
An Enactment-Engine Based on Use-Cases

Avner Ottensooser and Alan Fekete

School of Information Technologies, University of Sydney, Australia
{avner,fekete}@it.usyd.edu.au

Abstract. We show how one can control a workflow enactment engine
based on the information which is available in written use cases (as pro-
duced by requirements elicitation). We give details of how different as-
pects of the engine can be configured, including the process definition,
workflow participant profiles, user interface, audit data, etc. These tech-
niques have been carried out in an industrial setting, with considerable
success. Our methods are applicable to engines for business process man-
agement, web service orchestration, and traditional workflow.

1 Introduction

The automation of enterprise activity has been a major trend in recent decades,
and a key enabler for this trend is the widespread adoption of engines that allow
the computational management of processes. These engines were much studied in
the 1990s under the term “workflow management”, and later a wider horizon has
been represented as “business process” execution engines; most recently there
has been much attention given to “orchestration for composite web services”
which involves the same ideas in the context of business-to-business integration.
In this paper we will speak of workflow, but the ideas apply equally in all these
settings.

A key feature of any enactment engine is a format for defining the processes
that will be executed. Many proprietary languages have been used in commercial
products, standards have been proposed, and many more research papers have
been written. The most widespread approaches have their roots in a graph or
network models, and can be formalised with Petri Nets or similar representations.
For example, some vendors of industrial workflow engines, such as IBM and
TIBCO, deploy dialects of the UML activity diagram to configure their workflow
engines. Other proposals have been based on event-condition-action rules. All
these approaches, however much they differ in details, depend on a workflow
configuration officer producing a model or definition of each process in a special
format, for the purpose of controlling the execution in the enactment engine.

In this paper, we propose a different approach. Rather than asking the work-
flow configuration officer to model the business processes in a special format, we
make use of a well-accepted format for eliciting system requirements: the written
use cases [3], which are commonly produced during the requirements gathering
stages of projects. We conjecture that the use cases contain the information
needed to configure the enactment engine. A great advantage of our approach

G. Alonso, P. Dadam, and M. Rosemann (Eds.): BPM 2007, LNCS 4714, pp. 230–245, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

An Enactment-Engine Based on Use-Cases 231

is the reduction in effort by the workflow configuration officers, who can re-use
artifacts business analysts usually generate, instead of undertaking a separate
step to analyse and model the business processes. As well, there is good evidence
that use cases are an effective means for communicating with domain experts.
Use cases seem to scale well, in contrast to say UML Activity Diagrams which
become very crowded on realistic domains.

Here is a brief overview of our approach from the point of view of its users;
much more detail is given in section 3. With use cases on hand, the workflow
administrator creates routing sheets, each describing several action steps which
should be performed as a group. When a work item arrives, the first workflow
participant to touch the work item begins by cataloguing the work item, and
then pilots1 the work item’s flow through the organisation, by linking routing
sheets with the work item. Following this, each activity is done by a workflow
participant, who continues to perform activities according to the routing sheets,
until eventually an activity is found that the participant can’t deal with, at
which point the work item is passed to another participant. As each activity is
executed, the participant acknowledges this to the system. From time to time
the workflow system records audit data describing the work item’s attributes
and progress.

The techniques discussed in this paper have been exploited in commercial
practise by the first author at BT Financial Group, an Australian financial ser-
vices enterprise that is now a subsidiary of Westpac Banking Corporation. BT
Financial Group developed a unique Workflow Enactment Engine, whose de-
tails were configured as described above. This engine was configured manually
from the use cases by business analysts, and the engine ran on top of a conven-
tional workflow engine. One can also imagine similar ideas used in other settings,
for example, the configuration might be generated automatically (with suitable
natural language processing), or the enactment could be done using a standard
relational dbms.

In Section 2, we summarise related work, introduce the terminology, and de-
scribe in detail the components of workflow engines. In Section 3, we explain how
each configuration component is inferred from the written use cases. Section 3.6
presents some enhancements on the basic idea of use-case-based configuration.
Section 4 describes our larger research agenda and its progress to date. In
section 5 we conclude with a report on our experience at BT Financial Group,
and our reflections on this.

2 Background, Use Cases and Workflow

Here we point to some of the most closely relevant or seminal work. There is of
course far more published on both use cases and workflow management than we
can cite; more citations can be found in expositions such as [16] and [26]. We
then describe the key ideas we build on, as a way of fixing the terminology used
in this paper.
1 We use the word as in a maritime pilot, who helps a ship follow the correct path.

232 A. Ottensooser and A. Fekete

2.1 Previous Related Work

This paper stands on the shoulders of two research communities: Requirements
Engineering within Software Engineering research, and Workflow (later called
Business Process Management) within Databases and Information Systems. In
one of the few researches we found that bridges the two communities, Lee et al
show that use cases can be transformed into Petri Nets [15].

Use cases were proposed by Jacobson [13] and a diagramming notation for
them was included within the UML standard in 1997. The use case technique,
arguably one of the best and most widely employed requirement gathering tech-
niques in the industry, is accepted by both IT professionals and business man-
agers [16, Page 297] [4]. Of the 28 dialects of use cases Hurlbut surveyed [12] we
adopted the written one described by Cockburn [3]. There are various guidelines
for expressing requirements in use cases [5]. Use cases have been found to be
effective for generating test suites [7], and for generating security policies [9].

Since the 1990s, the Workflowcommunity researchedmanydifferent approaches
to defining and enacting business processes, and many research prototypes and
commercial products have embodied these. The community has an industry body,
the Workflow Management Coalition [28], which provided a reference model [11]
and terminology [29] which we adopted. There is also a rich pattern library [30, 21]
which we use elsewhere to evaluate our method [19].

By far the most popular category of process definition languages uses a visual
presentation based on a graph, which connects activities in the order they must be
carried out, with connectors representing decision branches, parallel forks, merges
etc. For example, the UML activity diagram has become widespread for informal
modelling, and it is also accepted as an input notation in some engines [22]. The
underlying theory for all these graph-based approaches can be expressed in terms
of Petri Nets, and some proposals have even adopted variants of the Petri Net di-
rectly as a notation. Van der Aalst summarised and evaluated the research [24, 25].
Particular virtues of Petri Nets include their support for automated analysis [1],
such as checking for deadlocks [8]. Another class of workflow description languages
is based on Event Condition Action rules [6]. A recent example, focusing on ser-
vice oriented systems, is [17]. Casati et al [2] show how to convert graph-based
definitions to rules, and provide models for the relational structures we have used
to store descriptions within our engine. Non-functional properties such as perfor-
mance and cost have also been studied [18].

2.2 Use Case

The use case model is an illustrative, incremental requirements elicitation tool
that uses Actors and Use Cases . Actors illustrate what exists outside the system
and interacts with it. An Actor may be a person in a role (eg Customer), or it
may be an external system (eg a credit rating agency) or even a device. Use Cases
describe what the system is supposed to do. A use-case illustrates what is (or will
be) in the system by following a specific, yet complete, flow in the system [13,
Section 6.4]. According to Cockburn [3], each use cases describes, in a controlled

An Enactment-Engine Based on Use-Cases 233

Use case name: Apply to invest money in a fund

Main success scenario:

1. The mail room scans the application form to the imaging system. Order = 1
2. The data entry person keys the deposit to the system. Order = 2 ! Parallel to 2a
3. The system sends transaction confirmation to the investor. Order = 6
4. The process ends. Order = 7

Extensions:

2a. The application is for more than AU$1,000,000 ! AND-Split
2a1. The Senior Data Entry Person also keys the deposit. Order = 2 ! Parallel to 2
2a2. The system reconciles the two data entries. Order = 3 ! AND-Join
2a2. The flow continues at line 3

2a2a. The reconciliation failed ! OR-Split
2a2a1. The system sends the two data entries to the Order = 4

senior data entry.
2a2a2. Senior data entry corrects the data in the system Order = 5
2a2a3. The flow continues at line 3

2b. The form arrived unsigned. ! OR-Split
2b1. The Data Entry Person calls the Investor, requesting

a signed form. Order = 2
2b2. The current process ends (the signed application

will restart the process). Order = 3

Fig. 1. The sample business process used in our paper expressed as a written use case

natural language (English phrases), the interactions between users who wish to
achieve a goal and a system, and thus it functions as a contract for the behaviour
of the system in meeting the goal. A written use case mentions: (1) Actors such
as humans or systems who interact with the system. (2) What must be true in
the system for the interactions to be feasible. (3) A main success scenario (happy
day scenario) and alternative scenarios, that indicate how the interaction with
the system occurs when every thing goes well. And (4) extensions which indicate
an abnormal, incorrect, or otherwise unusual situation. E.g., in (Figure 1), the
success scenario is steps 1 to 4, while 2b is an extension which is applied when
an investor forgot to sign a form.

When we wish to change the system’s behaviour, we remodel the appropriate
Actor and Use Case. With the changed Use Case Model in hand, we change other
models (object, analysis, design , implementation and testing). When we design
systems this way the system model will be Use Case Driven [13, Section 6.4.2].
In this paper we show how one can configure an enactment engine directly from
the written use-case. The following use case is the example we use throughout
this paper, it follows the written use-case as described in [3] except that we add
an extra attribute “Order” to each step. The order is closely related to the step
number, but it allows for indication of when steps can be done independently.

2.3 Workflow

Workflow is the automation of a business process, in whole or part, during which
information and work lists are passed from one participant to another for action,
according to a set of procedural rules [29, Page 8].

234 A. Ottensooser and A. Fekete

In early times, computer applications were designed to fully support several
business transaction types. Administrators invoked applications once all required
information was at hand, and processed transactions from start to end, each in a
single iteration. In the 70s image management emerged, creating queues in front
of administrators who pulled work from the queues and processed the work se-
quentially. Today, the processing of business transactions is spanning multiple
systems, by multiple specialised organisational role bearers, as data drips into
the organisation(s). This style of business processing is supported by workflow
engines. A Workflow Engine is a generic software system driven by explicit pro-
cess design to enact and manage operational business process [21]. A Workflow
Management System defines, creates and manages the execution of workflow
through the use of software, running on one or more workflow engines, which is
able to interpret the process definition, interact with workflow participants and,
where required, invoke the use of IT tools and applications [29, Page 9].

Here we describe, using figure 2, the data the workflow administrator gath-
ers, when configuring the enactment-engine which we have used in BT Financial
Group. In section 3 we describe an algorithm we used to infer this data from writ-
ten use cases which were produced during requirements elicitation. In section 4
we outline further research, in which we will explore the wider relevance of this
approach.

Our data model is shown in figure 2. At its core resides the business transac-
tion routing sheet. Like the routing documentation used in production floors to
describe the production processes an order has to pass, the business transaction
routing sheet explains the activities that have to be executed as a group to fulfil
part of the use case.

A business transaction routing sheet has one or more activities [29, Page 12].
To each activity one organisational role is assigned [29, Page 54], and an attribute
named “order”. As will be described later, the “order” attribute is instrumental
in handling parallel work.

Each routing sheet has an attribute named “observation” that the workflow
engine uses to build a menu from which the pilot links routing sheets with work
items. Each activity has an attribute named “instruction” which the workflow
engine uses to prompt the workflow participant to execute the activity.

The details of the workflow participants [29, Page 17] are stored in a table,
and another table describes the proficiency of workflow participants in various
roles. These two tables together are the workflow participant profile, and one
may be right to assume that the profile is populated by human resources.

The last data element is created at run time. We named it “run time con-
struct”. At its core resides the work item [29, Page 18]. The work item is logically
linked to one or more routing sheets. Physically we link it to all the activities
that constitute these routing sheets. At run time, the workflow engine groups
one or more activities into a worklist [29, Page 19] and dispatches this to a work-
flow participant. A “worklist” is the atomic unit of work dispatched to workflow
participants (indeed the activities that combine to form a worklist may come
from different work items or even different business processes).

An Enactment-Engine Based on Use-Cases 235

Business

Transaction

Routing

Sheet

Observation

Use Case

Role

Task

Co-exist

Yes/No

Workflow

Participant

Profile

Workflow

Participant

Proficiency

User

Interface

Observation

Class

Description

Instruction

Run time

Construct

Work Item

Supporting

document

Worklist

Skill

Difficulty

Dispachment

Fig. 2. Use Case Oriented Data Flow Engine — Data Model

A work item is associated with supporting documents. In older times, when
imaging systems were promoted as workflow engines, one supporting document
was equivalent to one work item; a 1 : 1 ratio. Nowadays, any ratio is

236 A. Ottensooser and A. Fekete

acceptable. 0 : 1 ratio exists when a work item is not initiated by a document,
e.g. periodic review. n : 1 ratio exists when several documents are required for
a work item to complete. 1 : n ratio exists when one document initiates several
work items, e.g. when employer sends the details of several pension payments in
one spreadsheet. We even observed m : n. The nature of supporting documents
evolved as well, from paper to XML. Here we made an exception to our policy of
adhering to the Workflow Management Coalition Terminology by selecting the
term “Supporting Document” over the coalition’s “Workflow Relevant Data”
[29, Page 45].

3 Inferring Workflow Engine’s Configuration from Use
Cases — An Algorithm

Having introduced the use case terminology and the workflow data model, we
now show how workflow administrators in BT Financial Group infer its content
from use cases written in Cockburn’s notation [3]. In section 4 we conjecture
that the algorithm described can be followed in general.

3.1 Order of Processing

The only change we had to make to the use case dialect of Cockburn, as docu-
mented [3], is to add the order of processing identifier to action steps. In general,
the order of processing identifier is a monotonically increasing integer. However,
if the order of some action steps is of no importance, or the action steps follow
an AND-Split [29, Page 30], then these action steps share an order processing
identifier. E.g. in figure 1 above, action steps 2 and 2a1 share ‘2’ as the order
of processing. AND-Joins [29, Page 31] are described by an action step whose
order of processing identifier is bigger than that of the parallel action steps. E.g.
in Figure 1 above, action step 2a2 with ‘4’ as order of processing, joins steps 2
and 2a1. If several streams of activity start, then the streams are represented by
sub-use cases (Sub Process [29, Page 27]), each represented by a single action
step. In our technical report [19] we offer use-case descriptions for all 43 workflow
patterns identified by the Workflow Patterns Initiative [30].

In BT Financial Group, the business specific, dispatcher related data elements
were: value date, product, client pressure, value, and distribution channel.

3.2 Inferring the Process Definition

A process is described by a set of individual business transactions routing sheets.
In our example (Figure 3), four individual business transactions routing sheets
are configured. The main success scenario, each alternate flow and each extension
are all the observation elements in individual business transactions routing sheet.
Each group of action steps that follows them is the reoccurring activity element.

To infer the role, and the activity, from the use-case step, is easy because
the use case structure clearly defines who does what. According to Cockburn

An Enactment-Engine Based on Use-Cases 237

Business-Transactions Routing Sheet 1

Observation = Small Application ! (Or default flow)

Activity = Scan the application form
Role = mail room

Order = 1

Activity = Key into the system
Role = Data Entry Person

Order = 2

Activity = Send transaction confirmation
Role = The system

Order = 6

Business-Transactions Routing Sheet 2

Observation = Application Bigger than AU$1,000,000.00

Activity = Key into the system
Role = Senior Data Entry Person

Order = 2

Activity = Reconcile the two data entries
Role = The system ! Automated process

Order = 3 ! If order was 1, the dispatcher would be
! able to dispatch the two Activities in parallel,
! something that may be sensible.

Business-Transactions Routing Sheet 3

Observation = Application with a missing signature

Activity = Call the investor requesting a signature.
Role = Senior Data Entry Person

Order = 99 ! any number will do as this is a fatal error.

Business-Transactions Routing Sheet 4

Observation = The reconciliation failed

Activity = Send the two data entries to the senior data entry.
Role = System

Order = 4

Activity = Correct the data
Role = Senior Data Entry Person

Order = 5

Fig. 3. The routing sheets for our sample business process (Figure 1)

[3, page 90] the action step structure should be absolutely simple, as shown in
Figure 4. The role for the activity is the grammatical subject in the step, and
the activity is given by the verb and any grammatical direct or indirect objects.

238 A. Ottensooser and A. Fekete

Subject... Verb... direct object... prepositional phrase.

The data entry person ... keys ... the deposit ... to the system.

Fig. 4. The syntax of an action step

3.3 Inferring the User Interface Specification

In this section we articulate the basic constructs needed to apply the use case
notation to the configuration of a workflow engine’s run time user interface.
At run time, workflow participants request the next work item (GetNext). The
dispatcher, a component of workflow engines, matches the workflow participant’s
roles and skills with the work in the queues and assigns a work item to the
workflow participant. The workflow participant then:

Catalogue – When a work item arrives, the first workflow participant to touch
the work item catalogues the work item by assigning to the work item at-
tributes such as the business process which the work item must follow, the
customer identifier (in BT Financial Group, that is the point where new
customers are keyed into the systems), as well as business specific dispatcher
related information. To catalogue work items, BT Financial Group uses a
key combining the customer’s identifier, the business line and the trans-
action type. Supporting-Documents are catalogued in BT Financial Group
using monotonically increasing, non contiguous integers, with a check digit
concatenated. An XML document is usually catalogued by a computer pro-
gramme.

Pilot – As in a maritime pilot, pilots describe the route the work item will
pass through the organisation by linking routing sheets to work items us-
ing a classified menu of observations (more on the classification structure in
section 3.6). At this stage work items can be spawned or merged, and sup-
porting documents, that arrived previously, can be attached to the work
item. A pilot can be a computer programme or a human. At every stage in
the life cycle of the work item, a workflow participant may further refine the
piloting of the work item.

Execute – The pilot may execute the work, or leave it to a specialised work-
flow participant. At this stage the workflow participant requests the next
work item (Get Next) and the workflow engine dispatches a work item, the
cataloguing attributes that was previously assigned, the supporting docu-
ment(s) and, according to the observations the pilot had prescribed, a list
of activities the processor is expected to perform. The workflow participant
then performs the appropriate activity on the work item (in Figure 1, key it
to the mainframe, verify it, or contact the customer).

Acknowledge – Following the execution of each activity the workflow partic-
ipant flags it as “Done”, and other activities as “Diarised” or “Should not
be done”, until all Activities are completed. Following the acknowledgement,
the workflow participant may either request the next work item or terminate
the session.

An Enactment-Engine Based on Use-Cases 239

3.4 Inferring the Audit Data Terminology

In BT Financial Group, the Workflow-Engine uses event-driven asynchronous
messages to communicate with an external reporting engine by sending instances
of the following three message classes:

Work Item Message – Sent when a work item is created, spawned, re-
catalogued, terminated, or, merged into anther work item. Records a time
stamp and the cataloguing information (described in section 3.3 above). Used
to monitor adherence to external Service Level Agreements.

Observation Message – Sent when an Activity is assigned to a work item.
Records properties of a work item. Used for quality assurance (e.g in
Figure 1, how often do investors forget to sign application forms).

Worklist Message – Sent when a Worklist is queued, starts, ends, or diarised.
Records who performed the activity and how fast. Used to monitor adherence
to internal service level agreements.

3.5 Inferring the Content of the Dispatching Queue

The dispatcher watches two lists: (1) available workflow participants with roles
and skills; and (2) piloted activities, with roles, difficulty and other configurable
dispatching parameters. These two lists are used to implement dispatching pat-
terns that are only limited by the imagination.

Thus, in this section we have demonstrated how the content of the data model
can be inferred from use cases.

3.6 Extensions

This section describes further refinements to Cockburn’s use case notation [3],
which we have found to be useful.

Skills and Difficulty – To increase the granularity of the dispatching of Ac-
tivities to Role bearers, difficulty was assigned to activities and Skill was
assigned to Role bearers. The dispatcher is configured to assign Worklists to
Role bearers who are sufficiently skilled to handle the most difficult Activity
in the Worklist.

Activity co-existence – To increase piloting quality (see section 3.3 above),
the Workflow configuration officer may articulate whether certain activities
may co-exist with other activities.

Observation Menu – To ease the task of locating observations, a category
based tree structure was implemented.

3.7 Implementation of the Use Case Model on Off the Shelf
Workflow Engine

While the ideas expressed above can be implemented on a relational database,
users may find it beneficial to implement the model on top of commercial Work-
flow Engine, as happened in BT Financial Group where FileNET software was

240 A. Ottensooser and A. Fekete

used. In that case it is recommended to connect all workflow participants to each
other and to direct the flow using the dispatcher described above. In that case,
the system should be configured as having only three queues.

Unpiloted Work – As its name suggests, that queue will hold all work items
that are not catalogued. As cataloguing all incoming document may be a
priority, this queue may have higher priority than the Work in progress
queue.

Work in progress – The queue from which the dispatcher allocates work items
to workflow participants.

Completed work – The storage of work that ended.

4 Further Research

We presented an approach which we have applied in one, albeit complex, envi-
ronment within BT Financial Group. At this point we offer two conjectures.

Conjecture 1. Use cases written in the Cockburn format [3], with order as-
signed to action steps, provide sufficient information to describe the workflow in
any reasonable system.

Conjecture 2. A workflow which is given as a written use-case avoids many of
the errors that can arise with general graph-based notations: it has an end, has
only reachable nodes, and has no dead ends.

We plan to explore the validity of the conjectures through several research activ-
ities. For the first conjecture, we will start by showing that written use-cases can
deal with many of the workflow situations already known. In particular, we have
followed the methodology deployed by Russell et al for evaluating the richness
of UML2.0 activity diagrams [22]; we have shown how to give written use-case
descriptions for the standard workflow patterns. Our analysis is in [19]. The sec-
ond conjecture will be explored by following the research of Lee et al [15], and
looking at the properties of Petri Net equivalents to use case descriptions.

5 Experience, Evaluation, Discussion and Conclusion

5.1 Experience Gained at BT Financial Group

Starting in 2002, a group at BT Financial Services, managed by the first author,
operated a Workflow Management System, supported by a specially-written en-
actment engine. This system was based on the principles presented in this paper.
In BT Financial Group we found that:

– In April 2007, 368 Business-Process were controlled by the system. Each
business process had on average 26 possible activities. At that point in time,

An Enactment-Engine Based on Use-Cases 241

on a typical day, about 600 administrators were logged in. On average day
in April 2007, approximately 10,000 business process instances which were
supported by 12,000 images were executed. The number of audit rows gen-
erated daily was about 300,000. The administrators were located in three
Australian states and in India.

– Use cases became the primary tool for the workflow configuration officers.
These officers’ productivity was so high that in 2006 Westpac Life, a sister
company which is in the life insurance business, migrated its entire processes
into BT Financial Group’s Workflow-Engine within five weeks.

– Analysis of the audits data collected was instrumental for the identification,
quantitative justification, and subsequent quantitative evaluation, of Six-
Sigma process improvements programmes.

– Line managers, with general accounting skills, feel comfortable to add, main-
tain, or remove activities.

– In BT Financial Group, worklists are created whenever a processor requests
the next worklist. The approach where administrators requests a work item
(get next) and the dispatcher assigns them the most appropriate one, rather
then letting administrators “Cherry Pick” work items, increases the man-
agement control.

– When BT Financial Group placed skilled personnel as pilots, quality was
built from the beginning at the price of overloading experts with mundane
activities. When BT Financial Group placed unskilled processors at the be-
ginning, work often arrived to the skilled personnel none the less, but for the
wrong reason — repair.

– Some business areas encouraged pilots to pilot and perform the prescribed
activity in a single session. Other business areas discouraged this.

– Some business areas tried to complete the piloting early in the morning and
process in the rest of the day. Other business lines piloted and processed
throughout the day.

– BT Financial group experimented with the following dispatcher patterns:
• FIFO
• The hardest job one can do in descending age order.
• The oldest un–piloted work, then the oldest and the hardest work item

a Workflow Participant may perform, from the oldest day.
• Business related consideration such as priority for redemptions over de-

posits and of cash transactions over manged fund transactions.
– The large majority of business processes did not have any scope for within-

instance parallelism.
– Unfortunately we found that the routing sheet observation attribute was too

often identical to the instruction attribute of the activity.

5.2 Limitations

We identified several issues where the use case notation is less satisfactory than
other workflow description notations. We discuss these in turn.

242 A. Ottensooser and A. Fekete

Use cases can be ambiguous as they use natural language. This seems to be
an evident trade-off against the ease of communication with business experts.
To overcome the natural language ambiguities, Cox et al. [4, 5] show how to
improve the quality of use cases with checklists driven reviews. As Törner et al
suggests [23], it is possible to increase the Correctness, Consistency, Complete-
ness, Readability and level of detail as well as to avoid ambiguity.

There is little direct support for analysing flaws in use case descriptions,
compared to Petri Net methods which allow automated detection of deadlocks
possibility, unreachable nodes and uncontrolled process termination. However,
as Lee et al [15] have shown, use cases can be considered as a set of interacting
and concurrently executing threads, and that use cases can be transformed into
a Constraint-Based Modular Petri Nets based formalism [25]. Once converted
into Petri-Nets we can (1) identify inconsistent dependency specifications among
Activities; (2) test for workflow safety, i.e. test whether the Workflow terminates
in an acceptable state; (3) for a given starting time, test whether it is feasible
to execute a Workflow with the specified temporal constraints [1] ; (4) test the
Workflow for possibility of deadlocks [8].

Use case descriptions generally lead to sequential execution, or at best low
levels of parallelism within each business process instance.

While the use case notation had these limitations, the overall impact on the
company was very positive. In the next subsection we reflect on the ways our
approach was beneficial.

5.3 Value Proposition

The value proposition of our approach to Workflow-Engine configuration is
that it:

– Reduces the amount of effort required to configure workflow engines, by
reusing the organisation’s investment in use cases. As use cases are ubiqui-
tous in today’s business analysis arena, one would expect that the workflow
configuration officers would have use cases available before the Workflow
configuration commences.

– Audit data and the user interface are maintained as part and parcel of the
process definition reducing development effort.

– Allows the two flexibilities that Heinl et al [10] required from a Workflow-
Engine, namely:
Flexibility by Selection – the processor has the freedom to choose be-

tween different execution paths if necessary.
Flexibility by Adaptation – it is possible to change the Workflow defi-

nition at run-time by adding, removing or altering Business-Transaction
Routing Sheets.

– Written use cases provide descriptions which can be understood by various
stake holders in a straightforward manner. Cox et al suggest that end-users

An Enactment-Engine Based on Use-Cases 243

do understand well written use cases [4]. We have not found corresponding
research that suggests that end-users can understand and review Workflow
annotated by Petri-Nets, and our experience, together with the discussion in
[22], suggests that complex UML2.0 Activity Diagrams are beyond end-users’
reach when modelling resource-related or organisational aspects of business
process. This approach to workflow has allowed workflow activities to be
performed by a wider range of employees. In particular, it is not necessary
for participants to understand workflow notations like graphs or activity
diagrams; the written use-case can be followed by all employees.

– Our approach enables pilots who are unfamiliar with the underlying routing
to make complex routing decisions by concentrating on observations rather
then activities.

References

[1] Adam, N.R., Atluri, V., Huang, W.: Modeling and Analysis of Workflows Using
Petri Nets. Journal of Intelligent Information Systems 10, 131–158 (1998)

[2] Casati, F., Ceri, S., Pernici, B., Pozzi, G.: Deriving Active Rules for Workflow
Enactment. In: Thoma, H., Wagner, R.R. (eds.) DEXA 1996. LNCS, vol. 1134,
pp. 94–115. Springer, Heidelberg (1996)

[3] Cockburn, A.: Writing effective use cases. Addison-Wesley, London (1999)
[4] Cox, K., Aurum, A., Jeffery, R.: An Experiment in Inspecting the Quality of

use case Descriptions. Journal of Research and Practice in Information Technol-
ogy 36(4), 211–229 (2004)

[5] Cox, K., Phalp, K., Shepperd, M.: Comparing use case Writing Guidelines. In:
Proc. Workshop on Requirements Engineering: Foundation of Software Quality
(REFSQ’01), pp. 101–112 (2001)

[6] Dayal, U., Hsu, M., Ladin, R.: Organizing Long- Running Activities with Triggers
and Transactions. In: Proc ACM International Conference on Management of
Data (SIGMOD’90), pp. 204–214 (1990)

[7] de Figueiredo, A.L.L., Andrade, W.L., Machado, P.D.L.: Generating Interaction
Test Cases for Mobile Phone Systems from use case Specifications. ACM SIG-
SOFT Software Engineering Notes 31(6), 1 (November 2006)

[8] Ezpeleta, J., Colom, J.M., Martinez, J.: A Petri net based deadlock prevention
policy for flexible manufacturing systems. IEEE Trans on Robotics and Automa-
tion 11(2), 173–184 (1995)

[9] Fernandez, E.B., Hawkins, J.C.: Determining role rights from use cases. In: Proc
ACM Workshop on Role-Based Access Control (RBAC ’97), pp. 121–125 (1997),
DOI= http://doi.acm.org/10.1145/266741.266767

[10] Heinl, P., Horn, S., Jablonski, S., Neeb, J., Stein, K., Teschke, M.: A comprehen-
sive approach to flexibility in Workflow management systems. In: Proceedings of
the international Joint Conference on Work Activities Coordination and Collab-
oration (WACC’99) pp. 79–88. (1999), DOI=
http://doi.acm.org/10.1145/295665.295675

[11] Hollingsworth, D.: The Workflow Reference Model. Document Number TC00–
1003 of the Workflow Management Coalition, Document Status - Issue 1.1 (Janu-
vary 19, 1995)

http://doi.acm.org/10.1145/266741.266767
http://doi.acm.org/10.1145/295665.295675

244 A. Ottensooser and A. Fekete

[12] Hurlbut, R.: A Survey of Approaches for Describing and Formalizing use cases.
Technical Report 97– 03, Department of Computer Science, Illinois Institute of
Technology, USA. (1997), Found at
http://www.iit.edu/∼rhurlbut/xpt-tr-97-03.html

[13] Jacobson, I.: Object-Oriented Software Engineering. Addison-Wesley, London
(1992)

[14] Kim, J., Spraragen, M., Gil, Y.: An intelligent assistant for interactive Work-
flow composition. In: Proc International Conference on Intelligent User interfaces
(IUI’04), pp. 125–131 (2004), DOI=
http://doi.acm.org/10.1145/964442.964466

[15] Lee, W.J., Cha, S.D., Kwon, Y.R.: Integration and analysis of use cases using
modular Petri nets in requirements Engineering. IEEE Transactions on Software
Engineering 24(12), 1115–1130 (1998)

[16] Leffingwell, D., Widring, D.: Managing Software Requirements: A use case Ap-
proach, 2nd edn. Addison-Wesley, London (2003)

[17] Nepal, S., Fekete, A., Greenfield, P., Jang, J., Kuo, D., Shi, T.A: Service-
oriented Workflow Language for Robust Interacting Applications. In: Proc In-
ternational Conference on Cooperative Information Systems (CoopIS’05), pp.
40–58 (2005)

[18] O’Sullivan, J., Edmond, D., ter Hofstede, A.: What’s in a Service? Distrib. Parallel
Databases 12, 117–133 (2002)

[19] Ottensooser, A., Fekete, A.: Workflow Patterns Represented in Use-Cases, Techni-
cal Report Number 611, School of Information Technologies, University of Sydney

[20] Russell, N., ter Hofstede, A.H., Edmond, D., van der Aalst, W.M.P.: Workflow
Resource Patterns. BETA Working Paper Series, WP 127, Eindhoven University
of Technology, Eindhoven (2004), http://fp.tm.tue.nl/beta/

[21] Russell, N., van der Aalst, W.M.P., ter Hofstede, A.H., Edmond, D.: Workflow
Resource Patterns: Identification, Representation and Tool Support. In: Pastor,
Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp. 216–232. Springer,
Heidelberg (2005)

[22] Russell, N., van der Aalst, W.M.P., ter Hofstede, A.H., Wohed, P.: On the suit-
ability of UML 2.0 activity diagrams for business process modelling. In: Gruska,
J. (ed.) Mathematical Foundations of Computer Science 1977. LNCS, vol. 53, pp.
95–104. Springer, Heidelberg (1977)

[23] Törner, F., Ivarsson, M., Pettersson, F., Öhman, P.: Defects in automotive use
cases. In: Proc ACM/IEEE international Symposium on Empirical Software En-
gineering (ISESE’06), pp. 115–123 (2006), DOI=
http://doi.acm.org/10.1145/1159733.1159753

[24] van der Aalst, W.M.P.: Three Good Reasons for Using a Petri-net-based Workflow
Management System. In: Proc International Working Conference on Information
and Process Integration in Enterprises (IPIC’96), pp. 179–201 (1996)

[25] van der Aalst, W.M.P.: The Application of Petri Nets to Workflow Management.
Journal of Circuits, Systems, and Computers 8(1), 21–66 (1998)

[26] van der Aalst, W.M.P., Van Hee, K.: Workflow Management: Models, Methods
and Systems. MIT Press, Cambridge (2002)

[27] van der Aalst, W.M., Barros, A.P., ter Hofstede, A.H., Kiepuszewski, B.: Ad-
vanced Workflow Patterns. In: Scheuermann, P., Etzion, O. (eds.) CoopIS 2000.
LNCS, vol. 1901, pp. 18–29. Springer, Heidelberg (2000)

http://www.iit.edu/~rhurlbut/xpt-tr-97-03.html
http://doi.acm.org/10.1145/964442.964466
http://fp.tm.tue.nl/beta/
http://doi.acm.org/10.1145/1159733.1159753

An Enactment-Engine Based on Use-Cases 245

[28] The Workflow Management Coalition can be found, at http://www.wfmc.org/
[29] Workflow Management Coalition. Terminology and glossary. Technical Report

WFMC-TC-1011, Workflow Management Coalition (February 1999)
[30] The Workflow Patterns initiative is a joint effort of Eindhoven University of Tech-

nology (led by Professor Wil van der Aalst) and Queensland University of Tech-
nology (led by Associate Professor Arthur ter Hofstede). The publications of the
Workflow Patterns Initiative can be found at
http://www.Workflowpatterns.com/

http://www.wfmc.org/
http://www.Workflowpatterns.com/

	An Enactment-Engine Based on Use-Cases
	Introduction
	Background, Use Cases and Workflow
	Previous Related Work
	Use Case
	Workflow

	Inferring Workflow Engine’s Configuration from Use Cases — An Algorithm
	Order of Processing
	Inferring the Process Definition
	Inferring the User Interface Specification
	Inferring the Audit Data Terminology
	Inferring the Content of the Dispatching Queue
	Extensions
	Implementation of the Use Case Model on Off the Shelf Workflow Engine

	FurtherResearch
	Experience, Evaluation, Discussion and Conclusion
	Experience Gained at BT Financial Group
	Limitations
	Value Proposition

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

