
A Distributed Algorithm

for Finding All Best Swap Edges
of a Minimum Diameter Spanning Tree�

Beat Gfeller1, Nicola Santoro2, and Peter Widmayer1

1 Institute of Theoretical Computer Science, ETH Zurich, Switzerland
{gfeller,widmayer}@inf.ethz.ch

2 School of Computer Science, Carleton University, Ottawa, Canada
santoro@scs.carleton.ca

Abstract. Communication in networks suffers if a link fails. When the
links are edges of a tree that has been chosen from an underlying graph
of all possible links, a broken link even disconnects the network. Most
often, the link is restored rapidly. A good policy to deal with this sort
of transient link failures is swap rerouting, where the temporarily broken
link is replaced by a single swap link from the underlying graph. A rapid
replacement of a broken link by a swap link is only possible if all swap
links have been precomputed. The selection of high quality swap links is
essential; it must follow the same objective as the originally chosen com-
munication subnetwork. We are interested in a minimum diameter tree
in a graph with edge weights (so as to minimize the maximum travel time
of messages). Hence, each swap link must minimize (among all possible
swaps) the diameter of the tree that results from swapping. We propose
a distributed algorithm that efficiently computes all of these swap links,
and we explain how to route messages across swap edges with a compact
routing scheme.

1 Introduction

For communication in computer networks, often only a subset of the available
connections is used to communicate at any given time. If all nodes are con-
nected using the smallest number of links, the subset forms a spanning tree of
the network. Depending on the purpose of the network, there is a variety of de-
sirable properties of a spanning tree. We are interested in a Minimum Diameter
Spanning Tree (MDST), i.e., a tree that minimizes the largest distance between
any pair of nodes, thus minimizing the worst case length of any transmission
path. The importance of minimizing the diameter of a spanning tree has been
widely recognized (see e.g. [2]); essentially, the diameter of a network provides
a lower bound on the computation time of most algorithms in which all nodes
participate.
� We gratefully acknowledge the support of the Swiss SBF under contract no. C05.0047

within COST-295 (DYNAMO) of the European Union and the support of the Nat-
ural Sciences and Engineering Research Council of Canada.

A. Pelc (Ed.): DISC 2007, LNCS 4731, pp. 268–282, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Distributed Algorithm for Finding All Best Swap Edges of a MDST 269

One downside of using a spanning tree is that a single link failure disconnects
the network. Whenever the link failure is transient, i.e., the failed link soon
becomes operational again, the best possible way of reconnecting the network is
to replace the failed link by a single other link, called a swap link. Among all
possible swap links, one should choose a best swap w.r.t. the original objective
[5,6,7,8], that is in our case, a swap that minimizes the diameter of the resulting
swap tree. Note that the swap tree is different from a minimum diameter spanning
tree of the underlying graph that does not use the failed link. The reason for
preferring the swap tree to the latter lies in the effort that a change of the
current communication tree requires: If we were to replace the original MDST
by a tree whose edge set can be very different, we would need to put many edges
out of service, many new edges into service, and adjust many routing tables
substantially — and all of this for a transient situation. For a swap tree, instead,
only one new edge goes into service, and routing can be adjusted with little
effort (as we will show). Interestingly, this choice of swapping against adjusting
an entire tree even comes at a moderate loss in diameter: The swap tree diameter
is at most a factor of 2.5 larger than the diameter of an entirely adjusted tree [6].

In order to keep the required time for swapping small, for each edge of the tree,
a best swap edge is precomputed. We show in the following that this distributed
computation of all best swaps has the further advantage of gaining efficiency
(against computing swap edges individually), because dependencies between the
computations for different failing edges can be exploited.

Related Work. Nardelli et al. [6] describe a centralized (i.e., non-distributed)
algorithm for computing all best swaps of a MDST in O(n

√
m) time and O(m)

space, where the given underlying communication network G = (V, E) has n =
|V | vertices and m = |E| edges. For shortest paths trees, an earlier centralized
algorithm has been complemented by a distributed algorithm [7] using totally dif-
ferent techniques for finding all best swap edges for several objectives [3,4], with
either O(n) messages of size O(n) (i.e., a message contains O(n) node labels, edge
weights, etc.) each, or O(n∗) short messages with size O(1) each, where n∗ denotes
the size of the transitive closure of the tree, where edges are directed away from
the root. In a so-called preprocessing phase of this algorithm, some information is
computed along with the spanning tree construction using O(m) messages. A dis-
tributed algorithm for computing a MDST in a graph G(V, E) in an asynchronous
setting has O(n) time complexity (in the standard sense, as explained in Section 3)
and uses O(nm) messages [2]. However, no efficient distributed algorithm to com-
pute the best swaps of a MDST had been found to date.

Our Contribution. In this paper, we propose a distributed algorithm for com-
puting all best swaps of a MDST using no more than O(max{n∗, m}) messages
of size O(1) each. The size of a message denotes the number of atomic values
that it contains, such as node labels, edge weights, path lengths etc., and n∗ is
the size of the transitive closure of the MDST with edges directed away from
a center of the tree. Both n∗ and m are very natural bounds: When each sub-
tree triggers as many messages as there are nodes in the subtree, the size of the

270 B. Gfeller, N. Santoro, and P. Widmayer

transitive closure describes the total number of messages. Furthermore, it seems
inevitable that each node receives some information from each of its neighbours
in G, across each potential swap edge. Our algorithm runs in O(‖D‖) time (in
the standard sense, as explained in Section 3), where ‖D‖ is the hop-length of
the diameter path of G; note that this is asymptotically optimal. The message
and time costs of our algorithm are easily subsumed by the costs of construct-
ing a MDST distributively using the algorithm from [2]. Thus, it is cheap to
precompute all the best swaps in addition to constructing a MDST initially.

Just like the best swaps algorithms for shortest paths trees [3,4], our algorithm
(like many fundamental distributed algorithms) exploits the structure of the tree.
This tree, however, is substantially different in that it requires a significantly
more complex invariant to be maintained during the computation: We need to
have just the right collection of pieces of paths available so that on the one hand,
these pieces can be maintained efficiently, and on the other hand, they can be
composed to reveal the diameter at the corresponding steps in the computation.

Furthermore, we propose a compact routing scheme for trees which can quickly
and inexpensively adapt routing when a failing edge is replaced by a best swap
edge. Notably, our scheme does not require an additional full backup table, but
assigns a label of c log n bits to each node (for some small constant c); a node
of degree δ stores the labels of all its neighbours (and itself), which amounts to
δc log n bits per node, or mc logn bits in total. Given this labelling, knowledge of
the labels of both adjacent nodes of a failing edge and the labels of both adjacent
nodes of its swap edge is sufficient to adjust routing.

In Section 2, we formally define the distributed all best swaps problem. Section 3
states our assumptions about the distributed setting and explains the basic idea of
our algorithm. In Section 4, we study the structure of diameter paths after swap-
ping, and we propose an algorithm for finding best swaps. The algorithm uses in-
formation that is computed in a preprocessing phase, described in Section 5. Our
routing scheme is presented in Section 6. Section 7 concludes the paper.

2 Problem Statement and Terminology

A communication network is a 2-connected, undirected, edge weighted graph
G = (V, E), with n = |V | vertices and m = |E| edges. Each edge e ∈ E has a
non-negative real length w(e). The length |P| of a path P is the sum of the lengths
of its edges, and the distance d(x, y) between two vertices x, y is the length of a
shortest path between x and y. The hop-length ‖P‖ of a path P is the number of
edges that P contains. Throughout the paper, we are only dealing with simple
paths. Given a spanning tree T = (V, E(T)) of G, let D(T) := 〈d1, d2, . . . , dk〉
denote a diameter of T , that is, a longest path in T (see Fig. 1). Where no
confusion arises, we abbreviate D(T) with D. Furthermore, define the center
dc of D as a node such that the lengths of DL := 〈d1, d2, . . . , dc〉 and DR :=
〈dc, dc+1, . . . , dk〉 satisfy |DL| ≥ |DR| and have the smallest possible difference
|DL| − |DR|. The set of neighbours of a node z (excluding z itself) in G and in
T is written as NG(z) and NT (z) ⊆ NG(z), respectively.

A Distributed Algorithm for Finding All Best Swap Edges of a MDST 271

d1

dk

dc

dc+1dc−1

T

VC VRVL

Fig. 1. A minimum diameter spanning
tree T

d1

dk

dc

dc+1dc−1

T

x

p(x)
e

z′
z

f

u

Tx

Fig. 2. A swap edge f = (z, z′) for e =
(x, p(x))

Let T be rooted at dc, and let, for each node x 	= dc, node p(x) be the parent
of x and C(x) the set of its children. Furthermore, let Tx = (V (Tx), E(Tx)) be
the subtree of T rooted at x, including x. Let VL (L stands for “left”) be the set
of nodes in the subtree rooted at dc−1, VR the set of nodes in the subtree rooted
at dc+1, and VC all other nodes.

Now, the removal of any edge e = (x, p(x)) of T partitions the spanning tree
into two trees Tx and T \Tx (see Fig. 2). Note that T \Tx does not contain the
node x. A swap edge f for e is any edge in E\E(T) that (re-)connects Tx and
T \Tx, i.e., for which T \{e} ∪ {f} =: Te/f is a spanning tree of G\{e}. Let S(e)
be the set of swap edges for e. A best swap edge for e is any edge f ∈ S(e) for
which |D(Te/f)| is minimum. A local swap edge of node z for some failing edge
e is an edge in S(e) adjacent to z. The distributed all best swaps problem for
a MDST is the problem of finding for every edge e ∈ E(T) a best swap edge
(with respect to the diameter). Throughout the paper, let e = (x, p(x)) denote
a failing edge and f = (z, z′) a swap edge, where z is a node inside Tx, and z′ a
node in T \Tx.

3 Algorithmic Setting and Basic Idea

In our setting, nodes have unique identifiers that possess a linear order. Further,
let each node know its own neighbours in T and in G, and for each neighbour
the length of the corresponding edge. We assume port-to-port communication
between neighbouring nodes. The distributed system of nodes is totally asyn-
chronous. Each message sent from some node to one of its neighbours eventually
arrives (there is no message loss). As usual, we define the asynchronous time
complexity of an algorithm as the longest possible execution time assuming that
sending a message requires at most one time unit. Furthermore, nodes do not
need to know the total number of nodes in the system (although it is easy to
count the nodes in T using a convergecast).

3.1 The Basic Idea

Our goal is to compute, for each edge of T , a best swap edge. A swap edge for a
given failing edge e = (x, p(x)) must connect the subtree of T rooted at x to the

272 B. Gfeller, N. Santoro, and P. Widmayer

part of the tree containing p(x). Thus, a swap edge must be adjacent to some
node inside Tx. If each node in Tx considers its own local swap edges for e, then
in total all swap edges for e are considered. Therefore, each node inside Tx finds
a best local swap edge, and then participates in a minimum finding process that
computes a (globally) best swap edge for e. The computation of the best local
swap edges is composed of three main phases: In a first preprocessing phase, a
root of the MDST is chosen, and various pieces of information (explained later)
are computed for each node. Then, in a top-down phase each node computes and
forwards some “enabling information” (explained later) for each node in its own
subtree. This information is collected and merged in a third bottom-up phase,
during which each node obtains its best local swap edge for each (potentially
failing) edge on its path to the root. The efficiency of our algorithm will be due
to our careful choice of the various pieces of information that we collect and use
in these phases.

To give an overview, we now briefly sketch how each node computes a best
local swap edge. First observe that after replacing edge e by f , the resulting
diameter is longer than the previous diameter only if there is a path through f
which is longer than the previous diameter, in which case the path through f
is the new diameter. In this case, the length of the diameter equals the length
of a longest path through f in the new tree. For a local swap edge f = (z, z′)
connecting node z ∈ V (Tx) and z′ ∈ V \V (Tx), such a path consists of

(i) a longest path inside T \Tx starting in z′,
(ii) edge f , and
(iii) a longest path inside Tx starting in z.

Part (i) is computed in a preprocessing phase, as described in Section 5. Part (ii)
is by assumption known to z, because f is adjacent to z. Part (iii) is inductively
computed by a process starting from the root x of Tx, and stopping in the leaves,
as follows. A path starting in z and staying inside Tx either descends to a child
of z (if any), or goes up to p(z) (if p(z) is still in Tx) and continues within Tx\Tz.
For the special case where z = x, node x needs to consider only the heights of
the subtrees rooted at its children. All other nodes z in Tx additionally need to
know the length of a longest path starting at p(z) and staying inside Tx\Tz. This
additional enabling information will be computed by p(z) and then be sent to z.

Once the best local swap edges are known, a best (global) swap edge is iden-
tified by a single minimum finding process that starts at the leaves of Tx and
ends in node x. To compute all best swap edges of T , this procedure is executed
separately for each edge of T . This approach will turn out to work with the
desired efficiency:

Main Theorem. All best swap edges of a MDST can be computed in an asyn-
chronous distributed setting with O(max{n∗, m}) messages of constant size, and
in O(‖D‖) time.

We will prove this theorem in the next sections, by proving that the preprocessing
phase can be realized with O(m) messages, and after that the computation of
all best swap edges requires at most O(n∗) additional messages.

A Distributed Algorithm for Finding All Best Swap Edges of a MDST 273

This algorithm requires that each node knows which of its neighbours are
children and which neighbour is its parent in T . Although this information is
not known a priori, it can be easily computed in a preprocessing phase, during
which a particular diameter and a root of T are chosen.

4 How to Pick a Best Swap Edge

In our distributed algorithm, we compute for each (potentially) failing edge the
resulting new diameter for each possible swap edge candidate. This approach
can be made efficient by exploiting the structure of diameter path changes, as
described in the following.

4.1 The Structure of Diameter Path Changes

For a given failing edge e, let Pf be a longest path in Te/f that goes through
swap edge f for e. Then, we have the following:

Lemma 1. The length of the diameter of Te/f is |D(Te/f)| = max{|D(T)|, |Pf |}.
Proof. Let T1 and T2 be the parts into which T is split if e is removed. It is easy
to see that

|D(Te/f)| = max{|D(T1)|, |D(T2)|, |Pf |}. (1)

Since T is a MDST, we have

|D(Te/f)| ≥ |D(T)|. (2)

Because T1 and T2 are contained in T ,

|D(T1)| ≤ |D(T)| and |D(T2)| ≤ |D(T)|. (3)

If |Pf | ≥ |D(T)|, it is clear that |Pf | is a largest term in (1), so the claim holds.
On the other hand, if |Pf | < |D(T)|, then either T1 or T2 must contain a diameter
of length exactly |D(T)| (otherwise, either (2) or (3) would be violated). Thus,
the claim holds also in this case. �

That is, for computing the resulting diameter length for a given swap edge
f = (z, z′) for e, we only need to compute the length of a longest path in Te/f

that goes through f . For node z in the subtree Tx of T rooted in x, and z′ outside
this subtree, such a path Pf consists of three parts. To describe these parts, let
L(H, r) denote a longest path starting in node r and staying inside the graph
H . The first part is a longest path L(T \Tx, z′) in T \Tx that starts in z′. The
second part is the edge f itself. The third part is a longest path L(Tx, z) starting
in z and staying inside Tx. This determines the length of a longest path through
f as |Pf | = |L(Tx, z)| + w(f) + |L(T \Tx, z′)|.

274 B. Gfeller, N. Santoro, and P. Widmayer

4.2 Distributed Computation of |L(Tx, z)|
For a given failing edge e = (x, p(x)), each node z in Tx needs its |L(Tx, z)| value
to check for the new diameter when using a swap edge. This is achieved by a
distributed computation, starting in x. As x knows the heights of the subtrees of
all its children (from the preprocessing), it can locally compute the height of its
own subtree Tx as |L(Tx, x)| = maxq∈C(x){w(x, q) + height(Tq)}, where C(x) is
the set of children of x. For a node z in the subtree rooted at x, a longest simple
path either goes from z to its parent and hence has length |L(Tx\Tz ∪ {z}, z)|,
or goes into the subtree of one of its children and hence has length |L(Tz, z)|
(see Fig. 3). The latter term has just been described, and the former can be
computed by induction by the parent r of z and can be sent to z. This inductive
step is identical to the step just described, except that z itself is no candidate
subtree for a path starting at r in the induction. In total, each node r computes,
for each of its children q ∈ C(r), the value of

|L(Tx\Tq ∪ {q}, q)| =

w(q, r) + max
{
|L(Tx\Tr ∪ {r}, r)|, max

s∈C(r),s�=q
{w(r, s) + height(Ts)}

}
,

and sends it to q, where we assume that the value |L(Tx\Tr ∪ {r}, r)| was pre-
viously sent to r by p(r).

A bird’s eye view of the process shows that each node z first computes
|L(Tx, z)|, and then computes and sends |L(Tx\Tq ∪ {q}, q)| for each of its chil-
dren q ∈ C(z). Computation of the |L(Tx, z)| values finishes in Tx’s leaves. Note
that a second value will be added to the enabling information if (x, p(x)) ∈ D,
for reasons explained in the next section.

4.3 Distributed Computation of |L(T\Tx, z′)|
In the following, we explain how z can compute |L(T \Tx, z′)| for a given swap
edge f = (z, z′). In case the failing edge e = (x, p(x)) /∈ D, we show below that
the information obtained in the preprocessing phase is sufficient.

For the sake of clarity, we analyze two cases separately, starting with the
simpler case.

Case 1: The removed edge e is not on the diameter. For this case, we
know from [6] that at least one of the longest paths in T \Tx starting from z′

contains dc. If z′ ∈ VL, we get a longest path from z′ through dc by continuing
on the diameter up to dk, and hence we have |L(T \Tx, z′)| = d(z′, dc) + |DR|.
If z′ is in VC or VR, some longest path from z′ through dc continues on the
diameter up to d1, yielding |L(T \Tx, z′)| = d(z′, dc) + |DL|. Remarkably, in this
case |L(T \Tx, z′)| does not depend on the concrete failing edge e = (x, p(x)),
apart from the fact that (z, z′) must be a swap edge for e.

Case 2: The removed edge e is on the diameter. We analyze the case
e ∈ DL, and omit the symmetric case e ∈ DR. If z′ ∈ VL or z′ ∈ VC , we know
from [6] that again, one of the longest paths in T \Tx starting at z′ contains dc.

A Distributed Algorithm for Finding All Best Swap Edges of a MDST 275

Thus, for z′ ∈ VL we are in the same situation as for the failing edge not on
the diameter, leading to |L(T \Tx, z′)| = d(z′, dc) + |DR|. For z′ ∈ VC , after dc a
longest path may continue either on DR, or continue to nodes in VL. In the latter
case, the path now cannot continue on DL until it reaches d1, because edge e
lies on DL. Instead, we are interested in the length of a longest path that starts
at dc, proceeds into VL, but does not go below the parent p(x) of x on DL; let
us call this length λ(p(x)). As announced before, we include the λ(p(x)) value
as a second value into the enabling information received by p(x); then, we get
|L(T \Tx, z′)| = d(z′, dc) + max{|DR|, λ(p(x))}. It remains to consider z′ ∈ VR.
For this case (see Fig. 4), we know (from [6]) that at least one of the longest
paths in T \Tx starting at z′ passes through the node u′ closest to z′ on D(T).
After u′, this path may either continue on DR up to dk, or continue through
dc going inside VC or VL (without crossing e = (x, p(x))), or continue towards
dc only up to some node di on Dr, going further on non-diameter edges inside
VR. It remains to show how the length of a longest path of this last type can be
found efficiently. We propose to combine three lengths, in addition to the length
of the path from z′ to u′. The first is the length of a longest path inside VR that
starts at dk; let us call this length μR. In general, this path goes up the diameter
path DR for a while, and then turns down into a subtree of VR, away from the
diameter, at a diameter node that we call ρR (see Fig. 4). Given μR, the distance
from u′ to ρR, and the distance from ρR to dk, the desired path length of an
upwards turning path inside VR is d(z′, u′)+d(u′, ρR)+μR−d(dk, ρR). Note that
while it may seem that ρR needs to lie above u′ on DR, this is not really needed
in our computation, because the term above will not be largest (among all path
choices) if ρR happens to be below or at u′. In total, we get |L(T \Tx, z′)| =
max {d(z′, dk), d(z′, dc) + λ(p(x)), d(z′, u′) + d

(
u′, ρR

)
+ μR − d

(
dk, ρR

)}
.1

Tx\Tz ∪ {z}x

p(z)

z

Tz

Tx\Tz

Fig. 3. Illustration of the tree Tx\Tz∪{z}

d1

dk

dc

dc+1
p(x)

di

μR

ρR

z′
z

f

u′
xTx

Fig. 4. Computing |L(T\Tx, z′)| if e ∈
DL, z ∈ VL and z′ ∈ VR

All of these path length computations can be carried out locally with no
message exchanges, if the constituents of these sums are available locally at
a node. We will show in the next section how to achieve this in an efficient
preprocessing phase.
1 Recall that in the definition of λ(p(x)), paths inside VC starting from dc are also

considered.

276 B. Gfeller, N. Santoro, and P. Widmayer

4.4 The BestDiamSwap Algorithm

For a given edge e = (x, p(x)) that may fail, each node z in the subtree Tx rooted
at x executes the following steps:

(i) Wait for the enabling information from the parent (unless x = z), and then
compute |L(Tx, z)|. Compute the enabling information for all children and
send it.

(ii) For each local swap edge f = (z, z′), compute |L(T \Tx, z′)| as described in
Section 4.3.

(iii) For each local swap edge f = (z, z′), locally compute

|D(Te/f)| = max{|D(T)|, |L(Tx, z)| + w(f) + |L(T \Tx, z′)|}.
Among these, choose a best swap edge f∗

local and store the resulting new
diameter as |D(Te/f∗

local
)|.

(iv) From each child q ∈ C(z), receive the node label of a best swap edge
candidate f∗

q and its resulting diameter |D(Te/f∗
q
)|. Pick a best swap edge

candidate f∗
b among these, i.e., choose b := arg minq∈C(z) |D(Te/f∗

q
)|. Com-

pare the resulting diameter of f∗
b and f∗

local, and define fbest as the edge
achieving the smaller diameter (or any of them if their length is equal), and
its diameter as |D(Te/fbest

)|.
(v) Send the information fbest, |D(Te/fbest

)| to the parent.

The above algorithm computes the best swap edge for one (potentially) failing
edge e, based on the information available after the preprocessing phase. In order
to compute all best swap edges of T , we execute this algorithm for each edge of
T independently.

Analysis of the Algorithm. We now show that the proposed algorithm indeed
meets our efficiency requirements:

Theorem 1. After preprocessing, executing the BestDiamSwap algorithm in-
dependently for each and every edge e ∈ E(T) costs at most O(n∗) messages of
size O(1) each, and O(‖D‖) time, using a “Farthest-to-Go” queuing policy [1].

Proof. Correctness follows from the preceding discussion. Preprocessing ensures
that all precomputed values (such as |L(T \Tx, z′)|) defined for the other end z′ of
a candidate swap edge are available locally at z′. As to the message complexity,
consider the execution of the BestDiamSwap algorithm for one particular edge
e = (x, p(x)). Starting in node x ∈ V \{dc}, each node in Tx sends a message
containing the “enabling information” (i.e., L(Tx\Tq, q) and possibly λ(p(x)))
containing O(1) items to each of its children. Furthermore, each node in Tx

(including finally x) sends another message with size O(1) up to its parent in
the minimum finding process. Hence, two messages of size O(1) are sent across
each edge of Tx, and one message is sent across e. Thus, the computation of a
best swap for e requires 2 · |E(Tx)| + 1 = 2 · |V (Tx)| − 1 messages. The number
of messages exchanged for computing a best swap edge for each and every edge
(x, p(x)) where x ∈ V \{dc} is

∑
x (2 · |V (Tx)| − 1) = 2n∗ − (n − 1).

A Distributed Algorithm for Finding All Best Swap Edges of a MDST 277

As to the time complexity, note that the best swap computation of a single
edge according to the BestDiamSwap algorithm requires at most O(‖D‖) time.
Now note that this algorithm can be executed independently (and thus concur-
rently) for each potential failing edge: In this fashion, each node x in T sends
exactly one message to each node in Tx during the top-down phase. Symmetri-
cally, in the bottom-up phase, each node u in T sends exactly one message to
each node on its path to the root. The crucial point here is to avoid that some of
these messages block others for some time (as only one message can traverse a
link at a time). Indeed, one can ensure that each message reaches its destination
in O(‖D‖) time as follows. A node z receiving a message with destination at
distance d from z forwards it only after all messages of the protocol with a des-
tination of distance more than d from z have been received and forwarded. By
induction over the distance of a message from its destination, it is easily proven
that this “Farthest-to-Go” queuing policy allows each message to traverse one
link towards its destination after at most one time unit of waiting. Thus, the
O(‖D‖) time complexity also holds for the entire algorithm. �

Instead of sending many small messages individually, we can choose to sequence
the process of message sending so that messages for different failing edges are
bundled before sending (see also [3,4] for applications of this idea). This leads
to an alternative with fewer but longer messages:

Corollary 1. After preprocessing, the distributed all best swaps problem can be
solved using O(n) messages of size O(n) each, and O(‖D‖) time.

5 The Preprocessing Phase

The preprocessing phase serves the purpose of making the needed terms in the
sums described in the previous section available at the nodes of the tree.

In the preprocessing phase, a diameter D of T is chosen, and its two ends
d1 and dk as well as its center dc are identified. This can be done essentially
by a convergecast, followed by a broadcast to distribute the result (see e.g. [9]);
we omit the details. Hence, after preprocessing exchanges O(n) messages, each
node knows the information that is requested in (A) and (C) below. It is crucial
that during preprocessing, each node obtains enough information to later carry
out all computational steps to determine path components (i), (ii) and (iii).
More precisely, each node gets the following global information (the same for all
nodes):

(A) The endpoints d1 and dk of the diameter, the length |D| of the diameter,
and the lengths |DL| and |DR|.

(B) The length μR of a longest path starting in dk that is fully inside Tdc+1 ,
together with the node ρR on D where such a path leaves the diameter.
Figure 5 illustrates such a longest path μR. Moreover, the distance d(ρR, dc)
must be known. Symmetrically, the length μL of a longest path starting in
d1 that is fully inside Tdc−1 , with the corresponding node ρL and distance
d(ρL, dc) are required.

278 B. Gfeller, N. Santoro, and P. Widmayer

In addition, each node z obtains the following information that is specific for z:

(C) For each child q ∈ C(z) of its children, the height Tq of q’s subtree.
(D) Is z on the diameter D, yes or no.
(E) The distance d(z, dc) of z to dc.
(F) The identification of the parent p(z) of z in T .
(G) To which of VL, VC and VR does z belong.
(H) If z /∈ D, the closest predecessor u of z on the diameter; the distance d(u, dc)

from u to dc.
(I) If z is on the left (right) diameter DL (DR), with z = di, the length λ(di) of a

longest path in T starting at dc and neither containing the node dc+1 (dc−1)
nor the node di−1 (di+1) (see Fig. 5).

(J) For each of the neighbours z′ of z in G, which of VL, VC and VR contains
z′; the distance d(z′, dc) from z′ to dc; the nearest predecessor u′ of z′ on
D, the distance d(u′, dc).

Computing the Additional Information. Recall that the first preprocess-
ing part ends with a broadcast that informs all nodes about the information
described in (A) and (C). The second part of the preprocessing phase follows
now.

A node z receiving the message about D can infer from the previous converge-
cast whether it belongs to D itself by just checking whether the paths from z to
d1 and dk go through the same neighbour of z.

Information (E) is obtained by having the center node send a “distance from
dc” d(dc, d∗) message to both neighbours dc+1 and dc−1 on D, which is forwarded
and updated on the diameter. This information is used by the diameter nodes for
computing λ(di), required in (I). The center initiates the inductive computation
of λ(di):

– λ(dc) is the depth of a deepest node in VC .
– For each dj , 1 ≤ j < c, λ(dj) = max{λ(dj+1), d(dc, dj) + h2(dj)}, h2 being

the height of a highest subtree of dj apart from the diameter subtree.
– For each dj , c < j ≤ k, λ(dj) = max{λ(dj−1), d(dc, dj) + h2(dj)}.

In order to compute μL and μR as required in (B), we define μ(di) for each
node di on DL as the length of a longest path starting in d1 that is fully inside
Tdi, together with the node ρ(di) on DL where such a path leaves the diameter.
For di on DR, the definition is symmetric. We then have μL = μ(dc−1) and
μR = μ(dc+1). The inductive computation of μ(di) is started by d1 and dk, and
then propagated along the diameter:

– μ(d1) = μ(dk) = 0;
– for each dj , 1 < j < c, μ(dj) = max{μ(dj−1), d(d1, dj) + h2(dj)};
– for each dj , c < j < k, μ(dj) = max{μ(dj+1), d(dk, dj) + h2(dj)}.

Along with μ(dj), ρ(dj) and d(ρ(dj), dc) can be computed as well. The computa-
tion stops in dc, which receives the messages (μ(dc−1), ρ(dc−1), d(ρ(dc−1), dc)) =
(μL, ρL, d(ρL, dc)) and (μ(dc+1), ρ(dc+1), d(ρ(dc+1), dc)) = (μR, ρR, d(ρR, dc)).
Altogether, this second preprocessing part operates along the diameter and takes
O(‖D(T)‖) = O(n) messages.

A Distributed Algorithm for Finding All Best Swap Edges of a MDST 279

d1

dk

dc

dc+1
dc−1

di

λ(di) μR

ρR

T

Fig. 5. Definition of λ(di), μR and ρR

z

f

e

x

p(x)

z′
Tx

s

d

i

T

Fig. 6. Only some nodes need to know
about failure of edge e = (x, p(x))

Distributing the Information. When the computation of (μL, ρL, d(ρL, dc))
and (μR, ρR, d(ρR, dc)) completes in dc, the center packs these values plus the
values |DL| and |DR| into one message M∗. It adds the appropriate one of the
labels “VL”,“VR” and “VC” to M∗, before forwarding M∗ to dc−1, dc+1 and any
other neighbour of dc in T and then flooding the tree. Additionally, M∗ contains
the “distance from dc” information which is updated on forwarding, such that
all nodes know their distance to the center2. When M∗ is forwarded from a node
u ∈ D to a node not on D, it is extended by the “distance from u” information,
which is also updated on forwarding. In addition, d(u, dc) is appended to M∗.
Finally, if node z receives M∗ from node v, then z learns that v is its parent.

At the end of this second part of the preprocessing phase, each node z′ sends
a message M ′ to each of its neighbours z in G\T . Note that this is the only
point in our solution where messages need to be sent over edges in G\T . M ′

contains d(z′, dc) and exactly one of { “z′ ∈ VL”, “z′ ∈ VC” , “z′ ∈ VR” },
whichever applies. Furthermore, let u′ be the nearest ancestor of z′ on D; the
distance d(u′, dc) is also appended to M ′.

As a consequence, after each node has received its version of the message M∗,
the information stated in (B), (E), (F), (G), (H) is known to each node. Further-
more, each node that has received M ′ from all its neighbours in G knows the in-
formation stated in (J). The distribution of this information requires O(‖D(T)‖)
time and O(m) messages. Let us summarize.

Lemma 2. After the end of the two parts of the preprocessing phase, which
requires O(‖D‖) time, all nodes know all information (A)− (J), and O(m) mes-
sages have been exchanged.

Recognizing Swap Edges Using Labels. A node v ∈ Tx must be able to
tell whether an incident edge f = (v, w) is a swap edge for e = (x, p(x)) or
not. We achieve this by the folklore method of numbering nodes in two ways, a
preorder traversal and a reverse preorder traversal. After this, a node can decide
in constant time whether an edge is a swap edge. For details, see [3,4].

2 The nodes on D already have that information at this point, but all other nodes still
require it.

280 B. Gfeller, N. Santoro, and P. Widmayer

6 Routing Issues

A natural question arises concerning routing in the presence of a failure: After
replacing the failing edge e by a best swap edge f , how do we adjust our routing
mechanism in order to guide messages to their destination in the new tree Te/f?
And how is routing changed back again after the failing edge has been repaired?
Clearly, it is desirable that the adaptation of the routing mechanism is as fast
and inexpensive as possible.

Existing Approaches. The simplest routing scheme uses a routing table of n
entries at each node, which contains, for each possible destination node, the link
that should be chosen for forwarding. This approach can be modified to allow
swaps by storing additional n entries for the swap links at each node [3]. In [5]
a scheme is proposed that stores only one swap entry, at the cost of choosing
suboptimal swap edges. All these approaches require O(n2) routing entries in
total.

In the following, we propose to use a compact routing scheme for arbitrary
trees (shortest paths, minimum diameter, or any other) which requires only δ
entries, i.e. δc log n bits, at a node of degree δ, thus n entries or mc logn bits in
total, which is the same amount of space that the interval routing scheme of [10]
requires. The header of a message requires c log n bits to describe its destination.

Our Routing Scheme. Our routing scheme for trees is based on the labelling
γ : V → {1, . . . , n}2 described in the end of Section 5. Note that γ allows to
decide in constant time whether a is in the subtree of b (i.e., a ∈ Tb) for any two
given nodes a and b.

Basic Routing Algorithm:
A node s routes message M with destination d as follows: (i) If d = s,
M has arrived at its destination. (ii) If d /∈ Ts, s sends M to p(s).
(iii) Otherwise, s sends M to the child q ∈ C(s) for which d ∈ Tq.

This algorithm clearly routes each message directly on its (unique) path in T
from s to d. Before describing the adaptation in the presence of a swap, observe
that a node s which receives a message M with destination d can locally decide
whether M traverses a given edge e = (x, p(x)): edge e is used by M if and only
if exactly one of s and d is in the subtree Tx of x, i.e., if (s ∈ Tx) 	= (d ∈ Tx).
Thus, it is enough to adapt routing if all nodes are informed about a failing edge
(and later the repair) by two broadcasts starting at its two incident nodes (the
points of failure). However, the following lemma shows that optimal rerouting
is guaranteed even if only those nodes which lie on the two paths between the
points of failure and the swap edge’s endpoints are informed about failures,
which allows “piggybacking” all information for routing adjustment on the first
message arriving at the point of failure after the failure occurred.

Lemma 3. Let e = (x, p(x)) be the failing edge, and f = (z, z′) the best swap
of e, where z is in Tx and z′ in T \Tx, as shown in Figure 6. If all nodes on the
path from x to z know that e is unavailable and that f = (z, z′) is a best swap

A Distributed Algorithm for Finding All Best Swap Edges of a MDST 281

edge, then any message originating in s ∈ Tx will be routed on the direct path
from s to its destination d. Symmetrically, if all nodes on the path from p(x) to
z′ know about e and f , then any message originating in s ∈ T \Tx will be routed
on the direct path from s to its destination d.

Proof. Let M be any message with source s ∈ Tx. If d ∈ Tx, then trivially M
will be routed on its direct path, because it does not require edge e. If d ∈ T \Tx,
consider the path PT from s to d in T , and the path PTe/f

from s to d in Te/f .
Consider the last common node i of PT and PTe/f

in Tx. The path composed
of the paths 〈x, . . . , i〉, 〈i, . . . , z〉 is exactly the unique path in T from x to z, so
node i lies on that path.

Obviously, M will be routed on the direct path towards d up to i. As i lies on
the path from x to z, it knows about the failure and the swap, and will route
M towards z. The lemma assumes that any node on the path from i to z also
knows about the swap. Thus, such nodes will route M on the direct path to z.
At z, M will be routed over the swap edge f , and from z′ on M is forwarded on
the direct path from z′ to d. �

Given Lemma 3, we propose the following “lazy update” procedure for informing
nodes about an edge failure:

Algorithm Swap:
If an edge fails, no action is taken as long as no message needs to cross
it. As soon as a message M which should be routed over the failing edge
arrives at the point of failure, information about the failure and its best
swap is attached to message M , and M is routed towards the swap edge.
On its way, all nodes which receive M route it further towards the swap
edge, and remember for themselves the information about the swap.

Observation (Adaptivity). After one message M has been rerouted from the
point of failure to the swap edge, all messages originating in the same side of T
as M (with respect to the failing edge) will be routed to their destination on the
direct path in the tree (i.e., without any detour via the point of failure).

If a failing edge has been replaced by a swap edge, then all nodes which know
about that swap must be informed when the failure has been repaired. Therefore,
a message is sent from the point of failure to the swap edge (on both sides if
necessary), to inform these nodes, and to deactivate the swap edge.

7 Discussion

We have presented a distributed algorithm for computing all best swap edges
for a minimum diameter spanning tree. Our solution is asynchronous, requires
unique identifiers from a linearly ordered universe (but only for tiebreaking to
determine a center node), and uses O(‖D‖) time and O(max{n∗, m}) small mes-
sages, or O(n) messages of size O(n). It remains an open problem to extend
our approach to subgraphs with other objectives; for instance, can we efficiently
compute swap edges for failing edges in a spanner?

282 B. Gfeller, N. Santoro, and P. Widmayer

References

1. Andrews, M., Awerbuch, B., Fernández, A., Leighton, T., Liu, Z., Kleinberg,
J.: Universal-stability results and performance bounds for greedy contention-
resolution protocols. J. ACM 48(1), 39–69 (2001)

2. Bui, M., Butelle, F., Lavault, C.: A Distributed Algorithm for Constructing a Min-
imum Diameter Spanning Tree. Journal of Parallel and Distributed Computing 64,
571–577 (2004)

3. Flocchini, P., Enriques, A.M., Pagli, L., Prencipe, G., Santoro, N.: Point-of-failure
Shortest-path Rerouting: Computing the Optimal Swap Edges Distributively. IE-
ICE Transactions on Information and Systems E89-D(2), 700–708 (2006)

4. Flocchini, P., Pagli, L., Prencipe, G., Santoro, N., Widmayer, P.: Computing All
the Best Swap Edges Distributively. In: Higashino, T. (ed.) OPODIS 2004. LNCS,
vol. 3544. pp. 154–168. Springer, Heidelberg (2005)

5. Ito, H., Iwama, K., Okabe, Y., Yoshihiro, T.: Single Backup Table Schemes for
Shortest-path Routing. Theoretical Computer Science 333(3), 347–353 (2005)

6. Nardelli, E., Proietti, G., Widmayer, P.: Finding All the Best Swaps of a Mini-
mum Diameter Spanning Tree Under Transient Edge Failures. Journal of Graph
Algorithms and Applications 5(5), 39–57 (2001)

7. Nardelli, E., Proietti, G., Widmayer, P.: Swapping a Failing Edge of a Single Source
Shortest Paths Tree Is Good and Fast. Algorithmica 35(1), 56–74 (2003)

8. Di Salvo, A., Proietti, G.: Swapping a Failing Edge of a Shortest Paths Tree by Min-
imizing the Average Stretch Factor. In: Kralovic, R., Sýkora, O. (eds.) SIROCCO
2004. LNCS, vol. 3104. Springer, Heidelberg (2004)

9. Santoro, N.: Design and Analysis of Distributed Algorithms. Wiley Series on Par-
allel and Distributed Computing. Wiley, Chichester (2007)

10. Santoro, N., Khatib, R.: Labelling and Implicit Routing in Networks. The Com-
puter Journal 28(1), 5–8 (1985)

	A Distributed Algorithm for Finding All Best Swap Edges of a Minimum Diameter Spanning Tree
	Introduction
	Problem Statement and Terminology
	Algorithmic Setting and Basic Idea
	The Basic Idea

	How to Pick a Best Swap Edge
	The Structure of Diameter Path Changes
	Distributed Computation of $|\mathcal{L}l(T_x,z)|$
	Distributed Computation of $|\mathcal{L}l(T\backslash T_x,z')|$
	The \sc BestDiamSwap Algorithm

	The Preprocessing Phase
	Routing Issues
	Discussion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

