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Abstract. This paper is a review of results on computational methods
of linear algebra over commutative domains. Methods for the following
problems are examined: solution of systems of linear equations, com-
putation of determinants, computation of adjoint and inverse matrices,
computation of the characteristic polynomial of a matrix.

1 Introduction

Let R be a commutative domain with identity, K the field of quotients of R.
This paper is devoted to the review of effective matrix methods in the domain
R for a solution of standard linear algebra problems. The problems are: solving
linear systems in K, computing the adjoint and inverse matrix, computing the
matrix determinant and computing the characteristic polynomial of a matrix.

The standard used to tackle these problems in commutative domain R consists
of the using the field of fractions K of this domain. The ring R may be canonically
immersed in the field K. To solve a problem in the commutative domain any
algorithm that is applicable over the field of fractions of this domain you can be
applied.

Unfortunately this way results in algorithms with suitable complexity only in
the case where the cost of operations in the field does not depend on the value
of the operands. As an example consider the finite fields. But in the general case
the cost of operations in the field depends on the value of the operands. More
over this cost, in general, grows very quickly. For example, Gauss’ method in the
ring of integer numbers results in an algorithm that has exponential growth of
complexity — instead of cubic.

So the main aim in commutative domains is to construct algorithms with
controlled intermediate results.

The algorithms presented here have two main features:

- The intermediate elements in the algorithms are minors of the initial matrix.
So the growth of these elements is bounded by the maximal value of the minors
of the initial matrix.
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- With the exception of the last algorithm, which requires O(n3) operations,
the number of operations in all other algorithms is the same as that of the
algorithm for matrix multiplication.

We denote by O(nβ) or by γnβ + o(nβ) the number of multiplication oper-
ations, necessary for the multiplication of square matrices of order n. For the
standard matrix multiplication algorithm we have β = 3 and γ = 1, whereas for
Strassen’s algorithm [21] the values are β = log2 7 and γ = 1, when the order of
the matrix is some power of 2. For the best algorithm today we have β < 2.376
and γ unknown [8].

In the second section we present methods for solving systems of linear equa-
tions and performing determinant computations. Included are: Dodgson’s
method [9], the method of Forward and Backward Direction [12], the One-pass
method [14], [15] and the Recursive Method [17],[18]. Corresponding methods
for determinant computations with some generalization are discussed in [16].

Methods for computing the adjoint and inverse matrices are presented in the
third section [20].

In the forth section a method for computing the characteristic polynomial of
a matrix is presented [19]. This method was developed in [5].

Finally, in the conclusion we present the best complexity bounds available
today (in commutative domains) for the methods presented above.

2 System of Linear Equations

Let R be a commutative domain, F be the field of fractions of R,
A ∈ Rn×m, c ∈ Rn, n ≤ m, A� = (A, c) = (aij) and,

Ax = c

be a system of linear equations over R.
Solving the above system with Cramer’s rule we obtain

xi = (δn
i,m+1 −

∑m
j=n+1 xjδ

n
ij)(δ

n)−1, i = 1 . . . n,

where xj , j = n + 1, . . . , m, are the free variables, and the determinant δn �= 0.
We denote by δk, k = 1, . . . , n the left upper corner minor of matrix A of order

k, and by δk
ij the corner minor of matrix A where columns i and j have been

interchanged. We assume that all corner minors δk, k = 1, . . . , n are different
from 0.

2.1 Dodgson’s Algorithm

The determinant identity
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or in the more general form

âk+1
ij =

∣
∣
∣
∣
âk

i−1,j−1 âk
i−1,j

âk
i,j−1 âk

ij

∣
∣
∣
∣ · (âk−1

i−1,j−1)
−1

where

âk+1
ij = |Ai−k,...,i:(rows)

j−k,...,j:(columns)|

is an instance of Sylvester’s identity [2]. Dodgson [9] used it for the computation
(condensation) of determinants and the solution of systems of linear equations
computing a sequence of minors for

k = 2, . . . , n − 1, i = k + 1, . . . , n, j = k + 1, . . . , m.

Historical Note: As can be seen from the identity above, Dodgson liked to take
the middle element e of the 4 corner minors as the leading minor (element). Later
(in their 1945 paper [23]) Waugh and Dwyer took the top-left-corner element, a11
as the ”middle ” element of the 4 minors that are surrounding this a11 element.

Subsequent authors [22] and [6] used the same method without references to
either Dodgson [9] or Waugh and Dwyer [23]. Other implementations of Dodg-
son’s method can be found in [1] Other implementations of Dodgson method
you can see in the book [1].

2.2 Method of Forward and Backward Direction

The forward direction part of this algorithm consists of computing the minors
with Dodgson’s method; the diagonal is the leading element in every step

ak+1
ij = (ak

kkak
ij − ak

ikak
kj)(a

k−1
k−1,k−1)

−1,

k = 2, . . . , n − 1, i = k + 1, . . . , n, j = k + 1, . . . , m,

where
ak+1

ij = |A1,...,k,i:(rows)
1,...,k,j:(columns)|

On one hand, this formula is a determinant identity and on the other hand
it is the forward direction algorithm which is reminiscent of Gauss’ elimination
algorithm. (The only difference is that the leading element is one step behind.)
As a result of the forward direction algorithm the matrix of the system becomes

⎛

⎜
⎜
⎜
⎜
⎜
⎝

a1
1,1 a1

1,2 · · · a1
1,n−1 a1

1,n a1
1,n · · · a1

1,m+1
0 a2

2,2 · · · a2
2,n−1 a2

2,n a2
2,n+1 · · · a2

2,m+1
...

...
. . .

...
...

...
. . .

...
0 0 · · · an−1

n−1,n−1 an−1
n−1,n an−1

n−1,n+1 · · · an−1
n−1,m+1

0 0 · · · 0 an
n,n an

n,n+1 · · · an
n,m+1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

The leading elements ak
k,k, k = 1, . . . , n − 1 cannot be zero.
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The backward direction part of the algorithm consists of computing the minors
δn
ij . The minor δk

ij is the corner minor of order k of the matrix A after column i
has been interchanged with column j. The determinant identity of the backward
direction algorithm is:

δn
ij =

(
an

nnai
ij −

n∑

k=i+1

ai
ikδn

kj

)
(ai

ii)
−1, i = n − 1, . . . 1, j = n + 1, . . . , m.

As a result of the backward direction algorithm the matrix of the system
becomes:

⎛

⎜
⎜
⎜
⎜
⎜
⎝

an
n,n 0 · · · 0 0 δn

1,n · · · δn
1,m+1

0 an
n,n · · · 0 0 δn

2,n+1 · · · δn
2,m+1

...
...

. . .
...

...
...

. . .
...

0 0 · · · an
n,n 0 δn

n−1,n+1 · · · δn
n−1,m+1

0 0 · · · 0 an
n,n δn

n,n+1 · · · δn
n,m+1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

The number of operations, necessary for the procedure of forward and back-
ward direction, is

Nm = (9n2m − 5n3 − 3nm − 3n2 − 6m + 8n)/6,
Nd = (3n2m − n3 − 3nm − 6n2 + 13n − 6)/6
Na = (6n2m − 4n3 − 6nm + 3n2 + n)/6.

2.3 The One-Pass Method

Another way of computing the minors δk
ij is given by the following two determi-

nant identities:

δk+1
k+1,j = ak+1,k+1δ

k
kk −

k∑

p=1

ak+1,pδ
k
pj , j = k + 1 . . .m,

δk+1
ij = (δk+1

k+1,k+1δ
k
i,j − δk+1

k+1,jδ
k
i,k+1)/δk

k,k,

k = 1, . . . , n − 1, i = 1, . . . , k, j = k + 2, . . . , m.

At the k-th step the coefficient matrix looks like
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ak
k,k 0 · · · 0 δk

1,k+1 · · · δk
1,m+1

0 ak
k,k · · · 0 δk

2,k+1 · · · δk
2,m+1

...
...

. . .
...

...
. . .

...
0 0 · · · ak

k,k δk
k,k+1 · · · δk

k,m+1
ak+1,1 ak+1,2 · · · ak+1,k ak+1,k+1 · · · ak+1,m+1

...
...

. . .
...

...
. . .

...
an,1 an,2 · · · an,k an,k+1 · · · an,m+1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
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The number of operations, necessary for the one-pass algorithm, is

Nm = (9n2m − 6n3 − 3nm − 6m + 6n)/6,
Nd = (3n2m − 2n3 − 3nm − 6m + 2n + 12)/6
Na = (6n2m − 4n3 − 6nm + 3n2 + n)/6.

When the number of equations and unknowns in the system is the same and
equal to n, the last two algorithms can be compared

Number of Operations
Method Multiplications Divisions Add./Substr.

FB (4n3+3n2−n−6)
6

(2n3−6n2+10n−6)
6

(2n3+3n2−5n)
6

OP (n3+2n2−n−2)
2

(n3−7n+6)
6

(2n3+3n2−5n)
6

2.4 The Recursive Method

The minors δk
ij and ak

ij are elements of the following matrices

A
r,l,(p)
k,c =

⎛

⎜
⎜
⎜
⎝

ap
r+1,k+1 ap

r+1,k+2 · · · ap
r+1,c

ap
r+2,k+1 ap

r+2,k+2 · · · ap
r+2,c

...
...

. . .
...

ap
l,k+1 ap

l,k+2 · · · ap
l,c

⎞

⎟
⎟
⎟
⎠

,

G
r,l,(p)
k,c =

⎛

⎜
⎜
⎜
⎝

δp
r+1,k+1 δp

r+1,k+2 · · · δp
r+1,c

δp
r+2,k+1 δp

r+2,k+2 · · · δp
r+2,c

...
...

. . .
...

δp
l,k+1 δp

l,k+2 · · · δp
l,c

⎞

⎟
⎟
⎟
⎠

,

G
r,l,(p)
k,c , A

r,l,(p)
k,c ∈ R(l−r)×(c−k), 0 ≤ k < n, k < c ≤ n, 0 ≤ r < m, r < l ≤ m,

1 ≤ p ≤ n.
We describe one recursive step reducing the matrix Ã = A

k,l,(k+1)
k,c to the

diagonal form

Ã → (δlIl−k, Ĝ)

where

Ã = A
k,l,(k+1)
k,c , Ĝ = G

k,l,(l)
l,c

0 ≤ k < c ≤ m, k < l ≤ n, l < c. Note that if k = 0, l = n and c = m, then
we obtain the solution of the original system.

Description of One Step of the Recursive Method

Ã =
(

A1

A2

)

→1

(
δsIs−k G1

2
A2

1 A2
2

)

→2

(
δsIs−k G1

2
0 Â2

2

)

→3
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→3

(
δsIs−k G1

2′ G1
2′′

0 δlIl−s Ĝ2
2′′

)

→4

(
δlIs−k 0 Ĝ1

2′′

0 δlIl−s Ĝ2
2′′

)

=
(
δlIl−k Ĝ

)

We may choose arbitrary numbers s: k < s < l and write the matrix Ã as
follows:

Ã =
(

A1

A2

)

,

where A1 = A
k,s,(k+1)
k,c is the upper part of the matrix Ã consisting of s − k rows

and A2 = A
s,l,(k+1)
k,c is the lower part of the matrix Ã .

A1 → (δsIs−k, G1
2), (I)

where A1 ∈ R(s−k)×(c−k), G1
2 = G

k,s,(s)
s,c .

Let A2 = (A2
1, A

2
2) where A2

1 = A
s,l,(k+1)
k,s and A2

2 = A
s,l,(k+1)
s,c consisting of

s − k and c − s columns respectively, δk �= 0. The matrix Â2
2 = A

s,l,(s+1)
s,c is

computed with the help of the matrix identity

Â2
2 = (δs · A2

2 − A2
1 · G1

2)(δ
k)−1. (II)

Â2
2 → (δlIl−s, Ĝ

2
2′′), (III)

where Â2
2 ∈ R(l−s)×(c−s) and Ĝ2

2′′ = G
s,l,(l)
l,c .

Let G1
2 = (G1

2′ , G1
2′′), where the blocks G1

2′ = G
k,s,(s)
s,l and G1

2′′ = G
k,s,(s)
l,c

contain l − s and c − l columns respectively, and δs �= 0.
The matrix Ĝ1

2′′ = G
k,s,(l)
l,c is computed with the help of the matrix identity

Ĝ1
2′′ = (δl · G1

2′′ − G1
2′ · Ĝ2

2′′)(δs)−1. (IV )

In the result we obtain δl and

Ĝ =
(

Ĝ1
2′′

Ĝ2
2′′

)

Complexity of the Recursive Method is O(mnβ−1)

We can obtain an exact estimate. For n = 2N , m = n + 1 and β = log2 7 the
number of multiplication operations is

7
15

nlog2 7 + n2(log2 n − 2
3
) + n(2 log2 n +

1
5
).

For n = 2N , β = 3 the number of multiplications and divisions is

Nm = (6n2m − 4n3 + (6nm − 3n2) log2 n − 6nm + 4n)/6,
Nd = ((6nm − 3n2) log2 n − 6nm − n2 + 6m + 3n − 2)/6.
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The number of multiplication operations for m = n + 1 is (1/3)n3 + O(n2).
The estimations for the previous two methods are, respectively, n3 + O(n2) and
(2/3)n3 + O(n2).

3 Adjoint Matrix

The best method for computing the matrix determinant and adjoint matrix in
the arbitrary commutative ring was suggested in the papers by Kaltofen [10]
and Kaltofen and Villard [11]. Its complexity is O(nβ+1/3 log n log log n); see
also [3].

Here we describe the best method for computing adjoint matrices in commu-

tative domains. Let A =
(

A C
B D

)

be an invertible matrix and A an invertible

block. Then

A−1 =
(

I −A−1C
0 I

) (
I 0
0 (D − BA−1C)−1

) (
I 0

−B I

) (
A−1 0
0 I

)

is the factorization of the inverse matrix. This requires two multiplication oper-
ations and two inversions of blocks. In case n = 2p it will take 2p−1 inversions
of 2 × 2 blocks and 2p−k multiplications of 2k × 2k blocks.

Overall, nlog7 − n/2 multiplication operations will be needed, if we use
Strassen’s multiplication algorithm. In general, if the complexity of matrix mul-
tiplication is O(nβ), then the computation of the factors of the inverse matrix
can be done in time O(nβ).

Let R be a commutative ring, and let A = (ai,j) be a square matrix of order
n over the ring R. Let

A(s)
t = (as

i,j)
i=s,...,t
j=s,...,t and G(t)

s = (δt(i,j))
i=s,...,t
j=t+1,...,n

Theorem 1. Let A be a square block matrix of order n over the ring R; that is,

A =
(

A C
B D

)

,

where A is a square block of order s, (1 < s < n), the determinant of which,
δs, is neither zero nor a zero divider in R. Then, the adjoint matrix A∗ can be
written as the product

A∗ =
(

δ−1
s δnI −δ−1

s FC
0 I

) (
I 0
0 G

) (
I 0

−B δsI

) (
F 0
0 I

)

, (∗)

where F = A∗, G = δ−n+s+1
s A(s+1)∗

n , I is the identity matrix and we have the
identity

A(s+1)
n = δsD − BFC.
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Theorem 2. Let A(s+1)
n be a square block matrix of order n−s, (s > 0, n−s >

2), over the ring R; that is,

A(s+1)
n =

(
A C
B D

)

,

where A is a square block of order t − s, (1 < s < t < n), and δs and δt are
neither zero nor zero dividers in R. Then, the matrix δ−n+s+1

s A(s+1)∗
n can be

written as the product
(

δ−1
t δnI −δ−1

t FC
0 I

) (
I 0
0 δ−1

s G

) (
I 0

−B δtI

) (
F 0
0 I

)

, (∗∗)

where F = δ−t+s+1
s A(s+1)∗

t , G = δ−n+t+1
t A(t+1)∗

n , I is the identity matrix and
we have the identity

A(t+1)
n = δ−1

s (δtD − BFC).

Remark 1. If n = s+2, then, A(s+1)∗
n =

(
as+1

n,n −as+1
n−1,n

−as+1
n,n−1 as+1

n−1,n−1

)

. And if n = s+1,

then A(s+1)∗
n = 1.

3.1 Dichotomic Process

The dimensions of the upper left block A (of the initial square block matrix A)
may be chosen arbitrarily. The case will be examined when the dimensions of
block A are powers of two.

Let n be the order of the matrix A, 2h < n ≤ 2h+1 and assume that all
minors δ2i, i = 1, 2, . . . are not zero or zero dividers of the ring R. According to
Theorems 1 and 2 we are going to sequentially compute adjoint matrices for the
upper left blocks of order 2, 4, 8, 16, . . . of matrix A.

1. For the block of order 2 we have:

A2
2,2 = (ai,j)i,j=1,2, δ2 = detA1

2,2,

A2∗
2,2 =

(
a2,2 −a1,2

−a2,1 a1,1

)

.

2. For the block of order 4 we have:

A4∗
4,4 =

(
δ−1
2 δ4I −δ−1

2 FC
0 I

) (
I 0
0 G

) (
I 0

−B δ2I

) (
F 0
0 I

)

,

F = A2∗
2,2, B = (ai,j)

i=3,4
j=1,2,

C = (ai,j)
i=1,2
j=3,3, D = (ai,j)i,j=3,4, A(3)

4 = δ2D − BFC = (a3
i,j)i,j=3,4, G =

δ−1
2 A(3)∗

4 , δ4 = detG.
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3. For the block of order 8 we have:

A8∗
8,8 =

(
δ−1
4 δ8I −δ−1

4 FC
0 I

) (
I 0
0 G

) (
I 0

−B δ4I

) (
F 0
0 I

)

,

F = A4∗
4,4, B = (ai,j)

i=5,...,8
j=1,...,4, C = (ai,j)

i=1,...,4
j=5,...,8, D = (ai,j)i,j=5,...,8,

G =
(

δ−1
6 δ8I −δ−1

6 FC
0 I

) (
I 0
0 δ−1

4 G

) (
I 0

−B δ6I

) (
F 0
0 I

)

,

A(5)
8 = δ4D − BFC = (a5

i,j)i,j=5,...,8, F = δ−3
4 A(5)∗

6 , δ6 = detF, B = (a5
i,j)

i=7,8
j=5,6,

C = (a5
i,j)

i=5,6
j=7,8, D = (a5

i,j)i,j=7,8, A(7)
8 = δ−1

4 (δ6D − BFC) = (a7
i,j)i,j=7,8,

G = δ−1
6 A(7)∗

8 , δ8 = detG.

Complexity Estimation

Let γnβ + o(nβ) be an asymptotic estimation of the number of operations for
multiplying two matrices of order n. Then the complexity of computing the
adjoint matrix of order n = 2p is

F (n) = 6γnβ 1 − (n/2)1−β

2β − 2
+ o(nβ)

4 Characteristic Polynomial

In the case of an arbitrary commutative ring, the best algorithms for comput-
ing the characteristic polynomial are Chistov’s algorithm [7] and the improved
Berkowitz algorithm [4]. The complexity of these methods is O(nβ+1 log n). We
present the best method to date — for computations in commutative domains
— which has complexity O(n3).

Let A = (aij) be an n × n matrix over the ring R. If all the diagonal minors
δk (k = 1, . . . , n − 1) of matrix A are not zero, then the following identity holds

Au = L̃A,

where Au is an upper triangular matrix and L̃ is a lower triangular matrix with
determinant different from zero, such that

L̃ = D−1
n−2L̃n−1 · · ·D−1

1 L̃2L̃1

L̃k = diag(Ik−1, L̃k), Dk = diag(Ik, Dk), where Ik is the identity matrix of order
k, Dk = δkIn−k,

Lk =
(

δk 0
vk In−k

)

, L̃k =
(

1 0
−vk δkIn−k

)

vk = (ak
k+1,k, . . . , ak

n,k)T , Au = (a(n)
i,j ) is an n × n matrix, and a

(n)
i,j = ai

i,j , for

i ≤ j, a
(n)
i,j = 0, for i > j.
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The proof is based on Sylvester’s identity

ak−1
k−1,k−1a

k+1
i,j = ak

k,kak
i,j − ak

i,kak
k,j .

The factorization of matrix A into upper and lower triangular matrices is the
result of the forward direction part — of the forward and backward direction
algorithm.

Let A
(k)
u = (a(k)

i,j ) be an n × n matrix, k = 1, . . . , n, with a
(k)
i,j = ai

i,j for

i ≤ j < k, a
(k)
i,j = ak

i,j , i ≥ k, j ≥ k, and the remaining elements zero. Then
Au = L̃A reduces to the identities

A(2)
u = L̃1A; A(k+1)

u = D−1
k−1L̃kA(k)

u , k = 2, . . . , n − 1,

which subsequently enable the computation of matrices A
(k)
u , k = 2, 3, . . . , n,

such that all the elements of the matrices Dk and L̃k are elements of the
matrix A

(k)
u .

The requirement that the diagonal minors δk (k = 1, 2, . . . , n − 1) be dif-
ferent from zero may be weakened. If a diagonal minor δk of order k is equal
to zero, and in column vk there is a nonzero element ak

i,k, then rows i and k
must be interchanged; that is, multiply on the left the matrix of interchanges
Pk = P(i,k) = In + Eik + Eki − Ekk − Eii, where Eik denotes a matrix in which
all elements are zero except element (i, k), which is equal to one.

And if δk = 0 and vk = 0, then necessarily Pk = L̃k = Dk−1 = In, Dk =
Dk−1.

The factorization formula remains as before, only now

L̃k = diag(Ik−1, L̃k)Pk.

Note the following identities, which will be subsequently needed:

L̃kLk = Dk, L̃L = T,

where
L = L1L2 · · ·Ln−1,

Lk = P−1
k diag(Ik−1, Lk), T is a diagonal matrix defined by, T = S1S2, where

S1 = diag(1, S), and S2 = diag(S, 1), with S = diag(δ1, δ2, . . . , δn−1).
To indicate the matrix A from which a given triangular or diagonal matrix

was computed, we write L = L(A), T = T (A).

4.1 Computation of Similar p-Trianular Matrix

Let A =
(

a b
c d

)

be a matrix over R with blocks a of order p × p and d of order

n × n. We will call matrix A upper p-triangular, if the block (c,d) looks like an
upper triangular matrix.

We will denote with calligraphic letters block-diagonal matrices of order (n +
p) × (n + p) of the type diag(Ip, G) = G, where G is a p × p matrix.
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Let G be some p × p matrix and let L̃ = L̃((c,d)G), and T = T (((c,d)G)). If
we take now G = L, L̃ = diag(Ip, L̃), L = diag(Ip, L), then the matrix

Au = L̃AL

will become an upper p-triangular matrix, and matrix T−1Au will be similar
to A.

The cofactors L and L̃ of the matrix can be computed sequentially. Since
((c,d)G) = (c,dL) and the first p of the columns of the matrix (c,dL) con-
stitute block c and are independent from L, then using them we can compute
sequentially the first p cofactors of the matrix L̃ : L̃1,D1, L̃2, . . . ,Dp−1, L̃p. From
these we can write the first p cofactors of matrix L , can compute p columns of
the matrix dL and after that the following p cofactors of matrix L̃, etc. For p = 1
we obtain a quasi-triangular matrix, that is a matrix with zero elements under
the second diagonal, which is obtained by the elements a2,1, a3,2, . . . , an,n−1.

Let us denote by Ak (1 ≤ k ≤ n) the corner minors of order k of the quasi-
triangular matrix A = (ai,j), ai,j = 0 for i ≥ 2, j ≤ i − 1, and assume A0 = 1.
Then its determinant can be computed as shown

det (An) = ann det (An−1) +
n−1∑

i=1

ai,n det (Ai−1)
n−1∏

j=i+1

(−aj,j−1).

The complexity of this method is 5
3n3 + O(n2) — multiplicative operations.

5 Conclusion

For computations over commutative domains we have the following results:

– The complexity of the O(n3) methods (FB) and (OP) for solving systems of
linear equations of size n × m is

M(FB) = (1/2)(4n2m − 2n3 − 2nm − 3n2 − 2m + 7n − 2),

M(OP ) = (1/6)(12n2m − 8n3 − 6nm − 9n2 − 12m + 8n + 12).

Suppose that the complexity of the given method for matrix multiplications
is γnβ + o(nβ), where γ and β are constants, and n is the order of the
matrix. Then, the complexity of the recursive methods for solving systems
of size n × m is

S(n, m) = γ
nβ

2β

[
(4

m

n
− 2)

1 − n2−β

1 − 22−β
− 1 − n1−β

1 − 21−β

]
+ o(nβ−1m).

– The complexity of the method for the computation of the determinant of a
matrix of order n is S(n, n). The complexity of the method for the compu-
tation of the kernel of a linear operator is S(n, m).
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– The complexity of the method for the computation and the factorization of
the adjoint matrix is

F (n) = 6γnβ 1 − (n/2)1−β

2β − 2
+ o(nβ)

– Finally, the complexity of the best method we know today for the computa-
tion of the characteristic polynomial of a matrix of order n is 5

3n3 + O(n2).
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