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Abstract. A group of identical mobile agents moving asynchronously
among the nodes of an anonymous network have to gather together in
a single node of the graph. This problem known as the (asynchronous
anonymous multi-agent) rendezvous problem has been studied exten-
sively but only for networks that are safe or fault-free. In this paper, we
consider the case when some of the edges in the network are dangerous
or faulty such that any agent travelling along one of these edges would
be destroyed. The objective is to minimize the number of agents that are
destroyed and achieve rendezvous of all the surviving agents. We deter-
mine under what conditions this is possible and present algorithms for
achieving rendezvous in such cases. Our algorithms are for arbitrary net-
works with an arbitrary number of dangerous channels; thus our model
is a generalization of the case where all the dangerous channels lead to
single node, called the Black Hole. We do not assume prior knowledge of
the network topology; In fact, we show that knowledge of only a “tight”
bound on the network size is sufficient for solving the problem, whenever
it is solvable.

1 Introduction

1.1 The Problem

Consider a networked environment, modelled as a simple connected graph, in
which operate a set of mobile computational entities, called agents or robots.
A central problem in such systems is the so called rendezvous (or gathering)
problem which requires the agents to meet together in a single node of the
network. This problem has been extensively studied in the literature (see, for
example, [1,3,10,15,17,19,23]) under a variety of models with different assump-
tions on the identity of the network nodes and/or of the agents (anonymous
or distinct labels), the existence of timing bounds on the agents’ actions (syn-
chronous or asynchronous), the intercommunication mechanisms (whiteboards
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or pebbles/tokens), the amount and type of memory, etc. In spite of their widely
different models, the existing studies on the rendezvous problems share the com-
mon assumption that the environment where the agents operate is safe.

Unlike previous studies on the rendezvous problem, we consider the case when
the environment where the rendezvous must take place, is not safe. In our model,
some of the edges in the graph are harmful for the agents; specifically, any agent
that attempts to traverse any such an edge (from either direction) simply dis-
appears, without leaving any trace. The location of the unsafe links are initially
unknown to the agents; we only assume that the unsafe links do not disconnect
the network. Notice that if all the edges incident to a node u are unsafe, then
node u can never be reached by any agent and is equivalent to a black hole, i.e.,
a node that destroys any incoming agent (e.g., [8,9,11,12,13,18]). In other words,
the black hole model is just a specific case of the model considered in this paper.

We investigate the problem in a very weak (and thus computationally diffi-
cult) setting: the network nodes do not have distinct identities (i.e., the network
is anonymous), the agents are identical, and their actions (computations and
movements) take a finite but otherwise unpredictable amount of time.

The only previous result for rendezvous in faulty networks was in the case of
the ring network containing two unsafe links leading to a single node—the black
hole [13]. Our investigation is thus a generalization of these studies to networks
of arbitrary topology that contain faults at arbitrary locations.

1.2 Our Results

In this paper we provide a full characterization of the rendezvous problem of
asynchronous anonymous agents in anonymous networks with unsafe links. As-
suming that the safe part of the network is connected, any port on a safe node
which leads to an unsafe part of the network, is called a faulty link. We present
the following results in this paper:

– We first show that, if there are τ unsafe links in the network and k agents,
then it is not possible, in general, for k′ agents to rendezvous if k′ > k − τ .

– We then prove that the rendezvous of k−τ agents is deterministically possible
only when the network is covering minimal. Even in this case, rendezvous is
not possible if the agents do not know the size of the network or at least a
tight upper bound. In fact, we prove that a loose upper bound n ≤ Bn ≤ 2n
is not sufficient.

– We then show that this result is tight. In fact, we present an algorithm, RDV
that requires only the knowledge of a tight upper bound B on the number
of nodes n, such that n ≤ B < 2n. This algorithm allows rendezvous of
k−τ agents in networks where such a rendezvous is possible; the rendezvous
occurs with explicit termination for each surviving agent.

– The total number of moves made by the agents during the execution of
algorithm RDV is O(m(m + k)) where m is the number of edges in G. We
prove that this cost is optimal; in fact, we show that solving rendezvous of
k − τ agents in networks where it is solvable, requires at least Ω(m(m + k))
moves, even when the network topology is known a priori.
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– Finally we show that, there exists no effective algorithm for maximal ren-
dezvous, i.e. there does not exist an algorithm that when executed on any
arbitrary network achieves the rendezvous of as many agents as determinis-
tically possible on that network.

Due to the limitations of space, the proofs of some lemmas and theorems have
been omitted; These can be found in the full paper.

1.3 Related Work

The problem of Rendezvous has been extensively studied mostly using random-
ized methods (see [1] for a survey). Among deterministic solutions to rendezvous,
Yu and Yung [23] and Dessmark et al. [10] presented algorithms for agents with
distinct labels. In the anonymous setting, the problem has been studied under
different models (synchronous or asynchronous), using either whiteboards [3] or,
pebbles/tokens [19]. Some of the recent studies have focussed on minimizing the
memory required by the agents for rendezvous([15,17]).

Most of these solutions are designed for anonymous graphs (i.e. graphs where
nodes do not have distinct identities) which present the most challenging (i.e.
computationally difficult) situations. The issue of computability in anonymous
graphs, have been studied by many authors including Angluin [2], Yamashita
and Kameda [22], Mazurkiewicz [20], Sakamoto [21], and Boldi and Vigna [4].
Most of these studies have concentrated on the problem of symmetry-breaking
or leader election which is in fact, closely related (and sometimes equivalent [7])
to the rendezvous problem for mobile agents. However, all the above results are
restricted to safe or fault-free networks.

Recently attention has focused on designing mobile agent protocols for net-
works which are faulty, in particular, where there is a black hole, that is a harmful
network site that destroys any visiting agent. The research on such networks have
concentrated on locating the black hole. In asynchronous systems, this has been
studied under two different methods—using whiteboards [11,12] or using tokens
[14] to mark edges. The objective here is minimizing the number of agents that fall
into the black hole and the number of moves. In the case of synchronous agents,
the objective is to minimize the time taken by the surviving agents to locate the
black hole [9,18]. The general case of multiple black holes has been considered only
by Cooper et al. [8]. All these problems assume that the team of agents start from
the same node, i.e. they are co-located. When the agents start from distinct nodes,
it is very difficult to gather the agents while avoiding the black hole nodes. This
has been studied earlier only in the case of ring networks containing a single black
hole, by Dobrev et al. [13], where the authors give solutions to rendezvous and
near-gathering assuming the knowledge of topology and the size of the network.

2 The Model and Definitions

2.1 The Model

The environment is modelled by the tuple (G, ξ, p, λ, η) where G is an undirected
connected graph, ξ is a set of agents and p specifies the initial placement of the
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agents in the graph G (i.e. ∀A ∈ ξ, p(A) = v : v ∈ V (G) ). The number of
nodes is denoted by n = |V (G)| and the number of agents is denoted by k = |ξ|.
The agents can move from one node to its adjacent node by traversing the edge
connecting them. The edges incident to a node v are locally oriented i.e. they are
labelled as 1, 2, . . . , d(v), where d(v) is the degree of node v. Notice that each edge
e = (u, v) has two labels, one for the link or port at node u and another for the
link at node v. The edge labelling of the graph G is specified by λ = {λv : v ∈ V },
where for each vertex u, λu : {(u, v) ∈ E : v ∈ V } → {1, 2, 3, . . . , d(u)} defines
the labelling on its incident edges. For any edge (u, v) we use λ(u, v) to denote
the pair (λu(u, v), λv(u, v)).

The function η : E(G) → {0, 1} denotes which edges are safe/faulty. An edge
e ∈ E(G) is safe if η(e) = 1 and faulty otherwise. The faults are permanent, so
any edge that is faulty at the start of the algorithm remains so until the end and
no new faulty edge appears during the execution of the algorithm.

The node from where an agent A starts the algorithm (i.e. the initial location)
is called the homebase of agent A. The agents are all identical (i.e. they do
not have distinct names or labels) and they execute the same algorithm. An
agent may enter the system at any time and at any location, and on entry, an
agent immediately starts its individual execution of the algorithm. The system
is totally asynchronous, such that every action performed by an agent takes a
finite but otherwise unpredictable amount of time. As in previous papers on
the subject, we assume that the agents communicate by reading and writing
information on public whiteboards locally available at the nodes of the network.
Thus, each node v ∈ G has a whiteboard (which is a shared region of its memory)
and any agent visiting node v can read or write to the whiteboard. Access to
the whiteboard is restricted by fair mutual exclusion, so that, at most one agent
can access the whiteboard of a node at the same time, and any requesting agent
will be granted access within finite time. An agent that is granted access to the
whiteboard at node v, is allowed to complete its activity at that node before
relinquishing access to the whiteboard (i.e. access control is non preemptive).

Note that it is not necessary for two agents A and B traversing the same edge
e = (u, v) of the graph, to arrive at node v in the same order in which they left
node u. However, using the whiteboards at the nodes, it is easy to implement
a first-in first-out (FIFO) strategy such that agents traversing an edge can be
assumed to have reached their destination in order (i.e. an agent cannot overtake
another while traversing an edge). For the rest of this paper, we shall assume
this FIFO property; this will simplify the description of our algorithms.

2.2 Directed Graphs and Coverings

In this section, we present some definitions and results related to directed graphs
and their coverings, which we use to characterize those network where rendezvous
is possible. A directed graph(digraph) D = (V (D), A(D), sD , tD) possibly having
parallel arcs and self-loops, is defined by a set V (D) of vertices, a set A(D) of
arcs and by two maps sD and tD that assign to each arc two elements of V (D) :
a source and a target (in general, the subscripts will be omitted). A digraph D is
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strongly connected if for all vertices u, v ∈ V (D), there exists a path between u
and v. A symmetric digraph D is a digraph endowed with a symmetry, that is, an
involution Sym : A(D) → A(D) such that for every a ∈ A(D), s(a) = t(Sym(a)).
A bidirectional network can be represented by a strongly connected symmetric
digraph, where each edge of the network is represented by a pair of symmetric
arcs. In this paper, we consider digraphs where the vertices and the arcs are
labelled with labels from a recursive label set L and such digraphs will be denoted
by (D, μD), where μD: V (D) ∪ A(D) → L is the labelling function. In general,
the label on an arc a would be a pair (x, y) and the labelling μD should satisfy
the property that if μD(a) = (x, y) then μD(Sym(a)) = (y, x), for every arc
a ∈ D.

A digraph homomorphism γ between the digraph D and the digraph D′ is a
mapping γ: V (D)∪A(D) → V (D′)∪A(D′) such that if u, v are vertices of D and a
is an arc such that u = s(a) and v = t(a) then γ(u) = s(γ(a)) and γ(v) = t(γ(a)).
A homomorphism from (D, μD) to (D′, μ′

D) is a digraph homomorphism from D
to D′ which preserves the labelling, i.e., such that μ′

D(γ(x)) = μD(x) for every
x ∈ V (D) ∪ A(D).

We now define the notion of graph coverings, borrowing the terminology of
Boldi and Vigna[5]. A covering projection is a homomorphism ϕ from D to D′

satisfying the following: (i) For each arc a′ of A(D′) and for each vertex v of
V (D) such that ϕ(v) = v′ = t(a′) there exists a unique arc a in A(D) such that
t(a) = v and ϕ(a) = a′. (ii) For each arc a′ of A(D′) and for each vertex v of
V (D) such that ϕ(v) = v′ = s(a′) there exists a unique arc a in A(D) such that
s(a) = v and ϕ(a) = a′.

The fibre over a vertex v′ (resp. an arc a′) of D′ is the set ϕ−1(v′) of vertices
of D (resp. the set ϕ−1(a′) of arcs of D).

If a covering projection ϕ : D → D′ exists, D is said to be a covering of D′ via
ϕ and D′ is called the base of ϕ. A symmetric digraph D is a symmetric covering
of a symmetric digraph D′ via a homomorphism ϕ if D is a covering of D′ via
ϕ such that ∀a ∈ A(D), ϕ(Sym(a)) = Sym(ϕ(a)). A digraph D is symmetric-
covering-minimal if there does not exist any graph D′ not isomorphic to D such
that D is a symmetric covering of D′.

The notions of coverings extend to labelled digraphs in an obvious way: the
homomorphisms must preserve the labelling. Given a labelled symmetric di-
graph (H, μH), the minimum base of (H, μH) is defined to be the labelled di-
graph (D, μD) such that (i) (H, μH) is a symmetric covering of (D, μD) and (ii)
(D, μD) is symmetric covering minimal.

The following results on digraph coverings were proved in [5].

Property 1. Given two non-empty strongly connected digraphs D, D′, each cov-
ering projection ϕ from D to D′ is surjective; moreover, all the fibres have the
same cardinality. This cardinality is called the number of sheets of the covering.

Property 2. If the digraph (H, μH) is a covering of (D, μD) via ϕ, then any
execution of an algorithm P on (D, μD) can be lifted up to an execution on
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(H, μH), such that at the end of the execution, for any v ∈ V (H), v would be in
the same state as ϕ(v).

2.3 Definitions and Properties

Given any deterministic (distributed) algorithm P and a network (G, ξ, p, λ, η),
the order in which the various actions are performed by the agents defines an ex-
ecution of the algorithm on the network (G, ξ, p, λ, η). We define the synchronous
execution of an algorithm P to be the particular execution where all agents start
executing at exactly the same time and every action taken by any agent takes
exactly one unit of time.

We define the extended-view of the network (G, ξ, p, λ, η) as the labelled digraph
(H, μH) such that, H consists of two disjoint vertex sets V1 and V2 and a set of
arcs A as defined below:

– V1 = V (G);
– μH(v) = |{A ∈ ξ : p(A) = v}|, ∀v ∈ V1;
– For every safe edge e = (u, v) ∈ E(G), there are two arcs a1, a2 ∈ A such

that s(a1) = t(a2) = u, s(a2) = t(a1) = v, and μH(a1) = (λu(e), λv(e)),
μH(a2) = (λv(e), λu(e)).

– For every faulty edge e = (u, v), there are vertices u′ and v′ ∈ V2 with
μH(u′) = μH(v′) = −1 and arcs (u, u′), (u′, u), (v, v′) and (v′, v) ∈ A with
labels (λe(u), 0), (0, λe(u)), (λe(v), 0), and (0, λe(u)) respectively;

Here, the vertices in V1 represent the (safe) nodes of the network and the
vertices in V2 represent (imaginary) Black-Holes. The label on a safe vertex v
denotes the number of agents that started from the corresponding node, whereas
the label on a black-hole vertex is always −1. Intuitively, the extended-view can
be thought of as a canonical representation of the network.

The following results follow from the definition of the extended-view of a
network and the Properties 1 and 2.

Lemma 1. For any deterministic algorithm P, a synchronous execution of P on
the network (G, ξ, p, λ, η) is equivalent to a synchronous execution of algorithm
P on the extended-view (H, μH), such that the final state of any node in G is
exactly same as the state of the corresponding vertex in H.

Lemma 2. If the extended view of two networks have sameminimum-base (D, μD)
then all nodes in the two networks which belong to the pre-image of a vertex v ∈ D
would always be in the same state, during a synchronous execution of any
algorithm P.

3 Impossibility Results

In this section, we determine some necessary conditions for solution to the ren-
dezvous problem. In the following, whenever the extended-view of a network is
symmetric-covering minimal, we shall say the network is minimal.
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Lemma 3. In a network containing τ dangerous links and k dispersed agents,
τ agents may die while executing any algorithm for rendezvous. Thus, it is not
always possible to rendezvous more than k−τ agents even if the network topology
is known to the agents.

Lemma 4. It is impossible to rendezvous k − τ agents in a network whose
extended-view is not symmetric-covering minimal.

G 1

G 1

G 2

G 2

(a)

(b) (c)

Fig. 1. The network in (a) cannot be distinguished from the networks in (b) and (c)
due to the slow edges. (The slow edges are marked by arrows and the dashed lines
represent faulty edges).

In the next section, we show how to solve rendezvous of k − τ agents in any
network that is minimal. Thus, we have a complete characterization of networks
where rendezvous of k − τ agents is possible. However, solution to rendezvous
requires at least some prior knowledge about the network, as we show below.
Notice that since the network is asynchronous, an agent may take an arbitrarily
long time to traverse some edge. Thus, a slow edge (i.e. one which the agents
take a long time to traverse) is indistinguishable from a faulty edge. During the
execution of an algorithm, the presence of slow edges may divide the network
into two equal parts (for example, see Figure 1) and in such cases, it is not
possible for the agents to terminate the algorithm unless an accurate estimate
of network size is available.

Lemma 5. It is impossible to solve rendezvous (with termination detection) of
k − τ agents even in minimal networks if the agents know only an upper bound
B on the number of nodes n such that n ≤ B ≤ 2n.

The algorithm presented in this paper works only for networks which are min-
imal. We say that an algorithm P is an universally effective algorithm for ren-
dezvous of w > 1 agents if, when executed on any network where rendezvous
of w agents is possible, algorithm P always succeeds in achieving rendezvous
within a finite time. We have the following negative result on the existence of
such an algorithm.
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G 1
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G 1 G 1
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G 1

G 1
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(c)
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3
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Fig. 2. The networks in (a) and (b) have same topology but differ in the location of
faulty edges (shown by dashed lines). (c) The minimum base for the network in (a).

Lemma 6. There does not exist any universally effective algorithm for ren-
dezvous of 1 < w ≤ k agents even if the network topology is known a-priori
to the agents.

Proof. Consider the two networks shown in Figure 2(a) and (b). Each network
has the same topology and there are three faulty edges in each (but their loca-
tions are different). In the network of Figure 2(b) there are two edges (marked
by arrows) which are very slow. Since slow edges edges can not be distinguished
from faulty edges, the agents would not be able to determine whether they are in
the first network or the second. Thus any rendezvous algorithm P (that termi-
nates within a finite time) must achieve the same result in both networks. Notice
that the first network has an extended view which is not minimal (the minimum
base is shown in Figure 2(c)). Since algorithm P must fail to achieve rendezvous
in the first network, it must also fail in the second one, even though it is possible
to rendezvous in the second network. Thus algorithm P is not effective.

4 Solution Protocol

In this section we present an algorithm for solving Rendezvous in faulty net-
works, using the knowledge of only an upper bound B on the network size, such
that n ≤ B < 2n. As shown in the previous section, there is no effective algo-
rithm for Rendezvous in faulty networks. Our algorithm always works for any
network whose extended-view is covering minimal, achieving the rendezvous of
the maximum number of agents possible (i.e. k− τ agents). We also analyze the
complexity of our algorithm and show that it is optimal in terms of the number
of moves made by the agents.

Theorem 1. For solving rendezvous of (k − τ) agents in an arbitrary network
(G, ξ, p, λ, η) without any knowledge other than the size of the network, the agents
need to make at least Ω(m(m + k)) moves in total.
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4.1 The Algorithm for Rendezvous

We can ensure that no more than one agent dies while traversing the same link,
using the cautious walk technique as in [13]. At each node, all the incident edges are
considered to be unexplored in the beginning. Whenever an agentA at a node u has
to traverse an unexplored edge e = (u, v), agent A first marks link λu(e) as “Be-
ing Explored” and if it is able to reach the other end v successfully, it immediately
returns to node u and re-marks the link λu(e) as “safe”. During the algorithm we
follow the rule that no agent ever traverses a link that is marked “Being Explored”.
This ensures no more than τ agents may die during the algorithm.

We now briefly describe our algorithm for rendezvous (Algorithm RDV). Due
to the space constraint, we present only an oversimplified version of the algorithm
without the minor technical details. The complete pseudo-code for the algorithm
can be found in the full paper.

At any stage of the algorithm, there are teams of agents, each team possessing
a territory which is a connected acyclic subgraph of G (disjoint from other
territories). Each team of agents tries to expand its territory until it spans a
majority of the nodes. Once a team is able to acquire more than half the nodes
of the network, it wins and agents from all other teams join the winning team
to achieve rendezvous.

Initially each territory consists of only the starting node(homebase) of an
agent (all agents that start from that node are in this team). Note that if an
agent on start-up, finds that its homebase has already been acquired by some
other team, it simply joins this team. The algorithm proceeds in a series of
exploring and competing rounds. In an exploring round, the team of agents try
to expand its territory by exploring new edges and acquiring new nodes. On
the other hand, in the competing round a team tries to defeat another team
and conquering their territory. The competition between two teams occurs by
comparison using the tuple (j, Code) where j is the round number and Code is
an encoding of the territory(and its immediate neighborhood).

The territory of each team is a rooted tree and the information stored in
the root defines the status of the agents in the team (e.g. whether they are in
an exploring round or competing round). Every other node in the tree stores
a pointer to its parent in the tree. The status of the root can either INIT-
EXPLORE, INIT-COMPETE, COMPETE, LOST, or END.

Only one agent in a team can be competing state (this is called the active
agent and all others are passive). When a team is in exploring round, the active
agent initiates the exploration and thereafter every agent may participate in
the exploration. Each agent explores one unexplored edge and if it succeeds in
reaching the other side, it reports this to the root of the tree and the tree is
updated accordingly. If the edge connects to a node that is already explored (by
another agent or the same agent) then it is marked as tree edge (T-edge) and
the new node becomes part of the tree. Otherwise it is marked as non-tree edge
(NT-edge).

In the algorithm below, T refers to the tree representing the territory to which
the agent belongs. The root of T is denoted by r and Root Status(T ) is the status
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of the root as written on the whiteboard of r (A copy of T is also stored on the
whiteboard). A node u is called a neighbor of the tree T if there is a NT-edge
between u and some node in T . Each agent starts in active state, but may become
passive or finished. The following steps are executed by an agent A:

Algorithm RDV
< T , rNum > := Initialize;
While (Status(A) �= finished ) {

Case(Status(A) is active and Root Status(T) is INIT-EXPLORE) {
If (|T | > B/2) terminate;
InitExplore;
If (Root Status(T) = LOST ) become passive and exit Case;
Set Root Status(T) to EXPLORE and become Passive;

}
Case( Status(A) is passive ) {

While(Root Status(T) /∈ { EXPLORE, INIT-EXPLORE, END } )
Sleep until woken up;

If(Root Status(T) is END) become finished and exit;
Explore an unexplored edge and go back to r to update T ;
If(Root Status(T) is EXPLORE) // i.e. no active agents

become active and set Root Status(T) to INIT-COMPETE
}
Case(Status(A) is active and Root Status(T) is INIT-COMPETE) {

do{ TOLD := T ;
InitCompete(rNum);
If (Root Status(T) = LOST ) become passive and exit Case;
Result = Compete(rNum); rNum := rNum + 1;

}While( TOLD �= T );
If(Root Status(T) �= LOST) Root Status(T):= INIT-EXPLORE;

}
}

PROCEDURE Initialize: If the homebase of the agent is already part of a tree,
then the agent joins this team in passive state. Otherwise, it initializes the tree
with only the homebase node and then starts the algorithm in active state with
rNum = 1.

PROCEDURE InitExplore: The agent initiates a new exploring round by travers-
ing T writing “EXPLORE” on every node and waking up as many agents as
needed for exploration (more precisely, it wakes-up x agents where x is the num-
ber of unexplored edges currently incident to T , unless less than x agents are
available in T—in which case it wakes-up everyone).

PROCEDURE InitCompete(j): The agent initiates the competing round j by
traversing T , writing (COMPETE, j) on each node also assigning labels to
the nodes in T . Next, it reads the labels written on the neighboring nodes and
constructs an encoding of T and its neighbors, called CODE (this is used for
comparisons). Finally it writes the CODE on every node in T .
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PROCEDURE Compete(j): During this procedure, agent A competes with each
node u that is neighbor of T , until it wins or loses. If u is marked END, agent A
terminates after writing END on every node of T , waking up any sleeping agents
and merging with the tree containing u. Else, if u is in a bigger competing round
or in the same competing round with a larger Code, then agent A loses (i.e. it be-
comes passive and goes back to its root to sleep). Otherwise if u is in exploring
round or in a smaller competing round or same round but has smaller Code, then
Invade(u) is invoked to determine if the result of the competition is win or loss.

PROCEDURE Invade(u): The agent attempts to acquire the tree containing
node u. The agent follows the father-links from u to reach the current root ru of
u. At node ru it uses the usual comparison criteria and if ru is bigger or equal,
then it loses (i.e. it becomes passive and goes back to its root to sleep). Other-
wise it wins and it acquires the Tree rooted at ru, by reversing the father-links
in the path from ru to v where v is the node in the agent’s territory from where
it started the Invade procedure.

PROCEDURE terminate: The agent writes END on all nodes in T and then
writes Root Status(T)=END at the root of T ; The agent now becomes finished
and locally terminates.

4.2 Analysis of the Algorithm

Theorem 2. Algorithm RDV correctly solves Rendezvous for k − τ agents in
any network whose extended view is symmetric-covering minimal.

This result follows from the following lemmas:

Lemma 7. During the algorithm RDV, the following holds: (i) Each territory
is a Tree. (ii) The territories are disjoint. (iii) There is at most one active agent
in each territory.

Proof. (i) Initially each territory is a tree by construction; addition of a new edge
does not create cycles because only tree edges are added. When two trees are
merged, one is ‘larger’ than other and the active agent of the larger tree performs
the merging by changing the father-links and updating the root. (Notice that
there can not be two active agents in a territory.) Thus the merged territory is
a tree. (ii) Each tree is a rooted tree and every node contains a pointer to its
parent in the tree. Thus, a node cannot belong to two trees. (iii) Initially an
agent becomes active only when it successfully constructs T and writes it at the
root node. Thus, due to the mutual exclusion property of the whiteboards, there
is only one active agent initially in the tree (all other agents in the same tree
must start in passive state). A passive agent can become active only when there
are no active agents in the tree.

Lemma 8. There is no deadlock in the algorithm RDV.
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Proof. Notice that as long as there is some active agent, the algorithm progresses.
In each tree T , there is at least one active agent unless root-status is EXPLORE.
Suppose the root-status of every tree is EXPLORE, then each agent is currently
exploring some unexplored edge. There are only τ faulty links in the network
and k > τ , so at least one of the exploring agents must return safely from the
exploration. This agent now becomes active.

Lemma 9. (i) If the network is minimal, then exactly one node has Root-
Status(T) = END. (ii) When one node has Root-Status(T) = END, every alive
agent in G eventually joins this tree. (iii) (k − τ) agents eventually become fin-
ished and reach the node having Root-Status(T)= END.

Proof. (i) First notice that due to the constraint on the bound B, only one Tree
T can have a size greater than B/2. Due to Lemma 7, the trees are disjoint and
each has a unique root. Thus, at most one node may have Root-Status(T)=END.
We now show that at least one node eventually reaches Root-Status(T)=END.
A team of agents in tree T stops expanding its Tree only when either Root-
Status(T )=END or, all the trees neighboring T have the same CODE and round
number. In the later case, the team starts an exploring round. Notice that there
must exist a Tree T which has some non-faulty edges incident to it that are either
unexplored or being explored (otherwise the network is either disconnected or,
not minimal). So one of these edges would be added to T . Thus the size of T
would keep increasing until it contains more than B/2 nodes and Root-Status(T )
= END.

(ii) Every agent either dies or reaches a node labelled “END”. All nodes that
are labelled “END” are part of the same tree.

(iii) Due to the use of cautious walk, at most τ agents may die. Thus each of
the surviving agent eventually reaches a node v labelled “END” and goes to the
root of this tree which is the node having Root-Status(T)=END.

We now analyze the cost of algorithm RDV. We first count the number of com-
peting rounds and exploring rounds performed during the algorithm.

Lemma 10. There are O(m + k) competing rounds. The number of exploring
rounds is at most the number of competing rounds.

Proof. A new competing round is started whenever T is expanded, i.e. the new
territory T contains one more edge or one more agent than the previous territory
TOLD. Thus there can be at most (m+k) competing rounds. After every exploring
round completes, there is one competing round. So, the number of exploring
rounds can not be more than the number of competing rounds.

Lemma 11. The agents make at most O(n(m+k)) moves in the all the explor-
ing rounds combined.

Proof. The Procedure InitExplore() makes |T | moves in a tree T . Only one agent
(the active one) in every tree executes this procedure. So, this accounts for O(n)
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moves per exploring round and O(n(m + k)) moves in total. Other than that,
every passive agent that is woken up makes O(n) moves to go to an unexplored
edge, explore it and report it to the root. Since each unexplored edge will be
explored once (or at most twice), this cost can be counted per newly explored
edge. Thus, this accounts for O(n.m) moves.

Lemma 12. The agents make at most O(m(m+k)) moves in all the competing
rounds combined.

Proof. Only the active agent in a tree participates in the competing round. Dur-
ing procedure InitCompete every edge in G is traversed a constant number of
times; this accounts for O(m) moves per round. Similarly O(m) moves are made
per round during procedure Compete, for the comparisons with each neighbor.
Each execution of Invade() takes O(n) moves, because only tree-edges are tra-
versed and no edge is traversed twice. Whenever an agent execute Invade(), it
either wins or loses. A losing agent never competes again, so the total contri-
bution from losing agents is O(k.n). Edges traversed by the wining agents are
disjoint, so this accounts for O(n) moves per round.

Due to the above lemmas and Theorem 1, we have the following result:

Theorem 3. The moves complexity of algorithm RDV is O(m(m + k)). Thus
algorithm RDV is optimal.

5 Conclusions

We considered the problem of rendezvous of mobile agent in a faulty network
and showed that it is possible to rendezvous at most k − τ in any network
containing k dispersed agents and τ faulty links. We determined the condition
under which this is possible and gave an algorithm for solving the problem
under this condition. The algorithm we presented is optimal in terms of the
total number of moves made by the agents and requires no prior information
about the network topology (except the size). Moreover, we showed that it is
impossible to have an effective algorithm for rendezvous, one that always achieves
the rendezvous of as many agents as possible in any given network.

Notice that the only information needed by our algorithm is a strict upper
bound on the number of nodes. We assumed that the faulty links do not discon-
nect the network. In the case of a disconnected network, we can still rendezvous
the agents in a connected component if we know a good bound on its size. For
example, if the component contains a majority of the nodes (i.e. more than half
of them), then original network size can be used as the bound. In this case, if
τ is equal to the number of outgoing edges from the component then we can
rendezvous k′− τ agents where k′ agents are initially located in this component.
For networks containing a single black hole (which does not disconnect the net-
work), our algorithm can be used to rendezvous k − dBH agents where dBH is
the degree of the black-hole.
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For the results in this paper, we considered two optimization criteria
—minimizing the number of agents that are destroyed and the number of moves
taken by the surviving agents to rendezvous. It would be interesting to also con-
sider the optimization of whiteboard memory or agent memory when solving the
rendezvous problem in faulty networks.
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