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Preface 

The series of East European Conferences on Advances in Databases and Information 
Systems (ADBIS) is an established and prestigious forum for the exchange of the 
latest research results in data management. It provides unique opportunities for 
database researchers, practitioners, developers, and users from East European 
countries to explore new ideas, techniques, and tools, and to exchange experiences 
with colleagues from the rest of the world. This volume contains the proceedings of 
the 11th ADBIS Conference, held in Varna, Bulgaria, September 29 – October 3, 
2007. The conference included 3 keynote talks, 36 research papers in 13 sessions, and 
2 tutorials. Twenty-tree of the research papers as well as papers or extended abstracts 
for the keynote talks are included here; the remaining papers appear in local 
proceedings. 

Distinguished members of the database and information-retrieval communities 
delivered the three keynotes. Timos Sellis, an expert in the area of multidimensional 
indexing and data warehousing, analyzed the entire lifecycle of ETL workflows, from 
specification to optimized execution, offering solutions as well as future challenges. 
Gerhard Weikum, a leader of several efforts falling at the intersection of databases 
and information retrieval, discussed the emergence of several “Webs” and how these 
may be harvested and searched for knowledge. Finally, Paolo Atzeni, well-known for 
several contributions to database theory, addressed the perennial problem of schema 
and data translation in the context of emerging model management systems and 
outlined several research challenges that emerge. 

The Research Program Committee consisted of 55 members and was chaired by 
Yannis Ioannidis (University of Athens, Hellas) and Boris Novikov (University of  St. 
Petersburg, Russia). It accepted 36 papers (23 for the Springer proceedings and 13 for 
the local proceedings) out of 77 submissions coming from 29 countries. The 
reviewing process was administrated by the Conference Management System 
developed and supported by Yordan Kalmukov (University of Rousse). Boris Rachev 
(Technical University of Varna), Irena Valova (University of Rousse) and Yordan 
Kalmukov (University of Rousse) edited the proceedings. 

The program and social activities of ADBIS 2007 were the result of a huge effort 
by many hundreds of authors, reviewers, presenters, and organizers. We thank them 
all for helping to make the conference a success. In particular, we want to thank Peter 
Antonov (Technical University of Varna) and Angel Smrikarov (University of 
Rousse) for the smooth local organization.  
 
 
July 2007                                                                                               Yannis Ioannidis 
               Boris Novikov 
                  Boris Rachev 
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ETL Workflows: From Formal Specification to
Optimization

Timos K. Sellis and Alkis Simitsis

1 School of Electrical and Computer Engineering,
National Technical University of Athens, Athens, Hellas

timos@dblab.ece.ntua.gr
2 IBM Almaden Research Center, San Jose CA 95120, USA

asimits@us.ibm.com

Abstract. In this paper, we present our work on a framework towards the mod-
eling and optimization of Extraction-Transformation-Loading (ETL) workflows.
The goal of this research was to facilitate, manage, and optimize the design and
implementation of the ETL workflows both during the initial design and deploy-
ment stage, as well as, during the continuous evolution of a data warehouse. In
particular, we present our results which include: (a) the provision of a novel con-
ceptual model for the tracing of inter-attribute relationships and the respective
ETL transformations in the early stages of a data warehouse project, along with
an attempt to use ontology-based mechanisms to semi-automatically capture the
semantics and the relationships among the various sources; (b) the provision of
a novel logical model for the representation of ETL workflows with two main
characteristics: genericity and customization; (c) the semi-automatic transition
from the conceptual to the logical model for ETL workflows; and (d) the tuning
of an ETL workflow for the optimization of the execution order of its operations.
Finally, we discuss some issues on future work in the area that we consider im-
portant and a step towards the incorporation of the above research results to other
areas as well.

1 Introduction

Successful planning and decision making in large enterprises requires the ability of effi-
ciently processing and analyzing the organization’s informational data. Such data is typ-
ically distributed in several heterogeneous sources and stored under different structures
and formats. To deal with such issues, as well as performance issues, and to support
the functionality of On Line Analytical Processing (OLAP) applications and Decision
Support Systems (DSS), Data Warehouses (DW) are employed to integrate the data
and provide an appropriate infrastructure for querying, reporting, mining, and other ad-
vanced analysis techniques. The procedure of designing and populating a DW has been
characterized as a very troublesome and time consuming task with a significant cost in
human, system, and financial resources [13].

In the past, research has treated DW as collections of materialized views. Although
this abstraction may suffice for the purpose of examining alternative strategies for view
maintenance, it can not adequately describe the structure and contents of a DW in real-
world settings. A more elaborated approach is needed (a) to represent the population of

Y. Ioannidis, B. Novikov, and B. Rachev (Eds.): ADBIS 2007, LNCS 4690, pp. 1–11, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



2 T.K. Sellis and A. Simitsis

the DW with data stemming from a set of heterogeneous source datastores, and (b) to
take into consideration that during their transportation, data may be transformed to meet
the schema and business requirements of the DW. This procedure normally composes
a labor intensive workflow and constitutes an integral part of the back-stage of DW
architectures.

Hence, to overcome the above problems, specialized workflows are used under the
general title Extraction-Transformation-Loading (ETL) workflows. ETL workflows rep-
resent an important part of data warehousing, as they represent the means in which data
actually gets loaded into the warehouse. Their generic functionality and most prominent
tasks include:

– the identification of relevant information at the source side,
– the extraction of this information,
– the transportation of this information to the Data Staging Area (DSA), where, usu-

ally, all transformations take place,
– the transformation, (i.e., customization and integration) of the information coming

from multiple sources into a common format,
– the cleansing of the resulting data set, on the basis of database and business rules,

and
– the propagation and loading of the data to the DW and the refreshment of data

marts.

Figure 1 depicts a generic architecture of the DW environment.
Several research approaches have studied the modeling part of ETL processes. On the

other hand, several commercial tools already exist in the market and all major DBMS
vendors provide such functionality. However, each individual effort follows a different
approach for the modeling and representation of ETL processes, making essential the
adoption of an unified formal description of such processes. For a further discussion
on the importance of ETL processes and on the problems existing due to the lack of a
uniform modeling technique, along with a review of the state of the art in both research
and commercial solutions, we refer the interested reader to [7].

Fig. 1. Generic Architecture of Data Warehouse environment
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In this paper, we present our work towards the modeling and optimization of ETL
workflows. Section 2 presents our framework for the formal specification of ETL work-
flows. Section 3 describes our technique for the logical optimization of ETL workflows.
Finally, Section 4 concludes our discussion with a prospect of the future.

2 Formal Specification of ETL Workflows

2.1 Identification of ETL Design Requirements Using Semantic Web Technology

During the initial phases of a DW design and deployment, one of the main challenges
is the identification of the involved sources and the determination of appropriate inter-
schema mappings and transformations from the data sources to the DW. Currently, re-
search and commercial ETL tools mainly focus on the representation and design of ETL
scenarios. The identification of the required mappings and transformations is done man-
ually, due to the lack of precise metadata, regarding the semantics of the data sources
and the constraints and requirements of the DW. Hence, such information is incomplete
or even inconsistent, often being hard-coded within the schemata or metadata of the
sources or even provided in natural language format after oral communication with the
involved parties; e.g., business managers and administrators/designers of the DW. As a
result, designing ETL processes becomes a very tedious and error-prone task. Given the
fact that typical ETL processes are quite complex and that significant operational prob-
lems can occur with improperly designed ETL systems, developing a formal, metadata-
driven approach to allow a high degree of automation of the ETL design, is critical in
employing a Data Warehouse solution.

In our research, we have worked on the aforementioned problem. Earlier work ar-
gues that in the context of a DW application, ontologies constitute a suitable conceptual
model for describing the semantics of the datastores and automatically identifying re-
lationships among them using reasoning techniques [9,11]. The schema of a datastore
describes the way that data is structured when stored, but does not provide any infor-
mation for its intended semantics. Therefore, metadata are required to allow for the
understanding, management, and processing of this data. Semantic Web technologies
provide a means to formally specify the metadata, so that automated reasoning tech-
niques can be used to facilitate further processing.

A graph-based representation, called datastore graph, is employed as a common
model for the datastores. Graphs constitute a generic data model allowing the repre-
sentation of several types of schemas, including relational and XML schemas, thereby
allowing for both structured and semi-structured sources to be handled in a unified way.
A graph representation, termed ontology graph, is introduced for the application on-
tology. Providing a visual, graph-based representation, with different symbols for the
different types of classes and properties in the ontology, makes it easier for the designer
to create, verify and maintain the ontology, as well as use it as a means of communica-
tion between different parties involved in the project.

Annotation of a datastore is accomplished by formally defining mappings between
the nodes of the datastore graph and the ontology graph. These mappings can be rep-
resented as labels assigned to the nodes of the data store graph, i.e., the datastore is
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semantically described by the annotated datastore graph. The mappings may be spec-
ified either (semi-)automatically using results provided by related research efforts [2]
or manually – e.g., by implementing drag-and-drop functionality between the visual
representations of the corresponding graphs. In both cases, the time and effort required
for establishing and maintaining the mappings significantly decreases with respect to
common practice.

Based on the application ontology and the annotated datastore graphs, automated rea-
soning techniques are used to infer correspondences and conflicts among the datastores,
thus, identifying relevant sources and proposing conceptual operations for integrating
data into the DW.

Furthermore, the application ontology along with a common application terminol-
ogy, can be used as a common language, to produce a textual description of the require-
ments of an ETL process. The verbalization of such requirements further facilitates the
communication among the involved parties and the overall process of design, imple-
mentation, maintenance, and documentation. Recent results describe how a common
application terminology can be established semi-automatically, using linguistic tech-
niques [10]. In that work, a template-based technique is introduced to represent the se-
mantics and the metadata of ETL processes as a narrative, based on information stored
in the application ontology, which captures business requirements, documentation, and
existing schemata. In addition, the customization and tailoring of reports to meet diverse
information needs, as well as the grouping of related information to produce more con-
cise and comprehensive output are considered.

The result of the above work is accompanied by a simple graphical model, which
facilitates the smooth redefinition and revision efforts and serves as the means of com-
munication with the rest of the involved parties [13]. A graph-based representation of
the involved datastores and transformations is presented in a customizable and exten-
sible manner. The transformations used in this model follow a high level description
annotated with sufficient information for their ensuing formal specification in the logi-
cal level. (For a further analysis on this issue, we defer to subsection 2.3.)

2.2 Logical Modeling of ETL Workflows

A conceptual model for ETL processes serves as a suitable means for communications
and requirements understanding in the early stages of a DW project during which, the
time constraints of the project require a quick documentation of the involved data stores
and their relationships, rather than an in-depth description of a composite workflow. For
the ensuing stages of the project, a formal and more rigorous logical model is necessary.

In our research, we have extensively dealt with this challenge by presenting a for-
mal logical model specifically tailored for the ETL environment [8,12,14]. The model
concentrates on the flow of data from the sources towards the data warehouse through
the composition of activities (transformations) and datastores. The core of the proposed
model treats an ETL scenario as a graph of ETL activities having interconnected in-
put and output schemata. This graph, which is referred to as Architecture Graph, can
be used as the blueprints for the structure of an appropriate workflow in repository
management, visualization, and what-if analysis tools. Activities, datastores, and their
respective attributes are modeled as the nodes of the graph. Provider relationships that
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connect the input and output schemata of activities, are the edges of the graph. The op-
erational semantics of ETL activities (or of a logical abstraction of them) are expressed
in the declarative database language LDL++, which is a Datalog variant [15]. This lan-
guage is chosen due to its expressiveness (e.g., it supports external functions, updates,
and set-valued attributes) and suitability for ETL environment. (The rule-body pair is
quite suitable to characterize input-output relationships in the Architecture graph.)

In addition, a principled way of transforming LDL++ programs to graphs, all the
way down to the attribute level is proposed [8]. The resulting graph provides sufficient
answers to the measurement of the quality of ETL workflows, as well as to what-if
and dependency analysis in the process of understanding or managing the risk of the
environment [14]. Moreover, due to the obvious, inherent complexity of this modeling
at the finest level of detail, abstraction mechanisms to zoom out the graph at higher
levels of abstraction are considered (e.g., visualize the structure of the workflow at the
activity level). The visualization of the Architecture Graph at multiple levels of granu-
larity allows the easier understanding of the overall structure of the involved scenario,
especially as the scale of the scenarios grows.

The facilitation of the ETL design is realized through an extensible set of template
activities [12]. In the framework proposed, there is a discrimination between logical
and physical activities. Logical activities can be grouped in four main categories: fil-
ters (e.g., selection, not null, unique value), unary operations (e.g., aggregation, pro-
jection, function), binary operations (e.g., union, join, diff), and composite operations
(e.g., slowly changing dimensions, format mismatch, data type conversion). Physical
activities usually apply in datastores (e.g., transfer, table management, and transactional
operations). The template activities proposed do not constitute a complete set of oper-
ations, rather they are generic templates of abstract operations that are core operations
in practically every frequently used ETL transformation.

Furthermore, a template language allows the construction of any desirable template
activity and an instantiation mechanism is responsible for the instantiation of these tem-
plates. This feature provides the logical model with two characteristics: (a) genericity,
the model becomes powerful to capture ideally all the cases of ETL activities, and (b)
extensibility, the model supports the extension of its built-in functionality with new,
user-specific, templates.

An example template activity corresponding to the ‘difference’ operator is depicted
in Figure 2. This operator is used for the comparison of two datasets. For example, dur-
ing the extraction of a dataset from a source, a usual procedure is to compare the two
snapshots of the extracted data – each one corresponding to the previous and current
extraction, respectively – in order to discriminate the newly inserted/updated/deleted
data. Here, assume that during the extraction process we want to detect only the newly
inserted rows. Then, if PK is the set of attributes that uniquely identify rows (in
the role of a primary key), the newly inserted rows can be found from the expres-
sion Δ<PK>(Rnew, R). The formal semantics of the difference operator are given by
the following calculus-like definition: Δ<A1...Ak>(R, S) = {x∈R|¬∃y∈S : x[A1] =
y[A1] ∧ · · · ∧ x[Ak] = y[Ak]}. The template activity in Figure 2, expressed in LDL++,
contains an intermediate predicate in order to enhance intuition. The semijoin predicate
is used so that all tuples that satisfy it should be excluded from the result. Note also that
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a_out([i<arityOf(a_out)]{A_OUT_$i$,}[i=arityOf(a_out)]{A_OUT_$i$})<-
a_in1([i<arityOf(a_in1)]{A_IN1_$i$,}[i=arityOf(a_in1)]{A_IN1_$i$}),
a_in2([i<arityOf(a_in2)]{A_IN2_$i$,}[i=arityOf(a_in2)]{A_IN2_$i$}),
˜semijoin([i<arityOf(a_in1)]{A_IN1_$i$,}
[i=arityOf(a_in1)]{A_IN1_$i$}),
[i<arityOf( a_out )] {A_OUT_$i$= A_IN1_$i$,}
[i=arityOf( a_out )] {A_OUT_$i$= A_IN1_$i$}
.

semijoin([i<arityOf(a_in1)]{A_IN1_$i$,}[i=arityOf(a_in1)]{A_IN1_$i$})<-
a_in1([i<arityOf(a_in1)]{A_IN1_$i$,}[i=arityOf(a_in1)]{A_IN1_$i$}),
a_in2([i<arityOf(a_in2)]{A_IN2_$i$,}[i=arityOf(a_in2)]{A_IN2_$i$}),
[i<arityOf ( @COMMON_IN1 )] {@COMMON_IN1[$i$]=@COMMON_IN2[$i$],}
[i=arityOf ( @COMMON_IN1 )] {@COMMON_IN1[$i$]=@COMMON_IN2[$i$]}

Fig. 2. An example template activity: difference activity

there are two different inputs, which are denoted as distinct by adding a number at the
end of the keyword a in. A simpler version of this template could be produced using
macros.

2.3 Bridging the Two Worlds: From Conceptual to Logical Modeling

In the previous subsections, we have presented a conceptual (subsection 2.1) and a
logical (subsection 2.2) models suitable for the ETL environment. In this subsection,
we bridge the different levels of our framework by briefly presenting a semi-automatic
transition from conceptual to logical models for ETL processes. (For further details,
we refer the interested reader to [3,4].) By relating a logical to a conceptual model,
we exploit the advantages of both worlds. On one hand, there exists a simple model,
sufficient for the early stages of the data warehouse design. On the other hand, there
exists a logical model that offers formal and semantically-founded concepts to capture
the characteristics of an ETL process.

During the transition from one model to the other, several issues should be con-
fronted. First, the correspondence between the two models should be identified. Since
the conceptual model is constructed in a more generic and high-level manner, each con-
ceptual entity is mapped to a logical entity; however, in general the opposite does not
hold.

There are constructs of the conceptual model that can be directly mapped to the log-
ical model; e.g., datastores and attributes. But, there exist at least two issues where the
mapping between the two models is not straightforward: the mapping of the transfor-
mations and the finding of the execution order of a logical workflow.

Regarding the former issue, a logical activity is determined by its schemata and its
operational semantics. An activity has input and output schemata, a set (schema) of
parameters, and the schemata that describe which attributes are generated or projected
out by its application. The schemata of an activity are specified by a topological sort
of the conceptual design. (Recall from subsection 2.1 that the latter is represented as a
graph.) This procedure is done either directly (input, output, and parameter schemata) or
indirectly (generated and projected out schemata); e.g., the generated schema consists
of attributes that belong to the output but not to the input schemata.
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For the determination of the operational semantics special information should have
been provided in the conceptual model. This information is placed in a conceptual con-
struct called ‘note’ that captures designer’s comments. For example, a note may contain
information about the transformation type, e.g, addAttribute, and the transformation
expression, e.g., Date = SysDate(). With such information, in the logical level a
template activity addAttribute is chosen, which apart from the schema mappings pro-
vided by the topological sort of the conceptual design, it also contains an expression:
@OutF ield = @V alue that represents the name and the value, respectively, of the
new attribute that will be created. After the instantiation of variables in the template ex-
pression, the resulting activity creates a new attribute called Date that contains values
returned by the function SysDate(). When such information is not available from the
conceptual design, then the designer of the logical model should specify the internal
semantics of the activity.

The conceptual model is not a workflow; instead, it simply identifies the mappings
and the transformations needed in an ETL process. The placement of the transforma-
tions into the conceptual design does not directly specify their execution order. How-
ever, the logical model represents a workflow and thus, it is very important to determine
the execution order of the activities. A method has been proposed for the determination
of a correct execution order of the activities in the logical model [3,4]. Briefly, the
main idea is that the transformations of the conceptual design are grouped into strata
of order-equivalent transformations (intuitively, of transformations that are swappable).
This stratification provides a semantically correct execution order of logical activities.
Still, the resulting workflow is not unique. Different placement of order-equivalent ac-
tivities is feasible; the final choice depends on the quality and the execution time of the
workflow. A discussion on the latter follows in the next section.

3 Optimization of ETL Workflows

An ETL workflow usually follows a quite complex design that applies numerous oper-
ations in large volumes of data. Frequently, an ETL workflow must be completed in a
certain time window and thus, it is necessary to optimize its execution time. Despite the
significance of such optimization, so far the problem has not been considered in research
literature [6]. Even more surprisingly, although the leading commercial tools provide
advanced GUI’s for the design of ETL scenarios, they do not provide/suggest/enforce
any optimization technique to the created scenarios. On the contrary, a designed work-
flow, hopefully optimized manually by the designer, is propagated as is to the DBMS
for execution and hence, in practice the DBMS undertakes the task of optimization.

This optimization policy is not enough because DBMS optimizers can interfere only
in portions of a scenario and not in its entirety. This is due to the fact that ETL work-
flows cannot be considered as (multi-)queries. It is not possible to express all ETL
operations in terms of relational algebra and then optimize the resulting expression as
usual. The traditional logic-based algebraic query optimization may be blocked in an
ETL scenario, basically due to existence of data manipulation functions. In addition, the
cases of functions with unknown semantics – ‘black-box’ operations – or with ‘locked’
functionality – e.g., external call to a dll library – are quite often. Another complication
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in ETL workflows is that they may involve processes running in separate environments,
usually not simultaneously and under time constraints. Hence, it is more realistic to
consider and treat ETL workflows as complex transactions and not as complex queries.

In our research, we have taken a novel approach to the problem and we have set up a
theoretical framework for the optimization of ETL scenarios by taking into considera-
tion the aforementioned particularities [5,6]. The ETL workflows optimization problem
is modeled as a state search problem. An ETL workflow is considered as a state. Given
an initial scenario, if the placement of the operations contained in that scenario changes,
then a new state is produced. If such change does not affect the global semantics of the
scenario, then the state produced is equivalent to the initial one. Equivalent states com-
prise the state space. According to a cost model, each state may have a different cost.
The goal is to develop algorithms that may find the optimal scenario in terms of the
execution cost.

The optimization technique proposed lies in the logical level. Its main advantage is
that it is not bounded by the operational semantics of ETL operations. On the contrary,
the major concern of this method is the schemata of ETL operations. As a simple ex-
ample, assume two operations ai and aj . Intuitively, if the parameters needed for the
execution of the latter are not affected by the execution of the former operation then the
positions of these two operations in the scenario can be interchanged.

A finite set of transitions that can be employed on a state is introduced. The appli-
cation of a transition to a state is proved that results in another equivalent state. In our
context, equivalent states are assumed to be states that based on the same input produce
the same output. Practically, this is achieved in the following ways: (a) by transform-
ing the execution sequence of the operations, i.e., by interchanging the positions of two
operations in the workflow; (b) by replacing common tasks in parallel flows with an
equivalent task over a flow to which these parallel flows converge; or (c) by dividing
tasks of a joint flow to clone operations applied to parallel flows that converge towards
the joint flow. The transitions used are the following.

– Swap. This transition can be applied to a pair of unary operations and interchange
their sequence. Swap concerns only unary operations, e.g., selection, checking for
nulls, primary key violation, projection, and function application.

– Factorize and Distribute. These operations involve the interchange of a binary op-
eration - e.g., union, join, and difference - and at least two unary homologous op-
erations that have the same functionality, but are applied over different data flows
that converge towards the involved binary activity. The Factorize transition replaces
the two unary operations with a new one placed right after the binary operation.
Distribute is the reverse transition. Intuitively, Factorize and Distribute essentially
model the swap between unary and binary operations.

– Merge and Split. These two transitions are used to ‘package’ and ‘unpackage’ a pair
of operations without changing their semantics. Merge indicates that a set of opera-
tions is grouped according to the constraints of the ETL workflow; thus, for example,
a third operation may not be placed between two merged operations. Split un-groups
a set of operations previously grouped by a merge transition. The use of these two
transitions ensures that specific design constraints remain intact and also proactively
reduces the search space without sacrificing any of the design requirements.
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In our work, we have experimented with three search algorithms. First, an exhaus-
tive approach has been used to construct the search space in its entirety and to find the
optimal ETL workflow. (This was used as a base metric for comparison with solutions
constructed by the other algorithms.) The size of the search space increases exponen-
tially with respect to the size of the initial ETL scenario (i.e., user scenario). Therefore,
this approach is feasible only in a limited number of ETL scenarios, which contain a
relative small number of ETL operations. For larger scenarios, as those mostly used
in practice, this straightforward approach can not be applied mostly due to efficiency
reasons and more elaborated methods should be used.

Another approach been tested uses a set of heuristics that stem from the experimenta-
tion with a large number of ETL scenarios. This heuristic algorithm reduces the search
space efficiently without any significant loss in the quality of the solution proposed. A
greedy version of the heuristic algorithm turns out that works satisfactory for small and
medium sized ETL workflows. Experimental results on both algorithms suggest that
the benefits of the proposed method can be significant. In general, the improvement of
the performance of the initial ETL workflow exceeds 70% in reasonable times for the
DW environment. (Execution times of the algorithms vary from few seconds up to 10
minutes depending on the size of the initial ETL scenario.)

It is noteworthy to mention that the above optimization approach may be applied to
more general workflows (not just ETL). To the best of our knowledge, typical research
efforts in the context of workflow management are concerned with the management of
the control flow in a workflow environment. This is due to the complexity of the prob-
lem and its practical application to semi-automated, decision-based, interactive work-
flows where user choices play a crucial role. Therefore, our proposal for a structured
management of the data flow, concerning both the interfaces and the internals of oper-
ations appears to be complementary to existing approaches for the case of workflows
that need to access structured data in some kind of data store or to exchange structured
data between operations.

4 Conclusions

In this paper, we have presented our work on a framework towards the modeling and
optimization of ETL workflows. A conceptual model suitable for the early stages of a
DW project has been described. The main challenges in that phase include the identi-
fication of the appropriate source datastores and the determination of the inter-attribute
mappings along with the appropriate (abstract) transformations that constitute the ETL
process. Also, a logical model that provides formal foundations for ETL workflows,
has been presented. The main characteristics of that model are its genericity and exten-
sibility. Towards the provision of an end-to-end solution for ETL processes, we have
discussed the mapping between the two aforementioned models.

The facilitation of the design of ETL scenarios is one side of the coin. Although,
the graph-based modeling approach that we have followed, is elegant and powerful
in terms of measuring the quality and performing what-if and risk analysis, still, the
optimization of the execution time of such workflows is a real challenge. For that reason,
we have presented a logical optimization strategy that is not bounded by the operational
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semantics of the individual operations that constitute an ETL workflow. As a thorough
experimental analysis has shown, the proposed algorithms significantly improve the
performance of ETL workflows in reasonable times for DW environments.

Concerning our future directions, a first goal is the generalization of the techniques
introduced to more generic workflows (not only ETL). Towards that, we already have
some preliminary results in flows of web services. Another issue is to consider the case
of ETL in more generic types of data, instead of the traditional relational data. We
have already extended our techniques for semi-structured data, but, still, there are more
challenges: spatial, biomedical, multimedia data and so on. The application of ETL
technology in different, no static environments – e.g., p2p networks – is also of interest.

Recently, the term ‘active’ or ‘real-time’ DW was coined to capture the need for
a DW containing data as fresh as possible. The periodic population of a DW belongs
to the past. Modern necessities demand that OLAP and DSS should handle updated
data in an on-line fashion. Thus, approximation and streaming techniques should be
taken into consideration too. In that sense, traditional ETL should adapt to new on-line
environment. As a preliminary effort towards this direction, we have proposed a new
join operator, namely MeshJoin, which is able to handle the join of a large static relation
with a stream of data [1].
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Extended Abstract

Information organization and search on the Web is gaining structure and con-
text awareness and more semantic flavor, for example, in the forms of faceted
search, vertical search, entity search, and Deep-Web search. I envision another
big leap forward by automatically harvesting and organizing knowledge from
the Web, represented in terms of explicit entities and relations as well as onto-
logical concepts. This will be made possible by the confluence of three strong
trends: 1) rich Semantic-Web-style knowledge repositories like ontologies and
taxonomies, 2) large-scale information extraction from high-quality text sources
such as Wikipedia, and 3) social tagging in the spirit of Web 2.0. I refer to the
three directions as Semantic Web, Statistical Web, and Social Web (at the risk
of some oversimplification), and I briefly characterize each of them.

Semantic Web: Although the Semantic Web in its originally envisioned glo-
rious form is still a very elusive goal, the vision itself has created a significant
momentum towards creating ontologies and representing knowledge in more rig-
orous formats than text (see, e.g., [5,7]). These include general-purpose ontolo-
gies and thesauri such as SUMO, OpenCyc, ConceptNet, or WordNet, as well
as domain-specific ontologies and terminological taxonomies such as GeneOntol-
ogy, SNOMED, or UMLS. While each of these collections alone may be viewed
as fairly partial, connecting them and combining them with “softer” knowledge
sources such as Wikipedia could be a powerful way of organizing more and more
knowledge in rigorous representations that allow effective querying and reason-
ing. Richly annotated natural-language corpora such as multilingual thesauri,
word-sense-tagged texts, or even representations in logic-based frames start be-
coming an interesting asset as well.

Statistical Web: Information-extraction (IE) technology - entity recognition
and learning relation patterns - has made enormous progress and become much
more scalable in recent years [1,10] and also much less dependent on human su-
pervision [3,4,8]. Much of this progress comes from major advances in the un-
derlying fields of natural language processing (NLP) and statistical learning, but
there is also a much better understanding of algorithmic efficiency and how to engi-
neer large-scale IE. To be clear, all these technologies will remain computationally
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expensive, but the gloomy picture of such issues being “AI-complete” and practi-
cally hopeless is gone.

Social Web: There is a growing amount of “low-hanging fruit” that allows us
to harvest knowledge without any rocket science. A large extent of this comes
from the Web 2.0 trends, or more specifically, the human contributions to the
emerging Social Web (aka. Human Semantic Web) in the form of tagging (and
thus semantically annotating) Web pages, passages or phrases in pages, images,
videos, etc. and creating so-called folksonomies (e.g., [6,10]). Another big con-
tributor is the strong proliferation of high-quality knowledge repositories with
some explicit structure that is suitable for entity, relation, and topic recogni-
tion. Probably, Wikipedia is the best example. Although it is still primarily
hyperlinked text, the link structure, the thematic categories to which articles
are manually assigned, and the templates that are used for authoring certain
types of articles (e.g., about music bands) provide enormous benefits for seman-
tic tagging. Several recent projects have made excellent use of Wikipedia and
similar sources for building explicit knowledge bases and connecting these with
other sources (e.g., [2,9]).

Each of the three directions - Semantic Web, Statistical Web, Social Web - poses
interesting research themes. I believe that connecting these different kinds of im-
plicit and explicit knowledge sources opens up synergies and great opportunties
towards the vision of large-scale knowledge management and search. The talk
will present various approaches in each of three areas, discuss their strengths
and weaknesses, and point out ideas on a combined methodology.
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Abstract. The problem of translating schemas and data form a model
to another has been under the attention of database researchers for
decades, but definitive solutions have not been reached.

Motivation for the problem comes from the variety of sources avail-
able in modern systems, which often use different approaches (and data
models) for the organization of information.

The topic is discussed here by first setting the context with reference
to the recent proposal for model management system, which considers an
even wider set of requirements. Then, definitions are given for the prob-
lem of schema and data translation and for the related one concerning
data exchange. Some side technical issues are then discussed: how schemas,
models and mappings are described, and what is the relationship between
source and target schemas in terms of information capacity. Finally, a spe-
cific proposal for data translation is discussed in some detail.

1 Introduction and Motivation

It is widely acknowledged that the need to transform, integrate and exchange data
is common to many application contexts. In fact, we often use different systems
to handle data, with different models, and we therefore need to translate data and
their description from one to another. The problem has been considered fordecades,
but definitive solutions are not yet available (Abiteboul et al.[1], Haas [20]). The
problem is relevant at the schema level, during the specification or design phase,
and at the data level, when we have databases, and we want to translate them into
some other system, which may be similar (for example, relational to relational) or
completely different (for example, XML to relational or viceversa).

The recent developments in the Internet world have added more motivation
to these needs, as it has become possible, at least in principle, to implement
communication between systems at any level, without significant limitations in
the amount of data exchanged and on the length of the interaction. Therefore
bigger amounts of data, more heterogeneous than ever, have become available
for multiple uses, which include on-line “multidatabase” integration (Kim et
al.[24]), as well as datawarehousing (Chaudhuri and Dayal [16]) or peer-to-peer
interaction (Halevy et al.[21]).

Moreover, the available information need not be in database form, but there
could be interest in integrating it in some way: it might be contained in sources of
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various kind, such as Web pages, XML documents, mail messages, spreadsheets,
annotation over multimedia content, and many others. Also, there is often the
need to reorganize and present information and data according to the user pref-
erences and profile, or to the context and environment: in general, there are often
adaptation and personalization requirements both in data representation and in
query answering (De Virgilio and Torlone [18], Koutrika and Ioannidis [25]).

From all the above arguments, we derive the importance of a general need,
according to which we have data at various places, in various forms and we
need to exchange, replicate, integrate, transform, and adapt it. The more data
is available, the more probably it is heterogeneous.

In current practice, translation problems are often tackled by means of ad-
hoc solutions, for example by writing code for each specific application, but this
is clearly very heavy and hard to maintain. Therefore, a major feature of any
significant attempt to the problem would be generality: we need approaches that
are maintainable and scale. Generality requires high-level descriptions of families
of problems (not just individual problems); in the database field (as well as in
other areas of computer science) high-level descriptions are made of metadata,
descriptions of structures (and possibly of their meaning).

In this paper, we discuss a number of issues related to schema and data
translations, with emphasis on an approach based on generality.

We will first set the framework, by devoting Section 2 to the major points
of “model management,” a high-level approach to problems that require the
management of descriptions of application artifacts (Bernstein [10]). Then, in
Section 3, we will present a general discussion of the major issues of interest,
schema and data translation, and data exchange, and of a number of related
points, such as information capacity dominance and equivalence and the tech-
niques used to represent schemas and mappings in heterogeneous environments.
In Section 4 we will be more specific, by presenting our project in the area,
which refers to the actual development of one of the model management opera-
tors, ModelGen, as a general approach to schema and data translation. Finally
in Section 5 we briefly mention concurrent projects and discuss future directions.

2 Model Management

Model management (Bernstein et al. [10,11,12]) is an approach to problems that
require access, integration, and exchange of bulk heterogeneous data. It is based
on the representation and management of schemas and mappings between them.
The basic idea is to provide a high-level programming interface, based on a set
of operators, which are defined in a generic way (that is, independently of any
specific data model). It involves operators that can be composed to form scripts
that give the lines along which the problems of interest can be solved. A basic
set of model management operators includes the following¿

– Match: given two schemas, it returns a mapping between the two;
– Merge: given two schemas and a mapping between them, it returns an “in-

tegrated” schema;
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– Diff : given a schema and a mapping, it returns the “subschema” that is not
involved in the mapping;

– Compose: given two mappings, it returns their composition.

In order to show a possible application of the operators, let us refer to an example
problem (Bernstein and Rahm [14]). Assume we have a database db1 and a
datawarehouse dw1 that contains data from db1; therefore, we can say that
there is a mapping m1 between db1 and dw1. Assume now that we want to
extend the datawarehouse with data from another database db2, whose schema
is similar to that of db1, but with some differences. By using model management
operators, we could proceed as follows:

1. match db1 and db2, to find the mapping, say m2, between them;
2. compose m2 and m1, to obtain the mapping m3 between db2 and dw1 that

describes how db2 (or probably a portion of it) can be mapped to the existing
data warehouse;

3. use Diff to find the portion db
′
2 of db2 that is neglected by m3;

4. by means of a human intervention, design a new portion dw
′
2 of the dataware-

house that can handle the data in db
′
2 as well as a mapping between db

′
2

and dw
′
2;

5. match dw1 and dw
′
2 and then merge them, to obtain the new datawarehouse

dw2.

Obviously, the problem specifications that are obtained in this way are not easy
to implement. Indeed, a lot of research has been devoted recently to both the
precise definition and implementation of the various operators and to the actual
clarification of the features of the mapping definition languages as well as of
the generality of the data models of interest. Two important observations are
useful. First of all, the operators can be defined with respect to schemas, but it
is even more important (and more challenging) to have extended versions that
are applied to instances as well. The second issue is that the involved schemas
can refer to different models. For example (Bernstein [10, Sec.4.3]) let us assume
that we have a conceptual (say, ER) schema C1 and its relational implementation
R1 and assume that the implementation is changed (for some reason) to R2; we
would like to change the specification in a suitable way. Again, we could use
Match, Compose, and Diff to find the “new” portion R′

2 of the implementation,
but then we would need to translate it to the conceptual model; indeed, there
exist known techniques to “reverse engineer” a relational schema to the ER
model, and we could apply them, but techniques change somehow if we have
different data models involved. Indeed, a specific operator is included in model
management for this purpose:

– ModelGen: given a (source) data model M1, a (source) schema S1 (in data
model M1) and a (target) data model M2, it produces a schema S2 in M2 that
suitably corresponds to S1; the data level extension, given also a database
D1 over schema S1, generates a corresponding database D2.
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3 Schema and Data Translation, a Long Standing Issue

3.1 Schema Translation and Data Exchange

The specification of the modelGen operator has been considered in the database
literature since the beginning. As soon as different data models were conceived,
for example the hierarchical, the network and the relational one, the transla-
tion of schemas and data from one to another was studied; for example, the
seminal paper on the ER model (Chen [17]) discusses how ER schemas can be
translated to the various logical models. Many other contributions followed, in-
cluding Lien [27] and Markowitz and Shoshani [30]. However, most of, if not all,
the approaches are data model specific, in the sense that they work for a specific
pair of models, a source and a target one.

A problem that can be related to schema translation, and that has been deeply
studied in the literature recently goes under the name of data exchange (Miller
et al.[19,20,35,38]): given a source schema S1 and a target schema S2, find a
suitable transformation that maps each instance I1 of S1 to a corresponding
instance I2 of S2.

The two approaches, schema translation and data exchange, can be seen as
complementary (Bernstein and Melnik [12, Sec.3]), as being the two ways to
obtain a transformation (an “executable mapping”) between a source and a
target: in schema translation only the source schema is given, whereas in data
exchange they are both given. Data exchange can be seen as a process in two
steps. First correspondences between schema elements are found (for example
by using some form of the Match operator mentioned in the previous section);
then correspondences are used as the basis to produce a complete translation
(for example, a set of SQL queries). The second step is in turn usually divided
in two substeps, with the first one that produces an intermediate, declarative
specification of the mapping in terms of constraints, and the second one that
actually “compiles” the constraints into an executable form.

Another point of view for complementarity between translation and data ex-
change is the following: data translation (that is, the translation of schemas and
data) can be seen as composed of schema translation (the schema level of Mod-
elGen) followed by a data exchange step that can take advantage of the two
schemas, the given source one and the target one generated by schema transla-
tion, as well as of the schema level mapping, also produced by ModelGen.

3.2 Information Capacity in Schema Translation

Schema and data translation and data exchange share an important requirement,
which we have kept in an implicit form so far: what is the relationship that should
hold between the source and target schemas (and instances)? We have said, in a
superficial way, that we want a target schema and database that “suitably cor-
respond” to the source ones. Now, what does “suitably correspond” means? In-
deed, the comparison of database schemas is also a long studied problem, under
various keywords that include “schema equivalence” and “information capacity
dominance” (Atzeni et al.[3], Hull [22], McGee [31], Miller et al.[33,36]). To make
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a long story short, we can say that the requirement we would like to enforce is, at
the instance level, the fact that the source instance can be precisely reconstructed
from the target one and, at the schema level, the fact that, for each instance of the
source schema, there is an instance of the target schema from which it can be re-
constructed. Then, a number of issues arise, beginning with the expressive power
of the language used to establish the correspondence (Atzeni et al.[3], Hull [22]),
which can lead to different notions of dominance and equivalence. In general, this
theory is indeed elegant, but has mainly negative results and involve difficulties in
the proper interpretation of results, as some tricky cases can emerge.

It is interesting to see the relationship that exists between information capac-
ity dominance and the basic properties of mappings between the sets of instances
of two schemas [36,33]. Dominance corresponds to a mapping between source and
target instances that is a total injective function; the function need not be sur-
jective, and therefore dominance requires a bijection between the set of source
instances and a subset of the target ones. This is indeed a common requirement
when we want to be sure that the source can be properly implemented in terms
of the target. General observations that can be made when trying to study infor-
mation capacity in translation settings, especially heterogeneous, is that general
characterizations are difficult, and desirable properties need not hold: for exam-
ple, in schema translation, we could have a source and target data model with
different expressive power, so that there is no equivalent nor dominated schema
that can be obtained as a result of an intuitive translation, and some ad-hoc step
may be needed; similarly, in data exchange, it could be the case that the source
and target schema (which are given in this case) are not really comparable, and
therefore some piece of information gets lost in the transformation. However,
information capacity can be very useful in guiding the process and in avoiding
some clearly wrong choices (Miller et al.[33]).

3.3 Models, Schemas, Mappings

Let us briefly comment on the artifacts of interest for our problems. We have
seen in Section 2 that model management operators manipulate schemas and
mappings, and we have kept referring to them in Section 3. Now we want to
briefly discuss the possible ways to represent schemas and mappings, especially
in heterogeneous settings.

The two major issues are related to the choice of representing models in an
explicit way and to how details are represented, or just omitted, in order to look
for simplicity.

The choices are mainly related to the specific problem dealt with. Some pieces
of work that deal with transformations consider rather simple formalisms (for ex-
ample, a tree based model, Abiteboul et al.[2]), that include nesting but without
much detail, so that both flat models (such as the relational one) and nested ones
(for example in the XML world) can be represented as special cases. They make
use of graphs, which can become more complex, with typing and constraints
(Miller et al.[33]), and include some pieces of metalevel information (Melnik et
al. [32]), which describes the types of the various elements.
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The precise description of models is important if we want to handle trans-
lations that explicitly refer to them. By following a database approach, we can
think that models abstract schemas in the same way as schemas abstract in-
stances. Therefore, we could introduce the notion of a “metaschema” that cor-
responds to the description of a model (Mark and Roussopoulos [29]). Then, an
issue arises: which are the elements that can appear in a model? In order to
answer the question we can start from the observation (Hull and King [23]) that
the constructs used in most known models can be expressed by a limited set
of generic (i.e. model-independent) metaconstructs: lexical, abstract, aggrega-
tion, generalization, function. As a consequence, it becomes possible to fix a set
of metaconstructs (a metamodel) and to define a model by specifying the con-
structs (with the corresponding metaconstructs) it involves. We will give some
more details on this in the next section, as this is the basis for our approach.

Another proposal, with similar goals but different features is that of Barsalou
and Gangopadhyay [9], who proposed an extensible model, with three levels and
a set of meta-types; specialization and refinement can be used to extend the
model, as meta-constructs are organized in an inheritance hierarchy (lattice) of
predefined concepts.

It is worth noting that there are contexts where the distinction between
schemas and instances is not so sharp as it is with databases; then, more elabo-
rate techniques would be needed; this could be the case with a “semistructured”
use of XML, or for some features in the semantic Web world, for example with
RDF [28] or Topic Maps [15]; in particular, the possibility of multiple levels of
“instance of” would definitely change the picture. This can turn out to be in-
teresting if the translations involve “schematic heterogeneity”, that is, the pos-
sibility of transforming schema elements into data and viceversa (Lakshmanan
et al. [26], Miller [34]).

The notion of mapping has been considered in even more different ways. At
one extreme, we have specifications that are just loose correspondences between
elements. For example in some graph based representations of schemas (for exam-
ple, see Melnik et al [32]), mappings can be specified as binary relations between
nodes (which represent schema elements). It has also been argued for the need
to “reify” mappings (Bernstein [10]), that is, to represent a mapping as an addi-
tional schema, with binary relations between it and the actual schemas involved
in the mapping. More sophisticated approaches are needed in the context of
data exchange. The most popular project (the Clio project [19,35,38]) assumes
one starts with simple correspondences and wants to obtain executable code.
More recently, Bernstein and Melnik [12] have commented on the distinction be-
tween “approximate” mappings (essentially correspondences) and “engineered”
mappings (executable specifications with robust implementations).

4 Model Independent Schema and Data Translation

In this section, we describe our long term project on schema and data translation,
an implementation of the ModelGen operator. There have been two main phases
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in our activities, the first mainly concentrated on schema translation, which led
to the MDM tool (Atzeni and Torlone [4]), and the second focusing on a flexible,
customizable environment for schema and data translation, the MIDST tool
(Atzeni et al. [7,8]). Let us discuss the main issues of each in turn.

MDM introduces the notion of a metamodel1 as composed of a set of generic
metaconstructs [4,7]; this follows the observation we mentioned in Sec. 3.3 that
constructs in the various models are similar to one another (Hull and King [23]).
Then, a model is defined by its constructs and the metaconstructs they refer to.
For example

– the relational model involves (i) aggregations of lexicals (the tables), with
some properties, for example the indication, for each component (a column),
of whether it is part of the key or whether nulls are allowed; (ii) foreign keys
defined over components of aggregations;

– a simplified OR model has (i) abstracts (tables with system-managed iden-
tifiers); (ii) lexical attributes of abstracts (for example Name and Address),
each of which can be specified as part of the key; (iii) reference attributes
for abstracts, which are essentially functions from abstracts to abstracts.

This approach involves also the notion of the supermodel, a model that has
constructs corresponding to all the metaconstructs known to the system. Thus,
each model is a specialization of the supermodel and a schema in any model
is also a schema in the supermodel, apart from the specific names used for
constructs. The translation of a schema from one model to another is defined in
terms of translations over the metaconstructs. The supermodel acts as a “pivot”
model, so that it is sufficient to have translations from each model to and from the
supermodel, rather than translations for every pair of models. Thus, a linear and
not a quadratic number of translations is needed. Moreover, since every schema
in any model is an instance of the supermodel, the only needed translations
are those within the supermodel with the target model in mind; a translation
is performed by eliminating constructs not allowed in the target model, and
possibly introducing new constructs that are allowed.

Each translation in MDM is built from elementary transformations, which are
essentially elimination steps. So, a possible translation from the ER model to
the relational would have two elementary transformations (i) one that eliminates
many-to-many relationship (introducing new entities instead), and (ii) a second
that replaces entities and one-to-many relationships with tables and foreign keys
(the traditional steps in translating from the ER to the relational model). Es-
sentially, MDM handles a library of elementary transformations and uses them
to implement complex transformations.

The major limitation of MDM with respect to our problem is that it considers
schema translations only and it does not address data translation at all.

1 Some authors (including Bernstein [10]) would use the term “metametamodel” in-
stead, as they use the term model for what we call schema here, and metamodel for
what we call (data) model.
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Our current project, MIDST (Model Independent Data and Schema Transla-
tion), improves MDM with respect to the following aspects:

– It has a dictionary that includes three parts (i) the meta-level that contains
the description of models, (ii) the schema-level that contains the description
of schemas; (iii) the data-level that contains data for the various schemas.
The first two levels are described in detail in Atzeni et al. [6] and the third
in the subsequent paper [7]. The dictionary is “exposed” and so it can be
the basis for specifying translations.

– The elementary translations are also visible and independent of the engine
that executes them. They are implemented by rules in a Datalog variant
with Skolem functions for the invention of identifiers; this enables one to
easily modify and personalize rules and reason about their correctness.

– The translations at the data level are also written in Datalog and, more
importantly, are generated almost automatically from the rules for schema
translation. This is made possible by the close correspondence between the
schema-level and the data-level in the dictionary.

– Mappings between source and target schemas and data are generated as a
by-product, by the materialization of Skolem functions in the dictionary.

Implementations of the tool have been recently demonstrated, first for the sche-
ma level and then for the schema and data level (Atzeni et al. [5,8]).

Let us comment on the major features of MIDST and on the main ideas upon
which it is based.

The translation of schemas leverages on the organization of our dictionary,
which is based on a relational approach. A schema is described in the dictionary
as a set of schema elements, with references to both its specific model and the
supermodel [6]. For example, an entity of an ER schema is described both in
a table, say ER Entity, referring to the ER model and in a supermodel table
SM Abstract, corresponding to the abstract metaconstruct to which the en-
tity construct refers. Similarly, a class of a UML diagram gives rise to a tuple
in a specific table UML Class and to one in SM Abstract again, because
classes also correspond to abstracts. Indeed, our translation process includes
steps (“copy rules”) that guarantee the alignment of the two representations.

The supermodel’s structure is pretty compact. In our relational implementa-
tion, it has a table for each construct. We currently have a dozen constructs,
which are sufficient to describe a large variety of models. Translation rules are
expressed using supermodel constructs. Therefore, they can translate any con-
struct that corresponds to the same metaconstruct, without having to rewrite
rules for each construct of a specific model. Therefore, we concentrate here on
the portion of the dictionary that corresponds to the supermodel, as it is the
only one really relevant for translations.

Fig. 1 shows an excerpt from the dictionary of MIDST, with two tables that
represent “abstracts” (the supermodel term for “entity” or “class”) and their
attributes. The tuple with OID 201 in table SM AttributeOfAbstract be-
longs to schema 1 (in the same way as all other elements shown, as sOID always
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SM Abstracts

OID sOID Name
101 1 Employees
102 1 Departments
... ... ...

SM AttributeOfAbstract

OID sOID Name IsKey IsNullable AbsOID Type
201 1 EmpNo T F 101 Integer
202 1 Name F F 101 String
203 1 Name T F 102 String
204 1 Address F F 102 String
... ... ... ... ... ... ...

Fig. 1. A small portion of the model-generic dictionary

equals 1). It has some properties, including Name, with value “EmpNo,” and
IsKey with value true, and a reference AbsOID with value 101: these say that
in schema 1 there is an attribute EmpNo, which is part of the key of entity
Employees (the abstract with OID 101).

As in the MDM approach, translations in MIDST are built by combining
elementary translations. Each elementary translation is specified by means of a
set of rules written in a Datalog variant with Skolem functors for the generation
of new identifiers. Elementary translations can be easily reused because they refer
to the constructs in supermodel terms, and so each of them can be applied to all
constructs that correspond to the same metaconstruct. The actual translation
process includes an initial step for “copying” schemas from the specific source
model to the supermodel and a final one for going back from the supermodel to
the target model of interest.

We illustrate the major features of our rules by means of an example, which
refers to the translation from the ER model to the relational one. Specifically,
we show the simple rules that generate a table (an “aggregation of lexicals,” in
supermodel terms) for each entity (“abstract”), and its columns for the attributes
of the entity. The following rule translates each abstract into an aggregation of
lexicals, with the same name, and it is pretty intuitive:

SM AggregationOfLexicals(
OID: #aggregationOID 1(oid),
sOID: target,
Name: name)

← SM Abstract(
OID: oid,
sOID: source,
Name: name)

A major feature of our rules is the use of Skolem functors to enforce correlation
between the constructs created by different rules: functors are used to create
new OIDs for the elements the rule produces in the target schema.2 The head
of the rule above has one functor: #aggregationOID 1 which generates the OID
2 A brief comment on notation: functors are denoted by the # sign, include the name

of the construct whose OIDs they generate (here often abbreviated for convenience),
and have a suffix that distinguishes the various functors associated with a construct.
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SM InstOfAbstract

OID dOID AbsOID
1001 1 101
1002 1 101

... ... ...
1005 1 102
1006 1 102

SM InstOfAttributeOfAbstract

OID dOID AttOID i-AbsOID Value
2001 1 201 1001 134
2002 1 202 1001 Smith
2003 1 201 1002 201

... ... ... ... ...
2011 1 203 1005 A

... ... ... ... ...

Fig. 2. Representation of an instance

for the new construct. If we consider the rule that generates columns for tables
from attributes of entities, then the same functor would be used to correlate the
columns with the appropriate table:

SM ComponentOfAggregation(
OID: #componentOID 1(attOid),
sOID: target,
Name: name,
IsKey: isId,
IsNullable: isN,
AggrOID: #aggregationOID 1(absOid),
Type: type)

← SM AttributeOfAbstract(
OID: attOid,
sOID: source,
Name: name,
IsIdent: isId,
IsNullable: isN,
AbsOID: absOid,
Type: type)

The main novel aspect of MIDST is the management of translations of actual
data, derived from the translations of schemas. This is made possible by the use
of a dictionary for the data level, built in close correspondence with the schema
level one. We give the main ideas here, referring the interested reader to the
original paper (Atzeni et al. [7]) for more information.

Data are described in a portion of the dictionary whose structure is automat-
ically generated and is similar to the schema portion. A portion of the repre-
sentation of an instance of the schema described by the dictionary in Fig. 1 is
shown in Fig. 2. We do not have space to comment on the details, but we can
say that each table in Fig. 2 has a row for each value or instance of construct in
the schema: a row for each instance of each entity and a row for each value of
each attribute.

The above representation for instances is clearly an “internal” one, into which
or from which actual database instances or documents have to be transformed.



24 P. Atzeni

We have developed import/export features that can upload/download instances
and schemas of a given model. This representation is somewhat onerous in terms
of space, so we are working on a compact version of it that still maintains the
close correspondence with the schema level, which is its main advantage.

The close correspondence between the schema and data levels in the dictio-
nary allows us to automatically generate rules for translating data, with minor
refinements in some cases. Indeed, the data level rule for the first rule shown
above is the following:

i SM AggregationOfLexicals(
OID: #i aggregationOID 1(i oid),
dOID: i target,
AggOID: #aggregationOID 1(oid))

← i SM Abstract(
OID:i oid,
dOID: d source,
AbsOID: oid),

SM Abstract(
OID: oid,
sOID: source,
Name: name)

Without entering into the details, we can say that the rule generates data-level
objects: it produces a data-level object (in this case, an instance of an aggre-
gation) for each data-level object of the source database that is an instance of
the source schema-level object (in the example, for each instance of the abstract
that generates the aggregation). Let us note that the body of the data-level
rule contains a generated data-level part as well as the body of the schema-level
rule, which is needed to maintain the selection condition specified at the schema
level. In this way the rule translates only instances of the schema element selected
within the schema-level rule.

As we discussed in Sec.3.2, correctness is usually modelled in terms of domi-
nance or equivalence of information capacity. However, we saw that formal char-
acterizations and positive results are very rare. Therefore, given the genericity of
our approach, it seems hopeless to aim at showing correctness in general. How-
ever, this is only a partial limitation, as we are developing a platform to support
translations, and some responsibilities can be left to its users (specifically, rule
designers, who are expert users), with system support. We briefly elaborate on
this issue.

We follow the argument that can be called “axiomatic” (Atzeni and Tor-
lone [4]): we assume the basic translations to be correct, a reasonable assump-
tion as they refer to well-known elementary steps developed over the years. It
is the responsibility of the rule’s designer to specify basic translations that are
indeed correct. So given a suitable description of models and rules in terms of the
involved constructs, complex translations can be proven correct by induction.

In MIDST, we have the additional benefit of having schema level transfor-
mations expressed at a high-level, as Datalog rules: we can automatically detect
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which constructs are used in the body and generated in the head of a Datalog
rule and then derive the signature. Since models and rules are expressed in terms
of the supermodel’s metaconstructs, by induction, the same can be done for the
model obtained by applying a complex transformation.

For correctness at the data level, we can reason in a similar way. The main
issue is the correctness of the basic transformations, as that of complex ones
would follow by induction.

The validity of the approach, given the unavailability of formal results, has
been evaluated by means of an extensive set of test cases, which have produced
positive results. We defined a set of significant models, extended-ER, XSD, UML
class diagrams, object-relational, object-oriented and relational, each in various
versions (with and without nested attributes and generalization hierarchies), and
tested translations over them.

5 Conclusion

There are other recent approaches to the same probelms, including those by
Papotti and Torlone [37] and by Bernstein et al.[13]. Atzeni [7] and Bernstein
and Melnik [12] provide brief comparisons and discussions.

As Bernstein and Melnik [12] recently noted, an ambitious goal not yet reached
by current proposals is the generation of executable mappings that can be em-
bedded in the run-time components of the actual systems: this is clearly not
possible with our current tool, which provides off-line translation. This direction
is definitely worth attention.

A second important direction we are working at is the development of a more
general tool that allow for the integration of translation steps with other generic
model management operators, in such a way that the scenarios discussed in Sec.2
can be supported.
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Abstract. As coordination is a central issue in Inter-Organizational Workflow 
(IOW), it is quite natural to model it as a specific entity. Moreover, the structure 
of the different IOW coordination problems is amenable to protocols. Hence, 
this paper show how these protocols could be modelled and made accessible to 
partners involved in an IOW. More precisely, the paper proposes a coordination 
protocol ontology for IOW and explains how workflow partners can dynami-
cally select them. This solution eases the design and development of IOW sys-
tems by providing autonomous, reusable and extendable coordination compo-
nents. This solution also supports semantic coordination through the use of the 
protocol ontology, and by making protocols shared resources exploitable in 
both design and execution steps.  

1   Introduction 

The aim of Inter-Organizational Workflow (IOW) is to support the cooperation  
between distributed and heterogeneous business processes running in different 
autonomous organizations. The different organizations involved in an IOW need to 
put resources and skills in common, and coordinate their respective business proc-
esses in order to reach a common goal, corresponding to a value-added service. Thus, 
IOW is a key technology for helping participating organizations to face the emer-
gence of the open and dynamic worldwide economy [1]. 

Coordination of these different distributed, heterogeneous and autonomous busi-
ness processes is a fundamental problem in IOW. By coordination, we mean all the 
work needed to put all these processes together in order to fulfil the common goal.  

This coordination problem can be investigated in the context of two different sce-
narios: loose IOW and tight IOW [2]. In this work, we focused on loose IOW which 
refers to occasional cooperation between organizations, free of structural constraints, 
where the organizations involved and their number are not pre-defined but are se-
lected at run time and in an opportunistic way.  

Coordination in loose IOW raises several specific problems corresponding to four 
sequential stages at run time: (i) finding partners able to realize a workflow service 
(business process), (ii) negotiating of a workflow service between partners according 
to criteria such as due time, precision, visibility of the process evolution or way of 
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doing it, (iii) contracts signature between partners and (iv) synchronization of the 
distributed and concurrent execution of the IOW’ workflow services [3].   

More precisely, finding partners consist in selecting one or several provider or-
ganizations able to execute a workflow service, which is needed for a requested or-
ganization. Thus, after finding partners, a workflow service requested is connected to 
different workflow service providers. But connecting is not enough to definitively 
select the partner that is going to execute the requested workflow service: a negotia-
tion step, in terms of due time, price, visibility of the service evolution and way of 
executing the service, is necessary to evaluate and select the best workflow provider. 
Contract specification follows up negotiation and permits the formal description of 
both the requested workflow service and the conditions of its execution. Finally, the 
execution of the requested workflow service implies its synchronization with the other 
workflow services which belong to the organizations involved in the IOW. 

In fact, whatever the coordination problem considered in loose IOW1, it follows a 
recurrent schema. After an informal interaction, the participating partners commit to 
follow a strict coordination/interaction protocol. This protocol rules the conversation 
by a set of laws which constraint the behaviour of the participating partners, assigns 
roles to each of them, and therefore organizes their cooperation. 

Since coordination protocols constitute well identifiable and recurrent coordination 
patterns in IOW, it is useful to isolate them and to study, design and implement them 
as first-class citizen entities so as to allow the different Workflow Management Sys-
tems (WfMS) involved in an IOW to share protocols and reuse them at run-time. 
Doing so, we apply the principle of separation of concerns, recognized as a good 
design practice from a software engineering point of view [4], in order to separate 
individual and intrinsic capabilities of each workflow system from what relates to 
IOW coordination. The application of this principle has historically led to the advent 
of new technologies in Information Systems: data, user interfaces and more recently 
business processes have been successively pushed out of applications and led to spe-
cific software to handle them. Following this principle in IOW, we argue that coordi-
nation protocols have to be pushed out of IOW applications.  

Following this principle, we have proposed to define a Protocol Management Sys-
tem (PMS) [5]. The PMS is a server of coordination protocols whose aim is to help 
the different WfMS involved in an IOW to deal with their coordination problems: 
finding partners, negotiation between partners, contract specification and execution. 
Given a coordination problem, the PMS helps a WfMS to choose an adequate coordi-
nation protocol and to deploy it. More precisely, the PMS offers three main services: 
the description of coordination protocols useful in the IOW context, their selection 
and their execution.  

While our previous work reported in [5] specifies the PMS architecture (its com-
ponents and their interactions), the present paper addresses two new and related is-
sues: how to describe IOW coordination protocols and how to dynamically select 
them?  

Moreover, this paper addresses these two problems in the light of the Semantic 
Web. On the one hand, the Web constitutes a perfect computing context for  
IOW, notably since it provides many facilities to ease syntactic communication and 

                                                           
1 In the following of the paper, the term IOW will correspond to loose IOW. 
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interoperability between different organizations. On the other hand, the semantic Web 
approach, and more precisely ontologies, constitutes a complete solution for sharing 
knowledge [6] and solving semantic interoperability issues. Indeed, ontologies permit 
to describe and access common business vocabulary and shared coordination proto-
cols in an explicit, machine readable and sharable way, thus facilitating semantic 
communication and interoperability between organizations. Thus, considering this 
computing context, we contribute to make IOW applications less restrictive and more 
dynamic, and automated IOW coordination, possible. 

The main contribution of the paper is a coordination protocol ontology for IOW. 
This ontology defines, at a meta-level, the general concepts of IOW coordination 
protocols and classifies them according to the coordination problem they have to 
solve (finding partners, negotiation between partners…). Moreover, the paper shows 
how to exploit this ontology in order to dynamically select a coordination protocol. 

To the best of our knowledge, this approach is novel in the context of IOW. In-
deed, as discussed in section 5, existing propositions in the IOW literature do not 
provide a framework to deal with the whole set of IOW coordination problems, but 
rather provide ad hoc solutions to address a specific IOW coordination problem and 
implement a single coordination protocol [7], [8]. In our proposition, we do not want 
to force an organization to commit to a single coordination protocol, but to allow it to 
dynamically choose the most suitable coordination protocol, according to the coordi-
nation problem to be solved and according to the type of interaction the organization 
is able to participate in.  

We have used Protégé-2000 [9] and OWL [10] to define this ontology. We also 
have used the nRQL (new Racer Query Language) language [11] to exploit the OWL 
ontology and, consequently, to dynamically select IOW coordination protocols. 

This paper is organized as follows. Section 2 and 3 present the coordination proto-
col ontology. Section 2 defines the general concepts shared by all coordination proto-
cols. Section 3 gives a classification of coordination protocols useful in the IOW 
context and also introduces the main axioms of the coordination protocol ontology. 
Section 4 shows how an organization involved in an IOW can dynamically select an 
adequate coordination protocol. Finally, section 5 compares our proposition with 
related works and concludes the paper. 

2   The Coordination Protocol Ontology  

The coordination protocol ontology gives a declarative and explicit representation of 
protocols that are useful in the IOW context. This ontology defines the invariant 
structure shared by all the protocols. It is defined around inter-related concepts, each 
of them highlighting a different aspect of a coordination protocol. Figure 1 below 
gives a graphical representation of these general concepts using the notions of classes 
(visualised as rectangles), class properties (visualised as ellipses and linked to their 
classes with dotted lines) and relationships between classes (visualised as oriented  
full lines). These concepts have been specified in Owl using Protégé-2000 (see  
Appendix 1). 
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Fig. 1. General Concepts for IOW Coordination Protocols 

The ProtocolType class abstracts the different types of coordination protocols that 
are useful in the IOW context. A Conversation is an occurrence of a Protocol Type. A 
protocol type is used in a conversation and coordinates its execution by authorizing 
types of messages and by enforcing the set of rules which constraint the behaviour of 
the participating actors. The Conversation class describes the conversations through 
their type (finding partners, negotiation between partners…) and their current state 
(open, closed), while the MessageType class defines the set of messages authorized in 
the context of a coordination protocol type. The Intention property of the Mes-
sageType class is a text that indicates the intention of messages of a given type. The 
Rule class describes the rules that govern a coordination protocol. Finally, a protocol 
type also includes a description in natural language for documentation purpose, and 
the minimal number of partners which have to be involved in the protocol.  

The Conversation class is linked to the Domain class, which defines the business 
vocabulary of the conversation. The Conversation class is also linked to the Actor 
class, which defines the actors participating, i.e. playing a role, in a conversation. The 
different roles are described in the Role class. In the IOW context, whatever the pro-
tocol being considered, we have mainly three roles (Provider, Requester, Moderator) 
described through the value of the Type property. A partner involved in an IOW may 
be a Provider or a Requester of a workflow service. A Moderator manages a single 
conversation and has the same lifetime as the conversation it manages. It plays the 
type of coordination protocol underlying the conversation, grants roles to providers 
and requesters involved in the conversation, and ensures that any message that takes 
place in the conversation is compliant with the rules of the type of protocol it plays 
[12]. 
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Moreover, several messages are exchanged during a conversation between the ac-
tors of the conversation. These messages are described in the Message class. Each 
message corresponds to a message type and has a sender, a receiver, a content, and 
eventually input or output parameters along with their associated conditions (precon-
ditions or post-conditions). These parameters are described in the Parameter class.  

To illustrate the meta-model concepts, let us take the example of the Contract Net 
Protocol (CNP) type [13]:  

− CNP involves at least two actors: a single manager and one or several contractors. 
− The requester role is played by the manager while the provider one is played by the 

contractors,  
− The governing rules are the following: at the beginning the manager has a task (a 

workflow in our context) to subcontract, submits (MessageType) the specification 
of the task to contractors, wait for their bids and then awards (MessageType) the 
contractor having the best bid. The protocol is considered as finished when the 
contractor has been chosen. The protocol must also ensure that the manager cannot 
be a contractor. 

We have specified this protocol ontology using Protégé-2000 and derived the graphic 
specification onto OWL using a specific transformation Plug-In [9]. We have chosen 
OWL as a target language for three reasons. The first one is that OWL offers a formal 
semantics, which eases the deduction between concepts of OWL specifications. The 
second one is that it exists languages to query OWL ontologies in order to exploit the 
hierarchy of concepts. This feature is very important to dynamically select IOW coor-
dination protocols. The third reason is that OWL is a standard de facto for ontologies. 

3   Classification of IOW Coordination Protocols 

In addition to the previous general concepts, we also need additive information to 
handle coordination protocols better. We propose a classification of IOW coordina-
tion protocols so as to distinguish them and to easily select them according to the 
coordination problem to be dealt: finding partners, negotiation between partners… 
This classification only takes the coordination protocols that are useful in the IOW 
context into account. However, because of space limitation, we only have presented in 
the paper the useful protocols for the two first coordination problems: finding partners 
and negotiation between partners. This section identifies coordination protocols which 
are adequate to the IOW context. It then presents a classification of these protocols. 
Finally, basing on this classification, it introduces the main axioms of the coordina-
tion protocol ontology. 

3.1   Identification of IOW Coordination Protocols 

Regarding finding partners, the two main protocols proposed in the Multi-Agent 
Systems (MAS) and Web services literature are the Matchmaker and the Broker pro-
tocols [14], [15]. The Matchmaker Protocol is a protocol which connects a requester 
looking for a specific service to providers able to fulfil its need. More precisely, upon 
a service demand from a requester, the Matchmaker returns one or several providers 
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able to execute a workflow service. The providers are supposed to have already ad-
vertised their workflow services to the matchmaker. The Broker protocol is nearly the 
same as the Matchmaker one. But, unlike the Matchmaker which directly connects a 
requester to providers, the Broker does not permit to directly solicit the providers 
which offer the requested service: the Broker is always an intermediary between the 
requester and the providers. 

Regarding negotiation between partners, we have examined the Heuristic, Argu-
mentation, Auction, Multi-Attribute Auction, Contract-Net, Iterative Contract-Net 
protocols proposed in MAS [16]. The criteria used to determine the negotiation proto-
cols that suit loose IOW the best are the behaviour of the partners involved in the 
negotiation (competitive or cooperative), the number of partners (one or several), the 
number of negotiation rounds, and the question whether a multi-attribute negotiation 
is possible or not.  

Table 1. Negotiation Protocol and Selection criteria  

Protocol Negotiation 
Behaviour 

Number of 
partners 

Number of 
rounds 

Multi-attribute 
Negotiation 

Auction competitive 2 .. * 1 .. * not possible 
Multi-Attribute 
Auction 

competitive 2 .. * 1 .. * possible 

Argumentation competitive 1 .. * 1 .. * possible 
Heuristic competitive 1 .. * 1 .. * possible 

Contract-Net competitive or 
cooperative 

1 .. * 1 possible 

Iterative  
Contract-Net 

competitive 1 .. * 1 .. * possible 

According to table 1 above, the Multi-Attribute Auction, Argumentation, Heuristic 
and  Iterative Contract-Net protocols fit the IOW requirements better since (i) the 
partners involved in an IOW are competitive, (ii) the number of partners is one or 
several, (iii) the number of rounds is one or several, and (iv) the negotiation concerns 
several attributes (due time, price, visibility of the evolution of the service, way of 
doing it…).  

Regarding the negotiation behaviour, we argue that the competitive behaviour bet-
ter fit the IOW requirements since the different providers selected at the end of find-
ing partners compete with each others with the aim to be chosen by the provider. 

3.2   A Hierarchy of IOW Coordination Protocols 

According to the identified IOW coordination protocols and using the sub-class con-
cept for their classification, we present in Figure 2 our hierarchy of IOW coordination 
protocol which refines the ProtocolType class introduced in section 2. Thus, types of 
protocols are specialized according to their objective into two abstract classes: Find-
ingPartner and Negotiation. Those classes are in turns recursively specialized until 
obtaining leaves corresponding to types of IOW coordination protocols like for  
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instance Matchmaker, Broker, Argumentation, Heuristic… Each of these types of 
protocols may be used to deal with one of the coordination problems identified in the 
context of IOW. These different defined classes also feature new properties which are 
specific to each one. Thus, the Objective property, added in the ProtocolType class, 
indicates the coordination problem for which the protocol may be used (finding part-
ners, negotiation between partners). Moreover, if we consider the problem of finding 
partners, we can make the following observation. As explained before, the Match-
maker protocol differs from the Broker protocol by the fact that it implements a peer-
to-peer execution mode with the provider: the identity of the provider is known and a 
direct link is established between the requester and the provider at run time. Conse-
quently, the P2Pexecution property defined in the FindingPartner class, will be used 
to choose one of these two types of protocol. In the same way; the Negotiation class is 
provider with additional properties (OpenDialog, Explanations and Bid) which will be 
used to choose one type of negotiation protocol among Argumentation, Heuristic, 
Multi-Attribute Auction and Iterative Contract Net. 
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implements FindingPartner
Rule
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Rule

Matchmaker Broker

Negotiation
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Fig. 2. Hierarchy of Coordination Protocols 

Moreover, the Rule class is refined into two sub-classes: FindingPartnerRule and 
NegotiationRule, respectively describing rules for finding partners (i.e. rules which 
are available for both Matchmaker and Broker protocol types) and negotiation be-
tween partners (i.e. rules which are available for both Argumentation, Heuristic, Itera-
tive Contract Net and Multi Attribute Auction protocol types) [17]. 

Finally, the Actor class is refined in order to distinguish actors playing the role of 
Moderator from actors playing the role of Requester or Provider. The Moderator and 
OtherActor sub-classes are introduced. More precisely, actors playing the role of 
Moderator (for short, moderators) manage a conversation, and consequently imple-
ment the type of coordination protocol underlying the considered conversation and 
ensure that any message that takes place in the conversation is compliant with the 
rules of the type of protocol it plays. The Moderator class is in turn refined into two 
new sub-classes: FindingPartnerModerator and NegotiationModerator. The instances 
of the first class are moderators for finding partners (i.e. matchmakers or brokers) 
while the instances of the second class are moderators for negotiation between part-
ners (i.e. morderators implementing an heuristic, argumentation, iterative contract-net 



 A Protocol Ontology for Inter-Organizational Workflow Coordination 35 

or multi-attribute auction protocol type. Each of these two classes specifies new prop-
erties which help in choosing a moderator. For instance, if we consider a moderator 
for finding partners, one can be interested in the comparison modes it supports (has-
comparison-mode relationship). These comparison modes can be Plug-In, Exact, 
Subsume or Nearest-Neighbour as suggested in [14]. One can also be interested in its 
quality rate to compare it to other moderators (QualityRate property), in the minimum 
number of providers it is able to manage (NumberOfProviders property), and in the 
delay in its response (DelayInResponse property). Finally, one can also be interested 
in finding the conversation the moderator manages (manages relationship). 

3.3   Axioms of the Coordination Protocol Ontology  

To fully define the Coordination Protocol Ontology, it is also necessary to specify 
axioms that constraint the concepts of the ontology (classes, properties and relation-
ships). These axioms are described using the Protégé Axiom Language (PAL). We 
give below a brief overview of the axioms we have defined for this ontology: 

− A1: Each protocol type has a minimal number of participants greater than 2. The 
statement of this axiom is the following: 

(forall ?ProtocolType  (> (allowed-slot-value MinNumbParticipant ?ProtocolType) 
2)) 

− A2: For each conversation, the type of its moderator is compliant with the type of 
the protocol type underlying the conversation.  In the specific case of finding part-
ners, the previous sentence can be described by the following axiom: 

(defrange ?pt :FRAME Conversation used-in)  -- pt: Protocol Type of a conversation 
(forall ?Conversation  ( => (instance-of (used-in ?pt)FindingPartner) 
           (exists ?FindingPartnerModerator 
                 (and  (implements ?FindingPartnerModerator ?ProtocolType)     
           (manages ?FindingPartnerModerator ?Conversation)))) 

− A3: Each conversation has an actor who plays the role of moderator and imple-
ments the ProtocolType used in the conversation.   

(defrange ?pt :FRAME Conversation used-in)  -- pt: Protocol Type of a conversation 
(forall ?Conversation 
  ( => (exist ?Actor (and  ((participates ?Actor ?Conversation) 
   (plays ?Actor ?Role)  (allowed-slot-value TypeRole Role 'Moderator' ) ))) 
 (and ((instance-of (?Actor) Moderator) (implements ?Actor  ?pt) )))) 

− A4: Each negotiation is ruled by negotiation rules. 

(for all ?Negotiation  
( => (dictates ?Negotiation ?Rule) (Exist (instance-of (?Rule) NegotiationRule)))) 

4   Dynamic Selection of IOW Coordination Protocols  

As the IOW coordination ontology is specified, we have to show how to exploit it so 
as to help an organization involved in an IOW to dynamically select a coordination 
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protocol. This section explains how this dynamic selection is done according to the 
considered IOW coordination problem that is to be dealt with, and to the type of in-
teraction the organizations involved in the IOW able to participate in. 

On the one hand, this selection consists in identifying the type of protocol to exe-
cute in concordance with the aim to be reached, and, on the other hand, it consists in 
choosing an actor/moderator implementing the identified type of protocol in the con-
text of a conversation. The protocol ontology is at the basis of this selection and it is 
specified in OWL. So, we have used the nRQL [11] query language for OWL ontolo-
gies in order to query the OWL specification and select relevant instances of the  
ontology. nRQL is implement by the Racer system which is known as an highly effec-
tive and efficient optimized OWL-DL query processor. 

The nRQL language is probably the most successful language to directly query an 
OWL ontology. Its main rival for querying OWL ontologies is OWL-QL[18]. But, as 
it is, this language is insufficient to be chosen to query our protocol ontology. 

A nRQL query is composed of a query head and a query body. The query body 
consists of the query expression whereas the query head corresponds to variables 
mentioned in the body that  will be bound to the result. Examples of nRQL queries are 
given below in this section. 

On the one hand, and as indicated before, nRQL is first used to select a type of pro-
tocol to execute according to the IOW coordination problem to be dealt with. To do 
this, the query must navigate through the type of protocols hierarchy and select possi-
ble models of protocols. For instance, if the aim of a requester organization is to find 
a partner, the requester will obtain a set of FindingPartner protocols: Matchmaker 
and Broker. The nRQL query below implements this example and we also give the 
result of its execution. 

Q1: (retrieve (?x) (?x (= |Objective| ″FindingPartners″))) 
R1: (?x Matchmaker) (?x Broker) 

The value of the other properties can be used to select a specific protocol type. For 
instance, if a query specifies a peer-to-peer execution, it will obtain the Matchmaker 
protocol type otherwise the Broker will be suggested to it. The nRQL query below 
implements this example and we also give the result of its execution. 

Q2: (retrieve (?x) (and (= |Objective| ″FindingPartners″)  
           (= |P2Pexecution| True) ) ) 

R2: (?x Matchmaker) 

On the other hand, nRQL is used to select an actor/moderator implementing the se-
lected type of protocol. Then, properties of the FindingPartnerActor class, which 
correspond to properties of moderator implementing protocols, must be considered for 
this selection. For instance, to choose a Matchmaker able to compare workflow ser-
vices in the Travel business domain and able to consider several providers, the fol-
lowing query must be submitted to the OWL protocol ontology: 

Q3: (retrieve (?x) (and (?y (= |Name| ″Travel″)) (?z  ?y |has-
business-domain|) (?x ?z |manages|) (?x |FindingPartners| imple-
mentsfp))) 

The result of this query is one or several existing actors/moderators of open con-
versations implementing the Matchmaker protocol (type). 
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5   Discussion and Conclusion 

This paper has presented a novel approach to IOW coordination. The idea is to apply 
to IOW coordination the principle of separation of concerns, widely recognized as a 
good design practice from a software engineering point of view. Thus, coordination 
protocols involved in an IOW are isolated from the participating Workflow Manage-
ment System (WfMS) and left to a Protocol Management System (PMS) [5]. The aim 
of the PMS is to support coordination between different WfMS involved in an IOW 
helping them to deal with their coordination problems: finding partners, negotiation 
between partners, contract specification and execution. 

This paper has addressed two issues that must be tackled to really be able to im-
plement a PMS: how to describe IOW coordination protocols and how to dynamically 
select them. More precisely, this paper has proposed an IOW coordination protocol 
ontology including a description of the general concepts needed to define coordina-
tion protocols and a classification of the main coordination protocols involved in the 
IOW context. This paper has also explained how to dynamically select these protocols 
using n-RQL. These propositions have two main advantages: 

− Easy design and development of IOW systems. The principle of separation of con-
cerns adopted in this paper eases and speeds up the design, development and main-
tenance of IOW systems. Following this practice, coordination protocols have been 
thought and designed as autonomous, reusable and extendable components inde-
pendently from any specific workflow system behaviour. Thus, being relieved of 
coordination tasks, each partner of an IOW can focus on its own activity and the 
workflow can be adapted, maintained or reused without impact on the coordination 
protocols it uses when involved in the IOW.  

− Semantic coordination of IOW systems. The proposed ontology permits to describe 
and access coordination protocols in an explicit, machine readable and sharable 
way. Thus, this ontology facilitates communication and semantic inter-operability 
between organizations involved in an IOW. Moreover, this ontology makes a dy-
namic selection of a coordination protocol possible: indeed, as explained in the pa-
per, an organization is not forced to commit to a single coordination protocol, but 
dynamically chooses the coordination protocol which is the most suitable accord-
ing to the coordination problem to solve and according to the type of interaction it 
is able to participate in. Consequently, this ontology is a contribution to make auto-
mated coordination possible. 

Related works may be considered according to two complementary points of view: 
IOW and protocol. Regarding the IOW point of view, the main works addressing the 
coordination problem are [3], [7], [8], [19], [20]. All these works provide middleware-
based solutions to deal with one of the two following problems: finding partners or 
negotiation between partners. They also exploit agent approach as an enabling tech-
nology to both model coordination and implement flexible and adaptative workflow 
processes. Regarding the finding partners issue, [7], [8] define a matchmaker to find 
and coordinate agents implementing workflow processes. [19], [20] both mix Web 
services and agents to implement flexible workflow processes running on the web. 
While [19] implements a matchmaker for finding partners, [20] implements a broker.  
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Regarding negotiation, [3] is the only work dealing with the negotiation issue. It de-
fines an agent-based architecture including two specific mediators, a moderator im-
plementing a coordination protocol, and conversation server recording information 
about open negotiations. Unfortunately, none of these works adopt a comprehensive 
approach to deal with all the coordination problems in a coherent and uniform frame-
work. They also lack an engineering perspective aiming at proposing solutions cover-
ing the coordination protocol engineering life cycle including the design, modelling, 
selection and execution of such protocols. In our proposition, we adopt this engineer-
ing approach. Certainly, we do not cover the entire coordination protocol life cycle 
but the proposed ontology explains how to design and model IOW coordination pro-
tocols and we also provide a solution to dynamically select a coordination protocol. 
Finally, none of the previous work addresses automated IOW coordination.  

Regarding the protocol point of view, three main works are close to our [12], [21], 
[22]. [21] defines an ontology to support negotiation in E-Commerce. More precisely, 
it defines a conceptual model to describe the general concepts of negotiation proto-
cols. [12] defines a protocol conceptual model and shows how to transform it onto a 
corresponding Petri Net, thus obtaining an executable specification. Unfortunately, 
these two works neither identify and address IOW protocols, nor provide solutions to 
the dynamic selection of protocols. Moreover, [12] does not come within the web 
context. At the opposite, [22] defines an ontology of protocols devoted to business 
processes, and address their coordination through their composition. It also explains 
how to compile them into executable rules. However, [22] does not address the selec-
tion issue and does not provide a protocol classification useful to help the workflow 
partners in selecting the appropriate protocol according to the execution context.  

Our research efforts are now focused on protocol execution. Indeed, we only have 
provided solutions to the design, the modelling and the dynamic selection of IOW 
coordination protocols, but we need to investigate their instantiation and execution. 
Thus, we will cover the all of coordination protocol engineering life cycle. 
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Preventing Orphan Requests by Integrating

Replication and Transactions
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Abstract. Replication is crucial to achieve high availability distributed
systems. However, non-determinism introduces consistency problems be-
tween replicas. Transactions are very well suited to maintain consistency,
and by integrating them with replication, support for non-deterministic
execution in replicated environments can be achieved. This paper presents
an approach where a passively replicated transaction manager is allowed
to break replication transparency to abort orphan requests, thus handling
non-determinism. A prototype implemented using existing open-source
software, Jgroup/ARM and Jini, has been developed, and performance
and failover tests have been executed. The results show that while this
approach is possible, components specifically tuned for performance must
be used to meet real-time requirements.

Keywords:Replication, transactions, non-determinism, orphan requests.

1 Introduction

Fault-tolerance is an important property of real-time and high availability appli-
cations. By moving from a centralized to a distributed system, the probability
of a total system failure decreases, while the probability of a partial failure in-
creases. A partial failure that is not dealt with correctly could easily jeopardize
both consistency and availability of a system.

The availability of a system is defined as the fraction of the time that the
system performs requests correctly and within specified time constraints [1],
while consistency is the property that guarantees that the system will behave
according to the functional requirements, and applies both to internal (state-
changes) and external (output) behavior. Traditionally, transactions are used to
ensure consistency [1], while replication provides availability [2]. The two most
common types of replication are passive [3] and active [4].

A replicated system must be able to handle the problems occurring due to
replicated invocations. A replicated invocation is a request from a replicated
client to a (possibly replicated) server [5]. The actual problem and solution
depends on whether the client is deterministic or not. For deterministic clients,
it is only a matter of detecting duplicates, making sure that each request is
only executed once and returning the same answer to all duplicate requests.
Many clients, however, are not deterministic. Two common sources for non-
determinism are multi-threading and timeouts, but others also exist [6]. These

Y. Ioannidis, B. Novikov, and B. Rachev (Eds.): ADBIS 2007, LNCS 4690, pp. 41–54, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



42 H. Kolltveit and S.-O. Hvasshovd

Fig. 1. An orphan request caused by non-determinism in server A

clients are said to be non-deterministic and the problem of orphan requests may
arise if one of them crashes.

An orphan request is a request that is received and processed by a server, but
it is no longer valid, normally because of a client failure. Figure 1 illustrates an
orphan request. Replica A1 receives a request from the client and invokes service
B. A is then said to be a client of server B. A1 then fails before it can reply to the
client. Replica A2 is chosen as the new primary and receives the retransmitted
request from the client. However, since service A is non-deterministic, the re-sent
request 1 might not lead to an identical request 2 to be sent to B1. Consequently,
the request from A1 to B1 is an orphan request and its results must be removed.
If such a request is not handled, it may cause inconsitencies. Even worse, they
might spread to other parts of the system, making the whole system inconsistent.

The main contribution of this paper is an integration of transactions and repli-
cation where possible orphan requests caused by non-determinism are aborted.
Standard atomic commitment protocols, like 2-Phase Commit (2PC) [7], can not
guarantee to remove all orphan requests. The approach suggested by the authors
solves this by allowing the transaction manager to break replication transparency
and therefore see the individual replicas of the transaction participants instead
of the whole replica group. As long as at least one replica of the transaction man-
ager is available it also renders 2PC non-blocking [1,8]. The problem of orphan
requests in replicated systems have been handled before by integrating transac-
tions and replication (e.g. [5,9,10]), but these approaches are either ineffective
(extra messages in the critical path of the transaction), do not support state in
all tiers or make unrealistic assumptions regarding the detection of orphans. The
approach adopted in this paper does not have these weaknesses and at the same
time it supports checkpointing at any time and restart of crashed replicas.

A prototype based on existing open-source group communication, Jgroup/ARM
[11], and transaction implementations, Jini Transaction Service [12], is also pre-
sented. The prototype is performance evaluated to see if it can meet the stringent
requirements of real-time systems.

The rest of this paper is organized as follows: The system model is presented
in Section 2. Section 3 describes other approaches related to the integration
of replication and transactions, while supporting non-determinism. A detailed
description of how the integration is performed is given in Section 4. The method
developed in Section 4 has been implemented in a test system and the tests
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performed on this system are presented in Section 5 and discussed in Section 6.
Finally, Section 7 concludes the paper.

2 System Model

The system consists of a set S of fail-crash processes connected through unreli-
able channels without network partitions. The processes or nodes communicate
by sending messages. A group G, which is a subset of S, implements a service
that can be invoked by clients. These may be replicated. A node in G is called
a member or replica of that service. Group membership is controlled by a group
membership service that provides an interface for changes in G, implements a
failure detector, notifies members of changes in G and controls that a request is
sent to the correct replica(s) [13]. At any given time members of a group have a
view of the group which is the set of the agreed upon members. Any replica that
crashes is eventually excluded from the view, and any restarted and recovered
replica is eventually included in the view.

Passive replication is used, i.e. for each group, there is a primary replica that
receives, processes and replies to requests. The state of the backups are updated
by periodically performing checkpoints [1], while forced writes of log records are
propagated as a part of the atomic commitment protocol. The most common
atomic commitment protocol, 2PC, is used.

Replicas are stateful, but have no persistent state. If a replica crashes and is
restarted, the state is retrieved from one of the other replicas of the same group.
The approach here assumes that there is always at least one replica that has
not crashed, therefore the state will never be completely lost. Because there is
no persistent state, it is not possible to distinguish a restarted node from a new
node. All replicas are assumed to be non-deterministic, thus they can all produce
orphan requests.

A request is assumed to be eventually received. They are periodically retrans-
mitted from clients until a reply is received, and duplicates are filtered at each
server. Thus, if a primary replica fails and a view with a new primary is installed,
the new primary will receive the request when it is re-sent.

3 Related Work

Replication and transactions have historically been two separate techniques for
achieving fault-tolerance. For instance, CORBA’s transaction service (OTS) [14]
and replication service (FT-CORBA) [15] are not integrated. A study by Little
and Shrivastava [16] looks at two systems, one with transactions and no group
communication, and one with group communication and no transactions. Their
conclusion is that group communication can be useful for transactions, especially
for supporting fast fail-over and active replication.

Many projects deal with replication and transactions, but only a few of these
present a proper integration of the two concepts in a non-deterministic environ-
ment. Systems that support non-deterministic execution must be able to control



44 H. Kolltveit and S.-O. Hvasshovd

its effects. ITRA [17] is an approach that handles the effects by replicating the
result of each non-deterministic operation to the backups. ITRA supports repli-
cated transactions by replicating the start, join-operations, prepare (including
all operations), commit and abort operations. However, this is not an optimal
integration since it incurs an unnecessary high overhead. In our approach only
prepare, commit and abort operations are replicated.

Frølund and Guerraoui [18] presents a complete integration of replication
and transactions for three-tier applications. However, it supports only stateless
middle-tier servers, forcing all state to be stored in the end-tier databases.

Pleisch et al. [5,19] describes two schemes to handle non-determinism; one
optimistic and one pessimistic. The first allows a subtransaction to be committed
before its parent, while the latter forces the subtransaction to wait for the commit
of the parent. By sending information about how to undo the changes to the
backups before invoking a server, orphan subtransactions can be terminated
in the pessimistic case, and compensated in the optimistic case. This inserts,
however, extra messages in the critical path during failure-free execution.

A CORBA related approach [9] restarts execution of a failed subtransaction
on a backup and aborts subtransactions where a parent transaction has failed.
This integration, however, assumes that standard distributed commit protocols
can be used and does not handle the intricate details of transaction completion
in failure scenarios.

4 Integration of Transactions and Replication

This section presents an integration of replication and transactions. The goal is
to support non-deterministic execution with minimal overhead caused by the in-
tegration in a failure-free scenario and minimal change in the application servers
(transaction participants).

4.1 Replicating the Transaction Manager

To ensure availability, all single points of failure must be avoided. This is es-
pecially important for the transaction manager (TM) because it is a central
component involved in distributed transactions. If the TM becomes unavailable,
the most widely used atomic commitment protocol, 2PC, may block. By using
replication 2PC becomes non-blocking [1,8].

The most important job of the TM is to make the decision to unilaterally abort
or commit each transaction. Such a highly critical decision does not favor active
replication, since every replica will have to behave deterministically. In practice,
TMs are non-deterministic since they rely on timeouts in failure scenarios. This
adds non-determinism since it cannot be guaranteed that all replicas timeout
at exactly the same time [6]. Also, active replication does not scale well since
executing the same processes on every replica waste resources which could have
been used to serve other requests.

As can be seen in Figure 2, the protocol for a passively replicated TM is
the same as for the non-replicated before the atomic commitment protocol is
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Fig. 2. The execution and join phase of a transaction

Fig. 3. The successful termination of a transaction

initiated by the client in Figure 3. However, a TM that supports 2PC must be
able to persistently store the decision to commit or abort the transaction as
the final part of the prepare phase [1,20,21]. In a non-replicated environment
the decision is made persistent by force-writing a record to disk. The round-trip
transmission time may be a lot shorter than the time needed to write to the disk.
A solution where the prepare decision is persistently saved by sending it to the
backups (message 5 in Figure 3) is faster and therefore preferred. In addition, it
gives better availability since the prepared transactions can be committed by the
backup in case of a primary failure. If a local disk was used, currently prepared
transactions may be blocked until the TM has recovered.

A “transaction completed” message is sent to the backups, as indicated by
message 9 in Figure 3. This is done instead of the lazy write to the log in the
normal non-replicated 2PC [21]. Hence, the replicated nature of the TM is used
to provide both availability and persistence of the decision.

4.2 Replicating the Transaction Participants

The transaction participants should be replicated for the same reason as any
other component of a distributed system; to avoid single points of failure. To be
able to handle non-determinism, passive replication is used.

Passive replication is subject to fail-overs. A fail-over happens when a primary
replica fails and another replica of the same service is elected as the new primary
by the group membership service. Consequently, any re-sent or new requests will
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Fig. 4. A failure of a primary, and the consequent fail-over

be handled by the new primary. If any operation has been executed after the
previous checkpoint, the new primary might not be fully updated, and care must
be taken to avoid inconsistencies caused by orphan requests. Figure 4 shows a
fail-over of a prepare request from A1 to A2.

There are only two ways to cause orphan requests. A failure of the client of
the transaction, or a failure of a primary server which acts as a client to another
server. The effects of an orphan request can be guaranteed to be removed by
aborting all transactions that interact with a replica or client that fails. If the
client of the transaction fails, the TM will not receive a commit message from
the client. Without the commit message, it can use a timeout to safely abort
the transaction. If a primary fails, the TM may still receive a commit message.
However, if the TM can determine whether a transaction has been caught in
a fail-over or not, it can abort potential orphan requests. The problem is then
reduce to the detecting failed primary participants of the transaction.

Normally, replication of a server is hidden from the clients of that service, i.e.
replication transparency. The unpredictable effects of non-determinism, however,
can be controlled at the loss of replication transparency for the TM, by sending
the prepare message to the primary only. If a participating primary replica of
an active transaction fails, the TM can abort the transaction. Note that it is
only the prepare message that does not fail-over. Since the primary persistently
stores the vote to the backups during the prepare phase, the backups are then
updated and an abort or commit message is allowed to fail-over.

Intuitively, by sending the prepare message only to the primary replicas that
joined the transaction, primary failures should be detected: Failed primaries will
not be able to reply and the transaction is aborted and possible orphan requests
are rolled-back by the transactional abort mechanism. This is true for single
fail-overs. Figure 5 illustrates this: When the TM does not get a reply from the
failed primary replica, A1, it eventually times out and aborts the transaction (as
indicated by arrow 5). Contrast this to Figure 4 where the prepare request is
allowed to fail-over and the orphan request to service B is not handled.

This protocol has one flaw: If the crashed replica is restarted and a second
fail-over back to the original primary occurs, the TM may not be able to notice
the failures. This is illustrated in Figure 6. The grey ovals are the current view
of the group and the numbers inside are the view identifier. Two fail-overs of
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Fig. 5. A failure of a primary, without the fail-over

Fig. 6. A double fail-over

group A cause the TM not to notice the fail-over, since the last join message
will be identical to the first and looks like a re-send due to a communication
error. Therefore, request 2 is an orphan and the transaction should have been
aborted. The TM can, however, see the difference of the two join messages if the
view identifier was piggybacked on the join message (join(txn,group,viewID),
instead of join(txn,group)). In the example, the two join messages would have
viewID 1 and 4, respectively. Hence, the new protocol will be able to resolve
double fail-overs correctly as well.

If a checkpoint was taken after the first request of the transaction, the new
primary is aware of the transaction after a fail-over. If the prepare message was
sent to the new primary, orphan requests may not be correctly aborted. Figure 7
illustrates this. A checkpoint is take after A1 has joined the transaction. The
checkpoint does not include information about request 2, which becomes an
orphan request after replica A1 fails. If the TM sends a prepare message to
replica A2 it would be able to vote yes, and the effects of the orphan request to
B1 could cause inconsistencies.

By simply allowing the TM to break replication transparency and therefore
be able to avoid the automatic fail-over of the prepare message to a replicated
service, it provides a way for orphan requests to be handled easily and correctly.
This approach allows checkpointing at any time, thus reducing the time required
to bring the state of the new primary up to date and only log records need to
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Fig. 7. A checkpoint and a possible orphan request in service B

be shipped as a part of 2PC. The only requirement for server applications is to
implement the 2PC interface. The underlying system adds the view identifier.

4.3 Transaction Termination in Failure Scenarios

When the TM is passively replicated as presented in Section 4.1, a transaction
may be unable to terminate, therefore blocking other transactions from complet-
ing. Consider the following case: A transaction has been created and some or all of
the participants have joined it. Then the primary TM fails before the prepare phase
has completed. This will leave the new primary with no knowledge of the transac-
tion. When the client asks the TM to commit the transaction, the TM will reply
that the transaction is unknown, and the client will assume that it has aborted.
However, the transaction participants will still hold their locks on the items ac-
cessed by the transaction. Without proper termination of these transactions, the
locks could be held forever, blocking other transactions from completing.

The locks held by a failed transaction can be removed by the client if it keeps
control of the participants accessed by each transaction. Thus, when the client
gets a reply from the TM that the transaction it tried to commit is unknown, the
client can abort it. Because of possible nested invocations each participant must
be able to tell which other participants it has caused to join the transaction, and
so on. However, if one of the participants also fails, the participants invoked by
that participant do not get the abort message.

A better way to remove the locks is to use a timeout. Each participant can
periodically poll the TM to get the status of each active transaction. If the TM
replies that the transaction is unknown, the transaction can be safely aborted.
Also, this takes care of the scenario where the client fails.

This approach causes transaction commitment to be non-blocking as long as
at least one of the TMs is available. When combined with the avoidance of fail-
over for the prepare message and piggybacking the view identifier, all failures
are correctly handled to avoid inconsistencies. Potential orphan requests are
rolled-back and all types of non-determinism are supported.
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5 Implementation and Testing

This section gives an overview of the prototype implementation, as well as the
environment used for testing and the results of tests executed on the prototype.
A presentation of the prototype is given in Section 5.1 and the environment for
testing and the tests executed are presented in Section 5.2.

5.1 Prototype Implementation

A prototype of the transaction manager that do not allow fail-over of the prepare
request was implemented, along with the transaction participants. The servers
were implemented as Jini [22] services, and replicated using the Jgroup/ARM
system [11].

The system where the tests are executed consists of four conceptual entities:
A client, a transaction manager (TM) and two different banks. The banks and
the transaction manager are implemented as Jini services that can be discovered
and registered by the Jini registry, Reggie [12], or the group-enabled registry,
Greg [23]. The transaction manager is based on the non-replicated Mahalo [12]
as well as the actively replicated Gahalo [24].

5.2 The Test Environment

Figure 8 shows the system model. The grey ovals represent entities, while the
white boxes are nodes where replicas of servers or the client execute. A single
physical node may execute more than one service. The arrows in the figure
represent the direction of the invocations.

The life cycle of the transaction used for testing is as follows:

1. A transaction is initiated by the client, and created by the TM.
2. The client invokes the withdraw operation of BankA, which joins the trans-

action.
3. The client invokes the deposit operation of BankB, which joins the transac-

tion.
4. The client initiates 2PC, which is controlled by the TM.

As modeled in the figure, the TM can have up to four replicas, and the two
banks can have up to two replicas each. These limitations are due to the fact
that there were only five nodes available for executing the tests.

A Dual AMD MP 1600+ running at 1.4GHz powered each node. A 100Mbit
Ethernet connected them and each had 1024 MB of RAM. The tests were exe-
cuted using Linux kernel 2.6 and Java version 1.5.0.

All tests were carried out by executing 500 transactions and measuring the
elapsed time at the client between transaction initiation and transaction com-
pletion. This is referred to as the response time of a transaction. Similarly, the
response time of an invocation is the time passed between calling the remote
method of the client and the return of the method call.
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Fig. 8. A model of the system used for testing

Table 1. A summary of the response times for the test runs in Section 5.2

Test run Description
Average Standard Delay

(ms) Deviation (ms) (%)

Nonreplicated system
1 1 TM and 2 banks 47 10 0

Passive replication of the TM
2 2 passive TMs and 2 banks 77 17 64

3 3 passive TMs and 2 banks 92 19 96

4 4 passive TMs and 2 banks 106 21 126

Fully replicated system
5 1 TM and 2x2 banks 75 16 60

6 2 passive TMs and 2x2 banks 148 25 215

7 3 passive TMs and 2x2 banks 164 27 249

Failure-free performance tests were performed using the following
configurations:

1. A non-replicated transaction manager and non-replicated banks.
2. Two passively replicated transaction managers and non-replicated banks.
3. Three passively replicated transaction managers and non-replicated banks.
4. Four passively replicated transaction managers and non-replicated banks.
5. A non-replicated transaction manager, with two replicas of each bank.
6. Two passively replicated transaction managers, with two replicas of each

bank.
7. Three passively replicated transaction managers, with two replicas of each

bank.

In addition, the response times during fail-overs were measured.

6 Comparing the Test Results

Table 1 summarizes the results of the test runs made in Section 5.2. The response
time averages and standard deviations are presented1. It should be noted that
1 The first 50 transactions of each test run are disregarded in this discussion because

of extra startup cost.
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these numbers only apply for these test runs and they should not be interpreted
as any general response time guarantee, but rather as properties of the specific
test run. However, they can be used as a reference for comparisons between the
individual test runs.

The response time of a transaction was measured at the client and is the time
elapsed from transaction creation to transaction termination.

The following sections presents a summary of the results from the test runs
and compares passive replication and the non-replicated case. Finally, the fail-
over delay is examined.

6.1 Cost of Replication

Replication increases the overhead of a service. The results of test runs 1–4, as
presented in Table 1, clearly support this assumption. The average response time
degrades when adding more replicas of a transaction manager, and the variance
of the results increase. The numbers seem to indicate that replicating the TM
causes about 50 percent longer response times, while each added replica on top
of that increases the response time of about 30 percent of the non-replicated
case.

The standard deviation seems to change similarly to the average response
time. Table 1 shows a significant leap for the deviation of the response times
when the TM is replicated and then scales linearly when adding the third and
fourth replica.

Replication of the transaction participants (test run 5) has similar effects as
when only replicating the transaction manager (test run 2). There is a 50 percent
increase in the response time and about the same for the standard deviation. For
test runs 6 and 7 the overhead increases more. Replicating the TM as well (test
run 6) doubles the average response time. The cost of executing a fully replicated
system with 2 replicas of each server is three times higher than executing a non-
replicated one. If 3 replicas of the TM are executed (test run 7), the response
time is three and a half times higher than in the non-replicated case.

A closer inspection reveals that for the fully replicated case (test run 6) the
group management threads and layers causes an overhead that delays around 60
percent of the invocations, usually for around 10 – 20 ms. The average delay for
a transaction just by running the group management threads was found to be
40 – 50 ms. The time to update the backups was found to be around 22 ms for
the commit decision at the TM and 12 ms for each of the other updates. When
added together these contribute to an average response time of 150 ms which
differs with only 1.3% from the measured total time.

To make the non-replicated case fault-tolerant the log could be force written
to disk instead of updating the backups. To force write a record to the disk takes
approximately 20 ms. A successfully committed transaction requires three log
forces and one lazy log write as part of 2PC [21]. Thus, the completion time for
a fully fault-tolerant non-replicated system has a response time of around 107
ms. However, this solution does not provide high availability since it has single
points of failure.
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6.2 Fail-Over Delay

The observed client-side fail-over delay for the transaction test was found to
be as much as 360–490 ms. However, the fail-over delay for a simpler applica-
tion running on top of the same system was found to be between 200 and 250
ms. These measurements are closer to the real time between a failure and the
continuation of the service by a new primary.

Gray and Reuter [1] distinguish five classes of transaction-oriented computing,
with various properties and requirements. According to this classification the fail-
over delay found here will be sufficient for batch processing, time-sharing (not
widely used anymore), client-server and transaction-oriented processing. The
last class, real-time processing, however, will probably require client-observed
fail-overs of less than 200 ms, depending on the application.

7 Conclusion and Further Work

Many applications require high availability and strong consistency. Since system
components fail from time to time, a system must be able to tolerate faults. Well
known fault-tolerance techniques include transactions and replication. They are
widely used and extensively studied as separate concepts and their efficiency has
been well proven. However, to support both availability and consistency in a
non-deterministic environment, the techniques should be integrated.

This paper addresses the issue of integrating replication and transactions with-
out enforcing replica determinism. This is a highly desirable property since it
allows any kind of application to be built on top of the system. The main con-
tribution is an approach where the transaction manager is allowed to break
replication transparency to ensure that no orphan requests survive. Thus, full
support for non-determinism in general is achieved.

Tests were performed on a prototype built using existing open-source soft-
ware. The tests show that transactions can be executed in a passively replicated
environment with a 200 percent response time increase. Also, a failure of the
primary will cause a fail-over delay of about 400 ms on average for the trans-
action manager. Measurements on a smaller application, however, indicate that
the real fail-over time is probably closer to 200 ms. While these results show that
the approach is possible, real-time systems have more stringent performance de-
mands. The response time for a transaction in this prototype is too large for
most real-time systems, e.g. telecommunications [25]. However, this is a prop-
erty of this specific implementaion and not the approach, since both Jini and
Jgroup are not tuned for real-time performance. For real-time systems the en-
tire implementation should be focused on performance and the use of existing
open-source software may not be suitable. Also, other transaction models (e.g.
hierarchic [21]) than a centralized transaction manager receiving join-messages
from all participants should be invesitgated.

For a real world application the advantage of increased availability must be
weighed against the cost of replication. If the system cannot tolerate the down-
time caused by a restart of a machine, replication should be used. On the other
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hand, if the increased response time cannot be tolerated, but a few minutes of
unavailability once in a while can be, replication should not be used.

The system developed in this paper is a prototype where several shortcuts
have been made to get a working system for basic testing. To be of any practical
use, it must be able to restart crashed replicas, initiate new ones and update
the new replicas with the current state. The Jgroup/ARM system has support
for automatically performing these actions, but it has not yet been implemented
in this prototype. Also, the system must be able to handle all failure scenarios
during 2PC to be able to terminate all transaction in the presence of failures.
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23. Montresor, A., Davioli, R., Babaoğlu, Ö.: Jgroup: Enhancing Jini with group com-
munication. In: Proceedings of the ICDCS Workshop on Applied Reliable Group
Communication (2001)

24. Moland, R.: Replicated transactions in Jini. Master’s thesis, University of Sta-
vanger (2004)

25. Hvasshovd, S.O., Torbjørnsen, Ø., Bratsberg, S.E., Holager, P.: The ClustRa tele-
com database: High availability, high throughput, and real-time response. In:
VLDB, pp. 469–477 (1995)



Y. Ioannidis, B. Novikov, and B. Rachev (Eds.): ADBIS 2007, LNCS 4690, pp. 55–65, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

Discretization Numbers for Multiple-Instances Problem 
in Relational Database 

Rayner Alfred1,2 and Dimitar Kazakov1 

1 University of York, Computer Science Department, Heslington, 
YO105DD York, United Kingdom 

{ralfred,kazakov}@cs.york.ac.uk 
http://www-users.cs.york.ac.uk/~ralfred 

2 On Study Leave from Universiti Malaysia Sabah,  
School of Engineering and Information Technology, 

88999, Kota Kinabalu, Sabah, Malaysia 
ralfred@ums.edu.my 

Abstract. Handling numerical data stored in a relational database is different 
from handling those numerical data stored in a single table due to the multiple 
occurrences of an individual record in the non-target table and non-determinate 
relations between tables. Most traditional data mining methods only deal with a 
single table and discretize columns that contain continuous numbers into 
nominal values. In a relational database, multiple records with numerical 
attributes are stored separately from the target table, and these records are 
usually associated with a single structured individual stored in the target table. 
Numbers in multi-relational data mining (MRDM) are often discretized, after 
considering the schema of the relational database, in order to reduce the 
continuous domains to more manageable symbolic domains of low cardinality, 
and the loss of precision is assumed to be acceptable. In this paper, we consider 
different alternatives for dealing with continuous attributes in MRDM. The 
discretization procedures considered in this paper include algorithms that do not 
depend on the multi-relational structure of the data and also that are sensitive to 
this structure. In this experiment, we study the effects of taking the one-to-many 
association issue into consideration in the process of discretizing continuous 
numbers. We implement a new method of discretization, called the entropy-
instance-based discretization method, and we evaluate this discretization 
method with respect to C4.5 on three varieties of a well-known multi-relational 
database (Mutagenesis), where numeric attributes play an important role. We 
demonstrate on the empirical results obtained that entropy-based discretization 
can be improved by taking into consideration the multiple-instance problem. 

Keywords: Discretization, Entropy-based, Semi-supervised clustering, Genetic 
Algorithm, Multiple Instance. 

1   Introduction 

Most multi-relational data mining deals with nominal or symbolic values, often in the 
context of structural or graph-based mining (e.g. ILP) [1]. Much less attention has 
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been given to the area of discretization of continuous attributes in a relational 
database, where the issue of one-to-many association between records has to be taken 
into account. Continuous attributes in multi-relational data mining are seldom used 
due to the difficulties in handling them particularly when we have a one-to-many 
association in a relational database. In fact, most data mining tools ignore the 
multiple-instance problem and treat all of the positive instances as positive examples 
and all of the negative instances as negative examples. For example, in a relational 
database, usually each target table record refers to one or more instances in another 
table through a foreign key. This relationship between tables in a relational database 
is called non-determinate or known as a multiple-instance problem.  

Handling continuous attributes in multiple tables is different from handling 
attributes from a single table due to several factors. Firstly, discretization and 
aggregation of attributes stored in relational database need to use the structure 
(schema) of the relational database and to find out how attributes stored in non-target 
and target tables are related to each other. Next, by taking into consideration the 
occurrence of multiple instances in the non-target table, it makes discretization and 
aggregation more complex, since most traditional methods of discretization ignore the 
multiple-instance problem. And finally, entropy-based discretization in a relational 
database is not a straight-forward task as it has been done in a single table. In this 
paper, we have implemented a few discretization methods, including our new method 
of discretization called the entropy-instance-based discretization, embedded in DARA 
algorithm [1,2,3]. In DARA algorithm, we employ several methods of discretization 
in conjunction with C4.5 classifier, as an induction algorithm. We then evaluate the 
effectiveness of each discretization method with respect to C4.5, on three varieties of 
a well-known multi-relational database (Mutagenesis) [4].  

The paper is structured as follows. In section 2, we explain the pre-processing 
sequence of steps, called DARA [1,2,3] that transforms the data representation of a 
relational database, with a possibly high degree of one-to-many associations into a 
vector space model. This model is applicable to clustering operations as a means of 
aggregating multiple instances. In Section 3, we define three different methods, 
implemented in DARA, of discretizing continuous attributes in relational database. 
Section 4 describes the experimental setup and evaluation. We draw conclusions in 
Section 5.  

2   Data Transformation Using Dynamic Aggregation of Relational 
Attributes (DARA) 

In a relational database, records are stored separately in different tables and are then 
associated through the matching of primary and foreign keys. A single record, R, 
stored in a main table can be associated with a large volume of records stored in 
another table, as shown in Fig. 1, in an example of a one-to-many association. 

Let R denote a set of m records stored in the target table, and S denote a set of n 
records (T1, T2, T3, … , Tn), stored in the non-target table. Let Si be in the subset of S, 
Si∈ S, and associated with a single record Ra stored in the target table, Ra ∈ R. Thus, 
the association of these records can be described as Ra → Si. Since a record can be 
characterized on the basis of a series of terms or records associated with it, we use the  
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Fig. 1. A one-to-many association between target and non-target relations 

vector space model to cluster these records, as described by Salton et al. [7]. In the 
vector space model, a record is represented as a vector or ‘bag of terms’, i.e., by the 
terms it contains and their frequency, regardless of their order. These terms are 
encoded and represent instances stored in the non-target table referred to by a record 
stored in the target table. The non-target table may have a single attribute or multiple 
attributes and the process of encoding the terms to transform them into a vector space 
model is as follows: 

 

Case I: Non-target table with a single attribute 

• Step 1) Compute the cardinality of the attribute domain in the non-target table. In 
case of datasets with continuous and discrete values, discretizes the continuous 
values first (using the methods described in Section 3) and take the number of bins 
as the cardinality of the attribute domain. 

• Step 2) To encode values, find the appropriate number of bits, n, that can represent 
all different values for the attribute domain, where 2n-1 < |Attribute Domain| ≤ 2n. 
For example, if the attribute has 5 different values (London, New York, Chicago, 
Paris, Kuala Lumpur), then we just need 3 (5 < 23) bits to represent each of these 
values (001, 010, 011, 100, 101). 

• Step 3) For each encoded term, increment the corresponding counter in the bag of 
terms or just add the term to the bag of terms if it is not in the bag; the resulting 
bag of terms can be used to describe the characteristics of a record associated with 
them.  

 
Case II: Non-target table with multiple attributes 

• Step 1) Repeat step 1) and step 2) from Case I, for all attributes 
• Step 2) For each instance of a record stored in the non-target table, concatenate p 

number of columns’ values, where p is less than or equal to the total number of 
attributes. For example, let F = (F1, F2, F3,…, Fk) denote k field columns or 
attributes in the non-target table. Let F1 = (F1,1, F1,2, F1,3, …, F1,n) denote n values 
that are allowed to be used by field/column F1. So, we can have instances of a 
record in the non-target table with these values (F1,a, F2,b, F3,c, F4,d,… , Fk-1,b, Fk,n), 
where a ≤ |F1|, b ≤ |F2|, c ≤ |F3|, d ≤ |F4|,…, b ≤ |Fk-1|, n ≤ |Fk|. If p = 1, we have 
F1a, F2,b, F3,c, F4,d,…, Fk-1,b, Fk,n as the produced terms. If p = 2, then we have a bag 
of paired attribute values, F1,aF2,b, F3,cF4,d,…, Fk-1,bFk,n (provided we have even 
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number of fields). Finally, if we have p = k, then we have F1,aF2,bF3,cF4,d…Fk-1,bFk,n 
as a single term produced. 

• Step 3) For each encoded term, increment the corresponding counter in the bag of 
terms or just add the term to the bag of terms if it is not in the bag; the resulting bag 
of terms can be used to describe the characteristics of a record associated with them. 

 
This encoding process transforms relational datasets into data represented in the 

vector-space model [7], implemented in DARA [1,2,3]. In this representation, the data 
can be conveniently clustered [8,9,11,12,13] as a means of aggregating them.  

In short, Dynamic Aggregation of Relational Attributes (DARA) algorithm treats 
records in relational database as a bag of patterns and clusters these records based on 
the created patterns that they have. The DARA algorithm simply assigns each record 
in the target table with the cluster number. Each cluster then can describe more 
information by looking at the most frequent patterns that describe it. In the next 
section, we describe four methods of discretizing continuous numbers in a relational 
database, a step that is needed before the dynamic aggregation procedure described in 
this section can be executed. 

3   Types of Discretization 

The motivation for the discretization of continuous features is based on the need to 
obtain higher accuracy rates, although this operation may affect the speed of any 
learning procedure that may subsequently use it. This paper investigates how the 
results of discretization affect the results of induction when the one-to-many 
associations between tables are taken into account. In this experiment, we used three 
methods of discretization: Equal Height, Equal Weight and Entropy-Instance-based 
discretization implemented in the DARA algorithm. We discretize all attributes with 
continuous values before transforming them into DARA’s format which can also be 
used with any traditional data mining tools, such as C4.5.  

3.1   Equal Height Discretization 

The Equal Height interval binning discretizes data so that each bin will have 
approximately the same number of samples. It involves sorting the observed values 
together with the record ID. If |R| refers to the size of the records and the V[|R|] refers 
to the size of the array that stores the sorted values, then the boundaries can be 
constructed as V[(|R|/k) x i] where i = 1, …, k –1. The result is a collection of k bins 
of roughly equal size. This algorithm is class-blind and does not take into 
consideration the structure of the database, especially the multi-instance problem. 

3.2   Equal Weight Discretization 

The Equal weight interval binning considers not only the distribution of numeric 
values present, but also the groups they appear in. This method involves an  
idea proposed by Van Laer et al. [14]. It is observed that larger groups have a  
bigger influence on the choice of boundaries because they have more contributing 
numeric values. In equal weight interval binning, numeric values are weighted  
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wt(v) = 1/|classv|, where wt is the weight function and v is the value being considered 
and |classv| is the size of the class that v belongs to. Instead of producing bins of equal 
size, we compute boundaries to obtain bins of equal weight. The algorithm starts by 
computing the size of each class, then it moves through the sorted arrays of values, 
keeping a running sum of weights wt. Whenever wt reaches a target boundary 
(|number of classes|/bins), the current numeric value is added as one of the 
boundaries, and the process is repeated k times (k is the number of bins).  

3.3   Entropy-Instance-Based Discretization 

Finally, the Entropy-Instance-Based interval binning considers the distribution of 
numeric values present, the groups they appear in, and also the multiple-instance 
problem. A lot of significant research in entropy-based discretization has been carried 
out, and an early comparison of entropy-based methods for discretization of 
continuous features and multi-interval discretization methods can be found in [15,16]. 
In this paper, we modify the entropy-based multi-interval discretization method 
introduced by Fayyad and Irani [17]. Algorithms such as C4.5 try to find a binary cut 
for each attribute and use a minimal entropy heuristic for discretization continuous 
attributes. The algorithm uses the class information entropy to select binary 
boundaries for discretization. Given a set of instances S, a feature A, and a partition 
boundary T, the class information entropy is  
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where S1 and S2 correspond to the samples in S satisfying the condition A < T and A ≥ 
T, respectively. The entropy function Ent for a given set is calculated based on the 
class distribution of the samples in the set. For example, given C classes, the class 
entropy of a subset S is  
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where p(Ci,S) is the probability of the i-th class in the subset S. This method can be 
applied recursively to both partitions induced by T until some stopping condition is 
achieved, thus creating multiple intervals of feature A. So, for k bins, the class 
information entropy for multi-interval entropy-based discretization is  
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In the entropy-instance-based discretization that we peopose, besides the class 
information entropy, another measure that uses individual information entropy is 
added to select multi-interval boundaries for discretization. Given n individuals (from 
target table), the individual information entropy of a subset S is  
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where p(Ii, S) is the probability of the i-th individual in the subset S. The total 
individual information entropy for all partitions is  
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For example, suppose we have the following sample of dataset shown in Fig. 2. 
 

 
 
                       211,188 
                       211,194 
                       211,188 
    211               211,188 
    212                 211,201 
                       212,233 
                       212,255 
                       212,244 
                       212,205 
 
 

 

Fig. 2. Case I and Case II: Partitioning of one-to-many datasets into two sets 

 
If the partition ranges are (Case I - [S1:188-200, S2:201-255]), the individual 

information entropy of an individual in S1 is 0.176, computed as -(0.8*log2(0.8)) and 
S2 is 0.322, computed as -(0.2*log2(0.2)+1*log2(1))). The smaller the value of the 
individual information entropy for all partitions, the better is the quality of the 
partition, taking into consideration the multiple-instance problem. As a result, by 
minimizing the function Ind_I(A,T,S,k), Eq. (6), that consists of two base functions 
I(A,T,S,k), Eq. (3), and Ind(A,T,S,k), Eq. (5), we are discretizing the attribute’s 
values based on the class and individual information entropy. 
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However, one of the main problems with this discretization criterion is that it is 
relatively expensive. For instance, for 2 bins (k=2), for a continuous attribute, the 
expression (6) must be evaluated N-1 times for each attribute, where N is the number 
of attribute values. Therefore, in this experiment, we use a genetic algorithm-based 
discretization in order to obtain a multi-interval discretization for continuous 
attributes.  

3.4   Genetic Entropy-Instance-Based Discretization 

The genetic strategy consists of an initialization step and the iterative generations of 
the reproduction phase, the crossover phase and mutation phase, as shown in Fig.3.  

one-to-many 
211,188 
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211,188 
211,188
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S1 

S2 
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Begin 
1. initialize population  
2. compute fitness for each chromosome 
3. if termination criterion achieved go to 8 
4. reproduction phase 
5. crossover phase 
6. mutate phase 
7. go to step 2 
8. Output best and stop 

End 

Fig. 3. Basic steps in GAs 

In the initialization step, a set of strings (or chromosomes), where each string 
consists of b-1 continuous values representing the b partitions, is randomly generated. 
Here, b is the number of discretization bins and all continuous values must be in the 
range of the minimum and maximum values of the attribute values. This set of strings 
of continuous values is the population of the genetic algorirhm. For instance, given 
minimum and maximum values of 1.5 and 20.5 for a continuous field, the number of 
bins b is 6, the string of sequence continuous values of (2.5,5.5,9.3,12.6,15.5,20.5), is  
randomly generated within the range [1.5, 20.5]. From this string of continuous values 
we have six bins with the following range of values: ([1.5, 2.5], [2.6, 5.5], [5.6, 9.3], 
[9.4, 12.6], [12.7, 15.5], [15.6, 20.5]). After the initialization step, the fitness value for 
each string is computed. The fitness function for genetic entropy-instance-based 
discretization is defined as  
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so that maximization of the fitness function, f, leads to minimization of 
Ind_I(A,T,S,k). The reproduction process selects strings from the old population 
directed by the survival of the fittest concept of natural genetic systems. In the 
proportional selection strategy adopted in this paper, a string (chromosome) is copied 
into several copies, which is proportional to its fitness in the population, that go into 
the reproduction phase for further genetic operations. Roulette wheel selection is one 
common technique that implements the propositional [6] selection strategy. Next, in 
the crossover phase, two parent chromosomes will exchange information based on the 
crossover probability. In this paper, a crossover probability pc of 0.50 is used. For 
chromosomes of length l, a random integer, called the crossover point, is generated in 
the range [1, l-1]. The portions of the chromosomes located to the right of the 
crossover point are exchanged to produce two offspring for the new population. 
Finally, in the mutation phase, each chromosome undergoes mutation with a fixed 
probability pm of 0.10 is used in this paper. Mutation process is done by generating a 
number m in the range [0,1]. If the value at a gene position is v, after mutation it 
becomes v ± m * v, when v ≠ 0 or v ± m * 2, when v = 0. The ‘+’ or ‘-‘ sign occurs 
equal probability.  

The processes of fitness computation, reproduction, crossover and mutation are 
executed for a maximum of iterations. The best set of continuous values seen up to 
the last generation provides the solution to the multi-interval discretization. The next 
section provides the results of implementation of the GA-entropy-instance-based 



62 R. Alfred and D. Kazakov 

discretization (using (7) as fitness function shown in Table 1), along with its 
comparison with the performance of the entropy-based algorithm (using (3) as the 
fitness function), instance-based algorithm (using (5) as the fitness function), 
EqualHeight, and EqualWeight for the Mutagenesis datasets [4]. 

4   Experimental Evaluations 

In our experimental study, we implement the discretization method, described in 
Section 3 in the DARA algorithm [1,2,3], in conjunction with the C4.5 classifier (J48 
in WEKA) [10], as an induction algorithm that is run on the DARA’s discretized and 
transformed data representation. We then evaluate the effectiveness of each 
discretization method with respect to C4.5 [5]. The setting for all discretization 
methods are described in Table 1. We chose three varieties of a well-known datasets, 
the Mutagenesis [4] relational database. 

Table 1. Setting of Discretization methods 

Algorithm Fitness Function 
Entropy-Based (EB) I(A,T,S,k) 
Entropy-Instance-Based (EIB) I(A,T,S,k) + Ind(A,T,S,k) 

 
The data in mutagenesis domain [4] describes 188 molecules falling in two classes, 

mutagenic (active) and non-mutagenic (inactive) and 125 of these molecules are 
mutagenic. The description consists of the atoms and bonds that make up the 
compound. Thus, a molecule is described by listing its atoms atom(AtomID, Element, 
Type, Charge) and the bonds bond(Atom1, Atom2, BondType) between atoms. For the 
experiments, we have used only three different sets of background knowledge. They 
will be referred to as experiment B1, B2 and B3. 

• B1: The atoms in the molecule are given, as well as the bonds between them; the 
type of each bond is given as well as the element and type of each atom. 

• B2: In addition to data in experiment B1, continuous values about the charge of 
atoms are added 

• B3: In addition to data in experiment B2, two continuous values describing each 
molecule are added, which are the log of the compound octanol/water partition 
coefficient (logP), and energy of the compounds lowest unoccupied molecular 
orbital (ЄLUMO).  
 

Table 2 gives a detailed overview of the accuracy estimates from leave-one-out 
cross validation performance of C4.5 for different number of bins, b, tested for B1, 
B2 and B3.  

The predictive accuracy for EqualHeight and EqualWeight is lower on datasets B1 
and B2, when the number of bins is smaller, compared to entropy-based and entropy-
instance-based performance accuracy. However, the accuracy of entropy-based and 
entropy-instance-based discretization is lower when the number of bins is smaller on 
dataset B3, although the accuracy for all four discretization methods is more less the 
same on average. 
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Table 2. Performance (%) of leave-one-out cross validation of C4.5 on dataset B1 with 
different methods of discretization 

Datasets b EH EWE EB EIB 
B1 4 74.3 74.3 78.4 80.6 

 6 75.6 74.9 75.6 77.8 
 8 74.2 74.2 77.8 75.0 
 Average 74.7 74.5 77.3 77.8 

B2 4 72.9 73.3 76.9 75.0 
 6 70.8 70.6 76.3 78.1 
 8 71.9 74.2 75.3 71.1 
 Average 71.9 72.7 76.2 74.9 

B3 4 83.1 82.8 79.9 79.8 
 6 81.3 81.1 76.3 81.2 
 8 81.2 81.2 83.1 84.5 
 Average 81.9 81.7 79.7 81.8 

 
The result of entropy-based and entropy-instance-based discretization on B1, B2 

and B3 are virtually identical, which should come as no surprise, as both are using 
class information. However, the latter performs better (five out of nine tests) 
compared to entropy-based, as entropy-instance-based discretizes attribute values 
based on class information and the individual purity. Both entropy-based and entropy-
instance-based discretizations outperform EqualHeight and EqualWeight 
discretizations. Although EqualWeight uses the class information as one of the 
criterion in determining the cut points for the partitions, it fails to compete with 
entropy-based and entropy-instance-based. This is due to the fact that both the 
entropy-based and entropy-instance-based algorithm use a genetic algorithm in order 
to produce optimized cut points or partitions. Optimization using a genetic algorithm 
has greatly improved the performance accuracy for entropy-based and entropy-
instance-based discretization. As a result, EqualWeight can be ignored as it does not 
have any advantages over the other discretization methods. 

Finally, we also compared our results to other previously published ones, shown in 
Table 3. The data summarization approach, performed by discretizing and 
aggregating multiple instances in relational database using DARA, proved 
particularly successful on large datasets. Data summarization can be performed 
separately from the target relation, and it makes DARA more scalable and flexible in 
characterizing a specific item stored in the target relation that has a one-to-many 
association to other non-target relations. 

Table 3. Result on Mutagenesis, B1,B2,B3 

Mutagenesis Algorithm 
B1 B2 B3 

PROGOL [4] 76% 81% 83% 
FOIL [18] 61% 61% 83% 

Tilde 75% 79% 85% 
DARA + C4.5 81% 78% 85% 



64 R. Alfred and D. Kazakov 

5   Conclusions  

Our experiments reveal that all discretization methods in DARA algorithm help us 
achieve higher percentage of accuracy. The entropy-instance-based and entropy-based 
discretization methods are recommended for discretization of attribute values in 
multi-relational datasets, in which multiple instances can be used to improve the 
discretization process, as it has been shown here. However, when the number of bins 
is large, the computation of a genetic algorithm-based entropy-based and entropy-
instance-based discretization will be very expensive.  

In addition to that, the experimental results in the previous section demonstrate that 
our approach to discretization and aggregation of relational attributes, implemented in 
DARA, is at least competitive with existing multi-relational techniques, such as 
Progol and Tilde. Our approach has one major difference with these techniques, 
which may be the source of the good performance, namely the use of the aggregates 
to summarize a block of data, containing multiple instances of a single object, without 
the requirement of any domain knowledge. 

In FOL (e.g. Progol, Tilde), the characterization is based on the occurrence of one 
or more records in the group that maximizes certain properties. On the other hand, 
DARA algorithm takes all records into consideration as each record has some 
influences on the value of the aggregation. As a result, FOL and DARA produce two 
different sets of feature-spaces, though there is still some overlap. We have presented 
a method called dynamic aggregation of relational attributes (DARA) with entropy-
instance-based discretization to propositionalise a multi-relational database, such that 
the resulting view can be analysed by existing propositional methods. The DARA 
method has shown a good performance on three well-known datasets in term of 
performance accuracy.  
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Abstract. Classification based on k-nearest neighbors (kNN classifica-
tion) is one of the most widely used classification methods. The number
k of nearest neighbors used for achieving a high accuracy in classification
is given in advance and is highly dependent on the data set used. If the
size of data set is large, the sequential or binary search of NNs is inap-
plicable due to the increased computational costs. Therefore, indexing
schemes are frequently used to speed-up the classification process. If the
required number of nearest neighbors is high, the use of an index may
not be adequate to achieve high performance. In this paper, we demon-
strate that the execution of the nearest neighbor search algorithm can
be interrupted if some criteria are satisfied. This way, a decision can be
made without the computation of all k nearest neighbors of a new ob-
ject. Three different heuristics are studied towards enhancing the nearest
neighbor algorithm with an early-break capability. These heuristics aim
at: (i) reducing computation and I/O costs as much as possible, and (ii)
maintaining classification accuracy at a high level. Experimental results
based on real-life data sets illustrate the applicability of the proposed
method in achieving better performance than existing methods.

Keywords: kNN classification, multidimensional data, performance.

1 Introduction

Classification is the data mining task [10] which constructs a model, denoted
as classifier, for the mapping of data to a set of predefined and non-overlapping
classes. The performance of a classifier can be judged according to criteria such as
its accuracy, scalability, robustness, and interpretability. A key factor that influ-
ences research on classification in the data mining community (and differentiates
it from classical techniques from other fields) is the emphasis on scalability, that
is, the classifier must work on large data volumes, without the need for experts
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to extract appropriate samples for modeling. This fact poses the requirement
for closer coupling of classification techniques with database techniques. In this
paper, we are interested in developing novel classification algorithms that are ac-
curate and scalable, which moreover can be easily integrated to existing database
systems.

Existing classifiers are divided into two categories [12], eager and lazy. In
contrast to an eager classifier (e.g., decision tree), a lazy classifier [1] builds no
general model until a new sample arrives. A k-nearest-neighbor (kNN) classi-
fier [7] is a typical example of the latter category. It works by searching the
training set for the k nearest neighbors of the new sample and assigns to it the
most common class among its k nearest neighbors. In general, a kNN classifier
has satisfactory noise-rejection properties. Other advantages of a kNN classifier
are: (i) it is analytically tractable, (ii) for k = 1 and unlimited samples the error
rate is never worse than twice the Bayes’ rate, (iii) it is simple to implement, and
(iv) it can be easily integrated into database systems and exploit access methods
that the latter provide in the form of indexes.

Due to the aforementioned characteristics, kNN classifiers are very popular
and enjoy many applications. With a naive implementation, however, the kNN
classification algorithm needs to compute all distances between training data
and a test datum, and requires additional computation to get k nearest neigh-
bors. This impacts the scalability of the algorithm in a negative manner. For
this reason, recent research [5] has proposed the use of high-dimensional access
methods and techniques for fast computation of similarity joins, which are avail-
able in existing database systems, to reduce the cost of searching from linear
to logarithmic. Nevertheless, the cost of searching the k nearest neighbors, even
with a specialized access method, still increases significantly by increasing k.

For a given test datum, depending on which training data comprise its neigh-
borhood, we may need a small or a large k value to determine its class. In other
words, in some cases, a small k value may suffice for the classification, whereas
in other cases we may need to examine larger neighborhoods. Therefore, the
appropriate k value may vary significantly. This introduces a trade-off: By pos-
ing a global and adequately high value for k, we attain good accuracy, but the
computational cost of nearest neighbor searching increases for large k values.
Higher computational cost reduces the scalability in large data sets. In contrast,
by keeping a small k value, we get low computational cost, but this may impact
accuracy in a negative manner. What is, thus, required is an algorithm that
will combine good accuracy and low computational cost, by locally adapting the
required value of k. In this work, we propose a novel framework for a kNN clas-
sification algorithm that fulfills the aforementioned property. We also examine
techniques that help us for finding the appropriate k value in each case. Our
contributions are summarized as follows:

– We propose a novel classification algorithm based on a non-fixed number
of nearest neighbors, which is less time consuming than the known kNN
classification, without sacrificing accuracy.
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– Three heuristics are proposed that aim at the early-break of the kNN classi-
fication algorithm. This way, significant savings in computational time and
I/O can be achieved.

– We apply the proposed classification scheme to large data sets, where in-
dexing is required. A number of performance evaluation tests are conducted
towards investigating the computational time, the I/O time and the accuracy
achieved by the proposed scheme.

The rest of our work is organized as follows. The next section briefly describes
related work in the area and summarizes our contributions. Section 3 studies
in detail the proposed early-break heuristics, and presents the modified kNN
classification algorithm. Performance evaluation results based on two real-life
data sets are given in Section 4. Finally, Section 5 concludes our work and briefly
discusses future work in the area.

2 Related Work

Due to its simplicity and good performance, kNN classification has been studied
thoroughly [7]. Several variations have been developed [2], like the distance-
weighted kNN, which puts emphasis on nearest neighbors, and the locally-
weighted averaging, which uses kernel width to control the size of neighborhood
that has large effect. All these approaches propose adaptive schemes to improve
the accuracy of kNN classification in the case where not all attributes are similar
in their relevance to the classification task. In our research, we are interested in
improving the scalability of kNN classification.

Also, kNN classification has been combined with other methods and, instead
of predicting a class with simple voting, prediction is done by another machine
learner (e.g., neural-network) [3]. Such techniques can be considered complemen-
tary to our work. For this reason, to keep comparison clear, we did not examine
such approaches.

Böhm and Krebs [5] proposed an algorithm to compute the k-nearest neigh-
bor join using the multipage index (MuX), a specialized index structure for the
similarity join. Their algorithm can be applied to the problem of kNN classifi-
cation and can increase its scalability. However, it is based on a fixed number
of k, which (as described in Introduction) if it is not tuned appropriately, it can
negatively impact the performance of classification.

3 Adaptive Classification

3.1 The Basic Incremental kNN Algorithm

An algorithm for incremental computation of nearest neighbors using the R-
tree family [9,4] has been proposed in [11]. The most important property of
this method is that the nearest neighbors are determined in their order of their
distance from the query object. This enables the discovery of the (k + 1)-th
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nearest neighbor if we have already determined the previous k, in contrast to
the algorithm proposed in [13] (and enhanced in [6]) which requires a fixed value
of k.

The incremental nearest neighbors search algorithm maintains a priority queue.
Queue entries are Minimum Bounding Rectangles (MBRs) and they are prioritized
with respect to their distance from the query point. An object will be examined
when it reaches the top of the queue. The algorithm begins by inserting the root
elements of the R-tree in the priority queue. Then, it selects the first entry and
inserts its children. This procedure is repeated until the first data object reaches
the top of the queue. This object is the first nearest neighbor. Figure 1 depicts the
Incr-kNN algorithm with some modifications, towards adapting the algorithm for
classification purposes. Therefore, each object of the test set is a query point and
each object of the training set, contains an additional attribute which indicates
the class where the object belongs to. The R-tree is built using the objects of the
training set.

The aim of our work is to perform classification by using a smaller number of
nearest neighbors than k, if this is possible. This will reduce computational costs
and I/O time. However, we do not want to harm accuracy (at least not signifi-
cantly). Such an early-break scheme can be applied since Incr-kNN determines
the nearest neighbors in increasing distance order from the query point. The
modifications performed to the original incremental kNN algorithm are summa-
rized as follows:

– We have modified line 3 of the algorithm. The algorithm accepts a maximum
value of k and is executed until either k nearest neighbors are found (no early
break) or the heuristics criteria are satisfied (early break). Specifically, we
added the condition NNCounter ≤ k in while statement (line 3).

– We have added the lines 10,11,12 and 13. At this point, the algorithm re-
trieves a nearest neighbor and checks for early break. Namely, the while loop
of the algorithm breaks if the criteria defined by the heuristic that we use are
satisfied. So, the new item is classified using NNCounter nearest neighbors,
where NNCounter < k. Lines 11, 12 and 13 are replaced according to the
selected heuristic.

– We have added the lines 25, 26, 27 and 28. These lines perform classification
taking into account k nearest neighbors. This code is executed only when
the heuristic is not capable of performing an early-break.

3.2 Early-Break Heuristics

In this section, we present three heuristics that interrupt the computation of
nearest neighbors when some criteria are satisfied. The classification performance
(accuracy and execution cost) depends on the adjustments of the various heuris-
tics parameters. The parameter MinnNN is common to all heuristics and defines
the minimum number of nearest neighbors which must be used for classification.
After the retrieval of MinnNN nearest neighbors, the check for early-break is
performed. The reason for the use of MinNN is that a classification decision is



70 S. Ougiaroglou et al.

Algorithm Incr-kNN (QueryPoint q, Integer k)
1. PriorityQueue.enqueue(roots children)
2. NNCounter = 0
3. while PriorityQueue is not empty and NNCounter ≤ k do
4. element = PriorityQueue.dequeue()
5. if element is an object or its MBR then
6. if element is the MBR of Object and PriorityQueue is not empty

and objectDist(q, Object) > PriorityQueue.top then
7. PriorityQueue.enqueue(Object, ObjectDist(q, Object))
8. else
9. Report element as the next nearest object (save the class of the object)
10. NNCounter++
11. if early-break conditions are satisfied then
12. Classify the new object q in the class where the most nearest neighbors

belong to and break the while loop. q is classified using
NNCounter nearest neighbors

13. endif
14. endif
15. else if element is a leaf node then
16. for each entry (Object, MBR) in element do
17. PriorityQueue.enqueue (Object, dist(q, Object))
18. endfor
19. else /*non-leaf node*/
20. for each entry e in element do
21. PriorityQueue.enqueue(e, dist(q, e))
22. endfor
23. endif
24. end while
25. if no early-break has been performed then // use k nearest neighbors
26. Find the major class (class where the most nearest neighbors belong to)
27. Classify the new object q to the major class
28. endif

Fig. 1. Outline of Incr-kNN algorithm with early break capability

preferable when it is based on a minimum number of nearest neighbors, other-
wise accuracy will be probably poor. These criteria depend on which proposed
heuristic is used. The code of each heuristic replaces lines 11 and 12 of the
Incr-kNN algorithm depicted in Figure 1.

Simple Heuristic (SH). The first proposed heuristic is very simple. According
to this simple heuristic, the early-break is performed when the percentage of
nearest neighbors that vote the major class is greater than a predefined threshold.
We call this threshold PMaj.

For example, suppose that we have a data set where the best accuracy is
achieved using 100 nearest neighbors. Also, suppose that we define that PMaj
= 0.9 and MinNN=7. The Incr-kNN is interrupted when 90% of NNs vote a
specific class. If this percentage is achieved when the algorithm examines the
tenth NN (9 out of 10 NNs vote a specific class), then we avoid the cost of
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searching the rest 90 nearest neighbors. Using the Incr-kNN algorithm, we ensure
that the first ten neighbors which have been examined, are the nearest.

Furthermore, if the simple heuristic fails to interrupt the algorithm because
PMaj is not achieved, it will retry an early-break after finding the next TStep
nearest neighbors.

Independent Class Heuristic (ICH). The second early-break heuristic is
the Independent Class Heuristic (ICH). This heuristic does not use the PMaj
parameter. The early-break of Incr-kNN is based on the superiority of the major
class. Superiority is determined by the difference between the sum of votes of
the major class and the sum of votes of all the other classes. The parameter
IndFactor (Independency Factor) defines the superiority level of the major class
that must be met in order to perform an early-break. More formally, in order to
apply an early-break, the following condition must be satisfied:

SV MC > IndFactor ·
(

n∑
i=1

SV Ci − SV MC

)
(1)

where SV MC is the sum of votes of major class, n is the number of classes and
SV Ci is the sum of votes of class i.

For example, suppose that our data set contains objects of five classes, we
have set IndFactor to 1 and the algorithm has determined 100 NNs. Incr-kNN
will be interrupted if 51 NNs vote a specific class and the rest 49 NNs vote
the other classes. If the value of IndFactor is set to 2, then the early-break is
performed when the major class has more than 66 votes.

Studying the Independent Class Heuristic, we conclude that the value of the
IndFactor parameter should be adjusted by taking into account the number of
classes and the class distribution of data set. In the case of a normal distribution,
we accept the following rule: when the number of classes is low, IndFactor
should be set to a high value. On the other hand, when there are many classes,
IndFactor should be set to a lower value.

In ICH, parameter TStep is used in the same way as in the SH heuristic.
Specifically, when there is a failure in interruption, the early-break check is again
activated after determining the next TStep nearest neighbors.

M-Times Major Class Heuristic (MMCH). The last heuristic that we
present is termed M-Times Major Class Heuristic (MMCH). The basic idea is
to stop the Incr-kNN when M consecutive nearest neighbors, which vote the
major class, are found. In other words, the while-loop of Incr-kNN algorithm
terminates when the following sequence of nearest neighbors appears:

NNx+1, NNx+2, ..., NNx+M ∈MajorClass (2)

However, this sequence is not enough to force an early-break. In addition,
the PMaj parameter is used in the same way as in the SH heuristic. Therefore,
MMCH heuristic breaks the while loop when the percentage of nearest neighbors
that vote the major class is greater than PMaj and there is a sequence of M
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Fig. 2. Accuracy vs k, I/O vs k and accuracy vs I/O for PBC data set

nearest neighbors that belong to the major class. We note that MMCH does not
require the TStep parameter.

4 Performance Evaluation

In this section, we present the experimental results on two real-life data sets.
All experiments have been conducted on an AMD Athlon 3000+ machine (2000
MHz), with 512 MB of main memory, running Windows XP Pro. The R*-tree,
the incremental kNN algorithm, and the classification heuristics have been im-
plemented in C++.

4.1 Data Sets

The first data set is the Pages Blocks Classification (PBC) data set and contains
5,473 items. Each item is described by 10 attributes and one class attribute.
We have used the first five attributes of the data set and the class attribute.
We reduced the number of attributes considering that the most dimensions we
use, the worst performance the family of R-trees has. Each item of the data set
belongs to one of the five classes. Furthermore, we have divided the data set
into two subsets. The first subset contains 4,322 items used for training and the
second contains the rest 1,150 items used for testing purposes.

The traditional kNN classification method achieves the best possible accuracy
when k = 9. However, this value was very low and so the proposed heuristics can
not reveal their full potential. Therefore, we have added noise in the data set in
order to make the use of a higher k value necessary. Particularly, for each item
of the training set, we modified the value of the class attribute with probability
0.7 (the most noise is added, the highest value of k is needed to achieve the
best classification accuracy). This fact forced the algorithm to use a higher k
value. This way, we constructed a data set where the best k value is 48. This
means that the highest accuracy value is achieved when 48 nearest neighbors
contribute to the voting process. This is illustrated in Figure 2(a), which depicts
the accuracy value accomplished by modifying k between 1 and 48.
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Fig. 3. Accuracy vs k, I/O vs k and accuracy vs I/O for LRI data set

As expected, the higher the value of k, the higher the number of I/O oper-
ations. This phenomenon is illustrated by Figure 2(b). We note that if we had
used a lower value for k (k < 48), we would have avoided a significant number
of I/Os and therefore the search procedure would be less time-consuming. For
example, if we set k = 30, then we avoid 5.84 I/Os for the classification of one
item of the test set without significant impact on accuracy. Figure 2(c) com-
bines the two previous graphs. Particularly, this figure shows how many I/Os
the algorithm requires in order to accomplish a specific accuracy value.

The second data set is the Letter Image Recognition Data set [8], which
contains 20,000 items. We have used 15,000 items for training and 5,000 items
for testing. Each item is described by 17 attributes (one of them is the class
attribute) and represents an image of a capital letter of the English alphabet.
Therefore, the data set has 26 classes (one for each letter). The data set objective
is to identify the capital letter represented by the items of the test set using a
classification method.

As in the case of the PBC data set, we have reduced the number of dimensions
(attributes). In this case, dimensionality reduction has been performed by using
Principal Component Analysis (PCA) on the 67% of the original data. The final
number of dimensions have been set to 5 (plus the class attribute).

Figure 3 illustrates the data set behavior. Specifically, Figure 3(a) shows the
accuracy achieved for k ranging between 1 and 28. We notice that the best
accuracy (77%) is achieved when k = 28. Figure 3(b) presents the impact of k
on the number of I/Os. Almost 43 I/O operations are required to classify an item
of the test set for k = 28. Finally, Figure 3(c) combines the two previous graphs
illustrating the relation between accuracy and the number of I/O operations. By
observing these figures, we conclude that if we had used a lower k value, then we
could have achieved better execution time by keeping accuracy at high levels.

4.2 Determining Parameters Values

Each heuristic uses a number of parameters. These parameters must be adjusted
so that the best performance is achieved (or the best balance between accuracy
and execution time). In this section, we present a series of experiments which
demonstrates the behavior of the heuristics for different values of the parameters.
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We keep the best values (e.g. the parameters that manage to balance execution
time and accuracy) for each heuristic and use these values in a subsequent section
where heuristics are compared.

As we demonstrate, a heuristic shows its best performance for a range of pa-
rameter values. Therefore, for a new data set, these parameters can be adjusted by
applying the classification process to a sample instead of using the whole data set.

Pages Blocks Classification Data Set. Initially, we are going to analyze
the MinNN parameter. It is a parameter that all heuristics use. Recall that
MinNN is the minimum number of NNs that should be used for classification.
After determining these NNs, the heuristics are activated. Figure 4 show how
the heuristics performance (accuracy and I/O) is affected by modifying the value
of MinNN . The values of the other parameters have as follows: TStep = 4,
IndFactor = 1, PMaj = 0.6, MTimes = 4, k = 48.

Fig. 4. Impact of MinNN for PBC data set

By observing the results it is evident that accuracy is least affected when the
MMCH heuristic is used. Therefore, for this heuristic, we set MinNN = 4, which
is the value that provides the best balance between I/O and accuracy. In contrast,
the accuracy of the other two heuristics is significantly affected by the increase of
MinNN . We decide to define MinNN = 11 for the Independency Class Heuristic
and MinNN = 7 for the Simple Heuristic. Our decision is justified by the
accuracy and I/O measurements provided for these parameters values.

We continue our experiments by finding the best value for IndFactor. Recall
that this parameter is used only in ICH heuristic. We modify IndepFactor from
0.4 to 4 and calculate the accuracy achieved. Figure 5 illustrates that the best
balance between accuracy and I/O is achieved when IndFactor = 1. The values
of the other parameters are as follows: MinNN = 11, TStep = 4, k = 48.

Next we study the impact of the parameter MTimes, which is used only by
the MMCH heuristic. As it is depicted in Figure 6 for MTimes = 3, the accuracy
level will be high enough and the number of I/O operations is relatively low. So
we keep this value as the best possible for this parameter. The values of the
other parameters have as follows: MinNN = 4, PMaj = 0.6, k = 48.
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Fig. 5. Impact of IndFactor on the performance of ICH heuristic for PBC data set

Fig. 6. Impact of MTimes on the performance of MMCH heuristic for PBC data set

Next, we study the impact of TStep parameter on the performance of SC and
ICH, since MMCH does not use this parameter. Figure 7 depicts the results. The
values of the rest of the parameters have as follows: MinNN = 6, IndFactor =
1, PMaj = 0.6, MTimes = 3, k = 48. Both SH and ICH heuristics achieve the
best accuracy when TStep = 4. In fact, SH achieves the same accuracy for TStep
= 3 or TStep = 4, but less I/Os are required when TStep = 4. Since MMCH
and kNN classification are not affected by TStep, their graphs are parallel to the
TStep axis. Finally, it is worth to note that although MMCH needs significantly
less I/Os than kNN classification, the accuracy that MMCH achieves is the same
as that of kNN classification.

Letter Image Recognition Data Set. Next, we repeat the same experiments
using the LIR data set. The impact of MinNN is given in Figure 8. It is evident
that all heuristics achieve higher accuracy than kNN classification. By studying
Figure 8 we determine that the best MinNN values for the three heuristics are:
MinNN = 7 for SH, MinNN = 12 for ICH and MinNN = 4 for MMCH. These
values achieve the best balance between accuracy and I/O processes. The values
of the other parameters have as follows: TStep = 2, IndFactor = 1, PMaj =
0.6, MTimes = 3, k = 28.

Figure 9 depicts the results for the impact of IndFactor. We see that IndFactor
= 1 is the best value since the ICH heuristic achieve the best possible accuracy
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Fig. 7. Impact of TStep parameter for PBC data set

Fig. 8. Impact of MinNN for LIR data set

Fig. 9. Impact of IndFactor on the performance of ICH heuristic for LIR data set

value and at the same time saves almost ten I/O operations per query. The values
of the other parameters are as follows: MinNN = 12, TStep = 5, k = 28.

Next, we consider parameter MTimes, which is used only by the MMCH
heuristic. We define MTimes = 3, which results in 13 I/O savings for each
query and achieves the best possible accuracy value. The results are illustrated
in Figure 10. The values of the other parameters have as follows: MinNN = 4,
PMaj = 0.6, k = 28.

Finally, in Figure 11 we give the impact of TStep. We set TStep = 4 for SH
and TStep = 5 for ICH, since these values give adequate accuracy and execution
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Fig. 10. Impact of MTimes on the performance of MMCH heuristic for LIR data set

Fig. 11. Impact of TStep parameter for LIR data set

time. The values of the rest of the parameters have as follows: MinNN = 4,
IndFactor = 1, PMaj = 0.6, MTimes = 3, k = 28.

4.3 Comparison of Heuristics

In this section we study how the heuristics compare to each other and to the
traditional kNN classification, by setting the parameters to the best values for
each heuristic, as they have been determined in the previous section.

Pages Blocks Classification Data Set. Figure 12 depicts the performance
results vs PMaj. When PMaj = 0.6, accuracy is about the same for all heuris-
tics and very close to that achieved by traditional kNN classification. However,
our heuristics require significant less I/O for achieving this accuracy. When this
accuracy value is accomplished there is no reason to find more nearest neighbors
and therefore valuable computational savings are achieved.

According to our results, ICH achieves an accuracy value of 0.947 (kNN’s
accuracy is 0.9495) while it saves about 6.88 I/Os for the classification of one
item. Particularly, when we use ICH, we find 31.29 nearest neighbors on average
instead of 48. Similarly, when PMaj = 0.6, SH achieves accuracy equal to 0.948
(very close to that of kNN) by performing an early-break when 38.5 NNs on
average have been found (almost 10 less than kNN requires). Therefore, SH
saves about 4.385 I/Os per each item of the test set. Finally, the same accuracy
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Fig. 12. Accuracy and number of I/Os

Fig. 13. Accuracy and number of I/Os for PMaj = 0.6

value (0.948) is achieved by MMCH. However, this heuristic saves less number
of I/Os than SH. Specifically, MMCH spends 3.875 I/O less than kNN because
it finds 39.767 NNs on average.

Figures 13 and 14 summarize the results of this experiment using bar charts
which have been produced by setting PMaj = 0.6 and maintain the same values
for the other parameters. Figure 13 shows that the accuracy achieved by the
heuristics is very close to that of kNN, whereas the number of required I/Os
is significant less than that of kNN. Figure 14 presents the number of nearest
neighbors retrieved on average by each method.

We can not directly answer the question “which heuristic is the best”. The
answer depends on which measure is more critical (accuracy or execution time).
If a compromise must be made, Figure 12 will help. We notice that ICH shows
the best performance because it achieves an accuracy that is very close to the
accuracy of kNN posing the minimum number of I/Os. To declare a winner
between SH and MMCH we notice that when PMaj > 0.6 the heuristics achieves
almost the same accuracy, but MMCH poses more I/Os than SH.

As we have already mentioned, we try to find the parameters values that
provide a compromise between accuracy and execution time. However, if one
of these measures is more important than the other, the parameters can be
adjusted to reflect this preference. Suppose that execution time is more critical
than accuracy (when for example a quick-and-dirty scheme should be applied
due to application requirements). If we set PMaj = 0.5, then 23.245 I/Os per
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Fig. 14. Required number of nearest neighbors for PMaj = 0.6

Fig. 15. Accuracy and number of I/Os (MinNN = 11)

query will be required (instead of 33.32 required by kNN) by finding 25.72 NNs
instead of 48. However, this means that accuracy will be significantly smaller
than that of kNN (we saw that when PMaj = 0.6, the difference between the
accuracy of SH and kNN is minor). Similar results are obtained for MMCH when
PMaj = 0.5. On the other hand, if accuracy is more critical than time, we can
adjust the heuristics parameters towards taking this criticality into account. In
this case, it is possible that the heuristics achieve better accuracy than kNN,
with execution time overhead. In any case, early-break heuristics always require
less execution time than kNN.

By considering the impact of MinNN shown in Figure 4, it is evident that
MMCH can achieve a slightly better accuracy than kNN. Specifically, if we set
MinNN = 8, PMaj = 0.6 and MTimes = 3, then MMCH achieves an accuracy
value equal to 0.950435, whereas 30.793 I/Os are required (while kNN requires
33.3174 I/Os per query and achieves an accuracy of 0.94956). The early-break
heuristic is able to avoid 2.5244 I/O per query, whereas at the same time achieves
better accuracy when k is adjusted to ensure the best accuracy value. Although
the number of saved I/Os may seem small, note that this savings are performed
per classified item. Since the PBC test set contains 1,150 items, we realize that
the overall number of saved I/Os is 2903, which is significant.

Similar considerations apply to the other two heuristics. For example, ICH
can outperform the accuracy of kNN when IndyFactor = 1.2, TStep = 4, and
MinNN = 11 (see Figure 5). However, because of the increase of IndFactor
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Fig. 16. Required number of nearest neighbors (MinNN = 11)

Fig. 17. Accuracy and number of I/Os vs PMaj

from 1 to 1.2, the I/O requirements are increased from 26.44 to 29.75. Finally,
if we set MinNN = 11 instead of 7, SH also outperforms the accuracy of kNN
(see Figure 4). These results are illustrated in Figures 15 and 16.

Letter Image Recognition Data Set. We close this section by presenting the
comparison results using the LIR data set. Similar conclusions can be drawn as in
the case of the PBC data set. The results are given in Figures 17, 18 and 19.

We note that when we PMaj > 0.5 (see Figure 17), the three heuristics
accomplish better accuracy than kNN and manage to reduce execution time.
More specifically, SH achieves an accuracy of 0.7825 with 32.53 I/Os on average
for PMaj = 0.8, whereas kNN an accuracy of 0.77 spending 42.81 I/Os (see
Figure 18). Also, if we set PMaj = 0.6, SH achieves an accuracy of 0.78 spending
26.7775 I/Os on average (see Figure 19).

ICH, which is not affected by the PMaj parameter, achieves an accuracy
of 0.775 spending 33.52745 I/Os on average. Finally, MMCH achieves the best
balance between accuracy and execution time we set PMaj = 0.6. Particularly,
the heuristic accomplishes an accuracy of 0.7775 and spends 30.6525 I/Os on
average (see Figure 18). Comparing the three heuristics using the Letter Image
Recognition data set, we conclude that the simple heuristic has the best perfor-
mance since it achieves the best possible accuracy spending the least possible
number of I/Os.
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Fig. 18. Accuracy and number of I/Os for PMaj = 0.8

Fig. 19. Accuracy and number of I/Os for PMaj = 0.6

5 Conclusions

In this paper, an adaptive kNN classification algorithm has been proposed, which
does not require a fixed value for the required number of nearest neighbors. This
is achieved by incorporating an early-break heuristic into the incremental k-
nearest neighbor algorithm. Three early-break heuristics have been proposed and
studied, which use different conditions to enforce an early-break. Performance
evaluation results based on two real-life data sets have shown that significant
performance improvement may be achieved, whereas at the same time accuracy
is not reduced significantly (in some cases accuracy is even better than that of
kNN classification). We plan to extend our work towards: (i) incorporating more
early-break heuristics and (ii) studying incremental kNN classification by using
subsets of dimensions instead of the whole dimensionality.
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Abstract. Most methods proposed so far for classification of high-dimen-
sional data are memory-based and obtain a model of the data classes
through training before actually performing any classification. As a result,
these methods are ineffective on (a) very large datasets stored in databases
or data warehouses, (b) data whose partitioning into classes cannot be cap-
tured by global models and is sensitive to local characteristics, and (c) data
that arrives continuously to the system with pre-classified and unclassified
instances mutually interleaved and whose successful classification is sen-
sitive to using the most complete and/or most up-to-date information. In
this paper, we propose LOCUS, a scalable model-free classifier that over-
comes these problems. LOCUS is based on ideas from pattern recogni-
tion and is shown to converge to the optimal Bayes classifier as the size
of the datasets involved increases. Moreover, LOCUS is data-scalable and
can be implemented using standard SQL over arbitrary database tables.
To the best of our knowledge, LOCUS is the first classifier that combines
all the characteristics above. We demonstrate the effectiveness of LOCUS
through experiments over both real-world and synthetic datasets, compar-
ing it against memory-based decision trees. The results indicate an overall
superiority of LOCUS over decision trees on both classification accuracy
and data sizes that it can handle.

Keywords: Lazy Classification, Scalable Classification, Disk-Based
Classification, Optimal Bayes.

1 Introduction

Consider a collection of “labeled” objects available, often called a training set. The
objects are described by a number of attributes, called features, and are modeled as
feature vectors. The object labels are used to categorize each object into one of sev-
eral predefined classes. Assuming that the class of every object can be expressed as
a function of the object’s attributes, features are often called predictor attributes,
while the corresponding class is the dependent attribute. Classification is the task
of labeling new objects, whose class is unknown, using the a-priori labeling in the
training set as a basis. Some example applications of common classification tasks
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include automated medical diagnosis, target group identification, email filtering,
character or speech recognition, and fraud detection.

Interestingly, traditional classification algorithms mainly focus on providing
high accuracy even at the cost of iterative traversals of the training data, ne-
glecting the potential access costs of such operations. Clearly, this is acceptable
only for small datasets that fit in main memory: the majority of the literature
involves datasets with only a few hundreds of instances at most.

Nevertheless, increasing use of computers and database management systems
(DBMSs) in modern business environments, decreasing storage costs, and other
similar trends have generated a wealth of data stored in databases and data
warehouses. Data mining over such databases can discover useful information
that can help their owners predict future events based on past observations. As
a special case of data mining, classification presents new challenges when applied
to training sets that are orders of magnitude larger than the ones typically con-
sidered. Revisiting traditional classification algorithms to make them applicable
in today’s large-scale environment is highly desirable.

Existing classifiers can be placed into two main categories: eager and lazy.
Eager classifiers use an off-line training phase during which they build a model
of the training set. During classification they use this model to label unknown
objects. Popular eager classifiers include Decision Trees [18] and Support Vector
Machines [5]. On the contrary, lazy classifiers need no training as they do not rely
on a global model. For every unknown object, they search the training set to find
the objects that are most similar to the unknown one (under various similarity
measures on the objects’ features, e.g., Euclidian distance). Then, they classify
the given object based on the classes of these most similar objects. The most
widely known lazy classifier is Nearest Neighbors [12].

Comparing the aforementioned general classification schemes, we can see that
eager classifiers pay a considerable cost for (off-line) training but provide faster
answers during decision, exploiting their use of a global model. On the contrary,
lazy methods spend no time in training at the expense of increased costs during
decision, due to on-line searching. Besides trivial training costs, another great
advantage of lazy classifiers is that they exhibit greater accuracy on complex
datasets when a global model is too hard to find, since they exploit only lo-
cal information. Furthermore, they need no incremental maintenance when the
training set is expanded with new known instances. This is extremely important
in applications that involve a continuous flow of new training data and classifi-
cation tasks that are sensitive to the most up-to-date information. For example,
automatically deciding whether to buy or sell a given share in a stock-market ap-
plication seems to be more effective if based on a window consisting of the most
recent transactions, rather than on a global model built on older observations.
Clearly, keeping such a window up to date is much easier in lazy schemes.

Our study of related work has revealed that most disk-based classification
methods proposed so far mainly focus on the development of eager classifiers.
To overcome this drawback, in this paper, we propose LOCUS (Lazy Optimal
Classification of Unlimited Scalability), an effective, efficient, and disk-based
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lazy classifier. LOCUS is data-scalable and can be implemented using standard
SQL over arbitrary database tables. It overcomes the efficiency problems of exist-
ing lazy methods providing very fast on-line answers, while it still enjoys all the
advantages of laziness described above. To the best of our knowledge, LOCUS
is essentially the first disk-based lazy classifier with the following properties:

– It exhibits good classification accuracy, which improves as training sets be-
come larger. This can be justified theoretically based on its convergence to
the optimal Bayes classifier, which minimizes the classification error prob-
ability. The same is also verified experimentally in comparison to Decision
Trees, a very popular and accurate existing classifier.

– It is database-friendly and, to the best of our knowledge, the only lazy
method that uses a small and constant number of highly selective range
queries1 in order to classify unknown objects. Such queries actually need
to access a very small part of the underlying database and have been well
studied in the database literature. They can be expressed in standard SQL
and existing query optimizers guarantee their fast response times with the
use of traditional indices, e.g., B+-Trees.

The rest of this paper is organized as follows: In Section 2, we review related
work and, in Section 3, we describe LOCUS and show its optimality with respect
to classification error probability. In Section 4, we present the results of our
experimental evaluation using both real-world and synthetic datasets and, finally,
we conclude in Section 5 and present our directions for future work.

2 Related Work

The problem of classification over small datasets that fit in main memory has
been thoroughly studied in the past and there are a very large number of related
papers. The most influential methods have been well described in existing text-
books related to pattern recognition [21] and machine learning [15]. Although
LOCUS is a disk-based approach built on fundamental ideas originally conceived
in these areas, surveying existing memory-based techniques in detail exceeds our
purpose.

The need for scalable and database-friendly data mining techniques over ex-
tremely large datasets has given thrust to revisiting traditional methods under
new constraints, in an attempt to transform them into scalable solutions. General
ideas towards this end can be found in related surveys [6,17].

Interestingly, a large number of these efforts have focused on Decision Trees,
mainly due to their ability of learning faster than other eager classifiers and their
accuracy, which has been found comparable or superior to other classification
models [8]. Moreover, every path in a Decision Tree can be easily converted into
an SQL statement that can be used to access databases efficiently [1]. Popular

1 The number of queries depends on the training set. In all cases we have seen in
practice one or two queries are enough.
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methods in this category include SLIQ [13], SPRINT [19], RainForest [9], Med-
Gen [11], and BOAT [8]. Note that these methods do not actually propose a
new classification model. Instead, they provide a disk-based implementation of
a popular one, i.e., Decision Trees. The rationale behind LOCUS is similar. It
provides a disk-based implementation for a rather familiar classifier based on
counting training vectors in a fixed neighborhood centered at an incoming un-
known vector. The main differences between LOCUS and the other techniques
is that LOCUS is lazy and converges to an optimal solution with respect to
classification error probability as the training dataset becomes larger.

Another popular approach that can be combined with known classifiers to
reduce resource requirements is sampling and dataset size reduction. For exam-
ple, CB-SVM [23] first applies BIRCH [24], a disk-based clustering algorithm,
and then trains a classifier based on support vector machines using the centroids
of the identified clusters instead of the original data. Such methods induce po-
tentially expensive pre-processing that can be thought of as another form of
training. Moreover, they leave a taste of defeat as they depend on lossy tech-
niques. LOCUS considers every training vector as valuable. Both theoretical and
experimental results show that its accuracy improves as datasets become larger,
rendering it superior to sampling.

As we have already mentioned, lazy classifiers do not build a general model in
a training stage, but access the training data on-line for every decision. Relying
on local rather than global rules, they promise higher accuracy in inherently com-
plex situations. Popular lazy classifiers include Nearest Neighbors [12], IB1-IB5
[3], and LazyDT [7]. Clearly, evaluating a similarity measure between an un-
known vector and every training vector for ranking the latter accordingly is im-
practical in very large datasets. To overcome this drawback, several approaches
have been proposed, based on specialized multidimensional indices for acceler-
ating the search without scanning the entire training set [12]. (These methods
mainly focus on Nearest Neighbors.) However, it has been recently shown [20]
that accessing the data using such techniques can be even worse than a sequen-
tial scan through the entire dataset under very broad conditions. This is due
to the fact that the distance difference between the nearest and the furthest
neighbor is often so small that it turns methods based on Nearest Neighbors
inaccurate [4]. Based on these conclusions, we consider LOCUS as essentially
the first disk-based lazy classifier that guarantees both speed and accuracy over
any large dataset.

In order to achieve this, LOCUS uses an SQL Interface Protocol (SIP) [10]
and is based on highly selective range queries leaving the burden of data access
to the DBMS. Using SQL for implementation of data mining methods has been
proposed elsewhere [10] as a general hint. Querying the data on the server where
it is originally stored (a) provides efficiency, (b) saves time from expensive export
operations, (c) provides increased security, since data is available only to autho-
rized users, and (d) enables scientists from different fields, potentially unwilling
to learn the usage of new software, to use familiar interfaces on top of a database
system. SQL interfaces have also been applied on construction of Decision Trees
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[10] as well as in DBPredictor [14]. The latter is a lazy method that builds a
custom model consisting of an IF-THEN rule for every unknown vector. To do
this, it queries the training database iteratively, until some stopping criteria are
met. Executing an arbitrary number of queries per instance for building a local
model generates concerns about the performance of this method. Furthermore,
the model constructed is rather ad-hoc and its accuracy is not based on a math-
ematical foundation. Unlike DBPredictor, LOCUS uses a small fixed number of
queries per instance. Moreover, it builds no model but is based on raw counting,
which is proven to converge to the optimal Bayes classifier.

3 LOCUS Classification

In this section, motivated by the need for a scalable and accurate disk-based lazy
classifier, we propose LOCUS and argue that, to the best of our knowledge, it
is the first lazy classifier with these properties that converges to optimality with
respect to minimizing the classification error probability for large training sets.
In principle, given an unlabeled feature vector x, LOCUS counts the number
of neighbors per class that reside in a fixed neighborhood around x. Although
this idea is not novel (counting neighbors is common in pattern recognition), its
naive implementation overlooks that selecting the training vectors that live in
the given neighborhood of an arbitrary x by scanning the entire training set is
very expensive in large datasets. Moreover, although reasonable, it seems to be
rather ad-hoc. In the following subsections, we provide answers for both: First,
we show that our simple counting method can be based on a sound mathematical
background [21] and converges to the optimal Bayes classifier. Second, we provide
a very efficient disk-based method to implement the otherwise familiar task of
counting. This is analogous to the contribution of algorithms like RainForest [9]
that provide efficient disk-based algorithms for the construction of well-known
Decision Trees in the area of eager classifiers.

3.1 Intuition of LOCUS

Assume a classification task in a D-dimensional feature space. For the sake of
simplicity, let all features be numerical with discrete domains (LOCUS can also
work with continuous and categorical features, as shown later). If Ci denotes
the number of distinct values of the i-th feature (i ∈ [1, D]), then there are C =
C1× C2× · · ·× CD possible different feature vectors. Suppose that our training
set is very dense and large, so that it contains an instance of every possible
vector. Then, intuitively, when an unknown vector x comes, it seems reasonable
to classify it according to the class of the training vector y that matches x
exactly (i.e., y = x).

Unfortunately, this ideal scenario is very unrealistic, mainly due to two rea-
sons: the number of features is usually large and most features have large do-
mains. Both factors result in an increase of C. For example, if D = 10 and Ci =
10 ∀ i ∈ [1, D], then C = 1010. Hence, even in this rather simple case an ideal
training set should consist of 10 billion feature vectors, which seems impractical.
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In practice, the available training set is usually sparse, i.e., it contains a very
small subset of all possible feature vectors. Hence, finding an exact match to x
has very low probability. To overcome this drawback, a reasonable solution is
to loosen the condition of “exact match”. Since finding a training vector y such
that y = x is usually infeasible, we can alternatively search for training vectors
in a narrow neighborhood Y centered at x. Formally, we can say that y ∈ Y iff
yi ∈ [xi-δi, xi+δi] ∀ i ∈ [1, D], where yi (xi) is the value of y (x) for the i-th
feature and δis denote our tolerance regarding the extent of the neighborhood
Y around x. If δi values are small enough to ensure a small deviation from the
ideal scenario described above and large enough to make Y non-empty with
high probability, then classifying x according to the majority class in Y seems
intuitively reliable.

In the 2-dimensional example of Fig. 1, we would classify the unknown vector
x = <x1, x2> as “+”, as indicated by the majority of training points that fall
within a small area centered at x.

Clearly, loosening the “exact match” condition as described above is possi-
ble for all numerical features (either discrete or continuous). Furthermore, it is
possible for categorical features, if their values can be ordered. In such cases the
range [xi-δi, xi+δi] must be substituted by a range of contiguous values around
xi according to the defined order. On the other hand, such loosening is not pos-
sible in non-ordered categorical features, in which case, we leave the equality
condition unmodified. In general, this is of minor importance for two reasons:
(a) Usually, there is a mixture of numerical and categorical features and loos-
ening the equality condition for those that include ordering is just enough. (b)
Categorical attributes have usually small domains, which makes the satisfaction
of an exact match condition highly possible.

In the following subsection, we flesh out a known argument from pattern
recognition [21] that proves optimality for the classifier described above, showing
that it converges to the optimal Bayes classifier as training datasets become
larger.

Fig. 1. Classification example of vector x = <x1, x2>

3.2 Optimality

Assume that x is an unlabelled feature vector and that there are M possible
classes ω1, · · · , ωM to which it can be classified. Then our task is to classify x into
the most probable of these classes. Naturally, the term “most probable” brings in
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mind the conditional probabilities P(ωi | x), i ∈ [1, M]. Hence, it seems reasonable
to classify x as ωi if P(ωi | x) > P(ωj | x) ∀ j ∈ [1, M] such that j�=i. This rule
is known as the Bayes classification rule. Actually, this reasonable rule, which
seems rather empirical, turns out to minimize the classification error probability
[21]. Hence, the Bayes classifier, which performs classification according to the
Bayes classification rule, is optimal with respect to minimizing the classification
error probability.

So, our original classification problem has now been transformed into that of
comparing the conditional probabilities P(ωi | x), i ∈ [1, M]. In order to fulfill
this task, let us recall the Bayes rule from the probability theory basics:

P(ωi|x) =
p(x|ωi)P(ωi)

p(x)
(1)

In this formula P(ωi) is the a priori probability of class ωi, p(x | ωi) is the
class-conditional probability density function2, and p(x) is the pdf of x.

For the sake of simplicity, let us focus on the 2-class case (M=2). Then, using
formula (1) transforms the Bayes classification rule as follows: classify x to ω1 if
the following holds

P(ω1|x) > P(ω2|x) ⇒
p(x|ω1)P(ω1)

p(x)
>

p(x|ω2)P(ω2)
p(x)

⇒

p(x|ω1)
p(x|ω2)

>
P(ω2)
P(ω1)

(2)

Let N denote the total number of training vectors (N1 of which belong to ω1

and N2 to ω2), V the volume of some neighborhood centered at x, and n1 (n2)
the number of training vectors that belong to ω1 (ω2) and reside in the given
neighborhood. Then the elements of formula (2) can be estimated as follows [21]:

P(ωi) ≈
Ni

N
and p(x|ωi) ≈

1
V
× ni

Ni
(i ∈ [1, 2])

These estimators converge to the real values when Ni →∞, provided that V
→ 0, ni →∞, and ni

Ni
→ 0 (i ∈ [1, 2]) at the same time.

In other words, these conditions indicate that using the aforementioned esti-
mators is more reliable when (a) the number of training vectors is very large, (b)
the neighborhood around x is rather small, and (c) there is a large number of
training vectors within the borders of the neighborhood, which is though much
smaller than the total number of training vectors.

Replacing the elements of formula (2) with their estimators gives:

1
V ×

n1
N1

1
V ×

n2
N2

>
N2
N
N1
N

⇒ n1 > n2

2 We assume that x can take any value in the D-dimensional feature space. In the case
that feature vectors can take only discrete values, pdfs become probabilities.
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The last inequality implies classifying x to ω1 if n1 > n2. This simplified
criterion is an estimator of the Bayes classification rule and can be generalized
for the multi-class case as follows: classify x to ωi if ni > nj ∀ j ∈ [1, M] such
that j�=i.

This result proves that the intuitive classifier described in the previous sub-
section, which simply relies on counting training vectors that fall inside a given
neighborhood around x, converges to the optimal Bayes classifier, which mini-
mizes the classification error probability.

Let us revisit the pdf estimator:

p(x|ωi) ≈
1
V
× ni

Ni

This can be written as

p(x|ωi) ≈
1
V
×

∑Ni

j=1 φ(xj)
Ni

(3)

where φ(xj) is a kernel function that returns 1 if xj resides in the given neighbor-
hood, or 0 otherwise. In the literature [21], there are smoother kernel functions
that better estimate continuous pdfs. However, in our case count seems to be
enough, since it is easy to implement and our goal is not to find the absolute
values of pdfs, but to identify the class that maximizes the pdf in the given
neighborhood.

3.3 Disk-Based Implementation

LOCUS is based on the criterion described above fixing a small neighborhood
around an incoming feature vector x and counting the number of its neighbors
for every class in a lazy fashion. The majority class wins. Note that this strategy
differs from that of the K-Nearest Neighbors, where the number of neighbors is
fixed instead of the volume of the neighborhood. As we have shown, this intuitive
alternative converges to an optimal solution. Furthermore, lazily counting seems
to be very attractive, due to its simplicity. However, a naive implementation can
be very expensive in terms of memory requirements and I/O costs. Recall that,
formula (3) includes an invocation of the kernel function φ for every training vec-
tor. This implies a complete scan of the training set for every incoming unknown
object, which is unacceptable for very large datasets, on which we focus.

A straightforward solution would be to apply sampling in order to keep only
a small fragment of the original data that fits in main memory. However, as we
have shown, LOCUS converges to optimality when the underlying dataset is as
large as possible. Hence, sampling is out of question.

An alternative solution is to implement LOCUS over a DBMS using standard
SQL. This approach is popular in data mining and it has been shown effective in
different mining tasks [10]. Note that counting neighbors in a small area can be
easily transformed into a highly selective range query that accesses directly the
feature vectors (stored as tuples) that reside in the given ranges. Such queries
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have been thoroughly studied in the database literature and existing query opti-
mizers guarantee high efficiency with the use of traditional indexing techniques.
This property actually turns LOCUS into an efficient disk-based approach that
is database-friendly.

Back to the example in Fig. 1, assume that known objects are stored in a re-
lation R with the following schema R(f1, f2, class). Then the number of objects
of each class that fall within the given volume can be found by the following
query:

SELECT class, count(*)
FROM R
WHERE f1 ≥ x1-δ1 AND f1 ≤ x1+δ1 AND f2 ≥ x2-δ2 AND f2 ≤ x2+δ2

GROUP BY class

Since the volume V is chosen small so that ni/Ni → 0, the number of tuples
accessed by the query above is actually orders of magnitude smaller than the total
number of tuples in R. This property makes LOCUS scalable, enabling it work
over very large datasets, which minimizes the classification error probability, as
shown in the previous subsection.

If in our previous example feature f2 was categorical with no ordering defined
for its values, the corresponding query would be:

SELECT class, count(*)
FROM R
WHERE f1 ≥ x1-δ1 AND f1 ≤ x1+δ1 AND f2=x2

GROUP BY class

As we have already explained, the existence of categorical features does not
generate problems.

3.4 Selection of Neighborhood Volume

As shown in Section 3.2, a proper value for the neighborhood volume V depends
on the characteristics of the underlying training set. Clearly, V must be smaller
when the dataset is denser and vice versa. A dataset becomes denser as (a)
the size N of the training set increases, (b) the number of relevant features D
decreases, and (c) the number of different values of every feature Ci decreases.

Choosing a proper value for the neighborhood volume V can be automated by
using cross-validation for minimizing the classification error. Generally, if V is
too small the result set of the queries used by LOCUS is empty and classification
accuracy is marginal. The execution time of such queries is very fast, since they
actually access a limited number of tuples, if any, making initial experimentation
with small values of V very cheap. As V increases, the probability that a result
set is empty decreases and this can be easily observed, since in this case, LOCUS
starts returning useful results and classification accuracy increases. Finally, when
V becomes too large, a considerable proportion of feature vectors lies in the
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corresponding neighborhood, which invalidates the preconditions of optimality
and results once more in a decrease of classification accuracy overall. Hence, we
propose selecting V with cross-validation, i.e., by identifying a value that strikes
a balance between the two trends and minimizes classification error.

4 Experimental Evaluation

To evaluate the efficiency of the proposed techniques, we have compared LOCUS
with Decision Trees (DTs) [18], as they have been popular and effective, and have
been widely used for benchmarking in the past. The actual implementation of
DTs we have used is J48, which is a variation of C4.5 [18] offered in weka [22],
a standard, open-source suite of machine learning algorithms. We have also run
some initial experiments with Nearest-Neighbors, implemented in weka as well.
Its scalability has been found poor, even for moderate-sized datasets, and its
accuracy comparable to that of DTs. Hence, we have excluded it from further
investigation. We have implemented LOCUS in C++ and we have used an open-
source DBMS for query processing. We have run our experiments on a Pentium
4 (2.8 GHz) PC with 512 MB memory under Windows XP. Below, we present
the results of our experimental evaluation of the algorithms of interest over
appropriate subsets of the features of both synthetic and real-world datasets.

Synthetic datasets: Due to lack of publicly available very large real-world
datasets we have used ten functions, first proposed elsewhere [2], that have been
widely used in the past for generating synthetic data proper for evaluating disk-
based classification algorithms. The resulting datasets consist of nine predictor
attributes (6 numerical, 3 categorical) of various domain sizes and two classes.
Please refer to the bibliography [2] for more information.

We have generated datasets of various sizes and devoted a reasonable size of
200 MB of memory to memory-based DTs, which have managed to run over
small and medium datasets (of 5 × 103 and 5 × 104 tuples) but not over larger
ones (of 5 × 105 tuples or more). We have further tested LOCUS with datasets
two orders of magnitude beyond this limit (of 5 × 105 and 5 × 106 tuples). All
test sets have consisted of 103 tuples. Below, we illustrate the most indicative
results.

Fig. 2 shows the error rates generated by LOCUS and DTs, respectively, for
medium datasets (N=5 × 104 tuples) generated by the ten functions mentioned
above. We see that LOCUS wins in four cases (2, 7, 8, 9), is equal with DTs
in three (1, 3, 10), and loses in three (4, 5, 6). Its greatest success over DTs
occurs in function 2, which is complicated enough to prevent DTs from building
a global model. LOCUS overcomes this based on local information only.

Expectedly, the accuracy of LOCUS improves converging to optimality as
datasets become larger. We show this in Fig. 3, which presents the error rates
generated by LOCUS for all ten functions when the number of training tuples
varied from 5 × 103 to 5 × 106. Clearly, error rates tend to decrease and finally
LOCUS reaches the accuracy of DTs for all cases it lost in Fig. 2. These results
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Fig. 2. Error rate using synthetic data (N=5×104)

Fig. 3. Error rate using synthetic data wrt dataset size

show the potentiality of LOCUS, mainly in very large datasets, for all of which
error rates have dropped under 1%.

As an example of how the prerequisites (mentioned in Section 3.2) for conver-
gence to Bayes optimality hold when the size of the training dataset grows, Fig. 4
shows the size of the neighborhood volume V used by LOCUS as a function of
the number of tuples stored in the database. The specific volumes have been
found with cross-validation over datasets generated with function 5 (behavior is
similar for all ten functions). The values indicated are the normalized volumes
(i.e., the fractions of the volumes over the volume corresponding to the largest
training set) and clearly show that V tends to zero as the size of the dataset
increases.

Fig. 5 illustrates the scalability of LOCUS with respect to the number of tu-
ples stored in the database (x-axis is logarithmic). Each point represents the
average time for making a decision. Averages refer to all ten functions. Perform-
ing classification in approximately half a second over datasets consisting of 5
× 106 tuples is very promising. Note that in these experiments we have used a
single B+-Tree for each dataset, indexing the corresponding attribute with the
largest domain. Optimistically, since the classification algorithm can be applied
directly over the database relation R that holds the original data, it is highly
likely that R is already indexed for other purposes, implying that effective reuse
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Fig. 4. Normalized volume V used by LOCUS on synthetic data wrt dataset size

Fig. 5. Time scalability of LOCUS on synthetic data wrt dataset size

Fig. 6. Properties of the real datasets we have used

of existing resources may just be enough. On the other hand, multidimensional
index structures like R-trees and techniques like pre-sorting stored data or ma-
terializing views could be used to generate better results. The effect of these
techniques in this case is identical to that when applied to any (simple) queries
expressed in standard SQL, so it is orthogonal to and beyond the scope of this
paper.
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Fig. 7. Error rate using real datasets

Fig. 8. Error rate using CovType wrt dataset size

Real datasets: As we have already mentioned, LOCUS behaves best under large
datasets; hence, testing its behavior over real data, which are rather small, is
really challenging. In our study, we have chosen commonly used publicly available
real-world datasets [16]. Fig. 6 shows the properties of the real datasets we
have used (number of features F, number of tuples N, and number of classes
M, respectively). Datasets appear ordered according to the average number of
tuples per class they contain. We expect better results as this number increases.
In small datasets (up to Diabetes), we have treated 2/3 of all tuples as known and
1/3 as unknown (separation has been random), which is common. In Letters and
CovType we have used 1,000 unknown tuples instead. All results are averages
of five different experiments per dataset.

Fig. 7 shows the error rates generated by LOCUS and DTs respectively. Er-
ror rates are in general high over most of these datasets, which exhibit inherent
difficulty in being used for prediction tasks. LOCUS performs worst over Glass,
which is too sparse, consisting of only 214 tuples for 7 classes. Nevertheless, sur-
prisingly, it outperforms DTs in most cases overall, even over very small datasets.
As datasets become larger (mainly in Letters and CovType) its superiority in-
creases. This is also clear in Fig. 8, which shows the accuracy improvements over
CovType with respect to the training set size. The symbol “X” denotes that
DTs failed to deal with the case of 5 × 105 tuples.
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Overall, we have shown that LOCUS is scalable, its accuracy is comparable to
that of eager DTs in small datasets and becomes superior when datasets become
larger. Hence, we have provided strong evidence that it is a promising classifier,
mainly suited for datasets with large and constantly growing sizes.

5 Conclusions and Future Work

In this paper, we proposed LOCUS, an accurate and efficient disk-based lazy
classifier that is data-scalable and can be implemented using standard SQL. We
have shown that in most cases it exhibits high classification accuracy, which
improves as training sets become larger, based on its convergence to the optimal
Bayes. Overall, the results are very promising with respect to the potential of
LOCUS as the basis for classification, mainly over large or inherently complex
datasets.

Note that, in this thread of our work, we have focused on classification scal-
ability with respect to the number of known vectors N and have deliberately
neglected scalability with respect to the number of dimensions D. The latter
problem is tightly related to methods for feature selection, which are orthogonal
to our work presented here. In the future, we plan to investigate the applicabil-
ity of similar techniques for feature selection as well. Furthermore, we intend to
implement a parallel version of LOCUS and study its effectiveness on regression
problems (possibly replacing the “count” aggregate function with “average”).
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Abstract. Support for updates to views of database schemata is typi-
cally very limited; only those changes which can be represented entirely
within the view, or changes which involve only generic changes outside
of the view, are permitted. In this work, a different point of view to-
wards the view-update problem is taken. If a proposed update cannot
be performed within the view, then rather than rejecting it outright,
the cooperation of other views is sought, so that in their combined en-
vironments the desired changes can be realized. This approach has not
only the advantage that a wider range of updates are supported than is
possible with more traditional approaches, but also that updates which
require the combined access privileges of several users are supported.

Keywords: update, view.

1 Introduction

Support for updates to database views has long been recognized as a difficult
problem. An update which is specified on a view provides only partial infor-
mation on the change of state of the main schema; the complementary infor-
mation necessary to define a complete translation of that update to the main
schema must be determined in other ways. Over the years, a number of ap-
proaches have been developed for such translations. In the constant-complement
strategy, first defined in [1] and later refined in [2] and [3], the fundamen-
tal idea is that the translation must leave unaltered all aspects of the main
database which are not visible from the view; formally, the so-called comple-
mentary view is held constant. Theoretically, it is the cleanest approach, in
that it defines precisely those translations which are free from so-called update
anomalies [2, 1.1] which involve changes to the database which are not entirely
visible within the view itself. Unfortunately, the family of anomaly-free updates
is relatively limited, and for this reason the constant-complement strategy has
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been viewed as inadequate by some investigators [4], and so numerous more
liberal approaches have been forwarded, including both direct approaches [5]
and those which relax some, but not all, of the constraints of the constant-
complement strategy [6]. All of these more liberal approaches involve, in one
way or another, updates to the main schema which are not visible within the
view itself.

Even if one accepts that view update strategies which are more liberal than
the constant-complement approach are necessary and appropriate, there is a sig-
nificant further issue which must be taken into consideration — access rights. It
is a fundamental design principle of modern database systems that users have
access rights, and that all forms of access, both read and write, must respect
the authorization of those rights. With the constant-complement update strat-
egy, in which only those parts of the main schema which are visible in the
view may be altered in an update, this issue poses no additional problems be-
yond those of specifying properly the access rights on each view. However, with
a more liberal update approach, changes to the main schema may be man-
dated which are not visible within the view. This implies that the user of the
view must have write access privileges beyond that view, which is often un-
realistic. Thus, even if one is willing to accept some update anomalies, view
update support beyond the constant-complement strategy is to a large extent
unacceptable because of the serious problems surrounding access rights which it
implies.

To address these concerns, a quite different approach to supporting view up-
dates is proposed in this paper. When an update u to view Γ cannot be supported
by the constant-complement strategy, the cooperation of other views is enlisted.
If translation of u implies that an update to the main schema must be made
which is not visible within Γ , then these additional changes must be embodied
in the cooperating views. If the user of Γ who desires to effect u does not have
the necessary access privileges on the cooperating views, then the cooperation of
suitable users of these views must also be enlisted, in order to effect the update
“in unison”. This, in turn, provides information on the workflow pattern which
is necessary to realize the update.

For such a theory of cooperation to take form, it is necessary to be able to re-
gard a database schema as a collection of interconnected views. The fundamental
ideas of such representations of database schemata are found in component-based
modelling, as forwarded by Thalheim [7] [8] [9]. Roughly speaking, a component
is an encapsulated database schema, together with channels which allow it to be
connected to other components. A database schema is then modelled as an inter-
connection of such components. The work of Thalheim is, in the first instance,
oriented towards conceptual modelling and the design of database schemata us-
ing the higher-order entity-relationship model (HERM) [10]. In [11], the ideas
of component-based modelling have been recast and formalized in a way which
makes them more amenable to view-update problems. It is this latter work which
is used, in large part, as the basis of this paper.
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2 The Core Concepts by Example

To present the ideas underlying cooperative updates in a complete and unam-
biguous fashion, a certain amount of formalism is unavoidable. However, it is
possible to illustrate many of the key ideas with a minimum of formalism; such
an illustration, via a running example, is the goal of this section. First, the main
ideas of database components will be illustrated via an example, with that same
example then used as the basis for the illustration of a cooperative update.

TravelEmp[EmpID, ConfID,Amnt , NDays,Notes ]KEm

TravelSct[EmpID, ConfID,Amnt ,NDays ,SupID ]KSc

ApprvMgt[EmpID,ConfID ,NDays ,SupID ]

KMg

ApprvAct[EmpID ,ConfID,Amnt , ActID ]

KAc

TravelEmpSct[EmpID ,ConfID,Amnt ,NDays]GEmSc

TravelSecMgt[EmpID ,ConfID, NDays, SupID]

GScMg

TravelSecAct[EmpID ,ConfID,Amnt ]
GScAc

Read-only relations which are
common to all components
and their ports:

Employee[EmpID, Name, Department ,Email ,Tel ]
Conference[ConfID ,Name,Dates ,Location ,URL]

Supervises[EmpID, SupID ]

AuthAccount[EmpID, ActID ]

πEmpID,ConfID,Amnt,NDays = γEmSc

πEmpID,ConfID,Amnt,NDays = γEmSc

πEmpID,ConfID,NDays,SupID =γScMg πEmpID,ConfID,Amnt = γScAc

πEmpID,ConfID,NDays,SupID = γScMg πEmpID,ConfID,Amnt = γScAc

Fig. 1. Graphical depiction of the components of the running example

Discussion 2.1 (An informal overview of database components). For
a much more thorough and systematic presentation of the ideas underlying the
database components of this paper, the reader is referred to [11]. A component
is an ordered pair C = (Schema(C), Ports(C)) in which Schema(C) is a database
schema and Ports(C) is a finite set of nonzero views of Schema(C), called the
ports of C. The running relational example is depicted in Fig. 1; there are four
components, the employee component KEm, the secretariat component KSc, the
management component KMg, and the accounting component KAc. The relation
unique to the schema of a given component is shown enclosed in a rectangle. In
addition, there is a set of relations which are common to all components; these
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are shown in a box with rounded corners at the bottom of the figure. For exam-
ple, the schema of KEm consists of the relations TravelEmp, Employee, Conference,
Supervises, and AuthAccount. The primary key of each relation is underlined; in
addition, the following inclusion dependencies are assumed to hold:

TravelEmp[EmpID ] ⊆ Employee[EmpID ],
TravelSct[EmpID , SupID ] ⊆ Supervises[EmpID , SupID ],
ApprvMgt[EmpID , SupID ] ⊆ Supervises[EmpID , SupID ],
ApprvAct[EmpID , ActID ] ⊆ AuthAccount[EmpID , ActID ],
Supervises[EmpID ] ⊆ Employee[EmpID ],
Supervises[SupID ] ⊆ Employee[EmpID ],
AuthAccount[EmpID ] ⊆ Employee[EmpID ].

The ports of the components are also represented in Fig. 1. The schema of each
view (qua port) Γx is represented within an ellipse, labelled with the name of that
schema. The associated view mapping γx for each port is shown next to the arrow
which runs from the component schema to the port schema. For example, the
component KEm has only one port, which is denoted by ΓEmSc = (GEmSc, γEmSc),
with γEmSc the projection πEmpID,ConfID,Amnt,NDays :
Schema(KEm) → GEmSc. In other words, Ports〈KEm〉 = {ΓEmSc}. The compo-
nent KSc, on the other hand, has three ports, ΓEmSc = (GEmSc, γEmSc), ΓScMg =
(GScMg, γScMg), and ΓScAc = (GScAc, γScAc), with the port definitions as given in
the figure. Similarly, the component KMg has one port, ΓScMg = (GScMg, γScMg),
and the component KAc has one port, ΓScAc = (GScAc, γScAc). The underlying
interconnection family, which describes which ports are connected to which, is
{{ΓEmSc, ΓEmSc}, {ΓScMg, ΓScMg}, {ΓScAc, ΓScAc}}. Each member of this family is
called a star interconnection. The names of ports may be arbitrary, although
for convenience in this example a special naming convention has been used. The
view Γxy = (Gxy, γxy) is a port of the component Kx, and is connected to the
port Γxy = (Gxy, γxy) of the component Ky.

The ports of connected components must have identical (and not just isomor-
phic) schemata. It becomes clear why this is necessary when defining the state of
a combined interconnection. Let M = (MEm, MSc, MMg, MAc) ∈
LDB(Schema(KEm)) × LDB(Schema(KSc)) × LDB(Schema(KMg)) ×
LDB(Schema(KAc)), with LDB(−) denoting the set of legal databases. For M
to be a legal state of the interconnected component, the local states must agree
on all ports. More precisely, it is necessary that the following hold: γEmSc(MEm) =
γEmSc(MSc), γScMg(MSc) = γScMg(MMg), and γScAc(MSc) = γScAc(MAc).

Some difficulties can arise if the underlying hypergraph is cyclic [11, 3.2];
i.e., if there are cycles in the connection. While these can often be overcome,
the details become significantly more complex. Therefore, in this paper, it will
always be assumed that the interconnections are acyclic.

Example 2.2 (An example of cooperative update). Suppose that Lena is
an employee, and that she wishes to travel to a conference. The successful ap-
proval of such a request is represented by the insertion of an appropriate tuple
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in the relation TravelEmp. She has insertion privileges for the relation TravelEmp

for tuples with her EmpID (which is assumed to be Lena, for simplicity); how-
ever, these privileges are qualified by the additional requirement that the global
state of the interconnected components be consistent. Thus, any insertion into
TravelEmp must be matched by a corresponding tuple in TravelSct — that is,
a tuple whose projection onto TravelEmpSct matches that of the tuple inserted
into TravelEmp. This tuple must in turn be matched by corresponding tuples
in ApprvMgt and ApprvAct. Thus, to accomplish this update, Lena requires the
cooperation someone authorized to update the component KSc, which in turn
requires the cooperation of those authorized to update KMg and KAc.

The process of cooperative update proceeds along a project-lift cycle. The
update request of Lena is projected (see Definition 3.2) to the ports of KEm; the
connected components (in this case just KSc) then lift (see Definition 3.3) these
projections to their schemata. The process then continues, with KSc project-
ing its proposed update to KMg and KSc. These projections and liftings cannot
modify the state of the database immediately, as they are only proposed updates
until all parties have agreed. Rather, a more systematic process for managing the
negotiation process is necessary. The process is controlled by a nondeterministic
automaton, which maintains key information about the negotiation and deter-
mines precisely which actions may be carried out by components (and their
associated actors) at a given time. It also manages the actual update of the
database when a successful negotiation has been completed. This automaton is
described formally in Definition 3.4. In this section, it will be described more
informally, and consequently somewhat incompletely, by example.

The central data structures of this automaton are two sets of registers for
managing proposed updates. For each component C there is a pending-update
register PendingUpdate(C) which records proposed updates which are initiated
by that component, but not yet part of the permanent database. In addition,
for each component C and each port Γ of C, there is a port-status registers
PortStatus(C, Γ ) which is used to record projections of updates received by neigh-
boring components. In addition, for each component C, the register
CurrentState(C) records the actual database state for that component. The au-
tomaton also has a Status, which indicates the phase of the update process in
which the machine lies. In Idle, it is waiting for an initial update request from one
of the components. In Active, it is processing such a request by communication
and refinement; the bulk of the processing occurs in this state. The value Ac-
cepted indicates that all components have agreed on a suitable set of updates. In
the Final phase, one of these updates is selected, again by propagating proposals
amongst the components. Finally, the value of the variable Initiator identifies the
component which initiated the update request. A state of this update automaton
is given by a value for each of its state variables. These variables, together with
their admissible and initial values, are shown in Table 1.

In Table 2, a sequence of twelve steps which constitutes a successful realization
of a travel request from Lena is shown. An attempt has been made to represent all
essential information, albeit in compact format. Notation not already described,
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Table 1. The state variables of the update automaton

Name Range of values Initial Value

Status ∈ {Idle, Active, Accepted, Final } Idle

Initiator ∈ X ∪ {NULL} NULL

For each component C:

CurrentState(C) ∈ LDB(Schema〈C〉) (MC)0

PendingUpdate(C) ∈ RDUpdates(Schema〈C〉) ∪ {NULL} NULL

For each component C and Γ ∈ Ports〈C〉:

PortStatus(C, Γ ) ∈ RDUpdates(Schema〈Γ〉) ∪ {NULL} NULL

such as the step of the update automaton which is executed, will be described
as the example proceeds. The formal descriptions of these steps may be found
in Definition 3.4.

To understand how this request is processed, it is first necessary to expand
upon the request itself, which involves alternatives. Suppose that Lena wishes to
travel either to ADBIS or else to DEXA. For ADBIS, she requires a minimum
of e800; for DEXA e1000. For ADBIS she needs to travel for at least five days;
for DEXA only three. Although she is flexible, she also has preferences. A trip
to ADBIS is to be preferred to a trip to DEXA, and within a given conference,
more money and time is always to be preferred. To express these alternatives,
a ranked directional update (see Definition 3.1) is employed. It is directional
in the sense that it is either an insertion or a deletion (for technical reasons,
only insertions and deletions are supported in the current framework), and it
is ranked in the sense that there is a partial order which expresses preferences
on the updates. The update request, call it u0, would then consist of all tuples
of the form TravelEmp[Lena, ADBIS, eA, dA, η] together with those of the form
TravelEmp[Lena, DEXA, eD, dD, η], with 800 ≤ eA ≤ 2000, 5 ≤ dA ≤ 10, 1000 ≤
eD ≤ 2000, 3 ≤ dD ≤ 10. Here η denotes a null value for the Notes field. There
is also a technical requirement that a set of ranked updates be finite; hence the
upper bounds on the values for time and money. The set of all possible ranked
directed updates on a schema D is denoted RDUpdates(D). At the end of a
successful update negotiation, all parties will agree to support some subset of
the elements of u0, with Lena then choosing one of them.

In processing this request, the automaton is initially in the state Idle, awaiting
an update request from some component. This is illustrated in step 0 of Table 2.
Lena initiates her travel request by executing InitiateUpdate(KEm,u0), which
communicates the projection Proj(u0,) of TravelEmp onto the common port rela-
tion TravelSecMgt, as shown in step 1 of the table. Because this is only an update
request, and not an actual update, it is placed in the appropriate port status
register, in this case the status register for ΓEmSc; the database state remains
unchanged. A value for a state variable of the form PortStatus(C, Γ ) represents
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Table 2. The state evolution of Example 2.2

KEm KSc KMg KAc
Pending
Update

Port
Status

Pending
Update

Port
Status

Port
Status

Port
Status

Pending
Update

Port
Status

Pending
Update

Port
Status

KEm ΓEmSc KSc ΓEmSc ΓScMg ΓScAc KMg ΓScMg KAc ΓScAc

0. Initial database state = (MEm, MSc, MMg, MAc) Status: Idle Initiator: NULL
NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL

1. InitiateUpdate(KEm,u0) Status: Active Initiator: KEm u′
0 = Proj(u0, ΓEmSc)

u0 NULL NULL u′
0 NULL NULL NULL NULL NULL NULL

2. PromoteInitialUpdate(KSc) Status: Active Initiator: KEm

u1 ∈ NERestr(MinLift(u′
0, ΓEmSc, M)) u′

1 = Proj(u1, ΓScMg) u′′
1 = Proj(u1, ΓScAc)

u0 NULL u1 NULL NULL NULL NULL u′
1 NULL u′′

1

3. PromoteInitialUpdate(KMg) Status: Active Initiator: KEm

u2 ∈ NERestr(MinLift(u′
1, ΓScMg, M)) u′

2 = Proj(u2, ΓScMg)

u0 NULL u1 NULL u′
2 NULL u2 NULL NULL u′′

1

4. PromoteInitialUpdate(KAc) Status: Active Initiator: KEm

u3 ∈ NERestr(MinLift(u′′
1 , ΓScAc, M)) u′

3 = Proj(u3, ΓScMg)

u0 NULL u1 NULL u′
2 u′

3 u2 NULL u3 NULL
5. RefineUpdate(KSc) Status: Active Initiator: KEm

u4 ∈ NERestr(Refine(u1, ((ΓScMg,u′
2), (ΓScAc,u′

3)))) u′
4 = Proj(u4, ΓEmSc)

u0 u′
4 u4 NULL NULL NULL u2 NULL u3 NULL

6. RefineUpdate(KEm) Status: Active Initiator: KEm

u5 = Refine(u1, ((ΓEmSc, u′
4)))

u5 NULL u4 NULL NULL NULL u2 NULL u3 NULL
7. AcceptUpdate Status: Accepted Initiator: KEm

u5 NULL u4 NULL NULL NULL u2 NULL u3 NULL
8. SelectFinalUpdate(KEm, u5) Status: Final Initiator: KEm

u5 = (MEm, M ′
Em) ∈ Updates(u5) u′

5 = Proj(u5, ΓEmSc)

u5 NULL u4 u′
5 NULL NULL u2 NULL u3 NULL

9. RefineFinalUpdate(KSc) Status: Final Initiator: KEm

u4 = (MSc, M
′
Sc) ∈ NERestr(Refine(u4, (u′

5, ΓEmSc))) u′
4 = Proj(u4, ΓScMg)

u′′
4 = Proj(u4, ΓScAc)

u5 NULL u4 NULL NULL NULL u2 u′
4 u3 u′′

4

10. RefineFinalUpdate(KMg) Status: Final Initiator: KEm

u2 = (MMg, M
′
Mg) ∈ NERestr(Refine(u2, (u′

4, ΓScMg)))

u5 NULL u4 NULL NULL NULL u2 NULL u3 u′′
4

11. RefineFinalUpdate(KAc) Status: Final Initiator: KEm

u3 = (MAc, M
′
Ac) ∈ NERestr(Refine(u3, (u′′

4 , ΓScAc)))

u5 NULL u4 NULL NULL NULL u2 NULL u3 NULL
12. CommitUpdate Status: Idle Initiator: NULL

New database state = (M ′
Em, M ′

Sc, M
′
Mg, M

′
Ac)

NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL
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an unprocessed update request to component C; that is, a request which has yet
to be lifted to that component. Once the lifting takes place, PortStatus(C, Γ ) is
reset to NULL. Note further that the request is not placed in the status register
for ΓEmSc, since the initiating component already knows about it.

The secretariat component must agree to the selected update by propos-
ing a corresponding update to the TravelSct relation, so that the projections
of TravelEmp and TravelSct agree on TravelEmpSct. Formally, this is accomplished
via a lifting of u0; that is, a ranked directed update u1 on Schema(KSc) which
projects to u0 under γEmSc. In principle, this could be any such lifting, but since
the secretariat is assumed to be largely an administrative arm in this example,
it is reasonable to assume that the lifting retains all possibilities requested by
the employee. This lifting must in turn be passed along to the other components
to which KSc is connected; namely the management component KMg and the
accounting component KAc. It is not passed back to KEm at this point, since
it is assumed that Proj(u1, ΓEmSc) = Proj(u0, ΓEmSc). A lifted update is passed
back to the sending component only when the lifting alters the projection on
to their interconnection. Thus, if the secretariat had made restrictions to the
proposed update (by limiting the number of days, say), then the lifting would
need to be passed back to KEm as well. In any case, the lifting which is selected
by the secretariat is passed along to KMg and KAct as u′

1 and u′′
1 , respectively,

as represented in step 2 of Table 2: PromoteInitialUpdate(KSc).
Management responds by lifting u′

1 to an update u2 on the entire component
KMg, as illustrated in step 3 of Table 2: PromoteInitialUpdate(KMg). Sup-
pose, for example, that u2 approves travel to ADBIS for seven days, but denies
travel to DEXA completely. This decision must then be passed back to KSc; this
is represented as u′

2 in the table. On the other hand, if KMg decides to allow all
possible travel possibilities which are represented in u′

1, the lifting is not passed
back to KSc. This point will be discussed in more detail later.

Similarly, KAc must respond to u′′
1 , which is a ranked update regarding travel

funds, but not the number of days. Accounting must decide upon an appropriate
lifting u3. For example, in the lifting u3 of u′′

1 , it may be decided that e1500 can
be allocated for travel to DEXA, but only e900 for travel to ADBIS. In step 4
of Table 2, this component reports its lifting decision back to KSc via u′

3.
In step 5, RefineUpdate(KSc), the decisions u′

2 and u′
3 of KMg and KAc,

which were reported to KSc in steps 3 and 4, are lifted to u4 and then re-
ported back to KEm via u′

4. In this example, the employee Lena would discover
that she may travel only to ADBIS and not to DEXA, with a maximum fund-
ing allocation of e900 and for at most seven days. She acknowledges this with
RefineUpdate(KEm) in step 6, producing u5. As she is the originator of the
update request, it is highly unlikely that u5 would be anything but the maximal
lifting of u4. As such, further update is passed back to KSc during this step.

The system next observes that no component has any pending updates in its
port-status registers, and so marks the cooperative update process as successful
via the AcceptUpdate action in step 7, which includes a transition to Accepted
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status. Unlike the previous steps, this action is taken entirely by the system, and
it is the only possibility from the state reached after step 6.

The process is not yet complete, however, as Lena must select a particular
update, and then that update must be lifted to the entire network of com-
ponents. She may select any member of u5; however, in this case, there is a
maximal entry in what remains of her initial ranked update: travel to ADBIS
for seven days with e900. Given her indicated preferences, this would likely be
her choice. A second round of confirmation via project-lift requires each of the
other components to select a specific update to match her choice. These choices
(for example, the ActID which pays for the trip) will be invisible to Lena. The
details are contained in steps 8-11 of Table 2 via a SelectFinalUpdate(KEm,)
step, followed by three RefineFinalUpdate(C) commands, one for each of the
three other components, and are similar in nature to the previous negotiation.
Keep in mind that boldface letters (e.g., u) represent ranked updates, while
italics letters (e.g.u) represent simple updates. After these, the final step is the
system-initiated action CommitUpdate, in which the agreed-upon update is
committed to the database.

There are a few further points worth mentioning. First of all, the order in
which the steps were executed is not fixed. For example, steps 3 and 4 can
clearly be interchanged with no difference in subsequent ones. However, even
greater variation is possible. Step 5, RefineUpdate(KSc), could be performed
before PromoteInitialUpdate(KAc) of step 4. In that case, upon completion
of RefineUpdate(KAc), a second execution of RefineUpdate(KSc) would be
necessary. The final result would nonetheless be the same. More generally, the
final result is independent of the order in which decisions are made. See Obser-
vation 3.5 for a further discussion.

Suppose that in PromoteInitialUpdate(KAc) of step 4, all incoming up-
dates in u′′

1 are supported by u3, i.e., Proj(u3, ΓScAc) = u′′
1 . In that case, no

revised request of the form u′
3 is transmitted back to KSc via the port-status

register. It is thus natural to ask how KSc “knows” that no such request will
appear. The answer is that it does not matter. The entire process is nonde-
terministic, and KSc can execute RefineUpdate(KSc) based upon the input
u′

2 from KMg alone. If an update request u′
3 comes from KAc later, a sec-

ond RefineUpdate(KSc) based upon it would allow precisely the same final
result as would the process described in Table 2. Again, see Observation 3.5
below.

It is also worthy of note that some decisions may lead to a rejection. For
example, management might decide to allow travel only to ADBIS, while the
accountant might find that there are funds for travel to DEXA but not ADBIS.
In that case, the refinement step 5 would fail, and the only possible step to con-
tinue would be a rejection. Additionally, any component can decide to reject any
proposed update on its ports at any time before the Accepted state is reached
simply by executing a RejectUpdate(C), even if there is a possible update.
For example, a supervisor might decide to disallow a trip.
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3 A Formal Model of Cooperative Updates

In this section, some of the technical details regarding updates and update fam-
ilies are elaborated, and then a more complete description of the behavior of
the update automaton is given. In Definition 3.1–Definition 3.3 below, let D be
a database schema, and let Γ = (V, γ) be a view of D; that is, γ : D → V
is a database morphism whose underlying mapping γ̊ : LDB(D) → LDB(V) is
surjective. Consult [11] for details.

Definition 3.1 (Updates and update families). Following [2, Sec. 3], an
update on D is a pair u = (M1, M2) ∈ LDB(D)×LDB(D). This update is called
an insertion if M1 ≤D M2, and a deletion if M2 ≤D M1. A directional update
is one which is either an insertion or else a deletion. A ranked update on D is a
triple u = (M, S,≤u) in which M ∈ LDB(D), S is a finite subset of LDB(D), and
≤u is a preorder (i.e., a reflexive and transitive relation [12, 1.2]) on S, called the
preference ordering. The set of updates of u is Updates(u) = {(M, M ′) | M ′ ∈
S}. u is deterministic if Updates(u) contains exactly one pair, and empty if
Updates(u) = ∅. In general, ranked updates are denoted by boldface letters
(e.g., u), while ordinary updates will be denoted by italic letters (e.g., u). The
ranked update u is an insertion (resp. a deletion) if every (M, M ′) ∈ Updates(u)
is an insertion (resp. a deletion), and u is a ranked directional update if it is
either an insertion or else a deletion. Every (ordinary) update can be regarded
as a ranked update in the obvious way; to (M1, M2) corresponds the ranked
update (M1, {M2},≤D |{M1,M2}). The set of all ranked directional updates on D
is denoted RDUpdates(D). For S′ ⊆ S, the restriction of u to S′ is Restr(u, S′) =
(M1, S

′,≤u|S′ ) with ≤u|S′ the restriction of ≤u to S′. The set of all nonempty
restrictions of u is NERestr(u) = {Restr(u, S′) | (S′ ⊆ S) ∧ (S′ �= ∅)}.

Definition 3.2 (Projection of updates and update families). For u =
(M1, M2) an update on D, the projection of u to Γ is the update (̊γ(M1), γ̊(M2))
on V. This update is often denoted γ(u). Now let u = (M1, S,≤u) be a ranked
update on D. The projection of u to Γ , denoted Proj(u, Γ ), is the ranked update
γ(u) = (̊γ(M1), γ̊(S),≤γ(u)) in which γ̊(S) = { ˚γ(M) | M ∈ S} and N ≤γ(u)

N ′ iff for every M, M ′ ∈ S for which γ̊(M) = N and γ̊(M ′) = N ′, M ≤u

M ′. Observe that projection preserves the property of being an insertion (resp.
deletion) in both the simple and ranked cases. Another important operation in
component-based updating is refinement. Suppose that u is a proposed ranked
update to a component, and that for each of its ports is given a ranked update
which is a restriction of u onto that component. The refinement of u by those
restrictions is the largest restriction of u which is compatible with all of the
ranked updates on the ports. The formal definition is as follows. Let {Γi | 1 ≤
i ≤ n} be a set of views of D, u′

i = Restr(Proj(u, Γi), S), and for 1 ≤ i ≤ n,
let Si ⊆ {̊γi(M) | M ∈ S}, with S′ = {M ∈ S | (∀i ∈ {1, 2, . . . , n})(∃Ni ∈
Si)(̊γi(M) = Ni)}. The refinement of u by U = {(Γi,u′

i) | 1 ≤ i ≤ n} is defined
to be Restr(u, S′), and is denoted Refine(u, U).
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Definition 3.3 (Liftings of updates and update families). The operation
which is inverse to projection is lifting, in which an update to a view is “lifted”
to the main schema. In contrast to projection, lifting is inherently a nondeter-
ministic operation. Let u = (N1, N2) be an update on V, and let M1 ∈ LDB(D)
with γ̊(M1) = N1 as well. A lifting of u to D for M1 is an update u′ = (M1, M2)
on D with the property that γ̊(M2) = N2. If u is an insertion (resp. deletion),
the lifting u′ is direction preserving if u′ is also an insertion (resp. deletion). If u
is an insertion and u′ is direction preserving, u′ is minimal if for for any lifting
(M1, M

′
2) of u to D for M1 with M ′

2 ≤u M2, it must be the case that M ′
2 = M2,

and u′ is least if for any lifting (M1, M
′
2) of u to D for M1, M2 ≤u M ′

2. A corre-
sponding definition holds for deletions, with “≤u” replaced by “≥u”. These ideas
extend in a straightforward manner to ranked updates. Let u = (N1, S,≤u) be
a ranked update on V, and let M1 ∈ LDB(D) with γ̊(M1) = N1. A lifting of
u to D for M1 is a ranked update u′ = (M1, S

′,≤u′ ) on D which satisfies the
following three properties:

(lift–i) (∀M2 ∈ S′)(∃N2 ∈ S)(̊γ(M2) = N2).
(lift–ii) (∀N2 ∈ S)(∃M2 ∈ S′)(̊γ(M2) = N2).
(lift–iii) For M2, M

′
2 ∈ S′, M2 ≤u′ M ′

2 iff γ̊(M2) ≤u γ̊(M ′
2).

If u is a ranked directional update, then the lifting u′ is direction preserving if it
satisfies the obvious conditions —- if u is an insertion (resp. deletion), then so too
is u′ . A direction-preserving ranked directional update u is minimal (resp. least)
if each member of Updates(u) is minimal (resp. least). The set of all minimal
liftings of u for M1 is denoted MinLift(u, Γ, M1).

Definition 3.4 (The update automaton). Details regarding the precise con-
ditions under which the actions of the automaton may be applied are expanded
here. For the most part, information which has already been presented in Ex-
ample 2.2 and Table 1 will not be repeated.

The machine operates nondeterministically. There are eight classes of actions;
any member of any of these classes may be selected as the next step, provided
that its preconditions are satisfied. The listed actions are then executed in the
order given. All of these operations, with the exception of AcceptUpdate and
Commit, must be initiated by a user of the associated component. Operation is
synchronous; that is, only one operation may be executed at a time. Subsequent
operations must respect the state generated by the previous operation. Formally,
a computation of this automaton is a sequence D = 〈D1, D2, . . . , Dn〉 in which
D1 = InitiateUpdate(C,u) for some C ∈ X and u ∈ RDUpdates(Schema(C)),
and for 1 ≤ i ≤ n − 1, Di+1 is a legal step to follow Di according to the
rules spelled out below. The computation defines a single negotiation if Dn =
CommitUpdate, while Dk �= CommitUpdate for any k < n. The length of the
computation is n. In the description which follows, X is taken to be a finite set
of components with J an interconnection family for X .

InitiateUpdate(C,u): This is the first step in the update process, and is ini-
tiated by a user of the component C by proposing a ranked update u to its
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current state. The appropriate projections of this update are propagated to all
ports of components which are connected to C and whose state is altered by the
update.

Preconditions:
P11: Status = Idle

Actions:
Q11: Initiator← C

Q12: Status ← Active
Q13: PendingUpdate(C) ← u
Q14: (∀Γ ∈ Ports〈C〉)(∀Γ ′ ∈ AdjPorts〈C, J〉)((Proj(u, Γ ) �= identity )

⇒ PortStatus(SrcCpt(Γ ′), Γ ′) ← Proj(u, Γ )).

PromoteInitialUpdate(C): This step is relevant in the situation that a com-
ponent has received an update request on one of its ports, but it has not yet
proposed any corresponding update to its own state. A user of that compo-
nent selects a lifting of this update request for its own state, and propagates its
projections to its ports to all neighboring components.

Preconditions:
P21: Status = Active
P22: PendingUpdate(C) = NULL
P23: (∃Γ ′ ∈ Ports〈C〉)(PortStatus(C, Γ ′) �= NULL)

/* Since the hypergraph of J is acyclic, Γ ′ must be unique. */
Actions:

Q21: PendingUpdate(C) ← Choose u ∈ NERestr(MinLift(u, Γ ′, Schema〈C〉))
where (Γ ′ ∈ Ports〈C〉) ∧ (PortStatus(C, Γ ′) �= NULL)

Q22: (∀Γ ∈ Ports〈C〉)(PortStatus(C, Γ ) ← NULL)
Q23: (∀Γ ∈ Ports〈C〉)(∀Γ ′′ ∈ AdjPorts〈C, J〉)((Proj(u, Γ ) �= identity )

⇒ PortStatus(SrcCpt(Γ ′′), Γ ′′) ← Proj(u, Γ )).

RefineUpdate(C): In this step, a user of component C further restricts its
current proposal for an update, based upon additional ranked updates received
at its ports. Upon successful completion, the new proposed update of the com-
ponent is consistent with the proposed updates which were on its ports.

Preconditions:
P31: Status = Active
P32: PendingUpdate(C) �= NULL
P33: Refine(PendingUpdate(C),

{(Γ, PortStatus(C, Γ )) | PortStatus(C, Γ ) �= NULL}) �= ∅.
Actions:

Q31: PendingUpdate(C) ← Choose u ∈ NERestr(Refine(PendingUpdate(C),
{(Γ, PortStatus(C, Γ )) | PortStatus(C, Γ ) �= NULL}))

Q32: (∀Γ ∈ Ports〈C〉)(PortStatus(C, Γ ) ← NULL)
Q33: (∀Γ ∈ Ports〈C〉)(∀Γ ′ ∈ AdjPorts〈C, J〉)((Proj(u, Γ ) �= identity )

⇒ PortStatus(SrcCpt(Γ ′), Γ ′) ← Proj(u, Γ )).
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RejectUpdate(C): This step is a crude, all-purpose rejection step. Any com-
ponent can reject the proposed update and terminate the entire process at any
time for any reason. One reason might be that it cannot unify the update pro-
posals on its ports, but it could also be that one of its users wishes to terminate
the update for other reasons. Upon such termination, the update automaton is
returned to its initial state; all proposed updates are discarded.

Preconditions:
P41: Status = Active

Actions:
Q41: Status ← Idle
Q42: Initiator← NULL
Q43: (∀C ∈ X)(PendingUpdate(C) ← NULL)
Q44: (∀C′ ∈ X)(∀Γ ∈ Ports〈C′〉)(PortStatus(C′, Γ ) ← NULL)

AcceptUpdate: This step is executed when all components which are involved
in the update process agree that the update can be supported. This agreement
is indicated by the fact that no port has a pending update; all such port updates
have been integrated into component updates. It is initiated automatically; users
cannot effect it directly.

Preconditions:
P51: Status = Active
P52: (∀C ∈ X)(∀Γ ∈ Ports〈C〉)(PortStatus(C, Γ ) = NULL)

Actions:
Q51: Status ← Accepted

SelectFinalUpdate(C, u): Upon acceptance, the components have agreed
upon a ranked update. However, the database must be updated to a single new
state; thus, a single update must be chosen from the ranked set. The purpose of
this step is to initiate that selection process; it is always executed by a user of
the component in which the update request initiated.

Preconditions:
P61: Status = Accepted
P62: Initiator = C

P63: u ∈ NERestr(PendingUpdate(C)) ∧ u is deterministic.
Actions:

Q61: For each Γ ∈ Ports〈C〉, if Proj(u, Γ ) is not the identity update, then
for all Γ ′ ∈ AdjPorts〈C, J〉, PortStatus(SrcCpt(Γ ′), Γ ′) ← Proj(u, Γ )

Q62: Status ← Final

RefineFinalUpdate(C): In this step, a user of component C selects a final
deterministic update which is consistent with that chosen by the initiator.

Preconditions:
P71: Status = Final
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Actions:
Q71: PendingUpdate(C) ← some deterministic restriction of

Refine(PendingUpdate(C),
{(Γ, PortStatus(C, Γ )) | PortStatus(C, Γ ) �= NULL})

Q72: (∀Γ ∈ Ports〈C〉)(PortStatus(C, Γ ) ← NULL)

CommitUpdate: In this step, the update is committed to the database, and the
update automaton is returned to its initial state (albeit with the new database
state). This step is executed automatically when its preconditions are satisfied;
users cannot initiate it.

Preconditions:
P81: Status = Final
P82: (∀Γ ∈ Ports〈C〉)(PortStatus(C, Γ ) = NULL)

Actions:
Q81: (∀C ∈ X)(CurrentState(C) ← PendingUpdate(C))
Q81: (∀C ∈ X)(PendingUpdate(C) ← NULL)
Q83: Initiator← NULL
Q84: Status ← Idle

Because the model of negotiation which has been presented is very simple, it has
some nice theoretical properties. Firstly, infinite computations are not possible;
the machine will always halt. Second, although the machine is nondeterminis-
tic, it is not necessary to guess correctly to make things work. These ideas are
formalized in the following observation.

Observation 3.5 (Computations are well behaved). In the automaton
model given in Definition 3.4, the following conditions hold.

(a) For any C ∈ X and any u ∈ RDUpdates(Schema(C)), there is a natural
number n (which may depend upon the current state of the database) such that
every computation beginning with InitiateUpdate(C,u) has length at most n.

(b) Let D = 〈D1, D2, . . . , Dk−1, Dk, . . . , Dn〉 be a computation of the update au-
tomaton which defines a single negotiation, and let E = 〈E1, E2, . . . , Ek−1, Ek〉
be a computation of that same machine with Ei = Di for 1 ≤ i ≤ k−1. Assume
further that Ek is not of the form RejectUpdate(C). Then there is a choice
of lifting associated with Ek and a computation E′ = 〈E1, E2, . . . , Ek−1, Ek, . . . ,
En′〉 which also defines a single negotiation, and with the further property that
D and E′ result in the same update on the database. (The values of n and n′

need not be the same).

Proof outline: Part (a) follows from the observation that only one decision
for an initial ranked update may be made for each component. After that, the
process only refines these initial decisions. Since a ranked update is finite by
definition, there can only be a finite number of such refinements, and each such
refinement must reduce the number of possibilities in some pending update. Part
(b) follows by observing that one may simply choose for the lifting of Ek the
final ranked update for that component under the computation D. �
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4 Conclusions and Further Directions

The basic idea of supporting view update by negotiating with other views (qua
components) has been presented. A formal model of this process has been de-
veloped using a nondeterministic automaton as the underlying computational
model. Although it has certain limitations, it does provide a formal model of
update by component cooperation within that context, thus providing a firm
basis for further development of these ideas, a few of which are identified below.

Extension of the basic model: The basic model of cooperative update is lim-
ited in severalways. For these reasons, the it should be viewed as a proof-of-concept
effort rather than a comprehensive solution; further research will address the fol-
lowing issues. First, the current model of cooperation is monotonic. Once the ac-
tors have made initial proposals for the updates which they support, the process of
identifying the solution update is solely one of refining those initial proposals. On
the other hand, in realistic situations, it is often necessary for the parties to nego-
tiate nonmonotonically, by retracting their initial proposals and then submitting
new ones, or by modifying their existing proposals adding new alternatives rather
than by just refining existing ones. A key extension for future work is to develop
an extended model which supports such nonmonotonic negotiation. A second im-
portant direction for future work is the development of a computational formalism
which embodies more specific modelling of communication between components.
The current automaton-based rendering does not provide the necessary informa-
tion to the actors to effect an efficient negotiation; the nondeterminism allows very
long and inefficient although completely correct solutions. With a more detailed
model of communication, much more efficient negotiation will be possible.

Relationship to workflow: The topic of workflow involves the systematic
modelling of processes which require the coordinated interaction of several actors
[13]; closely related ideas are known to have central importance in information
systems [14]. Within the context of the development of interactive database sys-
tems and cooperative work, long-term transactions and workflow loops are cen-
tral topics [15] [16] [17]. There is a natural connection between these ideas and
those surrounding cooperative update which have been introduced in this paper.
Indeed, underlying the process of negotiating a cooperative solution to the view-
update problem, as illustrated, for example, in Table 2, is a natural workflow of
update tasks, each defined by a step in the execution of the automaton.

An important future direction for this work is to develop the connection
between workflow for database transactions and the models of cooperative view
update which have been presented in this paper. Indeed, given a database schema
defined by components and a requested update on one of these components, it
should be possible to use the ideas developed in this paper to define and identify
the workflow pattern which is required to effect that update. This, in effect,
would provide a theory of query-based workflow construction.
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Abstract. It is widely accepted practice to build domain models as a
conceptual basis for software systems. Normally, the conceptual schema
cannot be supplied by domain experts but is constructed by modelling
experts. However, this is infeasible in many cases, e.g., if the system is
to be generated ad hoc from a conceptual schema.

This paper presents an iterative process that helps domain experts
to create a conceptual schema without the need for a modelling expert.
The process starts from a set of sample instances provided by the domain
expert in a very simple form. The domain expert is assisted in consol-
idating the samples such that a coherent schema can be inferred from
them. Feedback is given by generating a prototype system which is based
on the schema and populated with the provided samples.

The process combines the following three aspects in a novel way: (1)
it is based on a large amount of samples supplied by the domain expert,
(2) it gives feedback by agile generation of a prototype system, and (3)
it does not require a modelling expert nor does it assume modelling
knowledge with the domain expert.

1 Introduction

It is common practice to begin the development of software systems with an
analysis of the application domain, which results in a conceptual schema. It de-
scribes the relevant entities in the domain without regard to implementation
issues and serves as a basis for later steps in the software development process.
Traditionally, the transformation of the conceptual schema into application pro-
gram code or data schemata was done manually. In recent years, model-driven
development (MDD) approaches, e.g., the Model Driven Architecture (MDA)
approach, has aimed to automatise this transformation to a large degree. Nev-
ertheless, the underlying conceptual schema must exist before the development
of the software system and must remain unchanged during its lifetime. In the
following we will use the term schema as a synonym of conceptual schema as we
are not interested in other types of schemata.

In previous work we have presented the Conceptual Content Management
(CCM) approach, which generates content management systems from a concep-
tual schema. In this respect, it is similar to MDD. However, unlike most MDD
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approaches, CCM does not assume the schema to remain unchanged during the
lifetime of the system. Instead, schema evolution (for the whole user community
of the system) and schema personalisation (for individual users) are explicitly
supported by CCM. Users of the system, i.e., experts in the application domain,
use our conceptual modelling language to state the initial schema as well as
evolutional and personalisational changes to it. System generation in reaction to
schema changes works well in CCM and includes the transformation of relevant
instances.

The creation of an appropriate conceptual schema of the application domain is
a challenge in many development approaches, including MDD and CCM. Both
assume that the domain expert is able to express the model with sufficiently
formal means. It is generally acknowledged that the help of a modelling expert
is necessary as domain experts in many fields cannot be assumed to be famil-
iar with the formalisms used in a conceptual schema (e.g., inheritance between
classes). While the consultation of a modelling expert is an acceptable approach
in traditional software development, modelling experts cannot always be avail-
able at short notice during schema evolution or personalisation steps in a CCM
system. This paper explores possibilities to allow domain experts to create a con-
ceptual schema without the aid of a modelling expert. To this end, we introduce
the Asset Schema Inference Process (ASIP) that incorporates work from sev-
eral areas: sample-based schema inference, agile and iterative schema refinement,
prototype systems as well as collaborative schema creation processes. The idea
of creating the conceptual schema from samples is based the observation that
domain experts often find it troublesome to give an abstracted account of their
application domain. Most are, however, able to “tell their story” by providing
examples of the entities they work with.

We continue in section 2 with an overview of the modelling techniques used
by the ASIP to express the input samples and to describe the resulting schema.
The input samples are provided in a graph representation that makes heavy
use of multimedial content. Emphasis was put on simplicity—such that domain
experts can intuitively understand the samples—with just enough structure to
make schema inference possible. The created schema is expressed in Asset classes
(section 2.2) which provide a dualistic model of an entity with a multimedial
as well as a conceptual representation. In section 2.3 we introduce Conceptual
Content Management Systems (CCMSs) and their architecture. CCMSs can be
generated from Asset schemata.

Our process is introduced in section 3. It consists of four phases: (1) sample
acquisition, (2) schema inference, (3) feedback and (4) system creation. Section 4
takes a closer look at two alternative implementations of the phases 2 and 3. The
first approach we propose is based on traditional schema inference techniques
and user feedback questions. Alternatively, domain experts can influence the
schema by supervising a cluster-based algorithm.

Before we conclude with a summary and outlook in section 6, we discuss
the ASIP in section 5 with some reflections about the quality of the generated
schema and a comparison with related approaches.
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Fig. 1. Some sample entity definitions. Types on plain content are omitted.

2 Conceptual Content Management

In a series of interdisciplinary projects, in particular in cooperation with scien-
tists from the humanities, the need for open dynamic conceptual content man-
agement (CCM) has been recognised. In this section we review the approach,
which relies on experienced domain experts who also have modelling skills. Such
domain experts create a conceptual schema based on previously acquired knowl-
edge. CCM modelling allows conceptual schemata to evolve dynamically, even
when CCMSs derived from such a schema are already in use.

2.1 Sample Entity Definition

In many disciplines, especially those which are not grounded on mathematical
models, a first step towards the understanding of a problem lies in the collection
of problem instances. In particular in history and art history the (past) phenom-
ena are recognised by some kind of trace they left, e.g., a piece of art. Knowledge
on such phenomena is collected through samples of entity descriptions.

Figure 1 illustrates a sample collected by a domain expert and explored in a
free-form notation for entity descriptions. The figure is loosely based on concept
graphs [30].

Such descriptions use multimedia content that constitutes the perception of
an entity. Content is paired with explanations of the depicted entity in order
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to represent it conceptually. Explanations are shown as boxes in figure 1. Each
box contains a name (in front of the colon) and a type (after the colon). Types
in this example just name a subject for the explanation and do not prescribe a
structure. Explanation types can be of single or multiple cardinality (the latter
is denoted by an asterisk following the type; e.g., Work*). Explanations are
provided by multimedia content again—as shown by the arrows—and can in
turn have explanations attached.

Based on insights into many such samples a domain expert will come up
with a model of the respective domain. Note that current CCM projects follow
a “model first” approach in which domain experts have to invent an initial
schema—however complete it may be. Through open modelling (see section 2.2)
domain experts are free to refine the schema anytime they like to.

2.2 Open and Dynamic Domain Modelling

For entity descriptions like those discussed in the previous section the Conceptual
Content Management approach [26,28] has been developed. Its principles are:
(1) entities are described by pairs of content and a conceptual model and (2)
modelling is open and dynamic.

Entity descriptions are maintained as indivisible pairs of content and a con-
ceptual model, called Assets. Entities are visualised by the content which can
take any multimedial form and is addressed by a content handle. A conceptual
model is provided by different attributes associated with the entity, as indicated
by the lines between parts of the content and descriptive attributes in figure 1.

Open modelling is provided through the Asset definition language [26]. It
allows domain experts to state a conceptual schema of a domain by defining
Asset classes. The aspect of dynamics is achieved by automatic system evolution
and will be addressed in the subsequent section.

For example, assume a domain expert with samples similar to those in figure 1
in mind. Such an expert might create a model like the following:

model Historiography
from Time import Timestamp
from Topology import Place
class Professor {
content image
concept characteristic name :String

relationship publications:Work* }
class Document {
content scan
concept characteristic title :String

relationship concerns :Professor
relationship reviewer :Professor*
relationship issuing :Issuing }

class Issuing { concept relationship issued :Place
relationship issuedBy :Professor
relationship issuedWhen:Timestamp}
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The schema is called Historiography. In the example it is assumed that there are
conceptual schemata for the base domains of time (Time) and space (Topology).
Classes are defined that reflect the entities of the domain under consideration
and allow the creation of the required Asset instances.

Asset class definitions declare content handles as well as a conceptual model.
The conceptual model part consists of attribute definitions, where each attribute
is either a characteristic that is inherent to an entity, a relationship that refers to
other asset instances which in turn describe independent entities or a constraint
that restricts attribute values and references.

Such a schema reflects modelling decisions that a domain expert made based
on previously acquired expertise. For example, even though there is evidence of
books (see figure 1), in the example the decision was made to not model books by
Asset classes, but only Documents in general. There might be only few relevant
books, so there is no need for a class “Book”. Another example is the class Issuing
which is not obvious from the samples. However, the domain expert knows the
domain concept of issuing and models it accordingly. Object domains are chosen
for characteristic attributes. Here, names and titles are represented by strings.

Since schemata are determined by personal decisions to a high degree, other
experts might disagree with a given schema. To this end, the open modelling and
dynamic system evolution allow the personalisation of schemata. For example,
one domain expert might want to work with a model that is redefined in the
following way:

model MyHistoriography
from Historiography import Document, Professor
class Document {
concept relationship reviewer unused }

class Dissertation refines Document {
concept relationship reviewer :Professor* }

In this personalisation example the class Document is imported from the existing
Historiography model and redefined by providing an alternative definition under
the same name. The relationship reviewer is moved from Document to a new
subclass Dissertation. An attribute is removed from a class by the keyword unused
instead of a type constraint. Note that removing an attribute does not pose
a problem to the type system, since Document is not refined, but instead its
definition is replaced with a new one. Other typical redefinitions include the
introduction of new attributes or changing an attribute’s kind from characteristic
to relationship or vice versa.

2.3 CCM Technology

The property of dynamics is established by CCM technology. When a domain
expert applies an open schema redefinition, an existing CCMS that has been gen-
erated from the original schema has to be adapted. Since open model changes
are permitted at runtime, a CCMS might already be populated with Asset
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instances. Furthermore, communication with domain experts who do not apply
a schema change—or who apply a different one—has to be maintained.

These requirements are met by an interaction of a model compiler for the
Asset definition language and a CCMS architecture that enables the required
system evolution. Details on the technological aspects can be found in [28,27].

3 The Asset Schema Inference Process

Figure 1 gives an example of entity description samples that contribute to a
domain expert’s knowledge. For the discussion of the Asset Schema Inference
Process (ASIP) we review figure 1 as a simple approach to providing free-form
entity descriptions. For the remainder of the paper we refer to concrete expla-
nation needs for entity descriptions as abstractions. Abstractions are given a
name and are also assigned a semantic type. Semantic types are also assigned to
multimedia content.

The semantic types are arranged in a single-inheritance hierarchy and have
no structural definitions. A similar notion is adopted in [19] by differentiating
between classification (semantic types) and typing (structural types). The sim-
plicity of our semantic types is deliberate to enable domain experts to work with
these types without the help of a modelling expert. We assume here that the
hierarchy of semantic types has been created in a group effort and changes much
more slowly than the structural definitions in the conceptual schema. Practical
experience suggests that a group of domain experts is able to create a hierarchy
of semantic types using a controlled process after some initial training.

The graphical notation of figure 1 is backed by a more formal language in
the implementation of the ASIP. For this language a type system is defined to
check well-typedness of descriptions according to semantic types [4]. However,
this need not be of concern to domain experts. It should be stressed that figure 1
does not depict an Asset instance according to a CCM Asset class definition.

In this section we present the basic structure of the ASIP. Two alternative
implementations for the core steps are outlined in section 4.

3.1 An Example for Asset Model Inference

We give an example of a schema construction for the sample in figure 1. It
contains several entities from the application domain which are combined into
a single sample: The document in the centre, three persons, two publications as
well as names and geographic places. This example will focus on the persons.
First, three classes are created, one for each person: two classes are structurally
identical (just one name attribute and a content), another also has an attribute
publications. Structural comparison leads to the merging to the two identical
classes. The new joint class can automatically be named Professor as this is the
most specific common semantic type of all backing samples. Next, the class that
also handles publications is analysed. No mergable classes are found (in this
sample; there would usually more samples), but an inheritance relationship is
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Fig. 2. Overview of the ASIP

detected with the class Professor and automatically introduced. The new class
should also be named Professor but due to a name clash it is renamed Professor-2.
In this example, the system would prompt the user for feedback, whether the
Professor-2 class should really be kept, as there is only one sample backing it.
The generated part of the model looks like this:

model InferredHistoriography
class Professor {

content c :java.awt.Image
concept characteristic name :Name }

class Professor-2 refines Professor {
concept relationship publications :Work* }

The referred classes are created by recursion on the structure of entities.

3.2 Phases of the Model Inference Process

The ASIP is partitioned into four phases which are depicted in figure 2. In-
put artefacts to the ASIP are the samples in phase 1 and user feedback during
phase 3. The results are the created schema and the CCMS which can be gen-
erated from it. The ASIP works in the following four phases:

1. Acquisition: Samples can be acquired by creation of new entity descriptions.
Alternatively, the domain expert can choose to import some Asset instances
from an existing CCMS. These instances are then converted into the free-
form model presented in section 2.1. The domain expert will usually modify
these to reflect the new requirements, for example by adding an abstraction.

2. Schema generation: In this phase the provided samples are analysed and a
corresponding schema is created. This is done automatically to the extent
possible. If ambiguities arise, feedback questions are collected to pose to the
domain expert in the next phase. This second phase is thus performed fully
automatic. We have two alternative implementations for schema generation
which we discuss in section 4.
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Fig. 3. Schema construction stages

3. Feedback: The generated schema is presented to the user. Because an—even
graphical—presentation of the schema is often not understood (see section 1
and [29]) we use other means to provide feedback. The exact possibilities
depend on the particular implementation of the previous phase and are,
therefore, given in section 4. Both approaches use the generation of proto-
types. Others [22] have done this as well and have found an increase in the
motivation to participate [25, ch. 3.3.5].

If the user is unhappy with the generated schema, feedback is considered
and phases 1 and 2 are re-executed. Besides answering questions by the
system, the user can also modify the underlying samples (e.g., remove an
attribute that is not considered so important after all).

4. System construction: A full system is set up, including potential additional
modules that are required to adapt the old parts of the system which function
according to the previous schema. The samples can be fed into the generated
system. System generation is described in [27].

The ASIP can be used in the lifecycle of a CCMS to support schema evolution
and personalisation steps as well as the initial construction of the system. Outside
the CCM approach, the ASIP can be employed for schema creation. Figure 3
shows the ASIP in the context of the lifecycle of a CCMS. When the need for
a schema modification arises (first arrow), samples are created that reflect the
new wishes of the domain expert. The samples are analysed in the ASIP and
possibly consolidated by the domain expert. Meanwhile, prototype systems are
generated to give the domain expert an impression of the new system. Once this
is satisfactory, the new system is generated. The cycle starts over when the next
need for personalisation arises. We also have investigated the embedding of the
ASIP in the whole system creation process but omit this here for brevity [5].

4 Schema Inference

In this section we present two alternatives for the core steps of the ASIP: The first
uses schema inference [23] as described in the literature, the second is a cluster-
based analysis. The first approach will be referred to as “traditional” schema
inference below. Schema inference is well-understood for a variety of applications
including object-oriented systems [20], semi-structured data in general [9] and
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XML data [34]. The second approach is based on a statistical learning approach
that first divides the samples into clusters. Inside the clusters, traditional means
are used to create a class for each cluster. We are not aware of any previous
application of clustering to schema inference.

4.1 “Traditional” Schema Inference

The traditional schema inference approach implements the process steps 2 and 3
in several parts. First, a naive Asset class, which directly reflects the structure
of the sample, is created for each of the input samples. Next, the set of classes
is analysed to find identical classes as well as classes that can automatically be
put in inheritance relationships (see below). Other modifications to the schema
are also considered, but require feedback from the user. This feedback is given
in step 3 of the process and the schema is modified according to the answers
obtained from the domain expert.

Schema inference algorithms usually work by first constructing a data struc-
ture that will accomodate all instances, e.g., [9]. Afterwards, this data structure
is often simplified to remove redundancies and sometimes also relaxed in an ef-
fort to better meet user expectations. Accordingly, the naive Asset classes in
the ASIP are constructed from the samples by creating an attribute for each
abstraction in the sample. The content compartment is filled according to the
technical type of the content from the sample. Classes are created with the help
of an intensional type system for samples [4], that assigns types to samples in
terms of Asset classes. This ensures that all valid samples can be reflected in an
Asset class.

Next, the schema with naive classes is simplified. During the simplification
phase, feedback questions are collected that will be posed to the domain expert
later. There are four cases of simplification:

1. Identical class : Two classes whose attributes and contents are identical in
both names and types are considered identical. These classes are automati-
cally merged.

2. Inheritance: If a class introduces additional attributes or contents but is
otherwise identical to another class, the two classes are automatically put in
an inheritance relationship.

3. Type match: Two classes that consist of attributes and contents which are
of identical types but have differing names are considered a type match.
Fully-automatic inference algorithms often treat such classes as identical.
The ASIP prompts the user for input in such cases.

4. Inheritance orphan: A class with only few backing samples is called an inher-
itance orphan. The user is prompted whether the samples should be moved
into the superclass.

Simplifications are carried out in the order specified here. After simplification,
feedback questions are posed to the user. The schema is modified according to
the answers. Further simplifications which are detected in a re-execution of the
four simplification cases might become possible as a result.



An Agile Process for the Creation of Conceptual Models 123

Fig. 4. Distance of semantic types

4.2 Cluster-Based Sample Analysis

Besides traditional schema inference, we have experimented with an approach
that first clusters the samples according to input from the user. Asset classes are
constructed from the clusters.

Our clustering approach is based on the k-means algorithm [11]. The general
idea is to divide samples into groups (called clusters) and to create an Asset
class for each cluster. In contrast to common clustering methods we employ user
interaction for the segmentation of samples into clusters. From a statistical point
of view, our approach is not data clustering, but a method of semi-supervised
learning. The clusters in k-means are represented by a cluster-centre which has
the characteristics of mean value of the cluster’s samples. In our approach the
clusters (and cluster-centres) are motivated semantically (based on the semantic
types annotated to the samples) and structurally (based on the common at-
tributes of the samples in a cluster). Therefore, an Asset class can be created
from each cluster by using the structural information only.

To assign each sample s to a cluster c, a distance measure d(s, c) is introduced
as a weighted average of semantic dsem and structural distance dstruct.

d(s, c) = α · dsem(s, c) + (1 − α)dstruct(s, c) α ∈ [0 . . . 1]

The semantic distance is based on the number of steps one has to take to
travel from one semantic type to another in the hierarchy of semantic types. The
general idea is to annotate each edge in the semantic type tree with exponentially
decreasing weights. The semantic distance is the sum of weights along the edges
of the shortest path in the semantic tree between the semantic type of the sample
T1 and that of the cluster TC (figure 4):

dsem(T1, TC) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2h(T1) if T1 is direct supertype of TC

dsem(T1, Tm) + dsem(Tm, TC) if T1 is direct supertype of Tm

and Tm is supertype of TC

dsem(TS , T1) + dsem(TS , TC) if TS is the most specific com-
mon supertype of T1 and TC
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Table 1. Costs of edit operations on classes

Operation Cost Operation Cost
add attribute low narrow attribute type very low
remove attribute very high change cardinality to many medium
change attribute name low change cardinality to single very low
broaden attribute type medium

The structural distance is based on an edit distance of class attributes. It is
constructed in a similar way as the edit distance between character strings [14]
where each edit action (introduction or removal of attributes, modification of
their types or cardinalities; table 1 gives an overview of the costs) is assigned a
penalty. For full definitions of both distances see [5].

Using the edit distance, our algorithm has these four iterative steps:

1. Classification: All samples are assigned to the closest cluster based on the
distance measure d(s, c).

2. Optimisation: Recomputation of the centre of each cluster according to the
samples in the cluster. Semantically this is achieved by finding the minimal
set of semantic types (according to dsem) that subsume the semantic types of
all samples in the cluster. Structural optimisation is done by creating the set
of attributes that has the minimal cumulated distance dstruct to all samples
of the cluster. Full details on the algorithms for finding initial clusters and
structural optimisation, along with their implementation, can be found in [5].
Steps 1 and 2 are repeated as long as change is detected in the optimisation.

3. Inheritance hierarchy creation: Put the Asset classes that correspond to each
cluster in an inheritance hierarchy. This is done by structural matching as
in the traditional inference approach. If a change is detected, repeat steps 1
through 3.

4. Feedback: Visualise the resulting clusters to the user to allow feedback. There
are two ways to show a visualisation of the clusters: directly (with their
backing samples) or to generate a prototype system that reflects the current
state of the schema. In addition to previously presented feedback options,
the domain experts can directly request additional partitionings of clusters
that they deem too heterogenous.

Due to its ability to treat many samples at a time, the clustering approach is
able to handle the same amount of samples with less user interaction than the
traditional approach.

5 Discussion

In this section we first consider the quality of the generated schemata (sec-
tion 5.1) and briefly compare the ASIP to other related approaches, in particular
to modelling approaches (section 5.2) and to ontology construction (section 5.3).
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Table 2. Assessment of schema quality according to three dimensions [6]. (DE) =
influenced by samples and feedback given by domain expert, * = discussed in text.

Specification Usage
graph. legibility: n/a completeness: (DE)
simplicity: good (DE) * understandability: good (DE) *
expressiveness: (DE) Implementation
synt. correctness: by construction implementability: high, generated *
sem. correctness: good (DE) * maintainability: high, built-in *

5.1 On the Judgement of Schema Quality

It is generally difficult to quantify schema quality. Several approaches are used [3]
including the simplicity of the schema and the tightness of fit to the samples.
When creating a schema for an application domain, there is a significant lim-
itation to these measures: the goal is not to find a schema that exactly fits
the samples, but to find a schema which describes the application domain well.
Frameworks to assess schema quality, therefore, use less quantifiable criteria ([18]
reviews such frameworks). We use three criteria from [6]: specification, usage and
implementation, which are broken down into several aspects each (table 2).

Specification is concerned with how well the requirements to and extent of
the domain can be understood from the schema. Simplicity is impacted by the
structural diversity of the samples, caused by samples that describe the same
kind of entity but use different abstractions to do so. If both approaches are truly
different and equally valid, the creation of two separate classes by the ASIP is
beneficial. Otherwise the ASIP has to rely on type matches. If diversity is too
great to cause a type match, it is up to the domain expert to reconsider some
samples. Failure to do so hurts the specification of the schema. The semantic
correctness can be negatively impacted by structurally coinciding classes with
different meanings. Such errors need to be resolved by the domain expert. They
are especially likely in weakly modelled parts of the application domain (for
example, descriptions of entities of different kinds by a name only).

Usage includes the understandability of the schema for human readers. The
choice of appropriate names is an important factor here. Attribute names can be
carried over from samples (where they have been introduced by domain experts),
class names need to be invented (based on the semantic types of samples, see
example in section 2.1). Collisions in names cause generated class names, hurting
understandability. The automatic generation of prototype systems decreases the
impact of understandability issues as classes never have to be understood at an
abstract level by the domain expert.

Finally, implementation measures the effort that is necessary to create a sys-
tem based on the schema. CCMSs are generated from the schema. Practical
experiences indicate that generation takes time comparable to a conventional
compiler run on hand-written code (exact timing of course depends on various
aspects of the setup). Implementation also contains maintainability which mea-
sures how well the schema can evolve. Since evolution is explicitly supported in
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the CCM approach and the ASIP is set up to support the creation of the neces-
sary conceptual schema, the maintainability of our approach can be considered
high.

Generally, the quality of the schema depends on the extent and individual
quality of the input samples. The crucial parameters are the degree of coverage
of the application domain and the (lack of) structural diversity of the samples.
This influences the aspects marked “DE” in table 2.

5.2 Modelling Approaches

Contemporary modelling approaches assume the presence of a modelling expert
who talks to domain experts, knows the modelling formalism being used and has
the skill to abstract from the concrete application domain.

For example, software development usually starts in the requirements analysis
phase with the interaction between a domain expert and a modelling expert (“sys-
tem analyst”) [7,16,8]. Languages for requirements analysis have been proposed,
but they are not widely accepted in practice [24, D13.5]. A central issue in practice
is the difficulty of obtaining sufficiently formal requirements descriptions.

An initial modelling phase can be supported by structuring the interaction
between domain and modelling experts [33,17] or by automatically construct-
ing parts of a model [8]. Both approaches start from textual descriptions and
help the modelling expert in creating conceptual models from them. Since this
way of creating conceptual models is a complex task, the Klagenfurt Conceptual
Predesign [17] adds an additional step to the usual sequence of modelling phases.

In support of open modelling, iterative conceptual model creation has also
been explored [21]. Model creation is performed in a series of small steps leading
from an abstract model to a concrete database schema. The decisions necessary
to make a model more concrete require the presence of a modelling expert.

Often the involvement of domain experts can be reduced by providing the
modelling expert with an ontology of general knowledge [32].

5.3 Ontology Creation

The creation of conceptual models (and hence the ASIP) shares problems with
ontology creation for application domains in the respects that the reuse of ex-
isting ontologies is complicated (e.g., because of mismatches in the levels of
abstractions of the ontologies in question) and that the complexity of modelling
languages can prevent domain experts from providing models on their own. Sev-
eral process for the development of ontologies have been proposed [10].

An approach that is iterative and interactive like the ASIP is the approach
to ontological modelling by Holsapple and Joshi [12], referred to as OMHJ in
the following. Starting from an initial model the OMHJ uses iterative model
refinement in the second of its four phases. OMHJ does not use machine gen-
erated questions like the ASIP, but employs the Delphi Method [15] involving
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a human moderator who poses the questions. This moderator furthermore in-
tegrates additional input from domain experts. OMHJ lays an emphasis on the
collaboration of users, an aspect that is currently not considered in the ASIP.
The experts in OMHJ are expected to be able to provide initial abstractions on
their own whereas the ASIP is based on samples provided by the experts.

A process with a similar scope as the ASIP is the On-To-Knowledge meta-
process [31] which leads to an ontology of an application domain. In contrast
to the ASIP, On-To-Knowledge is not based on samples and requires the in-
tervention of a modelling expert. On-to-Knowledge has two iterative elements:
the refinement during development and the evolution of ontology as part of the
maintenance of an application. Refinements are based on input supplied by do-
main experts, where this input is formalised by a modelling expert. Ontology
evolution is similar to the open modelling provided by CCM and leads to the
re-execution of refinement phase. In contrast to CCM, however, the impact of
ontology evolution onto a software system has to be handled manually.

Linguistic analysis [1] starts with sufficiently verbose textual descriptions of
an application domain, for example descriptions of use cases [13, section 9.5].
Such textual descriptions are mined for entities and their attributes by a mod-
elling expert. In linguistic analysis the textual descriptions take a role similar
to that of the samples in the ASIP. An appropriate coverage of the application
domain under consideration is necessary in both approaches. [8] introduces ad-
ditional modelling steps to add missing model parts. In contrast to the samples
used in thee ASIP, texts are informal. Therefore, automatic model extraction
is difficult and a modelling expert is necessary. Furthermore, a high amount
of “noise” in textual descriptions is a problem for linguistic analysis [2]. ASIP
avoids most data cleaning by the more formal input provided by the samples.

6 Summary and Outlook

Practical experience has shown that many domain experts find it difficult to
abstractly describe their application domain in a conceptual schema. To enable
them to create such schemata nonetheless, we have presented the Asset Model
Inference Process (ASIP) which combines three important aspects: (1) no mod-
elling knowledge is required from the domain experts, (2) the schema is inferred
from samples and (3) the feedback during the process is given in the form of a
prototype system. Besides traditional inference methods we have also presented
a cluster-based approach. We have conducted first experiments with the process.

For the future we are interested in several subjects related to the ASIP. The
enhancement of distribution and collaboration of users will be interesting. Given
the CCMSs’ ability to work with multiple models, collaborative schema creation
can be enabled inside the system in the manner of the Delphi method [15].
The idea is essentially to create one schema (and thus one set of modules in
the CCMS) per iteration. Since samples can be imported into the ASIP, this
allows for round-trip schema development. Another interesting aspect is the
fine-tuning of the distance measures in the cluster-based inference. Finally, we
will further investigate the difference between and interrelation of classification
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(as in semantic types) and structural typing (as in Asset classes). We expect
that some observations of [19] and others are applicable to our scenario. In past
projects we have observed that classification is an important part of all our CCM
applications, making its native support desirable.
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Abstract. ODRA (Object Database for Rapid Application development) is an 
object-oriented application development environment currently being 
constructed at the Polish-Japanese Institute of Information Technology. The 
aim of the project is to design a next-generation development tool for future 
database application programmers. The tool is based on the query language 
SBQL (Stack-Based Query Language), a new, powerful and high level object-
oriented programming language tightly coupled with query capabilities. The 
SBQL execution environment consists of a virtual machine, a main memory 
DBMS and an infrastructure supporting distributed computing. The paper 
presents design goals of ODRA, its fundamental mechanisms and some 
relationships with other solutions.  

1   Introduction  

With the growth of non-classical database application, especially in the rapidly 
growing Internet context, the issue of bulk data processing in distributed and 
heterogeneous environments is becoming more and more important. Currently, 
increasing complexity and heterogeneity of this kind of software has led to a situation 
where programmers are no more able to grasp every concept necessary to produce 
applications that could efficiently work in such environments. The number of 
technologies, APIs, DBMSs, languages, tools, servers, etc. which the database 
programmer should learn and use is extremely huge. This results in enormous 
software complexity, extensive costs and time of software manufacturing and 
permanently growing software maintenance overhead. Therefore the research on new, 
simple, universal and homogeneous ideas of software development tools is currently 
very essential.  

The main goal of the ODRA project is to develop new paradigms of database 
application development. We are going to reach this goal by increasing the level of 
abstraction at which the programmer works. To this end we introduce a new, 
universal, declarative programming language, together with its distributed, database-
oriented and object-oriented execution environment. We believe that such an 
approach provides functionality common to the variety of popular technologies (such 
as relational/object databases, several types of middleware, general purpose 
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programming languages and their execution environments) in a single universal, easy 
to learn, interoperable and effective to use application programming environment.  

The principle ideas which we are implementing in order to achieve this goal are the 
following:  

• Object-oriented design. Despite the principal role of object-oriented ideas in 
software modeling and in programming languages, these ideas have not 
succeeded yet in the field of databases. As we show in this paper, our approach 
is different from current ways of perceiving object databases, represented 
mostly by the ODMG standard [4] and database-related Java technologies (e.g. 
[5, 6]). Instead, we are building our system upon a methodology called the 
Stack-Based Approach (SBA) to database query and programming languages 
[13, 14]. This allows us to introduce for database programming all the popular 
object-oriented mechanisms (like objects, classes, inheritance, polymorphism, 
encapsulation), as well as some mechanisms previously unknown (like dynamic 
object roles [1,7] or interfaces based on database views [8, 10]).  

• Powerful query language extended to a programming language. The most 
important feature of ODRA is SBQL (Stack-Based Query Language), an object-
oriented query and programming language. SBQL differs from programming 
languages and from well-known query languages, because it is a query language 
with the full computational power of programming languages. SBQL alone 
makes it possible to create fully fledged database-oriented applications. The 
possibility to use the same very-high-level language for most database 
application development tasks may greatly improve programmers’ efficiency, as 
well as software stability, performance and maintenance potential.  

• Virtual repository as middleware. In a networked environment it is possible to 
connect several hosts running ODRA. All systems tied in this manner can share 
resources in a heterogeneous and dynamically changing, but reliable and secure 
environment. Our approach to distributed computing is based on object-oriented 
virtual updatable database views [9]. Views are used as wrappers (or mediators) 
on top of local servers, as a data integration facility for global applications, and 
as customizers that adopt global resources to needs of particular client 
applications. This technology can be perceived as contribution to distributed 
databases, Enterprise Application Integration (EAI), Grid Computing and Peer-
To-Peer networks.  

The rest of the paper is organized as follows. In Section 2 we shortly present the 
main motivations and features of SBQL. In Section 3 we discuss application 
integration using ODRA. In Section 4 we discuss various deployment scenarios 
concerning ODRA-based applications. Section 5 concludes. 

2   SBQL  

The term impedance mismatch denotes a well-known infamous problem with 
mapping data between programming languages (recently Java) and databases. The 
majority of Java programmers spend between 25% and 40% of their time trying to 
map objects to relational tables and v/v. In order to reduce the negative influence of 
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the feature, some automatic binding mechanisms between programming language 
objects and database structures have been suggested. This approach is expressed in 
the ODMG standard, post-relational DBMS-s and several Java technologies.  

Unfortunately, all these solutions have only shown that despite the strong 
alignment of the database constructs with the data model of the programming 
languages used to manipulate them, the impedance mismatch persists. It could be 
reduced at the cost of giving up the support for a higher-level query language, which 
is unacceptable. Impedance mismatch is a bunch of negative features emerging as a 
result of too loose coupling between query languages and general-purpose 
programming languages. The incompatibilities concern syntax, type checking, 
language semantics and paradigms, levels of abstraction, binding mechanisms, 
namespaces, scope rules, iteration schemas, data models, ways of dealing with such 
concepts as null values, persistence, generic programming, etc. The incompatibilities 
cannot be resolved by any, even apparently reasonable approach to modify 
functionality or additional utilities of existing programming languages. 

All these problems could be completely eliminated by means of a new self-
contained query/programming language based on homogeneous concepts. Our idea 
concerns an imperative object-oriented programming language, in which there is no 
distinction between expressions and queries. Such expressions/queries should have 
features common to traditional programming language expressions (literals, names, 
operators), but also should allow for declarative data processing. Query operators can 
be freely combined with other language’s constructs, including imperative operators, 
control statements and programming abstractions. The language could be used not 
only for application programming, but also to query/modify databases stored on disk 
and in main memory. Our proposal of such a language is named SBQL and it is the 
core of ODRA.  

2.1   Queries as Expressions  

SBQL is defined for a very general data store model, based on the principles of object 
relativism and internal identification. Each object has the following properties: an 
internal identifier, an external name and some value. There are three kinds of objects:  

• simple (<OID, name, atomic value>),  
• complex (<OID, name, set of subobjects>),  
• reference (<OID, name, target OID>).  

There are no dangling pointers: if a referenced object is deleted, the reference 
objects that point at it, are automatically deleted too. There are no null values - lack of 
data is not recorded in any way (just like in XML). This basic data model can be used 
to represent relational and XML data. We can also use it to build more advanced data 
structures which are properties of more complex object-oriented data models 
(supporting procedures, classes, modules, etc).  

SBQL treats queries in the same way as traditional programming languages deal 
with expressions (we therefore use the terms query and expression interchangeably). 
Basic queries are literals and names. More complex queries are constructed by 
connecting literals and names with operators. Thus, every query consists of several 
subqueries and there are no limitations concerning query nesting. Because of the new 
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query nesting paradigm, we avoid the select-from-where sugar, which is typical for 
SQL-like query languages. In SBQL expressions/queries are written in the style of 
programming languages, e.g. 3+1; (x+y)*z; Employee where salary > (x+y); etc. 

In SBQL we have at least six query result kinds: atomic values, references, 
structures, bags, sequences and binders. They can be combined and nested in fully 
orthogonal way (limited only by type constraints). Unlike ODMG, we do not 
introduce explicitly collections (bags, sequences) in the data store; collections are 
substituted by many objects with the same name (like in XML). Structures are lists of 
fields (possibly unnamed) which are together treated as a single value. Binders are 
pairs <name, result>, written as name(result), where result is any query result. Query 
results are not objects - they have no OIDS and may have no names. Query results 
and procedure parameters belong to the same domain, hence it is possible to pass a 
query as a parameter. SBQL queries never return objects, but references to them 
(OIDs). Due to this feature not only call-by-value, but also call-by-reference and 
other parameter passing styles are possible.  

It is possible to create a procedure which returns a collection of values. Such a 
procedure reminds a database view, but it can encapsulate complex processing rather 
than a single query (like in SQL). However, in SBQL procedures and (updateable) 
views are different abstractions; the second one has no precedents in known query and 
programming languages. Names occurring in queries are bound using the 
environment stack, which is a structure common to most programming languages. Its 
sections are filled in with binders. Stack sections appear not only as results of 
procedure calls, but also due to a specific group of query operators, called non-
algebraic. Among them there are such operators as: . (dot), where, join, order by, 
forall, forany, etc. All non-algebraic operators are macroscopic, i.e. work on 
collections of data.  

Query operators called algebraic do not use the environment stack. Some of them 
(e.g. avg, union) are macroscopic, some other (e.g. +, -, *) are not. Algebraic and non-
algebraic operators, together with the environment stack and the query result stack 
make up typical functionality expected from a query language designed to deal with 
structured and semi-structured data.  

Some SBQL operators provide functionality which is absent or very limited in 
popular query languages. Among them are transitive closures and fixed-point 
equations. Together with procedures (which can be recursive), they constitute three 
styles of recursive programming in SBQL. All SBQL operators are fully orthogonal 
with imperative constructs of the language.  

SBQL queries can be optimized using methods known from programming 
languages and databases. The SBQL optimizer supports well known techniques, such 
as rewriting, cost-based optimization, utilization of indices and features of distributive 
operators (like shifting selections before joins). Several powerful strategies unknown 
in other query languages (like shifting independent subqueries before non-algebraic 
operators) have been developed [11, 13]. The process of optimization usually occurs 
on the client-side during the program compilation process. The traditional server-side 
optimization is also possible. Since the SBQL compiler provides static counterparts of 
runtime mechanisms (database schema, static environment stack and static result 
stack), it is possible to use these counterparts to simulate the whole program 
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evaluation process during compile time. This makes it possible strong and semi-
strong type checking of SBQL queries/programs [12] and compile-time optimizations.  

Thanks to the data independence, global declarations are not tied with programs. 
Instead, they are parts of a database schema and can be designed, administered and 
maintained independently of programs. If necessary, a client-side SBQL compiler 
automatically downloads the metabase (which contains the database schema, database 
statistics, and other data) from the server to accomplish strong type checking and 
query optimization.  

2.2   Advanced SBQL Features  

SBQL supports popular imperative programming language constructs and 
mechanisms. There are well known control structures (if, loop, etc.), as well as 
procedures, classes, interfaces, modules, and other programming and database 
abstractions. All are fully orthogonal with SBQL expressions. Most SBQL 
abstractions are first-class citizens, which means they can be created, modified, 
deleted and analyzed at runtime. Declarations of variables in SBQL may determine 
many objects of the same name and type. Thus, the concept of variable declaration is 
similar to table creation in relational databases.  

Apart from variable name and type, variable declarations determine cardinalities, 
usually [0..*], [1..*], [0..1] and [1..1]. A cardinality constraint assigned to a variable is 
the way in which SBQL treats collections. It is possible to specify whether variable 
name binding should return ordered (sequences) or unordered (bags) collections. 
Arrays are supported as ordered collections with fixed length.  

In classical object-oriented languages (e.g. Java) types are represented in a 
relatively straightforward manner and suitable type equivalence algorithms are not 
hard to specify and implement. However, type systems designed for query languages 
have to face such problems as irregularities of data structures, repeating data 
(collections with various cardinality constraints), ellipses, automatic coercions, 
associations among objects, etc. These peculiarities of query languages make existing 
approaches to types too limited. SBQL provides a semi-strong type system [12] with a 
relatively small set of types and with structural type conformance. SBQL is perhaps 
the only advanced query language with the capability of static type checking. Static 
type checking in SBQL is based on the mechanisms used also during static 
optimization (described above): the static environment stack, the static query result 
stack, and the metabase (which contains variable declarations). Note that traditional 
query processing assumes that queries are embedded in a host language as strings, 
which makes static type checking impossible. 

SBQL programs are encapsulated within modules, which constrain access from/to 
their internals through import and export lists. Modules are considered complex 
objects which may contain other objects. Because modules are first-class citizens, 
their content may change during run-time. Classes are complex objects too consisting 
of procedures and perhaps other objects. Procedures stored inside classes (aka 
methods) differ from regular procedures only by their execution environment, which 
additionally contains internals of a currently processed object.  

Procedure parameters and results can be bulk values. All procedure parameters (even 
complex ones) can be passed by values and by references. Due to the stack-based 
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semantics procedures can be recursively called with no limitations and with no  
special declarations.  

SBQL supports two forms of inheritance: class inheritance (static) and object 
inheritance (dynamic). The former is typical of popular programming languages. 
Unlike Java, multiple inheritance is allowed. The second inheritance form is also 
known as dynamic object roles [1, 7]. This concept assumes that throughout its 
lifetime an object can gain and lose multiple roles. For example, the object Person can 
have simultaneously such roles as Employee, Student, Customer, etc. Roles may be 
dynamically inserted or deleted into/from an object. An object representing a role 
inherits all features of its super-objects. This method models real-life scenarios better 
than multiple inheritance. For instance, persons can be students, employees or 
customers only for some time of their entire life. The mechanism of dynamic object 
roles solves many problems and contradictions, in particular, with multiple 
inheritance, tangled aspects, historical objects, etc.  

Many SBQL concepts have their roots in databases rather than in programming 
languages. One of them is the mechanism of updatable views [8, 10]. Such views not 
only present the content of a database in different ways, but also allow to perform 
update operations on virtual data in a completely transparent way. In SBQL a view 
definition contains a procedure generating so-called seeds of virtual objects. The 
definition also bears specification of procedures that are to be performed on stored 
objects in response to update operations addressing virtual objects generated by the 
view. The procedures overload generic operations (create, retrieve, update, insert, 
delete) performed on virtual objects. The view definer is responsible for 
implementing every operation that must be performed after a virtual object is updated. 
There are no restrictions concerning which operations on virtual objects are allowed 
and which are not (unlike view updateability criteria known from other proposals). 
Because a view definition is a complex object, it may contain other objects, in 
particular, nested view definitions, ordinary procedures, variables (for stateful views), 
etc.  

Updatable views in ODRA have many applications, ranging from traditional 
(virtual mapping of data stored in the database) to complete novelty (mediators or 
integrators). In particular, since SBQL can handle semi-structured data, SBQL views 
can be used as an extremely powerful transformation engine (instead of XSLT). The 
power of SBQL views is the power of a universal programming language, concerning 
both the mapping of stored objects into virtual ones and the mapping of a updates of 
virtual objects into updates of stored ones. 

Another case is the concept of the interface, which is also expressed as a view. 
Because an interface is a first-class citizen, apart from tasks common to traditional 
interfaces, it can also serve as an element of the security subsystem. A more 
privileged user has access to more data inside an object, while another user sees its 
internals through a separate, limited interface.  

2.3   SBQL Runtime Environment  

An SBQL program is not directly compiled into a machine code. It is necessary to 
have some intermediate forms of programs and a virtual execution environment which 
executes them.  The first form is a syntactic tree, which is the subject of optimizations 
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and type checking. This form is transformed into a bytecode (different from a Java 
bytecode, for several important reasons).   The SBQL execution environment consists 
of a virtual machine (VM) acting on a bytecode. The VM functionality provides 
services typical for hardware (virtual instruction set, virtual memory, etc.) and 
operating systems (loading, security, scheduling, etc.). Once compiled, a bytecode can 
be run on every system for which ODRA has been ported. We plan that SBQL 
programs can also move from one computer to another during runtime (e.g. from a 
busy computer to an idle one).  

The DBMS part controls the data store and provides such mechanisms as 
transaction support, indexing, persistence, etc. It is a main memory DBMS, in which 
persistence is based on modern operating systems’ capabilities, such as memory 
mapped files. ODRA assumes the orthogonal persistence model [2]. 

3   Application Integration Using ODRA  

The distributed nature of contemporary information systems requires highly 
specialized software facilitating communication and interoperability between 
applications in a networked environment. Such software is usually referred to as 
middleware and is used for application integration. ODRA supports information-
oriented and service-oriented application integration. The integration can be achieved 
through several techniques known from research on distributed/federated databases. 
The key feature of ODRA-based middleware is the concept of transparency. Due to 
transparency many complex technical details of the distributed data/service 
environment need not to be taken into account in the application code. ODRA 
supports such transparency forms as transparency of updating made from the side of a 
global client, transparency of distribution and heterogeneity, transparency of data 
fragmentation, transparency of data/service redundancies and replications, 
transparency of indexing, etc.  

These forms of transparency have not been solved to a satisfactory degree by 
current technologies. For example, Web Services support only transparency of 
location and transparency of implementation. Transparency is achieved in ODRA 
through the concept of a virtual repository (Fig. 1). The repository seamlessly 
integrates distributed resources and provides a global view on the whole system, 
allowing one to utilize distributed software resources (e.g. databases, services, 
applications) and hardware (processor speed, disk space, network, etc.). It is 
responsible for the global administration and security infrastructure, global 
transaction processing, communication mechanisms, ontology and metadata 
management. The repository also facilitates access to data by several redundant data 
structures (global indexes, global caches, replicas), and protects data against random 
system failures.  

The user of the repository sees data exposed by the systems integrated by means of 
the virtual repository through the global integration view. The main role of the 
integration view is to hide complexities of mechanisms involved in access to local 
data sources. The view implements CRUD behavior which can be augmented with 
logic responsible for dealing with horizontal and vertical fragmentation, replication, 
network failures, etc. Thanks to the declarative nature of SBQL, these complex  
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Fig. 1. ODRA Virtual Repository Architecture 

mechanisms can often be expressed in one line of code. The repository has a highly 
decentralized architecture. In order to get access to the integration view, clients do not 
send queries to any centralized location in the network. Instead, every client possesses 
its own copy of the global view, which is automatically downloaded from the 
integration server after successful authentication to the repository. A query executed 
on the integration view is to be optimized using such techniques as rewriting, 
pipelining, global indexing and global caching.  

Local sites are fully autonomous, which means it is not necessary to change them 
in order to make their content visible to the global user of the repository. Their 
content is visible to global clients through a set of contributory views which must 
conform to the integration view (be a subset of it). Non-ODRA data sources are 
available to global clients through a set of wrappers, which map data stored in them to 
the canonical object model assumed for ODRA. We are developing wrappers for 
several popular databases, languages and middleware technologies. Despite of their 
diversity, they can all be made available to global users of the repository. The global 
user may not only query local data sources, but also update their content using SBQL. 
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Instead of exposing raw data, the repository designer may decide to expose only 
procedures. Calls to such procedures can be executed synchronously and 
asynchronously. Together with SBQL’s support for semi-structured data, this feature 
enables document-oriented interaction, which is characteristic of current technologies 
supporting Service Oriented Architecture (SOA). 

4   Deployment Scenarios  

ODRA is a flexible system which can substitute many current technologies. In 
particular, it can be used to build:  

• Standalone applications. There are several benefits for programmers who want 
to create applications running under ODRA. Since SBQL delivers a set of 
mechanisms allowing one to use declarative constructs, programming in SBQL is 
more convenient than in languages usually used to create business applications 
(such as Java). ODRA transparently provides such services as persistence; thus 
applications do not have to use additional DBMS-s for small and medium data 
sets. Other databases can be made visible through a system of wrappers, which 
transparently map their content to the canonical data model of ODRA. 

• Database systems. ODRA can be used to create a traditional client-server 
database system. In this case, one installation of ODRA plays the role of a 
database server, other act as clients. A client can be an application written in 
SBQL and can run in ODRA, as well as a legacy application connected by a 
standard database middleware (e.g. JDBC). The system may be used as a DBMS 
designed to manage relational, object-oriented and XML-oriented data. In every 
case all database operations (querying, updating, transforming, type checking, 
etc.) can be accomplished using SBQL. Technologies, such as SQL, OQL, 
XQuery [15], XSLT, XML Schema, can be fully substituted by the SBQL 
capabilities.  

• Object request brokers. ODRA-based middleware is able to provide 
functionality known from distributed objects technologies (e.g. CORBA). In 
ODRA, the global integrator provides a global view on the whole distributed 
system, and the communication protocol transports requests and responses 
between distributed objects. Local applications can be written in any 
programming language, as the system of wrappers maps local data to ODRA’s 
canonical model. There are several advantages of ODRA comparing to traditional 
ORB technologies. Firstly, the middleware is defined using a query language, 
which speeds up middleware development and facilitates its maintenance. 
Secondly, in CORBA it is assumed that resources are only horizontally 
partitioned, not replicated and not redundant. ODRA supports horizontal and 
vertical fragmentation, can resolve replications and can make choice from 
redundant or replicated data.  

• Application servers. A particular installation of ODRA can be chosen to store 
application logic. By doing so, the developers can exert increased control over 
the application logic through centralization. The application server can also take 
several existing enterprise systems, map them into ODRA’s canonical model and 
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expose them through a Web-based user interface. It is possible to specify exactly 
how such an application server behaves, so the developer can implement such 
mechanisms as clustering, or load balancing by him/her own using declarative 
constructs or already implemented components. 

• Integration servers. Integration servers can facilitate information movement 
between two or more resources, and can account for differences in application 
semantics and platforms. Apart from that, integration servers provide such 
mechanisms as: message transformation, content based routing, rules processing, 
message warehousing, directory services, repository services, etc. The most 
advanced incarnation of this technology (called Enterprise Service Bus, ESB) is a 
highly decentralized architecture combining concepts of Message Oriented 
Middleware (MOM), XML, Web Services and workflow technologies. Again, 
this technology is one of the forms that our updatable view-based middleware can 
take. 

• Grid Computing infrastructure. Grid Computing is a technology presented by 
its advocates as integration of many computers into one big virtual computer, 
which combines all the resources that particular computers possess. People 
involved in grid research usually think of resources in terms of hardware 
(computation, storage, communications, etc.), not data. It is a result of their belief 
that ”in a grid, the member machines are configured to execute programs rather 
than just move data” [3]. However, all business applications are data-intensive 
and in our opinion distribution of computation depends almost always on data 
location. Moreover, responsibility, reliability, security and complexity of 
business applications imply that distribution of data must be a planned phase of a 
disciplined design process. ODRA supports this point of view and provides 
mechanisms enabling grid technology for businesses.  

5   Conclusion 

We have presented an overview of the ODRA system, which is used as our research 
platform aiming future database application development tools. ODRA comprises a 
very-high-level object-oriented query/programming language SBQL, its runtime 
environment integrated with a DBMS, and a novel infrastructure designed to 
integration of distributed applications. The core of the prototype is already operational 
and is used experimentally for various test cases. The project is still under way and 
focuses on adding new functionalities, improving existing ones, implementing new 
interoperability modules (wrappers), implementing specialized network protocols and 
elaborating various optimization techniques.  
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Abstract. Nowadays, ontologies are used in a lot of diverse research fields.
They provide with the capability to describe a huge set of information
contents. Therefore, several approaches for storing ontologies and their in-
stances in databases have been proposed. We call Ontology Based
Database (OBDB) a database providing such a capability. Several OBDB
have been developed using different ontology models and different repre-
sentation schemas to store the data. This paper proposes a data model and
an algebra of operators for OBDB which can be used whatever are the used
ontology model and representation schema. By extending the work done for
object oriented databases (OODB), we highlight the differences between
OODB and OBDB both in terms of data model and query languages.

Keywords: Ontology, Database, Query Algebra, OWL, PLIB, RDF-S.

1 Introduction

Nowadays, ontologies are used in a lot of diverse research fields including natural
language processing, information retrieval, electronic commerce, Semantic Web,
software component specification, information systems integration and so on. In
these diverse domains, they provide with the capability to describe a huge set
of information contents. Therefore, the need to manage ontologies as well as the
data they describe in a database emerged as a crucial requirement.

We call Ontology Based Database (OBDB) a database that stores data to-
gether with the ontologies defining the semantics of these data. During the last
decade, several OBDB have been proposed. They support different ontology
models such as PLIB [1], RDFS [2] or OWL [3] for describing ontologies and
they use different logical schemas for persistancy: unique table of triples [4], ver-
tical representation [5] or table-like structure [6,7] for representing the huge sets
of data described by the ontologies.

In parallel to this work, ontology query languages like SPARQL [8] for RDF,
RQL [9] for RDF-Schema, or OntoQL [10] for PLIB and a subset of OWL have
been defined. Because of the lack of a common data model for OBDBs, dealing
with the heterogeneity of OBDB data models in order to implement these lan-
guages on top of OBDBs, is a major concern of current research activities. In
this paper, we propose a data model for OBDBs which can be used whatever
are the used ontology models and the representation schema.
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Our work started by trying to answer to the following question: since ontolo-
gies use extensively object oriented concepts, why don’t we use Object Oriented
Database (OODB) models as the kernel of such a model? The answer to this
question is that the OODB model is not usable without a necessary tuning effort.
This answer led us to (1) highlight the existing differences between OODBs and
OBDBs either from the conceptual or from the structural points of view and (2)
propose another algebra of operators (to provide OBDBs with a formal seman-
tics) extending the algebra defined for OODBs and (3) clarify the differences
between OODBs and OBDBs query languages.

The objective of this paper is two-fold. On the one hand, we study and show
the differences between OODB and OBDB models. For building our comparison
and proposal, we have chosen ENCORE [11] as the OODB data model and its
corresponding algebra of operators. On the other hand, we propose a generic
algebra of operators defining a generic formal semantics for OBDB and show
how these operators are used to describe queries of specific OBDB languages.
Three languages based on different OBDB models illustrate this work: OntoQL
[10], RQL [9] and SPARQL [8].

Compared to the OntoQL definition presented in [10], where we have presented
the concrete syntax of OntoQL and its use on the OntoDB OBDB model [6], this
paper presents a generic algebra of operators for OBDB models plus extensions
and contributions like:

– support of the multi-instanciation paradigm;
– discussions of the differences between OODB and OBDB models and the

corresponding query languages;
– the capability of the proposed model and algebra to overcome the hetero-

geneity of OBDBs data models;
– presentation of the query algebra at the different querying levels enabled by

an OBDB: data, ontology and both data and ontology.

This paper is structured as follows. Next section presents a formal represen-
tation of the OBDB data model proposed in this paper. The differences between
this data model and the OODB data model are highlighted as well. Section 3
presents the ENCORE algebra for OODBs and shows its insufficiencies to man-
age OBDBs. Then, an algebra based on the OBDB data model is presented as
an extension of the ENCORE algebra. Section 4 discusses related work. Finally,
section 5 concludes and introduces future work.

2 Data Models

2.1 The ENCORE Formal Data Model for OODBs

Formally, an OODB in the ENCORE data model is defined as a 8-tuple < ADT,
O, P, SuperTypes, TypeOf, PropDomain, PropRange, Value>, where:

– ADT is a set of available abstract data types. It provides with atomic types
(Int, String, Boolean), a global super type Object and user-defined ab-
stract data types;
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– O is the set of objects available in the database or that can be constructed
by a query. All objects have an unique identifier;

– P is the set of properties used to describe the state of each object;
– SuperTypes : ADT→ 2ADT1 is a partial function. It associates a set of super

types to a type. This function defines a lattice of types. Its semantics is
inheritance and it ensures substitutability;

– TypeOf : O→ ADT associates to each object the lower (strongest) type in the
hierarchy it belongs to;

– PropDomain : P→ ADT defines the domain of each property;
– PropRange : P→ ADT defines the range of each property;
– Val : O× P→ O gives the value of a property of an object. This property

must be defined for the datatype of the object.

This data model supports collections of objects by providing the parameter-
ized ADT named Set[T]. Set[T] denotes a collection type of objects of type T.
{o1, . . . , on} denotes an object of this type where the oi’s are objects of type
T. Another parameterized ADT, called Tuple, is provided to create relationships
between objects. A Tuple type is constructed by providing a set of attribute
names (Ai) and attribute types (Ti). Tuple[< (A1, T1), . . . , (An, Tn) >] denotes a
type tuple constructed using the Ai’s attribute’s name and Ti’s attribute types.
< A1 : o1, . . . , An : on > denotes an object of this type where the oi’s are objects
of the corresponding type Ti. The Tuple type is equipped with the Get Ai value
functions to retrieve the value of a Tuple object o for the attribute Ai. The ap-
plication of this function may be abbreviated using the dot-notation (o.Ai). The
Tuple type construct is fundamental for building new data types. In particu-
lar, it is useful for describing new data types that are not available in the core
database schema and that may be built by expressions of the algebra.

2.2 Definition of the OBDB Data Model

The OBDB data model is based on the definition of two main parts : ontology and
content. Instances are stored in the content part while ontologies are stored in the
ontology part. The description of these two parts use extensively object-oriented
database features. Let us describe these two parts and their relationships.

Ontology. The ontology part, can be formally defined like an OODB by a 7-
Tuple as < E, OC, A, SuperEntities, TypeOf, AttDomain,AttRange, Val>. Here,
abstract data types (ADT) are replaced by entities (E), properties (P) by attributes
(A) and objects (O) by concepts of ontologies (OC). To define the built-in entities
and attributes of this part, we have considered the constructors shared by the
standard ontology models PLIB [1], RDF-Schema [2] and OWL [3]. Thus, in
addition to atomic types, the global super type ObjectE, and the parameter-
ized types Tuple and Set, E provides the predefined entities C and P. Instances
of C and P are respectively the classes and properties of the ontologies. Each

1 We use the symbol 2C to denote the power set of C.
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class and each property has an identifier defined in the context of a names-
pace. This is represented by the attribute namespace : C ∪ P→ String. Entity
C also defines the attribute SuperClasses : C→ SET[C] and entity P defines the
attributes PropDomain : P→ C and PropRange : P→ C. The description of these
attributes is similar to the definition given for an OODB. Moreover, a global
super class ObjectC is predefined and the parameterized types Tuple and Set
are also available for C. Thus, an ontology is similar to an OODB schema. How-
ever, an ontology gives a precise definition of concepts which means that many
more attributes (name, comment, version . . . ) are available to describe classes
and properties of ontologies. These predefined entities and attributes constitute
the kernel of the ontology models we have considered. User-defined entities (re-
striction, objectProperty . . . ) and attributes (isSymetric, unionOf, remark . . . )
may be added to this kernel in order to take into account specific features of a
given ontology model. This capability is illustrated in the following example.

E A

attRange

1

attDomain1

metametamodel

metamodel

model

ObjectE
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+namespace: String

-superEntities
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hasModifiers 0..*
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Fig. 1. An illustration of our data model based on the MOF architecture

An Example of the Ontology Part of an OBDB. Using the UML notation,
figure 1 presents the data model defined for handling our ontologies. Let us
comment this figure in a top-down manner. The upper part presents the subset
of the data model defined to describe the used ontology model. In the MOF
terminology [12], this part is the metametamodel.

The middle part presents the used ontology model. This part corresponds to
the level M2 of the MOF namely the metamodel. Each element of this metamodel
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is an instance of an element of the metametamodel. In this part, we have added to
the predefined entities C, P, and ObjectE, some specific constructors of the OWL
ontology model: OWLRestrictionAllValuesFrom, OWLObjectProperty and OWL-
DataProperty. Due to space limitations, we did not represent the whole OWL
ontology model. However, this can be handled using the OWL metamodel pro-
posed by [13].

Finally, the lower part presents a toy example of an ontology inspired from the
SIOC Ontology (http://sioc-project.org/). This part constitutes the level
M1 of the MOF. Each concept of the ontology is an instance of the ontology
model defined at level M2. The SIOC ontology describes the domain of online
communities by defining concepts such as Community, Usergroup or Forum. In
this example, we have represented the classes User and Post and refined them by
the classes Administrator and InvalidPost. The class InvalidPost is defined
as an OWLRestrictionAllValuesFrom on the property hasModifiers whose
values must be instances of the class Administrator. Thus, an invalid post is a
post which has been modified by an administrator only. Notice that the UML
notation doesn’t allow us to show the whole description of the classes and of the
properties of this ontology (labels, comments, documents . . . ).

Content. The content part allows to store instances of ontology classes. Dif-
ferent representation schemas have been proposed and used by OBDBs (see [14]
for a survey). The simplest and more general one uses an unique table of triples
[4] where the data is stored in triples of the form (subject, predicate, object).
Another representation schema is the vertical structure [5] where a binary table
is used for each property and a unary table for each ontology class. Recently,
horizontal approaches have been proposed [6,7]. They associate, to each class, a
table which columns represent those properties that are valued for at least one
instance of the class. Our formalization is based on this latter approach.

In the proposed data model for OBDBs, the content part is a 5-tuple < EXTENT,
I, TypeOf, SchemaProp, Val> where:

– EXTENT is a set of extensional definitions of ontology classes;
– I is the set of instances of the OBDB. Each instance has an identity;
– TypeOf : I→ 2EXTENT associates to each instance the extensional definitions

of the classes it belongs to;
– SchemaProp : EXTENT→ 2P gives the properties used to describe the instances

of an extent (the set of properties valued for its instances);
– Val : I× P→ I gives the value of a property occurring in a given instance.

This property must be used in one of the extensional definitions of the class
the instance belongs to. Since Val is a function, an instance can only have
a unique value (which can be a collection) for a given property. Thus, if
the same property is defined on different classes the instance belongs to, this
property must have the same value in each extent associated to these classes.

Relationship Between Each Part. The relationship between ontology and its
instances (content) is defined by the partial function Nomination : C→ EXTENT.
It associates a definition by intension with a definition by extension of a class.

http://sioc-project.org/
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Classes without extensional definition are said abstract. The set of properties
used in an extensional definition of a class must be a subset of the properties
defined in the intensional definition of a class (propDomain−1(c) ⊇ SchemaProp(
nomination(c))).

An Example of the Content Part of an OBDB. Figure 2 illustrates the
OBDB data model on the content part. The horizontal representation of the
extents of the four classes of our toy ontology are presented on figure 2(A). As
shown on this example, some of the properties of an ontology class may not be
used in class extent. For example, the property content encoded, described in
the ontology as ”the encoded content of the post, contained in CDATA areas”,
is not used in the extent of the class Post. This example also demonstrates that
properties used in the extent of a class may not be used in the extent of one
of its subclasses. This is the case for the properties first name and last name
which are used in the extent of User but not in the extent of Administrator.

On figure 2(B), the two main representations proposed for the content of
an OBDB, i.e. the vertical and triple schemas are showed. Because of space
limitations, the vertical representation corresponding to the extent of the class
User is solely represented.

Triple representation

Vertical representation

Extent_Post

content
hasCreator
hasModifier

Extent_User

first_name
last_name
email

Extent_InvalidPost

content
createdAt
attachment
hasCreator
hasModifier

Extent_Administrator

last_name

V_User

oid

V_first_name

oid
value

V_email

oid
value

V_last_name

oid
value

Triple

subject
predicate
object

(A) (B)

representation

Fig. 2. Example of the content of an OBDB

A Generic Approach. Although, we have been using this approach on specific
OBDBs with specific query languages (like OntoQL, RQL or SPARQL in this
paper), this approach is generic and can be applied to other OBDBs thanks to
the following capabilities.

1. The metametamodel offers the capability to add other attributes encoding
specific information of a given ontology model.

2. The content or extent is associated to a class whatever is the logical model
used to represent it (vertical, table-like, etc). A view can be associated to
represent the extent of a class in order to hide the specific logical model.

3. From an implementation point of view, the operators of the algebra, we
are discussing in this paper, define a generic Application Programming In-
terface allowing to access any logical model for contents provided that an
implementation of these operators is supplied.
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From these three features, we notice that our approach is flexible enough to
handle different ontology models either from a conceptual modeling point of view
(1,2) or from an implementation point of view (2, 3).

2.3 Differences Between OODB and OBDB Data Models

This section describes the differences between the OODB and OBDB data model.
Indeed, one can ask why another database model. Below, we describe a list of
main identified differences from a structural and logical point of views.

Ontology part. From a functional point of view, the OBDB data model differs
from the OODB model in the sense that the former stores not only the logical
database model but it also stores the ontology which provides (1) data definition
and descriptions independently of any context of use, while the latter stores the
logical model of a database for a given application and (2) a formal theory which
allows to check some level of consistency and to perform some level of automatic
reasoning over the ontology-defined concepts.

Incomplete information. An extent of an ontology class is similar to a typed
table associated to a user-defined type in the relational-object data model or to
an extent of an object class in the ODL object-oriented data model. However,
there is a crucial difference between ontologies and conceptual models of classical
databases. Indeed, while a conceptual model prescribes which attributes shall be
represented for each instance of each particular class, an ontology just describes
which properties may be associated with instances of a class. Thus, the extent
of an ontology class gathers only the set of properties valued for its instances.

Subsumption relationships. As we have pointed out in the previous section,
applicable properties are distinguished from used properties in the OBDB data
model. If the applicable properties are inherited through the subsumption re-
lationship as in the object-oriented data model, this is not the case for used
properties. Ontology classes may be linked by a subsumption relationship with-
out implicit inheritance of valued properties (partial inheritance).

Universal identification of classes and properties. The identifier of classes
and properties are defined in the context of a namespace allowing to universally
refer to this concept from any other environment, independently of the particular
system where this concept was defined.

3 Query Algebras

On top of the proposed data model, an algebra which can be the basis of an
ontology query language whatever is the used ontology model is built. From
the listing of the previous differences, it appears that the algebras defined for
OODBs are not fully adequate for OBDBs although, as stated previously, the
OBDB data model uses extensively OODB features. As a consequence, we have
chosen to tune, specialize, extend and reuse the operators of the ENCORE al-
gebra in order to get benefits of their properties (e.g., closure, completeness and
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equivalence rules). Next subsection reviews the main operators of this algebra
and subsection 3.2 presents the OntoAlgebra algebra we propose.

3.1 Main Operators of the ENCORE Query Algebra

Each operator of the ENCORE algebra takes a collection of objects whose type
is an ADT T and returns a collection of objects whose type is an ADT Q. Thus, the
signature of such an operator is Set[T] → Set[Q]. Following our formalisation,
we use the signature ADT× 2O → ADT× 2O in order to record the datatype and
its set of objects. Let us briefly describe the main operators of the ENCORE
algebra.

Image. The Image operator returns the collection of objects resulting from ap-
plying a function to a collection of objects. Its signature is ADT× 2O × Function
→ ADT× 2O. Function contains all the properties in P and all properties that
can be defined by composing properties of P (path expressions). It is easy to
extend the domain of PropDomain, PropRange and Val from P to Function. So,
this operator is defined by:

Image(T, {o1, . . . , on}, f) = (PropRange(f), {Val(o1, f), . . . , Val(on, f)}) .

Project. The Project operator extends Image allowing the application of more
than one function to an object. The result type is a Tuple whose attribute names
are taken as parameter. Its signature is ADT× 2O × 2String×Function → ADT
×2O and it is defined by:

Project(T, Ot,{(A1, f1), . . . (An, fn)}) =
(Tuple[< (A1, PropRange(f1)), . . . , (An, PropRange(fn)) >],

{< A1 : Val(o, f1), . . . , An : Val(o, fn) > |o ∈ Ot}) .

Select. The Select operator creates a collection of objects satisfying a selection
predicate. Its signature is ADT× 2O × Predicate→ ADT× 2O and it is defined by:

Select(T, Ot, pred) = (T, {o|o ∈ Ot ∧ pred(o)}) .

OJoin. The OJoin operator creates relationships between objects of two input
collections. Its signature is ADT× 2O × ADT× 2O × String× String×
Predicate→ ADT× 2O and it is defined by:

OJoin(T, Ot, R, Or, A1, A2, pred) =
(Tuple[< (A1, T), (A2, R) >], {< A1 : t, A2 : r > |t ∈ Ot ∧ r ∈ Or ∧ pred(t, r)}) .

The definition of this operator is modified when it takes a type Tuple as pa-
rameter. Indeed, it becomes necessary to flatten the resulting nested tuples in
order to preserve composition. In this case, the flattening operation allows the
preservation of the associativity of this operator.
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In addition to these main operators, the ENCORE algebra includes set op-
erations (Union, Difference, and Intersection) and collection operations (Flat-
ten, Nest and UnNest). All these operators define an algebra allowing to query
OODBs. Next, we show how the definitions of these operators could be reused
and extended for querying an OBDB.

3.2 OntoAlgebra : Adaptation of Encore Query Algebra to the
OBDB Data Model

Signatures of the operators defined on the OBDB data model are (E ∪ C)×
2OC∪I → (E ∪ C)× 2OC∪I. The main operators of this algebra are OntoImage, On-
toProject, OntoSelect and OntoOJoin. Next subsections present the semantics
of these operators for each part of the OBDB data model.

Ontology Part. Signatures of the operators defined on the ontology part of
the OBDB data model are restricted to E× 2OC → E× 2OC. Since the data model
of this part is similar to the OODB data model, the semantics of the operators
of the ENCORE algebra is well adapted to the OntoAlgebra operators on this
part. To illustrate the OntoAlgebra operators, we show how several queries are
decomposed into calls to the operators of this algebra. These queries are ex-
pressed in OntoQL (a), RQL (b) and SPARQL (c). To simplify, the namespaces
used in these examples are not explicitly specified.

Example 1. Retrieve the superclasses of the class named Administrator.

a. SELECT c.#superClasses FROM #class c WHERE c.#name = ’Administrator’
b. SELECT superClassOf($C) FROM $C WHERE $C = ’Administrator’
c. SELECT ?csup WHERE { ex:Administrator rdfs:subClassOf ?csup }

ext∗ : E→ 2OC denotes the function returning the instances of an entity. Using
this notation and the lambda notation, this query is expressed by applying the
following OntoAlgebra operators:

ClassAdministrator:=OntoSelect(C, ext∗(C), λc•c.name =′ Administrator′)
Result:=OntoImage(ClassAdministrator, λc•c.superClasses)

ResultSPARQL:=OntoFlatten(Result)

The OntoSelect operator is applied to find the class named Administrator.
Thus, the type of ClassAdministrator is SET[C]. Then, the OntoImage oper-
ator applies the attribute superClasses to this class. The type of Result is
SET[SET[C]]. Contrariwise to OntoQL and RQL, SPARQL doesn’t support col-
lections. Thus, we need to flatten the result using the OntoFlatten operator
defined by:

OntoFlatten(Set[T], OsetT) =(T, {r|∃t ∈ OsetT ∧ r ∈ t}) .

As a consequence, the type of SPARQLResult is SET[C].
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Example 2. List the properties with their domain.

a. SELECT p, c FROM #propery as p, #class as c WHERE p.#scope = c.#oid
b. SELECT @P, $C FROM @P, $C WHERE domain(@P)=$C
c. SELECT ?p, ?c WHERE { ?p rdfs:domain ?c }

This query is expressed by applying the OntoOJoin operator:

Result := OntoOJoin(P, ext(P), C, ext(C), p, c, λp λc•p.propDomain = c)

The type of Result is SET[Tuple < (p : P), (c : C) >].

Content Part. Signatures of the operators defined on the content part of the
OBDB data model are restricted to C× 2I → C× 2I. The data model of the
content part presents some particularities which impose to redefine the ENCORE
operators on this part.

OntoImage. Contrariwise to the OODB data model, one of the properties oc-
curring in the function parameter may not be valued in the extensional definition
of the class. Thus, we can not use the Val function to define the semantics of
this operator as it is done in the definition of the Image operator. It becomes
necessary to extend its domain to the properties defined on the intensional def-
inition of a class but not valued on its extensional definition. This novelty of
our algebra requires the introduction of the UNKNOWN value. We call OntoVal the
extension of Val. It is defined by:

OntoVal(i, p) = Val(i, p), if ∃e ∈ TypeOf(i) such that p ∈ SchemaProp(e)
else, UNKNOWN .

UNKNOWN is a special instance of ObjectC like NULL is a special value for SQL.
Whereas NULL may have many different interpretations like value unknown, value
inapplicable or value withheld, the only interpretation of UNKNOWN is value un-
known, i.e., there is a value, but we don’t know what it is. To preserve compo-
sition, OntoVal applied to a property whose value is UNKNOWN returns UNKNOWN.
So, OntoImage is defined by:

OntoImage(T, {i1, . . . , in}, f) =
(PropRange(f), {OntoVal(i1, f), . . . , OntoVal(in, f)}) .

Example 3. List the first names of users.

a. SELECT u.first_name FROM User u
b. SELECT fn FROM User{u}.first_name{fn}
c. SELECT ?fn WHERE { ?u rdf:type ex:User .

OPTIONAL { ?u ex:first_name ?fn } }

This query is expressed by applying the OntoImage operator:

Result := OntoImage(User, ext∗(User), λu•u.first name)
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The type of Result is SET[String]. Since the property first name is not val-
ued for the class Administrator, this expression returns the value UNKNOWN for
each administrator. In the SPARQL vocabulary, the variable is said unbound.
This is not the case for the RQL query because this language doesn’t allow
to express optional patterns. As a result, this query doesn’t return a value for
administrators.

OntoProject. Project is also extended to OntoProject using the OntoVal
operator previously defined :

OntoProject(T, It,{(A1, f1), . . . (An, fn)}) =
(Tuple[< (A1, PropRange(f1)), . . . , (An, PropRange(fn)) >],

{< A1 : OntoVal(i, f1), . . . , An : OntoVal(i, fn) > |i ∈ It}) .

OntoSelect. The semantics of OntoSelect is similar to the one of Select :

OntoSelect(T, It, pred) = (T, {i|i ∈ It ∧ pred(i)}) .

If the predicate taken as parameter of OntoSelect contains function applications,
then OntoVal must be used. So, operations involving UNKNOWN, that may appear
in a predicate, must be extended to handle this value. Because UNKNOWN is often
interpreted by NULL, the same semantics as NULL is given to UNKNOWN. Thus,
arithmetic operators like × or + applied to UNKNOWN return UNKNOWN, and com-
paring UNKNOWN to any instance using a comparison operator like = or > returns
UNKNOWN.

Example 4. List the posts created by an user whose email end with ’@ensma.fr’.

a. SELECT p FROM Post p WHERE p.hasCreator.email LIKE ’%@ensma.fr’
b. SELECT p FROM Post{p}.hasCreator.email{e} WHERE e LIKE ’%@ensma.fr’
c. SELECT ?p WHERE { ?p rdf:type ex:Post . ?p ex:has_creator ?c .

?c ex:email ?e . FILTER (?e LIKE ’%@ensma.fr’) }

This query is expressed by applying the OntoSelect operator:

Result := OntoSelect(Post, ext∗(Post),
λp•p.hasCreator.email LIKE ′%@ensma.fr′)

The type of Result is SET[Post]. For each post created by an administrator, the
value UNKNOWN is returned for the property email. As a consequence, only post
created by users who are not administrators may be returned as result.

OntoOJoin. The semantics of OntoOJoin is similar to the one of OJoin:

OntoOJoin(T, It, R, Ir, A1, A2, pred) =
(Tuple[< (A1, T), (A2, R) >], {< A1 : t, A2 : r > |t ∈ It ∧ r ∈ Ir ∧ pred(t, r)}) .

The predicate taken in parameter of OntoOJoin is treated as for OntoSelect.
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Operator *. In the ENCORE algebra, a class C refers to instances of C and
instances of all subclasses of C. The ENCORE algebra doesn’t supply a built-in
operator to write a non polymorphic query. Thus, we define the explicit poly-
morphic operator, named ∗, to distinguish between local queries on instances of
a class C and instances of all the classes denoted C∗ subsumed by C. We denote
ext : C→ 2I the function which returns the instances of a class and we overload
the function ext∗ for the signature C→ 2I to denote the deep extent of a class.
If c is a class and c1, . . .cn are the direct sub-classes of c, ext and ext∗ are
derived recursively2 in the following way on the OBDB data model:

ext(c) = TypeOf−1(Nomination(c)) .

ext∗(c) = ext(c) ∪ ext∗(c1) ∪ . . . ∪ ext∗(cn) .

The ext and ext∗ make it possible to define the ∗ operator as ∗ : C→ C× 2I

where ∗(T) = (T, ext∗(T)).

Support of the multi-instanciation paradigm. In the ENCORE algebra,
the Image operator can only be applied with a property defined on the class
taken in parameter. Because of the multi-instanciation paradigm, an instance of
a class can provide a value for a property not defined on this class but on an
another class the instance belongs to. As a consequence, this paradigm raises the
need to extend the OntoImage operator. We denote OntoImage’ the definition of
OntoImage when this operator is applied to a property not defined on the class
taken in parameter. When OntoImage’ is applied to a class C1 and a property p
not defined on C1 but defined on the class C2, this operator is defined by:

OntoImage′(C1, IC1 , p) =
OntoImage(OntoOJoin(C1, IC1 , C2, ext

∗(C2), λic1 λic2•ic1 =ic2), ic2 .p) .

The other operators of OntoAlgebra are extended in the same way to handle the
multi-instanciation paradigm.

Example 5. List the file size of the posts.

a. Not supported
b. SELECT f FROM Post{p}.file_size{f}
c. SELECT ?p WHERE { ?p rdf:type ex:Post . ?p ex:file_size ?c }

Let’s suppose that the property file size is defined on a class ExtResource.
This query is expressed by applying the OntoImage’ operator:

Result :=OntoImage′(Post, ext∗(Post), file size)
:=OntoImage(OntoOJoin(Post, ext∗(Post),

ExtResource, ext∗(ExtResource), p, e, λp λe•p = e), e.file size)

2 To simplify notation, we extend all functions f by f(∅) = ∅.
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Ontology and Content Parts. OntoAlgebra provides the capability to query
simultaneously ontology and content parts.

Example 6. For each ontology class, whose name contains the word Post, list
the properties applicable (defined and inherited) on this class and the values of
the instances of this class for these properties.

a. SELECT p.#name, i.p
FROM #class as C, C as i, unnest(C.#properties) as p
WHERE C.#name like ‘%Post%’

b. SELECT @P, V FROM {i;$C}@P{V} WHERE $C like ‘%Post%’
c. applicable properties can not be expressed

This query is expressed by applying the following OntoAlgebra operators:

ClassPost:=OntoSelect(C, ext(C), λc•c.name like ′%Post%′)
ClassInst:=OntoOJoin(ClassPost, ∗(ObjectC), C, i, λC λi•i ∈ ext∗(C))

ClassPropInst:=OntoProject(ClassInst, λci•
< (C, ci.C), (i, ci.i), (p, ci.C.properties) >

UClassPropInst:=OntoUnNest(ClassPropInst, p)
Result:=OntoProject(UClassPropInst, λcip•

< (n, cip.p.name), (v, cip.i.(cip.p)) >

The first selection finds the classes whose names contain the word Post. The
result is ClassPost of type Set[C]. The OntoOJoin operator is then used to join
the classes of ClassPost and all the instances, i.e the polymorphic instances of
the root class (∗(ObjectC)). The result of this operation is ClassInst of type
SET[Tuple < (c : C), (i : ObjectC) >]. The function properties is then applied
to the classes contained in ClassInst using the OntoProject operator. The func-
tion properties returns the applicable properties of a class as a set. As a conse-
quence, the result of this step is ClassProp of type SET[Tuple < (c : C), (i : Obj-
ectC), (p, SET[P]) >]. The next step consists in unnesting the set of proper-
ties contained in each of the tuple of ClassProp. This is achieved using the
OntoUnNest operator defined by:

OntoUnNest(Tuple[< (A1, T1), . . . , (Ai, SET[Ti]), . . . , (An, Tn) >], It, Ai) =
(Tuple[< (A1, T1), . . . , (Ai, Ti), . . . , (An, Tn) >],
{< A1 : s.A1, . . . , Ai : t, . . . , An : s.An > |s ∈ It ∧ t ∈ s.Ai}) .

The result of this operation is UClassProp of type SET[Tuple < (c : C), (i : Obje-
ctC), (p, P) >]. Finally the result is obtained by applying the OntoProject op-
erator to retrieve, for each tuple, the name of the property referenced by the
attribute name p and to apply this property to the instances referenced by the at-
tribute name i. The final result is of type SET[Tuple < (name : String), (value :
ObjectC) >].
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3.3 Differences Between OODB and OBDB Languages

In this section, we describe a list of the identified main differences between the
query languages issued from the ENCORE and OntoAlgebra algebras.

Two levels language. An OBDB query language offers the capability to query
ontology, data and both ontology and data. Each of these querying levels corre-
sponds to a specific need. Querying ontology may be useful to discover concepts
of an ontology. Querying data from the concepts of an ontology allows to query
the data independently of the structure of the data (semantic querying). Query-
ing both ontology and data is useful to extract a subset of an ontology together
with its instances (from the ontology to the content part of an OBDB) or to
discover how a given instance of an ontology class may be described by some
other classes (from the content to the ontology part of an OBDB). In a number
of OODB implementations, metadata are recorded in the system catalog. Using
the object query language provided, one can query these metadata. However,
object-oriented algebras define how to query the data of an OODB only. As a
consequence, it is difficult to combine querying both metadata and data.

Unknown value. OBDB query languages may return a special value for proper-
ties defined on the intensional definition of a class but not used in its extensional
definition (see section 3.2). Contrary to the NULL value, introduces in classical
algebra, there is only one interpretation of this value: a value exists, but we
don’t know what it is. In OntoAlgebra, we have chosen to give the same seman-
tics to this value as the one of the NULL value in order to remain compatible
with classical database languages. As shown in [15], this is not the case of the
SPARQL semantics which has introduced some mismatches with the processing
of the NULL value in classical databases.

Path expression. OBDB query languages extend the capability of path ex-
pressions introduced by OODB query languages. Indeed, a path expression in
an OBDB query language can be composed with a property not defined on
the previous element of the path. This capability is introduced to handle the
multi-instanciation paradigm. Moreover, a path expression can be composed
with properties determined at runtime (generalized path expression). This ca-
pability is introduced to allow querying both ontologies and data.

Parametric language. OBDB query language may use environment variables
such as the used natural language or the namespace of the ontology queried to
restrict the search space in the OBDB and to allow users to define queries in
different natural languages.

4 Related Work

To our knowledge, the SOQA Ontology Meta Model [16] is the only other propo-
sition of an independent data model of a given ontology model. It incorporates
constructors not supported by some ontology languages (e.g., methods or rela-
tionships) but it can not be extended. Our approach is dual, we have decided to
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incorporate only the shared constructors but to allow the extension of this core
model thanks to the metametamodel level. This approach is much more flexi-
ble since it allows to represent all the constructors of a given ontology model.
This capability is not offered by the SOQA Ontology Meta Model. For example,
restrictions of OWL or documents of PLIB are not included in this model. As
a consequence managing ontologies which use these constructors with SOQA
Ontology Meta Model based tools is not possible without loss of data.

Concerning the query algebra, formal semantics defined for ontology query
languages [15,17] or more generally for an ontology model [18,19] can be re-
garded as related work. Close to our work is the relational algebra for SPARQL
presented in [15]. It presents a correspondence between SPARQL and relational
algebra queries. Based on this analysis, author points out several differences
between SPARQL and SQL semantics. With this work, we share the idea of
defining ontology query languages starting from the well known algebra of clas-
sical database languages. However, we do not address the same kind of data.
While the operators defined in its algebra regard RDF as triple data without
schema or ontology information, our algebra proposes operators to exploit the
ontology level (e.g. computation of the transitive closure of the subsumption re-
lationship . . . ). Thus, while its algebra has the expressive power of the relational
algebra, our algebra has the expressive power of object-oriented algebra to query
the ontology, the data and both the ontology and the data of an OBDB.

5 Conclusion and Future Work

In this paper, we have formally defined a data model for OBDBs independent
of the used ontology model and representation schema. Using this data model,
we have discussed and shown the differences existing between classical databases
and OBDBs. These formalization and comparison are a sound basis for engineers
willing to implement ontology databases using classical databases.

As a second step, we have proposed a formal algebra of operators for querying
OBDBs. We have built this algebra by extending the ENCORE algebra proposed
for OODB. As a consequence, our algebra clarifies the differences between object-
oriented query languages (e.g., SQL2003, OQL . . . ) and ontology query languages
(e.g., RQL, OntoQL . . . ) in terms of semantics and expressive power.

For the future, we plan to use the proposed algebra to study optimization
of OBDBs. By reusing the ENCORE algebra, we hope to benefit from most of
the equivalence rules defined in this algebra. The main challenge is to find new
equivalence rules deriving from the specific features of the OBDB data model.
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Abstract. Advanced database systems offer similarity queries on com-
plex data. Searching by similarity on complex data is accelerated through
the use of metric access methods (MAM). These access methods orga-
nize data in order to reduce the number of comparison between ele-
ments when answering queries. MAM can be categorized in two types:
disk-based and memory-based. The disk-based structures limit the par-
titioning of space forcing nodes to have multiple elements according to
disk page sizes. However, memory-based trees allows more flexibility,
producing trees faster to build and to perform queries. Although re-
cent developments target disk-based methods on tree structures, sev-
eral applications benefits from a faster way to build indexes on main
memory. This paper presents a memory-based metric tree, the MM-tree,
which successively partitions the space into non-overlapping regions. We
present experiments comparing MM-tree with existing high performance
MAM, including the disk-based Slim-tree. The experiments reveal that
MM-tree requires up to one fifth of the number of distance calculations
to be constructed when compared with Slim-tree, performs range queries
requiring 64% less distance calculations and KNN queries requiring 74%
less distance calculations.

1 Introduction

Existing DBMS were developed to handle data in numeric and short text do-
mains, not being able to handle complex data efficiently, because its internal
structures require the total ordering property on the data domains. in this way,
the comparison operators available in traditional Database Management Sys-
tems (DBMS) (i.e., the relational <,≤, > or ≥ and identity = or �= operators)
are not adequate to compare complex data such as images.

As the complexity of the data stored in modern DBMS grows, new access
methods (AM), tailored to deal with the properties of the new data types, need
to be designed. The majority of complex data domains do not possesses the total
ordering property, precluding the use of the traditional AM to index data from
these domains. Fortunately, these data domains allow the definition of similarity
relations among pairs of elements. Therefore, a new class of AM was developed,
the Metric Access Methods (MAM), which is well-suited to answer similarity
queries over complex data domains.
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A similarity query returns elements {si ∈ S, S ⊂ S} that meet a given simi-
larity criterion, expressed through a reference element sq ∈ S. For example, for
image databases one may ask for images that are similar to a given one, accord-
ing to a specific criterion. There are two main types of similarity queries: the
range and the k-nearest neighbor queries.

• Range query - Rq: given a maximum query distance rq , the query Rq(sq, rq)
retrieves every element si ∈ S such that d(si, sq) ≤ rq. An example is: “Select
the images that are similar to the image P by up to five similarity units”, and
it is represented as Rq(P, 5);

• k-Nearest Neighbor query - kNNq: given a quantity k ≥ 1, the KNN
query kNNq(sq, k) retrieves the k elements in S that are the nearest from
the query center sq. An example is: “Select the 3 images most similar to the
image P”, which is represented as kNNq(P, 3).

Besides those types of queries, the point query, which probes if an element
is stored in the dataset, is another useful query over sets of complex objects.
Several access methods were proposed to speed up the similarity queries. Some
spatial access methods (SAM) were adapted to index multi dimensional data,
but they become useless when the number of dimensions increases because of the
“dimensionality curse”. Metric access methods (MAM) were designed to index
complex data, including high-dimensional and non-dimensional datasets, index-
ing the features extracted from data into a metric space. A MAM is associated
with a metric that measures the similarity between pairs of elements as the dis-
tance between them. The metric is then used to build the tree, causing it to be
referenced also as “distance-based trees”.

The similarity relationships are usually calculated by a distance function. The
data domain and the distance function defines a metric domain, or metric space.
To guarantee repeatability when ranking the elements that answer a similarity
query, the metric must hold some properties. Formally, a metric space is a pair
< S, d() >, where S is the domain of data elements and d : S×S→ R+ is metric
that given s1, s2, s3 ∈ S, it holds the following properties: Symmetry (d(s1, s2)
= d(s2, s1)); Non-negativity (0 < d(s1, s2) < ∞ if s1 �= s2 and d(s1, s1) = 0) and
Triangular inequality (d(s1, s2) ≤ d(s1, s3) + d(s3, s2)).

Complex elements usually require extracting predefined features from them
that are used in place of the elements to define the distance function. For exam-
ple, images are preprocessed by specific feature extraction algorithms to retrieve
their color and/or texture histograms, polygonal contours of the pictured ob-
jects, etc., which are used to define the corresponding distance functions.

Several applications require the DBMS to quickly build indexes on data that
fits on main memory. With the increase of the main memory capacity and its
lowering costs, it is becoming useful to index data in main-memory, mainly when
the index needs to be often rebuilt. In these situations, the extra requirements
of a disk-based MAM design force the nodes to have many elements, excluding
good approaches to the partitioning of the space. Moreover, every disk-based
MAM worries about reducing the disk accesses, because the disk access itself
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is much slower then accessing the main memory, affecting the performance of
queries.

Once they are not limited on how to partition the space, memory-based MAM
are faster to built, do not require disk accesses and answer similarity queries
faster. Existing memory-based MAM are built upon the concept that the tree
must be balanced, in order to guarantee that it will not degenerate into a bad
structure. However, the processing required to assure the balancing is always
overwelmingly high, turning the construction of a memory-based tree too high
for practical purposes. Moreover, these MAM only warranty the balancing when
the tree is created at once, without new insertions so they are static structures.

This paper presents the MM-tree (Metric-Memory tree), an easy to build
memory-based MAM whose partitioned regions do no overlap. Moreover, a low
cost semi-balancing insertion is presented in order to control the balancing of
the tree.

The remainder of this paper is structured as follow. Section 2 presents related
works. Section 3 presents the new MM-tree structure and the algorithm to build
the trees. Section 4 presents the searching algorithms for the MM-tree to perform
both range and k-nn queries. Section 5 presents the experiments and results
achieved in our tests. Finally the section 6 concludes this work.

2 Background

One of the underpinnings of a database system is the indexing structures, and
the design of efficient access methods has long been pursued in the database
area.

Spatial access methods can index muti-dimensional data, considering each
object as a point in a multidimensional domain. However, they still suffer from
the dimensionality curse. Several methods were proposed in the literature dealing
with high-dimensional data, but they are still limited to the space where the data
are embedded [1] [2] [3] [4]. An excelent survey on multidimensional methods can
be found in the work of Gaede [5].

Unfortunately, many complex data do not have a defined dimensionality, but
a distance function can be used to compare pairs of such elements. Thus, they
are considered occupying a metric domain. The pioneering work of Burkhard and
Keller [6] introduced approaches to index data in metric spaces using discrete
distance functions. A survey on MAM can be found in [7].

The GH-tree of Uhlmann [8] recursively partitions the space into two regions,
by electing two elements and associating the others to the side of closest elected
element, creating an generalized hyperplane separating each subset. The ball
decomposition partitioning scheme [8] partitions the data set based on distances
from one distinguished element. This element is called a vantage point in the
VP-tree [9]. The VP-tree construction process is based on finding the median
element of a sorted sample list of the elements, thus recursively creating the
tree. Some disk-based MAMs have been proposed, as the MVP-tree [10], where
if there are two pivots per node, the first pivot partitions the data set in t regions
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and the second partitions each new region into other t regions, giving a fanout of
t2 per node. The Geometric Near Access Tree (GNAT) of Brin [11] can be viewed
as a refinement of the second technique presented by Burkhard and Keller [6].

The memory-based MAM presented above are considered static, where no
further insertions, deletions or updates are handled, without compromising the
tree structure. Overcoming this inconvenience, dynamic MAM structures were
proposed in the literature, as disk-based MAM [12][13]. Disk-based MAM force
the tree structure to hold many elements per node, in order to decrease disk
accesses when accessing nodes. These MAM employ the bottom up strategy to
construct the tree, leading to a dynamic tree. However, they present overlap on
nodes in the same level affecting even point queries. This means that a point
query on the tree will access more than one node per level on the tree scan,
increasing the number of disk accesses and distance calculations.

The M-tree [13] is the first balanced dynamic metric tree proposed, followed by
the Slim-tree [12], which was proposed with different strategies for splitting nodes
and choosing-subtree plus the Slim-down algorithm that optimizes (reduces)
the overlap between nodes, post-processing the structure. The OMNI concept
proposed in [14] optimizes the pruning power on searches by using strategically
positioned elements, the foci set. The OMNI concept applied on Slim-tree led
to the DF-tree proposed in [15]. These methods store some distances between
elements, so the triangular inequality property held by the distance function can
be used to prune nodes, in order to reduce subtree accesses.

This paper introduces a new memory–based MAM, the MM-tree, which par-
titions the space forming disjoint regions. The MM-tree proposed here don’t
impose a rigid height-balancing, being computacionally easy to build. Neverthe-
less, it has a balancing control, that prevents it to degenerate. Moreover, it allows
both range and k-NN queries, and the point query can be answered without node
overlapping.

3 The MM-Tree

The general idea of the structure of MM-tree is to select two elements s1, s2 ∈ S
as pivots to partition the space into four disjoint regions. Figure 1 presents an
example considering eight elements, where elements ‘a’ and ‘b’ are pivots.

a b
c

d

e

f
g

h

a b

c d e f gh

I
II III

IV

r

r

Fig. 1. An example of a MM-tree indexing 8 elements
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Table 1. Regions of space where element si can be assigned

d(si, s1) θ r d(si, s2) θ r Region
< < I

< ≥ II

≥ < III

≥ ≥ IV

Each element si is assigned to one partition, so there is no node overlap
for point queries. Partitioning of regions is based on distances from elements
to the pivots and the distance between pivots r as indicated in Table 1. The
same procedure is recursively applied to each sub-region, creating the tree. Note
that only two distance calculations per tree level are required to determine the
appropriate region.

Every node of an MM-tree has the same structure, which is defined as follows:

node[s1, s2, d(s1, s2), P tr1, P tr2, P tr3, P tr4]

where s1 and s2 are the node pivots, d(s1, s2) is the distance between the pivots
and Ptr1 to Ptr4 are the pointers to the four subtrees storing the elements in
regions 1 to 4, respectively.

3.1 Building the MM-Tree

The MM-tree is designed as a main-memory dynamic tree, so new elements can
be inserted in the MM-tree at any time. To insert a new element sn, the algorithm
traverses the tree performing a point query, searching for an appropriated node
to hold the element. At each node, sn is compared to pivots (s1, s2) and the
correct region is determined according to Table 1. When the element sn is not
indexed in the tree, that is, if a leaf node reached does not hold sn, then it is
inserted in that leaf node. Note that there is no overlap between regions at any
level of the tree, so the choice of the next subtree in each step of the point query
algorithm is always directly achieved.

Figure 1 graphically exemplifies the structure of the first level of a MM-tree
indexing the eight elements {a,b,c,d,e,f,g,h}, taking (a,b) as pivots. Note that the
distance(a, b) = r defines the ball radius of each pivot selected, forming the dis-
joint regions I, II, III and IV. The MM-tree is built in a top down scheme, where
each node contains up to two elements, partitioning the subspace according the
same rule.

Starting from the root node, if the visited node has one element, sn is stored
and the algorithm terminates. If not, the distances from sn to the pivots s1 and
s2 are calculated and the proper region is determined comparing these distances
with the distance between the pivots d(s1, s2), called r for short. Such compar-
isons are specified in table 1. This process is recursively applied to all levels of
the tree.
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The Algorithm 1 implements the MM-tree insertion method. Note that only
two distance calculations are needed per node to decide which of the four sub-
trees the element will belong to, giving the MM-tree a fanout of 4 with only 2
distance calculations per node, in contrast to the disk-based MAM where each
subtree decision requires one distance calculation per element in node, so it
would demand 4 distance calculations for the same fanout.

Algorithm 1. Insert (sn, root N)
Let N be the root, s1 and s2 the pivots in N and r the distance(s1, s2).
while N is full do

d1 = distance(s1, sn)
d2 = distance(s2, sn)
if d1 < r then

if d2 < r then
N = region I

else
N = region II

else
if d2 < r then

N = region III
else

N = region IV
Insert sn on node N

Balancing Control. The performance of the MM-tree can be affected if many
elements are concentrated on the same node at a given level. This section presents
a technique to improve the basic insertion algorithm, the semi-balancing algo-
rithm, which controls the unbalancing on leaf nodes.

To give an intuition of the proposed technique, a graphical example is shown
in figure 2. In Figure 2(a), the elements a to h were inserted using a and b as
pivots, leading to an unbalanced tree. Note that a two-level sub-tree holds up to
10 elements, so the creation of the third level of the tree in Figure 2(a) should be
avoided. While finding another pair of pivots among up to nine elements is not
expensive, our proposed technique aims to choose a new pair of pivots which the
new subtree can acomodate the existing and the newly inserted object in just
two levels. Figure 2(b) show the same elements a to h elements indexed now by
pivots (e,d).

The semi-balancing algorithm (Algorithm 2) aims at replacing the pivots in
the parent node when the leaf node that is target of insertion cannot hold the
new element. This replacement may rearrange elements in such way that the
region that was full before can hold the new element (lines 1 to 6). If none of
the pivots combination frees space for the new element, the subtree gains a level
(lines 7 and 8).

This procedure is applied only on leaf nodes in order to avoid the need of
rebuilding subtrees when changing pivots in the index level. For statistical rea-
sons it is only performed when the 2-level subtree has at most 8 elements stored,
because the probability of getting a combination of pivots that rearrange 10 or
9 elements in a 2-level is low.
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Fig. 2. An example of the semi-balancing algorithm

Algorithm 2. Semi-balancing (N , sn)
INPUT: pointer to subtree node N , new element sn.
OUTPUT: pointer to a new subtree.

1: Let O be the list of the children elements of N adding sn and the pivots of N .
2: Let NN be a new node.
3: for every si ∈ O do
4: for every sj ∈ O, sj 	= si do
5: NN.clear()
6: NN.addPivots(si, sj)
7: Let El be the list of elements in (O − si − sj)
8: NN.insertElements(El)
9: if elements El were distributed in the same level under N then

10: Return new root NN.
11: N.insertElement(sn).
12: Return node N.

4 Similarity Queries on MM-Tree

Besides answering point queries, the MM-tree must support the two most com-
mom similarity queries: range and nearest neighbors. The basic idea here is to
define an active radius where the answer must be found, and to visit each region
that overlaps with the active radius. The active radius of range queries is the
query radius, and the active radius of k-NN queries is a dynamic value that starts
at the maximum distance possible, and is reduced as the algorithm proceeds and
finds successively nearer elements.

Algorithm 3 corresponds to the range query in a MM-tree. It receives a query
radius rq and the center query element sq. At each node it verifies if there are
interceptions of the region centered at sq with radius rq with the four regions
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Table 2. Conditions to occur intersection between a node and a query region

Region I (d(sq, s2) < rq + r) ∧ (d(sq, s1) < rq + r)

Region II (d(sq, s2) + rq ≥ r) ∧ (d(sq, s1) < rq + r)

Region III (d(sq, s2) < rq + r) ∧ (d(sq, s1) + rq ≥ r)

Region IV (d(sq, s2) + rq ≥ r) ∧ (d(sq, s1) + rq ≥ r)

defined in the node (lines 6 and 7), and it visits the covered regions (line 8)
recursively, based on the distance from sq to the pivots (s1, s2). At each node
visited, if the distance from sq to any pivots is less than rq then that pivot is
added to the result (lines 4 and 5). At each node an intersection occurs if any of
the conditions presented in Table 2 holds.

Algorithm 3. Range Query (sq, rq , root)
INPUT: query center sq , query radius rq, pointer to subtree root.
OUTPUT: answer list List.

1: if root == NULL then
2: return
3: Calculate the distances d1 = d(s1, sq) and d2 = d(s2, sq) in current node root
4: if d1 ≤ rq then List.add(s1)
5: if d2 ≤ rq then List.add(s2)
6: for every region Rj in (I, II, III, IV) of root do
7: if query radius intersects region Rj then
8: RangeQuery(sq, rq, Rj)

Algorithm 4 corresponds to the k-nearest neighbor query algorithm over a
MM-tree. It keeps the answer list of the k elements nearest to sq, ordered ac-
cording to their distance from sq. When the algorithm starts, the list is empty
and the active radius rq is set to ∞. The active radius is reduced every time
the list is updated, becoming the distance from sq to the kth farthest element
in the list. The answer list is created with the first k elements found navigating
the MM-tree. Thereafter, the list is updated whenever an element closer to sq

is found. A region covering occurs if any of the conditions presented in Table 2
holds, now rq being the dynamic active radius. Lines 14 to 16 test the intersec-
tion conditions and visit the appropriated nodes. Note that if sq lies on region
P , that region has to be visited and no condition test needs to be performed.

Guided Technique. The active radius over the k-nearest neighbor algorithm
reduces as elements closer to sq are found during the process. As this radius be-
comes smaller, more subtrees will be pruned, reducing the distance calculations.
Therefore, using a different search order when visiting the covered regions can
reduce the active radius more quickly and prune subtrees more effectively.
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Algorithm 4. Nearest Query ( sq, k, root)
INPUT: query center sq , number of nearest neighbors K, pointer to subtree root.
OUTPUT: answer list List.

1: if root == NULL then
2: return
3: Calculate the distances d1 = d(s1, sq) and d2 = d(s2, sq) in current node root
4: if List.size() < k then
5: rq = ∞
6: else
7: rq = List[k].distance
8: for i = 1..2 do
9: if di < rq then

10: Add si to List, keeping it sorted
11: Let P be the region where sq belong.
12: NearestQuery(sq, rq, P )
13: if node has two pivots then
14: for every region Rj in (I, II, III, IV) of root, Rj 	= P do
15: if query intercepts Rj then
16: NearestQuery(sq, k, Rj)

The guided nearest neighbor algorithm chooses a better sequence order when
visiting nodes in the MM-tree, in order to reduce the query radius quickly. The
algorithm first visits the region where the query element sq lies, then visits the
next regions in a sequence according to the distance of sq to other regions. The
sequence is then formed by first visiting the nearest regions to the query element.

Although such sequence depends on data distribution and insertion order, we
assume that the datasets have clusters and are inserted randomly (the most com-
mom situation regarding real world datasets). The sequence presented in Table 3
leads to a better prunning ability experimentally confirmed on datasets tested.

Table 3. Determining the next region to visit in the guided nearest neighbor query

visit order

region sq lies condition C C is true C is false

I d1 ≤ d2 I→II→(III,IV) I→III→(II,IV)

II d2 − d ≤ d − d1 II→I→IV→III II→IV→IV→II

III d1 − d ≤ d − d2 III→I→IV→II III→IV→I→II

IV d1 ≤ d2 IV→II→I→III IV→III→I→II

5 Experiments

This section shows experimental results comparing the MM-tree with the Slim-
tree and VP-tree. Although the Slim-tree belongs to the disk-based MAM
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category, we developed a version to run only in main memory (although preserv-
ing the use of fixed size blocks of memory like disk records). Therefore, in our
experiments the time spent to query and to construct the Slim-tree were con-
sistent when comparing it with other memory-based MAM. The memory-based
Slim-tree was achieved by keeping nodes in main memory and the disk pointers
become memory pointers.

All compared MAM were implemented in C++ language at the arboretum
framework 1 and the tests were done in an AMD Athlon XP 3200+ with 1Gb
of RAM. Three datasets were used in our experiments, being two real and one
synthetic. They are explained in the Table 5. The euclidean distance function
was used for the Points, Cities and Color Histograms datasets.

Table 4. Datasets used on tests

Dataset name Description
Points 10 thousand points randomly created in a 6 dimension space.

Cities 5507 latitude and longitude coordinates from cities in Brazil.

Color histograms 10 thousand color histograms in a 32 dimension space extracted
from an image database.

The Slim-tree was built using the min-occupation and MST (minimum span-
ning tree) policies, considered the best configuration by its authors. The page
size of Slim-tree is different for each dataset, in order to keep 50 elements per
node in average. The binary VP-tree was built using the sampling algorithm at
the rate of 10% in order to select the vantage points. This section compares both
the construction process and the similarity queries performance.

Construction
The speed of building a main-memory tree is one of the most important aspects in
a database system. An experiment measuring the number of distance calculations
and the time in mileseconds needed to build every MAM over all datasets were
done, and the results are showed in Table 5. From the table, we can see that VP-
tree takes the longest time to be built among the others, performing also the largest
number of distance calculations over all datasets. This behavior occurs because
during the construction process, the best vantage point is chosen by finding the
best spread of the median element in each sample of elements (a quadratic order
algorithm on the number of elements involved in the operations), sorted by the
distances to each vantage point candidate, causing too many comparisons between
elements. From the table can be noted that MM-tree has the lower time and the
lower number of distance calculations to be built also, overcomming the disk-based
representant, the Slim-tree, even indexed in memory.

A scalability experiment measures the behavior of the tree when indexing data-
sets of different size. This is important to identify patterns on the performance

1 http://gbdi.icmc.usp.br/arboretum
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Table 5. Construction statistics of tested MAM over the datasets

Points Cities Color Histograms

MAM Dist Time (ms) Dist Time (ms) Dist Time (ms)

MM-tree 161143 190 89783 126 167705 737

Slim-tree 633374 297 451830 156 665453 1234

VP-tree 2381532 1625 1203897 640 2346300 6188

 0

 50

 100

 150

 200

 250

 1  2  3  4  5  6  7  8  9  10

# 
of

 d
is

ta
nc

e 
ca

lc
ul

at
io

ns
 (

x 
10

00
0)

thousand of points

Slim-Tree MST
VP-Tree

MM-Tree

Fig. 3. Scalability of distance calculations on referred MAM using Points dataset

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0  1  2  3  4  5  6  7  8  9  10  11

av
er

ag
e 

he
ig

ht
 o

f M
M

-t
re

e

thousand of points

Basic
Semi-Balancing

Fig. 4. MM-tree average heights using Points dataset



168 I.R.V. Pola, C. Traina Jr., and A.J.M. Traina

(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

(g
)

(h
)

(i
)

(j
)

(k
)

(l
)

F
ig

.5
.

P
er

fo
rm

a
n

ce
o
f

ra
n

g
e

q
u

er
ie

s
a
n

d
n

ea
re

st
n

ei
g
h
b

o
r

q
u

er
ie

s
ov

er
P

o
in

ts
,

C
it

y
a
n

d
C

o
lo

r
H

is
to

g
ra

m
s

d
a
ta

se
ts



The MM-Tree: A Memory-Based Metric Tree 169

of queries on different sizes of datasets. The scalability test results are showed in
Figure 3, comparing the number of distances calculations to build each tree using
fractions of the Points dataset. Note that the number of distance calculations per-
formed by VP-tree increases following a superlinear behavior when the number of
indexed points raises. The MM-tree scales well as the indexed elements number
increases, becoming the fastest MAM to build among others.

The heights of metric trees directly affect the query performance when search-
ing on non-overlapping regions. The MM-tree has the semi-balancing algorithm
that controls its height. Figure 4 shows the behavior of the MM-tree over differ-
ent insertion policies, with and without the semi-balancing technique enabled,
measuring how the average height of MM-tree varies. The average height was
measured from experiments using the Points dataset. From this figure it can be
seen that the semi-balancing algorithm leads to shorten trees.

Similarity Queries
The experiments on range and nearest-neighbor queries were made using all the
datasets, measuring the number of distance calculations and time. The plots
measuring the number of distance calculations represents the average of the
values obtained from a set of 500 queries, while the plots measuring time repre-
sents the total time spent to answer all the 500 queries. The query elements are
indexed in the structures.

Figure 5 shows the results obtained from the tests. The radius of range queries
is the percentile of similar elements obtained by the query, i. e., a range query
of radius 0.1 retrieves approximately 10% of the elements from the dataset.
Considering the all datasets it can be seen that MM-tree outperforms the other
MAM performing lesser distance calculations and being much faster.

6 Conclusion

There are emerging applications that require the DBMS to provide fast ways to
build indexes on data that fits in main memory. The increase of the main memory
capacity and its lowering cost allow to index data in main-memory leading to
light and faster metric access methods. A disk-based MAM design forces the
nodes to have many elements, excluding good approaches to the partitioning of
the space. Memory-based MAM are faster to built, do not perform disk access
to perform their operations and can provide faster similarity queries, once they
are not limited on how to partition the space.

This paper presented a new memory-based metric access method, which par-
titions the space into non-overlapping regions. The MM-tree has a balancing
control that produces shorter trees and allows both K-NN and range queries.

Experiments shown that the MM-tree has better performance than the VP-
tree and the Slim-tree to index complex data. The construction process of the
MM-tree is much faster than the other MAM, requiring up to one fifth of the
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number of distance calculations to be constructed when compared to Slim-tree
and up to one fifteenth times less when compared to VP-tree.

When compared to the Slim-tree, the MM-tree achieved the reduction on
the number of distance calculations up to 74% for k-NN queries leading to an
improvement in time up to 43%. For range queries, MM-tree achieved the reduc-
tion on the number of distance calculations up to 64% leading to improvement in
time up to 32%. When compared to VP-tree, MM-tree needs 58% less distance
calculations for nearest neighbors queries, leading to improvement in time up
to 57%, and needs 67% less distance calculations for range queries, leading to
improvement in time up to 69%.

Acknowledgements

This research has been partially suported by CAPES, CNPq and by FAPESP.

References

1. Berchtold, S., Keim, D.A., Kriegel, H.P.: The x-tree: An index structure for high-
dimensional data. In: VLDB, Bombay, India, pp. 28–39. Morgan Kaufmann, San
Francisco (1996)

2. Chakrabarti, K., Mehrotra, S.: The hybrid tree: An index structure for high di-
mensional feature spaces. In: IEEE (ICDE), Sydney, Australia, pp. 440–447. IEEE
Computer Society Press, Los Alamitos (1999)

3. Katayama, N., Satoh, S.: The sr-tree: An index structure for high-dimensional
nearest neighbor queries. In: Peckham, J. (ed.) ACM SIGMOD, Tucson, Arizona,
USA, pp. 369–380. ACM Press, New York (1997)

4. Lin, K.I.D., Jagadish, H.V., Christos, F.: The tv-tree: An index structure for high-
dimensional data. VLDB Journal 3(4), 517–542 (1994)

5. Gaede, V., Gunther, O.: Multidimensional access methods. ACM Computing Sur-
veys 30(2), 170–231 (1998)

6. Burkhard, W.A., Keller, R.M.: Some approaches to best-match file searching. Com-
munications of the ACM (CACM) 16(4), 230–236 (1973)
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Abstract. The M-tree and its variants have been proved to provide an
efficient similarity search in database environments. In order to further
improve their performance, in this paper we propose an extension of the
M-tree family, which makes use of nearest-neighbor (NN) graphs. Each
tree node maintains its own NN-graph, a structure that stores for each
node entry a reference (and distance) to its nearest neighbor, considering
just entries of the node. The NN-graph can be used to improve filtering
of non-relevant subtrees when searching (or inserting new data). The fil-
tering is based on using ”sacrifices” – selected entries in the node serving
as pivots to all entries being their reverse nearest neighbors (RNNs). We
propose several heuristics for sacrifice selection; modified insertion; range
and kNN query algorithms. The experiments have shown the M-tree (and
variants) enhanced by NN-graphs can perform significantly faster, while
keeping the construction cheap.

1 Introduction

In multimedia retrieval, we usually need to retrieve objects based on similarity
to a query object. In order to retrieve the relevant objects in an efficient (quick)
way, the similarity search applications often use metric access methods (MAMs)
[15], where the similarity measure is modeled by a metric distance δ. The prin-
ciple of all MAMs is to employ the triangle inequality satisfied by any metric,
in order to partition the dataset S among classes (organized in a metric index ).
When a query is to be processed, the metric index is used to quickly filter the
non-relevant objects of the dataset, so that the number of distance computa-
tions needed to answer a query is minimized.1 In the last two decades, there
were many MAMs developed, e.g., gh-tree, GNAT, (m)vp-tree, SAT, (L)AESA,
D-index, M-tree, to name a few (we refer to monograph [15]). Among them, the
M-tree (and variants) has been proved as the most universal and suitable for
practical database applications.

In this paper we propose an extension to the family of M-tree variants (imple-
mented for M-tree and PM-tree), which is based on maintaining an additional
structure in each tree node – the nearest-neighbor (NN) graph. We show that
utilization of NN-graphs can speed up the search significantly.
1 The metric is often supposed expensive, so the number of distance computations is

regarded as the most expensive component of the overall runtime costs.

Y. Ioannidis, B. Novikov, and B. Rachev (Eds.): ADBIS 2007, LNCS 4690, pp. 172–188, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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2 M-Tree

The M-tree [7] is a dynamic (easily updatable) index structure that provides good
performance in secondary memory (i.e. in database environments). The M-tree
index is a hierarchical structure, where some of the data objects are selected
as centers (references or local pivots) of ball-shaped regions, and the remaining
objects are partitioned among the regions in order to build up a balanced and
compact hierarchy of data regions, see Figure 1a. Each region (subtree) is indexed
recursively in a B-tree-like (bottom-up) way of construction.

The inner nodes of M-tree store routing entries

routl(Oi) = [Oi, rOi , δ(Oi, Par(Oi)), ptr(T (Oi))]

where Oi ∈ S is a data object representing the center of the respective ball
region, rOi is a covering radius of the ball, δ(Oi, Par(Oi)) is so-called to-parent
distance (the distance from Oi to the object of the parent routing entry), and
finally ptr(T (Oi)) is a pointer to the entry’s subtree. The data is stored in the
leaves of M-tree. Each leaf contains ground entries

grnd(Oi) = [Oi, δ(Oi, Par(Oi))]

where Oi ∈ S is the indexed data object itself, and δ(Oi, Par(Oi)) is, again, the
to-parent distance. See an example of routing and ground entries in Figure 1a.

Fig. 1. (a) Example of an M-tree (b) Basic filtering (c) Parent filtering

2.1 Query Processing

The range and k nearest neighbors (kNN) queries are implemented by traversing
the tree, starting from the root2. Those nodes are accessed, the parent region
(R, rR) of which (described by the routing entry) is overlapped by the query ball
(Q, rQ). In case of a kNN query (we search for k closest objects to Q), the radius
rQ is not known in advance, so we have to additionally employ a heuristic to
dynamically decrease the radius during the search (initially set to ∞).
2 We just outline the main principles, the algorithms are described in Section 4, in-

cluding the proposed extensions. The original M-tree algorithms can be found in [7].
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Basic Filtering. The check for region-and-query overlap requires an explicit
distance computation δ(R, Q), see Figure 1b. In particular, if δ(R, Q) ≤ rQ + rR,
the data ball R overlaps the query ball, thus the child node has to be accessed.
If not, the respective subtree is filtered from further processing.

Parent Filtering. As each node in the tree contains the distances from the
routing/ground entries to the center of its parent node, some of the non-relevant
M-tree branches can be filtered out without the need of a distance computa-
tion, thus avoiding the “more expensive” basic overlap check (see Figure 1c). In
particular, if |δ(P, Q) − δ(P, R)| > rQ + rR, the data ball R cannot overlap the
query ball, thus the child node has not to be re-checked by basic filtering. Note
δ(P, Q) was computed in the previous (unsuccessful) parent’s basic filtering.

2.2 M-Tree Construction

Starting at the root, a new object Oi is recursively inserted into the best subtree
T (Oj), which is defined as the one for which the covering radius rOj must increase
the least in order to cover the new object. In case of ties, the subtree whose center
is closest to Oi is selected. The insertion algorithm proceeds recursively until a
leaf is reached and Oi is inserted into that leaf. A node’s overflow is managed
in a similar way as in the B-tree – two objects from the overflowed node are
selected as new centers, the node is split, and the two new centers (forming two
routing entries) are promoted to the parent node. If the parent overflows, the
procedure is repeated. If the root overflows, it is split and a new root is created.

3 Related Work

In the last decade, there have been several modifications/successors of M-tree
introduced, some improving the performance of M-tree, some others improving
the performance but restricting the general metric case into vector spaces, and,
finally, some adjusting M-tree for an extended querying model.

In the first case, the Slim-tree [14] introduced two features. First, a new policy
of node splitting using the minimum spanning tree was proposed to reduce inter-
nal CPU costs during insertion (but not the number of distance computations).
The second feature was the slim-down algorithm, a post-processing technique for
redistribution of ground entries in order to reduce the volume of bottom-level
data regions. Another paper [12] extended the slim-down algorithm to the gen-
eral case, where also the routing entries are redistributed. The authors of [12]
also introduced the multi-way insertion of a new object, where an optimal leaf
node for the object is found. A major improvement in search efficiency has been
achieved by the proposal of PM-tree [13,10] (see Section 5.1), where the M-tree
was combined with pivot-based techniques (like LAESA).

The second case is represented by the M+-tree [16], where the nodes are fur-
ther partitioned by a hyper-plane (where a key dimension is used to isometrically
partition the space). Because of hyper-plane partitioning, the usage of M+-tree
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is limited just to Euclidean vector spaces. The BM+-tree [17] is a generalization
of M+-tree where the hyper-plane can be rotated, i.e. it has not to be parallel
to the coordinate axes (the restriction to Euclidean spaces remains).

The last category is represented by the M2-tree [5], where the M-tree is gen-
eralized to be used with an arbitrary aggregation of multiple metrics. Another
structure is the M3-tree [3], a similar generalization of M-tree as the M2-tree,
but restricted just to linear combinations of partial metrics, which allows to ef-
fectively compute the lower/upper bounds when using query-weighted distance
functions. The last M-tree modification of this kind is the QIC-M-tree [6], where
a user-defined query distance (even non-metric) is supported, provided a lower-
bounding metric to the query distance (needed for indexing) is given by user.

In this paper we propose an extension belonging to the first category (i.e.
improving query performance of the general case), but which could be utilized
in all the M-tree modifications (M-tree family) overviewed in this section.

4 M*-Tree

We propose the M*-tree, an extension of M-tree having each node additionally
equipped by nearest-neighbor graph (NN-graph). The motivation for employing
NN-graphs is related to the advantages of methods using global pivots (objects
which all the objects in dataset are referenced to). Usually, the global pivots are
used to filter out some non-relevant objects from the dataset (e.g. in LAESA [9]).
In general, the global pivots are good if they are far from each other and provide
different ”viewpoints” with respect to the dataset [2]. The M-tree, on the other
hand, is an example of a method using local pivots, where the local pivots are the
parent routing entries of nodes. As a hybrid structure, the PM-tree is combining
the ”local-pivoting strategies” of M-tree with the ”global-pivoting strategies” of
LAESA.

We can also state a ”closeness criterion” for good pivots, as follows. A pivot
is good in case it is close to a data object or, even better, close to the query
object. In both cases, a close pivot provides tight distance approximation to the
data/query object, so that filtering of data object by use of precomputed pivot-
to-query or pivot-to-data distances is more effective. Unfortunately, this criterion
cannot be effectively utilized for global pivots, because there is only a limited
number of global pivots, while there are many objects referenced to them (so
once we move a global pivot to become close to an object, many other objects
become handicapped). Nevertheless, the closeness criterion can be utilized in
local-pivoting strategies, because only a limited number of dataset objects are
referenced to a local pivot and, conversely, a dataset object is referenced to a
small number of pivots. Hence, a replacement of local pivot would impact only
a fraction of objects within the entire dataset.

4.1 Nearest-Neighbor Graphs

In M-tree node, there exists just one local pivot, the parent (which moreover
plays the role of center of the region). The parent filtering described in Section 2.1
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is, actually, pivot-based filtering where the distance to the pivot is precomputed
so we can avoid computation of the query-to-object distance (see Figure 1c).
However, from the closeness criterion point of view, the parent is not guaranteed
to be close to a particular object in the node, it is rather a compromise which is
”close to all of them”.

Following the closeness criterion, in this paper we propose a technique where
all the objects in an M-tree node mutually play the roles of local pivots. In
order to reduce space and computation costs, each object in a node is explicitly
referenced just to its nearest neighbor. This fits the closeness criterion; we obtain
a close pivot for each of the node’s objects. In this way, for each node N we get
a list of triplets 〈Oi, NN(Oi, N), δ(Oi, NN(Oi, N))〉, which we call the nearest-
neighbor graph (NN-graph) of node N , see Figure 2a.

The result is M*-tree, an extension of M-tree, where the nodes are additionally
equipped by NN-graphs, i.e. a routing entry is defined as

routl(Oi) = [Oi, rOi , δ(Oi, Par(Oi)), 〈NN(Oi), δ(Oi, NN(Oi))〉, ptr(T (Oi))]

while the ground entry is defined as

grnd(Oi) = [Oi, δ(Oi, Par(Oi)), 〈NN(Oi), δ(Oi, NN(Oi))〉]

Fig. 2. (a) NN-graph in M*-tree node (b) Filtering using sacrifice pivot

4.2 Query Processing

In addition to M-tree’s basic and parent filtering, in M*-tree we can utilize the
NN-graph when filtering non-relevant routing/ground entries from the search.

NN-Graph Filtering. The filtering using NN-graph is similar to the parent
filtering, however, instead of the parent, we use an object S from the node.
First, we have to select such object S; then its distance to the query object Q is
explicitly computed. We call the object S a sacrifice pivot (or simply sacrifice),
since to ”rescue” other objects from basic filtering, this one must be ”sacrificed”
(i.e. the distance to the query has to be computed).
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Lemma 1. (NN-graph filtering)

Let entry(R) be a routing or ground entry in node N to be checked against a
range query (Q, rQ). Let entry(S) be a sacrifice entry in node N , which is R’s
nearest neighbor, or R is nearest neighbor to S. Then if

|δ(S, Q)− δ(S, R)| > rR + rQ

the entry(R) does not overlap the query and we can safely exclude entry(R) from
further processing (for a ground entry rR = 0).
Proof: Follows immediately from the triangle inequality. (a) Since δ(S, R)+rR

is the upper-bound distance of any object in (R, rR) to S, we can extend or reduce
the radius of rout(S) to δ(S, R)+rR and then perform the standard overlap check
between (Q, rQ) and (S, δ(S, R)+ rR), i.e. δ(S, Q)− δ(S, R) > rR + rQ. (b) Since
δ(S, R) − rR is the lower-bound distance of any object in (R, rR) to S, we can
check whether the query (Q, rQ) lies entirely inside the hole (S, δ(S, R) − rR),
i.e. δ(S, R)− δ(S, Q) > rR + rQ. �

When using a sacrifice S, all objects which are reverse nearest neighbors (RNNs)
to S can be passed to the NN-graph filtering (in addition to the single nearest
neighbor of S). The reverse nearest neighbors are objects in N having S as their
nearest neighbor. Note that for different sacrifices Si within the same node N ,
their sets of RNNs are disjoint. The operator RNN can be defined as RNN :
S × Nodes �→ 2S×R

+
, where for a given sacrifice S and a node N , the operator

RNN returns a set of pairs 〈Oi, di〉 of reverse nearest neighbors.
The objects returned by RNN operator can be retrieved from the NN-graph

without a need of distance computation (i.e. ”for free”). See the NN-graph fil-
tering pseudocode in Listing 1.

Listing 1. (NN-graph filtering)

set FilterByNNGraph(Node N , sacrifice 〈S, δ(S, Q)〉, RQuery (Q, rQ)) {
set notFiltered = ∅
for each entry(Oj) in RNN(S,N) do

if |δ(S, Q) − δ(S, Oj)| > rQ + rOj then
filtered[entry(Oj )] = true;

else
add entry(Oj) to notFiltered

return notFiltered
}

Range Query. When implementing a query processing, the tree structure is
traversed such that non-overlapping nodes (their parent regions do not overlap
the query ball) are excluded from further processing (filtered out). In addition
to the basic and parent filtering, in M*-tree we can use the NN-graph filtering
step (inserted after the step of parent filtering and before the basic filtering),
while we hope some distance computations needed by basic filtering after an
unsuccessful parent filtering will be saved.
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When processing a node N , there arises a question how to choose the ordering
of N ’s entries passed to NN-graph filtering as sacrifices. We will discuss various
orderings in Section 4.2, however, now suppose we already have a heuristic func-
tion H(N) which returns an ordering on entries in N . In this order the potential
sacrifices are initially inserted into a queue SQ.

In each step of a node processing, the first object Si from SQ (a sacrifice
candidate) is fetched. Then, the sacrifice candidate is checked whether it can
be filtered by parent filtering. If not, the sacrifice candidate becomes a regular
sacrifice, so distance from Q to Si is computed, while all Si’s RNNs (objects in
RNN(Si, N)) are tried to be filtered out by NN-graph filtering. Note the non-
filtered RNNs (remaining also in SQ) surely become sacrifices, because RNN
sets are disjoint, i.e., an object is passed at most once to the NN-graph filtering.
Hence, we can immediately move the non-filtered RNNs to the beginning of SQ
– this prevents some ”NN-filterable” objects in SQ to become sacrifices. See the
range query algorithm in Listing 2.

Listing 2. (range query algorithm)

QueryResult RangeQuery(Node N , RQuery (Q, rQ), ordering heuristic H) {
let P be the parent routing object of N

/* if N is root then δ(Oi, P )=δ(P, Q)=0 */
let filtered be an array of boolean flags, size of filtered is |N |
set filtered[entry(Oi)]=false, ∀entry(Oi) ∈ N
let SQ be a queue filled with all entries of N , ordered by H(N)

if N is not a leaf then {
/* parent filtering */
for each rout(Oi) in N do

if |δ(P, Q) − δ(Oi, P )| > rQ + rOi
then

filtered[rout(Oi)] = true;
/* NN-graph filtering */
while SQ not empty

fetch rout(Si) from the beginning of SQ
if not filtered[rout(Si)] then

compute δ(Si, Q)
NF = FilterByNNGraph(N , 〈Si, δ(Si, Q)〉, (Q, rQ))
move all entries in SQ ∩ NF to the beginning of SQ
/* basic filtering */
if δ(Si, Q) ≤ rQ + rSi

then
RangeQuery(ptr(T (Si)), (Q, rQ), H)

} else {
/* parent filtering */
for each grnd(Oi) in N do

if |δ(P, Q) − δ(Oi, P )| > rQ then
filtered[grnd(Oi)] = true;

/* NN-graph filtering */
while SQ not empty

fetch grnd(Si) from the beginning of SQ
if not filtered[grnd(Si)] then

compute δ(Si, Q)
NF = FilterByNNGraph(N , 〈Si, δ(Si, Q)〉, (Q, rQ))
move all entries in SQ ∩ NF to the beginning of SQ
/* basic filtering */
if δ(Si, Q) ≤ rQ then

add Si to the query result
}

}
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kNN Query. The kNN algorithm is a bit more difficult, since the query radius
rQ is not known at the beginning of kNN search. In [7] the authors applied a
modification of the well-known heuristic (based on priority queue) to the M-tree.
Due to lack of space we omit the listing of kNN pseudocode, however, its form
can be easily derived from the original M-tree’s kNN algorithm and the M*-tree’s
range query implementation presented above (for the code see [11]).

Choosing the Sacrifices. The order in which individual entries are treated
as sacrifices is crucial for the algorithms’ efficiency. Virtually, all entries of a
node can serve as sacrifices, however, when a good sacrifice is chosen at the
beginning, many of others can be filtered out, so the node processing requires
less sacrifices (distance computations, actually). We propose several heuristic
functions H which order all the entries in a node, thus setting a priority in
which individual entries should serve as sacrifices when processing a query.

– hMaxRNNCount
An ordering based on the number of RNNs belonging to an entry ei,
i.e. |RNN(N, ei)|.
Hypothesis: The more RNNs, the greater probability the sacrifice would filter
more entries.

– hMinRNNDistance
An ordering based on the entry’s closest NN or RNN,
i.e. min{δ(ei, Oi)}, ∀Oi ∈ RNN(N, ei) ∪NN(N, ei).
Hypothesis: An entry close to (R)NN stands for a close pivot, so there is a
greater probability of effective filtering (following the closeness criterion).

– hMinToParentDistance
An ordering based on the entry’s to-parent distance.
Hypothesis: The lower to-parent distance, the greater probability that the
entry is close to the query; for such an entry the basic filtering is unavoidable,
so we can use it as a sacrifice sooner.

4.3 M*-Tree Construction

The M*-tree construction consists of inserting new data objects into leaves, and
of splitting overflowed nodes (see Listing 3). When splitting, the NN-graphs
of the new nodes must be created from scratch. However, this does not imply
additional computation costs, since we use M-tree’s MinMaxRad splitting policy
(originally denoted mM UB RAD) which computes all the pairwise distances among
entries of the node being split (the MinMaxRad has been proved to perform the
best [7]). Thus, these distances are reused when building the NN-graphs.

The search for the target leaf can use NN-graph filtering as well (see Listing 4).
In the first phase, a candidate node is tried to be found, which spatially covers
the inserted object. If more such candidates are found, the one with shortest
distance to the inserted object is chosen. In case no candidate was found in the
first phase, in the second phase the closest routing entry is determined. The
search for candidate nodes recursively continues until a leaf is reached.
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Listing 3. (dynamic object insertion)

Insert(Object Oi) {
let N be the root node
node = FindLeaf(N ,Oi)
store ground entry grnd(Oi) in the the target leaf node
update radii in the insertion path
while node is overflowed then

/* split the node, create NN-graphs, produce two routing entries, and return the parent node */
node = Split(node)
insert (update) the two new routing entries into node

}

When inserting a new ground entry into a leaf (or a routing entry into an
inner node after splitting), the existing NN-graph has to be updated. Although
searching for the nearest neighbor of the new entry could utilize the NN-graph
filtering (in a similar way as in kNN query), a check whether the new entry
became the new nearest neighbor to some of the old entries would lead to com-
putation of all the distances needed for a NN-graph update. Thus, we consider
simple update of the NN-graph, where all the distances between the new entry
and the old entries are computed.

Listing 4. (navigating to the leaf for insertion)

Node FindLeaf(Node N , Object New) {
if N is a leaf node then

return N
let P be the parent routing object of N /* if N is root then δ(Oi, P )=δ(P, New)=0 */
let filtered be an array of boolean flags, size of filtered is |N |
set filtered[entry(Oi)]=false, ∀entry(Oi) ∈ N
let usedSacrifices = ∅ be an empty set
let SQ be a queue filled with all entries of N , ordered by H(N)

set candidateEntry = null
minDist = ∞

while SQ not empty {
fetch rout(Si) from the beginning of SQ
/* parent filtering */
if |δ(P, New) − δ(Si, P )| > minDist + rSi

then
filtered[rout(Si)] = true;

if not filtered[rout(Si)] then {
compute δ(Si, New)
insert 〈Si, δ(Si, New)〉 into usedSacrifices
/* NN-graph filtering */
NF = ∅
for each Sj in usedSacrifices do

NF = NF ∪ FilterByNNGraph(N , 〈Sj, δ(Sj , New)〉, (New,minDist))
move all entries in SQ ∩ NF to the beginning of SQ
if δ(Si, New) ≤ rSi

and δ(Si, New) ≤ minDist then
candidateEntry = Si

minDist = δ(Si, New)
}

}
if candidateEntry = null then {

do the same as in the previous while cycle, the difference is just in the condition when updating
a candidate entry, which is relaxed to:

if δ(Si, New) ≤ minDist then
candidateEntry = Si

minDist = δ(Si, New)
}
return FindLeaf(ptr(T (candidateEntry)), New)

}
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4.4 Analysis of Computation Costs

The worst case time complexities of single object insertion into M*-tree as well
as of querying are the same as in the M-tree, i.e. O(log n) in case of insertion
and O(n) in case of querying, where n is the dataset size. Hence, we are rather
interested in typical reduction/increase of absolute computation costs3 exhibited
by M*-tree, with respect to the original M-tree.

M*-Tree Construction Costs. When inserting a new object into M*-tree,
the navigation to the target leaf makes use of NN-graph filtering, so we achieve
faster navigation. However, for insertion into the leaf itself the update of leaf’s
NN-graph is needed, which takes m distance computations for M*-tree instead
of no computation for M-tree (where m is the maximum number of entries in
a leaf). On the other side, the expensive splitting of a node does not require
any additional distance computation, since all pairwise distances have to be
computed to partition the node, regardless of using M-tree or M*-tree.

M*-Tree Querying Costs. The range search is always more efficient in M*-
tree than in M-tree, because only such entries are chosen as sacrifices which
cannot be filtered by the parent, so for them distance computation is unavoid-
able. On the other side, due to NN-graph filtering some of the entries can be
filtered before they become a sacrifice, thus distance computations are reduced
in this case.

5 PM*-Tree

To show the benefits of NN-graph filtering also on other members of the M-tree
family, we have implemented PM*-tree, a NN-graph-enhanced extension of the
PM-tree (see the next section for a brief overview). The only structural extension
over the PM-tree are the NN-graphs in nodes, similarly like M*-tree extends the
M-tree.

5.1 PM-Tree

The idea of PM-tree [10,13] is to combine the hierarchy of M-tree with a set of
p global pivots. In a PM-tree’s routing entry the original M-tree-inherited ball
region is further cut off by a set of rings (centered in the global pivots), so the
region volume becomes smaller (see Figure 3a). Similarly, the PM-tree ground
entries are extended by distances to the pivots (which are also interpreted as rings
due to approximations). Each ring stored in a routing/ground entry represents
a distance range (bounding the underlying data) with respect to a particular
pivot. The combination of all the p entry’s ranges produces a p-dimensional
minimum bounding rectangle (MBR), hence, the global pivots actually map the

3 The NN-graph filtering is used just to reduce the computation costs, the I/O costs
are the same as in the case of M-tree.
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metric regions/data into a ”pivot space” of dimensionality p (see Figure 3b).
The number of pivots can be defined separately for routing and ground entries
– we typically choose less pivots for ground entries to reduce storage costs.

Prior to the standard M-tree ”ball filtering” (either basic or parent filtering),
a query ball mapped into a hyper-cube in the pivot space is checked for an
overlap with routing/ground entry’s MBRs – if they do not overlap, the entry is
filtered out without a distance computation (otherwise needed in M-tree’s basic
filtering). Actually, the overlap check can be also understood as L∞ filtering (i.e.
if the L∞ distance from a region to the query object Q is greater than rQ, the
region is not overlapped by query).

Fig. 3. Hierarchy of PM-tree regions (using global pivots P1, P2): (a) metric space view
(b) pivot space view. (c) L∞ distance from Q to MBRs of routing/ground entries.

In PM*-tree we suppose the following ordering of steps when trying to filter
a non-relevant node:

parent filtering → L∞ filtering → NN-filtering → basic filtering

5.2 Choosing the Sacrifices

The idea of L∞ filtering can be also used to propose a PM*-tree-specific heuristics
for choosing the sacrifice ordering (in addition to the ones proposed for M*-tree).

– hMinLmaxDistance
An ordering based on the minimum L∞ distance from Q to the entry’s MBR
(see Figure 3c).
Hypothesis: The smaller L∞ distance, the greater probability that also the
δ distance is small, so that the entry has to be filtered by basic filtering
(requiring a distance computation).

– hMaxLmaxDistance
An ordering based on the maximum L∞ distance from Q to the entry’s MBR.
Hypothesis: The greater L∞ distance, the greater probability that also the δ
distance is great, so the entry’s RNNs are far from the query and could be
filtered by NN-graph.
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6 Experimental Results

To verify the impact of NN-graph filtering, we have performed extensive exper-
imentation with M*-tree and PM*-tree on three datasets. The sets of query ob-
jects were selected as 500 random objects from each dataset, while the query sets
were excluded from indexing. We have monitored the computation costs (num-
ber of distance computations) required to index the datasets, as well as costs
needed to answer range and kNN queries. Each query test unit consisted of 500
query objects and the results were averaged. The computation costs for querying
on PM(*)-tree do not include the external distance computations needed to map
the query into the pivot space (this overhead is equal to the number of pivots
used, and cannot be affected by filtering techniques).

The datasets were indexed for varying dimensionality, capacity of entries per
inner node, and the number of pivots (in case of PM(*)-tree). Unless otherwise
stated, the PM-tree and PM*-tree indexes were built using 64 pivots (64 in
inner nodes and 32 in leaf nodes). Moreover, although the M-tree and PM-tree
indexes are designed for database environments, in this paper we are interested
just in computation costs (because the NN-graph filtering cannot affect I/O
costs). Therefore, rather than fixing a disk page size used for storage of a node,
we specify the inner node capacity (maximum of entries stored within an inner
node – set to 50 in most experiments).

6.1 Corel Dataset

The first set of experiments was performed on the Corel dataset [8], consisting of
65,615 feature vectors of images (we have used the color moments). As indexing
metric the L1 distance was used. Unless otherwise stated, we have indexed the
first 8 out of 32 dimensions. In Table 1 see the statistics obtained when index-
ing the Corel dataset – the numbers of distance computations needed to index
all the vectors and the index file sizes. The computation costs and index sizes
of M*-tree/PM*-tree are represented as percentual growth with respect to the
M-tree/PM-tree values.

Table 1. Corel indexing statistics

index type construction costs index file size
M-tree 3,708,968 4.7MB

M*-tree +22% +25.5%
PM-tree(64,32) 18,522,252 8.8MB

PM*-tree(64,32) +25.6% +0%

In Figure 4a see the M-tree and M*-tree querying performance with respect
to increasing capacity of nodes. We can see the M-tree performance improves up
to the capacity of 30 entries, while M*-tree steadily improves up to the capacity
of 100 entries – here the M*-tree is by up to 45% more efficient than M-tree.
The most effective heuristic is the hMaxRNNCount.
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Fig. 4. 5NN queries depending on varying node capacity (a) M*-tree (b) PM*-tree. (c)
Range queries depending on increasing dataset dimensionality.

The impact of increasing PM*-tree node capacities is presented in Figure 4b.
The PM*-tree with hMinLmaxDistance heuristic performs the best, while the
other heuristics are even outperformed by the PM-tree. The gain in efficiency is
not so significant as in case of M*-tree (5%).

In Figure 4c see a comparison of M-tree and M*-tree when querying datasets
of increasing dimensionality. Again, the hMaxRNNCount heuristic performed the
best, the efficiency gain of M*-tree was significant – about 40% on average.

6.2 Polygons Dataset

The second set of experiments was carried out on the Polygon dataset, a syn-
thetic dataset consisting of 1,000,000 randomly generated 2D polygons, each
having 5-10 vertices. As the indexing metric the Hausdorff set distance was em-
ployed (where L2 distance was used as partial distance on vertices). In Table 2
see the statistics obtained for the Polygons indexes.

Table 2. Polygons indexing statistics

index type construction costs index file size
M-tree 70,534,350 148.4MB

M*-tree +12,1% +5%
PM-tree(64,32) 291,128,463 202.7MB

PM*-tree(64,32) +17% +0%

In Figure 5a the M*-tree 1NN performance with respect to the increasing
dataset size is presented. To provide a better comparison, the computation costs
are represented in proportion of distance computations needed to perform full
sequential search on the dataset of given size. The efficiency gain of M*-tree is
about 30% on average.

The costs for kNN queries are shown in Figure 5b, we can observe the efficiency
gain ranges from 30% in case of 1NN query to 23% in case of 100NN query. As
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Fig. 5. (a) 1NN queries depending on increasing dataset size. (b) kNN queries (c) 1NN
queries depending on increasing number of pivots used in PM-tree.

usual, the M*-tree equipped with the hMaxRNNCount heuristic performed the
best.

The performance of 1NN queries on PM*-tree is presented in Figure 5c, consid-
ering increasing number of pivots used. The PM*-tree performance improvement
with respect to PM-tree is quite low, ranging from 15% (2 and 4 pivots, heuristic
hMaxLmaxDistance) to 6% (≥ 8 pivots, heuristic hMinLmaxDistance).

6.3 GenBank Dataset

The last dataset in experiments was created by sampling 250,000 strings of
protein sequences (of lengths 50-100) from the GenBank file rel147 [1]. The edit
distance was used to index the GenBank dataset. In Table 3 see the indexing
statistics obtained for the GenBank dataset.

Table 3. GenBank indexing statistics

index type construction costs index file size
M-tree 17,726,084 54.5M

M*-tree +38,9% +18,2%
PM-tree(64,32) 77,316,482 66.8MB

PM*-tree(64,32) +20.6% +0%

In Figure 6 see the results for kNN queries on M*-tree and PM*-tree, re-
spectively. Note that the GenBank dataset is generally hard to index, the best
achieved results for 1NN by M*-tree and PM*-tree are 136,619 (111,086 respec-
tively) distance computations, i.e. an equivalent of about half of the sequen-
tial search. Nevertheless, in these hard conditions the M*-tree and PM*-tree
have outperformed the M-tree and PM-tree quite significantly, by up to 20%.
As in the previous experiments, the hMaxRNNCount heuristic on M*-tree and
hMinLmaxDistance heuristic on PM*-tree performed the best.
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Fig. 6. kNN queries (a) M-tree (b) PM-tree

6.4 Summary

The construction costs and index file sizes of all M*-tree and PM*-tree indexes
exhibited an increase, ranging from 5% to 25%. For PM*-tree the increase in
index file size was negligible in all cases.

The results on the small-sized Corel dataset have shown the M*-tree can sig-
nificantly outperform the M-tree. However, the PM*-tree performed only slightly
better than PM-tree. We suppose the superior performance of PM-tree simply
gives only a little room for improvements. Note the dataset of size ≈ 65,000 can
be searched by the PM-tree for less than 300 distance computation – this cor-
responds, for example, to six paths of length 3 in the PM-tree where 15 entries
per node must be filtered by basic filtering.

We suppose the extent of M*-tree/PM*-tree performance gain is related to
the intrinsic dimensionality [4] of the respective dataset. The high-dimensional
GenBank dataset is hard to index, so any ”help” by additional filtering tech-
niques (like the NN-graph filtering) would result in better pruning of index
subtrees. On the other side, when considering the low-dimensional Corel and
Polygons datasets, the PM-tree alone is extremely successful (up to 10x faster
than M-tree), so we cannot achieve a significant gain in performance.

7 Conclusions

We have proposed an extension of M-tree family, based on utilization of nearest-
neighbor graphs in tree nodes. We have shown the NN-graphs can be successfully
implemented into index structures designed for a kind of local-pivot filtering. The
improvement is based on using so-called ”sacrifices” – selected entries in the tree
node which serve as local pivots to all entries being reverse nearest neighbors
(RNNs) to a sacrifice. Since the distances from a sacrifice to its RNNs are pre-
computed in the NN-graph, we could prune several subtrees for just one distance
computation. We have proposed several heuristics on choosing the sacrifices, and
the modified insertion, range and kNN query algorithms.
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7.1 Future Work

The properties of NN-graph filtering open possibilities for other applications.
Generally, the metric access methods based on compact partitioning using local
pivots could be extended by NN-graphs. In the future we would like to integrate
the NN-graph filtering into other metric access methods, as a supplement to
their own filtering techniques.
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2. Bustos, B., Navarro, G., Chávez, E.: Pivot selection techniques for proximity
searching in metric spaces. Pattern Recognition Letters 24(14), 2357–2366 (2003)

3. Bustos, B., Skopal, T.: Dynamic Similarity Search in Multi-Metric Spaces. In:
Proceedings of ACM Multimedia, MIR workshop, pp. 137–146. ACM Press, New
York (2006)
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12. Skopal, T., Pokorný, J., Krátký, M., Snášel, V.: Revisiting M-tree Building Princi-
ples. In: Kalinichenko, L.A., Manthey, R., Thalheim, B., Wloka, U. (eds.) ADBIS
2003. LNCS, vol. 2798, pp. 148–162. Springer, Heidelberg (2003)
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Abstract. We present a set of time-efficient approaches to index objects
moving on the plane to efficiently answer range queries about their future
positions. Our algorithms are based on previously described solutions as
well as on the employment of efficient data structures. Finally, an exper-
imental evaluation is included that shows the performance, scalability
and efficiency of our methods.

Keywords: Spatio-Temporal Databases, Indexing.

1 Introduction

This paper focuses on the problem of indexing mobile objects in two dimensions
and efficiently answering range queries over the objects locations in the future.
This problem is motivated by a set of real-life applications such as intelligent
transportation systems, cellular communications, and meteorology monitoring.
There are two basic approaches used when trying to handle this problem; those
that deal with discrete and those that deal with continuous movements.

In a discrete environment the problem of dealing with a set of moving objects
can be considered to be equivalent to a sequence of database snapshots of the ob-
ject positions/extents taken at time instants t1 < t2 < . . ., with each time instant
denoting the moment where a change took place. From this point of view, the
indexing problems in such environments can be dealt with by suitably extend-
ing indexing techniques from the area of temporal [30] or/and spatial databases
[11]; in [21] it is elegantly exposed how these indexing techniques can be gen-
eralized to handle efficiently queries in a discrete spatiotemporal environment.
When considering continuous movements there exists a plethora of efficient data
structures [2,14,17,22,23,28,29,33].

The common thrust behind these indexing structures lies in the idea of ab-
stracting each object’s position as a continuous function f(t) of time and up-
dating the database whenever the function parameters change; accordingly an
object is modeled as a pair consisted of its extent at a reference time (design
parameter) and of its motion vector. One categorization of the aforementioned
structures is according to the family of the underlying access method used. In
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particular, there are approaches based either on R-trees or on Quad-trees as
explained in [25,26,27]. On the other hand, these structures can be also par-
titioned into (a) those that are based on geometric duality and represent the
stored objects in the dual space [2,17,23] and (b) those that leave the original
representation intact by indexing data in their native n-d space [4,22,28,29,33].
The geometric duality transformation is a tool heavily used in the Computational
Geometry literature, which maps hyper-planes in Rn to points and vice-versa. In
this paper we present and experimentally evaluate techniques using the duality
transform that are based on previous approaches [17,22] to efficiently index the
future locations of moving points on the plane.

In Section 2 we give a formal description of the problem. In Sections 3 and 4
we present our new solutions that outperform the solution presented in [17,22]
since they use more efficient indexing schemes. In particular, Section 4 presents
two alternative solutions. The first one is very easily implemented and has many
practical merits. The second one has only theoretical interest since it uses clever
but very complicated data structures, the implementation of which is very dif-
ficult and constitutes an open future problem. Section 5 presents an extended
experimental evaluation and Section 6 concludes the paper.

2 Definitions and Problem Description

We consider a database that records the position of moving objects in two di-
mensions on a finite terrain. We assume that objects move with a constant
velocity vector starting from a specific location at a specific time instant. Thus,
we can calculate the future object position, provided that its motion character-
istics remain the same. Velocities are bounded by [umin, umax]. Objects update
their motion information, when their speed or direction changes. The system is
dynamic, i.e. objects may be deleted or new objects may be inserted.

Let Pz(t0) = [x0, y0] be the initial position at time t0 of object z. If object
z starts moving at time t > t0, its position will be Pz(t) = [x(t), y(t)] = [x0 +
ux(t− t0), y0 +uy(t− t0)], where U = (ux, uy) is its velocity vector. For example,
in Figure 1 the lines depict the objects trajectories on the (t, y) plane.

We would like to answer queries of the form: “Report the objects located
inside the rectangle [x1q , x2q ]× [y1q , y2q ] at the time instants between t1q and t2q

(where tnow ≤ t1q ≤ t2q ), given the current motion information of all objects.”

3 Indexing Mobile Objects in Two Dimensions

3.1 Indexing Mobile Objects in One Dimension

The Duality Transform. The duality transform, in general, maps a hyper-
plane h from Rn to a point in Rn and vice-versa. In this subsection we briefly
describe how we can address the problem at hand in a more intuitive way, by
using the duality transform on the 1-d case.
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Fig. 1. Trajectories and query in (t, y) plane

Hough-X Transform. One duality transform for mapping the line with equa-
tion y(t) = ut+a to a point in R2 is by using the dual plane, where one axis rep-
resents the slope u of an objects trajectory (i.e. velocity), whereas the other axis
represents its intercept a. Thus we get the dual point (u, a) (this is the so called
Hough-X transform [17,22]). Accordingly, the 1-d query [(y1q , y2q ), (t1q , t2q )] be-
comes a polygon in the dual space. By using a linear constraint query [12], the
query in the dual Hough-X plane is expressed as follows (see Figure 2):

a

u

Umin Umax

y1q

y2q

Qhough-x

E1hough-x

E2hough-x

Fig. 2. Query in the Hough-X dual plane

Thus, the initial query [(t1q , t2q ), (y1q , y2q)] in the (t, y) plane is transformed
to the following rectangular query [(umin, umax), (y1q − t1qumax, y2q − t2qumin)]
in the (u, a) plane.

Hough-Y Transform. By rewriting the equation y = ut + a as t = 1
uy − a

u ,
we can arrive to a different dual representation (the so called Hough-Y transform
in [17,22]). The point in the dual plane has coordinates (b, n), where b = − a

u
and n = 1

u . Coordinate b is the point where the line intersects the line y = 0 in
the primal space. By using this transform horizontal lines cannot be represented.
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Fig. 3. Query on the Hough-Y dual plane

Similarly, the Hough-X transform cannot represent vertical lines. Nevertheless,
since in our setting lines have a minimum and maximum slope (velocity is bounded
by [umin, umax]), both transforms are valid.

Similarly, the initial query [(t1q , t2q ), (y1q , y2q )] in the (t, y) plane (see Figure 3)
can be transformed to the following rectangular query in the (b, n) plane:
[(t1q −

y2q

umin
, t2q −

y1q

umax
), ( 1

umax
, 1

umin
)].

3.2 The Proposed Algorithm for Indexing Mobile Objects in Two
Dimensions

In [17,22], motions with small velocities in the Hough-Y approach are mapped
into dual points (b, n) having large n coordinates (n = 1/u). Thus, since few
objects can have small velocities, by storing the Hough-Y dual points in an
index structure such as an R∗-tree, MBR’s with large extents are introduced,
and the index performance is severely affected. On the other hand, by using
a Hough-X for the small velocities’ partition, this effect is eliminated, since
the Hough-X dual transform maps an object’s motion to the (u, a) dual point.
The query area in Hough-X plane is enlarged by the area E, which is easily
computed as EHough−X = (E1hough−X + E2hough−X). By QHough−X we denote
the actual area of the simplex query. Similarly, on the dual Hough-Y plane,
QHough−Y denotes the actual area of the query, and EHough−Y denotes the
enlargement. According to these observations the solution in [17,22] proposes
the choice of that transformation which minimizes the following criterion: c =
EHough−X

QHough−X
+ EHough−Y

QHough−Y
.

The procedure for building the index follows:

1. Decompose the 2-d motion into two 1-d motions on the (t, x) and (t, y)
planes.

2. For each projection, build the corresponding index structure.

Partition the objects according to their velocity:

– Objects with small velocity are stored using the Hough-X dual transform,
while the rest are stored using the Hough-Y dual transform.

– Motion information about the other projection is also included.
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The outline of the algorithm for answering the exact 2-d query follows:

1. Decompose the query into two 1-d queries, for the (t, x) and (t, y) projection.
2. For each projection get the dual - simplex query.
3. For each projection calculate the criterion c and choose the one (say p) that

minimizes it.
4. Search in projection p the Hough-X or Hough-Y partition.
5. Perform a refinement or filtering step “on the fly”, by using the whole motion

information. Thus, the result set contains only the objects that satisfy the
query.

In [17,22], QHough−X is computed by querying a 2-d partition tree, whereas
QHough−Y is computed by querying a B+-tree that indexes the b parameters of
Figure 3. Our construction instead is based: (a) on the use of the Lazy B-tree
[15] instead of the B+-tree when handling queries with the Hough-Y transform
and (b) on the employment of a new index that outperforms partition trees in
handling polygon queries with the Hough-X transform. In the next section we
present the main characteristics of our proposed structures.

4 The Access Methods

4.1 Handling Polygon Queries When Using the Hough-Y Transform

As described in [17,22], polygon queries when using the Hough-Y transform
can be approximated by a constant number of 1-d range queries that can be
handled by a classical B-tree [9]. Our construction is based on the use of a B-
tree variant, which is called Lazy B-tree and has better dynamic performance as
well as optimal I/O complexities for both searching and update operations [15].
An orthogonal effort towards developing another yet B-tree variant under the
same name has been proposed in [20]. The Lazy B-tree of [15] is a simple but
non-trivial externalization of the techniques introduced in [24]. In simple words,
it is a typical case of a two-level access method as depicted in Figure 4.

The Lazy B-tree operates on the external memory model of computation. The
first level consists of an ordinary B-tree, while the second one consists of buckets
of size O(log2 n), where n is approximately equal to the number of elements
stored in the access method. Each bucket consists of two list layers, L and Li

respectively, where 1 ≤ i ≤ O(log n), each of which has O(log n) size. The
rebalancing operations are guided by the global rebalancing lemma given in [24]
(see also [10,19]). In this scheme, each bucket is assigned a criticality indicating
how close this bucket is to be fused or split. Every O(logB n) updates we choose
the bucket with the largest criticality and make a rebalancing operation (fusion
or split). The update of the Lazy B-tree is performed incrementally (i.e., in a
step-by-step manner) during the next O(logB n) update operations and until the
next rebalancing operation. The global rebalancing lemma ensures that the size
of the buckets will never be larger than O(log2 n).
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Bucket

Fig. 4. The Lazy B-tree

Let n be approximately equal to the number of elements stored in the access
method, and B be the size of blocks in the external memory. Then:

Theorem 1. The Lazy B-Tree supports the search operation in O(logB n) worst-
case block transfers and update operations in O(1) worst-case block transfers,
provided that the update position is given.

4.2 Handling Polygon Queries When Using the Hough-X Transform

Our construction is based on an interesting geometric observation that the poly-
gon queries are a special case of the general simplex query and hence can be
handled more efficiently without resorting to partition trees.

Let us examine the polygon (4-sided) indexability of Hough-X transformation.
Our crucial observation is that the query polygon has the nice property of being
divided into orthogonal objects, i.e. orthogonal triangles or rectangles, since the
lines X = Umin and X = Umax are parallel.

We depict schematically the three basic cases that justify the validity of our
observation.

Case I. Figure 5 depicts the first case where the polygon query has been
transformed to four range queries employing the orthogonal triangles (P1P2P5),
(P2P7P8), (P4P5P6), (P3P4P7) and one range query for querying the rectangle
(P5P6P7P8).

Case II. The second case is depicted in the Figure 6. In this case the polygon
query has been transformed to two range queries employing the orthogonal tri-
angles (P1P4P5) and (P2P3P6) and one range query for querying the rectangle
(P2P5P4P6).

Case III. The third case is depicted in the Figure 7. In this case the poly-
gon query has been transformed to two range queries employing the orthogonal
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Fig. 6. Orthogonal triangulations: Case II

triangles (P1P4P5) and (P2P3P6) and one range query for querying the rectangle
(P2P1P5P6).

The problem of handling orthogonal range search queries has been handled
in [3], where an optimal solution was presented to handle general (4-sided)
range queries in O((N/B)(log(N/B)) log logB N) disk blocks and could answer
queries in O(logB N + T/B) I/O’s ; the structure also supports updates in
O((logB N)(log(N/B))/ log logB N) I/O’s.

Let us now consider the problem of devising an access method for handling
orthogonal triangle range queries; in this problem we have to determine all the
points from a set S of n points on the plane lying inside an orthogonal triangle.
Recall that a triangle is orthogonal if two of its edges are axis-parallel. A basic
ingredient of our construction will be a structure for handling half-plane range
queries, i.e. queries that ask for the reporting all the points in a set S of n points
in the plane that lie on a given side of a query line L.

A main memory solution presented in [6] and achieves optimal O(log n + A)
query time and linear space using the notion of duality. The above main memory
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Fig. 7. Orthogonal triangulations: Case III

construction was extended to external memory in [1], where an access method
was presented that was the first optimal one for answering 2-d halfpspace range
queries in the worst case, based on the geometric technique called filtering search
[7]. It uses O(n) blocks of space and answers a query using O(logB n + A) I/Os,
where A is the answer size. We will use these methods to satisfy orthogonal
triangle range queries on points.

Let us now return to our initial problem, i.e the devise of a structure suitable
for handling orthogonal triangle range queries. Recall, a triangle is orthogonal if
two of its edges are axis-parallel. Let T be an orthogonal triangle defined by the
point (xq, yq) and the line Lq that is not axis-parallel (see Figure 8). A retrieval
query for this problem can be supported efficiently by the following 3-layered
access method.

To set up the access method, we first sort the n points according to their
x-coordinates and then store the ordered sequence in a leaf-oriented balanced
binary search tree of depth O(log n). This structure answers the query: “deter-
mine the points having x-coordinates in the range [x1, x2] by traversing the two
paths to the leaves corresponding to x1, x2”. The points stored as leaves at the
subtrees of the nodes which lie between the two paths are exactly these points in
the range [x1, x2]. For each subtree, the points stored at its leaves are organized
further to a second level structure according to their y-coordinates in the same
way. For each subtree of the second level structure, the points stored at its leaves

qL),( qq yx

Fig. 8. The query triangle
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are organized further to a third level structure as in [1,6] for half-plane range
queries. Thus, each orthogonal triangle range query is performed through the
following steps:

1. In the tree storing the pointset S according to x-coordinates, traverse the
path to xq . All the points having x-coordinate in the range [xq,∞) are stored
at the subtrees on the nodes that are right sons of a node of the search path
and do not belong to the path. There are at most O(log n) such disjoint
subtrees.

2. For every such subtree traverse the path to yq. By a similar argument as
in the previous step, at most O(log n) disjoint subtrees are located, storing
points that have y-coordinate in the range [yq,∞).

3. For each subtree in Step 2, apply the half-plane range query of [1,6] to
retrieve the points that lie on the side of line Lq towards the triangle.

The correctness of the above algorithm follows from the structure used. In each
of the first two steps we have to visit O(log n) subtrees. If in step 3 we apply
the main memory solution of [6], then the query time becomes O(log3 n + A),
whereas the required space is O(n log2 n). Otherwise, if we apply the external
memory solution of [1], then our method above requires O(log2 n logB n + A)
I/O’s and O(n log2 n) disk blocks. Although the space becomes superlinear the
O(log2 n logB n+A) worst-case I/O complexity of our method is better than the
O(

√
n/B + A/B)) worst-case I/O complexity of a partition tree.

5 Experimental Evaluation

The structure presented in [1] is very complicated and thus it is not easily im-
plemented neither efficient in practice. For this reason, the solution presented
in Subsection 4.2 is interesting only from a theoretical point of view. On the
other hand, as implied by the following experiments, the solution presented in
Subsection 4.1 is very efficient in practice.

This section compares the query/update performance of our solution with
those ones that use B+-trees and TPR∗-tree [33], respectively. For all exper-
iments, the disk size is set to 1 Kbyte, the key length is 8 bytes, whereas
the pointer length is 4 bytes. This means that the maximum number of en-
tries (< x > or < y >, respectively) in both Lazy B-trees and B+-trees is
1024/(8+4)=85. In the same way, the maximum number of entries (2-d rectan-
gles or < x1, y1, x2, y2 > tuples) in TPR∗-tree is 1024/(4*8+4)=27. We use a
small page size so that the number of nodes in an index simulates realistic sit-
uations. Similar methodology was used in [4]. We deploy spatio-temporal data
that contain insertions at a single timestamp 0. In particular, objects’ MBRs
(Maximum Bounded Rectangles) are taken from the real spatial dataset LA
(128971 MBRs) [Tiger], where each axis of the space is normalized to [0,10000].
For the TPR∗-tree, each object is associated with a VBR (Velocity Bounded
Rectangle) such that (a) the object does not change spatial extents during
its movement, (b) the velocity value distribution is skewed (Zipf) towards 0
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Fig. 9. qV len = 5, qT len = 50 qRlen = 100 (top), qRlen = 2500 (bottom)
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Fig. 10. qRlen = 3000, qV len = 5, qT len = 50

in range [0,50], and (c) the velocity can be either positive or negative with
equal probability. For each dataset, all indexes have similar sizes. Specifically,
for LA, each tree has 4 levels and around 6700 leaves. Each query q has three
parameters: qRlen, qV len, and qT len, such that (a) its MBR qR is a square,
with length qRlen, uniformly generated in the data space, (b) its VBR is qV =
−qV len/2, qV len/2,−qV len/2, qV len/2, and (c) its query interval is qT =
[0, qT len]. The query cost is measured as the average number of node accesses
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in executing a workload of 200 queries with the same parameters. Implementa-
tions were carried out in C++ including particular libraries from SECONDARY
LEDA v4.1. The main performance metric is measured in number of I/Os.

Query Cost Comparison. We measure the performance of our technique
earlier described (two Lazy B-trees, one for each projection, plus the query pro-
cessing between the two answers), the traditional technique (two B+-trees, one
for each projection, plus the query processing between the two answers) and that
one of TPR∗-tree, using the same query workload, after every 10000 updates.
The following figures show the query cost (for datasets generated from LA as
described above) as a function of the number of updates, using workloads with
different parameters. In figures concerning query costs our solution is almost the
same efficient as the solution using B+-trees ((B+)(x), (B+)(y) plus CQ). This
fact is an immediate result of the same time complexity of searching procedures
in both structures B+-tree and Lazy B-trees, respectively. In particular, we have
to index the appropriate b parameters in each projection and then to combine the
two answers by detecting and filtering all the pair permutations. Obviously, the
required number of block transfers depends on the answer’s size and is exactly
the same in both solutions for all conducted experiment.

Figure 9 depicts the efficiency of our solution toward that one of TPR∗-tree.
The performance of our solution degrades as the length of the query rectangle
grows from 100 to 2500. It is almost equally efficient to the solution of B+-trees.
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Fig. 12. qV len = 5, qT len = 1, qRlen = 400 (top), qRlen = 1000 (bottom)
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Fig. 13. qRlen = 400, qV len = 5, qT len = 100

In Figure 10 the TPR∗-tree outperforms the other two solutions since the length
of the query rectangle became too large (3000).

Figure 11 depicts the efficiency of our solution towards that one of TPR∗-tree
in case the velocity vector grows up. The performance of our solution degrades
as the length of the query rectangle grows from 400 to 2500. It is almost the
same efficient with the solution of B+-trees.

Figure 12 depicts the efficiency of our solution toward that one of TPR∗-tree
in case the length of time interval extremely degrades to value 1. The perfor-
mance of our solution outperforms the TPR∗-tree after 50.000 updates have been
occurred. It is almost the same efficient as the solution of B+-trees is.
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Fig. 14. Update Cost Comparison

Figure 13 depicts the efficiency of our solution toward that one of TPR∗-tree
in case the length of time interval enlarges to value 100. Apparently, the length
of the query rectangle remains in sensibly realistic levels. It is almost the same
efficient with the solution of B+-trees.

Update Cost Comparison. Figure 14 compares the average cost (amortized
over each insertion and deletion) as a function of the number of updates. The
Lazy B-trees for the x- and y-projections (LBT(x) and LBT(y) respectively) have
nearly optimal update performance and consistently outperform the TPR∗-tree
by a wide margin. They also outperform the update performance of B+-trees by
a logarithmic factor but this is not depicted clearly in Figure 14 due to small
datasets.

For this reason we performed another experiment with gigantic synthetic data
sets of size n0 ∈ [106, 1012]. In particular, we initially have 106 mobile objects and
during the experiment we continuously insert new till their number becomes 1012.
For each object we considered a synthetic linear function where the velocity value
distribution is skewed (zipf) towards 30 in the range [30,50]. The velocity can
be either positive or negative with equal probability. For simplicity, all objects
are stored using the Hough-Y dual transform. This assumption is also realistic,
since in practice the number of mobile objects, which are moving with very small
velocities, is negligible.

Due to gigantic synthetic dataset we increased the page size from 1024 to 4096
bytes. Since the length of each key is 8 bytes and the length of each pointer is 4
bytes the block size now becomes 341. We have not measured the performance
of the initialization bulk-loading procedure. In particular, we have measured the
performance of update only operations.

Figure 15 establishes the overall efficiency of our solution. It is also expected
that the block transfers for the update operations will remain constant even for
gigantic data sets. This fact is an immediate result of the time complexity of
update procedures in the Lazy B-tree.
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Rebalancing Operations for 2-D prediction queries
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Fig. 15. Rebalancing Operations for the particular problem of 2-D Prediction Queries

6 Conclusions

We presented access methods for indexing mobile objects that move on the
plane to efficiently answer range queries about their location in the future. The
performance evaluation illustrates the applicability of our first solution since the
second solution has only theoretical interest. Our future plan is to simplify the
second complicated solution to be more implementable and as a consequence
more applicable in practice.
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Abstract. In this study, we propose a better relationship based clustering 
framework for dealing with unbalanced clustering and outlier filtering on high 
dimensional datasets. Original relationship based clustering framework is based 
on a weighted graph partitioning system named METIS. However, it has two 
major drawbacks: no outlier filtering and forcing clusters to be balanced. Our 
proposed framework uses Graclus, an unbalanced kernel k-means based 
partitioning system. We have two major improvements over the original 
framework: First, we introduce a new space. It consists of tiny unbalanced 
partitions created using Graclus, hence we call it micro-partition space. We use 
a filtering approach to drop out singletons or micro-partitions that have fewer 
members than a threshold value. Second, we agglomerate the filtered micro-
partition space and apply Graclus again for clustering. The visualization of the 
results has been carried out by CLUSION. Our experiments have shown that our 
proposed framework produces promising results on high dimensional datasets. 

Keywords: Data Mining, Dimensionality, Clustering, Outlier filtering. 

1   Introduction 

One of the important problems of Data mining (DM) community is mining high 
dimensional datasets. As dimensionality increases, the performance of the clustering 
algorithms sharply decreases. Traditional clustering algorithms are susceptible to the 
well-known problem of the curse of dimensionality [1], which refers to the degradation 
in algorithm performance as the number of features increases. As a result, these 
methods will often fail to identify coherent clusters when applied to high dimensional 
data. 

In this paper we introduce a better framework for unbalanced partitioning and 
visualization based on Strehl and Ghosh’s relationship based clustering framework [2]. 
Their framework has two fundamental components named CLUSION and 
OPOSSUM. CLUSION is a similarity matrix based visualization technique and 
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OPOSSUM is a balanced partitioning system which uses a graph partitioning tool 
called METIS [3]. OPOSSUM produces either sample or value balanced clusters. 
Neither OPOSSUM/CLUSION nor METIS has the capability of outlier detection, 
outlier filtering or unbalanced partitioning. Unlike Strehl and Ghosh’s original 
framework, our proposed framework can discover the clusters of variable size and it can 
filter or detect outliers on high dimensional datasets. 

Our framework employs Graclus [4], a kernel based k-means clustering [5] system, 
instead of METIS. Weighted form of kernel based k-means approach is 
mathematically equivalent to general weighted graph clustering approach of which 
METIS uses. However, kernel k-means approach is extremely fast and gives high-quality 
partitions. Unlike METIS, it does not force clusters to be nearly equal size. We also 
introduce an intermediate space called micro-partition space as an input space for the 
Graclus. Details of our approach have been explained in the following sections. 

2   Related Work 

Cluster analysis and visualization are two of the difficulties of high dimensional 
clustering. Cluster analysis [6,7] divides data into meaningful or useful groups 
(clusters). Clustering has been widely studied in several disciplines [6,8]. Some classic 
approaches include partitional methods such as k-means, k-medoids, hierarchical 
agglomerative clustering, unsupervised Bayes or EM based techniques. Above all, graph 
based partitioning methods frequently used on very high dimensional datasets recently. 
Currently, the most popular tools for graph partitioning are CHACO [9] and METIS 
[3,10]. 

Kernel K-means based Graclus system provide a mathematical connection to relate 
the two seemingly different approaches of kernel k-means and graph clustering. In 
multilevel graph partitioning algorithms, the input graph is repeatedly coarsened level 
by level until only a small number of vertices remain. An initial clustering is performed 
on this graph, and then the clustering is refined as the graph is uncoarsened level by 
level. However, well-known methods such as METIS[3] and CHACO [9] force the 
clusters to be of nearly equal size and are all based on optimizing the Kerninghan-Lin 
objective[11]. In contrast, Graclus removes the restriction of equal size and uses the 
weighted kernel k-means algorithm during the refinement phase to directly optimize a 
wide class of graph clustering objectives. 

There are many visualization techniques for high dimensional datasets. Keim and 
Kriegel [12] grouped visual data exploration techniques for multivariate, 
multidimensional data into six classes, namely, geometric projection, icon based, pixel-
oriented, hierarchical, graph-based, and hybrid. Although these techniques perform well 
on visualizing multidimensional datasets, they become almost useless on the datasets that 
have dimensions above some hundreds. 

To overcome the drawbacks of dimensionality, matrix based visualization 
techniques [13] can be used on very high dimensional datasets. In matrix based 
visualization techniques, similarity in each cell is represented using a shade to indicate 
the similarity value: greater similarity is represented with dark shading, while lesser 
similarity with light shading. The dark and light cells may initially be scattered over 
the matrix. To bring out the potential clusterings, the rows and columns need to be 
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reorganized so that the similar objects are put on adjacent positions. If ’real’ clusters 
exist in the data, they should appear as symmetrical dark squares along the diagonal 
[13]. CLUSION, a matrix based visualization technique, is used in both Strehl and 
Ghosh’s and our framework as explained in the following sections. 

3    Relationship-Based Clustering Approach 

Strehl A. and Ghosh J. proposed a different approach in [2] very high dimensional 
data mining. In their framework the focus was on the similarity space rather than the 
feature space. Most standard algorithms spend little attention on the similarity space. 
Generally, similarity computations are directly integrated into the clustering algorithms 
which proceed straight from feature space to the output space. The key difference 
between relationship-based clustering and regular clustering is the focus on the 
similarity space S instead of working directly in the feature domain F. Once similarity 
space is computed, a modified clustering algorithm, which can operate on the 
similarity space, is used to partition the similarity space. The resulting space is 
reordered in such a way that the points within the same cluster are put on adjacent 
positions. The final step is the visualization of the similarity matrix and visually 
inspecting the clusters. 

3.1   Relationship-Based Clustering Framework 

A brief overview of the general relationship-based framework which is shown in figure 1 
χ is a collection of n data source. Extracting features from pure data source yields X 
feature space. In most cases, some data preprocessing applied to the data source to obtain 
feature space. Similarities are computed, using e.g. euclidean, cosine, jaccard which is 
denoted by Ψ yields the n×n similarity matrix S. Once the similarity matrix is 
computed, further clustering algorithms run on similarity space. Clustering algorithm 
Φ yields cluster labels λ. 

 

Fig. 1. Relationship-based clustering framework [2] 

3.2   OPOSSUM System 

Relationship-based clustering framework employs METIS for clustering. METIS is a 
graph partitioning tool, so it can operate on similarity space. Strehl & Ghosh call 
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METIS based balanced partitioning visualization system as OPOSSUM (Optimal 
Partitioning of Sparse Similarities Using METIS) [2]. OPOSSUM differs from other 
graph-based clustering techniques by sample or value balanced clusters and visualization 
driven heuristics for finding an appropriate k. 

3.3   High Dimensional Data Visualization with CLUSION 

CLUSION (CLUSter visualizatION toolkit) is a matrix based visualization tool which 
is used for visualizing the results. CLUSION employs the human vision system to 
explore the relationships in the data, guide the clustering process, and verify the quality 
of the results. 

 

Fig. 2. a) Similarity matrix b) Matrix visualization c) CLUSION output of similarity matrix 
[14] 

CLUSION looks at the output of the clustering routine (λ index), reorders the data 
points so that points with the same cluster label are contiguous, and then visualizes the 
resulting permuted similarity matrix, S′. More formally, the original n×n similarity 
matrix S is permuted with a n×n permutation matrix P. Mathematical background of the 
whole process can be found on [2]. Clusters appear as symmetrical dark squares along 
the main diagonal on the CLUSION graphs. Visualization process is shown in figure 2. 

3.4   Problems with Strehl and Ghosh’s Framework 

The computing performance and the quality of the clusters produced by OPOS-
SUM/CLUSION framework is quiet impressive. However it is not perfect. It has two 
major drawbacks: 

a) Produces balanced clusters only: OPOSSUM/CLUSION framework forces clusters 
to be of equal size. In some type of datasests balanced clusters could be important, 
because it avoids trivial clusterings such as k-1 singletons and 1 big clusters. But in 
most real world datasets forcing clusters to be balanced can result in incorrect 
knowledge discovery environment. 

b) No outlier filtering : Partitioning based clustering algorithms generally suffer 
from outliers. As it is denoted in previous sections, OPOSSUM system produces 
either value or sample balanced clusters. On this kind of systems, outliers can 
reduce the quality and the validity of the clusters depending on the resolution and 
distribution of the dataset. 
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4   Our Proposed Graclus-Based Framework 

The architecture of our framework is shown in figure 3. It consists of the following three 
major improvements: 

a) An intermediate space is introduced. We call it ’micro-partition space’ and it is 
denoted by P in figure 3. Similarity space has been transformed into the micro-
partition space by means of Graclus. This process is represented by ρ in the 
figure. Graclus creates unbalanced micro-partitions consisting of 1 to nρ members 
where nρ depends on the number of micro-partitions. In most conditions nρ can 
take values from 3 to 10. See section 4.1 for details of micro-partition space. 

b) Outlier filtering can be performed easily on the P space: Thanks to its capability 
of unbalanced partitioning, Graclus creates micro-partitions of different sizes. The 
singletons on the P space means the points that does not have enough neighbors, 
therefore they can be filtered or marked as outliers. 

c) Graclus has been used for unbalanced clustering on filtered space: Graclus plays 
two important roles on our framework. The first role is creating the micro-
partition space which is mentioned on item (a). The second role is unbalanced 
clustering of the filtered space (ΔP) which is denoted by Φ. See section 4.3 for 
unbalanced clustering of ΔP space. 

Graclus yields λ index when applied to the ∆P space. We use CLUSION for 
visualizing the resulting matrix which is reordered by λ index. 

 

Fig. 3. Our proposed Graclus based framework 

4.1   Micropartition Space 

Traditional outlier filtering techniques [1] suffer from curse of dimensionality on high 
dimensional datasets. We propose a better approach independent of dimensionality. In 
our approach, we apply Graclus to the similarity space S to create very small 
partitions. We call this P space. Let k be the number of micro-partitions on the P 
space, then the relation between n and k should be: 

n > k > > 1                           (1) 

where n is the number of samples. Determining the k value depends on the granularity 
of the dataset. For the most cases it can be chosen according to the formula (2). 

 
(2) 
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Due to the unbalaced partitioning capability of Graclus, resulting tiny partitions can 
consist of 1,2,3 or 4 points. Therefore we call them micro-partitions. 

4.2   Outlier Filtering on Micro-Partition Space 

In figure 4, schematic representation of micro-partition space for n = 7, k = 4 is 
shown. Let xj be a sample in dataset with j ∈ {1,..., n} and seven samples be placed as 
shown in figure 4.a. If similarity s(1, 2) for x1,x2 is sufficiently small, Graclus will put 
them into the same partition. x4, x5, x6 will be another partition accordingly. x3 and x7 
are singletons discovered by Graclus. 

a) b)
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3
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5

 

Fig. 4. a) Micro-partition space built by Graclus (n=7,k=4), b) ∆P space (Outliers filtered) 

Let Cl denote the set of all objects in the l-th cluster (l ∈ {1,..., k}), with xj ∈ Cl and 
nl is the number of objects within a partition (nl = |Cl|). Then the outliers in P space 
(PO) is: 

 (3) 

where TO denotes the outlier threshold value. If a partition contains objects less than 
the threshold, then it is marked as outlier. Threshold value is usually chosen 1 to filter 
only singletons. 
∆P space could be easily obtained by subtracting PO from P. 

 (4) 

4.3   Using Graclus for Clustering the Filtered Space 

Our approach employs Graclus twice as it was mentioned in section 4. Here we use 
Graclus for clustering the filtered space (∆P). Graclus is a fast kernel based multilevel 
algorithm which involves coarsening, initial partitioning and refinement phases. 
Figure 5 shows the graphical overview of the multilevel approach. 
∆P space is input graph for the Graclus algorithm. A graph G = (V,E,A), consisting 

of a set of vertices V and a set of edges E so that an edge between two vertices 
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Fig. 5. Overview of the multilevel graph partitioning algorithm for k = 2 [4] 

represents their similarity. The affinity matrix A is |V| × |V| whose entries represent 
the weights of the edges. An entry of A is 0 if there is no edge between the 
corresponding vertices. 

In the coarsening phase, given the initial graph G0 is repeatedly transformed into 
smaller and smaller graphs G1,G2,..., Gm such as : 

                                                (5) 

The second phase is the initial clustering of the coarsened graph. A parameter is 
specified to indicate how small the coarsest graph should be. The parameter is 
generally chosen between 10k and 20k where k is the number of desired clusters. At 
this point, an initial clustering is performed by directly clustering the coarsest graph. 

The final phase of the algorithm is the refining phase. Given a graph Gi, the graph 
Gi-1 is formed (Gi-1  is the graph used in level i - 1 of the coarsening phase). If a vertex 
in Gi is in cluster j, then all vertices in Gi-1 formed from that vertex are in cluster j. 
This yields an initial clustering for the graph Gi-1 which is then improved using a 
refinement algorithm. Graclus uses weighted kernel k-means for the refinement step. 

Graclus needs the number of partitions k as input parameter. The k value we use 
here is different from the one in formula (1). Here k value refers to the exact number 
of clusters we desire. In formula (1) k refers to the number of micro partitions. From 
now on we denote the former one by k1 and the latter one by k2. On this step, k2 values 
between 2 and 6 yield good results in our experiments. 

Graclus-based clustering step is denoted by Φ in figure 3. Graclus performs 
clustering on the ∆P space and produces λ index as output space which is defined as 
follows: 

 (6) 

The output space contains n∆P objects is denoted by On∆P and the λ index contains 
cluster id (λ) of the corresponding object. 
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4.4   Visualization of the Results Using CLUSION Graphs 

CLUSION looks at the output of a clustering routine (λ), reorders the ∆P space so that 
points with same cluster label are contiguous and then visualize the resulting 
permuted ∆P′. 

Since we employ Graclus twice, there are two λ indices produced during clustering 
process. The first one is created while forming micro-partition space (denoted by ρ) 
and the second one is created during the clustering of the filtered space ∆P (denoted 
by Φ) . We only use latter one for CLUSION input, the former one is only used for 
forming micro-partitions. 

5   Experiments 

A collection of experiments are performed on two different datasets to compare 
Strehl & Ghosh’s and our framework. 

5.1   Datasets 

We evaluated our proposed framework on two different real world datasets. The first 
dataset is BBC news articles dataset constructed by Trinity College Computer Science 
Department [15]. Dataset consists of 9636 terms from 2225 complete news articles 
from the BBC News web site, corresponding to the stories in five topical areas 
(business, entertainment, politics, sport, tech) from 2004-2005. It has five natural 
classes. The second one is the news dataset of the popular Turkish newspaper Milliyet 
from the year 2006 [16]. This dataset contains 6223 terms in Turkish from 1455 news 
articles from three topical areas (politics,economics,sports). This dataset has three 
natural classes. 

These two datasets seem similar at a glance. They both contain terms from news 
articles. However, Turkish language has very different syntax and characteristics 
compared to the English language. Consequently the interpretation of the results of 
two datasets are likely to be different. 

5.2   Results 

We carried out experiments on the following three frameworks for two different 
datasets. 

• OPOSSUM: Strehl & Ghosh’s METIS based original framework 
• S&G(Graclus): We replaced METIS by Graclus on Strehl & Ghosh’s framework 

for testing the quality of the clusters produced by Graclus algorithm. 
• P space + Graclus: Our proposed framework. Only our framework is capable of 

filtering outliers among these three framework. 

We analyzed the purity of the clusters, entropy and mutual information data and 
visualized the results using CLUSION graphs for visually identifying the results. 

In the first experiment we used BBC news articles dataset. There are five natural 
clusters exists, therefore we set k = 5 for OPOSSUM and Graclus-based frameworks. 
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Table 1. Purity, Entropy and Mutual information values of BBC news articles dataset 
 

λ OPOSSUM S&G(Graclus) P space+Graclus

Purity

1 0.97534 0.92060 0.98400
2 0.86261 0.94563 0.97971
3 0.72135 0.97864 0.92818
4 0.71910 0.97714 0.94306
5 0.98652 0.93137 0.93561

Entropy

1 0.08351 0.23415 0.05097
2 0.29363 0.16363 0.07427
3 0.58053 0.07658 0.21427
4 0.55864 0.07710 0.16633
5 0.05287 0.18694 0.18077

Mutual Info - 0.68324 0.84951 0.86025
 

We need two different k values for our framework, one for creating P-space (k1) and 
one for clustering (k2). We set k1 = n/3 and k2 = 5. Table 1 shows the purity, entropy 
and mutual information of three test systems. λ denotes the cluster labels. OPOSSUM 
system produces poor purity and entropy values on C2, C3 and C4. Graclus-based 

framework and our framework produce almost the same values. Although our 
framework drops out the outliers, purity and entropy of clusters almost remain the 
same. Figure 6 shows the balanced clusters produced by OPOSSUM system. If we 
enumerate cluster boxes from upper left to lower right as C1, ... , C5 we can see that 
especially C3 and C4 are problematic. They are forced clusters to be balanced. Graclus-
based framework is capable of unbalanced clustering, so it correcly identifies them as 
shown in figure 7. However, neither of these two frameworks deals with outliers. 
Figure 8 shows the resulting clusters produced by our framework. It is clearly seen 
that it yields the purest graphics. 

 

Fig. 6. Strehl & Ghosh’s original framework 
(METIS) with k = 5 

 

Fig.7. Strehl & Ghosh’s framework (Graclus 
used instead METIS) with k =5 
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Fig. 8. Our proposed framework on BBC news articles dataset with k1 = n/3 and k2 = 5 

Table 2. Purity, Entropy and Mutual information values of Milliyet dataset 
 

λ OPOSSUM S&G(Graclus) µ space+Graclus

Purity 

1
2
3 

0.90103 
0.90103 
1.00000

0.93064 
1.00000 
0.99339

0.98734 
0.93333 
1.00000

Entropy 

1
2
3 

0.29384 
0.29384 
0.00000

0.24292 
0.00000 
0.04001

0.06978 
0.23346 
0.00000

Mutual Info - 0.80411 0.90148 0.89623

 

Fig. 9. Strehl & Ghosh’s original framework 
(METIS) with k = 3 

Fig. 10. Strehl & Ghosh’s framework 
(Graclus used instead METIS) with k =3. 

The second experiment was carried out on the Milliyet dataset. We set k = 3 for 
OPOSSUM and graclus based frameworks, k1 = n/3 and k2 = 3 for our framework. 
Table 2. summarizes the results of the measures. A purity value of 1 means that 
OPOSSUM system exactly discovers C3, however the values for C1 and C2 are not so 
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good. Graclus-based framework exatly discovers C2 and identifies the others with 
very high purity rates. Our framework discovers C3 exactly and almost correctly 
identifies others. 

We can see the CLUSION graph of the OPOSSUM system in figure 9. C1 and C2 are 

forced to be balanced, so they are weird, C3 is pure and easily identified from the graph. 
Graclus-based framework correctly identifies the C2 in figure 10. C1 and C2 seem obscure 

but in contrast to OPOSSUM it discovers the borders almost completely. Figure 11 shows 
the CLUSION graph of our framework. Our outlier filtering system performs best on 
this dataset and we get the purest CLUSION graphics. All cluster borders seem 
correctly positioned and they are easily recognized by human vision system. 

On these two text datasets, our proposed framework not only outperformed the 
existing approaches but also included outlier filtering capability to the existing 
approaches. It has correctly identified the outliers, removed them and effectively 
clustered the filtered space. 

 

Fig. 11. Our proposed framework on Milliyet dataset with k1 = n/3 and k2 = 3 

6    Conclusion 

This paper presents a better framework for outlier filtering and unbalanced partitioning 
on high dimensional datasets. This is achieved by introducing a new space called 
micro-partition space and using Kernel K-means based Graclus system for clustering. 
Unlike existing framework, our framework does not limit the clusters to be equal size. 
We employ Graclus for both outlier filtering and clustering of filtered data. 

Using two benchmark datasets, we demonstrated that, filtering the outliers using 
micro-partition space reduces the data to be clustered, therefore we improve the overall 
computing performance of the clustering algorithm. In future work, we will try to 
develop an efficient heuristics for determining optimal size for the micro-partitions. 
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Abstract. Existing work repeatedly addresses that the ubiquitous positioning 
devices will start to generate an unprecedented stream of time-stamped 
positions leading to storage and computation challenges. Hence the need for 
trajectory compression arises. The goal of this paper is to estimate the effect of 
compression in spatiotemporal querying; towards this goal, we present an 
analysis of this effect and provide a model to estimate it in terms of average 
false hits per query. Then, we propose a method to deal with the model’s 
calculation, by incorporating it in the execution of the compression algorithm. 
Our experimental study shows that this proposal introduces a small overhead in 
the execution of trajectory compression algorithms, and also verifies the results 
of the analysis, confirming that our model can be used to provide a good 
estimation of the effect of trajectory compression in spatiotemporal querying. 

Keywords: Moving Object Databases, Trajectory Compression, Error 
Estimation. 

1   Introduction 

The recent advances in the fields of wireless communications and positioning 
technologies activated the concept of Moving Object Databases (MOD), which has 
become increasingly important and has posed a great challenge to the database 
management system (DBMS) technology. During the last decade the database 
community continuously contributes on developing novel indexing schemes [1, 6, 12, 
17, 10] and dedicated query processing techniques [7], in order to handle the 
excessive amount of data produced by the ubiquitous location-aware devices. 
However, as addressed by [9], it is expected that all these positioning devices will 
eventually start to generate an unprecedented data stream of time-stamped positions. 
Sooner or later, such enormous volumes of data will lead to storage and computation 
challenges. Hence the need for trajectory compression techniques arises.  

The objectives for trajectory compression are [9]: to obtain a lasting reduction in 
data size, to obtain a data series that still allows various computations at acceptable 
(low) complexity, and finally, to obtain a data series with known, small margins of 
error, which are preferably parametrically adjustable. As a consequence, our interest 
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is in lossy compression techniques which eliminate some redundant or unnecessary 
information under well-defined error bounds. However, existing work in this domain 
is relatively limited [3, 9, 13, 14], and mainly guided by advances in the field of line 
simplification, cartographic generalization and time series compression.  

Especially on the subject of the error introduced on the produced data by such 
compression techniques, the single related work [9] provides a formula for estimating 
the mean error of the approximated trajectory in terms of distance from the original 
data stream. On the other hand, in this work, we argue that instead of providing a user 
of a MOD with the mean error in the position of each (compressed) object at each 
timestamp (which can be also seen as the data (im)precision), he/she would rather 
prefer to be informed about the mean error introduced in query results over 
compressed data. The challenge thus accepted in this paper is to provide a theoretical 
model that estimates the error due to compression in the results of spatiotemporal 
queries. To the best of our knowledge, this is the first analytical model on the effect of 
compression in query results over trajectory databases.  

Outlining the major issues that will be addressed in this paper, our main 
contributions are as follows: 

• We describe two types of errors (namely, false negatives and false positives) when 
executing timeslice queries over compressed trajectories, and we prove a lemma 
that estimates the average number of the above error types. It is proved that the 
average number of the false hits of both error types depends on the Synchronous 
Euclidean Distance [3, 9, 13] between the original and the compressed trajectory, 
and the perimeter (rather than the area) of the query window. 

• We show how the cost of evaluating the developed formula can be reduced to a 
small overhead over the employed compression algorithm. 

• Finally, we conduct a comprehensive set of experiments over synthetic and real 
trajectory datasets demonstrating the applicability and accuracy of our analysis. 

The model described in this paper can be employed in MODs so as to estimate the 
average number of false hits in query results when trajectory data are compressed. For 
example, it could be utilized right after the compression of a trajectory dataset in 
order to provide the user with the average error introduced in the results of 
spatiotemporal queries of several sizes; it could be therefore exploited as an additional 
criterion for the user in order to decide whether compressed data are suitable for 
his/her needs, and possibly decide on different compression rates, and so on.  

The rest of the paper is structured as follows. Related work is discussed in Section 2. 
Section 3 constitutes the core of the paper presenting our theoretical analysis. Section 4 
presents the results of our experimental study, while Section 5 provides the conclusions 
of the paper and some interesting research directions. 

2   Background 

In this section we firstly deal with the techniques introduced for compressing 
trajectories during the last few years, while, we subsequently examine the related 
work in the field of estimating and handling the error introduced by such compression 
techniques. 
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Fig. 1. Top-down Douglas-Peucker algorithm used for trajectory Compression. Original data 
points are represented by closed circles [9]. 

 

Fig. 2. The Synchronous Euclidean Distance (SED): The distance is calculated between the 
point under examination (Pi) and the point Pi’ which is determined as the point on the line (Ps, 
Pe) the time instance ti [9] 

2.1   Compressing Trajectories 

As already mentioned, existing work in trajectory compression is mainly guided by 
related work in the field of line simplification and time series compression. Meratnia 
and By [9] exploit existing algorithms used in the line generalization field, presenting 
one top-down and one opening window algorithm, which can be directly applied to 
spatiotemporal trajectories. The top-down algorithm, named TD-TR, is based on the 
well known Douglas-Peucker [5] algorithm (Fig. 1) introduced by geographers in 
cartography. This algorithm calculates the perpendicular distance of each internal 
point from the line connecting the first and the last point of the polyline (line AB in 
Fig. 1) and finds the point with the greatest perpendicular distance (point C). Then, it 
creates lines AC and CB and, recursively, checks these new lines against the 
remaining points with the same method, and so on. When the distance of all 
remaining points from the currently examined line is less than a given threshold (e.g., 
all the points following C against line BC in Fig. 1) the algorithm stops and returns 
this line segment as part of the new - compressed - polyline. Being aware of the fact 
that trajectories are polylines evolving in time, the algorithm presented in [9] replaces 
the perpendicular distance used in the DP algorithm with the so-called Synchronous 
Euclidean Distance (SED), also discussed in [3, 13], which is the distance between 
the currently examined point (Pi in Fig. 2) and the point of the line (Ps, Pe) where the 
moving object would lie, supposed it was moving on this line, at time instance ti 
determined by the point under examination (Pi' in Fig. 2).  

The time complexity of the original Douglas-Peucker algorithm (on which the TD-
TR algorithm is based) is O(N2), with N being the number of the original data points, 
while it can be reduced to O(NlogN) by applying the proposal presented in [8]. 

Although the experimental study presented in [9] shows that the TD-TR algorithm 
is significantly better than the opening window one (presented later in this section) in 
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Fig. 3. Opening Window algorithm used for trajectory Compression. Original data points are 
represented by closed circles [9]. 

terms of both quality and compression (since it globally optimizes the compression 
process), the TD-TR algorithm has the disadvantage that it is not an on-line algorithm 
and, therefore, it is not applicable to newcoming trajectory portions as soon as they 
feed a MOD. On the contrary, it requires the a priori knowledge of the entire moving 
object trajectory.  

On the other hand, under the previously described conditions of on-line operation, 
the opening window (OW) class of algorithms can be easily applied. These algorithms 
start by anchoring the first trajectory point, and attempt to approximate the subsequent 
data points with one gradually longer segment (Fig. 3). As long as all distances of the 
subsequent data points from the segment are below the distance threshold, an attempt 
is made to move the segment's end point one position up in the data series. When the 
threshold is going to exceed, two strategies can be applied: either the point causing 
the violation (Normal Opening Window, NOPW) or the point just before it (Before 
Opening Window, BOPW) becomes the end point of the current segment, as well as 
the anchor of the next segment. If the threshold is not exceeded, the float is moved 
one position up in the data series (i.e., the window opens further) and the algorithm 
continuous until the last point of the trajectory is found; then the whole trajectory is 
transformed into a linear approximation. While in the original OW class of algorithms 
each distance is calculated from the point perpendicularly to the segment under 
examination, in the OPW-TR algorithm presented in [9] the SED is evaluated. 
Although OW algorithms are computationally expensive - since their time complexity 
is O(N2) - they are very popular. This is because, they are online algorithms, and they 
can work reasonably well in presence of noise. 

Recently, Potamias et al. [13] proposed several techniques based on uniform and 
spatiotemporal sampling to compress trajectory streams, under different memory 
availability settings: fixed memory, logarithmically or linearly increasing memory, or 
memory not known in advance. Their major contributions are two compression 
algorithms, namely, the STTrace and Thresholds. The STTrace algorithm, utilizes a 
constant for each trajectory amount of memory M. It starts by inserting in the 
allocated memory the first M recorded positions, along with each position's SED with 
respect to its predecessor and successor in the sample. As soon as the allocated 
memory gets exhausted and a new point is examined for possible insertion, the 
sample is searched for the item with the lowest SED, which represents the least 
possible loss of information in case it gets discarded. In the sequel, the algorithm 
checks whether the inserted point has SED larger than the minimum one found 
already in the sample and, if so, the currently processed point is inserted into the 
sample at the expense of the point with the lowest SED. Finally, the SED attributes of 
the neighboring points of the removed one are recalculated, whereas a search is 
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triggered in the sample for the new minimum SED. The proposed algorithm may be 
easily applied in the multiple trajectory case, by simply calculating a global minimum 
SED of all the trajectories stored inside the allocated memory. 

It notably arises from the previous discussion that the vast majority of the proposed 
trajectory compression algorithms base their decision on whether keeping or 
discarding a point of the original trajectory on the value of SED between the original 
and the compressed trajectory at this particular timestamp. Consequently, a method 
for calculating the effect of compression in spatiotemporal querying based on the 
value of SED along the original trajectory data points, would not introduce a 
considerable overhead in the compression algorithm, since it would require only 
performing additional operations inside the same algorithm.  

2.2   Related Work on Error Estimation 

To the best of our knowledge, a theoretical study on modeling the error introduced in 
spatiotemporal query results due to the compression of trajectories is lacking; our 
work is the first on this topic covering the case of the spatiotemporal timeslice 
queries. Nevertheless, there are two related subjects: The first is the determination of 
the error introduced directly in each trajectory by the compression [9], being the 
average value of the SED between a trajectory p and its approximation q (also termed 
as synchronous error E(q, p)). [9] provide a method for calculating this average value 
as a function of the distance between p and q along each sampled point. The outcome 
of this analysis turns to a costly formula, which provides the average error (i.e., mean 
distance between p and q along their lifetime); however, there is no obvious way on 
how to use it in order to determine the error introduced in query results.  

The second related subject is the work conducted on the context of trajectory 
uncertainty management, such as [4, 11, 16, 19]. This is due to the fact that the error 
introduced by compression can also be seen as uncertainty, and thus related 
techniques may be applied in the resulted dataset (e.g., probabilistic queries). 
However, such methodology cannot be directly used in the presence of compressed 
trajectory data, since the task of determining the statistical distribution of the location 
of the compressed trajectory using information from the original one, is by itself a 
complex task. Moreover, none of the proposed techniques actually deals with our 
essential proposal, i.e., the determination of the error introduced in query results using 
information about the compressed (or uncertain) data.  

On the other hand, our approach is based only on the fact that the compression 
algorithm exploits the SED in each original trajectory data point and thus, introduces 
a very small overhead on the compression algorithm. 

3   Analysis 

The core of our analysis is a lemma that provides the formula used to estimate the 
average number of false hits per query when executed over a compressed trajectory 
dataset. In this work, we focus on timeslice queries, which can be used to retrieve the 
positions of moving objects at a given time point in the past and can be seen as a 
special case of spatiotemporal range queries, with their temporal extent set to zero 
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[18, 12]. This type of query can also be seen as the combination of a spatial (i.e., 
query window W) and a temporal (i.e., timestamp t) component. As it will be 
discussed in Section 5, the extension of our model to support range queries with non-
zero temporal extent is by no means trivial and is left as future work. 

It is important to mention that our model supports arbitrarily distributed trajectory 
data without concerning about their characteristics (e.g., sampling rate, velocity, 
heading, agility). Therefore, it can be directly employed in MODs without further 
modifications. The single assumption we make is that timeslice query windows are 
uniformly distributed inside the data space. Should this assumption be relaxed, one 
should mathematically model the query distribution using a probability distribution 
and modify the following analysis, accordingly. Table 1 summarizes the notations 
used in the rest of the paper. 

Table 1. Table of notations 

Notation Description  

S, †T ,T the unit space, a trajectory dataset and its compressed counterpart. 
†

iT , Ti an original trajectory and its compressed counterpart. 
TN, TP the set of false negatives and the set of false positives. 

R, Raμb, Wj 
the set of all timeslice queries over S, its subset with sides of length a and b 
along the x- and y- axes, and a timeslice query window. 

n, mi the cardinality of dataset T and the number of sampled points inside †
iT . 

SEDi(t),  
δxi(t), δyi(t) 

the function of the Synchronous Euclidean Distance (SED) between †
iT and 

its compressed counterpart Ti, and its projection along the x- and y- axes. 

ti,k, SEDi,k, 
 δxi,k , δyi,k 

the kth timestamp on which trajectory †
iT sampled its position, its 

Synchronous Euclidean Distance from its compressed counterpart Ti at the 
same timestamp, and its projection along the x- and y- axes. 

Ai,j 
the area inside which the lower-left corner of Wj has to be found at 
timestamp tj in order for it to retrieve Ti as false negative (or false positive). 

AvgPi,N(Raμb), 
AvgPi,P(Raμb) 

the average probability of all timeslice queries Wj œ Raμb, to retrieve Ti as 
false negative (or false positives). 

EN(Raμb), 
EP(Raμb) 

the average number of false negatives (or false positives) in the results of a 
query Wj œ Raμb. 

 
Let us consider the unit 3D (i.e., 2D spatial and 1D temporal) space S containing a 

set †T of n trajectories †
iT  and a set T with their compressed counterparts Ti. Let also 

R be the uniformly distributed set of all timeslice queries posed against datasets †T  
and T, and Raμb be the subset of R containing all timeslice queries having sides of 
length a and b along the x- and y- axis respectively. Two types of errors are 
introduced when executing a timeslice query WjœR over a dataset with the previously 
described settings:  

• false negatives are the trajectories which originally qualified the query but their 
compressed counterparts were not retrieved; formally, the set of false negatives 

NT T⊆  is defined as { }†: |N i i j i jT T T T W T W= ∈ ∉ ∈ ; 
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• false positives are the compressed trajectories retrieved by the query while their 
original counterparts are not qualifying it; formally, the set of false positives 

PT T⊆  is defined as { }†: |P i i j i jT T T T W T W= ∈ ∈ ∉ .  

Consider for example Fig. 4 illustrating a set of n uncompressed trajectories †
iT , 

along with their compressed counterparts Ti. Each uncompressed trajectory †
iT  is 

composed by a set of mi time-stamped points, applying linear interpolation in-between 
them. Fig. 4 also illustrates a timeslice query W; though W retrieves the compressed 
trajectory T1, its original counterpart †

1T  does not intersect the query window, 
encountering a false positive. Conversely, though the original trajectory †

2T  intersects 
W, its compressed counterpart T2 is not present in the query results, forming a false 
negative. Having described the framework of our work, we state the following lemma. 

 

Fig. 4. Problem setting 

Lemma 1. The average number of false negatives EN(Raμb) and false positives 
EP(Raμb) in the results of timeslice queries Wj œ Raμb uniformly distributed inside the 
unit space with sides of length a and b along the x- and y- axis respectively, over a 
compressed trajectory dataset is given by the following formula: 

( ) ( )
( ) ( ) ( )1

, , 1 , , 1, 1 ,

1 1 (1 ) (1 ) 2 2 6

i

N a b P a b

mn
i k i k i k i ki k i k

i k

E R E R

b x x a y yt t e

a b

δ δ δ δ
× ×

−
+ ++

= =

= =

⎛ ⎞+ +−
⎜ ⎟⋅ + −
⎜ ⎟+ ⋅ +
⎝ ⎠

∑∑
 (1) 

where , , , 1 , 1 , , 1 , 1 ,2 2i k i k i k i k i k i k i k i ke x y x y x y x yδ δ δ δ δ δ δ δ+ + + += + + + . 

Eq.(1) formulates the fact that the average error in the results of timeslice queries over 
compressed trajectory data is directly related to the projection of the weighted average 

SED along the x- and y- axis (i.e., ( ), 1 ,i k i kt t+ −  multiplied by , , 1i k i kx xδ δ ++ or 

, , 1i k i ky yδ δ ++ ) multiplied by the respective opposite query dimension (i.e., 

( ), , 1i k i kb x xδ δ ++  and ( ), , 1i k i ka y yδ δ ++ ), while e is a sum of minor importance, 

since it is the sum of the products between , , 1 , , 1, , ,i k i k i k i kx x y yδ δ δ δ+ + . 

3.1   Proof of Lemma 1 

The average number EN(Raμb) of trajectories being false negatives in the results of a 
timeslice query Wj œ Raμb, can be obtained by summing up the probabilities 
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Fig. 5. The intersection of a trajectory †
iT and its compressed counterpart Ti, with the plane of a 

timeslice query at timestamp tj 

( )†|i j i jP T W T W∉ ∈ of all dataset trajectories Ti (i=1,…,n) to be false negative 

regarding an arbitrary timeslice query window Wj œ Raμb: 

( ) ( ),
1

n

N a b i N a b
i

E R AvgP R× ×
=

=∑  (2) 

Similarly, the average number EP(Raμb) of trajectories being false positives can be 
calculated by the following formula: 

( ) ( ),
1

n

P a b i P a b
i

E R AvgP R× ×
=

=∑  (3) 

Hence, our target is to determine AvgPi,N(Raμb) and AvgPi,P(Raμb). Towards this goal, 
we formulate the probability of a random trajectory be false negative (or false 
positive), regarding an arbitrary timeslice query window Wj œ Raμb invoked at 
timestamp tj (i.e., †|i j i jT W T W∉ ∈ , and †|i j i jT W T W∈ ∉ , respectively). As also 

illustrated in Fig. 5(b), the intersection of trajectories Ti, 
†

iT  with the plane 

determined by the temporal component of Wj (i.e., timestamp tj) will be demonstrated 
as two points (points pi,j and †

,i jp , respectively, in Fig. 5(b)) having in-between them, 

distance δxi,j and δyi,j along the x- and y- axis, respectively.  
In order to calculate the quantity of timeslice query windows that would retrieve 

trajectory Ti as a false negative (false positive) at the timestamp tj, we need to 
distinguish among four cases regarding the signs of δxi,j and δyi,j as demonstrated in 
Fig. 6 (Fig. 7, respectively). The shaded (with sided stripes) region in all four cases 
illustrate the area inside which the lower-left query window corner has to be found in 
order for it to retrieve trajectory Ti as false negative (or false positive, respectively).  

However, as can be easily derived from these figures, the area of the shaded region 
in all four cases, is equal for both false negatives and false positives, and can be 
calculated by the following equation: 

( ) ( ), , ,i j i j i jA a b a x b yδ δ= ⋅ − − ⋅ −  (4)
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Fig. 6. Regions inside which the lower-left query window corner has to be found in order to 
retrieve trajectory Ti as false negative 
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Fig. 7. Regions inside which the lower-left query window corner has to be found in order to 
retrieve trajectory Ti as false positive 

Given that Wj is valid when it is (either partially or totally) found inside the unit 
space, the lower-left query window corner must be found inside a space region of area 
equal to ( ) ( )1 1a b+ ⋅ + . Then, since queries are uniformly distributed inside the unit 

space, the probability of trajectory Ti to be retrieved as a false negative or false 
positive at timestamp tj is: 

( ) ( )
( ) ( )( )
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| |

1 1
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A a b a x b y
a b a b

δ δ

∉ ∈ = ∈ ∉ =

⋅ = ⋅ ⋅ − − ⋅ −
+ ⋅ + + ⋅ +

 (5)

Given also our assumption regarding the distribution of query windows, the average 
probability of a trajectory Ti to be false negative regarding an arbitrary query window 
Wj œ Raμb at any timestamp can be obtained by integrating Eq.(5) over all timestamps 

inside the unit space. As long as ( )†|i j i jP T W T W∉ ∈ =  ( )†|i j i jP T W T W∈ ∉ , it 

follows that: 

( ) ( )
( ) ( )
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i j i j i j i j
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× ×= =

∉ ∈ = ∈ ∉∫ ∫
  (6)
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However, given that each original trajectory Ti is a set of mi time-stamped points 
applying linear interpolation in between them, Eq.(6) is transformed as follows: 

( ) ( )
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1 1, 1 , , 1 ,
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k k

k k

i N a b i P a b

m m
t t

i j i j i j i jt t
k ki k i k i k i k

AvgP R AvgP R

P T W T W dt P T W T W d
t t t t
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× ×
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and δxi,j and δyi,j can be trivially formulated as single functions of t when 

, , 1i k i kt t t +≤ ≤ , between sampled points: 
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Substituting Eq.(8), Eq.(9) and Eq.(5) into Eq.(7) and performing the necessary 
calculations we result in the following formula:  
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Finally, by substituting Eq.(10) into Eq.(2) and defining , ,2 i k i ke x yδ δ= +  

, 1 , 1 , , 1 , 1 ,2 i k i k i k i k i k i kx y x y x yδ δ δ δ δ δ+ + + ++ +  we haven proven Lemma 1.                                  

3.2   Discussion on Lemma 1 

Eq.(1), the main result of Lemma 1, can be straightforwardly used to estimate the 
average number of false negatives and false positives for timeslice query windows 
with known size along the x- and y- axes (a and b, respectively). It notably arises from 
this formula that the average number of false negatives in the results of a timeslice 
query is equal to the respective average number of false positives, while their values 
depend mainly on the perimeter of the query window (a+b), rather than its area 
( a b⋅ ).However, it should be explicitly mentioned that Lemma 1 holds in the case of 
uniformly distributed query windows only; as such, the estimated average number of 
false negatives and false positives serves as a metric estimating data losses due to 
compression, rather than providing an accurate result regarding individual queries. 

Obviously, the evaluation of Eq.(1) is a costly operation; given that it involves a 
double sum, its time complexity is O(nÿm) where n is the number of trajectories and m 
is the (average) number of sampled points per trajectory. In other words, since Eq.(1) 
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includes the calculation of δxi,k, δyi,k, between each tuple of the initial and compressed 
trajectories on each timestamp the trajectory was originally sampled, it requires to 
process the entire original dataset along with its compressed counterpart. On the other 
hand, as already stated in Section 2, the vast majority of the proposed trajectory 
compression algorithms, base their decision about the point of the original trajectory 
data to eliminate, on the value of the SED; however, since 

( ) ( ) ( )2 2

i i iSED t x t y tδ δ= + , the respective algorithm should first evaluate ( )ix tδ  

and ( )iy tδ  at timestamps ti,k producing thus, ,i kxδ and ,i kyδ , respectively. 

Consequently, any trajectory compression algorithm using the SED as the criterion to 
decide which trajectory points to eliminate, also calculates ,i kxδ and ,i kyδ . As such, 

Eq.(1) can be calculated during the algorithm’s execution, adding very small overhead 
in the original algorithm; the above observation is further confirmed in our 
experimental study presented in the next section. 

Moreover, since Eq.(1) involves the query dimensions a and b, it follows that 
different values of a and b will lead to different calculations for the average error. 
However, such an approach (i.e., evaluating Eq.(1) from the beginning for every 
different query size), would lead to high computation cost since it would also require 
O(nÿm) time. In order to overcome this drawback, Eq.(1) can be rewritten as follows: 
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− − ⋅∑∑ . Therefore, in the case where the average error need to be 

determined for a variety of query sizes (i.e., different sizes of a and b), rather than 
directly calculating Eq.(1) for each different query size, the three factors A, B and C 
could be calculated first, and be subsequently employed in Eq.(11); an approach 
which dramatically reduces the computation cost to O(1) time. 

4   Experiments 

In this section, we present several sets of experiments using synthetic and real 
trajectory datasets. The goal of our experimental study is two-fold:  

• first, to present the overhead introduced in the execution of a compression 
algorithm when calculating during the values of A, B and C factors introduced in 
Eq.(11), and, 

• second, to present the accuracy of the estimation provided by our analytical model 
regarding the number of false negatives and false positives over synthetic and real 
trajectory datasets. 
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Regarding the datasets used, we have exploited on a real-world dataset of a fleet of 
trucks consisting of 276 trajectories and 112203 entries of trajectory segments [15]. We 
have also used synthetic datasets produced by a network-based data generator over the 
San Joaquin road network [2]. The synthetic trajectories generated correspond to 2000 
moving objects, each one sampling its position 400 times. All the datasets where 
normalized in the [0,1] space. In order to test the accuracy of our model and produce 
compressed datasets, we implemented the TD-TR algorithm proposed by [9]. Then we 
executed it against all the (real and synthetic) datasets, varying its threshold between 
0.001 and 0.02 of the total space, producing thus, the respective compressed datasets. 
Finally we used the original and compressed datasets and created several 3D R-trees 
[18] in order to accelerate the querying process used when performing experiments on 
the quality. Table 2 illustrates summary information about the (original and 
compressed) datasets used. The experiments were performed in a PC running Microsoft 
Windows XP with AMD Athlon 64 3GHz processor, 1 GB RAM and several GB of 
disk size. All structures and algorithms were implemented in Visual Basic. 

Table 2. Summary Dataset Information  

Original Datasets Compressed Datasets (# entries) 
TD-TR threshold value  

# trajectories # entries 
0.001 0.005 0.010 0.015 0.020 

Trucks 273 112,203 62,067 20,935 12,636 9,274 7,571 
Synthetic 2,000 800,000 229,167 120,437 88,565 74,638 65,410 

4.1   Experiments on the Performance 

In order to demonstrate the applicability of our proposal in trajectory data and 
estimate the overhead introduced in a trajectory compression algorithm when 
calculating the values of A, B and C factors introduced in Eq.(11), we run the TD-TR 
compression algorithm over the real data and measured the average execution time 
required for each trajectory, scaling also the threshold of the algorithm. We then 
modified the algorithm in order to calculate the model parameters (i.e., the values of 
A, B and C in Eq.(11)) within its execution and also run it against the same dataset 
with the same parameters. The respective results are illustrated in Fig. 8. 

In particular, Fig. 8(a) and Fig. 8(b) illustrate the execution time of the TD-TR 
algorithm per compressed trajectory (in milliseconds), with and without the 
evaluation of the model parameters, against the trucks, and the synthetic datasets, 
respectively. A first conclusion is that the algorithm’s execution time reduces as the 
value of the TD-TR threshold increases; this is an expected result, since typically, the 
number of the algorithm’s iterations increase, as the value of the threshold decreases. 

However, the main result gathered from Fig. 8 is that the overhead introduced in 
the algorithm’s execution, is typically small (i.e., the difference between the two 
bars). In all cases, the overhead introduced in the algorithm is between 7% and 
19% of the originally required execution time; furthermore, in absolute times, the 
overhead introduced never exceeds 0.2 milliseconds per trajectory. As a consequence, 
the discussion presented in Section 3.2 is further confirmed, and our model can be 
evaluated as an extension of the compression algorithm’s execution, introducing a 
small / perhaps negligible overhead. 
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Fig. 8. Execution time for the TD-TR algorithm with and without the calculation of the model 
parameters over (a) the trucks, and, (b) the synthetic datasets, scaling the value of the TD-TR 
threshold 
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Fig. 9. Accuracy of the model scaling the value of the TD-TR threshold over (a) the trucks, 
and, (b) the synthetic datasets 

4.2   Experiments on the Quality 

The statistical measure employed in order to demonstrate the quality of our 
estimation, are the reported average number of false negatives and false positives, 

NE and PE , respectively. Formally, these measures are defined as:   
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where, n is the number of executed queries and EN,i (EP,i) the actual number of false 
negatives (false positives, respectively) in the ith query. In the next experiments, n is 
set to 10000 timeslice queries.  

Our first set of experiments was performed against both the real and the synthetic 
datasets. Specifically, we executed 10000 rectangular timeslice queries of 0.10μ0.10 
size (i.e., covering 1% of unit space) randomly distributed inside the unit space, over 
both the original and the compressed datasets (each one stored in separate 3D R-
trees), and then, utilizing the results of each particular query over the two datasets, we 
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Fig. 10. Accuracy of the model scaling the square query size over (a) the trucks, and, (b) the 
synthetic datasets 
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Fig. 11. Accuracy of the model scaling the non-square query size towards (a) the x- axis, and 
(b) the y- axis, against the synthetic datasets 

counted the actual number of false negatives and false positives, EN,i and EP,i, 
respectively and then calculated their average values over all the executed queries 
(termed as average false hits – negatives and positives - in all figures describing the 
experimental evaluation). Fig. 9 illustrates the results of this experiment scaling the 
value of the compression threshold over the trucks and the synthetic dataset. A first 
conclusion is that the average number of false hits (negatives and positives) is linear 
with the value of the TD-TR compression threshold.  

Moreover, the estimations, NE and PE , of our model are very close to the actual 
values of average false negatives and false positives reported by the experiments, 
regardless of the value of the compression  threshold. In particular, the average error 
in the estimation (i.e., the difference between the bars describing the reported by 
the experiment average number of false negatives and positives, and our model 
estimation drawn by a solid line) for the synthetic dataset is around 6%, varying 
between 0.2% and 14%; regarding the trucks dataset (i.e., Fig. 9(a)), the average error 
increases around 10.6%, mainly due to the error introduced in small values of TD-TR 
threshold. 
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In our second experiment we used the same experimental settings (i.e., datasets, 
number of queries), but we fixed the TD-TR threshold to 0.01 and scaled the size of 
the timeslice query window between 0.05μ0.05 and 0.30μ0.30 (resulting in 0.25% 
and 9% of unit space, respectively). The corresponding results are illustrated in Fig. 
10(a) and Fig. 10(b) against the trucks and the synthetic datasets, respectively. Again, 
it is clear that our model is highly accurate, producing estimates NE and PE  with 
errors (i.e., the difference between the average values reported by the experiment and 
our model estimation) for the synthetic dataset between 0.2% and 8.7% and the 
average error being around 2.9% (while the respective average error for the trucks 
dataset is 7.5%). Another notable conclusion is that the average number of false 
positives and false negatives are sub-linear with the query size; an expected result 
gathered directly from the way that Eq.(11) involves the lengths a and b of the query 
sides. 

In the last experiment we verified the effect of using non-square timeslice queries 
(i.e., a∫b) over the synthetic datasets (while the experiments with the trucks dataset 
produced similar results). Specifically, we used timeslice query windows with sizes 
varying from 0.05μ0.30 (where a<<b) to 0.30μ0.30 (where a=b); we also scaled the 
query size towards the other direction (from 0.30μ0.05 to 0.30μ0.30). The results of 
this experiment, illustrated in Fig. 11(a) and (b) respectively, resulted in similar 
outcomes as the ones presented in the previous paragraph regarding square (i.e, a=b) 
timeslice queries. Specifically, our model is once again very accurate, producing 
estimates with error between 0.6% and 7.2%, while the average error is 3.5%.  

5   Conclusions 

Related work on the subject of trajectory compression has focused on the 
development of compression algorithms also emphasizing on the error introduced in 
the position of each object from the compression. In this work, acknowledging that 
users are more likely concerned about the error introduced by the compression in 
spatiotemporal query results, we presented the first theoretical model that estimates 
this error in the results of timeslice queries. We provided a closed formula of the 
average number of false hits (false negatives and false positives) covering the case of 
uniformly distributed query windows and arbitrarily distributed trajectory data with 
various speeds, headings etc. Under various synthetic and real trajectory datasets, we 
first illustrated the applicability of our model under real-life requirements – it turns 
out that the estimation of the model parameters introduce only a small overhead in the 
trajectory compression algorithm - and then presented the accuracy of our 
estimations, with an average error being around 6%.  

There are numerous interesting research directions arising from this work, 
including the development of the model’s counterparts for nearest neighbor queries, 
or even more, general spatiotemporal range queries (i.e., with temporal extent ∫ 0). 
More specifically, the extension of our approach towards the second direction, would 
require to determine the shape of the spatiotemporal space inside which the lower left 
range query corner (i.e., the minimum point of the range query) has to be found in 
order for the compressed trajectory to be retrieved as a false hit (negative of positive), 
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in accordance with Fig. 6, Fig. 7, and subsequently to determine its volume in 
accordance with Eq.(4). Although this volume can be calculated when δxi and δyi are 
expressed as single functions (i.e., between consecutive timestamps), in the general 
case where δxi and δyi are expressed as multi-functions (i.e., different functions in 
different original trajectory line segments), the respective volume is very hard to be 
determined. Nevertheless, it is a great challenge for future work. 

Finally, we plan to examine the application of our model to trajectory data 
warehouse environments, which manage aggregate data. Considering for example a 
trajectory data warehouse with population measurements (i.e., the number of 
trajectories located in each cell of the partitioned space), our model could be utilized 
in order to estimate the number of false hits introduced in the number of objects 
contained within each cell. 
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Abstract. The paper presents the methods for prediction of bus arrival times 
and continuous query processing as foundations of traveler information 
services. The time series of data from automatic vehicle location (AVL) system, 
consisting of time, location and speed data, is used with historical statistics and 
bus schedule information to predict future arrivals and motion. Based on 
predicted and AVL data, continuous query processing technique is proposed to 
extend traveler information service with notification/alarm features. Extensive 
experiments have shown that the proposed algorithm for bus motion prediction 
is efficient enough to function in real conditions and that augmented with 
continuous query processing techniques can produce services that useful to the 
travelers. 

Keywords: Automatic Vehicle Location (AVL), prediction of arrival/travel 
time, continuous query processing, information services, intelligent 
transportation systems (ITS). 

1   Introduction 

The recent advance of automatic vehicle location (AVL) systems based on global 
positioning system (GPS) has provided the transit industry and public transport 
enterprises with tools to monitor and control operations of their vehicles and manage 
their fleet in an efficient and cost effective way. It has also provided the opportunity 
to provide customers with reliable, up-to-date information on the transit status 
through traveler information services (TIS). A major component of such service is 
travel time/location information, i.e. the time when a vehicle will reach desired 
location, or the location where a vehicle will be at specific time. The provision of 
timely and accurate transit travel time/location information is important because it 
attracts additional users and increases the satisfaction and convenience of transit 
users. Such reliable real-time information assists the customer in making their transit 
and multimodal trip plans and enables them to make better pre-trip and en-route 
decisions.  
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In our work we develop and apply a model to predict bus motion and bus arrival 
time using real-time AVL data and historical data on previous bus motion along the 
same route. Our travel time prediction model includes: 

• Static bus schedule data and schedule adherence,  
• Bus motion and traffic flow histories divided in classes depending on time of the 

day/week (rush hour, morning, evening, etc.),  
• Real-time traffic events such as traffic congestions, jams and bus breakdowns that 

have influence on bus motion and arrival times. 

The test bed represents bus routes running in the city of Nis, Serbia, with AVL data 
obtained periodically from each bus and collected at the server. The model and 
algorithms for prediction of bus motion are also based on data representing bus routes 
and bus stops, and a road network data with segments and intersections. The results of 
extensive experiments performed on real AVL data shown that the model and 
algorithms offer acceptable performance and accuracy in prediction of bus motion and 
bus arrival times. Based on techniques and algorithms for continuous query 
processing, a “notification/alarm” feature has been added to the TIS.  

The rest of the paper is structured as follows. The next section presents the 
problem statement and review the related work in the area. Section 3 describes in 
detail the proposed model of bus motion and algorithms for prediction of arrival times. 
Section 4 presents the experimental evaluation results, whereas Section 5 describes 
implementation of continuous query strategy for reactive behavior of TIS. Finally, 
Section 6 concludes the article and shortly suggests future research work. 

2   Problem Statement and Related Work 

2.1   AVL System in Public Transport Monitoring  

Public transport monitoring systems are increasingly based on Automatic Vehicle 
Location (AVL) systems, which provide the means for determining the geographic 
location of a vehicle and transmitting this information to a point where it can be used 
(transport monitoring centre). In such systems the vehicles are mostly equipped with 
tracking devices which contain GPS systems and are connected through dedicated 
wireless networks (satellite, terrestrial radio or cellular networks) to transportation 
control centers. Several small and big bus systems and operators worldwide use or 
plan to use AVL technology for mass transit tracking and for real-time traveler 
information services [5], [6], [9], [10], [19]. The city of Nis in Serbia has also started 
to deploy the AVL system for control of the public bus transport using satellite based 
(GPS) vehicle location method. The primary objective of the system is to monitor and 
track the buses in the real-time for the purpose of analysis and management of public 
bus transport. The second objective is to provide traveler information services and 
travel time/location information in variety of ways.  

The high-level system architecture is shown in figure 1. The tracking devices 
installed in each bus include GPS receiver, GPRS modem, a microcontroller and a 
local memory for storage of positional/time/speed updates. Bus positions are detected 
periodically (every 15 seconds) and position/time/speed data is transferred to the 
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Fig. 1. The architecture of the public transport monitoring system 

server located in the control centre using GSM phone network and GPRS packet data 
transfer service. This local memory is used in the case of restricted GPRS network 
coverage preventing any positional data loss. In this case, real time bus visualization 
is unavailable, but no data is lost. The traveler information service generally uses the 
current vehicle location to compute the estimated arrival time at the upstream stops 
using data that may include vehicle speed, distance, travel time history, bus schedule, 
and traffic flow history.  

2.2   Related Work 

Some research on this topic has been conducted and presented in the literature, but 
more research is required and has to be done to further improve reliability and 
effectiveness of traveler information services. At the heart of such services are 
methodology, models and techniques to predict bus arrival time, bus travel 
time/location, as well as continuous processing of queries on real-time AVL and 
predicted data [1], [2], [3], [4], [13], [16], [20]. The accurate prediction of link travel 
time is critical to ITS transit applications especially with the development of 
advanced traveler information systems and services. A number of prediction models, 
including historical data based models, Kalman filtering models and artificial neural 
network models (ANN) have been developed over the years by various transit 
agencies [7]. 

Historical data based models predict travel time for a given time period using the 
average travel time for the same time period obtained from a historical data base. 
These models are based on statistical processing of data as well as Kalman filtering 
technique [14]. Chien and Kuchipudi propose prediction algorithm that combines the 
real-time model and the historical data model [3]. First the historical data is used to 
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obtain estimated travel time. This time is subsequently adjusted as real-time location 
data are obtained. The Kalman filtering algorithm is applied for travel time prediction 
because of its significance in continuously updating the state variable as new 
observations arrive. They assume that traffic patterns are cyclical and the ratio of the 
historical travel time on a specific link to the current travel time reported in real-time 
will remain constant. The Los Angeles Department of Transportation develops the 
Bus Arrival Information System that contains a prediction model based on historical 
data [13]. Such model operates using bus detectors at each stop and estimates bus 
travel time using information from last bus to traverse the same section. Estimated 
time of arrival of the next bus is calculated based on the previous bus travel time 
under the assumption that the current bus would experience the same or similar traffic 
conditions in the same segment of the corridor. Dailey, et al. in [4] and Cathey and 
Dailey in [1] propose the prediction algorithm in which the time series of vehicle 
location data is processed by the Kalman filter in their Tracking and Filter 
components. The third component, Predictor, is driven by reports from the Filter 
component and produces arrival/departure predictions as a sequence of scheduled 
time-points ahead of the vehicle. The Predictor uses historical statistics and is based 
on information obtained from the Tracking/Filter: the current time, the current 
estimate of the distance-until-destination, and a travel-time function for the route that 
the transit vehicle is on. Shalaby and Farhan develop a bus travel time prediction 
model also using the Kalman filtering technique [16]. They use downtown Toronto 
data collected with four buses equipped with AVL and automatic passenger counter 
(APC). They find that Kalman filtering techniques outperform the historical models, 
regression models, and time lag recurrent neural network models. They develop two 
Kalman filtering algorithms to predict running times and dwell times separately. 

In [2], the authors propose an artificial neural network model to predict dynamic 
bus arrival time in New Jersey. They state that the back-propagation algorithm, which 
is the most used algorithm for transportation problems, is unsuitable for on-line 
application because of its time consuming learning process. Consequently they 
develop an adjustment factor to modify their travel time prediction using recent 
observed real-time data. They use generated data to predict bus arrival time, and they 
do not consider dwell time and scheduled data. The bus arrival times predicted by the 
ANNs are assessed with the microscopic simulation model CORSIM, which is 
calibrated and validated with real-world data collected from route number 39 of the 
New Jersey Transit Corporation. In [11] the authors propose an algorithm for 
estimating transit vehicle’s link travel time from data transmitted through wireless 
communication channel based on a neural network algorithm tailored for each period 
of the day under mobile environment. In this model, link weights are updated every 7 
days in order to provide feedback control based on bias between estimate and real 
measurement. Jeong in [7] implement three main modeling techniques that are used 
for prediction of bus motion and arrival time: a simple statistical model (historical 
data based model), a multi linear regression model and an artificial neural network 
model. The input variables to these models are arrival time, dwell time, and schedule 
adherence at each stop. After evaluation and statistical testing of the three prediction 
models, the artificial neural network models give superior results than historical data 
based models and regression models in term of prediction accuracy. The related  
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research shows that the Kalman filtering algorithms that utilize real-time data perform 
well for short prediction, while ANN techniques that utilize historical data are 
computationally expensive and are not suitable for real-time applications [18]. 

3   Prediction of Bus Motion and Bus Arrival Times 

Before development of algorithm for prediction of bus motion and bus arrival times it 
is necessary to analyze characteristics of bus motion in city traffic and to detect 
certain regularities that inevitably influence the prediction process. Furthermore, the 
vehicles in public bus transportation system follow certain rules and motion 
restrictions. In order to perform efficient and precise enough prediction these facts 
should be carefully considered and incorporated in the motion model that will be used 
in the prediction algorithm.   

3.1   Model of Motion and Prediction 

The source of vehicles positions data in the typical public transportation tracking and 
control system is AVL system. The AVL output represents an array of points in time 
and two dimensional space, as well as speed of vehicle at certain time instants. This 
form of location data is well suited for vehicle location visualization on the map or 
analysis whether a vehicle follows the assigned route. Such data also enables map 
matching: a technique that positions an object on a network segment, at some distance 
from the start of that segment, based on location information from a GPS device. The 
problem of bus travel/arrival time prediction is essentially two dimensional (time and 
one spatial dimension) (figure 2) [7].  

 

 

Fig. 2. Tracking the position of busses in 2D/time and 1D/time 
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Bus locations streamed from AVL system for each vehicle are firstly converted 
into distance along its assigned route using the output from the map matching 
component. Location updates that are available at regular time intervals are usually 
spaced apart with insufficient frequency to completely model every aspect of the real 
motion of the vehicle. The principle is shown in figure 2. All city bus routes are cyclic 
in nature and can be categorized as unidirectional and bidirectional. Bidirectional bus 
routes can be generalized as unidirectional with identical start and end stops. They 
allow that some (or even all) of the intermediate stops appear more than once in this 
“unfolded” route representation since these stops belong to both route directions.  

Bus arrival/travel time prediction based solely on current motion parameters 
detected by AVL (speed, direction) is unsuitable for city traffic conditions and can 
produce only very approximate results [4]. Therefore it is necessary to use data 
streamed from the AVL system and matched to the routes to record the characteristics 
of bus motion along the route over time during different (representative) time frames 
(the whole day, rush hour, weekends, holydays, vacations etc.). The example of 
recorded location/time data along the specified route is shown in figure 3. Apart from 
certain irregularities it is possible to note repeating patterns in distribution of recorded 
positional data during certain periods of the day.  

Recorded characteristics of bus motion along the route are classified according to 
the period it was recorded in. This information is stored as a bus motion profile. 
Statistical analysis of current bus motion and matching against previously formed 
profiles allows for much more precise estimation. More importantly, this estimation 
shows much more stability over longer periods of time.  

 

 

Fig. 3. Bus locations represented as distances along the route in function of time 
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3.2   Algorithms for Prediction of Arrival Times 

As noted in the previous section, the raw location/time data streamed from the AVL 
system is firstly processed by the map and route matching components. Each bus is 
assigned with the route it is operating on. This assignment is usually fixed and 
predefined by the operators. But, the policy adopted by the bus operators in the city of 
Nis is to dynamically allocate busses to different routes during different periods of the 
day. Then, the filter component has to be able to dynamically assign the bus to  
the route in real time, based on immediate history of the bus motion. For each of the 
operating busses the system keeps track of last N stops along the corresponding 
routes. The parameter N is set to 100. Arrival of the vehicle at the bus stop is detected 
if at least one positional update for that vehicle is detected inside predefined circular 
proximity of the stop and the speed at that position(s) is lower than the predefined 
upper threshold. The more natural and precise condition would be at least two 
consecutive detected positional updates within defined proximity of the station with 
speed 0km/h. Unfortunately, this method would require much more frequent 
positional updates unnecessarily straining the system and making GPRS costs 
unacceptably high. If multiple bus stops fulfill the defined condition (the same stop on 
the route used in different directions) the stop that is closer is selected. The formed 
array of last 100 detected stops is matched against stop arrays for both directions for 
the routes that operator held. Since GPS positioning system is less reliable and precise 
in “urban canyon” conditions, the matching algorithm allow for up to one station to be 
skipped during matching [16], which is in accordance with the practice of some of the 
operators to have stop on demand. If no passengers are waiting on that stop and no 
passenger on the bus is getting of at that stop it is skipped. For each route that is 
matched against maintained array of last N stops, started from the last detected stop 
backwards, a probability is given depending on the number and order of matched 
stops. The route detected with the highest probability is pronounced the current route 
the bus is operating on. There is also a watchdog feature that designates the bus “in 
the garage” if no bus stops is detected for 30 minutes of bus’ current ride. When the 
filter component assigns vehicles to the routes it is possible to proceed with bus 
station arrival time estimation.  

In order to perform bus arrival/travel time predictions it is necessary to extract 
instances of route rides from the filtered positional data. The single instance of the 
route ride consists of all positional updates for a single vehicle received after bus 
departure from the starting stop to the last stop in direction A and all updates in 
direction B back to the starting stop. After that, a new ride for that route is initiated. In 
order to compensate for different traffic conditions during different periods of the day, 
the day period the ride was recorded is assigned to each ride recording. This 
information is important and used later during arrival estimation in order to assign a 
relevance weight factor to the each estimation. Naturally, rides recorded in similar 
period of the day are more relevant than others [20]. After each instance of the ride is 
detected and extracted it is stored in an array of rides that is associated with each of 
the routes. Last 10 rides for each of the routes are always available to be used by the 
estimation algorithm. This step of the algorithm completes all necessary data for the 
estimation.  
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From here, the estimation algorithm proceeds as follows (figure 4). For each of the 
bus stops estimation is performed for (Spr), the list of routes that stop belongs to is 
extracted. Then, for each of the extracted routes a list of vehicles currently operating 
on that route is formed. For each of these vehicles the last stop (Spz) it has stopped on 
and time (tpz) is known. Knowing these two pieces of information it is possible to find 
bus stop (Spr) in every one (out of 10) rides associated with that route. The algorithm 
notes the time (tpr) when the vehicle which recorded that ride was on the station (Spr) 
in question. In all of 10 rides the algorithm also notes the time (tpzv) when the vehicle 
which recorded the ride arrived at the station (Spz). After that the arrival time for that 
vehicle on the station (Spr) is given as: 

 
)_()( pzpzvprp ttimecurrentttt −><−−=  

 
Based on the time period of the day the estimation is calculated and the time period 

for each of the estimation is included in the final estimation with the certain weight 
factor. As it was previously noted this weight factor models the relevance of the 
estimation.  

 

 

Fig. 4. Graphical representation of arrival time prediction algorithm based on one instance of 
bus ride along the route 

The estimated arrival time is displayed at the information display located at the bus 
stops and other key locations in city on electronic signs, as well as other public 
information devices, such as interactive kiosks. Once estimated arrival/travel times 
are available in the system, various forms of advanced traveler information services 
(TIS) can be distributed to the passengers (customers). Customers with access to the 
Internet is be able to obtain real-time transit information, get notifications, as well as 
static and general transit information (e.g., schedule and fare) from a city portal or 
transit agency’s web site. Customers with a mobile, Internet-enabled device is able to 
acquire real-time arrival/travel time information, either in the bus during the ride 
(“When the bus will arrive to the specified stop, or where the bus will be for the T 
minutes from now?”) or at or near the bus stop (“When the bus will arrive to this 
stop?”) using SMS or by accessing the city WEB/WAP portal [8], [15]. More 
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Fig. 5. Data flow in the system for bus arrival/travel time prediction 

sophisticated TISs can be provided to passengers by use of continuous query 
techniques in the form of notification/alarms service regarding the current and 
predicted bus motion. 

Data flow in the described system for city bus public transportation monitoring is 
shown in figure 5. City public transportation service is more interested in daily and 
monthly reports on mileage, bus stop schedule accomplishment, number of active 
vehicles etc., than real-time bus tracking. 

4   Experiments 

In this section, we present the results of some experiments to analyze the performance 
of our methodology and algorithms for prediction of bus arrival times. 
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4.1   Experimental Setup 

In order to verify assumptions presented in previous sections, an experiment was 
performed. The experimental testbed consists of a server running in city bus service 
monitoring center which was tasked with receiving positional updates from the 
vehicles, storing this data to the database and running analysis algorithms (matching 
vehicles to routes, detecting bus stops and making arrival/travel time predictions). In 
this stage of system implementation 150 busses had tracking devices installed. For the 
purpose of bus arrival time prediction a bus station number 45 was selected and 
equipped with information display. The information display is a LED matrix capable 
of scrolling information that is fed to it. It contains microcontroller logic and GPRS 
modem that is used to connect it to the central server and transfer estimated times to 
be displayed. This bus station is located in the city center and a majority of routes stop 
at this bus stop making it a very frequent one. It was expected that the prediction 
algorithm applied to this bus stop would give relevant results. There are 12 bus routes 
stopping at the selected stop 045 (routes 6, 13, 1, 2, 5, 38, 18, 21, 20, 22, 23, 37) 

The experimental setup was installed in monitoring center and fed with real life 
data acquired from the vehicles operating in the city. Since the prediction algorithm 
relies on a number of data structures to be filled the server was left running for 24 
hours before the log files were extracted for analysis. 

4.2   Experimental Results 

Predicted arrival times are stored and latter compared to the real arrival times to 
assess the algorithm performance. Arrival times for various busses were recorded for 
bus stops 011 through 045 (011, 164, 165, 067, 070, 072, 091, and 045). Without loss 
of generality this section presents data concerning route 5. Table 1 shows recorded 
bus stop times along route 5 for the selected bus stops being analyzed. These stops on 
different rides were performed by different busses; hence they are overlapping  
in time.  

Since the proposed algorithm periodically outputs estimated times of the next bus 
arrival on station 045 for the purpose of rating the quality of the estimation full 
history of arrival times was calculated. This was possible because during operation in 
the debug mode the algorithm created full log of the events and times of events 
 

Table 1. Recorded buses stops during analysis period 

Stop 011 Stop 164 Stop 165 Stop 067 Stop 070 Stop 072 Stop 091 Stop 045 
Ride1 7:01:37 7:02:47 7:04:53 7:06:33 7:09:07 7:10:45 7:13:07 7:14:17 
Ride2 7:37:40 7:38:47 7:39:57 7:42:45 7:45:38 7:46:59 7:48:09 7:50:57 
Ride3 7:45:43 7:47:07 7:48:59 7:50:37 7:52:17 7:54:23 7:57:13 7:58:37 
Ride4 8:37:51 8:39:01 8:41:09 8:43:01 8:45:21 8:48:39 8:49:35 8:50:45 
Ride5 9:24:59 9:25:55 9:27:35 9:30:37 9:33:13 9:35:47 9:38:07 9:39:33 
Ride6 10:13:05 10:14:01 10:15:53 10:17:31 10:19:53 10:24:47 10:26:25 10:27:37 
Ride7 11:02:05 11:03:15 11:05:07 11:07:13 11:09:35 11:14:03 11:15:13 11:16:51 
Ride8 11:29:50 11:31:14 11:34:18 11:36:38 11:38:30 11:40:52 11:43:26 11:44:38 
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occurrences. The graph in figure 6 shows times needed for the bus to arrive from 
different consecutive stations to the station 045. The graph shows values for 8 
consecutive recorded rides performed by different vehicles. 
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Fig. 6. Recorded times needed for busses to travel from selected stations to station 045 
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During recording of the data shown in figure 6, the algorithm gave estimates of 
arrival time of a next bus on station 045 in a real time. For easier algorithm 
performance evaluation the figure 7 shows graphs for averages, weighted averages of 
recorded arrival times and outputted estimates during recording.  

4.3   Summary of the Experiments 

The trend visible in the data shown in the previous section was also detected on other 
routes stopping at bus stop 045. Therefore, the presented results are representative and 
show that proposed algorithm for arrival time estimation in city public transportation 
system is precise enough to be used in traveler information services.  

5   Processing of Continuous Queries for Notification Services 

Along with standard TIS features regarding arrival/travel time prediction, an 
additional feature is added in the form of “alarm feature”. A user can request the 
notification (set the alarm) to tell the service to alert when it is time to leave to catch 
the bus on time. The user chooses specific location/bus stop at the bus routes and sets 
the alarm to notify him/her when the bus will reach the selected location in defined 
time period (“Notify me when bus will be 5 minutes from this bus stop, and when it is 
time to leave the home”). The use of instantaneous queries for such service (“What is 
the time period until the bus arrives to the bus stop?”) will not provide accurate 
results. Such query is evaluated immediately and the answer is transmitted to the user. 
To get desired time for leaving home, either user must issue the query periodically 
until the answer represents the time he/she specified in the query, or to rely on 
uncertain information given in a query answer because the bus motion onward may be 
slowing down due to traffic jams, accidents etc. 

Thus, the solution is in application of continuous query processing methodology. 
The continuous query remains active over period of time and periodically examines 
the satisfaction of the query condition given in the form of: “Notify me when the bus 
will be at specific location, or will be N minutes from the specified location/bus stop”. 
The accuracy of continuous query processing answers and notifications sent to the 
user depend also on predicted bus travel and arrival times at specific locations/bus 
stops. 

The methodology for processing continuous range queries in a mobile environment 
is developed as a part of ARGONAUT, a service framework for mobile object data 
management [17]. We base our approach on the application scenario appropriate in 
LBS for monitoring and tracking mobile objects. In this scenario, users have wireless 
devices (e.g., mobile phones, PDA, in-car tracking device) that are on-line via some 
form of wireless communication network and can obtain their positions using Global 
Positioning System (GPS) technology, like in AVL system for bus transport. We 
successfully applied ARGONAUT continuous query processing to notification 
request/respond service in TIS. 

The ARGONAUT methodology employs an incremental continuous query evaluation 
paradigm. Thus the server reports to the clients only the changes of the answer from 
the last evaluation time of their continuous queries. This significantly saves the 
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network bandwidth by limiting the amount of transmitted data to the updates of the 
answer only rather than the whole query answer. Two types of updates are 
distinguished: positive updates and negative updates. The positive/negative update 
indicates that a certain object needs to be added/removed to/from the query answer. In 
the notification query/service the user is interested in a positive update of the 
underlying query, i.e. when the bus he/she is expecting is within the time period from 
the selected location/bus stop. As such, the ARGONAUT continuous query processing 
service is suitable for a wide range of location based notification, sense-and-respond, 
publish-subscribe and geofencing services. 

Since the vehicle motion is constrained by an underlying transportation (road, rail, 
etc.) network, the methodology maintains two representations of the network data 
(figure 8). Both structures support the filter step of the query processing algorithm 
and the map matching procedure. The first representation organizes network segments 
according to Euclidean distance in a main memory R*-tree index structure and is 
named SR*-tree (Segment R*-tree). The graph representation of a spatial network is 
maintained by the Network Connectivity Table (NCT), a data structure that stores 
information about the connectivity of network segments.  

 

Fig. 8. Index/Data structures in Argonaut query processing framework 

Both network representations are interconnected, i.e. there is a reference from SR*-
tree segment representation to the corresponding NCT segment representation and 
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index/data structures, according to their location/route along the road network 
segments and stored in corresponding list of objects/queries in leaf node entries of the 
SR*-tree. In addition, two additional main-memory data structures are defined (figure 
8). The Continuous Query Table (CQT) is used to store information about continuous 
range queries (query identifier, identifier of the focal object of the query, 
range/distance, and valid period). For every query in CQT, a temporal query answer 
set is maintained, i.e. the set of objects and the periods in which they satisfy the query 
condition. The start of the period indicates the time when an object becomes the part 
of the continuous query answer (enter the query region, or approach to the defined 
location/bus stop on specified distance). Analogously, the end of the period indicates 
that the object is not a part of the query answer any more (leave the specified region 
or is far from the defined location by specified distance). For each mobile object in 
the system, an in-memory Mobile Object Table (MOT) is created and maintained. 
Besides the basic attributes (identifier, location, time and speed) for each mobile 
object the list of queries in which such object participates, either in a query answer, or 
as a reference object of a query is maintained. To support fast and efficient updates of 
leaf node entries (object and query lists), which do not require changes in the SR*-
tree non-leaf node entries and the structure of the SR*-tree, we extend these two 
main-memory data structures to contains the pointers to the leaf node entries of the 
SR*-tree where the particular mobile object/query currently resides. 

We introduce the pre-refinement step performed after the filter step to further 
refine the answer obtained by the filter step, to build main memory data structures 
CQT and MOT and to support periodical and incremental refinement steps. In the pre-
refinement step the temporal query answer is generated for each continuous query in 
the system. The usage of the pre-refinement step is proven to be especially useful for 
processing of continuous queries over objects with known route, like busses in the 
system for monitoring public bus transport. For the purpose of notification/alarm 
feature of TIS, the ARGONAUT continuous query processing services for each 
continuous query (notification request) maintains the list of mobile objects/busses 
which represents their temporal answer sorted according to the start time of their 
answer periods. When a mobile object (bus) change its motion parameters (schedule) 
and the new bus travel time is predicted, the service updates the temporal query 
answer of the continuous queries (notification requests) whose answer includes this 
bus, accordingly. When the start time of the answer period for particular bus is 
reached, the service generates and delivers the notification according to the 
preferences of the user who requests the notification (WAP push, SMS, MMS, etc.) 

The detailed algorithms for ARGONAUT continuous query processing methodology 
are given in [17]. With respect to the experimental results presented in [17], the 
ARGONAUT methodology offers acceptable performance in updating the answering 
periods of the continuous query answers, when receiving new values for the location 
or speed of a mobile object (busses), and thus is useful in providing notification in a 
traveler information service. 

6   Conclusion 

This paper presents an algorithm to predict the arrival time of public buses as a central 
component of the traveler information services. The algorithm combines real-time 
AVL data with a historical data source to produce an estimation of travel time based 
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on the current time. Using this estimation, the algorithm calculates the expected 
travel-time as the arithmetic mean of the weighted estimations of travel-time. 
Empirical results have shown that the proposed algorithm is flexible enough to 
function in real life conditions and is able to produce predictions that are useful to the 
travelers. Based on prediction of bus motion and bus arrival time, as well as spatial 
and spatio-temporal data about routes and schedules, we implement continuous query 
processing techniques to further improve traveler information service with 
notification/alarm feature. 

Further work can improve the prediction model and services presented here in 
several ways. The possible direction for future research includes adaptation and 
implementation of advanced techniques based on trajectory clustering and mining and 
Kalman filtering for better predictions based both on historical and real-time data. 
Furthermore, data from other sources are to be incorporated into the prediction model 
and algorithms. Example sources are real-time traffic condition and performance of 
previous predictions. Besides advanced traveler information services, we plan to use 
real-time and off-line analysis of AVL data and predicted bus motion for traffic 
monitoring and detection of traffic queues, jams and bottlenecks in the traffic flow 
which are of interest to other drivers. 
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Abstract. Query mapping to aggregation lattices is used in order to exploit
sub-cube dependencies in multidimensional databases. It is employed in mobile
OLAP dissemination systems, in order to reduce the number of handled data
items and thus optimize their scheduling and dissemination process. This paper
analyzes the impact of choosing between mapping to the data cube lattice or alter-
natively to the respective hierarchical data cube lattice. We analyze the involved
tradeoffs and identify the exploitation degree of sub-cube derivability as the de-
ciding factor. We therefore introduce an analytical framework which computes
derivability related probabilities and thus facilitates the quantification of this de-
gree. The information provided by the framework is consistent with experimental
results of state of the art mobile OLAP dissemination systems.

1 Introduction

Wireless information systems become ever more present due to great advances, both in
wireless network technology and mobile, portable devices. These devices are contin-
uously getting smaller, more powerful, running more sophisticated applications. Con-
sequently, organizations are adopting mobile applications because substantial business
benefits can be safely assumed.

Increasing data volumes and accelerating update speed are fundamentally changing
the role of data warehouses in modern business. More data, coming in faster, and requir-
ing immediate conversion into decisions means that organizations are being confronted
with the need for real-time data warehousing. Evidently, enabling mobile, portable de-
vices to participate in such systems is a fundamental requirement.

As a consequence, the research field of mobile OLAP (mOLAP) has emerged. As an
application scenario, we refer to an example described in [1], which considers the case
of brokers accessing a stock market gallery data mart. At opening and closing times,
different stocks in different financial dimensions are analyzed by many traders using
some mobile device, typically laptops. Some of these stocks are more popular than
other, similarly, some analytical dimensions are more important than other. In such
scenarios, a data mart equipped with a broadcast gateway is responsible for serving the
incoming requests.

Data broadcast technology plays a fundamental role on wireless dissemination sys-
tems, since it is a 1-to-n process, enabling enhanced scalability. Nevertheless, early data
broadcast systems were designed under the principle, that the number of handled data
items is not too high, that the data items occupy relatively small size and do not possess
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any semantic connection with each other (e.g. web pages). Content or characteristics of
data items were practically ignored. In this context, the dissemination of multidimen-
sional cubes, which are order of magnitude bigger than web pages, and between which
semantic connections exist, has to be tackled differently.

To cope with this problem, mOLAP dissemination systems employ query mapping
to aggregation lattices in order to reduce the number of handled data items. Moreover,
they exploit sub-cube derivability to serve multiple requests with one transmission and
thus increase scalability. Since the number of different multidimensional queries, which
can be issued by the mobile clients is unlimited, the reduction of handled data items
is achieved by mapping them to an aggregation lattice, which is a graph representing
different views of the data cube. Having mapped queries to lattice nodes, two different
lattice nodes for which a dependency exists, do not have to be served by two separate
connections, but from a single broadcast instead. All transmissions at the physical layer
of the wireless network are anyway broadcasts.

There are two types of aggregation lattices, depending on the inclusion of hierar-
chical levels of dimensions or not. The first discussed type is the Data Cube Lattice
(DCL), which consists of nodes that represent dimensions at their lowest level (fact ta-
ble data) ignoring hierarchies, leading to coarse grained representations. The second
type is the hierarchical Data Cube Lattice (hDCL) which includes hierarchies leading
to fine grained representations.

Previous work regarding query mapping does not provide a clear answer regarding
which aggregation lattice is more appropriate in mobile data warehouses. The main
reason is that this problem strongly depends on the observed domain. For example, in
[2], hDCL mapping is used for cache management. In contrast, mOLAP dissemination
systems in [3,1] operate on DCL query mapping.

In this paper, we deal with optimal mapping of queries in mOLAP systems. We ana-
lyze the tradeoffs that arise when choosing between them and identify the exploitation
degree of sub-cube derivability as the deciding factor. Therefore, we propose an ana-
lytical model to quantify this degree in both query mapping modes. On the one hand,
our analytical model provides a general framework for computation of sub-cube deriv-
ability probabilities. On the other hand, it computes probabilities explicitly related to
the mOLAP domain. Its main feature is, that it does not presume a specific query dis-
tribution, making it applicable for any query workload. We believe that the information
provided by the framework should be useful for any future mOLAP system. We use the
information provided by the model for the evaluation of state of the art mOLAP dis-
semination systems with respect to query mapping. Both analytical and experimental
results reveal that coarse grained query mapping is more suitable for mOLAP. In short
the major contributions of this paper are:

– Presenting the case of query mapping in multidimensional databases (MDDBs)
– Analyzing the tradeoffs of different query mapping modes in mobile OLAP systems
– Introducing an analytical framework for computing sub-cube derivability

probabilities
– Evaluating state of the art mOLAP systems with respect to query mapping.

The remainder of the paper is structured as follows: In Section 2, we describe ag-
gregation lattices and the way in which multidimensional queries are mapped to them.
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Section 3 explains why query mapping is critical in mOLAP systems. In Section 4, we
introduce an analytical framework for evaluating the exploitation degree of derivation
semantics in mOLAP systems. In Section 5, we compare state of the art mOLAP sched-
ulers with respect to query mapping and provide experimental results. Finally, Section
7 concludes our results and presents future work topics.

2 Derivability in Aggregation Lattices

Consider two queries q1 and q2. q1 is dependent on q2 (q2 � q1) when q1 can be
answered using the result of q2. This property is known as query dependency. The
reuse of queries in MDDBs is mainly related to the data cube operator, [4,5]. The data
cube operator is the union of all possible group-by operators applied on a fact table. [6]
notes that some of the group-by queries in the data cube query can be answered using
the results of other. In MDDBs there are two types of query dependencies. Dimension
dependency is caused by the interaction of the different dimensions with one another.
Attribute dependency is caused within a dimension by attribute hierarchies.

Data cubes are created from group-by queries, for which dependencies exist. There-
fore, dependencies also exist between the produced sub-cubes. An aggregation lattice
is a graph, whose nodes represent different views of the data cube and whose arcs the
derivability of sub-cubes. As to be seen in the following paragraphs, there are two kinds
of aggregation lattices, depending on whether the hierarchical levels of the dimensional
attributes are considered or not.

Derivability is not a new research area. It was introduced it in the context of statistical
databases, when checking derivability of summary data under different classifications.
In the following years, derivability became very important, both in relational and mul-
tidimensional databases (MDDBs), in the context of materialized views. Derivability is
exploited in finding the optimal set of materialized views, [7].

It is important to underline, that our work observes derivability from a completely
different perspective. We do not use derivability to optimize query execution by a
database server, but to optimize the scheduling and dissemination process of a mOLAP
application server instead.

2.1 Data Cube Lattice

A data cube stemming from a schema with D dimensional attributes has 2D possible
sub-cubes. Assume a 3-dimensional cube. Let the three dimensional attributes be Prod-
uct, Store and Time. Table 1 contains the declared hierarchical levels of this schema.
Given multidimensional data, the Data Cube Lattice is the lattice of the set of all pos-
sible grouping queries that can be defined on the foreign keys of the fact table, [8]. It
is a directed, acyclic graph, that depicts the relationships between all 2D sub-cubes. In
Fig.1, one 3-dimensional cube, three 2-dimensional sub-cubes and three 1-dimensional
sub-cubes are shown. Each of every possible sub-cube is represented in the lattice by
one node.

DCL nodes can be labeled by a sequence of bits (bitmap), as depicted in Fig.1. The
number of necessary bits is equal to the dimensionality of the cube. Each bit represents
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Table 1. Declared hierarchies of a 3-dimensional data cube

Hierarchies
Product Store Time

ALL P0 ALL T0

↑ ↑ ALL S0 ↑ ↑
Category P1 ↑ ↑ Year T1

↑ ↑ StoreId S1 ↑ ↑
Code P2 Day T2

level 0

level 1

level 2

level 3

Fig. 1. The DCL of a 3-dimensional data cube

---
000

P2S1
210

P1S1
110

P2T1
201

P1T1
101

P2T2
202

P1T2
102

S1T2
012

S1T1
011

P1S1T1
111

P1S1T2
112

P2S1T1
211

P2S1T2
212

P2
200

P1
100

T1
001

S1
010

T2
002

Fig. 2. The hDCL of a 3-dimensional data cube

one dimension. If the dimension exists in the node then the bit is set to 1, otherwise it
is set to 0.

Note that the hierarchical levels of each dimension are completely ignored in DCLs.
This is how the two lattices discussed in this paper differ from one another.

2.2 Hierarchical Data Cube Lattice

Hierarchies on aggregation lattices were introduced in [6,9]. A hierarchical Data Cube
Lattice, is a directed, acyclic graph, that depicts the relationships between all

∏D
n=1

(gri + 1) sub-cubes, given a D-dimensional cube and the number of grouping attributes
(levels) gri of dimension i.

Note that this definition considers a limited set of grouping attributes. It considers
only the dimension’s key attribute and the non key attributes that are functionally depen-
dent on it (practically an attribute hierarchy). If the set of grouping attributes addition-
ally includes attributes not functionally dependent on the key attribute, the produced
lattice is called MD-lattice (Multidimensional lattice), as defined in [8]. MD-lattices
are not considered in this paper since the number of its nodes is so high, that the fun-
damental objective behind query mapping of reducing the handled data items, can not
be fulfilled. Moreover the hierarchies are strict, namely each object at a lower level
belongs to only one value at a higher level.

It is important to underline, that the only key difference between DCL and hDCL
is in the degree of detail. Figure 2 contains the hDCL that corresponds to the schema
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of Table 1. There are (grP +1)×(grS+1)×(grT +1)=3×2×3=18 possible views or
sub-cubes. Similarly to the bitmap of the DCL, we notate hDCL nodes with a sequence
of digits. Each digit represents the dimension and the hierarchical level. If the dimen-
sion does not exist in the node then the digit is set to 0, otherwise it is set to the number
of hierarchical level. For example the sub-cube P2S1 in Fig.2 is marked with 210. The
first digit is 2, and indicates the second hierarchical level of dimension Product, the
second digit is 1 indicating the first hierarchical level of dimension Store and the last
digit is 0, indicating that dimension Time has been projected.

A sub-cube can be derived by another sub-cube, when there is a path in the lattice
that connects the nodes that represent these sub-cubes. This is known as subsumption.
This derivation is feasible for distributive SQL aggregation functions such as sum, min,
max or count, but is neither allowed for algebraic functions such as average or covari-
ance, nor for holistic functions like median, [10]. Aggregating over a time dimension is
allowed if the fact (measure) is of type flow.

The ancestor and descendant operators, as defined in [8,11], reveal query dependen-
cies. The result of the ancestor operator ⊕ on two queries is the smallest query con-
taining all the necessary information to answer both queries, whereas the descendant
operator� computes the greatest among the set of attributes characterizing the queries
that can be computed by the two queries. In this paper though, we do not use the term
ancestor as an operator, but as a property to representing sub-cube derivability. In this
context, a lattice node na is an ancestor of a lattice node nb when there is a downward
path from na to nb in the lattice.

hDCL arcs represent either dimension or attribute dependencies, whereas DCL arcs
represent exclusively dimension dependencies.

2.3 Query Mapping

Query mapping is the process of mapping a query to its respective node in the lattice.
The question which immediately arises is which of the two lattices is more appropriate
for the mapping of the queries. Before dealing with this issue, we provide an example of
how a query would be mapped in the two lattices. Assume the following query targeting
the schema of Table 1 and one measure attribute. Without loss of generality, we use
Multidimensional Expressions (MDX) as the query language.

SELECT
{ [Product].[Category].[Drinks] } ON COLUMNS,
{ [Time].[Year].AllMembers } ON ROWS

FROM [TestCube]

This query is mapped to node PT of the DCL, since it only matters that dimensions
Product and Time are involved. Considering the hDCL, the query is mapped to node
P1T1, since the member Drinks belongs to the hierarchical level Product.Category (P1)
and all members of the hierarchical level Time.Year must be retrieved (T1).

3 Query Mapping in Mobile OLAP Dissemination Systems

mOLAP dissemination systems serve multidimensional queries issued from mobile
clients. They are responsible for the scheduling of queries and the dissemination of
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results. In a typical mOLAP scenario, mobile clients issue queries to one or more data
cubes. The server is able to respond to any incoming query referring to a data cube,
either by having already stored all possible sub-cubes, or by retrieving them from the
backend data warehouse, when necessary. There is a single broadcast channel that is
monitored by all clients and an uplink channel for issuing requests. Clients continuously
monitor the downlink channel after making a request, to check for requested data.

The entire concept of mOLAP systems is founded on providing offline functionality.
This is crucial when considering that portable devices are not permanently connected to
a network. Therefore, clients are aware of the schema metadata and can consequently
locally store received data and perform local processing in order to enable subsequent
analysis.

FCLOS, [3], and STOBS, [1], are scheduling algorithms, explicitly designed for dis-
semination of multidimensional data in wireless networks. Despite many differences in
their scheduling approach, both of them build on subsumption. In this way, multiple
benefits are gained. Not only can the server answer the requests faster, but the clients
experience improved access time as well. Moreover, energy and generated traffic are
reduced.

mOLAP systems map the incoming queries to respective nodes of the lattice. This
is justified by the fact that the point-to-point communication model is inefficient in
a wireless network, especially for an OLAP application. In other words, serving each
request individually, assuming that the client is not able to perform local processing, not
only exhibits poor performance in terms of access time, but it does not scale with the
number of requests as well. Query mapping substantially reduces the number of data
items that the scheduler has to handle, which is a desired property. Figure 3 highlights
the question which naturally arises: which of the two lattices should be used for the
mapping of the queries? The DCL or the hDCL? How does this decision influence the
system’s behavior?

Both FCLOS and STOBS operate on DCL mapping. This results in a coarse grained
query mapping. The absence of hierarchies, practically imposes that the clients have to
locally aggregate fact table tuples in order to compose the hierarchical level aggregations.

---

P1 T1P2 S1 T2

P1T2 S1T2P2T2 S1T1P1S1 P2T1P2S1 P1T1

P1S1T1 P2S1T2P2S1T1 P1S1T2

OLAP Server

Gateway

coarse grained querying
(without hierarchies)

fine grained querying
(with hierarchies)

PST

PS PT ST

-

P S T

Data Cube 
Lattice

Hierarchical Data Cube 
Lattice

Query Mapping

Waiting
Queue

q5q4q3q2q1

Fig. 3. A mOLAP dissemination system and two possible query mappings
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Table 2. Query mapping tradeoff in mOLAP

Querying/Property DCL hDCL

Generated Traffic for a given query - +

Client Side Processing - +

Number of Data Items + -

OLAP Operations + -

Although previous work in this area mainly assumes coarse grained querying, it
is worthwhile investigating the impact of fine grained query mapping, which can be
achieved when queries are mapped to hDCLs. In fine grained querying scenarios, trans-
mitted structures include aggregated values according to the dimension hierarchy levels.
Such querying imposes that end users receive datasets, which require less local process-
ing. Moreover, data transfer in preferred granularities is supported.

Table 2 summarizes the tradeoff which arises: On the one hand, using fine grained
query mapping, generated traffic for a given query is reduced (or is equal in worst case).
Moreover, clients are forced to perform intensive local processing, which might not al-
ways be feasible. On the other hand though, sub-cube derivability is more straightfor-
ward in DCL. A DCL consist of less nodes than its respective hDCL, so that the number
of handled data items is reduced. In addition to that, DCL mapping enables better of-
fline functionality and OLAP operations like roll-up or drill-down. Consider the query
of Section 2.3. A client having received the sub-cube PT can answer locally any query
that involves only these two dimensions, namely it is able to locally perform any roll-
up, drill-down or projection. A client having received the sub-cube P1T1 instead, is not
able to locally perform any drill-down. A drill-down would inevitably have to invoke a
new query to the server.

4 An Analytical Framework for Computation of Query
Dependency Probabilities

4.1 Model

In the previous Section we considered a mOLAP system and described the tradeoffs im-
posed by selecting between coarse and fine query mapping modes. We suggest that the
exploitation of the derivation semantics is the key factor influencing the query mapping
mode selection. However, evaluating this exploitation degree is not a straightforward
task. This section presents an analytical model which facilitates this evaluation. This
model provides the basis for computing relevant subsumption probabilities, that mO-
LAP schedulers has to consider when scheduling and disseminating requests.

mOLAP schedulers, regardless of their individual approach, are keen to exploit the
subsumption property among nodes of the lattice, but naturally, there are fundamental
differences in the way that this is pursued. Therefore, the usefulness of a probability
strongly depends on the scheduler itself. Considering that our objective is to evaluate
the appropriateness of the two different query mapping modes, we do not restrict our
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Table 3. Notation

Notation Definition
S Set which contains every lattice node
Q Multiset which contains every queue element
D Number of dimensions
nj A lattice node (n ∈ S)
ni

j The ith bit of the binary representation of nj where i ∈ [0, D − 1]

na nb na is an ancestor of nb

nj MSnj is an ancestor of every element of the multiset MS (ancestor of |MS| elements)
ej An element of the queue (e ∈ Q)
grd Number of hierarchical attributes of dimension d

Dn Set of all dimensions existing in node n

lev(n, d) The hierarchical level of node n at dimension d (lev(n, d) ∈ (0, grd])
Pd The probability that dimension d exists in node n

Pd,l
Given that dimension d exists in node n, the probability that the hierarchical level
l is selected

pn The probability that a node n is selected from a multiset Q of lattice nodes

model to a specific scheduler. Nonetheless, we will show in following paragraphs which
of the computed probabilities are directly applicable to STOBS and to FCLOS.

Consider the architecture of Fig.3, where mobile clients issue queries targeting a
given data cube. These queries are mapped by the scheduler to the corresponding lattice
node and subsequently inserted in the waiting queue. Naturally, one node of the lattice
might have been requested by more than one client. Therefore, our model considers the
queue as a multiset Q and thus |Q| is the size of the queue. Table 3 provides a notation
overview.

We employ the following evaluation metrics, which can be used by any scheduler,
when trying to exploit dependencies:

1. P (ea � eb): In a multiset Q of lattice nodes, the probability that a selected element
ea ∈ Q is an ancestor of another selected element eb ∈ Q

2. P (ea � Q): In a multiset Q, the probability that a selected element ea ∈ Q is an
ancestor of every element in Q

3. P (∃ e : e � Q): In a multiset Q, the probability that there exists one element,
which is an ancestor of every element in Q

4. P (ea � q+ ⊆ Q): In a multiset Q, the probability that a selected element ea ∈ Q
is an ancestor of at least |q| (|q| − 1 + itself) elements of Q

5. P (∃ e : e � q ⊆ Q): In a multiset Q, the probability that there exists at least one
element, which is ancestor of exactly |q| (|q| − 1 + itself) elements of Q

P (ea � eb) for example provides a general evaluation of sub-cube derivability and
is not directly to mOLAP. P (ea � q+ ⊆ Q) is intended to be useful for any mOLAP
scheduler that checks subsumption after having determined the element to be transmit-
ted, as in the case of STOBS. P (∃ e : e � q ⊆ Q) on the contrary targets schedulers
that consider every element as candidate for transmission and decide according to its
subsumption, as in the case of FCLOS.
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A fundamental objective of this work is to be applicable regardless of the query
distribution. Assuming a specific distribution would severely restrict the applicability
of our approach. Nevertheless, the discussed probabilities are obviously dependent on
the query distribution. We overcome this by forcing the server to collect simple statistics
about the incoming queries. Particularly, the server measures the probability Pd that a
dimension d exists in an incoming query. For example, using the data cube of Fig.1
the probability PProduct that dimension Product appears in an incoming query can be
computed as PProduct = pPST +pPS +pPT +pP . Additionally, since every dimension
has hierarchical levels, for every dimension d, the probability Pd,l that the hierarchical
attribute l is requested, is also computed by the server. In this way, our model can be
applied to any possible query distribution. Naturally, in order to be able to react to
fluctuations in the incoming workload the server will have to consider each time the
more recent statistics.

It should be clear that if we consider every node of the lattice:
∑
n∈S

pn = 1, and that

for every dimension d:
grd∑
l=0

Pd,l = 1.

4.2 DCL Mapping

A quick way to find out whether a node nb can be subsumpted by na is to apply the
binary AND operator on their binary representations:

– If (na
bin AND nb

bin) = nb
bin then na � nb

– If (na
bin AND nb

bin) �= nb
bin then na �� nb

In Fig.1 for example, it is (nPS
bin AND nS

bin) = (110 AND 010) = 010 =
nS

bin, which confirms that sub-cube S can be subsumpted by sub-cube PS.
The DCL graph is separated into distinct levels according to the dimensionality of

the nodes. We enumerate the levels of the DCL as follows: Nodes with dimensionality
l appear in the lth level of the graph. For example the root node with dimensionality D
appears at the Dth level. Of course l ∈ [0, D]. Every level of the DCL consists of

(
D
l

)
nodes. The number of nodes in the DCL is

∑l=D
l=0

(
D
l

)
= 2D. A node na belonging to

the lth level of the graph has 2l − 1 successors.

Proposition 4.2.1. In a multiset Q of DCL elements, the probability that a selected
element ea ∈ Q is an ancestor of another selected element eb ∈ Q is :

P (ea � eb) =
D−1∏
d=0

(
P 2

d − Pd + 1
)

Proof. We isolate one bit i of the bitmap (which represents one dimension): P (ei
a �

ei
b)=P (ei

a = 0) ·P (ei
b = 0) + P (ei

a =1) ·P (ei
b = 0∨ ei

b = 1) = (1−Pi) · (1−Pi) +
Pi · 1 = P 2

i − Pi + 1
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For the subsumption property to be valid this must be valid for every dimension:

P (ea � eb) = P ((e0
a � e0

b) ∧ · · · ∧ (eD−1
a � eD−1

b )) =
D−1∏
d=0

(
P 2

d − Pd + 1
)

Proposition 4.2.2. In a multiset Q of DCL elements, the probability that a selected
element ea ∈ Q is an ancestor of every element in Q is:

P (ea � Q) =
∑
n∈S

pnψ|Q|−1 where ψ =
∏

d �∈Dn

(1− Pd)

Proof. For the remaining (|Q| − 1) elements of Q, it suffices that dimensions d �∈ Dea

also do not exist in these elements. This is represented by ψ. Thus:

P (ea � Q) = P ((ea � e0) ∧ · · · ∧ (ea � e|Q|−1)) =
∑
n∈S

pnψ|Q|−1

Proposition 4.2.3. In a multiset Q of DCL elements, the probability that there exists
one element, which is an ancestor of every element in Q is:

P (∃ e : e � Q) =
|Q|∑
k=1

{
(−1)k+1

(
|Q|
k

) ∑
n∈S

pk
nψ|Q|−k

}

Proof

P (∃ e : e � Q) = P (e0 � Q ∨ · · · ∨ e|Q|−1 � Q)

=
(
|Q|
1

)
· P (ea � Q)−

(
|Q|
2

)
· P (ea � Q ∧ eb � Q) + · · · ±(

|Q|
k

)
P (e0 � Q ∧ · · · ∧ ek−1 � Q)

Proposition 4.2.4. In a multiset Q of DCL elements, the probability that a selected
element ea ∈ Q is an ancestor of at least |q| (|q| − 1 + itself) elements of Q is:

P (ea � q+ ⊆ Q) =
|Q|∑

j=|q|

{(
|Q| − 1
j − 1

)
·
∑
n∈S

(
pnψj−1(1− ψ)|Q|−j

)}

Proof. It suffices to compute the probability for exactly |q| elements: P (ea � q+ ⊆

Q) =
|Q|∑

j=|q|
P (ea � j ⊆ Q) If j = |q|, |q| elements of Q must be chosen from the 2l

successors and the rest |Q| − |q| from the 2D − 2l non-successors. There are
(|Q|−1
|q|−1

)
combinations of places in the queue where the |q| − 1 successors can be. For |q| − 1
elements, we demand that every dimension d �∈ Dn does not exist in the examined node.
For the rest |Q| − |q| non-successors, we demand that at least one dimension d �∈ Dn

does exist in the examined node.
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Proposition 4.2.5. In a multiset Q of DCL elements, the probability that there exists at
least one element, which is ancestor of exactly |q| (|q| − 1 + itself) elements of Q is:

P (∃ e : e � q ⊆ Q) = 1− (1− P (ea � q ⊆ Q))|Q|

Proof. P (∃ e : e � q ⊆ Q) = 1− P (∃ e : e � q ⊆ Q) = 1− P (ea � q ⊆ Q)|Q| =
1− (1− P (ea � q ⊆ Q))|Q|.

4.3 hDCL Mapping

In this Section, we compute the same probabilities as in Section 2.1, but for hDCL
mapping.

Proposition 4.3.1. In a multiset Q of hDCL elements, the probability that a selected
element ea ∈ Q is an ancestor of another selected element eb ∈ Q :

P (ea � eb) =
∑
n∈S

pn

∏
d∈Dn

⎛
⎝Pd

grd∑
l=lev(n,d)

Pd,l + (1 − Pd)

⎞
⎠ ·

∏
d �∈Dn

(1 − Pd)

Proof. Analogously to the proof of Proposition 4.2.1 we isolate one digit i of the rep-
resentation. For the subsumption property to be valid for one specific dimension, we
demand that in the examined element either this dimensions appear but in a higher, less
detailed, level or that it does not exist at all.

P (ei
a � ei

b) = P (ei
a ≥ ei

b|ei
a ≥ 1) + P (ei

b = 0|ei
a = 0)

For the subsumption property to be applied for the element this must be valid for every
dimension. We differentiate between dimensions d ∈ Dea and dimensions d �∈ Dea :

P (ea � eb) =
∏

d∈ea

PdP ((lev(d, ea) ≥ lev(d, eb > 0)) ∨ d �∈ Deb
)·

·
∏

d �∈ea

(1− Pd)P (d �∈ Deb
) = · · ·

Proposition 4.3.2. In a multiset Q of hDCL elements, the probability that a selected
element ea ∈ Q is an ancestor of every element in Q is:

P (ea � Q) =
∑
n∈S

pnω|Q|−1 where

ω =
∏

d∈Dn

⎛
⎝Pd

grd∑
l=lev(n,d)

Pd,l + (1− Pd)

⎞
⎠ ∏

d �∈Dn

(1− Pd)

This can be proven using Proposition 4.3.1 for the remaining (|Q| − 1) elements of Q.
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Proposition 4.3.3. In a multiset Q of hDCL elements, the probability that there exists
one element, which is an ancestor of every element in Q is:

P (∃ e : e � Q) =
|Q|∑
k=1

{
(−1)k+1

(
|Q|
k

) ∑
n∈S

pk
nω|Q|−k

}

The proof is analogous to the proof of Proposition 4.2.3.

Proposition 4.3.4. In a multiset Q of hDCL elements, the probability that a selected
element ea ∈ Q is an ancestor of at least |q| (|q| − 1 + itself) elements of Q is:

P (ea � q+ ⊆ Q) =
|Q|∑

j=|q|

{(
|Q| − 1
j − 1

)
·
∑
n∈S

pnωj−1(1− ω)|Q|−j

}

The proof is analogous to the proof of Proposition 4.2.4.

Proposition 4.3.5. In a multiset Q of hDCL elements, the probability that there exists
at least one element, which is ancestor of exactly |q| (|q| − 1 + itself) elements of Q
is:

P (∃ e : e � q ⊆ Q) = 1− (1− P (ea � q ⊆ Q))|Q|

The proof is analogous to the proof of Proposition 4.2.5.

5 Performance Analysis

This section provides a twofold analysis. State of the art mOLAP systems are evaluated
with respect to query mapping. Moreover, we show how the analytical model described
in Section 4 can facilitate the analysis and confirm the experimental results.

5.1 Simulation Environment

Mobile clients, randomly distributed in a square plane, query a data mart. Queries are
propagated periodically using a 802.11 wireless network. When a suitable answer is
received, the client poses a new request after an uniformly distributed time span of
[0, 5] sec. Each client issues 15 queries.

We used a real but anonymized dataset. It is a data mart consisting of 6 hierarchical
dimensions and 819.000 tuples. For each dimension, the number of hierarchical levels
and its cardinality are shown in Table 4. We additionally ran experiments with synthetic
datasets, but due to the similarity of the results, we present the results for the real dataset
only. The DCL for this dataset consists of 64 nodes whereas the respective hDCL of
2800 nodes.

The query workload was generated as follows. Queries are separated into new queries
and drill down or roll up queries. New queries are generated with 40% probability,
whereas drill downs and roll ups each with 30% probability. When issuing a new
query each dimension has 50% probability to participate in the query. Each level within
a dimension has equal probability to be requested with any other level of the same
hierarchy.
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Table 4. Real data mart metadata

Dimension Hierarchical levels Cardinality

A 6 6932
B 4 2212
C 4 3128
D 3 1267
E 1 520
F 1 4

5.2 Exploitation of Derivability

Before presenting our experimental results, we explain how our analytical model can
be used to facilitate the evaluation. For reasons of space we restrict our analysis to three
discussed probabilities. The rest of them provide similar observations.

First, we use Propositions 4.2.1 and 4.3.1 to compute the subsumption probability
of two randomly selected elements residing in the scheduler’s queue. The probabilities
Pd for each dimension are computed from the server’s statistics, as described in Sec-
tion 4.1. If no statistics are available, the server has to wait, until sufficient statistics
about the workload have been measured. For DCL mapping the probability is 21,08%,
whereas for hDCL only 12,77%. DCL mapping makes it almost twice as probable that
subsumption can be applied.

This result indicates that DCL mapping might be optimal, but our analytical model
enables a much more detailed analysis. We now consider a waiting queue consisting of
|Q| elements. Based on our experimental results we have observed that for a realistic
scenario |Q| ∈ [20, 40]. We therefore use |Q|=30. We compute the probabilities P (ea �
q+ ⊆ Q) and P (∃ e : e � q ⊆ Q) as defined in Section 4.

Figure 4 depicts the results of a simple usage of Propositions 4.2.4, 4.2.5, 4.3.4 and
4.3.5. As described before, P (ea � q+ ⊆ Q) is an useful probability for STOBS,
which checks derivations only after the element to be transmitted has been selected. In
contrast, P (∃ e : e � q ⊆ Q) is an useful probability for FCLOS. The reason for that
is that FCLOS examines every element for possible derivations. For both probabilities,
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we observe the superiority of DCL mapping. When |q| becomes relatively high, it was
expected that the probability tends to become 0, for both approaches (this could also
have been computed from Proposition 4.2.2 and 4.3.2). When |q| is smaller though,
DCL mapping outperforms its competitor.

5.3 Evaluating mOLAP Dissemination Systems

mOLAP dissemination systems are typically evaluated against the following criteria:

– Generated Traffic: Amount of data transmitted by the server. It can be measured
as traffic per broadcast or as traffic per issued query (since one broadcast serves
multiple queries)

– Average Query Access Time: The total period of time a client spends since posing
a query until the requested subset is available.

– Average Energy Consumption: The energy a client consumes since posing a query
until the requested subset is available.

A detailed comparison of STOBS and FCLOS can be found in [3]. The objective of
this paper is not a direct comparison between them, but an evaluation of their perfor-
mance with respect to query mapping instead. In this context, since both of them employ
DCL mapping we implemented extensions of them, FCLOShDCL and STOBShDCL,
which map queries to the respective hDCL.

From an application perspective, query access time is the most important measure for
performance evaluation. Figure 5 demonstrates that the mobile user profits from DCL
mapping, regardless of the scheduling approach. Note that the times observed include
the time needed for local processing of data, whenever this is necessary. The results for
energy consumption are quite similar and are omitted due to space restriction.

Figure 6 depicts a metric which translates more directly to the information provided
by the analytical framework. It shows the percentage of the waiting queries that are
served pro broadcast, a metric directly related to the results of Fig.4. Particularly for
FCLOS, the difference is immense. With DCL mapping, a broadcast serves half of the
waiting queries, whereas with hDCL mapping only 25% of them.

As far as generated traffic is concerned, it is rational to expect more transmitted
bytes per broadcast with DCL mapping, since DCL nodes always contain fact table data
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which frequently is a superset of what the client had requested. Figure 7, depicting the
amount of transmitted bytes per broadcast, confirms this expectation. DCL mapping in-
troduces a huge overhead for both systems, since DCL nodes contain extra information.
Practically this means that every transmission lasts longer.

Figure 8 on the contrary, depicts the generated traffic per issued query, where a com-
pletely different behavior can be observed. hDCL mapping appears to cause a huge
overhead to the network, especially in the case of STOBS. Despite the emerged con-
tradiction, the results are absolutely consistent. DCL mapping does indeed invoke a
transmission of more data per broadcast cycle, but manages to serve all requests with
fewer broadcasts, as indicated by Figure 6. With DCL mapping there is always a higher
probability that the element to be transmitted is an ancestor of other queue elements.
One transmission serves more requests, thus reducing the number of necessary broad-
cast cycles for a given amount of requests.

6 Related Work

In the broader area of mobile data warehousing, [12] copes with disconnections in
hierarchical data warehouses, discussing a variety of architectures for mobile views,
from proxy based to non-proxy based systems. In [2], an intelligent cache management
method is proposed. Hand-OLAP, [13], is a system specifically designed for provid-
ing OLAP functionality to users of mobile devices. This proposal focuses mainly on
the drawbacks of mobile devices, with emphasis in the small storage space and the fre-
quent disconnections. Advanced OLAP visualization techniques, targeting devices with
small screens is the focus in [14]. SBS, [15], and its extension DV-ES, [16], are mOLAP
systems very similar to STOBS. Finally, [17], deals with ad hoc mOLAP.

7 Outlook and Open Issues

This paper deals with the issue of mapping multidimensional queries to aggregation lat-
tices. mOLAP systems employ query mapping in order to reduce the number of handled
data items and to exploit sub-cube derivability. Previous related work in mOLAP sys-
tems has not provided any specific answer to the question of whether DCL or hDCL is
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more appropriate for query mapping. We identified the exploitation degree of sub-cube
derivability as the critical parameter to be considered. Motivated by this fact, we intro-
duced an analytical framework that facilitates the computation of sub-cube derivability
probabilities in both lattices. This framework, besides providing the basis for a general
evaluation, focuses on the specific domain of mOLAP dissemination systems.

The analytical framework revealed, that for a real dataset, sub-cube derivability is
optimally exploited in the case of DCL. Experimental results for state of the art mOLAP
systems confirmed, that both server and mobile clients benefit from DCL mapping.
Although with DCL mapping, bigger in size datasets are per broadcast transmitted,
in comparison with respective hDCL mapping, the optimal exploitation of sub-cube
derivability results in more clients being served by each transmission, thus reducing the
number of necessary broadcasts. The server profits from the reduction of the generated
traffic, while mobile clients experiences reduced access time and energy consumption.

The framework presented considers the dimensionality and number of hierarchical
levels of a MDDB. Future work should focus on extending the framework by consider-
ing additional metadata information, like cardinality of each hierarchical level and size
of the database. The intuition behind this is, that in applications other from mOLAP,
where MDDBs are much bigger, it might be beneficial to use the hDCL instead.
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Abstract. Query generators producing sequences of SQL statements
are embedded in many applications. As the response time of such se-
quences is often far from optimal, their optimization is an important is-
sue. CGO (Coarse-Grained Optimization) is an appropriate optimization
approach that applies rewrite rules to statement sequences. In previous
work on CGO, a heuristic, priority-based control strategy was utilized
to choose and execute rewrite rules. In this paper, we present an ap-
proach to enable cost-based optimization of statement sequences. We
show how to exploit histogram propagation and the costing component
of the underlying database system for this purpose. Our work extends
previous work on histogram propagation. We conclude with experiments
demonstrating the effectiveness of our approach.

Keywords: cost-based query optimization, query processing, histograms.

1 Introduction

Many applications such as information retrieval systems, search engines, and
business intelligence tools embed query generators. Some of these generators not
only produce a single query but a sequence of SQL statements for a complex
information request. These sequences compute the final result of a request in
a set of subsequent steps where multiple steps can share intermediate results
of previous steps as input. These intermediate results are stored in tables that
are created as part of the sequence and that exist only temporarily during the
execution of the sequence.

As shown in [1], the response time of such sequences is often far from optimal.
Therefore, we suggested CGO (Coarse-Grained Optimization), an optimization
approach that supports the optimization of statement sequences outside the
database system [2][1][3]. CGO is based on a set of rewrite rules considering
the fact that statements of a sequence are correlated. These rules transform a
statement sequence into an equivalent sequence such that the database system
consumes far less resources.

In [1], we introduced a heuristic control strategy to determine the order in
which rewrite rules are applied to a statement sequence. Thereto, we assigned
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a priority to each rule. Among the rules that can be applied to a sequence the
one with the highest priority is being chosen. This is repeated until no more rule
applications are possible. This strategy works well but there is still potential for
improvements. Therefore, in this paper, we propose a practical approach to com-
pute cost estimates for statement sequences which is the basis for an enhanced
cost-based control strategy. Cost estimates would allow to compare several al-
ternative sequences without executing them and to select the presumably most
efficient one from the search space that is made up by the set of CGO rewrite
rules. Our approach exploits the costing component of the underlying database
system which should later on execute the statement sequence. Furthermore, we
use histogram propagation to provide statistics for the intermediate-result tables
increasing the accuracy and usability of the cost estimates returned by the op-
timizer of the underlying database system. Thereto, we had to extend previous
work on histogram propagation and adapt it to our needs.

So, the main contributions of this paper are:

– An approach to provide cost estimates for statement sequences which ex-
ploits histogram propagation and the costing component of the underlying
database system.

– Extensions to previous work on histogram propagation. In particular, we
unify some comparison-operator implementations, so they can be handled
by a generalized operator implementation and we extend the capabilities to
treat arithmetic terms, grouping and aggregation.

– Performance evaluations that demonstrate the effectiveness of our approach.

The rest of this paper is organized as follows: In Section 2 we present our
approach to cost estimation for statement sequences. Section 3 describes our
extensions to histogram propagation. We discuss related work in Section 4. Per-
formance experiments are presented in Section 5. Section 6 concludes this paper.

2 Cost Estimation for Statement Sequences

Figure 1 gives an architectural overview consisting of the cost-based CGO opti-
mizer and the underlying database system. The CGO optimizer comprises the
CGO ruleset, a cost-based control strategy and a component that provides cost
estimates for statement sequences without executing them. The CGO ruleset can
be adopted from the heuristic CGO optimizer but the heuristic control strategy
has to be replaced by a cost-based control strategy. The CGO optimizer com-
municates with the underlying database system via JDBC and StatisticsAPI.
StatisticsAPI is a JDBC-based programming interface for DBMS-independent
access and management of DBMS statistics. It supports the retrieval and ma-
nipulation of histograms as well as the retrieval of cost estimates for arbitrary
SQL statements from different DBMSs. So, the CGO optimizer is largely inde-
pendent from a certain underlying DBMS. More information on StatisticsAPI
can be found in [4]. In the following, we focus on the component that provides
cost estimates for statement sequences.
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Fig. 1. Architectural overview

CGO addresses statement sequences that are composed of CREATE TABLE,
INSERT and DROP TABLE statements. The CREATE TABLE and DROP
TABLE statements are used to implement temporary tables. These tables only
exist during the execution of the sequence to store intermediate results pro-
duced by the INSERT statements. Furthermore, one of the CREATE TABLE
statements creates the table that stores the final result of the sequence which is
not dropped within the sequence. So, the tables created within the statement se-
quence do not exist at optimization time and there are also no statistics available
for these tables.

Building our own cost model on top of the database system would be no feasi-
ble solution. This is due to the fact that the runtime of a statement and therefore
an appropriate cost estimate depends on the physical layout of the underlying
database as well as on the capabilities and strategies of the query optimizer.
That means, we would have to simulate the optimizers of all possibly underlying
database systems. We propose a more practical and feasible approach exploiting
the capabilities of the optimizer of the underlying database system to estimate
costs for single SQL statements. Thus, we sum up the cost estimates for all IN-
SERT statements of a sequence to provide a cost estimate for an entire sequence.
To make this work, we have to execute the CREATE TABLE statements that
create the intermediate-result tables before we force the optimizer to estimate
costs for the INSERT statements; otherwise, the optimizer would raise a failure
due to the nonexistence of the intermediate-result tables used in the INSERT
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statements. When the CREATE TABLE statements have been executed, the
optimizer can build an execution plan for each INSERT statement and estimate
the costs of this plan. However, no statistics are available for the intermediate-
result tables and therefore the optimizer uses default values for the cardinality
of these tables and default selectivities for predicates that include attributes of
these tables. This results in inaccurate and thus useless cost estimates. To solve
this problem, we make use of histogram propagation, i.e., when we propagate the
histograms through the queries that form the bodies of the INSERT statements,
we can provide histograms for the intermediate-result tables. Histograms are
supported and used for selectivity estimation in a similar way by almost all
commercial database systems. Hence, we can store the computed histograms in
the database catalog of the underlying database system and its optimizer can use
them to produce more accurate query plans and cost estimates for the INSERT
statements that depend on intermediate-result tables.

The following algorithm shows how the cost-estimation component for state-
ment sequences works:

Input: A statement sequence S.
Output: A cost estimate for S.
(1) totalcosts = 0
(2) foreach CREATE TABLE statement c in S
(3) Execute c on the underlying database system.
(4) foreach INSERT statement i in S (in the order given by S)
(5) Retrieve a cost estimate for i from the optimizer of the underlying database

system by the use of StatisticsAPI. Add this cost estimate to totalcosts.
(6) Translate the body of i into an algebraic tree. Retrieve statistics for the base

tables used in this tree from the underlying database system by the use of
StatisticsAPI. (Statistics for intermediate-result tables are still available from
earlier histogram-propagation steps.) Propagate the histograms through the
algebraic tree to retrieve histograms for the target table of i. Store the resulting
histograms in the catalog of the underlying database system by the use of
StatisticsAPI.

(7) foreach CREATE TABLE statement c in S
(8) Drop the table that has been created by c.
(9) return totalcosts

As the tables created for cost estimation are being dropped after cost esti-
mation, the associated histograms stored in the database catalog also get lost.
So, when a statement sequence is being run later on, the histograms derived
from histogram propagation no longer exist. However, the algorithm presented
above can be modified so that it can be used for executing sequences with these
histograms available. Thereto, in line 5 the current INSERT statement i has to
be executed. Furthermore, line 7 and 8 have to be modified so that only the
intermediate-result tables are being dropped, i.e., the foreach-loop has to iterate
over all DROP TABLE statements of the sequence and execute them.
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3 Histogram Propagation

In database systems, histograms are constructed by partitioning the data dis-
tribution of an attribute into a sequence of mutually disjoint buckets. Each
bucket approximates the frequencies and values in its range. So, a histogram
is an approximation of an attribute’s data distribution. As we want to extract
and process histograms from different DBMSs, our bucket and histogram imple-
mentation [4] supports unidimensional histograms of various classes and sources,
e.g. serial histograms like equi-width histograms and equi-depth histograms as
well as non-serial histograms. Thereto, we represent each bucket as a 4-tuple
(low, high, card, dv). low and high denote the lower and upper bound of the
bucket range. These values are elements of the domain of the approximated
data distribution. We take into account that each domain has its own properties
and reflect this in the way we treat histograms of attributes of specific domains.
dv stands for the number of distinct values in the interval between low and high.
card is the cardinality of the bucket, i.e., the sum of frequencies of all distinct
values that are present in the interval between low and high. We have chosen
decimal numbers instead of integer numbers as domain for card and dv because
integer numbers would increase the inaccuracy of histograms produced by his-
togram propagation. The NULL value is covered by a special NULL bucket
where low and high is set to NULL. This eases computations because NULL
buckets can be handled similar to ’normal’ buckets. Constant values, which are
fixed values used in arithmetic terms or for comparison, are also represented by
histograms containing a single bucket whose lower and upper bound equals the
constant value.

For propagating histograms through the statements of a sequence, we trans-
late the SQL statements into algebraic operator trees. The algebra, that we use,
operates on so-called histogram relations. A histogram relation is a set of at-
tributes with a histogram assigned to each attribute. So, a histogram relation
can be regarded as an approximation of a relation where in this case a relation
is a multiset of tuples. Our algebra consists of logical operators because we only
use it for the purpose of histogram propagation and not for cost estimation or
execution; the algebraic operators are: projection, selection, cartesian product,
union, difference and grouping (including aggregation). This algebra is minimal
in the manner that an operator cannot be expressed by a combination of the
other operators.

Arithmetic terms that appear in the different clauses of SQL statements are
translated into trees of arithmetic operators. These trees are used in projec-
tion operators. Furthermore, they build the operands of comparison operators.
Comparison operators in turn may be the operands of logical operators such
as AND, OR or NOT which are used to build complex predicates. Trees that
include comparison operators and / or logical operators are used in selection
operators.

Histogram propagation is done recursively by traversing the algebraic tree in
a post-order manner, i.e. the histograms are propagated and adapted from the
leaves of the algebraic tree to its root. The same holds for the trees that represent
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predicates or arithmetic terms and that are used within the algebraic operators.,
i.e., we step-by-step compute the histograms of all subterms / subpredicates in a
post-order manner. The basic histogram-propagation algorithm for the compar-
ison operators and arithmetic operators is very similar due to the fact that all
calculations are based on the Attribute Value Independence Assumption. This
means, we have to enumerate all bucket combinations that can be produced
from the histograms affected by an operator and apply the operator to each
bucket combination. To calculate the cardinality of a single bucket combination,
we have to determine the probability of this specific bucket combination and
multiply it with the cardinality of the histogram relation. Thereto, we treat the
data distribution as a probability distribution and calculate the proportion of
the actual bucket combination at all possible bucket combinations so that the
sum of cardinalities of all bucket combinations equals the cardinality of the input
histogram-relation. An arithmetic operator produces a single output histogram
that represents the result of the arithmetic operator applied to the input his-
tograms. This histogram again might be the input of an arithmetic operator or
of a comparison operator. A comparison operator just compares two input his-
tograms and therefore produces no result histogram but computes the selectivity
of this comparison. It also modifies the two input histograms so that after the
comparison they contain the buckets that fulfill the condition. After the com-
putation of the output histogram or the modification of the input histograms,
these histograms are being serialized.

In the following subsections, we present our extensions to previous work on
histogram propagation and we present some more details of specific operators
and the query translation process.

3.1 Utilization of Interval Arithmetic for Arithmetic Terms

As stated before, the output histogram of an arithmetic operator is calculated
by enumerating all bucket combinations from the input histograms and applying
the arithmetic operator to each of these bucket combinations. To determine the
bounds of a result bucket we make use of interval arithmetic [5]. To give an
example, we compute the lower bound BO.low and the upper bound BO.high
of a bucket BO resulting from the multiplication of the buckets BI1 and BI2 as
follows (min returns the minimum value of the given value set and max returns
the maximum value):

BO.low = min(BI1.low · BI2.low, BI1.low · BI2.high,

BI1.high ·BI2.low, BI1.high · BI2.high) (1)
BO.high = max(BI1.low · BI2.low, BI1.low ·BI2.high,

BI1.high ·BI2.low, BI1.high · BI2.high) (2)

If one of the input buckets is a NULL-bucket, the result bucket is also a NULL-
bucket.
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3.2 Unification of Comparison Operators

Comparison operators compute a selectivity value. Thereto, they enumerate all
bucket combinations that can be built up of the two input histograms and apply
the predicate to each of these bucket combinations. The selectivity of the com-
parison operator results from the aggregation of the selectivities of these bucket
combinations. This selectivity might be the input of a logical operator. The final
selectivity of an operator tree that represents a predicate is used to determine
the cardinality of the output histogram-relation of the respective selection oper-
ator. Presuming the Attribute Value Independence Assumption, the histograms
of all attributes in the input histogram-relation are adapted to the cardinality
of the output histogram-relation keeping the relative data distribution of the
histograms in the input histogram-relation. I.e., the cardinality of the buckets is
proportionally adapted but the bucket bounds stay the same.

As stated before, a comparison operator also adapts the data distribution of
its two input histograms. This is done by eliminating buckets or by altering their
bounds, cardinality and number of distinct values. If a predicate consists of a
single comparison operator (=, �=,≤,≥, <, or >) and one or both of its operands
are attributes, the adapted histograms of these attributes can be taken into the
output histogram-relation of the corresponding selection operator. So, for these
attributes not only the cardinality but also the data distribution is adapted
within the selection operator.

This way of implementing comparison operators offers a flexible usage for
different purposes within a selection operator. So, we unify different operand-
dependent operator implementations in a more generic operator implementation.
For example, the same implementation of the comparison operator ’=’ can be
used for:

– σAi=Aj (R): A predicate comparing two attributes.
– σAi=C(R): A predicate comparing an attribute and a constant value, because

constant values are represented by histograms, too.
– R1 ��Ai=Aj R2 ⇒ σAi=Aj (R1 × R2): A join-condition. As we can transform

a join operation into a cartesian product followed by a selection with the
join condition as predicate, we need no separate implementation of a join
operator.

– σAi IN (C1,...,Cn)(R) ⇒ R ��Ai=A RC ⇒ σAi=A(R × RC): An IN predicate.
IN predicates comparing an attribute with a set of values can be realized by
a join (cartesian product followed by a selection) with an additional table
RC that contains the values as rows. The additional table is represented by a
histogram relation with a single attribute A and a corresponding histogram
that contains a single bucket for each value in the value set.

This uniform treatment similarly applies to the other comparison operators. For
example, this enables the usage of the comparison operator ’≤’ for selections com-
paring two attributes, selections comparing an attribute and a constant value,
and non-equi joins. For the latter one, this operator is used in the predicate
applied to the result of the cartesian product.
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3.3 Heuristics for Grouping and Aggregation

For each bucket combination of the grouping attributes, we first compute the
amount of groups that can be built with this bucket combination and the average
size of these groups. The aggregation operators get these values (number of
groups and average group size) computed for all bucket combinations and the
histogram of the attribute whose values should be aggregated as input. The
calculation of aggregate values is a sophisticated combinatorial problem. In our
case this becomes even more difficult because we store bucket cardinalities as
decimal numbers. Furthermore, in real-world data there’s always noise and a
deviation from the uniform distribution within a bucket. Therefore, there is also
some deviation in the group sizes for a single bucket combination. To overcome
these problems, we developed some simple heuristics to calculate the aggregates
COUNT , SUM , AV G, MIN and MAX as long as the attribute that should be
aggregated contains none or only negligible few NULL values. E.g., for a given
average group size, the aggregate operator SUM sums up the lowest values of
the attribute’s histogram as the lower bound of the aggregate. I.e., it ascendingly
aggregates all buckets starting with the bucket that has the lowest lower bound
till the sum of bucket cardinalities reaches the average group size. Thereby, for
each of these buckets, it calculates the mean value of the bucket ((lower bound+
upper bound)/2) and multiplies the mean value with the bucket cardinality.
The sum of these products represents the lower bound. For the upper bound
we descendingly sum up the highest values, i.e., we start with the bucket that
contains the highest upper bound.

3.4 Normalization of Histograms

The enumeration of bucket combinations in arithmetic operators implicates that
in the worst case there are as much buckets in the output histogram of an opera-
tor as the product of the number of buckets in the input histograms. Serializing
the output histogram may additionally double the number of buckets. So, the
deeper an operator tree and the longer a sequence the larger the histograms
may get in number of buckets. Furthermore, the number of bucket combinations
increases exponentially with the number of grouping attributes in a grouping
operator. To cope with all these problems, a normalization step can be added
prior to the enumeration phase and / or after an output histogram has been
produced. In this normalization step, the number of buckets can be reduced to a
given upper limit. Our implementation takes this into account. However, for our
experiments, we omitted any normalizations during the propagation process be-
cause the number of buckets didn’t increase extremely during propagation. The
main reason therefor is that selections rather reduce than increase the number
of buckets.

3.5 Common Subexpressions

When transforming an SQL statement into an algebraic operator tree, we take
into account that the same arithmetic term may appear multiple times in different
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INSERT INTO temptable

SELECT   year(o.o_orderdate),

count(*)

FROM     orders o

WHERE    year(o.o_orderdate) > 1992 AND

o.o_orderpriority = ‘1-URGENT‘

GROUP BY year(o.o_orderdate)

orders o_orderdate, o_orderpriority

π $1 = year(o_orderdate)

σ $1 > 1992

γ $1, $2 = count(*)

π $1, $2

σ o_orderpriority = ‘1-URGENT‘

Fig. 2. A SQL statement that includes a common subexpression and the corresponding
algebraic tree

clauses of the SQL statement. Therefore, we add projections to the algebraic op-
erator trees that map common subexpressions to attributes that can be used in
subsequent operators. Figure 2shows a sample SQL statement and the correspond-
ing algebraic operator tree. The arithmetic term year(o.o_orderdate) is used
in the WHERE clause as well as in the GROUP BY clause and in the SELECT
clause. By adding a projection directly above the operator that represents the base
table orders this term is mapped onto the attribute $1. So, the histogram of
year(o.o_orderdate)which is adapted by the comparison operator in the predi-
cate year(o.o_orderdate) > 1992does not get lost but is reused in the subsequent
grouping operator γ$1,$2=count(∗) and in the projection operator π$1,$2. When we
do not consider common subexpressions, the term year(o.o_orderdate) would
be recomputed in these two algebraic operators and the modifications of the cor-
responding histogram caused by the selection operator would get lost.

4 Related Work

Histograms [6] are a widely investigated concept of statistical summaries. They
are able to summarize the contents of large tables by approximating the data
distribution of the attributes. Past research addressed the efficient computa-
tion and usage of histograms. In database systems, histograms can be used for
selectivity estimation in the query optimizer [7][8][9][10][11][12][13] or for approx-
imate query answering [14][15]. Below, we discuss the latter one in more detail
because we adopt and extend this concept for our approach. Further research
addresses the efficient and automatic maintenance of histograms [16] and the
usage of feedback from the query execution engine to infer data distributions
instead of examining the data itself; thereto, [17] and [7] introduce a new type
of multi-dimensional histogram, called STHoles. Commercial database manage-
ment systems like IBM DB2 [18], Oracle [19] and Microsoft SQL Server [20] store
unidimensional histograms in their catalog tables and exploit them for query op-
timization, but their usage is mostly restricted to selectivity estimation of point
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queries, range queries and queries containing equi-joins. Furthermore, IBM DB2
and Oracle do not modify and adapt histograms within the execution plans, i.e.,
they do not make use of histogram propagation [18][19]. [8] and [21] indicate
that Microsoft SQL Server uses histogram propagation. Unfortunately, there are
no publications that explicitly describe the techniques applied in Microsoft SQL
Server or that give an overview of the operators that are supported. Even if some
kind of histogram propagation is used in Microsoft SQL Server, histograms for
result tables are not available outside the database system and therefore a reuse
of these histograms for our purpose is not possible.

Approximate query answering [22] is an approach to provide approximate
answers using statistical summaries of the data, such as samples, histograms,
and wavelets. Applications where the precise answer is not relevant and early
feedback is helpful can benefit from this approach due to the reduction in
query response time. We exploit and extend approximate query answering based
on histograms for our histogram propagation approach and therefore focus on
histogram-based work in the following. [14] and [15] describe how to transform
SQL queries working on tables of a database into SQL queries working on the
respective histograms. However, this approach is restricted to simple queries
with equi-joins and predicates of the form AΦC where Φ is a comparison op-
erator, A is an attribute and C is a constant value. Furthermore, only simple
aggregate queries are supported where the group by clause must be empty. Oth-
erwise, a special kind of histogram must exist with the combination of grouping
attributes as domain and the average aggregate value instead of the frequencies
stored in the buckets. Our approach differs from this approach in that we do not
map the given SQL queries onto SQL queries. We transform them into operator
trees using our own algebra, which is not expressed in SQL. Moreover, we add
support for arithmetic terms and support for grouping. The algebra, that we
use, is similar to existing relational algebras and multi-set algebras [23][24] but
it processes sets of histograms instead of relations. As our implementations of
comparison operators enumerate all bucket combinations that can be built from
the histograms of the operands, it also supports selections containing predicates
with an attribute on both sides of the comparison operator. Thus, we do not
need a separate join operator to process joins. Furthermore, this also allows to
process non-equi joins. The implementation of the comparison operator ’=’ is
similar to the join operator for histograms presented in [21].

At the moment, all our operator implementations are based on the Attribute
Value Independence Assumption, i.e., we assume that attributes are not corre-
lated. Furthermore, when comparing two buckets by the comparison operator
’=’, we presume inclusion in the interval where the two buckets overlap. In
comparison to that, a join operation in the approach discussed above recom-
putes a frequency distribution for the two attributes of the join-condition. These
frequency distributions are derived from the corresponding histograms in con-
sideration of the Uniform Spread Assumption. In the worst case, the two tables,
that represent the frequency distributions and that are computed during the join
operation, have the same cardinality as the original tables. Furthermore, strictly
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Fig. 3. Sequences used in the experiments

relying on the Uniform Spread Assumption is not always a feasible solution. As-
sume we have a histogram where all bucket bounds are even integer numbers and
another histogram where all bucket bounds are odd integer numbers. For both
histograms we further assume that the number of distinct values for a bucket is
half the length of the bucket interval. When we follow the approach presented
in [14] and [15], which strictly relies on the Uniform Spread Assumption, the
selectivity of the join of these two histograms will be zero.

To the best of our knowledge there is no publication on histogram-based ap-
proximate query answering or histogram propagation that covers all mentioned
extensions based on unidimensional histograms under the Attribute Value Inde-
pendence Assumption. Special properties of different domains are also not consid-
ered in previous work on histogram propagation, i.e., respective publications are
restricted to histograms in the integer domain. We added the mentioned exten-
sions motivated by the fact that data warehouse queries (e.g. TPC-H benchmark
[25]) include arithmetic terms and grouping.

5 Experiments

The results of the experiments, that we present in this section, should demon-
strate the effectiveness of our costing approach. Furthermore, the experiments
should show that histogram propagation can successfully be exploited to provide
useful cost estimates for statement sequences.

All experiments were performed on a Windows XP machine with two 1.53 GHz
AMD Athlon 1800+ processors and 1 GB main memory. As database system we
used DB2 V9.1 where 50% of the main memory was assigned to the buffer pool.
The experiments were conducted on a TPC-H database [25] containing TPC-H
data created with a scaling factor of 10 (≈ 10 GB of raw data). We employed
DB2 to create histograms on all columns of all tables that belong to the TPC-H
schema.

A JAVA prototype of the cost-estimation component for statement sequences
did the histogram propagation and provided the cost estimates for the sequences
that we examined in our experiments. As we mentioned in Section 2, StatisticsAPI
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was used to retrieve and modify the statistics stored in the underlying database
system and to retrieve cost estimates for single statements of a sequence. In DB2
histograms are stored as quantiles, i.e., each bucket stores a cumulative frequency
including the frequencies of all previous buckets. When retrieving histograms from
DB2, StatisticsAPI transforms these quantile data into our own histogram repre-
sentation. To store the histograms resulting from histogram propagation,
StatisticsAPI has to compact histograms with more than 20 buckets and it has to
transform the buckets into quantiles. The number of buckets is reduced by merg-
ing adjacent buckets with respect to keeping cardinality errors in the data distri-
bution minimal. Moreover, StatisticsAPI also updates the corresponding logical
table statistics and column statistics in the database catalog.

The left side of Figure 3 shows a CGO search space containing 10 state-
ment sequences (S1 to S10). This search space has been built by applying the
CGO rewrite rules to the given statement sequence S1 which has been created
by the MicroStrategy DSS tool suite. Besides, Figure 3 shows the dependency
graph of the original sequence S1 and the dependency graph of sequence S10
which we obtained by subsequently applying three rewrite rules to the origi-
nal sequence. Each node Qx in these dependency graphs represents a combi-
nation of a CREATE TABLE, an INSERT and a DROP TABLE statement,
except the root node which stands for the final result and therefore includes
no DROP TABLE statement. In the following, when we talk about Qx we just
refer to the INSERT statement of Qx. Statement Q1 calculates the turnover
(extendedprice · (1 − discount) · (1 + tax)) for each line item ordered in 1992
and sums it up for each customer. Q2 and Q3 provide the same for the years
1993 and 1994. Q4 joins these intermediate results and selects customers that
have a turnover that is greater than a given constant parameter value in each
of the years. Q5 joins the result table of Q4 with the customer table to look
up the customer names. Q6 of the rewritten sequence calculates the turnover
for each customer and each year between 1992 and 1994 and applies the filter



A Statistics Propagation Approach to Enable Cost-Based Optimization 279

Fig. 5. Execution times for parameter value 300 000 with and without using the results
of histogram propagation

on turnover with the given constant parameter value. Hence, the result table of
Q6 contains the union of Q1, Q2 and Q3 with the predicates of Q4 applied. Q7
accesses the result table of Q6 three times selecting each of the included years
once and joins this data with the customer table; so, Q7 is not just a merge of
Q4 and Q5. We performed the experiments with three different parameter values
for the filter: 100 000, 300 000 and 500 000. A higher parameter value denotes a
smaller selectivity.

The different sequences have been executed in isolation with empty buffer pool
and empty statement cache. The execution times in Figure 5 and in Figure 7
are the average execution times of 3 runs. In both figures, we distinguish be-
tween executions where the propagated histograms for the intermediate-result
tables have been stored in the catalog tables of the underlying database and
executions without statistics for the intermediate-result tables. Both types of
execution show pure execution times, i.e., overhead for the histogram propaga-
tion is not included. In our experiments, this overhead is less than 1% for a
single sequence. The overhead for propagating histograms and estimating costs
for all ten sequences adds up to less than 5% of the execution time of the original
sequence S1. This overhead is acceptable as we could identify S10 as the most
efficient sequence resulting in a performance gain of more than 50% in compar-
ison to the original sequence S1. The overhead for histogram propagation does
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not depend on the execution time of a sequence but on the complexity of the
corresponding operator trees, the type of the operators used in these operator
trees and the number of buckets in the histograms of the base tables accessed
by the sequence. Thus, this approach is profitable for long running sequences
or sequences with a high optimization potential. As stated in Section 3.4, the
complexity of the calculations during histogram propagation can be reduced by
adding a normalization step prior to or after an operator.

Figure 4 shows the cost estimates for all sequences of the search space using
300 000 as parameter value, Figure 5 shows the corresponding execution times.
These two figures depict that the retrieved cost estimates are a good indica-
tor for the corresponding execution times when histogram propagation is being
used. The extremely long execution times of sequence S7, S8, S9 and S10 with-
out histogram propagation are a result of the missing statistics. This effect only
appears when 300 000 or 500 000 is used as parameter value in the filter condi-
tion; for parameter value 100 000 the execution times of these sequences fit to
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the corresponding cost estimates, i.e., for this parameter value there is no wide
difference between the execution times with and without using the results of his-
togram propagation. So, this shows how the optimizer of the underlying database
system benefits from the statistics available through histogram propagation and
that bad plans could be avoided using this information. Figure 6 and Figure 7
show that the cost estimates also reflect the changes in the execution times when
different parameter values are used in the filter condition. Execution times for
parameter value 100 000 again depict how the statistics that our approach pro-
vides for the intermediate-result tables support the optimizer of the underlying
database system in finding a good plan. Moreover, without these statistics, the
underlying database system provides the same cost estimate for query Q4 in-
dependent of the parameter value that is used. Thus, histogram propagation is
necessary and a feasible solution to retrieve appropriate cost estimates for the
INSERT statements that read from intermediate-result tables.

6 Conclusion

In this paper we proposed an approach to retrieve cost estimates for statement
sequences by exploiting the optimizer of the underlying database system. We
also have shown that histogram propagation is needed to make this approach
work. For this purpose, we extended previous work on histogram propagation
by the support for arithmetic terms, grouping and aggregation. The experiments
showed that this is a feasible approach to support the optimizer of the underlying
database system in finding a good execution plan and providing useful cost
estimates. Future work addresses a cost-based control strategy within the CGO
optimizer.
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Römerstr. 164, D-53117 Bonn, Germany

behrend@cs.uni-bonn.de

Abstract. In this paper we present a new fixpoint-based approach to
bottom-up state generation for stratifiable disjunctive deductive data-
bases. To this end, a new consequence operator based on hyperresolution
is introduced which extends Minker’s operator for positive disjunctive
Datalog rules. In contrast to already existing model generation methods
our approach for efficiently computing perfect models is based on state
generation. Additionally, it enhances model state computation based on
Minker’s operator for positive disjunctive Datalog rules.

Keywords: Deductive Databases, Disjunctive Datalog, View Updating.

1 Introduction

Disjunctive Datalog extends Datalog by disjunctions of literals in facts as well as
rule heads. Various applications may benefit from such an extension as it allows
for reasoning in the presence of uncertainty [19]. For example, the analysis of view
updating requests usually leads to alternative view update realizations which can
be represented in disjunctive form [10]. For instance, given an intersection rule
p(x) ← q(x), r(x) and the request to delete certain facts from p, the consequence
analysis can be performed using the disjunctive rule p−(x) → q−(x) ∨ r−(x)
where p−, q−, r− contain tuples to be deleted from the corresponding relation,
respectively.

A variety of different semantics for disjunctive databases has been proposed
(e.g., Minimal Models [13], Perfect Models [15], Possible Model Semantics [18] or
the equivalent Possible World Semantics [3], (partial) Disjunctive Stable Model
Semantics [16], and the Well-Founded Semantics [22,5]) which describe the in-
tended meaning of a given rule set as a set of possible conclusions. In this paper
we consider the minimal model semantics and its extension to perfect models in
the presence of stratifiable recursion. With respect to the minimal model seman-
tics, DNF and CNF representations of conclusions have been proposed, leading to
alternative fixpoint approaches for the determination of minimal models: While
the model generation approach [8] is based on sets of Herbrand interpretations,
the state generation approach [14] uses hyperresolution operating on sets of posi-
tive disjunctions. [20] investigates the relationship between these two approaches
and shows the equivalence of the obtained conclusions. When computing perfect
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models of stratified rules, however, CNF and DNF representations of conclusions
appear to be not equally well suited. While an extended model generation ap-
proach for perfect model computation based on DNF has been proposed in [20],
until now, the only way to obtain the model state of a given database was to
employ a model generation procedure first and to transform the resulting con-
clusions into CNF. In this paper we provide a method which avoids the explicit
generation of Herbrand models and is purely based on state generation. Espe-
cially when a state representation is preferred with respect to a given application
or tends to be more compact than a DNF or model tree representation, our pro-
posed method appears to be more suited than model based ones. In addition to
closing an open gap in the theory of disjunctive logic programming, new insights
with respect to the application of hyperresolution in this context are obtained
allowing to enhance Minker’s state generation procedure for positive rules.

This paper is organized as follows: After introducing the syntax and seman-
tics of disjunctive Datalog, we recall a constructive model generation method
for stratifiable rules in Section 3. In Section 4 state generation for positive rules
is revisited and the problems arising when considering stratifiable rules are dis-
cussed. Our new approach to state generation for stratifiable rules is presented
in Section 5. The results from this section are employed to enhance model state
computation for positive disjunctive rules in Section 6. Finally, the two possible
fact representations by means of CNF and DNF are compared in Section 7.

2 Basic Concepts

A disjunctive Datalog rule is a function-free clause of the form A1 ∨ . . .∨Am ←
B1 ∧ · · · ∧Bn with m, n ≥ 1 where the rule’s head A1 ∨ . . .∨Am is a disjunction
of positive atoms, and the rule’s body B1, . . . , Bn consists of literals, i.e. positive
or negative atoms. We assume all rules to be safe, i.e., all variables occurring in
the head or in any negated literal of a rule must be also present in a positive
literal in its body. If A ≡ p(t1, . . . , tn) with n ≥ 0 is a literal, we use pred(A)
to refer to the predicate symbol p of A. If A ≡ A1 ∨ . . . ∨ Am is the head of a
given rule R, we use pred(R) to refer to the set of predicate symbols of A, i.e.
pred(R)={pred(A1), . . . , pred(Am)}. For a set of rules R, pred(R) is defined
as ∪r∈Rpred(r). A disjunctive fact f ≡ f1 ∨ . . . ∨ fk is a disjunction of ground
atoms fi with i ≥ 1. f is called definite if i = 1. In the following, we identify a
disjunctive fact with a set of atoms such that the occurrence of a ground atom
A within a fact f can also be written as A ∈ f . The set difference operator can
then be used to remove certain atoms from a disjunction while the empty set as
result is interpreted as the boolean constant false.

Definition 1. A disjunctive deductive database D is a pair 〈F ,R〉 where F is
a finite set of disjunctive facts and R a finite set of disjunctive rules such that
pred(F)∩ pred(R) = Ø. Within a disjunctive database D = 〈F ,R〉, a predicate
symbol p is called derived (view predicate), if p ∈ pred(R). The predicate p is
called extensional (or base predicate), if p ∈ pred(F).



A Fixpoint Approach to State Generation 285

Stratifiable rules are considered only, that is, recursion through negative predi-
cate occurrences is not permitted [1]. Note that in addition to the usual stratifi-
cation concept for definite rules it is required that all predicates within a rule’s
head are assigned to the same stratum. A stratification partitions a given rule
set such that all positive derivations of relations can be determined before a
negative literal with respect to one of those relations is evaluated.

Given a deductive database D, the Herbrand base HD of D is the set of all
ground atoms that can be constructed from the predicate symbols and constants
occurring in D [2,6]. A disjunctive deductive database is syntactically given by
a set of facts and rules which we also call the explicit state of the database. In
contrast to this we define the implicit state of a database as the set of all positive
and negative conclusions that can be derived from the explicit state.

Definition 2 (Implicit Database State). Let D = 〈F ,R〉 be a stratifiable
disjunctive deductive database. The implicit database state PMD := {PM1, . . . ,
PMn} of D is defined as the set of perfect models [15] for F ∪R:

∀PMi ∈ PMD : PMi = I+
i ∪· ¬ · I−i

where I+
i , I−i ⊆ HD are sets of ground atoms. The set I+

i represents the true
portion of the perfect model while ¬ · I−i comprises all true negative conclusions.

Each perfect model of a database D partitions the Herbrand base into the set
of positive conclusions I+ and the set of negative conclusions I− where I− =
HD \ I+. Therefore, we allow each perfect model to be represented by the set of
true atoms only.

3 Model Generation

We will now recall from [8,9,12,13] a standard model generation approach for
determining the semantics of stratifiable disjunctive databases. This approach
works on minimal Herbrand interpretations and computes the set of perfect
models by iteratively applying the given rule set. We will use the results from
this section for a comparison with our new approach to state generation from
Section 5. In contrast to a positive Datalog program, there is no unique minimal
Herbrand model for a positive disjunctive program. Instead, Minker has shown
that there is a set of minimal models which capture the intended semantics of a
disjunctive program [13]. In the following, the set of minimal Herbrand models
of a given database D will be denoted by MMD. For determining minimal
Herbrand models we introduce the operators min models and min subset.

Definition 3. Let I be an arbitrary multi-set. The operator min subset selects
all minimal sets contained in I : min subset(I):= {I ∈ I | ¬∃J ∈ I : J � I}.

Definition 4. Let F = {f1, . . . , fn} be a set of disjunctive facts. min models
constructs the set of all minimal models of F and is defined as follows:

min models(F ):= min subset({ {L1, . . . , Ln} | Li is a literal from fact fi}).
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In order to formalize the application of disjunctive rules to a set of definite
facts, we introduce a consequence operator for determining minimal Herbrand
interpretations.

Definition 5. Let R be a set of disjunctive rules and I an arbitrary set of
definite facts:

1. The single consequence operator T m[r] defines for each disjunctive rule r ≡
A1 ∨ · · · ∨Al ← B1 ∧ · · · ∧Bn ∧¬C1 ∧ · · · ∧¬Ck ∈ R with l, n ≥ 1 and k ≥ 0
the set of disjunctive facts which can be derived by a single application of r:

T m[r](I) := {( A1 ∨ · · · ∨Al)σ | σ is a ground substitution and
∀i ∈ {1, . . . , n} : Biσ ∈ I and ∀j ∈ {1, . . . , k} : Cjσ /∈ I})

2. The cumulative disjunctive consequence operator T m
R again models the si-

multaneous application of all rules in R to I:

T m
R (I) :=

⋃
r∈R T m[r](I) ∪ I.

Based on these notions we define the model-based consequence operator which
computes the minimal Herbrand models of a disjunctive database.

Definition 6. Let D = 〈F ,R〉 be a disjunctive deductive database. The model-
based consequence operator TM

R is a mapping on sets of ground atoms and is
defined for I ⊆ 2HD with I = {I1, . . . , In} as follows:

TM
R (I) := min subset({min models(T m

R (I)) | I ∈ I}).

The operator TM
R was originally introduced by Fernández and Minker [9] and

is based on the consequence operator T m
R . T m

R is solely applied to a set of def-
inite facts. New disjunctive (indefinite) facts, however, are generated because
of disjunctions within the heads of the rules applied. Therefore, the operators
min models and min subset are needed to return to a representation of definite
facts only after each cumulative rule application.

In [9] it is shown that TM
R is monotonic for semi-positive1 disjunctive data-

bases with respect to a given partial order between sets of Herbrand interpre-
tations. As HD is finite, the least fixpoint lfp(TM

R ,F) of TM
R exists, where

lfp(TM
R ,F) denotes the least fixpoint {M1, . . . ,Mn} of operator TM

R so that
for allMi holds: Mi |= F . For correctly evaluating negative literals, the operator
TM
R and thereby the new version of T m

R is iteratively applied to each stratum of
a stratified rule set from bottom to top. This results in the computation of the
so-called iterated fixpoint model set.

Definition 7. Let D = 〈F ,R〉 be a stratifiable disjunctive deductive database
and λ a stratification on D. The partition R1 ∪ . . . ∪ Rn of R defined by λ
induces a sequence of sets of minimal Herbrand models MMD1, . . . ,MMDn

with MMD1 := lfp(TM
R1

,F), MMD2 := lfp(TM
R2

,MMD1), . . ., MMDn :=
lfp(TM

Rn
,MMDn−1). The iterated fixpoint model set of D is defined as MMDn.

1 In semi-positive databases negative references in rules are permitted to extensional
relations only.
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Theorem 1. Let D = 〈F ,R〉 be a stratifiable disjunctive deductive database and
λ a stratification on D, and R1 ∪ . . .∪Rn the partition of R defined by λ. Then
the set of perfect models PMD of D is identical with the iterated fixpoint model
set MMDn of D.

Proof. cf. [9]

The definition of the iterated fixpoint model set MMDn = {M1, . . . ,Mk} of a
given stratified databaseD induces a constructive method for determining the in-
tended semantics of D in form of sets of perfect models. A direct implementation
of this method, however, would contain a lot of expensive set operations which
are hidden in the otherwise apparently simple definitions above. For illustrating
the notations introduced above, consider the following database D = 〈F ,R〉:

R : t(X) ∨ s(X) ← p(X) ∧ r(X) F : p(a)
s(X) ← q(X) q(b) ∨ r(a)
s(X) ← t(X)

The iterative computation of lfp(TM
R ,F) then induces the following sets:

I1 := min models(F) = { {p(a),q(b)} , {p(a),r(a)} }
I2 := TM

R (I1) = { {p(a),q(b),s(b)} , {p(a),r(a),t(a)} ,{p(a),r(a),s(a)} }
I3 := TM

R (I2) = { {p(a),q(b),s(b)} , {p(a),r(a),s(a)} }
I4 := I3.

The fixpoint I4 coincides with the sets of minimal models MMD of D. The
computation starts with the minimal set of Herbrand interpretations which re-
spect D. After that the operator TM

R is iteratively applied to the interpretation
obtained in the previous iteration round. TM

R is not monotonic with respect
to the number of minimal Herbrand interpretations due to the application of
min subset. Nevertheless, [9] shows the monotonicity of TM

R with respect to a
restricted domain of canonical collections of interpretations from the finite HD
such that it always reaches its least fixpoint in a finite number of iterations.

4 State Generation

As an alterative to model generation, state generation has been proposed in [11,14]
dealing with disjunctive facts only. Given the Herbrand baseHD of a databaseD,
the disjunctive Herbrand base DHD is the set of all positive ground disjunctions
A1∨. . .∨An that can be formed by atoms Ai ∈ HD. In order to guarantee finiteness
of DHD, however, we solely consider disjunctions where each atom occurs only
once; that is i �= j implies Ai �= Aj . Any subset SD of DHD is called a state of D.
SD is called a model state of D if every minimal model of D is also a model of SD
and every model of SD is a model ofD. A model stateMSD ofD is called minimal
if none of its subsets is a model state of D. A non-minimal model state SD must
include disjunctive facts which are subsumed by other facts from SD and doesn’t
provide new information on derivable facts from D. To eliminate those irrelevant
facts, we will use the following subsumption operator red.
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Definition 8. The operator red eliminates all disjunctive facts from a given set
F which are subsumed by another fact from F :

red(F ):= {f ∈ F | ¬∃f ′ ∈ F : f ′ � f}.

Theorem 2. Let D be a positive disjunctive database. The minimal model state
MSD of D always exists, is unique and can be obtained from any model state
SD of D by applying red: MSD = red(SD).

Proof. cf. [12].

4.1 State Generation for Positive Rules

For determining the minimal model state of a given positive disjunctive database,
Minker and Rajasekar introduced a disjunctive consequence operator [14] based
on Robinson’s hyperresolution concept [17]. This operator directly works on
ground disjunctions and uses factorization to avoid different representations of
equivalent disjunctive facts. We will use the operator norm for obtaining an
equivalent but unique representation of disjunctive facts from an arbitrary set of
disjunctions. The operator norm maps a disjunctive fact f to a logically equiva-
lent variant f ′ such that every atom in f ′ occurs exactly once in f ′, the boolean
constant false does not occur in f ′, and all all atoms in f ′ are ordered lexico-
graphically. For a set of disjunctive facts F , norm(F ) is defined as ∪f∈F norm(f).

Based on the notions above, we can now define a refined version of the disjunc-
tive consequence operator of Minker and Rajasekar [14] in which each separate
rule evaluation step is made explicit. To this end, an auxiliary consequence oper-
ator T s[r] for single rule applications is introduced before defining the cumulative
version of the disjunctive consequence operator T s

R.

Definition 9. Let R be a set of positive disjunctive rules and F an arbitrary
set of disjunctive facts:

1. The single consequence operator T s[r] defines for each disjunctive rule r ≡
A1 ∨ · · · ∨Al ← B1 ∧ · · · ∧Bn ∈ R with l, n ≥ 1 the set of disjunctive facts
which can be derived by a single application of r to F :

T s[r](F ) := red({norm((A1 ∨ . . . Al ∨ f1 \B1 ∨ · · · ∨ fn \Bn)σ) |
σ is a ground substitution and
∀i ∈ {1, . . . , n} : fi ∈ F and Biσ ∈ fi})

2. The cumulative disjunctive consequence operator T s
R models the simultaneous

application of all rules in R to F . It returns the set of derived facts together
with the input set while subsumed facts are eliminated:

T s
R(F ) := red(

⋃
r∈R T s[r](F ) ∪ F ).

Note that it would be sufficient to apply the red operator only once within
T s
R in order to get a subsumption-free set of disjunctive facts. We have addi-

tionally included this elimination step into T s[r], however, in order to keep the
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set of intermediate results small and to highlight where derivation of subsumed
disjunctive facts may occur. In Section 6 we will show how some of these redun-
dant derivations can be avoided due to our new method for state generation of
stratifiable rules. Note that even a single rule application may lead to subsumed
disjunctive facts as the following example shows:

r ≡ a ∨ b ← c and S = {c ∨ b , c ∨ d}

T s[r](S) = red({norm(a ∨ b ∨ b), norm(a ∨ b ∨ d)})
= red({a ∨ b , a ∨ b ∨ d}) = {a ∨ b}

We can now define the semantics of positive disjunctive databases based on T s
R.

T s
R is monotonic with respect to an expanded set of resulting disjunctions in

which all subsumed facts from DHD are additionally included. Therefore, T s
R

has a unique least fixpoint lfp(T s
R,F) containing F .

Theorem 3. Let D = 〈F ,R〉 be a positive disjunctive deductive database. The
minimal model state MSD of D coincides with lfp(T s

R,F).

Proof. cf. [11].

The fixpoint characterization of the minimal model state induces a construc-
tive method for determining the semantics of a given disjunctive database by
iteratively applying T s

R, starting from F . As an example, consider the database
D = 〈F ,R〉:

R: t(X) ∨ s(X) ← p(X) ∧ r(X) F : p(a)
s(X) ← q(X) q(b) ∨ r(a)
s(X) ← t(X)

The iterative computation of lfp(T s
R,F) then leads to the following sets of

minimal states:

S1 := T s
R(Ø) = {p(a) , q(b) ∨ r(a)}

S2 := T s
R(S1) = {p(a) , q(b) ∨ r(a)} ∪ {r(a) ∨ s(b) , q(b) ∨ s(a) ∨ t(a)}

S3 := T s
R(S2) = {p(a) , q(b) ∨ r(a)} ∪ {r(a) ∨ s(b) , q(b) ∨ s(a)}

S4 := S3.

The fixpoint S4 coincides with the minimal model state MSD of D. The compu-
tation starts with the base facts F and then iteratively applies the operator T s

R
for obtaining new derivable disjunctions. Note that the fact {q(b) ∨ s(a)∨ t(a)}
is eliminated by the red operator in iteration round 3 because it is subsumed by
the fact {q(b) ∨ s(a)} which has been newly generated in this round. Obviously,
model and state generation methods deal with different representations which
can be systematically transformed into each other.

Lemma 1. Let D be a positive disjunctive database, MMD = {M1, . . . ,Mn}
with n ≥ 1 the set of minimal Herbrand models of D, and MSD the minimal
model state of D. Then the following equalities hold:

MMD =min models(MSD) and MSD =red({norm(L1 ∨ . . . ∨ Ln) | Li ∈Mi})
Proof. cf. [9].
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4.2 State Generation for Stratifiable Rules

The semantics of a stratifiable disjunctive databaseD is given by its set of perfect
models PMD = {M1, . . . ,Mk}. The corresponding perfect model state PSD
again can be derived by simply applying the operators red and norm as shown
in Lemma 1, i.e., PSD = red({norm(L1 ∨ · · · ∨ Lk) | Li ∈ Mi}). The question
how to determine the corresponding model state without using a model genera-
tion approach first has not been answered yet! Thus, we are looking for a state
generation method purely based on hyperresolution extending the consequence
operator T s

R from Section 4.1.
When applying T s

R to a positive disjunctive rule, all ’alternatives’ of the
matching body literals are transferred to the conclusion of the rule. For exam-
ple, the application of T s[r1](F ) with r1 ≡ p(X) ← r(X, Y ), s(Y ) to F={r(1, 2),
s(2) ∨ t(3)} leads to the conclusion {p(1) ∨ t(3)} where the remaining alter-
native t(3) of fact s(2) ∨ t(3) is included. For negative body literals, hyper-
resolution would suggest the matching body literals themselves to be propa-
gated to the conclusion instead of their ”alternatives”. Applying the rule r2 ≡
p(X) ← r(X, Y ),¬s(Y ) to the state F = {r(1, 2), s(2) ∨ t(3)} would then yield
{p(1) ∨ s(2)}, which together with F corresponds to the perfect model state of
the database 〈F, {r2}〉.

However, this does not always lead to correct derivations with respect to the
intended semantics. For instance, applying the rule r3 ≡ p(X) ← a(X),¬b(X)
to the state F ′ = {a(1)} would yield {p(1) ∨ b(1)} while the correct derivation
would be simply {p(1)}. In this case, the negatively referred literal b(1) must not
be added to the conclusion in order to avoid the generation of the unsupported
Herbrand model M = {b(1)}. The reason for this is the non-constructive nature
of negation in deductive rules where negative body literals are to be seen as tests
of non-existence. Therefore, such literals must never be added to the conclusion
of a rule if they occur in no disjunctive fact of the state to which this rule is
applied. Otherwise, the generated model states additionally have unsupported
Herbrand models which are not present in the set of perfect models.

But even if there were disjunctive facts in the state in which negatively re-
ferred atoms occur, the propagation of these atoms to the conclusion sometimes
leads to an incorrect model state. Consider the following stratifiable disjunctive
database D = 〈F ′′, r3〉 = 〈{a(1) ∨ b(1), a(1) ∨ c(5)}, {p(X)← a(X),¬b(X)}〉. The
set of perfect models of D is given by MMDn = {{a(1), p(1)}, {b(1), c(5)}} and
the corresponding perfect model state PSD is {b(1)∨p(1), c(5)∨p(1)} ∪F ′′. Sup-
pose now we have modified our single derivation operator T s to T s′

for handling
negative body literals in the way proposed above where negatively referred lit-
erals are solely added to the conclusion if they do not occur within a disjunction
of the given state. However, as the atom b(1) occurs in indefinite facts of F ′′, the
application of T s′

[r3] to F ′′ would add b(1) to the conclusion of rule r3 leading
to an incomplete set of derived disjunctive facts:

T s′
[r3](F ′′) = red({norm(p(1) ∨ b(1) ∨ b(1)), norm(p(1) ∨ c(5) ∨ b(1))})

= red({b(1) ∨ p(1) , b(1) ∨ c(5) ∨ p(1)}
= {b(1) ∨ p(1)}
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Instead of the fact c(5) ∨ p(1), the non-minimal conclusion p(1) ∨ c(5) ∨ b(1)
is drawn and subsequently eliminated by the subsumption operator red. The
correct derivations with respect to PSD, however, would be obtained again if
the negated body literals were not propagated to the conclusion this time.

5 A New State Generation Method for Stratifiable Rules

In Section 4.2 we have shown that for avoiding the derivation of invalid model
states using a modified version of the consequence operator T s from Section 4.1,
negative body literals must be added to the conclusion only in specific situations.

5.1 A New Consequence Operator

The basic idea of our approach is to propagate a negative body literal Ciσ to the
conclusion of a disjunctive rule r ≡ A1∨· · ·∨Al ← B1∧· · ·∧Bn∧¬C1∧· · ·∧¬Cm iff
there exists at least one minimal model M ∈ min models(F ) with respect to the
given state F which comprises all instantiated positive body literals Biσ together
with a Cjσ, i.e., {B1σ, . . . , Bnσ, Cjσ} ⊆ M, but none of the instantiated head
literals, i.e., ∀k ∈ {1, . . . , l} : Akσ /∈ M. Although there seems to be no need
to fire r, there might exist another minimal model M′ ∈ min models(F ) with
{B1σ, . . . , Bnσ} ⊆ M′ and Cjσ /∈M′ for which the application of r would indeed
lead to new correct derivations. Within a state representation it is not possible
to directly identify the associated models such that the application of r may
lead to logically correct but non-minimal derivations. By adding the instantiated
negative body literal Cjσ to the conclusion, however, all non-minimal derivations
with respect to M will be eliminated by the subsumption operator within T s

R.
Note that in the last sample database 〈F ′′, {r3}〉 from Section 4.2, this condi-

tion was not satisfied as the atoms a(1) and b(1) are not contained in any minimal
model of F ′′. Thus, the negated body literal b(1) must not be propagated to the
conclusion this time. In the following definition, the single consequence opera-
tor T s[r] for state generation is extended according to the condition mentioned
above for correctly handling negative literals.

Definition 10. Let R be an arbitrary set of disjunctive rules and F an arbitrary
set of disjunctive facts. The single consequence operator T s[r] defines for each
disjunctive rule r ≡ A1 ∨ . . . Al ← B1 ∧ · · · ∧ Bn ∧ ¬C1 ∧ · · · ∧ ¬Cm ∈ R with
l, n ≥ 1 and m ≥ 0 the set of disjunctive facts which can be derived by a single
application of r to F :

T s[r](F ) := red({norm((A1 ∨ . . . Al ∨ f1 \B1 ∨ · · · ∨ fn \Bn ∨ C)σ |
σ is a ground substitution and
∀i ∈ {1, . . . , n} : fi ∈ F ∧Biσ ∈ fi∧
∀j ∈ {1, . . . , m} : Cjσ /∈ F ∧ (Cj ∈ C ⇔
∃M ∈ min models(F ) : {B1σ, . . . , Bnσ, Cjσ} ⊆ M∧

∀k ∈ {1, . . . , l} : Akσ /∈M)})
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In addition to the definition of T s[r], two further conditions are included into
the definition of T s[r] for handling negative literals. For each negatively referred
literal Cj the criterion Cjσ /∈ F is added in order to avoid firing the rule in the
presence of corresponding definite facts. Furthermore, the disjunction C is used
to add all those negatively referred literals to the conclusion of the given rule
which satisfy the condition mentioned above. But the direct reference to mini-
mal models of F seems to be quite problematic as it suggests that the operator
works on states and their corresponding models at the same time.

For testing whether there is a model M ∈ min models(F ) satisfying the con-
ditions above, however, the actual generation of any M is usually not necessary.
For instance, the condition {B1σ, . . . , Bnσ, Cjσ} ⊆M corresponds to the prop-
erty T s

{(y←B1∧···∧Bn∧Cj)σ}(F ) �= F with y /∈ HD which can be checked without
generating any model of F . In fact, it is not even necessary to apply T s

R to all
facts in F as for the generation of an unsubsumed fact fy with y ∈ fy solely facts
are needed which comprise Biσ or Cjσ or an atom A which also appears in a fact
g ∈ F with Biσ ∈ g or Cjσ ∈ g. For eliminating the other (unnecessary) facts
from F before testing the property above we employ the following rσ-restriction.

Definition 11. Let rσ be an instantiated disjunctive rule with respect to a ground
substitution σ. For an arbitrary state F we define:

F |rσ := { f ∈ F | there is a literal l from rσ and either l ∈ f or
there is a g ∈ F such that l, l′ ∈ g and l′ ∈ f}

Note that F |rσ solely returns facts which directly depend on literals from rσ.
The consideration of transitively connected facts in F , however, is not necessary.
Using this notion, the condition above can be refined to T s

{rσ}(F |rσ ) �= F |rσ

with rσ ≡ (y ← B1 ∧ · · · ∧ Bn ∧ Cj)σ meaning that the containment test can
be restricted to the usually smaller part F |rσ of F . Even the test whether none
of the instantiated head literals A1σ, . . . , Alσ occurs within a model M with
{B1σ, . . . , Bnσ, Cjσ} ⊆ M can be performed over F |rσ with rσ ≡ (y ← B1 ∧
· · · ∧Bn ∧Cj ∧A1 ∧ . . . Al)σ, only.

5.2 Perfect Model State Generation

The definition of the cumulative consequence operator T s
R is analogous to the

one already given in definition 9, i.e., T s
R(F ) := red(

⋃
r∈R T s[r](F ) ∪ F ). This

operator is used again for modelling the simultaneous application of all rules in
R to the given state F . Before proving the correctness of T s

R which is based on
the modified version of T s[r], we illustrate its application using the following
semi-positive database D = 〈F , {r}〉:

r ≡ t(X) ∨ u(X) ← p(X) ∧ ¬r(X) F : p(a) ∨ q(1) ,
p(b) ∨ q(2) , r(b),
p(c) ∨ q(3) , r(c) ∨ s(3), q(3) ∨ s(3)
p(d) ∨ q(4) , r(d) ∨ s(4) ∨ q(4)
p(e) ∨ q(5) , r(e) ∨ q(5), t(e) ∨ q(5)
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The application of T s[r](F) then leads to the following derivations:

T s[r](F) = {t(a) ∨ u(a) ∨ q(1)} ∪ {t(c) ∨ u(c) ∨ q(3)} ∪
{t(d) ∨ u(d) ∨ q(4) ∨ r(d)} ∪ {t(e) ∨ u(e) ∨ q(5)}

The example illustrates five derivation cases which possibly occur when evaluat-
ing negative literals. In the first case, the absence of r(a) in any disjunctive fact
from F allows for the derivation of t(a) ∨ u(a) ∨ q(1) whereas the definite fact
r(b) prevents the derivation of t(b)∨u(b)∨q(2). In the remaining three cases, the
condition T s

{rσ}(F|rσ) �= F |rσ with rσ ≡ (y← p(X) ∧ r(X))σ has to be checked
for the substitutions σ3 = {X \ c}, σ4 = {X \ d}, and σ5 = {X \ e}, respectively.

The application of T s
rσ3

(F|rσ3
) with F|rσ3

= { p(c)∨q(3), r(c)∨s(3), q(3)∨s(3)
} and rσ3 ≡ y ← p(c) ∧ r(c) derives the disjunction q(3) ∨ s(3) ∨ y which is
subsumed by q(3) ∨ s(3) ∈ F|rσ3

. Since T s
rσ3

(F|rσ3
) = F|rσ3

it can be concluded
that there is no minimal model M of F with {p(c), r(c)} ⊆ M and r(c) must
not be propagated to the conclusion t(c) ∨ u(c) ∨ q(3).

The application of T s
rσ4

(F|rσ4
) with F|rσ4

= {p(d) ∨ q(4), r(d) ∨ s(4) ∨ q(4)}
and rσ3 ≡ y ← p(d) ∧ r(d) derives the new minimal conclusion q(4) ∨ s(4) ∨ y
such that T s

rσ3
(F|rσ3

) �= F|rσ3
. In addition, there cannot be any minimal model

of F which contains one of the instantiated head literals t(d) or u(d) since there
is no f ∈ F with t(d) ∈ f or u(d) ∈ f . Consequently, the negatively referred
literal r(d) has to be propagated to the conclusion of rσ4 yielding the new fact
t(d) ∨ u(d) ∨ q(4) ∨ r(d).

For the last possible substitution σ5, there is exactly one minimal model M
of F with {p(e), r(e)} ⊆ M but this time one of the instantiated head literals
t(e) is also contained in M. We could employ again T s

rσ5
(F|rσ5

) with rσ5 ≡ y←
p(e) ∧ r(e) ∧ t(e) for testing whether there is a model which contains p(e), r(e),
and t(e). However, this test only shows the existence of such a model. But there
might be another minimal model which solely comprises {p(e), r(e)} but no head
literal. Therefore, all minimal models have to be generated with respect to the
subset F|r′

σ5
of F with r′σ5

≡ y← p(e)∧r(e)∧t(e)∧u(e) in order to be sure that
all models comprising {p(e), r(e)} contain at least one instantiated head literal as
well. The corresponding models of F|r′

σ5
= {p(e)∨q(5), r(e)∨q(5), t(e)∨q(5)} are

given by {{p(e), r(e), t(e)}, {q(5)}} such that the negatively referred literal r(e)
must not be propagated to the conclusion of rσ5 yielding the fact t(e)∨u(e)∨q(5).

The set red(T s[r](F) ∪ F) represents lfp(T s
{r},F) and coincides with the

perfect model state of D. A model generation approach for this example would
have to deal with over 100 minimal models in order to compute the set of perfect
models of D. In fact, if CNF is much more compact than DNF as in this example,
reasoning with states obviously becomes simpler and thus, more efficient.

Theorem 4. Let D = 〈F ,R〉 be a disjunctive deductive database where all ne-
gative literals in R refer to base relations,only. The perfect model state PSD of
D coincides with lfp(T s

R,F).

Proof. (sketch) The correctness of T s
R with respect to a given set of rules R

directly follows from the correct evaluation of every single rule r inR. For proving
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this result, we use the correctness of the model-based consequence operatorTM
R

and show that T s
R and TM

R return equivalent results if applied to an arbitrary set
of disjunctive facts F and its equivalent set of minimal models min models(F),
respectively. For full proofs we refer to [4].

A method for state generation of a stratified database D ought to make use of a
stratification such that each pair 〈F ,R1〉 and 〈MSDi−1 ,Ri〉 (i = 2, . . . , n) is a
semi-positive database. The iterative application of the cumulative consequence
operator T s

R then yields the iterated fixpoint state model of D.

Definition 12. Let D = 〈F ,R〉 be a stratifiable disjunctive deductive database
and λ a stratification on D. The partition R1 ∪ . . . ∪ Rn of R defined by λ
induces a sequence of minimal model states MSD1 , . . . ,MSDn with MSD1 :=
lfp(T s

R1
,F), MSD2 := lfp(T s

R2
,MSD1), . . . , MSDn := lfp(T s

Rn
,MSDn−1).

The iterated fixpoint state model of D is defined as MSDn.

Theorem 5. Let D = 〈F ,R〉 be a stratifiable disjunctive deductive database and
λ a stratification on D, R1∪. . .∪Rn the partition of R induced by λ, MMDn the
iterated fixpoint model of D, and PSD the corresponding perfect model state of D.
Then the perfect model state PSD of D coincides with the iterated fixpoint state
model MSDn of D. In particular, it holds that MMDn =̄ min models(MSDn).

Proof. The proof directly follows from the correctness of the fixpoint computa-
tions for each stratum.

The definition of the iterated fixpoint state model MSDn of a given stratified
disjunctive databaseD induces a constructive method for determining the perfect
model state PSD of D which is purely based on model state generation.

6 Enhanced State Generation for Positive Rules

In principle, negative and positive body literals in disjunctive rules are treated
in a complementary way; that is, while for positive body literals the resolved
disjunction is added to the conclusion, negatively referenced body literals are
propagated themselves. As shown in the previous section, however, negatively
referenced body literals must not be propagated if this turns a correct and min-
imal conclusion into a non-minimal one. The question is now whether a similar
condition can be defined for the treatment of positive body literals. Consider
the following positive database D = 〈F , {r}〉 in which the two facts from F will
always lead to non-minimal and thus redundant derivations:

r ≡ s(X) ← p(X) ∧ r(Y) F : p(a) ∨ q(1) , r(b) ∨ p(a) ∨ l(2)

The application of T s[r](F) leads to the following derivations:

T s[r](F) = red({ norm(s(a) ∨ q(1) ∨ p(a) ∨ l(2)),
norm(s(a) ∨ r(b) ∨ l(2) ∨ p(a) ∨ l(2))})
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Both derivations are redundant as they are subsumed by the two facts in F .
Consequently, the operation red eliminates these two derivations during the
application of the cumulative consequence operator T s

{r}. It is easy to see that
when considering a ground instantiated rule any disjunctive fact including at
least two different body literals will produce subsumed derivations. The following
refined version of the single consequence operator T s[r] for positive rules includes
a corresponding criterion for avoiding such redundant derivations.

Definition 13. Let R be a set of positive disjunctive rules and S an arbitrary
set of disjunctive facts. The single consequence operator T s[r] defines for each
disjunctive rule r ≡ A1 ∨ . . . Al ← B1 ∧ · · · ∧ Bn ∈ R with l, n ≥ 1 the set of
disjunctive facts which can be derived by a single application of r to F :

T s[r](F ) := red({norm((A1 ∨ · · · ∨Al ∨ f1 \B1 ∨ · · · ∨ fn \Bn)σ)|
σ is a ground substitution and ∀i, j ∈ {1, . . . , n} :
fi ∈ F and Biσ ∈ fi and (i �= j ⇒ Bjσ /∈ (fi \Biσ)})

As the above condition does not affect the evaluation of negative literals, the
modification of the consequence operator T s[r] from Definition 10 is straight-
forward. The correctness of T s[r] for the positive case can be seen as follows:
Let r ≡ A ← B1 ∧ · · · ∧ Bn be a positive disjunctive rule with n ≥ 2, f be a
disjunctive fact from F with Biσ ∈ f and Bjσ ∈ f for j �= i, and f ′ be a fur-
ther arbitrary disjunctive fact from F with Bjσ ∈ f ′ possibly identical with f .
Applying the two facts to the body of r allows for deriving the two conclusions
(A∨f \Bi∨f \Bj∨ . . .)σ and (A∨f \Bi∨f ′\Bj∨ . . .)σ. The former is subsumed
by f while the latter is subsumed by f ′ since Bjσ ∈ f \ Biσ. Thus, during the
application of the cumulative consequence operator T s

{r} the red-operation will
always eliminate these redundant derivations.

7 Discussion

Model states and Herbrand models directly correspond to CNF respectively
DNF representations and thus none can be preferred over the other. If for a given
example one representation is considerably shorter than the other, [20] favors the
corresponding model or state generation method for a more efficient computation
based on practical experience with the disjunctive deductive database engine
Dislog [21]. What representation type ought to be chosen additionally depends
on the application scenario as certain information can be easier retrieved from a
CNF than from a DNF representation and vice versa. For instance, the number
of models in which a certain fact occurs can be easily determined from a DNF
representation while alternative view update realizations are directly given by a
disjunctive fact within a CNF representation.

Another aspect is the number of possible derivations when applying disjunctive
rules which varies with the chosen fact representation as shown in the following
two examples. In the first example, the rule r ≡ d← b must be applied n times to
the state F = {a1∨b , . . . , an∨b} for deriving the consequences {a1∨d , . . . , an∨d}
whereas a single application of r is sufficient for extending the corresponding set
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of minimal interpretations I = {{a1, . . . , an}, {b}}. In the second example, a sin-
gle application of r to the state F = {a1 ∨ · · · ∨ an, b} is sufficient for deriving the
consequence d while it can be applied n times to the corresponding set of minimal
interpretations I = {{a1, b}, . . . , {an, b}} for extending each interpretation by the
new consequence d. Thus, if an application scenario usually deals with substan-
tially more definite than indefinite facts - as is the case for view updating methods -
the model state approach leads to a more compact (but not necessarily shorter)
representation than the set of minimal Herbrand models inducing again compu-
tational advantages with respect to the number of derivations.

Another problem arising from different fact representations is the existence of
redundant derivations. In Section 6 we have shown how to avoid certain redun-
dant derivations when applying the consequence operator T s

R to facts in CNF.
However, similar redundancies may also occur during the model generation ap-
proach from Section 3 when applying the consequence operator TM

R to facts in
DNF. As an example, consider the following minimal interpretation I = {a, b}
and the rule r ≡ b ∨ c1 ∨ · · · ∨ cn ← a. As in the (instantiated) conclusion of
r the ground literal b occurs which is also contained in I, the resulting derived
interpretation I1 = {a, b}∪{b} subsumes all other derivations In = {a, b}∪{cn}
by T m

{r}(I) which are therefore redundantly generated. These derivations are
subsequently eliminated by the operation min subset during the application of
TM
{r}. Similar to the state generation approach, such redundant derivations can

be avoided by adding corresponding restrictions into the definition of T m
R .

Thus, the discussion shows that CNF or DNF ought to be chosen depending
on the application, but none can be preferred over the other in the general case.
Indeed, despite of the enhancements discussed in Section 6, our new model state
generation approach does not improve the general complexity for determining
perfect models of stratifiable databases D = 〈F ,R〉 [7]. It simply represents
an alternative approach for computing perfect models which is based on model
states and thus closes a missing gap in the theory of disjunctive logic programs.
Additionally, our approach provides insights with respect to the application of
hyperresolution in disjunctive databases which allows for avoiding redundant
derivations when applying positive disjunctive rules.

8 Conclusion

In this paper, a new method for computing perfect models of stratifiable dis-
junctive databases has been presented. In contrast to existing model generation
procedures, our fixpoint-based approach is the first to be purely based on state
generation. It provides new insights into the application of hyperresolution when
considering minimal model semantics and allows for enhancing the efficiency of
methods for perfect model state generation.
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Abstract. This paper provides an answer-oriented multidimensional analysis 
environment. The approach is based on a conceptual point of view. We define a 
conceptual model that represents data through a constellation of facts and di-
mensions and we present a query algebra handling multidimensional data as 
well as multidimensional tables.  Based on these two propositions, in order to 
ease the specification of multidimensional analysis queries, we define a formal 
graphical language implemented within a prototype: GraphicOLAPSQL. 

1   Introduction 

OLAP (On-Line Analytical Processing) [6] systems allow analysts to improve the 
decision-making process by consulting and analysing aggregated historical business 
or scientific data. One of the reasons for the absence of standard in Multidimensional 
DataBases (MDB) modelling is the lack of conceptual level in commercial tools [20]. 
Indeed, analysts and decision-makers manipulate logical and physical concepts in-
stead of manipulating conceptual elements. 

1.1   Context and Motivations 

OLAP or multidimensional modelling [13] represents data as points in a multidimen-
sional space with the use of the cube (or hypercube) metaphor. The following figure 
presents the data of a commercial activity (imports amounts) of a company analysed 
according to three analysis axes (suppliers, dates, products). 

MDB are modelled through subjects of analysis, named facts and analysis axes, 
named dimensions [13]. These structures are grouped into a star schema [13]. Facts 
are groupings of analysis indicators, named measures. Dimensions are composed of 
hierarchically ordered attributes which model the different detail levels of the axis–
data granularity. Notice that, in spite of a decade of research in OLAP systems, con-
cepts and systems exist without uniform theoretical basis [17, 20]. 

OLAP analysis is performed through interactive exploration and analysis of indica-
tors according to several analysis axes. Analysts need a decisional data representation 
semantically rich, which clearly distinguishes subjects and axes of analysis as well as 
structure and content. Moreover, this representation must be independent of any im-
plementation choice. In order to facilitate decision-making, analysts need a multidi-
mensional data visualisation interface adapted to the display of the analysis data. A  
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Fig. 1. Cube representation of a MDB, with a slice corresponding to domestic appliances 

graphic manipulation language is required, which must be homogeneously positioned 
between reporting restitution (query) commands and manipulation (analysis) com-
mands. 

1.2   Related Works 

Without a model based on consensus for multidimensional data, several propositions 
have been made. Several surveys may be found [24, 1]. According to [24], these mod-
els may be classified into two categories. First, works based on the “cube model” [2, 
15, 7, 12], have the following issues: 1) weakness in modelling the fact (subject of 
analysis) or its measures (analysis indicators); 2) little or no conceptual modelling of 
dimensions (analysis axes) with no explicit capture of their hierarchical structure; and 
3) no separation between structure and content. The second category called “multidi-
mensional model” overcomes these drawbacks and is semantically richer. It allows a 
precise specification of each multidimensional component and notably the different 
aggregation levels for measures [14, 18, 26, 1]. These models are based on the con-
cepts of fact and dimension possibly with multiple hierarchies. A hierarchy defines a 
point of view of an analysis axis. 

The first works on OLAP manipulation algebras extended relational algebra opera-
tors for the cube model [11, 2, 15, 12, 19]. To counter the inadaptability of relational 
algebra for manipulating multidimensional structures in an OLAP context, numerous 
works provided operations for specifying and manipulating cubes [4, 5, 18, 1, 8]. 
These works are not user-oriented for the following reasons: 1) they do not focus on 
an adapted data structure for displaying decisional data to the user; 2) they are based 
on partial sets of OLAP operations. Hardly any multidimensional model provides 
multi-fact and multi-hierarchies as well as a set of associated operations. 

Despite of more than a decade of research in the field of multidimensional analysis, 
very little attention has been drawn on graphical languages. In [5], the authors present 
a graphical multidimensional manipulation language associated to a conceptual repre-
sentation of the multidimensional structures. Although the authors define a rather 
complete manipulation algebra and calculus, the high level graphical language offers 
very little manipulations in comparison. In [3], the authors offer an intermediate solu-
tion, with more manipulations but the system uses complex forms for the multidimen-
sional query specifications. Neither solution provides a restitution interface. [23] and 
[22] are advanced visualisation tools. The first one offers an impressive pivot table 
that adapts its display according to the analysis data type, whereas the second offers 
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an arborescent view with multiple scales and very specific manipulations. Here, nei-
ther proposition provides a formal description of the manipulation language. 

Microsoft Excel Pivot tables, although very expressive restitution interfaces, do not 
provide many dynamic manipulations. On the other hand, other commercial tools 
offer extensive manipulations (Business Objects1, Cognos BI2, Tableau3, Targit4…). 
But all these tools display the multidimensional structures of the MDB within an 
arborescent view, rendering impossible comparative analyses between different sub-
jects sharing analysis axes. Moreover, the representation used mixes completely MDB 
structures and content. The user completely lacks an adapted conceptual view of the 
MBD concepts [20]. 

Nowadays, decision-makers whish to perform their own analyses, but they lack the 
knowledge to manipulate multidimensional structures with the use of multidimen-
sional query algebras or with adapted procedural query languages. On the other hand, 
commercial tools provide adapted manipulation languages but lack: 1) rigorous refer-
ence to multidimensional operations, 2) a uniform theoretical basis as well as 3) an 
adapted conceptual view of the multidimensional elements of the underlying MDB. 
Moreover, these tools sacrifice analysis coherence for analysis flexibility. 

1.3   Aims and Contributions 

In this context, in order to ensure access to company data, we intend to define a mul-
tidimensional OLAP language to ease multidimensional data analysis specification 
and manipulation. This language must: 1) disregard all logical and implementation 
constraints; 2) manipulate concepts close to analysts’ point of view; 3) be based on a 
stable theoretical basis to provide consistency and ensure analysis coherence; and 4) 
provide interaction with the analyst through an incremental and graphical interface. 

The paper contributions may be summarized in four points. 

1) A conceptual representation of multidimensional data structures. This graphic 
conceptual view eases users to understand the available analyses supported by the 
MDB schema. Analysts express queries from the graphic conceptual view, using 
graphic elements of the MDB schema. 

2) A display interface adapted to multidimensional analyses for representing the 
query results. Contrarily to pivot tables or commercial software output, this interface 
takes into account the hierarchical nature of multidimensional data in order to ensure 
analysis consistency. The tabular structure may be directly manipulated by users and 
analyst may specify complex analyses by incremental definition of complex queries. 

3) A user-oriented multidimensional query algebra that uses the model elements as 
input and the multidimensional table (mTable) as output structure. This algebra is 
based on a closed minimal core of operators that may be combined together. 

4) A graphic language that allows users to express operations using a reduced set of 
formal primitives. Each primitive handles multidimensional concepts independently of 
their implantation. This language is complete with regard to the algebraic core and pro-
vides incremental manipulations of the mTable, allowing fine analysis tuning. 
                                                           
1 Business Objects XI from http://www.businessobjects.com/ 
2 Cognos Business Intelligence 8 from http://www.cognos.com/ 
3 Tableau 2 from http://www.tableausoftware.com/ 
4 Targit Business Intelligence Suite from http://www.targit.com/ 
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The paper layout is as follows: section 2 defines the concepts and formalisms of 
the multidimensional model, section 3 presents the algebraic operators and section 4 
defines the graphic language. 

2   Multidimensional Model: Constellation 

In this section we present our multidimensional framework based on a conceptual 
view displaying MDB structures as a graphical conceptual view as well as a data 
interface displaying decisional data through a multidimensional table (mTable). Our 
model allows users to disregard technical and storing constraints, sticks closer to 
decision-makers’ view [10], eases correlation between various subjects of analysis 
[21, 26] with multiple perspective analysis axes [16]. It also allows a clear distinction 
structural elements and values and offers a workable visualisation for decision-makers 
[12]. We invite the reader to consult [25] for a more complete discussion on multidi-
mensional models and definition of the constellation model. 

2.1   Concepts 

A constellation regroups several subjects of analysis (facts), which are studied accord-
ing to several analysis axes (dimensions) possibly shared between facts. It extends 
star schemas [13] commonly used in the multidimensional context. 

A constellation Cs is composed of a set FCs={F1,…,Fm} of facts Fi, a set 
DCs={D1,…,Dn} of dimensions Di and a function StarCs linking dimensions and facts 
together. A fact represents a subject of analysis. It is a conceptual grouping of analysis 
indicators called measures. It reflects information that has to be analysed according to 
several dimensions. A fact Fi is composed of a set MFi={M1,…,Mw} of measures Mi. 
Analysis axes are dimensions seen through a particular perspective, namely a hierar-
chy. This hierarchy of parameters represents the different graduations of the analysis 
axis. A dimension Di is composed of a set HDi of hierarchies Hi and a set ADi of attrib-
utes (namely parameters and weak attributes). A dimension Di linked to the fact Fi is 
noted Di∈StarCs(Fi). A hierarchy Hi is an ordered list ParamHi=<p1,…,pnp> of parame-
ters pi and ∀pi∈ParamHi, ∀Hi∈HDi =>pi∈ADi. Note that p1 is named root parameter 
while pnp is the extremity parameter. Weak attributes may be associated to a parameter 
in order to complete its semantic. Note that, within the rest of the paper no distinction 
will be made between parameters and weak attributes. 
 
Notations. An aggregated measure Mi is noted fAGGi(Mi). levelH(pi) is the position of pi 
in ParamH. The notation pi∈H is a simplified notation for pi∈ParamH. The set of 
values of a parameter pi is dom(pi)=<vmin,…,vmax>. 

Graphic notations, based on [9], offer a clear global conceptual view. These nota-
tions highlight subjects of analysis (facts) and their associated axes of analyses (di-
mensions and hierarchies). See Figure 2 for an example. 

2.2   Multidimensional Table (MTable) 

OLAP analysis consists in analysing key performance indicators (measures) accord-
ing to several analysis axes. As in [12], we offer a tabular visualisation called  
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multidimensional table (mTable), displaying a fact and detailed information of two 
dimensions. 

A multidimensional table is defined by T =(S, C, L, R), where S=(FS,MS) represents 
the analysed subject through a fact FS and a set of aggregated measures 
MS={fAGG1(M1),…, fAGGv(Mv)}; C=(DC,HC,PC) represents the column analysis axis 
where PC=<pC

max,…pC
min>, HC is the current hierarchy of column dimension DC; 

L=(DL, HL, PL) represents the line analysis axis where PL=<pL
max,…pL

min>, HL is the 
current hierarchy of the line dimension DL; and R=pred1 ∧…∧ predt is a normalised 
conjunction of predicates (restrictions of dimension and fact data). An mTable has the 
following constraints: DC∈StarCs(FS), DL∈StarCs(FS), HC∈HDC, HL∈HDL, 
∃ pi∈PC | pi∈HC, ∃ pi∈PL | pi∈HL, ∃ Mi∈MS | Mi∈MFS, FS∈FCs. 

The DISPLAYCs operator constructs an mTable (TRES) from a constellation Cs. The 
expression is DISPLAYCs(FS, MS, DL, HL, DC, HC) = TRES where: 
MS={f1(M1),…, fx(Mx)}, ∀i∈[1..x], Mi∈MF  and TRES=(SRES, LRES, CRES, RRES) is the 
output mTable, where: SRES = (FS, MS); LRES=(DL, HL, <pL

max, p
L

min>), where pL
max=All 

and pL
min=pDL

np ; CRES=(DC, HC, <pC
max, p

C
min>), where pC

max=All and pC
min=pDC

np; and 

''.
)(,

allALLDR i
FStarDi

RES
SC

i

== ∧
∈∀

. 

In the following figure is displayed a constellation allowing the analysis of import-
ing companies activity as well as their manpower. An mTable shows an analysis ex-
ample: total import amounts by years and by continent of origin of the suppliers. 

 

Fig. 2. Example of a constellation and an associated analysis (mTable TR1) 

3   OLAP Algebra 

Multidimensional OLAP analyses consist in exploring interactively constellation data. 
The following algebra allows manipulation and retrieval of data from a constellation 
through nested expressions of algebraic operators. The OLAP algebra provides a 
minimal core of operators, all operators may not be expressed by any combination of 
other core operators; this ensures the minimality of the core. Although there is no 
consensus on a set of operations for a multidimensional algebra, most papers offer a 
partial support of seven operation categories see [25] for more details. Based on these 
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categories, our algebraic language allows the presentation of analysis data in an 
mTable. 

- Drilling: these operations allow navigating through the hierarchical structure 
along analysis axes, in order to analyse measures with more or less precision. Drilling 
upwards (operator: ROLLUP) consists in displaying the data with a coarser level of 
detail; e.g. import amounts analysed by months then analysed by year. The opposite, 
drilling downwards (DRILLDOWN) consists in displaying the data with a finer level 
of detail. 

- Selections: these operations (SELECT) allow the specification of restriction 
predicates on fact or dimension data. This operation is also known as “slice/dice” [2]. 

- Rotations: these operations allow: changing an analysis axis by a new dimension 
(ROTATE); changing the subject of analysis by a new fact (FROTATE); and chang-
ing an analysis perspective by a new hierarchy (HROTATE). 

Some authors have also presented complementary operations: 
- Fact modification: These operations allow the modification of the set of selected 

measures. They allow adding (ADDM) or removing (DELM) a measure to the current 
analysis. 

- Dimension modification: These operations allow more flexibility in analysis. 
They allow converting a dimensional element into a subject (PUSH), thus “pushing” a 
parameter into the subject; or converting a subject into a dimensional element 
(PULL), thus “pulling” a measure out of the subject. They also allow nesting (NEST). 
It is a structural reordering operation. It allows changing the order of parameters in a 
hierarchy but it also allows adding in a hierarchy a parameter from another dimen-
sion. The consequence is to be able to display in the bi-dimensional mTable more 
than two dimensions. This compensates for the 2D limitation of the bi-dimensional 
table. 

- Ordering: these operations allow changing the order of the values of dimension 
parameters or inserting a parameter in another place in a hierarchy. Switching 
(SWITCH) is an operation that eases analysis allowing regrouping columns or lines 
together independently of the order of the parameter values in lines or columns.  It is a 
value reordering operation. Notice that switching as well as nesting may “break” 
hierarchies’ visual representation in the mTable. Contrarily to commercial software 
which allows this operation without warning the user, the use of these specific opera-
tors allows a query system to warn the user analysis incoherence risks. 

- Aggregation: This operation allows the process of totals and subtotals of the dis-
played data (AGGREGATE). If applied to all displayed parameters, it is equivalent to 
the Cube operator [11]. The reverse operation is UNAGGREGATE. 

The following table describes the symbolic representation (algebraic expression) 
and the necessary conditions of input and output semantics for each operator. We 
invite the reader to consult [25] for more detailed specifications. 

3.1   Minimal Closed Algebraic Core of OLAP Operators 

To ensure closure of the core, each operator takes as input a source mTable (TSRC) and 
produces as output a result mTable (TRES). TSRC=(SSRC, LSRC, CSRC, RSRC) where:  
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SSRC = (FS, MS) with MS={f1(M1),…,fx(Mx)}; LSRC = (DL, HL, PL) with 
PL=<All, pLmax,…, pLmin>; CSRC = (DC, HC, PC) with PC=<All, pCmax,…, pCmin>; and 
RSRC = (pred1 ∧…∧ predt). TRES=(SRES, LRES, CRES, RRES). 

We have also defined advanced operators as well as set operators but due to lack of 
space, we invite the reader to consult [25] for complete specification. 

Table 1. OLAP Algebraic operators 

Operation Semantics 
DRILLDOWN(TSRC, D, pi) = TRES

Conditions D {DC, DL}; (D=DC, pi HC | level(pi)<level(pCmin))  (D=DL, pi HL | 
level(pi)<level(pLmin)) 

Output TRES=(SSRC, LRES, CRES, RSRC) where: if D=DL then LRES=(DL, HL, <All, pL
lmax,…, pL

lmin, 
pi>) and CRES=CSRC; if D=DC then LRES=LSRC and CRES=(DC, HC, <All, pC

cmax,… pC
cmin, 

pi>). 
ROLLUP(TSRC, D, pi) = TRES

Conditions D {DC, DL}; (D=DC, pi HC | level(pi)>level(pCmin))  (D=DL, pi HL | 
level(pi)>level(pLmin)). 

Output TRES=(SSRC, LRES, CRES, RSRC) where: if D=DL then LRES=(DL, HL, <All, pL
lmax,…, pi>) 

and CRES=CSRC; if D=DC then LRES=LSRC and CRES=(DC, HC, <All, pC
cmax,…, pi>). 

SELECT(TSRC, pred) = TRES / UNSELECT(TSRC)=TRES

Conditions pred= pred1 …  predt, predi is a predicate on dom(Mi) or dom(pi), Mi MFS  pi AD  
D StarCs(FS) 

Output TRES=(SSRC, LSRC, CSRC, RRES) where RRES = pred. For UNSELECT, RRES=  
ROTATE(TSRC, Dold, Dnew ,Hnew) = TRES

Conditions Dold {DC,DL}; Dnew StarCs(Fs)  Hnew HDnew

Output TRES=(SSRC, LRES, CRES, RSRC) where: if Dold=DL then LRES=(Dnew, Hnew, <All, pDnew
np>) and 

CRES=CSRC; if Dold=DC then LRES=LSRC and CRES=(Dnew, Hnew, <All, pDnew
np>). Where 

pDnew
np is the coarser-granularity parameter 

ADDM(TSRC, fi(Mi)) = TRES

Conditions Mi MFs   fi(Mi) MS

Output TRES=(SRES, LSRC, CSRC, RSRC) where: SRES=(FS, {f1(M1),…, fx(Mx), fi(Mi)}). 
DELM(TSRC, fi(Mi)) = TRES

Conditions fi(Mi) MS  MS >1. 
Output TRES=(SRES, LSRC, CSRC, RSRC) where: SRES=(FS, {f1(M1),…,fi-1(Mi-1), fi+1(Mi+1),…,fx(Mx)}). 

This operator may not remove the last displayed measure of the subject 
PUSH(TSRC, D, pi) = TRES

Conditions pi H  H HD  D StarCs(Fs). 
Output TRES=(SRES, LSRC, CSRC, RSRC) where: SRES=(FS, {f1(M1),…, fx(Mx), pi}) and pi H. 

PULL(TSRC, fi(Mi), D) = TRES

Conditions Mi MFs  fi(Mi) MS  D {DC,DL}. 
Output TRES=(SRES, LRES, CRES, RSRC) where: SRES=(FS, {f1(M1),…, fi-1(Mi-1,…, fx(Mx), pi}) and if 

D=DL then LRES=(DL, HL, <All, pLmax,…,pLmin,fi(Mi)>) and CRES=CSRC, if D=DC then 
LRES=LSRC and CRES=(DC, HC, <All, pCmax,…, pCmin, fi(Mi)>) 

NEST(TSRC, D, pi, Dnested, pnested) = TRES

Conditions D {DC,DL}  (D=DC, pi PC  D=DL, pi PL)  Dnested StarCs(FS)  pnested ADnested

Output TRES=(SSRC, LRES, CRES, RSRC) where: if D=DL then LRES=(DL, HL, <All, pLmax,…, pi, 
pnested,…, pLmin>) and CRES=CSRC; if D=DC then LRES=LSRC and CRES=(DC, HC, <All, 
pCmax,…, pi, pnested,…, pCmin>) 

SWITCH(TSRC, D, pi, vx, vy) = TRES

Conditions D {DC,DL}  pi PC  vx dom(pi)  vy dom(pi)  dom(pi)=<vmin,…vx,…vy,…, vmax>. 
Output  TRES=(SSRC, LSRC, CSRC, RSRC) where: dom(pi)=<vmi n,…v y,…v x,…, v max> 
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Table 1. (continued) 

AGGREGATE(TSRC, D, fi(pi)) = TRES

Conditions D {DC, DL}  (D=DC, pi PC  D=DL, pi PL)  dom(pi)=<vmin,…,vmax>, 
fi {SUM, AVG, MIN, MAX, COUNT…}. 

Output TRES=(SSRC, LRES, CRES, RSRC) where: If D=DL then in LRES, dom(pi) changes in PL: 
dom(pi)=<vmin, fi(vmin),…,vmax, fi(vmax)>. Each initial value vj of pi is completed by the 
aggregation value fi(vj) and CRES=CSRC; If D=DC then LRES=LSRC and in CRES, dom(pi) 
changes in PC: dom(pi)=<vmin, fi(vmin),…,vmax, fi(vmax)>. Each initial value vj of pi is com-
pleted by the aggregation value fi(vj) 

UNAGGREGATE(TSRC) = TRES

Conditions pi PL  pi PC | dom(pi)=<vmin, fi(vmin),…,vmax, fi(vmax)>. 
Output TRES=(SSRC, LRES, CRES, RSRC) where: pi PL and pi PC, dom(pi)=<vmin,…, vmax>, i.e. 

the previously aggregated values are removed from dom(pi) 
 

3.2   Example 

The decision-maker proceeds with the previous analysis (see TR1 in figure 2) by fo-
cussing his observations on the average import amounts in 2005 for electronic prod-
ucts. He also wishes to refine the analysis by visualizing amounts more precisely by 
country of origin of the suppliers while modifying the column axis to observe the 
measures by importing company. In order to do so, this complex query is specified by 
a combination of several basic operators from the algebra core: 1) DRILLDOWN on 
the SUPPLIER axis; 2) SELECT of 'Electronic' PRODUCTS during year 2005; 3) 
ADDM for the indicator: AVG(Amount); and 4) ROTATE dimensions: DATES and 
COMPANY. The complete algebraic expression (1) and the corresponding mTable 
(TR2) are displayed in the following figure. In the same way, the reverse operation 
combination is presented (2). 

 

Fig. 3. Example of algebraic manipulations: how to obtain TR2 from TR1 (1) and vice-versa (2) 

4   OLAP Graphic Language 

This section presents an incremental graphic language, which is complete with regard 
to the algebra core and operating directly on the conceptual elements of the constella-
tion model to stay closer to decision-makers view. As core operators may be com-
bined together, algebraic queries may end up being very complex. The graphic  
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language eases such expressions by providing some simple manipulations hiding this 
complexity to the user. 

4.1   Principles 

We have developed a tool composed of two interfaces. The first allows the display of 
a conceptual graph representing the constellation. The second is the visual representa-
tion of the mTable. Both are displayed in figure 1. The user specifies the operations 
using drag and drop actions or contextual menus. Moreover the mTable supports 
incremental On-Line Analytical Processing; e.g., the mTable components may be 
removed, replaced and new components may be added. The mTable display adapts 
itself after each manipulation. 

Using drag and drop, the user may select a graphic icon representing a multidimen-
sional element displayed in the graph, drag it onto the mTable and then drop it in one 
of the mTable zones (see Figure 4-left), thus directly specifying the resulting mTable. 
The mTable builds itself incrementally as the elements are dropped into position. In 
order to ensure consistency during multidimensional OLAP analyses, the user is 
guided throughout the process: incompatible operations with the ongoing analysis are 
deactivated, i.e. operations that do not meet conditions. This forbids the user to create 
erroneous analyses. In the same way, the user may also “move” elements by dragging 
them from the mTable and dropping them into another zone of the same mTable. 

 

  

Fig. 4. mTable drop zones (left) and a contextual menu called on the dimension DATES (right) 

Alternatively, the user may use contextual menus called upon a multidimensional 
element either displayed in the constellation graph or in the mTable. For example, in 
Figure 4-right the user designates the DATES dimension to be displayed in columns. 

In some cases, in order to ensure the proper execution of the operation, the system 
might ask the user with dialog boxes complementary information that may not be 
provided by the graphic operation’s context (designated by ‘?’ in formal specifica-
tions). Formally, each operation takes as input a component of the multidimensional 
graph: a fact F, a measure Mi, a dimension D, a hierarchy H or a parameter pi. 

4.2   Graphic Definition of a mTable 

An mTable is defined once the three major elements have been specified, i.e. in TRES 
(SRES≠∅ ∧ LRES≠∅ ∧ CRES≠∅). Three of the display-oriented operations allow  
the specification of the elements of the DISPLAY instruction: DIS_SUBJ to select the 
subject: FS and MS and DIS_COL (respectively DIS_LN) for the definition of the  
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Table 2. Graphic specification of the DISPLAY operator 

Source element of the 
action (and conditions) Algebraic equivalent 

Subject specification : DIS_SUBJ(E) 
E=F | F FCs DISPLAY(NCs, FS, MS, DL, HL, DC, HC) with FS=F and 

MS={f1?(M1),…,fw?(Mw)})
E=Mi | Mi MF  F FCs DISPLAY(NCs, FS, MS, DL, HL, DC, HC) with FS=F, MS={fi?(Mi)}

Column specification: DIS_COL(E) 
E=D |  H HD  D DCs DISPLAY(NCs, FS, MS, DL, HL, DC, HC) with DC=D, HC=H?
E=H | H HD  D DCs DISPLAY(NCs, FS, MS, DL, HL, DC, HC) with DC=D, HC=H 
E=pi | pi H  H HD

D DCs
DRILLDOWN(ROLLUP(DISPLAY(NCs, FS, MS, DL, HL, DC, HC), DC, 
All), DC, pi) with DC=D, HC=H?

Line specification: DIS_LN(E), same as lines but specifies DL and HL 
The following constraints must be verified: DC StarCs(FS)  DL StarCs(FS).
? = complementary information that might be necessary.  

column axis: DC and HC (resp. the line axis: DL and HL). The mTable is built incre-
mentally as the user specifies the different elements. Formal specifications are pre-
sented in the following table. 

4.3   Graphic Manipulation of a mTable 

Once the mTable is defined it switches to alteration mode and all other operations are 
available. A total of twelve graphic operations split into three operation categories are 
available: display-oriented operations, mTable modification oprations and drilling 
operations. 

The three previous operations (DIS_SUBJ, DIS_COL and DIS_LN) no longer 
specify a DISPLAY instruction. Instead they now allow the designation of elements 
that are to replace previously displayed ones in the mTable. DIS_SUBJ, now allows 
to replace the previous fact; to add measures (ADDM) and to display a parameter as a 
measure (PUSH). DIS_COL (respectively DIS_LN) replaces the current elements 
displayed in columns (resp. lines) with the newly specified one. With these two in-
structions, the user may also ask to display a measure as a parameter in columns or in 
lines (PULL). In addition to these instructions, the system also provides three others 
(INS_LN, INS_COL and DEL). INS_COL (resp. INS_LN) allow to insert an element 
in columns (resp. in lines) enabling nesting (NEST) and to drilling downwards 
(DRILLDOWN). Finally the deletion operation (DEL) is a very handy operation 
allowing to remove a displayed component from the mTable. This operation replaces 
complex algebraic expressions. These six operations are the contextual menu equiva-
lent of most of the drag and drop actions. 

The operations that modify the mTable display structure consist in four operations, 
identical to their algebraic equivalent (SELECT, SWITCH, AGGREGATE and 
UNAGGREGATE). Apart from AGGREGATE, the other operations may also be 
expressed using drag and drop. Table 3 presents the equivalence between graphical 
operation names and drag and drop actions. 



308 F. Ravat et al. 

Table 3. Correspondance between graphic operations and drag and drop actions 

Graphic operation Drag and drop action 
DIS_SUBJ drop an element into factual header 
DIS_COL drop an element into column dimensional header 
DIS_LN drop an element into line dimensional header 
INS_COL drop an element into column parameter header(1) 
INS_LN drop an element into line parameter header(1) 
DEL drag an element outside the mTable  
SELECT drag an element into the restriction zone 
SWITCH select a parameter value and drop it on another value of 

the same parameter 
UNAGGREGATE drag an aggregated parameter value outside the mTable 
(1)= if the instruction requires it, the position where the element is dropped within 
the header is used as complementary information. 

Finally as drilling operations are the heart of multidimensional OLAP analyses, the 
graphic language has two specific operations (ROLLUP and DRILLDOWN), identi-
cal to their algebraic equivalent although part of these operations may be done by the 
use of the display-oriented operations. 

Formal specifications are available in appendix. Unfortunately, due to lack of 
space, we invite the reader to consult [25] for the complete specification of the 
graphic language. 

4.4   Example 

In this section we show the same example as in section 3.2. The analyst wishes to 
create the mTable TR1 then manipulate it in order to obtain TR2 (see figure 2). First the 
analyst executes three operations to create TR1: 1) drag the icon representing the 
measure Amount and dropping it in the factual header and then selecting SUM as 
desired aggregation function; 2) drag the dimension Dates and dropping it in the col-
umn dimensional header; and 3) drag the dimension Suppliers and dropping it in the 
line dimensional header and select HGEO as the hierarchy to be used (see figure 3a). 
Notice that instead of this last action, the user may drag the parameter Continent, thus 
avoiding specifying the hierarchy. In the figure, one may find the formal specifica-
tions and alternative actions. These actions may be expressed through contextual 
menus or drag and drop actions. 

The analyst then modifies TR1 with five operations to obtain TR2: 4) drag the pa-
rameter Country into the right part of the line parameter header (dragging it in the 
center would replace the previously displayed parameter); 5) (resp. 6) drag the pa-
rameter Class (resp. Year) onto the restriction zone and specify =’Electronic’ (resp. 
=2005); 7) drag the measure Amount into the factual header and select the aggrega-
tion function AVG (Average); and 8) drag the parameter Region into the column di-
mensional header (see figure 3b). After each graphic operation, the mTable updates 
itself, thus the decision-maker may stop or decide to change his analysis after each 
new operation. 

In the following figure blue zones (light grey) underneath each arrow are displayed 
by the mTable according to the context of the action. This indicates to the user where 
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Fig. 5. (a) Drag and drop actions to build TR1; (b) successive actions to generate TR2 from TR1 

the dropped element will go, thus, for example, if it will be inserted within already 
displayed elements (action 4 in figure 3b) or if it will replace one or all a set of dis-
played elements (action 8 in figure 3b). 

Manipulations with drag and drop actions and contextual menus are complete with 
regard to the algebraic core. Due to lack of space, we invite the reader to consult [25] 
for more details. 

5   Conclusion 

The aim of this paper is to define a user-oriented multidimensional OLAP analysis 
environment. In order to do so we have defined a conceptual model modelling multi-
dimensional elements with the concepts of fact, dimension and hierarchy and repre-
senting them through a constellation. Based on this model, we defined an OLAP 
query algebra, formally specifying operations executed by decision-makers. The alge-
bra is composed of a core of operators that may be combined to express complex 
analysis queries. As such a language is inappropriate for users, we defined a graphical 
query language based on this algebra. This language allows decision makers to ex-
press multidimensional OLAP analysis queries and it is complete with regard to the 
algebraic core. 
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Compared to actual solutions, our proposition has the advantages of providing: 1) a 
global view of the analysis data (with the constellation graph); 2) manipulation of 
high-level concepts (direct manipulation of the conceptual elements); 3) analysis 
correlations (analysing different facts with common dimensions); 4) analysis coher-
ence during manipulations (usage of hierarchies within the mTable); and if necessary 
5) as much flexibility as actual solutions, i.e. disregarding analysis coherence (usage 
of the NEST operator), but warning the decision-maker of incoherence risks. As in 
[20], we argue that the use of conceptual representations eases query specifications 
for decision-makers. Moreover, the graphical language must be as expressive and as 
robust as complex multidimensional algebraic query languages. 

The algebraic and graphic languages have been validated by their implementation 
in a prototype (figures in this paper are screen captures). The prototype is based on an 
implementation of the multidimensional concepts in a ROLAP environment with the 
DBMS Oracle 10g. The client is a java application composed of over a hundred 
classes and other components such as JGraph and Javacc. 

As the majority of industrial implementations are relational, for a future work, we 
intend to complete this proposition by the specification of a transformation process, 
mapping multidimensional operations into an optimal combination of relational  
operators. 
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A   Appendix 

This section provides tables with the formal specifications of the graphic operations. 
Each operation takes as input a component of the multidimensional graph: E (F, Mi, 
D, H, pi) or a specific element of the mTable: X. They may also require complemen-
tary information notified by ‘?’. Only column operation specifications are specified 
(line specification are identical. 

Table 4. Formal specification of the display-oriented graphic operations 

Source element of the action (and 
conditions) 

Algebraic equivalent 

Operation for displaying as subject: DIS_SUBJ(E) 
E=FS History(1) (TSRC, DL, History(TSRC, DC, DISPLAY(NCS, FS, 

{f1(M1),…,fw(Mw)}, DL, HL, DC, HC))), i [1..w], Mi MFS

E=Fnew|Fnew FS DC StarCs(Fnew) 
DL StarCs(Fnew) 

History(1)(TSRC, DL, History(TSRC, DC, DISPLAY(NCS, Fnew, 
{f1(M1),…,fw(Mw)}, DL, HL, DC, HC))), i [1..w], Mi MFnew

E=Mi | Mi MS ADDM(TSRC, fi?(Mi)) with fi(Mi) MS

E=Mi | Mi MS  Mi MFS ADDM(TSRC, fi?(Mi)) 
E=Mi | Mi MFS  Mi MFnew  
DC StarCs(Fnew) DL StarCs(Fnew) 

History(1)(TSRC, DL, History(TSRC, DC, DISPLAY(NCS, Fnew, 
{fi?(Mi)}, DL, HL, DC, HC))) 

E=pi | pi ADnew Dnew StarCs(FS) PUSH(TSRC, Dnew, pi) 
Operation for displaying in columns: DIS_COL(E) (DIS_LN for lines) 

E=Mi | Mi MFS PULL(TSRC, fi?(Mi), DC) 
E=DC ROLLUP(TSRC, DC, pDC

np), the display of HC is reset on the 
most general parameter: pCmin= pCmax=pDC

np

E=Dnew|Dnew DC Dnew StarCs(FS) ROTATE(TSRC, DC, Dnew, H?), with H HDnew

E=HC ROLLUP(TSRC, DC, pDC
np), the display of HC is reset on the 

most general parameter: pCmin= pCmax=pDC
np

E=Hnew | Hnew HC  Hnew HDC ROTATE(TSRC, DC, DC, Hnew) 
HDC >1, i.e.  Hnew HDC | Hnew HC 

E=Hnew |Hnew HDC Hnew HDnew  
Dnew StarCs(FS) 

ROTATE(TSRC, DC, Dnew, Hnew) 

E=pi | pi PC  (pi PC pi HC) DRILLDOWN(ROLLUP(TSRC,DC,All),DC, pi) 
E=pi | pi HC pi Hnew H HDC DRILLDOWN(ROLLUP(ROTATE(TSRC, DC, DC, Hnew), 

DC,All),DC, pi) 
HDC >1, i.e.  Hnew HDC | Hnew HC 

E=pi | pi ADC  pi ADnew  
Dnew StarCs(FS) 

DRILLDOWN(ROLLUP(ROTATE(TSRC, DC, Dnew ,Hnew), 
Dnew,All), Dnew, pi), with Hnew HDnew

Operation for inserting in columns: INS_COL(E) (INS_LN for lines) 
E=Mi | Mi MFS PULL(TSRC, fi?(Mi), DC) 
E=DC DRILLDOWN(…(DRILLDOWN(ROLLUP(TSRC, DC, pDC

np), 
DC, pDC

np-1 )…), DC, pDC
1) all parameters of HC are displayed: 

PC = ParamHC

E=Dnew | Dnew DC Dnew StarCs(FS) ROTATE(TSRC, DC, Dnew, Hnew?), with Hnew HDnew

E=HC DRILLDOWN(…(DRILLDOWN(ROLLUP(TSRC, DC, pDC
np), 

DC, pDC
np-1 )…), DC, pDC

1) all parameters of HC are displayed: 
PC = ParamHC

E=pi | pi PC  PC {All, pi} NEST(DRILLDOWN(…(DRILLDOWN(ROLLUP(TSRC, DC, 
pi+1), DC, pi-1)…), DC, pCmin), DC, pj?, DC, pi), with {pi+1, pi, pi-

1,…,pCmin} PC  
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Table 4. (continued) 

Delete operation: DEL(E) ou DEL(X) (3)

E=FS History(1)(TSRC, DL, History(TSRC, DC, DISPLAY(NCS, Fnew?, 
{f1(M1),…, fw(Mw)}, DL, HL, DC, HC))), i [1..w] Mi MFnew 
and DC StarCs(Fnew) and DL StarCs(Fnew) 

E=fi(Mi) | fi(Mi) MS DELM(TSRC, fi(Mi)) 
E=DC ROTATE(TSRC, DC, Dnew?, H?), Dnew StarCs(FS), H HDnew

E=HC ditto above: DEL(DC) 
E=pi | pi PC  PC <All, pi> DRILLDOWN(…(DRILLDOWN(ROLLUP(TSRC, DC, pi+1), 

DC, pi-1)…), DC, pCmin), {pi+1, pi, pi-1,…,pCmin} PC 
X=R (zone de restriction) (3) SELECT(TSRC, FS.All='all'  ( ''.

)(
allAllDi

FStarD SCs
i

)) 

(1) = History(Told, obj, Tnew)=TR is producing TR by applying on Tnew the history of the operations that 
were applied in Told on obj (dimension or fact). 
(2) = pi not displayed (pi PC  pi HC), pCi+1 (respectively pCi-1) is the attribute immediately inferior 
(resp. superior) to pi in PC: levelHC(pCi-1)=levelHC(pi)-1 (resp. levelHC(pCi+1) =levelHC(pi)+1); 
(3) = This operation is done on the restriction zone (R) of the mTable; 

E=pi | pi PC  pi HC DRILLDOWN(TSRC, DC, pi), if levelHC(pi)<levelHC(pCmin) or 
DRILLDOWN(…(DRILLDOWN(ROLLUP(TSRC, DC, pi), DC, 
pi+1)…), DC, pCmin), if levelHC(pi)>levelHC(pCmin) (2)

E=pi | pi HC  pi H  H HDC NEST(TSRC, DC, pj?, DC, pi), with pj PC 
E=pi | pi ADC  pi ADnew  
Dnew StarCs(FS) 

NEST(TSRC, DC, pj?, Dnew, pi), with pj PC 

 

Table 5. Formal specification of the algebra-oriented graphic operations 

Source element of the action (and condi-
tions) 

Algebraic equivalent 

Data restriction: SELECT(E) 
E=M | M∈MFS SELECT(pred?), pred is a predicate on dom(Mi) 
E=pi | pi∈AD, D∈StarCs(FS) SELECT(pred?), pred is a predicate on dom(pi) 

Line/Column value inversion: SWITCH(X) (1) 
X=valx | valx∈dom(pi), pi∈PC SWITCH(TSRC, DC, pi, valx, valy?), with valy∈dom(pi) 

Data aggregation: AGGREGATE(E) and UNAGGREGATE(E) 
E=pi | pi∈PC, dom(pi)=<v1,...,vx> AGGREGATE(TSRC, DC, fi?(pi)) 
E=pi|pi∈PC, dom(pi)=<v1,fi(v1),…,vx, fi(vx)> UNAGGREGATE(TSRC) 

Table 6. Formal specification of the graphic drilling operations 

Source element of the action (and conditions) Algebraic equivalent 
Drilling downwards: DRILLDOWN(E) 

E=DC | ∃pi∈HC | levelHC(pi)=levelHC(pCmin)-1 DRILLDOWN(TSRC, DC, pCmin-1)(1) 
E=HC | ∃pi∈HC | levelHC(pi)=levelHC(pCmin)-1 DRILLDOWN(TSRC, DC, pCmin-1)(1) 
E=pi | levelHC(pi)>levelHC(pCmin) DRILLDOWN(TSRC, DC, pi) 

Drilling upwards: ROLLUP(E)  
E=DC | ∃pi∈HC | levelHC(pi)=levelHC(pCmin)+1 ROLLUP(TSRC, DC, pCmin+1)(1) 
E=HC | ∃pi∈HC | levelHC(pi)=levelHC(pCmin)+1 ROLLUP(TSRC, DC, pCmin+1)(1) 
E=pi | levelHC(pi)<levelHC(pCmin) ROLLUP(TSRC, DC, pi) 
(1) pCmin-1 (resp. pCmin+1) is the parameter immediately inferior (resp. superior) to pCmin in the list ParamHC 
(i.e. levelHC(pCmin-1)+1=levelHC(pCmin)=levelHC(pCmin+1)-1). 
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Abstract. Although the native (tree-like) storage of XML data becomes more
and more important there will be an enduring demand to manage XML data in its
textual representation, for instance in relational structures or file systems. XML
data has to be wellformed by definition and additionally, in many cases, it has to
be valid according to a given XML schema. Because the XML column types are
often derived from text types (e.g. CLOBs) guaranteeing well-formedness as well
as validity is not trivial. And even worse, for frequently modified data it is usually
too expensive to re-validate the whole XML data after each update – but waiving
re-validation may lead to inconsistencies and malfunctions of applications. In this
paper we present a schema-aware pushdown automaton (i.e. a stack machine) that
validates an XML string/stream. Using an element/state-index, the pushdown au-
tomaton is able to re-validate local modifications of the data while guaranteeing
overall validity. Update operations (e.g. SQLXML, XQuery updates) are vali-
dated before executing them.

1 Introduction and Motivation

The storage of XML documents and data in database management systems is a daily
task, although no single storage technology has prevailed. Depending on the application
constraints one may choose a native storage system (e.g. [10,27]) or (object-) relational
systems that were enabled for XML. A common approach is to shred the XML data and
map it to corresponding tables. A not less popular approach is to store the XML data in
a textual or binary representation in a special column type or in the file system.

Here, the original structure of the XML data is preserved. Therefore, XML query lan-
guages like XPath and XQuery and XML processors like XSLT engines can be applied
in a more natural way compared to the shredding approach that needs to reconstruct the
XML data or to rewrite the instructions to SQL. In addition, this representation as a se-
quence of tags is the natural choice when transmitting XML over networks. Commercial
database management systems like the Oracle Database 10g, the Microsoft SQL Server,
and IBM DB2 offer these two storing approaches although native storage of XML data
in relational databases has been propagated recently in [4] and in [22]. The differences
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and advantages of different storage techniques have been discussed extensively. They
are not in the focus of this paper. We concentrate on the problem of efficient and partial
validation of XML strings stored in a specialized string column type, in the file systems,
or as a stream in network communication.

In many applications the XML data refers to an XML Schema [34] that defines the
structure and the used data types. Whenever a new row with XML content is added into
a table it is validated by a parser that processes the whole XML data. Modifications of
the data may violate the XML Schema; this has to be avoided by re-validating the data.
In spite of the fact that the data is most often modified locally (e.g. adding an author
child to a book element) the validating parser processes the whole data. This raises high
computation costs, especially when storing large pieces of XML data. In consequence,
the validation is not performed after each modification leading to possibly inconsistent
data that cannot be corrected.

In this paper we present a novel approach for validating XML data in its textual
representation. Our approach

– is time efficient, since the validating automaton is schema-aware and created only
once. The validation time is linear in the size of the XML data. Schema violations
are detected immediately because no transition is found in our parser automaton for
the next (invalid) tag.

– is memory efficient: unlike DOM-based approaches we do not load the full XML
data into main memory. The only memory is a stack that may grow linearly in the
depth of the XML data.

– supports recursive schemes (see Section 2).
– allows the local and incremental validation of the XML string. Using a combined

element/state-index we enable direct access to the states in a Push-Down Automa-
ton (PDA) and to elements in the XML data. This is particularly advantageous for
XML data that is frequently updated, since only this part has to be revalidated while
guaranteeing global validity. Update operations are validated before executing them.

– can be used for various purposes where XML data is represented as a string or a
stream and needs to be wellformed and valid. Examples include text-based database
columns, file systems, and network communications (e.g. SOAP messages).

The remainder of this paper is organized as follows: we start with an overview on au-
tomata used for validation of XML data in Section 2. Section 3 introduces and for-
malizes the validation problem for streaming XML data. Our pushdown automaton is
extended with an element/state-index in Section 4. We present experimental results in
Section 5 and finish this paper with a conclusion in Section 6.

2 Related Work

Related work in the context of XML validation and automata theory is manifold. [28]
deals with different classes of complexity for recursive and non-recursive DTDs. As real
world’s XML Schemes may be recursive (e.g. to model dynamic hierarchies), we ignore
non-recursive (less expressive) approaches in this paper. The work [29] introduces the
difference of validation and strong validation for streaming XML data. Strong valida-
tion includes the test of well-formedness whereas non-strong validation assumes that
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the data is well-formed and fails when this is not the case. Because XML updates are
usually given in a textual representation (e.g. SQLXML, XQuery updates) checking
well-formedness is a must and implies that the automaton uses a memory (e.g. a stack)
to match opening tags and closing tags. Therefore, automata without any memory can-
not check well-formedness of XML data represented as a string. Additionally, even if
the XML data is well-formed a stack may be required to check the validity of some
schemes (see Example 1 in Section 3).

The idea of a pushdown automaton for strong validation is presented in [29], but in
contrast to our approach, the whole XML data has to be validated leading to signifi-
cant performance degradation. Additionally, [29] does not present an implementation
or algorithm.

[8] presents a one-counter automaton for strong validation of XML documents. As
a single counter variable is used instead of a stack, only a subset of DTDs can be vali-
dated, namely the so called (restricted) one-counter languages. An example for a lan-
guage (schema) that cannot be validated is anbmbman where a, b are opening tags and
a, b are the corresponding closing tags. Using a stack it is possible to count and match
the two different tags, with a single variable it is impossible. Additionally, [8] supports
only global validation.

A multitude of approaches for partial validation of XML data after updates have been
presented (e.g. [2,3,5,6,20,21,25]). All these approaches assume that the XML data
accords to the DOM model, i.e. it is represented as a tree of nodes. This representation is
inherently well-formed and enables the direct and efficient navigation within the nodes.
For instance, it is possible to access all children of a given node. The DOM model works
well for native XML database management systems where the tree-like representation
is preserved. In contrast, we focus on the string representation of XML data as it is used
in XML column types, message systems (e.g. SOAP) or SQLXML update commands.
In those systems the XML data is represented as a sequence of tags and values. The
sequence can be seen as the result of a preorder traversal of the corresponding XML
tree.

[12] presents a schema validation technique without any automata. In this approach
the XML data is represented as a set of rows in one dedicated XPath-aware table. There-
fore, it is closer to the XML shredding approach and the results are hardly transferable
to the XML column type.

Our previous works [13,14,15,16,17] deal with (autonomous) indexing and update
issues in native XML storage systems representing XML data using the DOM-model.

The pushdown automaton presented in this paper is also used to convert an XML
stream into a binary representation in order to compress it. This is achieved by adding
binary symbols to all transitions in the automaton. Details on how we compress XML
data, in particular SOAP messages, by using a pushdown automaton can be found
in [32].

3 The XML Validation Problem

We assume that the reader is familiar with basic terms of formal languages and automata
theory like regular grammars and finite state machines as well as context-free grammars
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<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:element name="a" type="A"/>
<xsd:complexType name="A">
<xsd:choice>
<xsd:element name="b" minOccurs="0">
<xsd:complexType>
<xsd:choice>
<xsd:element ref="a" minOccurs="2" maxOccurs="2"/>
<xsd:element name="c" type="xsd:int"/>

</xsd:choice>
</xsd:complexType>

</xsd:element>
</xsd:choice>

</xsd:complexType>
</xsd:schema>

Fig. 1. Recursive XML Schema description

and pushdown automata (finite state machines with a stack). We refer the reader to [18]
for fundamentals in automata theory and formal languages. We motivate the complexity
of the XML Schema validation problem by a simple informal example:

The XML Schema document presented in Figure 1 consists of three different ele-
ments a, b and c. As a maps to b and b maps to a, this is a recursive schema allow-
ing an arbitrary depth of the XML data. We present a more compact representation of
this grammar in Figure 2. As one can see the a element under b appears always twice
(minoccurs = maxoccurs = 2). Therefore, we have a left a-element and a right
a-element that belong together. When reading the XML string an automaton has to re-
member whether an a-element is the left one (right a is mandatory) or the right one
(no more a-elements allowed). As the XML data has an arbitrary depth, the automa-
ton has to remember arbitrary many of these pairs — this is only possible if we use
an additional memory like a stack. Even if we assume well-formedness of the XML
data to be validated, we cannot support this XML Schema (or the corresponding DTD)
without a stack. The approaches for XML stream/string validation that rely only on a
finite automaton without further memory call this kind of schema a not recognizable
schema [8,29]. DOM-tree based validators relying on tree-automata do not need a stack
because they can check directly whether a b-element has two a children or not.

3.1 Formalization

We represent an XML data instance (also known as XML document) as a sequence of
opening and closing tags with their content. We formalize XML and XML Schema as
follows:

Definition 1 (XML data instance). An XML data instance x ∈ Σ∗ is a sequence
of arbitrary many symbols σ ∈ Σ with Σ = Σt ∪ Σc. Σt is the tag-alphabet whereas
Σc = {a..z, A..Z, 1..9} represents the alphabet for the textual content 1. Σ∗

c denotes an
arbitrary sequence of symbols of Σc including the empty sequence. We identify closing
tags with a line: a is the closing tag of a. Opening tags are summarized in Σ+

t whereas

1 One could use the Unicode symbols for Σc, as well.
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closing tags are in Σ−
t . A tag corresponds to an element name; given a tag t one may

get its name with the function name(t).

In our example it holds that Σ+
t = {a, b, c}, Σ−

t = {a, b, c}, and Σt = Σ+
t ∪Σ−

t .
Please be aware that this generic definition allows the formulation of non-well-

formed and invalid XML data.
We formalize XML Schema as a Regular Tree Grammar (RTG) G. [24] shows that

and how an XML Schema can be mapped to a RTG. A regular tree grammar G =
(N, T, P, S) is a 4-tuple consisting of a set of non-terminal symbols N , a set of terminal
symbols T , a set of production rules P and a set of start symbols S ⊆ N . The language
defined by G is denoted with L(G).

All XML data types result in non-terminal symbols (written in capital letters or pre-
fixed with xsd:). All possible element names result in terminal symbols (small letters).
The set of start symbols S ⊆ N contains all non-terminals belonging to elements that
are declared on the top-level of the XML Schema document.

The production rules P reflect the structure of valid documents. The lefthand side of
a rule p ∈ P is a non-terminal symbol defining an element type. It can be determined
by the function type(p) : P → N .

The righthand side consists of an element name (a terminal symbol ∈ T ) that corre-
sponds to the type. It can be accessed using the function name(p) : P → T

The element name is followed by a regular expression r which describes the content
model of this element, i.e. types of child elements. Each regular expression element
maps to types in N , simple XML Schema types (e.g. xsd:int), or to nothing (ε).

For our example, we depict the conversion result in Figure 2. See [24] for details
about the conversion algorithm.

G = ({A, B, C, xsd:int}, {a, b, c}, P, {A}) with

P = {A → a (B|ε),

B → b (AA|C),

C → c (xsd:int) }

Fig. 2. Regular tree grammar of the schema in Figure 1

The rules in our example have the following meaning: The A element type is repre-
sented by the element name a and contains one B-type or (|) or nothing (ε), whereas
B contains either two A types or one C type containing an integer value. Hence, G is
equivalent to the Schema in Figure 1.

The content models of G can be transferred to automata theory:

Lemma 1. For each regular expression in a production rule p ∈ P there exists a finite
state machine accepting the content model of type(p). The set of all finite state machines
is denoted by FSM. Given a p ∈ P one gets its corresponding FSM with the function
fsm(p) : P → FSM.
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A:
q0 q1B

B:
r0

r1A
r2C

A C:
s0 s1xsd:int

Fig. 3. Set of finite state machines generated from the regular tree grammar of Figure 2

We give no proof for this lemma as it is standard automata theory. Please see [18]
describing how to transform regular expressions into FSMs. The corresponding state
machines for our example are presented in Figure 3.

3.2 Construction of the XML Schema-Aware Pushdown Automaton

XML is a derivative of the Dyck-languages (parenthesis languages) that can be de-
scribed by context-free grammars [7]. Therefore, the pushdown automaton is the ap-
propriate model for string processing of XML data. We present the construction of the
pushdown automaton (PDA) in the Appendix (Section A). The pushdown automaton
as presented here is a slight modification of the automaton as presented in [32] in the
context of compression techniques for SOAP messages.

Our PDA starts with the special symbol Z as the only stack content. The PDA accepts
a document if the remaining input sequence and the stack are empty.

The main idea of the PDA is to check the content models of the element types of the
regular tree grammar by simulating the nested execution of the FSMs. For this reason,
each opening and closing tag is represented by one dedicated state.

The stack’s content is used to memorize the path to the current tag: States repre-
senting the current position in the content model are pushed on the stack while reading
the XML data. The transitions capture valid tag sequences, i.e. the restrictions of the
content models. The PDA constructed for our sample grammar is presented in Figure 4.

The first symbol of a transition’s label represents a tag t ∈ Σt to be read from the
XML input x, the second symbol represents the state of the content model to be popped
from the stack (please see Section A for details), and the last symbol(s) are the states to
be pushed on the stack when using this transition. For instance, if we read an opening
tag a the symbol qo is pushed on the stack. Because a may have an empty content model
we are able to read the closing tag a afterwards. The transition checks if the previous
tag was a by popping q0 from the stack.

Please note that no special treatment for terminating the execution of the automa-
ton is needed because the automaton accepts a document if both the remaining input
sequence and the stack content are empty. For a - documents this is the case when the
corresponding CloseA state is reached.

4 Efficiently Validating Updates

When processing an XML input string the computational complexity is linear (O(n))
with respect to the string’s length n. Usually O(n) complexity is not appropriate if the
size of the XML data exceeds a certain degree. In this section we describe how we
adapt our approach to incrementally validate XML strings before performing an update
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Fig. 4. PDA constructed from the RTG of Figure 2

operation. Incremental validation means that only the modified part is validated in its
local context. In this way the complexity becomes linear in the size of the modification.

We assume that an update operation is either an insertion of a new element (with its
children) or the deletion of an element (including all its children). Formally, an update
operation o is represented as a triple o = (path, type, content), where path is an XPath
expression selecting one to many context elements in the XML data, type indicates
what kind of update it is, and content is the textual representation of a new element
to be inserted. An example for such an update operation might be the following insert
statement – formulated in XQuery Update [33,35]:

do insert
<category>Harddisks</category>
into /site/categories

Here, it holds that path=/site/categories, type=append and
content=<category>Harddisks</category>.

In order to incrementally validate the XML data we do not read it from the beginning
but need direct access to an offset position. For this reason, we use an index whose en-
tries reference open-tags in the XML string. This is technically done by the use of char-
acter offset values. The keys of the index’s entries are simple path expressions. Simple
path expressions contain the child-axis and element names. The Strong DataGuide [11]
is an example for such an index structure with the characteristic that all possible sim-
ple path expressions are covered. In our work we relax this characteristic and assume
that at least some path expressions are indexed without regarding how to select them.
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(We have discussed the problem of finding suitable XML indexes for a given application
in [14,15]).

The main idea of our approach is to extend the index entries in such a way that
they reference not only into the XML string but also to the corresponding states in the
PDA while providing the top element of the stack at the same time. According to the
construction of the PDA, the top element denotes the initial state of the corresponding
finite state machine. The idea is to keep ’snapshots’ of the PDA execution in the index.
For this reason we define the index as follows:

Definition 2 (Element/State-Index). The element/state-index consists of a set of en-
tries E . Each entry e ∈ E is a 2-tuple e = (key, ref) where key is a simple path
expression and ref = (offsetlist, state, stackelement) a reference: offsetlist is a list of
character distances each of which is a number indicating the character distance from
the root; state ∈ Q is the corresponding state in the PDA, and stackelement ∈ Γ is the
top element of the corresponding stack content. Q denotes the set of all states and Γ is
the set of all stack symbols. We describe details in the Appendix.

We need only the top stack element denoting the initial state of the corresponding finite
state machine because regular tree grammars are context free, i.e. we can analyze the
content of an element independently of the position of the element within the document.
For example, the behaviour of the PDA basically is the same if we analyze the first a-
element or the second a-element within a b-element. The stack content differs only in
parts that are irrelevant for analyzing the a-element.

An overview of an element/state-index is given in Figure 5. For example, if a b-
element with the path /a/b is updated, only the new b-element has to be checked as
follows: The PDA skips the root b-element and starts in state OpenB with r0 as the
only stack element. After successfully checking the new b-element, the PDA stops in
state CloseB with an empty stack.

The index is populated when inserting data into the XML column: The string rep-
resentation of the data is processed once by the PDA in order to check validity. While
processing the tag sequence we check if the current tag belongs to a simple path ex-
pression to be indexed or not. If this is the case we insert the current offset, state and
topmost stack symbol as a new entry into the element/state-index. An efficient retrieval
of entries is enabled when using a search structure like a B-tree or hashtable.

As the XML data is a hierarchy of elements, we illustrate it as a tree (triangle). The
trees inside the XML data represent subtrees (elements in elements). Please note that
the XML data is stored as a sequence of tags in the column and not as a tree of element
nodes like in native XML DBMS.

When performing an update operation o = (path, type, content) it is likely that its
path expression path is not covered by an entry in the index. However, if all elements
selected by path are descendants of an index element we can still use that index to
accelerate the validation process. Whether an indexed path expression can be used or
not is determined using the XPath containment algorithm of Miklau and Suciu [23].

It detects if elements selected by a path expression p are a subset of those selected
by p′. In our case p = path and p′ denotes a path expression of the index entries
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XML Data Index PDA

Root

/a/b

/a/b/a

The table shows the index for the automaton
given in Figure 4 and for the document
<a> <b> <a> </a> <a> </a> </b> </a>:

refkey
offsetlist state stackelement

Root 1 Start Z
/a/b 4 Open B r0
/a/b/a 7, 14 Open A q0

Fig. 5. The element/state-index referencing XML data and PDA states

�p

Indexed element
Update

t , t , ......... ,t ,......,t ,.......,t ,....t ,........,1 2 i o o i 1t

�p

Indexed element

Update element o

Fig. 6. Finding the update position in the XML data using the index

(the keys). If p ⊆ p′ we may use that entry. Of course, in case of p ⊂ p′, i.e. p �= p′ we
have to check for each element of the offset list whether the corresponding data up to
this position corresponds to p. If there is no index entry with p ⊆ p′, we must process
the XML data from the root resulting in a conventional validation.

In the following we assume that a suitable index entry is found. Figure 6 illustrates
the situation: The index refers to an open-tag element ti in the XML data x. The corre-
sponding closing tag element ti can be found easily because x is wellformed.
�p is the relative simple path expression starting from the indexed element ti and

leads to the element to that is selected by the update operation.�p can be calculated by
applying XPath difference functions (for details see [13]) and consists of a sequence of
navigational steps to child elements.

The idea of our approach is to use the PDA for validation and to pretend that the
modifying operation o has already been executed. The validation takes place from ti to
ti. The offset in x to ti is fetched from the index; the PDA is initialized with the settings
belonging to that entry. When processing x using the PDA we follow the reference and
initialize the PDA and its stack. We now start the processing of x until we reach to.
We have reached the element selected by the update operation o if the next tag in x
corresponds to the last location step in�p. Before reading that tag to we memorize the
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current state of the PDA with its stack content. The next steps of our algorithm depend
on the type of the modification operation o:

– Delete: If o is a delete operation all tags in the sequence to, ....to are to be removed.
Again, the closing tag to can be identified because x is well-formed. We skip all
tags in that sequence and continue to read x using the PDA until we reach ti. If the
PDA could process this shortened input, then x would be still valid after performing
the deletion. The offsets in the index’ entries have to be updated because the update
may have changed the position of some tags. This is done by subtracting the length
of the deleted sequence from all offsets that are greater than the position of to.

– Append: The PDA reads the full sequence to, ....to and stops. The next tags are the
content of the update operation o. After reading them the PDA resumes to read from
x until reaching ti. If the PDA accepts that extended input, then x is still valid after
performing the append operation. Again, we have to update the offsets by adding
the length of the content to those offsets that are larger than the position of to.

– Insert: This case is very similar to the previous one with the difference that the
new element is not a sibling but a child. Therefore, the insertion takes place after
reading to, if the new element is the first child, or just before reading to, if it is the
last child. Analogously, the index offsets have to be adapted.

As this algorithm only reads the tags from ti to ti, we avoid a complexity of O(length
of the whole document). Instead, we achieve a complexity of O(length of the modified
part of the document). Our solution is also able to handle the <xsd:all> construct ef-
ficiently: The content model A & B & C is split up into all possible sequences: ABC
| ACB | BAC | BCA | CAB | CBA. On the one hand this solution obviously leads to
larger automata, on the other hand it always preserves a runtime complexity of O(length
of the changed part of the document). See [32] for the details.

Querying XML Data Using the Index. The element/state-index can also be used to
accelerate the path expressions when executing querying database operations. Although
it is not in the focus of this paper, we present the basic idea that is similar to the incre-
mental validation: the best index entry is determined referencing to positions in the
XML data; Δp is calculated and executed on these positions leading to the tags that are
selected by the query. We refer to [14,13] for the details.

5 Experiments

In order to demonstrate the benefits of our schema-aware pushdown automaton for vali-
dation we compare it with other approaches. We use the XMark [26] benchmark tool to
generate XML data of different sizes. The XMark data models an auction scenario. Its
schema consists of roughly 80 element types and allows the recursive nesting of some
elements without restricting the documents depth. Because the XMark schema is pro-
vided by a DTD, we convert it to an equivalent XML Schema using Sun’s Trang [30].

The experiments were performed on an Intel P4, 2.67 GHz with 1 GB RAM. The
construction of the PDA took 270 ms. It consists of 237 states and 627 transitions.
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Table 1. Time to validate the XMark sample data

PDA generation 100 KB 1 MB 10 MB 100 MB

XML Spy n/a 1000 ms 4200 ms 28000 ms n/a
JDOM Parser n/a 1010 ms 1322 ms 3890 ms 24690 ms
Sax Parser n/a 622 ms 1035 ms 2122 ms 14210 ms
Xenia global 270 ms 87 ms 370 ms 1061 ms 12648 ms
Xenia local 270 ms 22 ms 25 ms 25 ms 26 ms

We have created XML documents of different sizes and have compared the times
for validation with the two well-known parsers JDOM [19] and SAX [9], the XML
Editor XMLSpy [1] and our approach called Xenia. We summarize the results of our
experiments in Table 1.

The measured values are averaged over ten runs. The 100 MB document could not be
processed by the XMLSpy due to memory constraints. As one can see in the columns
for 100 KB and 10 MB, Xenia is significantly faster because the validating automaton is
already built whereas the other parsers have to read and process the schema information.
For larger XML data the measured times are comparable to the SAX parser. Both Xenia
and SAX do not need to keep the whole document in the memory because they operate
stream-oriented. The JDOM parser and XML Spy keep the whole XML data in memory.

The experiments for incremental validations after local updates are presented in the
last row of the table. The updated element has a size of 20 kB. As one can see, the time to
validate the update is almost constant and not dependent on the total size of the XML data.
This is because only the modified part (which is the same in all cases) has to be checked.
It does not make any difference whether we deal with an insert or a delete operation.

The time for constructing the PDA is given separately in the first column of Table 1
because in our approach the PDA has to be generated only once for each schema. The
same PDA is used for all updates of documents having the same schema.

6 Conclusion

We have seen that conventional parsers consume linear time when validating an XML
string/stream. Especially for larger data sets that are periodically updated the costs for
re-validation become prohibitively high. Waiving the validation may be inevitable but is
unwanted in most cases. In this paper, we introduce a schema-aware pushdown automa-
ton used for validation. Using an index structure captures snapshots of this automaton
while providing direct access into the XML data. Using this index, the costs for re-
validation are in the size of the update operation because only a small part of the XML
data is processed by the automaton. Additionally, the validation is performed before
updating the data, so that invalid data cannot be created. Experimental results show the
efficiency of our approach.

To the best of our knowledge our approach is the first one for partially validating
XML strings after local updates. This is a highly relevant topic for implementing effi-
cient non-native database management systems which use special XML column types
or for storing XML data in the file system.



Incremental Validation of String-Based XML Data 325

References

1. Altova. XMLSpy. URL: http://www.altova.com
2. Balmin, A., Papakonstantinou, Y., Vianu, V.: Incremental validation of XML documents.

ACM Trans. Database Syst. 29(4), 710–751 (2004)
3. Barbosa, D., Mendelzon, A.O., Libkin, L., Mignet, L., Arenas, M.: Efficient Incremental Val-

idation of XML Documents. In: ICDE ’04: Proceedings of the 20th International Conference
on Data Engineering, Washington, DC, USA, pp. 671–682. IEEE Computer Society Press,
Los Alamitos (2004)

4. Beyer, K., Cochrane, R., Josifovski, V., Kleewein, J., Lapis, G., Lohman, G., Lyle, B., Özcan,
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Definition 3 (Stack machine functions). The states of an FSM f ∈ FSM can be
determined by the function states(f). Accepting states can be retrieved with the func-
tion statesaccept(f), the initial state with the function stateinit(f). Given a state q ∈
states(f) the function out(q) returns all outgoing transitions of q and the function
in(q) returns all incoming transitions. Each transition t has a label corresponding to
an element type ∈ N that can be determined by the function type(t). The state to which
t maps can be retrieved by dest(t).

The crucial point now is that the FSMs focus on element-nodes (tree-model) whereas
our input is an XML string (sequence of symbols). We use a pushdown automaton
(PDA) that simulates the execution of the FSMs while processing XML data as a string.
This is done by pushing the reached opening states of the FSM onto the stack: The
stack represents the path to the current tag. The proof that for each DTD d there exists
a PDA accepting L(d) has been provided by Segoufin and Vianu ([29]). We now give a
detailed construction algorithm for XML Schema. However, we first take a closer look
at the tag sequence:

Lemma 2. Any XML string x consists of a sequence of tag-symbols ∈ Σt and their
values in Σ∗

c . For any arbitrary two consecutive symbols t1, t2 ∈ Σt there are five
different cases for a well-formed sequence x:

1. t1 ∈ Σ+
t is the first symbol in x (e.g. < root >) [root case]

2. t1 ∈ Σ+
t ∧ t2 ∈ Σ−

t ∧ name(t1) = name(t2)
. (e.g. < a >< /a >) [leaf case]

3. t1 ∈ Σ+
t ∧ t2 ∈ Σ+

t (e.g. < a >< b >) [child case]
4. t1 ∈ Σ−

t ∧ t2 ∈ Σ−
t (e.g. < /b >< /a >) [parent case]

5. t1 ∈ Σ−
t ∧ t2 ∈ Σ+

t (e.g. < /b >< a >) [sibling case]

For the sake of simplicity, we ignore all symbols of the textual content alphabet Σc.
As XML Schema types can be defined by a regular expression2 it is obvious that any
sequence σ1, ...σn ∈ Σ∗

c can be checked by an automaton whether or not it corresponds
to a given XML Schema type.

We generate the pushdown automaton (PDA) accepting L(G) as follows:
Formally, a pushdown automaton K is a 6-tuple; K = (Q, Σ, Γ, Ψ, qstart, Z) where

Q is a set of states, Σ is the input alphabet, Γ is the stack alphabet, Ψ is a set of
transitions of the form (Q × Σ × Γ ) → (Q × Γ ∗), qstart ∈ Q is the initial state, and
Z ∈ Γ is the initial symbol of the stack.

The transition rules Ψ define what symbols in Σ and Γ have to be read in a state in Q
in order to move to the next state while writing onto the stack. The PDA accepts when
the input sequence has been completely read and the stack is empty.

Definition 4 (PDA accepting L(G)). The PDA has one dedicated initial state named
sstart. For each tag t ∈ Σt there is one corresponding state qt ∈ Q. The set of all
tag-states is denoted by QΣt . For each XML Schema type (e.g. xsd:int) there is one
dedicated state3. These type states are denoted by Qtype. Now we define Q = {qstart}∪

2 E.g. the regular expression (−|ε)(0|1|...|9)∗ defines the decimal type. See also [31].
3 The latter states represent sub-automata for checking the textual content.
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Algorithm 1. PDA Construction Algorithm
1: for all p ∈ P do
2: tag ← element(p);
3: fsm ← fsm(p);
4: si ← stateinit(fsm)
5: Sa ← statesaccept(fsm)

6: if type(p) ∈ S then
7: AddTransition: (sstart, tag+, z) → (state(tag+), [si, z]); � Root-case
8: end if

9: for all q ∈ states(fsm) do

10: if q = si ∧ q ∈ Sa then � Leaf-case
11: AddTransition: (state(tag+), tag−, q) → (state(tag−), [ ]);
12: end if

13: if q = si then � Child-case
14: for all t ∈ out(q) do
15: typet ← type(t)
16: tagt ← tag(typet)
17: qdest ← dest(t)
18: AddTransition: (state(tag+), tag+

t , q) →
(state(tag+

t ), [ stateinit(fsm(typet)), qdest]);
19: end for
20: end if

21: if q ∈ Sa then � Parent-case
22: for all t ∈ in(q) do
23: typet ← type(t)
24: tagt ← tag(typet)
25: AddTransition: (state(tag−

t ), tag−, q) → (state(tag−), [ ]);
26: end for
27: end if

28: for all tin ∈ in(q) do
29: for all tout ∈ out(q) do � Sibling-case
30: typein ← type(tin)
31: typeout ← type(tout)
32: tagout ← tag(typeout)
33: tagin ← tag(typein)
34: AddTransition: (state(tag−

in), tag+
out, q) →

(state(tag+
out), [stateinit(fsm(typeout)), dest(tout)]);

35: end for
36: end for
37: end for
38: end for
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QΣt ∪Qtype. The input alphabet Σ = Σt∪Σc contains tags and content. The function
state(t), where t ∈ Σt, returns the corresponding state ∈ Q. We do not impose any
restrictions on the stack alphabet Γ . The transitions Ψ are generated by Algorithm 1.

Algorithm 1 is split into five parts – corresponding to the five tag-sequence cases. While
iterating over the production rules of the regular tree grammar G (line 1) it is checked
which one of the five cases holds. The PDA simulates the run of the set of FSMs by
pushing and popping corresponding FSM-states onto/from the stack.

If an element is defined as top-level element in the XML Schema it appears as a
start-symbol in G. Transitions from the initial state qstart to the corresponding open-
tag states are created (line 7).

We iterate over all states in the FSM which are generated in line 3. If the initial state
is also a final state, then it has an empty content model, i.e. it is a leaf – a closing tag
is read directly after the opening tag (line 11). Nothing has to be pushed onto the stack
because the subsequence for the tag has been processed completely.

Outgoing transitions of the initial states of the FSMs map to the first element of
their content model (child). Therefore, there is a transition in the PDA to the open-tag
states of each of such children (line 18). The transitions of the parent-case are generated
inversely (line 25) based on the final states of the FSMs. Here, nothing has to be pushed
onto the stack because the sub-sequence belonging to the closing tag has been processed
completely.

For all states in the FSMs having an incoming and outgoing transition we create
a transition in the PDA that corresponds to the sibling-case. Here, the PDA reads the
closing-tag of an element a and afterwards the opening-tag of an element b (line 34).

When some XML input is given, the automaton reads it tag by tag and switches into
corresponding states. When the input is invalid there will be no transition or the top-
most state on the stack does not match the requirements. In this case, the input cannot
be fully read and the input is rejected.

The complexity of this construction algorithm is O(n3) with n being the size of
states in the FSMs. However, the construction of the PDA is performed only once when
defining the column type.
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Abstract. This paper describes a new XML compression scheme that offers 
both high compression ratios and short query response time. Its core is a fully 
reversible transform featuring substitution of every word in an XML document 
using a semi-dynamic dictionary, effective encoding of dictionary indices, as 
well as numbers, dates and times found in the document, and grouping data 
within the same structural context in individual containers. The results of 
conducted tests show that the proposed scheme attains compression ratios 
rivaling the best available algorithms, and fast compression, decompression, 
and query processing. 

Keywords: XML compression, XML searching, XML transform, semi-
structural data compression, semi-structural data searching. 

1   Introduction 

Although Extensible Markup Language (XML) did not make obsolete all the good old 
data formats, as one could naively expect, it has become a popular standard, with 
many useful applications in information systems.  

XML has many advantages, but for many applications they are all overshadowed 
by just one disadvantage, which is XML verbosity. But verbosity can be coped with 
by applying data compression. Its results are much better if a compression algorithm 
is specialized for dealing with XML documents. 

XML compression algorithms can be divided into two groups: those which do not 
allow queries to be made on the compressed content, and those which do. The first 
group focuses on attaining as high compression ratio as possible, employing the state-
of-the-art general-purpose compression algorithms: Burrows-Wheeler Transform – 
BWT [2], and Prediction by Partial Match – PPM [18]. The problem with the most 
effective algorithms is that they require the XML document to be fully decompressed 
prior to processing a query on it. 

The second group sacrifices compression ratio for the sake of allowing search 
without a need for full document decompression. This can be accomplished by 
compressed pattern matching or by partial decompression. The former consists in 
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compressing the pattern and searching for it directly in the compressed data. As both 
the compressed pattern and data are shorter than their non-compressed equivalents, 
the search time is significantly reduced. However, the compressed pattern matching 
works best with a context-free compression scheme, such as Huffman coding [9], 
which hurts compression ratio significantly.  

Partial decompression means some parts of the document have to be 
decompressed, but not the whole of it. Context-aware algorithm can be used, as long 
as it makes use only of the limited-range data correlation. LZ77-family algorithms 
[21] are ideal candidates here. Although they do not attain as high compression ratios 
as BWT or PPM derivatives, they are much more effective than context-free 
compression schemes. And although they do not allow queries to be processed as fast 
as using compressed matches, the processing time is much shorter than in case of 
schemes requiring full decompression. 

In this paper we describe a new algorithm designed with compression effectiveness 
as primary concern, and search speed as secondary one. Thus it is particularly suited 
for huge XML datasets queried with moderate frequency.  

We begin with discussion of existing XML compression algorithms’ 
implementations. Then we describe the proposed algorithm, its main ideas and its 
most significant details. Finally, we present results of tests of an experimental 
implementation of our algorithm, and draw some conclusions. 

2   XML Compression Schemes 

2.1   Non-query-supporting Schemes 

The first XML-specialized compressor to noticeably surpass in efficiency general-
purpose compression schemes was XMill [11].  Its success was due to three features. 
The first of them is splitting XML document content into three distinct parts 
containing respectively: element and attribute symbol names, plain text and the 
document tree structure. Every part has different statistical properties, therefore it 
helps compression to process them with separate models. 

The second feature of XMill is to group contents of same XML elements into so-
called containers. Thus similar data are stored together, helping compression 
algorithms with limited history buffer, such as LZ77 derivatives.  

The third one is to encode each container using a dedicated method, exploiting the 
type of data stored within it (such as numbers or dates). What makes this feature not 
so useful is that XMill requires the user themself to choose methods to encode 
specific containers. Such human-aided compression can hardly be regarded as 
practical. 

XMill originally used LZ77-derived gzip to compress the transform output. 
Although newer version added support for BWT-based bzip2 and PPM 
implementations, yet in these modes XMill succumbs to other programs employing 
such algorithms. 

The first published XML compression scheme to use PPM was XMLPPM [3]. 
XMLPPM replaces element and attribute names with their dictionary indices, 
removes closing tags as they can be reconstructed in a well-formed XML document 
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only provided their positions are marked. The most important XMLPPM feature is 
‘multiplexed hierarchical modeling’ which consists in encoding data with four distinct 
PPM models: one for element and attribute names, one for element structure, one for 
attribute values, and one for element contents. In order to exploit some correlation 
between data going to different models, the previous symbol, regardless the model it 
belongs to, is used as a context for the next symbol.   

XMLPPM was extended into SCMPPM [1], in which a separate PPM model is 
maintained for every XML element. This helps only in case of large XML documents, 
as every PPM model requires a due number of processed symbols to become 
effective. The main flaw of SCMPPM is its very high memory usage (every new 
model is initialized with 1 MB of allocated memory). 

In 2004 Toman presented Exalt [20], one of the first algorithms compressing XML 
by inferring a context-free grammar describing its structure. His work led to 
AXECHOP by Leighton et al. [10]. However, even the latter fails to overcome 
XMLPPM both in terms of compression ratio and time. 

In 2005 Hariharan and Shankar developed XAUST [8], employing finite-state 
automata (FSA) to encode XML document structure. Element contents are put into 
containers and encoded incrementally with arithmetic coding based on a single 
statistical model of order 4 (i.e., treating at most 4 preceding symbols as the context 
for the next one). The published results show XAUST to beat XMLPPM on some test 
files, yet XAUST has this great drawback that it requires the compressed XML 
document to be valid and its document type definition (DTD) to be available, as the 
FSA are constructed based on it. 

2.2   Query-Supporting Schemes 

As it has been stated in the introduction, adding support for queries decreases 
compression effectiveness. Therefore, most of the algorithms described below attain 
compression ratios worse than the original XMill. 

XGrind [19] was probably the first XML compressor designed with fast query 
processing on mind. XGrind forms a dictionary of element and attribute names based 
on DTD. It uses a first pass over a document to gather statistics so that Huffman trees 
could be constructed. During the second pass, the names are replaced with respective 
codewords, and the remaining data are encoded using several Huffman trees, distinct 
for attribute values and PCDATA elements. An important property of XGrind, mainly 
thanks to the use of Huffman encoding, is that its transformation is homomorphic, 
which means that the same operations (such as parsing, searching or validating) can 
be performed on the compressed document as on its non-compressed form. 

XPress [14] extends XGrind with binary encoding of decimal numbers and 
improves speed of path-based queries using a technique called Reverse Arithmetic 
Encoding. 

XQzip [5] was the first query-supporting XML compressor to beat XMill, although 
slightly. It separates structure and data of XML documents. The structure is stored in 
a form of Structural Indexing Tree (SIT) in order to speed up queries, whereas data 
are grouped in containers, which are partitioned into small blocks (for the sake of 
partial decompression) and those are finally compressed with gzip. Recently 
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decompressed blocks are kept in cache so that multiple queries are sped up.  
According to its authors, XQzip processes queries 12 times faster than XGrind. 

XQueC [15] was clearly focused on search speed rather than compression 
efficiency. Like other schemes, it splits XML documents into structure and data parts, 
groups element contents in containers (based on each element’s path from the 
document root), and forms a dictionary of element and attribute names. Additionally, 
for the sake of faster query processing, XQueC stores a tree describing document 
structure and an index – a structural summary representing all possible paths in the 
document.  

XSeq [12] uses Sequitur, a grammar-based compression algorithm to compress 
both document structure and data, and allows compressed pattern matching. 
According to its authors, XSeq processes queries even faster than XQzip, but it does 
not attain compression ratios of XMill.  

XBzip [7] employs XBW transform (based on BWT), which transposes XML 
document structure into its linear equivalent using path-sorting and grouping. Data are 
sorted accordingly with the structure. The two resulting tables (structure and data) are 
then compressed using PPM algorithm. XBzip can work in two modes. In the default, 
non-query-supporting mode, it can attain compression ratios even higher than 
XMLPPM. In the second, query-supporting mode (required by the XBzipIndex 
utility) it splits data into containers, and creates an FM-index (a compressed 
representation of a string that supports efficient substring searches) for each of them. 
The query processing times are very short, but storing the indices inflates the 
compressed document size by as much as 25-100%. 

3   The QXT Transform 

3.1   Overview 

Our recent work on highly effective but non-query-supporting XML compression 
scheme dubbed XWRT [17] led us to awareness of the importance of fast query 
processing in XML documents. In practice, it is often desirable both to store data 
compactly, and retain swift query response time. 

QXT stands for Query-supporting XML Transform. QXT has been designed 
combining the best solutions of XWRT with query-friendly concepts in order to make 
it possible to process queries with partial decompression, while avoiding to hurt 
compression effectiveness significantly. 

For QXT, the input XML document is considered to be an ordered sequence of n 
tokens:  

Input=(t1⋅t2⋅…⋅tn). 

QXT parses the input classifying every encountered token to one of generic token 
classes: 

TokenClass(t)∈{ Word, EndTag, Number, Special, Blank, Char }. 

The Word class contains sequences of characters meeting the requirements for 
inclusion in the dictionary, EndTag contains all the closing tags, Number – sequences 
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of digits,  Special – sequences of digits and other characters adhering to predefined 
patterns, Blank – single spaces between Word tokens, and the Char class contains all 
the remaining input symbols. 

The Word class has two token subclasses: StartTag contains all the element 
opening tags, whereas PlainWord all the remaining Word tokens.  

The StartTag and EndTag tokens define the XML structure. The StartTag tokens 
differ from PlainWord tokens in that they redirect the transform output to a container 
identified by the opened element’s path from the document root. EndTag tokens are 
replaced with a one-byte flag and bring the output back to the parent element’s 
container. 

3.2   Handling the Words 

A sequence of characters can only be identified as a Word token if it is one of the 
following: 

• StartTag token – a sequence of characters starting with ‘<’, containing letters, 
digits, underscores, colons, dashes, or dots. If a StartTag token is preceded by a run 
of spaces, they are combined and treated as a single token (useful for documents 
with regular indentation); 

• a sequence of lowercase and uppercase letters (‘a’–‘z’, ‘A’–‘Z’) and characters 
with ASCII codes from range 128–255; this includes all words from natural 
languages using 8-bit letter encoding; 

• URL prefix – a sequence of the form ‘http://domain/’, where domain is any 
combination of letters, digits, dots, and dashes; 

• e-mail – a sequence of the form ‘login@domain’, where ‘login’ and ‘domain’ are 
combinations of letters, digits, dots, and dashes; 

• XML entity – a sequence of the form ‘&data;’, where data is any combination of 
letters (so, e.g., character references are not included); 

• attribute value delimiter – sequences ‘="’ and ‘">’; 
• run of spaces – a sequence of spaces not followed by a StartTag token (again, 

useful for documents with regular indentation). 
 

The list of Word tokens sorted by descending frequency composes the dictionary. 
QXT uses a semi-dynamic dictionary, that is it constructs a separate dictionary for 
every processed document, but, once constructed, the dictionary is not changed during 
XML transformation. It would be problematic to use a universal static dictionary with 
predefined list of words as it is hard to find a word set relevant across a wide range of 
real-world XML documents.  

Every Word token is replaced with its dictionary index. The dictionary indices are 
encoded using symbols which are not existent in the input XML document. There are 
two modes of encoding, chosen depending on the attached back-end compression 
algorithm. In both cases, a byte-oriented prefix code is used; although it produces 
slightly longer output than, e.g., bit-oriented Huffman coding, the resulting data can 
be easily compressed further, which is not the case with the latter. 

In the Deflate-friendly mode, the set of available symbols is divided into three 
disjoint subsets: OneByte, TwoByte, ThreeByte. The OneByte symbols are used to 
encode the most frequent Word tokens; one symbol can represent one token, so only 
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|OneByte| tokens can be encoded this way. The TwoByte symbols are used as a prefix 
for another byte, allowing to encode |TwoByte|·256 tokens in this way. Finally, the 
ThreeByte symbols are used as a prefix for another two bytes, allowing to encode 
|ThreeByte|·65536 tokens in this way. 

In the LZMA-friendly mode, the set of available symbols is divided only into two 
disjoint subsets: Prefix, Suffix. The Prefix symbols signalize the beginning of a 
codeword. The codeword can be but a Prefix symbol, or a Prefix symbol followed by 
one or two Suffix symbols. This way there are |Prefix| one-byte codewords available 
for the most frequent Word tokens, |Prefix|·|Suffix| two-byte codewords for typical 
Word tokens, and |Prefix|·|Suffix|2 three-byte codewords for rare Word tokens. 

As the single Blank tokens can appear only between two Word tokens, they are 
simply removed, as they can be reconstructed on decompression provided the 
exceptional positions where they should not be inserted are marked. 

The Char tokens are left intact. 

3.3   Handling the Numbers and Special Data 

Every Number token (decimal integer number) n is replaced with a single byte whose 
value is ⎡log256(n+1)⎤+48. The actual value of n is encoded as a base-256 number. A 
special case is made for sequences of zeroes preceding another Number token – these 
are left intact. 

Special token represent specific types of data made up of combination of digits 
and other characters. Currently, QXT recognizes following Special tokens:  

• dates between 1977-01-01 and 2153-02-26 in YYYY-MM-DD (e.g. “2007-03-31”, 
Y for year, M for month, D for day) and DD-MMM-YYYY (e.g. “31-MAR-2007”) 
formats; 

• times in 24-hour (e.g., “22:15”) and 12-hour (e.g., “10:15pm”) formats; 
• value ranges (e.g., “115-132”); 
• decimal fractional numbers with one (e.g., “1.2”) or two (e.g., “1.22”) digits after 

decimal point. 
 

Dates are replaced with a flag and encoded as a two bytes long integer whose 
value is the difference in days from 1977-01-01. To simplify the calculations we 
assume each month to have 31 days. If the difference with the previous date is smaller 
than 256, another flag is used and the date is encoded as a single byte whose value is 
the difference in days from the previous date. 

Times are replaced with a sequence of three bytes representing respectively: the 
time flag, hour, and minutes. 

Value ranges in the format “x–y” where x < 65536 and 0 < y – x < 256 are encoded 
in four bytes: one for the range flag, two for the value of x, and one for the difference 
y – x.  

Decimal fractional numbers with one digit after decimal point and value from 0.0 
to 24.9 are replaced by two bytes: a flag and their value stored as fixed point integer. 
In case of those with two digits after decimal point, only their suffix, starting from the 
decimal point, is considered to be Special token, and replaced with two bytes: a flag 
and the number’s fractional part stored as an integer. 
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3.4   Implementation  

The architecture of QXT implementation is presented on Fig. 1. 

 

Fig. 1. QXT processing scheme 

The QXT implementation contains a fast and simple XML parser written 
exclusively for this application. The parser does not build any trees, but it treats input 
XML document as one-dimensional data. It has small memory requirements, as it 
only uses a stack to trace opening and closing tags. 

QXT works in two passes over input data. In the first pass, a dictionary is formed 
and the frequency of each of its items is computed. The complete dictionary is stored 
within the compressed file, so this pass is unnecessary during decompression, making 
the reverse operation faster.  

In the second pass, the actual transform takes place, data are parsed into tokens, 
respectively encoded, and placed into separate containers, depending on their path 
from the document root.  

The containers are memory-buffered until they exceed a threshold of 8 MB (same 
as in XMill) when they are compressed with general-purpose compression algorithm 
and written to disk. The containers are compressed in 32 KB blocks, thus allowing 
partial decompression of blocks of such length. 

QXT could be combined with any general-purpose compression algorithm, but the 
requirement of fast decompression suggests using a LZ77-derivative. We chose two 
algorithms of this kind: Deflate [6] (well known from zip, gzip, and plenty of other 
applications) and LZMA (known from the 7-zip utility [22]), whose optimal match 
parsing significantly improves compression ratio at the cost of much slower 
compression (decompression speed is not much affected). 

Query execution starts with reading the dictionary from the compressed file; the 
dictionary can be cached in memory in case of multiple queries. Next, the query 
processor resolves which containers might contain data matching the query. The 
required containers are decompressed with the general-purpose algorithm, and the 
transformed data are then searched using the transformed pattern. Only the matching 
elements are decoded to the original XML form; of course, counting queries do not 
require the reverse transform at all. 
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4   Experimental Results 

4.1   Test Preparation 

The primary objective of the tests was to measure the performance of an experimental 
implementation of the QXT algorithm written in C++ by the first author and compiled 
with Microsoft Visual C++ 6.0. This implementation allows to use Deflate or LZMA 
as the back-end compression algorithm.  

For comparison purposes, we included in the tests publicly available XML 
compressors: XMill (version 0.7, which was found to be the fastest; switches: -w -f), 
XMLPPM (0.98.2), XBzip (1.0), and SCMPPM (0.93.3); the old XGrind was omitted 
as, despite multiple efforts, we were not able to port it to the test system. We have 
extended the list with general-purpose compression tools: gzip (1.2.4; uses Deflate) 
and LZMA (4.42; -a0), employing the same algorithms as the final stage of QXT, to 
demonstrate the improvement from applying the XML transform. 

So far there is no publicly available and widely respected XML test file corpus, 
therefore, we have based our test suite on those files from the corpus proposed in [15] 
that were publicly available, improving it with several files from the University of 
Washington XML Data Repository [13]. The resulting corpus represents a wide range 
of real-world XML applications; it consists of the following varied XML documents: 

• DBLP, bibliographic information on major computer science journals and 
proceedings,  

• Lineitem, business order line items from the 10 MB version of the TPC-H 
benchmark, 

• Mondial, basic statistical data on countries of the world, 
• NASA, astronomical data, 
• Shakespeare, a corpus of marked-up Shakespeare plays, 
• SwissProt, a curated protein sequence database, 
• UWM, university courses. 

 

Detailed information for each of the documents is presented in Table 1 (see next 
page); it includes: file size (in bytes), number of elements, number of attributes, 
number of distinct element types, and the maximum structure depth. 

The tests were conducted on an Intel Core 2 Duo E6600 2.40 GHz system with 
1024 MB memory and two Seagate 250 GB SATA drives in RAID mode 1 under 
Windows XP 64-bit edition. 

Table 1. Basic properties of the XML documents used in tests 

Name File size Elements Attributes Max. depth 
DBLP 133 862 735 3 332 130 404 276 6 
Lineitem 32 295 475 1 022 976 1 3 
Mondial 1 784 825 22 423 47 423 5 
NASA 25 050 288 476 646 56 317 8 
Shakespeare 7 894 983 179 690 0 7 
SwissProt 114 820 211 2 977 031 2 189 859 5 
UWM 2 337 522 66 729 6 5 



338 P. Skibiński and J. Swacha 

4.2   Compression Ratio and Time 

Table 2 lists the bitrates (in output bits per input character, hence the smaller the 
better) attained by the tested programs on each of the test files. Some table cells are 
empty, as XMill and SCMPPM declined to compress some of the test files, whereas 
XBzip failed to finish the compression of two files due to insufficient memory. 

Apart from the general-purpose compression tools, the experimental QXT 
implementation was the only program to decode all the compressed files accurately. 
In case of the other programs, some output files were shortened, some had misplaced 
white characters (space-preserving modes were turned on where possible). In some 
applications, even the latter can be a grave flaw, as this makes it impossible to verify 
the original file integrity with a cyclic redundancy check or hash functions. 

Table 2. Compression results (in bpc) 

File Gzip LZMA XMill 
XML 
PPM 

SCM 
PPM 

XBzip
XBzip 
Index 

QXT 
Deflate 

QXT 
LZMA 

DBLP 1.463 1.049 1.250a 0.857a 0.741 –d –d 0.925 0.753 
Lineitem 0.721 0.461 0.380 0.273a 0.244 0.248a 0.332 0.285 0.245 
Mondial 0.767 0.586 –c 0.467b –c 0.404a 0.681 0.608 0.407 
NASA 1.208 0.818 1.011 0.729a –c 0.698b 1.085 0.769 0.607 
Shakespeare 2.182 1.786 2.044 1.367a 1.354a 1.350b 1.688 1.505 1.354 
SwissProt 0.985 0.540 0.619 0.465a 0.426 –d –d 0.500 0.384 
UWM 0.553 0.389 0.382 0.259a 0.274 0.282 0.446 0.323 0.281 
Average 1.126 0.804 – 0.631 – – – 0.702 0.576 

Remarks: (a) Decoded file was not accurate, (b) Decoded file was shorter than the original, (c) 
Input file was not accepted, (d) Compression failed due to insufficient memory. 

The obtained compression results are very favorable for QXT. The QXT+LZMA 
attained the best ratio in case of two files and was only slightly worse than the best 
scheme in case of four other files. Notice that this was achieved even though QXT 
supports queries, whereas the other programs do not (with the sole exception of 
XBzipIndex), and it uses LZ77-derived compression algorithm, whereas the best of 
the remaining programs employ more sophisticated PPM-based algorithms. 

Compared to the general-purpose compression tools, the proposed transform 
improves XML compression on average by 28% in case of LZMA and 37% in case of 
Deflate. 

Fig. 2 shows the ratio of the compressed file size to the original size for the four 
biggest files in the suite, attained by the tested XML-specialized compressors. Smaller 
columns represent better results. 

Table 3 contains the compression and decompression times measured on Lineitem, 
the longest file compressed by all the tested programs.  

The results show that QXT is slower than XMill, but when compared to the most 
effective compressors, QXT+Deflate was found to be almost about three times faster 
than XBzip, and seven times faster than SCMPPM.  

In case of QXT+LZMA, the XML transform is faster than the back-end 
compression algorithm, and reduces the file size so much, that a large improvement in 
compression speed can be observed.  
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Fig. 2. Compression results for selected files 

Table 3. Compression and full decompression times for the Lineitem file 

Time of Gzip LZMA XMill 
XML 
PPM 

SCM 
PPM 

XBzip 
XBzip 
Index 

QXT 
Deflate 

QXT 
LZMA 

Compre- 
ssion 

0.98 23.50 1.31 2.66 14.24 6.33 11.59 3.06 5.95 

Decom- 
pression 

0.20 0.83 0.22 3.19 13.16 4.51 6.26 1.12 1.34 

Remarks: The times listed were measured on the test platform, and are total user times 
including program initialization and disk operations. 

4.3   Query Processing Time 

For query processing evaluation, we used the Lineitem and Shakespeare files (we 
could not obtain results for XBzipIndex on DBLP). Queries S1, S2, and L1 are from 
[5], but as XBzipIndex did not support another query, we contrived the remaining 
queries on our own. Table 4 lists all the queries used in our tests.  

Table 4. Test queries 

Id Shakespeare queries 
S1 /PLAY/ACT/SCENE/SPEECH/SPEAKER 
S2 /PLAY/ACT/SCENE/SPEECH[SPEAKER = "PHILO"] 
S3 /PLAY/ACT/SCENE/SPEECH[SPEAKER = "AMIGA"] 

Id Lineitem queries 
L1 /table/T/L_TAX  
L2 /table/T/L_COMMENT  
L3 /table/T/[L_COMMENT = "slowly"] 
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Table 5 contains measured times of processing the test queries. Its first column 
identifies the query. The next two columns contain query processing time on a non-
compressed XML without an external index (column 2), and using one (column 3). 
The sgrep structural search utility (version 1.92a) was used to obtain these values. 
Column 4 contains XBzipIndex’s query time, and the remaining columns present 
detailed results for QXT: the part of the file (in percents) that had to be decompressed 
in the course of query processing (column 5), the time it took to accomplish 
decompression (column 6 for Deflate, and 7 for LZMA), the time taken by the actual 
search on the decompressed data (column 8), and the sum of the two (columns 9 and 
10), constituting the total query processing time. 

Table 5. Query processing times (in seconds) 

sgrep QXT 
Decompression Total query time Id Raw 

XML 

Inde-
xed 

XML 

XBzip 
Index 

Decom-
pressed 

part Deflate LZMA 
Search 
time Deflate LZMA 

S1 0.313 0.047 0.047 15.7% 0.051 0.025 0.023 0.074 0.048 
S2 0.282 0.032 0.061 15.7% 0.051 0.025 0.023 0.074 0.048 
S3 0.266 0.031 0.063 10.9% 0.036 0.017 0.000 0.036 0.017 
L1 1.031 0.063 0.047 5.5% 0.062 0.083 0.036 0.098 0.119 
L2 1.063 0.078 0.047 8.4% 0.095 0.127 0.055 0.150 0.182 
L3 1.047 0.047 0.063 8.4% 0.095 0.127 0.055 0.150 0.182 
Avg 0.667 0.050 0.055 10.8% 0.065 0.067 0.032 0.097 0,099 

Remarks: The times listed were measured on the test platform, and are total user times 
including program initialization and disk operations. 

Average query processing time of QXT was about 0.1 second. This seems to be an 
acceptable delay for an average user. This is over six times faster than the raw XML 
search time. The transformed data are searched much faster than non-compressed 
XML because they are shorter. The decompression does not waste all of this gain 
because an average query requires only 10% of the file to be decompressed. 
Moreover, the word dictionary makes it possible to immediately return negative 
results for queries looking for words non-occurring in the document (see the instant 
search results for query S3). 

The primary purpose of QXT is effective compression, so it does not maintain any 
indices to the document content. Therefore, we did not expect QXT to beat index-
based search times. Indeed, both sgrep’s indexed search and XBzipIndex are over 
50% faster. However, a look at the compression ratio of XBzipIndex, signifying a 
25% bigger storage requirements than QXT+LZMA, helps to realize that these two 
schemes pursue two different goals. 

To demonstrate the scale of improvement over a non-query-supporting schemes 
that perform full decompression followed by search on the decompressed document, 
QXT’s average query time on Shakespeare (0.037 s) is over ten times shorter than 
XMill’s (0.381 s) and over hundred times shorter compared to the time required by 
SCMPPM (3.834 s). 
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5   Conclusions 

Due to the huge size of XML documents used nowadays, their verbosity is considered 
a troublesome feature. Until now, there have been but two options: effective 
compression for the price of a very long data access time, or quickly accessible data 
for the price of mediocre compression. 

The proposed QXT scheme ranks among the best available algorithms in terms of 
compression efficiency, far surpassing its rivals in decompression time.  

The most important advantage of QXT is the feasibility of processing queries on 
the document without a need to have it fully decompressed. Thanks to the nature of 
the transform, the measured query processing times on QXT-transformed documents 
were several times shorter than on their original format. We did not include any 
indices in QXT as they require significant storage space, so using them would greatly 
diminish the compression gain which had the top priority in the design of QXT. Still, 
we may reconsider this idea in a future work. 

QXT has many nice practical properties. The transform is completely reversible, 
the decoded document is an accurate copy of the input document. The transform 
requires no metadata (such as XML Schema or DTD) nor human assistance. Whereas 
SCMPPM and XBzip may require even hundreds of megabytes of memory, the 
default mode of QXT uses only 16 MB, irrespectively of the input file size (using 
LZMA requires additionally a fixed buffer of 84 MB for compression and 10 MB for 
decompression). The compression is done on small blocks, so in case of data damage, 
the data loss is usually limited to just one such block. Moreover, QXT is implemented 
as a stand-alone program, requiring no external compression utility, XML parser, nor 
query processor, thus avoiding any compatibility issues. 
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Abstract. We are interested in evaluating the performance of newmatch-
ing algorithms for user notification in digital libraries (DL). We consider
a subscription system which continuously evaluates queries over a large
repository containing document descriptions. The subscriptions and the
document descriptions rely on a taxonomy that is a hierarchically orga-
nized set of terms. The digital library supports insertion, update and re-
moval of a document. Each of these operations is seen as an event that
must be notified only to those users whose subscriptions match the docu-
ment’s description. The paper proposes a notification algorithm dedicated
to taxonomy-based DLs, addresses computational issues and report a full
set of experiments illustrating the advantages of the approach.

Keywords: Digital libraries, personalization, publish/subscribe systems,
notifications, matching algorithms.

1 Introduction

User notification constitutes one of the key elements to the development of large
scale data retrieval and dissemination systems. The notification services are in-
creasingly widespread in various types of applications. They allow the users to
register their favorite queries in the form of subscriptions and inform them when-
ever an event that affects the content of the DL matches their subscriptions.

Several powerful algorithms have been proposed in the recent literature to
support the matching process. See for instance [8,5,20], and the section devoted
to related work. The common feature of these algorithms is to consider a data
model where the objects of interest are described with single-valued attributes.
Moreover the domain of these attributes is an unstructured set of values. In prac-
tice, applications that rely on a tree-structured domain for objects descriptions
are very common. This is the case, among many other examples, of e-commerce
applications such as Ebay (http://www.ebay.com) which proposes a classifica-
tion of objects based on a category attribute. Category Baby is divided into
several sub-categories (clothing, toys, equipments, · · · ). Each sub-category is
itself divided into other sub-categories, and so on. A user may either subscribe
to a general concept (e.g., Baby) or to a specialized one (e.g., Baby >> bed).
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This introduces naturally a dependency on the set of subscriptions: if an event
must be notified to a user that subscribed to Baby >> bed, then any user that
subscribed to Baby must be notified as well. A matching algorithm for such ap-
plications should take into account the attributes defined over tree-structured
domains to benefit from this kind of property.

In the present paper, we introduce and evaluate matching algorithms that
explicitly support the definition of subscriptions over tree-valued attributes. Our
approach can be combined with several of the existing solutions proposed in the
literature, and applies to a wide range of applications, including those previously
mentioned. For concreteness we focus in the rest of this paper on digital libraries
(DL) and adopt the digital library model discussed in [9]. We assume that the
digital library maintains a users’ repository which contains information about
the users and their subscriptions. Moreover, we assume that the digital library
relies on a taxonomy of terms to which both the authors and the users adhere.
The authors use the taxonomy in order to describe their documents and the
users in order to define their subscriptions. A user must be informed, or notified
whenever an event matching his subscription occurs at the DL.

The problem addressed in this paper can be stated as follows: assuming a
large number of subscriptions over tree-structured domains and a high rate of
events, how to design fast algorithms for finding those subscribers that should be
notified when an event occurs at the DL? We address computational issues, and
conduct an extensive performance evaluation. Our analytical and experimental
results show that our approach enjoys many important features. It presents a
reasonable storage cost (at most twice the number of subscriptions), and achieves
a nice trade-off between the performances of subscriptions (i.e., adding new
users) and notifications (i.e., alerting users of new incoming events of interest).

In what follows, we first give in Section 2 some preliminary definitions.
Section 3 describes our data structures and algorithms and Section 4 presents
our experimental setting and results. Related work is given in Section 5 while
Section 6 concludes the paper.

2 Preliminary Definitions

As we mentioned in the introduction, we assume a single taxonomy over which
the following basic concepts of a digital library are defined: document description,
event and user subscription. This section summarizes the model presented in [9].

2.1 Basic Concepts

The library taxonomy, denoted (T,�) is a set of keywords or terms T , together
with a subsumption relation over them. This subsumption relation, denoted �,
is a reflexive and transitive binary relation. Given two terms, s and t, if s � t
then we say that s is subsumed by t, or that t subsumes s. We represent the
taxonomy as a tree, where the nodes are the terms and there is an arrow from
term t to term s iff t subsumes s. Figure 1 shows an example of a taxonomy, in
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Fig. 1. A repository

which the term Languages subsumes the term OOL, the term Java subsumes the
term JavaBeans, and so on.

Documents are added to the library by authors who submit, for each docu-
ment, a description of the content together with an identifier (say, the document’s
URI) allowing to access the document’s content. The document description is a
reduced set of terms from the taxonomy. A set of terms is reduced if none of the
terms it contains is subsumed by another term. For example, if the document
contains the quick sort algorithm written in java then the terms QuickSort
and Java can be used to describe its content. In this case the set of terms
{QuickSort, Java} is a reduced set of terms and constitutes the description of
the document. During registration of a document d, the library stores in the DL
repository, a pair (t, d) for each term t appearing in the description of d.

Figure 1 shows an example of repository. The dotted lines indicate the pairs
(t, d) of the repository, relating terms from a taxonomy with documents.

A user is represented by an identifier together with a subscription. A subscrip-
tion is also a reduced set of terms from the taxonomy. When a user registers a
subscription S, he is firs notified of all the documents present in the repository
that match S, denoted ans(S). Let tail(t) stands for the set of all terms in the
taxonomy T strictly subsumed by t, that is tail(t) = {s | s � t}, and R stands
for the repository of the digital library. We compute ans(S) as follows :

Case 1: S is a single term t from T , i.e., S = t
if tail(t) = ∅ then ans(S) = {d|(t, d) ∈ R}
else ans(S) =

⋃
{ans(s)|s ∈ tail(t)}

Case 2: S is a conjunction of terms, i.e., S = t1 ∧ t2 · · · ∧ tn
ans(S) = ans(t1) ∩ ans(t2) · · · ∩ ans(tn)

As an example, consider the subscription s = {C++, Sort}. Referring to
Figure 1andapplying the above definition,wefind ans(S)={d5, d6}∩{d3, d4, d6}=
{d6}.
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The answer to a susbscription changes over time, as new documents are
inserted in the library, or existing documents are modified or deleted. These
changes that occur at the library over time are precisely what we call events. An
event is represented by the description of the document being inserted, modified,
or removed. When an event occurs the system must inform, or notify each user
whose subscription is matched by the event.

Definition 1 (Matching). Let e be an event and S a subscription. We say that
e matches S if the following holds: (i) A document d is removed and d ∈ ans(S)
before the event occurs. (ii) A document d is inserted and d ∈ ans(S) after the
event has occurred.

The case of document modification is treated as a deletion followed by an in-
sertion. Clearly, when an event e occurs, the system must decide which users
are to be notified. A naive approach is to examine every subscription S and test
whether e matches S. However, if the set of subscriptions is large, and/or the
rate of events is high, the system might quickly become overwhelmed. In what
follows, we shall refer to this simplistic approach as Naive. We introduce now a
more sophisticated solution which relies on a refinement relation among queries.

2.2 Subscription Refinement

Testing whether an event matches a subscription is basically a set membership
test (i.e. testing whether a document belongs to a given set of documents). The
idea that we exploit here is the following: if we have to perform test membership
for every set in a collection of sets, we can save computations by starting with
maximal sets first (maximality with respect to set inclusion). Indeed, if a docu-
ment does not belong to a maximal set then we don’t need to test membership
for any of its subsets.

In order to implement this idea, we need to define first a notion of refinement
between subscriptions. In fact, we need a definition that translates the following
intuition: if subscription S1 refines subscription S2 then every event that matches
S1 also matches S2.

Definition 2 (Refinement Relation). Let S1 and S2 be two subscriptions.
We say that S1 is finer than S2, denoted S1  S2, iff ∀t2 ∈ S2, ∃t1 ∈ S1|t1 � t2.

In other words, S1 is finer than S2 if every term of S2 subsumes some term of S1.
For example, the subscription S1 = {QuickSort, Java, BubbleSort} is finer
than S2 = {Sort, OOL}, whereas S2 is not finer than S1.

Intuitively, refining a subscription can be seen as imposing tighter matching
constraints. There exist two possible ways of doing so: by simply adding some
terms to a subscription, or by replacing a term in the subscription by one of
its descendants in the taxonomy. Figure 2 shows an example of the refinement
relation.

If S is a subscription and d is a document with description D, then d ∈ ans(S)
iff D  S. Referring to the graph of Fig. 2, we can now explain how we exploit the
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S3 = {Java, Sort}

S4 = {Theory, Java, QuickSort}

S1 = {OOL, Sort}

S2 = {Theory, OOL, Sort}

Fig. 2. The refinement relation

refinement relation in our approach: if an event e does not match the subscription
S1, then it cannot match any of the subscriptions S2, S3 or S4. Therefore the idea
is to first evaluate e with respect to S1 (which is the most general subscription): if
the matching is successful, then the evaluation continues with respect to both S2

and S3 (otherwise evaluation stops); and if the evaluation is successful for either
S2 or S3, then evaluation continues with respect to S4 (otherwise evaluation
stops). Assuming that, in general, a large fraction of all events will fail to match
with any particular subscription, this strategy is expected to save a significant
number of computations.

If the sets of terms S1 and S2 are reduced sets then the refinement relation
just defined becomes a partial order. In fact, it can be shown that the set S
of all subscriptions becomes an upper semi-lattice, as stated in the following
proposition.

Proposition 1 ([18]). (S, ) is an upper semi-lattice.

2.3 The Subscription Tree

The set of user-submitted subscriptions can be organized as a directed acyclic
graph that we call the subscription graph. Its acyclicity follows from the fact
that the refinement relation is a partial order (up to subscription equivalence).
However, although the subscription graph is acyclic, it may have several roots
(i.e. more than one maximal element). Henceforth, we shall assume that the
subscription graph has a single root, by adding to it (if necessary) the lub of all
maximal subscriptions.

Now, it turns out that in order to test refinement it is sufficient to maintain
one and only one path from the root to every node (the root being the most
general subscription). This follows from the observation that if a path to a node
S is successful (i.e., an event e matches all the predecessors of S along the path),
then every path leading to S will be successful as well. As a consequence, it is
sufficient to test matching along just one path. As this holds for every node in
the subscription graph, it is sufficient to construct a spanning tree [10,17] of the
subscription graph in order to be able to test matching for every node in the
graph.
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As there are in general many spanning trees, the question is how to choose the
“best” one. To this end, we introduce the notion of filtering rate. The filtering
rate of a subscription S, denoted σ(S), is the probability of an event matching
S. It is computed based on the selectivity σ(t) of a term t, which represents
the probability for the description of a document to contain either t or a term
subsumed by t. So a “best” spanning tree will be one that optimizes the amount
of filtering during a matching test. We call such a tree a minimal spanning tree.
From the point of view of our application, selecting the minimal spanning tree is
tantamount to selecting, for each subscription S, the most filtering path leading
to S. See [9] for more details.

2.4 The Matching Process

Whenever a new event e arrives, the algorithm scans the tree top-down, starting
from the root of the tree. The main procedure, Match(N), is called recursively
and proceeds as follows:

1. if e does not match N , the scan stops; there is no need to access the children
of N ;

2. else the users of the bucket associated to N can be notified while Match is
called recursively for each child of N .

The cost of the algorithm is strongly influenced by the average number of
children of a node (fanout). If this number is very large, many of the children
will not refine an event e, and this results in useless evaluations of the refinement
relation. When the fanout of the subscriptions tree decreases the global amount
of filtering out increases, and our algorithm is expected to greatly reduce the
number of “dead-ends” during the tree traversal.

3 Data Structures and Algorithms

We now detail the construction of the subscription tree and the optimization of
the matching process.

3.1 Evaluation of � and Lub

The evaluation of the refinement relation and the computation of the lub of a
set of subscriptions are the basic operations involved in the maintenance of the
subscription graph. Given two subscriptions S1 and S2, a naive implementation
compares each term in S1 with each term in S2 and runs in O(|S1| × |S2|), both
for  and Lub. We use an optimized computation which relies on an appropriate
encoding of the terms of the taxonomy and avoids the Cartesian product of the
naive solution. Its cost is linear in the size of the subscriptions.

Our encoding extends the labelling scheme presented in [2] and further inves-
tigated in [7]. In our labelling scheme the successors of each node are assumed to
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be linearly ordered (by their position, say from left to right), and a node in the
taxonomy tree is identified by its position with respect to the parent node. The
label label(t) of a term t is obtained by concatenating the label of the parent
followed by the the position of the term (with respect to the parent). For exam-
ple, referring to Figure 1, if 1 is the label of the node Programming, then 1.1,
1.2 and 1.3 are respectively the labels of its son nodes, Theory, Languages and
Algorithms (see Figure 3). This encoding defines a total lexicographic order <l

on the set of terms.

1
Programming

DB

C++
1.2.1.1

Java
1.2.1.2

JSP
1.2.1.2.1

JavaBeans

MergeSort
1.3.1.1

QuickSort
1.3.1.2

BubbleSort
1.3.1.3

OOL

Languages
1.2

Logic

Theory
1.1

Algorithms
1.3

Sort
1.3.1

1.2.1
1.1.1. 1.1.2

1.2.1.2.2

Fig. 3. The taxonomy labelling

Evaluating the subsumption relation t1 � t2, using this encoding, reduces to
checking whether label(t2) is a prefix of label(t1). The label of the least upper
bound of two terms, lub�(t1, t2), is the longest common prefix of label(t1) and
label(t2). Recall that since (T,�) is a tree, this least upper bound always exists.

A subscription S is encoded as the list of the labels of its terms, sorted in
lexicographic order. For example the subscription {Theory, Algorithms} is en-
coded [1.1,1.3]. The order of the term labels in the labelling of a subscription
helps to reduce the number of computations required to evaluate the refinement
relation S1  S2, and also to compute the lub Lub(S1, S2), since merge-like
algorithms can be applied. Thanks to the technique, Refine(S1, S2) runs in
O(max(|S1|, |S2|)), and Lub(S1, S2) in O(|S1|+ |S2|).

3.2 Insertion Algorithm

The insertion algorithm constructs incrementally a tree TS , where each node
consists of a subscription S, associated with a bucket containing the set of user
identifiers that have subscribed S. Initially the tree consists of the subscription
{rootT }, containing the root term of the taxonomy, with an empty bucket. When
a user u subscribes to S, one first searches the location of S in the tree. Our first
goal is to find a location such that the path leading from the root to S enjoys a



350 H.B. Frej et al.

high filtering rate. A secondary goal is to limit the fanout of the subscriptions
tree by clustering the subscriptions that are close to one another. An insertion
is performed in two steps:

– Candidate parent selection
A node N in TS is a candidate parent for S if the following conditions hold:
(i) S  N , and (ii) for each child N ′ of N , S � N ′, i.e., S strictly refines N
but does not refine any child of N .

The algorithm performs a top-down search, looking for a candidate par-
ent. Starting from the root, it chooses at each level the most selective child
which refines N . When such a child no longer exists the candidate parent is
found. Note that this is an heuristic which avoids to follow an unbounded
number of paths in the tree, but does not guarantee that the “best” candidate
parent (i.e., the most selective one) is found.

– Lub selection
Once the candidate parent N is found, the second step inserts S as a child
or grandchild of N as follows. First, for each child N ′ of N , one computes
Lub(S, N ′) and keeps only those lubs which refine N . Now:
1. if at least one such lub l = Lub(S, N ′) has been found, the most selective

one is chosen, and a new subtree l(S, N ′) is inserted under the parent of
N ′;

2. else S is inserted as a child of N ′.

Note that when the lub of S and a node N ′ is computed, we know for sure
that this lub does not refine any sibling N ′′ of N ′, otherwise Lub(N ′, N ′′) would
have been inserted in the tree in the first place.

3.3 Removal Algorithm

A leaf in the subscription tree whose bucket becomes empty can be removed
(note that an empty internal node can still play the role of a filter, and must be
kept in the structure). The removal of an empty leaf S, with parent node P , is
outlined below:

1. first compute the lub L of the siblings of S (if S has no sibling, then L = ∅),
and remove S from the children of P ; then:

2. (a) if S has at least one sibling, the second step depends on the bucket of
P : if it is empty, P is replaced by L, else L becomes the child of P .

(b) else S has no sibling, and P may become an empty leaf in turn if its
bucket is empty. The procedure must then be called recursively and
bottom-up.

In the worst case, the removal of S may affect all the nodes along the path
from S up to the root. Note however that lazy upating can be used (i.e., the
adjustment of S’s ancestors is not done immediatly), since the tree supports
correctly the insert and search operations after step.
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4 Experiments

We analyze the behavior of our clustered graph structure, called Cmatch (“clus-
tered matching”), and compare it with the following competitors:

1. Naive is the trivial solution which stores the subscriptions in a linear
structure.

2. NCmatch (“non-clustered matching”) relies on a subscriptions tree without
clustering, i.e., we never introduce the lub of user’s subscription during an
insertion 1.

The NCmatch implementation is mostly intended to assess experimentally
the gain of the clustering in Cmatch. The impact of the number of users who
registered a given subscription S is neutral, because once a subscription that
matches an event is found, all the notification variants (Cmatch, NCmatch
and Naive) merely scan the bucket of users, sending a notification to each.
For clarity we ignore the cost of this specific operation in the report of our
experiments, and focus on the cost of finding the set of relevant subscriptions.

The evaluation cost is measured with respect to the following indicators: (i)
number of terms comparisons, and (ii) the number of nodes visited for the tree-
based solutions Cmatch and NCmatch. We analyze successively the two major
operations: the insertion of new subscriptions (“subscribe”) and the search of the
subscriptions that match an event (“notify”).

4.1 Experimental Setting

The structure has been implemented in Java on a Pentium IV processor
(3,000MHz) with 1,024MB of main memory. The implementation conforms to
the specifications given in the previous section, expect for the following optimiza-
tion used in Cmatch and NCmatch. During the top-down traversal of the sub-
scriptions tree, a same term comparison may have to be carried out repeatedly.
Consider the three subscriptions S1 = {OOL, QuickSort, BubbleSort}, S2 =
{C++, QuickSort, BubbleSort}, and S3 = {OOL, MergeSort, BubbleSort}.
The tree for these subscriptions is shown in Figure 4.

If an event e refines S1, we know for sure that for each term in S1, we found a
subsumed term in e. We must now evaluate e  S2 and e  S3. If one or several
of the terms in S1 are also present in S2 and S3, it is useless to search again for
a subsumed term in e.

We maintain, at each node N in the graph, a mask of bits which indicates the
terms shared by N and one of its ancestors. This is illustrated in Figure 4. The
parent node is the subscription {OOL, QuickSort, BubbleSort}. The two chil-
dren share respectively with their parent the terms BubbleSort and QuickSort
(left child), and BubbleSort (right child). A bit is set to 1 if the corresponding
term is shared with the parent, or to 0. During the matching process we need

1 However, in order to obtain a tree, the subscription {rootT }, containing the root
term of the taxonomy, is always inserted.
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Fig. 4. Avoiding redundant comparisons

to evaluate the term comparison only for the 0-bit terms. This saves 2/3 of the
comparisons for the left child in Figure 4, and 1/3 for the right child.

Our experimental setting simulates a Digital Library storing a set of scientific
documents described by terms from the ACM Computing Classification Sys-
tem [1] taxonomy. The taxonomy contains 1,316 terms, and its maximal depth
is 5.

We also implemented a subscriptions generator. The generator takes as input
the average size (number of terms) of the subscriptions, the standard variation,
and the cardinality of the subscriptions set. Each subscription is generated as
follows: the generator picks up randomly a term and includes this term in the
subscription. The process iterates until the subscription contains the required
number of terms. Generated subscriptions are reduced: newly generated terms
which subsume or are subsumed by one of the terms of the current subscription
are ignored. We produced several sets of distinct subscriptions, with a cardinality
ranging from 30,000 to 180,000.

4.2 Cost of Subscriptions

The cost of an insertion for the Naive approach is negligible, since it consists
only in an insertion in a linear structure, performed in constant time. We focus
therefore on the comparison of Cmatch and NCmatch.

Table 1 summarizes the structural properties of the subscriptions tree. The
average number of terms in a subscription is 5, with a close clustering around
this value (i.e., most subscriptions have 4, 5, 6 or 7 terms). The table gives, for

Table 1. Structure of the subscriptions tree for different subscriptions datasets

Cmatch NCmatch
Nb subscr Depth Insertion level Avg. fanout Depth Insertion level Avg. fanout

30,000 11 7.04 2.82 4 2.63 655
60,000 13 7.71 2.86 4 2.63 362
90,000 13 7.79 2.88 4 2.63 285
120,000 13 7.82 2.89 5 2.63 239
150,000 13 8.14 2.90 5 2.64 205
180,000 13 8.05 2.92 5 2.65 183
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each dataset, the depth of the subscriptions tree, the average insertion level for
a new subscription and the average fanout.

The most striking feature is the very large fanout of nodes for the non-
clustered solution NCmatch. This clearly relates to the large number of terms
in the taxonomy, which reduces the probability to find a refinement relationship
between two submitted subscriptions.

As a result one obtains a tree with a few levels, where the refinement relation
is sparsely represented. It can be expected that with a very large taxonomy, the
tree degenerates to an almost linear structure, where all the subscriptions tend to
be a child of the root node. Clearly such a structure looses all the benefits of the
approach, since the insertion is costly, yet the amount of filtering remains very low.

On the other hand, the Cmatch structure which clusters the subscriptions
and represents these clusters as subtrees rooted by their lub achieves a quite
significant reduction of the fanout.

Table 2. Cost of insertions for different subscriptions datasets

Cmatch NCmatch
Nb subscr V. nodes Comp. V. nodes Comp.

30,000 36 137 10,803 34,493
60,000 45 178 24,072 76,598
90,000 52 188 36,649 116,571
120,000 56 188 49,425 157,352
150,000 64 226 62,425 198,680
180,000 68 229 77,424 212,272

Table 3. Cost of insertions for a fixed subscriptions dataset (size = 120,000 subscrip-
tions) and a variable new subscription size

New subscr Cmatch NCmatch
size V. nodes Comp. V. nodes Comp.

4 51 154 44,797 133,108
5 53 186 45,727 139,853
6 66 256 47,327 149,938
7 77 321 50,502 163,951

Table 1 shows that the average number of children of a node is two orders of
magnitude lower for Cmatch with respect to NCmatch. This is clearly a quite
desirable property since it reduces both the cost of insertions and the cost of search
operations. We made several experiments that vary the size of the subscriptions,
and the obtained results show that the above conclusions still hold.

Table 2 shows the cost of inserting a subscription in an existing subscriptions
tree. We measure the number of nodes visited by the insertion algorithm, and the
number of terms comparisons. Table 2 (illustrated by the curves of the Figure 5),
gives the figures for different subscriptions datasets of the subscriptions tree and
Table 3 (illustrated by the curves of the Figure 6), shows these measures for a
fixed subscriptions dataset (size=120,000 subscription).
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Number of comparisons Number of nodes visited

Fig. 5. Cost of insertions for different subscriptions datasets

As expected from the trees properties, the gain of the clustered solution is
quite impressive. In particular the small number of comparisons which are nec-
essary to insert a new subscription shows that the structure can support a high
ratio of updates. This constitutes an important property for a publish/subscribe
system.

The results of Table 2 also definitely confirm that the clustering is essential
to exploit the refinement relation and filter out most of the comparisons which
are made by the non-clustered NCmatch structure. Again, this is related to
the size of the taxonomy. With a smaller one, the refinement relation would be
more represented in the subscriptions tree, with a probable reduction of the gap
between Cmatch and NCmatch. However, the main conclusion of our analytical
and experimental study on that matter is the high benefit, in all cases, of the
lub-based clustering approach.

Number of comparisons Number of nodes visited

Fig. 6. Cost of insertions for a fixed subscriptions dataset (size = 120,000 subscriptions)
and a variable new subscription size

4.3 Cost of Notifications

We now turn our attention to the notification process. The results obtained for
the three solutions Naive, NCmatch and Cmatch are given in Table 4 and in
Table 5 for our 6 subscriptions datasets. We compare both the average number
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Table 4. Cost of notifications for different subscriptions datasets (for one event)

Cmatch NCmatch Naive
Nb subscriptions Visited nodes Comp. Visited nodes Comp. Visited nodes Comp.

30,000 374 1,266 15,893 30,998 30,000 69,120
60,000 473 1,585 31,474 60,027 60,000 133,822
90,000 553 1,821 47,156 90,400 90,000 197,571
120,000 631 2,074 62,543 119,124 120,000 261,807
150,000 690 2,250 77,728 147,452 150,000 324,898
180,000 747 2,421 92,880 175,190 180,000 387,004

Table 5. Cost of notifications for a fixed tree size = 120,000 subscriptions (for one
event)

Cmatch NCmatch Naive
Nb subscriptions Visited nodes Comp. Visited nodes Comp. Visited nodes Comp.

4 350 866 54,590 88,262 120,000 219,178
5 500 1,433 57,502 99,319 120,000 245,020
6 729 2,411 68,392 133,678 120,000 271,644
7 946 3,587 70,046 156,092 120,000 311,642

of nodes visited and the average number of terms comparisons (the latter being
more representative of the actual cost) for processing a single event (note that
an event generates several notifications in general).

For the naive solution, the number of visited nodes is equal to the number of
subscriptions. The gain of the non-clustered solution is not very significant since
about 50% of the computation are saved. This is easily explained by the shape
of the tree, with a small number of levels and a large fanout. The notification
algorithm must visit all the nodes that refine the incoming event, and test all
the children of these nodes.

The Cmatch algorithm benefits strongly from the clustering. The lubs play
their role of filters and allow to get rid of most of the irrelevant computations.
The number of comparisons is more than 100 times smaller than with Naive.
Table 4 and Table 5 summarize these properties respectively for different sub-
scriptions datasets and for a fixed subscription dataset (=120,000) and variable
subscriptions sizes.

Finally Table 6 presents “normalized” cost for one notification (recall that the
previous analysis considered the processing cost of one event). We simply divided
the number of operations by the number of notifications triggered by an event.

Table 6 unveils an important aspect of the behavior of the algorithms, also
clearly illustrated by the curves of the Figure 7. Whereas NCmatch and Naive
(the latter not shown on the curve because of the very large values of its fig-
ures) exhibit a linear degradation of their computation costs with respect to the
size of the subscriptions set, the performances of Cmatch decrease very slowly.
Actually the cost of processing required to deliver a notification turns out to be
almost constant, and independent from the number of subscriptions. This shows
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Table 6. Cost of notifications for different subscriptions datasets (for one notification)

Cmatch NCmatch Naive
Nb subscriptions Visited nodes Comp. Visited nodes Comp. Visited nodes Comp.

30,000 8.90 30.14 378 738 714 1,645
60,000 9.85 33.02 655 1,250 1,250 2,787
90,000 10.63 35.02 906 1,738 1,730 3,799
120,000 11.27 37.04 1,116 2,127 2,142 4,675
150,000 11.69 38.14 1,317 2,499 2,542 5,506
180,000 12.25 39.69 1,522 2,871 2,950 6,344

Number of comparisons Number of nodes visited

Fig. 7. Cost of notifications for different subscriptions datasets

that the pruning effect of the tree is quite effective and removes almost all the
unnecessary computations.

5 Related Work

An important amount of work has been devoted in the recent past to designing
matching algorithms for large-scale systems. These works apply mostly to rela-
tional databases, where subscriptions are seen as conjunctions of predicates (i.e.
of relational variables). Their main common ideas can be summarized as follows:
(i) if a predicate appears in many subscriptions, avoid its repeated evaluation,
and (ii) try to filter out large sets of subscriptions by evaluating first the most
selective predicates. A representation approach is that of [8,15,16] which decom-
poses the matching process in two steps. The first one organizes the subscriptions
in the form of a specific structure (e.g. : a tree), whereas the second one uses this
specific structure to filter the entering events. Other proposals [3,5,11,19] com-
pare first the attributes values of the subscriptions to the values of the event.
The subscriptions matching the event are obtained by counting the number of
attributes for which the test is successful.

These algorithms apply mainly to subscriptions made up of attributes whose
domains are atomic (integer, string) but do not consider structured domains.
[8] partially solves this problem by taking into account a relationship "kind-of".
Their algorithm is efficient for the attributes which take only atomic values.
However, it does not work for the attributes that can handle multiple values.
The same remark holds for systems based on XML [4,6,12] or on RDF [20].
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In [13,14], a new model for the publish/subscribe systems: the "state-persist"
model. The main contribution of this new model is that it takes into account
the notifications history. In [13] the issue of the attributes over tree domains is
raised, without further explanation. [14] clearly states that the approach applies
mainly to simple domains.

In summary we are not aware of a publish/subscribe technique that considers
a keyword-based query language and a subsumption relations over the terms. As
shown by our experimental results, the solution proposed in the present paper
presents a reasonable storage cost (at most twice the number of subscriptions)
and achieves a nice trade-off between the performances of subscriptions (insertion
in the structure) and notification (search in the structure).

6 Conclusion

We presented in this paper a simple solution for the notification process for dig-
ital libraries, and more generally for applications that rely on keyword-based
subscriptions over tree-structured domains (e.g., a taxonomy). Our main con-
tribution is the proposal of a matching algorithm that exploits the specificities
of this setting. Our experimental results confirm our original intuition that the
proposed tree structure reduces significantly the cost of the notification process.

Future work aims at (i) enriching the structure of a description by adding
to it a set of prerequisites necessary for the understanding of the document, (ii)
enriching the structure of a subscription by adding to it a set of user backgrounds.
After notifying a user about a new document, we plan to check if his backgrounds
cover the prerequisites of the document. If yes then there is nothing to add to the
notification, else we must inform the user that some prerequisites are needed for
the new document and we must propose a set of documents from the repository
(if they exist) that match those prerequisites. We are currently studying the
influence of such extensions on our notification system.
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Abstract. The exponential growth of the web and the extended use of database 
management systems in widely distributed information systems has brought to 
the fore the need for seamless interconnection of diverse and large numbers of 
information sources. Our contribution is a system that provides a flexible ap-
proach for integrating and transparently querying multiple data sources, using a 
reference ontology. Global semantic queries are automatically mapped to que-
ries local to the participating sources. The query system is capable of handling 
complex join constructs and of choosing the appropriate attributes, relations, 
and join conditions to preserve user query semantics. Moreover, the query en-
gine exploits information on horizontal, vertical, and hybrid fragmentation of 
database tables, distributed over the various data sources. This optimization im-
proves system's recall and boosts its effectiveness and performance. 

Keywords: Ontology-based data integration, mediation systems, query process-
ing, table fragmentation rules. 

1   Introduction 

Data Integration is one of the key problems for the development of modern informa-
tion systems. The exponential growth of the web and the extended use of database 
management systems has brought to the fore the need for seamless interconnection of 
diverse and large numbers of information sources. In order to provide uniform access 
to heterogeneous and autonomous data sources, complex query mechanisms have to 
be designed and implemented [16]. The design and implementation of a query 
mechanism is non-trivial because of the heterogeneity of the various components that 
are going to be queried.  

In this paper, we describe an ontology-based mediator system, called Quete, that 
provides a flexible approach for transparently integrating and querying multiple rela-
tional data sources. In particular, it provides full location, language, and schema 
transparency for users, and integrates dynamically heterogeneous (and possibly over-
lapping) relational data sources in evolving environments. A common reference on-
tology is used across integration domains and the data source-to-ontology annotation 
process, which follows the Local-as-View approach [3], is performed only once per 
data source.  
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The motivation for this work was the integration of four database systems, in order 
to meet the needs of the PrognoChip project [13]. The aim of the project is to identify 
classification and prognosis molecular markers for breast cancer, through DNA mi-
croarray technology. Specifically, our task was to integrate two Clinical Information 
Systems that store clinical information about patients of two different hospitals and 
two Genomic Information Systems that store information on DNA microarray  
experiment settings and results. The objective was to provide a transparent layer that 
could enhance knowledge extraction and data exchange between these systems.  
Specifically, this layer should accept ontology-based queries from tools and users, 
transparently break these queries into local subqueries based on metadata, send the 
subqueries to the constituent databases, and integrate the returned results.  

Our system is an extension of a preliminary and incomplete version of Unity [10, 
6], that provides the data source-to-ontology annotation mechanism and a local  
subquery formation algorithm. In particular, for each relational data source, a local 
annotator annotates (the interesting to the user) table attributes with paths over the 
reference ontology, called semantic names. We extended the local subquery formation 
algorithm that is provided by Unity, such that system’s recall is increased with no  
sacrifice in precision. Additionally, we implemented the composition of the local sub-
query. A novel feature of our system is that horizontal, vertical, and hybrid fragmen-
tation rules about underlying schemata can be declared and used, increasing system’s 
recall and improving performance. In particular, we consider table fragmentation 
rules, during (i) the formation of the local subqueries, further extending Unity’s algo-
rithm, and (ii) during the formation of the result composition plan. This assures that 
local subqueries are formed and composed in such a way that final results, presented 
to the user, are as if there was no table fragmentation. Further, system’s performance 
is optimized by eliminating local subqueries and avoiding joins in the result composi-
tion plan that are certain to return empty results. We want to note that our approach to 
data integration is by no means restricted to biomedical informatics. On the contrary, 
it is completely domain independent.  

The rest of the paper is organized as follows: Section 2 reviews related work on 
mediator-based data integration. In Section 3, our architecture is described, providing 
details about the data source-to-ontology mappings, the processing of the user seman-
tic query, and the incorporation of the table fragmentation rules into the system. In 
Section 4, preliminary experimental evaluation of Quete is provided. Finally, Section 
5 concludes the paper and gives directions for further research.  

2   Related Work 

A mediator is a system that is responsible for reformulating, at runtime, a user query 
on a single mediated schema into a composition of subqueries over the local source 
schemas [7]. To achieve this, a mapping is required that captures the relationship be-
tween the local source descriptions and the mediator schema. Specifying this corre-
spondence is a crucial step, as it influences both how difficult query reformulation is 
and how easily new sources can be added to or removed from the integration system. 
The two main approaches for establishing the mapping between each source schema 
and the global schema are the Global-as-View (GAV) and the Local-as-View (LAV) 
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approaches (for an overview, see [3]). In short, in the GAV approach, each mediator 
relation is defined in terms of the data source relations, while in the LAV approach, 
data source relations are defined in terms of the mediator schema. Older projects that 
follow the GAV approach are TSIMMIS [4] and DISCO [17], while Information 
Manifold [8] follows the LAV approach. 

Ontologies can be used as the global schema and it seems that database integration 
is currently evolving towards this direction. By accepting an ontology as a point of 
common reference, naming conflicts are eliminated and semantic conflicts are re-
duced. Below, we review a few recent ontology-based data integration projects. 

In BACIIS [2] and TAMBIS [15], a single conceptualization is provided trying to 
capture the information in the system data sources. User queries are built and results 
are returned in terms of this global conceptual schema. However, any change in the 
sources may require the modification of the global domain conceptualization. Addi-
tionally, in TAMBIS, the integration process is restricted to combine data from 
sources that contain different types of information for the same semantic entity. Thus, 
the potential overlapping aspect of the sources or the probable incompleteness of 
some of them is ignored. Moreover, BACIIS only integrates Web Databases and 
mappings are based on text parsing of web pages. 

In ONTOFUSION [1], separate conceptual schemas are used to describe the se-
mantics of each data source. Every concept in a physical database is mapped to a vir-
tual schema. Virtual schemas are ontologies representing the structure of the database 
at a conceptual level. Then, the various virtual schemas corresponding to the distinct 
databases are merged into new, unified virtual schemas that can be accessed by the 
users in order to form their queries. This approach adds more complexity to the whole 
task, but is otherwise promising.  

Java ApplicationJava Application

Java DB Engine

Source 1 Source 2 Source 3

Query ResultOntology

Jdbc-Odbc

Fragmentation
Rules

Mappings

Ontology

Jdbc-OdbcJdbc-Odbc
QUETE

 

Fig. 1. The integration architecture of Quete 

3   Integration Architecture 

Quete is an ontology-based mediator system capable of integrating relational data-
bases in evolving environments (participating data sources can change their schema, 
their semantics, their portion of shared data, or exit without any concern about the  
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other data sources). The architecture of the system is shown in Figure 1. A user (or 
Java application) issues a semantic query to a central site, that is expressed in terms 
of a reference ontology. Then, the system decomposes the semantic query to one or 
more local (SQL) subqueries, by taking into account the ontology, the data source-to-
ontology mappings, and the table fragmentation rules. The resulting subqueries are is-
sued to the underlying databases, whose answers are sent back to the central cite. 
Then, the system integrates the results and the final answer is returned to the user. We 
have to note that no translational or wrapper software is required for the individual 
data sources, as the central site communicates directly with the data sources, using 
ODBC protocols.  

3.1   Reference Ontology and Semantic Name Formulation 

In order to issue semantic queries and to map underlying attributes to a common point 
of reference, an ontology needs to be employed as a general schema. This reference 
ontology is used to describe schema semantics since it provides standardized names 
for concepts with unambiguous definitions. The idea is to map the shared schema 
elements of the sources to the reference ontology.  

In Quete, the reference ontology is organized as a graph of concepts that are related 
through two types of relationships; “IS-A” relationships and “HAS-A” relationships. 
“IS-A” relationships are used to model generalization/specialization of concepts, 
while “HAS-A” relationships are used to model component relationships. Each con-
cept can have an associated set of attributes. Additionally, there is a special class of 
concepts, called relationship concepts, modeling generic relationships. To represent 
ontologies like these, we could use the web-ontology languages RDFS [5] and OWL 
[11], whereas it is important to understand that the exact organization of the concept 
hierarchy and the terms used to represent concepts is irrelevant as long as they are 
agreed upon. Although this is a rather simple modeling mechanism, we believe that it 
is adequate for capturing real-world schemas, since any general relationship can be 
represented as a concept.  

Using a reference ontology, we can form the semantic name of a table as: 

SN = [CNpath] = [CN1; ...; CNm], 

 and the semantic name of an attribute as: SN = [CN1; ...; CNm] AN, 

where CNi , i = 1, ..., m, are concepts of the reference ontology and AN is a (possibly 
inherited) attribute of concept CNm. The semi-colon between concepts CNi and CNi+1 
means that concept CNi  “HAS-A” (generalization of) concept CNi+1, i=1, ..., m-1. In-
tuitively, the semantic name of a schema element (table or attribute) captures its se-
mantics w.r.t. the reference ontology.  

We say that a semantic name [CN1; ...; CNm] is subsumed by a semantic name 
[CN’1; ...; CN’m’] if (i) m’ ≤ m, (ii) CNm-m’+i coincides with or is a specialization of 
CN’i, i=1, ..., m’. Moreover, we say that a semantic name [CNpath] AN is subsumed by 
a semantic name [CN’path] AN’, if (i) [CNpath] is subsumed by [CN’path], and (ii) 
AN=AN’. Intuitively, a semantic name SN is subsumed by a semantic name SN’, if its 
semantics is the same or more specific than the semantics of SN’.   
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Fig. 2. An example biomedical ontology in UML 

We say that two semantic names are semantically overlapping, if (i) their last i (for 
an i > 0) concept names (CN) are the same or related through the "ISA" relationship, 
and (ii) they have the same attribute name (AN). Additionally, we say that two schema 
elements are semantically overlapping, if their corresponding semantic names are se-
mantically overlapping. Obviously, if a semantic name sn is subsumed by a semantic 
name sn’ then sn and sn’ are semantically overlapping. 

As a running example, consider the simple biomedical ontology of Figure 2 that 
describes the following scenario: Each Patient with breast cancer is associated with 
some Risk Factors, such as smoking habits, age, etc. After undergoing surgery, her 
Tumor is removed and sent to a molecular biology laboratory for taking part in a gene 
expression profiling experiment, based on the (spotted) DNA microarray technology1. 
In these experiments, fragments of genes, called Reporters, are spotted on a microar-
ray slide, which is hybridized with the cancerous tissue and a “normal” tissue. Hy-
bridization results are analyzed to generate Gene Expression data, expressing through 
a Ratio Value (per spotted gene), if the gene in the cancerous tissue is over-expressed, 
under-expressed, or equally expressed with respect to the “normal” tissue. In other 
words, the gene expression profile of the tumor is compared with that of a “normal” 
tissue. Gene Ontology (GO) is a well-known ontology for the annotation of gene 
products in terms of the biological processes in which they participate, the particular 
molecular functions that they perform, and the cellular components in which they act 
(see http://www.geneontology.org). In particular, GO consists of 3 independent tax-
onomies, namely GO Biological Process, GO Molecular Function, and GO Cellular 
Component. In our example ontology, reporters are annotated with the GO terms (i.e., 
GO ids and their corresponding GO names) that characterize the gene products of the 
gene that the reporter is part of. 

Note that according to our example ontology, GeneExpression is a relationship 
concept, whose instances relate a hybridization with a reporter and a ratio value, and 
RatioValue is an attribute of GeneExpression. Adittionally, note that (i) [Hybridiza-
tion; TumorSample] TumorIdentifier is a valid semantic name, representing the  
                                                           
1 http://www.ncbi.nlm.nih.gov/About/primer/microarrays.html 
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tumors participating in hybridization experiments, and (ii) [Reporter; GOBiological-
Process] GOName is a valid semantic name that is subsumed by (and semantically 
overlaps with) [GOAnnotation] GOName. 

Assume now that we want to integrate a Clinical and a Genomic database, using 
our example ontology. In Table 1, we give the semantic names of some of the Clinical 
and Genomic database schema elements (tables/attributes). Note that the atrributes 
SurgicalExcision.TumorSampleId and Hybridization.CancerousTissue are semanti-
cally overlapping. Of course, internal database IDs, such as BreastCancerPa-
tient.PatientId, do not have semantic names. 

Table 1. Clinical and Genomic database schema elements and their semantic names 

Type System Name Semantic Name 

Table RiskFactors [BreastCancerPatient; RiskFactors] 
Attribute PatientId  
Attribute Age [BreastCancerPatient; RiskFactors] Age 
Attribute YearsOfSmoking [BreastCancerPatient; RiskFactors] YearsOfSmoking 
Table BreastCancerPatient [BreastCancerPatient] 
Attribute PatientId  
Attribute Name [BreastCancerPatient] Name 
Attribute City [BreastCancerPatient] City 
Attribute SSN [BreastCancerPatient] SSN 
Table SurgicalExcision [BreastCancerPatient; TumorSample] 
Attribute PatientId  
Attribute TumorSampleId [BreastCancerPatient; TumorSample] TumorIdentifier 
Attribute SurgeryDate [BreastCancerPatient; TumorSample] SurgeryDate 

C
linical D

atabase Schem
a 

Table Hybridization  [Hybridization] 
Attribute HybridizationId  
Attribute CancerousTissue [Hybridization; TumorSample] TumorIdentifier 
Attribute Date [Hybridization] HybridizationDate 
Table GeneExpressionData [GeneExpression] 
Attribute HybridizationId  
Attribute ReporterId [GeneExpression; Reporter] ReporterName 
Attribute Value [ GeneExpression] RatioValue 
Table Reporter [Reporter]  
Attribute ReporterId [Reporter] ReporterName 
Attribute GeneSymbol [Reporter] HGNCGeneSymbol 
Table ReporterGOMolFun [GOMolecularFunction] 
Attribute ReporterId [GOMolecularFunction;Reporter] ReporterName 
Attribute GOId [GOMolecularFunction] GOId 
Attribute GOName [GOMolecularFunction] GOName 

G
enom

ic D
atabase Schem

a 

 
The data source-to-ontology annotation phase is used to capture the data to be in-

tegrated and is performed independently in each local data source. The Extractor tool 
of Unity [10, 6] is used to extract the underlying database schema (i.e., tables, attrib-
utes, foreign keys, primary keys). The extracted schema is then stored in a specific 
XML file, called X-Spec. Then, the administrator selects the schema elements (ta-
bles/attributes) that are going to be shared, and annotates the interesting to the user 
schema elements with semantic names over the reference ontology. Subsequently,  
the final X-Spec is sent to the central site. Note that the data source-to-ontology  
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annotation follows the Local-as-View approach [3]. Obviously, a data source is capa-
ble to change the schema, the semantics, and the portion of the data to be shared by 
just altering its X-Spec file. 

3.2   Query Processing in Quete 

After specification of the X-Spec files, the user is given the capability to issue seman-
tic queries. The query language is an attribute-only language similar to SQL, where 
the SELECT clause contains the terms to be projected in the final results and the op-
tional WHERE clause specifies selection criteria for the query. Continuing our run-
ning example, a user query, quser, requesting “the expression ratio value of genes, 
whose molecular function is “cell adhesion” and are expressed in (the tumor of) 
breast cancer patients that  (i) have smoked for more than 30 years and (ii) their sur-
gery date is the same with the date of the hybridization experiment” is: 

SELECT [BreastCancerPatient]Name, [Reporter]HGNCGeneSymbol,  
       [GeneExpression]RatioValue 
WHERE  [RiskFactors]YearsOfSmoking>30 AND   
       [Hybridization]HybridizationDate = [TumorSample]SurgeryDate  
       AND [Reporter;GOMolecularFunction]GOName=“cell adhesion”  
ORDERBY [BreastCancerPatient]Name 

Of course, the user must express the query terms through their semantic names. 
Notice that, in the semantic query, the FROM clause is absent. This is because, query 
concepts appear within semantic names. During query processing, the system auto-
matically identifies the local tables that will be accessed and the joins that are needed 
to link together the various interesting to the user parts of distributed information. For 
the time being, Sub-selects and Union operations are not supported in the query lan-
guage, while Order and Group operations are.  

After submission, the user semantic query is translated to SQL subqueries that are 
issued in parallel to the underlying data sources. There are three major requirements 
in forming a local subquery: 

Requirement 1: The system must identify the interesting to the user table attributes. 
We consider that a table attribute T.A with semantic name [CNpath] AN is interesting to 
the user, in the following cases:  

Case 1: [CNpath] AN is semantically subsumed by a semantic name sn appearing in 
the user query. Thus, the attribute T.A carries the same of more specific information 
than that requested by the user. 

Case 2: [CNpath] AN semantically overlaps with a semantic name sn appearing in 
the user query and it exists a table T’ whose semantic name [CN’path] is such that (i) 
the tables T and T’ share the same primary key, and (ii) [CN’path] AN is subsumed by 
[CNpath] AN and sn. Case 2 captures a common representation of the “IS-A” relation-
ship in relational databases. Intuitively, the meaning of table T’ is a specialization of 
that of T, and thus, T’ inherits attribute A from T. 

Case 3: there is a sequence of tables (T1, ..., Tm, T), such that (i) neighbour tables in 
the sequence can be joined based on foreign key information, and (ii) the semantic 
names [CN1

path], ..., [CNm
path] of  T1, ..., Tm , respectively, are such that the semantic 
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name [CN1
path; ...; CNm

path; CNpath]
2

 AN is subsumed by a semantic name sn appearing 
in the user query. The idea behind this case is that the information requested by the 
user, as expressed in sn, can be retrieved through the appropriate joins between local 
tables with related semantics.  

 

Requirement 2: As the FROM clause is missing from the user semantic query, the 
required intermediate tables, linking the tables with interesting to the user attributes 
(and in Cases 2 and 3, above, also the tables T’ and T1, ..., Tm, respectively) must be 
determined by the system. Additionally, the system must determine the conditions 
that are required to join these tables.  

 

Requirement 3: Assume that s, s’ are two local sources such that the interesting to 
the user attributes, identified in these sources, do not semantically overlap. Then, the 
local subqueries submitted to s and s’ should provide the (join) attributes, called DB 
link attributes,  that are needed to link the interesting to the user attributes that are 
provided by the two data sources.  

To achieve these requirements, our system inspects the reference ontology and the 
XSpec files (for retrieving the data source-to-ontology mappings and information on 
foreign keys). The (intermediate) join tables, needed to satisfy Requirement 2 above, 
are decided based on an algorithm that is provided by Unity [6], which links a set of 
tables by forming a local join tree. A local join tree is a connected undirected graph 
whose nodes correspond to database tables and there is a link between two nodes if 
there is a join (based on foreign keys) between the corresponding two tables. All iden-
tified tables are joined by (i) enforcing equality on their attributes that correspond to 
pairs 〈foreign key, primary key〉, and (ii) enforcing the conditions in the WHERE 
clause of the user query that can be checked locally.     

To satisfy Requirement 3, our system proceeds as follows: Let s, s’ be two local 
sources such that the interesting to the user attributes, identified in these sources, do 
not semantically overlap. Let TS and TS’ be the sets of tables of s and s’, respectively, 
that have been identified in order to satisfy Requirements 1 and 2, above. Our system 
inspects TS and TS’, and if it finds a pair of attributes T.A and T’.A’ (T ∈ TS and T’ ∈ 
TS’) that are semantically overlapping then it includes them in the local subqueries to 
s and s’, respectively. These attributes will be used for joining the local subqueries to 
s and s’, at result composition time. 

Based on the above analysis, our local subquery formation algorithm builds one 
SQL subquery, for each data source. This SQL subquery provides all the attributes of 
the local source that are interesting to the user, plus the DB link attributes (if any). We 
want to note that Unity considers as interesting to the user only the attributes whose 
semantic names appear in the user query. This is a subcase of Case 1, above. Thus, in 
Unity, an attribute whose semantic name semantically overlaps, but is not the same, 
with a semantic name in the user query is ignored. Moreover, Unity does not take care 
of Requirement 3. 

When the results from the local subqueries are returned to the central site, they are 
composed based on a result composition plan, that is formed using Join, Union, and 
Projection operations, while, if needed, operations Group and Order are applied at the 
                                                           
2 If two neighbour concepts names in CN1

path; ...; CNm
path; CNpath are the same then only one is 

kept. 
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end. After execution of this composition plan on the local subquery results, final re-
sults are presented to the user.  

Continuing our running example, consider a Clinical database (DB1) with tables 
RiskFactors, BreastCancerPatient, and SurgicalExcision, and a Genomic database 
(DB2) with tables Hybridization, GeneExpressionData, Reporter, and ReporterGO-
MolFun. After describing the attributes of these tables using our example ontology, as 
shown in Table 1, the corresponding X-Spec files are sent to the central site. Assume 
now that the user query quser is issued. 

Checking the corresponding X-Spec files, it is concluded that the attributes 
BreastCancerPatient.Name, RiskFactors.YearsOfSmoking, SurgicalExci-
sion.SurgeryDate, and SurgicalExcision.TumorSampleId should appear in the 
SELECT clause of the Clinical database subquery. The first attribute is needed to be 
presented to the user, the second and third to satisfy the condition in the WHERE 
clause of the user query, and the fourth (which is a DB link attribute) is needed to join 
this local subquery with that submitted to the Genomic database. The local join tree 
that connects the tables BreastCancerPatient, RiskFactors, and SurgicalExcision is: 
RiskFactors – BreastCancerPatient – SurgicalExcision.  

Similarly, the attributes Reporter.GeneSymbol, GeneExpressionData.Value, Hy-
bridization.Date, ReporterGOMolFun.GOName, and Hybridization.CancerousTissue 
should appear in the SELECT clause of the Genomic database subquery and the corre-
sponding local join tree is: Hybridization – GeneExpressionData – Reporter –
ReporterGOMolFun.  

Then, the system forms the following two subqueries, q1 and q2, that will be issued 
to the local databases DB1 and DB2, respectively.  

DB1: SELECT BreastCancerPatient.Name, RiskFactors.YearsOfSmoking,  
            SurgicalExcsion.SurgeryDate, SurgicalExcsion.TumorSampleId  
     FROM   RiskFactors, BreastCancerPatient, SurgicalExcision 
     WHERE  RiskFactors.YearsOfSmoking>30 AND 
            RiskFactors.PatientId=BreastCancerPatient.PatientId AND 
            BreastCancerPatient.PatientId=SurgicalExcision.PatientId  
DB2: SELECT Reporter.GeneSymbol, GeneExpressionData.Value, 
            Hybridization.Date, ReporterGOMolFun.GOName,   
            Hybridization.CancerousTissue  
     FROM   Hybridization, GeneExpressionData, Reporter,ReporterGOMolFun 
     WHERE  Hybridization.HybridizationId = 
            GeneExpressionData.HybridizationId AND 
            GeneExpressionData.ReporterId = Reporter.ReporterId  AND 
            Reporter.ReporterId= ReporterGOMolFun.ReporterID AND 
            ReporterGOMolFun.GOName= “cell adhesion”   

The above subqueries q1 and q2 are issued in parallel to the Clinical and Genomic 
database, respectively, using threads. Note that, the condition [RiskFac-
tors]YearsOfSmoking>30 (resp. [Reporter;GOMolecularFunction]GOName=“cell ad-
hesion”), appearing in the WHERE clause of the user query quser, is checked in q1 
(resp. q2). However, the condition [Hybridization]HybridizationDate = [TumorSam-
ple]SurgeryDate cannot be checked in a local subquery alone.  

Our algorithm for forming the result composition plan is given below (Alg. 3.1). 
We want to note that Alg 3.1 does not have to search the XSpec files or the reference 
ontology, as all the information that it requires from these sources has already been 
retrieved during the formation of the local subqueries. In Section 3.3, we describe 
how Alg 3.1 is extended, in the case that knowledge on table fragmentation exists.  



368 H. Kondylakis, A. Analyti, and D. Plexousakis 

Algorithm 3.1. ResultCompositionPlan(quser, QS)
Input: (i) the user semantic query, quser, and (ii) the local subqueries QS = {q1, …, qn}
Output: Composition plan for the local subquery results 

  1: For i := 1, ..., n do {
            Let the projection attributes of qi be the attributes returned by qi;

       } /* End For */ 

2:  Let {S1, ..., Sk} be all the minimal subsets of QS such that: 

(i)  for each semantic name sn appearing in quser, there is a projection attribute  
          of a subquery in Si, whose semantic name semantically overlaps with sn,

          (ii)  for each subquery in Si, there is a projection attribute which does not  

                     semantically overlap with a projection attribute of another subquery in Si, and 
          (iii) there is global join tree connecting all subqueries of Si, i = 1, ..., k;

  3: For i := 1, ..., k do {
3.1 Join the local subqueries in Si, by forcing equality on their semantically  
          overlapping projection attributes and applying the user specified conditions,  

          not already applied to the local subqueries in Si;

     /* Join semantically overlapping subqueries  
        and apply user specified conditions */ 
3.2 Project the new subquery pi to the attributes whose semantic names semantically  
          overlap with these in the SELECT, GROUPBY, and ORDER clause of quser;

       } /* End For */ 
  4:  Union resulting subqueries pi’ (for i = 1, ..., k) by aligning their semantically overlapping 
            attributes;  /* Union pi’, i = 1, ..., k and produce a single subquery */ 
  5:  Apply to the resulting subquery, the Group and Order operations (if any) indicated in quser;

  6: Return the formed result composition plan, after usual optimization techniques are  
            applied; 

 
 

In Alg. 3.1, input local subqueries are placed in QS. The projection attributes of 
each local subquery q are defined as the attributes returned by q (Step 1). Local sub-
queries having projections attributes that are semantically overlapping are called se-
mantically overlapping. A global join tree is a connected undirected graph whose 
nodes correspond to local subqueries and there is a link between two nodes, if their 
corresponding local subqueries are semantically overlapping. We consider that se-
mantically overlapping subqueries represent information that overlaps on their seman-
tically overlapping projection attributes, and thus they should be joined. 

Step 2 computes all the minimal subsets Si, i= 1, ..., k, of QS such that: (i) for each 
semantic name sn appearing in the user query, there is a projection attribute of a sub-
query in Si, whose semantic name semantically overlaps with sn, (ii) for each sub-
query in Si, there is a projection attribute which does not semantically overlap with a 
projection attribute of another subquery in Si, and (iii) there is a global join tree con-
necting all subqueries in Si. The reasoning behind Step 2 is that the answers returned 
to the user should be correct and provide all requested attributes. 

Then, local subqueries in Si, i= 1, ..., k, are joined by (i) forcing equality on their 
semantically overlapping projection attributes, and (ii) applying the user specified 
conditions, not already applied to the local subqueries in Si (Step 3.1). Each resulting 
subquery pi, i= 1, ..., k, is projected to the attributes whose semantics names semanti-
cally overlap with these in the SELECT, GROUPBY, or ORDER clause of the user 
query (Step 3.2). Subsequently, all resulting subqueries pi’, i= 1, ..., k, are unioned 
(Step 4). Finally, Group and Order operators are applied, as indicated in the user 
query (Step 5).  
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Note that due to conditions (i) and (ii) of Step 2, it holds that for each i= 1, ..., k,  
|Si| ≤ r , where r is the number of different semantic names appearing in the user 
query. Additionally, note that although there is no j ≠ i, such that Si ⊆ Sj, for i, j= 1, ..., 
k, local subquery sets Si can be overlapping. Thus, the result composition plan can be 
optimized by first joining common subqueries and then, proceeding to further joins 
that use the result.  Alg. 3.1 returns the optimized result composition plan (Step 6). 

Continuing our running example, the set S1={q1, q2}, where q1 and q2 are the local 
subqueries submitted to DB1 and DB2, respectively, satisfies the conditions of Step 2 
of Alg 3.1. Thus, subqueries q1 and q2 are joined based on the conditions (i) Surgica-
lExcision.TumorSampleId = Hybridization.CancerousTissue, and (ii) SurgicalExci-
sion.SurgeryDate = Hybridization.Date (see Step 3.1). Note that condition (i) is due 
to the fact that attributes SurgicalExcision.TumorSampleId, Hybridiza-
tion.CancerousTissue are semantically overlapping, while condition (ii) is due to the 
user specified condition [Hybridization]HybridizationDate = [TumorSam-
ple]SurgeryDate. The resulting query p1 is then projected to the attributes BreastCan-
cerPatient.Name, Reporter.GeneSymbol, and GeneExpressionData.Value that are in-
teresting to the user (see Step 3.2) and results are ordered based on 
BreastCancerPatient.Name (See Step 5).  

The composition of the local subquery results is done with the help of a central 
DBMS and consists of the following five steps: 

1. For every subquery issued to a local data source, design the temporary table that 
will be constructed in the central database to store the returned results. 

2. Build these tables in the central (lightweight) database. 
3. Build the global SQL query that will be issued to the central database, according 

to the result composition plan formed by Alg. 3.1 (in the result composition plan, 
local subqueries are replaced by their corresponding temporary tables). 

4. Store the local subquery results into the temporary tables, created in Step 2. 
5. Execute the global SQL query (formed in Step 3) over the temporary tables, get 

the results, and present them to the final user. 
 

The first four steps are executed in parallel, using threads. As the global SQL 
query is issued to the central database, Join, Union, Order, and Group operations are 
executed by the central DBMS.  

3.3   Considering Table Fragmentation Rules 

In Quete, we take into account information on horizontal, vertical, and hybrid table 
fragmentation [12], where table fragments are distributed over the various data 
sources. This consideration improves system’s recall and optimizes performance.  

In our case, horizontal fragmentation is based on a defining condition, which is a 
boolean expression (in conjunctive normal form) of simple conditions: “Attr compari-
son-operator Value”, where Attr is an attribute, comparison-operator is one of <, >, 
=, ≤, ≥, ≠, and Value is a number, or string. For example, consider the table Breast-
CancerPatient(PatientId, Name, City, SSN). A horizontal fragmentation of this table 
could result to two fragments. The first fragment contains tuples with PatientId < 500 
and is stored in DB1, while the second contains tuples with PatientId ≥ 500 and is 
stored in DB2. Moreover, the system supports vertical fragmentation. For example, 
vertical fragmentation of the table BreastCancerPatient could result to three  
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fragments. The first fragment with attributes PatientId and Name is stored in DB1, the 
second with attributes PatientId and City is stored in DB2, and the third with attrib-
utes PatientId and SSN is stored in DB3. We also support hybrid fragmentation, 
which is a tree-structured partitioning of a table, formed by successive horizontal and 
vertical fragmentations, or vice-versa. 

The tables that result after the application of horizontal, vertical, and hybrid frag-
mentation are called horizontal, vertical, and hybrid fragments, respectively. Hybrid 
fragments are associated with a condition which is the conjunction of the defining 
conditions of the horizontal fragmentations through which they have been derived (if 
any) or true. The rules that describe table fragmentation are called table fragmenta-
tion rules and stored in an XML file in the central site.  

Extending our local subquery formation algorithm, we consider table fragmentation 
rules during the formation of the local subqueries. Specifically, assume that (N,E) is the 
local join tree, identified for forming a local subquery in the case that no knowledge on 
table fragmentation exists. Then, if an f∈N, refers to a table fragment, our algorithm 
forms one subquery qf querying only f, and another subquery qr querying the rest of the 
tables in N, keeping in the SELECT clause of qr the foreign key that will connect qf with 
qr, at result composition time. Table fragmentation rules are also checked during the 
formation of the result composition plan. The reason is that fragments of the same table 
t (containing information interesting to the user) should be composed through the ap-
propriate Join and Union operations before any further processing, so that final results 
(presented to the user) are the same as if t had never been fragmented.  

An additional benefit from using horizontal and hybrid fragmentation rules is that 
the system may be able to predict that the execution of certain subqueries on table 
fragments will return empty results, and thus avoid their execution, optimizing per-
formance. In Quete, horizontal and hybrid fragmentation rules are checked, each time 
a generated local subquery refers to a horizontal or hybrid table fragment. If the frag-
ment’s associated condition conflicts with that in the WHERE clause of the local sub-
query then the subquery is discarded. 

Continuing our running example, consider another Clinical database (DB4) with 
the table Breast_cancer_patient(PatientId, Name, City, SSN, Age, YearsOfSmoking), 
but with no information about surgeries. Thus, our integrated environment now in-
cludes the sources DB1, DB2, DB3, and DB4. 

Assume now that a table PatientWithBreastCancer, containing information about 
breast cancer patients in the whole prefecture of Heraklion, has been (at some time) 
fragmented horizontally into two fragments. The first with defining condition= <City 
= "Iraklion"> is stored in DB1 and the second with defining condition= <City ≠ 
"Irakion"> is stored in DB4 and is the table Breast_cancer_patient. Assume now that 
the first fragment is further fragmented vertically (for reasons of perfomance) into 
two fragments that are the tables BreastCancerPatient and RiskFactors. Note that all 
tables BreastCancerPatient, RiskFactors, and Breast_cancer_patient are hybrid 
fragments of the same table, the first two with associated condition <City = "Irak-
lion"> and the third with associated condition <City ≠ "Iraklion">.  

Assume now that the user poses the semantic query quser of our running example. If 
no knowledge about this hybrid fragmentation exists, information about tumor surgeries 
(and thus, about the gene expression profiles) of breast cancer patients that do not live in 
the city of Iraklion will be lost. This is because, (i) all projection attributes of the local 
subquery, issued to DB4, semantically overlap with a projection attribute of the local 
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subqueries q1 and q3, and (ii) there is no way to link the clinical information that is 
stored in DB4 with the genomic information stored in DB2. If, however, knowledge 
about this hybrid fragmentation exists, the system can combine the table fragments to 
reconstruct the original table PatientWithBreastCancer and then, take its join with the 
table SurgicalExcision of DB1 (based on foreign key information). This way there will 
be no information loss, and interesting gene expression information about breast cancer 
patients, living in the whole prefecture of Heraklion, will be retrieved.  

To support knowledge on horizontal, vertical, and hybrid table fragmentation, 
Alg. 3.1 is extended by adding after Step 1, the statement QS = CombineFrag-
ments(QS). The algorithm CombineFragments(S) (Alg. 3.2) takes as input a set of  
local subqueries S and combines the table fragments in S, so as to reconstruct the 
original tables. Then, it joins the original tables t with the other subqueries issued to 
the local sources of the fragments of t. Thus, there will be no information loss due to 
the fact that table fragments are distributed over the various data sources.  

 
Algorithm 3.2. CombineFragments(S)
Input: a set of local subqueries S={q1,...,qn}
Output: a new set of subqueries that recombine fragmented tables and proceed to useful joins 

1: For i :=1,…,n do {
        Let DBs(qi) be a singleton set with the local source of qi;

     } /* End For */
2:  Let FS be the local subqueries in S that refer to table fragments; 

 3:  Let {S1, …, Sk} be maximal subsets of FS such that all subqueries in Si , for i =1, …, k,

             refer either (i) to vertical fragments of the same table or (ii) to hybrid fragments of  the 
              same table such that their associated conditions are not conflicting; 
 4: For i :=1, …, k do {

Join the subqueries in Si, by forcing equality on their primary key;  
         Let the projection attributes of the resulting subquery q be the union of the projection 
             attributes of the subqueries in Si, keeping from the common primary keys only one; 

FS := (FS – Si)  {q}; DBs(q) := {DBs(q') | q'  Si};

   } /* End For */ 
 5:  Let {S1, …, Sk} be maximal subsets of FS such that all subqueries in Si, for i =1, …, k,
             refer either to horizontal fragments of the same table or to hybrid fragments of   

              the same table; 
 6: For i :=1,…,k do {

        Take the union of the subqueries in Si;

         Let the projection attributes of the resulting subquery q be the projection attributes of 
              one of the subqueries in Si;

FS := (FS – Si)  {q}; DBs(q) := {DBs(q') | q'  Si};

 } /* End For */ 
7: FS' :=FS; S' :=S - FS;                                /* Initialize FS' and S' */
8: For each subquery q  FS  do {

/* Join reconstructed tables with other local subqueries */ 
For each subquery q'  S - FS do { /* q' is a local subquery */ 

If DBs(q') DBs(q) then {
Join q' and q based on foreign key information between (i) the tables appearing  

                           in q' and (ii) the table fragments appearing in q and stored in DBs(q');
                    Let the projection attributes of the resulting subquery q" be the union of the 

                       projection attributes of q and q', removing the foreign key used in the join; 

FS' := FS' - {q};      S' := (S' - {q'})  {q"};   } 
             } /* End For */
    } /* End For */
9: Return(S' FS' );  
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In Step 4, the vertical and hybrid fragmentation rules are considered and all (i) ver-
tical fragments of the same table, and (ii) hybrid fragments of the same table, such 
that their associated conditions are not conflicting, are joined. Note that subquery sets 
Si, for i =1,…, k, can be overlapping if they refer to hybrid fragments of the same ta-
ble. Additionally, note that all subqueries in Si, for i =1, …, k, are local and, as they 
refer to vertical and hybrid fragments of the same table, have common primary keys.  

In Step 6, only the horizontal fragmentation rules are considered and all horizontal 
fragments of the same table are unioned. Additionally, in Step 3.2, all subqueries cre-
ated in Step 3.1 that refer to hybrid fragments of the same table are unioned (fully re-
constructing the original table). Note that in Step 6, all subquery sets Si, for i=1, …, k, 
are pairwise disjoint and all subqueries in Si, for i=1, …, k, have common projection 
attributes.   

Thus, vertically fragmented tables are reconstructed through Step 4, horizontally 
fragmented tables are reconstructed through Step 6, and hybrid-fragmented tables are 
reconstructed through both steps 4 and 6.  

Then, Alg. 3.2 joins the subqueries that reconstruct the original tables t with the other 
subqueries issued to the local sources of fragments of t. The join is based on foreign key 
information, identified during the formation of the local subqueries. In our example, the 
subquery that reconstructs the original table PatientWithBreastCancer is formed by (i) a 
join on the fragments stored in DB1 (by enforcing equality of their PatientId attributes), 
and (ii) a subsequent union of the result with the fragment stored in DB4. The resulting 
subquery is then joined with the second subquery submitted to DB1: SELECT Patien-
tId, TumorSampleId, SurgeryDate FROM SurgicalExcision by forcing equality on 
the PatientId attributes of the two subqueries. 

Finally, we would like to mention that considering table fragmentation rules, un-
necessary joins (in Step 3.1 of Alg 3.1) between local subqueries, that refer to frag-
ments of the same table and have conflicting associated conditions, are avoided. Thus, 
performance is improved. 

4   Preliminary Performance Evaluation 

To evaluate Quete, we performed several experiments. Here, we present the evalua-
tion conducted for the needs of the PrognoChip project. Our resources were limited, 
thus we used only four machines with an Intel Pentium 4 processor on 3.4 GHz, and 2 
GB of RAM. In particular, for our experiments, we used four SQLServer local data-
bases (two Clinical and two Genomic). The two Clinical databases capture patient 
clinical information of two Hospital environments. The first Genomic database is 
dedicated to DNA microarray experiment settings, and the second one to the storage 
of gene expression profiles of tumors, participating in microarray experiments. In 
these two Genomic databases, there exist two horizontal fragments of the same table. 
The schema of each database was annotated using a reference ontology, designed by 
us. In our study, we issue a user semantic query that uses around 10 tables from each 
database. Our central database also uses SQLServer and resides at the same machine 
as one of the Clinical databases. To evaluate our system, we have built a benchmark 
program that loads local tables with a prefixed number of rows.  
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In Figure 3, the performance results of four experiments are shown. In the first two 
experiments (denoted by, 3DBs fragment, 3DBs no fragment), we used three data-
bases (one Clinical and two Genomic), with and without considering table fragmenta-
tion rules, respectively. In the last two experiments (denoted by, 4DBs fragment, 
4DBs no fragment), we used all four databases (two Clinical and two Genomic), 
again with and without considering table fragmentation rules, respectively. We see 
that the whole system has an acceptable performance, even with large data sets and 
complex queries. Moreover, knowledge on table fragmentation improves the perform-
ance of the system. 
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Fig. 3. Performance of Quete with and without knowledge on table fragmentation 

In particular, let us define the elapsed time of a local subquery q, ETq, as the time 
from issuing q to the corresponding local source, until results are returned to the cen-
tral site. Considering table fragmentation rules, a performance gain is achieved in the 
case that EThq > ETslq, where hq is a local subquery involving a conflicting horizontal 
fragment, and slq is the slowest local subquery that does not involve a conflicting 
horizontal fragment. This is because local subqueries are issued in parallel, thus the 
total elapsed time coincides with the elapsed time of the slowest subquery. Further, a 
performance gain is achieved at result composition time, since unnecessary joins be-
tween local subqueries, that refer to conflicting table fragments, are avoided.  

5   Conclusions and Outlook 

Quete is an ontology-based mediator system that integrates several underlying rela-
tional databases by providing the user with the capability to transparently query them. 
Since every source relation is defined over the reference ontology, it follows the Lo-
cal-as-View approach [3], and thus, can flexibly accommodate the addition/deletion 
and evolution of the local sources that participate in the integrated system. Moreover, 
underlying sources can evolve at will, without any changes to the reference ontology. 
Comparing with Information Manifold [8], which also follows the Local-as-View  
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approach, our supported data source-to-ontology mappings are quite simple. How-
ever, we sacrifice expressiveness in order to achieve performance and easiness in use 
(both for local annotators and users).  

A novel feature of Quete is that rules concerning horizontal, vertical, and hybrid 
table fragmentation can be declared and used, increasing system’s recall and improv-
ing performance. To the best of our knowledge, no other ontology-based mediator 
system takes into account table fragmentation information. 

Finally, we would like to note that our work does not claim to be complete and fur-
ther performance evaluation experiments need to be performed. Our future plans also 
include the expansion of our implementation to non-relational data sources, and in 
particular, web databases with limited query capabilities (through wrappers). More-
over, we plan to enhance and ease the administrator’s task, by extending the schema 
mapping tool described in [9], such that the semantic names of the data source schema 
elements are generated semi-automatically and stored directly in the corresponding X-
Spec files. 
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