problems. Then, these methods have been ex-
tended to other problems, like advection-diffusion equations, plate or shell problems.
Also for the Stokes equations several iterative substructuring methods have been dis-
cussed in the literature, like Neumann-Neumann precondtioners (cf. [6, 2]), FETI
(cf. [3]) or BDDC methods (cf. [4]).

Our work is motivated by the fact that many domain decomposition methods
for vector valued problems are less optimal than domain decomposition methods
for scalar problems. Indeed, in the case of two subdomains consisting of the two
half planes it is well known that Neumann-Neumann preconditioners are exact (the
preconditioned operator simplifies to the identity) preconditioners for the Schur com-
plement equation for scalar equations like the Laplace problem. Unfortunately, this
is not valid for the Stokes problem as we have shown in [5] for standard Neumann-
Neumann preconditioners. The goal of this paper is the derivation of an algorithm
which preserves this property, cf. [1] for detailed proofs.

Using the Smith factorization we show the equivalence between the Stokes equa-
tions and a bi-harmonic problem in Section 2. The Smith factorization is a classical
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algebraic tool for matrices with polynomial entries. Then, in Section 3 we introduce
an exact domain decomposition method for the bi-harmonic equation and transform
it to the Stokes equations. Section 4 is dedicated to numerical results. Finally, we
give some concluding remarks.

2 Equivalence Between the Stokes Equations
and Bi-harmonic Problems

We will show the equivalence between the two-dimensional Stokes system

−ν∆u +∇p+ cu = f , ∇ · u = 0 in Ω

and a fourth order scalar problem (the bi-harmonic problem) by means of the Smith
factorization. This is motivated by the fact that scalar problems are easier to manip-
ulate and the construction of new algorithms is more intuitive. The approach is not
limited to the two-dimensional case. The three-dimensional case is discussed in [1].

The data is given by f = (f1, f2)
T ∈ [L2(Ω)]2, ν > 0, and c ≥ 0. Very often

c stems from an implicit time discretization and then c is given by the inverse of
the time step size. We denote the two-dimensional Stokes operator by S2(v, q) :=
−ν∆v + cv + ∇q. We recall the Smith factorization of a matrix with polynomial
entries ([7], Theorem 1.4):

Theorem 1. Let A be a n × n matrix with polynomial entries with respect to the
variable λ: A = (aij(λ))1≤i,j≤n. Then, there exist matrices E, D and F with poly-
nomial entries satisfying the following properties:

• det(E) and det(F ) are constants,
• D is a diagonal matrix uniquely determined up to a multiplicative constant,
• A = EDF .

The Smith factorization is applied to the two-dimensional model problem
S2(u, p) = g in R2 with right hand side g = (f1, f2, 0)T where we suppose that
all variables vanish at infinity. Moreover, it is assumed that the coefficients c, ν are
constants. The spatial coordinates are denoted by x and y. In order to apply the
factorization to the Stokes system we first take formally the Fourier transform of
S2(u, p) = g with respect to y. The dual variable is denoted by k. The Fourier
transform of a function f is written as f̂ or Fyf . Thus, we get

Ŝ2(û, p̂) =

⎛⎝−ν(∂xx − k2) + c 0 ∂x

0 −ν(∂xx − k2) + c ik
∂x ik 0

⎞⎠⎛⎝ ûv̂
p̂

⎞⎠ . (1)

Considering Ŝ2(û, p̂) as a matrix with polynomial entries with respect to ∂x we
perform for k �= 0 the Smith factorization. We obtain

Ŝ2 = Ê2D̂2F̂2 (2)

with a diagonal matrix D̂2 = diag(1, 1, (∂xx − k2)L̂2) and
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F̂2 =

⎛⎝ νk2 + c νik∂x ∂x

0 L̂2 ik
0 1 0

⎞⎠ , Ê2 = T̂−1
2

⎛⎝ ikL̂2 ν∂xxx −ν∂x

0 T̂2 0
ik∂x −∂xx 1

⎞⎠
where T2 is a differential operator in y-direction whose symbol is ik(νk2 + c). More-
over, L̂2 := ν(−∂xx + k2) + c is the Fourier transform of L2 := −ν∆+ c.

Remark 1. Thus, the Stokes problem S2(u, p) = g in R2 can be written as

D̂2ŵ = Ê−1
2 ĝ, ŵ := (ŵ1, ŵ2, ŵ3)

T := F̂2(û, p̂)
T . (3)

From (3) we get ŵ1 = (Ê−1
2 ĝ)1 and ŵ2 = (Ê−1

2 ĝ)2. Noticing that ŵ3 =
(
F̂2(û, p̂)

T
)

3
= v̂ the previous equation yields after applying an inverse Fourier transform

∆(−ν∆+ c)v = F−1
y

(
(Ê−1

2 ĝ)3
)
. (4)

Since the determinants of the matrices Ê2 and F̂2 are non-zero numbers (i.e.
a polynomial of order zero) the entries of their inverses are still polynomial in ∂x.
Thus, applying Ê−1

2 to the right hand side ĝ amounts to taking derivatives of ĝ
and making linear combinations of them. If the plane R2 is split into subdomains
R−×R and R+×R the application of Ê−1

2 and F̂−1
2 to a vector can be done for each

subdomain independently. No communication between the subdomains is necessary.
The local problems are only coupled by the biharmonic problem (4). Thus, we can
obtain a domain decomposition method for the Stokes problem by defining a domain
decomposition method for (4) and recasting it to the Stokes problem using the Smith
factorization.

3 A New Algorithm for the Stokes Equations

We construct an algorithm for B := ∆L2 = ∆(−ν∆ + c) on the whole plane di-
vided into two half-planes, which converges in two iterations. Then, via the Smith
factorization, we recast it in a new algorithm for the Stokes system.

We consider the following problem: Find φ : R2 → R such that

B(φ) = g in R
2, |φ(x)| → 0 for |x| → ∞ (5)

where g is a given right hand side. The domain Ω = R2 is decomposed into two half
planes Ω1 = R− × R and Ω2 = R+ × R with interface Γ := {0} × R. Let (ni)i=1,2

be the outward normal of (Ωi)i=1,2. In contrast to the overlapping additive Schwarz
algorithm in [8] we propose an iterative-substructuring algorithm.

ALGORITHM 1 For any initial values φ0
1 and φ0

2 with φ0
1 = φ0

2 and L2φ
0
1 = L2φ

0
2

on Γ we obtain (φn+1
i )i=1,2 from (φn

i )i=1,2 by the following procedure:
Correction step. We compute the corrections (φ̃n+1

i )i=1,2:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Bφ̃n+1
1 = 0 in Ω1

lim
|x|→∞

|φ̃n+1
1 | = 0

∂φ̃n+1
1

∂n1
= γn

1 on Γ

∂L2φ̃
n+1
1

∂n1
= γn

2 on Γ

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Bφ̃n+1
2 = 0 in Ω2

lim
|x|→∞

|φ̃n+1
2 | = 0

∂φ̃n+1
2

∂n2
= γn

1 on Γ

∂L2φ̃
n+1
2

∂n2
= γn

2 on Γ

(6)
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where γn
1 = −1

2

(
∂φn

1

∂n1
+
∂φn

2

∂n2

)
and γn

2 = −1

2

(
∂L2φ

n
1

∂n1
+
∂L2φ

n
2

∂n2

)
.

Updating step.We update (φn+1
i )i=1,2 by solving the local problems:⎧⎪⎪⎪⎨⎪⎪⎪⎩

Bφn+1
1 = g in Ω1

lim
|x|→∞

|φn+1
1 | = 0

φn+1
1 = φn

1 + δn+1
1 on Γ

L2φ
n+1
1 = L2φ

n
1 + δn+1

2 on Γ

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Bφn+1

2 = g in Ω2,

lim
|x|→∞

|φn+1
2 | = 0

φn+1
2 = φn

2 + δn+1
1 on Γ

L2φ
n+1
2 = L2φ

n
2 + δn+1

2 on Γ

(7)

where δn+1
1 =

1

2
(φ̃n+1

1 + φ̃n+1
2 ) and δn+1

2 =
1

2
(L2φ̃

n+1
1 + L2φ̃

n+1
2 ).

Using the Fourier transform we can prove the following result.

Proposition 1. Algorithm 1 converges in two iterations.

After having found an optimal algorithm which converges in two steps for the
fourth order operator B problem we focus on the Stokes system. It suffices to replace
the operator B by the Stokes system and φ by the last component (F2(u, p)

T )3 of
the vector F2(u, p)

T in the boundary conditions.

ALGORITHM 2 We choose (u0
1, p

0
1) and (u0

2, p
0
2) such that (F2(u

0
1, p

0
1)

T )3 =
(F2(u

0
2, p

0
2)

T )3 and L2(F2(u
0
1, p

0
1)

T )3 = L2(F2(u
0
2, p

0
2)

T )3 on Γ .
We compute ((un+1

i , pn+1
i ))i=1,2 from ((un

i , p
n
i ))i=1,2 by the following iterative pro-

cedure:
Correction step. We compute the corrections ((ũn+1

i , p̃n+1
i ))i=1,2:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

S2(ũ
n+1
1 , p̃n+1

1 ) = 0 in Ω1

lim
|x|→∞

|ũn+1
1 | = 0

∂(F2(ũ
n+1
1 , p̃n+1

1 )T )3
∂n1

= γn
1 on Γ

∂L2(F2(ũ
n+1
1 , p̃n+1

1 )T )3
∂n1

= γn
2 on Γ

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

S2(ũ
n+1
2 , p̃n+1

2 ) = 0 in Ω2

lim
|x|→∞

|ũn+1
2 | = 0

∂(F2(ũ
n+1
2 , p̃n+1

2 )T )3
∂n2

= γn
1 on Γ

∂L2(F2(ũ
n+1
2 , p̃n+1

2 )T )3
∂n2

= γn
2 on Γ

(8)
where

γn
1 = −1

2

(
∂(F2(u

n
1 , p

n
1 )T )3

∂n1
+
∂(F2(u

n
2 , p

n
2 )T )3

∂n2

)
γn
2 = −1

2

(
∂L2(F2(u

n
1 , p

n
1 )T )3

∂n1
+
∂L2(F2(u

n
2 , p

n
2 )T )3

∂n2

)
.

Updating step. We update ((un+1
i , pn+1

i ))i=1,2 by solving the local problems:⎧⎪⎪⎪⎨⎪⎪⎪⎩
S2(u

n+1
i , pn+1

i ) = g in Ωi

lim
|x|→∞

|un+1
i | = 0

(F2(u
n+1
i , pn+1

i )T )3 = (F2(u
n
i , p

n
i )T )3 + δn+1

1 on Γ

L2(F2(u
n+1
i , pn+1

i )T )3 = L2(F2(u
n
i , p

n
i )T )3 + δn+1

2 on Γ

(9)

where

δn+1
1 =

1

2
[(F2(ũ

n+1
1 , p̃n+1

1 )T )3 + (F2(ũ
n+1
2 , p̃n+1

2 )T )3],

δn+1
2 =

1

2
[L2(F2(ũ

n+1
1 , p̃n+1

1 )T )3 + L2(F2(ũ
n+1
2 , p̃n+1

2 )T )3].
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This algorithm seems quite complex since it involves third order derivatives of the
unknowns in the boundary conditions on (F2(ũi, p̃i)

T )3. Writing ui = (ui, vi) and
using (F2(ũi, p̃i)

T )3 = ṽi it is possible to simplify it. By using the Stokes equa-
tions in the subdomains we can lower the degree of the derivatives in the boundary
conditions. We further introduce the stress

σi(u, p) := ν∂niu − pni

on the boundary ∂Ωi for a velocity u = (u, v), a pressure p and the normal vector
ni. For any vector u its normal (resp. tangential) component on the interface is
uni = u · ni (resp. uτ i = (I − ni ⊗ ni)u). We denote σi

ni
:= σi

ni
(ui, pi) · ni and

σi
τ i

:= (I−ni⊗ni)σ
i as the normal and tangential parts of σi, respectively. We can

thus write the new algorithm for the Stokes equations for general decomposition into
non overlapping subdomains: Ω̄ = ∪N

i=1Ω̄i and denote by Γij the interface between
subdomains Ωi and Ωj , i �= j. The new algorithm for the Stokes system reads:

ALGORITHM 3 Starting with an initial guess ((u0
i , p

0
i ))

N
i=0 satisfying u0

i,τ i
=

u0
j,τ j

and σi
ni

(u0
i , p

0
i ) = σj

nj
(u0

j , p
0
j ) on Γij, ∀i, j, i �= j, the correction step is

expressed as follows for 1 ≤ i ≤ N :⎧⎪⎪⎪⎨⎪⎪⎪⎩
S2(ũ

n+1
i , p̃n+1

i ) = 0 in Ωi

ũn+1
i,ni

= −1

2
(un

i,ni
+ un

j,nj
) on Γij

σi
τ i

(ũn+1
i , p̃n+1

i ) = −1

2
(σi

τ i
(un

i , p̃
n
i ) + σj

τ j
(un

j , p̃
n
j )) on Γij

(10)

followed by an updating step for 1 ≤ i ≤ N :⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
S2(u

n+1
i , pn+1

i ) = g in Ωi

un+1
i,τ i

= un
i,τ i

+
1

2
(ũn+1

i,τ i
+ ũn+1

j,τ j
) on Γij

σi
ni

(un+1
i , pn+1

i ) = σi
ni

(un
i , p

n
i )

+
1

2
(σi

ni
(ũn+1

i , p̃n+1
i ) + σj

nj
(ũn+1

j , p̃n+1
j )) on Γij .

(11)

Since Algorithm 3 is only a reformulation of Algorithm 1 we obtain:

Proposition 2. For a domain Ω = R2 divided into two non overlapping half planes,
Algorithms 2 and 3 are equivalent and converge in two iterations.

In each iteration step of Algorithm 3 two local boundary value problems have to be
solved in each subdomain. Therefore the cost of an iteration step is the same as for
the NN algorithm.

4 Numerical Results

For the discretization of the two-dimensional case we choose a second order centered
Finite Volume approach with a staggered grid. We consider two different types of do-
main decomposition methods: the discrete version of Algorithm 3 and an accelerated
version using the GMRES method.

In the sequel we compare the performance of the new algorithm with the stan-
dard Schur complement approach using a Neumann-Neumann preconditioner (with-
out coarse space), cf. [2]. We consider the domain Ω = [0.2, 1.2]×[0.1, 1.1]. We choose
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ν = 1 and the right hand side f such that the exact solution u = (u, v) is given
by u(x, y) = sin(πx)3 sin(πy)2 cos(πy), v(x, y) = − sin(πx)2 sin(πy)3 cos(πx) and
p(x, y) = x2 + y2.

First, the interface system is solved by a purely iterative method (denoted re-
spectively by itnew and itNN for the new algorithm and the Neumann-Neumann
preconditioner) and then accelerated by GMRES (denoted respectively by acNew

and acNN ). In all tables we count the smallest number of iterations, which is needed
to reduce the euclidian norm of the residual by TOL = 10−8. In brackets the number
of steps is printed, which is needed to achieve an error with respect to one-domain
solution which is less than 10−6. The case that the method is not converged within
100 steps is denoted by −.

We first consider a decomposition into two subdomains of same width and study
the influence of the reaction parameter and of the mesh size on the convergence. We
can see in Table 1 (left) that the convergence of the new algorithm is optimal. For
the iterative version convergence is reached in two iterations. Since in this case the
preconditioned operator for the corresponding Krylov method reduces in theory to
the identity, the Krylov method converges in one step. This is also valid numerically.
Moreover, both algorithm are completely insensitive with respect to the reaction
parameter. The advantage in comparison to the Neumann-Neumann algorithm is
obvious.

In Table 1 (right) we fix the reaction parameter c = 10−5 and vary the mesh size:
Both algorithms converge independently of the mesh size and, again, we observe a
clearly better convergence behavior of the new algorithm. The same kind of results
are valid for different values of c (not presented here).

Table 1. Influence of the reaction parameter on the convergence (h = 1
96

) (left),
influence of the mesh size for c = 10−5 (right).

c itNew itNN acNew acNN

102 2 (2) 16 (15) 1 (1) 6 (6)
100 2 (2) 17 (15) 1 (1) 6 (6)
10−3 2 (2) 17 (15) 1 (1) 6 (6)
10−5 2 (2) 17 (15) 1 (1) 6 (6)

h itNew itNN acNew acNN

1/24 2 (2) 16 (14) 1 (1) 6 (6)
1/48 2 (2) 17 (15) 1 (1) 6 (6)
1/96 2 (2) 17 (15) 1 (1) 6 (6)

Now, the case of a strip-wise decomposition into more than two subdomains
is considered. The mesh size is fixed (h = 1/96) and for different values of c we
vary the number of subdomains. In the case of a strip-wise decomposition into N
subdomains, the iteration number is increasing very quickly for very small c and in
Table 2 (left) we can see only a small advantage of the new algorithm over the more
classical approach. For larger c (Table 2 (right)) the behavior of the two domain
case is conserved. The number of iteration steps is almost reduced by a factor of
two. Moreover, for all cases the convergence is still independent of the mesh size.

The final test cases treat general decompositions into N ×N subdomains. Two
different values for the reaction coefficient c are analyzed. The iterative variants do
not converge in the multi-domain case with cross points within 100 steps (except
one case), cf. Table 3. Applying the accelerated variants we observe in the case 2×2
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Table 2. Influence of the number of subdomains (h = 1
96

): c = 10−5 (left), c = 102

(right).

N itNew itNN acNew acNN

2 2 (2) 17 (15) 1 (1) 6 (6)
4 - (-) - (-) 6 (8) 7 (-)
6 - (-) - (-) 10 (15) 13 (-)
8 - (-) - (-) 13 (21) 19 (-)

N itNew itNN acNew acNN

2 2 (2) 16 (15) 1 (1) 6 (6)
4 45 (34) - (-) 5 (5) 10 (9)
6 - (-) - (-) 8 (7) 15 (15)
8 - (-) - (-) 11 (10) 21 (21)

Table 3. Influence of the number of subdomains (h = 1
96

): c = 1 (left), c = 102

(right).

N ×N itNew itNN acNew acNN

2x2 - (-) - (-) 9 (9) 13 (13)
3x3 - (-) - (-) 27 (30) 26 (28)
4x4 - (-) - (-) 35 (39) 36 (39)

N ×N itNew itNN acNew acNN

2x2 66 (61) - (-) 8 (7) 11 (11)
3x3 - (-) - (-) 21 (22) 21 (21)
4x4 - (-) - (-) 25 (27) 27 (27)

a faster convergence of the new algorithm. For more subdomains both algorithms
need almost the same number of iteration steps. This behavior can be explained
by the presence of floating subdomains, which causes additional problems. Here, a
suitable coarse space will decrease the number of needed iteration steps.

5 Conclusion

We have shown that the Smith factorization is a powerful tool in order to derive new
domain decomposition methods for vector valued partial differential equations. The
proposed algorithm for the Stokes system shows very fast convergence and is robust
with respect to mesh sizes and reaction coefficients. Of course, the convergence is
not satisfactory in the multi-domain case with cross points. But the number of
needed iteration steps can be dramatically decreased by using an appropriate coarse
space. A suitable choice of a coarse space for our new approach is subject of further
research.
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Summary. Spectral element approximations based on triangular elements and on
the so-called Fekete points of the triangle have been recently developed. p-multigrid
methods offer an interesting way to resolve efficiently the resulting ill-conditioned
algebraic systems. For elliptic problems, it is shown that a well chosen restriction
operator and a good set up of the coarse grid matrices may lead to valuable results,
even with a standard Gauss-Seidel smoother.

1 Introduction

As well known, high-order approximations are highly accurate as soon as the solu-
tion is smooth and, usually, require less grid-points than low-order methods. Un-
fortunately, the resulting algebraic system is severely ill-conditioned. Thus, for a
two-dimensional (2D) second order Partial Differential Equation (PDE), a high or-
der Finite Element Method (FEM) usually yields a condition number proportional
to N4, where N ≡ p is the (total) degree of the polynomial approximation on each
triangular element. Efficient solvers are then required.

Different approaches have been investigated in our previous works. Especially,
for Fekete triangular spectral elements we have focused on Overlapping Schwarz
methods [7] and on Schur complement methods [9]. In both cases, the idea was to
consider each element as a different subdomain and then to apply classical domain
decomposition preconditioners. Similarly, here we investigate a p-multigrid method
so that the roughest approximation may be the one obtained with the standard
P1 FEM. For the usual SEM (Spectral Element Method), a multigrid spectral ele-
ment approach was first proposed in [10] and more recently investigated in [3]. For
standard spectral methods one can cite [13, 4] and, among others, [6] for hp-FEM.

The outline of the paper is the following. To be self contained, in Section 2 the
Fekete-Gauss TSEM (Triangles based SEM) is briefly described. In Section 3 we
propose different restriction algorithms and strategies for setting up the coarse-grid
algebraic systems, test these different approaches and then optimize the smoother
for one triangular spectral element. In Section 4, the best approach is implemented
in a TSEM solver, applied to an elliptic model problem and a convergence study is
carried out. We conclude and offer some perspectives in Section 5.
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2 The Fekete-Gauss TSEM

The (quadrilateral-based) SEM makes use of the Gauss-Lobatto-Legendre (GLL)
points, for both the approximation and the quadrature points. GLL points have
indeed nice approximation and integration properties. Unfortunately, such a single
set of points does not exist for the triangle. Thus, in its initial version the Fekete
points based TSEM [11] may fail to show the “spectral accuracy” property [8].

The Fekete-Gauss TSEM makes use of two sets of points:
- The Fekete points, {xi}n

i=1, as approximation points:

u(x) ≈
n∑

i=0

u(xi)ϕi(x), x ∈ T

where the ϕi are the Lagrange polynomials, given by ϕi(xj) = δij .
- Gauss points, {yi}m

i=1, as quadrature points:∫
T

uv dT ≈
m∑

i=0

ρiu(yi)v(yi)

where the ρi are the Gauss quadrature weights.
Let T = {(r, s) : −1 ≤ r, s, r + s ≤ 0} and PN (T ) be the set of polynomials

on T of total degree ≤ N . Let n = (N + 1)(N + 2)/2 and {ψj}n
j=1 be any basis of

PN (T ). The Fekete points {xi}n
i=1 are those which maximize over T the determinant

of the Vandermonde matrix V , given by Vij = ψj(xi), 1 ≤ i, j ≤ n.
In Fig. 1 (top) we compare the GLL points of the quadrilateral and the Fekete

points of the triangle [12], for N = 12 (maximum degree in each variable for the
quadrilateral and total degree for the triangle). In Fig. 1 (bottom) we give the
Gauss points of the triangle for M = 19 (maximum polynomial degree for which
the quadrature is exact) and those obtained from the Gauss points, with a mapping
of the quadrilateral onto the triangle. The latter set of points may be of interest
for values of M for which symmetrically distributed Gauss points are unknown.
As advocated in [5], GLL points mapped onto the triangle may be used for both
approximation and quadrature points, but at the price of an useless accumulation
of points in one vertex.

The Fekete points of the triangle show some nice properties [12, 1]: (i) Fekete
points are GLL points for the cube; (ii) Fekete points of the triangle are GLL points
on the sides; (iii) The Lagrange polynomials based on Fekete points are maximum
at these points.

3 Multigrid Strategy for the Triangle

We assume to have two grids, a coarse grid (grid 1) and a fine grid (grid 2) and denote
the polynomial approximation degree by Nj , the set of Fekete points by {xj

i} and
the Lagrange polynomials based on these points by {ϕj

i}, for grid j, 1 ≤ j ≤ 2.



p-Multigrid for Fekete Spectral Element Method 487

−1

−0.5

0

0.5

1

Gauss points (M=19)

0 0.5 1−1 −0.5

−1

−0.5

0

0.5

1

Gauss points (M=19)

0 0.5 1−1 −0.5

Fig. 1. Top: Triangle-Fekete and quadrilateral-GLL points (N = 12), Bottom:
Triangle-Gauss and quadrilateral-Gauss mapped points (M = 19)

3.1 Prolongation / Restriction Operators and Coarse Grid System

Defining a prolongation operator is natural in the frame of spectral methods. Since
the numerical approximation is everywhere defined, one has simply to express the
coarse grid approximation at the Fekete points of the fine grid, to obtain:

u2(x
2
i ) = u1(x

2
i ) =

∑
j

u1(x
1
j )ϕ

1
j (x

2
i )

where uj ≡ uNj denotes the numerical approximation on grid j. In matrix form,
with obvious notations:

u2 = P u1 , [P ]ij = ϕ1
j (x

2
i ) .

Defining a restriction operator is less straightforward. We have investigated the
following approaches:

- Interpolation: similarly to what is done for the prolongation operator, one can
use the fine grid approximation to set up the restriction operator:

u1(x
1
i ) =

∑
j

u2(x
2
j )ϕ

2
j (x

1
i ) , u1 = Ru2 , [R]ij = ϕ2

j (x
1
i ) .

Such an approach is essentially justified for collocation methods, i.e., when the Right
Hand Side (RHS) is a function and not an integral simply associated to a particular
point through the corresponding Lagrange polynomial.

- Transposition (variational methods): if one takes into account the particular
structure of the RHS, then

(f, ϕ1
i ) = (f,

∑
j

ϕ1
i (x

2
j )ϕ

2
j ) =

∑
j

ϕ1
i (x

2
j )(f, ϕ

2
j ) so that R = P t
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- Projection: let {ψi}∞i=1 be an orthogonal hierarchical basis, e.g., the Koornwin-
der-Dubiner basis [2], then :

u2(x
2
i ) =

∑
k≤n2

ûkψk(x2
i ) and u1(x

1
i ) =

∑
k≤n1

ûkψk(x1
i )

so that: R = V1[Id, 0]V2
−1 (Id, Identity matrix). Again this approach is better

adapted to collocation methods.
It remains to set up the coarse grid algebraic system. On the coarse grid one has

to solve A1e1 = r1, with r1 = R r2 (r2, residual at the fine grid level; e1, error at
the coarse grid level). One has at least the two following possibilities:

- Matrix A1 may be set up directly, i.e., like A2. This approach is the one used
in [10].

- Matrix A1 may be set up from: A1 = RA2P , i.e., by “aggregation” of A2. In
this case one can easily check that if R = P t, then e1 such that A1e1 = Rr2 solves
the constrained optimization problem: minimize

φ(u∗) = 0.5(A2u
∗,u∗)− (b,u∗) constrained by

u∗ = u2 + Pe1 .

Numerical tests have been carried out for −∆u + u = f in T , with the exact
solution: uexact = sin(2x + y) sin(x + 1) sin(1 − y) and the corresponding source
term and Dirichlet boundary conditions.

Table 1. Number of iterations at the fine grid level / number of V-cycles. Compar-
ison with Gauss-Seidel (GS).

N -Grids I-D T-D P-D T-A GS

(6,12) 48/6 88/11 48/6 40/5 78
(3,6,12) 48/6 92/12 48/6 40/5 78
(6,12,18) 92/12 356/45 84/11 72/9 203

(3,6,12,18) 92/12 364/46 84/11 72/9 203

Depending on (i) the restriction strategy: Interpolation, Transposition or Pro-
jection and (ii) the setting up of the coarse matrix: Direct or Aggregation, four
cases are considered: I-D, T-D, P-D and T-A. In these numerical tests, the number
of grids is not restricted to 2, we use a V-cycle and at the smoothing grid levels 4
Gauss-Seidel iterations.

The number of iterations at the fine grid and the number of V-cycles required to
get a residual less than 10−6 are given in Table 1. The multigrid results are compared
to those obtained with the Gauss-Seidel (GS) method. Clearly, the transposition-
aggregation (T-A) strategy gives the best results. Moreover, one observes that the
number of iterations at the fine grid level is nearly independent of the number of
grids involved in the V-cycle.
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3.2 Analysis of the Smoother

On the basis of the following Successive Over Relaxation (SOR) decomposition of
the matrix A2, associated to the fine grid

A2 =
1

ω
(D + ωL)− 1

ω
[(1− ω)D − ωU ] ≡ N −M

with D, L, U : the Diagonal, strictly Lower and Upper triangular parts of A2, we
want to optimize the relaxation coefficient ω and the number of iterations m of each
SOR smoothing. Note that the GS smoothing is recovered for ω = 1 and that, to
obtain a stable algorithm, 0 < ω < 2.

We follow here an approach similar to the one proposed in [10]. Let n be the
iteration index, defined as the sum of the number of iterations on grid 2 and the
number of coarse grid corrections, en the error and rn the residual.

- Pre-smoothing: after m iterations:

en+m = (N−1M)men rn+m = A2e
n+m = A2(N

−1M)mA−1
2 rn

- After the coarse grid correction:

en+m+1 = en+m − PA−1
1 R rn+m

rn+m+1 = (Id−A2PA
−1
1 R) rn+m

- Post-smoothing: after m iterations:

rn+2m+1 = A2(N
−1M)mA−1

2 rn+m+1 = T rn

T = A2(N
−1M)mA−1

2 (Id−A2PA
−1
1 R)A2(N

−1M)mA−1
2 .

Then:

‖r2m+1+n‖ = ‖Trn‖ ≤ ‖T‖‖rn‖ ≡ ρ2m+1‖rn‖, ρ(ω,m) = ‖T‖1/(2m+1) .

The parameter ρ(ω,m) that we have introduced may constitute a good indicator of
the smoothing efficiency and so it allows an optimization of the relaxation parameter
and of the number of iterations.

From the conclusion of Section 3.1, the restriction is achieved by transposition
and the coarse grid matrix A1 is set up by aggregation of the fine grid matrix A2.
Figure 2 shows isolines of ρ in the (m,ω) plane. Clearly, choosing ω = 1 appears
satisfactory and increasing the number of iterations beyond 4 appears useless, since
this does not allow to really decrease the value of ρ.

4 Application to a Model Problem

The present multigrid method has been implemented in a TSEM solver using the
T-A strategy and an arbitrary number (≥2) of grids. The matrix Ai, associated to
the level i, is computed from :

Ai =
K∑

k=1

′RiAk,i+1 Pi Ri = P t
i
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Fig. 2. ρ(ω,m) for the ‖ · ‖∞ (left) and ‖ · ‖2 norms (right); N1 = 3, N2 = 6 (top)
and N1 = 6, N2 = 12 (bottom)

where Ri, Pi are the restriction and prolongation operators between grids i (coarse)
and i+1 (fine),

∑′ is the stiffness sum and Ak,i+1 is the element matrix associated to
the element k ≤ K at the grid level (i+1). Note that the restriction and prolongation
operators are set up on the reference element, where the polynomial approximation
holds, and so they do not depend on the element index k.

Convergence tests have been made for the elliptic PDE, −∆u + u = f in
Ω = (−1, 1)2, with the exact solution uexact = sin(πx) sin(πy) and corresponding
Dirichlet boundary conditions and source term.

The computational domain Ω = (−1, 1)2 has been discretized using K = 10 ×
10×2 = 200 triangular elements and N = 12. One has then 14641 degrees of freedom
and the condition number of the system matrix equals 55345.

In Fig. 3 are shown convergence results for different configurations involving
from 2 to 4 grids and comparisons are provided with the Conjugate Gradient and
the Gauss-Seidel algorithms. Clearly the multigrid technique appears very efficient.
Moreover, just like for one triangular element, the results obtained with N = 12 for
the fine grid show that the convergence rate is nearly independent of the number of
grids, so that the exact solve is only required on a very coarse grid. The convergence
result given for the finer grid N = 18 shows that the convergence rate only slightly
deteriorates, consistently with the results obtained for one element.
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Fig. 3. MG convergence for N = (6, 12), N = (3, 6, 12), N = (2, 3, 6, 12) (10 cycles)
and N = (3, 6, 12, 18) (13 cycles). Comparisons with CG and GS for N = 12.

5 Conclusion and Perspectives

A multigrid approach has been investigated for the TSEM approximation of elliptic
problems. In particular,

- For one triangular Fekete-Gauss spectral element, different formulations of the
restriction operator and of the coarse grid matrix have been compared. The best
results are obtained when the restriction operator is defined by transposition and
the coarse matrices by aggregation.

- An analysis of the influence of the control parameters (ω and m) of the SOR-
smoother has been carried out. Good properties are obtained for ω = 1 and m = 4.

- This multigrid approach has been implemented in a TSEM solver and tests
have been carried out for a model problem.

Many points have not yet been investigated, e.g., (i) influence of a deformation
of the mesh, (ii) comparisons with standard (quadrilateral based) SEM and (iii)
improvement of the smoother.

Beyond that, it would be interesting to provide extensions to 3D geometries and
also to more realistic problems, like fluid flows in complex geometries.
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1 Introduction

In the p-FEM and the closely related spectral method, the solution of an elliptic
boundary value problems is approximated by piecewise (mapped) polynomials of de-
gree p on a fixed mesh T . In practice, the entries of the p-FEM stiffness matrix cannot
be evaluated exactly due to variable coefficients and/or non-affine element maps and
one has to resort to numerical quadrature to obtain a fully discrete method. Com-
putationally, choosing shape functions that are related to the quadrature formula
employed can significantly improve the computational complexity. For example, for
tensor product elements (i.e., quadrilaterals, hexahedra) choosing tensor product
Gauss-Lobatto quadrature with q + 1 = p + 1 points in each spatial direction and
taking as shape functions the Lagrange interpolation polynomials (of degree p) in
the Gauss-Lobatto points effectively leads to a spectral method. The quadrature
error analysis for the p-FEM/spectral method is available even for this case of min-
imal quadrature (see, e.g., [5, 6] and reference there). Key to the error analysis is
a one-dimensional discrete stability result for the Gauss-Lobatto quadrature due to
[2] (corresponding to α = 0 in Lemma 2 below) that can readily be extended to
quadrilaterals/hexahedra by tensor product arguments.

In the present paper, we show an analog of the error analysis of the above
minimal quadrature for the p-FEM on tetrahedral meshes (the easier case of triangles
can be treated completely analogously). Quadrature on a tetrahedron can be done
by a mapping to a hexahedron via the Duffy transformation D of (3). We show in
Theorem 1 that for tensor product Gauss-Lobatto-Jacobi quadrature formulas with
q + 1 = p + 1 points in each direction, one again has discrete stability for the fully
discrete p-FEM. A complete quadrature error analysis (Theorem 2, Corollary 1) then
follows from Strang’s lemma and shows that the convergence rates of the Galerkin
p-FEM (where all integrals are evaluated exactly) is retained by the fully discrete
p-FEM. The present error analysis complements the work [3] for the p-FEM on
triangles/tetrahedra where it is shown that by adapting the shape functions to
the quadrature formula, the stiffness matrix can be set up in optimal complexity.
However, we mention that the approximation spaces employed in [3] are no longer the
classical spaces Sp,1(T ) of piecewise polynomials but the spaces Sp,1(T ) augmented



494 T. Eibner and J.M. Melenk

by bubble shape functions for each element, which makes the static condensation
more expensive.

To fix ideas, we consider

−∇ · (A(x)∇u) = f on Ω ⊂ R3, u|∂Ω = 0, (1)

where A ∈ C(Ω,R3×3) is pointwise symmetric positive definite. We require A and
f to be analytic on Ω and the standard ellipticity condition

0 < λmin ≤ A(x) ≤ λmax, ∀x ∈ Ω.

2 Quadrature Error Analysis

Notation

The reference tetrahedron K̂ and the reference cube Q are defined as

K̂ = {(x, y, z) | − 1 < x, y, z ∧ x+ y + z < −1}, Q := (−1, 1)3. (2)

The Duffy transformation D : Q → K̂ is given by

D(η1, η2, η3) :=

(
(1 + η1)(1− η2)(1− η3)

4
− 1,

(1 + η2)(1− η3)
2

− 1, η3

)
. (3)

Lemma 1. The Duffy transformation is a bijection between the (open) cube Q and

the (open) tetrahedron K̂. Additionally,

D′(η1, η2, η3) :=

[
∂ξi
∂ηj

]3

i,j=1

=

⎡⎣ 1
4
(1− η2)(1− η3) 0 0

− 1
4
(1 + η1)(1− η3) 1

2
(1− η3) 0

− 1
4
(1 + η1)(1− η2) − 1

2
(1 + η2) 1

⎤⎦	

,

(
D′(η1, η2, η3)

)−1
=

1

(1− η2)(1− η3)

⎡⎣ 4 2(1 + η1) 2(1 + η1)
0 2(1− η2) 1− η22
0 0 (1− η2)(1− η3)

⎤⎦ ,
detD′ =

(
1− η2

2

)(
1− η3

2

)2

. (4)

Proof. See, for example, [4].

We employ standard notation by writing Pp(K̂) for the space of polynomials of

degree p on K̂, and by denoting Qp(Q) the tensor-product space of polynomials of
degree p in each variable, [7]; additionally we set

Q̃p := {u ∈ Qp(Q) | ∂1u = ∂2u = ∂3u = 0 on η3 = 1 and ∂1u = 0 on η2 = 1}.

Remark 1. The Duffy transformationD maps the face η3 = 1 to the point (−1,−1, 1)

and the face η2 = 1 to a line. An important property of Q̃p is that u ∈ Pp(K̂) implies

u ◦D ∈ Q̃p.
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2.1 Gauss-Lobatto-Jacobi Quadrature

Gauss-Lobatto-Jacobi Quadrature in 1D

For α > −1, n ∈ N, the Gauss-Lobatto-Jacobi quadrature formula is given by

GLJ(α,n)(f) :=
n∑

i=0

ω
(α,n)
i f(x

(α,n)
i ) ≈

∫ 1

−1

(1− x)αf(x)dx; (5)

(see, e.g., [4, App. B]): the quadrature nodes x
(α,n)
i , i = 0, . . . , n, are the zeros of the

polynomial x �→ (1 − x2)P
(α+1,1)
n (x), where P

(α,β)
n denotes the Jacobi polynomial

of degree n with respect to the weight function (1 − x)α(1 + x)β . The quadrature

weights ω
(α,n)
i , i = 0, . . . , n, are positive and explicit formulas can be found, for

example, in [4, App. B]. We have:

Lemma 2. Let Pn be the space of polynomials of degree n. Then for α > −1:

1. For all f ∈ P2n−1 there holds GLJ(α,n)(f) =
∫ 1

−1
f(x)(1− x)αdx.

2. For all f ∈ Pn there holds∫ 1

−1

f2(x)(1− x)αdx ≤ GLJα,n(f2) ≤
(

2 +
α+ 1

n

)∫ 1

−1

f2(x)(1− x)αdx.

Proof. The first assertion is well-known. The second assertion follows by the same
arguments as in the case α = 0, which can be found, for example, in [2] or [1,
Corollary 1.13].

Gauss-Lobatto-Jacobi Quadrature on K̂

Using the change of variables formula
∫

K̂
gdx =

∫
Q(g ◦D)| detD′|dx, we can intro-

duce a quadrature formulas such that

GLJQ,n(f) ≈
∫
Q
f(η)| detD′(η)|dη, GLJK̂,n(g) ≈

∫
K̂

g(ξ) dξ

by setting

GLJQ,n(f) := 1/8
n∑

i1,i2,i3=0

ω
(0,n)
i1

ω
(1,n)
i2

ω
(2,n)
i3

f
(
x

(0,n)
i1

, x
(1,n)
i2

, x
(2,n)
i3

)
, (6)

GLJK̂,n(g) := GLJQ,n(g ◦D). (7)

Using standard tensor product arguments one can deduce from the properties of the
quadrature rules GLJα,n and the formula (4) the following result:

Lemma 3. Let 1 ≤ p ≤ q and let û ∈ Qp(Q), v̂ ∈ Q2q−1(Q). Set u := û◦D−1, v :=
v̂ ◦D−1. Then the equalities GLJQ,q(v̂) =

∫
Q v̂| detD′|dΩ and GLJK̂,q(v) =

∫
K̂
vdΩ

are true and, for C := (2 + 1/p)(2 + 2/p)(2 + 3/p) ≤ 60,∫
Q
|û|2| detD′|dΩ ≤ GLJQ,q(û

2) ≤ C
∫
Q
|û|2| detD′|dΩ,

‖u‖2
L2(K̂)

≤ GLJK̂,q(u
2) ≤ C‖u‖2L2(K̂).
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2.2 Discrete Stability

The following discrete stability result is the heart of the quadrature error analysis;
its proof is deferred to Section 3.

Theorem 1. Let A ∈ C(K̂,R3×3) be pointwise symmetric positive definite, c ∈
C(K̂). Assume the existence of λmin, λmax, cmin > 0 with

λmin ≤ A(x) ≤ λmax, cmin ≤ c(x)∀x ∈ K̂.

Then for q ≥ p there holds for all u ∈ {u |u ◦D ∈ Q̃p}

GLJK̂,q(∇u ·A∇u) ≥
λmin

10404
‖∇u‖2

L2(K̂)
≥ λmin

10404λmax

∫
K̂,q

∇u ·A∇udΩ, (8)

GLJK̂,q(cu
2) ≥ cmin‖u‖2L2(K̂)

. (9)

2.3 Convergence Analysis of Fully Discrete p-FEM

For the model problem (1) and given mesh T consisting of (curvilinear) tetrahedra

with element maps FK : K̂ → K, we define the discrete bilinear form aq and right-
hand side F q by

aq(u, v) :=
∑

K∈T
GLJK̂,q

(
((∇u ·A∇v)|K ◦ FK)| detF ′

K |
)
,

F q(u) :=
∑

K∈T
GLJK̂,q

(
((fu)|K ◦ FK)| detF ′

K |
)
.

We let Sp,1
0 (T ) := {u ∈ H1

0 (Ω) |u|K ◦ FK ∈ Pp(K̂) ∀K ∈ T } and consider finite
dimensional spaces VN satisfying

Sp,1
0 (T ) ⊂ VN ⊂ S̃p,1

0 (T ) := {u ∈ H1
0 (Ω) |u|K ◦ FK ◦D ∈ Q̃p ∀K ∈ T }. (10)

Remark 2. By Remark 1, choosing VN = Sp,1
0 (T ) is admissible. Taking VN larger

than Sp,1
0 (T ) permits adapting the shape functions to the quadrature points and

permits efficient ways to generate the stiffness matrix, [3].

The fully discrete problem is then:

Find uN ∈ VN s.t. aq(uN , v) = F q(v) ∀v ∈ VN . (11)

The discrete stability result Theorem 1 for a single element is readily extended
to meshes with several elements and existence and uniqueness of solutions to (11)
follows. An application of Strang’s Lemma then gives error estimates:

Theorem 2. Let the mesh T be fixed and the element maps FK be analytic on K̂.
Assume (10) and q ≥ p. Let u solve (1) and uN solve (11). Then there exist C,
b > 0 depending only on Ω, the analytic data A, f of (1), and the analytic element
maps FK such that

‖u− uN‖H1(Ω) ≤ C
(

inf
v∈Sr

0 (T )
‖u− v‖H1(Ω) + Cr3e−b(2q+p−r)

)
for arbitrary 1 ≤ r ≤ min{p, 2(q − 1)− p}.
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Proof. The proof follows along the lines of [6, Secs. 4.2, 4.3]: Theorem 1 enables us to
use a Strang lemma, and the resulting consistency terms can be made exponentially
small by the analyticity of A, f , and the FK .

Remark 3. It is worth stressing that analyticity of ∂Ω is not required in Theorem 2—
only analyticity of the element maps is necessary. Hence, also piecewise analytic
geometries are covered by Theorem 2. The requirement that A, f be analytic can
be relaxed to the condition that A|K , f |K be analytic on K for all elements.

We note that choosing r = )p/2* in Theorem 2 implies that the rate of conver-
gence of the fully discrete p-FEM is typically the same as the Galerkin p-FEM in
which all quadratures are performed exactly:

Corollary 1. Assume the hypotheses of Theorem 2. Then:

1. If inf
v∈S

p,1
0 (T )

‖u− v‖H1(Ω) = O(p−α), then ‖u− uN‖H1(Ω) = O(p−α).

2. If inf
v∈S

p,1
0 (T )

‖u− v‖H1(Ω) = O(e−bp) for some b > 0, then there exists b′ > 0

such that ‖u− uN‖H1(Ω) = O(e−b′p).

3 Proof of Theorem 1

The heart of the proof of Theorem 1 consists in the assertion that for the Duffy
transformation D, the matrix (D′)−1(D′)−	 is equivalent to its diagonal. To that
end, we recall for square matrices A, B ∈ Rn×n the standard notation A ≤ B which
expresses v	Av ≤ v	Bv for all v ∈ Rn. We have:

Lemma 4. Let E(η) := (D′−1D′−	)(η) and denote by diagE(η) ∈ R3×3 the diago-
nal of E(η). Then

1

3468
diagE(η) ≤ E(η) ≤ 3 diagE(η) ∀η ∈ Q. (12)

Proof. One easily shows for any invertible matrix G ∈ Rn×n

B ≤ A ⇐⇒ G	BG ≤ G	AG. (13)

In order to prove (12), we define the diagonal matrix

B(η) := diag [(1− η2)(1− η3), (1− η3), 1]

and in view of (13) we are led to showing

1

3468
(B	(diagE)B)(η) ≤ (B	EB)(η) ≤ 3(B	(diagE)B)(η) ∀η ∈ Q. (14)

Explicitly computing

(B	EB)(η) =

⎛⎝ 8(1 + η1)
2 + 16 (1 + η1){4 + 2(1 + η2)} 2(1 + η1)

sym. 4 + (1 + η2)
2 (1 + η2)

sym. sym. 1

⎞⎠
and applying the three estimates
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2(1 + η1){4 + 2(1 + η2)}v1v2 ≤ 8(1 + η1)
2v21 + [4 + (1 + η2)

2]v22 ,

4(1 + η1)v1v3 ≤ 4(1 + η1)
2v21 + v23 , 2(1 + η2)v2v3 ≤ (1 + η2)

2v22 + v23

for all η ∈ Q, v1, v2, v3 ∈ R, we conclude for any vector v = (v1, v2, v3)
	 ∈ R3

v	(B	EB)(η)v ≤ v	 diag
[
20(1 + η1)

2 + 16, 8 + 3(1 + η2)
2, 3

]
v.

In view of (B	(diagE)B)(η) = diag
[
8(1 + η1)

2 + 16, 4 + (1 + η2)
2, 1

]
we arrive at

(B	EB)(η) ≤ 3(B	(diagE)B)(η). In order to prove the lower bound of (14) we
observe that (B	EB)(η) is symmetric positive definite for all η ∈ Q; denoting by
0 < λ1 ≤ λ2 ≤ λ3 the three eigenvalues of (B	EB)(η), we conclude from the
Gershgorin circle theorem 0 < λ1 ≤ λ2 ≤ λ3 ≤ 68 for all η ∈ Q. Moreover, a direct
calculation shows det(B	EB)(η) = 64. Thus, λ1 ≥ det(B	EB)/λ2

2 ≥ 4/289 for all
η ∈ Q. Hence for all η ∈ Q

(B	EB)(η) ≥ 4

289
I ≥ 4

289
diag

[
8(1 + η1)

2 + 16

48
,
4 + (1 + η2)

2

8
, 1

]
≥ 1

3468
(B	(diagE)B)(η).

Proof of Theorem 1. We will only show (8) as (9) follows easily from Lemma 3.

Let u be such that û := u ◦ D ∈ Q̃p. In view of the positivity of the quadrature
weights and Lemma 4 we get for Ẽ := diag((D′)−1(D′)−	)

GLJK̂,q(∇u ·A∇u) ≥ λmin GLJK̂,q(|∇u|
2)

= λmin GLJQ,q(∇û · (D′)−1(D′)−	∇û) ≥ λmin

3468
GLJQ,q(∇û · Ẽ∇û).

A calculation reveals Ẽ =
(
E(1)

)2

+
(
E(2)

)2

if we introduce

E(1) := diag

{ √
8(1 + η1)

(1− η2)(1− η3)
,
1 + η2
1− η3

, 1

}
,

E(2) := diag

{
4

(1− η2)(1− η3)
,

2

1− η3
, 0

}
.

The assumption û ∈ Q̃p implies that the components of E(1)∇û and E(2)∇û are in
Qp(Q); hence, from Lemma 3

GLJQ,q(∇û · Ẽ∇û) = GLJQ,q(|E(1)∇û|2) + GLJQ,q(|E(2)∇û|2)

≥
∫
Q
|E(1)∇û|2| detD′|dΩ +

∫
Q
|E(2)∇û|2| detD′|dΩ

=

∫
Q

(∇û)	Ẽ∇û | detD′|dΩ

≥ 1

3

∫
Q

(∇û)	(D′)−1(D′)−	∇û | detD′|dΩ =
1

3

∫
K̂

|∇u|2dΩ,

where we also appealed to Lemma 4. Collecting our findings, we arrive at

GLJK̂,q(∇u ·A∇u) ≥
λmin

3468

1

3
‖∇u‖2

L2(K̂)
≥ λmin

10404λmax

∫
K̂

∇u ·A∇udΩ.
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4 Numerical Example

Corollary 1 states that the fully discrete p-FEM converges at the same rate as a
Galerkin p-FEM where all integrals are evaluated exactly. We illustrate this behavior
for the following example:

−∇ · (A∇u) = 1 on Ω := K̂ and u = 0 on ∂Ω, (15)

A(x1, x2, x3) := diag

[
1

r2 + 1
, exp

(
r2
)
, cos

(
1

r2 + 1

)]
, (16)

where r2 = x2
1 + x2

2 + x2
3. We base the p-FEM on a single element on two different

sets of shape functions: ΦKS is the set of shape functions proposed by Karniadakis
and Sherwin [4] and spans Pp(K̂) ∩H1

0 (K̂); the set ΦLag is, roughly, speaking, the
set of Lagrange interpolation points in the quadrature points (on Q); it spans a

space that contains Pp(K̂) ∩ H1
0 (K̂) and we refer to [3] for details. In both cases

the stiffness matrix is set up using the minimal quadrature, i.e., q = p. Figure 1
shows the relative energy norm error ( Eexact−aq(uN ,uN )

Eexact
)1/2 for both cases, where

Eexact =
∫

Ω
∇u · A∇dΩ. To illustrate that the optimal rate of convergence is not

affected by the quadrature, we include in Fig. 1 a calculation (based on ΦKS) that
corresponds to (15) with A = I; in this case the linear system of equations can be
set up without quadrature errors. We observe indeed that the rate of convergence is
the same as in the case of quadrature.

4 5 6 7 8 9 10 20 25

A=diag[...], ΦKS

A=diag[...], ΦLag

A = I, exact quadr., ΦKS

polynomial degree p 

re
l. 

er
ro

r 
in

 e
ne

rg
y 

no
rm

100

10−1

10−2

10−3

10−4

Fig. 1. Relative energy norm error

We close by pointing out that the shape functions in ΦLag are adapted to the
quadrature rule. While the number of functions in ΦLag is (asymptotically for large
p) 6 times that of ΦKS , setting up the stiffness matrix is not slower than setting up
the stiffness matrix based on ΦKS . We refer to [3] for a detailed study.
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A Direct Solver for the Heat Equation
with Domain Decomposition in Space
and Time

Marc Garbey

University of Houston, Computer Science (http://www.cs.uh.edu/∼garbey/)

Summary. In this paper we generalize the Aitken-like acceleration method of the
additive Schwarz algorithm for elliptic problems to the additive Schwarz waveform
relaxation for the heat equation. The domain decomposition is in space and time.
The standard Schwarz waveform relaxation algorithm has a linear rate of conver-
gence and low numerical efficiency. This algorithm is, however, friendly to cache use
and scales with the memory in parallel environments. We show that our new ac-
celeration procedure of the waveform acceleration algorithm results in a fast direct
solver.

1 Introduction

Currently, standard processors are becoming multi-cores and there is a strong in-
centive to make use of all these parallel resources while avoiding conflict in memory
access. We also have an overwhelming abundance of parallel computers available
when using grids. The Additive Schwarz (AS) method for elliptic problems or the
Additive Schwarz Waveform Relaxation (ASWR) method for parabolic problems can
be implemented easily in distributed computing environments and have very sim-
ple and systematic communication schemes. This algorithm is friendly to memory
cache use and scales with the memory in parallel environments. ASWR in partic-
ular minimizes the number of messages sent in a parallel implementation and is
very insensitive to delays due to a high latency network. The main drawback of the
method is that it is one or several orders of magnitude slower than modern solvers
such as multigrids. In the meantime, multigrids have poor parallel efficiency with
high latency networks.

There have been two main classes of methods to speed up AS and ASWR. One
is to introduce a coarse grid preconditioner. But a coarse grid operator reduces
drastically the parallel efficiency on a slow network. A second option is to optimize
the transmission conditions. This general avenue of work has been followed with
success by numerous workers - see for example [3, 8, 9, 10] and their references.
We have introduced in [7] a different and somehow complementary approach that
consists of accelerating the sequence of trace on the interface generated by the AS
method. The advantage of our postprocessing algorithm, besides its simplicity, is
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that it has quasi-optimum arithmetic complexity for the Poisson equation discretized
on Cartesian grid while offering unique parallel efficiency on the grid. This is the only
example, to our knowledge, of a numerically efficient Poisson solver that performs
well on a grid of computers [2]. Our method offers also a general framework to speed
up elliptic and non-linear elliptic solvers in a broad variety of conditions [1, 2, 6, 7].

Our main objective in this paper is to present an extension of this technique to
the heat equation with Domain Decomposition (DD) in space and time. A general-
ization to Parabolic operators and its application to grid computing will be reported
elsewhere [5].

2 Aitken-Schwarz Method for Linear Operators
in One Space Dimension

The basic Aitken-Additive-Schwarz (AAS) method for linear elliptic problems can
be found for example in [7]. Let us describe our AASWR algorithm for a domain
decomposition in space and time with the following Initial Boundary Value Problem
(IBVP):

∂u

∂t
= L[u] + f(x, t), (x, t) ∈ Ω = (0, 1)× (0, T ), (1)

u(x, 0) = uo(x), x ∈ (0, 1), (2)

u(0, t) = a(t), u(1, t) = b(t), t ∈ (0, T ), (3)

L is a second order linear elliptic operator. We assume that L coefficients are time
independent and that the problem is well posed and has a unique solution.

We introduce the following discretization in space and time

0=x0 < x1 < ... < xN−1 < xN=1, hj=xj − xj−1, tk=k dt, k=0 . . .M, dt=
T

M
.

Let us denote by X the column vector X = (x1, . . . , xN−1)
t. A first order Euler

implicit scheme in time writes

Uk+1 − Uk

dt
= D Uk+1 + f(X, tk+1), k = 0, ..,M − 1, (4)

U0 = uo(X), Uk+1
0 = a(tk+1), Uk+1

N = b(tk+1), k = 0, ..,M − 1, (5)

where Uk is the column vector Uk = (Uk
1 , . . . , U

k
N−1)

t. We also introduce the nota-
tion Uj for the row vector Uj = (U1

j , . . . , U
M
j ).

D is a square matrix that comes from a finite difference or a finite element
approximation for example. We do not need to specify this approximation. Our
purpose is to compute efficiently the numerical solution of the discrete problem
(4)-(5). At each time step one solves the linear system

(Id − dt D)Uk+1 = F (Uk), (6)

where Id is the matrix of the identity operator.
We assume that the matrix A = Id − dt D of the linear system (6) is regular.



A Direct Solver for the Heat Equation with DD in Space and Time 503

Introducing the matrices U = (U1, ..., UM ) and F = (F (U1), ..., F (UM )), we
have

A U = F, U0 = (a(t1), . . . , a(tM )), UN = (b(t1), ..., b(tM )). (7)

Let Ωi = (yl
i, y

r
i ), i = 1..q, be a partition of Ω with

x0 = yl
1 < y

l
2 < y

r
1 < y

l
3 < y

r
2 , . . . , y

l
q < y

r
q−1 < y

r
q = xN .

One iteration of the ASWR algorithm writes
for i = 1..q, do

Ai V
n+1

i = Fi, in Ωi × (0, T ),
V n+1

i (yl
i) = V n

i−1(y
l
i), V

n+1
i (yr

i ) = V n
i+1(y

r
i ),

enddo
where Ai is the appropriate sub-block of A corresponding to the discretization of
the IBVP problem in Ωi × (0, T ). This algorithm generates a sequence of vectors
W ks = (V l,ks

2 , V r,ks
1 , V l,ks

3 , V r,ks
2 , . . . , V l,ks

q ) corresponding to the boundary values
on the set

S = (yl
2, y

r
1 , y

l
3, y

r
2 , . . . , y

l
q, y

r
q−1)× (t1, ..., tM )

of the Vi for each iterate k.
The proof of convergence of the additive Schwarz waveform relaxation on the

continuous problem (1) with the heat equation given in [4] is based on the maximum
principle. The convergence of the ASWR algorithm at the discrete level follows from
a discrete maximum principle as well and apply for example to the classical three
points finite difference scheme with the heat equation problem. Because the parabolic
problem (1) is linear, the trace transfer operator

W ks+1 −W∞ →W ks −W∞

is linear. Its matrix P has the following pentadiagonal structure:

0 P r
1 0 0 ....

P l,l
2 0 0 P l,r

2 ...

P r,l
2 0 0 P r,r

2 ...

... P l,l
q−1 0 0 P l,r

q−1

... P r,l
q−1 0 0 P r,r

q−1

... 0 0 P l
q 0

.

The block P l,l
i , P

l,r
i , P r,l

i , P
r,r
i are square matrices of size (M − 1)2. If the matrix P

is known and the matrix Id− P is regular, one step of the ASWR provides enough
information to reconstruct the exact interface values by solving the linear system

(Id− P )W∞ = W 1 − P W 0. (8)

We can then define Algorithm (I):
Step 1: compute the first iterate of ASWR.
Step 2: solve the linear problem (8).
Step 3: compute the second iterate using the exact boundary value W∞.
We observe that this algorithm is a direct solver provided that Id−P is regular,

no matter the overlap, or the fact that ASWR converges or not. This method is
a generalization of the Aitken-Schwarz algorithm described in [7] for the case of
linear elliptic operators. We call algorithm (I) the Aitken-Additive Schwarz waveform
relaxation algorithm. We have the following result [5].
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Theorem 1. If the ASWR algorithm converges, then AASWR is a direct solver.

The construction of P is done using the following basis of functions

δk
j = 1, if j = k, 0 otherwise, j, k ∈ {1, ..,M}

to represent the trace of the solution on the interfaces

y
l/r
i × {t1, ..., tM}, i = 1..q.

Let us consider the family of subproblems in Ωi × (0, T ),

V k+1
i,j − V k

i,j

dt
= Di[V

k+1
i,j ], k = 0, . . . ,M − 1, (9)

V 0
i,j = 0, V k+1

i,j (yl
i) = 0, V k+1

i,j (yr
i ) = δk+1

j , k = 0, . . . ,M − 1. (10)

Let Vi,j denote the matrix that is the solution of the discrete problem (9)-(10). The
j column vector of P r,r, respectively P r,l, is the trace of Vi,j on yl

i+1, respectively
yr

i−1. P
r,r
i and P r,l

i are consequently lower triangular matrices.
We notice that all Vi,j are obtained from Vi,1 by a translation in time, i.e.,

Vi,j(Xi, t) = Vi,1(Xi, t− tj−1), t ∈ {tj , . . . , tM}, (11)

and
Vi,j(Xi, t) = 0, t ∈ {t0, tj−1}. (12)

The first column vector of P r,r, respectively P r,l, is the trace of Vi,1 on yl
i+1,

respectively yr
i−1. From (11) we see that all columns of P r,r

i , respectively P r,l
i , are

obtained from the first column of matrix P r,r
i , respectively P r,l

i , with no additional
computation. To conclude, the construction of the matrix P of the trace transfer
operator is achieved if one computes once and for all the solution of the two following
sub-problems in Ωi × (0, T ),

V k+1
i,j − V k

i,j

dt
= Di[V

k+1
i,j ], k = 0, . . . ,M − 1, (13)

V 0
i,j = 0, V k+1

i,j (yl
i) = δk+1

1 , V k+1
i,j (yr

i ) = 0, k = 0, . . . ,M − 1, (14)

and

V k+1
i,j − V k

i,j

dt
= Di[V

k+1
i,j ], k = 0, . . . ,M − 1, (15)

V 0
i,j = 0, V k+1

i,j (yl
i) = 0, V k+1

i,j (yr
i ) = δk+1

1 , k = 0, . . . ,M − 1. (16)

Remark 1. All sub-problems listed above needed for the construction of the trace
transfer operator matrix can be solved with embarrassing parallelism.

We are going now to illustrate the method with the classical finite difference
approximation for the one dimensional heat equation. The domain of computation
is (0, 1)× (0, T ). The grid has constant space step h and time step dt = h. We keep
the number of grid points per sub-domain fixed with Nb = 20. Further the overlap
is kept minimum, that is a one mesh interval. The Standard Method (SM) applies
a direct tridiagonal solver to integrate each time step. The LU decomposition of the
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tridiagonal system can be computed once, since the same linear system is solved at
every time step. The arithmetic complexity of the SM is then n1 = C1 N M , where
C1 is an integer. C1 = 5 for Gaussian elimination. The arithmetic complexity of one
iterate of the ASWR algorithm is nq = C1 M (N + q − 1) which is asymptotically
equivalent to n1.

All subdomains correspond to the same finite difference operator. Consequently,
the construction of the matrix P requires to solve one sub-domain problem (13)-(14)
or (15)-(16). The arithmetic complexity of the construction of P is then C1 M

N+q−1
q

and can be neglected against nq. The acceleration step requires to solve the sparse
linear system (8) uses asymptotically ninterface = C2M [(q − 1)2 + O(q)] floating
point operations (flops). ninterface is small compare to nq as long as q <<

√
N.

Overall the number of flops for the AASWR procedure is about twice the number
of flops for the standard SM with no DD. However modern computer architectures
do not perform linearly with the number of flops. To illustrate this concept, we
have performed the computation with both algorithm SM and AASWR on a PC
running Matlab with a Pentium 4 2.66GHz. This PC has 1GB of main memory.
With moderate number of time steps and large problem size, the advantage of the
AASWR algorithms over the SM is clear. Figure 1 provides some comparison be-
tween both algorithm with ten time steps, i.e M = 10, Nb = 20 and a number
of subdomains that varies from 2 to 20. The elapsed time is given in seconds and
averages the measurement provided by one hundred runs. We remind here that
the size of the problems grows linearly with the number of domains according to
N = Nb + (q − 1) (Nb − 1). Overall the construction of P and the acceleration
step has negligible elapse time. In AASWR the elapse time grows linearly with the
number of subdomains. AASWR performs better than SM for q > 6.We believe that
the cache size is responsible for the two peaks in the curve giving the performance
of the SM. On the contrary the AASWR seems to be insensitive to the cache size
for the dimension of the sub-domain that has been chosen here.

Figure 2 shows that the condition number of the matrix (Id−P ) used in the ac-
celeration step grows linearly with the number of subdomains, which is proportional
to the problem size in space N . However from our numerical experiments we have
concluded that the acceleration procedure does not seems to impact significantly
the accuracy of our exact solver.
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Most of the results obtained in this section can be extended to multi-dimensional
parabolic problems provided L is separable or a weak perturbation of a separable
operator [5].

3 Aitken-Schwarz Method for Linear Operators
in the Multidimensional Case

To simplify the notations we will restrict ourselves to two space dimensions. We
further assume that the domain Ω is a square discretized by a rectangular Cartesian
grid with arbitrary space steps in each direction. Let us consider the IBVP:

∂u

∂t
= L[u] + f(x, y, t), (x, y, t) ∈ Ω = (0, 1)2 × (0, T ), (17)

u(x, y, 0) = uo(x, y), (x, y) ∈ (0, 1)2, (18)

u(0, y, t) = a(y, t), u(1, y, t) = b(y, t), y ∈ (0, 1), t ∈ (0, T ), (19)

u(x, 0, t) = c(x, t), u(x, 1, t) = d(x, t), x ∈ (0, 1), t ∈ (0, T ), (20)

where L is a second order linear elliptic operator. We assume that the problem is
well posed and has a unique solution. Using an appropriate shift in space we can
restrict ourselves to homogeneous Dirichlet boundary conditions.

The domain Ω = (0, 1)2 is decomposed into q overlapping strips Ωi = (yl
i, y

r
i )×

(0, 1).
We first present the general algorithm when L is a separable linear operator and

refer to the theoretical framework established in [1] for elliptic operator:

L = L1 + L2, L1 = e1∂xx + f1∂x + g1, L2 = e2∂yy + f2∂y + g2.

e1, f1, g1 are functions of x only, and e2, f2, g2 are functions of y only. We write the
discretized problem as follows

Uk+1 − Uk

dt
= Dxx[Uk+1] + Dyy[Uk+1] + f(X,Y, tk+1), k = 0, . . . ,M − 1, (21)

with appropriate boundary conditions corresponding to (18)-(20).
Our main objective is to rewrite the discretized problem in such a way that we

can reuse the results of Section 2 that is for the one space dimension case. Let us
assume that Dyy has a family of (Ny − 1) independent eigenvectors Φj , j = 1, .., Ny

in RNy−1 with corresponding eigenvalues µj .
The Φj are implicitly the numerical approximation in (0, 1) of the solutions of

the following continuous eigenvector problems:

L2[v(y)] = µ v(y), v(0) = v(1) = 0. (22)

Let us introduce the decompositions
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Uk(x, y, t) =

Ny−1∑
j=1

Λk
j (x, t)Φj(Y ), uo(x, y) =

Ny−1∑
j=1

λk
j (x)Φj(y),

f(x, y, tk) =

Ny−1∑
j=1

fk
j (x, tk)Φj(y), a(y, tk) =

Ny−1∑
j=1

aj(t
k)Φj(y),

b(y, tk) =

Ny−1∑
j=1

bj(t
k)Φj(y).

The discrete solution of (21) satisfies the following set of (Ny − 1) uncoupled
problems

Λk+1
j − Λk

j

dt
= Dxx[Λk+1

j ] + µj Λ
k+1 + fj(X, t

k+1), k = 0, . . . ,M − 1, (23)

Λ0
j = λj(X), Λk+1(x0) = aj(t

k+1), Λk+1(xNx) = bj(t
k+1), k = 0, . . . ,M − 1.(24)

The trace transfer operator can be decomposed into (Ny − 1) independent trace
transfer operators

W ks
j −W∞

j → W ks+1
j −W∞

j ,

that apply to each component of the trace of the solution expanded in the eigenvector
basis E = {Φj , j = 1, . . . , (Ny − 1)}. Let Qj be the matrix of this linear operator.
The matrix P has now a (Ny − 1) diagonal block structure, where each block is the
matrix Qj . The acceleration procedure of Algorithm (I) Step 2 writes now
• Expand the trace of the solution in the eigenvector basis E and solve component
wise

(Id−Qj)W
∞
j = W 1

j −Qj W
0
j , ∀j ∈ {1, . . . , (Ny − 1)}. (25)

Assemble the boundary condition W∞ =
∑

j=1,...,Ny−1W
∞
j Φj .

Let us emphasize that the sub-domain problems in Ωj× (0, T ) can be integrated
by any existing efficient numerical solver. It is only the acceleration step 2 that
requires the decomposition of the trace of the solution into the eigenvector basis E.
Because all eigenvector components of the solution are independents, we have then
as in the one dimension space case:

Theorem 2. If the ASWR algorithm converges, then AASWR is a direct solver.

The construction of the Qj can be done exactly as in the one space dimension
case and can be computed with embarrassing parallelism.

This algorithm applies to the standard heat equation problem discretized in
space on a five point stencil with central finite differences on a regular Cartesian
mesh. Following the same steps as in Section 2.4, one can show that AASWR re-
quires roughly two times as many floating point operations. But as stated before the
AASWR algorithm is a parallel algorithm fairly tolerant to high latency networks.
We have verified also that AASWR performs better than SM on a scalar processor
with small number of time steps and large problem size.

We have verified also that the accuracy of our AASWR solver is satisfactory for
three dimensional problem with singular source terms.

Remark 2. Our result can be easily generalized to tensorial products of a one dimen-
sional grid with adaptive space stepping. The key hypothesis is the separability of
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the discrete operator Dxx +Dyy on the tensorial product of grid. Because hy is not
a constant, the eigenvectors Φj are not known analytically and should be computed
numerically as in [1].

Details of the parallel implementation of our method that are specific to space
and time decomposition are reported in [5].

4 Conclusion

In this paper we have shown how to generalize the Aitken-like acceleration method
of the additive Schwarz algorithm for elliptic problems to the additive Schwarz
waveform relaxation for the heat equation. This new DD algorithm is in space and
time. Since the concept of our acceleration technique is general and might be applied
in principle to any block-wise relaxation scheme, we expect that it can be combined
with some optimized transmission conditions for the same PDE problem. A further
step in the development of our methodology would be to consider unstructured
meshes, and approximate the trace transfer operator with for example, the coarse
grid interface approximation presented in [6].
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Summary. We present a method to combine fluid dynamics and image analysis
into a single fast simulation environment. Our target applications are hemody-
namic studies. Our method combines an NS solver that relies on the L2 penalty
approach pioneered by Caltagirone and co-workers, and a level set method based
on the Mumford-Shah energy model. Working in Cartesian coordinates regardless
of grid no matter the complexity of the geometry, one can use fast parallel domain
decomposition solvers in a fairly robust and consistent way. The input of the simula-
tion tool is a set of JPEG images, and the output can be various flow components as
well as shear stress indicators on the vessel or domain wall. In two space dimensions
the code runs close to real time.

1 Introduction and Motivation

The objective of this work is to use angiogram medical images to produce flow
simulations by a very robust and fast method. The emphasis is not on high accuracy,
since there are many sources of errors or variability in medical data. From medical
imaging, we extract the geometry of large vessels. Our algorithm provides a first
order approximation of some main quantities of interest in cardiovascular disease:
the shear stress and the pressure on the wall, as well as the flow components in the
artery.

We present a fast, versatile and robust NS solver that relies heavily on the L2

penalty approach pioneered by Caltagirone and co-workers [2] and combines nicely
with a level set method based on the Mumford-Shah energy model [4].

The wall boundary condition is immersed in the Cartesian mesh thanks to the
penalty term added to the momentum equation. We use the domain decomposi-
tion (DD) algorithm of [3] that has high numerical efficiency and scales well with
parallel computers in order to take full advantage of the regular data structure of
the problem. This DD is coupled with a sub-domain solver that is tuned to provide
the fastest result on the computer available for the run. In this paper we present
simulations in two space dimensions while results in three space dimensions will be
reported elsewhere.
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2 Navier-Stokes Flow Solver

Since we concentrate our study on large vessels, we use an incompressible NS fluid
flow model [8, 11].

In this paper we will use the penalty method introduced by Caltagirone and
co-workers [2] since it is simpler to implement than our previous boundary fitted
methods [7] and applies naturally to flow in complex domains with moving walls
[10].

The flow of incompressible fluid in a rectangular domain Ω = (0, Lx) × (0, Ly)
with prescribed values of the velocity on ∂Ω obeys the NS equations:

∂tU + (U.∇)U +∇p− ν∇.(∇U) = f, in Ω

div(U) = 0, in Ω,U = g on ∂Ω,

We denote by U(x, y, t) the velocity with components (u1, u2) and by p(x, y, t) the
normalized pressure of the fluid. ν is a kinematic viscosity.

With an immersed boundary approach the domain Ω is decomposed into a fluid
subdomain Ωf and a wall subdomain Ωw. In the L2 penalty method the right hand
side f is a forcing term that contains a mask function ΛΩw

ΛΩw (x, y) = 1, if (x, y) ∈ Ωw, 0 elsewhere,

and is defined as follows

f = −1

η
ΛΩw {U − Uw(t)}.

Uw is the velocity of the moving wall and η is a small positive parameter that goes
to zero.

A formal asymptotic analysis helps us to understand how the penalty method
matches the no slip boundary condition on the interface Sf

w = Ω̄f

⋂
Ω̄w as η → 0.

Let us define the following expansion:

U = U0 + η U1, p = p0 + η p1.

Formally, in first order, we obtain,

1

η
ΛΩw {U0 − Uw(t)} = 0,

that is
U0 = Uw, for (x, y) ∈ Ωw.

The leading order terms U0 and p0 in the fluid domain Ωf satisfy the standard set
of NS equations:

∂tU0 + (U0.∇)U0 +∇p0 − ν∇.(∇U0) = 0, in Ωf

div(U0) = 0, in Ω.

At the next order we have in Ωw,

∇p0 + U1 +Qw = 0, (1)
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where
Qw = ∂tUw + (Uw.∇)Uw − ν∇.(∇Uw).

Further the wall motion Uw must be divergence free. Continuing to the next
order we have in Ωf ,

∂tU1 + (U0.∇)U1 + (U1.∇)U0 +∇p1 − ν∇.(∇U1) = 0,

with
div(U1) = 0.

In the simplest situation where Uw ≡ 0, we observe that the motion of the
flow is driven by the pressure following a classical Darcy law. η stands for a small
permeability. To summarize as η → 0, the flow evolution is dominated by the NS
equations in the artery, and by the Darcy law with very small permeability in the
wall. This actually corresponds to a standard multiscale model of blood flow in the
main arteries. From the analytical point of view it was shown in [1] for a fixed wall,

i.e. Uw ≡ 0, that the convergence order of the penalty method is of order η
3
4 , in the

fluid domain, and η
1
4 in the wall.

The mask function ΛΩw is obtained with an image segmentation technique that
is a level set method. Since the contours of the image are not necessarily sharp, it is
interesting to use the level set method presented in [4] and based on the Mumford-
Shah Model.

Regarding the resolution of the equation, we use a projection method for the
time step as follows :

• Step 1: prediction of the velocity ûk+1 by solving either :

ûk+1 − uk,∗

∆t
− ν∆uk = fk+1 −∇pk or;

ûk+1 − uk,∗

∆t
− ν∆uk+1 = fk+1 −∇pk

in (0, Lx) × (0, Ly) with the boundary condition ûk+1 = g on ∂Ω. We denote
that uk,∗ is obtained thanks to the method of characteristics.

• Step 2: projection of the predicted velocity to the space of divergence free func-
tions.

−div∇δp = − 1

∆t
divûk+1;uk+1 = ûk+1 −∆tδp

pk+1 = pk + δp .

The NS calculation decomposes into three steps: the prediction of the flow speed
components, the solution of a Poisson problem for the pressure, and eventually the
computation of the shear stress along the wall. The momentum equations can be
solved quickly, while the performance of the code is dominated by the Poisson solver
for the pressure. We detail this part of the algorithm in the next section.

3 Multi-Algorithm for the Pressure Solver

The pressure equation can be integrated with a number of existing fast Poisson
solvers since the discretization grid is regular. It is convenient for example to use
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a (full) multigrid solver here. The arithmetic complexity of this solver is optimum.
Further the iterative solver converges extremely fast for those grid points that are in
the solid wall. However the pressure equation has to be solved at every time step and
what turns out to be the faster solver may depend on the computer architecture.
In the following we use the framework of the Aitken- Additive Schwarz method to
fine tune the subdomain solver [5, 6]. The main reason being that on a standard Be-
owulf system with fast ethernet switch, the high latency of the network significantly
lowers the performance of the multigrid solver. On the contrary the Aitken-Schwarz
algorithm may double the number of flops compared to an optimal solver but is
highly insensitive to the latency of the network.

Interface software [6] has been written to reuse a broad variety of existing linear
algebra software for each subdomain such as LU factorization, a large number of
Krylov methods with incomplete LU preconditioner, and geometric or algebraic
multigrid solvers.

Only experiments can provide the fastest method for the resolution of a linear
system.

Let us restrict ourselves to three software systems: Linpack for LU, Sparskit for
iterative solver, Hypre for algebraic multigrid. We build a surface response model
[9] based upon the least square quadratic polynomial approximation of the elapsed
time as a function of the grid size (nx, ny):

T (nx, ny) = β0 + β1nx + β2ny + β3nxny + β4n
2
x + β5n

2
y .

The performance modeling can be done in principle with any linear algebra
software. This model to predict the elapsed time for the resolution of a linear solver
with LU or a Krylov solver with a relative prediction error of the prediction less
than a few percent. To build the model we need on the order of 10 test runs with
various grid configurations that cover the region of prediction. For Hypre, this model
does not give good predictions in general. One observes that the elapsed time is very
sensitive to the size.

Based on the surface response model, one can then decide what is the opti-
mum solver for a given subdomain dimension. For illustration purpose let us restrict
ourselves to the 2D Poisson problem that corresponds to the pressure solver. One
can notice that LU performs well for small sizes, while, iterative solvers such as
BiCGStab (Krylov method) and AMG-GMRES (multigrid method) give the fastest
results for large grid sizes. More details on this study can be found in [6].

Figures 1 and 2 give the performances on different processor architectures, a dual
processor AMD 1800+ with 2GB of RAM and a dual processor 900 MHz Itanium2
with 3 GB of RAM, respectively. We clearly see the difference of the region of the
area where LU is faster than the iterative method. The automatic tuning through the
model of the solver helps us to choose wisely the fastest solver for each subdomain
solver.

It should be observed from Figures 3 and 4 that the optimum choice of the
subdomain solver depends weakly on the number of processors. In the framework of
the AS algorithm, we have observed that message passing favors an iterative solver
versus a direct solver when the difference on performance between the two solvers
is moderate.

Let us now illustrate our parallel algorithm on the incompressible Navier-Stokes
flow that uses the pressure solver of this section.
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Fig. 1. Comparison between
BiCGStab and LU decomposition on
a 32bit AMD processor

Fig. 2. Comparison between
BiCGStab and LU decomposition on
a 64 bit Itanium

Fig. 3. Surface response with 4
processors

Fig. 4. Surface response with 8
processors

4 Parallel Performances of the NS Code

Let us first present a two dimensional simulation obtained from an x-ray. Figure 5
shows the frontal projection of a carotid in the brain area during an angiogram
procedure. Figure 6 shows an example for a steady flow calculation in the region of
interest with a Reynolds number of order 330. The flow comes from the left side.
The size of the grid in this simulation is about 210 × 170.

The simulation of one cardiac cycle with an 8-way Opteron machine, for the grid
sizes, 300× 100 and 450× 150, takes around 3 and 9 seconds, respectively. The time
for the image segmentation is less. These simulation are then close to real time.

Figure 7 shows the speedup of this code with different grid sizes. Until four
processors, the code has a linear speedup, and then the speed up deteriorates.

Actually this is mainly due to the design of the crossbar architecture of the low
cost Opteron system which does not scale from 4 to 8 processors.

The results on scalability of our code are better.
In figure 8 we keep the aspect ratio of the grid hx

hy
the same: three tests have been

performed respectively with a problem of size 141×567 for two processors, 200×801
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Fig. 5. Benchmark problem

Fig. 6. Contour u
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Fig. 7. Speedup of the Navier-Stokes code.
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Fig. 9. Scalability of the Navier-
Stokes code with LU solver

on 4 processors, and 283× 1129 on 8 processors. GMRES gives a better scalability
result compared to LU because the growth of the bandwidth of the matrix as the
number of subdomain increases penalize the LU solver. On the contrary if we keep
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the size of the subdomain fixed, here 201 × 201 in figure 9, we obtain a very good
scalability of the code no matter the subdomain solver.

5 Conclusion

We have presented an image based CFD algorithm designed for hemodynamic sim-
ulation. In two space dimension we obtain a code that can be easily optimized for a
specific parallel computer architecture. Robustness and simplicity of the solver are
key elements to make the simulation applicable to clinical conditions. We have de-
veloped recently a three dimension version of the method that will be reported else-
where. Our technique may not be appropriate for turbulent flow for high Reynolds
numbers, but there are a number of cardiovascular problems that corresponds to
unsteady situations with relatively modest Reynolds numbers [8, 11].
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A Multilevel Method for Solution Verification

Marc Garbey and Christophe Picard
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Summary. This paper addresses the challenge of solution verification and accuracy
assessment for computing complex Partial Differential Equation (PDE) model. Our
main target applications are bio-heat transfer and blood flow simulation problems.
However our long term goal is to provide a postprocessing package that can be
attached to any existing numerical simulation package, for example widely used
commercial codes such as ADINA, Ansys, Fluent, Star-CD etc., and provide an a
posteriori error estimate to their simulation.

1 Introduction and Motivation

The problem of accuracy assessment is a necessary step that follows the code ver-
ification step and precedes the code validation step, completing the global task of
providing a reliable virtual experiment tool [5].

Our major goal in this paper is to pursue our work on the design of a new
multilevel method that offer a general framework to do Solution Verification (SV)
efficiently. The standard approach in applied mathematics to handle the problem
of SV is to work on the approximation theory of the PDE. For each specific PDE
problem, the right Finite Element (FE) approximation may provide the correct
a posteriori error estimate. Unfortunately this approach may require a complete
rewriting of an existing CFD code based on Finite Volume (FV) for example and
lack generality.

Our method relies on four main ideas that are (1) the embedding of the problem
of error estimation into an optimum design framework that can extract the best
information from a set of two or three existing numerical results, (2) the resolution
of the problem as much as possible as a (non)linear set of discrete equations to
produce a general tool, and renounce on using the specific approximation theory
used the compute the PDE solution. Since we usually have no access to the detailed
knowledge of the internal structure of the code that produces the numerical solution,
(3) the formulation of a framework that can reuse any a posteriori estimator if they
are available (4) the use of distributed computing (or grid computing) to get a cost
effective SV.
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2 Method

From the applied mathematics point of view, a posteriori estimates have been around
for many years [1, 8]. There is a vast literature on this subject. The main challenge is
still to estimate numerical accuracy on under-resolved grids [5]. As a matter of fact,
in complex modeling, as described in the ASCI project, best grid solutions provided
by our best computing resources are fairly under-resolved at least locally.

We present in this paper an entirely different framework to construct reliable a
posteriori estimates for general PDEs or system of PDEs. Let us first describe the
general concept of our method [2, 3, 7].

2.1 General Concept

We consider a boundary value problem (Ω is a polygonal domain and n = 2 or 3) :

L[u(x)] = f(x), x ∈ Ω ⊂ IRn, u = g on ∂Ω. (1)

We assume that the PDE problem is well posed and has a unique smooth solu-
tion. We consider a finite volume approximation of (1) on a family of meshes M(h)
parametrized by h > 0 a small parameter. The smaller h the finer should be the
discretization. We denote symbolically the corresponding family of linear systems

AhUh = Fh. (2)

Let ph denotes the projection of the continuous solution u onto the mesh M(h).
We assume a priori that (||.|| is a given discrete norm):

||Uh − ph(u)|| → 0, as h → 0, (3)

LetM(h1) andM(h2) be two different meshes used to build two approximations
U1 and U2 of the PDE problem (1). A consistent linear extrapolation formula should
have the form

αU1 + (1− α)U2,

where α is a weight function. In classical Richardson Extrapolation (RE) the α
function is a constant. In our optimized extrapolation method α is an unknown
space dependent function solution of the following optimization problem, where G
is an objective function to be defined:
Pα: Find α ∈ Λ(Ω) ⊂ L∞ such that G(α U1 + (1− α) U2) is minimum.
The Optimized Extrapolated Solution (OES) if it exists, is denoted Ve =

αU1 + (1−α)U2. For computational efficiency, Λ(Ω) should be a finite vector space
of very small dimension compared to the size of matrix Ah defined in (2). The ob-
jective function G might be derived from any existing a posteriori error estimators if
possible. For a number of fluid dynamic methods used in bioengineering such as the
immersed boundary technique, or the chimera technique there is no solid theoreti-
cal framework that can provides such rigorous a posteriori estimators. For complex
bioengineering problems, the fact that there exist a functional space framework to
derive a posteriori estimate is more the exception than the generality. Our ambition
is to provide a numerical estimate on ||Uj − U∞||, j = 1, 2, without computing U∞
effectively. The solution Uj can then be verified assuming (3). The fine meshM(h∞)
should be set such that it captures all the scales of the continuous solution with the
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level of accuracy required by the application. We have a priori h∞ � h1, h2. Both
coarse grid solutions U1 and U2 must be projected onto M(h∞). We will denote Ũ1

and Ũ2 the corresponding functions. We choose then to minimize the consistency
error for the numerical approximation of (1) on a fine mesh M(h∞). The objective
function is then

G(Uα) = ||Ah∞ Uα − Fh∞ ||, where Uα = α Ũ1 + (1− α) Ũ2. (4)

The choice of the discrete norm should depend on the property of the solution. In
the Least Square Extrapolation (LSE) method [2, 3] we chose the discrete L2 norm.
The choice of the L1 or the L∞ norm provides some useful additional information,
for example, for stiff elliptic problems.

One of the difficulties encountered with a two-level extrapolation method is that
there exists subsets of M(h∞) where Ũ1 and Ũ2 are much closer to each other than
what the expected order of accuracy based on local error analysis should provide.
In such areas, the sensitivity of the extrapolation to the variation of α is very weak
and the problem is ill posed. These subsets should be treated as outliers of the
optimization computation procedure. A potentially more robust procedure consists
of using three levels of grid solution. The optimization problem writes then
Pα,β: Find α, β ∈ Λ(Ω) ⊂ L∞ such that G(α U1 + β U2 + (1− α− β) U3) is

minimum.
We notice that if all Uj , j = 1, . . . , 3, coincide at the same space location there

is either no local convergence or all solutions Uj are exact. In such a situation,
one cannot expect improved local accuracy from any OES. The robustness of OES
should come from the fact that we do not suppose a priori any asymptotic on the
convergence rate of the numerical method as opposed to RE.

Let us assume that the optimization problem Pα or Pα,β has been solved and
that we have computed an optimum solution Ve either from the two levels or three
levels method. We are going to discuss now its application to provide a posteriori
error estimators.

Let us denote Uj to be one of the coarse grid approximations at our disposal. A
global a posteriori estimate of the error ||Uj−ph(u)||may come in two different ways.
For the sake of simplicity we will assume that G is the L2 norm of the residual (4).

• First is the recovery method based on the idea that the optimized extrapo-
lated solution is more accurate than the coarse grid solution. Let us denote Ũj the
coarse grid solution projected onto the fine grid M(∞) via a suitable interpolation
procedure. Let us assume that the extrapolated solution is decisively more accurate
than that based on interpolation from the coarse grid solution, namely,

||Ve − ph(u)||2 � ||Ũj − ph(u)||2. (5)

Then ||Ũj −Ve||2 ∼ ||Ũj − ph(u)||2 and ||Ve− Ũ2|| is a good error indicator to assess
the accuracy on U2.

We have seen in our numerical experiments with steady incompressible Navier-
Stokes (NS) solutions that this method may give a good lower bound error estimate.
But we do not know in general if the hypothesis (5) is correct. There is no guarantee
that a smaller residual for Ve than for U2 on the fine grid M(h∞) leads to a smaller
error.
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• Second is a global upper bound that follows from a stability estimate with the
discrete operator. We have

||Ve − U0|| < µ G(Ve), where µ ≥ ||(Ah∞)−1|| ,

where U0 is the fine grid solution.
We conclude then

||Ũ2 − U0||2 < µ G(Ve) + ||Ve − Ũ2||2. (6)

The procedure to derive an estimate for µ uses a combination of standard eigen-
value computation procedures applied to Ahj , j = 1, . . . , 3 and some extrapolation
technique designed for scalar functions.

(6) is a good global a posteriori error estimator provided that

||U0 − ph(u)||2 � ||U0 − Ũ2||2. (7)

One way to test this hypothesis (7) is to measure the sensitivity of the upper
bound (6) with respect to the choice of the fine grid M(h∞). This is a feasible test
because the fine grid solution is never computed in OES. Our verification procedure
checks that ||U0 − U2||2 increases toward an asymptotic limit as M(h∞) gets finer.

The algorithm procedure to construct Ve solution of Pα or Pα,β is straightforward
when the operator is linear and the objective function is the discrete L2 norm of
the residual. Let ei, i = 1, . . . ,m be a set of basis function of Λ(Ω). The solution
process can be decomposed into three steps.

• First, interpolation of the coarse grid solution from M(hj), j = 1, . . . , p to
M(h∞), with p = 2 for the two level method, respectively 3 for the three level
method.

• Second, evaluate the residual R[ei (Ũj − Ũj+1)], i = 1, . . . ,m, j = 1, . . . , p −
1, and R[Ũp] on the fine grid M(h∞).

• Third, the solution of the least square linear algebra problem that has m
unknowns for each weight coefficient α and β used in the extrapolation procedure.
In practice, m is much lower than the number of grid points on any coarse grid used.

We have generalized the LSE method to non-linear elliptic problems via a New-
ton like loop [2, 3]. We have also obtained preliminary results for unsteady parabolic
problems [7]. Most of this work has been done on solutions produced by our own
code on a fairly large variety of linear and nonlinear PDE problems on structured
grids. To apply these techniques on solution produced by commercial code that have
thousands of lines, and work with unstructured grids requires a more general and
abstract approach, that we present in the next section.

2.2 Solution Verification of Off-the-Shelf CFD Code

We propose to generalize our method here to steady, CFD solutions produced by
existing code. The challenge is that in most commercial codes, one cannot rely on the
exact knowledge of the discretization method, neither have access to any information
on the internal structure of the code. What we propose is fundamentally different
than existing methods. We describe in the following the main ideas without seeking
an exact formal mathematical description of a given specific PDE problem.
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Let (E, ||.||E) and (F, ||.||F ) be two normed linear space, G ∈ L(E,F ) be the
operator corresponding to the CFD problem. Further let us denote S ∈ F the input
data of the CFD code and U ∈ E the solution we are looking for.

In practice we look for an approximation of the accuracy of the solution Uh on
the meshM(h) produced by the code C that operates on the data Sh: C : Sh → Uh.
The objective is still to get an error estimate versus a very fine grid solution U∞
that is never computed, because the cost is prohibitive. We will skip the index h
when it is not essential. The space E, F have (very large) finite dimensions indeed
when they are for the discrete solutions on M(h∞), and discrete data Sh∞ .

We assume that the code C has a procedure that provides the residual, i.e V →
ρ = G(Uh) −G(V ), where V ∈ E, ρ ∈ F. We note that this hypothesis is realistic,
since most of the commercial code offer this feature or either provides a (first order
explicit) time stepping procedure:

Un+1
h − Un

h

dt
= G(Un

h )− S . (8)

The residual is then ρ =
U1

h−Uh

dt
. We assume that the following problem

G(u) = s, ∀s ∈ B(S, d)

is well posed for s ∈ B(S, d), where B is a ball of center S and diameter d in (F, ||.||F ).
There should exist a unique solution for all data in B(S, d) and the dependency of
the solution on these data is supposed to be smooth enough to use a second order
Taylor expansion.

Let us suppose that G(Uh) ∈ B(S, d), that is

||ρ||F = ||G(Uh)− S||F < d. (9)

We would like to get an error estimate on e = Uh − U∞ = G−1(Uh)−G−1(U∞). A
Taylor expansion writes

G−1(S) = G−1(S + ρ)− (ρ · ∇s)G
−1(S + ρ) +

1

2
ρ · [ρ ·R(S)] (10)

where ||R(S)||E ≤ K = sup
s∈B(S,d)

||∇2
sG

−1(s)||E . (11)

Therefore

||e||E ≤ ||ρ||F (||∇sG
−1(S + ρ)||E +

K

2
||ρ||F ). (12)

This completely general error estimate point out to two different tasks:
• Task 1: get an accurate upper bound on ||∇SG

−1(S + ρ)||
• Task 2: obtain a solution U∞ + e that gives a residual ||ρ|| small enough to

make the estimate useful, i.e. compatible with (9).
Task 2 is the purpose of the OES method, while Task 1 can be achieved by a

perturbation method that can reuse the code.
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2.3 Task 1: Stability Estimate

Let {bEi , i = 1, . . . , N}, (resp., {bFi , i = 1, . . . , N}) be a basis of Eh, (resp., Fh)
and ε ∈ R such that ε = o(1). Let (V ∓

i )i=1,...,N , be the family of solutions of the
following problems: G(Uh ∓ εVi) = S + ρ ∓ εbi . We get from finite differences the
approximation

Ch∞ = ||∇SG
−1(S + ρ)|| ≈ ||(1

2
(V +

j − V −
j ))j=1,...,N ||+O(ε2).

We can get in as similar manner an approximation of the norm of the Hessian
∇2

sG
−1(S + ρ). For ρ small enough, we can verify that the upper bound is given

essentially by:
||e||E - Ch∞ ||ρ||F . (13)

The column vectors V ∓
j can be computed with embarrassing parallelism. It is

however unrealistic to compute these solutions that lies on the fine grid M(h∞).
To make this task manageable, we have to reduce the dimension of the problem.

We use the following two observations. While the solution of the CFD problem can
be very much grid dependent, the conditioning number of the problem is in general
much less sensitive to the grid. The idea is then to compute an approximation of
Ch∞ by extrapolation from an estimate of two or three coarse grid computation of
Chj . Further, let us assume that the fine grid M(h∞) is a regular Cartesian grid.

The number of terms to represent accurately the projected solution Ũj , j = 1, . . . , 3
with a spectral expansion or a wavelet approximation at a given accuracy is much
less than the dimension of the coarse grid used in a Finite Element/Finite Volume
computation. We propose to use preferably a gridMh∞ that has enough regularity to
allow a representation of the solution U∞ with some form of compact representation,
using either trigonometric expansion or wavelets.

The grid Mh∞ may have many more grid points than necessary, and therefore
might not be computationally efficient for a true fine grid computation. But we do
not have to do this computation anyway.

Let us denote Ê and F̂ the spaces corresponding to one of these compact repre-
sentation of the solution and residual. Let (b̂

E/F
j , j = 1, . . . , N̂), be the corresponding

base with N̂ � N.Let qE/F be a mapping E/F → Ê/F̂ , respectively qÊ/F̂ be a map-

ping Ê/F̂ → E/F and let Ĉ : Ŝh → Ûh. To summarize the procedure for Task 1,
The estimate on Ch∞ will be applied to verify the code Ĉ based on the computation
of (V̂ ∓

j , j = 1, . . . , N̂) vectors on the coarse grids M(hj), j = 1, . . . , 3 done by the

code Ĉ. We notice that the computation of the vector V̂ ∓
j can be done with embar-

rassing parallelism. Further because ε is small the code Ĉ can use as an initial guess
in its iterative process the solution Uh that is hopefully very close to the unknown
Ûh ± V̂ ∓

j .

2.4 Task 2: Optimized Extrapolation

We use here an optimized extrapolation method. To reduce the dimension of this
problem we search for the unknown weight functions in a small space that can be de-
scribed either by trigonometric expansion, or wavelet expansion, or possibly spectral
elements. If Ω is the physical domain for the CFD solution, the unknown weight
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function can be search in a square domain (0, 1)2 modulo a change of variables.
As a matter of fact no boundary conditions are required on the unknown weight
functions. Let {θj , j = 1, . . . ,m} be the set of basis function of Λ(Ω).

We look for the solution of the optimization problem in the two level case

Find (αj) ∈ R
m, such that

||G([
∑

j=1,...,m

αjΘj ]Ũ1 + [1−
∑

j=1,...,m

αjΘj ]Ũ2)||F is minimum. (14)

We have a similar formulation for the three level OES. Following the same ar-
gument than before we will rather look for this minimum in F̂ . As shown in [2, 3],
we need a filtering process of the solution to have this minimization process numer-
ically efficient. The postprocessing qF is then useful. We can obtain easily the result
when the weight function is a scalar function. To make this computation robust
we use a response surface methodology [4] that is rather trivial in the scalar case.
This procedure consist to compute a lower order polynomial best fit of the function
||G(αŨ1 + (1− α)Ũ2)|| by sampling α according to the expected convergence order
range of the code. The minimization on α is then done with this polynomial approx-
imation by a standard method. The sampling process is a cumbersome embarrassing
parallel process that can take advantage of a computational grid [6].

3 A Numerical Example

To illustrate the pertinence of our methodology, let us present a Navier-Stokes back
step flow example. The computation is done with ADINA. The ADINA system
is a comprehensive finite element software that enable analysis of structures, fluid
simulations, and fluid flows simulations with structural interactions.

Figure 1 shows an example of an unstructured mesh calculation of the back flow
step problem at Reynolds number 500.

In this simulation, the number of elements are respectively 10347 on the fine
grid G∞, 1260 on the coarse grid G1, and 2630 on the coarse grid G2.

Fig. 1. Coarse mesh for the backstep

The steady solutions are obtained using a transient scheme for the incompressible
Navier-Stokes equation.

For this test case OES outperforms the accuracy of the RE method by one
order of magnitude - see Figure 2. An accurate error estimate is obtained for a
representation of the solution on a 20 × 20 trigonometric expansion - see Figure 3.
Let us conclude this paper with the design of the software that we are developing
as a solution verification system independent of the CFD code.
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Fig. 2. Performance of LSE and Richardson Extrapolation.
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4 Scientific Software Design and Conclusion

Our algorithm gives rise to a large set of cumbersome computations that can be
done in parallel with a minimum of synchronization. This is a key feature to make
our SV cost effective. We are developing a network oriented interface that allow our
SV method to be executed remotely on several processing units, using the following
methodology:
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(i) a three-tier client server model architecture: it allows the system to be trans-
parent, the user should not have to worry about technical details, to be open, each
subsystem is open to interaction with the others, and to be scalable, the system
should be easy to modify as the number of resources, users, softwares evolved.

(ii) Portability: to be able to run on UNIX/Linux/Windows platform
(iii) Security in data transfer, because industrial applications as well as compu-

tation on clinical data require that the data be protected.
(iv) Friendly user interface.
Some preliminary result on the performance of our distributed computing system

for SV are reported in [6].
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Summary. We consider an elliptic optimal control problem in two dimensions, in
which the control variable corresponds to the Neumann data on a boundary segment,
and where the performance functional is regularized to ensure that the problem is well
posed. A finite element discretization of this control problem yields a saddle point
linear system, which can be reduced to a symmetric positive definite Hessian system
for determining the control variables. We formulate a robust preconditioner for this
reduced Hessian system, as a matrix product involving the discrete Neumann to
Dirichlet map and a mass matrix, and show that it yields a condition number bound
which is uniform with respect to the mesh size and regularization parameters. On
a uniform grid, this preconditioner can be implemented using a fast sine transform.
Numerical tests verify the theoretical bounds.

1 Introduction

Elliptic control problems arise in various engineering applications [4]. We consider a
problem in which the “control” variable u(.) corresponds to the Neumann data on
a boundary segment, and it must be chosen so that the solution y(.) to the ellip-
tic equation with Neumann data u(.) closely matches a specified “target” function
ŷ(.). To determine the “optimal” control, we employ a performance functional which
measures a square norm error between ŷ(.) and the actual solution y(.), and the con-
trol variable is sought so that it minimizes the performance functional [1, 3, 5, 4].
However, this results in an ill-posed constrained minimization problem, which can be
regularized by adding a small Tikhonov regularization term to the performance func-
tional. We discretize the regularized optimal control problem using a finite element
method, and this yields a saddle point system [1, 2, 7].

In this paper, we formulate a robust preconditioner for the symmetric positive
definite Hessian system for the control variables, obtained by block elimination of the
saddle point system. In § 2, we formulate the elliptic optimal control problem and its
discretization. In § 3, we derive the Hessian system and formulate our preconditioner
as a symmetric matrix product involving the discrete Neumann to Dirichlet map and
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a mass matrix. We show that it yields a condition number bound that is independent
of the mesh size and the regularization parameters. On a uniform grid, we describe
a fast sine transform (FST) implementation of it. Numerical results are presented
in § 4.

2 Optimal Control Problem

Let Ω ⊂ R2 be a polygonal domain and let Γ be an edge of its boundary ∂Ω. We
consider the problem of determining a Neumann control data u(·) on Γ such that
the solution y(·) to the following problem with forcing term f(·):⎧⎪⎨⎪⎩

−∆y(x) = f(x), in Ω
∂y(x)

∂n
= u(x), on Γ

y(x) = 0, on ∂Ω\Γ
(1)

minimizes the following performance functional J(y, u):

J(y, u) ≡ 1

2

(
‖y − ŷ‖2L2(Ω) + α1 ‖u‖2L2(Γ ) + α2 ‖u‖2H−1/2(Γ )

)
, (2)

where ŷ(·) ∈ L2(Ω) is a given target, and α1, α2 ≥ 0 denote regularization para-
meters. Later in the paper we also consider the case where ‖y − ŷ‖L2(Ω) in (2) is
replaced by ‖y − ŷ‖L2(Γ ). The term ‖u‖H−1/2(Γ ) denotes the dual Sobolev norm

associated with H
1/2
00 (Γ ). We let H1

D(Ω) denote the subspace of H1(Ω) consisting
of functions vanishing on D ≡ (∂Ω \ Γ ).

To obtain a weak formulation of the minimization of (2) within set (1), we employ
the function space H1

D(Ω) for y(·) and H−1/2(Γ ) for u(·). Given f ∈ L2(Ω), define
the constraint set Vf ⊂ V ≡ H1

D(Ω)×H−1/2(Γ ):

Vf ≡
{
(y, u) ∈ V : A(y, w) = (f, w) + < u,w >, ∀w ∈ H1

D(Ω)
}
, (3)

where the forms are defined by:⎧⎪⎨⎪⎩
A(y, w) ≡

∫
Ω
∇y · ∇w dx, for y, w ∈ H1

D(Ω)

(f, w) ≡
∫

Ω
f(x)w(x) dx, for w ∈ H1

D(Ω)

< u,w > ≡
∫

Γ
u(x)w(x) dsx, for u ∈ H−1/2(Γ ), w ∈ H1/2

00 (Γ ).

(4)

The constrained minimization problem then seeks (y∗, u∗) ∈ Vf satisfying:

J(y∗, u∗) = min J(y, u).

(y, u) ∈ Vf

(5)

To obtain a saddle point formulation of (5), introduce p(·) ∈ H1
D(Ω) as a La-

grange multiplier function to enforce the constraints. Define the following Lagrangian
functional L(·, ·, ·):

L(y, u, p) ≡ J(y, u) + (A(y, p)− (f, p) − < u, p >) , (6)
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for (y, u, p) ∈ H1
D(Ω) × H−1/2(Γ ) × H1

D(Ω). Then, the constrained minimum
(y∗, u∗) of J(., .) can be obtained from the saddle point (y∗, u∗, p∗) of L(·, ·, ·), where
(y∗, u∗, p∗) ∈ H1

D(Ω)×H−1/2(Γ )×H1
D(Ω) satisfies:

sup
q
L(y∗, u∗, q) = L(y∗, u∗, p∗) = inf

(y,u)
L(y, u, p∗). (7)

For a discussion on the well-posedness of problem (7), see [5, 4].
To obtain a finite element discretization of (5), choose a quasi-uniform triangula-

tion τh(Ω) of Ω. Let Vh(Ω) ⊂ H1
D(Ω) denote the P1-conforming finite element space

associated with the triangulation τh(Ω), and let Vh(Γ ) ⊂ L2(Γ ) denote its restric-
tion to Γ . A finite element discretization of (5) will seek (y∗h, u

∗
h) ∈ Vh(Ω)× Vh(Γ )

such that:
J(y∗h, u

∗
h) = min J(yh, uh)

(yh, uh) ∈ Vh,f

(8)

where the discrete constraint space Vh,f ⊂ Vh ≡ Vh(Ω)× Vh(Γ ) is defined by:

Vh,f = {(yh, uh) ∈ Vh : A(yh, wh) = (f, wh) + < uh, wh >, ∀wh ∈ Vh(Ω)} .

Let ph ∈ Vh(Ω) denote discrete Lagrange multiplier variables, and let {φ1(x), . . . ,
φn(x)} and {ψ1(x), . . . , ψm(x)} denote the standard nodal basis functions for Vh(Ω)
and Vh(Γ ), respectively. Expanding yh, uh and ph with respect to its finite element
basis, yields:

yh(x) =

n∑
i=1

yi φi(x), uh(x) =

m∑
j=1

ui ψi(x), ph(x) =

n∑
l=1

pl φl(x), (9)

and seeking the discrete saddle point of L(·, ·, ·), yields the linear system:⎡⎢⎣MΩ 0 AT

0 G BT

A B 0

⎤⎥⎦
⎡⎢⎣y

u

p

⎤⎥⎦ =

⎡⎢⎣ f1

f2

f3

⎤⎥⎦ , (10)

where the sub-matrices MΩ , A and Q (to be used later), are defined by:⎧⎪⎨⎪⎩
(MΩ)ij ≡

∫
Ω
φi(x)φj(x) dx, for 1 ≤ i , j ≤ n

(A)ij ≡
∫

Ω
∇φi(x) · ∇φj(x) dx, for 1 ≤ i , j ≤ n

(Q)ij ≡
∫

Γ
ψi(x)ψj(x) dsx, for 1 ≤ i , j ≤ m,

(11)

and the forcing vectors are defined by (f1)i =
∫

Ω
ŷ(x)φi(x) dx, for 1 ≤ i ≤ n with

f2 = 0, and (f3)i =
∫

Ω
f(x)φi(x) dx for 1 ≤ i ≤ n. Matrix MΩ of dimension n

corresponds to a mass matrix on Ω, and matrix A to the stiffness matrix. Matrix
Q of dimension m corresponds to a lower dimensional mass matrix on Γ . Matrix B
will be defined in terms of Q, based on an ordering of nodal unknowns in y and p
with nodes in the interior of Ω ordered prior to the nodes on Γ . Denote such block

partitioned vectors as y =
(
yT

I ,y
T
B

)T
and p =

(
pT

I ,p
T
B

)T
, and define B of dimension

n × m as BT =
[
0 QT

]
, and define matrix G of dimension m, representing the

regularizing terms as:

G ≡ α1Q+ α2

(
BTA−1B

)
. (12)
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3 Preconditioned Hessian System

The algorithm we shall consider for solving (10) will be based on the solution of
the following Hessian system for the discrete control u. It is the Schur complement
system obtained by block elimination of y and p in system (10):(

G+BTA−TMΩA
−1B

)
u = f2 −BTA−T f1 +BTA−TMΩA

−1f3. (13)

The Hessian matrix H ≡
(
G+BTA−TMΩA

−1B
)

is symmetric and positive def-
inite of dimension m, and system (13) can be solved using a PCG algorithm.
Each matrix vector product with G + BTA−TMΩA

−1B will require the action
of A−1 twice per iteration (this can be computed iteratively, resulting in a dou-
ble iteration). Once u has been determined, we obtain y = A−1 (f3 −Bu) and
p = A−T

(
f1 −MΩA

−1f3 +MΩA
−1Bu

)
.

The task of finding an effective preconditioner for the Hessian matrix H is com-
plicated by the presence of the parameters α1 ≥ 0 and α2 ≥ 0. As noted in [5], when
α1 or α2 is large (or equivalently, when λmin(G) is sufficiently large), then G is spec-
trally equivalent toH and therefore G will be an effective preconditioner forH, while
when both α1 and α2 are small (or equivalently, when λmax(G) is sufficiently small),
then the matrix (BTA−TMΩA

−1B) will be an effective preconditioner for H. For
intermediate values of αi, however, neither limiting approximation may be effective.
In the special case when we replace ‖y− ŷ‖L2(Ω) in (2) by ‖y− ŷ‖L2(Γ ), then matrix
MΩ is replaced by MΓ ≡ blockdiag(0, Q) and we shall indicate a preconditioner for
H, uniformly effective with respect to α1 > 0 or α2 > 0.

The preconditioner we shall formulate for H will be based on spectrally equiv-
alent representations of G and (BTA−TMA−1B), for special choices of the matrix
M . Lemma 1 below describes uniform spectral equivalences between G, (BTA−1B),
(BTA−TMΩA

−1B) and one or more of the matrices Q and S−1, where S =(
AΓΓ −AT

IΓA
−1
II AIΓ

)
denotes the discrete Dirichlet to Neumann map. Properties

of S have been studied extensively in the domain decomposition literature [8].

Lemma 1. Let Ω ⊂ R2 be a convex domain. Then, the following equivalences:

(BTA−1B) = QS−1Q

(BTA−TMA−1B) = QS−1QS−1Q when M =MΓ

(BTA−TMA−1B) . QS−1QS−1QS−1Q when M =MΩ ,

(14)

will hold with constants independent of h, where S = (AΓΓ − AT
IΓA

−1
II AIΓ ), MΓ =

blockdiag(0, Q) and MΩ is the mass matrix on Ω.

Proof. The first statement is a trivial calculation. To prove the second, use:

A−1 =

[
A−1

II +A−1
II AIΓS

−1AT
IΓA

−1
II −A−1

II AIΓS
−1

−S−1AT
IΓA

−1
II S−1

]
.

Employing this and using the block matrix structure of B yields:

A−1Bu =

[
−A−1

II AIΓS
−1Qu

S−1Qu

]
.
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Substituting this expression yields that BTA−TMΓA
−1B = QS−1QS−1Q . To prove

the third equivalence, let uh denote a finite element control function defined on Γ
with associated nodal vector u. Let vh denote the Dirichlet data associated with the
Neumann data uh, i.e. with associated nodal vector v = S−1Qu. When M = MΩ ,
then uT (BTA−TMA−1B)u will be equivalent to ‖Evh‖2L2(Ω), where Evh denotes
the discrete harmonic extension of the Dirichlet boundary data vh into Ω with
associated nodal vector A−1Bu. When Ω is convex, H2(Ω) elliptic regularity will
hold for (1) and a result from [6] shows that ‖Evh‖2L2(Ω) is spectrally equivalent

to ‖vh‖2H−1/2(Γ )
. In matrix terms, the nodal vector associated with the discrete

Dirichlet data vh will be v = S−1Qu, given by the discrete Neumann to Dirichlet
map. For vh ∈ H−1/2(Γ ), it will hold that ‖vh‖2H−1/2(Γ )

is spectrally equivalent to

vTQTS−1Qv, and in turn equivalent to uTQTS−1QTS−1QS−1Qu and the third
equivalence follows, since QT = Q and S−T = S−1.

As a consequence, we obtain the following uniform spectral equivalences.

Lemma 2. Let Ω ⊂ R2 be a convex domain. Then, the following equivalences will
hold for the Hessian matrix H ≡

(
G+BTA−TMA−1B

)
:

H = H0 ≡ α1Q+ α2QS
−1Q+QS−1QS−1Q, when M =MΓ

H . H0 ≡ α1Q+ α2QS
−1Q+QS−1QS−1QS−1Q, when M =MΩ ,

(15)

with constants independent of h, α1 and α2.

H0 will be our model preconditioner for H. To obtain an efficient solver for H0, in
applications we shall replace Q and S by Q0 . Q and S0 . S. However, since a
product of matrices is involved, caution must be exercised in the choice of Q0 and
S0. Bounds independent of h and αi will be retained only under additional regularity
assumptions or the commutativity of Q, S, Q0 and S0.

3.1 An FST Based Preconditioner H̃ � H0 for H

If Ω ⊂ R2 is rectangular and the grid is uniform, and Γ is one of the four edges
forming ∂Ω, then the Dirichlet to Neumann map S (hence S−1) and the mass matrix
Q will be diagonalized by the discrete Sine Transform F , where:

(F )ij =

√
2

m+ 1
sin(

i j π

m+ 1
) for 1 ≤ i, j ≤ m,

see [8]. Regularity theory shows that the Dirichlet to Neumann map S satis-

fies S . S0 ≡ Q1/2
(
Q−1/2LQ−1/2

)1/2

Q1/2 . ‖ · ‖2
H

1/2
00 (Γ )

, where L denotes

a discretization of the Laplace-Beltrami operator LB = − d2

ds2
x

on Γ with homo-

geneous Dirichlet conditions, see [8]. For a uniform grid, the Laplace-Beltrami
matrix is L = h−1 tridiag(−1, 2,−1), and it is diagonalized by the sine trans-
form F with L = FΛLF

T , where the diagonal matrix ΛL has entries ΛL(ii) =
4 (m + 1) sin2( i π

2 (m+1)
). For a uniform grid, the mass matrix satisfies Q = Q0 ≡

h
6

tridiag(1, 4, 1) and it is also diagonalized by F , satisfying Q0 = FΛQ0F
T for

ΛQ0(ii) = 1
3 (m+1)

(3− 2 sin2( i π
2 (m+1)

)). Thus, we obtain:
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S . S0 ≡ FΛS0F
T = F

(
Λ

1/4
Q0
Λ

1/2
L Λ

1/4
Q0

)
FT

Q = Q0 = FΛQ0F
T .

Since matrices S, Q, S0 and Q0 are diagonalized by F on a uniform grid, these
matrices commute. As a result, it can be verified that H̃ . H0 . H:

H̃ . F
(
α1 ΛQ0 + α2 Λ

2
Q0Λ

−1
S + Λ3

Q0 Λ
−2
S

)
FT , when M =MΓ

H̃ . F
(
α1 ΛQ0 + α2 Λ

2
Q0 Λ

−1
S + Λ4

Q0 Λ
−3
S

)
FT , when M =MΩ ,

(16)

with bounds independent of h and αi. The eigenvalues of H̃−1 can be found analyt-
ically, and the action of H̃−1 can be computed at low cost using FST’s.

4 Numerical Experiments

We present numerical tests of control problem (2) on the two-dimensional unit square
(0, 1)×(0, 1). Neumann conditions are imposed on Γ = (0, 1)×{0}, and homogeneous
Dirichlet conditions are imposed on the remaining sides of ∂Ω, with forcing term
f(x, y) = 0 in Ω. We consider a structured triangulation on Ω with mesh parameter
h = 2−N , whereN is an integer denoting the number of refinements. We test different
values for the relaxation parameters α1 and α2, for the mesh size h, and for mass
matrix M . In all numerical experiments, we run PCG until the preconditioned l2
initial residual is reduced by a factor of 10−9. We use the FST based preconditioner
described in (16).

Table 1. Number of PCG iterations and (condition) for α2 = 0 and M =MΩ .

N \ α1 1 (0.1)2 (0.1)4 (0.1)6 0

3 3 (1.02) 5 (1.65) 7 (1.60) 6 (1.44) 7 (1.54)
4 3 (1.02) 5 (1.63) 9 (1.95) 6 (1.29) 7 (1.56)
5 3 (1.02) 5 (1.63) 8 (2.00) 7 (1.50) 7 (1.56)
6 3 (1.02) 5 (1.64) 8 (2.01) 6 (1.86) 6 (1.55)
7 3 (1.02) 5 (1.64) 8 (2.00) 6 (1.96) 5 (1.51)

Tables 1 and 2 list results on runs withM =MΩ and target function ŷ(x, y) = 1
on [1/4, 3/4] × [0, 3/4] and equal to zero otherwise. We list the number of PCG
iterations and in parenthesis the condition number estimate for the preconditioned
system. As expected from the analysis, the number of iterations and the condition
number remain bounded, and when no preconditioning is used, the problem becomes
very ill-conditioned for small regularization αi; see Table 3. In Tables 4 and 5 we
report the results for M =MΓ with target function ŷ(x, 0) = 1 on [1/4, 3/4]× {0},
and equal to zero otherwise. As before, the number of iterations and the condition
number remain bounded.
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Table 2. Number of PCG iterations and (condition) for α1 = 0 and M =MΩ .

N \ α2 1 (0.1)2 (0.1)4 (0.1)6 0

3 7 (2.15) 6 (1.45) 7 (1.50) 7 (1.53) 7 (1.54)
4 8 (2.26) 7 (1.71) 7 (1.45) 7 (1.56) 7 (1.56)
5 7 (2.24) 7 (1.84) 6 (1.32) 7 (1.56) 7 (1.56)
6 5 (2.03) 7 (1.95) 5 (1.33) 6 (1.52) 6 (1.55)
7 4 (1.82) 6 (1.76) 5 (1.40) 5 (1.44) 5 (1.51)

Table 3. Number of CG iterations and (condition) for α2 = 0 and M =MΩ .

N \ α1 1 (0.1)2 (0.1)4 (0.1)6 0

3 7 (2.75) 7 (6.80) 8 (351) 8 (2.2+3) 8 (2.3+3)
4 9 (2.97) 9 (7.47) 15 (448) 23 (1.6+4) 23 (2.4+4)
5 7 (3.03) 8 (7.64) 16 (468) 35 (3.8+4) 53 (2.0+5)
6 6 (3.04) 6 (7.69) 12 (472) 39 (4.6+4) 106 (1.6+6)
7 4 (3.05) 5 (7.70) 11 (473) 34 (4.7+4) 162 (1.3+7)

Table 4. Number of PCG iterations and (condition) for α2 = 0 and M =MΓ .

N \ α1 1 (0.1)2 (0.1)4 (0.1)6 0

3 3 (1.01) 4 (1.17) 4 (3.96) 4 (5.08) 4 (5.09)
4 2 (1.00) 4 (1.07) 7 (2.73) 8 (5.64) 8 (5.72)
5 2 (1.00) 3 (1.02) 7 (1.76) 11 (5.44) 11 (5.75)
6 2 (1.00) 3 (1.00) 5 (1.29) 12 (4.69) 13 (5.78)
7 2 (1.00) 3 (1.01) 4 (1.10) 8 (3.14) 10 (5.65)

Table 5. Number of PCG iterations and (condition) for α1 = 0 and M =MΓ .

N \ α2 1 (0.1)2 (0.1)4 (0.1)6 0

3 4 (2.29) 4 (3.99) 4 (5.08) 4 (5.09) 4 (5.09)
4 8 (2.41) 8 (3.81) 8 (5.68) 8 (5.72) 8 (5.72)
5 8 (2.37) 9 (3.25) 11 (5.66) 11 (5.75) 11 (5.75)
6 7 (2.33) 8 (2.84) 12 (5.57) 13 (5.78) 13 (5.78)
7 5 (2.09) 6 (2.45) 9 (5.24) 10 (5.64) 10 (5.65)

5 Conclusions

We have introduced a robust preconditioner for the Hessian matrix in a class of ellip-
tic optimal control problems. We have shown that the Hessian matrix is spectrally
equivalent to a composition of the discrete Laplace-Beltrami and mass matrices.
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For a uniform grid, these matrices are simultaneously diagonalized by a fast sine
transform. The resulting preconditioner is optimal with respect to the mesh size
and relaxation parameters. Numerical results confirm the robustness of the precon-
ditioner.
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A Schur Complement Method for DAE/ODE
Systems in Multi-Domain Mechanical Design
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Summary. The large increase of unknowns in multi-domain mechanical modeling
leads to investigate new parallel implementation of ODE and DAE systems. Unlike
space domain decomposition, no geometrical information is given to decompose the
system. The connection between unknowns have to be built to decompose the system
in subsystems. A Schur Complement DDM can then be applied. During some time
steps, the Jacobian matrix can be frozen allowing to speed-up the Krylov solvers
convergence by projecting onto the Krylov subspace. This kind of DAE are stiff and
the numerical procedure needs special care.

1 Introduction

Problems coming from the multi-domain mechanical design lead to solve systems of
Ordinary Differential Equations (ODE) or Differential Algebraic Equations (DAE).
Designers of mechanical systems want to achieve realistic modeling, taking into
account more and more physics. Mathematically speaking, these features lead to
have DAE/ODE systems with a large number of unknowns. Moreover these systems
are usually stiff and eventually exhibits some discontinuities. So robust solvers with
adaptive time stepping strategy must be designed.

Up to now, the main approach to obtain an ODE system parallel solver uses
the parallelizing “across the method” of the time integrator. Runge-Kutta methods
involve several stages. The aim of this kind of parallelization is to compute each
stage of the method on a dedicated processor ([2, 1, 9, 3]).

This kind of parallelization is very limited. The number of processors involved
can only be equal to the number of stages of the method.

We have shown in ([3]) that a speed-up nearby 2.5 can be obtained on 3 proces-
sors using Radau IIa method (a 3-stage RK method, see [4, 5] for more details).

In this paper, we propose a new approach based on the Schur Complement
Method in order to decompose the system into smaller systems. In the Partial Dif-
ferential Equation framework, the decomposition is given by the geometrical data

∗ Funded: National Research Agency: technologie logicielle 2006-2009 PARADE
Project Mathgrid and cluster ISLES project HPC Région Rhône-Alpes
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and the order of discretization scheme. Conversely in the DAE/ODE framework, no
a priori knowledge of the coupled variables is available. This is the main issue to be
solved.

We will show in section 2 how a Schur complement method can be implemented
in the resolution of an ODE system. A brief description of the LSODA integrator
will be given. Then in section 3, a strategy is applied to extract automatically the
dependencies between the variables. These dependencies are viewed as an adjacency
matrix and then, as in spatial domain decomposition, classical partitioning tools
can be used. The algorithm is explained in section 4 and some numerical results are
shown in section 5.

2 Differential Integrators

An initial value problem is considered,

for an ODE

(PODE)

⎧⎨⎩
dy

dt
= f(t, y(t)),

y(t0) = y0,
(1)

or for a DAE

(PDAE)

⎧⎪⎨⎪⎩
F (t, y(t), y′(t)) = 0,

y(t0) = y0,

y′(t0) = y′0.

(2)

The problem is assumed to be stiff. To solve the problem (P ), a “predictor-
corrector” scheme may be used. The main idea of such solver is to build a prediction
yn(0) of the solution from a polynomial fit. Then the prediction is corrected by
solving a nonlinear system

GODE(yn) = yn − β0hnf(tn, yn)−
k∑

i>0

αn,iyn−i = 0, (3)

GDAE(yn) = F

(
tn, yn, h

−1
n

q∑
i=0

αn,iyn−i

)
= 0, (4)

where β0 is a constant given by the integration scheme and hn the current time step
and αn,i are the parameters of the method in use.

This means that the solution yn at the time tn is computed as follows.

• A predicted value yn(0) is computed to be used as initial guess for the nonlinear
iteration (where αp

n,i and βp
0 are parameters of the prediction formula):

yn(0) =
k∑

i=1

αp
i yn−i + βp

0hn
dyn−1

dt
. (5)

• Correction step (by Newton iterations){(
∂G
∂y

(yn(m))
)
δyn = −G(yn(m)),

yn(m+1) = yn(m) + δyn

(6)
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with
∂GODE

∂y
= I − γ ∂f

∂y
= I − γJ, (7)

∂GDAE

∂y
=
∂F

∂y
+ α

∂F

∂y′
= J, (8)

where J is the Jacobian matrix, γ = β0hn and α = αn,0h
−1
n . At the end of the

iteration process yn = yn(m+1).

We want to apply the Schur complement method to this linear system. In do-
main decomposition in space, regular data dependencies are inherent to the spatial
discretization scheme, which enables a relatively easy introduction of the Schur com-
plement. The interface nodes are on the physical junction between the subdomains.
In DAE/ODE, there is no regular data dependencies (even by renumbering locally
the unknowns). In the considered problems, the coupling are embedded in the whole
function f which is not —necessarily— explicitly known. Indeed, the function f is
composed by several sub-models which are sometimes hidden (too complex, or used
as black boxes). Hence a decomposition of the matrix is far from trivial to implement.

3 Automatic Partitioning of DAE/ODE Systems

In this section, we propose a method to partition automatically the unknowns of the
dynamic system. We assume that the function f is composed by some subfunctions
fi seen as black boxes. This means that for a function fi only its outputs and inputs
are known. Let us illustrate this on the following example⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dy1
dt

= f1(y1, y2, y4),

dy2
dt

= f2(y1, y3),

dy3
dt

= f3(y3, y4),

dy4
dt

= f4(y3, y4).

(9)

A modification of the variables y1 and/or y3 may change the value of the output of
f2, the time derivative of y2.

The coupling between the variables and their derivatives can be summarized into
an incidence matrix (see the graph theory for example in [6])⎛⎜⎜⎝

1 1 0 1
1 0 1 0
0 0 1 1
0 0 1 1

⎞⎟⎟⎠ . (10)

The value 1 can be viewed as a dependence between two nodes in the computation
of one column of the Jacobian matrix.

Having this pattern, we know that in graph theory formulation, the reduction
of the coupling between the nodes of a graph is done by minimizing of the number
of edges cut in the graph. A graph partitioning tool such as [7] is used.
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Fig. 1. Example of the Jacobian matrix of a V10 engine pump problem. Initial
pattern on top and the pattern using 4 partitions

4 Algorithm

Now we concentrate on the algorithm to solve the linear system. The first step was
the construction of the pattern of the Jacobian matrix (i.e. the incidence matrix
corresponding to the interaction between the variables). The use of a graph parti-
tioning tool decouples the system in sub-systems, separating the variables in internal
variables and interface variables (those that need the values of variables belonging
to another subdomain).

Given a partition, consider a doubly bordered block diagonal form of a matrix
A = I − γJ or A = J (provided by the integrator)

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

B1 F1 · · · 0

. . .
...

. . .
...

BN 0 · · · FN

E1 C11 · · · C1N

. . .
...

. . .
...

EN CN1 · · · CNN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

(
B F
E C

)
. (11)

Locally on each subdomain one has to solve:(
Bi Fi

Ei Cii

)(
xi

yi

)
+

(
0∑

j �=i Cijyj

)
=

(
fi

gi

)
. (12)

We assume that Bi is not singular. Then

xi = B−1
i (fi − Fiyi). (13)

Upon substituting a reduced system is obtained:

Siyi +
∑
j �=i

Cijyj = gi − EiB
−1
i fi with Si = Cii − EiB

−1
i Fi. (14)
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Multiplying by S−1
i , one obtain the following preconditioned reduced system for

the interface⎛⎜⎜⎜⎝
I S−1

1 C12 · · · S−1
1 C1N

S−1
2 C21 I · · · S−1

2 C2N

...
. . .

...
S−1

N CN1 · · · S−1
N CNN−1 I

⎞⎟⎟⎟⎠
⎛⎜⎝ y1...
yN

⎞⎟⎠ =

⎛⎜⎝ ĝ1...
ĝN

⎞⎟⎠ . (15)

A solution method involves four steps:

• Obtain the right hand side of the preconditioned reduced system

ĝi = S−1
i

(
gi − EiB

−1
i fi

)
. (16)

• “Form” the Schur complement matrix.
– A LU decomposition of the matrix without pivoting gives the LU decompo-

sition of the matrix Si(
Bi Fi

Ei Cii

)
=

(
LBi 0
EiU

−1
Bi
LSi

)(
UBi L

−1
Bi
Fi

0 USi

)
. (17)

• Solve the preconditioned reduced system.
• Back-substitute to obtain the other unknowns (fully parallel step).

4.1 Resolution of the Reduced System

The reduced system is solved by an iterative solver. The iterative solver only needs
to define the matrix-vector action.

For the iterative scheme we use the generalized conjugate residual (GCR) method
(as in [8]). The GCR method is described for a system of the form Ax = b.

1. Compute r0 = b−Ax0. set p0 = r0.
2. For j = 0, 1, 2, ..., until convergence do:

a) αj =
(rj ,Apj)

(Api,Apj)

b) xj+1 = xj + αjpj

c) rj+1 = rj − αjApj

d) compute βij = − (Arj+1,Apj)

(Api,Api)
, for i = 0, 1, ..., j

e) pj+1 = rj+1 +
∑j

i=0 βijpi

end do

Additionally to the vectors {pj}k
j=1, which are ATA-orthogonal, extra vectors

{Apj}k
j=1 have to be stored. Since the projection of b onto the space AK with

K = span{pj}k
j=1 is equal to

k∑
j=1

(b, Apj)

(Apj , apj)
Apj , (18)

the projection of the solution x = A−1b onto K is

x̂ =
k∑

j=1

(b, Apj)

(Apj , apj)
Apj . (19)

This observation implies that the projection onto the accumulated Krylov subspace
may compute the unknown solution quite easily (involving k scalar products). Table
1 exhibits that the numerical speed-up is nearby of 15%.
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Table 1. Numerical speed-up of the GCR method using the projection onto the
accumulated Krylov subspace on the V10 engine pump problem

Krylov projection #proc CPU time numerical speed-up

no 4 1750 1

yes 4 1515 1.15

5 Some Numerical Results

The speed-up obtained is quite good as shown in Table 2 by the elapsed times for
solving the previous V10 engine pump problem. The partition number is increased
from 1 to 4. One processor is used to solve one subdomain problem.

Table 2 exhibits a speed-up higher on 3 processors using this Schur DDM ap-
proach than using the parallelizing across the method. But with the Schur DDM
that has been proposed here, the number of processors (which is equal to the parti-
tion number) is only limited by parallel performance considerations. For the small
case considered here with 387 unknowns, the optimum partition number is 4 (see 3).

Table 2. Speed-up obtained on the V10 engine pump problem

#proc CPU time speed-up #Jac #discont #steps

1 6845 1 65355 1089 311115

2 4369 1.56 66131 1061 315357

3 1820 3.76 65787 1059 313064

4 1513 4.52 65662 1043 313158

Table 3. Percentage of interface unknowns with respect to then number of proces-
sors ne

ne+ n−ne
np

on the V10 engine pump problem (n = 287 unknowns).

#proc (np) 1 2 3 4 8 16

#interface unknowns (ne) 0 21 31 47 80 126

ratio of interface (%) 0 13 26 43 75 92

This limitation comes from the ratio between the number of interface unknowns
and the computing complexity to solve subdomain problems. For the test case under
consideration, the speed-up is supra-linear, because of two effects. The first one is
a smaller full LU decomposition locally (i.e. on each processor). The second one is
the parallelizing of the resolution on each subdomain that fits in the cache memory.
Nevertheless, we expect only a linear speed-up when a sparse LU decomposition will
be applied.
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6 Conclusion

A Schur domain decomposition method has been investigated to solve systems of
ordinary/algebraic differential equations. Because the data dependencies are not reg-
ular, an automatic process has been developed to separate the unknown variables
in interface unknown variables and subdomain internal unknown variables. This ap-
proach was absolutely needed because the function f(t, y) is given as a black box with
only knowledge on the input variables and on the components of f to be affected.
The condition number of the linear systems involved in the time integrator required
a preconditioned linear Krylov solver. Some techniques to reuse computed informa-
tion to speed-up the convergence have been investigated and save some elapsed-time.
Next works will investigate some numerical tools to reuse computed information
when some parts of the system become non-active or active during the cycle of sim-
ulation. Some questions are still open: what can be the numerical criterion to reuse
the Krylov subspace when some dynamical systems situation reappears? May it be
possible to use reduced systems obtained by proper orthogonal decomposition to
model the interactions of other sub-systems to one given sub-system in the Schur
DDM. This is the kind of question that will be addressed in the framework of the
“PARallel Algebraic Differential Equations” ANR project.
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1 Introduction

We consider in this work a distributed parameter identification problem for the
FitzHugh-Nagumo system of equations of electrocardiology [8]. Specifically, we con-
sider the two-component reaction-diffusion system

∂tu = µ∆u+ u(u− α)(1− u)− v, in Q,
∂tv = κ∆v + ε(ϑu− γv), in Q,
u(x, 0) = 0, v(x, 0) = 0 in Ω,
n · ∇u(x, t) = I(x, t), n · ∇v(x, t) = 0, on ∂Q,

(1)

where Ω ⊂ Rn, with n = 2 for the results in section 4. Q and ∂Q are defined as
Q ≡ Ω× (0, T ) and ∂Q ≡ ∂Ω× (0, T ), respectively. See [8] for details on system pa-
rameters. The objective of the parameter identification is to reconstruct the reactive
coefficient α(x) in the first equation from boundary measurements of the electrical
potential u.

Our aim here is to present a numerical algorithm that can solve the reconstruc-
tion problem in large-scale (parallel) environments. The algorithm is of Newton-
Krylov-Schur-Schwarz type; it combines Newton’s method for numerical optimiza-
tion with Krylov subspace solvers for the resulting reduced Karush-Kuhn-Tucker
(KKT) systems. Schwarz preconditioning is used to solve the partial differential
equations that are involved in the inversion procedure.

2 PDE-constrained Optimization

The parameter identification problem for the FitzHugh-Nagumo system is to re-
construct the physical coefficient α(x) from the knowledge of h = u(x, t) on the
boundary of the domain. Since one can measure the boundary potential for var-
ious applied current stimuli I, one thus has access to the time-dependent partial

∗ This work is supported in part by the U. S. National Science Foundation under
CCF-03-52334
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Neumann-to-Dirichlet map: Λ : I(x, t) → h. The parameter identification problem
employs knowledge of this map Λ to recover function α(x).

We solve the inverse problem by formulating it as a PDE-constrained optimiza-
tion problem [1, 4, 5, 6]:

min
α,u

F(α, u)

subject to Cs(Is, α, us, vs) = 0, s = 1, 2, ..., Ns. (2)

where Cs(Is, α, us, vs) = 0 is abstract notation for (1) with source Is. Ns is the
number of source scenarios producing detectable measurements. The functional to
be minimized is defined as

F(α, u) :=
1

2

Ns∑
s=1

Nd∑
j=1

∫ T

0

∫
∂Ω

(us − hs)
2δ(x − xj) dσ(x)dt+ ρR(α), (3)

with hs the measurement corresponding to source Is. xj , j = 1, ..., Nd, are detector
positions. To simplify notation, we write u = (u1, ..., us, ..., uNs). dσ denotes the
surface measure on ∂Ω. R(α) is a regularization functional, and the regularization
parameter ρ controls the strength of regularization.

The Lagrangian functional for the above minimization problem is

L(u, v, α, λ, η) = F(α, u) +

Ns∑
s=1

〈(λs, ηs), Cs〉 , (4)

where again sets of variables corresponding to the full set of different sources, such
as v = (v1, ..., vs, ..., vNs), are implied. λs and ηs denote the Lagrangian multipliers
(adjoint variables) corresponding to us and vs, respectively. The solution to the
constrained minimization problem satisfies the first-order optimality conditions of
the Lagrangian functional, which are

Lλ(u, v, α, λ, η) = 0, Lη(u, v, α, λ, η) = 0,
Lu(u, v, α, λ, η) = 0, Lv(u, v, α, λ, η) = 0,
Lα(u, v, α, λ, η) = 0.

(5)

Denoting (u, v, α, λ, η) by u, we can recast (5) as the root-finding problem:

Lu(u) = 0. (6)

3 The Newton-Krylov-Schur-Schwarz Algorithm

In order to solve the optimality equations, a hybrid set of algebraic equations and
quasilinear partial differential equations of reaction-diffusion type, we need a dis-
cretization of the PDEs and an algebraic solver for the resulting large nonlinear
algebraic system. The Newton-Krylov family of methods provides an efficient way
to solve such PDE systems [9].
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3.1 The Newton-Krylov Method

Newton methods for solving (6) follow the iteration

uk+1 = uk + lkδuk, (7)

with some initial guess u0, until convergence criteria are satisfied. The update di-
rection δuk at Newton iteration k is given by solving the saddle point problem

Luu(uk)δuk = −Lu(uk). (8)

Here the step length lk is given by a line search or other globalization technique.
The nested iteration is called Newton-Krylov when Krylov subspace methods are
used to solve the inner KKT system. The method has received wide attention from
practitioners in recent years; see the references cited in [9].

For the FitzHugh-Nagumo model we consider here, the KKT system has the
form ⎛⎜⎜⎜⎜⎝

Luu 0 Luα Luλ Luη

0 0 0 Lvλ Lvη

Lαu 0 Lαα Lαλ 0
Lλu Lλv Lλα 0 0
Lηu Lηv 0 0 0

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
δu
δv
δα
δλ
δη

⎞⎟⎟⎟⎟⎠ = −

⎛⎜⎜⎜⎜⎝
Lu

Lv

Lα

Lλ

Lη

⎞⎟⎟⎟⎟⎠ , (9)

where δu = [δu1, δu2, . . . , δuNs ]T , and δv, δλ, δη and Lu, Lv, Lλ, Lη are simi-
larly defined. Because the forward problems for different sources are decoupled, the
operator Luu has diagonal structure:

Luu = diag{Lu1u1 ,Lu2u2 , . . . ,LuNs uNs
} (10)

and similarly for operators Luλ, Luη, Lvλ, and Lvη and their adjoint operators,
Lλu, Lηu, Lλv, and Lηv. Operators Luα and Lλα have the structure that Luα =
[Lu1α,Lu2α, . . . ,LuNs α]T and Lλα = [Lλ1α,Lλ2α, . . . ,LλNs α]T . Lαu and Lαλ are
their adjoint operators, respectively.

3.2 The Schur Complement Reduced Space Method

To avoid a huge storage requirement, we do not solve the KKT system (9) directly.
Instead, in each Newton iteration, for a given α, we first solve the FitzHugh-Nagumo
system (2), which turns out to be the first two equations in (5). We then solve the
adjoint problem, (the fourth and fifth equations in (5)), thereupon, the terms Lu,
Lv, Lλ and Lη vanish in the KKT system (9). The KKT system thus becomes⎛⎜⎜⎜⎜⎝

Luu 0 Luα Luλ Luη

0 0 0 Lvλ Lvη

Lαu 0 Lαα Lαλ 0
Lλu Lλv Lλα 0 0
Lηu Lηv 0 0 0

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
δu
δv
δα
δλ
δη

⎞⎟⎟⎟⎟⎠ = −

⎛⎜⎜⎜⎜⎝
0
0
Lα

0
0

⎞⎟⎟⎟⎟⎠ . (11)

We can now build the Schur complement of (11) by eliminating δu, δv, δλ and
δη. We then obtain

Hredδα = −Lα, (12)
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where the reduced gradient Lα is given by

Lα =

Ns∑
s=1

∫ T

0

λsus(1− us)dt+ ρR′(α) (13)

and the reduced Hessian Hred (Schur complement of the KKT) is given by

Hred = Lαα − LαuW −W ∗Luα +W ∗LuuW, (14)

withW defined asW = [L−1
λu +L−1

λu (Lηv−LηuL−1
λu )−1LηuL−1

λu ]Lλα. HereW ∗ denotes
the adjoint of W . The reduced Hessian Hred has a much smaller size (and is much
denser) than the original Hessian Luu. It can be verified that Hred = H∗

red, that is,
Hred is self-adjoint.

One can obtain the Gauss-Newton approximation by dropping second derivative
information in the Lαu and Luα terms [7, 10], resulting in the reduced Hessian:

HGN
red = Lαα +W ∗LuuW. (15)

Table 1. The reduced-space Newton algorithm

Algorithm 1: Reduced-space Newton algorithm

set kmax, ε1, ε2
guess α0(x); set k = 0
evaluate F(α0)

while (k < kmax &
‖Lαk

‖
‖1+F(αk)‖ > ε1,

F(αk)
F(α0)

> ε2)

evaluate Lαk by (13)
compute δαk by (12)
compute lk by a line search
αk+1 = αk + lkδαk

evaluate F(αk+1)
k = k + 1

end while

We thus obtain the following Newton-Krylov-Schur (reduced-space) method as
described in Table 1. For full space methods of similar type, see [5, 6].

3.3 The Schwarz Decomposition PDE Solver

In the aforementioned Newton-Krylov-Schur inversion procedure, at each Newton
step, many time-dependent PDEs need to be solved. Some of those PDEs are qua-
silinear (the FitzHugh-Nagumo system), others are linear (the adjoint equations).
The efficiency of the inversion algorithm depends strongly on the efficiency of the
algebraic solvers that are used. Our strategy for building an efficient parallel solver
is based on the parallel solver toolkit PETSc from Argonne National Laboratory
[2]. All the PDEs are passed to the SNES solver in PETSc after being discretized
in time by implicit Euler.
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4 Numerical Simulations

We present in this section some performance analysis for the algorithm presented
above. For detailed analysis on the quality of reconstructions and its relationship
with various algorithmic parameters, we refer interested readers to [8]. All the results
shown in this section are obtained on the Mac cluster System X at the Virginia
Polytechnic Institute and State University.

4.1 Performance of Different Solver-preconditioner Combinations

In the first study, we compare the performance of different algebraic solvers and
preconditioning methods on our forward model problem.

The algebraic solvers considered here are all Krylov subspace methods (KSP),
including the generalized minimal residual (GMRES), modified GMRES, flexible
GMRES, conjugate gradient (CG), bi-conjugate gradient (BiCG), and the stabi-
lized version of bi-conjugate gradient squared (BCGS). We refer to [3] for details
of those methods. The preconditioning methods we considered include the Jacobi,
block Jacobi and the additive Schwarz method. We present in Table 2 the execu-
tion time of different combinations. Since many linear systems we encounter in the
solution of the forward and inverse problems are indefinite, we use the classical
GMRES method with additive Schwarz as the preconditioner in the following sec-
tions although there are other combinations that can achieve similar performance
as indicated in Table 2.

Table 2. Execution time for the forward model using different KSP accelerators
with different preconditioners

none Jacobi bJacobi ASM (basic)

GMRES (classical GS) 89.5 90.0 81.3 67.9
GMRES (modified GS) 94.7 74.2 84.5 87.2

f GMRES 91.0 77.0 68.0 87.7
CG 96.1 66.3 63.8 66.9

BiCG 88.8 67.3 80.5 88.8
BCGS 83.6 66.3 66.4 63.0

4.2 Scalability Results on the Forward Solver

We now consider parallel performance of the algorithm we have developed on the
forward problem. We show in Fig. 1 some fixed-size scaling results obtained by
increasing the number of processors with a fixed grid size. The strong speedup
and efficiency results based on execution time for two different spatial grid size,
128×128 and 256×256 are presented. As expected, speedup and efficiency improve
with problem size.

In Table 3 we show the results on execution time and implementation efficiency ε
[5] which is based on the average Mflop/s. We find that the implementation efficiency
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Fig. 1. Strong speedup (left) and efficiency (right) for the forward solver on 128×128
($) and 256× 256 (◦) spatial grids, respectively.

Table 3. Performance analysis of the forward solver. NP denotes the number of
processors; ε is the implementation efficiency.

128× 128 256×256

NP execution time ε execution time ε

1 312.1 1.00 1881.3 1.00
2 219.8 0.89 1241.0 0.79
4 121.8 0.84 679.4 0.73
8 72.9 0.75 393.6 0.62
16 48.4 0.58 245.2 0.50
32 36.9 0.54 166.0 0.36

of small size problem is slightly better than the implementation efficiency of the
problem of large size.

4.3 Scalability Results on the Inversion Algorithm

We present in Figure 2 the strong speedup and efficiency results for the inversion
algorithm for up to 32 processors. We observe by comparing Fig. 2 and Fig. 1 that the
scalability of the inversion algorithm is slightly better than that of the forward solver.
One explanation of this phenomenon is the forward solver deals with only nonlinear
problems (the FitzHugh-Nagumo model), while the inverse solver deals with both
nonlinear (forward problem) and linear (adjoint problem). The performance from
the linear problem part is better than that from the nonlinear problem part.

In Table 4 we show some results on execution time and the implementation effi-
ciency ε for the inversion algorithm. The implementation efficiency of small problem
size is fairly independent of problem size. Again, by comparing with Table 3, the
implementation efficiency of the inversion algorithm is slightly better than the im-
plementation efficiency of forward model.
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Fig. 2. Strong speedup (left) and efficiency (right) for the inversion algorithm on
128× 128 ($) and 256× 256 (◦) spatial grids, respectively.

Table 4. Performance analysis of the inverse solver. NP denotes the number of
processors; ε is the implementation efficiency.

128× 128 256×256

NP execution time ε execution time ε

1 9914.0 1.00 72728.9 1.00
2 7015.5 0.79 50101.0 0.70
4 3701.6 0.85 27743.1 0.73
8 1897.7 0.89 13937.0 0.75
16 1021.2 0.85 6916.2 0.79
32 608.2 0.75 3558.1 0.76

5 Conclusion

We have presented in limited space a parallel numerical algorithm for a PDE-based
distributed parameter reconstruction problem. This Newton-Krylov algorithm com-
bines Newton’s method for numerical optimization with Krylov subspace solvers
for the resulting KKT system. We have also discussed the performance of both the
forward solver and the inversion algorithm. Physical results of the inversion are
available in [8].

Future research will focus on accelerating the current code, extending it to three
dimensions on much larger numbers of processors, and comparing simulations on
more realistic geometries with experimental measurements.
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1 Introduction

It is necessary to set a computational domain appropriately for the numerical sim-
ulation of wave propagation phenomena in unbounded region. There are several
approaches for this problem. In 1994, J.-P. Bérenger introduced the technique of
Perfectly Matched Layer (PML). It is said that PML technique gives the best per-
formance for Finite Difference Time Domain (FDTD) method in unbounded region.
Some researchers expanded this idea into the linearized Euler equation and acoustic
wave equation. In this paper, we consider some mathematical and numerical prob-
lem of PML technique, and propose a new discretization scheme that is better than
the original scheme.

2 PML Method

2.1 Formulation of PML

The Maxwell equation is written as:

∂E

∂t
= −σ

ε
E +

1

ε
∇×H,

∂H

∂t
= − 1

µ
∇×E. (1)

where, E is electric field, H is magnetic field, and ε, µ and σ are permittivity, mag-
netic permeability and electrical conductivity, respectively.

To treat the problem in unbounded region, we introduce PML technique which
surrounds interior region by an absorption medium introduced in [1]. In the PML
region, the electromagnetic wave propagates without reflection and decreases ampli-
tude exponentially, and there is no reflection on the boundary between the interior
and PML regions. The solution in interior region is not polluted. This behavior is re-
alized by introducing dissipation term into the Maxwell equation (1), and imposing
the impedance matching condition σ/ε0 = σ∗/µ0:

∂E

∂t
= − σ

ε0
E +

1

ε0
∇×H,

∂H

∂t
= −σ

∗

µ0
H− 1

µ0
∇×E, (2)

where, σ∗ is magnetic conductivity.
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2.2 Exact Solution in PML Region

In this section, we investigate some properties of PML technique. First, we consider
one dimensional continuous problem. In case that the solutions of (2) depend only
on t and x, the equation is rewritten as:

ε0
∂Ey

∂t
+ σEy = −∂Hz

∂x
, µ0

∂Hz

∂t
+ σ∗Hz = −∂Ey

∂x
. (3)

We take a unit such that ε0 = µ0 = 1, then the impedance matching condition
becomes σ = σ∗. Also, we put Ey = u and Hz = v, then (3) becomes the wave
equation for u and v:

∂u

∂t
+ σu = −∂v

∂x
,

∂v

∂t
+ σv = −∂u

∂x
. (4)

The exact solutions of (4) with initial values u(0, x) and v(0, x) at t = 0 are given
as:

u(t, x) =
1

2

(
e−

∫x
0 σ(s)dsf(x− t) + e

∫x
0 σ(s)dsg(x+ t)

)
,

v(t, x) =
1

2

(
e−

∫x
0 σ(s)dsf(x− t)− e

∫x
0 σ(s)dsg(x+ t)

)
,

where,

f(x) = e
∫x
0 σ(s)ds(u(0, x) + v(0, x)),

g(x) = e−
∫x
0 σ(s)ds(u(0, x)− v(0, x)).

3 FDTD Method and PML

3.1 Discretization of Dissipation Term in FDTD Method

In 1966, K.S. Yee [2] introduced FDTD method to treat electromagnetic wave prob-
lem. In this section, we consider a discretization scheme for (4). We set ∆t = ∆x ≡ τ
and σs ≡ σ(s∆x), s = m orm+ 1/2, and make use of the approximation:

σ(s∆x)u(s∆x) ≈ σs
1

2
(un

s+ 1
2

+ un
s− 1

2
).

Then, the difference approximation of (4) becomes

un+1
m = amu

n
m − bm(v

n+ 1
2

m+ 1
2
− vn+ 1

2
m− 1

2
), (5)

v
n+ 1

2
m+ 1

2
= am+ 1

2
u

n− 1
2

m+ 1
2
− bm+ 1

2
(vn

m+1 − vn
m), (6)

with

as =
1− τ

2
σs

1 + τ
2
σs
, bs =

1

1 + τ
2
σs
, s = m orm+

1

2
. (7)

We call (5) - (7) a plain scheme.
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3.2 Artificial Reflection Caused by Discretization

In this section, we consider the artificial reflection caused by discretization. We set
σ = 0 in x ≤ 0 and σ > 0 in x > 0. Then the solution given as:

{un
m, v

n− 1
2

m− 1
2
}, un

m = δ0,n−m, v
n− 1

2
m− 1

2
= δ0,n−m

which propagates towards the positive direction of x. When t = 0 (n = 0), the
solution is one at x= 0 which is boundary between interior and PML regions and
zero elsewhere. When n=1/2, we have from (6):

v
1
2
m+ 1

2
=

{
b1/2 : m = 0,
0 : otherwise.

When n = 1, we have from (5):

u1
m =

⎧⎨⎩
a0 − b0b1/2 : m = 0,
b1b1/2 : m = 1,
0 : otherwise.

Hence, u1
0 propagates towards the negative direction of x. We can express u1

0 con-
cretely

u1
0 = a0 − b0b1/2

=
1− τσ0

2

1 + τσ0
2

− 1

1 + τσ0
2

1

1 +
τσ1/2

2

=

τσ1/2
2

1 +
τσ1/2

2

.

Then, if σ > 0, an artificial reflection occurs. Therefore, when we set non-trivial
PML, an artificial reflection occurs inevitably. We assume that σ(x) can be expanded
in the Tayler series in [0,+∞) as:

σ(x) = σ0 +

N∑
k=1

1

k!

dk

dxk
σ(0)xk +O(xN+1).

Then, the artificial reflection coefficient R is given as:

R = σoτ +
σ′(0)

2
τ2 +O(τ3).

In particular, the artificial reflection is almost proportional to the product of jump of
σ and τ . In case the jump of σ is zero, it is proportional to the product of derivative
of σ and τ2 by neglecting O(τ3) term. Furthermore, if σ is differentiable at the
boundary, the artificial reflection is at most order τ3.

3.3 A New Scheme with Lower Reflection

From the analysis in the previous section, even if the dissipation is constant, an
artificial reflection occurs in PML region. To eliminate this spurious reflection at
PML region where σ is constant, we propose the new scheme. The new scheme is
defined as:
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un+1
m = anew

m un
m − bnew

m (v
n+ 1

2
m+ 1

2
− vn+ 1

2
m− 1

2
), (8)

v
n+ 1

2
m+ 1

2
= anew

m+ 1
2
u

n− 1
2

m+ 1
2
− bnew

m+ 1
2
(vn

m+1 − vn
m), (9)

with

anew
s = e−τσs , bnew

s = e−τσs/2, s = m orm+
1

2
. (10)

σs is constant with respect s, we can show easily that as − bsbs+1/2 = 0. This
concludes that there is no spurious reflection in PML region where σ is constant.

4 Some Numerical Examples

4.1 Comparison among Various Schemes in 1D Case

In this section, we give some numerical examples to confirm our analysis. In the
first example, we compare the spurious reflections among various schemes in 1D
case. The whole region [0, 2] is set to be PML with constant dissipation: σ(x) ≡
log 10 = 2.302585 · · · , x ∈ [0, 2]. We set the initial values u and v to be

u(0, x) =

{
cos2

(
20π(x− 1.0)

)
, 0.95 < x < 1.05,

0, otherwise,
v(0, x) ≡ 0.

We assume the homogeneous Dirichlet condition on both ends of [0, 2]. In this case,

the analytical reflection coefficient for this PML is e−2
∫ 2
0 σ(x)dx = 10−4. Namely the

incident wave from the left end has a primal reflection with the magnitude 10−4.
Figure 1 - 3 show the comparison of reflection waves computed by Bérenger’s

original scheme, plain scheme and our new scheme. We take a common mesh size
τ = 1/160 for space and time. The horizontal coordinate represents the time t
and the vertical coordinate shows the value of u(t, x) at time t = 0.0, 0.2, 0.4, 0.6
respectively. Plain scheme and Bérenger’s scheme give spurious reflective trail behind
the wave front whereas our new scheme is pollution free. The magnitude of the
spurious waves is proportional to σ2τ2, it could be controlled to be small enough in
practical applications.

−1.0

−0.5

0.0

0.5

1.0

0.0 0.5 1.0 1.5 2.0

Fig. 1. The initial shape of u(0, x).

In the second example, we compare the reflection waves from PML for three
different shapes of function σ(x) in our new scheme. Figure 4 shows the shapes of
function σ(x). The vacuum region is [0.0, 1.0] and PML one is [1.0, 1.2]. In the first
case, σ(x) increases discontinuously at the boundary between interior and PML
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Fig. 2. Comparison of reflection waves at t = 0.4 for Bérenger (left), plain (middle)
and new scheme (right).
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Fig. 3. Comparison of reflection waves at t = 0.8 for Bérenger (left), plain (middle)
and new scheme (right).

regions with magnitude σ0 = 10 log 10 = 23.025 · · · . In the second case, σ(x) in-
creases linearly on [1.0, 1.1]. In the last case, σ(x) increases as the 3rd order spline
on [1.0, 1.1]. In all cases, the integrals of σ(x) on [1.0, 1.2] are the same. Next, we
measure the reflection at x = 0.5. In figure 5 - 6, the horizontal coordinate is time
and the vertical one is the value of u(t, 0.5) at the observation point. The wave
form during the time between 1.9-2.0 propagate from the interior vacuum region to
the PML region, and reflects back at an edge of a PML region, and comes back to
the interior region again. We call this wave the real reflection wave. The wave in the
neighborhood of t = 1.6 is spurious one. In the first, the second and the last cases,
the spurious waves are proportional to τ, τ2, τ4 respectively.
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Fig. 4. Shapes of function σ(x) for three different cases: discontinuous (left), linear
(middle) and 3rd order spline (right).
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Fig. 5. Comparison of reflection wave to depend on three different shapes of σ(x):
τ = 1/160.
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Fig. 6. Comparison of reflection wave to depend on three different shapes of σ(x):
τ = 1/320.

4.2 Application to Two-Dimensional Electromagnetic Problem

We extend our scheme to the two-dimensional Maxwell equation for TE mode, and
give some numerical examples. The concrete algorithm satisfies the CFL stability
condition and ∆x = ∆y = ∆l = 1/160 and ∆t = ∆l/

√
2. Bérenger’s scheme is

Hzx(i, j) = e−σx(i)∆tHzx(i, j)− 1− e−σ(i)∆t

σx(i)∆l
{Ey(i+ 1, j)− En

y (i, j)},

and our new scheme is

Hzx(i, j) = e−σx(i)∆tHzx(i, j)− ∆t
∆l
e−σx(i) ∆t

2 {Ey(i+ 1, j)− En
y (i, j)}.

We set the computational domain to be a square [−0.7, 0.7] × [−0.7, 0.7] and the
vacuum region is a square [−0.5, 0.5] × [−0.5, 0.5]. The shapes of the dissipation
functions σ(x) and σ(y) are the 3rd order spline like in the 1D case. The initial
value is set to be

Hz(0, x, y) = e−(x−2+y2)/16, Ex(0, x, y) = 0, Ey(0, x, y)) = 0.

Figure 7 - 9 show the time history of the wave. The horizontal coordinate is x
and the vertical one is y, and the value of u(t, x, y) is represented by gradation of
brightness. The results show good numerical performance with little reflection from
the PML region.
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Fig. 7. Two-dimensional results, t = 0.0 (left), t = 0.2 (right).

−0.06
−0.04
−0.02
0
0.02
0.04
0.06
0.08

x
−0.6 −0.4 −0.2 0  0.2  0.4  0.6

y

0.6

0.4

0.2

0

−0.2

−0.4

−0.6

−0.04
−0.03
−0.02
−0.01
0
0.01
0.02
0.03
0.04
0.05
0.06
0.07

x
−0.6 −0.4 −0.2  0  0.2  0.4  0.6

y

0.6

0.4

0.2

0

−0.2

−0.4

−0.6

Fig. 8. Two-dimensional results, t = 0.4 (left), t = 0.6 (right).
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Fig. 9. Two-dimensional results, t = 0.8 (left), t = 1.0 (right).

5 Conclusion and Future Works

We explained the origin of the artificial reflection based on the mathematical analysis
for 1D problem, and proposed a new scheme for which the artificial reflection does
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not occur in the region where σ(x) is constant. By some numerical examples, we
confirmed our mathematical analysis and effectiveness of our new scheme. Moreover,
we extended the new scheme to 2D problem and got good results. As the result of
these numerical performance, we conclude that the new PML is efficient in 1D and
2D computation of wave propagation problems.

The theoretical analysis for 2D problem and the proposal of stable 3D numerical
method are future works. We will then proceed to the application in the real world
problem such as the transient phenomena in various wave propagation problems
including the voice generation simulation and the electromagnetic wave simulation
in MRI problem.
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1 Introduction

In DD (domain decomposition) methods, the main contribution to the computa-
tional work is due to the two major components – solvers for local Dirichlet prob-
lems on subdomains of decomposition and local problems on their faces. Without
loss of generality, we assume that the domains of FE’s (finite elements) serve as
subdomains of decomposition. At that, under the conditions of shape regularity, op-
timization of these components is reduced to obtaining fast preconditioners-solvers
for the stiffness matrix of the p reference element and the Schur complement, related
to its boundary.

Competitors for spectral FE’s are hierarchical FE’s, which have the tensor prod-
ucts of the integrated Legendre’s polynomials for the form functions. As a starting
point for optimization of major solvers for these two types of FE discretizations, pri-
marily served the finite-difference preconditioners, suggested by [5], see also [8] for
hierarchical and by [14] for spectral reference elements stiffness matrices. For internal
stiffness matrices of hierarchical elements, a number of fast preconditioners-solvers
have been justified theoretically by [6, 7, 2, 3] and thoroughly tested numerically.
For spectral elements, to the best of the authors knowledge, there is known, the
multilevel solver of [16], which efficiency was well approved numerically.

Hierarchical and spectral elements look differently. However, [11, 12] established
an interrelation between them, showing that in computations they can be treated
with a great measure of similarity. In particular, they considered optimal multilevel
and DD types preconditioners-solvers for 2-d spectral elements, similar to those de-
signed earlier for hierarchical elements. In this paper, first of all, we obtain fast
multiresolution wavelet preconditioners-solvers for the internal FE and face sub-
problems, arising in DD algorithms for 3-d discretizations by spectral elements. The
former realizes a technique alike the one implemented by [3] for hierarchical elements.
The preconditioner of the same kind can be derived for the mass matrix, allowing in
turn to obtain the face solver by K-interpolation. Inefficient prolongations from the
interface boundary can also compromise optimality of DD algorithm. We approve
the computationally fast prolongations by means of the inexact iterative solver for
inner problems on FE’s. With the mentioned three main fast DD components in
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hands, it is left to find a good preconditioner for the wire basket subproblem, hav-
ing relatively small dimension O(Rp), where R is the number of finite elements.
We use the one considered by [4] and other authors (see this paper for references),
assuming that in a whole it is sufficiently fast. Our main conclusion is that the DD
preconditioner-solver, with the pointed out components, has the relative condition
number O((1+log p)2), while solving the system of algebraic equations with the DD
preconditioner for the matrix requires O(N(1+ log p)) arithmetic operations, where
N / Rp3 is the order of the FE system.

We use notations: Qp,x – the space of polynomials of the order p ≥ 1 in each
variable of x = (x1, x2, .., xd), d is the dimension; GLL and GLC nodes are the nodes
of the Gauss-Lobatto-Legendre and Gauss-Lobatto-Chebyshev quadratures, respec-
tively; signs ≺, 1, . are used for the inequalities and equalities hold up to positive
absolute constants; A+ – pseudo-inverse to a matrix A; A ≺ B with nonnegative
matrices A,B implies v	Av ≺ v	Bv for any vector v and similarly for signs 1, .;
τ0 = (−1, 1)d is the reference cube. Notations | · |k,Ω , ‖·‖k,Ω stand for the semi-norm
and the norm in Sobolev’s space Hk(Ω), H̊1(Ω) = (v ∈ H1(Ω) : v|∂Ω = 0). Since
their similarity in our context, the both Lagrange elements with the GLL and GLC
nodes are called spectral.

2 Finite-Difference and Factorized Preconditioners
for Stiffness Matrices of Spectral p Elements

The GLL nodes ηi ∈ [−1, 1] satisfy (1 − η2i )P ′
p(ηi) = 0 , whereas the GLC nodes

are extremal points of the Chebyshev polynomials: ηi = cos (π(p−i)
p

), i = 0, 1, .., p .
For i ≤ N , the steps �i := ηi − ηi−1 of the both meshes have the asymptotic
behavior �i . i/p2. The both orthogonal tensor product meshes with the nodes
x = ηα = (ηα1 , ηα2 , .., ηαd), α ∈ ω := {α = (α1, α2, .., αd) : 0 ≤ α1, α2, .., αd ≤ p},
are termed in the paper Gaussian. We consider the stiffness matrices Asp of the
respective Lagrange reference elements, induced by the Dirichlet integral

aτ0(u, v) =

∫
τ0

∇u · ∇v dx .

Let H(τ0) be the space of functions, continuous on τ0 and belonging to Q1,x on
each nest of the Gaussian mesh xk = ηi, then Asp denotes the preconditioner,
which is the FE matrix, corresponding to this space and Dirichlet integral aτ0 . As
a preconditioner for Asp in 3-d, it can be used the simpler matrix

A� = ∆� ⊗ D� ⊗ D� + D� ⊗∆� ⊗ D� + D� ⊗ D� ⊗∆� ,

where D� is the diagonal matrix D� = diag [h̃i = 1
2
(�i + �i+1)]

p
i=0 , with h̃i =

0 for i = 0, p + 1 , and ∆� is the FE matrix of the bilinear form (v′, w′)(−1,1) on
the space H(−1, 1) of continuous and piece wise linear on the 1-d Gaussian mesh
x = ηi.

We also introduce the mass matrix Msp of the spectral element, its FE precon-
ditioner Msp, generated by the space H(τ0), and M� := D� ⊗ D� ⊗ D� .

Lemma 1. Uniformly in p

A� ,Asp ≺ Asp ≺ Asp,A� , M� ,Msp ≺Msp ≺ Msp,M� .
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Proof. The inequalities for Asp in 1-d are due to [1], for the step to a greater di-
mension see, e.g., [4]. With the inequalities for Asp hold, the inequalities for A� are
easy to obtain.

Now we will introduce factored preconditioners. The rest of this section and
Section 3 deal with matrices related to the internal unknowns. Usually they are
supplied with the lower index I, but in many instances we omit this index. Without
loss of generality it is assumed p = 2N .

The change of variables ṽ = Cv by the diagonal matrix C = p−4 D
−1/2
�

⊗
D

−1/2
�

⊗ D
−1/2
�

(for 2-d C = p−2 D
−1/2
�

⊗ D
−1/2
�

) transforms AI,� as the matrix

of a quadratic form into the matrix ÃI,� := C−1A�C
−1. Let us introduce also

(p−1)× (p−1) matrices ∆sp = tridiag [−1, 2,−1] and Dsp = diag [1, 4, .., N2, (N−
1)2, (N − 2)2, .., 4, 1], and the (p− 1)3 × (p− 1)3 matrix

ΛI,sp = ∆sp ⊗Dsp ⊗Dsp + Dsp ⊗∆sp ⊗Dsp + Dsp ⊗Dsp ⊗∆sp . (1)

Lemma 2. Matrices ÃI,� , ΛI,sp and simultaneously the matrix ΛI,C := CΛI,spC
and the stiffness matrix AI,sp are spectrally equivalent uniformly in p.

See [11, 12] for the proof.
Since matrix C is diagonal, the arithmetical costs of solving systems with

matrices ΛI,C and ΛI,sp are the same in the order. Matrix ΛI,sp looks exactly
as the 7-point finite-difference approximation on the uniform square mesh of size
� = 2/p = 1/N of the differential operator

Lspu = −
[
φ2(x2)φ

2(x3)u,1,1 + φ2(x1)φ
2(x3)u,2,2 + φ2(x1)φ

2(x2)u,3,3

]
,

u|∂τ0 = 0, where φ(x) = min(x+ 1, x− 1), x ∈ [−1, 1]. Indeed, for φi := φ(−1 + i�)
and u = (ui)

p−1
i1,i2,i3=1 expanded by zero to the boundary nodes

ΛI,spu|i = − 1

�2

∑
k=1,2,3

φ2
il
φ2

ij
[ui−ek − 2ui + ui+ek ] , 1 ≤ im ≤ (p− 1) ,

where i = (i1, i2, i3), all numbers k, l, j ∈ (1, 2, 3) are different, ek = (δk,l)
3
l=1, and

δk,l are Kronecker’s symbols.
We compare ΛI,sp with the finite-difference preconditioner for the hierarchical

reference element, see, e.g., Λe in (2.5) of [11]. At d = 2, the related differential
operators Lsp L, respectively, are similar, see for L (2.7), (2.8) in the same paper.
In each quarter of τ0, the differential expression for Lsp is the same as for L, defined
on the square (0, 1)2, up to the constant multiplier and rotation and translation of
the axes. The same is true for finite-difference operators ΛI,sp, Λe. At d = 3, the
differential and finite-difference operators, related to the preconditioners for spectral
and hierarchical elements, are different even in the order: Lsp is the differential
operator of the 2-nd order, whereas L of the 4-th. However, multipliers Dsp, ∆sp and
respectively ∆, D in the representations of ΛI,sp, Λe by the sums of Kronecker’s
products are similar, see (1) above and (2.5) of [11]. Due to this, all known fast
solvers for systems with the stiffness matrices of hierarchical reference elements can
be adapted to systems with the stiffness matrices of spectral reference elements of
any of the two types. We present two examples in the next section.

Instead of ΛI,sp, one can as well use spectrally equivalent FE matrices, generated
with the use of the 1-st order elements.
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3 Fast Multilevel Wavelet Preconditioners-solvers
for Interior of Reference Element and Face Problems

In order to obtain a fast preconditioner-solver for the internal stiffness matrix AI,sp

of a spectral element, it is sufficient to design a fast solver for the preconditioner
ΛI,sp. For convenience, it is assumed p = 2N, N = 2�0−1.

For each l = 1, 2, ..., �0, we introduce the uniform mesh xl
i, i = 0, 1, .., 2Nl,

Nl = 2l−1, x0 = −1, x2Nl = 1 of the size �l = 21−l and the space V l(−1, 1) of
the continuous on (−1, 1) piece wise linear functions, vanishing at the ends of this
interval. The dimension of V l(−1, 1) is N l := pl − 1 = 2l − 1 with p�0 = p. Let
φl

i ∈ V l(−1, 1) be the the nodal basis function for the node xl
i, so that φl

i(x
l
j) = δi,j

and V l(−1, 1) = span
{
φl

i

}pl−1

i=1
. For the Gram matrices

∆l = �l

(
〈(φl

i)
′, (φl

j)
′〉ω=1

)pl−1

i,j=1
, Ml = �

−1
l

(
〈φl

i, φ
l
j〉ω=φ

)pl−1

i,j=1

with φ introduced in Section 2 and 〈v, u〉ω :=
∫ 1

−1
ω2v u dx , we establish

∆�0 = ∆sp , M := M�0 . Dsp .

The representation V l = V l−1⊕W l results in the decomposition V = W1⊕W2⊕
... ⊕W�0 with the notations V = V�0 and W1 = V1. Let {ψl

k }
pl−1, �0
k,l=1 denote the

multiscale wavelet basis, composed of some single scale bases {ψl
k}

pl−1
k=1 in the spaces

W l = span {ψl
k}

pl−1
k=1 . It generates the matrices

∆wlet =
(
〈(ψk

i )′, (ψl
j)

′〉1
)pl−1,�0

i,j=1, k,l=1
, Mwlet =

(
〈ψk

i , ψ
l
j〉φ

)pl−1,�0

i,j=1, k,l=1
,

D1 = diag [〈(ψl
i)

′, (ψl
i)

′, 〉1]pl−1,�0
i,l=1 , D0 = diag [〈ψl

i, ψ
l
i, 〉φ]

pl−1,�0
i,l=1 .

The transformation matrix from the multiscale wavelet basis to the FE basis
{φl0

k }
p−1
k=1 is denoted by Q. Thus, if v and vwlet are the vectors of the coeffi-

cients of a function from V(0, 1), represented in these two bases, respectively, then
v = Q	 vwlet.

Theorem 1. There exist multiscale wavelet bases, such that ∆−1
sp . Q	D−1

1 Q,
M−1

sp . Q	D−1
0 Q, and matrix-vector multiplications Qw, Q	 w require O(p)

arithmetic operations.

Proof. The proof is simpler than the proof of similar results in [3], because the
weight φ is symmetric on (-1,1). The cited authors justified existence of multiscale
wavelet bases with the required properties in the case of the space V(0, 1) := { v ∈
V(−1, 1) | v(x) = 0 at x /∈ (0, 1) } and the weight φ = x.

Theorem 2. Let BI,sp = CBI,spC and

B
−1
I,sp =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(Q	 ⊗Q	 )[ D0 ⊗ D1 + D1 ⊗ D0 ]−1(Q⊗Q), d = 2,

(Q	 ⊗Q	 ⊗Q	)[D0 ⊗ D0 ⊗ D1 + D0 ⊗ D1 ⊗ D0+

D0 ⊗ D0 ⊗ D1]
−1(Q⊗Q⊗Q),Q d = 3 .

Then BI,sp . AI,sp and, therefore, cond [B−1
I,spAI,sp] ≺ 1.The arithmetical cost of

the operation B−1
I,spv for any vector v is O(pd).
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Proof. In view of Lemmas 1 and 2, it is sufficient to prove the equivalence
cond [B−1

I,spΛI,sp] . 1. The last is the consequence of the mentioned above relation-
ships ∆�0 = ∆sp and M := M�0 . Dsp, Theorem 1, and the representations of
the involved matrices by the corresponding sums of Kronecker products.

Another important problem for DD algorithms is development of fast solvers for
internal problems on faces. As it is now known, see, e.g., [15], at nonsignificant lost
in the condition, it is reduced to the preconditioning of the matrix of the quadratic
form 00| · |21/2,τ0

, τ0 = (−1, 1) × (−1, 1), on the subspace of polynomials Q̊p,x of
two variables x = (x1, x2), vanishing on the boundary ∂τ0. Here 00| · |1/2,τ0 is the

norm in the space H
1/2
00 (τ0), with the square τ0 representing a typical face of the 3-d

reference cube.

Theorem 3. Let d0,i, d1,i be diagonal entries of the matrices D0,D1, respectively,
and D1/2 be the diagonal matrix with the entries on the main diagonal

d
(1/2)
i,j = d0,id0,j

√
d1,i/d0,i + d1,j/d0,j .

Let also S0 = C S0 C and S−1
0 = (Q	 ⊗Q	) D−1

1/2 (Q⊗Q) . Then for all v ∈ Q̊p,x

and vectors v, representing v in the basis M̊2,p, the norms 00| v |1/2,F0 and ||v||S0
are equivalent uniformly in p.

Proof. For the square τ0 = (0, 1)2, we have the preconditioner BI,sp = CBI,spC for
the stiffness matrix AI,sp. Similarly, we can define the preconditioner MI,sp =
CMI,spC for the internal mass matrix MI,sp with M−1

I,sp = (Q	 ⊗ Q	 )[ D0 ⊗
D0 ]−1(Q⊗Q). The further proof is produced by Peetre’s K-interpolation method.

Presented fast solvers for the internal and face problems can be easily generalized
on the “orthotropic” spectral elements with the shape polynomials having different
orders along different axes.

4 Domain Decomposition Algorithm for Discretizations
by Spectral Elements

Let we have to solve the problem

aΩ(u, v) :=

∫
Ω

%(x)∇u · ∇v dx = (f, v)Ω , ∀ v ∈ H̊1(Ω) ,

in the domain Ω = ∪Rr=1τr , which is an assemblage of compatible and in general
curvilinear finite elements occupying domains τr. We assume that the finite elements
are specified by means of non degenerate mappings x = X (r)(y) : τ0 → τr satisfying
the generalized conditions of the angular quasiuniformity, see, e.g., [10]. The coef-
ficient % in the DD algorithm under consideration may be piece wise constant, but
for brevity we imply %(x) ≡ 1. For the system Ku = f of FE equations, we apply
PCG (Preconditioned Conjugate Gradient Method) with the DD preconditioner

K−1 = K +
I + PVB→V S−1

B P	
VB→V , S−1

B = S +
F + PVW →VB (SB

W )−1P	
VW →VB

,
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of the same structure as in [9, 10]. The involved in the preconditioner matrices are
defined as follows.

i) KI = diag [h1BI,sp, h2BI,sp, . . . , hRBI,sp] is the block diagonal precondi-

tioner for the internal Dirichlet problems on FE’s, where BI,sp is the multiresolution
wavelet preconditioner-solver found in Theorem 2 and hr is the characteristic size
of a finite element τr.

ii) SF = diag [κ1S0, κ2S0, . . . , κQS0] is the block diagonal preconditioner for
the internal problems on faces of finite elements, where S0 is the multiresolution
wavelet preconditioner for one face, defined in Theorem 3, Q is the number of dif-
ferent faces Fk ⊂ Ω, and κk are multipliers. Let for a face Fk of the discretization,
r1(k) and r2(k) are the numbers of two elements τr1(k) and τr2(k), sharing the face
Fk. Then κk = (hr1(k) + hr2(k)) .

iii) The preconditioner SB
W for the wire basket subproblem. We borrow it, as

well as the prolongation PVW →VB , from [4], see also [15]. Let us note that the solving
procedure for the system with the matrix SB

W is described in these papers up to
solution of the sparse subsystem of the order O(R)×O(R). We assume that there
is a solver for this subsystem with the arithmetical cost not greater O(Rp3).

iv) The matrix PVB→V performs prolongations from the interelement boundary
on the computational domain Ω. Its restriction to each FE is the master prolongation
P0 defined for the reference element. For ∀vB , living on ∂τ0, we set P0vB := u with
the subvectors uI ,uB , where uB := vB and uI := vI +Pit(vB−vB), where v,vI ,vB

have for its entries the mean value on ∂τ0 of the polynomial v ∈ Op,x, v ↔ vB . The
matrix Pit is implicitly defined by the fixed number k0 . (1+ log p) of the iterations
wk+1

I = wk
I − σk+1B−1

I,sp[AI,spw
k
I − AIB,sp(vB − vB)], w0

I = 0 , with Chebyshev

iteration parameters σk, so that uI = vI + wk0 . Above, indices I,B are used for
the subvectors, living on τ0 and ∂τ0, respectively, and for the corresponding blocks
of matrices, so that AI,sp,AIB,sp are the blocks of AI,sp, which in the iteration
process can be replaced by the blocks A�,I ,A�,IB of A� .

Theorem 4. The DD preconditioner-solver K provides the condition number
cond [K−1K] ≤ c(1+log p)2, whereas for any f the arithmetical cost of the operation
K−1f is O(p3(1 + log p)R).

See [13] for the proof. Changes in the definition of K allowing to retain Theorem 4
in the case of variable %, % . %, where % > 0 is any element wise constant function,
are obvious. Parallelization, robustness and h-adaptivity properties of the designed
DD solver are exactly the same as for the DD solver in the case of hierarchical
elements presented in [9], see also [13]. However, p-adaptivity is less flexible due to
the Lagrange interpolation nature of spectral elements.
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1 Introduction

There are composite materials created from two constituents, composite matrix and
reinforcement. The reinforcement is usually significantly stiffer than the composite
matrix and proper orientation of the reinforcement leads to excellent overall prop-
erties of the composite materials. Interaction between the reinforcement and the
composite matrix is very important. Perfect or imperfect bonding between the rein-
forcement and matrix may occur. The perfect bonding takes place only for lower level
of applied loads. The perfect bonding occurs when there is no slip between interface
points on fiber and points on composite matrix. In other words, interface points on
fiber and matrix have the same displacements. Higher load levels cause debonding
which decreases the overall stiffness of the composite. The debonding causes dif-
ferent displacements on the fiber and matrix. A special attention is devoted to the
modeling of the interaction between the matrix and reinforcement because it can
reduce properties of the composite.

The modeling of the interaction is based on pullout tests. The arrangement of
such tests is the following. There is a composite matrix with one embedded fiber
which is under tension. The growing force in the fiber causes debonding of matrix-
fiber connection and fiber moves out from the matrix. Detailed description of pullout
effects is relatively complicated and several simplified approaches are used. This
contribution deals with the case with perfect bonding between reinforcement and
matrix as well as debonding which is controlled by a linear relationship. The most
general model with nonlinear debonding is not studied, but it is in the center of our
attention.

This contribution deals with application of the FETI method to bonding or
debonding problems. The perfect bonding can be directly described by the classi-
cal FETI method while the debonding can be modeled by slightly modified FETI
method. The FETI method offers all necessary components for bonding/debonding
problems.
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2 Overview of the FETI Method

The FETI method was introduced by Farhat and Roux in 1991 in [2]. It is a non-
overlapping domain decomposition method which enforces the continuity among
subdomains by Lagrange multipliers. The FETI method or its variants have been
applied to a broad class of two and three dimensional problems of the second and
the fourth order. More details can be found e.g. in [6, 3, 4, 5, 1].

The FETI method will be shortly described on a problem of mechanical equilib-
rium of a solid body. The finite element method is used for the problem discretiza-
tion. The equilibrium state minimizes the energy functional

Π(u) =
1

2
uT Ku− uT f , (1)

where u denotes the vector of unknown displacements, K denotes the stiffness matrix
and f denotes the vector of prescribed forces.

Let the original domain be decomposed to m subdomains. Unknown displace-
ments defined on the j-th subdomain are located in the vector uj . All unknown
displacements are located in the vector

uT =
(
(u1)T , (u2)T , . . . , (um)T

)
. (2)

The stiffness matrix of the j-th subdomain is denoted Kj and the stiffness matrix
of the whole problem has the form

K =

⎛⎜⎜⎜⎝
K1

K2

. . .

Km

⎞⎟⎟⎟⎠ . (3)

The nodal loads of the j-th subdomain are located in the vector f j and the load
vector of the problem has the form

fT =
(
(f1)T , (f2)T , . . . , (fm)T

)
. (4)

Continuity among subdomains has the form

Bu = 0 (5)

where the boolean matrix B has the form

B =
(
B1,B2, . . . ,Bm)

. (6)

The matrices Bj contain only entries equal to 1,−1, 0. With the previously defined
notation, the energy functional has the form

Π(u,λ) =
1

2
uT Ku− uT f + λT Bu (7)

where the vector λ contains Lagrange multipliers. Stationary conditions of the en-
ergy functional have the form
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∂Π

∂u
= Ku− f + BT λ = 0 (8)

∂Π

∂λ
= Bu = 0 . (9)

Equation (8) expresses the equilibrium condition while (9) expresses the continuity
condition. The known feature of the FETI method is application of a pseudoinverse
matrix in relationship for unknown displacements

u = K+
(
f −BT λ

)
+ Rα (10)

which stems from floating subdomains. The stiffness matrix of a floating subdomain
is singular. The matrix R contains the rigid body modes of particular subdomains
and the vector α contains amplitudes that specify the contribution of the rigid body
motions to the displacements. The pseudoinverse matrix and the rigid body motion
matrix can be written in the form

K+ =

⎛⎜⎜⎜⎝
(K1)+

(K2)+

. . .

(Km)+

⎞⎟⎟⎟⎠ , R =

⎛⎜⎜⎜⎝
R1

R2

. . .

Rm

⎞⎟⎟⎟⎠ . (11)

Besides of utilization of the pseudoinverse matrix, a solvability condition in the form(
f −BT λ

)
⊥ kerK = R (12)

has to be taken into account. Substitution of unknown displacements to the conti-
nuity condition leads to the form

BK+BT λ = BK+f + BRα . (13)

The solvability condition can be written in the form

RT
(
f −BT λ

)
= 0 . (14)

Usual notation in the FETI method is the following

F = BK+BT (15)

G = −BR (16)

d = BK+f (17)

e = −RT f . (18)

The continuity and solvability conditions can be rewritten with the defined notation
in the form (

F G
GT 0

)(
λ
α

)
=

(
d
e

)
. (19)

The system of equations (19) is called the coarse or interface problem.
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3 Modification of the Method

The classical FETI method uses the continuity condition (5) which enforces the same
displacements at the interface nodes. If there is a reason for different displacements
between two neighbor subdomains, the continuity condition transforms itself to a
slip condition. The slip condition can be written in the form

Bu = s . (20)

The vector s stores slips between interface nodes. For this moment, the slip is as-
sumed to be prescribed and constant.

Let the boundary unknowns be split to two disjunct parts. The boundary un-
knowns which satisfy the continuity condition are located in the vector uc, while
the boundary unknowns which satisfy the slip condition are located in the vector
us. Similarly to the continuity condition in the FETI method, the vectors uc and
us can be written in the form

uc = Bcu (21)

us = Bsu (22)

where Bc and Bs are the boolean matrices. Now, the continuity condition has the
form

Bcu = 0 (23)

and the slip condition has the form

Bsu = s . (24)

The conditions (23) and (24) can be amalgamated to a new interface condition

Bu =

(
Bc

Bs

)
u =

(
0
s

)
= c . (25)

The energy functional can be rewritten to the form

Π =
1

2
uT Ku− uT f + λT (Bu− c) . (26)

The stationary conditions have the form

Ku− f + BT λ = 0 (27)

Bu = c . (28)

As was mentioned before, the system of two stationary conditions is accompanied by
the solvability condition (12). The expression of the vector u given in (10) remains
the same and the interface condition has the form

BK+BT λ = BK+f + BRα − c (29)

and the solvability condition has the form

RT
(
f −BT λ

)
= 0 . (30)
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The coarse problem can be written with the help of notation (15) - (18) in the form(
F G

GT 0

)(
λ
α

)
=

(
d− c

e

)
. (31)

The modified coarse problem (31) differs from the original coarse problem (19) by
the vector of prescribed slips c on the right hand side.

The prescribed slip between two subdomains is not a common case. On the
other hand, the slip often depends on shear stress. Discretized form of equations
used in the coarse problem requires a discretized law between slip as a difference of
two neighbor displacements and nodal forces as integrals of stresses along element
edges. One of the simplest laws is the linear relationship

c = Hλ (32)

where H denotes the compliance matrix. Substitution of (32) to the coarse problem
(31) leads to the form (

F + H G
GT 0

)(
λ
α

)
=

(
d
e

)
. (33)

It should be noted that the coarse system of equations (33) is usually solved by the
modified conjugate gradient method. Details can be found in [3] and [5]. The only
difference with respect to the system (19) is the compliance matrix H. Only one
step, the matrix-vector multiplication, of the modified conjugate gradient method
should be changed. The compliance matrix may be a diagonal or nearly diagonal
matrix.

4 Numerical Examples

Four cases of bonding/debonding behavior are computed by the classical and mod-
ified FETI method. There are always two subdomains. One subdomain represents
the composite matrix and the other one represents the fiber. A perfect bonding is
described directly by the classical FETI method. The usual continuity condition is
used. The displacements of the fiber and composite matrix at a selected point are
identical and the situation is depicted in Figure 1 (left).

An imperfect bonding is described by the modified FETI method with the con-
stant compliance matrix H. The displacements of a fiber are greater than the dis-
placements of the composite matrix. The greater force is applied, the greater slip
occurs. The situation is depicted in Figure 1 (right).

A perfect bonding followed by an imperfect bonding is modeled by the modified
FETI method. At the beginning, the compliance matrix is zero which expresses
infinitely large stiffness between subdomains. At a certain load level, debonding
effect is assumed and the compliance matrix is redefined and it is a constant matrix
in the following steps. The displacements of the fiber and matrix are the same at the
beginning but then they are different. The situation is depicted in Figure 2 (left).

The last example shows a similar problem to the previous one. The compliance
matrix H is not assumed constant but the compliances are growing from zero values
up to a certain level. It means, that the stiffness is decreasing from infinitely large
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value to some finite value. The greater force acts, the higher compliance is attained
and the greater slip between the fiber and the composite matrix occurs. The situation
is depicted in Figure 2 (right).
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Fig. 1. Perfect bonding (left). Imperfect bonding (debonding) (right).
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Fig. 2. Imperfect bonding: with delay (left), with changing compliance (right).

5 Conclusions

A slight modification of the FETI method is proposed for problems with the imper-
fect bonding between the composite matrix and reinforcement. The perfect bonding
is modeled by the classical FETI method. Application of a constant compliance
matrix leads to linear debonding while a variable compliance matrix can describe
nonlinear debonding effects. The advantage of the proposed modification stems from
the structure of the compliance matrix which can be nearly diagonal and therefore
computationally cheap. The second advantage stems from possible parallelization.
Each fiber, generally each piece of reinforcement, as well as the composite matrix
can be assigned to one processor and thus large problems may be solved efficiently.
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Many popular non-overlapping domain decomposition approaches to fluid-structure
interaction (FSI) problems fail to work for an interesting subset of FSI problems, the
interaction of highly deformable structures with incompressible but fully enclosed
fluids. This is particularly true for coupling approaches based on Dirichlet-Neumann
substructuring, both for weak and strong coupling schemes. The breakdown of simu-
lation can be attributed to a lack of knowledge transfer – e.g. of the incompressibility
constraint to the structure – between the fields. Another explanation is the absence
of any unconstrained outflow boundary at the fluid field, that is the fluid domain
is entirely enclosed by Dirichlet boundary conditions. Inflating of a balloon with
a prescribed inflow rate constitutes a simple problem of that kind. To overcome
the dilemma inherent to partitioned or domain decomposition approaches in these
cases a small augmentation is proposed that consists of introducing a volume con-
straint on the structural system of equations. Additionally the customary applied
relaxation of the interface displacements has to be abandoned in favor of the relax-
ation of coupling forces. These modifications applied to a particular strongly-coupled
Dirichlet-Neumann partitioning scheme result in an efficient and robust approach
that exhibits only little additional numerical effort. A numerical example with large
changes of fluid volume shows the capabilities of the proposed scheme.

1 The Domain Decomposition Approach to FSI
Problems

Various solution approaches for FSI problems have been suggested. Most of them
are based on a Dirichlet-Neumann partitioning of the coupled problem into fluid
and structural part. This constitutes a non-overlapping domain decomposition with
fluid field and structural field acting as separate domains. The wet structural surface
acts as the coupling interface ΓFSI. These solution schemes require an iterative treat-
ment of the coupling conditions and therefore considerable computational resources,
however stability and accuracy are not sacrificed. Additionally these schemes can be
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built based on available field solvers, which accounts for their constant popularity,
see for instance [10, 4, 5, 7, 2, 1, 9, 8].

To sketch the FSI coupling algorithm the structural and fluid problems are
abbreviated as follows

ASdS = fS and AF uF = fF (1)

where both systems are understood to be nonlinear and the fluid system also needs
to take the domain deformations into account.

In the following (·)I and (·)Γ denote variables or coefficients in the interior of
a subdomain Ωj and those coupled at the interface, respectively, while the absence
of any subscript comprises degrees of freedom on the entire subdomain including
interior and interface.

In every time step the following calculations have to be performed until conver-
gence is reached. The variable i denotes the loop counter.

1. Transfer the latest structure displacements dS
Γ,i+1 to the fluid field, calculate

the fluid domain deformation and determine the appropriate fluid velocities at
the interface uS

Γ,i+1.
2. Solve the fluid equation for inner fluid velocities and all (inner and boundary)

fluid pressures uF
I,i+1.

AF
IIu

F
I,i+1 = fF

I ext − AF
IΓ uS

Γ,i+1 . (2)

3. Find the fluid forces fF
Γ,i+1 at the interface ΓFSI.

fF
Γ,i+1 = AF

ΓIu
F
I,i+1 + AF

ΓΓ uS
Γ,i+1 . (3)

4. Apply the fluid forces fF
Γ,i+1 to the structure. Solve the structure equations for

the structural displacements.[
AS

ΓΓ AS
ΓI

AS
IΓ AS

II

] [
d̃

S

Γ,i+1

dS
I,i+1

]
=

[
fS
Γ ext − fF

Γ,i

fS
I ext

]
. (4)

5. The calculation is finished when the difference between d̃
F

Γ,i+1 and dF
Γ,i is suffi-

ciently small.
6. Relax the interface displacement using a suitable ωi.

dS
Γ,i+1 = ωid̃

S

Γ,i+1 + (1− ωi)d
S
Γ,i . (5)

7. Update i and return to step 1.

Information on the appropriate choice of the relaxation coefficient ωi can be
found in [10, 5].

2 Dilemma with Fully Enclosed,
i.e. Dirichlet-Constraint, Fluid Domains

The Dirichlet-Neumann algorithm described above fails if there are prescribed veloc-
ities on all boundaries of the fluid domain. A fully Dirichlet-bounded fluid domain
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can only be solved if (a) the prescribed velocities satisfy the mass balance of the
incompressible fluid and (b) the pressure level is fixed by an additional constraint.
Standard Dirichlet-Neumann algorithms fail on both conditions. Neither does the
fluid domain deformation suggested by the structural solver match the fluid mass
balance, nor are there means to transfer any pressure information form the structure
to the fluid.

These two difficulties are closely related. The two fields are coupled much closer
as compared to FSI problems with free outflow boundaries. Therefore any attempt
to overcome the difficulties will result in an algorithm that is more expensive from
a numerical point of view.

Several strategies might be pursued to arrive at a working coupling algorithm.

• The interface displacements, that is the structural solution, respect the incom-
pressibility constraint of the fluid. Thus the introduction of a constraint to the
structural equations is required. The fluid pressure level will need to be calcu-
lated from the structure solution. This approach is presented in detail in the
following.

• Another point of departure is the pressure level coupling between structure and
fluid. The natural way for the structure to determine the fluid pressure is to
transfer interface forces from the structure to the fluid. It follows that the fluid
has to prescribe the interface displacements on the structure, that is the
Dirichlet-Neumann coupling is reversed to a Neumann-Dirichlet approach. The
resulting algorithm, however, is numerically very sensitive and not suitable for
general FSI problems. In addition it also runs into the old problem once one has
to deal with incompressible solids, too. Details can be found in [3].

• Finally the whole problem is avoided if one can get rid of the incompressibility
constraint, at least temporarily. However this also has been shown to be not a
very robust or efficient approach. This idea has been pursued in [6] and will not
be discussed here.

It is worth noting, that according to the insight discussed so far Dirichlet-
Neumann approaches only work in standard examples because the fluid can tem-
porarily escape through the Neumann boundary in staggered situations or during
the field iterations in strong coupling schemes.

3 Augmented Dirichlet-Neumann Approach

3.1 Volume Constraint Applied to the Structural Equation

The augmentation of the structural solver to account for the mass balance of the
enclosed fluid domain translates to a constraint of the interface displacements to
enclose exactly the required volume. The required fluid volume Vc depends upon
the Dirichlet boundary conditions of the fluid domain.

Vc = V n+1 = V n +

∫
Γ F

1

2
∆t

(
un+1 · n + un · n

)
dΓ

= V n +

∫
ΓFSI

(
rn+1 · n− rn · n

)
dΓ (6)
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+

∫
Γin∪Γout

1

2
∆t

(
un+1 · n + un · n

)
dΓ

where rn+1 and rn are the interface positions at the time tn+1 and tn. The constraint
Vc − V = 0 is introduced into the structural equation of motion by means of a La-
grangian multiplier λ. This Lagrangian multiplier represents the pressure increment
required additional to the fluid pressure in order to satisfy the volume constraint on
the structure. Thus the multiplier specifies the physical fluid pressure level.

If the fluid forces at the interface fF are sufficient to maintain the required
volume Vc, the pressure increment λ will be zero. This can be achieved by a coupling
algorithm that transfers λ to the fluid partition and adds it to the pressure boundary
condition which is used to determine the pressure level. This way the Lagrangian
multiplier λ will tend to zero in the course of the coupling iteration.

But changing the pressure boundary condition of the fluid during the coupling
iteration means changing the overall problem definition. It is generally advisable
to avoid it. Instead the fluid pressure level can be fixed to a constant value in the
fluid domain. Of course the resulting pressure increment λ will not vanish in this
case. Instead it is added to the fluid pressure values pF after the fluid calculation to
obtain the final pressure solution p:

p = pF + λ . (7)

3.2 Modified Dirichlet-Neumann Coupling with Volume
Constraint

The iterative coupling algorithm with the volume constraint in the structural equa-
tion is a slight modification of the algorithm in section 1. Because the structural
solver has to account for the volume condition of the fluid domain, the displacement
of the interface cannot be altered once the structural solution is done. In particular
the relaxation of the displacements is no longer possible. Instead, because relaxation
is needed to enforce and accelerate convergence, one has to relax the fluid forces at
the interface.

By means of the symbolic structural and fluid system (1) in every time step the
following calculations have to be performed.

1. Solve for the structural displacements loaded with the fluid forces fF
Γ,i, but

respect the volume constraint required by the fluid⎡⎢⎣ AS
ΓΓ AS

ΓI −V,dS
Γ

AS
IΓ AS

II 0
−V,dS

Γ
0 0

⎤⎥⎦
⎡⎣dS

Γ,i+1

dS
I,i+1

λi+1

⎤⎦ =

⎡⎢⎣ fS
Γ ext − fF

Γ,i − V,dS
Γ
λi

fS
I ext

Vc − V,dS
Γ
dS

Γ,i

⎤⎥⎦ . (8)

2. Transfer the interface displacements dS
Γ,i+1 to the fluid and determine the inter-

face velocities uS
Γ,i+1. Solve for inner fluid velocities and all fluid pressures uF

I,i+1

AF
IIu

F
I,i+1 = fF

I ext − AF
IΓ uS

Γ,i+1 . (9)

3. Find the fluid forces at the interface ΓFSI

f̃
F

Γ,i+1 = AF
ΓIu

F
I,i+1 + AF

ΓΓ uS
Γ,i+1 . (10)
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4. Relax the fluid forces

fF
Γ,i+1 = ωi f̃

F

Γ,i+1 + (1− ωi)f
F
Γ,i . (11)

The relaxation parameter ωi can again be calculated by any of the methods
suggested in [5].

The iteration finishes when the error of the fluid boundary force f̃
F

Γ,i+1 is sufficiently
small.

4 Example: Damped Structural Instability

As an example a bended fluid domain is calculated that is surrounded by two thin
structures with neo-Hookean material and different stiffness. The system is shown
in figure 1. The structures are fixed at their short edges, the long edges are free
respectively interacting with the fluid.

At the fluid domain inflow velocities are prescribed with the left one a little
less than the right in order to avoid perfect symmetry. The fluid is loaded with the
body force fy = −1N/m2 in y direction. The simulation is carried out utilizing the
augmented Dirichlet-Neumann algorithm and a uniform time step size ∆t = 0.005s.

maxuin = 10.0m
s maxuin = 10.1m

s

1m
8m

1m

0.1m

1m

0.1m

1m

Structure above

E = 9 · 105 N

m2
= 0.3
= 500.0 kg

m3

Structure below 

E = 9 · 108 N

m2
= 0.3
= 500.0 kg

m3

Fluid
n = 9.0m2

s

= 1.0 kg
m3

m2fy = −1 N

pressure fixed

1.9m

n

n

Fig. 1. A bended fluid domain with two inflow boundaries constraint by structures
of different stiffness.

The constant inflow increases the fluid pressure so that first mainly the soft
flexible structure above the fluid domain deforms to make room for the fluid. When
a critical pressure value is reached the structure below the fluid collapses, however
the instability is damped by the fluid volume constraint. That is why the deformation
and the corresponding pressure decrease occur rather slowly. (Since this example is
given just in order to demonstrate the augmented Dirichlet-Neumann approach,
possible cavitation effects are not considered.) Afterward the system is in motion,
the pressure varies rapidly in this phase. The pressure level development, that is the
pressure increment λ calculated by the structural solver, is depicted in figure 2.

Figure 3 shows absolute velocities at different time steps.
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Fig. 2. Pressure level of the bended fluid domain.

5 Conclusion

The dilemma of non-overlapping domain decomposition approaches to FSI problems
has been analyzed. Different solution strategies were considered. A small modifica-
tion to an established iterative solution scheme has been proposed that consists of
introducing the incompressibility constraint to the structural solver and results in a
reliable and accurate algorithm.

This one condition seriously damages the bandwidth of the system matrix, it
couples all displacements on the wet surface. Additionally the positive definiteness
of the matrix is lost. Thus the approach is rather expensive from a numerical point
of view. A common solver alternative in such a situation would be to use a staggered
scheme on the structural side. However, the additional costs pertain the structural
solver only. And because the fluid solution costs are dominating in most FSI calcu-
lations the proposed algorithm presents a viable approach for many FSI simulations
which require Dirichlet constraints on all fluid boundaries.
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A FETI-DP Method for Mortar Finite Element
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Summary. In this paper we present a FETI-DP type algorithm for solving the
system of algebraic equations arising from the mortar finite element discretization
of a fourth order problem on a nonconforming mesh. A conforming reduced Hsieh-
Clough-Tocher macro element is used locally in the subdomains. We present new
FETI-DP discrete problems and later introduce new parallel preconditioners for two
cases: where there are no crosspoints in the coarse division of subdomains and in
the general case.

1 Introduction

The mortar methods are effective methods for constructing approximations of PDE
problems on nonconforming meshes. They impose weak integral coupling conditions
across the interfaces on the discrete solutions, cf. [1].

In this paper we present a FETI-DP method (dual primal Finite Element Tear-
ing and Interconnecting, see [6, 9, 8]) for solving discrete problems arising from a
mortar discretization of a fourth order model problem. The original domain is di-
vided into subdomains and a local conforming reduced HCT (Hsieh-Clough-Tocher)
macro element discretization is introduced in each subdomain. The discrete space is
constructed using mortar discretization, see [10]. Then the degrees of freedom corre-
sponding to the interior nodal points are eliminated as usually in all substructuring
methods. The remaining system of unknowns is solved by a FETI-DP method.

Many variants of FETI-DP methods for solving systems arising from the dis-
cretizations on a single conforming mesh of second and fourth order problems are
fully analyzed, cf. [9, 8].

Recently there have been a few FETI-DP type algorithms for mortar discretiza-
tion of second order problems, cf. [11, 5, 4, 3], and [7].

To our knowledge there are no FETI type algorithms for solving systems of
equations arising from a mortar discretization of a fourth order problem in the
literature.

∗ This work was partially supported by Polish Scientific Grant 2/P03A/005/24.



584 L. Marcinkowski and N. Dokeva

The remainder of the paper is organized as follows. In Section 2 we introduce
our differential and discrete problems. When there are no crosspoints in the coarse
division of the domain, the FETI operator takes a much simpler form and therefore
this case is presented separately together with a parallel preconditioner in Section 3,
while Section 4 is dedicated to a short description of the FETI-DP operator and a
respective preconditioner in the general case.

2 Differential and Discrete Problems

Let Ω be a polygonal domain in R2. Then our model problem is to find u∗ ∈ H2
0 (Ω)

such that
a(u∗, v) = f(v) v ∈ H2

0 (Ω), (1)

where u∗ is the displacement, f ∈ L2(Ω) is the body force,

a(u, v) =

∫
Ω

[�u�v + (1− ν) (2ux1x2vx1x2 − ux1x1vx2x2 − ux2x2vx1x1)] dx.

Here
H2

0 (Ω) = {v ∈ H2(Ω) : v = ∂nv = 0 on ∂Ω},
∂n is the normal unit derivative outward to ∂Ω, and uxixj := ∂2u

∂xi∂xj
for i, j = 1, 2.

We assume that the Poisson ratio ν satisfies 0 < ν < 1/2. From the Lax-Milgram
theorem and the continuity and ellipticity of the bilinear form a(· , ·) it follows that
there exists a unique solution of this problem.

Next we assume that Ω is a union of disjoint polygonal substructures Ωi which
form a coarse triangulation of Ω, i.e. the intersection of the boundaries of two dif-
ferent subdomains ∂Ωk ∩ ∂Ωl, k �= l, is either the empty set, a vertex or a common
edge. We also assume that this triangulation is shape regular in the sense of Section
2, p. 5 in [2].

An important role is played by the interface Γ , defined as the union of all open
edges of substructures, which are not on the boundary of Ω.

In each subdomain Ωk we introduce a quasiuniform triangulation Th(Ωk) made
of triangles. Let hk = maxτ∈Th(Ωk) diam τ be the parameter of this triangulation.

In each Ωk we introduce a local conforming reduced Hsieh-Clough-Tocher
(RHCT) macro finite element space Xh(Ωk) as follows, cf. Figure 1:

Xh(Ωk) = {v ∈ C1(Ωk) : v|τ ∈ P3(τi), for triangles τi, i = 1, 2, 3, (2)

formed by connecting the vertices of τ ∈ Th(Ωk) to

its centroid, ∂nv is linear on each edge of ∂τ, and

v = ∂nv = 0 on ∂Ωk ∩ ∂Ω}.

The degrees of freedom of RHCT macro elements are given by

{u(pi), ux1(pi), ux2(pi)} , i = 1, 2, 3, (3)

for the three vertices pi of an element τ ∈ Th(Ωk), cf. Figure 1.
We introduce next an auxiliary global space Xh(Ω) =

∏N
k=1Xh(Ωk), and the so

called broken bilinear form:
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Fig. 1. Reduced HCT element

ah(u, v) =
N∑

k=1

ak(u, v),

where

ak(u, v) =

∫
Ωk

[�u�v + (1− ν) (2ux1x2vx1x2 − ux1x1vx2x2 − ux2x2vx1x1)] dx.

Then let X(Ω) be the subspace of Xh(Ω) consisting of all functions which have
all degrees of freedom (dofs) of the RHCT elements continuous at the crosspoints –
the vertices of the substructures.

The interface Γkl which is a common edge of two neighboring substructures Ωk

and Ωl inherits two 1D independent triangulations: Th,k(Γkl) – the hk one from
Th(Ωk) and Th,l(Γkl) – the hl one from Th(Ωl). Hence we can distinguish the sides
(or meshes) of this interface. Let γm,k be the side of Γkl associated with Ωk and
called master (mortar) and let δm,l be the side corresponding to Ωl and called slave
(nonmortar). Note that both the master and the slave occupy the same geometrical
position of Γkl. The set of vertices of Th,k(γm,k) on γm,k is denoted by γm,k,h and
the set of nodes of Th,l(δm,l) on δm,l by δm,l,h. In order to obtain our results we need
a technical assumption of a uniform bound for the ratio hγm/hδm for any interface
Γkl = γm,k = δm,l.

An important role in our algorithm is played by four trace spaces onto the edges
of the substructures. For each interface Γkl = ∂Ωk ∩ ∂Ωl let Wt,k(Γkl) be the space
of C1 continuous functions piecewise cubic on the 1D triangulation Th,k(Γkl) and let
Wn,k(Γkl) be the space of continuous piecewise linear functions on Th,k(Γkl). The
spaces Wt,l(Γkl) and Wn,l(Γkl) are defined analogously, but on the hl triangulation
Th,l(Γkl) of Γkl.

Note that these four spaces are the tangential and normal trace spaces onto the
interface Γkl ⊂ Γ of functions from Xh(Ωk) and Xh(Ωl), respectively.

We also need to introduce two test function spaces for each slave δm,l = Γkl. Let
Mt(δm,l) be the space of all C1 continuous piecewise cubic on Th,l(δm,l) functions
which are linear on the two end elements of Th,l(δm,l) and letMn(δm,l) be the space
of all continuous piecewise linear on Th,l(δm,l) functions which are constant on the
two end elements of Th,l(δm,l).

We now define the global space M(Γ ) =
∏

δm,l⊂Γ Mt(δm,l)×Mn(δm,l) and the

bilinear form b(u, ψ) defined over X(Ω) ×M(Γ ) as follows: let u = (u1, . . . , uN ) ∈
X(Ω) and ψ = (ψm)δm = (ψm,t, ψm,n)δm ∈M(Γ ), then let
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b(u, ψ) =
∑

δm⊂Γ

bm,t(u, ψm,t) + bm,n(u, ψm,n)

with

bm,t(u, ψm,t) =

∫
δm

(uk − ul)ψm,y ds (4)

bm,n(u, ψm,n) =

∫
δm

(∂nuk − ∂nul)ψm,n ds. (5)

Then our discrete problem is to find the pair (u∗h, λ
∗) ∈ X(Ω)×M(Γ ) such that

ah(u∗h, v) + b(v, λ∗) = f(v) ∀v ∈ X(Ω) (6)

b(u∗h, φ) = 0 ∀φ ∈M(Γ ). (7)

Note that if we introduce the discrete space

V h = {u ∈ X(Ω) : b(u, φ) = 0 ∀φ ∈M(Γ )}

then u∗h is the unique function in V h that satisfies

ah(u∗h, v) = f(v) ∀v ∈ V h,

which is a standard mortar discrete problem formulation, cf. e.g. [10].
Note that we can split the matrix K(l) – the matrix representation of al(u, v) in

the standard nodal basis of Xh(Ωl) as:

K(l) :=

⎛⎜⎝K
(l)
ii K

(l)
ic K

(l)
ir

K
(l)
ci K

(l)
cc K

(l)
cr

K
(l)
ri K

(l)
rc K

(l)
rr

⎞⎟⎠ , (8)

where in the rows the indices i, c and r refer to the unknowns u(i) corresponding
to the interior nodes, u(c) to the crosspoints, and u(r) to the remaining nodes, i.e.
those related to the edges.

2.1 Matrix Form of the Mortar Conditions

Note that (7) is equivalent to two mortar conditions on each slave δm,l = γm,k = Γkl:

bm,t(u, φ) =

∫
δm

(uk − ul)φ ds = 0 ∀φ ∈Mt(δm,l) (9)

bm,n(u, ψ) =

∫
δm

(∂nuk − ∂nul)ψ ds = 0 ∀ψ ∈Mn(δm,l). (10)

Introducing the following splitting of two vectors representing the tangential and
normal traces uδm,l and ∂nuδm,l we get uδm,l = u

(r)
δm,l

+ u
(c)
δm,l

and ∂nuδm,l =

∂nu
(r)
δm,l

+ ∂nu
(c)
δm,l

on a slave δm,l ⊂ ∂Ωl, cf. (8). We can now rewrite (9) and

(10) in a matrix form as

B
(r)
t,δm,l

u
(r)
δm,l

+B
(c)
t,δm,l

u
(c)
δm,l

= B
(r)
t,γm,k

u(r)
γm,k

+B
(c)
t,γm,k

u(c)
γm,k

, (11)
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B
(r)
n,δm,l

∂nu
(r)
δm,l

+B
(c)
n,δm,l

∂nu
(c)
δm,l

= B(r)
n,γm,k

∂nu
(r)
γm,k

+B(c)
n,γm,k

∂nu
(c)
γm,k

,

where the matrices Bt,δm,l = (B
(r)
t,δm,l

, B
(c)
t,δm,l

) and Bn,δm,l = (B
(r)
t,γm,k

, B
(c)
t,γm,k

)

are mass matrices obtained by substituting the standard nodal basis functions of
Wt,l(δm,l),Wn,l(δm,l) and Mt(δm,l),Mn(δm,l) into (9) and (10), respectively i.e.

Bt,δm,l = {(φx,s, ψy,r)}x,y∈δm,l,h
s,r=0,1

φx,s ∈Wt(δm,l), ψy,r ∈Mt(δm,l), (12)

Bn,δm,l = {(φx, ψy)}x,y∈δm,l,h φx ∈Wn(δm,l), ψy ∈Mn(δm,l), (13)

where φx,s, (ψx,s ) is a nodal basis function of Wt(δm,l), (Mt(δm,l)) associated with
a vertex x of Th,l(δm,l) and is either a value if s = 0 or a derivative if s = 1, and
φx ∈ Wn,l(δm,l) and ψx,∈ Mn(δm,l) are nodal basis function of these respective
spaces equal to one at the node x and zero at all remaining nodal points on δm,l.

The matrices Bt,γm,k = (B
(r)
n,δm,l

, B
(c)
n,δm,l

), and Bn,γm,k = (B
(r)
n,γm,k , B

(c)
n,γm,k) are

defined analogously.
Note that B

(r)
t,δm,l

, B
(r)
n,δm,l

are positive definite square matrices, see e.g. [10], but

the other matrices in (11) are in general rectangular.
We also need the block-diagonal matrices

Bδm,l =

(
Bt,δm,l 0

0 Bn,δm,l

)
Bγk,l =

(
Bt,γk,l 0

0 Bn,γk,l

)
. (14)

3 FETI-DP Problem – No Crosspoints Case

In this section we present a FETI-DP formulation for the case with no crosspoints,
i.e. two subdomains are either disjoint or have a common edge, cf. Figure 2. In this
case both the FETI-DP problem and the preconditioner are fully parallel and simple
to describe and implement.

Ω1

Ω2 Ω3

Ω1 Ω2 Ω3 Ω4

Fig. 2. Decompositions of Ω into subdomains with no crosspoints

3.1 Definition of the FETI Method

We now reformulate the system (6)–(7) as follows

K :=

⎛⎝Kii Kir 0
Kri Krr B

T
r

0 Br 0

⎞⎠⎛⎝ u(i)

u(r)

λ̃∗

⎞⎠ =

⎛⎝ fi

fr

0

⎞⎠ , (15)
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where Br = diag{Br,δm,l}δm with Br,δm,l =
(
Iδm,l , −(B

(r)
δm,l

)−1B
(r)
γm,k

)
. Here Krr

and Kii are block diagonal matrices of K
(l)
rr and K

(l)
ii , respectively, cf. (8), and

λ̃∗ = {(B(r)
δm,l

)T }λ∗.
Next the unknowns related to interior nodes and crosspoints, i.e. u(i) in (15),

are eliminated, which yields a new system

Su(r) +BT
r λ̃

∗ = gr,

Bru
(r) = 0,

(16)

where S = Krr −Kri (Kii)
−1Kir and gr = fr −Kri (Kii)

−1 fi. We now eliminate
u(r) and we end up with the following FETI-DP problem – find λ̃∗ ∈ M(Γ ) such
that

F (λ̃∗) = d, (17)

where d = BrS
−1gr and F = BrS

−1BT
r . Note that both S and B are block diagonal

matrices due to the assumption that there are no crosspoints.
Next we introduce the following parallel preconditioner

M−1 = BrSB
T
r . (18)

3.2 Convergence Estimates

We say that the coarse triangulation is in Neumann-Dirichlet ordering if every sub-
domain has either all edges as slaves or all as mortars. In the case of no crosspoints
it is always possible to choose the master-slave sides so as to obtain an N-D ordering
of subdomains.

We have the following theorem in which a condition bound is established:

Theorem 1. For any λ ∈M(Γ ) it holds that

c (1 + log(H/h)p 〈Mλ,λ〉 ≤ 〈Fλ, λ〉 ≤ C 〈Mλ,λ〉 ,

where c and C are positive constants independent of any mesh parameters, H =
maxkHk and h = mink hk, p = 0 in the case of Neumann-Dirichlet ordering and
p = 2 in general case.

4 General Case

Here we present briefly the case with crosspoints: the matrix formulation of (6)–(7)
is as follows:

K :=

⎛⎜⎜⎝
Kii Kic Kir 0

Kci K̃cc Kcr B
T
c

Kri Krc Krr B
T
r

0 Bc Br 0

⎞⎟⎟⎠
⎛⎜⎜⎝
u(i)

u(c)

u(r)

λ̃∗

⎞⎟⎟⎠ =

⎛⎜⎜⎝
fi

fc

fr

0

⎞⎟⎟⎠ , (19)

where the global block matrices Bc = diag{Bc,δm,l} and Br = diag{Br,δm,l} are
split into local ones defined over the vector representation spaces of traces on the
interface Γkl = γm,k = δm,l:
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Bc,δm,l =
(
(B

(r)
δm,l

)−1B
(c)
δm,l
, −(B

(r)
δm,l

)−1B(c)
γm,k

)
, (20)

and Br,δm,l is defined in (15). Here K̃cc is a block built of K
(l)
cc taking into account

the continuity of dofs at crosspoints, λ̃∗ = {(B(r)
δm,l

)T }λ∗, and Krr and Kii are block

diagonal matrices as in (15).
Next we eliminate the unknowns related to the interior nodes and crosspoints

i.e. u(i), u(c) in (19) and we get

Ŝu(r) + B̂T λ̃∗ = f̂r,

B̂u(r) + Ŝccλ̃
∗ = f̂c,

(21)

where the matrices are defined as follows: Ŝ = Krr − (Kri Krc)K̃
−1
i&c

(
Kir

Kcr

)
,

B̂ = Br − (0 Bc)K̃
−1
i&c

(
Kir

Kcr

)
, and Ŝcc = −(0 Bc)K̃

−1
i&c

(
0
BT

c

)
with

K̃i&c =

(
Kii Kic

Kci K̃cc

)
.We now eliminate u(r) and we end up with finding λ̃∗ ∈M(Γ )

such that
F (λ̃∗) = d, (22)

where d = fc − B̂Ŝ−1fr and F = Ŝcc − B̂Ŝ−1B̂T .
Next we introduce the following parallel preconditioner:M−1 = BrSrrB

T
r where

Srr = diag{S(l)
rr }N

l=1 with S
(l)
rr = (K

(l)
rr −K(l)

ri (K
(l)
ii )−1K

(l)
ir ), i.e. S

(l)
rr is the respective

submatrix of the Schur matrix S(l) over Ωl.
Then in the case of Neumann-Dirichlet ordering we have that the condition

number κ(M−1F ) is bounded by (1 + log(H/h)2 and in the general case by (1 +
log(H/h)4.
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1 Introduction

In the context of fluid-structure interactions, there are several natural starting points
for domain decomposition. First, the decomposition into the fluid and the structure
domain, second, the further decomposition of those domains into subdomains for
parallelisation, and, third, the decomposition of the solver grid into finer and coarser
levels for multilevel approaches. In this paper, we focus on the efficient implemen-
tation of the first two types of domain decomposition. The underlying concepts
offer a kind of framework that can be ‘filled’ with variable content on the part of
the discretization, the actual equation solver, and interpolations and projections for
the inter-code communication. According to this pursuit of flexibility, modularity,
and reusability, we restrict to partitioned approaches regarding the decomposition
into fluid and structure domain, that is we use existing stand-alone fluid and struc-
ture solvers for the coupled fluid-structure simulation. The essential tools we use to
achieve efficiency are space-partitioning and space-filling curves. Space-partitioning
grids – quad- and octree grids are the most famous representations – are cartesian
grids arising from a recursive local refinement procedure starting from a very coarse
discretization of the domain. See Fig. 1 for examples. Such grids and the associated
trees are widely used for example in computer graphics, grid generation, as compu-
tational grids etc. (compare [3]). They allow for the development of very efficient
algorithms due to their strict structure and their local recursivity.

In Sect. 2, we describe our concept for the efficient and flexible realization of
a partitioned approach for the simulation of fluid-structure interactions (or other
multi-physics problems) and identify differences in comparison to MpCCI [9], the
successor of GRISSLi [1]. MpCCI nowadays is the most widely used software for the
coupling of several codes. Section 3 introduces the algorithmic and implementation
aspects of our flow solver. It has to be fast and parallel (as many time steps are
required), physically correct (forces acting on the structure), and easily integrable
(frequent exchange of information over the coupling surface). In this paper, our focus
will be on the two aspects parallelization and integrability. For further informations
on physical correctness and general efficiency of our concept, we refer to [4, 3, 6].
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Fig. 1. Left: two-dimensional adaptive space-partitioning grid describing a spherical
domain; right: three-dimensional adaptive space-partitioning grid describing a flow
tube with asymmetrically oscillating diameter.

2 Decomposition I: Fluid – Structure

The main idea behind the concept of partitioned fluid-structure simulations is sim-
plicity and flexibility with respect to the choice of solvers and the coupling strategy.
However, it is not trivial to reach this task in practice. Here, the development of
appropriate software components for the coupling of two different codes is decisive
but, in contrast to the examination of numerical coupling strategies, a somewhat
neglected field. Thus, we will concentrate on these neglected informatical aspects
and propose a concept that can be ‘filled’ with the suitable mathematical content
in a flexible way. The most widely used software MpCCI works quite well for a fixed
pair of codes but has severe drawbacks as soon as one wants to exchange solvers
and/or the coupling strategy frequently. To eliminate these drawbacks, we introduce
a client-server approach with a coupling client containing the coupling strategy and
acting as a really separating layer between the solvers, which strongly facilitates the
exchange of components of the coupled simulation.

The coupling client has to address two components of coupling: first, the ex-
change of interface data (such as velocities, forces, . . .) between the solvers involved
and, second, the control of the coupled simulation, that is the execution of the cou-
pling strategy (explicit/implicit). Figure 2 displays the general concepts of MpCCI

and of our approach [3].

2.1 Data Exchange

At the interface between fluid and structure, we have to introduce some mapping of
data between two, in general non-matching grids. In the MpCCI concept, this mapping
is done directly from one solver to the other with the help of either given library
routines or specialized user-defined interpolations. This implies that each solver has
to know the grid of the other solver and, thus, inhibits the exchange of one solver
without changing the code of the other one. Our concept introduces a third separate
component, the coupling component, which holds its own description of the interface
between fluid and structure in the form of a surface triangulation (Fig. 3), which we
will refer to as the central mesh in the following. The solvers have to map their data
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fluid solver
+ coupling + coupling

data

data

data
data

MPCCI
interpolation

structure solver server fluid
+ interpolation

server structure
+ interpolation

request

data

requestdata

Client
surface
coupling

Fig. 2. Schematic view of the general coupling concepts used in MpCCI (left) and
in our framework (right).

to or get their data from the central mesh. Thus, we can now exchange one solver
without changing the data mapping in the other one. Of course, the concrete choice
of the resolution and the grid points of the central mesh may depend on one or both
solver grids. However, the general concepts and algorithms needed in each solver to
perform the mapping of data between the solver grids and the central mesh are not
affected by this concrete choice as they only depend on the principle structure of
the central mesh.

The basis for all data mappings between solver grid and central mesh is – in-
dependent of the concrete choice of interpolation and projection operators – the
identification of relations between data points of both grids. For the mapping of
data from the solver to the central mesh, these relations are in general inclusion
properties of surface nodes with respect to the solver grid cells. For the transport
of data the way back from the central surface mesh to the solver grid, we need
projections from the solver grid nodes to the surface triangles (see Fig. 3 for an
example with a cartesian fluid grid). Whereas localizing a surface node in a solver
grid cell is an easy task, finding projections on surface triangles requires more so-
phisticated methods. At this point, space-partitioning grids come into play as a key
structure for the access of the (two-dimensional) surface triangulation in a spatial
(three-dimensional) context.

Fig. 3. Left: Surface triangulation of a cylinder and cartesian grid cells at the
boundary of the cylinder; right: data transport between the surface triangulation
and a cartesian fluid grid: interpolation of stresses at surface nodes from values at
the nodes of the fluid grid cell containing the respective surface node (left), copying
data from projection points of fluid boundary points on the surface triangulation to
the respective boundary grid point (right, taken from [3]).
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The algorithm to determine projection points is very closely related to the al-
gorithm creating a new space-partitioning fluid grid (see Sect. 3) from the surface
triangulation. In both cases, we have to identify intersections of solver grid cells and
surface triangles. Here, the big potentials of space-partitioning grids are their inher-
ent location awareness and their recursive structure, which permits the development
of highly efficient algorithms exploiting the possibilities of handing down informa-
tions already gained in father cells to their son cells. Figure 4 gives an impression
on how fast the resulting algorithms work for the example of grid generation.

octree depth time (in sec.) # octree nodes

7 0.872 84, 609

9 3.375 1, 376, 753

11 24.563 22, 104, 017

13 293.875 353, 685, 761

Fig. 4. Runtimes for the generation of an octree grid from a surface triangulation
of a car. Computed on a Pentium 4 with 2.4GHz and 512kB Cache and sufficient
main memory to hold all data required (Intel C++ compiler 8.0).

2.2 Coupling Strategy

Except from data transfer, all other aspects of the coupling of two codes such as
the definition and implementation of a coupling strategy and control of the whole
coupled simulation are left to the user in MpCCI. That is, they have to be implemented
in one or both of the involved solvers. As a consequence, an independent exchange
of on component, either the coupling strategy or one of the solvers, is impossible.
In contrast, our concept is based on a client-server approach (Fig. 2 and [2]). A so-
called coupling-client controls the whole simulation. Fluid and structure solvers act
as servers receiving requests from the client. The coupling strategy is implemented
in the client and, thus, separated from the solvers.

3 Parallel Fluid Solver

This paragraph describes some properties and aspects of our fluid solver currently
being developed [3]. Hereby, the focus is to provide a solver which at the same
time offers the possibility to exploit the most efficient numerical methods such as
multigrid and grid adaptivity and, at the same time, to be highly efficient in terms
of hardware or, in particular, memory usage and parallelizability. In this paper,
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we restrict ourselves to the parallelization concepts which again are, the same as
all other technical and implementation aspects, independent on the concrete math-
ematical content (FE-/FV-discretization, linear/nonlinear solvers, etc.). The only
invariant is the choice of cartesian space-partitioning grids as computational grids.
These grids offer several advantages. First, their strict structure minimizes memory
requirements. Second, the recursive structure allows for a very cache-efficient imple-
mentation of data structure and data access (see [6]). Third, grid adaptivity can be
arbitrarily local (no restriction to block-adaptivity). Fourth, the mapping of data
between the solver grid and the central mesh of the coupling client is supported in
an optimal way as the mapping algorithms are based on space-partitioning cartesian
grids themselves (cf. Sect. 2.1 and Fig. 4). Fifth, finally, a balanced parallelization
can be done in a natural way using the properties of space-filling curves.

Figure 5 shows a cut-off of the computed flow field together with the underlying
grid for the two-dimensional flow around a cylinder at Reynolds number 20.

Fig. 5. Flow around a cylinder (Reynolds number 20): cut-off of the flow field and
the underlying grid.

For the parallelization of our flow solver, we developed an implementation of
a spatial domain decomposition method based on the combination of our space-
partitioning computational grid with space-filling curves, which are known to be
an efficient tool for the parallelization of algorithms on adaptively refined grids [5].
Hereby, the ‘obvious’ method is to string together the cells of the adaptive grid
along the corresponding iterate of a space-filling curve and afterwards ‘cut’ the
resulting cell string into equal pieces and assign one process to each of the pieces.
For the domains of the single processes formed by these pieces of the cell string, a
quasi-minimality of the domain surface resulting from the locality properties of the
space-filling curve can be shown [5]. Thus, we get a balanced domain decomposition
with quasi-minimal communication costs. The disadvantage of this simple approach
is that we have to process the whole grid sequentially to build up the cell string.

In contrast to this, our domain decomposition algorithm works completely in
parallel. It never has to handle the whole grid on a single master processor. Instead,
we recursively distribute sub-tree of the cell-tree among the available processors
simultaneously to the set-up phase of the adaptive grid. Each process refines its
domain until it reaches a limit in the work load that requires the outsourcing of
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sub-trees to other processes. Thus, every process holds a complete space-partitioning
grid and all the distributed space-partitioning grids together form the global grid
or the associated tree, respectively (see Fig. 6). Note that this level-wise domain
decomposition process implies a tree order of the computing nodes, too. In the end,
the algorithm lists the nodes level by level depending on the workload and, thus,
the algorithm is pretty flexible concerning dynamical self-adaptivity. To maintain a
balanced load distribution even for extremely local adaptive grid refinements (e.g.,
at singularities) and grid coarsenings (e.g., as a reaction to changing geometries),
the algorithm also supports the merging of the grid partitions of two processes.

Fig. 6. Distribution of a space-partitioning grid (left) and the associated tree (right)
to four processes (marked black, dark grey, grey and white).

Our algorithm uses the Peano space-filling curve to traverse the grid cells and,
thus, also splits up the domain at certain points on this curve. As mentioned above,
the resulting partition is known to be quasi-optimal and connected [5].

In addition to producing a quasi-minimal amount of communication, the Peano
curve allows for a very efficient realization of the communication due to two prop-
erties (e.g., which we could not show for any Hilbert curve). First, the Peano
curve fulfills a projection property [7], that is the d-dimensional mapping onto a
lower-dimensional submanifold aligned with the coordinate axes results in a lower-
dimensional Peano curve. Second, it has the so-called palindrome property [7], that
is the processing order of cell faces on such a submanifold is not only a Peano curve
again but even the same Peano curve at both sides of the submanifold only with
inverted order. Thus, the locality properties of the Peano curve on a submanifold
separating two partitions imply good data access locality in the interprocess com-
munication and, in addition, due to the palindrome property, there is no need for
reordering data sent to neighboring processes. This highly improves the communi-
cation efficiency.

In Table 1, we give some results achieved with an old version of our program
still relying on a sequential domain decomposition algorithm and not yet working
with asynchronous communication as our new code does. The left picture of Fig. 1
shows the domain decomposition for an adaptive two-dimensional grid for a sphere
computed with our new code.

4 Conclusion

We proposed concepts for two substantially different types of domain decomposition
occurring in the context of partitioned simulation of fluid-structure interactions. We
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Table 1. Parallel speedup achieved for the solution of the three-dimensional Poisson
equation on a spherical domain on an adaptive grid with 23, 118, 848 degrees of
freedom. The computations were performed on a myrinet cluster consisting of eight
dual Pentium III processors with 2 GByte RAM per node [8].

processes 1 2 4 8 16

speedup 1.00 1.95 3.73 6.85 12.93

could show the great potential of space-partitioning grids in each case. For the link-
up of fluid and structure solver via a coupling client we use them as a tool to develop
fast algorithms to connect the different grids involved. In the fluid solver itself, they
are used as a computational grid, enhancing (among others) the parallelization pos-
sibilities. With this work, we have shown the general functionality and efficiency
of all components: octree algorithms in the coupling client, Navier-Stokes solver
on adaptively refined Cartesian grids, balanced parallelization of a solver on adap-
tively refined Cartesian grids. From this basis, we will establish a unified framework
for the simulation of fluid-structure interactions including a (commercial) structure
solver, integrate different mathematical methods for code coupling, data mapping,
discretization, and linear solvers and perform numerous simulations for various ex-
amples to further approve the payload and the flexible applicability of our basic
concepts.
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Summary. We construct a scalable overlapping Additive Schwarz-Richardson
(ASR) algorithm for monotone nonlinear parabolic problems and we prove that
the rate of convergence depends on the stable decomposition constant. Numerical
experiments in the plane confirm the theoretical results.

1 Introduction

In the past decade, domain decomposition techniques have been increasingly em-
ployed to solve nonlinear problems. As a first approach, domain decomposition meth-
ods provide preconditioners for the Jacobian system in a Newton iteration. In this
context, Schwarz-type preconditioners have been successfully used to solve problems
from various applied fields, e.g. computational fluid dynamics [4, 7], full potential
problems [3], cardiac electrical activity [9], unsteady nonlinear radiation diffusion
[11]. Additive Schwarz-type methods have been used not only as inner iteration in
a Newton-Krylov-Schwarz scheme, but also as outer iteration in nested solvers as
ASPIN [5, 1] or nonlinear additive Schwarz [6]. We propose an iterative process
based on the additive Schwarz algorithm applied to the nonlinear problem. The
main idea of this paper can be traced back to [2], where a linear preconditioner for
a nonlinear system arising from the discretization of a monotone elliptic problem is
studied. Using the classical assumptions of the abstract theory of additive Schwarz
methods (stable decomposition, strengthened Cauchy-Schwarz inequality and local
stability, see [12]), we prove that the rate of convergence of the proposed algorithm
depends on the stable decomposition constant C0 and we construct a scalable Ad-
ditive Schwarz-Richardson (ASR) method.

∗ This work was supported by Istituto Nazionale di Alta Matematica Francesco
Severi, Roma and by grants of M.I.U.R (PRIN 2004014411).
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2 Nonlinear Parabolic Problems

Let V be a Banach space and H a Hilbert space with a scalar product (·, ·) satisfying
V ⊂ H and V dense in H. Let V ∗ denote the dual space of V and
< ·, · > the duality between V ∗ and V. The Riesz representation theorem and the
density of V in H implies that for every u ∈ H there exists an unique element in the
dual space V ∗, by convention still denoted by u, such that (u, v) =< u, v > ∀ v ∈ V.
Let Ω be a bounded domain of Rd, d = 2, 3 with the boundary ∂Ω polyhedral and
Lipschitz continuous and Th a triangulation of the domain Ω. In the following, we
restrict to the case V = {v ∈ H1(Ω) : γv = 0 on Γ1 ⊂ ∂Ω, µ(Γ1) > 0} and
H = L2(Ω). We consider the nonlinear form b : H1(Ω) × H1(Ω) −→ R satisfying
the following properties:

1. b is Lipschitz continuous:
∃L > 0 ∀v, w, z ∈ H1(Ω) |b(v, z)− b(w, z)| ≤ L||v − w|| · ||z||

2. b is bounded:
∃C > 0 such that |b(v, w)| ≤ C(1 + ||v||)||w||, ∀v, w ∈ H1(Ω)

3. b is hemicontinuous:
∀u, v, w ∈ H1(Ω), f : [0, 1] −→ R, f(α) = b(u+ αv,w) is continuous

4. b is strictly monotone: b(v, v − w)− b(w, v − w) ≥ 0, ∀v, w ∈ H1(Ω)
and the equality holds only for v = w

5. b

(
v,

n∑
i=1

αiwi

)
=

n∑
i=1

αib(v, wi) ∀v, wi ∈ H1(Ω), ∀αi ∈ R, i = 1, . . . , n

6. b(v, v) ≥ c||v||2H1(Ω) − c0||v||1 − c1||v||2L2(Ω) − c2, ∀v ∈ H1(Ω),
where c > 0, c0 > 0, c1 ≥ 0, c2 ≥ 0 are constants.

We consider the following nonlinear parabolic problem: given u0 ∈ L2(Ω) and f ∈
L2((0, T );V ∗) find u ∈W ≡ {u ∈ L2((0, T );V ), u′ ∈ L2((0, T );V ∗)} such that{

< u′(t), w > +b(u(t), w) =< f(t), v >, ∀t ∈ (0, T ) \ Ew, ∀w ∈ V
u(0) = u0

(1)

where Ew ⊂ (0, T ) is a set of measure zero that depends on the function w.
The continuous problem (1) is discretized in time by the backward Euler method
and in space by the finite element method. Consequently, we obtain the fully discrete
problem: given an arbitrary sequence {u0

h} ⊂ L2(Ω) of approximations of u0 such
that lim

h→0
||u0

h − u0|| = 0, find um
h ∈ Vh such that

(
um

h − um−1
h

τ
, v

)
+ b(um

h , v) =< fm, v >, ∀v ∈ Vh (2)

where Vh = {v| v = 0 on Γ 1, v is continuous on Ω, v|T is linear ∀T ∈ Th} is the
standard piecewise linear finite element space, τ = T/M and um

h is the value of the
discrete function uh at time tm = mτ.
Results on the existence and uniqueness of the solution of the discrete and con-
tinuous parabolic problems can be found e.g. in [13], Theorem 45.3 and Theorem
46.4, respectively. The convergence of the discrete solution to the continuous one is
presented in [13], Theorem 46.4 and 47.1.
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3 An Additive Schwarz-Richardson Algorithm

Given a finite element basis {φj , j = 1, . . . , n} of Vh, for simplicity, we will drop the
indexes h and m and still denote by u both the finite element approximation u =

n∑
j=1

ujφj of the continuous solution and its vector representation u = (u1, . . . , un)T .

Problem (2) is equivalent to the nonlinear algebraic system

B(u) = ĝ, (3)

where B(u) = (b1, . . . , bn)T , bj = (u, φj) + τb(u, φj), ĝ = (g1, . . . , gn)T , gj = τ ·
< fm, φj > +(um−1

h , φj). We consider a family of subspaces Vi ⊂ Vh, i = 0, . . . , N
and the interpolation operators RT

i : Vi −→ Vh.
We assume that Vh admits the following decomposition:

Vh =
N∑

i=0

RT
i Vi.

In addition to the previous properties (1-6), we also assume the following property
(verified in most reaction-diffusion problems in applications):

7. b can be written as a sum b(u, v) = a(u, v) + b̃(u, v) of a bilinear, continuous
and coercive form a : V × V −→ R and a nonlinear form b̃ (that is monotone
and Lipschitz continuous with constant L̃ due to 1. and 4.).

The bilinear form aτ (u, v) = (u, v) + τa(u, v) defines a scalar product on V. We
introduce the local symmetric, positive definite bilinear forms ãτ, i : Vi × Vi −→ R

and, as in the abstract Schwarz theory [12], we make the following assumptions:

• Stable Decomposition. There exist a constant C0, such that every u ∈ Vh admits

a decomposition u =
N∑

i=0

RT
i ui, ui ∈ Vi, i = 0, . . . , N that satisfies

N∑
i=0

ãτ,i(ui, ui) ≤ C2
0aτ (u, u);

• Strengthened Cauchy-Schwarz inequality. ∃ εij ∈ [0, 1] i, j = 1, . . . , N, s.t.

|aτ (RT
i ui, R

T
j uj)| ≤ εijaτ (RT

i ui, R
T
i ui)

1/2aτ (RT
j uj , R

T
j uj)

1/2, ∀ui ∈ Vi, uj ∈ Vj ;

• Local Stability. There is ω > 0, such that

aτ (RT
i ui, R

T
i ui) ≤ ωãτ,i(ui, ui), ∀ui ∈ Vi, 0 ≤ i ≤ N.

We define the “projection”-like operators Q̃i : Vh −→ Vi by ãτ,i(Q̃i(u), vi) =
(u,RT

i vi) + τb(u,RT
i vi), ∀vi ∈ Vi, u ∈ Vh, their extensions Qi : Vh −→ RT

i Vi ⊂ Vh

by Qi(u) = RT
i Q̃i(u) and Q(u) =

N∑
i=0

Qi(u).

Let Ãτ,i ≡ (ãτ,i(φj , φl))j,l be the matrix representation of the local bilinear form
ãτ,i. The matrix form of Q(u) is

Q(u) = M−1B(u), (4)
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where M =

(
N∑

i=0

RT
i Ã

−1
τ,iRi

)−1

. The matrix M is symmetric and positive definite

and consequently it defines a norm, ||u||2M = uTMu. Denoting ǧ = M−1ĝ, and
using the matrix form of the nonlinear operator Q, it is straightforward to prove
that the nonlinear system (3) is equivalent to the system

Q(u) = ǧ. (5)

Additive Schwarz-Richardson (ASR) algorithm: for a fixed time t and for a
properly chosen parameter λ, iterate for k = 0, 1, . . . until convergence

uk+1 = uk + λsk, (6)

where sk = −M−1
(
B(uk)− ĝ

)
⇐⇒ sk = −

(
Q(uk)− ǧ

)
.

The operator Q satisfies the following Lemmas (for complete proofs see [8]).

Lemma 1. There exists a positive constant δ0 = 1
C2

0
such that

(Q(u+ z)−Q(u), z)M ≥ δ0||z||2M ∀u, v ∈ Vh.

Lemma 2. There exists a positive constant δ1 = C
√
ω3(1 + ρ(ε))3(1 + L̃)2C2

0 ,
where C is a positive constant independent of mesh size or time-step, such that

||Q(u+ z)−Q(u)||M ≤ δ1||z||M ∀u, v ∈ Vh.

Using this lemmas, we can prove the following convergence result.

Theorem 1. If we choose 0 < λ < 2δ0/δ
2
1 then ASR converges in the M norm to

the solution u∗ of (5), i.e.

||uk − u∗||2M ≤ P (λ)k||u0 − u∗||2M,
where P (λ) = 1− 2λδ0 + λ2δ21 .

Proof. We define the error ek = uk − u∗ and the residual rk = Q(uk)−Q(u∗). The
error of the k + 1 step of the ASR-iteration can be expressed in terms of the error
and residual at the k step:

ek+1 = uk+1 − u∗ = uk − λrk − u∗ = ek − λrk.

Using the linearity of (·, ·)M :

||ek+1||2M = (ek+1, ek+1)M = (ek − λrk, ek − λrk)M

= ||ek||2M − 2λ(ek, rk)M + λ2||rk||2M.

Lemma 1 implies:

−(ek, rk)M = −(uk − u∗, Q(uk)−Q(u∗))M

= −(uk − u∗, Q(uk − u∗ + u∗)−Q(u∗))M

≤ −δ0||ek||2M.
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From Lemma 2 we have

||rk||2M = ||Q(uk)−Q(u∗)||2M = ||Q(uk − u∗ + u∗)−Q(u∗)||2M ≤ δ21 ||ek||2M,

hence
||ek+1||2M ≤ (1− 2λδ0 + λ2δ21)||ek||2M.

We define P (λ) = 1 − 2λδ0 + λ2δ21 . If we choose 0 < λ < 2δ0
δ2
1

then P (λ) < 1 and

the convergence holds. We remark that P (λ) has its minimum in λmin = δ0
δ2
1

and

P (λmin) = 1− δ2
0

δ2
1
< 1.

Remark 1. If we drop the coarse space V0 and we define Q(u) =
N∑

i=1

Qi(u), the

ASR-algorithm is convergent. In this case, it is possible to prove that δ0 = 1
C2

0
and

δ1 = C0ρ(ε)ω(1 + L̃).

Remark 2. The algorithm depends on the choice of the parameter λ. Numerical tests
have shown that the step-length selection described in [10] performs well.

4 Numerical Results

We consider the variational nonlinear parabolic problem: given u(t0, x) = u0(x) and
T > t0, for all t ≤ T find u(t) ∈ H1

0 (Ω) such that(
∂u(t)

∂t
, v

)
+ a(u(t), v) + (f(u(t)), v) = (g, v) ∀v ∈ H1

0 (Ω),

where

a(u, v) =

∫
Ω

∑
i,j

aij
∂u

∂xi

∂v

∂xj
dx,

with aij ∈ C1(Ω) such that aij(x) = aji(x), ∀x ∈ Ω, ∀i, j and f monotone.

Table 1. Scalability of 1-level and 2-level ASR method for fixed overlap size δ = h,
subdomain size H/h = 4 and increasing number of subdomains (and nodes).

λ = 0.4

N
1-level

iter err
2-level

iter err

2× 2 40 6.75e-3 44 6.75e-3

4× 4 70 1.67e-3 37 1.67e-3

6× 6 123 7.44e-4 37 7.44e-4

8× 8 197 4.18e-4 38 4.18e-4

10× 10 293 2.67e-4 38 2.67e-4

12× 12 410 1.85e-4 39 1.85e-4

14× 14 - - 39 1.36e-4

λ : step-length selection

N
1-level

iter err
2-level

iter err

2× 2 25 6.75e-3 24 6.75e-3

4× 4 37 1.67e-3 25 1.67e-3

6× 6 69 7.44e-4 24 7.44e-4

8× 8 117 4.18e-4 24 4.18e-4

10× 10 157 2.67e-4 27 2.67e-4

12× 12 223 1.85e-4 22 1.85e-4

14× 14 - - 25 1.36e-4
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Table 2. Iteration counts and relative errors for fixed overlap size δ = h, mesh size
h = 1/48 and increasing number of subdomains.

λ = 0.4

N
1-level

iter err
2-level

iter err

2× 2 155 1.74e-4 70 1.74e-4

4× 4 192 1.74e-4 58 1.74e-4

6× 6 245 1.74e-4 47 1.74e-4

8× 8 301 1.74e-4 41 1.74e-4

λ : step-length selection

N
1-level

iter err
2-level

iter err

2× 2 86 1.74e-4 43 1.74e-4

4× 4 114 1.74e-4 32 1.74e-4

6× 6 149 1.74e-4 27 1.74e-4

8× 8 - - 23 1.74e-4

The numerical tests were performed for the bilinear form a(u, v) = (∇u,∇v) and the
nonlinear function f(u) = 0.5u+u3. The domain is the unit square Ω = (0, 1)×(0, 1)
and g is chosen so that u∗(t, x) = t sin(πx) sin(πy) is the exact solution. We consider
t0 = 0, u0(x) = 0 and we compute the solution for t = τ = 0.01. The iterations
process is stopped when ||rk||M/||r0||M ≤ 1e − 8 and we denote the relative error
by err = ||u− u∗||l2(Ω)/||u∗||l2(Ω).
Our additive Schwarz preconditioner is build as in the linear case. We partition
the domain Ω into shape regular nonoverlapping subdomains {Ωi, 1 ≤ i ≤ N}
of diameter H defining a shape-regular coarse mesh TH . Each subregion Ωi is
extended to a larger one, Ω′

i such that the fine mesh Th gives rise to N local
meshes Th,i, and the partition {Ω′

i} satisfies the finite covering assumption [12].
Using the above decomposition, a 1-level method is defined by the local spaces
Vi = {v ∈ H1

0 (Ω′
i)| v|T is linear, ∀T ∈ Th,i}, 1 ≤ i ≤ N, and the local bilinear forms

ãτ,i(ui, vi) = aτ (RT
i ui, R

T
i vi), ∀ui, vi ∈ Vi, with zero extension interpolation oper-

ators RT
i : Vi −→ V, 1 ≤ i ≤ N. We then build a 2-level algorithm by defining the

coarse finite element space V0 = {v ∈ H1
0 (Ω)| v is continuous and v|T is linear, ∀T ∈

TH} and the operator RT
0 which interpolates the coarse functions onto the fine mesh.

It can be proved that the stable decomposition constant is

C2
0 = Cmax{1 +

H

δ
, 1 +

τ

Hδ
} (1-level), C2

0 = C(1 +
H

δ
), (2-level), (7)

where δ measures the width of region Ω′
i\Ωi, i.e. the overlap size.

Table 3. Iteration counts and relative errors for fixed mesh size h = 1/48, number
of subdomain N = 2× 2, λ = 0.4 and increasing the overlap size δ

overlap
1-level

iter err
2-level

iter err

h 155 1.74e-4 70 1.74e-4

2h 82 1.74e-4 46 1.74e-4

3h 59 1.74e-4 37 1.74e-4

4h 49 1.74e-4 37 1.74e-4

Table 1 reports the iteration counts and relative errors of our ASR method with fixed
overlap δ = h, increasing the number of nodes and subdomains so that H/h = 4 is
kept fixed (scaled speedup). The parameter λ is fixed at 0.4 (left table) or chosen by
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Table 4. Same as Table 1 but with random right-hand side; λ = 0.4.

N 1-level iter 2-level iter

2× 2 40 42

4× 4 70 38

6× 6 122 38

8× 8 196 38

10× 10 291 41

12× 12 407 42
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Fig. 1. ASR iterations counts as a function of the parameter λ

the step-length strategy of [10] (right table). According to the theory, in the 1-level
case the number of iterations increases, becauseH decreases to zero while δ and τ are
kept constant in (7). On the other hand, the iteration counts of the 2-level method
remain bounded, because H/δ is kept fixed in (7). The same quantities are reported
in Table 2, keeping now h = 1/48 fixed and increasing the number of subdomains
(standard speedup). Only in the 2-level case the iteration counts improve as the
subdomain size decreases. Table 3 shows that the iteration counts improve with
increasing overlap size, as in the linear case and Table 4 is the same as Table 1 with
λ = 0.4 but with random right-hand size. Finally, Fig. 1 confirms the theoretical
prediction of Theorem 1, showing the ASR iteration counts as a function of the
parameter λ for h = 1/16, N = 2 × 2, δ = h: the ASR convergence rate attains a
minimum inside an interval (0, α), α > 0 and degenerates at the interval endpoints.

Acknowledgement. Thanks are due to Maksymilian Dryja for very helpful comments
and suggestions.
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Summary. We present a parallel numerical approach for intracellular calcium dy-
namics. Calcium is an important second messenger in cell communication. The dy-
namics of intracellular calcium is determined by the liberation and uptake by cellular
stores as well as reactions with buffers. We develop models and numerical tools to
study the liberation of calcium from the endoplasmic reticulum (ER). This process
is characterized by the existence of multiple length scales. The modeling of the
problem leads to a nonlinear reaction-diffusion system with natural boundary con-
ditions in 2D. We used piecewise linear finite elements for the spatial discretization
and time discretization by a linearly implicit Runge-Kutta scheme. We used the
CHACO package for the domain decomposition. In our description the dynamics
of IP3-controlled channels remains discrete and stochastic. It is implemented in the
numerical simulation by a stochastic source term in the reaction diffusion equation.
The strongly localized temporal behavior due to the on-off behavior of channels as
well as their spatial localization is treated by an adaptive numerical method.

1 Introduction

Ca2+ acts as an intracellular messenger regulating multiple cellular functions such
as gene expression, secretion, muscle contraction or synaptic plasticity. The Ca2+

signal employed by a variety of processes is a transient increase of the concentration
in the cytosol. This is modeled by a system of reaction-diffusion equations with
stochastic source terms for which we present numerical simulations.

In this article, we will outline the following important factors in the numeri-
cal solution of the problem: grid adaptivity, space and time discretization, coupling
between space and time approximations, and parallelization. Briefly, it is very impor-
tant to have a adaptive grid refinement in the area of clusters to obtain an efficient
and fast numerical solutions. The finite element method is very suitable to handle
these unstructured grids and complex geometry. We use a linearly implicit methods
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to avoid nonlinear algebraic systems which arise for fully implicit methods after
the time discretization. The classical embedding technique for ordinary differential
equation integrators is employed to estimate the error in time. An automatic step
size selection procedure ensures that the step size is as large as possible to guarantee
the desired precision. To speed up the calculations parallelization is essential. Here
the domain decomposition enters at the level of solution of algebraic system, see [1].

The paper is organized as follows. In the second Section we present the model
which comprises calcium-buffer binding, diffusion and transport through the ER
membrane. We will then introduce our method and strategies for grid adaptation,
finite-element discretization and time-stepping in Section 3. Section 4 presents test
results using sequential calculations and based on the domain decomposition method
which is basic to our parallel code. Section 5 gives a short discussion of our work.

2 Governing Equations

The model consists of equations for the following deterministic quantities: calcium
concentration in the cytosol and the ER as well as concentrations of several buffers.
The current 2D model describes the concentrations of the involved chemical species
in a thin layer on both sides of an idealized plane ER membrane. More details
regarding the 2D modeling can be found in [2]. The evolution of concentrations will
be determined by diffusion, transport of calcium through the ER membrane, and
the binding and unbinding of buffer molecules to calcium:

∂c

∂t
= Dc∆c + (Pl + Pc(r))(E − c)− Pp

c2

K2
d + c2

−
∑

i

Hi(c, bi), (1)

∂E

∂t
= DE∆E + γ

[
(Pl + Pc(r))(E − c)− Pp

c2

K2
d + c2

]
−
∑

j

Kj(c, bE,j), (2)

∂bi
∂t

= Db,i∇2bi +Hi(c, bi), i = s,m, d, (3)

∂bE,j

∂t
= DE,j∇2bE,j +Kj(E, bE,j), j = s,m. (4)

Here c is the concentration of Ca2+ in the cytosol, E is the concentration in the ER.
The buffer concentration of bound calcium in the cytosol and the ER is given by bi or
bE,j , respectively. We have i = s, d,m and j = s,m, where s denotes a stationary, d a
dye andm a mobile buffers. All buffers are assumed to be distributed homogeneously
in the initial state. Immobile buffers are modeled by setting their diffusion coefficient
to zero. Total buffer concentrations in the cytosol and the ER are denoted by Bi

or Gj , respectively. The buffer binding and unbinding of calcium is modeled by the
usual mass-action kinetic terms:

Hi = k+
b,i(Bi − bi)c− k−b,ibi , Kj = k+

E,j(Gj − bE,j)E − k−E,jbE,j . (5)

The second to fourth terms on the right hand sides of (1)-(2) model the transport
of calcium through the membrane: leak current, current through IP3 controlled
channels, and pump current, respectively. Channels are typically clustered on the
membrane [2]. If a channel is open it contributes within the model to an effective
circular source area given by the channel flux term
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Pc(r) =

{
Pch if ‖r− xn‖ < Rn for a cluster n,
0 otherwise.

Here the radius Rn of the cluster n with Nopen,n open channels is then given by
Rn = Rs

√
Nopen,n. The parameter Rs is the source area of a cluster with one open

channel. The position of the cluster is given by a fixed position xn.
An additional complexity of the model stems from the stochastic behavior of

channel openings and closings, which needs to be incorporated into the computa-
tional approach. For an introduction to the hybrid algorithm to couple deterministic
and stochastic simulations see the recent paper by [5].

3 Numerical Method

3.1 Spatial Discretization Using Finite Elements

The domain Ω ⊆ R2 is a convex polygonal subset with piecewise smooth boundary
Γ . The state variables c(x, t), E(x, t), bm(x, t) and bEm(x, t) are functions of space
and time with values in Ω × [0, T ]. We shall denote by L2(Ω) the space of square-
integrable functions over Ω. This space is equipped with the standard inner product
〈u, v〉 =

∫
Ω
uv dx and ‖u‖0 = 〈u, u〉1/2. Next we define a Sobolev space of square

integrable functions and derivatives

H1(Ω) = {v ∈ L2(Ω), ∂iv ∈ L2(Ω), 1 ≤ i ≤ d} .

3.2 Semi Discretization in Space

The partial differential equations can be written in the following general form

∂u(x,t)
∂t

−∇ · (A(x)∇u(x, t)) + r(u(x, t)) = f in Ω × (0, T ] ,
u(x, t) = u0(x) on Ω × t = 0 ,
n · ∇u(x, t) = 0 on ∂Ω × [0, T ] ,

(6)

where u(x, t) is unknown, A(x) > 0 is the diffusion matrix and r(u(x, t)) is the
reaction function. Letting V = H1(Ω), multiplying the above equation for a given
time t by v ∈ V , integrating over Ω and using Green’s formula, we get the vari-
ational formulation. Now let Vh be a finite dimensional subspace of V with basis
{w1, . . . , wN}. Specifically we take continuous functions that are piecewise linear on
a quasi-uniform triangulation of Ω with mesh size h. Finally, we get a system of
ordinary differential equations in the form

Mu̇h + Auh + s(uh) = f , (7)

where M is the mass matrix, A is the stiffness matrix and s(uh) is the vector de-
pending on reaction term. The matrices are defined as follows

M = 〈wi, wj〉 , A = 〈A(x)∇wi,∇wj〉 , s(uh) = 〈r(
N∑

i=1

ui(t)wi(x)), wj〉 .

It is common practice to approximate the mass matrix M by a diagonal matrix,
which can be invertible easily. This is called a lumping process, see [4].
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3.3 Temporal Time-stepping of Continuous Equations

The ordinary differential equation system, acquired from the semi discretization in
space is solved numerically with finite difference methods. We considered the ODE
problem

∂u

∂t
= G(u), u(t0) = u0. (8)

The notation for time step is τ i = ti+1 − ti and ui to be the numerical solution
at time ti. The i-th time step of a W-method (linearly implicit Runge-Kutta type
method) of order p with embedding of order p̂ �= p has the form

(I− τ iγJ)kj = G

(
ti + τ iaj ,u

i + τ i
j−1∑
l=1

bljkl

)
+

j−1∑
l=1

cljkl, j = 1, . . . , s, (9)

ui+1 = ui + τ i
s∑

l=1

dlkl , ûi+1 = ui + τ i
s∑

l=1

d̂lkl. (10)

The method coefficients γ, aj , bjk, cjk, dj , and d̂j are chosen such that the local error
of u is of order τp+1

i , the local error of û is of order τ p̂+1
i , and these orders are

independent of the matrix J that is used. We assume p > p̂ which is reasonable
since one would prefer to continue the integration with the higher order solution u.
In our computations we use a W-method with s = 3 stages and for the coefficients,
see [6].

After the i-th integration step the value ε =
∥∥ui+1 − ûi+1

∥∥ is taken as an esti-
mator of the local temporal error. A new time step τnew is computed by

τ̄ := βτ i

(
TOLt

ε

) 1
p̂+1

, τnew =

⎧⎨⎩
βmaxτ

i, τ̄ > βmaxτ
i,

βminτ
i, τ̄ < βminτ

i,
τ̄ , otherwise.

(11)

The parameter β > 0 is safety factor. The factors βmin and βmax restrict time step
jumps. If ε < TOLt we proceed to the next time step, otherwise the time step has
to be shortened and repeated. Finally, after time discretization, we get system of
algebraic equations in each stage. For solving the system in each stage we used the
BiCGSTAB method with ILU preconditioning.

3.4 Grid Adaptivity

As spatial adaptivity criterion we used the Z2 error estimator of [8], see also [7].
For the refinement we used the following strategy. Let λ(T ) ∈ N0 be the refinement
level of triangle T ∈ T , λmax ∈ N0 be a given maximum refinement level, and
φ1, . . . , φλmax be given real numbers satisfying 0 ≤ φ1 . . . ≤ φλmax . Here we used
the scaled indicator φT := ηZ,T /

√
T . For the initial grid and grid adaption we used

the program package UG, [1]. We refine the mesh until minimum 4 grid points lie
in the area of each channel. For the Test Cases 1 and 2 the initial triangulation a
diameter of 700 nm for the triangle is considered.

Test Case 1. In this case we considered one cluster with 20 channels and the
domain size is [0,18000 nm] × [0,18000 nm]. The final mesh for this test case can
be seen in the left hand Fig. 1.



Parallel Numerical Solution of Intracellular Calcium Dynamics 611

C
yt

os
ol

ic
 C

a2+
 [µ

 M
]

tadapt level − 6
tadapt level − 7
tadapt level − 8
tadapt level − 9

tadapt level − 10

0.0601

0.0601

0.0602

0.0602

0.0602

0.0602

0.0602

0.0603

0.0603

0 0.5 1 1.5 2

x 10−3time [s]

Fig. 1. Mesh level 6 for 1 cluster and 100 clusters, convergence result of cytosolic
calcium at different adaptive levels.

Test Case 2. In this case we considered 100 clusters with a distance of 4 µm and
each cluster consists of 20 channels. The domain size is [0,48000 nm] × [0,48000 nm].
The final mesh for this test case can be seen in the middle Fig. 1.

4 Numerical Results

In this subsection we will present the convergence results of one cluster with 1 open-
ing channel. In all simulations we used the parameters Dc = 200 µm2 s−1, DE =
200 µm2s−1, Dm = 40 µm2s−1, Ds = 0.01 µm2s−1, Pch = 3.0 µms−1, Pl =
0.025 µms−1, Pp = 200 µmµM s−1, Rs = 18 nm, Kd = 0.04 µM and initial solu-
tions for c0 = 0.06 µM, Ec = 700 µM . First let us consider that in the numerical
simulation one channel is open for a while. We tested the result with temporally
adapted different grid levels. For different levels the average value of cytosol calcium
concentration is shown in the right hand Fig. 1. The average value of the solution
is calculated by using the integral average f̄ = 1

|Ω|
∫

Ω
f(x) dx . In the next case, see

Fig. 2, we have incorporated grid adaptivity during the intermediate time steps at
mesh level 7. Here channel opening is considered in the stochastic regime. Initially
mesh level 7 contains 2737 nodes and 5284 elements, at time t = 6.504 s has 3216
nodes and 6242 elements, at time t = 8.92 s it reaches to 18493 nodes and 36796 el-
ements. In Fig. 3 the cytosolic calcium at different times with 100 clusters is shown.

Fig. 2. The numerical result of cytosolic calcium at time t = 6.504 s, 6.68 s, 8.92 s
in 1 cluster.
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Here the channel opening is simulated stochastically.

Fig. 3. The numerical result of cytosolic calcium at times = 5.50 s, 6.13 s, 9.60 s
in 100 cluster.

4.1 Numerical Results Using Domain Decomposition Methods

In our numerical code to run the simulation time 100 s on a single processor, the
CPU time takes around 50 days. To reduce the computational time and to be able to
increase the number of mesh elements to millions the use of parallel computer archi-
tectures is mandatory. For the domain decomposition we used the graph partition-
ing package CHACO of [3]. The load balancing scheme Recursive Inertial Bisection
(RIB) serves well for this problem. Load balancing has been achieved as follows: the
meshes of level-0 to level-5 have been kept on one processor and the level-6 mesh has
been distributed to all processors. The mesh decomposition to different processors is
shown in Fig. 4.1. Computations for this problem have been carried out on HP-UX
B.11.11 machines with 2GB RAM for each processor this is connected to a 64 node
cluster with 3GFOLPS processor speed at our Institute.

Fig. 4. Domain decomposition using 16, 32 and 48 processors

Performance data of the simulations are presented in Table 1. The time step
size is kept constant in all simulations for the sake of comparison. The first column
shows the number of processors used and the last column shows the efficiency of
the processors. This efficiency can be calculated using 1

P
T (1)
T (P )

, where T (1) and T (P )
are total CPU time for 1 processor and P processors. Efficiency is increased if we
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Table 1. Comparison of CPU times using different processors

no. of procs unknowns time steps cpu time efficiency

1 133,296 10 26m 46s -
16 133,296 10 2m 16s 0.7381
32 133,296 10 1m 2s 0.8095
48 133,296 10 38s 0.8805
56 133,296 10 32s 0.8962

increase the number of processors, because of the data structure of the programming
package. The increase of the efficiency for 56 processors is 89.62%.

5 Conclusions

In this article we have presented sequential and parallel numerical results for in-
tracellular calcium dynamics in 2 dimensions. In the sequential case, we presented
the results of hybrid deterministic and stochastic models. In a test, we obtained
good agreement between all mesh levels when channels open for a prescribed time.
We observed that spatial adaptivity in time is important if channels open and close
stochastically. It is challenging to extend the computations to higher numbers of
clusters and 3 dimensions. Furthermore, we presented parallel numerical results us-
ing domain decomposition for a setup, where the channels open in a prescribed
deterministic way. Here we obtained a reasonably accurate numerical solution upon
increasing the number of processors. Extension of our parallel program to stochastic
channel dynamics is in progress.
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meinschaft (DFG), Germany for financial support under the project grants (Wa
633/16-1, Fa 350/6-1).
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Summary. We extend the parallel adaptive meshing algorithm by [2] to further
reduce communication requirements in solving PDEs by parallel algorithms. Imple-
mentation details and first results for time dependent problems are given.

1 Introduction

In this work we describe the parallelization concepts of our finite element software
AMDiS [7], which is a C++ toolbox for solving systems of partial differential equa-
tions. It uses adaptive mesh refinement based on local error estimates, to keep the
number of unknowns as small as possible. Bank and Holst [2] introduced a new ap-
proach for parallelizing such adaptive simulation software, which can be summarized
in the following steps:

1. Solve the problem on a relative coarse mesh. Estimate element errors and create
partitions with approximately equal error.

2. Each processor solves the problem on the whole domain Ω, but does adaptive
refinements only within its assigned local domain (including some overlap).

3. Construct the global solution out of all local solutions by a partition of unity
method.

This idea differs from the classical domain decomposition approach in two main
points. First, the load balancing is not done before every iteration, but only once at
the beginning of computation. Second, the processors do not restrict computations
to their local partitions, but refine only within these partitions. Both points lead to
reduced communication needs between the processors, and mainly the second point
makes it relatively easy to port a sequential software into a parallel one, because
necessary code changes are reduced to a minimum.

In section 2 we explain how the domain decomposition is realized in AMDiS,
followed by a description of necessary changes in the parallel adaptation loop in
section 3. The construction of the global solution is subject of section 4. In section
5 we show some numerical results also for time dependent problems. And finally
section 6 contains some conclusions and an outlook to further work.
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2 Domain Decomposition

To prepare parallel computations, first the decision must be made, how the work
is distributed amongst the given number of processors. Like already mentioned in
section 1, the main idea is to do a domain decomposition on a relative coarse mesh,
such that the sum of estimated errors in the different domains Ωi is approximately
the same. The coarse mesh can be constructed by a given number of adaptive re-
finement steps starting from a (very coarse) macro triangulation. These initial re-
finement steps can be done by one processor which sends the result to all other
processes, or they can be done by all processors in parallel. The second approach
has the benefit, that no communication has to be done after this phase, because all
processors come to the same result in nearly the same time. After domain decom-
position each processor i does its calculation on the whole domain, but refines the
mesh only within its partition Ω+

i , which is the domain Ωi including some overlap
with neighboring partitions.

The domain decomposition is computed with help of the parallel graph parti-
tioning and sparse matrix ordering library ParMETIS [5]. ParMETIS first creates
the dual graph of the mesh and then partitions this graph considering the error
estimates as element weights. When constructing the dual graph, the degree of con-
nectivity among the vertices in the graph can be given, by specifying the number of
nodes that two elements at least have to share, so that the corresponding vertices are
connected by an edge in the dual graph. For the partitioning of AMDiS meshes this
number is set to the dimension of the mesh, because this is the number of common
vertices of two neighboring simplices.

Setting this number to one, a dual graph with a higher connectivity is con-
structed, which can be used for an efficient overlap computation. The overlap is
computed on the coarse mesh which is used for the domain decomposition. An over-
lap of Ωi of size k includes all elements of the coarse mesh, that have a distance of
at most k to any element within Ωi. Two elements have a distance of 1, if they have
at least one common node. A breadth-first search on the dual graph with higher
connectivity can be used to determine all elements with distance d ≤ k to domain
Ωi.

In Figure 1 the overlap of size 1 for domain Ω1 on the coarse two dimensional
mesh is shown (left hand side). In the middle one can see the global fine mesh after
parallel computations, and on the right hand side the corresponding fine mesh of
rank 1 is shown. The dashed line at the overlap boundary indicates, that Ω+

i is an
open domain. The finite element basis functions that are located at this boundary
do not belong to partition i, which is important for the partition of unity method.

3 Parallel Adaptation Loop

The adaptation loop keeps nearly the same as in sequential computation. The only
thing to do here, is to ensure, that error estimations and refinements are done only
on the local partition (including overlap). One goal for the parallel adaptation is to
achieve a mesh, which is as similar as possible to that of the sequential computation.
To reach this goal, the right refinement strategy has to be chosen. If the strategy
depends on global values like the maximal error estimated on Ω, synchronization
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Fig. 1. Overlap of partition 1 on the coarse mesh (left), global fine mesh (middle),
and fine mesh of rank 1 (right)

after each iteration is needed to determine and communicate this value. This syn-
chronization could slow down the parallel computation drastically. So we use the
equidistribution strategy described in [6] where the refinement depends only on the
total error tolerance which is known in advance.

4 Building the Global Solution

After the parallel adaptation loop, every process has computed the solution on the
whole domain Ω. But refinements for process rank was only done in Ω+

rank. Out of
this region the solution was computed on a very coarse mesh, and so it may not be
very accurate. In this section we describe the construction of a final global solution
out of the local rank solutions by a parallel partition of unity method. Here each
process rank computes a weighted sum of all local solutions on its domain Ωrank

using the other solutions ui on Ωi
rank for all i �= rank. In section 4.1 the concept

of mesh structure codes is described, which provides an efficient way to exchange
information about the binary mesh structure at different processes. Using these
information, it is easy to synchronize meshes and exchange local solutions in the
overlap regions, what is explained in section 4.2. Finally section 4.3 shows, how the
parallel partition of unity is built locally by the single processes.

4.1 Mesh Structure Code

To be able to construct a global solution using the partition of unity method, first the
local solutions in overlap regions must be exchanged between the different processes.
An easy way to do this, is first to synchronize the meshes within these regions, and
than exchange the values of corresponding nodes. The concept of mesh structure
codes allows to synchronize the meshes in a very efficient way using the MPI com-
munication protocol.

Refinement in AMDiS is done by bisectioning of simplicial elements. The two
new elements are stored as children of the bisected element. So a binary tree arises,
where each element has either two children or no children. An inner element is
represented by a 1 in the mesh structure code, a leaf element is represented by a 0.
Furthermore a unique order of tree elements must be given, which is independent
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Fig. 2. Mesh structure code of an adaptively refined triangle

of the sequence of adaptive refinements and coarsenings. This order is defined by a
pre-order traversal of the tree elements. In Figure 2 the construction of the mesh
structure code for an adaptive refined triangle is shown. The resulting binary code
in this example can be represented by the decimal value 104. Depending on the
size of the binary tree and of the internal integer representation, not one but a
vector of integers is necessary to represent the whole tree. To exchange the mesh
structures between different processors only one or a few integer values for each
macro element has to be sent over MPI. The goal of mesh synchronization is to
create the composition of all meshes in overlap regions. To do this, mesh structure
codes can be merged very efficiently at binary level. Then the local mesh can be
adjusted to this composite mesh structure code.

4.2 Mesh Synchronization and Value Exchange

The process with rank rank will construct the global solution within its domain
Ωrank. Here fore it needs the local solution ui on Ωi

rank of every other process
i �= rank which has an overlap with Ωrank. After adapting the local mesh according
to the composite mesh structure code the different meshes have common nodes at
least in the overlap region. But due to different adaptation sequences in the meshes,
these nodes can have different indices, which makes the value exchange difficult.
A unique node order can be constructed by sorting the nodes lexicographically in
ascending order by their coordinates. So for every other rank i a sending order is
created on Ωrank

i and a receiving order on Ωi
rank. To avoid serialization in the MPI

communication, first a process sends in a non blocking way to all other processes,
and after that receives in a blocking way from the other processes.

4.3 Parallel Partition of Unity

Now process rank has all relevant informations to construct the global solution on
Ωrank by a partition of unity (see [1]), which is defined by a weighted sum over all
local solutions ui:

uPU (x) :=

numRanks∑
i=1

γi(x)ui(x) ∀x ∈ Ω (1)



AMDiS - Adaptive Multidimensional Simulations: Parallel Concepts 619

where
∑numRanks

i=1 γi(x) = 1 for all x ∈ Ω. We set γi(x) := Wi(x)∑N
j=1 Wj(x)

withWi(x) :=∑
φ∈Φc

i
φ(x) where Φc

i is the set of linear coarse grid basis functions within Ω+
i . The

partition of unity now is evaluated at all coordinates where fine grid basis functions
of Ωi are located. In [3] an upper bound for the error in H1 semi norm resulting from
the partition of unity is given. Assume u ∈ H2(Ω), then ‖u−uPU‖H1 ≤ C(h+H2),
where h is the maximal edge size of mesh i in Ωi and H is the maximal edge size of
mesh i in Ω \Ωi. In particular, if h ≤

√
H:

‖u− uPU‖H1 ≤ C(h) . (2)

5 Numerical Results

In this chapter we present two examples that demonstrate the functionality of the
parallelization approach. In section 5.1 the Poisson equation is solved on the unit
square. Section 5.2 shows an application in the field of image processing and provides
an extension of the approach to time dependent problems.

5.1 Poisson Equation

We solve the Poisson equation

−∇u(x) = f(x) ∀x ∈ Ω (3)

u(x) = g(x) ∀x ∈ ∂Ω (4)

with Ω = [0, 1] × [0, 1], f(x) = −(400x2 − 40)e−10x2
, and g(x) = e−10x2

. The

analytical solution is u(x) = e−10x2
, shown in Figure 3 a). In Figure 3 b) the time

lines of a parallel computation with eight processors are shown. In this case a speedup
of 5.8 to the serial computation was reached. The optimal speedup is not reached due
to the overhead of parallel initialization at the beginning and the partition of unity
at the end, as well as by a certain load imbalance during the parallel adaptation
loop. To get an impression of the error that arises due to the partition of unity, we
compared the solution after parallel computation with the true analytical solution
and computed the pointwise error, the error in L2 norm, and the error in the H1

semi norm. Afterwards we synchronized the meshes on the whole domain Ω and
solved the problem on this global mesh again on one single processor. In Table 1
the measured errors for the single cases are listed. The final solve step reduced the
pointwise and L2 error by about one order of magnitude. However the error in H1

semi norm is reduced only by about ten percent.

Table 1. Errors for a computation with 4 processors before and after a final solve
step

pointwise error L2 error H1 error

before final solve 2.726 · 10−2 6, 207 · 10−5 3.508 · 10−3

after final solve 1.120 · 10−3 6.418 · 10−6 3.327 · 10−3
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Fig. 3. Analytical solution of the Poisson equation and time lines of a parallel
computation with 8 processors

5.2 Perona-Malik Denoising

We now extend the approach to time dependent problems. For this we use the
Perona-Malik equation (see [4]) to reduce the noise level in a monochrome image.
The gray values of the image are interpreted as height field. A dogma in image
processing is that images are of high interest where the gradient of this height field
is large. So the Perona-Malik equation smooths regions with a small gradient and
sharpens regions with a large gradient. The equation reads

ut = div(g(|∇u|)∇u) (5)

with
g(s) := e−( s

2λ
)2 . (6)

The parameter λ determines the smoothing/sharpening properties. The time step
size determines the degree of denoising. In this example we do not use adaptive mesh
refinement, but use a fixed hierarchical mesh, which on the finest level represents
the resolution of the image. The domain decomposition and overlap computation is
done on a certain lower level of the mesh. After each time step a partition of unity
of the local rank solutions was computed. As initial solution we added random noise
of the interval [−30, 30] to a picture with gray values between 0 (black) and 255
(white). The picture domain is Ω = [0, 1]× [0, 1]. The parameter λ was set to 3000
and the time step size is 10−4. In Figure 4 a) the original in b) the noised picture is
shown. Figure 4 c) shows the denoising result after two time steps, 4 d) after four
time steps. To illustrate the view of one processor, in Figure 4 e) the local solution
of rank 4 after time step 4 is shown. In Figure 4 f) the corresponding local mesh is
presented.

6 Conclusions and Outlook

The concepts presented in this paper, allowed a parallelization of our finite element
software AMDiS with a comparatively small amount of redesign and reimplemen-
tation. With the ParMETIS library domain decomposition was done efficiently and
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Fig. 4. Parallel denoising of a monochrome picture

the concept of mesh structure codes enabled an easy way of mesh synchronization.
An aspect of future work is the treatment of time dependent problems with adaptive
refinements.
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Summary. We propose a Robin domain decomposition algorithm to approximate
a frictionless Signorini contact problem between two elastic bodies. The present
method is a generalization to variational inequality of Lions’ nonoverlapping domain
decomposition method. The Robin algorithm is a parallel one, in which we have to
solve a contact problem on each domain.

1 Introduction

Contact problems take an important place in computational structural mechanics
(see [8, 10, 13] and the references therein). Many numerical procedures have been
proposed in the literature. They are based on standard numerical solvers for the
solution of global problem in combination with a special implementation of the non-
linear contact conditions (see [5, 4]).
The numerical treatment of such nonclassical contact problems leads to very large
(due to the large ratio of degrees of freedom concerned by contact conditions) and ill-
conditioned systems. Domain decomposition methods are good alternative to over-
come this difficulties (see [2, 3, 15, 11, 14]).

The aim of this paper is to present and study an efficient iterative schemes
based on domain decomposition techniques for a nonlinear problem modeling the
frictionless contact of linear elastic bodies. The present method is a generalization
to variational inequality of the method described in [17, 9]. It can be interpreted as
a nonlinear Robin-Robin type preconditioner.

2 Weak Formulation of the Continuous Problem

Let us consider two elastic bodies, occupying two bounded domains Ωα, α = 1, 2,
of the space R2. The boundary Γα = ∂Ωα is assumed piecewise continuous, and
composed of three complementary parts Γα

u , Γα
� and Γα

c . The body Ω
α

is fixed on
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the set Γα
u of positive measure. It is subject to surface traction forces Φα ∈ (L2(Γα

� ))2

and the body forces are denoted by fα ∈ (L2(Ωα))2. In the initial configuration, both
bodies have a common contact portion Γc = Γ 1

c = Γ 2
c . We seek the displacement

field u = (u1, u2) (where the notation uα stands for u|Ωα) and the stress tensor
field σ = (σ(u1), σ(u2)) satisfying the following equations and conditions (1)-(3) for
α = 1, 2: ⎧⎨⎩

div σ(uα) + fα = 0 in Ωα,
σ(uα)nα − Φα = 0 on Γα

� ,
uα = 0 on Γα

u .
(1)

The symbol div denotes the divergence operator of a tensor function and is defined
as

div σ =
(∂σij

∂xj

)
i
.

The summation convention of repeated indices is adopted. The elastic constitutive
law, is given by Hooke’s law for homogeneous and isotropic solid:

σ(uα) = Aα(x)ε(uα), (2)

where Aα(x) = (aα
ijkh(x))1≤i,j,k,h≤2 ∈ (L∞(Ωα))16 is a fourth-order tensor satisfy-

ing the usual symmetry and ellipticity conditions in elasticity. The linearized strain
tensor ε(uα) is given by

ε(uα) =
1

2

(
∇uα + (∇uα)T

)
.

We will use the usual notations for the normal and tangential components of
displacement and stress vector on the contact zone Γc:

uα
N = uα

i n
α
i , [uN ] = u1n1 + u2n2 ,

σα
N = σij(u

α)nα
i n

α
j , σα

T = σij(u
α)nα

j − σα
Nn

α
i ,

where nα is the unitary normal exterior to Ωα.
The unilateral contact law on the interface Γc is given by:

[uN ] ≤ 0, σN ≤ 0, σN · [uN ] = 0. (3)

The contact is supposed frictionless so on Γc we get:

σT = 0.

In order to give the variational formulation corresponding to the problem (1)-(3),
let us introduce the following spaces

V α =
{
vα ∈ (H1(Ωα))2, v = 0 on Γα

u

}
, and V = V 1 × V 2

equipped with the product norm ‖ · ‖V =
(∑2

α=1 ‖ · ‖2(H1(Ωα))2

) 1
2
,

H 1
2 (Γc) =

{
ϕ ∈ (L2(Γc))

2; ∃v ∈ V α; γv|Γc
= ϕ

}
,

H
1
2 (Γc) =

{
ϕ ∈ L2(Γc); ∃v ∈ H1(Ωα); γv|Γc

= ϕ
}
,
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where γ is the usual trace operator. Now, we denote by K the following non-empty
closed convex subset of V :

K =
{
v = (v1, v2) ∈ V , [vN ] ≤ 0 on Γc

}
.

The variational formulation of problem (1)-(3) is{
Find u ∈ K such that

a(u, v − u) ≥ L(v − u), ∀v ∈ K,
(4)

where
a(u, v) = a1(u, v) + a2(u, v),

aα(u, v) =

∫
Ωα

Aα(x)ε(uα) · ε(vα)dx, (5)

and

L(v) =
2∑

α=1

∫
Ωα

fα · vα dx+

∫
Γ α

�

Φα · vαdσ.

There exists a unique solution u to problem (4) (see [7, 13]).

3 Multibody Formulation and Algorithm

In the following, we will use some lift operators which allow us to build specific
function from their values on Γc. For α = 1, 2, let

Rα : H 1
2 (Γc) −→ V α

ϕ −→ Rαϕ = vα,
(6)

where vα is the solution of{
aα(vα, w) = 0 ∀w ∈ V α with w = 0 on Γc

vα = ϕ on Γc.

The two-body contact problem (4) is approximated by an iterative procedure
involving a contact problem for each body Ωα with a rigid foundation described by
a given initial gap gα.
Given gα

0 ∈ Γc, α = 1, 2, for m ≥ 1, we build the sequence of functions (u1
m)m≥0

and (u2
m)m≥0, by solving in parallel the following problems:

Step 1:
1. Solve the contact problem

−div(σ(u1
m)) = f1 in Ω1,

σ(u1
m)n1 = Φ1 on Γ 1

� ,

u1
m = 0 on Γ 1

u ,

σ1
T,m = 0 on Γc, (7)

u1
mn

1 ≤ g1m−1 on Γc,
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σ1
N,m ≤ 0 on Γc,

σ1
N,m(u1

mn
1 − g1m−1) = 0 on Γc,

with initial gap g1m−1 = αS1(σ
2
N,m−1 − σ1

N,m−1)− u2
m−1n

2.
2. Solve the contact problem

−div(σ(u2
m)) = f2 in Ω2,

σ(u2
m)n2 = Φ2 on Γ 2

� ,

u2
m = 0 on Γ 2

u ,

σ2
T,m = 0 on Γc, (8)

u2
mn

2 ≤ g2m−1 on Γc,

σ2
N,m ≤ 0 on Γc,

σ2
N,m(u2

mn
2 − g2m−1) = 0 on Γc,

with initial gap g2m−1 = αS2(σ
1
N,m−1 − σ2

N,m−1)− u1
m−1n

1.
Step 2:
Relaxation

g1m = (1− δm)g1m−1 + δm(αS2(σ
1
N,m − σ2

N,m)− u2
mn

2) on Γc, (9)

g2m = (1− δm)g2m−1 + δm(αS1(σ
2
N,m − σ1

N,m)− u1
mn

1) on Γc. (10)

A key point in this algorithm is the choice of αSi , i = 1, 2:
- αSi is non-negative constant. It is the simplest choice but leads to an h-

independent algorithm which is very sensible to boundary conditions.
- αSi is the Steklov-Poincaré operator defined on the interface Γα

c of Ωα as
introduced in [1]. This operator is not practical if the domains Ωα are too large, but
it has interesting features. Mainly, it can be defined for any geometry and for any
elliptic operator, including three-dimensional anisotropic heterogeneous elasticity,
and it is coercive positive selfadjoint operator. In practice, this choice consists to
resolve two auxiliary problems before step 2. These auxiliary problems are written
by:
m ≥ 0, α = 1, 2

−div(σ(wα
m)) = 0 in Ωα,

σ(wα
m)nα = 0 on Γα

� ,

wα
m = 0 on Γα

u , (11)

σ(wα
m)nα = ±(σ(u1

m)n1 − σ(u2
m)n2) on Γc.

So the variational formulation of our algorithm takes the following form:

Given gα
0 , α = 1, 2,∈ H 1

2 (Γc), for m ≥ 1, we build the sequence of functions
(u1

m)m≥0 ∈ V 1 and (u2
m)m≥0 ∈ V 2 by solving the following problems:

1st step:

Find uα
m ∈ V α

− (gα
m−1),

aα(uα
m, v

α − uα
m) ≥ (fα, wα − uα

m)∀vα ∈ V α
− (gα

m−1) (12)
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where
V α
− (ϕ) = {v ∈ V α/ vnα ≤ −ϕ on Γα

c } .
2nd step:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Find w1

m ∈ V 1,
a1(w1

m, v) = −a2(u2
m, R

2γ(v)) + (f2, R2γ(v))− a1(u1
m, v) + (f1, v)∀v ∈ V 1.

Find w2
m ∈ V 2,

a2(w2
m, v) = a1(u1

m, R
1γ(v))− (f1, R1γ(v)) + a2(u2

m, v)− (f2, v)∀v ∈ V 2.

(13)

3th step: ⎧⎨⎩
g1m = (1− δm)g1m−1 + δm(w2

mn
2 − u2

mn
2) on Γc,

g2m = (1− δm)g2m−1 + δm(w1
mn

1 − u1
mn

1) on Γc.
(14)

We refer to [12] for the convergence results of the continuous algorithm (12)-(14)
and its finite elements approximation.

Remark 1. Another choice of αSi , for i = 1, 2, is to create an artificial small “dream”
domain having Γc as one of its faces on which we define the Steklov-Poincaré operator
(see [16, 18]).

4 Numerical Experiments

In this section we describe some numerical results obtained with algorithm (12)-
(14) for various relaxation parameter δ and various degrees of freedom n = n1 + n2

(d.o.f in Ω1 ∪ Ω2) and m (d.o.f. on Γc). The computation is based on the itera-
tive method of successive approximations. Each iterative step requires to solve two
quadratics programming problems constrained by simple bounds. Our implementa-
tion uses recently developed algorithm of quadratic programming with proportioning
and gradient projections [6].

The computation efficiency shall be assessed by

ITouter/ITinner,

where ITouter (resp. ITinner) denotes the number of outer iterations (resp. the total
number of conjugate gradient steps i.e the number of matrix-vector multiplications
by Hessians).

The numerical implementations are performed in Scilab 2.7 on Pentium 4, 2.0
GHz with 256 MB RAM. We set tol = 10−8 and we break down iterations, if their
number is greater than eight hundred. For all experiments to be described below,
the stopping criterion of Algorithm (12)-(14) is

‖g1m − g1m−1‖
‖g1m‖

+
‖g2m − g2m−1‖

‖g2m‖
≤ tol,

where || · || denotes the Euclidean norm. The precisions in the inner iterations are
adaptively adjusted by the precision achieved in the outer loop.
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Let us consider the plane elastic bodies

Ω1 = (0, 3)× (1, 2) and Ω2 = (0, 3)× (0, 1)

made of an isotropic, homogeneous material characterized by Young’s modulus Eα =
2.1 1011 and Poisson’s ratio να = 0.277. The decomposition of Γ 1 and Γ 2 read as:

Γ 1
u = {0} × (1, 2), Γ 1

c = (0, 3)× {1}, Γ 1
l = Γ 1 \ Γ 1

u ∪ Γ 1
c ,

Γ 2
u = {0} × (0, 1), Γ 2

c = (0, 3)× {1}, Γ 2
l = Γ 2 \ Γ 2

u ∪ Γ 2
c .

<−−

<−−Γ1
u

Γ2
u

Ω1

Γc

Ω2

l12(3, s)

l12(s, 2)

Γ2
l

Γ1
l

Fig. 1. Setting of the problem

The volume forces vanish for both bodies. The non-vanishing surface traction
�1 = (l11, l

1
2) (respectively, �2 = (l21, l

2
2)) act on Γ 1

l (respectively, on Γ 2
l ):

l11(s, 2) = 0, l12(s, 2) = −3 106 − 1 106 s, s ∈ (0, 3),

l11(3, s) = 0, l12(3, s) = 2 106, s ∈ (1, 2),

l21(s, 0) = 0, l22(s, 0) = 0, s ∈ (0, 3),

l21(3, s) = 0, l22(3, s) = 0, s ∈ (0, 1).

The Table 1 gives convergence of the algorithm (12)-(14) for different values of
the relaxation parameter δ and various degrees of freedom (n and m). The results
obtained show that the number of outer iterations (for an optimal value of δ = 0.95)
does not depend on the degrees of freedom n and m.
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Table 1. Convergence of the algorithm

n/m δ = 0.1 δ = 0.5 δ = 0.7 δ = 0.95 δ = 1

12/3 287/903 76/243 62/208 47/160 −
36/6 285/899 79/272 66/237 49/179 −
288/16 270/878 74/282 79/295 45/188 −
816/24 296/957 92/332 93/340 47/204 −
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[1] V.I. Agoshkov. Poincaré-Steklov’s operators and domain decomposition meth-
ods in finite-dimensional spaces. In First International Symposium on Domain
Decomposition Methods for Partial Differential Equations (Paris, 1987), pages
73–112, Philadelphia, 1988. SIAM.

[2] G. Bayada, J. Sabil, and T. Sassi. Algorithme de Neumann-Dirichlet pour des
problèmes de contact unilatéral: résultat de convergence. C. R. Math. Acad.
Sci. Paris, 335(4):381–386, 2002. In French. (Neumann-Dirichlet algorithm for
unilateral contact problems: convergence results).

[3] G. Bayada, J. Sabil, and T. Sassi. A Neumann-Neumann domain decomposition
algorithm for the Signorini problem. Appl. Math. Lett., 17(10):1153–1159, 2004.

[4] A.B. Chandhary and K.J. Bathe. A solution method for static and dynamic
analysis of three-dimensional contact problems with friction. Computers &
Structures, 24:855–873, 1986.

[5] P.W. Christensen, A. Klarbring, J.S. Pang, and N. Stromberg. Formulation and
comparison of algorithms for frictional contact problems. Internat. J. Numer.
Methods Engrg., 42(1):145–173, 1998.
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Summary. Two parallel and scalable multilevel preconditioners for the Bidomain
system in computational electrocardiology are introduced and studied. The Bido-
main system, consisting of two degenerate parabolic reaction-diffusion equations
coupled with a stiff system of several ordinary differential equations, generates very
ill-conditioned discrete systems when discretized with semi-implicit methods in time
and finite elements in space. The multilevel preconditioners presented in this paper
attain the best performance to date, both in terms of convergence rate and solution
time and outperform the simpler one-level preconditioners previously introduced.
Parallel numerical results, using the PETSc library and run on Linux Clusters,
show the scalability of the proposed preconditioners and their efficiency on large-
scale simulations of a complete cardiac cycle.

1 Introduction

We introduce and study two parallel and scalable multilevel preconditioners for
the Bidomain system in computational electrocardiology. These preconditioners im-
prove upon the recent studies [2, 7], where one-level block Jacobi preconditioners
were found to perform satisfactorily for the simplified Monodomain model but not
for the more complex Bidomain system. The latter is a multiscale model of the car-
diac bioelectrical activity, consisting of two degenerate parabolic reaction-diffusion
equations describing the intra and extracellular potentials of the anisotropic cardiac
tissue (macroscale), coupled through the nonlinear reaction term with a stiff system
of several ordinary differential equations describing the ionic currents through the
cellular membrane (microscale).

The numerical resolution of the Bidomain system is computationally very ex-
pensive, because of the interaction of the different scales in space and time, the
degenerate nature of the PDEs involved and the very severe ill-conditioning of the
discrete systems arising at each time step. Fully implicit methods in time have been
considered in few studies, see e.g. [6] and require the solution of nonlinear systems
at each time step. Most numerical studies employ semi-implicit (IMEX) methods in
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time that only require the solution of linear systems at each time step. Many differ-
ent preconditioners have been proposed in order to devise efficient iterative solvers
for such linear systems: diagonal preconditioners [9], Symmetric Successive Over Re-
laxation [8, 14], Block Jacobi (BJ) preconditioners with incomplete LU factorization
(ILU) for each block [2, 7, 13], multigrid [15].

The multilevel preconditioners presented in this paper attain the best perfor-
mance to date, both in terms of convergence rate and solution time and outperform
the simpler one-level preconditioners previously introduced. Parallel numerical re-
sults, using the PETSc library (see [1]) and run on Linux Clusters, show the scala-
bility of the proposed preconditioners and their efficiency on large-scale simulations
of a complete cardiac cycle.

2 The Mathematical Model

The macroscopic Bidomain model represents the cardiac tissue as the superposition
of two anisotropic continuous media, the intra (i) and extra (e) cellular media,
coexisting at every point of the tissue and separated by a distributed continuous
cellular membrane. The cardiac tissue is traditionally modeled as an arrangement
of fibers rotating clockwise from epicardium to endocardium [11] and, according
to [4], presents a laminar organization, which consists of a set of muscle sheets,
moving radially from epicardium to endocardium. Therefore, at any point x, it is
possible to identify a triplet of orthonormal principal axes al(x), at(x), an(x), with
al parallel to the local fiber direction, at and an tangent and orthogonal to the
radial laminae respectively. The anisotropic conductivity properties of the tissue
are described by the conductivity coefficients in the intra and extracellular media
σi,e

l , σi,e
t , σi,e

n measured along the corresponding direction al, at, an and by the
conductivity tensors Di(x) and De(x), given by

Di,e(x) = σi,e
l al(x)aT

l (x) + σi,e
t at(x)aT

t (x) + σi,e
n an(x)aT

n (x).

The intra and extracellular electric potentials ui, ue in the cardiac domain Ω
are described in the Bidomain model by the following parabolic reaction-diffusion
system coupled with a system of ODEs for the ionic variables w:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

cm
∂v

∂t
− div(Di∇ui) + Iion(v, w) = 0 in Ω × (0, T )

−cm
∂v

∂t
− div(De∇ue)− Iion(v, w) = −Ie

app in Ω × (0, T )

∂w

∂t
−R(v, w) = 0, in Ω × (0, T ),

(1)

with boundary conditions nT Di,e∇ui,e = 0 in ∂Ω × (0, T ) and initial conditions
v(x, 0) = v0(x), w(x, 0) = w0(x) in Ω. Here cm is the capacitance per unit area
times the surface to volume ratio; v = ui − ue is the transmembrane potential; Ie

app

is the applied current; Iion and R model the ionic currents and depend on the choice
of the membrane model. In this work we consider the LR1 model, see [5]. Existence
and regularity results for this degenerate system are proved in [3] and [12]. The
system uniquely determines v, while the potentials ui and ue are defined only up to
a same additive time-dependent constant.
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3 Discretization and Numerical Methods

System (1) is discretized by the finite element method in space and a semi-implicit
method in time. The space discretization is obtained meshing the cardiac domain
Ω with a structured grid of hexahedral Q1 elements and introducing the associated
finite element space Vh. A semidiscrete problem is obtained by applying a stan-
dard Galerkin procedure. We denote by M the symmetric mass matrix, by Ai,e the
symmetric stiffness matrices associated to the intra and extra-cellular anisotropic
conductivity tensors, respectively, and by Ih

ion, I
e,h
app the finite element interpolants of

Iion and Ie
app, respectively. The time discretization is performed by a semi-implicit

method using for the diffusion term the implicit Euler method, while the nonlinear
reaction term Iion is treated explicitly.

As a consequence, the full evolution system is decoupled by first solving the
ODEs system (given the potential vn at the previous time-step)

wn+1 −∆t R(vn,wn+1) = wn

and then solving for un+1
i ,un+1

e the linear system(
cm
∆t

[
M −M
−M M

]
+

[
Ai 0
0 Ae

])(
un+1

i

un+1
e

)
=

cm
∆t

(
M( un

i − un
e )

M[−un
i + un

e ]

)
+

(
M[−Ih

ion(vn,wn+1)]

M[ Ih
ion(vn,wn+1)− Ie,h

app]

)
, (2)

where vn = un
i − un

e . The iteration matrix is symmetric semidefinite, having the
zero eigenvalue associated to the (1, 1) eigenvector, therefore, as in the continuous
model, un

i and un
e are determined only up to the same additive time-dependent

constant, chosen by imposing the condition 1TMun
e = 0. From [2] we know that the

iteration matrix is very ill conditioned and we need an efficient preconditioner.

4 Parallel Implementation and Preconditioners

The parallel strategy consists of partitioning the computational domain into subdo-
mains of the same size and assign them to different processors. The linear system
(2) is solved with the parallel PCG method of the PETSc library. We will compare
three different preconditioners.
Block Jacobi Preconditioner (BJ), i.e. a block diagonal matrix with blocks built
from the local restriction of matrix A to each subdomain; on each block, we use an
ILU(0) solver.
V-cycle Multigrid Preconditioner (MG): the linear system at each time step is
solved with a five-level V-cycle Multigrid method (MG(5)). The smoother used for all
but the coarsest level is a single iteration of CG with BJ-ILU(0) preconditioner. On
the coarsest level we solve the system using the PCG preconditioned by BJ-ILU(0).
Symmetrized Multiplicative Multilevel Schwarz Preconditioner (SMMS).

Let be Ω(i), i = 0, ...,M a family of nested triangulations of Ω, coarsening from M
to 0, and A(i) the matrix obtained by discretizing (1) on Ω(i): so A(M) = A. R(i) are

the restriction operators from Ω(i+1) to Ω(i). We decompose Ω into N overlapping

subdomains, hence each grid Ω(i) is decomposed into N overlapping subgrids Ω
(i)
k
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for k = 1, ..., N , such that the overlap δ(i) at level i = 1, ...,M is equal to the mesh

size h(i) of the grid Ω(i). Let R
(i)
k be the restriction operator from Ω(i) to Ω

(i)
k and

define A
(i)
k := R

(i)
k A(i)R

(i)T

k . The action of this preconditioner on a given residual r
is given by:

u
(M) ←

N∑
k=1

R(M)T

k
A(M)−1

k
R(M)

k
r

r(M−1) ← R(M−1)(r − A(M)u(M))

u
(M−1) ←

N∑
k=1

R(M−1)T

k
A(M−1)−1

k
R(M−1)

k
r
(M−1)

...

u
(0) ← A(0)−1

r
(0)

, u
(1) ← u

(1) + R(0)T
u
(0)

u(1) ← u(1) +
N∑

k=1
R(1)T

k
A(1)−1

k
R(1)

k
(r(1) − A(1)u(1))

...

u
(M) ← u

(M) + R(M−1)T
u
(M−1)

u
(M) ← u

(M) +
N∑

k=1
R(M)T

k
A(M)−1

k
R(M)

k
(r(M) − A(M)

u
(M))

u ← u(M)

We implemented this method with 5 levels, hence in the remainder we denote it by
SMMS(5). For details see [10].

5 Numerical Results

The numerical experiments were performed on two distributed memory paral-
lel architectures, the IBM CLX/1024 Linux cluster of the Cineca Consortium
(www.cineca.it), with 1024 processors Intel Xeon Pentium IV (3 GHz, 512 KB
cache) grouped into 512 nodes of 2 processors (total RAM = 1 TB), and the Ulisse
Linux cluster of the Department of Mathematics of the University of Milan (clus-
ter.mat.unimi.it), with 72 processors Xeon (2.4 GHz) grouped into 36 nodes of 2
processors. Our FORTRAN code is based on the parallel library PETSc from the
Argonne National Laboratory [1].

Test 1: standard speedup. We simulate the initial depolarization of a thin
slab of cardiac tissue, having dimensions of 2.56×2.56×0.01 cm3, applying a stimulus
of 200mA/cm3 for 1ms on a small volume of 2× 2× 2 elements at a vertex of the
domain. The global mesh is fixed to be of 257×257×2 nodes (264196 unknowns) and
the number of subdomains varies from 1 to 16. The model is run for 40 time steps
of 0.05ms, i.e. for a time interval of 2ms on the Linux cluster of the University
of Milan. In table 1, we report the average number of PCG iterations per time
step, needed to reduce the l2 norm of the residual smaller than 10−4, the average
condition number per time step and the average time needed to solve the linear
system. Both the multilevel methods are scalable, in fact the iterations remain almost
constant increasing the number of subdomains. The BJ speedup is low, because the
number of iterations increases with the processors. The multilevel preconditioners
behave well up to 8 processors, but with 16 the local problems are too small and
the communication costs deteriorate the parallel performance.

Test 2: scaled speedup. In this test, we vary the number of subdomains from
8 to 128, keeping fixed the local mesh in each subdomain to 48 × 48 × 48 nodes
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Table 1. Test 1, standard speedup. IT:= average PCG iterations per time step;
COND:= average condition number per time step; TIME:= average execution time
per time step in seconds.

# SUB BJ MG(5) SMMS(5)
IT. COND. TIME IT. COND. TIME IT. COND. TIME

1 95 1817 23.00 3 1.04 9.11 - - -

2 108 2209 22.27 3 1.04 4.63 3 1.04 4.95

4 109 2229 10.40 4 1.08 2.92 3 1.04 2.49

8 111 2367 5.31 4 1.11 1.58 3 1.04 1.28

16 114 2745 3.47 4 1.13 0.78 3 1.04 0.71

(221184 unknowns), hence varying the global number of degrees of freedom (d.o.f.)
from 1.7 × 106 in the smallest case with 8 subdomains to 2.8 × 107 in the largest
with 128 subdomains. As in test 1, we simulate the initial depolarization of a cardiac
slab, running the model for 40 time steps on the CLX cluster of CINECA. Table 2
reports the average number of PCG iterations, the average condition number and
the average solving time per time step. These results show the parallel scalability
of the proposed multilevel methods, that have constant iteration counts, while the
one-level BJ preconditioner has increasing iteration counts as expected. The solving
time is also scalable, increasing of only 15∼20 % going from 8 to 128 processors;
for SMMS(5) this increase is due only to communications, because the iterations
remain constant.

Table 2. Test 2, scaled speedup. Same format as in Table 1.

# SUB D.O.F. BJ MG(5) SMMS(5)
IT. COND. TIME IT. COND. TIME IT. COND. TIME

8 1769472 84 1461 29.9 4 1.26 16.1 4 1.14 16.2

16 3538944 93 2119 35.7 4 1.34 16.9 4 1.14 18.1

32 7077888 106 3543 44.8 5 1.43 16.8 4 1.14 16.3

64 14155776 115 4984 42.3 5 1.61 17.8 4 1.15 18.9

128 28311552 121 5165 51.4 5 1.58 18.5 4 1.14 19.6

Table 3. Test 3, complete cardiac cycle. IT:= average PCG iterations per time step;
TIME:= average execution time per time step in seconds; TOTAL TIME:= total
simulation time

PREC aver. IT. aver. TIME TOTAL TIME

BJ 205 46.02 sec 29 h 49 m

MG(5) 8 11.11 sec 7 h 21 m

SMMS(5) 6 9.67 sec 6 h 26 m

Test 3: complete cardiac cycle. In this last test, we simulate a complete
heartbeat (400 ms) in a portion of ventricle having dimension 2 × 2 × 0.5 cm3,
discretized by a cartesian grid of 200× 200× 50 nodes (4× 106 d.o.f.). We run the
simulation on 36 processors of the Linux cluster of Milan. Table 3 reports the average
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Fig. 1. Test 3. Time evolution of the PCG iterations with BJ preconditioners (left)
and multilevel preconditioners MG(5), SMMS(5) (right).
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Fig. 2. Test 3. Patterns of level lines of the transmembrane and extracellular po-
tentials during the excitation phase (t = 40 ms). Reported below each panel are the
minimum, maximum and step in mV of the displayed map.
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Fig. 3. Test 3. Time evolution at a fixed point of the transmembrane and extracel-
lular potentials, computed with the three methods.
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PCG iterations per time step, the average execution time per time step and the total
simulation time. MG(5) and SMMS(5) are respectively 4 and 4.7 times faster than
BJ. The detailed iteration counts as a function of time during the complete heartbeat
are shown in Fig. 1 (left panel for BJ and right panel for MG(5) and SMMS(5)).
Figure 2 shows the spatial maps of the transmembrane and extracellular potentials
computed 40 ms after the stimulus was given at a vertex of the domain, i.e. during
the excitation phase. Figure 3 shows the transmembrane and extracellular potentials
computed in a fixed point of the domain by the three methods (the graphics are
perfectly superimposed).
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A commonly used method for fitting smooth functions to noisy data is the thin-plate
spline method. Traditional thin-plate splines use radial basis functions and conse-
quently require the solution of a dense linear system of equations whose dimension
grows linearly with the number of data points. Here we discuss a method based on
low order polynomial functions with locally supported basis functions. An advan-
tage of such an approach is that the resulting system of equations is sparse and its
dimension depends linearly on the number of nodes in the finite element grid instead
of the number of data points.

Another advantage is that an iterative solver, such as the conjugate gradient
method, can be used. However it can be shown that the system of equations is similar
to those arising from Tikhonov regularisation, and consequently the equations are
ill-conditioned for certain choices of the parameters. To ensure that the method is
robust an appropriate preconditioner must be used.

In this paper we present the discrete thin-plate spline method and explore a set
of preconditioners. We discuss some of the properties that are unique to our partic-
ular formulation and verify that the multiplicative Schwarz method is an effective
preconditioner.

1 Introduction

The thin-plate spline method is a popular data fitting technique because it is in-
sensitive to noise in the data. For a general domain Ω the thin-plate spline f (as
discussed by [10] and [3]) minimises the functional

Jα(f) =
1

n

n∑
i=1

(f(x(i))− y(i))2

+α

∫
Ω

∑
|ν|=2

(
2

ν

)
(Dνf(x))2dx, (1)

where ν = (ν1, ..., νd) is a d dimensional multi-index, |ν| =
∑d

s=1 νs, x is a predictor

variable in Rd, and x(i) and y(i) are respectively the corresponding i-th predictor
and response data value (1 ≤ i ≤ n).
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The parameter α controls the trade-off between smoothness and fit. Techniques
for choosing α automatically, such as generalised cross validation (GCV), can be
found in [5, 10].

Radial basis functions are often used to represent f , as they give an analytical
solution of the minimiser of the functional in (1). However the resulting system of
equations is dense, and furthermore its dimension is directly proportional to the
number of data points.

In [7, 8] we proposed a discrete thin-plate spline method that uses piecewise
functions with local support defined on a finite element mesh. In particular, the
method described in Section 2 uses standard multi-linear finite element basis func-
tions. The advantage of using functions with local support is that the dimension of
the resulting system of sparse equations depends only on the number of grid points
in the finite element mesh.

The system of equations resulting from the finite element discretisation can be
manipulated to form a symmetric positive definite system, as shown in Section 3.
However for small values of α this system is ill-conditioned and the convergence
slows down markedly. Section 4 discusses some of reasons causing the difficulties
with the convergence rate, and Section 5 shows that the convergence rate can be
improved by using the multiplicative Schwarz preconditioner.

2 Discrete Thin Plate Splines

For simplicity most of the discussion is focused on two dimensional (2D) examples,
although the theory generalises to three dimensions and the code has been developed
for both two and three dimensions.

The smoothing problem from (1) can be approximated with finite elements so
that the discrete smoother f is a linear combination of piecewise multi-linear basis
functions (hat functions) bi(x) ∈ H1

0 ,

f(x) =
m∑

i=1

cibi(x) = b(x)T c.

The idea is to minimise Jα over all f of this form. The smoothing term (the sec-
ond term in (1)) is not defined for piecewise multi-linear functions, but the non-
conforming finite element principle can be used to introduce piecewise multi-linear
functions u = (b(x)T g1,b(x)T g2) to represent the gradient of f . The functions f
and u satisfy the relationship∫

Ω

∇f(x) · ∇bj(x) dx =

∫
Ω

u(x) · ∇bj(x) dx, (2)

for all the basis functions bj . This relationship ensures that u is an approximation
of the gradient of f in a weak sense.

Constraint (2) is equivalent to the relationship

Lc−G1g1 −G2g2 = 0, (3)

where L is a discrete approximation to the negative Laplace operator and (G1, G2)
is a discrete approximation to the transpose of the gradient operator.
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We now consider the minimiser of the functional

Jα(c,g1,g2) =
1

n

n∑
i=1

(b(x(i))T c− y(i))2 + α

∫
Ω

2∑
s=1

∇(bT gs) · ∇(bT gs) dx

= cTAc− 2dT c + yT y/n+ α
(
gT

1 Lg1 + gT
2 Lg2

)
. (4)

Our smoothing problem consists of minimising this functional over all vectors
c,g1,g2 defined on the domain Ωh, subject to the constraint (3).

The matrices L, G1 and G2 are constructed independent of the data points but
the matrix

A =
1

n

n∑
i=1

b(x(i))b(x(i))T ,

and vector

d =
1

n

n∑
i=1

b(x(i))y(i),

are assembled by sweeping through the data points. Matrix A is symmetric, nonneg-
ative, and sparse. In regions where the support of the basis functions do not contain
any data points the matrix is zero.

The smoothing function defined by f(x) = b(x)T c has essentially the same
smoothing properties as the original thin plate smoothing spline, provided the dis-
cretisation is small enough, see [6].

By using Lagrange multipliers, the minimisation problem may be rewritten as
the solution of the following linear system of equations⎡⎢⎢⎣

A 0 0 L
0 αL 0 −GT

1

0 0 αL −GT
2

L −G1 −G2 0

⎤⎥⎥⎦
⎡⎢⎢⎣

c
g1

g2

w

⎤⎥⎥⎦ =

⎡⎢⎢⎣
d
0
0
0

⎤⎥⎥⎦−
⎡⎢⎢⎣
h1

h2

h3

h4

⎤⎥⎥⎦ , (5)

where w is a Lagrange multiplier associated with constraint (3). The vectors
h1, · · · ,h4 store the Dirichlet boundary information.

For examples where the exact form of a the minimiser is known, the Dirichlet
boundary conditions can be set accordingly, see [8]. Different boundary conditions
will give different forms of the minimiser, we plan to explore this idea further as a
means to incorporate prior information.

3 Solution of the Linear System

One way to solve (5) is to eliminate all the variables except g1 and g2, which gives[
αL+GT

1 ZG1 GT
1 ZG2

GT
2 ZG1 αL+GT

2 ZG2

] [
g1

g2

]
=

[
GT

1 L
−1d

GT
2 L

−1d

]
−
[
h2 +GT

1 L
−1h

h3 +GT
2 L

−1h

]
, (6)

where Z = L−1AL−1, h = h1 −AL−1h4 and c = L−1 (G1g1 +G2g2 − h4).
Applying Z to a vector is equivalent to solving two systems of equations involving

the Laplacian, so it is important to use an efficient Poisson solver. Fortunately there
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are techniques, such as the multigrid method, that are optimal for the solution of
such problems.

System (6) is symmetric positive definite and may be solved using the precon-
ditioned Conjugate Gradient (PCG) method.

The matrix on the left-hand side of (6) can be rewritten as[
αL̂+ K̂T K̂

]
, (7)

where

L̂ =

[
L 0
0 L

]
and K̂T =

[
GT

1

GT
2

]
L−1A1/2.

This is similar to the type of matrix arising in Tikhonov regularisation.
The system K̂T K̂ is symmetric positive semidefinite, and for small values of α

(6) is close to a semidefinite system. As shown in Section 5 the convergence rate of
the PCG method deteriorates as α is reduced and in some cases the PCG method
diverges.

3.1 Properties of Gradient Matrices

� � � �

u1 u2 u3 u4 u5

Fig. 1. Example grid in 1D used to demonstrate that the matrix G1 may be singular.

The matrices Gs may be singular. To illustrate this consider the 1D grid shown
in Figure 1. The stencil corresponding to the finite element approximation of the
gradient is

h
[
−1 0 1

]
and thus the vector u =

[
a 0 a 0 a

]T
belongs to the null space of G1. In other words

we can assign any constant value to the points marked by squares in Figure 1 and the
gradient will be zero. Similar examples can be constructed for higher dimensional
grids.

Instead of the domain shown in Figure 1, consider the domain labelled Subgrid
1 in Figure 2. The matrix G1 defined on this domain is non-singular. We require
domains like those shown in Figure 1 in order to use the multigrid method to solve
the Laplacian. This lead to the use of the domain decomposition method to define
subgrids where the matrices Gs are non-singular, thus reducing the convergence rate
(see Section 4). As the subgrids are relatively small it is possible to use a different
Laplacian solver, such as a sparse direct method.
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u2 u3 u5u4

Subgrid 1

Subgrid 2

Fig. 2. Example subdivision of a grid in 1D where the gradient matrix is non-
singular.

4 Preconditioners

For practical applications small α values are not usually of interest because the
results will contain too much noise, however search algorithms like GCV may require
some evaluations for small α before they find the optimal value of α. For larger values
of α (α > 10−5) the preconditioner

M =

[
L−1 0
0 L−1

]
(8)

works very well, but for smaller α a different preconditioner is required. Finding an
effective preconditioner for small values of α was a challenge.

The type of preconditioners we consider here are subspace correction precondi-
tioners. In particular we focused on the algorithms presented in [4] and [11]. Recall
that we are trying to solve (6) using the PCG method as it is a positive definite
system. Solving (6) directly on a subspace is difficult because of the presence of
the inverse Laplacian. Therefore we noted that (6) is a short cut to solving (5). It
is straightforward to project (5) onto the subgrid and, once again, eliminate all of
the variables except g1 and g2 (defined on the subgrid). Note that by using (5)
and then eliminating the variables, the right-hand-side of the equation will contain
some information about c and w; this is how the global L−1 is incorporated into
the system. As a consequence, values for c and w must be generated during the
preconditioning step.

The first approach we looked at was the two-level preconditioner presented by
[4], which is designed for matrices similar to those given by (7). Unfortunately the
form of the matrices Gs would not allow the use of the injection operator as in the
paper referenced above.

The next approach we tried was to use multiplicative and additive Schwarz
methods with the subgrids defined in such a way as to ensure that the matrices
Gs are non-singular. The PCG method was also used to solve (6) defined on each
subgrid as described at the beginning of this section. The approach improved the
convergence rate slightly, but not enough to offset the extra cost of generating the
c and w vectors.
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5 Multiplicative Schwarz

A preconditioner which gives robust results is the multiplicative Schwarz precondi-
tioner, combined with a sparse direct method to solve (5) on each subgrids. This
avoids the inverse Laplacian found in (6). The sparse direct method we used is
umfpack_di_numeric from the UMFPACK package [2].

The (symmetric) multiplicative Schwarz approach is the same as Algorithm 3.4 in
[11]. Equation 2.1 in [11] was repeatedly applied until either ‖uk+1−uk‖/‖uk+1‖ <
10−2 or the number of iterations reached an upper bound (currently 20). We have
chosen this approach as it is cheap and the tolerance does not have to be too accurate
for the preconditioner.

We now present two examples highlighting the performance of the multiplicative
Schwarz algorithm. The test runs were carried out using a code developed by Stals.
The code is a parallel finite element code and we plan to move these test runs to
a parallel machine, at which time we will explore the use of the additive Schwarz
algorithm.

In the first example the data points x(i) (1 ≤ i ≤ n) sit on the lattice defined
by dividing the square [1/p, 1− 1/p]× [1/p, 1− 1/p] into p− 1 equally spaced sub-
squares, where p = 100 and hence n = 992. The values assigned to each data point
were y(i) = x

(i)
1 + x

(i)
2 . The Dirichlet boundary conditions were set so that the

expected value for each entry of gs is 1 and w = 0 (for all values of α).
The multi-linear basis functions in the finite element formulation fit the solution

exactly, so any error in the solution is due to algebraic error. This problem is a good
test of the convergence of the PCG method. The stopping criterion used in the PCG
algorithm is based on the Hestenes-Stiefel rule [1, 9]. A small tolerance of 10−12 was
set to ensure that the error remained small for small α.

Table 1 shows the difference in the convergence between the inverse Laplacian
preconditioner and the multiplicative Schwarz preconditioner for different values of
m and α. The number of subgrids was kept at 4 and four levels of overlap was used.
In all examples the multiplicative Schwarz preconditioner was faster than the inverse
Laplacian preconditioner. There is a sudden jump in the number of iterations for
the α = 10−7 and m = 4225 case indicating that we may need to look at increasing
the overlap.

The second example also used a uniform grid with p = 1000 and n = 9992.
The values assigned to each data point were y(i) = fy(x(i)) where fy(x) =
exp

(
−30‖0.65− x‖22

)
+ exp

(
−30‖0.35− x‖22

)
. The boundary conditions are h1 =

fy|Γ , (h2,h3) = ∇fy|Γ and h4 = −α∆fy|Γ where Γ is the boundary of Ωh.
The solution depends on the choice of α. The tolerance in the stopping criterion

was decreased to 10−6 and the number of subgrids remained at four with four levels
of overlap. Table 2 tabulates the convergence results.

6 Conclusion

The multiplicative Schwarz algorithm with a sparse-direct solver on the subgrids
is an efficient preconditioner for the systems of equations arising from the discrete
thin-plate spline method.
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Table 1. Convergence rate for the first test problem. The time is in seconds. The
column labelled Laplace is the results for the preconditioner given by (8). The col-
umn labelled Mult S is the multiplicative Schwarz preconditioner. CG It is the total
number of PCG iterations and MS It is the total number of times the Multiplicative
Schwarz algorithm was called.

m α = 10−6 α = 10−7

Laplace Mult S Laplace Mult S

CG It Time CG It MS It Time CG It Time CG It MS It Time

1089 72 16 4 21 4 266 96 5 39 7
4225 120 116 4 21 18 254 247 49 370 187
16641 147 713 6 56 146 283 1424 7 54 147
66049 141 2999 16 164 1612 309 6611 12 144 1401

Table 2. Convergence rate for the second test problem. The column labelling is the
same as the first example.

m α = 10−6 α = 10−7

Laplace Mult S Laplace Mult S

CG It Time CG It MS It Time CG It Time CG It MS It Time

1089 36 27 3 23 22 66 33 3 34 23
4225 37 66 2 17 33 93 122 3 42 45
16641 37 268 2 27 104 98 590 3 36 118
66049 38 1133 3 59 639 110 2884 3 50 581
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1 Introduction

In this paper we report on a non-overlapping and an overlapping domain decom-
position method as preconditioners for the boundary element approximation of an
indefinite hypersingular integral equation on a surface. The equation arises from an
integral reformulation of the Neumann screen problem with the Helmholtz equation
in the exterior of a screen in R3.

It is well-known that the linear algebraic system arising from the boundary ele-
ment approximation to this integral equation is indefinite, and an iterative method
like GMRES can be used to solve the system. Preconditioners by domain decompo-
sition methods can be used to reduce the number of iterations. A non-overlapping
preconditioner for the hypersingular integral equation reformulation of the 2D prob-
lem is studied in [10]. In this paper we study both non-overlapping and overlapping
methods for the 3D problem. We prove that the convergence rate depends logarith-
mically on H/h for the non-overlapping method, and on H/δ for the overlapping
method, where H and h are respectively the size of the coarse mesh and fine mesh,
and δ is the overlap size. We note that domain decomposition methods with finite
element approximations for the Helmholtz equation have been studied by many
authors; see e.g. [2, 3, 5].

2 The Neumann Screen Problem and Boundary Integral
Equation

Let Γ be a planar surface piece in R3 with polygonal boundary. The problem to be
studied consists in finding U satisfying
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∆U + k2U = 0, in ΩΓ := R
3 − Γ ,

∂U

∂n
= g, on Γ,

∂U

∂n
− ikU = o(1/r), as r := |x| → ∞,

(1)

where k is a nonzero constant and g a given function. The condition at infinity is
the well-known radiation condition.

The solution U can be expressed as a double-layer potential

U(x) =
1

4π

∫
Γ

u(y)
∂

∂ny

eik|x−y|

|x− y| dsy, x ∈ ΩΓ ,

where u = [U ] is the jump of U across Γ . It is shown in [9] that solving (1) is
equivalent to solving

Dku(x) = g(x), x ∈ Γ, (2)

where the operator Dk is defined as

Dkφ(x) := − 1

4π

∫
Γ

φ(y)
∂

∂nx

∂

∂ny

eik|x−y|

|x− y| dsy, x ∈ Γ. (3)

The Sobolev spaces H̃1/2(Γ ) and H1/2(Γ ) and their duals H−1/2(Γ ) and

H̃−1/2(Γ ) (respectively) are defined as usual; see [7]. It is shown in [9] that the
operator D0 defined as in (3) with k = 0 is a continuous and surjective mapping

from H̃1/2(Γ ) onto H−1/2(Γ ). Moreover, Dk can be written as

Dk = D0 +K, (4)

where K is a bounded operator from H̃1/2(Γ ) into L2(Γ ). Let

b(v, w) := 〈Dkv, w〉 ∀v, w ∈ H̃1/2(Γ ),

(where 〈Dkv, w〉 denotes the duality pairing which coincides with the L2 inner prod-
uct on Γ if Dkv, w ∈ L2(Γ )) then the bilinear form b(·, ·) can be written as

b(v, w) = a(v, w) + c(v, w),

where a(v, w) = 〈D0v, w〉 and c(v, w) = 〈Kv,w〉. The bilinear form a(·, ·) is a

positive-definite and symmetric bilinear form on H̃1/2(Γ ) satisfying

a(v, v) / ‖v‖H̃1/2(Γ )
2 ∀v ∈ H̃1/2(Γ ), (5)

whereas b(·, ·) is indefinite and satisfies

Re(b(v, v)) ≥ γ‖v‖H̃1/2(Γ )
2 − η‖v‖L2(Γ )

2 ∀v ∈ H̃1/2(Γ ),

for some γ > 0 and η > 0 independent of v.
A weak form of (2) is the problem of finding

u ∈ H̃1/2(Γ ) : b(u, v) = 〈g, v〉 ∀v ∈ H̃1/2(Γ ). (6)

The problem (6) will be approximated by first constructing a finite-dimensional

subspace S ⊂ H̃1/2(Γ ), and then finding

uS ∈ S : b(uS , v) = 〈g, v〉 ∀v ∈ S. (7)
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3 Additive Schwarz Algorithm

3.1 General Framework

Additive Schwarz methods provide fast solutions to (7) by solving (at the same time)
problems of smaller size. Let S be decomposed as

S = S0 + · · ·+ SJ , (8)

where Si, i = 0, . . . , J , are subspaces of S. Let Qi : S → Si be projections defined
by

bi(Qiv, w) = b(v, w) ∀v ∈ S, ∀w ∈ Si, (9)

where the bilinear forms bi(·, ·), i = 0, . . . , J , are to be defined later. Then the
additive Schwarz method for (7) consists in solving the equation

QuS = g̃,

where Q = Q0 + · · · + QJ is the additive Schwarz operator and g̃ is given by g̃ =
g0 + · · ·+ gJ with gi ∈ Si being solutions of

bi(gi, w) = 〈g, w〉 ∀w ∈ Si.

This equation is solved iteratively by the GMRES method. Starting with an initial
guess u0 and the initial residual r0 = g̃ − Qu0, we compute the mth iterate um as
um = u0+zm where zm is chosen to minimize the residual norm ‖g̃−Q(um−1+z)‖a,
where ‖v‖a = a(v, v). It is proved in [4] that

‖rm‖a ≤
(

1− C
2
1

C2

)m/2

‖r0‖a,

where rm = g̃ −Qum and

C1 = inf
v∈S

a(v,Qv)

a(v, v)
, C2 = sup

v∈S

a(Qv,Qv)

a(v, v)
. (10)

We now define two different subspace decomposition of the form (8) which re-
sult in two different preconditioners: a non-overlapping method and an overlapping
method.

3.2 Non-overlapping Algorithm

Boundary Element Space

We first define the finite-dimensional space S in (7) on a two-level grid.
The coarse grid. Assume that Γ is partitioned into subdomains Γi, i = 1, . . . , N ,

where each subdomain Γi is the image of the reference square R̂ = (−1, 1)2 under
a smooth bijective mapping Fi : R̂ → Γi. Denoting by H the diameter of the
subdomains, we assume that

‖JFi‖L∞(R̂) - H and ‖JF−1
i
‖L∞(R̂) - H−1,
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where JFi denotes the Jacobian matrix of the transformation and the norm is a
matrix norm. The partition is assumed to be conforming in the sense that the non-
empty intersection of a pair of distinct subdomains is a single common vertex or
edge of both subdomains, and that each vertex of the domain Γ coincides with at
least one subdomain vertex.

We define on this coarse grid the space V0 of continuous piecewise bilinear func-
tions, vanishing on the boundary of Γ .

The fine grid. Each subdomain Γi is further divided into disjoint quadrilateral
or triangular elements, giving a locally uniform mesh of element of size hi in Γi. We
denote by h the maximum value of hi, i = 1, . . . , N .

The finite-dimensional space S is defined as the space of continuous piecewise-
bilinear functions (in the case of quadrilateral elements) or piecewise-linear functions
(in the case of triangular elements) on the fine grid, vanishing on the boundary of

Γ . We also define subspaces Vj = S ∩ H̃1/2(Γj) of functions in S supported in Γ j .
We denote by N = {xk : k ∈ I} the set of all vertices of elements in the

fine grid which are not on the boundary of Γ (where I is some index set), by
Nw = {xk ∈ N : xk lies on a subdomain boundary} the wirebasket, and by φk ∈ S
the nodal basis function at xk, i.e., φk(xl) = δkl.

Subspace Decomposition

The non-overlapping method is defined by the subspace decomposition (8) where

S0 = ΠFV0, (coarse space)

S1 = span{{}φk : xk ∈ Nw}, (wirebasket space)

Si = Vi−1 ∀i = 2, . . . , N + 1, (interior spaces),

in which ΠF is the interpolation operator which interpolates continuous functions
into functions in S. (Note that J = N + 1.)

The bilinear forms bi(·, ·) on Si (see (9)) are defined as follows:

b0(v, w) = b(ΠCv,ΠCw) ∀v, w ∈ S0,

b1(v, w) =

N∑
j=1

∑
xk∈∂Γj

hjv(xk)w(xk), ∀v, w ∈ S1,

bi(v, w) = a(v, w) ∀v, w ∈ Si, i = 2, . . . , J.

Here ΠC is the interpolation operator that interpolates continuous functions into
functions in V0.

Algorithm

The preconditioning technique is in practice performed by computing the action of
the inverse of the preconditioner B on a residual r ∈ S when GMRES is used to
solve (7) iteratively. This consists of the solution of independent problems on each
of the subspaces involved in the decomposition.

1. Coarse space correction:

u0 ∈ S0 : b0(u0, v) = 〈r, v〉 ∀v ∈ S0
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2. Wirebasket space correction:

u1 ∈ S1 : b1(u1, v) = 〈r, v〉 ∀v ∈ S1

3. Interior space corrections:

ui ∈ Si : bi(ui, v) = 〈r, v〉 ∀v ∈ Si, i = 2, . . . , J.

4. Preconditioned residual:

B−1r =

J∑
j=0

uj .

Matrix Representation

Let Ψ be the set of nodal basis functions. We use the bilinear form a(·, ·) (respec-
tively, b(·, ·)) to compute the stiffness matrix Aa (respectively, Ab). The coefficient
vector v of a function v ∈ S is given as v = Ψ T v, where T denotes transpose. Let
Φ0 be the vector composed of the nodal basis functions for the subspace S0. Then
we denote by R0 the rectangular matrix that represents Φ0 in the basis Ψ , i.e.,
Φ0 = R0Ψ . We also define Ri, i = 1, . . . , J , to be matrices of entries 0 and 1 such
that RiΨ forms the nodal bases for Si. If v = B−1r then v =

∑J
i=0 RT

i A−1
i RiMr

where, noting the bilinear form used in each subspace,

A0 = R0AbR
T
0 , A1 = R1DRT

1 , Ai = R1AaRT
i , i = 2, . . . , J.

The size of A1 is large; however, the matrix D computed with the bilinear form
b1(·, ·) is a diagonal matrix.

3.3 Overlapping Algorithm

Overlapping Subdomains

As in [11], we extend each subdomain Γj in the following way. First we define, for
some δ > 0 called the overlap size,

Ṽj = span{{}φk : xk /∈ Γ j , dist(xk, ∂Γj) ≤ δ},

and denote
Γ̃j = supp{φk : φk ∈ S̃j},

which is the shaded area in Figure 1. (Here the distance is defined with the max
norm ‖x‖ = max{|x1|, |x2|} where x = (x1, x2).) The extended subdomain Γ ′

j is

then defined as Γ ′
j = Γ j ∪ Γ̃j . We note that Γ ′

j need not be a quadrilateral domain.
Also, if δ is chosen such that δ ∈ (0, H], then

diam(Γ ′
i ) / H. (11)
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δ

δ

Γj Γj

δ δ

Fig. 1. • vertex at a distance δ to Γ j , Γ̃j : shaded region, Γ ′
j = Γj∪Γ̃j : overlapping

subdomain.

Subspace Decomposition

The decomposition (8) is performed with subspaces Sj , j = 0, . . . , J = N , defined
as

S0 = ΠFV0,

Sj = Vj ∪ Ṽj = S ∩ H̃1/2(Γ ′
j) ∀j = 1, . . . , J.

The bilinear forms bi(·, ·) on Si (see (9)) are defined as follows:

b0(v, w) = b(ΠCv,ΠCw) ∀v, w ∈ S0,

bi(v, w) = a(v, w) ∀v, w ∈ Si, i = 1, . . . , J.

Algorithm

The overlapping preconditioner is performed in the same manner as the non-
overlapping version, with subspace corrections being

ui ∈ Si : bi(ui, v) = 〈r, v〉 ∀v ∈ Si, i = 0, . . . , J.

Matrix Representation

As in the case of non-overlapping method, the updated residual vector is given by
v =

∑J
i=0 RT

i A−1
i RiMr where

A0 = R0AbR
T
0 , Ai = R1AaRT

i , i = 2, . . . , J.
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3.4 Convergence

The preconditioned GMRES method using the non-overlapping and overlapping
preconditioners converges with constants C1 and C2 (see (10)) slightly dependent
on the mesh sizes H and h and the overlap size δ, as given in the following theorem.

Theorem 1.

• Bound for C1: There exists H0 > 0 such that for all H ∈ (0, H0] and u ∈ S
there hold (

1 + log2 H

h

)−1

a(u, u) - a(u,Qu)

for the non-overlapping method, and(
1 + log2 H

δ

)−1

a(u, u) - a(u,Qu)

for the overlapping method.
• Bound for C2: There exists H1 > 0 such that for all H ∈ (0, H1] and u ∈ S

there holds, for both methods,

a(Qu,Qu) - a(u, u) .

Proof. Sketch of the proof: First we note that

a(Qu,Qu) / ‖Qu‖H̃1/2(Γ )
2 -

J∑
i=0

‖Qiu‖H̃1/2(Γi)
2 /

J∑
i=0

a(Qiu,Qiu).

Using this result, the boundedness of Q0, and the definition of the projections Qi,
we can prove the bound for C2.

The proof of the bound for C1 is more complicated and involves the operator
P = P0 + · · · + PJ where Pi is defined as Qi but with the bilinear form a(·, ·)
in the place of b(·, ·). This operator P is in fact the additive Schwarz operator
for the positive definite operator D0 (see (4)). It is proved in [6] and [1] for the
nonoverlapping method that(

1 + log2 H

h

)−1

a(v, v) - a(Pv, v),

and in [11] for the overlapping method that(
1 + log2 H

δ

)−1

a(v, v) - a(Pv, v).

The difference in P and Q is due to the bounded operator K in (4), and further
analysis to obtain similar estimates for Q involves this operator. For a detailed proof,
see [8].
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4 Numerical Experiments

We solve equation (2) with k = 5 and g(x) ≡ 1 on a uniform triangular mesh,
by using the non-overlapping and overlapping preconditioners. In Table 1 we re-
port on the number of iterations and CPU times (in seconds) when the equation
is solved without any preconditioner, and when the non-overlapping preconditioner
is used with various values of H/h. In Table 2 we report on the number of iter-
ations and CPU times when the overlapping preconditioner is used with various
values of H/δ. Choosing a suitable mesh size ratio H/h, we observe that the non-
overlapping as well as the overlapping preconditioned method clearly outperform
the non-preconditioned method in iteration numbers and CPU times. Here we use
the GMRES without restart and stop if the relative residual is less than 10−10. The
local problems in computing the correction steps are solved by the GMRES or, if
appropriate, by CG.

Table 1. Number of iterations and CPU times (in parentheses). WP: without pre-
conditioner

DoF WP Non-overlapping

H/h = 2 H/h = 4 H/h = 8 H/h = 16

9 6 (0.01) 6 (0.01)
49 17 (0.02) 17 (0.01) 17 (0.02)
225 23 (0.02) 20 (0.03) 20 (0.02) 21 (0.04)
961 31 (0.15) 21 (0.24) 21 (0.12) 23 (0.20) 23 (0.62)
3969 44 (3.02) 21 (4.39) 21 (1.62) 21 (1.75) 26 (4.16)
16129 63 (84.94) 21 (93.72) 21 (32.18) 21 (29.86) 24 (41.06)

Table 2. Number of iterations and CPU times (in parentheses) of overlapping
method

DoF δ = h δ = 2h

H/h = 2 H/h = 4 H/h = 8 H/h = 16 H/h = 2 H/h = 4 H/h = 8 H/h = 16

9 6 (0.02) 6 (0.02)

49 19 (0.01) 18 (0.02) 17 (0.03) 20 (0.02)

225 28 (0.04) 24 (0.03) 22 (0.05) 22 (0.09) 26 (0.08) 26 (0.09)

961 30 (0.39) 27 (0.23) 26 (0.34) 25 (0.86) 26 (0.65) 29 (0.48) 27 (0.57) 27 (1.17)

3969 30 (6.53) 28 (2.50) 27 (2.84) 28 (6.12) 31 (8.34) 31 (3.92) 28 (4.13) 28 (7.99)

16129 30 (135.47) 28 (43.76) 27 (41.14) 29 (58.46) 35 (166.31) 31 (53.10) 29 (49.80) 29 (69.04)
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