
Automatic Detection of Disorders in a
Continuous Speech with the Hidden Markov
Models Approach

Marek Wiśniewski, Wiesława Kuniszyk-Jóźkowiak, Elżbieta Smołka,
and Waldemar Suszyński

Institute of Computer Science, Maria Curie-Sklodowska University, Pl. Marii
Curie-Sklodowskiej 1, 20-031 Lublin, Poland
marek.wisniewski@umcs.lublin.pl

Summary. Hidden Markov Models are widely used for recognition of any patterns
appearing in an input signal. In the work HMM’s were used to recognize two kind of
speech disorders in an acoustic signal: prolongation of fricative phonemes and blockades
with repetition of stop phonemes.

In the work a tests results of a recognition effectiveness are presented for considered
speech disorders by HMM models in different configurations. There were summary
models applied for a class of disorder recognition, as well as models related to dis-
turbance of individual phoneme. The tests were carried out by use of the author’s
implementation of HMM procedures.

1 Introduction

The classification of speech disorders involves many types of disturbances. Proper
recognition of these has a very important significance for the choice of a therapy
process [1, 2]. The equally essential problem is an objective evaluation of the kind
of disorder as well as release a therapist from arduous rehearing and analyzing
recorded utterances of stuttering people. So a further search for more accurate
methods of automatic disturbance detection is desirable.

The HMMs are stochastic models that are widely used for recognition of
various patterns appearing in an input signal. HMMs are used for description of
a system state. However the state cannot be explicitly determined because it is
hidden. Only observations generated by the model are given, and it is only the
base on that one can estimate probability of being a system in a particular state.
In the case of speech recognition systems an observation is an acoustic signal
and the state is the recognized pattern (i.e. disfluency)[3].

In the recognition process with the HMM‘s there is a creation of the database
of models required. Every model is designed for recognition of particular pattern
(disfluency) appearing in a signal. Next there is a probability of emission of the
analyzed fragment counted for every model in the database. The model that
gives the greatest probability is then selected and if the probability is above the
chosen threshold the recognition is done.
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Every recognition model is prepared by training. Having a base HMM model
λ = (π, A, B) and a sufficient number of samples of the same pattern, one can
prepare a model, so that it achieves maximum emission probability for that
pattern.

For requirements of this paper there were several models learned designed to
recognition of prolonged fricative phonemes and blockades with repetition of stop
phonemes. That disturbances are the most often presented in nonfluent speech.

2 Sample Parameterization

The acoustic signal requires to be parameterized before analysis. The most of-
ten used set of parameters in the case are Mel Frequency Cepstral Coefficients
(MFCC). The process of determining MFCC parameters in the work is as follows:

• splitting signals into frames of 512 samples’ length,
• FFT (Fast Fourier Transform) analysis on every frame,
• transition from linear to mel frequency scale according to the formula: Fmel =

2595log(1 + F/700) [4, 5],
• signal frequency filtering by 20 triangular filters,
• calculation of the required (20) number of MFCC parameters.

The elements of each filter are determined by summing up the convolution
results of the power spectrum with a given filter amplitude, according to the
formula:

Sk =
J∑

j=0

PjAk,j ,

where: Sk- power spectrum coefficient, J- subsequent frequency ranges from FFT
analysis, Pj- average power of an input signal for j frequency , Ak,j - k-filter
coefficient.

With Sk values for each filter given, cepstrum parameter in the mel scale can
be determined [6]:

MFCCk =
K∑

k=1

(logSk) cos
[
n(k − 0.5)

π

K

]
, forn = 1..N,

where: N - required number of MFCC parameters, Sk- power spectrum coeffi-
cients, K- number of filters.

The justification of the transition from the linear scale to mel scale is that the
latter reflects the human perception of sounds better.

Division of an audio sample into frames leads to disturbance of real signal pa-
rameters. For avoidance of this problem each value of an audio frame were multi-
plied by proper ceofficient of the Hamming window [7], according to the formula:

W [n] = 0.54− 0.56 cos
(

2πk
n− 1

)
,

where: n- sample number, N - frame width.
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However use of that formula cause losing of the information on a frame bound-
aries. That’s way there were partial overlapping of successive frames applied. The
length of an overlapp was adjusted to 1/3 of the frame length (rounded to 170
points).

3 Codebook Preparation

The MFCC analysis of the acoustic signal gives too many parameters to be an-
alyzed with the application of the HMM with a discrete output. At the same
time, the number of MFCC parameters cannot be decreased, since then impor-
tant information may be lost and so the effectiveness of recognition may be
poor.

In order to reduce the number of parameters, encoding with a proper codebook
can be applied [7]. Preparation of the codebook is as follows. First, the proper
sample of an utterance needs to be chosen, which covers the entire acoustic space
to be examined. Next it can be generated, for example by the use the „k-means“
algorithm. Three fragments of utterances were selected, each lasting 54 seconds
and articulated by three different persons and, afterwards MFCC coefficients
were calculated. The obtained set of parameters were divided into appropriate
number of regions and their centroids were found. For counting the distances
between vectors the Euclidean formula were used:

dx,y =

√√√√ N∑
i=1

(xi − yj)2

where: dx,y- the Euclidean distance between N -dimensional vectors X and Y .
For the examination there is to determine a size of the codebook. The size

should be such so a recognition ratio is on an acceptable level and a computation
time is reasonable. Based on own studies there were a codebook prepared with
512 elements and used for testing.

4 Testing Procedure

For tests purpose there was an audio sample of a length of 87624 ms prepared.
The sample contained 24 disfluencies (10 stops blockades with repetitions of
and 14 prolongations of fricatives). Every kind of disturbance appeared two
times in the sample and they were: C, s, z, x, Z, v, S (fricatives) and p, t, k,
b, g (stops). For every kind of disfluency there were suitable model prepared
and additionally two summary models for a disturbance class recognition (stop
blockades and fricatives prolongation). During the tests it has appeared that,
in the case of stop blockades, a silence have negative influence on recognition
ratio. To eliminate of this an additional groups of models for stop blockades were
trained with the use of samples freed from silence.

Base models had 8 states and 512 code symbols. Probability values for ma-
trixes A, B, π were randomly generated. From 3 to 6 patterns of the same
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disfluency were utilized for training every model. In the case of summary models
the number of patterns was much greater: for prolongation of fricatives recogni-
tion model there was 38 samples used, for stops blockade of recognition model -
30 samples and for summary model learned with patterns that were free of
silence - 30 samples.

For testing, the HMM application was used, where appropriate algorithms
were implemented. Parameters of the sound samples which were used were as
follows: sample frequency: 22050Hz, amplitude resolution: 16 bits. All the record-
ings were normalized to the same dynamic range and encoded with the use of
earlier prepared codebook.

The examination of recognition effectiveness was carried on in the follow-
ing way. From the sample, segments of the proper length were taken (30 code
symbol - 465 ms and 60 code symbols - 930 ms) with the step of 1 symbol (about
15.51 ms) and then an emission probabilities for each model were counted.

Fromtheobtained results thereweredistributionof emissionprobabilities across
the time graphprepared for everymodel.Next, in the experimentalway, the thresh-
old value of a probability was chosen. A fragment that achieved the probability
greater than the threshold was considered as disfluency. After cutting off lower
probabilities from a graph there were only fragments that indicated disfluency.
Fragments appearance time (read out from a graph) were compared with the time
read out from a spectrogram. If both the times were equal and a disturbance was
indicated by a proper model then it was considered as correct recognition.

In the figure 1 and 2 there are examples of probability distribution shown for
three summary models and an utterance spectrogram[8]. Obtained probabilities
cover a very big range so the logarithmic scale was used. The place where a
disorder appears is characterized by a very high probability value in comparison
to other places. For example the probability difference between two disorders
that appears (stop and fricative at a time range 17500-19500 ms) is over 1E-20,
so it indicates a stop phoneme blockade.

The value of probability depends on a window size - when the window is
longer the probability is lower. One can notice that in the case of the 60 frames
window length the graph has smaller fluctuations, but on the other side the 30
frames window length graph is more detailed.

There were two groups of test carried on in the work. In the first case
(tables 1-4) there were used summary models for fricatives, summary models
for stops as well as models learned for every individual phoneme separately.
In the second case (tables 5-8), for stop phonemes there were applied models
trained with samples with deleted silence (models for fricatives were the same).
One should notice that models learned for individual phonemes was used for
recognition of a class of disfluency (like summary models) and not for recogni-
tion of individual phoneme disturbances. Speech disorders are often sounds that
are completely different form known phonemes and it is almost impossible to rec-
ognize nonfluency of individual phoneme. There are test results of recognition
effectiveness shown below for the second groups of models (learned by samples
with deleted silence).
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Fig. 1. The analysis result of the utterance: "vjelci bbb b1w z ego ctSwovjek ssss
safka" for the window of 30 frames length (465 ms); probability distribution for three
8-state models with the codebook size of 512-elements (top); the spectrogram (bottom)
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Fig. 2. The analysis result of the utterance: "vjelci bbb b1w z ego ctSwovjek ssss
safka" for the window of 60 frames length (930 ms); probability distribution for three
8-state models with the codebook size of 512-elements(top); spectrogram (bottom)

For the comparison of recognition ratio two parameters are useful: sensitivity
and predictability. They were counted according to formulas [9]:

sensitivity=((number of correctly recognized nonfluencies) / (number of all
nonfluencies in the sample))*100%;
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Table 1. The recognition ratio for summary models; window size 30 frames, probability
threshold 1E-45

Table 2. The recognition ratio for summary models; window size 60 frames, probability
threshold 1E-90

Table 3. The recognition ratio for models prepared for individual nonfluent phonemes;
window size 30 frames, probability threshold 1E-45

predictability=((number of correctly recognized nonfluencies) / (number of
correctly recognized nonfluencies + number of false nonfluence

recognition))*100%;

As a more general parameter the following formula was used:

correctnes =sensitivity * (100%-predictability)

If the above formula was giving a negative value then this value was treated as
null percentage.
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Table 4. The recognition ratio for models prepared for individual nonfluent phonemes;
window size 60 frames, probability threshold 1E-60

Table 5. The recognition ratio for summary models with „a deleted silence“; window
size 30 frames, probability threshold 1E-49

Table 6. The recognition ratio for summary models with „a deleted silence“; window
size 60 frames, probability threshold 1E-145

According to the results, the best recognition ratio was achieved for summary
models with deleted silence (table 6) and for the window length of 60 frames
(correctness equal to 70%). Such value is satisfactory. In general, the correctness
was better when the window size was equal to 60 frames (only in one case
was differently) and for models with deleted silence (also only in one case was
differently). The predictability ceofficient was always better in every test when
60 frames window was used, so there were less incorrect recognitions.
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Table 7. The recognition ratio for models prepared for individual nonfluent phonemes
and with „a deleted silence“; window size 30 frames, probability threshold 1E-49

Table 8. The recognition ratio for models prepared for individual nonfluent phonemes
and with „a deleted silence“; window size 60 frames, probability threshold 1E-145

5 Summary

The recognition ratio of speech disorders with the use of HMM mainly depends
on a very accurate selection of teaching patterns. In the case of blockades with
repetitions the problem is a silence that appears in a sample. Sometime it leads
to incorrect interpretation - silence is recognized as a disturbance. An another
important conclusion is, that a proper selection of window length is crucial. The
longer sections cause that there is less fluctuations and the number of incorrect
recognitions is also lesser. On the other side a selection of too wide window leads
to lesser sensitivity.

In the context of a recognition process very important is a selection of a
proper probability threshold. It is a compromise between the sensitivity and
predictability level. In the future authors plan to implement procedures for au-
tomatic selection of that threshold.
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