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Abstract. Support for updates to views of database schemata is typi-
cally very limited; only those changes which can be represented entirely
within the view, or changes which involve only generic changes outside
of the view, are permitted. In this work, a different point of view to-
wards the view-update problem is taken. If a proposed update cannot
be performed within the view, then rather than rejecting it outright,
the cooperation of other views is sought, so that in their combined en-
vironments the desired changes can be realized. This approach has not
only the advantage that a wider range of updates are supported than is
possible with more traditional approaches, but also that updates which
require the combined access privileges of several users are supported.
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1 Introduction

Support for updates to database views has long been recognized as a difficult
problem. An update which is specified on a view provides only partial infor-
mation on the change of state of the main schema; the complementary infor-
mation necessary to define a complete translation of that update to the main
schema must be determined in other ways. Over the years, a number of ap-
proaches have been developed for such translations. In the constant-complement
strategy, first defined in [1] and later refined in [2] and [3], the fundamen-
tal idea is that the translation must leave unaltered all aspects of the main
database which are not visible from the view; formally, the so-called comple-
mentary view is held constant. Theoretically, it is the cleanest approach, in
that it defines precisely those translations which are free from so-called update
anomalies [2, 1.1] which involve changes to the database which are not entirely
visible within the view itself. Unfortunately, the family of anomaly-free updates
is relatively limited, and for this reason the constant-complement strategy has
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been viewed as inadequate by some investigators [4], and so numerous more
liberal approaches have been forwarded, including both direct approaches [5]
and those which relax some, but not all, of the constraints of the constant-
complement strategy [6]. All of these more liberal approaches involve, in one
way or another, updates to the main schema which are not visible within the
view itself.

Even if one accepts that view update strategies which are more liberal than
the constant-complement approach are necessary and appropriate, there is a sig-
nificant further issue which must be taken into consideration — access rights. It
is a fundamental design principle of modern database systems that users have
access rights, and that all forms of access, both read and write, must respect
the authorization of those rights. With the constant-complement update strat-
egy, in which only those parts of the main schema which are visible in the
view may be altered in an update, this issue poses no additional problems be-
yond those of specifying properly the access rights on each view. However, with
a more liberal update approach, changes to the main schema may be man-
dated which are not visible within the view. This implies that the user of the
view must have write access privileges beyond that view, which is often un-
realistic. Thus, even if one is willing to accept some update anomalies, view
update support beyond the constant-complement strategy is to a large extent
unacceptable because of the serious problems surrounding access rights which it
implies.

To address these concerns, a quite different approach to supporting view up-
dates is proposed in this paper. When an update u to view Γ cannot be supported
by the constant-complement strategy, the cooperation of other views is enlisted.
If translation of u implies that an update to the main schema must be made
which is not visible within Γ , then these additional changes must be embodied
in the cooperating views. If the user of Γ who desires to effect u does not have
the necessary access privileges on the cooperating views, then the cooperation of
suitable users of these views must also be enlisted, in order to effect the update
“in unison”. This, in turn, provides information on the workflow pattern which
is necessary to realize the update.

For such a theory of cooperation to take form, it is necessary to be able to re-
gard a database schema as a collection of interconnected views. The fundamental
ideas of such representations of database schemata are found in component-based
modelling, as forwarded by Thalheim [7] [8] [9]. Roughly speaking, a component
is an encapsulated database schema, together with channels which allow it to be
connected to other components. A database schema is then modelled as an inter-
connection of such components. The work of Thalheim is, in the first instance,
oriented towards conceptual modelling and the design of database schemata us-
ing the higher-order entity-relationship model (HERM) [10]. In [11], the ideas
of component-based modelling have been recast and formalized in a way which
makes them more amenable to view-update problems. It is this latter work which
is used, in large part, as the basis of this paper.
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2 The Core Concepts by Example

To present the ideas underlying cooperative updates in a complete and unam-
biguous fashion, a certain amount of formalism is unavoidable. However, it is
possible to illustrate many of the key ideas with a minimum of formalism; such
an illustration, via a running example, is the goal of this section. First, the main
ideas of database components will be illustrated via an example, with that same
example then used as the basis for the illustration of a cooperative update.

TravelEmp[EmpID, ConfID,Amnt , NDays,Notes ]KEm

TravelSct[EmpID, ConfID,Amnt ,NDays ,SupID ]KSc

ApprvMgt[EmpID,ConfID ,NDays ,SupID ]

KMg

ApprvAct[EmpID ,ConfID,Amnt , ActID ]

KAc

TravelEmpSct[EmpID ,ConfID,Amnt ,NDays]GEmSc

TravelSecMgt[EmpID ,ConfID, NDays, SupID]
GScMg

TravelSecAct[EmpID ,ConfID,Amnt ]
GScAc

Read-only relations which are
common to all components
and their ports:

Employee[EmpID, Name, Department ,Email ,Tel ]
Conference[ConfID ,Name,Dates ,Location ,URL]

Supervises[EmpID, SupID ]
AuthAccount[EmpID, ActID ]

πEmpID,ConfID,Amnt,NDays = γEmSc

πEmpID,ConfID,Amnt,NDays = γEmSc

πEmpID,ConfID,NDays,SupID =γScMg πEmpID,ConfID,Amnt = γScAc

πEmpID,ConfID,NDays,SupID = γScMg πEmpID,ConfID,Amnt = γScAc

Fig. 1. Graphical depiction of the components of the running example

Discussion 2.1 (An informal overview of database components). For
a much more thorough and systematic presentation of the ideas underlying the
database components of this paper, the reader is referred to [11]. A component
is an ordered pair C = (Schema(C), Ports(C)) in which Schema(C) is a database
schema and Ports(C) is a finite set of nonzero views of Schema(C), called the
ports of C. The running relational example is depicted in Fig. 1; there are four
components, the employee component KEm, the secretariat component KSc, the
management component KMg, and the accounting component KAc. The relation
unique to the schema of a given component is shown enclosed in a rectangle. In
addition, there is a set of relations which are common to all components; these
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are shown in a box with rounded corners at the bottom of the figure. For exam-
ple, the schema of KEm consists of the relations TravelEmp, Employee, Conference,
Supervises, and AuthAccount. The primary key of each relation is underlined; in
addition, the following inclusion dependencies are assumed to hold:

TravelEmp[EmpID ] ⊆ Employee[EmpID ],
TravelSct[EmpID ,SupID ] ⊆ Supervises[EmpID ,SupID ],
ApprvMgt[EmpID ,SupID ] ⊆ Supervises[EmpID ,SupID ],
ApprvAct[EmpID ,ActID ] ⊆ AuthAccount[EmpID ,ActID ],
Supervises[EmpID ] ⊆ Employee[EmpID ],
Supervises[SupID ] ⊆ Employee[EmpID ],
AuthAccount[EmpID ] ⊆ Employee[EmpID ].

The ports of the components are also represented in Fig. 1. The schema of each
view (qua port) Γx is represented within an ellipse, labelled with the name of that
schema. The associated view mapping γx for each port is shown next to the arrow
which runs from the component schema to the port schema. For example, the
component KEm has only one port, which is denoted by ΓEmSc = (GEmSc, γEmSc),
with γEmSc the projection πEmpID,ConfID,Amnt,NDays :
Schema(KEm) → GEmSc. In other words, Ports〈KEm〉 = {ΓEmSc}. The compo-
nent KSc, on the other hand, has three ports, ΓEmSc = (GEmSc, γEmSc), ΓScMg =
(GScMg, γScMg), and ΓScAc = (GScAc, γScAc), with the port definitions as given in
the figure. Similarly, the component KMg has one port, ΓScMg = (GScMg, γScMg),
and the component KAc has one port, ΓScAc = (GScAc, γScAc). The underlying
interconnection family, which describes which ports are connected to which, is
{{ΓEmSc, ΓEmSc}, {ΓScMg, ΓScMg}, {ΓScAc, ΓScAc}}. Each member of this family is
called a star interconnection. The names of ports may be arbitrary, although
for convenience in this example a special naming convention has been used. The
view Γxy = (Gxy, γxy) is a port of the component Kx, and is connected to the
port Γxy = (Gxy, γxy) of the component Ky.

The ports of connected components must have identical (and not just isomor-
phic) schemata. It becomes clear why this is necessary when defining the state of
a combined interconnection. Let M = (MEm, MSc, MMg, MAc) ∈
LDB(Schema(KEm)) × LDB(Schema(KSc)) × LDB(Schema(KMg)) ×
LDB(Schema(KAc)), with LDB(−) denoting the set of legal databases. For M
to be a legal state of the interconnected component, the local states must agree
on all ports. More precisely, it is necessary that the following hold: γEmSc(MEm) =
γEmSc(MSc), γScMg(MSc) = γScMg(MMg), and γScAc(MSc) = γScAc(MAc).

Some difficulties can arise if the underlying hypergraph is cyclic [11, 3.2];
i.e., if there are cycles in the connection. While these can often be overcome,
the details become significantly more complex. Therefore, in this paper, it will
always be assumed that the interconnections are acyclic.

Example 2.2 (An example of cooperative update). Suppose that Lena is
an employee, and that she wishes to travel to a conference. The successful ap-
proval of such a request is represented by the insertion of an appropriate tuple
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in the relation TravelEmp. She has insertion privileges for the relation TravelEmp

for tuples with her EmpID (which is assumed to be Lena, for simplicity); how-
ever, these privileges are qualified by the additional requirement that the global
state of the interconnected components be consistent. Thus, any insertion into
TravelEmp must be matched by a corresponding tuple in TravelSct — that is,
a tuple whose projection onto TravelEmpSct matches that of the tuple inserted
into TravelEmp. This tuple must in turn be matched by corresponding tuples
in ApprvMgt and ApprvAct. Thus, to accomplish this update, Lena requires the
cooperation someone authorized to update the component KSc, which in turn
requires the cooperation of those authorized to update KMg and KAc.

The process of cooperative update proceeds along a project-lift cycle. The
update request of Lena is projected (see Definition 3.2) to the ports of KEm; the
connected components (in this case just KSc) then lift (see Definition 3.3) these
projections to their schemata. The process then continues, with KSc project-
ing its proposed update to KMg and KSc. These projections and liftings cannot
modify the state of the database immediately, as they are only proposed updates
until all parties have agreed. Rather, a more systematic process for managing the
negotiation process is necessary. The process is controlled by a nondeterministic
automaton, which maintains key information about the negotiation and deter-
mines precisely which actions may be carried out by components (and their
associated actors) at a given time. It also manages the actual update of the
database when a successful negotiation has been completed. This automaton is
described formally in Definition 3.4. In this section, it will be described more
informally, and consequently somewhat incompletely, by example.

The central data structures of this automaton are two sets of registers for
managing proposed updates. For each component C there is a pending-update
register PendingUpdate(C) which records proposed updates which are initiated
by that component, but not yet part of the permanent database. In addition,
for each component C and each port Γ of C, there is a port-status registers
PortStatus(C, Γ ) which is used to record projections of updates received by neigh-
boring components. In addition, for each component C, the register
CurrentState(C) records the actual database state for that component. The au-
tomaton also has a Status, which indicates the phase of the update process in
which the machine lies. In Idle, it is waiting for an initial update request from one
of the components. In Active, it is processing such a request by communication
and refinement; the bulk of the processing occurs in this state. The value Ac-
cepted indicates that all components have agreed on a suitable set of updates. In
the Final phase, one of these updates is selected, again by propagating proposals
amongst the components. Finally, the value of the variable Initiator identifies the
component which initiated the update request. A state of this update automaton
is given by a value for each of its state variables. These variables, together with
their admissible and initial values, are shown in Table 1.

In Table 2, a sequence of twelve steps which constitutes a successful realization
of a travel request from Lena is shown. An attempt has been made to represent all
essential information, albeit in compact format. Notation not already described,
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Table 1. The state variables of the update automaton

Name Range of values Initial Value

Status ∈ {Idle, Active, Accepted, Final } Idle

Initiator ∈ X ∪ {NULL} NULL

For each component C:

CurrentState(C) ∈ LDB(Schema〈C〉) (MC)0

PendingUpdate(C) ∈ RDUpdates(Schema〈C〉) ∪ {NULL} NULL

For each component C and Γ ∈ Ports〈C〉:

PortStatus(C, Γ ) ∈ RDUpdates(Schema〈Γ〉) ∪ {NULL} NULL

such as the step of the update automaton which is executed, will be described
as the example proceeds. The formal descriptions of these steps may be found
in Definition 3.4.

To understand how this request is processed, it is first necessary to expand
upon the request itself, which involves alternatives. Suppose that Lena wishes to
travel either to ADBIS or else to DEXA. For ADBIS, she requires a minimum
of e800; for DEXA e1000. For ADBIS she needs to travel for at least five days;
for DEXA only three. Although she is flexible, she also has preferences. A trip
to ADBIS is to be preferred to a trip to DEXA, and within a given conference,
more money and time is always to be preferred. To express these alternatives,
a ranked directional update (see Definition 3.1) is employed. It is directional
in the sense that it is either an insertion or a deletion (for technical reasons,
only insertions and deletions are supported in the current framework), and it
is ranked in the sense that there is a partial order which expresses preferences
on the updates. The update request, call it u0, would then consist of all tuples
of the form TravelEmp[Lena, ADBIS, eA, dA, η] together with those of the form
TravelEmp[Lena, DEXA, eD, dD, η], with 800 ≤ eA ≤ 2000, 5 ≤ dA ≤ 10, 1000 ≤
eD ≤ 2000, 3 ≤ dD ≤ 10. Here η denotes a null value for the Notes field. There
is also a technical requirement that a set of ranked updates be finite; hence the
upper bounds on the values for time and money. The set of all possible ranked
directed updates on a schema D is denoted RDUpdates(D). At the end of a
successful update negotiation, all parties will agree to support some subset of
the elements of u0, with Lena then choosing one of them.

In processing this request, the automaton is initially in the state Idle, awaiting
an update request from some component. This is illustrated in step 0 of Table 2.
Lena initiates her travel request by executing InitiateUpdate(KEm,u0), which
communicates the projection Proj(u0,) of TravelEmp onto the common port rela-
tion TravelSecMgt, as shown in step 1 of the table. Because this is only an update
request, and not an actual update, it is placed in the appropriate port status
register, in this case the status register for ΓEmSc; the database state remains
unchanged. A value for a state variable of the form PortStatus(C, Γ ) represents
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Table 2. The state evolution of Example 2.2

KEm KSc KMg KAc
Pending
Update

Port
Status

Pending
Update

Port
Status

Port
Status

Port
Status

Pending
Update

Port
Status

Pending
Update

Port
Status

KEm ΓEmSc KSc ΓEmSc ΓScMg ΓScAc KMg ΓScMg KAc ΓScAc

0. Initial database state = (MEm, MSc, MMg, MAc) Status: Idle Initiator: NULL
NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL

1. InitiateUpdate(KEm,u0) Status: Active Initiator: KEm u′
0 = Proj(u0, ΓEmSc)

u0 NULL NULL u′
0 NULL NULL NULL NULL NULL NULL

2. PromoteInitialUpdate(KSc) Status: Active Initiator: KEm

u1 ∈ NERestr(MinLift(u′
0, ΓEmSc, M)) u′

1 = Proj(u1, ΓScMg) u′′
1 = Proj(u1, ΓScAc)

u0 NULL u1 NULL NULL NULL NULL u′
1 NULL u′′

1

3. PromoteInitialUpdate(KMg) Status: Active Initiator: KEm

u2 ∈ NERestr(MinLift(u′
1, ΓScMg, M)) u′

2 = Proj(u2, ΓScMg)
u0 NULL u1 NULL u′

2 NULL u2 NULL NULL u′′
1

4. PromoteInitialUpdate(KAc) Status: Active Initiator: KEm

u3 ∈ NERestr(MinLift(u′′
1 , ΓScAc, M)) u′

3 = Proj(u3, ΓScMg)
u0 NULL u1 NULL u′

2 u′
3 u2 NULL u3 NULL

5. RefineUpdate(KSc) Status: Active Initiator: KEm

u4 ∈ NERestr(Refine(u1, ((ΓScMg,u′
2), (ΓScAc,u′

3)))) u′
4 = Proj(u4, ΓEmSc)

u0 u′
4 u4 NULL NULL NULL u2 NULL u3 NULL

6. RefineUpdate(KEm) Status: Active Initiator: KEm

u5 = Refine(u1, ((ΓEmSc, u′
4)))

u5 NULL u4 NULL NULL NULL u2 NULL u3 NULL
7. AcceptUpdate Status: Accepted Initiator: KEm

u5 NULL u4 NULL NULL NULL u2 NULL u3 NULL
8. SelectFinalUpdate(KEm, u5) Status: Final Initiator: KEm

u5 = (MEm, M ′
Em) ∈ Updates(u5) u′

5 = Proj(u5, ΓEmSc)
u5 NULL u4 u′

5 NULL NULL u2 NULL u3 NULL
9. RefineFinalUpdate(KSc) Status: Final Initiator: KEm

u4 = (MSc, M
′
Sc) ∈ NERestr(Refine(u4, (u′

5, ΓEmSc))) u′
4 = Proj(u4, ΓScMg)

u′′
4 = Proj(u4, ΓScAc)

u5 NULL u4 NULL NULL NULL u2 u′
4 u3 u′′

4

10. RefineFinalUpdate(KMg) Status: Final Initiator: KEm

u2 = (MMg, M
′
Mg) ∈ NERestr(Refine(u2, (u′

4, ΓScMg)))
u5 NULL u4 NULL NULL NULL u2 NULL u3 u′′

4

11. RefineFinalUpdate(KAc) Status: Final Initiator: KEm

u3 = (MAc, M
′
Ac) ∈ NERestr(Refine(u3, (u′′

4 , ΓScAc)))
u5 NULL u4 NULL NULL NULL u2 NULL u3 NULL

12. CommitUpdate Status: Idle Initiator: NULL
New database state = (M ′

Em, M ′
Sc, M

′
Mg, M

′
Ac)

NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL
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an unprocessed update request to component C; that is, a request which has yet
to be lifted to that component. Once the lifting takes place, PortStatus(C, Γ ) is
reset to NULL. Note further that the request is not placed in the status register
for ΓEmSc, since the initiating component already knows about it.

The secretariat component must agree to the selected update by propos-
ing a corresponding update to the TravelSct relation, so that the projections
of TravelEmp and TravelSct agree on TravelEmpSct. Formally, this is accomplished
via a lifting of u0; that is, a ranked directed update u1 on Schema(KSc) which
projects to u0 under γEmSc. In principle, this could be any such lifting, but since
the secretariat is assumed to be largely an administrative arm in this example,
it is reasonable to assume that the lifting retains all possibilities requested by
the employee. This lifting must in turn be passed along to the other components
to which KSc is connected; namely the management component KMg and the
accounting component KAc. It is not passed back to KEm at this point, since
it is assumed that Proj(u1, ΓEmSc) = Proj(u0, ΓEmSc). A lifted update is passed
back to the sending component only when the lifting alters the projection on
to their interconnection. Thus, if the secretariat had made restrictions to the
proposed update (by limiting the number of days, say), then the lifting would
need to be passed back to KEm as well. In any case, the lifting which is selected
by the secretariat is passed along to KMg and KAct as u′

1 and u′′
1 , respectively,

as represented in step 2 of Table 2: PromoteInitialUpdate(KSc).
Management responds by lifting u′

1 to an update u2 on the entire component
KMg, as illustrated in step 3 of Table 2: PromoteInitialUpdate(KMg). Sup-
pose, for example, that u2 approves travel to ADBIS for seven days, but denies
travel to DEXA completely. This decision must then be passed back to KSc; this
is represented as u′

2 in the table. On the other hand, if KMg decides to allow all
possible travel possibilities which are represented in u′

1, the lifting is not passed
back to KSc. This point will be discussed in more detail later.

Similarly, KAc must respond to u′′
1 , which is a ranked update regarding travel

funds, but not the number of days. Accounting must decide upon an appropriate
lifting u3. For example, in the lifting u3 of u′′

1 , it may be decided that e1500 can
be allocated for travel to DEXA, but only e900 for travel to ADBIS. In step 4
of Table 2, this component reports its lifting decision back to KSc via u′

3.
In step 5, RefineUpdate(KSc), the decisions u′

2 and u′
3 of KMg and KAc,

which were reported to KSc in steps 3 and 4, are lifted to u4 and then re-
ported back to KEm via u′

4. In this example, the employee Lena would discover
that she may travel only to ADBIS and not to DEXA, with a maximum fund-
ing allocation of e900 and for at most seven days. She acknowledges this with
RefineUpdate(KEm) in step 6, producing u5. As she is the originator of the
update request, it is highly unlikely that u5 would be anything but the maximal
lifting of u4. As such, further update is passed back to KSc during this step.

The system next observes that no component has any pending updates in its
port-status registers, and so marks the cooperative update process as successful
via the AcceptUpdate action in step 7, which includes a transition to Accepted
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status. Unlike the previous steps, this action is taken entirely by the system, and
it is the only possibility from the state reached after step 6.

The process is not yet complete, however, as Lena must select a particular
update, and then that update must be lifted to the entire network of com-
ponents. She may select any member of u5; however, in this case, there is a
maximal entry in what remains of her initial ranked update: travel to ADBIS
for seven days with e900. Given her indicated preferences, this would likely be
her choice. A second round of confirmation via project-lift requires each of the
other components to select a specific update to match her choice. These choices
(for example, the ActID which pays for the trip) will be invisible to Lena. The
details are contained in steps 8-11 of Table 2 via a SelectFinalUpdate(KEm,)
step, followed by three RefineFinalUpdate(C) commands, one for each of the
three other components, and are similar in nature to the previous negotiation.
Keep in mind that boldface letters (e.g., u) represent ranked updates, while
italics letters (e.g.u) represent simple updates. After these, the final step is the
system-initiated action CommitUpdate, in which the agreed-upon update is
committed to the database.

There are a few further points worth mentioning. First of all, the order in
which the steps were executed is not fixed. For example, steps 3 and 4 can
clearly be interchanged with no difference in subsequent ones. However, even
greater variation is possible. Step 5, RefineUpdate(KSc), could be performed
before PromoteInitialUpdate(KAc) of step 4. In that case, upon completion
of RefineUpdate(KAc), a second execution of RefineUpdate(KSc) would be
necessary. The final result would nonetheless be the same. More generally, the
final result is independent of the order in which decisions are made. See Obser-
vation 3.5 for a further discussion.

Suppose that in PromoteInitialUpdate(KAc) of step 4, all incoming up-
dates in u′′

1 are supported by u3, i.e., Proj(u3, ΓScAc) = u′′
1 . In that case, no

revised request of the form u′
3 is transmitted back to KSc via the port-status

register. It is thus natural to ask how KSc “knows” that no such request will
appear. The answer is that it does not matter. The entire process is nonde-
terministic, and KSc can execute RefineUpdate(KSc) based upon the input
u′

2 from KMg alone. If an update request u′
3 comes from KAc later, a sec-

ond RefineUpdate(KSc) based upon it would allow precisely the same final
result as would the process described in Table 2. Again, see Observation 3.5
below.

It is also worthy of note that some decisions may lead to a rejection. For
example, management might decide to allow travel only to ADBIS, while the
accountant might find that there are funds for travel to DEXA but not ADBIS.
In that case, the refinement step 5 would fail, and the only possible step to con-
tinue would be a rejection. Additionally, any component can decide to reject any
proposed update on its ports at any time before the Accepted state is reached
simply by executing a RejectUpdate(C), even if there is a possible update.
For example, a supervisor might decide to disallow a trip.
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3 A Formal Model of Cooperative Updates

In this section, some of the technical details regarding updates and update fam-
ilies are elaborated, and then a more complete description of the behavior of
the update automaton is given. In Definition 3.1–Definition 3.3 below, let D be
a database schema, and let Γ = (V, γ) be a view of D; that is, γ : D → V
is a database morphism whose underlying mapping γ̊ : LDB(D) → LDB(V) is
surjective. Consult [11] for details.

Definition 3.1 (Updates and update families). Following [2, Sec. 3], an
update on D is a pair u = (M1, M2) ∈ LDB(D)×LDB(D). This update is called
an insertion if M1 ≤D M2, and a deletion if M2 ≤D M1. A directional update
is one which is either an insertion or else a deletion. A ranked update on D is a
triple u = (M, S, ≤u) in which M ∈ LDB(D), S is a finite subset of LDB(D), and
≤u is a preorder (i.e., a reflexive and transitive relation [12, 1.2]) on S, called the
preference ordering. The set of updates of u is Updates(u) = {(M, M ′) | M ′ ∈
S}. u is deterministic if Updates(u) contains exactly one pair, and empty if
Updates(u) = ∅. In general, ranked updates are denoted by boldface letters
(e.g., u), while ordinary updates will be denoted by italic letters (e.g., u). The
ranked update u is an insertion (resp. a deletion) if every (M, M ′) ∈ Updates(u)
is an insertion (resp. a deletion), and u is a ranked directional update if it is
either an insertion or else a deletion. Every (ordinary) update can be regarded
as a ranked update in the obvious way; to (M1, M2) corresponds the ranked
update (M1, {M2}, ≤D |{M1,M2}). The set of all ranked directional updates on D
is denoted RDUpdates(D). For S′ ⊆ S, the restriction of u to S′ is Restr(u, S′) =
(M1, S

′, ≤u|S′ ) with ≤u|S′ the restriction of ≤u to S′. The set of all nonempty
restrictions of u is NERestr(u) = {Restr(u, S′) | (S′ ⊆ S) ∧ (S′ 	= ∅)}.

Definition 3.2 (Projection of updates and update families). For u =
(M1, M2) an update on D, the projection of u to Γ is the update (̊γ(M1), γ̊(M2))
on V. This update is often denoted γ(u). Now let u = (M1, S, ≤u) be a ranked
update on D. The projection of u to Γ , denoted Proj(u, Γ ), is the ranked update
γ(u) = (̊γ(M1), γ̊(S), ≤γ(u)) in which γ̊(S) = { ˚γ(M) | M ∈ S} and N ≤γ(u)
N ′ iff for every M, M ′ ∈ S for which γ̊(M) = N and γ̊(M ′) = N ′, M ≤u

M ′. Observe that projection preserves the property of being an insertion (resp.
deletion) in both the simple and ranked cases. Another important operation in
component-based updating is refinement. Suppose that u is a proposed ranked
update to a component, and that for each of its ports is given a ranked update
which is a restriction of u onto that component. The refinement of u by those
restrictions is the largest restriction of u which is compatible with all of the
ranked updates on the ports. The formal definition is as follows. Let {Γi | 1 ≤
i ≤ n} be a set of views of D, u′

i = Restr(Proj(u, Γi), S), and for 1 ≤ i ≤ n,
let Si ⊆ {̊γi(M) | M ∈ S}, with S′ = {M ∈ S | (∀i ∈ {1, 2, . . . , n})(∃Ni ∈
Si)(̊γi(M) = Ni)}. The refinement of u by U = {(Γi,u′

i) | 1 ≤ i ≤ n} is defined
to be Restr(u, S′), and is denoted Refine(u, U).
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Definition 3.3 (Liftings of updates and update families). The operation
which is inverse to projection is lifting, in which an update to a view is “lifted”
to the main schema. In contrast to projection, lifting is inherently a nondeter-
ministic operation. Let u = (N1, N2) be an update on V, and let M1 ∈ LDB(D)
with γ̊(M1) = N1 as well. A lifting of u to D for M1 is an update u′ = (M1, M2)
on D with the property that γ̊(M2) = N2. If u is an insertion (resp. deletion),
the lifting u′ is direction preserving if u′ is also an insertion (resp. deletion). If u
is an insertion and u′ is direction preserving, u′ is minimal if for for any lifting
(M1, M

′
2) of u to D for M1 with M ′

2 ≤u M2, it must be the case that M ′
2 = M2,

and u′ is least if for any lifting (M1, M
′
2) of u to D for M1, M2 ≤u M ′

2. A corre-
sponding definition holds for deletions, with “≤u” replaced by “≥u”. These ideas
extend in a straightforward manner to ranked updates. Let u = (N1, S, ≤u) be
a ranked update on V, and let M1 ∈ LDB(D) with γ̊(M1) = N1. A lifting of
u to D for M1 is a ranked update u′ = (M1, S

′, ≤u′ ) on D which satisfies the
following three properties:

(lift–i) (∀M2 ∈ S′)(∃N2 ∈ S)(̊γ(M2) = N2).
(lift–ii) (∀N2 ∈ S)(∃M2 ∈ S′)(̊γ(M2) = N2).
(lift–iii) For M2, M

′
2 ∈ S′, M2 ≤u′ M ′

2 iff γ̊(M2) ≤u γ̊(M ′
2).

If u is a ranked directional update, then the lifting u′ is direction preserving if it
satisfies the obvious conditions —- if u is an insertion (resp. deletion), then so too
is u′ . A direction-preserving ranked directional update u is minimal (resp. least)
if each member of Updates(u) is minimal (resp. least). The set of all minimal
liftings of u for M1 is denoted MinLift(u, Γ, M1).

Definition 3.4 (The update automaton). Details regarding the precise con-
ditions under which the actions of the automaton may be applied are expanded
here. For the most part, information which has already been presented in Ex-
ample 2.2 and Table 1 will not be repeated.

The machine operates nondeterministically. There are eight classes of actions;
any member of any of these classes may be selected as the next step, provided
that its preconditions are satisfied. The listed actions are then executed in the
order given. All of these operations, with the exception of AcceptUpdate and
Commit, must be initiated by a user of the associated component. Operation is
synchronous; that is, only one operation may be executed at a time. Subsequent
operations must respect the state generated by the previous operation. Formally,
a computation of this automaton is a sequence D = 〈D1, D2, . . . , Dn〉 in which
D1 = InitiateUpdate(C,u) for some C ∈ X and u ∈ RDUpdates(Schema(C)),
and for 1 ≤ i ≤ n − 1, Di+1 is a legal step to follow Di according to the
rules spelled out below. The computation defines a single negotiation if Dn =
CommitUpdate, while Dk 	= CommitUpdate for any k < n. The length of the
computation is n. In the description which follows, X is taken to be a finite set
of components with J an interconnection family for X .

InitiateUpdate(C,u): This is the first step in the update process, and is ini-
tiated by a user of the component C by proposing a ranked update u to its
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current state. The appropriate projections of this update are propagated to all
ports of components which are connected to C and whose state is altered by the
update.

Preconditions:
P11: Status = Idle

Actions:
Q11: Initiator ← C

Q12: Status ← Active
Q13: PendingUpdate(C) ← u
Q14: (∀Γ ∈ Ports〈C〉)(∀Γ ′ ∈ AdjPorts〈C, J〉)((Proj(u, Γ ) 	= identity )

⇒ PortStatus(SrcCpt(Γ ′), Γ ′) ← Proj(u, Γ )).

PromoteInitialUpdate(C): This step is relevant in the situation that a com-
ponent has received an update request on one of its ports, but it has not yet
proposed any corresponding update to its own state. A user of that compo-
nent selects a lifting of this update request for its own state, and propagates its
projections to its ports to all neighboring components.

Preconditions:
P21: Status = Active
P22: PendingUpdate(C) = NULL
P23: (∃Γ ′ ∈ Ports〈C〉)(PortStatus(C, Γ ′) 	= NULL)

/* Since the hypergraph of J is acyclic, Γ ′ must be unique. */
Actions:

Q21: PendingUpdate(C) ← Choose u ∈ NERestr(MinLift(u, Γ ′, Schema〈C〉))
where (Γ ′ ∈ Ports〈C〉) ∧ (PortStatus(C, Γ ′) 	= NULL)

Q22: (∀Γ ∈ Ports〈C〉)(PortStatus(C, Γ ) ← NULL)
Q23: (∀Γ ∈ Ports〈C〉)(∀Γ ′′ ∈ AdjPorts〈C, J〉)((Proj(u, Γ ) 	= identity )

⇒ PortStatus(SrcCpt(Γ ′′), Γ ′′) ← Proj(u, Γ )).

RefineUpdate(C): In this step, a user of component C further restricts its
current proposal for an update, based upon additional ranked updates received
at its ports. Upon successful completion, the new proposed update of the com-
ponent is consistent with the proposed updates which were on its ports.

Preconditions:
P31: Status = Active
P32: PendingUpdate(C) 	= NULL
P33: Refine(PendingUpdate(C),

{(Γ, PortStatus(C, Γ )) | PortStatus(C, Γ ) 	= NULL}) 	= ∅.
Actions:

Q31: PendingUpdate(C) ← Choose u ∈ NERestr(Refine(PendingUpdate(C),
{(Γ, PortStatus(C, Γ )) | PortStatus(C, Γ ) 	= NULL}))

Q32: (∀Γ ∈ Ports〈C〉)(PortStatus(C, Γ ) ← NULL)
Q33: (∀Γ ∈ Ports〈C〉)(∀Γ ′ ∈ AdjPorts〈C, J〉)((Proj(u, Γ ) 	= identity )

⇒ PortStatus(SrcCpt(Γ ′), Γ ′) ← Proj(u, Γ )).
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RejectUpdate(C): This step is a crude, all-purpose rejection step. Any com-
ponent can reject the proposed update and terminate the entire process at any
time for any reason. One reason might be that it cannot unify the update pro-
posals on its ports, but it could also be that one of its users wishes to terminate
the update for other reasons. Upon such termination, the update automaton is
returned to its initial state; all proposed updates are discarded.

Preconditions:
P41: Status = Active

Actions:
Q41: Status ← Idle
Q42: Initiator ← NULL
Q43: (∀C ∈ X)(PendingUpdate(C) ← NULL)
Q44: (∀C′ ∈ X)(∀Γ ∈ Ports〈C′〉)(PortStatus(C′, Γ ) ← NULL)

AcceptUpdate: This step is executed when all components which are involved
in the update process agree that the update can be supported. This agreement
is indicated by the fact that no port has a pending update; all such port updates
have been integrated into component updates. It is initiated automatically; users
cannot effect it directly.

Preconditions:
P51: Status = Active
P52: (∀C ∈ X)(∀Γ ∈ Ports〈C〉)(PortStatus(C, Γ ) = NULL)

Actions:
Q51: Status ← Accepted

SelectFinalUpdate(C, u): Upon acceptance, the components have agreed
upon a ranked update. However, the database must be updated to a single new
state; thus, a single update must be chosen from the ranked set. The purpose of
this step is to initiate that selection process; it is always executed by a user of
the component in which the update request initiated.

Preconditions:
P61: Status = Accepted
P62: Initiator = C

P63: u ∈ NERestr(PendingUpdate(C)) ∧ u is deterministic.
Actions:

Q61: For each Γ ∈ Ports〈C〉, if Proj(u, Γ ) is not the identity update, then
for all Γ ′ ∈ AdjPorts〈C, J〉, PortStatus(SrcCpt(Γ ′), Γ ′) ← Proj(u, Γ )

Q62: Status ← Final

RefineFinalUpdate(C): In this step, a user of component C selects a final
deterministic update which is consistent with that chosen by the initiator.

Preconditions:
P71: Status = Final



Update Support for Database Views Via Cooperation 111

Actions:
Q71: PendingUpdate(C) ← some deterministic restriction of

Refine(PendingUpdate(C),
{(Γ, PortStatus(C, Γ )) | PortStatus(C, Γ ) 	= NULL})

Q72: (∀Γ ∈ Ports〈C〉)(PortStatus(C, Γ ) ← NULL)

CommitUpdate: In this step, the update is committed to the database, and the
update automaton is returned to its initial state (albeit with the new database
state). This step is executed automatically when its preconditions are satisfied;
users cannot initiate it.

Preconditions:
P81: Status = Final
P82: (∀Γ ∈ Ports〈C〉)(PortStatus(C, Γ ) = NULL)

Actions:
Q81: (∀C ∈ X)(CurrentState(C) ← PendingUpdate(C))
Q81: (∀C ∈ X)(PendingUpdate(C) ← NULL)
Q83: Initiator ← NULL
Q84: Status ← Idle

Because the model of negotiation which has been presented is very simple, it has
some nice theoretical properties. Firstly, infinite computations are not possible;
the machine will always halt. Second, although the machine is nondeterminis-
tic, it is not necessary to guess correctly to make things work. These ideas are
formalized in the following observation.

Observation 3.5 (Computations are well behaved). In the automaton
model given in Definition 3.4, the following conditions hold.

(a) For any C ∈ X and any u ∈ RDUpdates(Schema(C)), there is a natural
number n (which may depend upon the current state of the database) such that
every computation beginning with InitiateUpdate(C,u) has length at most n.

(b) Let D = 〈D1, D2, . . . , Dk−1, Dk, . . . , Dn〉 be a computation of the update au-
tomaton which defines a single negotiation, and let E = 〈E1, E2, . . . , Ek−1, Ek〉
be a computation of that same machine with Ei = Di for 1 ≤ i ≤ k−1. Assume
further that Ek is not of the form RejectUpdate(C). Then there is a choice
of lifting associated with Ek and a computation E′ = 〈E1, E2, . . . , Ek−1, Ek, . . . ,
En′〉 which also defines a single negotiation, and with the further property that
D and E′ result in the same update on the database. (The values of n and n′

need not be the same).

Proof outline: Part (a) follows from the observation that only one decision
for an initial ranked update may be made for each component. After that, the
process only refines these initial decisions. Since a ranked update is finite by
definition, there can only be a finite number of such refinements, and each such
refinement must reduce the number of possibilities in some pending update. Part
(b) follows by observing that one may simply choose for the lifting of Ek the
final ranked update for that component under the computation D. �
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4 Conclusions and Further Directions

The basic idea of supporting view update by negotiating with other views (qua
components) has been presented. A formal model of this process has been de-
veloped using a nondeterministic automaton as the underlying computational
model. Although it has certain limitations, it does provide a formal model of
update by component cooperation within that context, thus providing a firm
basis for further development of these ideas, a few of which are identified below.

Extension of the basic model: The basic model of cooperative update is lim-
ited in severalways. For these reasons, the it should be viewed as a proof-of-concept
effort rather than a comprehensive solution; further research will address the fol-
lowing issues. First, the current model of cooperation is monotonic. Once the ac-
tors have made initial proposals for the updates which they support, the process of
identifying the solution update is solely one of refining those initial proposals. On
the other hand, in realistic situations, it is often necessary for the parties to nego-
tiate nonmonotonically, by retracting their initial proposals and then submitting
new ones, or by modifying their existing proposals adding new alternatives rather
than by just refining existing ones. A key extension for future work is to develop
an extended model which supports such nonmonotonic negotiation. A second im-
portant direction for future work is the development of a computational formalism
which embodies more specific modelling of communication between components.
The current automaton-based rendering does not provide the necessary informa-
tion to the actors to effect an efficient negotiation; the nondeterminism allows very
long and inefficient although completely correct solutions. With a more detailed
model of communication, much more efficient negotiation will be possible.

Relationship to workflow: The topic of workflow involves the systematic
modelling of processes which require the coordinated interaction of several actors
[13]; closely related ideas are known to have central importance in information
systems [14]. Within the context of the development of interactive database sys-
tems and cooperative work, long-term transactions and workflow loops are cen-
tral topics [15] [16] [17]. There is a natural connection between these ideas and
those surrounding cooperative update which have been introduced in this paper.
Indeed, underlying the process of negotiating a cooperative solution to the view-
update problem, as illustrated, for example, in Table 2, is a natural workflow of
update tasks, each defined by a step in the execution of the automaton.

An important future direction for this work is to develop the connection
between workflow for database transactions and the models of cooperative view
update which have been presented in this paper. Indeed, given a database schema
defined by components and a requested update on one of these components, it
should be possible to use the ideas developed in this paper to define and identify
the workflow pattern which is required to effect that update. This, in effect,
would provide a theory of query-based workflow construction.
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