
Chapter 5
Trajectory Data Models

J. Macedo, C. Vangenot, W. Othman, N. Pelekis, E. Frentzos, B. Kuijpers,
I. Ntoutsi, S. Spaccapietra, and Y. Theodoridis

5.1 Introduction

Trajectory databases is an important research area that has received a lot of inter-
est in the last decade. The objective of trajectory databases is to extend database
technology to support the representation and querying of moving objects and their
trajectory.

Moving objects are geometries, which may be points, lines, areas or volumes,
changing over time. A trajectory consists in the description of the movement of
those objects. A strict definition of ‘movement’ relates it to change in physical posi-
tion. Physical movement implies an object and a reference system within which
one can assess positions. Most frequently, the reference system is geographical
space and we speak about objects moving in space, therefore, about trajectories of
objects in space. As geographical space per se is continuous, physical movement is
described by a continuous change of position, i.e. a function from time to geograph-
ical space. Movement also implies a temporal dimension as we can only perceive
movement through comparison at two different instants. Therefore, a trajectory can
be equivalently defined as the record of a time-varying spatial phenomenon.

Objects may move/change at specific instants in time, without any existence or
any knowledge of their existence in between. A duck suddenly disappears from
your perception and reappears somewhere nearby at a later moment. In these cases,
movement is perceived as neither continuous nor stepwise, but a collection of sep-
arate instants or intervals. The question what is a moving object? can be answered
tautologically as an object that moves. An object is an identifiable real-world ele-
ment that may be perceived as having an existence dissociated from that of other
objects. A person and a car are obvious examples of potential objects. An object
that moves is an object that is not constrained to keep the same position during its

J. Macedo
Database Laboratory, École Polytechnique Fédérale de Lausanne, Switzerland,
e-mail: jose.macedo@epfl.ch

F. Giannotti and D. Pedreschi (eds.) Mobility, Data Mining and Privacy.
c© Springer-Verlag Berlin Heidelberg 2008

123

124 J. Macedo et al.

whole existence. Objects that move become particularly interesting when we record
their trajectory. Hence, hereinafter we restrict the term moving object to denote an
object to which we can associate a trajectory.

Although a trajectory can be quite simply defined as a function from time to geo-
graphical space, its description, representation and manipulation happen to be more
complex. Indeed, from an application point of view, a trajectory is the record of the
movement of some object i.e. the record of the positions of the object at specific
moments in time. Thus, although we naturally think of a nice curve representing the
trajectory of the object, in reality the trajectory has to be built from a set of sample
points, i.e. the positions of the object. And the nice curve is obtained by applying
interpolation methods on the set of sample points. To find the more suitable curve
connecting the sample points, various interpolation methods have been proposed.
However, whichever interpolation method is used, the resulting curve will only be a
guess of the probable trajectory. This guess is even worse when considering the pos-
sible measurement errors that inevitably happen when recording the original points.
There is thus an inherent uncertainty associated to trajectories, which, depending on
the cause, is either measurement or interpolation uncertainty. To model and man-
age adequately uncertainty, different interpolation methods and modelling concepts
have been proposed. They are presented in Sect. 5.2.

Trajectory data modelling has received a lot of attention from the research com-
munity either from researchers applying existing spatiotemporal data models to
trajectory data or from researchers proposing new models specifically dedicated
to moving objects and their trajectories. Indeed simply considering trajectories as
a function from time to geographical space, existing spatiotemporal models can be
used to model trajectories. Those models, presented in more detail in Sect. 5.3.1,
usually represent trajectories as time-varying geometry.

Another trend of research has considered constraint database models to represent
trajectories. Indeed since trajectories can be seen as a collection of infinite points
connecting a finite number of sample points, constraint database models can be
specialized to represent moving objects and their trajectory (see Sect. 5.3.2).

Starting from this constatation that neither existing spatiotemporal models nor
constraint database models were perfectly adapted for trajectory modelling, a par-
allel line of research focussing on modelling moving objects as well as supporting
location-aware queries has emerged. Those works are presented in Sect. 5.3.3.

Even if quality work on moving objects exists, there are still many open issues
regarding conceptual modelling of trajectories, uncertainty, multiple representation
of trajectories, continuously acquired trajectories, and query capabilities. Those
open issues are described in Sect. 5.4.

5.2 Basic Concepts: From Raw Data to Trajectory

For modelling concepts to represent trajectories in databases, basic concepts of tra-
jectory data need to be presented. This is the objective of this section, where a more
formal definition of a trajectory is first proposed. Then, through the description

5 Trajectory Data Models 125

of different interpolation methods, the process of building a trajectory from the
set of positions of real-world objects will be discussed. Finally, several methods
to cope with uncertainty, an inherent component of trajectories, will conclude the
section.

5.2.1 What Is a Trajectory?

In Sect. 5.1, we presented an intuitive definition of a trajectory as the description
of the movement of some object. More formally, a trajectory T is the graph of a
continuous mapping from I ⊆ R to R

2 (the two-dimensional plane)

I ⊆ R → R
2 : t 	→ α (t) = (αx (t) ,αy (t))

now T =
{
(αx (t) ,αy (t) ,t) | t ∈ I

} ⊂ R
2 ×R

5.2.2 From Sample Points to Trajectories

The first and foremost restriction is of course that a trajectory connected to a data
sample should contain the sample points, i.e. for all points (xi,yi,ti) in the sample
we have (xi,yi,ti) = (αx (ti) ,αy (ti) ,ti). It is rather trivial to remark that if our sample
points are ordered in time, i.e. if i < j then ti < t j, then this order will be preserved
along the trajectory.

Second, given a data sample, there is an infinite number of trajectories connected
to that data sample. The trajectory is by no means unique. Finding a suitable curve
connecting the ‘dots’, the sample points, is called interpolation.

5.2.2.1 Interpolating the Sample Points

Interpolation brings along its own problems. We wish it to be fast, easily manage-
able, flexible and accurate. Unfortunately, improving one property does not neces-
sarily improve another. And as we will see, more often than not, these properties
counteract each other.

Linear interpolation (Fig. 5.1) is the fastest and easiest of them all. The idea is
to connect the sample points with straight lines, the linearity is expressed in the fact
that equal jumps in time (between the same sample points) lead to equal jumps in
space. For example, the segment between the points (xi,yi,ti) and (xi+1,yi+1,ti+1)
is given by

(x,y,t) = (xi,yi,ti)+
t − ti

ti+1 − ti
(xi+1 − xi,yi+1 − yi,ti+1 − ti) ,

126 J. Macedo et al.

(ti−1,xi−1,yi−1)

(ti+1,xi+1,yi+1)

(ti,xi,yi)

Y

T

X

Fig. 5.1 Linear interpolation

p p

q q
wq

vp

wq

vp

Fig. 5.2 Interpolation with Bezier curves

this is a straight line segment in R
2 ×R parameterized by t ∈ [ti,ti+1]. The trajectory

consists then of the concatenation of all these segments.
Interpolation in this manner is not so innocent, along the way some assumptions

have been made. The first one is that the moving object has constant speed and
direction between the sample points. Moreover, this speed is the minimal average
speed needed to cover the distance between (xi,yi) and (xi+1,yi+1) in time ti+1 − ti.

Second, changes in speed and direction at sample points are often abrupt and
discontinuous, because of the sharp corners of the trajectory at the sample points.
Note that the trajectory is continuous, but its speed and direction is not.

Third, it is fast. Fast to construct and to handle. Computing intersections, elimi-
nating quantifiers (see the constraint model below) is ‘easy’ when we only consider
objects described by linear equations (inequalities).

Interpolation with Bezier curves (Fig. 5.2) lends itself much better to create
smoother curves. Given two sample points and a velocity vector, i.e. direction and

5 Trajectory Data Models 127

speed, in each sample point, a Bezier curve is a curve where each spatial coordi-
nate is a third-degree polynomial of the time coordinate. The beginning and end
point are exactly the respective sample points. The vectors in these sample points
are precisely the velocity vectors to the curve in those points.

Bezier curves are fast to construct. Transitions over sample points are nice and
smooth. The trajectory is everywhere differentiable. The downside is that it is a
lot harder to handle. For example, computing distance along the trajectory and
computing intersections with other trajectories become much less trivial task.

Plus, you need much more information to construct this trajectory. You need to
know the object’s speed and direction at each sample point. If those are unknown,
one can still make educated guesses. Use the average direction taken from the direc-
tion from the previous to the current sample point and from the current to the next
sample point. One can make similar guesses for the object’s speed using the mini-
mal average speed needed to get from the previous to the current sample point and
from the current to the next sample point.

All these interpolation methods have one thing in common. The more sample
points there are, i.e. the closer they are in time, the more accurate the trajectory will
be. The two methods mentioned earlier will converge to the same trajectory when
you increase the frequency of the sample points.

5.2.3 Uncertainty

Interpolation will only give you a guess of a probable trajectory and that guess
leaves a certain amount of uncertainty about the chosen trajectory. This first kind of
uncertainty will be referred to as interpolation uncertainty.
In the literature, uncertainty has been defined as the measure of the difference
between the actual contents of a database, and the contents that the current user
or application would have created by direct and perfectly accurate observation of
reality [78]. Sources of uncertainty may be one of the following:

– Imperfect observation of the real world
– Incomplete representation language
– Ignorance, laziness or inefficiency

Interpolation uncertainty may be seen as a result of the two last points. Inter-
polation uncertainty can be managed with beads. The bead model works under the
assumption that we know an upper bound for the object’s speed in between sample
points, and also that the position in the sample points is an exact position, although
the latter can be tackled easily. As for the upper bound on the object’s speed, the
maximum speed limit of the area the object covers can be used for example.

Suppose the object’s maximal speed is v, and that it travels from (xi,yi) at time
ti and arrives at (xi+1,yi+1) at time ti+1. At any time t ∈ [ti,ti+1], the distance of the
object, at position (x,y), to (xi,yi) will be at most v(t − ti). This means that at any
time t ∈ [ti,ti+1], the object is somewhere in a disc with centre (xi,yi) and radius

128 J. Macedo et al.

Fig. 5.3 The uncertainty area at time t

(ti+1, xi+1, yi+1)

(ti, xi, yi) (ti, xi, yi)

(ti+1, xi+1, yi+1)

y

x

t

Fig. 5.4 An uncertainty bead

v(t − ti). Furthermore, in space–time this a cone, with its top in (xi,yi,ti), an axis of
symmetry parallel to the time axis and pointing backward in time.

At the same time t ∈ [ti,ti+1], the object, at position (x,y), has to reach (xi+1,yi+1)
in time (ti+1 − t). That means its distance to (xi+1,yi+1) can be at most v(ti+1 − t)
and again the object is somewhere in a disc with centre (xi+1,yi+1) and radius
v(ti+1 − t). Similarly, this is a cone in space–time, but this time pointing forward
in time.

So at any time t ∈ [ti,ti+1] the object must be somewhere in the intersection of
two discs as can be seen in Fig. 5.3. Or, more generally speaking, a point (x,y,t)
might belong to a trajectory going from (xi,yi,ti) to (xi+1,yi+1,ti+1) if and only if it
lies in the intersection of the cones as can be seen in Fig. 5.4.

The geometric object in space–time in Fig. 5.4 is called a (lifeline) bead [19].
Projecting this bead on the XY -plane yields to an ellipse with foci’s in (xi,yi) and
(xi+1,yi+1). This is easy to see, the distance between (xi,yi) and the object with
coordinates (x,y) is at most v(t − ti), and that the distance to (xi+1,yi+1) is at most
v(ti+1 − t). Adding those two distances equals v(ti+1 − ti), which is constant and
independent from t, for all t ∈ [ti,ti+1]. That means that the sum of the distances
to (xi+1,yi+1) and (xi,yi) is at most a constant number v(ti+1 − ti) and that the

5 Trajectory Data Models 129

geometric set of such points is, therefore, by definition the area bounded by an
ellipse.

Beads are not easy to handle. To reduce the complexity of evaluating certain
queries, minimal bounding circular and elliptic cylinders and even minimal bound-
ing rectangles are used. Note that to manage uncertainty in this manner, we need a
way to determine the maximal speed of the object.

Another kind of uncertainty needs to be considered, namely the kind introduced
by measurement errors. Sensors introduce errors, e.g. the measurement error with
GPS. We will refer to this kind of uncertainty as measurement uncertainty. A model
that captures both kinds of uncertainty is described by [71].

In this model an uncertainty threshold is introduced. This threshold denotes the
maximal distance of the object to the assumed location on the trajectory. After linear
interpolation, this model assigns to each point on the trajectory a disc, parallel to the
XY -plane, of radius equal to the threshold. Taking all those discs together in three-
dimensional space–time results in a tube around the polyline connecting the sample
points.

This threshold incorporates interpolation uncertainty and measurement errors all
at once. It does not discriminate sample points from interpolated points, though we
only need to take the measurement error into account when it comes to the sample
points.

Now assume that the threshold is chosen so that the trajectory volume is a min-
imal bounding volume for the beads of the same sample points, then beads reduce
uncertainty roughly by a factor 3, since a cone has one-third the volume of its
minimal bounding circular cylinder.

However, considering the structure of the trajectory volumes, i.e. circles parallel
to the XY -plane, these structures are much easier to handle computationally. For
example, the alibi-query is child’s play in this model, and the alibi-query deter-
mines whether two trajectories have a possible intersection. It is merely necessary
to determine whether there exists a time instant in which the two trajectories are less
than twice the threshold apart. Evaluating this query in the bead model is much less
trivial [33], since it involves solving four quadratic equations.

In case of network-constrained movements, like cars in a highway or trains in
railroads, the uncertainty between two consequent sampled positions could be fur-
ther reduced by exploiting the network topology. Such an idea is depicted in [3]
where authors provide equations that describe the geometry of the uncertainty area.

5.3 Modelling Approaches for Trajectories

Approaches for modelling trajectories fall in three categories: the first two cate-
gories, spatiotemporal data models and constraint data models, do not propose
specific concepts for trajectories but can be used to represent trajectories. The last
category, moving objects data models regroups attempts specifically developed for
the modelling and querying of moving objects and thus the modelling and querying
of trajectories.

130 J. Macedo et al.

5.3.1 Off-the-Shelf Spatiotemporal Data Models

Many spatiotemporal models have been proposed in the literature, stemming from
either the entity-relationship approach (e.g. ST USM [40, 62], STER [72, 73]), the
object-oriented approach (e.g. Perceptory [7, 8, 12, 43], Extended spatiotemporal
UML [60,61], OMT-G [11] STOQL [34], spatiotemporal ODMG [13], Tripod [28]),
or a logic-based approach based on constraints (e.g. [29, 42, 63]). A framework for
characterizing spatiotemporal data models is given in [21, 50].

A common characteristic of these models is the use of data types as basic building
blocks for developing spatiotemporal data management. The definition of standard
two-dimensional spatial data types has reached a good level of consensus in the
GIS community. Although temporal data types have been standardized in the GIS
community [36], no such agreement exists in the database community: Proposed
solutions [35, 65, 66] have not reached the acceptance status by the SQL com-
mittees [67] [16], and an alternative approach has been proposed in [17]. As for
spatiotemporal data types, the work by [30,31] is foundational for building a general
approach that is applicable to any modelling dimension.

In this section, we have chosen among the rich literature those models that can be
considered as spatiotemporal data model and that are able to model moving objects
and trajectories. Although these conceptual models do not attempt to describe
the internal structure of trajectories, they may be used to describe time-varying
geometry 1 that is useful for modeling trajectories.

5.3.1.1 ISO TC 211

The ISO TC 211 Geographic information/Geomatics is the ISO technical committee
responsible for defining international standards related to geographic information.
These standards specify methods, tools and services for acquiring, processing,
analyzing, accessing, presenting and transferring geographic information between
different users, systems and locations. In this section, we use two of the ISO TC 211
standards:

1. ISO 19107 Geographic information – Spatial schema [37] defining a set of spatial
data types and operations for geometric and topological spaces. It only covers
vector data.

2. ISO 19108 Geographic information – Temporal schema [36] defining a set of
temporal data types and functions needed to describe spatial events that occur in
time.

5.3.1.2 STER

The spatiotemporal ER (STER) model [72,73] is an extension of the entity- relation-
ship model with constructs for modelling spatiotemporal information. The structural

1 More specifically a time-varying point, which store the successive positions, (x,y) pairs, of the
object over time.

5 Trajectory Data Models 131

concepts provided by STER are those of the basic entity-relationship model: entity
type, relationship type, attributes, and is-a (generalization/specialization) link.

5.3.1.3 Perceptory

The approach proposed by [7, 8, 12, 43] is to define spatial, temporal, (and multi-
media) plug-ins for visual languages (PVL) that can be added to any existing
database design tool. This visual plug-ins consists in a set of elementary concepts
with their graphical symbols and an associated grammar defining how the symbols
can be combined to express more complex concepts. Perceptory provides for two-
dimensional and three-dimensional spatial types but in the following we restrict
ourselves to two-dimensional types. A temporal PVL has also been defined. It pro-
vides two symbols representing the basic types Instant and Period. As for the spatial
PVL, combinations of these symbols allow to represent alternative temporalities or
multiple temporalities.

5.3.1.4 MADS

MADS [79] is an object + relationship spatiotemporal conceptual data model. In this
model, it is assumed that the real world of interest that is to be represented in the
database is composed of complex objects and relationships between them; both are
characterized by properties (attributes and methods) and both are possibly involved
in a generalization hierarchy (is-a links). Spatiality and temporality may be associ-
ated at the different structural levels: object, attribute and relationship. The spatiality
of an object conveys information about its location and its extent; its temporality
describes its life cycle.

5.3.1.5 Comparison of the Models for Trajectory Modelling

In terms of data representation, trajectories may be modelled as a time-varying
geometry. Except ISO TC 211, all the aforementioned spatiotemporal data models
allow to represent time-varying geometries. For instance, in Fig. 5.5 is shown two
alternative ways to model car trajectories using the MADS data model. The design
(Fig. 5.5a) defines a car as a spatial object type having a time-varying geometry i.e.
its spatiality is a set of pairs (point, instant). This is shown by the point icon at the top
right corner followed by a function symbol including the instant icon. Alternatively,
the time-varying spatial attribute may be kept in the trajectory attribute representing
the movement of car objects as in Fig. 5.5b. An equivalent schema can be defined
using the STER and the Perceptory models.

In case the model does not have the concept of time-varying spatial attribute, an
approach for representing trajectories is to represent trajectories as objects on their
own, independently of the object that generates them. Figure 5.5c illustrates a design
of car trajectory using ISO TC 211 standard spatial and temporal hierarchies. In this

132 J. Macedo et al.

Car

type
trajectory

Car

type

Car

type

Trajectory

Position
Instanthas

f()

f()

(0,n) (1,n)

(a) (b)

(c)

Fig. 5.5 Alternatives to trajectory modelling

design, an entity called trajectory is created with two attributes: position and time
instant, which are ISO 19107 point (i.e. GM Point class) and ISO 19108 instant
(i.e. Instant class) type, respectively. For each entity that has a trajectory, we must
associate it to the trajectory entity using a 1:N relationship.

To conclude we note that the representation of trajectories using the spatiotem-
poral data models presented above have the following limitations:

– The semantic of the above spatiotemporal concepts cannot express the exact
semantic of what is a trajectory. For example, defining the car entity using a
time-varying spatial attribute allows to represent the geometry of the trajectory
adequately but does not encompass all the constraints and operations that are
specific to trajectories. An example of such a constraint can state that a trajec-
tory must contain at least two different instants, some specific operations can
be the duration or the direction of the trajectory. A model for trajectory should
provide for specific data structure for trajectories. The lack of specific structures
for describing trajectories demands additional work to the designer in correct-
ing the impedance between spatiotemporal constructor’s semantics and correct
trajectory representation.

– Although trajectories may be expressed as a spatiotemporal entity attribute, in
some spatiotemporal data model, such as in STER, spatial attributes are inherited
(or, obtained) from space, meaning that the entity attribute is defined whether or
not the entity exists at specific position in space.

– None of the models propose any specific operations to analyse trajectories.
– None of the models propose any specific query language operators to query

trajectories.

5.3.2 The Constraint Database Approach to Trajectories

During the past ten years, an acclaimed method for effectively representing infi-
nite geometrical figures in databases is provided by the constraint database model.
This model was introduced by Kanellakis, Kuper and Revesz in 1990 [39] and
deeply studied during the second half of the 1990s (an overview of the area of con-
straint databases can be found in [49]). In the constraint model, a two-dimensional

5 Trajectory Data Models 133

geometrical figure, for instance, is finitely represented by means of a Boolean com-
bination of polynomial equalities and inequalities. These involve polynomials with
two real variables that represent the spatial coordinates of a point in the plane. The
set of points on the upper half of the unit circle, for instance, is in this context
given by

{(x,y) ∈ R
2 | x2 + y2 = 1∧ y ≥ 0}

(in mathematical terminology, these figures are called semi-algebraic sets and for
an overview of their properties we refer to [9]).

This way of representing fixed figures can easily be adapted to describe figures
that change. Indeed, we can add a time dimension and consider geometrical objects
in three-dimensional space–time that are described by polynomial equalities and
inequalities that also have a time variable t. The set

{(t,x,y) ∈ R
1+2 | x2 + y2 = (1− t)2 ∧ y ≥ 0∧0 ≤ t ≤ 1}

models a shrinking half circle, whereas the set

{(t,x,y) ∈ R
1+2 | (x− t)2 + y2 = 1∧ y ≥ 0∧0 ≤ t ≤ 1}

models a half circle that moves along the x-axis. In [41], an SQL-like query language
was discussed for this kind of data that focusses on exploiting topological changes
in moving or changing geometric figures.

Since, trajectories can be seen as a collection of infinite points connecting a finite
number of sample points, the constraint model can be specialized to model moving
points and trajectory data.

In this section, we discuss some specific attempts that can be classified under
the constraint model, to deal with trajectories. In particular, we look at the linear
constraint model, an approach based on differential geometry, and an approach using
equations of motion.

5.3.2.1 The Linear Constraint Model

When the polynomials used to model data are restricted to be linear, we have the
linear constraint model. Given a finite set of sample points, in space–time, the lin-
ear constraint model basically assumes that the moving object moves with constant
speed along a straight line connecting two succeeding sample points. This speed
is the minimal average speed needed to reach the destination. The graph of such a
trajectory is a piecewise linear curve.

Suppose we have m time instants t1 < t2 < .. . < tm, and a function p that maps
time t to a point

p(t) = (p1 (t) , p2 (t) , . . . , pn (t))

in R
n, describing the trajectory of a moving object. In the linear constraint model

each pi is represented by the constraint pi (t) = bi jt + ci j for t j ≤ t ≤ t j+1 (j =
1, ...,m−1).

134 J. Macedo et al.

Obvious drawbacks are the discontinuities of the speed (and moving direction)
of the moving object in the sample points. This makes the trajectory unsmooth and
thus seemingly unnatural. On the other hand, a big argument for this approach is the
ease of computation it allows.

5.3.2.2 The Differential Geometry Model

One approach by Su, Xu and Ibarra [69] is through the use of differential geome-
try. They use first- and second-order derivatives to describe direction, velocity and
acceleration. On the other hand, they allow vector arithmetic on moving points to
compute distances and speeds. A moving object is defined as a piecewise C∞- curve
in R

n. Let t1 < t2 < .. . < tm be m time instants and p a function that maps time t
to a point p(t) = (p1 (t) , p2 (t) , . . . , pn (t)) in R

n where each pi is a real continuous
(for all t) function that is infinitely differentiable on]−∞,t1[, each

]
t j−1,t j

[
and

]tm,+∞[. The nature of the functions pi (t) suitable for this depend on the specific
application. It is clear that this model generalizes the linear constraint model.

In this model, a query language is provided based on the following operations.
First, typical operations in a metric vectors space are allowed (sum of two vec-
tors and scalar multiplication with a real number; and the standard dot product and
thereof derived norm/length of a vector). Second, differential geometry operations
(taking the derivative) are allowed:

– The velocity of a moving object vel(p) = p′ (t) = (p′1 (t) , p′2 (t) , . . . , p′n (t))
– The acceleration of a moving object vel′ (p) = p′′ (t) = (p′′1 (t) , p′′2 (t) , . . . , p′′n (t))
– The speed of a moving object ‖vel(p)‖
– The moving direction of a moving object vel(p)

‖vel(p)‖
– The distance between two moving objects p and q :‖p−q‖

A database system is constructed now as follows. First, a logical vector type is
introduced. If τ is a function of type time → R, then the LV (logical vector) type is
of the type τn = τ × τ ×·· ·× τ:

– A relation schema R is a finite set of pairs (A,T), where A is an attribute name
and T of the LV-type.

– A database schema D is a finite set of relation schemas.
– A tuple is a total mapping from attribute names to the domains of the LV-types

and a relation instance is a finite set of tuples over R.
– A database instance of D is a total mapping I from D such that for each R ∈ D,

I (R) is a relation instance of R.

A first-order formula ϕ (x) with free variables defines a query Q as follows: if I is a
constraint database, then the answer to Q on I is

Q(I) = {a | I |= ϕ (a)} .

– Variables and values of associated types or LV-types are terms
– Field operations on variables of type real or time are again terms

5 Trajectory Data Models 135

– Vector space operations on LV-types over the real type field are again terms
– If x is a vector and p is a term of the LV-type, then unit(x), vel(p), dir(p) are

terms of the LV-type and len(p) is a term of the real type.

Let a be a time instant, p a value in the LV-type domain, and x1, . . . ,xn real values,
then p(a;x1, . . . ,xn) is true if p is at (x1, . . . ,xn) at the time instant a.

5.3.2.3 The Equations of Motion Model

Another way of approaching moving objects is storing objects through their equa-
tion of motion [27]. The idea behind this is to use Newton’s Second Law, which
states that once you know the total force acting on an object, you know its motion.
Newton’s Second Law connects force with acceleration through the object’s mass.
Let x : R → R

n : t 	→ x(t) = (x1 (t) ,x2 (t) , . . . ,xn (t)) describe the coordinate to
a moving object at time t, let m be its mass, and let F : R → R

n : t 	→ F (t) =
(F1 (t) ,F2 (t) , . . . ,Fn (t)) describe the total force F (t) acting on the object. The
Second Law then states that

F (t) = m
d2x(t)

dt2 .

Given two initial conditions x0 = x(t0) and v0 = dx(t0)/dt, initial position and
initial speed of the object, a single solution to this second-order differential equation
can be found, not always analytically.

One can reduce the order of this equation by adding variables

d
dt

X (t) =
d
dt

(
x(t)
v(t)

)
=

(
v(t)
F(t)

m

)
.

The space in which the image of X (t) lies is also referred to as the phase space.
A differential constraint over the variables is of the form

ẋi = fi (x1, . . . ,xn,t) ,

where fi is a multivariate polynomial in its variables. The author then describes an
equation of motion as a finite set of triples where every triple contains a set of initial
constraints, a set of differential constraints and an end time for which the triple is
valid.

A trajectory is constructed from such a triple but first-order approximation, i.e.
approximation with a linear piecewise curve. In the article, the author demonstrates
this using Euler’s method. The moving object database is then a triple consisting of
a finite set of object identifiers, a mapping from this set to the set of all equations of
motion and finally a time instant, which is an upper bound for existence of all the
moving objects.

136 J. Macedo et al.

5.3.3 Modelling and Querying Moving Objects Databases

About a decade efforts attempt to achieve an appropriate kind of interaction between
temporal and spatial database research. Spatiotemporal databases are the outcome of
the aggregation of time and space into a single framework [1,53,56,68]. Substantial
research work has been carried out focussing in modelling spatiotemporal databases,
while recently new needs have been imposed by a series of ubiquitous applications
as location-based services. This section presents a parallel line of research focussing
on modelling trajectories as spatiotemporal objects (the so-called moving objects).
Researchers in the field of Moving Objects Databases (MOD) have been studying
the representation issues of trajectories into computer systems aiming at keeping
track of object locations, as well as supporting location-aware queries. If, only time-
dependent locations need to be managed (e.g. mobile phone users, cars, ships, etc.),
then moving point is the basic abstraction; while, if the time-dependent shape or
extent is also of interest (e.g. group of people, armies, spread of vegetation), then
we are talking about moving regions.

A straightforward approach widely used in industry is to model a moving point
by generating periodically a location-time point of the form (l,t), indicating that the
object is at location l at time t, where l may be a coordinate pair (x,y). Points are
stored in a database, and a database query language is used to retrieve the location
information. This method is called point-location management, and it has several
critical drawbacks, such as (1) does not enable interpolation or extrapolation, (2)
leads to a critical precision/resource trade-off and (3) leads to cumbersome and
inefficient software development.

In the literature of the MOD field, there are two main approaches to model tra-
jectory data: one for querying current and future positions of the moving objects
in [64, 76, 77] and the second for querying past trajectories of the moving objects
in [22, 25, 30, 44].

Querying current and future positions must consider the problem of managing the
positions of a set of entities in a database. However, to keep the location information
up-to-date, we encounter an unpleasant trade-off. If updates are sent and applied
to the database very often, the error in location information in the database is kept
small, yet the update load becomes very high. Indeed, keeping track of a large set of
entities is not feasible. Conversely, if updates are sent less frequently, the errors in the
recorded positions relative to the actual positions become large. This problem was
explored by Wolfson et al. [64,76,77], who have developed a model, called MOST,
that allows one to store the motion vector rather than the objects’ positions in the
database, avoiding a very high volume of updates. In Wolfson and colleagues’ work,
the location of a moving object is simply given as a linear function of time, which
is specified by two parameters: the position and velocity vector of the object. Thus,
without frequent update messages, the location server can compute the location of
a moving object at a given time t through linear interpolation: y(t) = y0 + v(t − t0)
with time t > t0. An update message is only issued when the parameter of the linear
function, i.e. v, is changed. This update approach is called dead-reckoning. It offers
a great performance benefit in linear mobility patterns, but performance suffers

5 Trajectory Data Models 137

when the randomness of the mobility pattern increases. In addition, Wolfson et al.
group incorporates a new concept of dynamic attributes, which change over time;
hence the results of queries also change over time, leading to a notion of continuous
queries. The related query language, called future temporal logic (FTL), allows
one to specify temporal relationships between objects in queries. This approach is
restricted to moving point objects, and is dealing with current and expected near
future movement. FTL has the following SQL/OQL type syntax:

RETRIEVE target-list
WHERE condition-list

The condition part is specified as a FTL formula. FTL formulas are inter-
preted over future histories specifying the object locations. Static attributes remain
unchanged, while dynamic attributes change according to their functions. FTL
employs a variety of spatial, temporal predicates and operators. Later we present
three representative examples illustrating the FTL query language:

Q1: Retrieve names of red colour objects that will be inside the region P within
10 units of time.

RETRIEVE O.name
WHERE O.colour = red AND Eventually-within-10 (INSIDE(O,P))

Q2: Retrieve names of objects that will be within a distance of 10 from a truck
for the next five units of time.

RETRIEVE O.name
WHERE Always-for-5 (DISTANCE(O,O’)= 10) AND O’.type = truck

Q3: Retrieve all objects that enter a tunnel in the next 5 units of time and stay
inside it for the subsequent 10 time units.

RETRIEVE O.type
WHERE Not Inside(O,P) AND Eventually-within-5(Always-for-10 (Inside(O,P))
AND P.type = tunnel

The need for capturing complete histories of objects’ movement has promoted
the investigation of continuously moving objects. Clearly as location data may
change over time, the database must describe not only the current state of the spatial
data but also the whole history of this development. Thus it should allow to go back
in time at any particular instant, to retrieve the state of the database at that time, to
understand the evolution, to analyze when certain relationships were fulfilled and so
forth. This approach was developed by Guting and colleagues [22, 25, 30, 44]. They
described a new approach where moving points and moving regions are viewed as
three-dimensional (2D space + time) or higher-dimensional entities whose structure

138 J. Macedo et al.

and behaviour is captured by modelling them as abstract data types. Such types
and their operations for spatial values changing over time can be integrated as base
(attribute) data types into object-relational, object-oriented or other extensible data-
base management system. More specifically, they introduced a type constructor τ ,
which transforms any given atomic data type a into a type τ(a) with semantics
τ(a) = time → a . In this way, the two basic types defined, namely mpoint and
mregion, may also be represented as τ(point) and τ(region), respectively. They
provided an algebra with data types such as moving point, moving line and moving
region together with a comprehensive set of operations. All the types that are pro-
duced by application of the type constructor τ on other data types are functions over
an infinite domain; hence each value is an infinite set.

It is important to note that in MOD modelling, the trajectory of a moving point
can be described either as a curve or as a polygonal line in three-dimensional space.
In the first case, a curve is defined as a certain kind of infinite set of points with-
out fixing any finite representation. In the second case, the definition uses a finite
representation of a polyline, which in turn defines the infinite points set making up
the trajectory of the moving point. In Erwig et al. [22], the difference between these
two levels of modelling is discussed at some depth, and the terms abstract and dis-
crete modelling are introduced for them. As an extension to the abstract model in
[24,30] introduced the concept of spatiotemporal predicates. The goal was to inves-
tigate temporal changes of topological relationships induced by temporal changes
of spatial objects. A corresponding query language incorporating these concepts
was presented in [23]. In [25], the authors presented the definition of the discrete
representation of the above-discussed abstract data types. They introduced the con-
cept of sliced representation, the basic idea of which is to decompose the temporal
development of a moving value into fragments called slices such that within a slice
this development can be described by some kind of simple function. Algorithms
implementing the rather large set of operations defined in [30] are studied in [25,44].

The final outcome of this work was a system that implements the above-described
moving objects data model and query language completely integrated into a DBMS
environment [4]. More specifically, the prototype has been developed as an algebra
module in SECONDO’s extensible environment [18]. Further we provide three rep-
resentative queries exemplifying the resulted SQL-like query language [4]:

Q1: Where exactly were the trains during period P?

SELECT Id, Line, trajectory(Trip atperiods P) AS Stretch
FROM Trains
WHERE Trip present P;

Q2: At what times have trains passed through (underground) the region R?

SELECT Id, Line, deftime(Trip at R) AS Times
FROM Trains
WHERE Trip passes R;

5 Trajectory Data Models 139

Q3: Where have the trains passing through station S been at time T (as far as
they are moving at this time).

SELECT Id, Line, val(Trip atinstant T) AS Pos
FROM Trains, Stations
WHERE Trip passes Loc AND SName contains S AND Trip present T

Another approach following the paradigm of moving objects was presented in
[52]. This research focussed on the representation and querying of continuously
as well as discretely moving objects similar to those presented in [30]. From a
theoretical point of view, a data type-oriented model (STAU) that supports the repre-
sentation of objects both under object-oriented and object-relational platforms was
introduced. From a technical point of view, two data cartridges under ORACLE
object-relational DBMS were developed. The first cartridge provides pure temporal
functionality implementing TAU temporal types [38]. The second cartridge supports
a palette of moving object data types, which has been implemented by merging the
temporal cartridge with Oracle’s spatial cartridge. The resulted system supports a
wide set of object methods that extends the Oracle PL/SQL query language with spa-
tiotemporal semantics. Indicative examples of the aforementioned query language
include:

Q1: When did John leave the rectangular area defined by (x1,y1) lower left and
(x2,y2) upper right co-ordinates?

SELECT h.route.f leave(SDO GEOMETRY(2003, NULL, NULL,
SDO ELEM INFO ARRAY(1,1003,3), SDO ORDINATE ARRAY(x1,y1,x2,y2)))
FROM humans h
WHERE h.id = John

Q2: What is John’s speed at 24/11/2007-10:45:30?

SELECT h.route.f speed(tau tll.d timepoint sec(2007,11,24,10,45,30))
FROM humans h
WHERE h.id = John

Q3: Find John’s friends that are located within 1,000 m distance from his current
location.

SELECT f.id
FROM humans h, friends f
WHERE h.id = John AND h.route.f within distance(1000, f.route, tolerance,
NOW))

By assuming that a trajectory is modelled in its finest spatial granularity (exact
location), all the previously mentioned data models provide support at two levels.

140 J. Macedo et al.

First, they provide a mechanism to split a trajectory into sub-paths, according to
some variables such as the sampling rate and the most appropriate update time. Sec-
ond, MOD models usually imply a linear interpolation between the exact locations.
Considering the first issue, sliced representation [25] is adopted as the solution for
the model proposed in [30]. In [54], the authors utilize sliced representation and
develop a moving type that associates a period of time with the description of a
simple function that models the behaviour of the moving object in that specific time
period. Considering the second issue, linear interpolation is considered sufficient for
the querying purposes of a MOD. However, other types of interpolations could be as
well important either for making motions more realistic or for sub-serving the tasks
of privacy and/or modelling in various granularities. The model in [54] provides an
extensible mechanism to support different kinds of interpolation, currently imple-
menting linear and arc sub-motions. This model was recently extended [10, 55] to
support not only historical queries but also dynamic ones.

Following the modelling primitives described earlier, several solutions have been
proposed to address specific query processing issues in MODs. Research in the field
is driven by related work performed in the domain of (stationery) spatial databases.
For instance, queries of the form ‘find all objects located within a given area dur-
ing a certain time interval’ generalize the spatial range query of the form ‘find all
objects within a given area’. Many different types of the so-called coordinate-based
queries [59] have been proved to be useful for MODs: Queries of the form ‘find all
objects’ locations within a given area at a certain time instance’, called timeslice
queries, constitute a special type of range queries where the temporal extent is set to
zero. Another straightforward extension of pure spatial queries includes the nearest
neighbour queries of the form ‘find the nearest moving object to a query object at
a certain time instance (or during a certain time interval)’. As discussed in [26], in
the case of time-interval nearest neighbour queries, the query object can be either
a two-dimensional point or another trajectory, while the query may return either
the nearest to the query object in any time during a time interval or in every time
instance of the query time interval (historical continuous queries). The last extension
of spatial queries already discussed in the spatiotemporal trajectory literature deals
with trajectory join queries [5, 6], which are categorized in the so-called distance
join and k-closest pairs queries. The former is defined as follows: Given two sets
of trajectory data sets Q = q1, ..,qn and T = t1, ..,tm compute all pairs (qi,t j), where
qi and t j have distance no more than a particular threshold at a given time stamp.
In correspondence to the classic closest-pair problem of computational geometry,
the latter finds the k closest pairs of trajectories between the two data sets at the
given time stamp, i.e., the pairs of (qi,t j) that have the k smallest in-between dis-
tances at the given time stamp. Both queries can be generalized in the time-relaxed
context where the temporal dimension is of no interest; as such the latter query
type is transformed to ‘find the k closest pairs of trajectories between the two data
sets at any time stamp’. Another useful co-ordinate-based query (Fig. 5.6) in MOD
derives from the so-called trajectory similarity problem and aims to find ‘similar’
trajectories of moving objects. To handle such queries efficiently, MOD systems

5 Trajectory Data Models 141

t4
t3

x

t

t1

Q5

Q4

Q3

Q6

Q2

Q1

t2

t6
y

1 2 3
4

Fig. 5.6 Coordinate-based queries: timeslice (Q1), range (Q2), point nearest neighbor (Q3) tra-
jectory nearest neighbor (Q4), historical continuous point nearest neighbor (Q5), most similar
trajectory (Q6)

should incorporate query processing methods for supporting most similar trajectory
(MST) search also discussed in [15, 70, 74].

According to the classification in [57, 59], apart from co-ordinate-based queries,
the so-called trajectory-based queries are also of great interest. In contrast to co-
ordinate-based, trajectory-based queries require the knowledge of the complete – or
at least a subset of the – object’s trajectory to be processed. Such queries consider
topological relations (e.g. enter, leave, etc.) and may provide derived information
about an object’s navigation (e.g. average speed, travelled distance, etc.). Further-
more, the combination of a range with topological queries produces another class of
queries called combined queries. As an example [59], consider the following query
‘What were the trajectories of objects after they left Tucson street between 7 and
8 a.m. today, in the next hour’, which first locates the trajectories contained in an
inner range query window (Tucson street, between 7 and 8 a.m. today) and then
retrieve those parts of objects’ trajectories contained in an outer query window (in
the next hour).

5.4 Open Issues

As presented in Sect. 5.3.3, consequent quality work has been done regarding
trajectory modelling and querying. However, open issues remain particularly regard-
ing conceptual modelling of trajectories, uncertainty, multiple representation of
trajectories, continuously acquired trajectories and query capabilities. They are
described further.

5.4.1 Conceptual Modelling of Trajectories

Most of the works on moving objects have paid very little attention on the concep-
tual description of the trajectory. In those models, the trajectory of a given object
is a by-product, so to speak, of capturing the object’s mobility. Indeed describing
an object type as a moving point allows representing the position of the object all

142 J. Macedo et al.

along its lifespan. It does not allow the system to be aware of the semantic segmen-
tation of the object’s paths into semantically meaningful trajectories. To be able to
associate a trajectory or a list of trajectories to the object we need more than moving
points. Trajectories should be promoted as a modelling construct i.e. be first-class
data, rather than computable derived data. Moreover, the specification of the tra-
jectory construct should be done at the conceptual level to fix a purely conceptual
view of the concept and to ensure its maximal flexibility. Indeed, when looking for
a conceptual model for trajectories, we have to focus on trajectory characteristics
that are generic, i.e. independent of any specific application domain, while being
relevant to the application realm and not driven by considerations pertaining to their
implementation in a computer-based system. To propose a conceptual solution for
the trajectory concept, the following issues need to be tackled.

5.4.1.1 Conceptual Description of Trajectories

From a conceptual point of view, the concept of trajectory denotes the evolving
position of some object in some space, from an initial position to a final position. A
trajectory has two facets:

– A spatiotemporal facet: it allows to record the positions of the moving object.
– A semantic facet: it allows to associate application-dependant information or

characteristics to the whole trajectory as well as to any of its subparts. For exam-
ple, a point-based trajectory for a person could store the activity the person is
doing between two defining points not necessarily consecutive (visiting, walking
to work, etc.) and the transport means. Obviously, the trajectory of a car will bear
completely different data: a car trajectory could store for each defining point its
road distance from the previous point, the duration of en route stops, the amount
of highway fees paid and the gasoline consumption over the last segment.

5.4.1.2 Constraints of Trajectories with Their Environment

In the same way as we need to associate semantic data to trajectories and/or to
their subparts, we want to be able to describe the constraints holding between
the trajectories or their subparts and their environment [75]. As trajectories are
spatiotemporal object types, semantic as well as both topological and temporal con-
straints should be considered. For example, a topological constraint might describe
the fact that the whole trajectory of this person is included in the area delimitated
by the old city part of Lausanne but also that this particular part of the trajectory is
equal to the geometry of the stairs going to the cathedral.

5.4.1.3 Spatial, Temporal or Spatiotemporal Operators

To manipulate trajectories, a set of operators should be identified. As trajecto-
ries are spatiotemporal objects, the data model must offer traditional temporal and
spatial operators like the ones proposed by Allen [2] in the temporal dimension and

5 Trajectory Data Models 143

Egenhofer [20] in the spatial dimension, respectively, as well as trajectory-specific
operators (such as, for instance, how to ‘sum-up’ two trajectories). Indeed, pro-
moting trajectories as first class modelling constructs has direct consequences on
the operators applying to trajectories. It implies evolving from operations on mov-
ing objects as defined by e.g. [30] to manipulation of trajectories as a whole. Thus
investigations should be done to define an underlying algebra for trajectories.

5.4.2 Uncertainty

The representation of moving objects within a MOD is inherently imprecise due
to errors introduced from different sources like measurement, sampling and pre-
processing.

So far, the related research [3, 58, 71] emphasizes on sampling errors introduced
by the interpolation process, which is utilized to ‘predict’ the moving objects posi-
tions within the sampled points. The usually adopted interpolation method is linear
interpolation, which is the simplest one. More advanced techniques, like polynomial
splines, should be also considered so as to better approximate the actual movements.

Interpolation uncertainty, although important, is only one source of uncertainty.
Further uncertainty sources should be considered and their impact on the repre-
sented trajectory with respect to the actual trajectory should be investigated. Exam-
ples of such sources are compression, simplification and matching of trajectories to
the network (in case of a network-constrained movement).

The uncertainty so far refers to the spatial dimension, i.e. how well the stored
positions of the moving object represent its actual positions. Spatial information,
however, is not the only aspect of a movement. Time and speed, for example,
constitute other aspects that might contain uncertainty in their values.

The idea of restricting uncertainty by exploiting the underlying network has
started to be addressed in the literature [3]. However, a further uncertainty factor is
imposed here that of finding the position of the moving object within the network,
i.e. network matching. Investigating how matching affects the quality of trajectories,
and how the uncertainty it imposes interacts with the inherent uncertainty of tra-
jectories seems a promising research line. Furthermore, the uncertainty area of an
object within a network depends on the geometry of the network, which, in the gen-
eral case, does not solely consists of straight lines. More complex geometries, e.g.
circles or spirals, should be investigated and the shape of uncertainty areas should
be allocated.

To conclude, uncertainty in the representation of a moving object is an important
issue within a moving object database, since the adopted representation is the basis
for other DB operations like querying and indexing. Two critical questions arise:
what is an effective representation schema for trajectories under uncertainty and
how the uncertainty is propagated into other MOD operations. Since uncertainty is
a reality in MOD, the efforts should be towards its limitation so as to provide the
end user with reliable results.

144 J. Macedo et al.

5.4.3 Streaming Models

The streaming model is completely suitable for moving object data since they
encounter frequent updates, their volume is unexpectedly varied, and they are
being processed under real-time conditions with several continuous spatiotemporal
queries. Thus, MODs perfectly fit with the stream concept, and it sounds reasonable
to go towards a streaming procedure that feeds a trajectory database or a trajec-
tory data warehouse. Streaming spatiotemporal data has addressed a considerable
research attention in the past few years [32, 45, 46, 51]. Existing work in streaming
models include [51], which attempts to model the management of moving objects
under the assumption that the trajectories are continuous, time-varying and possi-
bly unbounded data streams, proposing a basic framework for managing trajectory
streams with the introduction of constructs for advanced query capabilities in an
SQL-like language. However, modelling of moving objects must be further stud-
ied, in addition to the introduction of algebraic constructs for windows and to the
proposal of syntax rules for query language.

5.4.4 Multiple Representation

Multiple representation is an important issue regarding the modelling of trajecto-
ries. Multiple representation means that we want to store or to be able to retrieve
several representations for the same phenomenon in the database. This is an impor-
tant requirement as each application has its own perception of the real world and
its own data processing tasks leading to specific requirements both in terms of what
information is to be kept and in terms of how information is to be represented. Spa-
tial and temporal applications show additional requirements in terms of multiple
representation as they need flexibility also in the perception and representation of
spatial and temporal features.

In the context of trajectories, multiple representation may result from the descrip-
tion of the same trajectory according to several viewpoints but more importantly
according to different spatial and temporal granularity. Viewpoint, here, should be
understood as the expression, by a group of users, of their specific interests in data
management. Granularity refers to the notion that the world is perceived at differ-
ent level of details i.e. in the temporal dimension using more or less time steps
like in [38] and in the spatial dimension considering a smaller or bigger spatial
resolution. Complex applications naturally include the need for multiple representa-
tions of trajectories. Indeed different tasks often require different granularities: for
instance, considering the trajectory of a person travelling from home in Lausanne
to work in Geneva, some tasks might be only interested to analyse the trajectory
from the starting point in Lausanne to the arrival point in Geneva and then use a
coarse spatial and temporal granularity. On the contrary, another task might need
a more detailed description: at 7.40 a.m. the person has left home to walk to the
bus station for 10 min, then has taken the bus to the train station where the person

5 Trajectory Data Models 145

has been waiting for 5 min, then travelled for 30 min, etc. In this example, the same
trajectory is modelled at different levels of spatial and temporal granularity. More-
over, the same trajectory may show parts in different granularity, e.g. more detailed
data for critical sections of the trajectory: for instance, a detailed description of the
trajectory between the person’s home and the train station will be kept while from
Lausanne train station to Geneva train station no specific detail is necessary.
Although multiple representation has received a lot of attention in the spatiotem-
poral database community, multiple representation applied to the description of
moving objects and their trajectories is still an open issue on which few proposi-
tions exists [14, 33]. In this area, research work has to be done to provide for a
model describing multiple representations of the same trajectory including conver-
sion operators to shift among granularities and an adapted query language. Proposed
operators for granularity change exist, but how to maintain multiple representations
with maximal flexibility has rarely been addressed.

5.4.5 Query Capabilities

Open issues regarding the query types supported by MODs include novel query
types, meaningful only in the spatiotemporal domain, as well as the expansion of
query types from other domains. In particular, there exist a significant number of
spatial queries not yet adopted in the spatiotemporal framework, and particularly
in trajectory databases. For example, the recently proposed group nearest neigh-
bour query [48] can be also applied in the spatiotemporal domain; nevertheless, its
employment is not straightforward at all, since a trajectory GNN query would had to
clarify several issues concerning its definition (a) the type of the query objects (static
or continuously moving), (b) the time interval during which the GNN is requested,
(c) the way of determining the distance of GNN from the query objects, since dis-
tances from all query objects could be calculated on exactly the same time stamp or
considering the entire query period. In addition, such type of queries involving the
calculation of the nearest distance of trajectories could be extended by employing
the notion of network distance discussed in the domain of spatial network databases
(SNDB) [47].

Regarding the trajectory similarity topic, the majority of the existing approaches,
being mainly inspired by the time series analysis domain, propose generic similar-
ity metrics for two-dimensional data [15, 74] in order to answer queries requesting
about the most similar to a given trajectory. However, the notion of ‘textitmost sim-
ilar’ in the trajectory domain can be considered through several aspects, since tra-
jectories have spatial, temporal, spatiotemporal and other derived features. Consider
for example the following queries:

– Query 1 (spatial similarity): Find objects whose route (i.e. the projection of
trajectory on two-dimensional plane) is quite similar to that of object id= 132
(irrespective of time).

146 J. Macedo et al.

– Query 2 (spatiotemporal similarity): Find objects that follow a route similar to
that of object id= 132 during the same time interval, e.g. 3–6 PM.

– Query 2a (speed pattern-based spatiotemporal similarity): Find objects that fol-
low a route similar to that of object id= 132 and, additionally, move with a similar
speed pattern.

– Query 3 (directional similarity): Find objects that follow a direction similar
to a given direction pattern, e.g. NE during the first half of the route and
subsequently W.

To the best of our knowledge, there is no work dealing with the different similarity
types that can be defined based on these underlying parameters of the trajecto-
ries. However, such queries are expected to be at least as popular as those already
examined, which mainly deal with the spatial similarity between trajectories.

5.4.6 Conclusion

The objective of this chapter was to provide an extensive discussion of the state-
of-the-art on data modelling of trajectories. We have initiated our discussion by
describing trajectory as the record of time-varying phenomenon. In terms of data
representation, trajectories are described as a collection of sample points that need
to be linked. To find the suitable curve connecting the sample points, interpolation
methods are used. As shown, there are two kinds of methods that may apply to this
problem, and the trajectory accuracy depends basically on the number of sample
points and the method used. Interpolation only gives a guess of a probable trajec-
tory, leaving a certain amount of uncertainty that needs to be taken care of. Two
approaches have been presented to treat uncertainty of trajectories.

In terms of data modelling, many research efforts have been done in modelling
spatiotemporal applications, among them some are specifically defined for moving
objects and their trajectories, some are not. Indeed, since trajectory applications are
a sub-domain of spatiotemporal applications, we have analysed these off-the-shelf
spatiotemporal models to deal with trajectory representation. Similarly, we have
analysed constraint database modelling that provides a method to represent infinite
geometrical entities in databases and thus could be specialized to model moving
points and trajectory data. Finally, we have presented important researches in the
field of MOD that are studying representation issues of trajectories as well as their
querying. From a theoretical point of view, constraint and moving objects models
approaches are less conceptual and more implementation-oriented than spatiotem-
poral data models are. Former approaches focus more on definition of mathematical
models, abstract data types, algorithms for set of operations and query answering
approaches.

For completeness of the discussion, we have shown in Sect. 5.4 open issues in
trajectory modelling that we found relevant. The first open issue concerns the def-
inition of an adequate conceptual representation of trajectories not as a by-product
of capturing objects’ mobility but as a first class-construct. Effective representation

5 Trajectory Data Models 147

of trajectories taking into account uncertainty and its propagation to operations are
also important issues that need to be addressed. Besides, the high-data volume and
frequent updates in the context of streaming spatiotemporal data model has not
received so far the attention it requires. Another important open issue regarding
the modelling of trajectories is to deal with several representations for the same
trajectory in the database (i.e. multiple representation). Last but not least, queries
capabilities must be improved in the context of trajectory databases, for instance
queries based on: derived trajectory information (e.g. speed), nearest neighbour or
trajectory similarity.

References

1. T. Abraham and J.F. Roddick. Survey of spatio-temporal databases. Geoinformatica,
3(1):61–99, 1999.

2. J.F. Allen. Maintaining knowledge about temporal intervals. Communications ACM,
26(11):832–843, 1983.

3. V.T. de Almeida and R.H. Güting. Supporting uncertainty in moving objects in network
databases. In Proceedings of the 13th International Symposium on Geographic Information
Systems (GIS’05), pp. 31–40, ACM, 2005.

4. V.T. Almeida, R.H. Güting, and T. Behr. Querying moving objects in secondo. In Proceedings
of Mobile Data Management (MDM’06), p. 47, 2006.

5. P. Bakalov, M. Hadjieleftheriou, E.J. Keogh, and V.J. Tsotras. Efficient trajectory joins using
symbolic representations. In Proceedings of Mobile Data Management (MDM’05), pp. 86–93,
2005.

6. P. Bakalov, M. Hadjieleftheriou, and V.J. Tsotras. Time Relaxed Spatiotemporal Trajectory
Joins. In Proceedings of the 13th Annual International Workshop on Geographic Information
Systems (GIS’05), pp. 182–191, 2005.

7. Y. Bédard. Visual modeling of spatial databases: Towards spatial pvl and uml. Geomatica,
53:169–185, 1999.

8. Y. Bédard, S. Larrivée, M.-J. Proulx, and M. Nadeau. Modeling Geospatial Databases
with Plug-Ins for Visual Languages: A Pragmatic Approach and the Impacts of 16 years
of Research and Experimentations on Perceptory. In Conceptual Modeling for Advanced
Application Domains, Vol. 3289, pp. 17–30. Springer, Berlin Heidelberg New York, 2004.

9. J. Bochnak, M. Coste, and M. Roy. Géométrie Algébrique Réelle. Springer, Berlin Heidelberg
New York, 1987.

10. Boosting location-based services with a moving object database engine. In Proceedings of the
5th Workshop on Data Engineering for Wireless and Mobile Access (MobiDE’06).

11. K. Borges, C. Davis, and A. Laender. Omt-g: An object-oriented data model for geographic
applications. GeoInformatica, 5:221–260, 2001.

12. J. Brodeur, Y. Bédard, and M.-J. Proulx. Modelling Geospatial Application Database Using
Uml-Based Repositories Aligned with International Standards in Geomatics. In ACM, edi-
tor, Proceedings of the 8th International Symposium on Geographic Information Systems
(GIS’00), pp. 39–46, 2000.

13. E. Camossi, M. Bertolotto, E. Bertino, and G. Guerrini. A Multigranular Spatiotemporal
Data Model. In Proceedings of the 11th International Symposium on Geographic Information
Systems (GIS’03), pp. 94–101, ACM, 2003.

14. E. Camossi, M. Bertolotto, and E. Bertino. A flexible approach to spatio-temporal multigran-
ularity in an object data model. International Journal of Geographical Information Science,
20(5), 2006.

148 J. Macedo et al.

15. L. Chen, T. Özsu, and V. Oria. Robust and Fast Similarity Search for Moving Object Trajecto-
ries. In F. Ozcan (ed.), Proceedings of the International Conference on Management of Data
(SIGMOD’05), pp. 491–502. ACM, 2005.

16. H. Darwen. Valid Time and Transaction Time Proposals: Language Design Aspects. In
Temporal Databases: Research and Practice, LNCS 1399, pp. 195–210, 1998.

17. C. Date, H. Darwen, and N. Lorentzos. Temporal Data and the Relational Model. Model,
Morgan Kaufmann, 2003.

18. S. Dieker and R.H. Güting. Plug and play with query algebras: secondo - a generic dbms
development environment. In Proceedings of the International Symposium on Database
Engineering & Applications (IDEAS ’00), pp. 380–392. IEEE Computer Society, 2000.

19. M.J. Egenhofer. Approximations of geospatial lifelines. 2003.
20. M.J. Egenhofer and R.D. Franzosa. Point set topological relations. International Journal of

Geographical Information Systems, 5:161–174, 1991.
21. B. El-Geresy and C. Jones. Five Questions to Answer in Time: A Critical Survey of Approaches

to Modelling in Spatio-Temporal GIS, Chap. 3. GIS and Geocomputation-Innovations in GIS
7. Taylor & Francis, London, 2000

22. M. Erwig, R.H. Güting, M. Schneider, and M. Vazirgiannis. Spatio-temporal data types:
An approach to modeling and querying moving objects in databases. GeoInformatica,
3(3):269–296, 1999.

23. M. Erwig and M. Schneider. Developments in Spatio-Temporal Query Languages. In Pro-
ceedings of 10th International Conference and Workshop on Database and Expert Systems
Applications (DEXA’99), pp. 441–449, 1999.

24. M. Erwig and M. Schneider. Spatio-temporal predicates. IEEE Transaction Knowledge Data
Engeneering, 14(4):881–901, 2002.

25. L. Forlizzi, R.H. Güting, E. Nardelli, and M. Schneider. A Data Model and Data Structures for
Moving Objects Databases. In Proceedings of the International Conference on Management
of Data (SIGMOD’00), pp. 319–330, 2000.

26. E. Frentzos, K. Gratsias, N. Pelekis, and Y. Theodoridis. Nearest Neighbor Search on Moving
Object Trajectories. In Proceedings of 9th International Symposium on Advances in Spa-
tial and Temporal Databases (SSTD’01), Vol. 3633. Lecture Notes in Computer Science,
pp. 328–345. Springer, Berlin Heidelberg New York, 2005.

27. F. Geerts. Moving Objects and their Equations of Motion. In Proceedings of the 1st Interna-
tional Symposium on Applications of Constraint Databases, volume 3074 of Lecture Notes in
Computer Science, pp. 41–52. Springer, Berlin Heidelberg New York, 2004.

28. T. Griffiths, A. Fernandes, N. Paton, and R. Barr. The tripod spatio-historical data model. Data
and Knowledge Engineering, 49:23–65, 2004.

29. S. Grumbach, M. Koubarakis, P. Rigaux, M. Scholl, and S. Skiadopoulos. Spatio-temporal
Models and Languages: An Approach Based on Constraints, Chap. 5, pp. 177–201, 2003.

30. R.H. Güting, M.H. Böhlen, M. Erwig, C.S. Jensen, N.A. Lorentzos, M. Schneider, and
M. Vazirgiannis. A foundation for representing and quering moving objects. ACM Transac-
tions on Database System, 25(1):1–42, 2000.

31. R. Guting, M. Bohlen, M. Erwig, C. Jensen, M. Schneider, N. Lorentzos, E. Nardelli,
M. Schneider, and J. Viqueira. Spatio-Temporal Models and Languages: An Approach Based
on Data Types. In Spatio-Temporal Databases: The Chorochronos Approach, LNCS 2520,
Chap. 4, pp. 117–176, 2003.

32. M.A. Hammad, W.G. Aref, and A.K. Elmagarmid. Stream Window Join: Tracking Moving
Objects in Sensor-Network Databases. In Proceedings of 15th International Conference on
Scientific and Statistical Database Management (SSDBM’03), pp. 75–84, 2003.

33. K. Hornsby and M.J. Egenhofer. Modeling moving objects over multiple granularities. Annual
Mathematics Artificial Intelligence, 36(1–2):177–194, 2002.

34. B. Huang and C. Claramunt. Stoql: An ODMG-Based Spatio-Temporal Object Model and
Query Language. In Proceedings of the 10th International Symposium on Spatial Data
Handling (SDH’02), pp. 225–237, 2002.

35. ISO/IEC. Information Technology – Database languages – SQL – Part 7: Temporal
(SQL/Foundation). ISO/IEC 9075-2 Working Draft. ISO, 2001.

5 Trajectory Data Models 149

36. ISO/TC211. Geographic Information and Temporal Schema. ISO 19108:2002. ISO, 2002.
37. ISO/TC211. Geographic Information and Spatial Schema. ISO 19107:2003. ISO, 2003.
38. I. Kakoudakis. The Tau Temporal Object Model, M.Sc. Thesis, Umist, 1996.
39. P.C. Kanellakis, G.M. Kuper, and P. Revesz. Constraint query languages. Journal of Computer

and System Sciences, 51:26–52, 1995.
40. V. Khatri, S. Ram, and R. Snodgrass. Augmenting a Conceptual Model with Geospatiotem-

poral Annotations. IEEE Transactions on Knowledge and Data Engineering, 16:1324–1338,
2004.

41. B. Kuijpers, J. Paredaens, and D.V. Gucht. Towards a theory of movie database queries. In
Proceedings of the 7th International Workshop on Temporal Representation and Reasoning
(TIME’00), pp. 95–102. IEEE Computer Society, 2000.

42. G. Kuper, L. Libkin, and J. Paredaens. Constraint Databases. Springer, Berlin Heidelberg
New York, 2000.

43. S. Larrivée, Y. Bédard, and J. Pouliot. How to Enrich the Semantics of Geospatial Databases
by Properly Expressing 3d Objects in a Conceptual Model. In Proceedings of the Work-
shops On The Move to Meaningful Internet Systems, number 3762 in LNCS. Springer, Berlin
Heidelberg New York, 2005.

44. J.A.C. Lema, L. Forlizzi, R.H. Güting, E. Nardelli, and M. Schneider. Algorithms for moving
objects databases. The Computer Journal, 46(6):680–712, 2003.

45. M.F. Mokbel, X. Xiong, W.G. Aref, S.E. Hambrusch, S. Prabhakar, and M.A. Hammad. Place:
A Query Processor for Handling Real-Time Spatio-Temporal Data Streams. In Proceedings of
30th International Conference on Very Large Data Bases (VLDB’04), pp. 1377–1380, 2004.

46. M.F. Mokbel, X. Xiong, M.A. Hammad, and W.G. Aref. Continuous query processing of
spatio-temporal data streams in place. GeoInformatica, 9(4):343–365, 2005.

47. D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao. Query Processing in Spatial Network Data-
bases. In Proceedings of 29th International Conference on Very Large Data Bases (VLDB’03),
pp. 802–813, 2003.

48. D. Papadias, Q. Shen, Y. Tao, and K. Mouratidis. Group nearest neighbor queries. In Pro-
ceedings of the 20th International Conference on Data Engineering (ICDE’04), pp. 301–312.
IEEE Computer Society, 2004.

49. J. Paredaens, G. Kuper, and L. Libkin, editors. Constraint databases. Springer, Berlin
Heidelberg New York, 2000.

50. C. Parent. A Framework for Characterizing Spatio-Temporal Data Models. In S.S. Y.
Masunaga (ed.), Advances in Multimedia and Databases for the New Century, pp. 89–97.
World Scientific, Singapore, 2000.

51. K. Patroumpas and T.K. Sellis. Managing Trajectories of Moving Objects as Data Streams.
In J. Sander and M.A. Nascimento, editors, Proceedings of 2nd International Workshop on
Spatio-Temporal Database Management (STDBM’04), pp. 41–48, 2004.

52. N. Pelekis. STAU: A Spatio-Temporal Extension to ORACLE DBMS. Ph.D. Thesis, 2002.
53. N. Pelekis, B. Theodoulidis, I. Kopanakis, and Y. Theodoridis. Literature review of spatio-

temporal database models. Knowledge Engeneering Review, 19(3):235–274, 2004.
54. N. Pelekis, B. Theodoulidis, Y. Theodoridis, and I. Kopanakis. An Oracle data cartridge for

moving objects, laboratory of information systems, department of informatics, university of
piraeus, unipi-isl-tr-2005-01, 2005. http://isl.cs.unipi.gr/db/ publications.html.

55. N. Pelekis, Y. Theodoridis, S. Vosinakis, and T. Panayiotopoulos. Hermes – A Framework
for Location-Based Data Management. In Proceedings of 10th International Conference on
Extending Database Technology (EDBT’06), pp. 1130–1134, 2006.

56. D.J. Peuquet. Making space for time: Issues in space-time data representation. Geoinformat-
ica, 5(1):11–32, 2001.

57. D. Pfoser. Indexing the trajectories of moving objects. IEEE Data Engeneering Bullettin,
25(2):3–9, 2002.

58. D. Pfoser and C.S. Jensen. Capturing the uncertainty of moving-object representations. In R.H.
Güting, D. Papadias, and F.H. Lochovsky, (eds.), Proceedings of the 6th International Sym-
posium on Advances in Spatial Databases (SSD’99), Vol. 1651. Lecture Notes in Computer
Science, pp. 111–132. Springer, Berlin Heidelberg New York, 1999.

150 J. Macedo et al.

59. D. Pfoser, C.S. Jensen, and Y. Theodoridis. Novel Approaches in Query Processing for Mov-
ing Object Trajectories. In Proceedings of 26th International Conference on Very Large Data
Bases (VLDB’00), pp. 395–406, 2000.

60. R. Price, N. Tryfona, and C. Jensen. Extended spatiotemporal uml: Motivations, requirements,
and constructs. In Journal of Database Management, 11:14–27, 2000.

61. R. Price, N. Tryfona, and C. Jensen. Extending UML for Space- and Time-Dependent
Applications. Idea Group Publishing, 2002.

62. S. Ram, R. Snodgrass, V. Khatri, and Y. Hwang. DISTIL: A Design Support Environment for
Conceptual Modeling of Spatio-temporal Requirements, pp. 70–83. 2001.

63. P. Rigaux, M. Scholla, L. Segoufin, and S. Grumbach. Building a constraintbased spatial
database system: Model, languages, and implementation. Information Systems, 28:563–595,
2003.

64. A.P. Sistla, O. Wolfson, S. Chamberlain, and S. Dao. Modeling and Querying Moving Objects.
In Proceedings of the 13th International Conference on Data Engineering (ICDE’97), pp.
422–432. IEEE Computer Society, 1997.

65. R. Snodgrass, M. Böhlen, C. Jensen, and N. Kline. Adding valid time to SQL/Temporal. ANSI
X3H2-96-501r2, ISO/IEC JTC1/SC21/WG3 DBL MAD-146r2, 1996.

66. R. Snodgrass, M. Böhlen, C. Jensen, and A. Steiner. Adding transaction time to SQL/
Temporal: Temporal change proposal. ANSI X3H2-96-152r, ISO-ANSI SQL/ISO/IECJTC1/
SC21/WG3 DBL MCI-143. ISO, 1996.

67. R. Snodgrass, M. Böhlen, C. Jensen, and A. Steiner. Transitioning Temporal Support in tsql2
to sql3. In Temporal Databases: Research and Practice, LNCS 1399, pp. 150–194, 1998.

68. Spatio-Temporal Databases: The CHOROCHRONOS Approach, Vol. 2520 of Lecture Notes
in Computer Science. Springer, Berlin Heidelberg New York, 2003.

69. J. Su, H. Xu, and O.H. Ibarra. Moving Objects: Logical Relationships and Queries. In C.S.
Jensen, M. Schneider, B. Seeger, and V.J. Tsotras, editors, Proceedings of 7th International
Symposium on Advances in Spatial and Temporal Databases (SSTD’01), volume 2121 of
Lecture Notes in Computer Science, pp. 3–19. Springer, Berlin Heidelberg New York, 2001.

70. Y. Theodoridis. Ten benchmark database queries for location-based services. The Computer
Journal, 46(6):713–725, 2003.

71. G. Trajcevski, O. Wolfson, K. Hinrichs, and S. Chamberlain. Managing uncertainty in moving
objects databases. ACM Transactions Database System, 29(3):463–507, 2004.

72. N. Tryfona and C. Jensen. Conceptual data modeling for spatiotemporal applications.
GeoInformatica, 3:245–268, 1999.

73. N. Tryfona, R. Price, and C. Price. Spatiotemporal Conceptual Modeling., chapter 3, pp. 79–
116, Berlin, 2003.

74. M. Vlachos, D. Gunopulos, and G. Kollios. Discovering Similar Multidimensional Trajecto-
ries. In Proceedings of the 18th International Conference on Data Engineering (ICDE’02),
pp. 673–684. IEEE Computer Society, 2002.

75. N.V. de Weghe, F. Witlox, A.G. Cohn, T. Neutens, and P.D. Maeyer. Efficient storage of
interactions between multiple moving point objects. In OTM Workshops (2), pp. 1636–1647,
2006.

76. O. Wolfson, B. Xu, S. Chamberlain, and L. Jiang. Moving Objects Databases: Issues and
Solutions. In Proceedings of the 10th International Conference on Scientific and Statistical
Database Management (SSDBM’98), pp. 111–122, IEEE Computer Society, 1998.

77. O. Wolfson, A.P. Sistla, S. Chamberlain, and Y. Yesha. Updating and querying databases that
track mobile units. Distributed and Parallel Databases, 7(3):257–387, 1999.

78. J. Zhang and M. Goodchild. Uncertainty in Geographical Information. Taylor & Francis, New
York, 2002.

79. E. Zimanyi, C. Parent, and S. Spaccapietra. Conceptual Modeling for Traditional and Spatio-
Temporal Applications – The MADS Approach. Springer, Berlin Heidelberg New York, 2006.

