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Abstract. Despite that formal and informal quality aspects are of sig-
nificant importance to business process modeling, there is only little em-
pirical work reported on process model quality and its impact factors. In
this paper we investigate understandability as a proxy for quality of pro-
cess models and focus on its relations with personal and model character-
istics. We used a questionnaire in classes at three European universities
and generated several novel hypotheses from an exploratory data anal-
ysis. Furthermore, we interviewed practitioners to validate our findings.
The results reveal that participants tend to exaggerate the differences in
model understandability, that self-assessment of modeling competence
appears to be invalid, and that the number of arcs in models has an
important influence on understandability.

1 Introduction

Even though workflow and process modeling have been used extensively over
the past 30 years, we know surprisingly little about the act of modeling and
which factors contribute to a “good” process model in terms of human under-
standability. This observation contrasts with the large body of knowledge that
is available for the formal analysis and verification of desirable properties, in
particular for Petri nets. To guarantee a certain degree of design quality of the
model artifact in a wider sense, several authors propose guidelines for the act of
modeling (e.g. [1,2]) but yet with little impact on modeling practice. Clearly, an
empirical research agenda is required for acquiring new insights into quality (cf.
[3]) and usage aspects (cf. [4]) of process modeling.

Following this line of argumentation, a recent empirical study provides evi-
dence that larger, real-world process models tend to have more formal flaws (such
as e.g. deadlocks) than smaller models [5,6]. One obvious hypothesis related to
this phenomenon would be that human modelers loose track of the interrelations
of large and complex models due to their limited cognitive capabilities (cf. [7]),
and then introduce errors that they would not insert in a small model. There
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are further factors such as the degrees of sequentiality, concurrency, or struc-
turedness that presumably affect the understandability of a process model [8].
Validating such hypothetical relationships empirically would not only represent
a major step forward towards understanding quality of process models beyond
verification, but also provide a sound theoretical basis for defining guidelines for
process modeling in general.
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Fig. 1. Proces model F and process model L from the questionnaire

Since only little research has been conducted on quality aspects of process
models so far [3], we approach this area with an experimental design focusing on
the understandability of process models (not of process modeling languages). By
having a questionnaire filled out by 73 students who followed courses on process
modeling at the Eindhoven University of Technology, the University of Madeira,
and the Vienna University of Economics and Business Administration, we aim to
gain insight into empirical connections between personal and model characteris-
tics and the ability of a person to understand a process model properly. Figure 1
shows two process models that were included in the questionnaire. Furthermore,
we conducted interviews in order to contrast the findings of the questionnaire
with expert opinions. In this context, our contribution is twofold. First, we pro-
vide an operationalization of understandability as well as of personal and model
related factors that may influence process model understandability. Second, we
contribute new findings to the still meagre body of empirical knowledge on pro-
cess modeling. Against this background, the remainder of the paper is structured
as follows. In Section 2 we discuss related work and identify a lack of empirically
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validated insight on the understandability of process models. Then, Section 3
introduces the research design, i.e. in particular, the conceptualization of the
questionnaire, the statistical analysis that can be applied on the acquired data,
and the role of the expert interviews. In Section 4 we present the results of the
analysis and the interviews. Section 5 concludes the paper, discusses limitations
of the findings, and identifies open questions that need to be addressed by future
research.

2 Related Work

There are basically three streams of research related to our work in the concep-
tual modeling area: top-down quality frameworks, bottom-up metrics related to
quality aspects, and empirical surveys related to modeling techniques.

One prominent top-down quality framework is the SEQUAL framework [9,10].
It builds on semiotic theory and defines several quality aspects based on relation-
ships between a model, a body of knowledge, a domain, a modeling language,
and the activities of learning, taking action, and modeling. In essence, syntactic
quality relates to model and modeling language; semantic quality to model, do-
main, and knowledge; and pragmatic quality relates to model and modeling and
its ability to enable learning and action. Although the framework does not pro-
vide an operational definition of how to determine the various degrees of quality,
it has been found useful for business process modeling in experiments [11]. The
Guidelines of Modeling (GoM) [2] define an alternative quality framework that
is inspired by general accounting principles. The guidelines include the six prin-
ciples of correctness, clarity, relevance, comparability, economic efficiency, and
systematic design. This framework was operationalized for EPCs and also tested
in experiments [2]. Furthermore, there are authors (e.g. [3]) advocating a speci-
fication of a quality framework for conceptual modeling in compliance with the
ISO 9126 standard [12] for software quality. A respective adaptation to business
process modeling is reported in [13]. Our experiments addresses partial aspects
for these frameworks. In particular, we focus on understandability of process
models as an enabler of pragmatic quality (SEQUAL) and clarity (GoM). This
requires us not only to ask about understandability, but also check whether mod-
els are interpreted correctly. This is in line with research of Gemino and Wand
[14] who experimented on conclusions that people can draw from models.

There is several work on bottom-up metrics related to quality aspects of pro-
cess models, stemming from different research and partially isolated from each
other (see [15,16,17,18,19,20,21,22,23] or for an overview [8]). Several of these
contributions are theoretic without empirical validation. Most authors doing ex-
periments focus on the relationship between metrics and quality aspects: Can-
fora et al. study the connection mainly between count metrics – for example, the
number of tasks or splits – and maintainability of software process models [21];
Cardoso validates the correlation between control flow complexity and perceived
complexity [24]; and Mendling et al. use metrics to predict control flow errors
such as deadlocks in process models [6,8]. The results reveal that an increase in
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size of a model appears to have a negative impact on quality. This finding has an
impact on the design of our questionnaire. To gain insights that are independent
of process size, we keep the number of tasks constant and study which other
factors might have an impact on understandability.

Finally, there are some empirical surveys related to modeling techniques. In
[25] the authors study how business process modeling languages have matured
over time. While this is valuable research it does not reveal insights on single,
concrete process models. The same holds for [26] who study the usability of
UML. In [27] the authors also approach understandability, not of individual
process models, but on the level of the modeling language. They find out that
EPCs seem to be more understandable than Petri nets. Inspired by this survey
we decided to use an EPC-like notation in our questionnaire to minimize the
impact of the notation on understandability.

To summarize, there is essentially one relation that seems to be confirmed by
related research, and that is that larger models tend to be negatively connected
with quality. The aim of our questionnaire is to enhance this rather limited body
of knowledge.

3 Research Design

Only little research has been conducted on quality aspects of process models
so far [3]. In particular, we identify the following six research questions re-
lated to the factors that might influence understandability of process models
(cf. [27,8,28,10]):

1. What personal factors (beyond general psychological and intellectual factors)
have an influence?

2. Which model characteristics (e.g. number and type of splits) contribute to
a good understandability?

3. How does the modeling purpose (e.g. documentation versus enactment) re-
late to understandability?

4. How is understandability related to knowledge about the domain that is
described in the model?

5. Which differences in understandability exist when observing semantically
equivalent models described in different modeling languages?

6. What is the impact of different visual layout strategies or graph drawing
algorithms on understandability?

We approach these questions with an experimental design focusing on personal
and model characteristics (question 1 and 2). Furthermore, we strive to neutralize
the influence of the other factors: related to question 3, we gathered a set of
process models from practice that were all created for documentation purposes.
To eliminate the influence of domain knowledge (question 4), we recoded the task
labels to capital letters A to W . Based on the observation by [27] that EPCs
appear to be easier to understand than Petri nets, we chose for an EPC-like
notation without events. The participants received a short informal description
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of the semantics similar to [29, p.25] (question 5). Finally, we drew all models in
the same top-to-bottom style with the start element at the top and end element
at the bottom (question 6).

3.1 Phases of the Experiment

The experiment was conducted in three phases. First, we collected a set of eight
process models from practice with an equivalent number of tasks (25) and con-
structed two additional variants for each of them by changing the type of some
routing elements (e.g. a particular XOR-split in a AND-split). For these 24 pro-
cess models we built a questionnaire that measured the following variables:

– theory: Students made a self-assessment of theoretical knowledge in busi-
ness process modeling on a five point ordinal scale,

– practice: Students made a self-assessment of practical experience in busi-
ness process modeling on a four point ordinal scale,

– perceived: For each model, students made an assessment of the perceived
difficulty of the model,

– score: For each model, students answered a set of eight closed questions
about order, concurrency, exclusiveness, or repetition of tasks in the model
and one open question where respondents were free to identify a model prob-
lem (if they felt there was any); from the answers we calculated score as the
sum of correct answers to serve as an operationalization of understandability;
i.e. score measures in how far the semantics of the model are interpreted
correctly by the participant.

– ranking: For all variants of the same model, students ranked these regarding
their relative perceived understandability. For example, students were asked
if process A was more difficult to understand than process B.

The correct answers for the questions relating to score were determined with
the EPC analysis tools introduced in [30]. While the closed answers were eval-
uated automatically, the open answers had to be interpreted and matched with
the errors detected by the tools. The same EPC analysis tools were also used
to calculate the set of metrics (cf. next section). For this first version of the
questionnaire, we conducted a pre-test which led to a reduction of the model
set to 12 process models, i.e. four models in three variants each, and a refor-
mulation of some questions. We basically dropped the more simple models for
preventing fatigue. Second, we created six versions of the questionnaire with dif-
ferent randomized order of models and variants for eliminating learning effects
throughout the answering. The questionnaire was filled out in class settings at
the various universities by 73 students in total. It led to a total of 847 complete
model evaluations. At the time of the experiment, students were following or
completing courses on process modeling at the Eindhoven University of Tech-
nology, the University of Madeira, and the Vienna University of Economics and
Business Administration. Participation was voluntarily. The motivation for the
students was the fact that they felt to be in a competitive situation with the
other universities, and that we informed them that the questionnaire would be a
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good exam preparation. The answers were coded and analyzed using the statis-
tics software packages SPSS and Statgraphics. Third, we conducted interviews
with experts in business process modeling to contrast our findings with insights
from practitioners. This validation is of particular importance considering the
insecure external validity of student experiments in information systems research
(see [3]).

3.2 Hypothetical Relations Between Factors and Understandability

This section discusses the hypothetical relation between the various factors and
understandability. Table 1 gives an overview. In particular, we expect that the
perceived difficulty of a process model (perceived) would be negatively con-
nected with the score as an operationalization of actual understandability. The
same positive connection is assumed with theory and practice while the count
metrics #node, etc., and the diameter of the process model (i.e. the longest
path) should be related to a lower understandability. The precise formulae for
calculating these and the following metrics are presented in [8]. The sequen-

tiality, i.e. the degree to which the model is constructed of task sequences,
is expected to be positively connected with understandability. The same is ex-
pected for separability, which relates to the degree of articulation points in
a model (i.e. nodes whose deletion separates the process model into multiple
components), and structuredness, which relates to how far a process model
is built by nesting blocks of matching join and split routing elements. Both con-

nectivity and density relate arcs to nodes: the former by dividing #arcs by
#nodes, the latter by dividing #arcs to the maximally possible number of arcs.
The token split metric captures how many new tokens can be introduced by
AND- and OR-splits. It should be negatively connected with understandability.
The average and maximum connector degree refer to the number of in-
put and output arcs of a routing element, which are expected to be negatively
connected with score. The same expectation is there for potential routing el-
ements’ mismatch, also calculated on the basis of their degree and summed
up per routing element; for depth related to the nesting of structured blocks;
for the control flow complexity metric as the number of choices that can
be made at splits in the model; and for connector heterogeneity as the
degree to which routing elements of different types appear in a model. In the
subsequent section we contrast these hypothetical connections with the results
of the questionnaire.

4 Results

This section presents the results of the questionnaire and interviews. We first
analyze the distribution of score in Section 4.1 and discuss its connection with
perceived difficulty in Section 4.2. Then, we analyze personal factors and their
connection with score in Section 4.3. In Section 4.4 we consider the connection
of model-related factors operationalized by the set of metrics. The final part of
this section is devoted to our interviews with modeling experts.
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Table 1. Hypothetical relation between factors and understandability

factor score factor score

perceived + connectivity –
theory + density –
practice + token splits –
#nodes – av. connector degree –
#arcs – max. connector degree –
#tasks – mismatch –
#connector – separability +
#and (join, split) – depth –
#xor (join, split) – structuredness +
#or (join, split) – control flow complexity –
diameter – connector heterogeneity –
sequentiality +

4.1 Distribution of Score

If we apply a standard grading scheme with 10% intervals1 there would have been
8 students having an A, 27 having a B, 21 with a C, 8 with a D, and 9 with an E.
Beyond that, the mean score for all but one of the models ranges between 6.8
and 7.4 with 9 being the maximum, while one model has only a mean score of
5.5. To further examine the distribution of score across the models we applied
both Kruskal-Wallis and Mood’s median tests at 95% confidence levels [31]. Both
non-parametric tests focus on medians to determine differences between distri-
butions, which is appropriate here because score displays significant deviations
from a normal distribution. Interestingly, both test results point to the model
with the low mean score being different from the other models (P-values �
0.05). It is model L, which was already shown in Figure 1. When all models are
compared with these tests excluding model L, no significant differences between
the models can be observed with respect to score (P-values > 0.25).

If we take a closer look at model L, it seems a little odd that this model
has such a low score value. As we described in Section 3.1, the questionnaire
includes four sets of models and each of these sets includes three slightly dif-
ferent models. Models in the same group differ only with respect to the type of
routing elements. But each model in the group that L belongs to has only six
routing elements, while the models in other groups contain two or three times
this number. Also, the number of arcs in the L model group (37) is lower than
that of the other groups (48, 57, and 59). So, L seems to come from a group of
models that appears to be relatively easy to see through. Now the question rises
why the other models in the same group as L do not show such a comparably
low score value. In Figure 2 we display all three models. Note that only model
fragments are displayed for ease of visualization. Observed from the top down, it
is the type of the second logical routing element that actually distinguishes the

1 A’s for 90% score or better, B’s for 80%-90%, etc.; E’s for less than 60%.
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Fig. 2. Fragments of model variants J, K, and L (from left to right)

three models from each other. For model L this is an XOR-split routing element,
for the other models an AND-split and OR-split respectively.

When considering the answers of the respondents on a detail level, two ques-
tions stand out as they received few correct answers for model L (� 20) and
many correct answers (> 20) for the other two models. These questions are:

– “If T is executed for a case, can U be executed for the same case?”, and
– “Can T, M, and O all be executed for the same case?”

It is clear to see that the distinguishing connectors in the two leftmost models,
i.e. the AND-split and OR-split respectively, directly allow for the interleaved
execution of T and U. But even for L – the rightmost model in Figure 2 – it
is possible that T and U will be executed for the same case. However, this can
only happen after a cycle through M. This is presumably overlooked by many
respondents. Similarly with respect to the second question, many respondents
failed to see that T, M, and O can be executed in the rightmost model (just as
this is possible in the other two models of course). So, in general, there is no
significant difference in score across the various models; the notable exception
is model L which generated a low score value because of the subtle interplay
between connector and model structure elements.

4.2 Relation Between Perceived and Score

In addition to score we also analyzed the distribution of perceived. In partic-
ular, we used Kendall’s coefficient of agreement u [32,31] to determine whether
a ranking can be established by the perception of all participants. Interestingly,
for each of the four groups of variants a total ordering emerges from the re-
spondents’ answers that is significant at a 95% confidence level. This result is
confirmed by another part of our questionnaire in which we explicitly asked the
respondents to rate the relative differences in understandability between three
models from different groups. So, despite the fact that it was allowed to rate
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models as equally difficult to understand, respondents do see distinct differences
in the understandability of models within each set and even across the sets.

By now, we see different patterns emerging from the distributions of per-

ceived and score. While models are perceived as distinctly different from each
other, the actual numbers of correct answers they generate do not differ signifi-
cantly. There is the notable exception of model L, with a very low score value
and, indeed, model L is also perceived as the most difficult model to understand
within its group. To investigate the (absence of the) relation between perceived

and score closer, we determined the Pearson correlation coefficient between the
variables for all complete 847 model evaluations we gathered. The correlation
coefficient equals 0.234 with a P-value � 0.05, which indicates a significant but
relatively weak correlation at a 95% confidence interval.

The insight that we derive from this part of our analysis is that there is
a rather loose relation between perceived and score. Despite a significant
statistical relation, respondents tend to exaggerate the differences in model un-
derstandability for models for which they do not produce significantly different
numbers of correct answers. The variations in score also gives us two additional
insights. First of all, as all models have the same number of tasks, the lack of
significant differences in score across most models potentially points to the fact
that model size is the primary factor that impacts model understandability. If so,
it would be reasonable that models with equal numbers of tasks appear equally
difficult to understand. For the remainder of the analysis we assume that the
other factors under investigation (see Section 3.2) are indeed to be considered
as of secondary importance. Secondly, it follows from our detailed analysis of
model L that a single change in a model element can have a significant impact
on a model’s understandability. So, despite the potentially dominant impact of
size, the search for the additional impact factors is indeed relevant.

4.3 Personal Factors and Score

Before we undertook our experiment, we had no reason to expect differences
in score between respondents with different university backgrounds. All re-
spondents had received at least a basic training in the use of process modeling
techniques at the time they took the questionnaire. Also, the exposure to pro-
cess modeling in practice would be negligible for all involved respondents. To
test the absence of such a difference, we computed the total score over the 12
models. For each respondent, this figure lies between 0 and 108, the latter being
the theoretical maximum in case of answering all 9 questions for each of the 12
models correctly. For our respondents, total score ranges between 11 and 103
with an average value of 81.2. In Figure 3, total score is shown for all students
in ascending order.

If no difference would exist between the three distributions of total score,
students can be assumed to perform similarly across the three universities. To
test this, we again applied the non-parametric Kruskal-Wallis test, because ap-
plication of the Shapiro-Wilk W test indicates that with a 95% confidence total
score is not normally distributed for any university.
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Contrary to expectations, the application of the Kruskal-Wallis test does in-
dicate that there is a statistically significant difference among the medians at
a 95% confidence level (P-value � 0.05). In other words, differences exist in
the ability of respondents to answer questions correctly across the three univer-
sities. Additional pairwise Mann-Whitney tests [31] indicate that respondents
from Eindhoven perform significantly better than respondents from each of the
other two universities (P-values � 0.05), although the difference between the re-
spondents from the universities of Vienna and Madeira is not significant (P-value
= 0.061). In Figure 4, box plots are shown for TUe and non-TUe students.

A retrospective analysis of the courses offered at the various universities re-
vealed that the hours spent on actual modeling is the highest in Eindhoven,
which may explain the noted difference. In particular, Eindhoven students have
been explicitly and thoroughly taught about ‘soundness’ [33], a general correct-
ness criterion for workflow nets. An alternative explanation is that Eindhoven
students are graduate students where the students from Madeira and Vienna are
still in their 3rd year of undergraduate studies. Interestingly, across the different
universities different modeling techniques are taught. The Eindhoven students
were trained in workflow nets (based on the Petri net formalism), the Vienna
students in EPCs, and the Madeira students had knowledge of both the Petri net
formalism and EPCs. So, the choice of our EPC-like notation does not obviously
favor students who are familiar with EPCs.

A search for other differences within the respondent population did not reveal
any convincing factors. In particular, both the variables theory (0.203) and
practice (0.070) do correlate weakly with total score, but these correlations
are not significant at the 95% confidence level. The variables are neither very
useful in the identification of clusters with differing total score performances.
For example, the clearest identification of two different clusters that resulted
from the application of various agglomerative clustering algorithms (e.g. nearest
neighbor, media, Ward’s method) is shown in Figure 5. Here, the group average
distance between clusters is used. It can be seen that most clusters extend across
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almost the entire range of theory and practice. So, these values have little
relation with score. It suggests that, in the context of this study, students’
self-assessments are not valid.
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4.4 Metrics and Score

In this section, the search for secondary factors that have an impact on the
understandability of process models is described. As explained in Section 3.2,
we take a wide range of potential factors into consideration. To determine their
power to explain variations in model understandability, we established for each
model its average score (computed over the 73 respondents) and determined
Pearson correlation coefficients with all potential factors.

From the correlation coefficients, only the signs of #or joins, density, av-

erage connector degree, mismatch, and connector heterogenity cor-
respond with the hypothesized influences as given in Table 1. However, only the
correlation coefficients of density and average connector degree are sig-
nificant at a 95% confidence level (see Table 2).
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Table 2. Factors with expected impact on understandability

factor corr.coeff. P-value
#or joins -0.330 0.295
density -0.618 0.032∗

av. connector degree -0.674 0.016∗

mismatch -0.438 0.154
connector heterogenity -0.312 0.323
∗significant at 95% confidence level.

To deeper examine the value of the distinguished factors in explaining differ-
ences in score, we developed various linear regression models – even though it
should be noted that the number of 12 different model observations is quite low
for this purpose. We compared all 31 (= 25 − 1) linear regression models that
take a non-empty subset into account of the factors shown in Table 2. To dif-
ferentiate between the regression models, we used the adjusted R2 statistic that
measures how the variability in the score is explained by each model. Within
this setting, no multivariate regression model had acceptable t-values.

The best adjusted R2 statistic equals 45% and belongs to the regression model
that uses average connector degree – one of the factors that correlates
significantly with average score. For this regression model, the Durbin-Watson
statistic value indicates that there is no serial autocorrelation in the residuals
at the 95% confidence level. In Figure 6 a plot is shown of the fitted model
values using this regression model. Note that the outlying model L can be clearly
identified at the bottom right corner.

As stated, the number of models is too small to make any strong claims.
Still, from the factors considered we see that the two factors which most
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Fig. 6. Linear regression model (including 95% confidence levels)
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convincingly relate to model understandability both concern the number of arcs
in a process model. The average connector degree measures the model’s
average of incoming/outcoming arcs per routing element, while density gives
the ratio of existing arcs to the maximal number of arcs between the nodes
in the model (i.e. when it would be completely connected). Both factors point
to the negative effect of a relatively high number of arcs on a model’s
understandability.

4.5 Expert Interviews

To validate our results, we interviewed 12 professional process modellers on the
insights gained from our questionnaire. On average this group possessed over
10 years of expertise in developing process models, mainly for documentation
purposes, but most had experience with enactment models as well. The profes-
sionals are employed in 7 different companies, four of which being consultancy
firms, two financials, and one utilities company.

With respect to personal factors, the experts emphasized the value of sub-
jects’ analytical skills and visual perceptiveness to understand process models.
Aside from these mental faculties, both modeling experience and familiarity with
the modeling technique at hand were mentioned often as being of positive influ-
ence. While the former aspect is explicitly confirmed by the findings from our
questionnaire, we have no direct support for the second aspect.

Next, we asked the experts whether users are capable of assessing their own
ability to understand process models. Half of the experts predominantly thought
so, while the others predominantly thought the opposite. In the former group,
modeling experience and familiarity with the modeling technique were mentioned
by almost all as important conditional factors. One of the experts from the
latter group indicated that “people tend to overestimate themselves, particularly
men”. Interestingly, one respondent indicated that people in general will be able
to understand what a model intends to communicate, but that it is hard to
determine whether a model is completely correct. The image emerges that proper
self-assessment with respect to model understandability is problematic to say the
least, which is consistent with our findings.

Finally, experts indicated a decreasing relevance of (a) model-related factors,
(b) person-related factors, and (c) domain knowledge for the understanding of
process models. The model-related factors that were mentioned most as pos-
itively influencing model understandability: unambiguity (7 times), simplicity
(4 times), structuredness (4 times) and modularity (4 times). From the less-
mentioned factors, the supposed positive effects of textual support is interesting
to mention, i.e. well-chosen textual descriptions of model elements (3 times)
and textual context information on the model in general (3 times). Part of the
factors mentioned seem to overlap with the factors considered in this study
(e.g. simplicity and structuredness), while others are food for further research
(e.g. modularity and textual support).
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5 Conclusions

We set out with this research to develop a better insight into the factors that
make process models understandable for humans. From the six research questions
in Section 3, we focused on the relations between personal and model character-
istics (questions 1 and 2). Our findings suggest that personal factors indeed in-
fluence the ability to understand process models. In particular, it seems that the
amount of theoretical modeling knowledge of the subjects may play a role here.
At the same time, our respondents were not capable of a proper self-assessment
with respect to their modeling proficiency. With respect to the model charac-
teristics, our findings from the questionnaire seem to underline the insight that
model size is of dominant importance on model understandability. Yet, small
variations between models can lead to significant differences in their compre-
hensibility. This means that secondary explanatory factors are still missing from
the picture. From our analysis of a wide set of candidate factors, the average

connector degree is the most convincing factor that relates to model under-
standability, followed by a model’s density. Both factors point at the negative
effect of a relatively high number of arcs on a model’s understandability.

To counter the potentially limited validity of an experiment involving stu-
dents, we interviewed a number of experienced process modelers. Their opinions
generally supported our findings, while the interviews also generated further fac-
tors to investigate. Our research is characterized by other limitations, in partic-
ular the small set of models being considered and the limited set of participants.
With larger sets in future replications of the experiment, we can investigate the
impact of secondary factors in greater detail. The other directions for future re-
search follow logically from the research questions we did not address yet. While
we tried to neutralize the influences of the modeling purpose, knowledge of the
domain, modeling language, and layout strategy, these are all issues that need
further exploration.
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22. Aguilar, E.R., Ruiz, F., Garćıa, F., Piattini, M.: Towards a Suite of Metrics for
Business Process Models in BPMN. In: Manolopoulos, Y., Filipe, J., Constantopou-
los, P., Cordeiro, J. (eds.) ICEIS 2006 - Proceedings of the Eighth International
Conference on Enterprise Information Systems (III), pp. 440–443 (2006)

23. Laue, R., Gruhn, V.: Complexity metrics for business process models. In:
Abramowicz, W., Mayr, H.C. (eds.) 9th International Conference on Business In-
formation Systems (BIS 2006). Lecture Notes in Informatics, vol. 85, pp. 1–12
(2006)



What Makes Process Models Understandable? 63

24. Cardoso, J.: Process control-flow complexity metric: An empirical validation. In:
Proceedings of IEEE International Conference on Services Computing (IEEE SCC
06), Chicago, USA, September 18-22, pp. 167–173. IEEE Computer Society, Los
Alamitos (2006)

25. Rosemann, M., Recker, J., Indulska, M., Green, P.: A study of the evolution of the
representational capabilities of process modeling grammars. In: Dubois, E., Pohl,
K. (eds.) CAiSE 2006. LNCS, vol. 4001, pp. 447–461. Springer, Heidelberg (2006)

26. Agarwal, R., Sinha, A.P.: Object-oriented modeling with uml: a study of develop-
ers’ perceptions. Commun. ACM 46, 248–256 (2003)

27. Sarshar, K., Loos, P.: Comparing the control-flow of epc and petri net from the end-
user perspective. In: van der Aalst, W.M.P., Benatallah, B., Casati, F., Curbera,
F. (eds.) BPM 2005. LNCS, vol. 3649, pp. 434–439. Springer, Heidelberg (2005)

28. Lange, C., Chaudron, M.: Effects of defects in uml models: an experimental inves-
tigation. In: Osterweil, L.J., Rombach, H.D., Soffa, M.L. (eds.) 28th International
Conference on Software Engineering (ICSE 2006), Shanghai, China, May 20-28,
2006, pp. 401–411. ACM Press, New York (2006)

29. Mendling, J., Aalst, W.: Towards EPC Semantics based on State and Context. In:
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