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Preface

DISC, the International Symposium on Distributed Computing, is an annual
forum for presentation of research on all aspects of distributed computing, in-
cluding the theory, design, implementation and applications of distributed al-
gorithms, systems and networks. The 21st edition of DISC was held during
September 24–26, 2007, in Lemesos, Cyprus.

This volume of proceedings begins with abstracts of three invited talks. The
keynote speakers of DISC 2007 were: Burkhard Monien from the University
of Paderborn, Germany, David Peleg from The Weizmann Institute of Science,
Israel, and Michel Raynal from IRISA, Université de Rennes, France.

There were 100 ten-page-long extended abstracts submitted to DISC this year
and this volume contains 32 contributions selected by the Program Committee
among these 100 submissions. Every submitted paper was read and evaluated by
Program Committee members assisted by external reviewers. The final decisions
regarding acceptance or rejection of each paper were made during the electronic
Program Committee meeting held in June/July 2007. Revised and expanded
versions of a few best selected papers will be considered for publication in a
special issue of the journal Distributed Computing.

The Best Student Paper Award of DISC 2007 was awarded to David Eisen-
stat for the paper “Fast Robust Approximate Majority” coauthored with Dana
Angluin and James Aspnes.

This volume of proceedings also contains nine two-page-long brief announce-
ments (BA). These BAs present ongoing work or recent results whose full de-
scription is not yet ready; it is expected that full papers containing those results
will soon appear in other conferences or journals. The main purpose of the BA
track is to announce ongoing projects to the distributed computing community
and to obtain feedback for the authors. Each BA was also read and evaluated
by the Program Committee.

This volume concludes with a section devoted to the 20th anniversary of the
DISC conferences that took place during DISC 2006, held September 18–20,
2006, in Stockholm, Sweden.

DISC 2007 was organized in cooperation with the University of Cyprus. The
main sponsor of DISC 2007 was CYTA - Cyprus Telecommunications Authority.
The support of the Cyprus Tourism Organisation, Microsoft (Cyprus) and COST
Action 295 DYNAMO is also gratefully acknowledged.

July 2007 Andrzej Pelc



The 2007 Edsger W. Dijkstra Prize in

Distributed Computing

The 2007 Edsger W. Dijkstra Prize in Distributed Computing was presented at
DISC 2007 for the paper “Consensus in the Presence of Partial Synchrony” by
Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer, which appeared in the
Journal of the ACM (Vol. 35, No. 2, April, 1988. pages 288–323). A preliminary
version appeared in PODC 1984.

This paper introduces a number of practically motivated partial synchrony
models that lie between the completely synchronous and the completely asyn-
chronous models, and in which consensus is solvable. It gives practitioners the
right tool for building fault-tolerant systems, and contributes to the understand-
ing that safety can be maintained at all times, despite the impossibility of consen-
sus, and progress is facilitated during periods of stability. These are the pillars on
which every fault-tolerant system has been built for two decades. This includes
academic projects such as Petal, Frangipani, and Boxwood, as well as real-life
data centers, such as the Google file system.

In distributed systems, balancing the pragmatics of building software that
works against the need for rigor is particularly difficult because of impossibility
results such as the FLP theorem. The publication by Dwork, Lynch, and Stock-
meyer was in many respects the first to suggest a path through this thicket, and
has been enormously influential. It presents consensus algorithms for a number
of partial synchrony models with different timing requirements and failure as-
sumptions: crash, authenticated Byzantine, and Byzantine failures. It also proves
tight lower bounds on the resilience of such algorithms.

The eventual synchrony approach introduced in this paper is used to model
algorithms that provide safety at all times, even in completely asynchronous
runs, and guarantee liveness once the system stabilizes. This has since been
established as the leading approach for circumventing the FLP impossibility
result and solving asynchronous consensus, atomic broadcast, and state-machine
replication.

In particular, the distributed systems engineering community has been in-
creasingly drawn towards systems architectures that reflect the basic split be-
tween safety and liveness cited above. Dwork, Lynch, and Stockmeyer thus
planted the seed for a profound rethinking of the ways that we should build,
and reason about, this class of systems. Following this direction are many foun-
dational solutions. First, these include state-machine replication methods such
as Lamport’s seminal Paxos algorithm and many group communication meth-
ods. Another important branch of research that directly follows this work is
given by Chandra and Toueg’s unreliable failure detector abstraction, which is
realized in the eventual synchrony model of this paper. As Chandra and Toueg
write:“we argue that partial synchrony assumptions can be encapsulated in the
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unreliability of failure detectors. For example, in the models of partial synchrony
considered in Dwork et al. it is easy to implement a failure detector that satisfies
the properties of ♦W.” Finally, the insight by Dwork, Lynch, and Stockmeyer
also led to various timed-based models of partial synchrony, such as Cristian and
Fetzer’s Timed-Asynchronous model and others.

The award committee would like to acknowledge the sincere efforts by the
nominators of this work, as well as all other (worthy!) nominations which came
short of winning.

The Committee wishes to pay a special tribute via this award to Larry Stock-
meyer, who passed away on July 31, 2004. Larry’s impact on the field through
this paper and many others will always be remembered.

The Committee of the 2007 Edsger W. Dijkstra Prize
in Distributed Computing:

Hagit Attiya
Dahlia Malkhi
Keith Marzullo
Marios Mavronicolas
Andrzej Pelc
Roger Wattenhofer (Chair)
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Routing and Scheduling

with Incomplete Information

Burkhard Monien and Karsten Tiemann

Faculty of Computer Science, Electrical Engineering, and Mathematics,
University of Paderborn, 33102 Paderborn, Germany

{bm,tiemann}@uni-paderborn.de

Abstract. In many large-scale distributed systems the users have only
incomplete information about the system. We outline game theoretic
approaches that are used to model such incomplete information settings.

1 Introduction

In recent years, combining ideas from game theory and computer science to
study distributed systems has become increasingly popular. While most work
in this direction assumes that each player is completely informed there are also
approaches that allow the more realistic case of incomplete information. Fol-
lowing the concept of Bayesian decision theory it is for incomplete information
settings usually assumed that a player who does not know relevant parameters
of a game is aware of probability distributions over the possible outcomes of these
parameters. Hence there is a similarity to stochastic programming models where
probability distributions for the uncertain data of optimization problems are
known.

We will now outline two different approaches that are used to handle incom-
plete information.

2 Harsanyi’s Incomplete Information Model

The Nobel laureate Harsanyi [4] introduced in the 1960s an elegant approach
that can be used to study non-cooperative games with incomplete information.
The Harsanyi transformation converts such a game with incomplete information
to a game where players have different types. In the resulting Bayesian game, the
players’ uncertainty about each other’s type is described by a probability distri-
bution over all possible type profiles. Each player selects a strategy for each of his
types. A stable state in which all types of all players minimize their individual
cost is called a Bayesian Nash equilibrium.

Recently, Harsanyi’s approach was used to study a selfish routing scenario
in networks where the players do not know each other’s weight. In these so-
called Bayesian routing games, each type of a player corresponds to some weight.
Gairing et al. [2] considered for these games the existence of equilibria, the
computation of equilibria, and the so-called price of anarchy that measures the
worst-possible inefficiency of equilibria with respect to a social welfare measure.

A. Pelc (Ed.): DISC 2007, LNCS 4731, pp. 1–2, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



2 B. Monien and K. Tiemann

3 Incomplete Information Models Where Every Player
Minimizes Its Expected Individual Cost

Another possibility to handle incomplete information is to assume that each
player bases his decisions on the expected values of unknown parameters. To
do so, a player computes the expected values of parameters based on his own
probability distributions over the possible outcomes of the parameters. Although
this approach is popular in the scientific literature we only sketch two models
here that are based on this approach.

Expected outcomes of unknown parameters were used for network routing
games where the players have incomplete information about the edge latency
functions. Since each player obtains for each edge his own expected latency
function we get games with player-specific latency functions [6]. For these games
positive and negative results on the existence of equilibria, convergence to equi-
libria, computation of equilibria, and the price of anarchy are known [3,5,6].

The approach to use expected outcomes for unknown parameters was also
used by Dong et al. [1] who developed a supply chain network model consisting
of manufacturers and retailers where the demands associated with the retail
outlets are random. Here every retailer maximizes its expected profit, which is
the difference between the expected revenues, the handling cost, and the payout
to the manufacturers. Dong et al. [1] focused on the existence of equilibria,
uniqueness of equilibria, and convergence to equilibria.
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Time-Efficient Broadcasting in Radio Networks

David Peleg

Department of Computer Science and Applied Mathematics,
The Weizmann Institute of Science, Rehovot 76100, Israel

david.peleg@weizmann.ac.il

As broadcasting is one of the primary functions in radio networks, fast algorithms
for performing it are of considerable interest. A radio network consists of stations
that can act at any a given time step either as transmitters or as receivers. Given
a deployment of the stations, the reception conditions can be modeled by a graph,
where the existence of an edge between two nodes indicates that transmissions
of one of them can reach the other, i.e., these nodes can communicate directly.
The message transmitted by a node in given time step is delivered in the same
time step to all of its neighbors in the graph. A node acting as a receiver in a
given step will successfully receive a message if and only if exactly one of its
neighbors transmits in that step. If two or more neighbors of a node transmit
simultaneously, then a collision occurs and none of the messages is heard by the
node in that step.

Broadcasting is the following basic communication task. Initially, one distin-
guished node, called the source, has a message which has to be disseminated to
all other nodes. Typically, not all stations are within the source’s transmission
range, hence the source message must be propagated to remote nodes via in-
termediate ones. The model considered is synchronous, namely, all nodes have
individual clocks that tick at the same rate, measuring time steps or rounds. The
execution time of a broadcasting algorithm in a given radio network is the num-
ber of rounds it takes since the first transmission until all nodes of the network
have received the source message.

The task of broadcasting in radio networks has been studied in a large va-
riety of different models and under different requirements. Some of the main
parameters giving rise to the different variants of the problem are the following.

Collision detection: There are two common models regarding the effect of a
collision. The collision detection model assumes that a node acting as a receiver
can recognize the fact that a collision has occurred. The alternative model is
based on the assumption that the receiving node cannot distinguish a collision
from background noise, hence it cannot tell whether a collision occurred or no
transmissions took place.

Wake-up mode: The broadcasting protocol can be activated at the network sta-
tions in accordance to one of the following two models. In the spontaneous wake
up model, all stations wake up when the source transmits for the first time, i.e.,
their clocks start simultaneously with the source. Consequently, all nodes may
contribute to the efficiency of the broadcasting process by transmitting various
preparatory control messages even before they receive the source message. In
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contrast, in the conditional wake up model, the stations other than the source
are initially dormant and do not transmit until they receive a message for the
first time and wake up. Thus in this model, the clock of a node starts on the
round when it first receives the source message.

Distributed vs. centralized models: In the distributed setting, it is usually as-
sumed that nodes are unaware of the topology of the network and do not know
its diameter, its size or other parameters. It is often assumed that the nodes
are not even aware of their immediate neighborhood. Networks featuring these
characteristics are sometimes called ad hoc networks. In contrast, in certain con-
texts one may be interested in solving the time-efficient broadcasting problem
under more favorable conditions, such as full information or assuming a central
authority monitoring the broadcasting process. In such cases, it may be possible
to pre-compute optimal or near-optimal broadcast schedules.

Topology classes: In addition to the study of general (arbitrary topology) radio
networks, some recent interest arose concerning a natural subclass, referred to
as UDG radio networks, where the network is modeled as a unit disk graph
(UDG) whose nodes are represented as points in the plane. It is assumed that
the transmission devices are capable of transmitting to distance 1, hence two
points are joined by an edge if and only if their Euclidean distance is at most 1.

Use of randomness: Both deterministic and randomized broadcasting algorithms
were considered in the literature.

The talk will review the literature on time-efficient broadcasting algorithms for
radio networks under a variety of models and assumptions.
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After presenting a personal view of distributed computing (of course, being per-
sonal, this view is partial and questionable), this invited talk will address dis-
tributed computing problems that have recently received attention in the liter-
ature. For each of them, the talk presents the problem, results from the com-
munity, results from the author (and his co-authors), and questions that remain
open. The following are among the topics covered in the talk.
Exclude or go fast enough?. The obstruction-free approach consists in designing
algorithms that always preserve the safety property and always terminate when
the process that issued the operation can execute alone during a “long enough”
period of time [7]. It has been shown that the minimal information on failures
needed to transform an obstruction-free algorithm into its wait-free counterpart
[6] are failure detectors that allows a single process at a time to proceed [5]. This
approach requires the processes to exclude each other.

The notion of a timed register has recently been proposed [9]. Such a register
places a timing constraint on each write operation that follows a read operation
(on that register). The write succeeds if it occurs “quick enough”, otherwise it
fails. Such registers allows implementing consensus for any number of processes
in systems that satisfy a relatively weak timing assumption. So, this approach
demands each process to go fast enough between a read of a timed register and
the following write on the same timed register.

Each of the previous approaches can be seen as a particular facet of the same
scheduling problem. The statement of a general scheduling framework that would
unify them seems to be challenging open problem.
Towards a hierarchy of sub-consensus tasks. Asynchronous shared memory sys-
tems prone to process crashes defines a land only few parts of which have been
explored. But that land has been provided with two main lighthouses: Her-
lihy’s notion of wait-free synchronization (and the associated notion of consen-
sus number) [6], and Gafni’s notion of read/write reductions [2]. So, given an
asynchronous shared memory system enriched with some base objects, funda-
mental questions are the following ones: which problems can be wait-free solved?
Is there a hierarchy for wait-free subconsensus problems? Is it possible to define
a measure (similar to consensus number) for these problems? Etc.

Focusing on the adaptive renaming problem, the talk will present reductions
showing that that problem lies exactly in between the set agreement problem and
the test-and-set problem, thereby defining a hierarchy of sub-consensus problems
[4]. Enriching this hierarchy remains one of the most fundamental challenges of
asynchronous computability in presence of failures [2].
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An arithmetic of synchronous set-agreement. Synchronous k-set agreement in
presence of up to t faulty processes requires Rt,f rounds where Rt,f = min

(
� f

k �+
2, � t

k �+1
)

rounds (f denoting the number of actual crashes in a run, 0 ≤ f ≤ t).
This is a tight bound [1,3]. So, an interesting question is the following: given base
objects of some type, how much do they allow bypassing that bound?

The talk will explore the case where the base objects (denoted [m, �] SA ob-
jects) allow solving the �-set agreement problem among m processes (m < n)
[8]. It will present an algorithm that requires O( t�

mk ) rounds (more precisely,
Rt,f,m,� = min

(
� f

Δ�+2, � t
Δ�+1

)
, with Δ = m�k

� �+(k mod �)). Open problems
related to the synchronous set agreement will also be presented.
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(France) (2007), ftp://ftp.irisa.fr/techreports/2007/PI-1836.pdf

9. Raynal, M., Taubenfeld, G.: The Notion of a Timed Register and its Application
to Indulgent Synchronization. In: SPAA’07. 19th ACM Symposium on Parallel
Algorithms and Architectures, pp. 200–207. ACM Press, New York (2007)

ftp://ftp.irisa.fr/techreports/2007/PI-1837.pdf
ftp://ftp.irisa.fr/techreports/2007/PI-1836.pdf
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Abstract. We present the first optimally resilient, bounded, wait-free
implementation of a distributed atomic register, tolerating Byzantine
readers and (up to one-third of) Byzantine servers, without the use of
unproven cryptographic primitives or requiring communication among
servers. Unlike previous (non-optimal) solutions, the sizes of messages
sent to writers depend only on the actual number of active readers and
not on the total number of readers in the system. With a novel use of
secret sharing techniques combined with write back throttling we present
the first solution to tolerate Byzantine readers information theoretically,
without the use of cryptographic techniques based on unproven number-
theoretic assumptions.

1 Introduction

Distributed storage systems in which servers are subject to Byzantine failures
have been widely studied. Results vary in the assumptions made about both
the system model and the semantics of the storage implementation. The system
parameters include the number of clients (readers and writers), the synchrony
assumptions, the level of concurrency, the fraction of faulty servers, and the
faulty behavior of clients. In the absence of synchrony assumptions, atomic [8]
read and write semantics are possible, but stronger semantics are not [7]. We
consider implementations with atomic semantics in this paper.

We consider solutions in an asynchronous system of n servers that do not
communicate with each other (non-communicating servers) and in which up to
f servers are subject to Byzantine failures (f -resilient), any number of clients
can fail by crashing (wait-free), and readers can be subject to Byzantine failures.
Systems in which servers do not communicate with each other are interesting
because solutions that depend on communication between servers tend to have
high message complexity, quadratic in the number of servers [10,4].

� This work was supported in part by NSF awards CSR—PDOS 0509338 and Cy-
berTrust 043051.
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In the non-communicating servers model, the best previous solution that pro-
vides wait-free atomic semantics requires 4f + 1 servers [3]. That solution (i)
requires clients and servers to exchange a finite number of messages and (ii) lim-
its the size of the messages sent by the servers to the readers: the size of these
messages is bound by a constant times the logarithm of the number of write op-
erations performed in the system—or, equivalently, by a constant times the size
of a timestamp. Unfortunately, this solution allows messages sent to writers to be
as large as the maximum number of potential readers in the system, even during
times when the number of actual readers is small. Recently, and concurrently
with our work, a wait-free atomic solution that requires not more than 3f + 1
servers was proposed, but that solution requires unbounded storage, message of
unbounded size, and an unbounded number of messages per read operation [6].

None of these solutions consider Byzantine readers. Byzantine behavior of
readers is relevant because wait-free atomic solutions require that readers write
to servers [5]. All existing work that considers Byzantine readers uses crypto-
graphic techniques based on unproven number-theoretic assumptions [4,9].

So, the existing results leave open two fundamental questions:

– Is the additional cost of f replicas over the optimal for unbounded solutions
required to achieve a bounded wait-free solution?

– Is the use of cryptographic techniques required to tolerate Byzantine readers?

We answer both questions in the negative. We show that tolerating Byzantine
readers can be achieved with information-theoretic guarantees and without the
use of unproven number-theoretic assumptions. We also show that a bounded
wait-free implementation of a distributed storage with atomic semantics is pos-
sible for n = 3f + 1 (which is optimal). Our solution also bounds the size of
messages sent to writers—a significant improvement over Bazzi and Ding’s non-
optimal solution [3].

To achieve our results, we refine existing techniques and introduce some new
techniques. The ideas we refine include concurrent-reader detection and write-
back throttling, originally proposed in the atomic wait-free solution of Bazzi and
Ding [3]. In what follows we give a high level overview of the new techniques we
introduce.

Increasing resiliency. We increase the resiliency of our solution by introducing
a new way by which a reader selects the timestamp of the value it will try to
read. Instead of choosing the f + 1’st largest among the received timestamps,
in our protocol the reader chooses the 2f + 1’st smallest. In fact, we realized
that the f + 1 largest timestamp worked well for n = 4f + 1 simply because, for
that value of n, the f + 1 largest received timestamp coincides with the 2f + 1
smallest. We guarantee the liveness of our new selection process by having the
reader continuously update the value of the 2f + 1’st smallest timestamp as it
receives responses from new servers.

Bounding message sizes to writers. We bound the sizes of messages sent to
servers using three rounds of communication between writers and servers. These
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rounds occur in parallel with the first two rounds of the write protocol and no
server receives a total of more than two messages across the three rounds. In the
first round, the writer estimates the number of concurrent readers; in the second
and third rounds it determines their identities.

Tolerating Byzantine readers. We use write back throttling combined with secret
sharing to tolerate Byzantine readers. The idea is to associate a random secret
with each write and share the secret among the servers in such a way that it can
only be reconstructed if enough servers reveal their shares. By requiring that a
correct server only divulge its share if the write has made sufficient progress, we
use a reader’s ability to reconstruct the secret as a proof that the reader is allowed
to write back. By using secret sharing, we avoid relying on unproven number
theoretic assumptions and achieve instead information-theoretic guarantees.

2 Model/Assumptions

The system consists of a set of n replicas (servers), a set of m writers and a
set of readers. Readers and writers are collectively referred to as clients. Clients
have unique identifiers that are totally ordered. When considering boundedness
of the sizes of messages, we assume that a read operation in the system can
be uniquely identified with a finite bit string (otherwise any message sent by a
reader can be unbounded in size). The identifier consists of a reader identifier
and a read operation tag. Similarly write operations are identified by the writer
identifier and the timestamp of the value being written. Since timestamps are
non-skipping [2], writes can also be represented by finite strings.

Clients execute protocols that specify how read and write operations are im-
plemented. We assume that clients do not start a new operation before finishing
a previous operation. We assume that up to f servers may deviate arbitrarily
from the specified protocol (Byzantine) and that the remaining (n − f) servers
are correct. We require that the total number of servers n be at least 3f + 1.

We assume that messages cannot be spoofed. While this is typically enforced
in practice using digital signatures, based on public key cryptography, such tech-
niques are not necessarily required to enforce our requirement. We assume FIFO
point-to-point asynchronous channels between clients and servers. Servers do not
communicate with other servers.

Writers are benign and can only fail by crashing. In Section 3 we also assume
that the readers are benign; we relax this assumption in Section 5 where we
consider Byzantine readers . When considering Byzantine readers, we make the
additional assumption that the channels between the servers and the writers are
private i.e. messages sent over these channels cannot be eves-dropped by the
adversary.

For our implementation, the probability that a given read operation by a
Byzantine reader improperly writes back a value is 2−k where k is a security
parameter. We choose k to be sufficiently large so that the probability of failure
for all operations is small. If k = o + k′ bits, where o is the number of bits
required to represent one operation, then the system failure probability is 2−k′

.
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Schemes based on public key cryptography, in the best case, also suffer from
this negligible small probability of error. If the unproven assumptions that they
are based upon do not hold, their probability of error can be significantly larger.

3 Bounded Atomic Register

We present a single-writer protocol that implements a wait-free atomic register
using 3f + 1 replicas where the size and the number of messages exchanged per
operation is bounded.

Figures 1–3 present a single-writer-multiple-reader version of the protocol
that assumes that the readers are benign. In Section 5 we show how to extend
this protocol to handle Byzantine readers. These protocols can also be easily
extended to support multiple-writers, using ideas from [3]. We refer the reader
to [1] for proofs and a more detailed discussion.

3.1 Protocol Overview

The write operation. The write operation is performed in two phases.
In phase 1, the writer sends the value to all the servers and waits for (n−f) ac-

knowledgements. The writer also initiates, in parallel, the GetConcurrentReaders
protocol to detect concurrent readers. The GetConcurrentReaders is a bounded
protocol, described in Section 3.3, that detects all read operations which are con-
sidered to be active at all the non-faulty servers, when the protocol is executed.

In phase 2, the writer asks all the servers to update their current timestamp,
and to forward the values that they have to all the concurrent readers detected in
phase 1. On receiving (n− f) acknowledgements, the write operation completes.

This two-phase mechanism guarantees that if a non-faulty server updates its
current timestamp, then at least f + 1 non-faulty servers must have already
received the value.

The read operation. To understand the reader’s protocol, we consider a simple
scenario. The reader starts by requesting second phase information from the
servers. Each server replies with the most current timestamp for which it knows
that the corresponding write operation reached its second phase. Now, assume
that the reader receives replies from all correct servers in response to its request
for second phase information. The timestamps returned by these correct servers
can be quite different because the reader’s requests could reach them at different
times and the writer could have executed many write operations during that
time. Of special interest is the largest second phase timestamp returned by a
correct server. Let us call that timestamp tlargest. If the writer executes no write
operation after its write of tlargest, then, when the reader receives the second
phase response with tlargest, it can simply request all first phase messages and be
guaranteed to receive f +1 replies with identical value v and timestamp tlargest;
at that time, the reader would be able to determine that, by reading v, it would
not violate atomic semantics. The reader then writes back the value and then
the timestamp in two phases to complete the read operation.
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write( ) {
inc(ts)

// Phases W1
cobegin {
writeVal();
CR = GetConcurrentReaders()

} coend

// Phase W2
send (WRITE TS, ts, CR) to all

wait for (n − f) acks.
}
writeVal( ) {

send (WRITE VAL, 〈v, ts〉) to all
wait for (n − f) acks.

}

Fig. 1. The Writer’s Protocol

While this scenario is instructive, it overlooks some complications. For in-
stance, a fast writer might write many values with timestamps larger than
tlargest. Also, the reader does not know when it has received replies from all
correct servers. If we assume, for now, that the reader can tell when it has re-
ceived values from all correct servers, then we can solve the problems caused
by a fast writer by having the fast writer help the reader to terminate. This
is done by having the writer detect concurrent read operations and then have
the writer request from the server to flush out the written value to concurrent
readers. Our solution requires that servers keep the 3 most up to date written
values because the detection of concurrent readers is only guaranteed when the
writer completely writes a value whose timestamp is larger than tlargest + 1.

There remains the problem of the reader not knowing when it has received
replies from all correct servers. In fact, in response to its request for second phase
information, the reader can receive replies only from n− f servers—f of which
may be faulty—and it might not be able to terminate based on these responses.
We handle this situation by simply assuming that these n− f messages are all
from correct servers. If they indeed are, then the reader will for sure be able to
decide on tlargest by requesting the first phase information (it is possible that
the reader will be able to decide even if they are not correct). If, however, the
reader is unable to decide, then there are other correct servers whose replies
are not amongst the n− f replies, and, by waiting long enough, the reader will
eventually receive some message from one of those servers. When an undecided
reader receives a new message, it recalculates tlargest assuming that, with the
new messages it received, it must finally have replies from all correct servers:
therefore, the reader re-requests the first phase information from all servers.
This process continues until the reader indeed receives replies from all correct
servers, in which case, it is guaranteed to decide.

Finally, in the above discussion we have assumed that the reader knows what
tlargest is—in reality, in our protocol the reader can only estimate tlargest by
using the 2f + 1’st smallest second phase timestamp. We can show that this is
sufficient to guarantee that the reader can decide and that its decision is valid [1].

3.2 Protocol Guarantees

The protocol presented provides atomic semantics. The reader and the writer
protocols always terminate and are wait-free.

Boundedness. A solution is amortized bounded if m operations do not generate
more than m × k messages, for some constant k without some servers being
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Definitions:

valid( 〈v, ts〉 ) � |{s : 〈v, ts〉 ∈ Values[s] }| ≥ f + 1
notOld( 〈v, ts〉 ) � |{s : last comp[s] ≤ ts}| ≥ 2f + 1
fwded( 〈v, ts〉 ) � |{s : fwd[s] = 〈v, ts〉}| ≥ f + 1

read( ) {
∀s: last comp[s] = ⊥ ; fwd[s] = ⊥ ; Values[s] = ∅
// Phase R1
send (GET TS) to all

repeat
on receive (TS, s, ts) from server s

last comp[s] = ts
on receive (FWD, s, 〈v, ts〉, V als) from server s

fwd[s] = 〈v, ts〉
Values[s] = Values[s] ∪ V als

until (|{x : last comp[x] �=⊥}| ≥ n − f)

// Phase R2
send (GET VAL) to all
repeat

on receive (TS, s, ts) from server s
last comp[s] = ts
send (GET VAL) to all

on receive (VALS, s, V als) from server s
Values[s] = Values[s] ∪ V als

on receive (FWD, s, 〈v, ts〉, V als) from server s
fwd[s] = 〈v, ts〉
Values[s] = Values[s] ∪ V als

until (∃〈vc, tsc〉 : fwded(〈vc, tsc〉)
∨( notOld(〈vc, tsc〉) ∧ valid(〈vc, tsc〉) ))

// Phase R3
WriteBack(tsc)
return 〈vc, tsc〉

}

WriteBack( ts ) {
// Round 1
send (WBACK VAL, 〈v, ts〉) to all

wait for (n − f) acks.
// Round 2
send (WBACK TS, ts) to all

wait for (n − f) acks.
}

Fig. 2. Reader’s protocol

Initialization:
READERS := ∅
RNextVal:= ⊥

server( ) {
// Write Protocol messages
on receive (WRITE VAL, 〈v, ts〉) from writer

if (RVal.ts < ts)
(RPrev2 , RPrev , RVal) := ( RPrev , RVal, 〈v, ts〉)

send WRITE-ACK1 to the writer
on receive (WRITE TS, ts, CR) from writer

if (Rcts< ts)
Rcts:= ts

for each r ∈ CR:
send (FWD, s, RVal, { RVal, RPrev , RPrev2 })

to r
READERS = READERS \ CR
send WRITE-ACK2 to the writer

// Read Protocol messages
on receive (GET TS) from reader r:

READERS .enqueue(r)
send (TS, s, Rcts) to r

on receive (GET VAL) from reader r
send (VALS, s, { RVal, RPrev }) to r

// Write back Messages
on receive (WBACK VAL, 〈v, ts〉) from reader r

wait for ( Rcts≥ ts − 1 )
if (RVal.ts < ts)

(RPrev2 , RPrev , RVal) := ( RPrev , RVal, 〈v, ts〉)
send WBACK-ACK1 to r

on receive (WBACK TS, ts) from reader r
wait for ( RVal.ts ≥ ts )
if (Rcts< ts)

Rcts:= ts
READERS .remove(r)
send WBACK-ACK2 to r

// GetConcurrentReaders Protocol messages
on receive (GET ACT RD CNT) from writer

send (RDRS CNT, s, READERS .size())
to writer

on receive (GET ACT RDS, count) from writer
send (READERS, s, READERS [1:count])

to writer
on receive (GET ACT RDS INS, A) from writer

send (RDRS INS, s, READERS ∩ A) to writer }

Fig. 3. Protocol for server s

detected as faulty. In an amortized bounded solution, a client executing a par-
ticular operation might have to handle an unbounded number of late messages.
In a bounded solution a client operation will always handle no more than k mes-
sages for some constant k and if more than k messages are received, the faulty
behavior of some servers will be detected.

Our solution is amortized bounded. This does not rule out the possibility that
a reader receives many unsolicited messages from a server. All we can do in that
case is to declare the server faulty and our proof of boundedness does not apply
to such rogue servers that are detected to be faulty.

To make the solution bounded for the reader techniques such as [3] can
be used.

3.3 Bounded Detection of Readers

The protocol requires that the writer be able to detect ongoing read opera-
tions. A writer that invokes GetConcurrentReaders() after all correct servers
have started processing a read request r issued by client cr must be able to
identify r (assuming r does not terminate before the end of the execution of the
detection protocol).
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Definitions:

notLarge( s ) � |{x : count[x] ≥ count[s]}| ≥ f + 1
GetConcurrentReaders() {

∀s: readers[s] := ⊥
∀s: count[s] := ⊥
∀s: sent[s] := false
union set := ⊥
// Get Active reader count
send (GET ACT RD CNT) to all servers
// Get Active reader lists from servers with valid count
repeat

on receive (RDRS CNT, s, count) from server s
count[s] = count
∀p: if (notLarge(p) ∧ sent[p] = false)

send (GET ACT RDS) to server p
sent[p] := true

on receive (READERS, s, R) from server s
if ( ¬ sent[s] ∨ (sent[s] ∧ count[s] �= |R| ))

detect failure of s
else

readers[s] := R
until (|{readers[s] : readers[s] �=⊥}| ≥ f + 1)
union set := ∪sreaders[s]

// Get union set ∩ Active reader lists from the rest
for each (s : sent[s] �= true)

send (GET ACT RDS INS, union set) to server s
repeat

on receive (READERS, s, R) from server s
if ( ¬ sent[s] ∨ (sent[s] ∧ count[s] �= |R|))

detect failure of s
else

readers[s] := R
on receive (RDRS INS, s, R) from server s

if ( R �⊂ union set )
detect failure of s

else
readers[s] := R

until (|{s : readers[s] �=⊥}| ≥ n − f)
CR = {x : |{s : x ∈ readers[s]}| ≥ (f + 1)}
return CR

}

Fig. 4. Bounded detection of readers: Writer code

A simple way to implement the required functionality is for the writer to
collect, from all servers, the sets of ongoing read operations (the active reader
operations) and to identify those among them that appear in at least f + 1 sets:
this is the approach taken in [3]. Because it is possible that some servers may
have begun processing read requests that have not yet reached the other servers,
faulty servers can send arbitrarily long lists of bogus active operations without
being detected as faulty. Our protocol rectifies this problem, and is shown in
Figure 4.

Protocol Description. The idea of the protocol is to first estimate the number
of active read operations in the system and then accept lists of active reader
operations whose size is bounded by this estimate. The difficulty is in ensuring
that all genuinely active operations, and only those, are detected. The protocol
has two phases. In the first phase, the writer determines a set of servers who
are returning a valid active list count, i.e. a count of active reader operations
that does not exceed the count returned by at least some correct server. In the
second phase, the writer requests these servers for their active lists, which are
known not to be too large.

For servers, whose count is not known to be valid, the writer cannot request
the active list since it could be too large. However, once the writer has collected
f + 1 active lists from servers with a valid count, the writer sends the union
of these lists to the remaining servers and only requests for the elements in the
server’s active list that is present in the union.

On receiving the active sets (or their intersection) from at least n− f servers,
the writer computes the set of concurrent readers.

Protocol guarantees. Since the writer only needs to wait for (n−f) responses,
this sub-protocol always terminates. The number of messages exchanged in this
sub-protocol is bounded as the writer does not send or receive more than two
messages to any server. The messages sent in the first two phases are bounded in
size because the writer only requests active lists from servers with a valid count.
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The messages in the third step is also bounded in size, because the size of the
computed union set is bounded.

4 Tolerating Byzantine Readers

In a wait-free atomic implementation of replicated storage, readers must write to
servers to ensure read-read atomicity [5]. With Byzantine readers, servers need
guarantees that the values written by readers are valid. This can be satisfied
by having the reader present a proof that a correct server vouches for the value
and such a proof can be satisfied by having the reader present evidence that
f + 1 servers vouch for the value it wants to write back. Traditionally, such
vouchers or proofs rely on public key cryptography, which depend on unproven
assumptions such as the hardness of factoring, or the hardness of computing
discrete logarithms [9].

In general, it is not sufficient for a reader to prove that the value it is writing
originated from the writer. For instance, if the reader is expected to write more
than one value in some order, then the reader should not write a later value
without having completed writing the previous value in the order. Omitting to
write some values can in general lead to violations of the protocol’s requirements.

With respect to the protocol presented in Section 3, the servers should verify
two things:

1. A reader is allowed to write back a value only if it proves that it received the
value from a correct server (i.e. by having f +1 servers vouch for the value).

2. A reader is allowed to perform a second round write back of the timestamp
only after f + 1 correct servers have accepted the first round write back
message (i.e. 2f + 1 servers accepted the first round write back).

With public key cryptography, these proofs can be easily implemented. A
server signs messages it sends to a reader and a reader can provide as proof the
requisite number of signed messages.

An important observation is that these (signed) messages indicate the progress
in terms of the server state and are not specific to the particular read operation.
The protocol remains correct even if these proofs are put together from signed
messages sent by servers in response to different read operations.

We present a secret-sharing-based approach that can be used to implement
these types of proofs. This shows that the (strong) assumption of computation-
ally one-way functions, used by PKIs, is not required for these applications. We
believe that our approach can be used not just with the protocol presented in
Section 3, but also with other protocols that have a similar structure—however,
characterizing such protocols and developing a general framework to replace
cryptographic-based techniques with our techniques are left for future work.

4.1 Provably Correct Proofs Using Secret Sharing

Consider the read and write protocols in Figure 5, which are typically part of
larger protocols.
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Write(value, ts)
send (value, ts) to all
wait for n − f acks

Read(ts)
send READ REQUEST to all
wait for t replies with same value v and timestamp ts
send v to all
wait for n − f acks

Fig. 5. Simple client protocols

In the protocol, the reader is attempting to read a value whose timestamp
is ts and the writer writes a value whose timestamp is ts (not necessarily the
same). The server code corresponding to these two protocols is the obvious one.

As presented, the reader protocol is not guaranteed to terminate and typically,
it will be part of a larger protocol that ensures termination. We will not concern
ourselves with termination in the remainder of this section.

We would like to transform the two protocols so that correct readers are not
affected and faulty readers cannot write back a value that was not written by
the writer.

We achieve the transformation by splitting the write operation into two parts.
In a first part, the writer sends the value to be written along with some other
information that we will explain shortly. In the second part of a write operation,
the writer sends a message indicating that the first part has finished. The servers
process the message with the values, exactly as in the simple protocol, but only
when it receives the FINISHED SENDING VALUES message. In other words,
the values received in the first part are hidden and are not processed (or sent
to readers) unless the server knows that the writer finishes the first part. This
knowledge can be obtained directly from the writer or indirectly from the reader.

So, we need a way for a reader that received t identical values to convince a
correct server that only received a first message from the writer to open the value
that the server received from the writer. By doing this, the reader is effectively
writing back a value but without having to sign the value. The write back consists
of making a hidden value non-hidden. A reader knows that it can write back to
all correct servers if it knows that the writer finished the first part and started
the second part at some correct server because, in that case, all correct servers
will eventually receive the value from the writer which is sent in the first part.

So, the question is how can we provide a proof that the writer made enough
progress. This is where the other information enter the picture. The main idea is
to have the writer associate a randomly generated secret with the value it wants
to write. The writer generates this secret, creates shares, and sends these shares
to servers before (roughly speaking) starting the actual write operation.

A server which knows that the writer has completed the first part and started
the second part, is willing to provide the value as well as shares of the secret.
The secret is shared such that if (and only if) enough messages are received, the
reader will be able to reconstruct the secret. Thus, reconstructing the secret can
be used as a proof that the writer made enough progress in its write operation.
The details of the secret sharing scheme are given below.

The modified writer and reader protocols are shown in Figure 6.
Each secret is split using the techniques of [11] such that k.t shares are

required to reconstruct the secret, where k > f . Each server is given k + 1
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Write(value, ts)
generate secret s
∀1 ≤ i ≤ n generate shares si[1 . . . k + 1]
∀1 ≤ i ≤ n send (value, ts, si[1 . . . k + 1]) to serveri
send FINISHED SENDING VALUES to all
wait for n − f replies

Read(ts)
send READ REQUEST to all
value read = ⊥
repeat

receive message (v, ts, si[1 . . . k]) from server i
if received ≥ t messages with the same v and ts

fork {
send (v, collectedSharesFor(v)) to all
wait for n − f acks
value read = v

}
until (value read != ⊥)

Fig. 6. Modified client protocols

shares, along with the message that was going to be sent in the simple proto-
col. After sending these messages to all the servers, the writer sends the FIN-
ISHED SENDING VALUES message.

If a read request reaches a server after the server received the FINISHED
SENDING VALUES message from the writer, the server sends the value to the
reader along with k of the shares the server received from the writer. One share
is never revealed and is used by servers only for verifying that a reconstructed
secret is correct. Secret sharing ensures that the secret can be reconstructed if
and only if t number of servers give away their shares.

The server now accepts a write back from a reader only if the reader can
provide enough shares that can reconstruct the correct secret at the server. The
server can accept a write back even before receiving the FINISHED SENDING
VALUES message. If the server decides to accept the write back message, the
server unhides the message and acts as if it has received a FINISHED SENDING
VALUES message directly from the writer.

Note that unlike the case with cryptographic solution in which the reader
could determine locally whether the received signatures are valid, in our pro-
tocol the reader needs the cooperation of the servers in order to determine if
the received shares can reconstruct the correct secret. Here, the reader cannot
determine if the proof is going to be valid because it does not have any shares
to verify against. This may cause the write backs to not succeed if there are
not enough correct shares. Also, the shares that enable the reader to write back
might not arrive all at once. The reader might first receive n − f replies that
do not include the crucial shares of some slow correct servers. So, the reader’s
protocol would have the reader request verification from servers every time the
reader receives a new share. The reader can finish when it has received enough
identical values and it knows that it can write back.

5 Protocol Tolerating Byzantine Readers

To convert the protocol presented in Section 3 to a Byzantine reader tolerant
protocol, the writer has to perform an extra phase. This extra phase contains
the secrets required for both the phases of the write protocol. So phase 1 and
Phase 2 of the original protocol are replaced with (Phase 1’ || Phase 2’), Phase
1”, and Phase 2” where the primes and double primes are used to indicate the
transformed phases and the || indicates that the first transformed phases are
executed concurrently.
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5.1 The Write Protocol

Before beginning the two phases of the write, the writer generates two random
secrets. The writer sends the shares for these secrets, along with the value and
timestamp information that it is going to write, to all the servers before initiating
the write phases.

The first secret is used to prove that the reader has received f + 1 identical
values and is split such that t = f + 1. The second secret is used to prove that
the reader has received (n− f) acknowledgements to the first phase write back
and is split such that t = (n− f).

On receiving these shares and information regarding the value and timestamp
that is going to be written, the servers hold them separately and do not update
any values or timestamps that are used in the original protocol.

After sending these shares and values to all the servers, the writer begins
the original write protocol, asking the servers to update the value and then the
timestamp. Only on receiving the message from writer to update the value, or
on accepting a write back message, will a server update its value and reveal its
secret shares. The same holds true for updating the timestamp.

5.2 The Read Protocol

The read protocol is similar to the original read protocol in Section 3. The only
difference being that the reader needs to include the collected shares as a proof
to be allowed to perform the write back.

As in Section 3, the reader waits to collect f + 1 matching responses for an
acceptable timestamp. It then tries to write back the value providing as a proof
the set of shares collected so far. Retrying each time it receives more shares, or
when it can try to write back a different value.

The server will only accept the write back if value being written back matches
the value that was initially received from the writer, and the shares can recon-
struct the correct secret. If at least one non-faulty server has revealed the value,
then all servers will eventually receive the value and the shares sent by the
writer to be able to verify the information provided by the reader. Thus valid
write backs from correct readers will be eventually accepted.

Moreover, since the servers receive the value from the writer directly, the
reader need not send the value along with the write back. It is sufficient to use a
lightweight tag, or the timestamp to identify the write [5]. Thus, preventing the
servers from having to process large messages from bad readers. For simplicity,
we assume that the protocol does not have this optimization.

On accepting the first write back for the value, the server responds with its
shares of the second secret. On receiving (n− f) of these responses, the reader
proceeds to write back the timestamp in the second phase sending the shares it
received in these responses as proof that (n− f) servers have accepted the first
phase write back. The reader retries writing back whenever it receives additional
shares. When all the correct servers accept the write back value and respond with
their shares of the second secret, the reader will have enough correct shares to
reconstruct the secret correctly and complete the write back.
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Late write backs. One complication is that if a first round write back arrives
late at a server, the server might not have the shares to give the reader because
the old shares might have been replaced with newer ones due to subsequent
writes. If a server that receives a write back message has a current timestamp
that is larger than the timestamp being written back, it simply sends a write
back acknowledgment, but without the shares (sending ⊥ for the shares).

The meaning of a write back without shares is that the writer has started the
second phase of the write of a value with a higher timestamp. When the reader
finishes its first round of write back it will collect (n − f) acknowledgments,
some with shares and some without shares, and send these along with its second
phase write back. If one of the acknowledgments without shares is from a correct
server, then this means that the writer must have started writing a new value and
finished the second phase of the write operation for which the reader is sending a
second phase write back, and therefore all correct servers will eventually receive
the second phase message from the writer and can accept the write back. If
none of the acknowledgments without secrets is from a correct server, then the
reader will eventually receive either enough secrets (as we argued in the previous
paragraph) or one acknowledgment without secrets from a correct server; in
either case, the correct reader will be able to finish its second phase write back.

Bounding number of retries. The reader only tries to write back values
that have been received from at least f + 1 different servers. Since the reader
queries the servers for values up to f + 1 times and gets up to 2 values from
each server in addition to 3 values in the forwarded message, the reader can get
up to 2(f + 1) + 3 different values from each server. Thus a correct reader may
only retry writing back a maximum of n(2f+5)

f+1 different values. Also, since each
value will only be retried f + 1 times, the number of messages exchanged due to
the retries is still bounded.

Acknowledgements. We thank Allen Clement and Harry Li for their helpful
discussions on secret verification.
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Abstract. We describe and analyze a 3-state one-way population protocol for
approximate majority in the model in which pairs of agents are drawn uniformly
at random to interact. Given an initial configuration of x’s, y’s and blanks that
contains at least one non-blank, the goal is for the agents to reach consensus on
one of the values x or y. Additionally, the value chosen should be the majority
non-blank initial value, provided it exceeds the minority by a sufficient margin.
We prove that with high probability n agents reach consensus in O(n log n) in-
teractions and the value chosen is the majority provided that its initial margin
is at least ω(

√
n log n). This protocol has the additional property of tolerating

Byzantine behavior in o(
√

n) of the agents, making it the first known population
protocol that tolerates Byzantine agents. Turning to the register machine con-
struction from [2], we apply the 3-state approximate majority protocol and other
techniques to speed up the per-step parallel time overhead of the simulation from
O(log4 n) to O(log2 n). To increase the robustness of the phase clock at the heart
of the register machine, we describe a consensus version of the phase clock and
present encouraging simulation results; its analysis remains an open problem.

1 Introduction

Population protocols [1] model distributed systems in which individual agents are ex-
tremely limited, in fact finite-state, and complex behavior of the system as a whole
emerges from the rules governing pairwise interaction of the agents. Such models have
been defined and used in other fields, for example, statistics, epidemiology, physics
and chemistry; understanding their behavior is a fundamental scientific problem. The
new perspective we bring as computer scientists is to ask what computational behaviors
these systems can exhibit. In addition to fundamental scientific knowledge, answers
may provide novel designs for distributed computational systems at many scales.

Chemists have defined a standard model of small molecules in a well-mixed solu-
tion, in which the molecules are agents, the state of an agent represents the chemical
species of the molecule, and interaction rules specify the probable products of a col-
lision between two molecules; the sequence of collisions is determined by uniform
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random draws of a pair of agents to interact [4, 5]. In [1] it is shown that this model
in principle permits the design of a “computer in a beaker,” that is, we can design in-
teraction rules that allow a population of n molecules to simulate the behavior of a
register machine with a constant number of registers holding numbers of magnitude
O(n) for poly(n) steps with error probability 1/ poly(n) in parallel time that is a fac-
tor of poly(n) larger than the number of simulated instructions. In [2] we have shown
that a careful analysis of the properties of epidemics permits us to design a much more
efficient simulation, in which the per-step slowdown factor is O(log4 n) parallel time.

The register machine of [2] has several shortcomings: it requires an initial configu-
ration with a designated leader, it does not tolerate faults, and O(log4 n) is still fairly
slow. One goal of this paper is to develop more tools for the design of fast robust pop-
ulation protocols, with improvement of the register machine as a critical testbed. The
main tool we develop is our 3-state protocol for approximate majority; this is a protocol
that rapidly takes a configuration of x’s, y’s and b’s to a configuration that is all x’s or
all y’s. The final value represents the majority value (among x’s and y’s) in the initial
configuration, provided it exceeds the minority value by a sufficient margin, namely
ω(
√

n log n). Moreover, we show that is robust to o(
√

n) Byzantine agents, the first
population protocol that provably tolerates any Byzantine agents. With a sufficiently
redundant representation of register values, this protocol gives a fast comparison opera-
tion, which, when combined with other techniques, reduces the slowdown factor of the
simulation to O(log2 n) parallel time. Though the approximate majority protocol has
only 3 states, its analysis is nontrivial; we expect that the protocol and its analysis will
find other applications in the design of fast robust population protocols.

The register machine of [2] has at its heart the construction of a phase clock that
causes the agents to move together rapidly through a fixed cycle of phases; together
meaning that no two agents are more than a very few phases apart, and rapidly meaning
the parallel time to complete a cycle is O(log n). We would like to avoid the need for a
designated leader or leaders in the initial configuration to synchronize the phase clock,
and we would like the phase clock to be robust. In Section 8 we describe an apparently
robust consensus variant of the phase clock, and a protocol to start it from a uniform ini-
tial configuration. We give simulation results suggesting that it performs well. However,
the problem of analyzing it formally remains open; more tools are necessary.

2 Model

A population protocol consists of a finite set of states Q, a finite set of input symbols
X ⊆ Q, a finite set of output symbols Y , an output function γ : Q → Y , and a joint
transition function δ : Q×Q → Q×Q. A population protocol is executed by a fixed
finite population of agents with states in Q. For convenience, we assume that each
agent has an identity v ∈ V , but agents do not know their own identities or others’.

Initially, each agent is assigned a state according to an input x : V → X that maps
agent identities to input symbols. In the general population protocol model, there is an
interaction graph, a directed graph G = (V, A) without self-loops, whose arcs indicate
the possible agent interactions that may take place. (G is directed because we assume
that interacting agents are able to break symmetry.) In this paper, G will always be a
complete graph.
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During each execution step, an arc (v, w) is chosen uniformly at random from A.
The “source” agent v is the initiator, and the “sink” agent w is the responder. These
agents update their states jointly according to δ: if v is in state qv and w is in state qw,
the state of v becomes δ1(qv, qw), the state of w becomes δ2(qv, qw), where δi gives the
ith coordinate of the output of δ. The states of all other agents are unchanged. For any
given V , a population protocol computes a (possibly partial) function f : XV → Y
in � steps with error probability ε if for all x ∈ f−1(Y ), the configuration c : V → Q
after � steps satisfies the following properties with probability 1− ε.

– All agents agree on the correct output: for all v ∈ V , f(x) = γ(c(v)).
– This remains true with probability 1 in the future.

We are interested in the guarantees one can make about a fixed protocol over a family
of functions f defined for all finite populations.

Although we have described the population protocol model in a sequential light, in
which each step is a single pairwise interaction, interactions between pairs involving
different agents are independent and may be thought of as occurring in parallel. In
measuring the speed of population protocols, then, we define 1 unit of parallel time
to be |V | steps. The rationale is that in expectation, each agent initiates 1 interaction
per parallel time unit; this corresponds to the chemists’ idealized assumption of a well-
mixed solution.

2.1 Byzantine Agents

We extend the basic randomized population protocol model described above to allow
Byzantine behavior from some of the agents. In addition to the n normal agents we
allow a population to include z Byzantine agents. For each interaction, an ordered pair
of agents is selected uniformly at random from the population of normal and Byzantine
agents. A Byzantine agent may simulate any normal agent state in an interaction, and
its choice of state may depend on both the global configuration and the identity of the
specific agent it encounters. The state of Byzantine agents is not meaningful and so is
not included in the description of a configuration. We first describe our protocol and
analyze its behavior without Byzantine agents.

3 A 3-State Approximate Majority Protocol

We analyze the behavior of the following population protocol with states Q = {b, x, y}.
The state b is the blank state. Row labels give the initiator’s state and column labels the
responder’s state.

x b y
x (x, x) (x, x) (x, b)
b (b, x) (b, b) (b, y)
y (y, b) (y, y) (y, y)

Note that this protocol is one-way: every interaction changes at most the responder’s
state; thus it can be implemented with one-way communication. Only the interactions
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xb, yb, xy, and yx change the responder’s state; we may think of these as the only in-
teractions that consume energy. The blank configuration of all b’s is stable, but cannot
be reached from any non-blank configuration because no interaction can eliminate the
last x or y. The configurations of all x’s and all y’s are stable, and every non-blank
configuration can reach at least one of them.

An intuitive description of the process is that agents in state b are undecided, while
initiators in states x and y are attempting to convert responders that they meet to adopt
their respective states. Such an initiator immediately converts an undecided responder,
but only succeeds in reducing an opposing responder to undecided status. The process
may also be thought of as two competing epidemics, x’s and y’s, with the ability to
reverse each other’s progress.

In Sections 4 and 5, we show that with high probability this protocol (a) converges
from any non-blank configuration to a stable configuration in O(n log n) interactions;
and (b) correctly computes the initial majority x or y value provided ω(

√
n log n) more

agents carry this value in the starting configuration than carry the opposing value. In
Section 6, we show that it can tolerate o(

√
n) Byzantine agents; the formal definition

of this property is given there.

4 Convergence

We show that, from any non-blank initial configuration, the 3-state approximate major-
ity protocol converges to either all x tokens or all y tokens within O(n log n) interac-
tions with high probability. We divide the space of non-blank configurations into four
regions: three corners, where most tokens are b, x, or y, and a central region where
the tokens are more evenly balanced. We show that the number of interactions in each
region is bounded by O(n log n) w.h.p., by constructing a family of supermartingales
of the form M = eaS/nf(x, y) where a > 0 is a constant, S counts the number of
interactions of a particular type and f is a potential function defined across the entire
space of configurations. (We overload x, y and b to denote the number of each token in
a configuration.)

Specifically, we let τ∗ be the stopping time at which the protocol converges, and let
τ = min(τ∗, kn log n) for some fixed k. Assuming f does not vary too much over
the space of configurations, we can use the supermartingale property E[Mτ ] ≤ M0

to show that eaSτ/n is small, and then use Markov’s inequality to get the bound on
Sτ . Summing the bounds for each region then gives the total bound on the number
of interactions. Though it would seem that truncating at time kn log n assumes what
we are trying to prove, in fact we show that with high probability the total number of
interactions is much less than kn log n, implying that we do in fact converge by the
given time bound.

The resulting proof requires a careful selection of f . To keep the argument at least
locally simple, we construct separate potential functions to bound different classes of
operations, based on the type of interaction that occurs and which region of the config-
uration space it occurs in. The reason for this classification is that the behavior of the
protocol is qualitatively different in different regions of the configuration space. When
most tokens are blank, the protocol acts like an epidemic, with non-blank tokens rapidly
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infecting blank tokens. When most tokens carry the same non-blank value, the protocol
acts like coupon collector, with the limit on convergence being the time for the few
remaining minority tokens to be converted to the majority value. In the central region,
where no token type predominates, the protocol acts like a random walk with increasing
bias away from the center. Unfortunately, in none of these configurations does the pro-
tocol act enough like the analogous well-known stochastic processes to permit a direct
reduction to previous results, and the behavior in border areas blends smoothly between
one form and another. The supermartingale/potential function approach allows separate
arguments designed for each region to be blended smoothly together. Unfortunately,
this still requires considerable calculation to verify that each potential function does
what it is supposed to. In this extended abstract, the detailed calculations are omitted
for reasons of space.

The reader may be surprised to find that such a simple protocol requires such a
lengthy proof. Despite substantial efforts, we were unable to apply more powerful tools
to this problem. Part of the reason is that we are trying to obtain exact asymptotic
bounds on a system much of whose interesting behavior occurs when particular tokens
are very rare or when the behavior of the protocol is highly random (e.g., with evenly
balanced numbers of x and y tokens); this (together with the fact that the corresponding
systems of differential equations do not have closed-form solutions) appears to rule out
arguments based on classical techniques involving reduction to a continuous process in
the limit (e.g., [6,7]). Similarly, approaches based on direct computation of hitting times
or eigenvalues of the resulting Markov chain would appear to require substantially more
work than a direct potential function argument.

It is possible that such difficulties are an inherent property of randomized population
protocols. The ability to construct register machines using such protocols [1,2] suggests
that analysis of an arbitrary protocol for arbitrarily large populations quickly enters the
realm of undecidability. But we cannot rule out the possibility that a more sophisticated
approach might give an easier proof of the convergence rate for the particular protocols
we are interested in.

Our results are stated using explicit constant factors. The reader should be warned
that in many cases these are gross overestimates, and that from simulation we observe
that the expected number of interactions to convergence seems to be less than 4n logn
from two challenging initial configurations (see Figure 1.) The first of these, an ini-
tial population evenly divided between x and y with no blank tokens, can be shown
numerically for reasonably small n to be the configuration that maximizes expected
convergence time.

The full convergence bound is stated below.

Theorem 1. Let τ∗ be the time at which x = n or y = n first holds. Then for any fixed
c > 0 and sufficiently large n,

Pr [τ∗ ≥ 6754n logn + 6759cn logn] ≤ 5n−c.

Proof. We give here a brief sketch only. First, we show that the potential function f =
1

(x−y)2+2n is reduced by −Θ(1/n) of its previous value on average conditioned on an
xb or a yb interaction, and that it rises by a smaller relative amount conditioned on an
xy or a yx interaction. It follows that f · eO(S−αT )/n is a supermartingale, where S
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Fig. 1. Simulation results: parallel time of approximate majority from two initial conditions

counts xy and yx interactions, T counts xb and yb interactions, and α < 1. The factor
of O(n) drop in f between the maximum initial f = 1/(2n) and final f = 1/(n2 +2n)
allows only a similar expected rise in e(S−αT )/n and thus (with high probability) only
an O(n log n) rise in S −αT . Since all but at most n− 1 initial blank tokens destroyed
in T must have previously been created in S, T ≤ S + n, giving an O(n log n) bound
on, in turn: (a) S alone; (b) S + T ; (c) all interactions in the central region (where xy,
yx, xb, or yb interactions are likely). Separate potential functions are used to bound the
remaining interactions in the corners. ��

5 Correctness of Approximate Majority

Not only does the 3-state protocol converge quickly, but it also converges to the domi-
nant non-blank value in its input if there is a large enough initial majority.

Theorem 2. With high probability, the 3-state approximate majority protocol
converges to the initial majority value if the difference between the initial majority and
initial minority populations is ω(

√
n log n).

Proof. Without loss of generality, assume that the initial majority value is x. We con-
sider a coupled process (ut, u

′
t) where ut = (xt − yt) and u′

t is the sum of a series of
fair ±1 coin flips. Initially u′

0 = u0. Later values of u′
t are specified by giving a joint

distribution on (Δu, Δu′). We do so as follows. Let p be the probability that Δu = 1
and q the probability that Δu = −1. Then let

(Δu, Δu′) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(0, 0) with probability 1− p− q,

(1, 1) with probability 1
2 (p + q),

(1,−1) with probability p− 1
2 (p + q),

(−1,−1) with probability q.

The probability in the third case is non-negative if p/(p + q) = Pr[Δu = 1|Δu =
0] ≥ 1

2 . This holds as long as u ≥ 0; should u ever drop to zero, we end the process.
Observe that unless this event happens, we have ut ≥ u′

t. We can also verify by
summing the cases that Δu rises with probability exactly p and drops with probability



26 D. Angluin, J. Aspnes, and D. Eisenstat

exactly q; and that Δu′ rises or drops with equal probability 1
2 (p + q). So we have

E[Δu′] = 0 and that |Δu′| ≤ 1, the preconditions for Azuma’s inequality.
Theorem 1 shows that the process converges before O(n log n) interactions with

high probability. Suppose the process converges at some time τ = O(n log n). Then
by Azuma’s inequality we have that |u′

τ − u′
0| = O(

√
n log n) throughout this interval

with high probability. So if u′
0 = u0 = ω(

√
n logn), it follows that u0 ≥ u′

0 ≥ 0
throughout the execution, and in particular that the process does not terminate before
convergence and that u is non-negative at convergence. But this excludes the y = n
case, so the process converges to the initial majority value. ��

6 Tolerating Byzantine Agents

In this section, we show that the 3-state approximate majority protocol can tolerate up to
o(
√

n) Byzantine agents, computing the correct majority value in O(n log n) time with
high probability despite their interference. However, to do so we must both assume a
somewhat larger initial majority, and slightly relax the criterion for convergence.

The issue with convergence is that Byzantine agents can always pull the normal
agents out of a converged configuration. For example, if all normal agents are in the x
state, any encounter with a Byzantine initiator can shift the normal agent to a b state,
and a second encounter can shift it to a y state, even though there are no normal y agents
in the population. So we must accept a small number of normal agents that do not have
the correct value.

But in fact the situation is worse: if we run long enough, there exists a trajectory with
nonzero probability that takes us to the blank configuration, which is stable. So we must
also accept a small probability that we reach the blank configuration quickly, and the
assurance that we reach it with probability 1 after a very long time. However, we can
show that with high probability neither outcome occurs within a polynomial number of
steps.

Our technique is to adjust the potential functions used by the non-Byzantine process
to account for Byzantine transitions. We then use these adjusted potential functions to
show that (a) strong pressure exists to keep the process out of the high-b corner and in
the high-x and high-y corners, and (b) the number of interactions (including Byzantine
interactions) to reach the x or y corner is still small.

6.1 Biased-Walk Barriers

Let us begin by showing that it is difficult even for Byzantine agents to force the protocol
into a configuration with a low value of vt = xt + yt.

Observe that if the Byzantine agents attempt to minimize v, v nonetheless increases
at each interaction with likelihood proportional to vb and decreases with likelihood
proportional to 2xy + zv. So the probability of an increase conditioned on any change
in v is vb/(vb+2xy + zv) ≥ vb/(vb+ v2/2+ zv) = b/(b+ z + v/2) ≥ b/n provided
z ≤ v/2. For large b and small z this gives a random-walk behavior that is strongly
biased upwards.

Suppose
√

n ≤ v ≤ n/8. Then b ≥ (7/8)n and z = o(
√

n) � v/2, so Pr[Δv =
1|Δv = 0] ≥ 7/8. We wish to bound the probability starting from some initial v0
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in this range that v reaches
√

n before it reaches n/8. Though the probability that v
rises or falls changes over the interval, the position of v can be lower-bounded by the
position of a coupled variable v′ that moves according to a biased random walk with
fixed probability p = 7/8 of increasing by 1 and q = 1/8 of decreasing by 1. From the
standard analysis of the gambler’s ruin problem,1 we have that (q/p)v′

t is a martingale,
and thus that the quantity

Pr[v′ reaches
√

n before n/8](q/p)
√

n + Pr[v′ reaches n/8 before
√

n](q/p)n/8

is equal to (q/p)v0 . Because (q/p)n/8 = (1/7)n/8 is exponentially small, it makes
sense to ignore the second addend, leaving

Pr[v′ reaches
√

n before n/8](q/p)
√

n < (q/p)v0

or

Pr[v′ reaches
√

n before n/8] < (q/p)v0−√
n.

It follows that if v0 ≥
√

n + c log7 n, then the probability that v drops to
√

n before
reaching n/8 is bounded by n−c. Once v reaches n/8, further drops to

√
n become

exponentially improbable even conditioned on starting at v = n/8− 1. We thus have:

Lemma 1. Fix c > 0. Let z = o(
√

n) and let v0 ≥
√

n + c log7 n. Then for sufficiently
large n, the probability that vt ≤

√
n for any t < en/8n−c is less than 2n−c.

Proof. The probability that v reaches
√

n before reaching n/8 for the first time is at
most n−c. For each subsequent drop to n/8 − 1, there is a probability of at most
(1/7)n/8−1−√

n ≤ exp(−n/8)) that v reaches
√

n before returning to n/8. Since
each such excursion below n/8 involves at least one interaction, en/8n−c interactions
gives at most an expected n−c drops to

√
n for a total probability of reaching v =

√
n

bounded by 2n−c. ��

We can apply a similar analysis to the x and y corners, but here the protocol drifts
toward the all-x or all-y configuration instead of away from it. Here we track 3y + b
for the x corner and 3x + b for the y corner. Because these functions can change by
more than just ±1, the simple random walk analysis becomes more difficult. Instead,
we proceed by showing that exp(3y+b) is a supermartingale, and bound the probability
of moving from 2

√
n to 3

√
n by exp(−

√
n), the inverse of the change in exp 3y + b.

Formally, we have:

Lemma 2. Fix c > 0. Let z = o(
√

n) and let 3y0 + b0 ≤ 2
√

n. Then for sufficiently
large n, the probability that 3yt + bt ≥ 3

√
n for any t < e

√
n−1n−c is less than n−c.

Proof. (Omitted for reasons of space.) ��

1 See, for example, [3, §XIV.2].
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6.2 Convergence Time with Byzantine Agents

The convergence time is given in the following theorem.

Theorem 3. Let τ be the time at which x ≥ n −
√

n, y ≥ n −
√

n, or v ≤
√

n
first holds. Let v0 be the initial number of x’s and y’s. Then for any fixed c > 0 and
sufficiently large n, if v0 ≥

√
n + c log7 n, then

Pr
[
τ ≥ 6754n logn + 6759cn logn or vτ ≤

√
n
]

= n−c+o(1).

Proof. (Proof omitted for reasons of space.) ��

Note that once we are in the x or y corner, Lemma 2 tells us that we remain there with
high probability for exponential time. So we have a complete characterization of the
convergence behavior of the 3-state majority protocol with o(

√
n) Byzantine agents. It

is also not hard to see that the proof of Theorem 2 also continues to hold for z = o(
√

n),
provided we increase the size of the initial majority to ω(

√
n log n) to compensate for

the offset of o(
√

n log n) generated by Byzantine interactions.

7 Speeding Up the Register Machine Construction

In this section we show how to use the 3-state approximate majority protocol and other
techniques to speed up the register machine construction in [2] so that it has per-step
parallel time overhead of O(log2 n) instead of O(log4 n). The original construction is
based on a single agent representing a finite-state controller operating via commands
spread by epidemics on register values represented in unary by tokens scattered across
the population. A major bottleneck in [2] is the difficulty of carrying out exact compar-
isons (performed in O(log2 n) time using O(log n) rounds that alternate cancellation
with amplification) and of performing subtractions (done in O(log3 n) using addition,
comparison, and binary search). Our approximate majority protocol gives a simpler and
faster implementation of comparison, provided we pad out the register values to avoid
near-ties. A further adjustment to the representation gives cheap subtraction.

Because space does not permit us to repeat the description of the original construc-
tion here, we refer the reader to [2] for details.

We begin by replacing the original O(log2 n) parallel time comparison operation by
our new O(log n) parallel time approximate majority protocol. To ensure that a com-
parison is correct with high probability, we need to ensure that the register values being
compared differ by ω(

√
n log n). We guarantee this by having registers hold values that

are multiples of n2/3; three such registers are sufficient to represent n = (n1/3)3 differ-
ent values, thinking of them as the high, middle and low order wide-digits of a number
in base n1/3. Thus, to compare two wide digits, say A and B, we do an approximate
majority comparison of A + (1/2)n2/3 with B; if the result is that A is in the major-
ity, then we conclude that B ≤ A, otherwise that A < B. To compare two registers
composed of O(1) wide-digits it suffices to proceed digit by digit.

The subtraction operation of [2] requires O(log n) rounds of binary search where
the O(log2 n) parallel time comparison operation dominates the cost of each round.
Though we could replace these comparisons with our faster comparison operation and
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reduce the cost of subtraction to O(log2 n), we can obtain a still better reduction to
O(log n) parallel time by use the logician’s construction of the integers from the natural
numbers: the value A in a register is represented by the difference A+ − A− of values
in two different registers. To compute C ← A + B, we compute C+ ← A+ + B+

and C− ← A− + B−. To compute C ← A − B, we compute C+ ← A+ + B− and
C− ← A−+B+. These operations both take parallel time O(log n), because addition is
already O(log n) in the previous construction. An additional clock cycle of cancellation
keeps the + and − components from overflowing.

For registers with this balanced representation, we must revisit comparison. To com-
pare A with B, we compare (A+ + B−) with (A− + B+). Since these differ by a
multiple of n2/3, our previous comparison method works. The result is that subtrac-
tion can be done with O(1) additions and comparisons, which gives parallel time of
O(log n).

The most expensive operation in [2] is division by a constant, which is based on
O(log n) rounds of binary search in which subtraction dominates. The improved cost
of subtraction immediately reduces the parallel time for division to O(log2 n) without
any change to the division algorithm.

The remaining issue is how to convert the input values in the registers, which are
represented in simple unary, into the wide-digits representation. We use the previous
machine operations to create a reference value of magnitude Θ(n2/3) in a register and
the usual base-conversion algorithms to extract the wide digits of each input register
value and store them multiplied by the reference value; this initialization takes polylog-
arithmic parallel time [2], after which the per-step overhead of simulating the register
machine is O(log2 n). Thus, for simulating the register machine specified in [2], we
have the following improvement.

Theorem 4. A probabilistic population of n agents with a designated leader can sim-
ulate the steps of the virtual register machine defined in [2], such that the probability
that any single step in the simulation fails or takes more than O(n log2 n) interactions
can be made O(n−c) for any fixed c.

8 A More Robust Phase Clock?

The fault tolerance of the 3-state approximate majority protocol and the inherent redun-
dancy of the wide-digit representation of register values is encouraging: perhaps there is
a fast and provably robust version of the register machine construction. However, there
is a second component of our register machine that must be made more robust. This is
the phase clock, a subprotocol used to count off intervals of Θ(log n) parallel time so
that the leader can estimate when an epidemic has finished propagating.

The phase clock of [2] is a protocol with m states and one designated leader. The state
of an agent represents the phase that it is in. A responder in phase i adopts the phase of
any initiator in phases i + 1 mod m through i + m/2 mod m, but ignores initiators in
other phases. New phases are triggered by the leader agent. When the leader responds to
an initiator in its own phase, that leader moves to the next phase. Counting the number
of interactions between the event that the leader enters phase 0 until the event that the
leader next enters phase 0 as a round, it is shown that with high probability each of
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a polynomial number of rounds takes parallel time Θ(log n) with inverse polynomial
probability of error. Note that although this protocol also works when given Θ(n1−ε)
designated leaders, it requires an initial configuration with the appropriate number of
designated leaders, and is not robust to errors.

We now describe (a) a method for quickly starting the phase clock from a uniform
initial state, and (b) a consensus variant of the phase clock that appears to be more
robust. Our present techniques are not sufficient to analyze the resulting algorithm, so
we must make do with simulation results.

Simulation results suggest that the following protocol can start up a phase clock with
high probability in Θ(log n) parallel time. This protocol is one-way, so for brevity we
identify δ with δ2.

This protocol is the semidirect product of several components. The first component
allows us to make approximate coin tosses. The states are Qcoin = {0, 1}, with initial
value xcoin = 0, and the transition function is δcoin(q, q′) = 1 − πcoin(q). Starting
from any configuration, this protocol rapidly converges towards an equal proportion
of agents in each state. The second component counts the number of consecutive coin
values equal to 1 the agent has seen immediately prior, up to a maximum of � > 0. The
states are Qcount = {0, 1, . . . , �}, xcount = 0, and the transition function δcount(q, q′) =
πcoin(q)(min{πcount(q′) + 1, �}).

The third component approximates an exponential decay process. There is a param-
eter k1 ≤ �. The states are Qdecay1 = {0, 1}, xdecay1 = 1, and the update function is
δdecay1(q, q′) = [πcount(q) < k1]πdecay1(q′). The idea is that for all 0 < α < 1 and 0 < c,
we can find k1 such that with high probability, there is a period of cn log n steps where
the number of agents with decay1 value of 1 is between 1 and nα. In this period, us-
ing agents with decay1 value of 1 as temporary leaders, we can run a disposable phase
clock that functions correctly only for a constant number of phases before all the values
of decay1 become 0. This phase clock is used to choose a stable leader population of
size Θ(n1−ε), which in turn supports a second copy of the phase clock that runs for
polynomially many steps.

Our consensus variant of the phase clock from [2] works as follows. In addition to
the phases 0, 1, . . . , φ−1, we have a blank “phase”. Thus Qphase1 = {b, 0, 1, . . . , φ−1}.
xphase1 = 0. If x is a nonblank phase, then let succ(x) = (x+1) mod φ be the successor
phase of x. We have

δphase1(q, q′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p′ if p = b

p if p′ = b

p′ if p′ = p = b and πdecay1(q) = 0
succ(p′) if p′ = p = b and πdecay1(q) = 1
p′ if p, p′ = b and p′ = succ(p)
p if p, p′ = b and succ(p′) = p

b otherwise,

where p = πphase1(q) and p′ = πphase1(q′). If the phase of the initiator is blank or
one behind the responder’s, the responder’s phase is unchanged. If the phase of the
responder is blank, it copies the phase of the initiator. If the phases are non-blank and
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equal, the responder increments its phase if and only if the initiator has decay value 1
(temporary leader status.) If the initiator’s phase is one more than the responder’s, the
responder increments its phase. In all other cases, the responder sets its phase to blank.
In summary, we are following a multiple-valued generalization of the 3-state majority
algorithm except when the phases are nonblank and within distance 1 of one another. In
this case, we revert to behavior like that of the original phase clock.

Once the disposable phase clock is running, it is used to select the real phase clock’s
leaders. This is accomplished by having another exponential decay process that is re-
set by the disposable phase clock each complete cycle. Thus we need a way to detect
approximately the onset of each cycle. Our criterion is for each agent to keep a local
“maximum” of the phases it has been in, and perform the reset when this maximum
wraps around. Formally, Qmax = {0, 1, . . . , φ− 1}, xmax = 0, and

δmax(q, q′) =

{
p′ if p′ = b and (p′ − πmax(q′)) mod φ ≤ φ/2
πmax(q′) otherwise,

where p′ = δphase1(q, q′). Since the last cycle may be partial, we also need a one-value
history for the decay process. Now Qdecay2 = {0, 1} × {0, 1}, xdecay2 = (1, 1), and

δdecay2(q, q′) =

{
(1, y) if δmax(q, q′) < πmax(q′)
([πcount(q) < k2]y, y′) otherwise,

where (y, y′) = δdecay2(q′). The final set of leaders are those agents with y′ = 1 when
the disposable phase clock stops running. A second copy of the consensus phase clock,
running from the initial configuration using y′ = 1 to designate leaders, rapidly con-
verges in simulation to correct robust phase clock behavior when the number of leaders
becomes appropriate.

We implemented the disposable phase clock leader election protocol and tried it once
on each value of �1.01n� between 100 and 100000 for integers n, with every agent in
the same initial state. There are three parameters to tune: φ, k1, and k2. The protocol is
not very sensitive to the settings of these parameters, but the setting φ = 9, k1 = 5, and
k2 = 4 worked better than many others.
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The results are depicted in Figure 2. As can be seen, it seems that the protocol gen-
erally leaves Θ(n1−ε) leaders and completely converges in O(log n) time.
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Abstract. We consider the problem of designing scalable and robust
information systems based on multiple servers that can survive even
massive denial-of-service (DoS) attacks. More precisely, we are focus-
ing on designing a scalable distributed hash table (DHT) that is robust
against so-called past insider attacks. In a past insider attack, an adver-
sary knows everything about the system up to some time point t0 not
known to the system. After t0, the adversary can attack the system with
a massive DoS attack in which it can block a constant fraction of the
servers of its choice. Yet, the system should be able to survive such an
attack in a sense that for any set of lookup requests, one per non-blocked
(i.e., non-DoS attacked) server, every lookup request to a data item that
was last updated after t0 can be served by the system, and processing all
the requests just needs polylogarithmic time and work at every server.
We show that such a system can be designed.

1 Introduction

On Feb 6 of this year, hackers launched a distributed denial-of-service (DoS)
attack on the root servers of the Domain Name System (DNS) [10]. DoS attacks
can overwhelm servers with hacker-generated traffic and make them unavail-
able for legitimate communications. While the attacks significantly slowed the
operations of some of the servers, they caused no problems for the overall DNS
system because the system shifts work to other root servers if it has trouble with
the first ones it tries to reach. This is possible because information is replicated
among all root servers, and the root servers together have sufficient bandwidth
to handle even major DoS attacks.

In this paper, we consider the problem of designing distributed information
systems that are highly resilient against DoS attacks even if every piece of infor-
mation is not replicated everywhere but only among a small subset of the servers.
For distributed information systems that are connected to the Internet, like the
DNS system, the servers may be known and therefore open to DoS attacks.
There are various forms of DoS attacks. Application-layer DoS attacks, that try

� Supported by NSF CCF 0515080, ANIR-0240551, CT-0716676, CCR-0311795, and
CNS-0617883.

A. Pelc (Ed.): DISC 2007, LNCS 4731, pp. 33–47, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



34 B. Awerbuch and C. Scheideler

to abuse the protocols of the system in order to prevent it from functioning cor-
rectly, or network-layer DoS attacks that just aim at overloading servers with
junk or faked messages in order to prevent them from processing legal ones. We
are interested in designing a scalable information system (i.e., a system in which
the data and requests are handled in a scalable way) that can withstand even
massive application-layer and network-layer DoS attacks (i.e., the attacker is
powerful enough to generate requests or junk that can affect a constant fraction
of the servers). Certainly, if the attacker has complete knowledge of the informa-
tion system, then scalability and robustness against massive DoS attacks cannot
be achieved at the same time. But what if the attacker only has complete knowl-
edge up to some time step t0 (that may not be known to the system)? Would it
at least be possible to protect everything that was inserted into the system or
updated after time step t0? To answer this question, let us first formally define
the attack model we will be focusing on in this paper.

1.1 The Past Insider Attack Model

The past insider attack model is motivated by the fact that a large percentage of
the security breaches in corporate systems have internal reasons, many of them
being caused by human error or negligence or insider attacks. In these cases, the
entire system may be temporarily exposed, with potentially severe consequences
for its functionality if this exposure is abused.

In the past insider attack model, we assume that an attacker has complete
knowledge of the system up to some time step t0 that is not known to the system.
It can use this knowledge to attack the system at any time point after t0. Given
n servers, we allow the attacker to generate any collection of lookup requests
it likes, one per non-blocked server, including lookup requests to blocked or
non-existing data, and to block any set of εn servers for some sufficiently small
constant 0 < ε < 1. The goal is to design a storage strategy for the data and a
lookup protocol so that the following conditions are met:

For every data item d, the total space for storing d in the system is by at
most a polylogarithmic factor larger than the size of d, and for any set of lookup
requests with at most one request per non-blocked server, the following holds:

– Scalability: Every server in the system spends at most a polylogarithmic
amount of work and time on the requests.

– Robustness: Every lookup request to a data item inserted after t0 (or a non-
existing data item) is served correctly.

– Correctness: Every lookup request to a data item is served correctly whenever
the system is not under a DoS attack.

By “served correctly” we mean that the latest version of the data item is returned
to the server requesting it. (We assume that there is a unique way of identifying
the latest version such as the version number or a time stamp.)

Note that our model is different from proactive security models in which the
adversary can never learn too much about the system within a certain time
frame. Approaches for this model aim at protecting everything in the system,
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but this comes at a high price because this means that all the information in
the system has to be continuously refreshed, which may not be feasible in prac-
tice. We can show that one can protect nearly everything without continuous
refreshing, and most importantly, everything that was updated after the security
breach is over.

1.2 Towards Robustness Against Past Insider Attacks

Let us have a quick look at the basic approaches for storing data in a distributed
system.

– An explicit data structure such as a distributed search tree or skip graph:
This approach is scalable but has, due to its structure, major problems with
correctness and robustness under DoS-attacks.

– An implicit data structure like a hash table: The hash table is structureless
and therefore has less problems with correctness. It is also scalable, but it is
not robust because the adversary knows exactly where the copies of a data
item are located and can therefore block these.

– The random placement of data copies among the servers: This is not scalable
but certainly robust.

Is there a way of combining these approaches in order to achieve scalability,
robustness and correctness at the same time? Our main contribution in this paper
is to show that a certain hybrid version of a hash table and random placement
can achieve this task. More precisely, we will prove the following result.

Theorem 1. Given n servers, our storage strategy just needs O(log2 n) copies
per data item so that our lookup protocol can serve any set of lookup requests,
one per non-blocked server, in a scalable, robust and correct way, w.h.p. The
robustness holds for any DoS attack in which at most εn servers are blocked,
where ε > 0 is a sufficiently small constant.

In the proof of the theorem, we assume that the servers are completely intercon-
nected since we are only focusing on reliable servers, so there are no scalability
problems w.r.t. connectivity.

Although we consider only problems where all lookup requests are given at the
beginning, we note that our lookup protocol can also be applied in a scenario
where continuously new requests are generated. Furthermore, the correctness
condition can be strengthened in a sense that beyond O(n + D/nk) data items,
where D is the total number of data items in the system and k can be an
arbitrary constant, all of the data inserted before t0 can still be accessed by our
lookup protocol under a DoS attack, but it can obviously not be guaranteed
that everything is still accessible. Using coding strategies (like Reed-Solomon
codes), the storage overhead for the data items can be reduced to O(log n) in
Theorem 1. The constant ε that we need in our proofs is ε < 1/144, but we did
not try to optimize constants in this paper.

The beauty of our approach is that, even though it uses much more sophis-
ticated concepts, it is still based on the well-known consistent hashing principle
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[5], i.e., the servers are assigned to points in the [0, 1)-interval and a data copy
mapped to point x ∈ [0, 1) is stored at the server that is the closest predecessor
of x in [0, 1). Thus, it could in principle be used on top of existing DHTs based on
consistent hashing such as Chord in order to turn these into highly DoS-resilient
DHTs. However, notice that in the scenarios considered in this paper, we can
afford a completely interconnected network though most DHT implementations
are based on bounded degree overlay networks, which would create an additional
vulnerability.

Finally, we remark that we do not address the problem of handling insert
requests in this paper but only how to store data in the system in a scalable
way so that it can be retrieved despite massive DoS attacks. Managing insert
requests is a tricky issue when application- and network-layer DoS attacks are
allowed, and we discuss some of the reasons behind that in Section 2.1. Taking
this restriction into account, our strategies would work best for archival systems
or systems for information retrieval like Google, CiteSeer or Akamai.

1.3 Related Work

The most prominent approach for a scalable information system is to implement
a distributed hash table, or DHT. Well-known examples of DHTs are Chord
[22], CAN [18], Pastry [3], and Tapestry [24]. Most of the DHT-based systems
are based on concepts proposed in two influential papers: a paper by Plaxton et
al. on locality-preserving data management in distributed environments [17] and
a paper by Karger et al. on consistent hashing and web caching [5]. However,
since in both cases the data management is based on hashing, none of these
approaches is robust against past-insider attacks.

Various attacks on the data management layer of DHTs have been considered
in the past. Most of the work considers the flash crowd scenario in which many
peers want to access the same information at the same time. When using a pure
DHT design, this can lead to severe bottlenecks. To remove these bottlenecks,
various caching strategies have been proposed. Among them are CoopNet [16],
Backslash [19], PROOFS [20] in the systems community and [14] in the theory
community. However, being able to handle flash crowds is not sufficient to handle
arbitrary collections of lookup and insert requests in a scalable way because
much worse than having many requests to the same data item is to have many
requests to different data items at the same location. Standard combining or
caching strategies do not work here, but work on deterministic simulations of
CRCW PRAMs (e.g., [11]) turned out come to the rescue here. These concepts
allow the design of insert and lookup protocols that are guaranteed to handle
any set of requests with at most one request per server that can be chosen by
an adversary knowing everything about the system [2]. Thus, application-layer
DoS attacks can be handled but not network-layer attacks since the protocols in
[2] are purely hash-based.

There is a vast amount of literature on network-layer DoS attacks (see, e.g.
[4,12] for a taxonomy of these DoS attacks). Several authors have explored
the use of DHTs to prevent DoS attacks from outsiders (e.g., [8,6,13]). Secure
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Overlay Services (SOS) [8], for example, uses a proxy approach based on the
Chord network to protect applications against flooding DoS attacks. WebSOS
[21] is an implementation of SOS for web servers that makes use of graphical
Turing tests, web proxies and client authentication. Mayday [1] generalizes the
SOS architecture and analyzes the implications of choosing different filtering
techniques and overlay routing mechanisms. Internet Indirection Infrastructure
(i3) [9] also uses the Chord overlay to protect applications from direct DoS at-
tacks. Other DoS limiting overlay network architectures have been explored in,
e.g., [15,23]. Most of the approaches above use traffic analysis or indirection ap-
proaches to make DoS attacks hard, but none of these would be able to survive
the attackers considered in this paper since they essentially rely on the ability
to protect servers from direct hits of adversarial traffic.

2 A DoS-Resistant DHT

In this section we describe how to store and retrieve information in a scalable and
robust way in a DHT of completely interconnected servers. The DHT is based
on the consistent hashing principle in a sense that the servers (also called nodes
henceforth) are given points in the [0, 1)-ring and any data copy that is mapped
to a point x ∈ [0, 1) is stored at the node that is the closest predecessor of x in
[0, 1). First, we present our data storage strategy. Afterwards, we present and
analyze our lookup protocol. For simplicity, we make the following assumptions:

– The number of nodes in the DHT is fixed to n, and n is a power of 2.
– The nodes are numbered from 0 to n− 1, and node i is responsible for the

interval [i/n, (i + 1)/n) in [0, 1).

Both assumptions can be relaxed (one can imagine, for example, that the nodes
are randomly spread in [0, 1) so that the DHT does not need central coordina-
tion), but we use them here since they will keep our proofs simple.

2.1 The Storage Strategy

Like in [2], we use c = Θ(log m) hash functions, denoted by h1, . . . , hc, that map
data names to points in the [0, 1) interval, where m represents the size of the
universe of all data names, but this is the only feature the approach in this paper
has in common with [2].

First, we introduce some notation. We assume that the points in [0, 1) are
given in binary form, i.e., point x ∈ [0, 1) is given as (x1, x2, . . .) ∈ {0, 1}∗ with
x =
∑

i≥1 xi/2i. For any two bit sequences x, y ∈ {0, 1}∗, x◦y is the unique point
z ∈ [0, 1) with (z1, z2, . . .) = (x1, . . . , x|x|, y1, . . . , y|y|). For any point x ∈ [0, 1)
and � ∈ N, we call set T�(x) = {z ∈ [0, 1) | z = y ◦ x for some y ∈ {0, 1}�} the
set of all points at distance � from x. A route to x of length � is any sequence of
points R = (z�, z�−1, . . . , z0) with the property that z0 = x and for every i > 0,
zi+1 = b ◦ zi for some bit b ∈ {0, 1} (which implies that zi ∈ Ti(x) for every i).
Let R�(x) be the set of all possible routes of length � to x. A random route to
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x is a route R chosen uniformly and independently at random from R�(x) (i.e.,
z� is chosen uniformly and independently at random from T�(x)).

When a data item d is inserted or updated in the system, we select a random
route Ri = (zi,log n, zi,log n−1, . . . , zi,0) ∈ Rlog n(hi(d)) for every i ∈ {1, . . . , c}.
For each distance j ∈ {0, . . . , log n}, we store γ log n copies of d, for some con-
stant γ that will be determined later. For each of these copies, we select an
i ∈ {1, . . . , c} uniformly and independently at random and store the copy in
point zi,j (resp. the node owning that point according to the consistent hash-
ing scheme). Hence, altogether, we store O(log2 n) copies of each data item in
the system. It would be sufficient for our lookup protocol if instead of storing
O(log n) copies for each data item for each distance j, we use Reed-Solomon or
other codes to store each data item in O(log n) encoded pieces for each distance.
That would reduce the overall storage overhead to O(log n) in Theorem 1, but
for simplicity we will just assume that copies of d are stored.

Notice that as long as the set of DoS-attacked nodes is static, our storage
strategy could be transformed into an efficient insert protocol together with tech-
niques in [2] to avoid congestion problems. However, for a dynamically changing
set of DoS-attacked nodes this is tricky since some non-DoS-attacked nodes
are now missing information that is necessary for our lookup protocol to work
correctly. A potential countermeasure here could be to delay the execution of
the insert protocol at DoS-attacked nodes until the DoS-attack goes away. This
requires extra management overhead and complicates the design of the insert
protocol, which is why we left it out here.

For the rest of this paper, we will assume that the binary representations of
all points are rounded to log n bits (i.e., the points are multiples of 1/n, so there
is one point for each node). For any � ∈ N let T� = {T�(x) | x ∈ [0, 1)}, where
we consider the points in T�(x) to be rounded to log n bits. That is, |T�| = n/2�

and each set in T� has a size of 2�.

2.2 The Lookup Protocol

We assume that we are given any collection of lookup requests, one per non-
blocked server. The lookup protocol consists of two stages. The first stage is the
contraction stage and the second stage is the expansion stage. During the con-
traction stage, the lookup requests are forwarded along random routes towards
the hash values of the requested data items. Each lookup request encountering
too many blocked or congested nodes stops and waits for the expansion stage
to be executed. During the expansion stage, lookup requests are woken up in a
controlled manner, and node sets of exponentially increasing size are explored
in order to search for copies of the requested data items until sufficiently many
copies have been found or the protocol decides that the item does not exist in
the system. We start with the formal description of the contraction stage.

The contraction stage. Each lookup request for some data item d chooses, for
each i ∈ {1, . . . , c} and j ∈ {1, . . . , α log n}, a random route Ri,j ∈ Rlog n(hi(d))
of length log n to hi(d), where α is a sufficiently large constant. Hence, altogether
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there are αc log n random routes. For every i, let Q�,i be the set of all nodes in
the routes Ri,j to hi(d) that belong to T�(hi(d)), and let Q′

�,i be the non-blocked
nodes in Q�,i.

Initially, all lookup requests are active, and all i ∈ {1, . . . , c} are active for
all lookup requests. Then the contraction stage proceeds in rounds, executed
from log n down to 0. In round r, every active request for some data item d
sends a message to all nodes in its set Qr,i for all active i. Each of the nodes
v ∈ Q′

r,i replies back to that request. The reply contains the number mv,i(d)
of messages it has received from requests to data item d for index i, which is
called the multiplicity of d at v, and the number Cv,i of different data items for
which it was contacted by requests for index i, which is called the congestion at
v. Afterwards, each lookup request checks the following rules:

1. For each active i ∈ {1, . . . , c} with |Q′
r,i| < (α log n)/2, the request deac-

tivates i. If the total number of deactivated i’s is at least c/2, the request
becomes inactive.

2. For each active i ∈ {1, . . . , c} with |{v ∈ Q′
r,i | |Cv,i| ≥ 2αc logn}| ≥ |Qr,i|/2,

the request deactivates i. If the total number of deactivated i’s is at least
c/2, the request becomes inactive.

3. If there is an active i for which there is a node v in Q′
r,i with mv,i(d) ≥

2α log n, the request becomes inactive.

Inactive lookup requests do not participate any further in the contraction stage.

The expansion stage. Each lookup request for some data item d that was
active till the end of the previous stage, gets the most up-to-date copy of d
from every non-blocked hi(d), returns the most up-to-date copy among these
and finishes.

For the other requests, the expansion stage proceeds in rounds, this time
numbered from 1 to log n. In round r, every lookup request for some data item
d that got deactivated in a round r′ < r and is not finished yet sends a message
of the form (d, r, i,−) (where “−” is an empty placeholder for a copy of d) to a
random node in Q′

i,r for each i that was active at the end of that round in the
contraction stage. Each node v stores the IDs of the nodes that sent messages
to it in Sv and stores the messages it received from them into its active pool
of messages Av, one copy for each (d, r, i,−). If |Av| > 3c/σ, then any set of
messages is discarded from Av to get down to |Av| = 3c/σ, where the constant σ
is chosen as in Lemma 1 below. For any remaining (d, r, i,−) in Av for which v
stores a copy b of d (due to the data storage strategy defined above), (d, r, i,−) is
replaced by (d, r, i, b). Afterwards, Av is managed as a FIFO queue. Every node
v in the system executes the following push strategy O(c log n) many times:

– v dequeues one message (d, r, i, b) from Av, enqueues it back to Av and sends
a copy of it to a random node in Tr(hi(d)).

– For each message (d, r, i, b) received by v, v first checks whether Av contains
some message (d, r, i, b′) in which copy b′ is older than b (or empty). If so,
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v replaces b′ by b. Otherwise, v checks if |Av| = 3c/σ. If so, v discards the
message. Otherwise, it checks whether it stores a copy b′ of d that is younger
than b. If so, v inserts (d, r, i, b′) into Av, and otherwise it inserts (d, r, i, b)
into Av.

If after these steps |Av| = 3c/σ, then v sends for each node w ∈ Sv with original
message (d, r, i,−) the message (d, r, i, ∗) back to w, where the “∗” indicates that
v was too congested. Otherwise, v sends (d, r, i, b) in Av back to w.

Each lookup request that receives at most c/4 many (d, r, i, ∗) messages re-
turns the message (d, r, i, b) with the most up-to-date b (which may also be “−” if
no copy was found) to whoever generated the request and is finished. Otherwise,
it continues to participate in round r + 1.

2.3 Robust Hash Functions

In this section, we specify a central property the c hash functions h1, . . . , hc have
to satisfy for the lookup protocol to work correctly and efficiently.

Given a set S of data items and a k ∈ N, we call F ⊆ S×{1, . . . , c} a k-bundle
of S if every d ∈ S has exactly k many tuples (d, i) in F . Given h1, . . . , hc and
a distance �, let ΓF,�(S) =

⋃
(d,i)∈F T�(hi(d)). Let U be the set of all possible

(names of the) data items and H be the collection of hash functions h1, . . . , hc,
and let m = |U |. Given a 0 < σ < 1, we call H a (k, σ)-expander if for any
� ≤ log n, any S ⊆ U with |S| ≤ σn/2�, and any k-bundle F of S it holds that
|ΓF,�(S)| ≥ 2�|S|.

Lemma 1. Let 0 < λ < 1 be any constant. Then it holds for any c ≥ 8 log m and
σ ≤ 1/24 that if the functions h1, . . . , hc are chosen uniformly and independently
at random, then H is a (c/4, σ)-expander with high probability.

Proof. Suppose that, for randomly chosen functions h1, . . . , h2c−1, H is not
a (c/4, σ)-expander. Then there exists an i ≤ log n and a set S ⊂ U with
|S| ≤ σn/2i and a c/4-bundle F of S with |ΓF,i(S)| < 2i|S|. We claim that the
probability ps,i that such a set S of size s exists is at most(

m

s

)(
cs

cs/4

)(
n/2i

s

)
·
(

s

n/2i

)cs/4

This holds because there are
(
m
s

)
ways of choosing a subset S ⊂ U . Furthermore,

there are
(

cs
cs/4

)
ways of choosing cs/4 pairs (d, j) for F and at most

(
n/2i

s

)
ways

of choosing a set W of s sets in Ti witnessing a bad expansion of the pairs in F .
The fraction of collections H for which the selected pairs (d, j) indeed have the
property that Ti(hj(d)) ⊆ W is equal to ( s

n/2i )cs/4 because the hash functions
h1, . . . , hc are chosen independently and uniformly at random.

Next we simplify ps,i. Using the conditions on c and σ in the lemma it holds
that
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if c ≥ 8 logm and m is sufficiently large. Hence, summing up over all possible
values of s and i, we obtain a probability of having a bad c/4-bundle of at most
(2 log n)/m, which proves the lemma. ��

We remark that the hash functions have to form a (c/4, σ)-expander for some
constant σ for our lookup protocol to work, but they do not have to be chosen
at random. The proof above just illustrates that if they are chosen at random,
they will form a (c/4, σ)-expander w.h.p.

2.4 Analysis of the Lookup Protocol

Next we show that the lookup protocol is correct, robust and efficient, i.e., for
every lookup request for some data item d inserted after time t0 (the threshold
in the past insider model), a correct answer will be delivered for any DoS attack
under our model, and every node spends only polylogarithmic time and work on
the requests in the system. The correctness condition for all other data items is
implied by our proofs. First, we prove the correctness of a lookup request given
that it finishes in the expansion stage.

Lemma 2. If a lookup request for some data item d finishes in round r of the
expansion stage and d was inserted after t0, then it returns the most up-to-date
version of d.

Proof. Consider any lookup request for some data item d that finishes in round
r of the expansion stage and d was inserted after t0. This means that it got at
most c/4 many messages of the form (d, r, i, ∗). The request only participates in
round r of the expansion stage if it was still active at the beginning of round
r − 1 in the contraction stage, which is only the case if it had at least c/2
active indices i at the beginning of round r − 1. These indices were all used
in round r of the expansion stage, which means that at the end of that round
the request got at least c/4 messages back of the form (d, r, i, b) where b is the
most up-to-date copy of d that the node contacted by the request in Tr(hi(b))
found. Let I be the set of these indices. From the fact that each i ∈ I was
active at the beginning of round r − 1 in the contraction stage it follows that
in round r of that stage, Q′

r,i ≥ (α log n)/2 (because otherwise i would have
been deactivated in that round). Hence, at least half of the nodes in Qr,i that
were sampled from Tr(hi(b)) are non-blocked nodes. Since the nodes in Qr,i were
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chosen independently at random, it follows from the Chernoff bounds that the
total number of blocked nodes in Tr(hi(b)) is at most 2|Tr(hi(b))|/3, w.h.p., if
α is a sufficiently large constant. We call a Tr(hi(b)) satisfying such a property
non-blocked in this proof. We can show the following claim.

Claim 1. For any node v in a non-blocked set Tr(hi(b)) it holds that if after
φc log n executions of the push strategy in the expansion stage, where φ is a
sufficiently large constant, |Av| < 3c/σ, then there are lookup requests for less
than 3c/σ data items that sent messages to nodes in Tr(hi(b)) and every entry
(d, r, i, b) in Av stores the most up-to-date copy of d among the non-blocked nodes
in Tr(hi(b)) at the end.

Proof. Can be shown along the lines of existing proofs on random, push-based
broadcasting in complete networks (e.g., [7]). ��

Hence, the lookup request obtains at least c/4 many replies (d, r, i, b) with most
up-to-date copies in the respective sets Tr(hi(b)). Since for each i ∈ I at least a
third of the nodes in Tr(hi(b)) are not blocked, w.h.p., the lookup request returns
the most up-to-date copy for at least (c/4)·(2r/3) = c2r/12 of the c2r nodes in all
sets Tr(hi(b)), i ∈ {1, . . . , c}. According to the robust storage strategy, γ log n
many most up-to-date copies of d are randomly distributed among these c2r

nodes, and none of these locations is known to the adversary, so the probability
that none of these is stored in the at least c2r/12 non-blocked nodes accessed
by the request is at most (1− 1/12)γ log n, which is polynomially small if γ is a
sufficiently large constant.

We remark that for the data items least recently updated before t0, at most
f = max{n, D/nk} many of them are bad, w.h.p., in a sense that none of their
most up-to-date copies is stored in the at least c2r/12 non-blocked nodes, where
D is the number of data items in the system and k can be any constant. This is
because there are at most 2n ways of selecting c2r/12 non-blocked out of at most
n considered nodes and

(
D
f

)
ways of selecting bad data items while the probability

that these are indeed bad is at most ((1− 1/12)γ log n)f . If γ is sufficiently large
compared to k, multiplying these terms gives a polynomially small probability.
Hence, apart from f data items, the lookup protocol will deliver correct answers
also for data items inserted or updated before t0, w.h.p. ��

Next, we look at the robustness and efficiency and will show that within a poly-
logarithmic time every request finishes, w.h.p. First, we consider the contraction
stage. We show that the number of messages sent to any node is polylogarithmic
in every round, which implies that every node spends only a polylogarithmic
time and work on the contraction stage.

Lemma 3. For every round r, at most O(c log2 n) messages are sent to any
node in the system, w.h.p.

Proof. Consider some fixed node v in some set T ∈ Tr. First, we bound mv,i(d)
for any data item d and index i with Tr(hi(d)) = T . Suppose that mv,i(d) ≥
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8α log n. Since every request for d chooses the nodes in Qr,i independently at ran-
dom from the nodes in T , it follows from the Chernoff bounds that the expected
number of messages for d at a node in T is at least 6α log n, w.h.p. Hence, the
expected number of messages for d in Tr+1(hi(d)) was at least 3α log n, w.h.p.
However, in this case it holds for every node w ∈ Tr+1(hi(d)) that mw,i(d) was
at least 2α log n, w.h.p. Thus, every request for d that was still active at round
r + 1 must have either deactivated i or became inactive. Hence, it must hold for
every node v ∈ T that mv,i(d) ≤ 8α log n, w.h.p., for any data item d and i with
Tr(hi(d)) = T .

A congestion bound of |Cv,i| ≤ 8α log n can be shown along exactly the same
lines. Since there are c different indices i, the total number of messages sent to
v is bounded by c(8α log n)2 = O(c log2 n). ��

Hence, the runtime of the contraction stage and work per node is O(c log3 n),
w.h.p. Next we analyze the number of different data items for which lookup
requests become inactive. This will be important to bound the congestion at the
nodes in the expansion phase.

Let Dr be the set of all data items for which there are lookup requests that
become inactive in round r. Furthermore, let BCr be the set of data items with
requests that become inactive due to too many inactive indices and MCr be
the set of data items with requests that become inactive due to a too high
multiplicity. Certainly, Dr = BCr ∪MCr. First, we bound BCr.

Lemma 4. If ε < 1/144, then it holds for every round r that |BCr| ≤ 8εn/2r,
w.h.p.

Proof. For any r and any T ⊆ Tr, we call T blocked if the attacker blocks more
than a third of its nodes with its DoS attack, and T is called congested if more
than a third of the nodes in T have a congestion of at least 2αc logn. Consider
any data item d. We call d blocked at round r if at least c/4 of its c sets Tr(hi(d))
are blocked, and we call it weakly blocked at round r if there are blocked sets
Tr1(hi1(d)), Tr2(hi2(d)), . . . , Trk

(hik
(d)) with r1, . . . , rk ≥ r and k = c/4 and

i1, . . . , ik being pairwise different. Similarly, we call d congested at round r if at
least c/4 of its c sets Tr(hi(d)) are congested, and we call it weakly congested at
round r if there are congested sets Tr1(hi1(d)), Tr2(hi2(d)), . . . , Trk

(hik
(d)) with

r1, r2, . . . , rk ≥ r and k = c/4 and i1, . . . , ik being pairwise different. In the
following, WBr denotes the set of weakly blocked data items and WCr the set
of weakly congested data items at round r.

Claim 2. Whenever a request for some data item d deactivates some index i in
round r, then Tr(hi(d)) is either blocked or congested, w.h.p.

Proof. Consider any request for some data item d in round r. Index i is deacti-
vated for that request if

1. there are at least (α log n)/2 nodes in Qr,i that are blocked, or
2. there are at least (α log n)/2 nodes in Q′

r,i that are congested.



44 B. Awerbuch and C. Scheideler

In the first case, suppose that Tr(hi(d)) is not blocked. Then the probability
that Ri,j chooses a node in Tr(hi(d)) that is blocked is at most 1/3 and, hence,
the expected number of nodes chosen by the routes Ri,1, . . . , Ri,α log n that are
blocked is at most (α log n)/3. Since the nodes are chosen independently at
random, it follows from the Chernoff bounds that the probability that at least
(α log n)/2 nodes in Qr,i are blocked is polynomially small in n (if the constant
α is sufficiently large). Hence, if the request deactivates index i because of at
least (α log n)/2 blocked nodes, then Tr(hi(d)) is blocked, w.h.p.

The arguments for the congestion follow along the same lines. ��

Now suppose that a request for data item d becomes inactive at round r due to
at least c/2 deactivated indices. Then there are at least c/4 indices for which
condition 1 in the contraction stage is true or at least c/4 indices for which con-
dition 2 is true. In the first case, it follows from Claim 2 that d is weakly blocked,
and in the second case, it follows from Claim 2 that d is weakly congested, w.h.p.
For weakly blocked data items, the following claim holds.

Claim 3. If s blocked nodes can cause a set of b weakly blocked data items at
round r, then a set of 2s blocked nodes can cause a set of b blocked data items
at round r.

Proof. Consider item d to be weakly blocked, and let Tr1(hi1(d)), Tr2(hi2 (d)),
. . . , Trk

(hik
(d)) be the sets witnessing that with k = c/4. Any route through

a set Tr′(hi′(d)) with r′ > r can have at most 2r′−r sets T ∈ Tr it can go
through, and each of these sets T has a size of |Tr′(hi′(d))|/2r′−r. Hence, the
number of nodes causing Tr′(hi′ (d)) to be blocked is sufficient to block also all
T ∈ Tr reachable from Tr′(hi′(d)). Hence, for any set of b weakly blocked data
items, we can turn them into blocked data items when moving the blocking of
nodes at distance r′ > r to nodes at distance r. Since we have to keep those sets
Tr′(hi′(b)) with r′ = r blocked, we have to at most double the number of nodes
needed to transform weakly blocked data items into blocked data items. ��

If the adversary can block at most 2εn nodes, then at most 6εn/2r of the n/2r

sets in Tr can be blocked, which covers at most 6εn nodes. Suppose the attacker
can block a set S of data items in round r. Then there is a c/4-bundle F for
S. According to Lemma 1, it holds that |ΓF,r(S)| ≥ 2r|S| if |S| ≤ σn/2r. Since
the largest possible size of ΓF,r(S) is 6εn, it follows that |S| ≤ 6εn/2r, which is
less than σn/2r (so that Lemma 1 implies an upper bound on |S|) if 6ε < 1/24,
or ε < 1/144. Hence, if the adversary can block at most 2εn nodes, then it can
cause at most 6εn/2r blocked data items in round r. This implies together with
Claim 3 that if the adversary can block at most εn nodes, then it can cause at
most 6εn/2i weakly blocked data items in round r. Combining this with Claim 2,
it follows that if the adversary can block at most εn nodes, then |WBr| ≤ 6εn/2r,
w.h.p.

Using the same arguments for congested data items, it also follows that
|WCr| ≤ 6εn/2r, w.h.p. Hence, |BCr| ≤ |WBr|+ |WCr| ≤ 12εn/2r, w.h.p. ��

Next we bound MCr.
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Lemma 5. For every round r, |MCr| ≤ n/2r.

Proof. Suppose that there are � many lookup requests for data item d in round
r. Then the expected number of messages per node w.r.t. i in any Tr(hi(d)) is
(α log n)�/2r. If � ≤ 2r, this is at most α log n. Since each message chooses a node
independently at random, it follows from the Chernoff bounds that the proba-
bility that there is a node in a set Tr(hi(d)) with at least 2α log n messages for d
is polynomially small. Hence, if a lookup request for some data item d becomes
inactive due to condition 3 of the contraction stage, then d has a multiplicity of
at least 2r, w.h.p. Since there are at most n active requests at round r, it follows
that |MCr| ≤ n/2r. ��

Combining Lemmas 4 and 5 it follows that |Dr| ≤ 12εn/2r + n/2r ≤ 2n/2r,
w.h.p. Now we are ready to analyze the expansion stage. First, we bound the
number of messages sent to a node in each round.

Lemma 6. For every round r, at most O(c log n) messages are sent to any node
in the system, w.h.p.

Proof. Only requests that were active in round r−1 of the contraction stage will
participate in round r of the expansion stage. According to Lemma 3, the number
of messages sent to any node in the system in any round of the contraction stage
is O(c log2 n) w.h.p. Since every lookup request sends out αc log n messages in
the contraction stage but only at most c messages in the expansion stage, it
follows that the number of messages sent to any node in the expansion stage is
at most O(c log n), w.h.p. ��

The description of the expansion stage and Lemma 6 immediately imply that
the runtime and work per node of the expansion stage is at most O(c log3 n).
Combining this with our bounds for the contraction stage, we get:

Lemma 7. For any collection of lookup requests, one per non-blocked node, the
lookup protocol needs at most O(c log3 n) time and work at every node.

Next, we show that every request will eventually finish in the lookup protocol,
w.h.p.

Lemma 8. For every round r, the number of data items with requests partici-
pating in it is less than 3n/2r.

Proof. We prove the lemma by induction on the number of rounds. For round
1, the lemma certainly holds. So consider any round r ≥ 1 for which the lemma
holds. A set T ∈ Tr is called congested if there are messages for at least 3c/σ
many different data items in T . Since there are requests for less than 3n/2r many
data items and the messages for each data item are limited to c sets T ∈ Tr,
there must be less than σn/2r many sets T ∈ Tr that are congested. A data
item d is called congested if there are at least c/4 many indices i for which
Tr(hi(d)) is congested. Let S be the set of congested data items. Then there is
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a c/4-bundle F for S. According to Lemma 1, it holds that |ΓF,r(S)| ≥ 2r|S| if
|S| ≤ σn/2r. Since the largest possible size of ΓF,r(S) is less than σn, it follows
that |S| < σn/2r. As a worst case, we assume that all requests for congested
data items will not finish in round r and therefore have to continue in round
r + 1. These will combine with the requests for at most n/2r + 12εn/2r data
items with requests that became inactive in round r of the contraction stage,
which gives an upper bound of less than 3n/2r+1 on the number of data items
with requests in round r + 1 (given that ε < 1/144 and σ ≤ 1/24). ��

Hence, in round r = log n, there are at most 3 data items left with requests.
In this round, all sets Tr(hi(d)) are equal to the entire node set, so there is
no congested node set left. Hence, according to the expansion protocol, every
request will finish in that round. Combining this with Lemmas 2 and 7 proves
Theorem 1.

3 Conclusions

In this paper we showed that a DHT for scalable data storage and retrieval can
be designed that is provably robust against massive application- and network-
layer DoS attacks. Certainly, low-level protocols still have to be developed for
our operations that work well and correctly in an asynchronous environment.
Also, it would be interesting to find out whether adaptations of our strategies
are possible to bounded degree DHTs so that they can sustain DoS attacks of a
similar magnitude as considered in this paper.
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Universitá di Roma La Sapienza, Italy
baldoni@dis.uniroma1.it, ioannidu@cs.toronto.edu, milani@dis.uniroma1.it

Abstract. We present a model of a mobile ad-hoc network in which
nodes can move arbitrarily on the plane with some bounded speed. We
show that without any assumption on some topological stability, it is im-
possible to solve the geocast problem despite connectivity and no matter
how slowly the nodes move. Even if each node maintains a stable connec-
tion with each of its neighbours for some period of time, it is impossible
to solve geocast if nodes move too fast. Additionally, we give a tradeoff
lower bound which shows that the faster the nodes can move, the more
costly it would be to solve the geocast problem. Finally, for the one-
dimensional case of the mobile ad-hoc network, we provide an algorithm
for geocasting and we prove its correctness given exact bounds on the
speed of movement.

Keywords: Mobile ad-hoc networks, geocast, speed of movement vs cost
of the solution, distributed systems.

1 Introduction

There has been increasing interest in mobile ad-hoc networks with nodes that
move arbitrarily on the plane. This is justified by the significance of (wireless)
mobile computing in emerging technologies. Current technologies require a stable
infrastructure which is used for communication between mobile nodes. Unfortu-
nately, in some cases, such as a military operation or after some physical disaster,
a fixed infrastructure cannot exist. For such cases, it is desirable to program the
mobile nodes to solve important distributed problems within specific geographi-
cal areas and without depending on a stable infrastructure. This is why there has
been an increasing interest in studying ”geo” related problems in mobile ad-hoc
networks such as georouting [1,2], geocasting [3,4,5,6], geoquorums [6], etc.

Geocasting is a variant of the multicast problem [7]. In geocasting, the nodes
eligible to deliver a message are the ones that belong to a specific geographical
area. Specifications to this problem can be either best effort or deterministic. An
implementation of a best effort specification aims to maximize the probability
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that nodes eligible to deliver the information, they actually deliver it [3,4,5].
Deterministic specifications define a set of nodes and an implementation of such
a specification ensures that each of these nodes will deliver the information [6].

When geocasting is solved for mobile ad-hoc networks, the speed of how nodes
move becomes an important factor. This is because it can heavily influence, for
example, the completion time of the message diffusion in a certain geographical
area till making geocasting unsolvable if these speeds are too high. In an ex-
treme (unrealistic) scenario, nodes can move fast enough to ensure that no two
neighbours stay connected for enough time to complete the receipt of a mes-
sage. Geocasting cannot be solved in this scenario even though the topology of
the mobile ad-hoc network never disconnects. To our knowledge this relation
among problem solvability, the cost of a solution, and mobility has never been
investigated.

This paper focuses on geocasting based on deterministic specifications investi-
gating the relation between cost of solving geocasting and mobility. In particular,
we firstly provide a model of computation (Section 2) and a specification for the
geocasting problem (Section 3) which both take into account (explicitly or im-
plicitly) node mobility. The model makes a distinction between strong and weak
connectivity. A system strongly connected has some assurance of topological
stability, i.e., there is always a path between every two nodes formed by strong
neighbors, where strong neighbors means that they remain neighbors for some
period of time. A connected system that does not satisfy the previous property
is weakly connected. Our model does not rely on either GPS or synchrony being
thus very weak with respect to other models presented in the literature [8]. The
geocasting specification is split in three properties: reliable delivery, integrity,
and termination. Reliable delivery states that all nodes, which remain for some
positive time C within distance d from the location l where the geocast has
been issued, will deliver the geocast information. Conversely, integrity defines
the minimum distance between the location l and a node in order that the lat-
ter does not deliver the geocast information. Termination states that after some
period of time C′ from geocasting of some information, there will be no more
communication related to this geocast.

Hence, a general framework of geocasting algorithms is proposed (Section
3.2), which captures existing geocast algorithms. An algorithm belonging to this
framework acts as follows: once a node receives a message (with the geocast
information) broadcast by a neighbour, it may repeat a (local) broadcast k
times, once every α rounds, depending on some condition. Using this framework
in our model several results have been proved: (i) if nodes are weakly connected
geocasting cannot be solved no matter how slowly the nodes can move (Theorem
1); (ii) if stronger connectivity holds, then geocasting is still impossible for some
bound of node’s speed of movement (Theorems 2 and 3); (iii) a tradeoff lower
bound that relates the cost of geocasting to the speed of movement of nodes
(Theorem 4).

Finally, if the speed is small enough, we show how to solve the geocast-
ing problem in a one-dimensional setting (Section 5). We prove that the time
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complexity of this algorithm increases with the speed of nodes. The algorithm
does not require any knowledge of the topology of the system. These results con-
firm the intuition that the fastest the nodes move, the more expensive it would
be to solve the geocasting problem and if nodes move too fast then no solution
can be achieved.

2 A Model for Mobile Ad-Hoc Networks

We consider a system of (mobile) nodes which move with bounded speeds in a
continuous manner on the plane. There is no known upper bound on the number
of nodes in the system and nodes do not fail. Nodes communicate by exchang-
ing messages over a wireless radio network. To define neighbourhood of nodes, let
distance(p, p′, t) denote the physical distance between two nodes p and p′ at time
t. Two nodes p and p′ are neighbours at some time t, if distance(p, p′, t)< r, for
fixed r > 0. We assume that each node can have at most H neighbours at each
time.

Nodes do not have access to a global clock, instead they have (not necessarily
synchronized) local clocks which run at the same rate. Within a small time period,
called a round, a node can execute in a sequential and atomic manner receiving at
most H messages, broadcasting at most one message, and local computation. To
perform a local broadcast of a message m, a node p is provided with a primitive
denoted broadcast(m). It takes at least one round for a broadcast message m to
be received by a node which then generates a receive(m) event. For simplicity of
presentation, the duration of a round is one time unit (i.e., in [t, t + i], i rounds
have elapsed). If broadcast(m) is performed by node p at time t then all nodes that
remain neighbours of p throughout [t, t+T ] receive m by time t+T , for some fixed
integer T > 0. It is possible that some nodes that are neighbours of p at times in
[t, t+T ] also receive m but no node receives m after time t+T . If two or more nodes
perform broadcasts concurrently there may be interference and messages may be
lost. We assume this to be dealt by a lower level communication layer [9] within
the T rounds it takes for a message to be (reliably) delivered to its destination.
There is no other way that messages can be lost.

Connectivity. The standard definition of connectivity, called weak connectivity,
ensures that for every pair of nodes p and p′ and every time t, there is at
least one path of neighbours connecting p and p′ at time t. Weak connectivity
allows an adversary to continually change the neighbourhood of nodes and render
impossible even the basic task of geocasting (Theorem 1). For this reason, we
assume a stronger version, called strong connectivity. To define this, first, we
introduce the notion of strong neighbours. If there is an upper bound on the
speed of nodes, then the closer two neighbours are located to each other, the
longer they will remain neighbours. Hence, if nodes are located fairly close, then
their connection is guaranteed for some period of time. Formally,

Definition 1 (Strong Neighbours). Let δ2 = r and δ1 be fixed positive real
numbers such that δ1 < δ2. Two nodes p and p′ are strong neighbours at some
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time t, if there is a time t′ ≤ t such that distance(p, p′, t′)≤ δ1 and distance(p,
p′, t′′)< δ2 for all t′′ ∈ [t′, t].

Assumption 1 (Strong Connectivity). For every pair of nodes p and p′ and
every time t, there is at least one path of strong neighbours connecting p and p′

at t.

Two nodes strongly connect when they become strong neighbours and they lose
their connection or disconnect when they cease being neighbours. By increasing
δ1, the set of strong neighbours of each node either remains the same or increases.
This is desirable, because then strong connectivity is not too much stronger than
weak connectivity. Therefore, for practical applications, we would like to design
algorithms considering values of δ1 that are as large as possible. Because of this,
in this paper, we assume δ1 ≥ δ2

2 .

Mobility. We assume an upper bound on the speed of node movement which
exists in practical situations. Then, Lemma 1 describes some topological stability.
Formally,

Assumption 2 (Movement Speed). It takes at least T ′ > 0 rounds for a
node to travel distance δ = δ2−δ1

2 on the plane.

From Definition 1 and Assumption 2, we gain some topological stability in the
network, which is formally expressed in the following lemma:

Lemma 1. If two nodes become strong neighbours at time t, then they remain
(strong) neighbours throughout [t, t + T ′] (i.e., for T ′ rounds).

Proof. If p and p′ become strong neighbours at time t, then distance(p, p′,
t)= δ1. To disconnect, they must move away from each other so that their
distance is larger than or equal to δ2 (traversing in total distance at least 2δ).
From assumption 2, this takes at least T ′ rounds when they travel in opposite
directions.

3 The Geocast Problem

The goal of geocasting is to deliver information to nodes in a specific geograph-
ical area. The geocast problem can be solved by a geocast service, implemented
by a geocast algorithm which runs on mobile nodes. The geocast service sup-
ports each mobile node with two primitives: Geocast(I, d) to geocast information
I at distance d and Deliver(I) to deliver information I. As illustrated in Fig-
ure 1, on each mobile node there is a process running the geocast algorithm
and a co-located user of the service which invokes geocast. The geocast al-
gorithm uses broadcast(m) and receive(m) to achieve communication among
neighbours.
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USER

GEOCAST SERVICE WIRELESS NETWORK

Mobile Node

receive(m)

broadcast(m)
Deliver(I)Geocast(I, d)

Fig. 1. System Architecture

3.1 A Geocast Specification

The geocast information is initially known by exactly one node, the source. If
the source performs Geocast(I, d) at time t from location l, then:

Property 1 (Reliable Delivery). There is a positive integer C such that, by time
t+C, information I is delivered by all nodes that are located at distance at most
d away from l throughout [t, t + C].

The following properties rule out solutions which waste resources causing con-
tinuous communication or distribution of information I among all nodes.

Property 2 (Termination). If no other node issues another call of geocast then
there is a positive integer C′ such that after time t + C′, no node performs any
communication triggered by a geocast (i.e. local broadcast).

Property 3 (Integrity). There is d′ > d such that, if a node has never been within
distance d′ from l, it never delivers I.

3.2 A General Framework for Geocasting Algorithms

We present a framework, (k, α)-Geocast(I, d) for α ≥ 1, that describes a large
class of geocast algorithms. When the source invokes (k, α)-Geocast(I, d), k
messages containing I are broadcast, once every α rounds. When a node re-
ceives a message containing I, k broadcasts of messages containing I are gen-
erated, once every α rounds as long as some condition (described by a boolean
function CHECK ) holds. CHECK can be different for each algorithm in this
class.

More precisely, for each call of Geocast(I, d), each node p stores a variable
timep,I , and a boolean variable flagp,I, initially set to ⊥ and 0, respectively. We
denote clockp the current value of the physical clock at p.

When source s executes (k, α)-Geocast(I, d), times,I is set to clocks and every
α rounds flags,I is set to 1 (illustrated in Figure 2 (a)). This causes the broadcast
of a message m containing information I (illustrated in Figure 2 (b)).
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(k, α) − Geocast(I, d) by s
1 times,I ← clocks;
2 for (i = 1; i + +; i ≤ k)
3 when (clocks == times,I + [(i − 1)α)])
4 flags,I ← 1;

(a)

when (flags,I == 1)
1 trigger〈broadcast(m)〉; % I ∈ m %
2 flags,I ← 0;

(b)

Fig. 2. (k, α)−Geocast(I, d) algorithm performed by the source s

The first time a node p executes receive(m), timep,I gets the value of clockp.
Any time p receives a message with information I, if CHECK is true, it sets
flagp,I to 1, every α rounds for k times (illustrated in Figure 3 (a)), which in
turn causes a broadcast of a message containing I (illustrated in Figure 3 (b)).
After each such broadcast, flagp,I is set to 0.

Note that if p receives more than one message containing I within α rounds,
only one broadcast is triggered. Hence at most one broadcast happens at p every
α rounds. The above is ensured by setting flagp,I to 1 only at certain times
as shown in line 7 of Figure 3 (a). In particular, flagp,I is set to 1, k times,
starting at the closest time after tp,I that is equal to timep,I + jα (where j is an
integer).

upon event 〈receive(m)〉 by p
1 trigger〈Deliver(I)〉; % I is contained in m %
2 tp,I ← clockp;
3 if (timep,I == ⊥)
4 then timep,I ← tp,I ;
5 if (CHECK)
6 then for (i = 1; i + +; i ≤ k)

7 when (clockp == timep,I + [	 tp,I−timep,I

α

 + (i − 1)]α)

8 flagp,I ← 1;

(a)

when (flagp,I == 1) by p
1 trigger〈broadcast(m)〉; % I ∈ m %
2 flagp,I ← 0;

(b)

Fig. 3. (k, α)−Geocast(I, d) algorithm performed by node p
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4 Impossibility Results

End-to-end communication is impossible if the system remains disconnected.
Eventual connectivity [10] ensures the existence of a path between sender and
receiver with edges which transmit infinitely many messages if infinitely many
messages are sent through. Eventual connectivity is necessary for achieving end-
to-end communication in general networks. For our mobile ad-hoc network, we
show that it is impossible to solve the geocast problem using algorithms in (k, α)
- Geocast under weak connectivity, or under strong connectivity if nodes move
too fast. To do so, we relate the speed of movement (which is inversely related
to T ′) to the speed of communication (which is inversely related to T ). We also
show how the speed of nodes relates to the cost of any (k, α) - Geocast algorithm.

For the following impossibility results, we set CHECK to true because if
reliable delivery is impossible when the maximum broadcasts are allowed, it is
also impossible for less broadcasts.

The fact that the (k, α) - Geocast class of algorithms contains a large class of
natural geocasting algorithms (including existing ones) makes our impossibility
results significant for practical applications. We note that the following lower
bounds are not necessarily tight.

Theorem 1. No algorithm in (k, α) - Geocast(I, d) can solve the geocast prob-
lem under the weak connectivity assumption no matter how slowly the nodes
move.

Proof. Assume that the maximum speed of the nodes is v > 0. Consider a state,
spq, such that all nodes are located on a straight line. The source s is the leftmost
node at position l. The only neighbour, p, of s is on its right at distance r − dε

from l, at position l1 such that dε ≤ v min{α,T}
2 . There is a node q located on the

right of p at distance dε from p at position l2, as illustrated in Figure 4.
Because dε ≤ v min{α,T}

2 , distance 2dε can be traversed during min{α, T }
rounds. From state spq at time t, node q moves with speed 2dε

min{α,T} until it

reaches location l1 at time t + min{α,T}
2 . Then, node p moves away from l with

speed 2dε

min{α,T} until it reaches location l2 at time t + min{α, T }. The state, sqp,
reached is the same as spq if we replace p by q and q by p. Weak connectivity is
preserved.

Because the switch between spq and sqp takes min{α, T } rounds, and accord-
ing to the algorithm at most one broadcast can be initiated every α rounds, it is
possible to create an execution where the source starts a local broadcast either
at state spq, or at state sqp and its neighbourhood changes within min{α, T }
rounds. This implies that no node ever delivers I. In particular, if α > T then
there can be at most one message broadcast every T rounds and this message
will be lost because the neighbourhood changes within min{α, T } = T rounds.
Otherwise, α ≤ T . Since there is at most one message broadcast every α rounds,
every such message will be lost because the change in the neighbourhood happens
within min{α, T } = α ≤ T rounds.
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at time t:
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q

p

s q p

s p q

dε

rl l1 l2

at time t + min{α, T}:
state sqp

t + min{α,T}
2 :

state spq

state at time

Fig. 4. Proof of Theorem 1

As stated in Section 2, we assumed that δ1 ≥ δ2
2 which is reasonable for practical

applications. The following results in this section hold given this assumption. Our
lower bounds would be stronger if they held for all values of δ1. This extension
would be of theoretical interest and we leave it as future work.

Theorem 2. No algorithm in (k, α) - Geocast(I, d) can solve the geocast prob-
lem if T ′ < T

4 even if strong connectivity holds.

Proof. Consider a (k, α)-Geocast(I, d) algorithm executed at time t by the source
s. We will describe an execution of this algorithm (illustrated in Figure 5) during
which no node (other than s) knows information I, violating reliable delivery.
Let spq be the state at time t with the following properties: all nodes are located
on a single line; the source, s, is the leftmost node located at position l; the
first node, p, located on the right of l is at position l1 at distance δ1 from l; the
second node, q, located on the right of l is at position l2 at distance δ2 from l
and at distance δ2 − δ1 = 2δ from l1; all other nodes of the system are located
on the right of s at distance at least δ1 + δ2 from l. Node p is the only (strong)
neighbour of s. Nodes s and q are the only (strong) neighbours of p, p is the
only (strong) neighbour of q located on the left of q at time t, and the remaining
(strong) neighbours, Q, of node q are located on its right at distance exactly
δ1. We conclude that strong connectivity holds at state spq. Assume that, from
state spq, p moves from l1 to l2 and q moves from l2 to l1 on a straight line with
their highest speed. Each of them will traverse a path of distance 2δ and arrive
at its destination at time t + 2T ′ (by the communication speed assumption).
Strong connectivity holds throughout [t, t+2T ′] because throughout [t, t+2T ′),
the sets of strong neighbours of every node in the system does not change, and
the state, sqp, reached at time t + 2T ′ is the same as the state at time t if we
replace p by q and q by p. If the above movement happens continually, then for
any even integer i, we reach state spq and for any odd integer i, we reach state
sqp at time ti = t + 2T ′i.
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state at some time

δ2
δ2

δ1 δ1
2δ

s Q
p

s Q
q p
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p q
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q

at time ti:
state spq

state sqp
at time ti+1:

in (ti, ti+1):

Fig. 5. Proof of Theorem 2

Let t′ be a time at which the source s performs a (local) broadcast during its
call of (k, α)-Geocast(I, d). We consider the following two cases for i = odd (the
proof for i = even is symmetrical):

– There is i such that ti = t′. Because i is odd, the system is in state sqp at
time ti, it reaches state spq at time ti+1, and ti+1 − ti = 2T ′. At time t′, q
is the only neighbour of s. Node q will stop being a neighbour of s at time
ti+1 = ti +2T ′ = t′ +2T ′ which happens before time t′ +T because T ′ < T

4 .
Therefore q will not receive the message being broadcast by s at time t′.

– Otherwise, there is i such that ti < t′ < ti+1. Because i is odd, the system
is in state sqp at time ti and the only neighbours of s at time t′ are p and
q. But node q will cease being a neighbour of s at time ti+1 and node p
will cease being a neighbour of s at time ti+2. The local delivery of the
broadcast message completes at time t′ + T . Node q will not receive the
message broadcast at time t′ by s because t′+T > ti +2T ′ = ti+1. Similarly,
p will not receive this message because t′ + T > ti + 4T ′ = ti+2.

In both cases, any node that will become a neighbour of s after time t′ will not
receive the broadcast message either.

Theorem 3. No algorithm in (k, α) - Geocast(I, d) can solve the geocast prob-
lem if T ′ < δT

δ1
, for a system with unbounded number of nodes even if strong

connectivity holds.

Proof. We describe an execution (illustrated in Figure 6) during which all nodes
are placed on a straight line and a node receives a message containing I if and
only if it is located on or on the left of the original location, l, of the source
s = p0. In this execution, there is a node, q, always located on the right of this
position at distance less than d, and hence, never delivers I, violating reliable
delivery. Initially, at time t = t0, the nodes are placed on a line on the right of
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pi+1
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Fig. 6. Proof of Theorem 3

q0, one every δ1 distance, with the exception of q. Let pi be the node located
at distance iδ1 on the right of l at time t0 (for i ≥ 0). At time t0, the only
neighbours of p0 are p1 and possibly q because, since δ1 ≥ δ2

2 , all other nodes
are at distance at least δ2 from p0. Similarly, at time t0, the only neighbours
of pi (for i ≥ 1) are pi−1, pi+1 and possibly q. All nodes pi for (i ≥ 0) move
continually, with speed δ1

T towards the left. Note that this is possible because
T ′ < Tδ

δ1
which implies that δ1

T is smaller than the maximum speed (i.e., δ
T ′ ). All

other nodes pi for i ≥ 0 form a path such that each two consecutive nodes are
strong neighbours. Furthermore, q is always a strong neighbour of the first node
on its right throughout the execution because their distance is at most equal to
δ1. We conclude that strong connectivity holds.

At time t0 only p0 (at location l) knows I. Node p1 delivers I at time t1 = t+T
when it is at location l. This is because during T rounds, p1 moves distance
Tδ1
T = δ1 and it moves towards the left starting from a location at distance δ1

on the right of l. At time t1, both p0 and p1 will rebroadcast messages with
information I. Similarly, node pi is the rightmost node to deliver I at time
ti = t + iT when at location l. All other nodes that delivered I are on the left
of location l at that time. Since q is never a neighbour of any node on or on the
left of position l, it will never deliver I.

Theorem 4. Assuming that T ′ > max{ 1
4 , δ

δ1
}T , then if it is possible to solve

geocast, it would take more than (� d−δ2
δ1−T δ

T ′
� + 1)T rounds to ensure reliable de-

livery, using any (k, α)-Geocast(I, d) algorithm for a system with more than
� d−δ2

δ1−T δ
T ′
� nodes even if strong connectivity holds.

Proof. We describe an execution (illustrated in Figure 7) of a geocast algorithm
that causes as much rebroadcasting as possible and which cannot guarantee
reliable delivery in less than (� d−δ2

δ1−T δ
T ′
�+1)T rounds. During this execution there
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Fig. 7. Proof of Theorem 4

is a node, q, located exactly at distance d from the original location, l, of the
source, s = q0. At time t0, the nodes (other than q) are placed on a line on
the right of q0, one every δ1 distance. Let pi be the node at distance iδ1 on the
right of l at time t0 (for i ≥ 0). At time t0, the only neighbours of p0 are p1

and possibly q because (since δ1 ≥ δ2
2 ) all other nodes are at distance at least δ2

from p0. Similarly, at time t0, the only neighbours of pi (for i ≥ 1) are pi−1, pi+1

and possibly q. All nodes pi for (i ≥ 0) move continually, with their maximum
speed (i.e., δ

T ′ ) towards the left. Strong connectivity holds because, all nodes pi

(for i ≥ 0, other than q) form a path of strong neighbours and q is a strong
neighbour of the first node on its right throughout the execution because their
distance is at most equal to δ1.

At time t = t0 only p0 knows I. Node p1 first delivers I at time t1 = t + T
when it is at distance δ1− Tδ

T ′ on the right of l. Node pi is the rightmost node to
deliver I at time ti = t + iT when at distance iδ1 − iTδ

T ′ on the right of l. Node
q can only deliver I within T rounds after at least one of its neighbours has
delivered I. The earliest this happens is within T rounds after I is delivered by
a neighbour of q on its left. This neighbour has to be at distance smaller than δ2

from q. Hence, reliable delivery cannot happen before time tj +T (= t+(j+1)T )
for the smallest possible j for which d− (jδ1 − j Tδ

T ′ ) < δ2 (i.e., j > � d−δ2
δ1−T δ

T ′
�).

Theorem 4 verifies the intuition that the larger the speed of the nodes can
be (which is inversely related to T ′) the more time it would take to solve
geocasting.
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5 A Geocasting Algorithm

We consider a special case of the mobile ad-hoc model, called one-dimensional
mobile ad-hoc model, for which the nodes move on a line. Inter-vehicle com-
munication [11] is an application of geocast in this model. For simplicity, the
line is straight and horizontal and the locations are real numbers representing
points which increase towards the right. We show that (7, T ) - Geocast(I, d)
works if T ′ > 9T . We attach a counter, cmsg, to each message which is set to
zero only in the first message broadcast by the source. Each node maintains,
in a local counter, the largest counter value it has either received or broadcast.
Every time it is ready to broadcast (i.e. its flag is set to 1), it increments its local
counter by one and appends this new value to the message. Upon receiving a
message with counter cmsg, the receiver evaluates CHECK which returns true
iff cmsg ≤ 6T (i + 1) + 2T , where i = � d

δ1− 6δT
T ′
�. Assume that the source s = q0

initiates a call of (7, T ) - Geocast(I, d) at time t = t0 from location l = l0. Next,
we prove that I propagates from l0 towards the right of l0. (For the left of l0,
the proof is symmetrical.) This happens in steps so that within a small period
of time, I moves from a node, qj (at time tj and location lj), to another node,
qj+1 at some large distance away. The proofs of lemmata 2, 3, and 4 used for
correctness appear in the full version of the paper [12].

Lemma 2. If T ′ > 9T and node qj delivers I at time tj when at location lj then,
assuming that CHECK returns true for all nodes throughout [tj , tj+1], there is a
node qj+1 which delivers I at time tj+1 at location lj+1 such that tj+1− tj ≤ 6T
and lj+1 − lj ≥ δ1 − 6δT/T ′.

Lemma 3. If T ′ > 9T and there is a j such that a node p is located in [lj , lj+1]
at some time t ∈ [tj , tj+1], then, assuming that CHECK returns true for all
nodes throughout [tj , tj+1], p delivers I by time tj+1 + 2T .

Lemma 4. If a node q stays within distance d from l throughout [t0, ti+1] for
i such that l + d ∈ [li, li+1], then there is j ≤ i such that q is located at some
position in [lj, lj+1] at some time in [tj , tj+1].

Theorem 5. If T ′ ≥ 9T , then (7, T ) - Geocast(I, d) ensures reliable delivery for
C ≤ 6T (i + 1) + 2T rounds, where i = � d

δ1− 6δT
T ′
�.

Proof. During [t, t + C], any node’s CHECK=true because if geocast starts at
time t, then (by induction on time) during [t, t + C], all messages broadcast or
received have counters at most equal to C. Then, we show that C ≤ 6T (i + 1)+
2T , where i = � d

δ1− 6δT
T ′
�. First, we calculate the maximum value that i could

take in any execution such that li ≤ l + d (i.e., (l + d) ∈ [li, li+1)). Next, we
show that it suffices that I gets delivered and rebroadcast by a node at location
li+1. From Lemma 2, li − l ≥ i(δ1 − 6δT/T ′). Then i ≤ � li−l

δ1− 6δT
T ′
� and because

li− l ≤ d, i ≤ � d
δ1− 6δT

T ′
�. It remains to calculate C. All nodes that remain within

distance d from l(= l0) throughout [t, t + C], also remain within that distance
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throughout [t0, ti+1], (recall that t = t0). If p remains in this area throughout
[t0, ti+1] then from Lemma 4, there is a j such that p is located at some position
in [lj , lj+1] at some time in [tj , tj+1] for j ≤ i and from Lemma 3, p delivers I
by time tj+1 + 2T . Therefore, since j ≤ i, all nodes within distance d from l
deliver I by time ti+1 + 2T = t + C. By Lemma 2, ti+1 − t ≤ 6T (i + 1) and
C ≤ 6T (� d

δ1− 6δT
T ′
�+ 1) + 2T .

Theorem 6. If T ′ ≥ 9T then (7, T ) - Geocast(I, d) ensures termination for
C′ = (6T (i + 1) + 2T + 1)T + 8T rounds, where i = � d

δ1− 6δT
T ′
�.

Proof. Every message received causes rebroadcasting of I in a message with
counter at least incremented by one and this will happen at least once every T
rounds (for at least 7 times). Termination happens within 7T rounds from the
time after which any message received has counter larger than 6T (i + 1) + 2T ,
where i = � d

δ1− 6δT
T ′
�. This happens within (6T (i + 1) + 2T + 1)T + T rounds,

because all messages broadcast after time (6T (i + 1) + 2T + 1)T have counters
at least equal to 6T (i + 1) + 2T + 1 and all such messages are received within
at most another T rounds. Therefore, C′ = (6T (� d

δ1− 6δT
T ′
�+ 1) + 2T + 1)T + 8T

rounds.

Theorem 7. If T ′ ≥ 9T then (7, T ) - Geocast(I, d) ensures integrity.

Proof. A broadcast message will be received at least after one round during
which any node can traverse distance at most δ

T ′ . Therefore, if a node broadcasts
a message from location l′ at time t′, then its neighbours receive it the earliest
at time t′ + 1, when at distance less than δ2 + δ

T ′ away from l′. Then, if the
source starts (7, T ) - Geocast(I, d) at time t from location l, at time t + m, the
furthest node that delivers I is at distance less than m(δ2 + δ

T ′ ) away from l.
By Theorem 6, after time t+C′, no node broadcasts messages with information
I. Therefore, no node delivers I after time t + C′ + T . But at time t + C′ + T ,
all nodes that have delivered I are within distance less than (C′ + T )(δ2 + δ

T ′ )
from l. Therefore, if a node remains further than d′ = (C′ + T )(δ2 + δ

T ′ ) from l,
it will never deliver I.

6 Related Work

Geocast was introduced by Navas et al. [2,1]. Geocast algorithms for mobile
ad-hoc networks [3,7,5,4], unlike our deterministic solution, only provide prob-
abilistic guarantees. This may not suffice. For example, Dolev et al. [6] need
deterministic geocast to implement atomic memory. Deterministic solutions are
given for multicast [13,14,15] and broadcast [8] for mobile ad-hoc networks. Both
solutions in [13,14] consider a finite and fixed number of mobile nodes arranged
somehow in logical or physical structures. They divide the nodes into groups
each of which has a special node which coordinates message propagation and
collects acknowledgments. Moreover, they make the following stronger than nec-
essary assumption: they require that the network topology stabilizes for periods
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long enough to ensure delivery. Finally, simulation results [16] show that the
approach proposed in [13] does not work if nodes move fast. Bounds that allow
the algorithms to work correctly are not presented. Chandra et al. [15] provide
a broadcasting algorithm and show by experiments that either all or none of the
nodes get the message with high probability. Mohsin et al. [8] implement (de-
terministic) broadcast for a synchronous mobile ad-hoc network with restricted
movement patterns. In particular, nodes move on top of a grid such that at the
beginning of each round nodes are located at grid points. They assume that
all nodes move at the same constant speed and direction of movement cannot
change within a round. Finally, nodes need to inform their neighbours about
their future moving pattern for short future time periods.

7 Conclusion and Future Work

To the best of our knowledge, this is the first time in which bounds are formally
defined on the speed of node movement which make it possible to solve geocasting
and relate its time complexity to the speed. This formally verifies that the faster
nodes move, the most costly it would be to solve geocasting. Our upper bounds
and lower bounds do not match neither for the cost of geocast, nor for the
bounds on speed of movement. Although the gap is not large, it would have
theoretical interest to match these bounds. We proved our results for the case
where δ1 ≥ δ2

2 . It is unknown whether our lower bounds still hold for δ1 < δ2
2 .

Another future direction would be to design a geocast algorithm that works for
a two-dimensional model including failures.
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Abstract. Distributed computing must adapt its techniques to net-
works of mobile agents. Indeed, we are facing new problems like the
small size of memory and the lack of computational power. In this pa-
per, we extend the results of Angluin et al (see [4,3,2,1]) by finding
self-stabilizing algorithms to count the number of agents in the network.
We focus on two different models of communication, with a fixed base
station or with pairwise interactions. In both models we decide if there
exist algorithms (probabilistic, deterministic, with k-fair adversary) to
solve the self-stabilizing counting problem.

1 Introduction

Habitat and environmental monitoring represents a class of sensor network ap-
plications with enormous potential benefits both for scientific communities and
for society as a whole. The intimate connection with its immediate physical en-
vironment allows each sensor to provide localized measurements and detailed
information that is hard to obtain through traditional instrumentation. Many
environmental projects use sensor networks.

The SIVAM project in Amazonia is related to meteorological predictions, sen-
sors are placed in glacial areas for measuring the impact of the climate evolution,
(see [9]), use of sensors is considered in Mars exploration (see [10]) or for detect-
ing the effect of the wind or of an earthquake on a building (see [11]).

A sensor network has been deployed on Great Duck Island (see [8]) for study-
ing the behavior of Leachs Storm Petrels. Seabird colonies are notorious for the
sensibility to human disturbance and sensor networks represent a significant ad-
vance over traditional methods of monitoring. In [1], Angluin et al. introduced
the model of population protocols in connection with distributed algorithms for
mobile sensor networks. A sensor is a package containing power supply, processor,
memory and wireless communication capacity. Some physical constraints involve
limitations of computing or storage capacity and communication. In particular,
two sensors have to be close enough to be able to communicate. A particular
static entity, the base station, is provided with more computing resources.

The codes in the base station and in the sensors define what happens when
two close sensors communicate and how they communicate with the base station.
An important assumption made in this model is that the interactions between
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the sensors themselves and between the sensors and the base station are not
controlled. Also, a hypothesis of fairness states that in an infinite computation
the numbers of interactions between two given sensors or between a particular
sensor and the base station are infinite. Eventually the result of the computation
is stored at the base station and does not change any more.

This model takes into account the inherent power limitation of the real sensors
and also the fact that they can be attached to unpredictably moving supports.
For being still more realistic the model should consider the possibility for the
sensors to endure failures. Temperature variations, rain, frost, storm, etc. have
consequently, in the real world, that some sensors are crashed and that some
others are still operating, but with corrupted data.

Most of population protocols do not consider the possibility of failures. The
aim of this paper is to perform computation in mobile sensor networks subject
to some type of failures. The framework of self-stabilization is particularly well
adapted for dealing with such conditions. A self-stabilizing system, after some
memory corruptions hit some processors, regains its consistency by itself, mean-
ing that first, (convergence) it reaches a correct global configuration in a finite
number of steps and second, (correction) from then its behavior is correct until
the next corruption. It is important to note that this model assumes that the
code is immutable, e.g, stored in a ROM and then cannot be corrupted. Tradi-
tionally self-stabilization assumes that failures are not too frequent (for giving
enough time to the system for recovery) and thus the effect of a single global fail-
ure is considered. That is equivalent to consider that the system may be started
in any possible global configuration. Note that the issue of combining population
protocols with self stabilization has been addressed for ring networks in [4] and
in a different framework in [6].

In the present work we make the assumption that, if the input variables can be
corrupted, as any other variable, first they do not change during the time of the
computation and second they are regularly read by the sensor. Then eventually
a sensor deals with its correct input values.

In this paper we consider the very basic problem of computing the number
of (not crashed) sensors in the system, all sensors being identical (same code,
no identifiers), when their variables are arbitrary initialized (but the input value
of each sensor is 1). This problem is fundamental, first because the ability of
counting makes easier the solution of other problems (many distributed algo-
rithms assume that the size of the network is known in advance) and second
because if counting is feasible, sum, difference and test to 0 are too. In prac-
tice, one might want to count specific sensors, for example those carried by sick
petrels.

We present a study of this problem, under slightly different models. The varia-
tions concern the determinism or the randomization of the population protocols.
In a sub model, the sensors only communicate with the base station and in another
they communicate both between each other and with the base station. According
to the different cases, we obtain solutions or prove impossibility results.
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2 Motivation and Modelization

Imagine the following scenario : A group of birds (petrels) evolves on an island,
carrying on their body a small sensor. Whenever a petrel is close enough to the
base station, its sensor interacts with the base station, which can read the value
of the sensor, compute, and then write in the petrel sensor memory.

Depending on the hypothesis, the sensors may or may not interact with each
other when two petrels approach close enough.

2.1 Mobile Sensor Networks with a Base Station

A mobile sensor network is composed of an base station, and of n undistinguish-
able mobile sensors (In the sequel we will use the term of petrel, in relation with
our motivation example, instead of sensor.)

The network configuration considers the memory content of the base station,
a, and the petrels’ state, pi. We denote the network configuration by (a, p1, ..., pn)
where pi is the state of the ith petrel. There are two kinds of events:

• the meeting of petrel number i with the base station. After that meeting, pi is
changed, according to the protocol, to p′i, and a to a′, depending on (a, pi) (Note
that the transition is independent of i, because petrels are not distinguishable).
• themeeting of petrel number iwithpetrel number j. After thatmeeting,pi and pj

are changed to p′i and p′j, depending on (pi, pj) (here again, independently of (i, j)).

In the Sensors-To-base-station-Only model (TB for short), only the first kind
of event is possible. i.e. the sensors do not interact with each other.
In the petrels-To-Base-station-and-To-Petrels model (TBTP for short), both
events are possible: sensors do interact with each other. For deterministic proto-
cols, the last model can be divided into two sub-models, the symmetric (STBTP),
resp. the asymmetric one (ATBTP): When two petrels meet, if their state is the
same, they have to, resp. they don’t have to, change to the SAME state. A prob-
abilistic algorithm can use coin flips and perform an election between meeting
petrels to simulate the Asymmetric TBTP model.

2.2 The Problem

The number of petrels is unknown from the base station, which aims at counting
them.

We want that, eventually, the PetrelNumber variable in the base station is
and remains equal to n.

In probabilistic algorithms (we consider non-oblivious daemons, that is, they
can decide what is the next event depending on previous results of coin flips),
we require that this property is obtained with probability 1.

More generally, our algorithms must be self-stabilizing (see [7]), i.e., whatever
the initial configuration (but we initialize the base station), the base station
must give the exact number of petrels in the network (with probability 1, for
probabilistic algorithms) within a finite number of steps. This requirement does
not allow us to make any assumption on the initial configuration (except for the
base station), or to reset the value of the sensors.
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2.3 Executions, Daemons, Fairness, Rounds

Definition 1 (Execution). An execution is an infinite sequence (Cj)j∈N

(where N denotes the set of non-negative integers) of configurations and an in-
finite sequence (ej)j∈N\{0} of events such that Cj+1 is obtained after ej occurs
on Cj.

The daemon is the imaginary adversary that chooses the initial configuration
and that schedules the possible actions at every step. To solve the problem, the
daemon must be fair:

Definition 2 (Fairness). An execution is fair if every petrel communicates
with the base station infinitely often, and, in the TBTP model, if every two
petrels communicate with each other infinitely often. (Note that this fairness is
weaker than the one used by Angluin et al., which says that a configuration that
is reachable infinitely often is eventually reached)

•A daemon for a deterministic protocol is fair if every execution is fair.
•A daemon for a probabilistic protocol is strongly fair if every execution is fair
and it is weakly fair if the measure of the set of the fair executions is one. The
distinction between weak and strong fairness is of little importance in this paper.

Definition 3 (k-fairness). Let k be an integer. An execution is k-fair, if every
petrel communicates with the base station at least once in every k consecutive
events, and, in the TBTP model, if every two petrels communicate with each
other in every k consecutive events.

A daemon is k-fair if the execution is k-fair.
In this paper when the daemon is k-fair, the value of k is not assumed to be

known by the base station.

Throughout the paper, the daemon is assumed to be fair, unless it is explicitly
assumed to be k-fair.

Definition 4 (Oblivious). For probabilistic algorithms, a daemon is non-
oblivious if the decision of what is the next event can depend on the result of
previous coin flips. An oblivious daemon could be able to decide at the start of
the execution what the whole sequence of events will be.

Definition 5 (Rounds). A round is a sequence of consecutive events, during
which every petrel meets the base station at least once, and in the TBTP model,
every two petrels meet each other.

The first round is the shortest round starting from initial configuration, the
second round is the shortest round starting from the end of the first round, and
so on.

2.4 Initial Conditions

Throughout the paper, we assume that the petrels are arbitrarily initialized,
but that an initial value can be chosen for the base station. This assumption is
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justified if one thinks of mobile sensors networks as the petrel population and
the base station. The existence of a base station and the possibility to initialize
it are the main differences between our model and classical sensor networks.

Note that if both the petrels and the base station can be initialized , then
the problem is obvious, with only one bit per petrel sensor. Note also that if one
can initialize neither the petrels nor the base station, then there is no protocol
to count the petrels (unless the daemon is k-fair, see remark 1 in Sec. 3).

Indeed, assume on the contrary that there is such a protocol. Let the daemon
repeat the following: it waits till every petrel has met the base station and Petrel
Number = n (this will eventually happen), then it holds back one particular pe-
trel. When PetrelNumber is n− 1 (this will eventually happen since the config-
uration is the same as if there were n petrels), the daemon frees the last petrel.

With such a daemon, PetrelNumber will never stabilize so the protocol fails.
If the protocol is deterministic, the daemon is fair, if the protocol is probabilistic,
it is weakly fair.

It can also be proved that there does not exist any algorithm under a strongly-
fair daemon PetrelNumber will stabilize with probability 0 although the daemon
is strongly-fair.

2.5 Memories

We will not make limitation on the memory size of the base station. (Note: The
codes will often use “infinite” arrays (indexed by integers), but only a finite
number of register will contain non-0 values. Of course, in practice, arrays will
have to be replaced by data structures to keep only the non-0 registers.)

On the other hand, we will make more or less strong assumptions on the
memory size of the petrel sensors:

Definition 6 (Size of the petrel sensor memories). The memory is infi-
nite if it is unlimited. In particular, it can carry integers as large as needed,
which can drift, that is, which can tend to infinity as times passes by. (this has
a practical application only if the drift is slow and there are enough bits in the
sensors to carry “large”integers). The memory is bounded if an upper-bound
P on the number of petrels is known, and if the number of different possible
states of the memory is α(P ) for some function α. The protocol may use the
knowledge of P . The memory is finite if the number of different possible states
of the memory is a constant α.

3 The Petrels-To-Base-Station-Only Model (TB)

In this section, the sensors can only communicate with the base station. People
acquainted with classical sensor networks may question the point of such a model.
There are two justifications for looking for solutions in that model :

1. Sensors are meant to be small. To implement that model, sensors only need to
carry a device so that the base station can read and write in their memories.
All the code can be implemented in the base station.
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2. The decision to run such algorithms can be made by just changing the code
in the base station. This is doable even if the sensors are already away. For
example, if an observation made of the petrels, given you the idea to count
something new and not forecast, you can use a TB algorithm.

3.1 With Infinite Memory

In this subsection, we assume that the petrel sensors (and the base station)
have an infinite memory. In this case, there exist self-stabilizing deterministic
algorithms to solve the problem.

The way the first algorithm works is simple. The drift of integers is fast, and
convergence is obtained after two rounds. The second one is a little tricky. The
drift is slow, but it converges in about P (i.e. the number of petrels) rounds.

variables

[each petrel] number :integer

[base station] R : array[integers] of booleans, initialized at 0

[base station] PetrelNumber to maintain as cardinal{i | R[i]=1}

[base station] LargestNumber : integer initialized at 0

When a petrel p approaches the base station :

if R[number_p] = 1 then R[number_p] <- 0

number_p <- LargestNumber

R[LargestNumber] <- 1

LargestNumber ++

Algorithm 1. For Unbounded Memory

3.2 With Finite or Bounded Memory

Under a fair daemon
In this paragraph we show that if the daemon only respects fairness, there neither
exists a deterministic algorithm nor a probabilistic algorithm making it possible
for the base station to count the number of sensors present.

Proposition 1. The daemon is supposed to be fair. If the sensors have a finite
memory then, there is no deterministic algorithm solving the counting problem.

Proof. The idea of this proof is to exhibit two executions resulting from two
different initial configurations that will appear to be identical for the base sta-
tion.The proof is analog to the one of proposition 10, but details are in the full
version [5].

Then, it becomes natural to try to build a probabilistic algorithm in order to
break the symmetry. Indeed, the daemon has no control on the random, thus we
can hope to beat him. Unfortunately, even in this case, there is no solution:

Proposition 2. Suppose that the daemon is strongly fair and non-oblivious. If
the sensors have a finite memory, then there does not exist any probabilistic
algorithm solving the counting problem
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variables

[each petrel] number :integer

[base station] R : array[integers] of booleans, initialized at 0

[base station] PetrelNumber to maintain as sum{R[i]}

When a petrel p approaches the base station :

if R[number_p] > 1 then R[number_p] --

number_p ++

R[number_p] ++

Algorithm 2. For Unbounded Memory

Proof. Let us consider a daemon D with n sensors (p1, . . . , pn) initialized in
I = (x1, x2, . . . , xn).
The sensors’ memory being finite, for every petrel p, in particular for the last
one, there is a state s and a positive real number η such as :

P{p goes infinitely often in s} ≥ η

In order to ”confuse” the base station, let the deamon D′ proceeds as follow
with n + 1 sensors (p1, . . . , pn, pn+1): it puts them in the initial configuration
I = (x1, x2, . . . , xn, s).

There is an integer k1 such that with D, with probability at least (1 − ε), if
pn gets in state s infinitely often, then it gets once in state s during the k1 next
events and every sensor has met the base station at least once. The daemon D′

holds back the sensor pn+1 and for at most k1 events, lets evolve the other n’s as
would do daemon D until pn gets in state s. If k1 events have been done without
pn getting in state s then D′ has lost (note that the daemon may lose either
because s does not appear infintely often with D or because the first occurrence
of s arrives too late with D). Otherwise D′ frees pn+1 and holds pn.

The daemon D′ resumes simulating D with pn+1 instead of pn and as in the
first step, but with k1 replaced by k2 such that the probability is now at least
(1− ε

2 ) instead of (1− ε). The daemon keeps on with that technique, with kl for
the lth step so that the probability is at least (1− ε

2l−1 ).

Therefore, D′ wins with probability η
l∏

i=0

(1− ε

2i
) > 0.

In this case, from the point of view of the base station, the execution is
indistinguishable from D, so PetrelNumber is eventually equal to n which is
wrong. So, the base station has a non null probability to lose.

Note that the proofs work with no assumption on n (the number of petrels)
which may be equal to 1. Thus the impossibility is proved both for finite and
bounded memories.

3.3 A k-Fair Daemon

Under the assumption of fairness, there exists neither a deterministic algorithm
nor a probabilistic algorithm. Thus, we have to reduce the capacities of the
daemon. If we assume the daemon is k-fair, we will get both deterministic and
probabilistic solutions.
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Deterministic algorithm
The algorithm 3 is given below.

variables

[each petrel] bit : boolean

[base station] i, cpt, PetrelNumber : integers

[base station] bit_A : boolean, initialized at 0

The base station does :

For i from 0 to infinity do

cpt <- 0

do 2^i times :

wait till a petrel p approaches

if bit_p = bit_A then cpt ++

bit_p <- not(bit_p)

PetrelNumber <- cpt

bit_A <- not(bit_A)

Algorithm 3. Deterministic, k-fair daemon

The convergence time is less than 8k. The reader may find details in the full
version [5]

Remark 1. This algorithm works even if the base station variables are not ini-
tialized but a large initial value of i induces a large convergence time.

This deterministic algorithm requires an infinite memory of the base station, due
to the drift of 2i (and of i). This can be avoided by the following probabilistic
algorithm.

Probabilistic algorithm, k-fair daemon or oblivious daemon
The algorithm is as follows:

variables

[each petrel] number, color : integer

[base station] R : array[integers] of [0...2]

/* 0 stands for empty, others for colors */

initialized at empty

[base station] PetrelNumber to maintain as card{j | R[j] is non empty}

When a petrel p approaches the base station :

h <- the minimum integer such that R[h] = empty

if R[number_p] <> color_P /* including if one of them is 0 */

then number_p <- h

else if h<number_p

then R[number_p]<-0

number_p<-h

color_p <- random{1..2}

R[number_p] <- color_p

Algorithm 4. Probabilistic, k-fair daemon
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The proof of convergence is in the full version [5] We obtain a worse time
of convergence (possibly exponential) than with the deterministic algorithm but
we observe that the base station requires a finite memory.

4 The Petrels-To-Base-Station-And-To-Petrels Model
(TBTP)

We recall that P is an upper bound of the number of petrels and α(P ) is the
number of the different possible states of the memory. In a first section we
introduce deterministic algorithms solving the counting problem. Then, in a
second part, we get interested in the lowest value α(P ) may get.

4.1 Bounded Memory, Algorithms

Proposition 3. There are deterministic solutions, with α(P ) ≥ P , to the count-
ing problem.

We are going to exhibit different algorithms. The two first ones concern the
ATBTP model and the third one the STBTP model. It is interesting to note
that we need more memory in the STBTP model. The question remains open
to know what is the minimal memory required in the symmetric case, and if
it really needs to be larger than in the asymmetric case. Explanations of the
algorithms are in the full version [5]

The ATBTP Model. We propose two algorithms :

– The first one with α(P ) = P + 1, converges in three rounds.
– The second one with α(P ) = P , converges in P + 1 rounds.

variables

[each petrel] number :integer in [0..P]

[base station] T : array [1..P] of boolean,

initialized at 0 everywhere

[base station] PetrelNumber to maintain as cardinal{i | T[i]=1 }

When a petrel p approaches the base station :

if number_p = 0

then number_p <- an integer y such that T[y]=0

T[number_p] <- 1

else T[number_p] <- 1

When two petrels meet :

If their numbers are the same

then the number of one petrel becomes 0

Algorithm 5. Deterministic asymmetric algorithm with α(P ) = P + 1
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variables

[each petrel] number :integer in [1..P]

[base station] T : array [1..P] of boolean,

initialized at 0 everywhere

[base station] PetrelNumber to maintain as cardinal{i | T[i]=1 }

When a petrel p approaches the base station :

T[number_p] <- 1

When two petrels meet :

If their numbers are the same integer x

then the number of one petrel becomes x+1 mod P

Algorithm 6. Deterministic asymmetric algorithm with α(P ) = P

The STBTP Model. The following symmetric algorithm with α(P ) = 4P
converges in three rounds:

variables

[each petrel] number :integer in [1..2P]

[each petrel] Intention : (Keep,GiveUp)

[base station] T array [1..2P] of (Free,Taken,GivenUp),

initialized at Free everywhere

[base station] PetrelNumber to maintain as cardinal{i | T[i]=Taken }

When a petrel p approaches the base station :

Depending on Intention_p :

Keep : T[number_p] <- Taken /* even if T[number_p] was GivenUp */

GiveUp : T[number_p] <- GivenUp

number_p <- a y such that T[y] = Free

T[number_p] <- Taken

Intention_p <- Keep

When two petrels meet :

If their numbers are the same integer x

and their both intentions are Keep

Then their both intentions change to GiveUp

Algorithm 7. Deterministic symmetric algorithm with α(P ) = 4P

4.2 Bounded Memory, Minimum Value for α(P )

We prove in this section there does not exist asymmetric algorithms with α(P ) ≤
P − 1.

The non-existence of algorithms with α(P ) ≤ P − 2 is much easier to prove
than the non-existence of algorithms with α(P ) = P − 1. So let us start with
the easier case:

Proposition 4. There is no deterministic solution, with α(P ) ≤ P − 2, to the
counting problem.

Proof. Assume that there is a solution. Consider an execution E with P − 1
sensors (p1, . . . , pP−1) initialized in the states (x1, . . . , xP−1). There is a state y
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and two petrels p and p′ such that infinitely often, p and p′ will be simultaneously
in state y. Now, as a daemon, perform the following execution E′ with P sensors:

Initialize them in (x1, . . . , xP−1, y), then repeat the following:

• Hold back petrel pP and proceed as in E until every petrel but pP has met
each other petrel but pP , and p and p′ are in state y.
• Free pP , hold back p, proceed as in E with pP instead of p until pP has met
every other petrel (but p), and pP and p′ are again in state y.
• Free p, hold back p′, proceed as in E with pP instead of p′ until pP has met p,
and pP and p are again in state y.

The daemon is fair, and from the point of view of the base station, E and E′

are identical, thus in E′, PetrelNumber will stabilize to P − 1, as in E, which
is a wrong result. This is a contradiction.

We are now going to look to the case where α(P ) = P − 1.

Proposition 5. There is no deterministic solution with, α(P ) = P − 1, to the
counting problem.

Proof. Assume on the opposite that there is such a solution.
Consider an execution E with P − 1 sensors (p1, . . . , pP−1) initialized in the

states (x1, . . . , xP−1).
If there is a state y and two petrels p and p′ such that infinitely often, p and

p′ are simultaneously in state y, then one can conclude as in the previous proof,
so we can assume from now on it is not the case.

This implies that eventually, say from instant T , all petrels have distinct
states.

This means first, that, in E, from T , the base station never changes the state
of a petrel it meets. Second, the rule when two petrels with different states meet
must be that they keep their current state (or exchange them, which is of little
effect). Thus the protocol rules for meeting petrels are such that the states can
change only if the meeting petrels are in the SAME state.

Lemma 1. There is a state y and a finite piece of execution EKL with P petrels,
starting with two petrels in state y and one petrel in each other state, finishing
in the same configuration, during which petrels do not meet the base station, and
whose first event is the meeting of the two petrels in state y.

The end of the proof is analog to the proof of proposition 10, but the reader may
find the entire proof in the full version [5]

It remains now to prove the key lemma (the detailled proof is in the full version
[5]):

Let us introduce two kinds of vectors, the first one for representing the states
of all the sensors at a given time, the second one to represent the effect of the
meeting of petrels.

Definition 7. The vector of configuration VC of configuration C is the vector
in NP−1 whose ith coordinate is the number of sensors in the ith state si.
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For each state x, let us define y(x) and z(x) to be the states that two petrels’
sensors get when they meet while both in state x.

Definition 8. The vector of variation Vx of state x is 1Iy(x) + 1Iz(x) − 21Ix.

The ith coordinate of Vx represents the variation of the number of sensors in state
si when two petrels in state x meet, and indeed, if, from a configuration repre-
sented by V , two petrels in state x meet, the new configuration is represented
by V + Vx.

We claim first that there is a non-null linear combination of the vectors of
variations, with non-negative integer coefficients, which is null.

To prove the claim, start with P petrels and repeat making two petrels in the
same state meet each other (you will always find two such petrels). The vectors
of configuration you will get will stay in Y = {(qj)1≤j<P |qj ∈ N,

∑
j qj = P}

which is finite. So if you let long enough petrels with same state meet, you will
encounter twice the same configuration. The set of meetings between the two
appearances of that configuration gives you the wanted combination.

More formally: define (Vy,i)0≤i ∈ Y N and (Vw,i)1≤i ∈ ZN by induction as
follows:
Vy,0 = (2, 1, 1, 1, . . . , 1).

Once Vy,i is defined, find a coefficient x of Vy,i which is at least 2 (there is
such a coefficient), then define Vy,i+1 = Vy,i + Vx and Vw,i+1 = Vx. It is easy to
check that Vy,i+1 will be in Y .

Since Y is finite, there are two integers i1 and i2, with 0 ≤ i1 < i2 ≤ card(Y )
such that Vy,i1 = Vy,i2 . Then

∑
i1<i≤i2

Vw,i fulfills the requirement since Vy,i2 =
Vy,i1 +

∑
i1<i≤i2

Vw,i.
That first claim is proved.Let

∑
x βxVx be such a combination (So, ∀x, βx ∈ N,

∃x, βx > 0, and
∑

x βxVx = (0, 0, . . . , 0)). For the sake of simplicity, let us assume
that our combination minimizes

∑
x βx.

Let H be the multi set of vectors of variations where each Vx appears βx

times.

Our second claim is that there is an index y and an ordering (h1, h2, ..., hcard(H))
of the elements in H , such that h1 = Vy, and for every i ∈ [1, card(H)], the δ(i)th

coordinate of Zi = (1, 1, . . . , 1) + 1Iy +
∑

j<i hj is 2 or more, and no coordinate of
Zi is negative (where delta(i) is the index such that h(i) = Vδ(i)).

Proof of the second claim
Let y be an index such that βy > 0.

We build the hi by induction on i : Let h1 = Vy

Assume the hj ’s have been built up to j = i − 1, let us build hi, for some
i ∈ [2, card(H)]:

Let Zi = (1, 1, . . . , 1)+1Iy +
∑

j<i hj . Since it is in Y , there is an index x such
that Zi|x ≥ 2 (where M |v denotes the vth coordinate of M). We may assume
that x = y or (x = y and Zi|x ≥ 3) (indeed, otherwise, Zi = (1, 1, . . . , 1) + 1Iy,
which implies that

∑
j<i hj = 0, which contradicts the minimality of

∑
x βx in

our combination).
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Thus
∑

j<i hj |x > 0, but since
∑

h∈H h|x = 0, it means that there is an ele-
ment in H , not taken yet, whose xth coordinate is negative. This element is Vx

for it is the only vector of variations whose xth may be negative. Let hi = Vx.
The built sequence (h1, h2, ..., hcard(H)) satisfies the requirement, so the second
claim is proved.

The EKL execution is the following:
Start with P petrels, two of them in state y, and one of them in each other state.
For i from 1 to card(H), make two petrels in state xi meet, where xi is the state
such that Vxi = hi (there are two such petrels thanks to the propriety on Zi is
the second claim) ��

Note on the key lemma:
The upper-bound on the length of EKL given by the proof is card{{(qj)1≤j<P |qj

∈ N,
∑

j qj = P} which is exponential in P . One can wonder if it has to be large,
or if there is such an execution EKL of size polynomial in P . The answer is that
it might be indeed exponential. Consider the set of states [0, P − 1]. Take y = 0
(that is, start, with two petrels in state 0, and one in each state i ∈ [1, P − 1]),
and let the protocol be that when two petrels in state i meet, one of them gets
in state 0, the other one gets in state (i + 1) mod P .

5 Resume

The TB model

model \ memory Finite Bounded Bounded,k-
fair daemon

Unbounded

deterministic impossible impossible Algorithm 3 Algorithm 1-2

convergence time 4k events depends on which al-
gorithm

probabilistic impossible impossible Algorithm 4 unneeded

convergence time exponential in k

The TBTP model

model \ memory Finite Bounded,α(P ) <
P

Bounded,α(P ) ≥
P

symmetric determinis-
tic

impossible impossible Algorithm 7

convergence time α(P ) = 4P , 3
rounds

asymmetric determin-
istic

impossible impossible Algorithm 5 or 6

convergence time α(P ) = P + 1, 3
rounds α(P ) = P ,
P+1 rounds
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6 Final Remarks

In this article, we have studied the problem of self-stabilizing counting in different
models of mobile sensor networks. We designed different algorithms depending
on the communication model and the class of daemon. We also gave some proof
of impossibility. In the cases where no deterministic (symmetric) solutions exist,
we proposed probabilistic solutions. The knowledge of the size of a population
is at the basis of the solutions of more complex problems, in particular when
different types of population are present.
An interesting perspective could be to model the movement of the sensors, by
random processes for example, in order to improve our algorithms and to get
better bounds for the convergence time.
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Abstract. We introduce the problem of load-distance balancing in assigning
users of a delay-sensitive networked application to servers. We model the service
delay experienced by a user as a sum of a network-incurred delay, which depends
on its network distance from the server, and a server-incurred delay, stemming
from the load on the server. The problem is to minimize the maximum service
delay among all users.

We address the challenge of finding a near-optimal assignment in a scalable
distributed manner. The key to achieving scalability is using local solutions,
whereby each server only communicates with a few close servers. Note, how-
ever, that the attainable locality of a solution depends on the workload – when
some area in the network is congested, obtaining a near-optimal cost may require
offloading users to remote servers, whereas when the network load is uniform, a
purely local assignment may suffice. We present algorithms that exploit the op-
portunity to provide a local solution when possible, and thus have communication
costs and stabilization times that vary according to the network congestion. We
evaluate our algorithms with a detailed simulation case study of their applica-
tion in assigning hosts to Internet gateways in an urban wireless mesh network
(WMN).

Keywords: Local Computation, Distributed Algorithms, Load-Distance Balanc-
ing, Wireless Networks.

1 Introduction

The increasing demand for real-time access to networked services is driving service
providers to deploy multiple geographically dispersed service points, or servers. This
trend can be observed in various systems, such as content delivery networks (CDNs)
[12] and massively multiplayer online gaming (MMOG) grids [8]. Another example
can be found in wireless mesh networks (WMNs) [2]. A WMN is a large collection of
wireless routers, jointly providing Internet access in residential areas with limited wire-
line infrastructure via a handful of wired gateways. WMNs are envisaged to provide
citywide “last-mile” access for numerous mobile devices running media-rich applica-
tions with stringent quality of service (QoS) requirements, e.g., VoIP, VoD, and online
gaming. To this end, gateway functionality is anticipated to expand, and to deploy ap-
plication server logic [2].
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Employing distributed servers instead of centralized server farms enables location-
dependent QoS optimizations, which enhance the users’ soft real-time experience. Ser-
vice responsiveness is one of the most important QoS parameters. For example, in the
first-person shooter (FPS) online game [8], the system must provide an end-to-end de-
lay guarantee of below 100ms. In VoIP, the typical one-way delay required to sustain a
normal conversation quality is below 120ms [10].

Deploying multiple servers gives rise to the problem of service assignment, namely
associating each user session with a server or gateway. For example, each CDN user
gets its content from some proxy server, a player in a MMOG is connected to one game
server, and the traffic of a WMN user is typically routed via a single gateway [2].

In this context, we identify the need to model the service delay of a session as a
sum of a network delay, incurred by the network connecting the user to its server, and a
congestion delay, caused by queueing and processing at the assigned server. Due to the
twofold nature of the overall delay, simple heuristics that either greedily map every ses-
sion to the closest server, or spread the load evenly regardless of geography do not work
well in many cases. In this paper, we present a novel approach to service assignment,
which is based on both metrics. We call the new problem, which seeks to minimize the
maximum service delay among all users, load-distance balancing (Section 3).

Resource management problems in which the assignment of every user to the closest
server leads to unsatisfactory results are often solved centrally. For example, Cisco wire-
less local area network (WLAN) controllers [1] perform global optimization
in assigning wireless users to access points (APs), after collecting the signal strength
information from all managed APs. While this approach is feasible for medium-size in-
stallations like enterprise WLANs, its scalability may be challenged in large networks
like an urban WMN. For large-scale network management, a distributed protocol with
local communication is required.

We observe that, however, load-distance-balanced assignment cannot always be done
in a completely local manner. For example, if some part of the network is heavily con-
gested, then a large number of servers around it must be harnessed to balance the load.
In extreme cases, the whole network may need to be involved in order to dissipate the
excessive load. A major challenge is therefore to provide an adaptive solution that per-
forms communication to a distance proportional to that required for handling the given
load in each problem instance. In this paper, we address this challenge, drawing inspi-
ration from workload-adaptive distributed algorithms [6,14].

In Section 4, we present two distributed algorithms for load-distance balancing, Tree
and Ripple, which adjust their communication requirements to the congestion distri-
bution, and produce constant approximations of the optimal cost. Tree and Ripple dy-
namically partition the user and server space into clusters whose sizes vary according
to the network congestion, and solve the problem in a centralized manner within every
such cluster. Tree does this by using a fixed hierarchy of clusters, so that whenever a
small cluster is over-congested and needs to offload users, this cluster is merged with its
sibling in the hierarchy, and the problem is solved in the parent cluster. While Tree is
simple and guarantees a logarithmic convergence time, it suffers from two drawbacks.
First, it requires maintaining a hierarchy among the servers, which may be difficult in
a dynamic network. Second, Tree fails to load-balance across the boundaries of the
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hierarchy. To overcome these shortcomings, we present a second distributed algorithm,
Ripple, which does not require maintaining a complex infrastructure, and achieves
lower costs and better scalability, through a more careful load sharing policy. The ab-
sence of a fixed hierarchical structure turns out to be quite subtle, as the unstructured
merges introduce race conditions. In the full version of this paper [7], we prove that
Tree and Ripple always converge to solutions that approximate the optimal one within
a constant factor. For simplicity, we present both algorithms for a static workload. In
Appendix A, we discuss how they can be extended to cope with dynamic workloads.

We note that even as a centralized optimization problem, load-distance balancing is
NP-hard, as we show in the full version of this paper [7]. Therefore, Tree and Ripple
employ a centralized polynomial 2-approximation algorithm, BFlow, within each clus-
ter. For space limitations, the presentation of BFlow is also deferred to the full paper.

Finally, we empirically evaluate our algorithms using a case study in an urban WMN
environment (Section 5). Our simulation results show that both algorithms achieve sig-
nificantly better costs than naı̈ve nearest-neighbor and perfect load-balancing heuristics
(which are the only previous solutions that we are aware of), while communicating to
small distances and converging promptly. The algorithms’ metrics (obtained cost, con-
vergence time, and communication distance) are scalable and congestion-sensitive, that
is, they depend on the distribution of workload rather than the network size. The sim-
ulation results demonstrate a consistent advantage of Ripple in the achieved cost, due
to its higher adaptiveness to user workload.

2 Related Work

Load-distance balancing is an extension of the load balancing problem, which has been
comprehensively addressed in the context of tightly coupled systems like multiproces-
sors, compute clusters etc. (e.g., [4]). However, in large-scale networks, simple load bal-
ancing is insufficient because servers are not co-located. While some prior work [8,12]
indicated the importance of considering both distance and load in wide-area settings, we
are not aware of any study that provides a cost model that combines these two metrics
and can be analyzed. Moreover, in contrast with distributed algorithms for traditional
load balancing (e.g., [11]), our solutions explicitly use the cost function’s distance-
sensitive nature to achieve locality.

A number of papers addressed geographic load-balancing in cellular networks and
wireless LANs (e.g., [5,9]), and proposed local solutions that dynamically adjust cell
sizes. While the motivation of these works is similar to ours, their model is constrained
by the rigid requirement that a user can only be assigned to a base station within its
transmission range. Our model, in which network distance is part of cost rather than
a constraint, is a better match for wide-area networks like WMNs, CDNs, and gaming
grids. Dealing with locality in this setting is more challenging because the potential
assignment space is very large.

Workload-adaptive server selection was handled in the context of CDNs, e.g., [12]. In
contrast with our approach, in which the servers collectively decide on the assignment,
they chose a different solution, in which users probe the servers to make a selfish choice.
The practical downside of this design is a need to either install client software, or to run
probing at a dedicated tier.
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Local solutions of network optimization problems have been addressed starting from
[16] ,in which the question “what can be computed locally?” was first asked by Naor
and Stockmeyer. Recently, different optimization problems have been studied in the
local distributed setting, e.g., Facility Location [15], Minimum Dominating Set and
Maximum Independent Set [13]. While some papers explore the tradeoff between the
allowed running time and the approximation ratio (e.g., [15]), we take another approach
– namely, the algorithm achieves a given approximation ratio, while adapting its running
time and communication distance to the workload. Similar methods have been applied
in related areas, e.g., fault-local self-stabilizing consensus [14], and local distributed
aggregation [6].

3 Definitions and System Model

Consider a set of k servers S and a set of n user sessions U , such that k � n. The
users and the servers reside in some metric space, in which the network delay function,
D : (U × S)→ R+, captures the network distance between a user and a server.

Consider an assignment λ : U → S that maps every user to a single server. Each
server s has a monotonic non-decreasing congestion delay function, δs : N → R+,
reflecting the delay it incurs to every assigned session. For simplicity, all users incur the
same load. Different servers can have different congestion delay functions. The service
delay Δ(u, λ) of session u in assignment λ is the sum of the two delays:

Δ(u, λ) � D(u, λ(u)) + δλ(u)(|{v : λ(v) = λ(u)}|).

Note that our model does not include congestion within the network. Typically,
application-induced congestion bottlenecks tend to occur at the servers or the last-hop
network links, which can be also attributed to their adjacent servers. For example, in a
CDN [12], the assignment of users to content servers has a more significant impact on
the load on these servers and their access links than on the congestion within the public
Internet. In WMNs, the effect of load on wireless links is reduced by flow aggrega-
tion [10], which is applied for increasing the wireless capacity attainable for real-time
traffic. The last-hop infrastructure, i.e., the gateways’ wireless and wired links, is mostly
affected by network congestion [2].

The cost of an assignment λ is the maximum delay it incurs on a user:

ΔM (λ(U)) � max
u∈U

Δ(u, λ).

The LDB (load-distance balancing) assignment problem is to find an assignment λ∗ such
that ΔM (λ∗(U)) is minimized. An assignment that yields the minimum cost is called
optimal. The LDB problem is NP-hard. Our optimization goal is therefore to find a con-
stant approximation algorithm for this problem. We denote the problem of computing
an α-approximation for LDB as α−LDB.

We solve the α−LDB problem in a failure-free distributed setting, in which servers
can communicate directly and reliably. The network delay function D and the set of
server congestion functions {δs} are known to all servers. We concentrate on syn-
chronous protocols, whereby the execution proceeds in phases. In each phase, a server
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can send messages to other servers, receive messages sent by other servers in the same
phase, and perform local computation. This form of presentation is chosen for simplic-
ity, since in our context synchronizers can be used handle asynchrony (e.g., [3]).

Throughout the protocol, every server knows which users are assigned to it. At
startup, every user is assigned to the closest server (this is called a NearestServer as-
signment). Servers can then exchange the user information, and alter this initial assign-
ment. Eventually, the following conditions must hold: (1) the assignment stops chang-
ing; (2) all inter-server communication stops; and (3) the assignment solves α−LDB for
a given α.

In addition to the cost, in the distributed case we also measure for each individual
server its convergence time (the number of phases that this server is engaged in com-
munication), and locality (the number of servers that it communicates with).

4 Distributed LD-Balanced Assignment

In this section, we present two synchronous distributed algorithms, Tree and Ripple,
for α−LDB assignment. These algorithms use as a black box a centralized algorithm ALG
(e.g., BFlow [7]), which computes an rALG-approximation for a given instance of the LDB
problem. They are also parametrized by the required approximation ratio α, which is
greater or equal to rALG. Both algorithms assume some linear ordering of the servers,
S = {s1, . . . , sk}. In order to improve communication locality, it is desirable to employ
a locality-preserving ordering (e.g., a Hilbert space-filling curve on a plane [17]), but
this is not required for correctness.

Both Tree and Ripple partition the network into non-overlapping zones called clus-
ters, and restrict user assignments to servers residing in the same cluster (we call these
internal assignments). Every cluster contains a contiguous range of servers with respect
to the given ordering. The number of servers in a cluster is called the cluster size.

Initially, every cluster consists of a single server. Subsequently, clusters can grow
through merging. The clusters’ growth is congestion-sensitive, i.e., loaded areas are
surrounded by large clusters. This clustering approach balances between a centralized
assignment, which requires collecting all the user information at a single site, and the
nearest-server assignment, which can produce an unacceptably high cost if the distri-
bution of users is skewed. The distance-sensitive nature of the cost function typically
leads to small clusters. The cluster sizes also depend on α: the larger α is, the smaller
the constructed clusters are.

We call a value ε, such that α = (1+ε)rALG, the algorithm’s slack factor. A cluster is
called ε-improvable with respect to ALG if the cluster’s cost can be reduced by a factor
of 1 + ε by harnessing all the servers in the network for the users of this cluster. ε-
improvability provides a local bound on how far this cluster’s current cost can be from
the optimal cost achievable with ALG. Specifically, if no cluster is ε-improvable, then
the current local assignment is a (1 + ε)-approximation of the centralized assignment
with ALG. A cluster containing the entire network is vacuously non-improvable.

Within each cluster, a designated leader server collects full information, and com-
putes the internal assignment. Under this assignment, a cluster’s cost is defined as the
maximum service delay among the users in this cluster. Only cluster leaders engage in
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inter-cluster communication. The distance between the communicating servers is pro-
portional to the larger cluster’s diameter. When two or more clusters merge, a leader of
one of them becomes the leader of the union. Tree and Ripple differ in their merging
policies, i.e., which clusters can merge (and which leaders can communicate for that).

4.1 Tree - A Simple Distributed Algorithm

We present a simple algorithm, Tree, which employs a fixed binary hierarchy among
servers. Every server belongs to level zero, every second server belongs to level one,
and so forth (that is, a single server can belong to up to �log2 k� levels). For i ≥ 0 and
l > 0, server i×2l is a level-l parent of servers 2i×2l−1 (i.e., itself) and (2i+1)×2l−1

at level l − 1.
The algorithm proceeds in rounds. Initially, every cluster consists of a single server.

During round l > 0, the leader of every cluster created in the previous round (i.e., a
server at level l− 1) checks whether its cluster is ε-improvable. If it is, the leader sends
a merge request to its parent at level l. Upon receiving this request from at least one
child, the parent server merges all its descendants into a single cluster, i.e., collects
full information from these descendants, computes the internal assignment using ALG,
and becomes the new cluster’s leader. Collecting full information during a merge is
implemented through a sending a query from the level-l leader to all the servers in the
new cluster, and collecting the replies.

A single round consists of three synchronous phases: the first phase initiates the
process with a “merge” message (from a child to its parent), the second disseminates
the “query” message (from a leader to all its descendants), and the third collects the
“reply” messages (from all descendants back to the leader). Communication during the
last two phases can be optimized by exploiting the fact that a server at level l − 1 that
initiates the merge already possesses full information from all the servers in its own
cluster (that is, half of the servers in the new one), and hence, this information can be
queried by its parent directly from it. If the same server is both the merge initiator and
the new leader, this query can be eliminated altogether.

Fig. 1(a) depicts a sample clustering of Tree where 16 servers reside on a 4 × 4
grid and are ordered using a a Hilbert curve. The small clusters did not grow because
they were not improvable, and the large clusters were formed because their sub-clusters
were improvable. Note that the size of each cluster is a power of 2.

Tree guarantees that no ε-improvable clusters remain at the end of some round 1 ≤
L ≤ �log2 k�, and all communication ceases. We conclude the following (the proof
appears in the full paper [7]).

Theorem 1. (Tree’s convergence and cost)

1. If the last communication round is 1 ≤ L ≤ �log2 k�, then there exists an ε-
improvable cluster of size 2L−1. The size of the largest constructed cluster is
min(k, 2L).

2. The final (stable) assignment’s cost is an α-approximation of the optimal cost.

Tree has some shortcomings. First, it requires maintaining a hierarchy among all
servers. Second, the use of this static hierarchy leads it to make sub-optimal merges.
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(a) Sample
Tree clustering

(b) Hard workload
for Tree

(c) Sample
Ripple clustering

Fig. 1. Example workloads for the algorithms and clusters formed by them in a 4 × 4 grid with
Hilbert ordering. (a) A sample clustering {A, B, C, D, E} produced by Tree. (b) A hard work-
load for Tree: 2N users in cell 8 (dark gray), no users in cell 9 (white), and N users in every
other cell (light gray). (c) A sample clustering {A, B, C, D, E} produced by Ripple.

Fig. 1(b) shows an example workload on the network in Fig. 1(a). The congestion delay
of each server is zero for a load below N + 1, and infinite otherwise. Assume that cell
8 contains 2N users (depicted dark gray in the figure), cell 9 is empty of users (white),
and every other cell contains N users (light gray). An execution of Tree eventually
merges the whole graph into a single cluster, for any value of ε, because no clustering
of s1, . . . , s8 that achieves the maximum load of at most N (and hence, a finite cost) ex-
ists. Therefore, due to the rigid hierarchy, the algorithm misses the opportunity to merge
s8 and s9 into a single cluster, and solve the problem within a small neighborhood.

4.2 Ripple - An Adaptive Distributed Algorithm

Ripple, a workload-adaptive algorithm, remedies the shortcomings of Tree by pro-
viding more flexibility in the choice of the neighboring clusters to merge with. Unlike
Tree, in which an ε-improvable cluster always expands within a pre-defined hierar-
chy, in Ripple, this cluster tries to merge only with neighboring clusters of smaller
costs. This typically results in better load-sharing, which reduces the cost compared to
the previous algorithm. The clusters constructed by Ripple may be therefore highly
unstructured (e.g., Fig. 1(c)). The elimination of the hierarchy also introduces some
challenges and race conditions between requests from different neighbors.

We first make some formal definitions and present Ripple at a high level. Following
this, we provide the algorithm’s technical details. Finally, we claim Ripple’s proper-
ties; their formal proofs appear in the full version of this paper [7].

Overview. We introduce some definitions. A cluster is denoted Ci if its current leader
is si. The cluster’s cost and improvability flag are denoted by Ci.cost and Ci.imp,
respectively. Two clusters Ci and Cj (1 ≤ i < j ≤ k) are called neighbors if there
exists an l such that server sl belongs to cluster Ci and server sl+1 belongs to cluster
Cj . Cluster Ci is said to dominate cluster Cj if:
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Message Semantics Size
〈“probe”,id,cost,imp〉 Assignment summary (cost and ε-improvability) small, fixed
〈“propose”,id〉 Proposal to join small, fixed
〈“accept”,id,λ,nid〉 Accept to join, includes full assignment information large, depends on #users

Constants Value
L, R,Id 0, 1, the server’s id

Variable Semantics Initial value
LdrId the cluster leader’s id Id

Λ the internal assignment NearestServer

Cost the cluster’s cost ΔM (NearestServer)
NbrId[2] the L/R neighbor cluster leader’s id {Id− 1, Id + 1}
ProbeS[2] “probe“ to L/R neighbor sent? {false, false}
ProbeR[2] “probe“ from the L/R neighbor received? {false, false}
PropR[2] “propose“ from L/R neighbor received? {false, false}
ProbeFwd[2] need to forward “probe“ to L/R? {false, false}
Probe[2] need to send “probe“ to L/R in the next round? {true, true}
Prop[2] need to send “propose“ to L/R? {false, false}
Acc[2] need to send “accept“ to L/R? {false, false}

Fig. 2. Ripple’s messages, constants, and state variables

1. Ci.imp = true, and
2. (Ci.cost, Ci.imp, i) > (Cj .cost, Cj .imp, j), in lexicographic order (imp and clus-

ter index are used to break ties).

Ripple proceeds in rounds. During a round, a cluster that dominates some (left or right)
neighbor tries to reduce its cost by inviting this neighbor to merge with it. A cluster that
dominates two neighbors can merge with both in the same round. A dominated cluster
can only merge with a single neighbor and cannot split. When two clusters merge, the
leader of the dominating cluster becomes the union’s leader.

Dominance alone cannot be used to decide about merging clusters, because the de-
cisions made by multiple neighbors may be conflicting. It is possible for a cluster to
dominate one neighbor and be dominated by the other neighbor, or to be dominated
by both neighbors. The algorithm resolves these conflicts by uniform coin-tossing. If a
cluster leader has two choices, it selects one of them at random. If the chosen neighbor
also has a conflict and it decides differently, no merge happens. When no cluster domi-
nates any of its neighbors, communication stops, and the assignment remains stable.

Detailed Description. Fig. 2 provides a summary of the protocol’s messages, con-
stants, and state variables. See Fig. 4 for the pseudo-code. We assume the existence
of local functions ALG : (U, S) → λ, ΔM : λ → R+, and improvable : (λ, ε) →
{true, false}, which compute the assignment, its cost, and the improvability flag.

In each round, neighbors that do not have each other’s cost and improvability data
exchange “probe” messages with this information. Subsequently, dominating cluster
leaders send “propose” messages to invite others to merge with them, and cluster lead-
ers that agree respond with “accept” messages with full assignment information. More
specifically, a round consists of four phases:
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s2 accepts s1 and rejects s3.
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(e) Probe forwarding:
s2 forwards to s1, s3 forwards to s4.

Fig. 3. Ripple’s scenarios. Nodes in solid frames are cluster leaders. Dashed ovals encircle
servers in the same cluster.

Phase 1 - probe initiation. A cluster leader sends a “probe” message to neighbor i if
Probe[i] is true (ll. 4–6). Upon receiving a probe from a neighbor, if the cluster domi-
nates this neighbor, the cluster’s leader schedules a proposal to merge (line 53), and also
decides to send a probe to the neighbor in this direction in the next round (line 55). If the
neighbor dominates the cluster, the cluster’s leader decides to accept the neighbor’s pro-
posal to merge, should it later arrive (line 54). Fig. 3(a) depicts a simultaneous mutual
probe. If neither of two neighbors sends a probe, no further communication between
these neighbors occurs during the round.

Phase 2 - probe completion. If a cluster leader does not send a “probe” message to
some neighbor in Phase 1 and receives one from this neighbor, it sends a late “probe”
in Phase 2 (ll. 14–16). Fig. 3(b) depicts this late probe scenario. Another case that is
handled during Phase 2 is probe forwarding. A “probe” message sent in Phase 1 can
arrive to a non-leader due to a stale neighbor id at the sender. The receiver then forwards
the message to its leader (ll. 19–20). Fig. 3(e) depicts this scenario: server s2 forwards
a message from s1 to s4, and s3 forwards a message from s4 to s1.

Phase 3 - conflict resolution and proposal. A cluster leader locally resolves all con-
flicts, by randomly choosing whether to cancel the scheduled proposal to one neighbor,
or to reject the expected proposal from one neighbor (ll. 58–68). Figures 3(c) and 3(d)
illustrate the resolution scenarios. The rejection is implicit: simply, no “accept” is sent.
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Finally, the leader sends “propose” messages to one or two neighbors, as needed (ll.
28–29).

Phase 4 - acceptance. If a cluster leader receives a proposal from a neighbor and ac-
cepts this proposal, then it updates the leader id, and replies with an “accept” message
with full information about the current assignment within the cluster, including the lo-
cations of all the users (line 37). The message also includes the id of the leader of the
neighboring cluster in the opposite direction, which is anticipated to be the new neigh-
bor of the consuming cluster. If the neighboring cluster itself is consumed too, then this
information will be stale. The latter situation is addressed by the forwarding mechanism
in Phase 2, as illustrated by Fig. 3(e). At the end of the round, a consuming cluster’s
leader re-computes the assignment within its cluster (ll. 70–72). Note that a merge does
not necessarily improve the assignment cost, since a local assignment procedure ALG
is not an optimal algorithm. If this happens, the assignment within each of the original
clusters remains intact. If the assignment cost is reduced, then the new leader decides
to send a “probe” message to both neighbors in the next round (ll. 73–74).

Ripple’s Properties. We now discuss Ripple’s properties. Their proofs appear in the
full version of this paper [7].

Theorem 2. (Ripple’s convergence and cost)

1. Within at most k rounds of Ripple, all communication ceases, and the assignment
does not change.

2. The final (stable) assignment’s cost is an α-approximation of the optimal cost.

Note that the theoretical upper bound on the convergence time is k despite potentially
conflicting coin flips. This bound is tight (see [7]). However, the worst-case scenario is
not representative. Our case study (Section 5) shows that in realistic scenarios, Ripple’s
average convergence time and cluster size remain flat as the network grows.

For some workloads, we can prove Ripple’s near-optimal locality, e.g., when the
workload has a single congestion peak:

Theorem 3. (Ripple’s locality) Consider a workload in which server si is the nearest
server for all users. Let C be the smallest non-ε-improvable cluster that includes si.
Then, the size of the largest cluster constructed by Ripple is at most 2|C| − 1, and the
convergence time is at most |C| − 1.

An immediate generalization of this claim is that if the workload is a set of isolated con-
gestion peaks that have independent local solutions, then Ripple builds these solutions
in parallel, and stabilizes in a time required to resolve the largest peak.

5 Numerical Evaluation

In this section, we employ Tree and Ripple for gateway assignment in an urban WMN,
using the BFlow centralized algorithm [7] for local assignment. We compare our algo-
rithms with NearestServer.
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1: Phase 1 {Probe initiation} :
2: forall d ∈ {L, R} do
3: initState(d)
4: if (LdrId = Id ∧ Probe[d]) then
5: i ← improvable(Λ, ε)
6: send 〈“probe“, Id, Cost, i〉

to NbrId[d]
7: ProbeS[d] ← true

8: Probe[d] ← false

9: forall recv 〈“probe“, id, cost, imp〉 do
10: handleProbe(id, cost, imp)

11: Phase 2 {Probe completion} :
12: if (LdrId = Id) then
13: forall d ∈ {L, R} do
14: if (¬ProbeS[d] ∧ ProbeR[d]) then
15: i ← improvable(Λ, ε)
16: send 〈“probe“, Id, Cost, i〉

to NbrId[d]
17: else
18: forall d ∈ {L, R} do
19: if (ProbeFwd[d]) then
20: send the latest “probe” to LdrId

21: forall recv 〈“probe“, id, cost, imp〉 do
22: handleProbe(id, cost, imp)

23: Phase 3 {Conflict resolution & proposal} :
24: if (LdrId = Id) then
25: resolveConflicts()

26: {Send proposals to merge}
27: forall d ∈ {L, R} do
28: if (Prop[d]) then
29: send 〈“propose“, Id〉 to NbrId[d]

30: forall recv 〈“propose“, id〉 do
31: PropR[dir(id)] ← true

32: Phase 4 {Acceptance or rejection} :
33: forall d ∈ {L, R} do
34: if (PropR(d) ∧ Acc[d]) then
35: {I do not object joining}
36: LdrId ← NbrId[d]
37: send 〈“accept′′, Id, Λ, NbrId[d]〉

to LdrId

38: forall recv 〈“accept“, id, λ, nid〉 do
39: Λ ← Λ ∪ λ; Cost ← ΔM (Λ)
40: NbrId[dir(id)] ← nid

41: if (LdrId = Id) then
42: computeAssignment()

43: procedure initState(d)
44: ProbeS[d] ← ProbeR[d] ← false

45: Prop[d] ← Acc[d] ← false

46: ProbeFwd[d] ← false

47: procedure handleProbe(id, cost, imp)
48: d ← dir(id)
49: ProbeR[d] ← true

50: NbrId[d] ← id
51: i ← improvable(Λ, ε)
52: if (LdrId = Id) then
53: Prop[d] ←

dom(Id, Cost, i, id, cost, imp)
54: Acc[d] ←

dom(id, cost, imp, Id, Cost, i)
55: Probe[d] ← Prop[d]
56: else
57: ProbeFwd[d] ← true

58: procedure resolveConflicts()
59: { Resolve ⇐⇐ or ⇒⇒ conflicts}
60: forall d ∈ {L, R} do
61: if (Prop[d] ∧ Acc[d]) then
62: if (randomBit() = 0) then
63: Prop[d] ← false

64: else
65: Acc[d] ← false

66: {Resolve ⇒⇐ conflict}
67: if (Acc[L] ∧ Acc[R]) conflicts then
68: Acc[randomBit()] ← false

69: procedure computeAssignment()
70: Λ′ ← ALG(Users(Λ), Servers(Λ))
71: if (ΔM (Λ′) < ΔM (Λ)) then
72: Λ ← Λ′; Cost ← ΔM (Λ′)
73: forall d ∈ {L, R} do
74: Probe[d] ← true

75: function dom(id1, cost1, imp1,
id2, cost2, imp2)

76: return (imp1 ∧
(imp1, cost1, id1)
>
(imp2, cost2, id2))

77: function dir(id)
78: return (id < Id) ? L : R

Fig. 4. Ripple’s pseudo-code: single round



88 E. Bortnikov, I. Cidon, and I. Keidar

The WMN provides access to a real-time service (e.g., a network game). The mesh
gateways, which are also application servers, form a rectangular grid. This topology
induces a partitioning of the space into cells. The wireless backbone within each cell
is an 16 × 16 grid of mesh routers, which route the traffic either to the gateway, or
to the neighboring cells. The routers apply flow aggregation [10], thus smoothing the
impact of network congestion on link latencies. Each wireless hop introduces an average
delay of 6ms. The congestion delay of every gateway (in ms) is equal to the load. For
example, consider a workload of 100 users uniformly distributed within a single cell,
under the NearestServer assignment. With high probability, there is some user close
to the corner of the cell. The network distance between this user and the gateway is
is 16 wireless hops, incurring a network delay of 16 × 6ms ≈ 100ms, and yielding a
maximum service delay close to 100 + 100 = 200ms (i.e., the two delay types have
equal contribution).

Every experiment employs a superposition of uniform and peaky workloads. We
call a normal distribution with variance R around a randomly chosen point on a plane
a congestion peak. R is called the effective radius of this peak. Every data point is
averaged over 20 runs, e.g., the maximal convergence time in the plot is an average
over all runs of the maximal convergence time among all servers in individual runs.

Sensitivity to slack factor: We first consider a 64-gateway WMN (this size will be in-
creased in the next experiments), and evaluate how the algorithms’ costs, convergence
times, and locality depend on the slack factor. The workload is a mix of a uniform
distribution of 6400 users with 6400 additional users in ten congestion peaks with ef-
fective radii of 200m. We consider values of ε ranging from 0 to 2. The results show
that both Tree and Ripple significantly improve the cost achieved by NearestServer
(Fig. 5(a)). For comparison, we also depict the theoretical cost guarantee of both algo-
rithms, i.e., (1 + ε) times the cost of BFlow with global information. We see that for
ε > 0, the algorithms’ costs are well below this upper bound.

Fig. 5(b) demonstrates how the algorithms’ convergence time (in rounds) depends
on the slack factor. For ε = 0 (the best possible approximation), the whole network
eventually merges into a single cluster. We see that although theoretically Ripple may
require 64 rounds to converge, in practice it completes in 8 rounds even with minimal
slack. As expected, Tree converges in log2 64 = 6 rounds in this setting. Note that
for ε = 0, Tree’s average convergence time is also 6 rounds (versus 2.1 for Ripple)
because the algorithm employs broadcasting that involves all servers in every round.
Both algorithms complete faster as ε is increased.

Fig. 5(c) depicts how the algorithms’ average and maximal cluster sizes depend on
ε. The average cluster size does not exceed 2.5 servers for ε ≥ 0.5. The maximal size
drops fast as ε increases. Note that for the same value of ε, Ripple builds slightly larger
maximal-size clusters than Tree, while the average cluster size is the same (hence,
most clusters formed by Ripple are smaller). This reflects Ripple’s workload-adaptive
nature: it builds bigger clusters where there is a bigger need to balance the load, and
smaller ones where there is less need. This will become more pronounced as the system
grows, as we shall see in the next section.

Sensitivity to network size: Next, we explore Tree’s and Ripple’s scalability with
the network size, for ε = 0.5 and the same workload as in the previous section. We
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Fig. 5. Sensitivity of Tree(ε)’s and Ripple(ε)’s cost, convergence time (rounds), and locality
(cluster size) to the slack factor, for mixed user workload: 50%uniform/50%peaky (10 peaks of
effective radius 200m)

gradually increase the number of gateways from 64 to 1024. Fig. 6 depicts the results
in logarithmic scale. We see that thanks to Ripple’s flexibility, its cost scales better
than Tree’s, remaining almost constant with the network growth (Fig. 6(a)). Note that
NearestServer becomes even more inferior in large networks, since it is affected by
the growth of the expected maximum load among all cells as the network expands.

Fig. 6(b) and Fig. 6(c) demonstrate that Ripple’s advantage in cost does not entail
longer convergence times or less locality: it converges faster and builds smaller clusters
than Tree. This happens because Tree’s rigid cluster construction policy becomes more
costly as the network grows (the cluster sizes in the hierarchy grow exponentially).

Sensitivity to user distribution: In the full paper [7], we also study the algorithms’
sensitivity to varying workload parameters, like congestion skew and the size of con-
gested areas. We demonstrate that whereas our algorithms perform well on all work-
loads, their advantage for peaky distributions is most clear. Here too, Ripple achieves
a lower cost than Tree. The algorithms’ maximal convergence times and cluster sizes
are high only when the workload is skewed.
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6 Conclusions

We defined a novel load-distance balancing (LDB) problem, which is important for
delay-sensitive service access networks with multiple servers. In such settings, the ser-
vice delay consists of a network delay, which depends on network distance, and a con-
gestion delay, which arises from server load. The problem seeks to minimize the maxi-
mum service delay among all users. The α−LDB extension of this problem is achieve a
desired α-approximation of the optimal solution.

We presented two scalable distributed algorithms for α−LDB, Tree and Ripple,
which compute a load-distance-balanced assignment with local information. We studied
Tree’s and Ripple’s practical performance in a large-scale WMN, and showed that
the convergence times and communication requirements of these algorithms are both
scalable and workload-adaptive, i.e., they depend on the skew of congestion within the
network and the size of congested areas, rather than the network size. Both algorithms
are greatly superior to previously known solutions. Tree employs a fixed hierarchy
among the servers, whereas Ripple requires no pre-defined infrastructure, scales better,
and consistently achieves a lower cost.
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A Handling a Dynamic Workload

For the sake of simplicity, both Tree and Ripple have been presented in a static setting.
However, it is clear that the assignment must change as the users join, leave, or move,
in order to meet the optimization goal. In this section, we outline how our distributed
algorithms can be extended to handle this dynamic setting.

We observe that the clustering produced by Tree and Ripple is a partition of a plane
into regions, where all users in a region are associated with servers in this region. As
long as this spatial partition is stable, it can be employed for dynamic assignment of
new users that arrive to a region. In a given region, the leader can either (1) re-arrange
the internal assignment by re-running the centralized algorithm in the cluster, or (2)
leave all previously assigned users on their servers, and choose assignments for new
users so as to minimize the increase in the cluster’s cost.

Tree and Ripple can be re-run to adjust the partition either periodically, or upon
changes in the distribution of load. Simulation results in Section 5 suggest that the
overhead of re-running both algorithms is not high. However, this approach may force
many users to move, since the centralized algorithm is non-incremental. In order to
reduce handoffs, we would like to avoid a global change as would occur by running
the algorithm from scratch, and instead make local adjustments in areas whose load
characteristics have changed.

In order to allow such local adjustments, we change the algorithms in two ways.
First, we allow a cluster leader to initiate a merge whenever there is a change in the
conditions that caused it not to initiate a merge in the past. That is, the merge process
can resume after any number of quiet rounds. Second, we add a new cluster operation,
split, which is initiated by a cluster leader when a previously congested cluster becomes
lightly loaded, and its sub-clusters can be satisfied with internal assignments that are no
longer improvable. Note that barring the future load changes, a split cluster will not
re-merge, since non-improvable clusters do not initiate merges.

This dynamic approach eliminates, e.g., periodic cluster re-construction when the
initial distribution of load remains stationary. Race conditions that emerge between
cluster-splitting decisions and concurrent proposals to merge with the neighboring clus-
ters can be resolved with the conflict resolution mechanism described in Section 4.2.
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Abstract. This paper presents an improved and time-optimal self-
stabilizing algorithm for a major task in distributed computing- a rooted
spanning tree construction. Our solution is decentralized (“truly dis-
tributed”), uses a bounded memory and is not based on the assumption
that either n (the number of nodes), or diam (the actual diameter of
the network), or an existence of cycles in the network are known. The
algorithm assumes asynchronous and reliable FIFO message passing and
unique identifiers, and works in dynamic networks and for any network
topology.

One of the previous time-optimal algorithms for this task was designed
for a model with coarse-grained atomic operations and can be shown not
to work properly for the totally asynchronous model (with just “read”
or “receive” atomicity, and “write” or “send” atomicity). We revised the
algorithm and proved it for a more realistic model of totally asynchronous
networks.

The state in the presented algorithm does not stabilize until long after
the required output does. For such an algorithm, an increased asynchrony
poses much increased hardness in the proof.

1 Introduction

A system that reaches a legal state starting from an arbitrary one is called self-
stabilizing [15]. The stabilization time is the time from the moment of the faults
till the system reaches a legal state.

The task of a directed spanning tree construction requires the marking, in
each node, of some of the node’s edges such that the collection of marked edges
forms a tree. Moreover, we mark in each node the edge leading to its parent
on the tree. Given a spanning tree, most of the major tasks for distributed
network algorithms become much easier, including the tasks of reset, broadcast,
topology learning and updating, mutual exclusion, voting, committing, querying,
scheduling, leader election, and others.

In this extended abstract, we directly address only the task of constructing a
spanning tree with diam height in O(diam) time, but this, together with the
method of [9], also yield an O(diam) time reset algorithm. In the context of self
stabilization, it was observed that a self stabilizing reset protocol can translate
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a non-self stabilizing protocol into a self stabilizing one [4,9,6,7]. Another ap-
plication of a reset protocol is to translate protocols that use unbounded event
counters (e.g. sequence numbers of messages) to use bounded ones [8]. These
applications of the reset simplify protocols’ design.

An optimal self stabilizing algorithm for constructing a spanning tree was
presented in [7]. As opposed to some previous protocols, it was not based on the
assumption that either n (the number of nodes) or diam (the actual diameter
of the network) or an existence of cycles in the network were known. It used a
bounded memory. For that, it assumed that some bound on the diameter was
known. This bound may have been very large, but it did not affect the time
complexity which was O(diam). The effect of the bound on the size of the
memory was only polylogarithmic.

The algorithm of [7], however, was designed for a model with a coarse-grained
atomicity. That is, it assumed that a node could read a value of a variable
written by a neighbor, and also perform an operation based on that read value
in one atomic step. Only after both actions, could the neighbor change the value
of its own variable. We show a scenario where that algorithm does not yield a
correct result in a totally asynchronous model, that is, when an atomic operation
contains either a read, or a write, but not both.

In this paper, we modify the algorithm of [7] so that it functions correctly also
in a fully asynchronous environment. We kept the main algorithmic ideas of [7],
while adding a few tricks that may prove useful in translating also other such
protocols. The main contribution of this paper is in the proof that the algorithm
after the changes is correct for the more realistic asynchronous send/receive
atomicity model (similar to ”Atomic Read/ Atomic Write” model, but for a
message passing model).

Note, that combining the algorithm in [7] with some existing efficient trans-
former (e.g. [10] or [26]) to refine the atomicity would not have yielded optimal
stabilization times in our case. When such a transformer is combined with a
coarse-grained atomicity algorithm, a resulted fine-grained atomicity algorithm
suffers from a reduction in concurrency due to the mutual exclusion procedures
used in the implementation of the transformer. This loss of concurrency results
in a higher than a constant delay (up to Ω(n)) between two successive atomic
step executions by a particular process.

Numerous self stabilizing reset and spanning tree algorithms that were less
efficient than [7] also appeared. We mention some of them below. Many (starting
with [17]) championed the claim that a self stabilizing algorithm should use fine-
grained atomic operations. We did not see how to use the methods used in [17]
(for making their O(n) time algorithm work under fine-grained atomicity) to
make the algorithm of [7] also work for fine-grained atomicity. We note that
moving from a coarse-grained atomicity to fine-grain atomicity of operations is
even impossible for some tasks in some models, and for other tasks it is tricky.
This is especially tricky for the algorithm of [7], since the latter keeps multiple
trees that do not stabilize in the required time O(diam), although the output in
their algorithm does stabilize in O(diam) time in the coarse-grained operations
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model. The proof requires us to reason about these not yet stabilized trees (to
show that they do not prevent also the output tree from stabilizing in O(diam)
time). Proving a property of a not yet stabilized tree is made more difficult by
the asynchronicity. It would have been much easier to prove that some condition
holds for a node in a tree if it was certain (as it is in a coarse-grain atomicity
model) that this node has not lost its parent or children without yet knowing
about the loss. The current paper makes this necessary step from coarse-grained
atomicity to asynchronous networks for the major tasks it solves.

Other related work. Due to the lack of space, we give here a somewhat lim-
ited survey of the related work for the well-studied problem of a spanning tree
construction. A thorough survey is deferred to the full paper [12].

In [3], a spanning tree construction algorithm with the stabilization time of
O(n2) (where n is unknown) is given. In [18], a randomized spanning tree pro-
tocol is given implicitly, with the expected stabilization time of O(diam · logn),
where diam is unknown. (If n is known in advance then the stabilization time
is O(diam)). In [5], the time complexity is O(diam) (where diam is unknown),
but the memory space (and the length of a message) is not bounded. In [2] and
[19,13,14], generic self-stabilizing solutions solving also the task of a spanning
tree construction are given. These papers present algorithms for weaker models
(with unidirectional communication links and even with unreliable communica-
tions in [13,14]), but the time-optimal stabilization is not achieved in them. In
[20], an algorithm for maintaining a spanning tree for a completely connected
topology stabilizes in O(logn/loglogn) with high probability. In [24], a com-
pletely connected topology is assumed too, but the model is weaker than in [20].
In [25], a self-stabilizing algorithm for a minimum spanning tree construction is
presented for an asynchronous message-passing reliable network. The time com-
plexity in [25] depends on n (and hence, cannot be time-optimal). In addition,
that algorithm of [25] requires a bound on the time that it takes to travel over
a path of n nodes in the network. In [23] and [1], spanning tree algorithms for
ad hoc networks with larger than O(diam) stabilization times are given. For
an additional survey one can refer to [21]. Finally, we note that the algorithm
presented in this paper can be combined with some hierarchial structure (e.g.
[22]) to improve the stabilization time in some favorable settings (see [22]), but
not in the worst case.

1.1 Notations and Model of Computation

System Model. The system topology is represented by an undirected graph
G = (V, E), where nodes represent processors and edges represent communica-
tion links. Each node has a unique identifier denoted by ID. The number of the
nodes is denoted by n = |V |. The actual diameter of the graph is denoted by
diam. We assume that there is a known upper bound on the diameter of the
network, denoted by D and called the bound. This upper bound serves only for
the purpose of having finite space protocols, and does not appear in the time
complexity. For v ∈ V , we define N(v) = {u | (v, u) ∈ E}, called the neighbors
of v. We assume that the topology is dynamically changing- node/link addition
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or removal are possible (and modeled as faults). We consider an asynchronous
message passing network model. The message delivery time can be arbitrary, but
for the purpose of time analysis only, we assume that each message is delivered
in at most one time unit. On each link, messages are delivered in the same or-
der as they have been sent. The number of messages that may be in transit on
any link in each direction and at the same time is bounded by some parameter
B (independent of the network size). It is necessary, as shown in [16], for self
stabilization.

We adopt the usual definitions of the following: a local state of a node (an
assignment of values to the local variables and the program counter); a global
state of a system (the cross product of the local states of all the nodes, plus the
contents of the links); the semantics of protocol actions (possible atomic (com-
putation) steps and their associated state changes); an execution of a protocol P
(a possibly infinite sequence of global states in which each element follows from
its predecessor by the execution of a single atomic step of P).

Informally, a distributed system allows the processors to execute steps con-
currently; however, when processors execute steps concurrently, we assume that
there is no influence of these concurrent steps on each other. To catch this for-
mally, we assume that at each given time, only a single processor executes a
step. Each step consists of an internal computation and a single communication
operation: a send or receive. Every state transition of a process is due to a com-
munication step execution (including the following local computations). Let us
call this the send/receive atomicity network model.

Fault Model. The legality predicate (defined on the set of global states) of
our protocol becomes true when the collection of internal variables of the nodes
defines a spanning tree with diam height, rooted at the minimal ID node. A
protocol is called self-stabilizing if starting from a state with an arbitrary number
of faults (or from an arbitrary state) such that no additional faults hit the
system for “long enough”, the protocol reaches a legal global state eventually
and remains in legal global states thereafter. When this happens, we say that
the stabilization has occurred. The maximum number of time units that takes
to reach the stabilization is called the stabilization time of the protocol.

2 The Algorithm

Due to the fine-grained communication atomicity, we use the notion of base and
image variables. Each node v has a set of internal variables it writes to- the
base variables. Consider some base variable of v, varv. Every neighbor u of v
maintains an internal copy of varv in its corresponding image variable varu[v] at
u. The copies get their values from InfoMsgmessages sent from v to u repeatedly.
Node u reads varu[v] for algorithm computations. By then, this copy can have
a different value then varv at v, if v has changed it meanwhile. This is the main
difficulty encountered by the current paper, as opposed to [7].
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2.1 Ideas Adopted from [7]

The algorithm runs multiple versions of the Bellman-Ford’s algorithm ([11], see
Rule 1 bellow). When running a single version alone, a stabilized tree results
(this was observed by [17] for their algorithm which is similar to Bellman-Ford’s,
and by [7] and others for Bellman-Ford’s algorithm itself). The stabilized tree
is rooted at the minimal ID node in the network and the stabilization occurs
in O(D) time when D is given. This is similar e.g. to [6,17]. Therefore, if the
bound parameter D is close to the actual diameter diam, Rule 1 is close to
optimal. Unfortunately, typically, a hardwired bound will be much larger than
the actual diameter, to accommodate for extreme cases, and to have room for
scaling up the network size. Nevertheless, coming up with some bound is pretty
easy. Hence, log D + 1 versions are run in parallel. Each version i, 0 ≤ i ≤
log D, executes the Bellman-Ford version with bound parameter 2i. Versions
with ”large enough“ bound parameters 2i (the “higher versions”) will stabilize
to a desired spanning tree in O(2i) time. However, the other versions (the “lower
versions”) can stabilize only in Θ(n) as demonstrated in [7]. The trick there was
that one does not need the smaller i versions to stabilize. One only needs them
to detect and inform each node that the version has not yet constructed the
required spanning tree which contains all the nodes. This is done by the standard
technique of a broadcast over a tree. That is, each version i maintains at each
node two bits: up cover and down cover. Using the up cover bit, nodes report
towards the root that the version tree has not yet spanned all the nodes; this
information is propagated up the tree by having each node take a logical and of
the up cover bits of its children repeatedly. The purpose of the down cover bit is
to disseminate this fact down the tree, by having each node copy the down cover
bit of its parent repeatedly. See Rule 2.

Then, each node v selects its output by finding the minimum i such that
down coverv = 1 for version i. The tree edges of that version are the output of
the combined protocol.
A Counter Example. In the sequel we mention some problems that prevent
one from using the solution of [7] in the weaker model we address in this paper.
This is demonstrated in [12], because of the lack of space here. We just mention
here that the problems manifest in the trees that have not stabilized yet, when
the output was supposed to have stabilized already. In an asynchronous network,
such a not yet stabilized tree may “pretend” successfully to have stabilized, and
to cover the network.

2.2 Revising the Algorithm
Now, we introduce three mechanisms we incorporate in the new algorithm to
make the ideas above also work in the weaker model we use.
• Non-stabilization Detector: The algorithm of [7] propagated up a tree the
information that a node in that tree has a neighbor not in the tree. This informa-
tion turned out to be unstable, causing the counter example mentioned above.
Hence, we augment the above with a new notion of local “non-stabilization de-
tector”: if it looks as if any of the neighbors of a node v may still have to
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change its state, then v observes that the current configuration is not yet sta-
ble, and propagates this observation upwards. Below, we give the formal def-
inition of this idea- the consistentv predicate for each node v (see Def. 1).
Now, in contrast with the previous solution, the definitions of the rules for the
up cover and down cover bits use the consistent predicate. They are given in
Rule 2.
• Strict Communication Discipline: We adopt this module as is from [4] (see
Sec. 2.3 below). The main property of the discipline is that before a node v
may change any of its base variables, all its neighbors “know” the value of v’s
base variables (see Lem. 3). The proof of Lem. 4 uses this property heavily.
• Local Reset: We use this mechanism to ensure the following. Whenever a
node v changes the values of its tree variables (line 6, Fig. 1), no neighbor u
considers v as its parent (that is, paru = v). Note, that in our model this is not
a condition that v can check directly, since by the time v reads u’s variables, u
may have changed them. We found this property very useful in several places
in the proof. For example, whenever a node joins a tree on some specific path
called a legal branch (see Def. 4), it joins initially with up cover = 0 (Lem. 7).
This helps to prove that even though the lower versions trees do not stabilize
(at least, not in O(diam) time), their up cover does stabilize to zero (Lem. 8).
Lines 6-11 (Fig. 1) implement the local reset mechanism.

Intuitively, the main difficulty the revised algorithm overcomes is the follow-
ing. Consider a branch of a tree whose nodes have a root value of v, however,
they are disconnected from v. (A formal definition of this structure we call a
“sprig” will follow (Def. 3).). Note, that v does exist. This phenomena is dif-
ferent than branches of a tree of a ghost root- that is, branches with nodes
whose root variable contains an ID of a node that does not exist. The latter
branches disappear by time Tvalid = O(2i) for version i (see Def. 2 and Obs. 1),
but new sprigs can be created by the lower versions of the algorithm up until
time Ω(n). We needed the above revisions in the algorithm to show that the
sprigs do not confuse themselves to have up cover = 1 (Lem. 10). Nor do they
confuse the nodes of the legal tree of v (nodes that are indeed connected (via a
chain of parent markings) to v where v is the value of their root variable). See
Lem. 8.

2.3 Algorithm Details

Variables. Graph property variables are represented using a boldface font,
as in dist(v, u), which denotes the true distance in the graph between nodes v
and u. Protocol variables are represented using teletype font. The variables
appearing and manipulated in the code of Fig. 1 are local protocol variables of
process v. The subscript v of each variable in the figure emphasizes that fact.

Each node u ∈ V sends a set of values of its internal variables (its base vari-
ables) periodically to all its neighbors by an InfoMsgu message. Each neighbor
v of u copies these values to its local copies (to simplify the code, we omit this
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simple operation from the algorithm code, but we assume it is performed for
each message receive event). The copy of a variable varu at v (an image variable
of u at v) is denoted by varv[u]. Node u does not send its neighbors any of its
image variables.

Note, that for each v ∈ V, in addition to N(v), we use a variable Nlistv which
is a local list of node identities such that the incident link from v to each node
u in the list is believed to be operational and the processor at each such node u
is also believed to be up.

A detailed verbal explanation of all the variables appears in [12].

Communication Discipline. Every node sends the InfoMsg messages repeat-
edly, using the communication discipline mentioned above. We treat the disci-
pline as being embodied by a lower layer process. Whenever any InfoMsg arrives
at some node v, the discipline (layer) copies the content of the message into the
appropriate image variables. Then, the communication discipline can decide ei-
ther to pass the message to the higher level algorithm or to discard it. If it
decides to pass the message, we say that InfoMsg is accepted (then, this mes-
sage is processed according the code in Fig. 1). Otherwise, we say that InfoMsg
is received (and no further processing takes place). Note, that in both cases, v
copies the message content (receives InfoMsg). For the complexity analysis, we
define a time step, which is the maximum time for a message to get accepted
(it is equivalent to 3 time units). Lem. 3 states the communication discipline
property formally.

Algorithm Formal Definition. The formal code for version i of the algorithm
in node v appears in Fig. 1; it applies Rules 1 and 2 below. In each iteration,
node v outputs its tree edges according to the lowest version in v for which
up cover = 1.

Rule 1. (Bellman-Ford with IDs and Bound Parameter D (used in [11,17,6] for
a single version)) Let v be a node.
1. rv ← min {IDv, rv[u]} where u ∈ Nlistv and dv[u] < D.

2. dv ←
{

1 + min {dv[u] : u ∈ Nlistv and rv = rv[u]} , if rv = IDv ,
0, if rv = IDv .

Definition 1. (Used in Rule 2 below)
• The parent of a node v, denoted parv, is (supposed to be) the smallest ID
neighbor u of v for which rv = rv[u] and dv[u] = dv − 1, if rv = v. Otherwise,
if rv = v, the parent of v is null.
• The children of v, denoted childv, are the set {u | parv[u] = v}.
• Given a node v, the predicate consistentv is defined by∧

u∈Nlistv
(rv[u] = rv) ∧ (|dv[u]− dv| ≤ 1) ∧
(u = parv ⇐⇒ u is the minimal ID node such that dv−dv[u] = 1)∧
(dv[u]− dv = 1 =⇒ parv[u] ≤ v)

• Node v is a consistent node, if consistentv = true.
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Rule 2
Calculate parv, childv, and consistentv such that they conform to Def. 1.

up coverv ←

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
consistentv, if childv = ∅∧

u∈childv

up coverv[u] , if childv = ∅ ∧ consistentv

0, otherwise

down coverv ←
{
down coverv[parv] ∧ consistentv, if rv = v
up coverv ∧ consistentv, if rv = v

Procedure Send() (* sending InfoMsgv *)

1 Send InfoMsgv ≡ [ rv, dv, parv, local resetv, up coverv, down coverv ] to Nlistv

Procedure LocalReset() (* performing a local reset *)

2 rv ← v, dv ← 0, down coverv ← up coverv ← 0, local resetv ← true
3 Send()

Do forever:

4 Send() (* this line is executed atomically *)

Upon accepting InfoMsgv[u] message from neighbor u ∈ Nlistv

(* the following is executed atomically (not including reception) *)

5 Use Rules 1, 2 to calculate temporary variables as follows:
a temporary variable t varv for each varv computed in the rules.

(* tree changes generate a local reset *)
6 if [ ¬local resetv ∧ (parv �= t parv ∨ rv �= t rv ∨ dv �= t dv) ]

∨
(* reset propagates down the tree *)

7 [ ∃u ∈ Nlistv : local resetv[u] ∧ u = parv ]
∨
(* local reset not yet completed *)

8 [ local resetv ∧ ∃u ∈ Nlistv : parv[u] = v ]
∨

(* candidate parent reset not yet completed *)
9 [ local resetv ∧ t parv �= null ∧ local resetv[t parv] ]

then
10 LocalReset()
11 return

end if
(* a local reset exit (if local resetv switches from true to false ) *)

12 local resetv ← false

13 Update each variable varv by the value of the temporary variable t varv.
14 Send()

Fig. 1. Algorithm for version i at node v
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3 Preliminary Analysis

In the following analysis, we prove stabilization assuming that there are no faults
or topological changes after some time t0 = 0 (at least till the time when algo-
rithm reaches a global legal state).

From now on, let us consider the execution of the algorithm after time t = 2
(2 time steps after time t0). It is easy to see that after 2 time steps, no damaged
(by faults) messages exist in the network and at least one authentic InfoMsg
message has been accepted at each node from each neighbor.

Definition 2. Consider a node v ∈ V and some time T .
• Let Tvalid be time t0 + 2 + 2i.
• Node v is a root node, if rv = IDv (≡ v).
• If rv /∈ {IDu|u ∈ V}, then rv is a ghost root.
• Let u ∈ N(v). If at time T , varu[v] = varv, we say that node u knows the
value of varv at T .
• The depth of v is depth(v) def= max {dist(v, u) | u ∈ V }.
• Let us denote by vmin the node with the minimum ID that exists in the network.
• Let us denote by a local reset operation of node v an invocation of the
LocalReset() procedure at line 10 of the algorithm code.
• Assume that node v performs a local reset operation at time T . We denote
by a local reset exit the first time after time T when v executes line 12 of the
algorithm code.
• Let us denote by a local reset mode the state of node v between a local reset
operation and the subsequent local reset exit at v.

Lem. 1 is a rather known property of Bellman-Ford’s algorithm. Its proof, as
well as some of the following proofs, due to the lack of space, appear in [12].

Lemma 1. Starting from any initial assignments of the d and r variables, for
any node v, after t time steps, dv ≥ min(t,dist(rv, v)).

The following observation follows from Lem. 1 and Rule 1-1. (Note, that for
every ghost root v, dist(rv, v) = ∞.)

Observation 1. After time Tvalid, for every node v, rv is not a ghost root and
dv ≥ dist(v, rv).

Definition 3. Let 0 ≤ k ≤ n− 1. Let v, xj ∈ V for each 0 ≤ j ≤ k.
• A parent path of v to x0 is a path of nodes (x0, x1, x2, . . . , xk = v) such that
for each j, rxj = rv and for each 1 ≤ j ≤ k, parxj

= xj−1.
• We say that v is a descendant of x0 and x0 is an ancestor of v.
• A connection path of v is a parent path of v to rv = x0 such that x0 is a root
node. Let us denote a connection path of v (to x0) by Cv(x0).
• Node v is connected (to node x0) if there is a connection path of v (to x0).
• Let rv = x0. If node v has no connection path, node v is disconnected (from
node x0).
• Let a sprig of v be a maximal set of nodes X ⊂ V that satisfies the following
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conditions: (1) v /∈ X; (2) ∀x ∈ X, rx = v and x is disconnected; (3) Every
ancestor or descendant x of any x0 ∈ X is in X.
• Let us denote some sprig A of v at time t by Av(t).

The following is one of our main lemmas. Informally, we found it harder to ensure
properties for sprigs than for legal trees. We use the following lemma to show a
property of sprigs that is somewhat similar to the property of the d values in a
legal tree (shown in Lem. 1). Informally, the lemma shows that a node’s d is high
if it remains in the same sprig for a long time (an “old” sprig). This may not
hold for a node who leaves one sprig (having a high d) and joins another (with
a lower d). Such a leave and join may happen even very late in the execution
since new sprigs may be created very late in the execution. However, we handle
such “new” sprigs later.

Lemma 2. Consider nodes v, u ∈ V. Let t ≤ 2i and t1 > 2. Let α be the
following set of assumptions on u: (1) node u is disconnected from ru = v;
(2) node u does not change its ru value. If α holds for u during the whole time
interval [t1, t1 + 2t], then at time t1 + 2t, du ≥ t.

Proof: By induction on the time t. For t = 0, the lemma holds since du ≥ 0
always. Assume, that the lemma holds for t = k for every node. For t = k + 1,
assume that α holds for some node u for the time interval [t1, t1+2(k+1)]. By Def.
3, node u is disconnected and is not a root. Hence, paru = null. When α holds,
node u cannot change its paru. Otherwise, the condition at line 6 must hold
beforehand and then, u must perform a local reset and assign ru ← u (becoming
a root) in line 2- a contradiction to α. Hence, for some node w ∈ Nlist(u),
w = paru throughout [t1, t1 + 2k + 2].

Let δ be an InfoMsg message sent by w at time tsent and accepted at u at
time trcv such that δ is the last such message accepted at u by time t1 + 2k + 2.
By our model assumptions on communication links , trcv ≥ t1 +2k+1. Hence, δ
is sent by w at tsent ≥ t1 + 2k. Clearly, α holds at w during [t1, tsent], otherwise
it would not have held in u during [t1, trcv] since in that case, either u would
have been connected (if w would have been connected) or some InfoMsgw and
line 6 of the algorithm would have caused u to perform a local reset and become
a root, violating α. Hence ,by the induction hypothesis, dw ≥ k at time t1 + 2k.

Moreover, if dw is changed at w in [t1, tsent], then InfoMsgw stating this fact
and line 6 of the algorithm would have caused u to perform a local reset and
become a root, violating α. Thus, dw stays unchanged during [t1, tsent]. Hence,
dw ≥ k during the whole interval [t1, tsent] and du[w] ≥ k at u during the whole
of [t1, t1 + 2k + 2]. Now, since paru = w during whole [t1, t1 + 2k + 2], by
Rule 1, du = du[w] + 1 during whole this interval. Thus, at time t1 + 2k + 2,
du = du[w] + 1 ≥ k + 1. Hence, the lemma holds for t = k + 1 too.

The following lemma is ensured by the communication discipline, which we as-
sume for the algorithm (Sec. 2.3). The lemma is proved in [7]- Lem. 4.2 (we
reworded it somewhat).

Lemma 3. [7] If at some time T , after time t0 +2, some node v changes any of
its base variables, then, at time T , ∀u ∈ Nlist(v), for every base variable varv
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of v, varu[v] = varv (u’s image variable of varv equals varv at time T ; or in
other words, node u knows the value of varv at time T ).

The following lemma can be proven for our algorithm, but not for the previous
one [7]. This proved to be a major reason why our algorithm can function in the
atomic send / atomic receive model.

Lemma 4. Assume that at some time T , some node u with paru = w assigns
paru ← w. Then, at time T , ∀v ∈ Nlist(u), parv = u.

Proof: (see Fig. 2) To prove the lemma, we assume, by way of contradiction,
that some neighbor v of u assigns1 parv ← u before or at time T and parv = u
holds till time T inclusively.

To assign a new value to paru, node u must execute line 13 at time T (also see
line 5 and Rule 2). This requires that just before that, u was at a local reset mode
and performed a local reset exit at line 12. Since u changes a base variable at time
T , by Lem. 3, every neighbor v′ of u (and v in particular) knows at time T that
u is in a local reset mode (local resetv′ [u] = true). Let time T ∗ be the first
time when v assigns local resetv[u] ← true such that local resetv[u] stays
true until T inclusively. Recall, that we consider the execution of the algorithm
after time t=2. Thus, due to line 9, it is guaranteed that v does not change its
parent pointer to point at u (v cannot perform parv ← u) throughout [T ∗, T ].
(A local reset operation and then its exit must precede any tree structure base
variables change at any node; but, a local reset exit is impossible at v in [T ∗, T ],
since the condition at line 9 holds throughout this time interval.)

Let T x be the time when v sends message InfoMsgv x that is the last one to be
received by u from v before time T . This message must cause u to set paru[v] = u,
otherwise, by the condition at line 8, u cannot become a descendant of w at time
T . Hence, at time T x, parv = u holds at v. Thus, and due to the guarantee of the
time interval [T ∗, T ] that we have shown above, we must assume that v assigns
parv ← u (at line 13) in the time interval (T x, T ∗). When this happens, v sends
an InfoMsgv (= y) (line 14) with this new information (parv = u) to u.

Recall, that by Lem. 3, node u learns at some time T ∗ < T ∗∗ < T that its
neighbor v knows that u is in a reset mode (at T ∗∗, u learns that local resetv

[u] = true). Clearly, for u, to learn this, a message of the communication dis-
cipline should be sent from v at or after time T ∗ and should be received at u
before time T . Let z be such a message. We proved above that message y is sent
before T ∗. Hence, and because of the FIFO assumption for each link, message y
is received at u before message z, and thus, before time T ∗∗ and before T. Since
InfoMsg message y is sent after InfoMsg message x, it should arrive at u after
x, but we have assumed above that x is the last InfoMsg to be received from
v just before time T . Thus, y = x - a contradiction since these messages bear
different information about the value of parv.

1 The algorithm calculates the par pointers by invoking Rule 2 at line 5 and then
assigns them at line 13 (Fig.1).
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Fig. 2. Illustration for the proof of Lem. 4

4 Analysis of the Lower Version Case (2i < depth(vmin))

In this section we prove for every node in every lower version that down cover = 0
holds in O(2i) time steps and remains thereafter. First, we prove this for legal
trees and then for sprigs. To prove this for legal trees, we use the notion of a legal
branch. There may be several shortest pathes between two nodes, however, only
one of them is a legal branch as defined in the following definition. (This matches
the way parent pointers are chosen by the algorithm. See Def. 1.)

Definition 4. Let u, v ∈ V.
• Node u is foreign to node v if after time Tvalid, ru = v always.
• Let u be foreign to v. A legal branch Rv(u) of v via u is a shortest path between v
and u (x1 = v, x2, . . . , xk = u) s.t. 1 ≤ k ≤ dist(v, u)+1 and for each 2 ≤ j ≤ k,
xj−1 is the smallest ID neighbor of xj with dist(v, xj−1) = dist(v, xj)−1. Denote
the length of Rv(u) by |Rv(u)|.

Lemma 5. If 2i < depth(vmin), then after time Tvalid, for each node v, there
exists a node u such that u is foreign to v and either (1) dist(v, u) = 2i + 1 or
(2) dist(v, u) < 2i + 1 and v > u.

Definition 5. Let v, w ∈ V.
• Let fv = u for some u as defined in Lem. 5.
• A zero path of node v, denoted by Zv, is a maximal parent path of nodes
{x|∃Cx(v) ∧ x ∈ Rv(fv)}. A fringe node of Zv is w ∈ Zv which is the furthest
node (in the number of hops) from v. Then, we also denote a zero path of v by
Zv(w) and its length by |Zv(w)| (or |Zv|).

Note, that every root node has a zero path (possibly containing only a root).
A zero path may change dynamically in time. Nodes may join and leave a zero
path. A zero path may “disappear” (if a root node stops to be a root) and
“reappear” (if a node becomes a root again). The set of a zero paths stabilizes
only in Ω(n) in some cases. Yet, by the following lemmas 6 to 8, we show that
up cover = 0 holds at every node of every zero path that exists after a certain
time that is O(2i) time after the starting time t0. The proofs of lemmas 6 - 8
establish an induction on the order of the nodes on a zero path, starting from
a fringe node neighboring to a foreign node and proceeding to the root. This
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induction shows that up cover stabilizes fast to zero over each legal tree (one
that has a root, as opposed to a sprig that is disconnected from its root). Let
us comment that we needed to introduce the notion of a legal branch for these
proofs. Moreover, we needed to add the check (in the consistent predicate, in
Rule 2) that a branch is indeed legal when up cover is updated. The proofs of
lemmas 6 - 8 appear in [12].

Lemma 6. Let v, u ∈ V and let u be a fringe node of Zv (a zero path of v), at
some time T after Tvalid. Then, if u stays a fringe node of Zv, in at most 1 time
step, at time T ≤ T 1 ≤ T + 1, up coveru ← 0.

Lemma 7. Let v, u ∈ V and assume that u joins a Zv (a zero path of v) at
some time T after Tvalid (u was not in Zv just before T ). Then, at time T ,
up coveru ← 0.

Lemma 8. Let v, u, x ∈ V and Zv(x) be a zero path of v. Let u ∈ Zv(x) be such
that dist(v, u) = dist(v, fv) − j (for some 1 ≤ j ≤ dist(v, fv) ≤ 2i + 1). Then,
after Tvalid + j time steps, up coveru = 0.

Let Tccover be the time that is Tvalid + 2 · 2i time steps after time t0. By lemmas
8 and 4 and Rule 2, it is easy to show that down cover also stabilizes fast to
zero on legal trees. Thus, Lem. 9 also follows.

Lemma 9. After Tccover time for any connected node u ∈ V the following holds:
down coveru = 0.

To conclude the analysis for versions for which 2i ≤ depth(vmin), we need to
show that for every node u that is disconnected from ru (u is a sprig node),
down coveru = 0 holds in O(2i) time steps and remains such thereafter too.
First, let us formalize all the possible modifications that a sprig can encounter.
Note, that there may exist several sprigs of v at the same time.

Definition 6. Consider a sequence of events in the execution, and let tj be the
time of the j-th event in the sequence. Consider some sprig Av(tj). At time tj+1,
we consider sprigs that are non-empty and that have non-empty intersection
of nodes with the original sprig Av(tj). That is, we consider all the possible
modifications of Av at time tj+1:
(1) Sprig Av(tj+1) = ∅ is one of the following:
– Av(tj).
– Av(tj)∪{x} (a join of node) for some x /∈ Av(tj). Note, that by Lem. 4, x has
no descendants at tj+1. (Also, w.l.o.g., no two events happen at the same time.)
– Av(tj) \ {y} (a loss of node) for some y ∈ Av(tj).
(2) Non-empty sprigs A1v(tj+1), A2v(tj+1), · · · such that A1v(tj+1)∪A2v(tj+1)∪
· · · {z} = Av(tj) (a split of sprig Av) for some node z who left sprig Av at tj.

Lemma 10. Let u ∈ V be disconnected from ru at some time after
Tccover + 2 · 2i + 1. Then, down coveru = 0.

Proof: Any disconnected node u belongs to some sprig. Let ru ≡ v. Only two
kinds of sprigs exist after time Tccover by Obs. 1:
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(1) The old sprigs- these that already exist at Tccover. We consider them old even
when they get modified later. Moreover, if Av(tj) is an old sprig at some time
tj ≥ Tccover, then any resulting sprig Av(tj+1) (see Def. 6) at time tj+1 > tj is
an old sprig too.
(2) The new sprigs- those that are newly created after Tccover by the following
event. Let w ∈ V be a root node and X be a set of the nodes connected to w
(X is a tree rooted at w). When some node x ∈ X (not a leaf node) leaves X , a
new sprig (or sprigs) of w is (or are) created. When a new sprig gets modified,
the resulting sprig (or sprigs) is (or are) considered a new sprig (or sprigs).

First, let us consider a set of the old sprigs Φ after Tccover. We show that after
at most 2 · 2i + 1 time steps Φ = ∅. By Lem. 2, in at most 2 · 2i time steps, for
any disconnected node x ∈ B ∈ Φ, dx ≥ 2i. Hence, x leaves sprig B in at most
additional 1 time step by Rule 1-1, if x has not left sprig B before that. Any
node y /∈ B ∈ Φ that joins sprig B, assigns dy ← dy[z] + 1 for z ∈ B such that
pary ← z. Thus, by this and Lem. 2, for any x ∈ B ∈ Φ, at time Tccover + 2t,
dx ≥ t. Hence, after at most Tccover + 2 · 2i + 1, Φ = ∅.

Finally, let us consider a new sprig A that is newly created at some time
T > Tccover. By Lem. 9, at time T for each x ∈ A, down coverx = 0. After
time T sprig A can change in time: split or join/loose nodes. Note, that no
sprig has a root node and thus, by Rule 2, the down coverx bit is calculated by
down coverx ← (down coverx[parx] ∧ consistentx). Hence, a split or a loss of
nodes cannot switch the down cover bit (from 0 to 1) at the resulting sprig/s.
Now, consider the case that some node y /∈ A joins A. Node y becomes a child
of some node x ∈ A. At that time, by Lem. 4, a local reset exit occurs at y (line
12) and then, at line 13, node y assigns pary ← x and by Rule 2, adopts the
down coverpary

which is 0 as shown above. Thus, any node that joins A adopts
0 in its down cover (recall that by Lem. 4, it joins alone).

Hence, after time Tccover + 2 · 2i + 1, only new sprigs exist (beside legal trees)
and every disconnected node u in such a sprig has down coveru = 0.

5 Analysis of the Higher Version Case (2i ≥ depth(vmin))

Lem. 11 is important to prove the stabilization of the higher versions (Lem. 12).
Specifically, it helps to show that a local reset mode in each node has finite
duration.

Lemma 11. Assume a node v performing a local reset operation at some time T .
(1) Then, in at most 2 time steps after time T , unless the condition of line 9
holds, v performs line 12 of the algorithm (a local reset exit occurs at v).
(2) During the local reset mode at v (starting at time T and till the local reset
exit at v), up coverv = 0 and down coverv = 0.

Lemma 12. If 2i ≥ depth(vmin), then version i stabilizes in O(2i).

Lemma 13. If 2i ≥ depth(vmin), then in O(2i) time, at every node v,
down coverv = 1 for version i.
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Lem. 12 above establishes that there exists some higher version that stabilizes
at time O(diam). Lem. 13 establishes that in this version down cover ← 1.
Hence, the algorithm can output the tree this version produces. Recall that Sec. 4
shows that in lower versions down cover stabilizes to zero. All these establish
the following theorem.

Theorem 1. In O(diam) time units, the algorithm produces a shortest paths
tree rooted at the minimal ID node in the network.

The proofs (see [12]) in this section are rather similar to the proofs for the higher
versions in [7] except for one important point. The local reset we use here has
the potential to destabilize these versions. We show that a local reset always
ends. Moreover, since a local reset is transferred to children, not to parents, the
reset does not destabilize the tree rooted in the minimal ID node.

References

1. Abbas, S., Mosbah, M., Zemmari, A.: Distributed Computation of a Spanning Tree
in a Dynamic Graph by Mobile Agents. In: IEEEIS’06 (2006)

2. Afek, Y., Bremler-Barr, A.: Self-stabilizing Unidirectional Network Algorithms by
Power-Supply. In: SODA’97 (1997)

3. Afek, Y., Kutten, S., Yung, M.: Memory-Efficient Self-Stabilizing Protocols for
General Networks. In: van Leeuwen, J., Santoro, N. (eds.) Distributed Algorithms.
LNCS, vol. 486. Springer, Heidelberg (1991)

4. Afek, Y., Kutten, S., Yung, M.: The Local Detection Paradigm and its Applications
to Self-Stabilization. In: TCS’ 97, vol. 186(1–2) (1997)

5. Aggarwal, S., Kutten, S.: Time Optimal Self-stabilizing Spanning Tree Algorithms.
In: Shyamasundar, R.K. (ed.) Foundations of Software Technology and Theoretical
Computer Science. LNCS, vol. 761. Springer, Heidelberg (1993)

6. Arora, A., Gouda, M.G.: Distributed Reset. In: Veni Madhavan, C.E., Nori, K.V.
(eds.) Foundations of Software Technology and Theoretical Computer Science.
LNCS, vol. 472. Springer, Heidelberg (1990)

7. Awerbuch, B., Kutten, S., Mansour, Y., Patt-Shamir, B., Varghese, G.: Time Op-
timal Self-stabilizing Syncronization. In: STOC’93 (1993)

8. Awerbuch, B., Patt-Shamir, B., Varghese, G.: Bounding the Unbounded. In: IN-
FOCOM’94 (1994)

9. Awerbuch, B., Patt-Shamir, B., Varghese, G.: Self-stabilization by Local Checking
and Correction. In: FOCS’91 (1991)

10. Beauquier, J., Datta, A.K., Gradinariu, M., Magniette, F.: Self-stabilization Local
Mutual Exclution and Daemon Refinement. In: Herlihy, M.P. (ed.) DISC 2000.
LNCS, vol. 1914. Springer, Heidelberg (2000)

11. Bellman, R.: On routing problem. Qurterly of Applied Mathematics 16(1), 87–90
(1958)

12. Burman, J., Kutten, S.: Time Optimal Asynchronous Self-stabilizing Spanning
Tree (extended version), http://tx.technion.ac.il/∼bjanna/
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Abstract. A group of identical mobile agents moving asynchronously
among the nodes of an anonymous network have to gather together in
a single node of the graph. This problem known as the (asynchronous
anonymous multi-agent) rendezvous problem has been studied exten-
sively but only for networks that are safe or fault-free. In this paper, we
consider the case when some of the edges in the network are dangerous
or faulty such that any agent travelling along one of these edges would
be destroyed. The objective is to minimize the number of agents that are
destroyed and achieve rendezvous of all the surviving agents. We deter-
mine under what conditions this is possible and present algorithms for
achieving rendezvous in such cases. Our algorithms are for arbitrary net-
works with an arbitrary number of dangerous channels; thus our model
is a generalization of the case where all the dangerous channels lead to
single node, called the Black Hole. We do not assume prior knowledge of
the network topology; In fact, we show that knowledge of only a “tight”
bound on the network size is sufficient for solving the problem, whenever
it is solvable.

1 Introduction

1.1 The Problem

Consider a networked environment, modelled as a simple connected graph, in
which operate a set of mobile computational entities, called agents or robots.
A central problem in such systems is the so called rendezvous (or gathering)
problem which requires the agents to meet together in a single node of the
network. This problem has been extensively studied in the literature (see, for
example, [1,3,10,15,17,19,23]) under a variety of models with different assump-
tions on the identity of the network nodes and/or of the agents (anonymous
or distinct labels), the existence of timing bounds on the agents’ actions (syn-
chronous or asynchronous), the intercommunication mechanisms (whiteboards
� Supported in part by grant ANR-06-SETI-015-03 awarded by the Agence Nationale
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or pebbles/tokens), the amount and type of memory, etc. In spite of their widely
different models, the existing studies on the rendezvous problems share the com-
mon assumption that the environment where the agents operate is safe.

Unlike previous studies on the rendezvous problem, we consider the case when
the environment where the rendezvous must take place, is not safe. In our model,
some of the edges in the graph are harmful for the agents; specifically, any agent
that attempts to traverse any such an edge (from either direction) simply dis-
appears, without leaving any trace. The location of the unsafe links are initially
unknown to the agents; we only assume that the unsafe links do not disconnect
the network. Notice that if all the edges incident to a node u are unsafe, then
node u can never be reached by any agent and is equivalent to a black hole, i.e.,
a node that destroys any incoming agent (e.g., [8,9,11,12,13,18]). In other words,
the black hole model is just a specific case of the model considered in this paper.

We investigate the problem in a very weak (and thus computationally diffi-
cult) setting: the network nodes do not have distinct identities (i.e., the network
is anonymous), the agents are identical, and their actions (computations and
movements) take a finite but otherwise unpredictable amount of time.

The only previous result for rendezvous in faulty networks was in the case of
the ring network containing two unsafe links leading to a single node—the black
hole [13]. Our investigation is thus a generalization of these studies to networks
of arbitrary topology that contain faults at arbitrary locations.

1.2 Our Results

In this paper we provide a full characterization of the rendezvous problem of
asynchronous anonymous agents in anonymous networks with unsafe links. As-
suming that the safe part of the network is connected, any port on a safe node
which leads to an unsafe part of the network, is called a faulty link. We present
the following results in this paper:

– We first show that, if there are τ unsafe links in the network and k agents,
then it is not possible, in general, for k′ agents to rendezvous if k′ > k − τ .

– We then prove that the rendezvous of k−τ agents is deterministically possible
only when the network is covering minimal. Even in this case, rendezvous is
not possible if the agents do not know the size of the network or at least a
tight upper bound. In fact, we prove that a loose upper bound n ≤ Bn ≤ 2n
is not sufficient.

– We then show that this result is tight. In fact, we present an algorithm, RDV
that requires only the knowledge of a tight upper bound B on the number
of nodes n, such that n ≤ B < 2n. This algorithm allows rendezvous of
k−τ agents in networks where such a rendezvous is possible; the rendezvous
occurs with explicit termination for each surviving agent.

– The total number of moves made by the agents during the execution of
algorithm RDV is O(m(m + k)) where m is the number of edges in G. We
prove that this cost is optimal; in fact, we show that solving rendezvous of
k− τ agents in networks where it is solvable, requires at least Ω(m(m + k))
moves, even when the network topology is known a priori.
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– Finally we show that, there exists no effective algorithm for maximal ren-
dezvous, i.e. there does not exist an algorithm that when executed on any
arbitrary network achieves the rendezvous of as many agents as determinis-
tically possible on that network.

Due to the limitations of space, the proofs of some lemmas and theorems have
been omitted; These can be found in the full paper.

1.3 Related Work

The problem of Rendezvous has been extensively studied mostly using random-
ized methods (see [1] for a survey). Among deterministic solutions to rendezvous,
Yu and Yung [23] and Dessmark et al. [10] presented algorithms for agents with
distinct labels. In the anonymous setting, the problem has been studied under
different models (synchronous or asynchronous), using either whiteboards [3] or,
pebbles/tokens [19]. Some of the recent studies have focussed on minimizing the
memory required by the agents for rendezvous([15,17]).

Most of these solutions are designed for anonymous graphs (i.e. graphs where
nodes do not have distinct identities) which present the most challenging (i.e.
computationally difficult) situations. The issue of computability in anonymous
graphs, have been studied by many authors including Angluin [2], Yamashita
and Kameda [22], Mazurkiewicz [20], Sakamoto [21], and Boldi and Vigna [4].
Most of these studies have concentrated on the problem of symmetry-breaking
or leader election which is in fact, closely related (and sometimes equivalent [7])
to the rendezvous problem for mobile agents. However, all the above results are
restricted to safe or fault-free networks.

Recently attention has focused on designing mobile agent protocols for net-
works which are faulty, in particular, where there is a black hole, that is a harmful
network site that destroys any visiting agent. The research on such networks have
concentrated on locating the black hole. In asynchronous systems, this has been
studied under two different methods—using whiteboards [11,12] or using tokens
[14] to mark edges. The objective here is minimizing the number of agents that fall
into the black hole and the number of moves. In the case of synchronous agents,
the objective is to minimize the time taken by the surviving agents to locate the
black hole [9,18]. The general case of multiple black holes has been considered only
by Cooper et al. [8]. All these problems assume that the team of agents start from
the same node, i.e. they are co-located. When the agents start from distinct nodes,
it is very difficult to gather the agents while avoiding the black hole nodes. This
has been studied earlier only in the case of ring networks containing a single black
hole, by Dobrev et al. [13], where the authors give solutions to rendezvous and
near-gathering assuming the knowledge of topology and the size of the network.

2 The Model and Definitions

2.1 The Model

The environment is modelled by the tuple (G, ξ, p, λ, η) where G is an undirected
connected graph, ξ is a set of agents and p specifies the initial placement of the
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agents in the graph G (i.e. ∀A ∈ ξ, p(A) = v : v ∈ V (G) ). The number of
nodes is denoted by n = |V (G)| and the number of agents is denoted by k = |ξ|.
The agents can move from one node to its adjacent node by traversing the edge
connecting them. The edges incident to a node v are locally oriented i.e. they are
labelled as 1, 2, . . . , d(v), where d(v) is the degree of node v. Notice that each edge
e = (u, v) has two labels, one for the link or port at node u and another for the
link at node v. The edge labelling of the graph G is specified by λ = {λv : v ∈ V },
where for each vertex u, λu : {(u, v) ∈ E : v ∈ V } → {1, 2, 3, . . . , d(u)} defines
the labelling on its incident edges. For any edge (u, v) we use λ(u, v) to denote
the pair (λu(u, v), λv(u, v)).

The function η : E(G) → {0, 1} denotes which edges are safe/faulty. An edge
e ∈ E(G) is safe if η(e) = 1 and faulty otherwise. The faults are permanent, so
any edge that is faulty at the start of the algorithm remains so until the end and
no new faulty edge appears during the execution of the algorithm.

The node from where an agent A starts the algorithm (i.e. the initial location)
is called the homebase of agent A. The agents are all identical (i.e. they do
not have distinct names or labels) and they execute the same algorithm. An
agent may enter the system at any time and at any location, and on entry, an
agent immediately starts its individual execution of the algorithm. The system
is totally asynchronous, such that every action performed by an agent takes a
finite but otherwise unpredictable amount of time. As in previous papers on
the subject, we assume that the agents communicate by reading and writing
information on public whiteboards locally available at the nodes of the network.
Thus, each node v ∈ G has a whiteboard (which is a shared region of its memory)
and any agent visiting node v can read or write to the whiteboard. Access to
the whiteboard is restricted by fair mutual exclusion, so that, at most one agent
can access the whiteboard of a node at the same time, and any requesting agent
will be granted access within finite time. An agent that is granted access to the
whiteboard at node v, is allowed to complete its activity at that node before
relinquishing access to the whiteboard (i.e. access control is non preemptive).

Note that it is not necessary for two agents A and B traversing the same edge
e = (u, v) of the graph, to arrive at node v in the same order in which they left
node u. However, using the whiteboards at the nodes, it is easy to implement
a first-in first-out (FIFO) strategy such that agents traversing an edge can be
assumed to have reached their destination in order (i.e. an agent cannot overtake
another while traversing an edge). For the rest of this paper, we shall assume
this FIFO property; this will simplify the description of our algorithms.

2.2 Directed Graphs and Coverings

In this section, we present some definitions and results related to directed graphs
and their coverings, which we use to characterize those network where rendezvous
is possible. A directed graph(digraph) D = (V (D), A(D), sD , tD) possibly having
parallel arcs and self-loops, is defined by a set V (D) of vertices, a set A(D) of
arcs and by two maps sD and tD that assign to each arc two elements of V (D) :
a source and a target (in general, the subscripts will be omitted). A digraph D is
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strongly connected if for all vertices u, v ∈ V (D), there exists a path between u
and v. A symmetric digraph D is a digraph endowed with a symmetry, that is, an
involution Sym : A(D) → A(D) such that for every a ∈ A(D), s(a) = t(Sym(a)).
A bidirectional network can be represented by a strongly connected symmetric
digraph, where each edge of the network is represented by a pair of symmetric
arcs. In this paper, we consider digraphs where the vertices and the arcs are
labelled with labels from a recursive label set L and such digraphs will be denoted
by (D, μD), where μD: V (D) ∪ A(D) → L is the labelling function. In general,
the label on an arc a would be a pair (x, y) and the labelling μD should satisfy
the property that if μD(a) = (x, y) then μD(Sym(a)) = (y, x), for every arc
a ∈ D.

A digraph homomorphism γ between the digraph D and the digraph D′ is a
mapping γ: V (D)∪A(D) → V (D′)∪A(D′) such that if u, v are vertices of D and a
is an arc such that u = s(a) and v = t(a) then γ(u) = s(γ(a)) and γ(v) = t(γ(a)).
A homomorphism from (D, μD) to (D′, μ′

D) is a digraph homomorphism from D
to D′ which preserves the labelling, i.e., such that μ′

D(γ(x)) = μD(x) for every
x ∈ V (D) ∪A(D).

We now define the notion of graph coverings, borrowing the terminology of
Boldi and Vigna[5]. A covering projection is a homomorphism ϕ from D to D′

satisfying the following: (i) For each arc a′ of A(D′) and for each vertex v of
V (D) such that ϕ(v) = v′ = t(a′) there exists a unique arc a in A(D) such that
t(a) = v and ϕ(a) = a′. (ii) For each arc a′ of A(D′) and for each vertex v of
V (D) such that ϕ(v) = v′ = s(a′) there exists a unique arc a in A(D) such that
s(a) = v and ϕ(a) = a′.

The fibre over a vertex v′ (resp. an arc a′) of D′ is the set ϕ−1(v′) of vertices
of D (resp. the set ϕ−1(a′) of arcs of D).

If a covering projection ϕ : D → D′ exists, D is said to be a covering of D′ via
ϕ and D′ is called the base of ϕ. A symmetric digraph D is a symmetric covering
of a symmetric digraph D′ via a homomorphism ϕ if D is a covering of D′ via
ϕ such that ∀a ∈ A(D), ϕ(Sym(a)) = Sym(ϕ(a)). A digraph D is symmetric-
covering-minimal if there does not exist any graph D′ not isomorphic to D such
that D is a symmetric covering of D′.

The notions of coverings extend to labelled digraphs in an obvious way: the
homomorphisms must preserve the labelling. Given a labelled symmetric di-
graph (H, μH), the minimum base of (H, μH) is defined to be the labelled di-
graph (D, μD) such that (i) (H, μH) is a symmetric covering of (D, μD) and (ii)
(D, μD) is symmetric covering minimal.

The following results on digraph coverings were proved in [5].

Property 1. Given two non-empty strongly connected digraphs D, D′, each cov-
ering projection ϕ from D to D′ is surjective; moreover, all the fibres have the
same cardinality. This cardinality is called the number of sheets of the covering.

Property 2. If the digraph (H, μH) is a covering of (D, μD) via ϕ, then any
execution of an algorithm P on (D, μD) can be lifted up to an execution on
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(H, μH), such that at the end of the execution, for any v ∈ V (H), v would be in
the same state as ϕ(v).

2.3 Definitions and Properties

Given any deterministic (distributed) algorithm P and a network (G, ξ, p, λ, η),
the order in which the various actions are performed by the agents defines an ex-
ecution of the algorithm on the network (G, ξ, p, λ, η). We define the synchronous
execution of an algorithm P to be the particular execution where all agents start
executing at exactly the same time and every action taken by any agent takes
exactly one unit of time.

We define the extended-view of the network (G, ξ, p, λ, η) as the labelled digraph
(H, μH) such that, H consists of two disjoint vertex sets V1 and V2 and a set of
arcs A as defined below:

– V1 = V (G);
– μH(v) = |{A ∈ ξ : p(A) = v}|, ∀v ∈ V1;
– For every safe edge e = (u, v) ∈ E(G), there are two arcs a1, a2 ∈ A such

that s(a1) = t(a2) = u, s(a2) = t(a1) = v, and μH(a1) = (λu(e), λv(e)),
μH(a2) = (λv(e), λu(e)).

– For every faulty edge e = (u, v), there are vertices u′ and v′ ∈ V2 with
μH(u′) = μH(v′) = −1 and arcs (u, u′), (u′, u), (v, v′) and (v′, v) ∈ A with
labels (λe(u), 0), (0, λe(u)), (λe(v), 0), and (0, λe(u)) respectively;

Here, the vertices in V1 represent the (safe) nodes of the network and the
vertices in V2 represent (imaginary) Black-Holes. The label on a safe vertex v
denotes the number of agents that started from the corresponding node, whereas
the label on a black-hole vertex is always −1. Intuitively, the extended-view can
be thought of as a canonical representation of the network.

The following results follow from the definition of the extended-view of a
network and the Properties 1 and 2.

Lemma 1. For any deterministic algorithm P, a synchronous execution of P on
the network (G, ξ, p, λ, η) is equivalent to a synchronous execution of algorithm
P on the extended-view (H, μH), such that the final state of any node in G is
exactly same as the state of the corresponding vertex in H.

Lemma 2. If the extended view of two networks have sameminimum-base (D, μD)
then all nodes in the two networks which belong to the pre-image of a vertex v ∈ D
would always be in the same state, during a synchronous execution of any
algorithm P.

3 Impossibility Results

In this section, we determine some necessary conditions for solution to the ren-
dezvous problem. In the following, whenever the extended-view of a network is
symmetric-covering minimal, we shall say the network is minimal.
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Lemma 3. In a network containing τ dangerous links and k dispersed agents,
τ agents may die while executing any algorithm for rendezvous. Thus, it is not
always possible to rendezvous more than k−τ agents even if the network topology
is known to the agents.

Lemma 4. It is impossible to rendezvous k − τ agents in a network whose
extended-view is not symmetric-covering minimal.

G 1

G 1

G 2

G 2

(a)

(b) (c)

Fig. 1. The network in (a) cannot be distinguished from the networks in (b) and (c)
due to the slow edges. (The slow edges are marked by arrows and the dashed lines
represent faulty edges).

In the next section, we show how to solve rendezvous of k − τ agents in any
network that is minimal. Thus, we have a complete characterization of networks
where rendezvous of k − τ agents is possible. However, solution to rendezvous
requires at least some prior knowledge about the network, as we show below.
Notice that since the network is asynchronous, an agent may take an arbitrarily
long time to traverse some edge. Thus, a slow edge (i.e. one which the agents
take a long time to traverse) is indistinguishable from a faulty edge. During the
execution of an algorithm, the presence of slow edges may divide the network
into two equal parts (for example, see Figure 1) and in such cases, it is not
possible for the agents to terminate the algorithm unless an accurate estimate
of network size is available.

Lemma 5. It is impossible to solve rendezvous (with termination detection) of
k − τ agents even in minimal networks if the agents know only an upper bound
B on the number of nodes n such that n ≤ B ≤ 2n.

The algorithm presented in this paper works only for networks which are min-
imal. We say that an algorithm P is an universally effective algorithm for ren-
dezvous of w > 1 agents if, when executed on any network where rendezvous
of w agents is possible, algorithm P always succeeds in achieving rendezvous
within a finite time. We have the following negative result on the existence of
such an algorithm.
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Fig. 2. The networks in (a) and (b) have same topology but differ in the location of
faulty edges (shown by dashed lines). (c) The minimum base for the network in (a).

Lemma 6. There does not exist any universally effective algorithm for ren-
dezvous of 1 < w ≤ k agents even if the network topology is known a-priori
to the agents.

Proof. Consider the two networks shown in Figure 2(a) and (b). Each network
has the same topology and there are three faulty edges in each (but their loca-
tions are different). In the network of Figure 2(b) there are two edges (marked
by arrows) which are very slow. Since slow edges edges can not be distinguished
from faulty edges, the agents would not be able to determine whether they are in
the first network or the second. Thus any rendezvous algorithm P (that termi-
nates within a finite time) must achieve the same result in both networks. Notice
that the first network has an extended view which is not minimal (the minimum
base is shown in Figure 2(c)). Since algorithm P must fail to achieve rendezvous
in the first network, it must also fail in the second one, even though it is possible
to rendezvous in the second network. Thus algorithm P is not effective.

4 Solution Protocol

In this section we present an algorithm for solving Rendezvous in faulty net-
works, using the knowledge of only an upper bound B on the network size, such
that n ≤ B < 2n. As shown in the previous section, there is no effective algo-
rithm for Rendezvous in faulty networks. Our algorithm always works for any
network whose extended-view is covering minimal, achieving the rendezvous of
the maximum number of agents possible (i.e. k− τ agents). We also analyze the
complexity of our algorithm and show that it is optimal in terms of the number
of moves made by the agents.

Theorem 1. For solving rendezvous of (k − τ) agents in an arbitrary network
(G, ξ, p, λ, η) without any knowledge other than the size of the network, the agents
need to make at least Ω(m(m + k)) moves in total.
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4.1 The Algorithm for Rendezvous

We can ensure that no more than one agent dies while traversing the same link,
using the cautious walk technique as in [13]. At each node, all the incident edges are
considered to be unexplored in the beginning. Whenever an agentA at a node u has
to traverse an unexplored edge e = (u, v), agent A first marks link λu(e) as “Be-
ing Explored” and if it is able to reach the other end v successfully, it immediately
returns to node u and re-marks the link λu(e) as “safe”. During the algorithm we
follow the rule that no agent ever traverses a link that is marked “Being Explored”.
This ensures no more than τ agents may die during the algorithm.

We now briefly describe our algorithm for rendezvous (Algorithm RDV). Due
to the space constraint, we present only an oversimplified version of the algorithm
without the minor technical details. The complete pseudo-code for the algorithm
can be found in the full paper.

At any stage of the algorithm, there are teams of agents, each team possessing
a territory which is a connected acyclic subgraph of G (disjoint from other
territories). Each team of agents tries to expand its territory until it spans a
majority of the nodes. Once a team is able to acquire more than half the nodes
of the network, it wins and agents from all other teams join the winning team
to achieve rendezvous.

Initially each territory consists of only the starting node(homebase) of an
agent (all agents that start from that node are in this team). Note that if an
agent on start-up, finds that its homebase has already been acquired by some
other team, it simply joins this team. The algorithm proceeds in a series of
exploring and competing rounds. In an exploring round, the team of agents try
to expand its territory by exploring new edges and acquiring new nodes. On
the other hand, in the competing round a team tries to defeat another team
and conquering their territory. The competition between two teams occurs by
comparison using the tuple (j, Code) where j is the round number and Code is
an encoding of the territory(and its immediate neighborhood).

The territory of each team is a rooted tree and the information stored in
the root defines the status of the agents in the team (e.g. whether they are in
an exploring round or competing round). Every other node in the tree stores
a pointer to its parent in the tree. The status of the root can either INIT-
EXPLORE, INIT-COMPETE, COMPETE, LOST, or END.

Only one agent in a team can be competing state (this is called the active
agent and all others are passive). When a team is in exploring round, the active
agent initiates the exploration and thereafter every agent may participate in
the exploration. Each agent explores one unexplored edge and if it succeeds in
reaching the other side, it reports this to the root of the tree and the tree is
updated accordingly. If the edge connects to a node that is already explored (by
another agent or the same agent) then it is marked as tree edge (T-edge) and
the new node becomes part of the tree. Otherwise it is marked as non-tree edge
(NT-edge).

In the algorithm below, T refers to the tree representing the territory to which
the agent belongs. The root of T is denoted by r and Root Status(T ) is the status



Rendezvous of Mobile Agents in Unknown Graphs with Faulty Links 117

of the root as written on the whiteboard of r (A copy of T is also stored on the
whiteboard). A node u is called a neighbor of the tree T if there is a NT-edge
between u and some node in T . Each agent starts in active state, but may become
passive or finished. The following steps are executed by an agent A:

Algorithm RDV
< T , rNum > := Initialize;
While (Status(A) �= finished ) {

Case(Status(A) is active and Root Status(T) is INIT-EXPLORE) {
If (|T | > B/2) terminate;
InitExplore;
If (Root Status(T) = LOST ) become passive and exit Case;
Set Root Status(T) to EXPLORE and become Passive;

}
Case( Status(A) is passive ) {

While(Root Status(T) /∈ { EXPLORE, INIT-EXPLORE, END } )
Sleep until woken up;

If(Root Status(T) is END) become finished and exit;
Explore an unexplored edge and go back to r to update T ;
If(Root Status(T) is EXPLORE) // i.e. no active agents
become active and set Root Status(T) to INIT-COMPETE

}
Case(Status(A) is active and Root Status(T) is INIT-COMPETE) {

do{ TOLD := T ;
InitCompete(rNum);
If (Root Status(T) = LOST ) become passive and exit Case;
Result = Compete(rNum); rNum := rNum + 1;

}While( TOLD �= T );
If(Root Status(T) �= LOST) Root Status(T):= INIT-EXPLORE;

}
}

PROCEDURE Initialize: If the homebase of the agent is already part of a tree,
then the agent joins this team in passive state. Otherwise, it initializes the tree
with only the homebase node and then starts the algorithm in active state with
rNum = 1.

PROCEDURE InitExplore: The agent initiates a new exploring round by travers-
ing T writing “EXPLORE” on every node and waking up as many agents as
needed for exploration (more precisely, it wakes-up x agents where x is the num-
ber of unexplored edges currently incident to T , unless less than x agents are
available in T—in which case it wakes-up everyone).

PROCEDURE InitCompete(j): The agent initiates the competing round j by
traversing T , writing (COMPETE, j) on each node also assigning labels to
the nodes in T . Next, it reads the labels written on the neighboring nodes and
constructs an encoding of T and its neighbors, called CODE (this is used for
comparisons). Finally it writes the CODE on every node in T .



118 J. Chalopin, S. Das, and N. Santoro

PROCEDURE Compete(j): During this procedure, agent A competes with each
node u that is neighbor of T , until it wins or loses. If u is marked END, agent A
terminates after writing END on every node of T , waking up any sleeping agents
and merging with the tree containing u. Else, if u is in a bigger competing round
or in the same competing round with a larger Code, then agent A loses (i.e. it be-
comes passive and goes back to its root to sleep). Otherwise if u is in exploring
round or in a smaller competing round or same round but has smaller Code, then
Invade(u) is invoked to determine if the result of the competition is win or loss.

PROCEDURE Invade(u): The agent attempts to acquire the tree containing
node u. The agent follows the father-links from u to reach the current root ru of
u. At node ru it uses the usual comparison criteria and if ru is bigger or equal,
then it loses (i.e. it becomes passive and goes back to its root to sleep). Other-
wise it wins and it acquires the Tree rooted at ru, by reversing the father-links
in the path from ru to v where v is the node in the agent’s territory from where
it started the Invade procedure.

PROCEDURE terminate: The agent writes END on all nodes in T and then
writes Root Status(T)=END at the root of T ; The agent now becomes finished
and locally terminates.

4.2 Analysis of the Algorithm

Theorem 2. Algorithm RDV correctly solves Rendezvous for k − τ agents in
any network whose extended view is symmetric-covering minimal.

This result follows from the following lemmas:

Lemma 7. During the algorithm RDV, the following holds: (i) Each territory
is a Tree. (ii) The territories are disjoint. (iii) There is at most one active agent
in each territory.

Proof. (i) Initially each territory is a tree by construction; addition of a new edge
does not create cycles because only tree edges are added. When two trees are
merged, one is ‘larger’ than other and the active agent of the larger tree performs
the merging by changing the father-links and updating the root. (Notice that
there can not be two active agents in a territory.) Thus the merged territory is
a tree. (ii) Each tree is a rooted tree and every node contains a pointer to its
parent in the tree. Thus, a node cannot belong to two trees. (iii) Initially an
agent becomes active only when it successfully constructs T and writes it at the
root node. Thus, due to the mutual exclusion property of the whiteboards, there
is only one active agent initially in the tree (all other agents in the same tree
must start in passive state). A passive agent can become active only when there
are no active agents in the tree.

Lemma 8. There is no deadlock in the algorithm RDV.
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Proof. Notice that as long as there is some active agent, the algorithm progresses.
In each tree T , there is at least one active agent unless root-status is EXPLORE.
Suppose the root-status of every tree is EXPLORE, then each agent is currently
exploring some unexplored edge. There are only τ faulty links in the network
and k > τ , so at least one of the exploring agents must return safely from the
exploration. This agent now becomes active.

Lemma 9. (i) If the network is minimal, then exactly one node has Root-
Status(T) = END. (ii) When one node has Root-Status(T) = END, every alive
agent in G eventually joins this tree. (iii) (k − τ) agents eventually become fin-
ished and reach the node having Root-Status(T)= END.

Proof. (i) First notice that due to the constraint on the bound B, only one Tree
T can have a size greater than B/2. Due to Lemma 7, the trees are disjoint and
each has a unique root. Thus, at most one node may have Root-Status(T)=END.
We now show that at least one node eventually reaches Root-Status(T)=END.
A team of agents in tree T stops expanding its Tree only when either Root-
Status(T )=END or, all the trees neighboring T have the same CODE and round
number. In the later case, the team starts an exploring round. Notice that there
must exist a Tree T which has some non-faulty edges incident to it that are either
unexplored or being explored (otherwise the network is either disconnected or,
not minimal). So one of these edges would be added to T . Thus the size of T
would keep increasing until it contains more than B/2 nodes and Root-Status(T )
= END.

(ii) Every agent either dies or reaches a node labelled “END”. All nodes that
are labelled “END” are part of the same tree.

(iii) Due to the use of cautious walk, at most τ agents may die. Thus each of
the surviving agent eventually reaches a node v labelled “END” and goes to the
root of this tree which is the node having Root-Status(T)=END.

We now analyze the cost of algorithm RDV. We first count the number of com-
peting rounds and exploring rounds performed during the algorithm.

Lemma 10. There are O(m + k) competing rounds. The number of exploring
rounds is at most the number of competing rounds.

Proof. A new competing round is started whenever T is expanded, i.e. the new
territory T contains one more edge or one more agent than the previous territory
TOLD. Thus there can be at most (m+k) competing rounds. After every exploring
round completes, there is one competing round. So, the number of exploring
rounds can not be more than the number of competing rounds.

Lemma 11. The agents make at most O(n(m+k)) moves in the all the explor-
ing rounds combined.

Proof. The Procedure InitExplore() makes |T |moves in a tree T . Only one agent
(the active one) in every tree executes this procedure. So, this accounts for O(n)
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moves per exploring round and O(n(m + k)) moves in total. Other than that,
every passive agent that is woken up makes O(n) moves to go to an unexplored
edge, explore it and report it to the root. Since each unexplored edge will be
explored once (or at most twice), this cost can be counted per newly explored
edge. Thus, this accounts for O(n.m) moves.

Lemma 12. The agents make at most O(m(m+k)) moves in all the competing
rounds combined.

Proof. Only the active agent in a tree participates in the competing round. Dur-
ing procedure InitCompete every edge in G is traversed a constant number of
times; this accounts for O(m) moves per round. Similarly O(m) moves are made
per round during procedure Compete, for the comparisons with each neighbor.
Each execution of Invade() takes O(n) moves, because only tree-edges are tra-
versed and no edge is traversed twice. Whenever an agent execute Invade(), it
either wins or loses. A losing agent never competes again, so the total contri-
bution from losing agents is O(k.n). Edges traversed by the wining agents are
disjoint, so this accounts for O(n) moves per round.

Due to the above lemmas and Theorem 1, we have the following result:

Theorem 3. The moves complexity of algorithm RDV is O(m(m + k)). Thus
algorithm RDV is optimal.

5 Conclusions

We considered the problem of rendezvous of mobile agent in a faulty network
and showed that it is possible to rendezvous at most k − τ in any network
containing k dispersed agents and τ faulty links. We determined the condition
under which this is possible and gave an algorithm for solving the problem
under this condition. The algorithm we presented is optimal in terms of the
total number of moves made by the agents and requires no prior information
about the network topology (except the size). Moreover, we showed that it is
impossible to have an effective algorithm for rendezvous, one that always achieves
the rendezvous of as many agents as possible in any given network.

Notice that the only information needed by our algorithm is a strict upper
bound on the number of nodes. We assumed that the faulty links do not discon-
nect the network. In the case of a disconnected network, we can still rendezvous
the agents in a connected component if we know a good bound on its size. For
example, if the component contains a majority of the nodes (i.e. more than half
of them), then original network size can be used as the bound. In this case, if
τ is equal to the number of outgoing edges from the component then we can
rendezvous k′− τ agents where k′ agents are initially located in this component.
For networks containing a single black hole (which does not disconnect the net-
work), our algorithm can be used to rendezvous k − dBH agents where dBH is
the degree of the black-hole.
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For the results in this paper, we considered two optimization criteria
—minimizing the number of agents that are destroyed and the number of moves
taken by the surviving agents to rendezvous. It would be interesting to also con-
sider the optimization of whiteboard memory or agent memory when solving the
rendezvous problem in faulty networks.
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Abstract. In this paper, we propose the partition approach and define
several new classes of partitioned failure detectors weaker than existing
failure detectors for the k-set agreement problem in both the shared-
memory model and the message-passing model. In the shared-memory
model with n + 1 processes, for any 2 ≤ k ≤ n, we first propose a par-
titioned failure detector ΠΩk that solves k-set agreement with shared
read/write registers and is strictly weaker than Ωk, which was conjec-
tured to be the weakest failure detector for k-set agreement in the shared-
memory model [19]. We then propose a series of partitioned failure de-
tectors that can solve n-set agreement, yet they are strictly weaker than
Υ [10], the weakest failure detector ever found before our work to cir-
cumvent any asynchronous impossible problems in the shared-memory
model. We also define two new families of partitioned failure detectors
in the message-passing model that are strictly weaker than the existing
ones for k-set agreement. Our results demonstrate that the partition ap-
proach opens a new dimension for weakening failure detectors related to
set agreement, and it is an effective approach to check whether a failure
detector is the weakest one or not for set agreement. So far, all previous
candidates for the weakest failure detectors of set agreement have been
disproved by the partitioned failure detectors.

Keywords: Failure detector, partitioned failure detectors, k-set agree-
ment.

1 Introduction

Failure detector abstractions are first proposed by Chandra and Toueg in [3] to
circumvent the impossibility result of consensus [9], and have since become a
powerful technique to encapsulate system conditions needed to solve many dis-
tributed computing problems. Among them the problem of k-set agreement has
received many attention from the research community. Informally, in k-set agree-
ment each process proposes some value and eventually all correct processes (those
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that do not crash) decide on at most k different values [4]. It has been shown
that k-set agreement cannot be solved in asynchronous systems when k or more
processes may crash [1,12,20]. In recent years, a number of studies have focused
on failure detectors for solving k-set agreement problem [21,18,11,16,17,19,10,7].
These studies form the collective effort in the pursuit of the weakest failure detec-
tor for k-set agreement, a goal yet to be reached. A particular candidate Ωk was
conjectured to be the weakest failure detector for wait-free k-set agreement [19]
in the shared-memory model.

Consider distributed shared-memory model with n + 1 processes. In a very
recent paper [10], Guerraoui et.al define a new class of failure detectors Υ and
show that among a wide range of failure detectors defined as eventually stable
failure detectors, Υ is the weakest one necessary to solve any impossible problem
in shared-memory distributed systems, and Υ solves the n-set agreement prob-
lem. The Υ failure detector disproves the conjecture on Ωk for the case of k = n.
For a general k, a generalized Υ k is proposed to solve k-set agreement, but only
when at most k processes may crash, so it does not disprove the conjecture on
Ωk for wait-free k-set agreement.

The eventually stable failure detectors encompass most failure detectors known
to solve distributed decision tasks in the shared-memory model prior to [10], as the
authors claimed. Therefore, as the title of their paper says, indeed Υ is the weak-
est failure detector ever found that solves any impossible problem in distributed
computing.

In this paper, we introduce a new breed of failure detectors — partitioned
failure detectors — that could be made strictly weaker than Ωk and Υ but are
still strong enough to solve the set agreement problem. Our motivation is based
on the following observation: In k-set agreement when k > 1, different processes
may decide on different values, and thus it is possible that processes may be
partitioned to different components, each of which decides on different values but
together they still decide on at most k values. In other words, k-set agreement
(with k > 1) exhibits the partition nature. The partitioned failure detectors are
defined by consistently applying a method that captures the partition nature to
weaken existing failure detectors, for which we called the partition approach.

In the partition approach, failure detectors partition the processes into mul-
tiple components and only processes in one of the components (called a live
component) are required to satisfy all safety and liveness properties (of an exist-
ing failure detector), while processes in other components only need to satisfy
safety properties. Since those processes in non-live components may generate
quite arbitrary failure detector outputs, intuitively the partitioned failure detec-
tors are a new breed that does not fall into the eventually stable failure detectors
covered by [10].

We study the partitioned failure detectors in both the shared-memory model
and the message-passing model. In the main part of this paper, we apply the
partition approach to failure detectors Ωk and Υ in the shared-memory model
to define weaker failure detectors. More specifically, we first define a new class
of failure detectors ΠΩk by applying static partitions to Ωk. We show that ΠΩk
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Fig. 1. Relationship diagram for failure detectors in the shared-memory model (n ≥ 3).
If A → B, then A can be transformed into B. If there is no directed path from A to
B, then A cannot be transformed into B (Footnote 1 contains the only exception).

is strong enough to solve k-set agreement with shared read/write registers but
it is not comparable with Υ , for all k = 2, 3, . . . , n. One direct consequence is
that ΠΩk is strictly weaker than Ωk (because Ωk is stronger than Υ ), which
disproves the conjecture that Ωk is the weakest failure detector for wait-free
k-set agreement in the shared-memory model for any k ≥ 2. Moreover, ΠΩk is
the first failure detector class that solves k-set agreement (for generic k) but
is incomparable with Υ . For example, even though failure detector ΠΩ2 solves
2-set agreement, it is not stronger than Υ .

Next, we define failure detectors weaker than Υ but are still strong enough to
solve n-set agreement. We achieve this by mixing some of the properties of ΠΩk

and Υ and define another class of partitioned failure detectors ΠΩΥ k. We show
that for any 1 ≤ k ≤ n, ΠΩΥ k can still solve n-set agreement but it is strictly
weaker than both ΠΩk and Υ . Moreover, as k increases, the strength of ΠΩΥ k is
strictly weakened. Hence, we find a family of n different failure detector classes
strictly weaker than Υ , which is the weakest one ever found before our work.

Figure 1 characterizes the exact relationship among all failure detectors we
proposed in this paper for the shared-memory model and the previously defined
ones Ωk and Υ . Note that every nonexistent directed path in the figure corre-
sponds to an impossible transformation from the source class to the destination
class, with only one exception.1 Since Υ is already very weak, one can imagine
that it would be very delicate to define the new partitioned failure detectors
and prove that they are incomparable to or strictly weaker than Υ . Indeed,
the definitions of failure detectors are subtle, and the proofs of the impossible
transformations are the most delicate and technically involved.

We also apply the partition approach to failure detectors Ωk × Σ in the
message-passing model, where Σ is the class of quorum failure detectors needed
to work with Ωk to solve k-set agreement in the message-passing model. We
1 The exception is the following problem that is still open: Can ΠΩk be transformed

into ΠΩΥ k−1 for any k ≥ 2? However, we have proven that ΠΩk+1 cannot be trans-
formed into ΠΩΥ k−1 for any k ≥ 2.
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define two new families of partitioned failure detectors that are strictly weaker
than Ωk × Σ but are strong enough to solve k-set agreement in the message-
passing model. These partitioned failure detectors are different from the ones
in the shared-memory model in that they integrate the partition of quorums in
their definitions. Moreover, one family of failure detectors incorporates dynamic
splitting of partitions, while all failure detectors in the shared-memory model
are statically partitioned.

Our results not only show a number of new failure detectors that are strictly
weaker than existing ones such as Ωk and Υ , but more importantly, they demon-
strate the power of the partition approach: The partition approach opens a new
dimension for weakening various failure detectors related to set agreement, and
it is an effective approach to check whether a failure detector could be the weak-
est one solving set agreement or not. Using the approach, we have successfully
shown that (1) Ωk is not the weakest failure detector for k-set agreement in the
shared-memory model for any k ≥ 2; (2) Υ is not the weakest failure detector
for n-set agreement in the shared-memory model; and (3) Ωk × Σ is not the
weakest failure detector for k-set agreement in the message-passing model for
any k ≥ 2. So far, all failure detectors that were considered as the candidates
for the weakest failure detectors for set agreement have been disproved using
our partition approach. Therefore, we believe that partitioned failure detectors
demonstrate the flexibility in achieving set agreement, and it is important to use
the partition approach as an effective research tool in our pursuit to the ultimate
weakest failure detectors for set agreement.

The rest of the paper is organized as follows. Section 2 provides the shared-
memory model used in our paper. Section 3 defines ΠΩk and shows how it solves
k-set agreement. Section 4 defines ΠΩΥ k. Section 5 provides a central place to
show the relationship among all failure detectors in the shared-memory model as
captured by Figure 1. Section 6 summarizes the results in the message-passing
model. We conclude the paper in Section 7. Further results including some k-set
agreement algorithms and all correctness proofs are covered by two technical
reports [7,5] on message-passing model and shared-memory model, respectively.

2 Model

We consider asynchronous shared-memory distributed systems augmented with
failure detectors. Our model is the same as the model in [10], which is based on
the models of [13,14,2]. We provide the necessary details of the model below.

We consider a system with n+1 processes P = {p1, p2, . . . , pn+1} where n ≥ 1.
Let T be the set of global time values, which are non-negative integers. Processes
do not have access to the global time. A failure pattern F is a function from T
to 2P , such that F (t) is the set of processes that have failed by time t. Failed
processes do not recover, i.e., F (t) ⊆ F (t+1) for all t ∈ T . Let correct(F ) denote
the set of correct processes, those that do not crash in F . A process is faulty if it
is not correct. A failure detector history H is a function from P ×T to an output
rangeR, such that H(p, t) is the output of the failure detector module of process
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p ∈ P at time t ∈ T . A failure detector D is a function from each failure pattern
to a set of failure detector histories, representing the possible failure detector
outputs under failure pattern F .

Processes communicate with each other by writing to and reading from shared
atomic registers. A deterministic algorithm A using a failure detector D is a col-
lection of n + 1 deterministic automata, one for each process. Processes execute
by taking steps. In each step, a process p: (a) reads from a shared register to ob-
tain a value, or writes a value to a shared register, or queries its failure detector
module, based on its current local state; and (b) transitions its current state to
a new state, based on its current state, the value returned from the read or from
the failure detector module, and the algorithm automaton on p. Each step is com-
pleted at one time point t, but the process may crash in the middle of taking its
step. A run of algorithm A with failure detector D under a failure pattern F is an
infinite sequence of steps such that every correct process takes an infinite number
of steps and no faulty process takes any step after it crashes.

We say that a failure detector class C1 is weaker than a failure detector class
C2, if there is a transformation algorithm T such that using any failure detector
D2 ∈ C2, algorithm T implements a failure detectorD1 ∈ C1. By implementingD1

we mean that for any run of algorithm T with failure detector D2 under a failure
pattern F , T generates the outputs of D1 as a distributed variableD1-output such
that there exists failure detector history H ∈ D1(F ) and H(p, t) = D1-output(p, t)
for all p ∈ P and all t ∈ T , where D1-output(p, t) is the value of the variable D1-
output on p at time t. If C1 is weaker than C2, we denote it as C1 � C2 and also
refer to it as C2 can be transformed into C1. if C1 � C2 and C2 � C1, we say that
C1 is strictly weaker than C2 and denote it as C1 ≺ C2. If C1 � C2 and C2 � C1, we
say that C1 and C2 are equivalent and denote it as C1 ≡ C2.

In k-set agreement with 1 ≤ k ≤ n, each process proposes a value, and
makes an irrevocable decision on one value. It needs to satisfy the following
three properties: (1) Validity: If a process decides v, then v has been proposed
by some process. (2) Uniform k-Agreement: There are at most k different decision
values. (3) Termination: Eventually all correct processes decide.

Two related failure detector classes are Ωk and Υ . Failure detectors in Ωk out-
put a subset of P of size at most k, and there is a time after which all processes
always output the same nonempty set, which contains at least one correct pro-
cesses. Failure detectors in Υ also output a subset of P , and there is a time after
which all processes always output the same nonempty set, which is not exactly
the set of correct processes.

3 Failure Detector ΠΩk

3.1 Specification of ΠΩk

The class of partitioned failure detectors ΠΩk is obtained by applying static
partitions to Ωk, as explained below. The output of ΠΩk for process p is a tuple
(isLeader, lbound, cid), where isLeader is a boolean value indicating whether this
process is a leader or not, lbound is a non-negative integer indicating the upper
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bound on the number of possible leaders in p’s partitioned component, and cid
is a component ID drawn from an ID set I or is a special value ⊥ ∈ I. The cid
output indicates the component the process belongs to and could be ⊥ for an
initial period before the failure detector decides on a partition.

For a failure detector output x, we use x.v to denote the field v of x, where v
could be isLeader, lbound, or cid in the case of ΠΩk. We say that a process p is
an eventual leader (under a failure pattern F and a failure detector history H)
if p is correct and there is a time after which the isLeader output on p is always
True.

A partition of P is π = {P1, . . . , Ps}, where s ≥ 1 and Pi’s are non-empty
subsets of P such that they do not intersect with one another and their union
is P . For a process p, we use π[p] to denote the partitioned component that
contains p. For a component Pj ⊆ P (under a failure pattern F and a failure
detector history H), we define lbound(Pj) = max{H(p, t).lbound | t ∈ T , p ∈ Pj \
F (t)},2 and Leaders(Pj) = {p ∈ Pj ∩ correct(F ) | ∃t, ∀t′ > t, H(p, t′).isLeader =
True}. The value lbound(Pj) is the maximum lbound value among processes in
component Pj , while Leaders(Pj) is the set of eventual leaders in Pj .

A failure detector D is in the class ΠΩk if for any failure pattern F and any
failure detector history H ∈ D(F ), there exists a partition π = {P1, . . . , Ps} of
P , such that the following properties hold. First, the cid output needs to satisfy
these properties:

(ΠC1) The cid outputs on all correct processes eventually always output non-⊥
values. Formally, ∃t0 ∈ T , ∀p ∈ correct(F ), ∀t ≥ t0, H(p, t).cid = ⊥.

(ΠC2) The non-⊥ cid outputs distinguish different components. Formally, ∀t1,
t2 ∈ T , ∀p1 ∈ F (t1), ∀p2 ∈ F (t2), (H(p1, t1).cid = ⊥ ∧ H(p2, t2).cid = ⊥) ⇒
((H(p1, t1).cid = H(p2, t2).cid) ⇔ (π[p1] = π[p2])).

Next, the isLeader and lbound outputs satisfy the following set of safety and
liveness properties. The safety property is:

(ΠΩ1) The sum of the maximum lbound outputs in all partitioned components
does not exceed k. Formally,

∑s
j=1 lbound(Pj) ≤ k.

The liveness part specifies that there exists one partitioned component Pj such
that:

(ΠΩ2) Eventually lbound outputs by all processes in Pj are the same. Formally,
∃t0 ∈ T , ∀t1, t2 ≥ t0, ∀p1 ∈ Pj \ F (t1), ∀p2 ∈ Pj \ F (t2), H(p1, t1).lbound =
H(p2, t2).lbound.

(ΠΩ3) Eventually the isLeader outputs on any correct process in Pj do not
change. Formally, ∃t0 ∈ T , ∀t > t0, ∀p ∈ Pj \ F (t), H(p, t).isLeader =
H(p, t0).isLeader.

(ΠΩ4) There is at least one eventual leader. Formally, |Leaders(Pj)| ≥ 1.
(ΠΩ5) The number of eventual leaders is eventually bounded by the lbound

outputs. Formally, ∃t0 ∈ T , ∀t ≥ t0, |Leaders(Pj)| ≤ H(p, t).lbound.

2 As a convention, max ∅ = 0.
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We call a component that satisfies the liveness properties (ΠΩ2–5) a live com-
ponent, and other components non-live components. Let ki = lbound(Pi). Intu-
itively, each component Pi has a failure detector with the safety properties of
Ωki restricted to Pi,3 while at least one component Pj also satisfies all liveness
properties of Ωkj . Intuitively, this is to guarantee that when running a k-set
agreement algorithm with ΠΩk, each component Pi may decide on at most ki

values, so with (ΠΩ1) there are at most k decisions, while the live component
Pj can make progress and decide eventually.

The strength of ΠΩk is fully characterized by Figure 1. We defer to Section 5
as a central place to study and compare the strength of all proposed failure
detectors and avoid repetitions. We summarize the strength of ΠΩk comparing
with Ωk and Υ in the following theorem.

Theorem 1. The followings hold regarding the strength of ΠΩk. (1) ΠΩ1 ≡ Ω1.
(2) ΠΩk ≺ Ωj for all k ≥ 2, j ≥ 1, and k ≥ j. (3) ΠΩk � Ωj and Ωj � ΠΩk

for all k ≥ 2 and k < j ≤ n. (4) ΠΩk ≺ ΠΩk−1 for all k ≥ 2. (5) ΠΩk � Υ and
Υ � ΠΩk, for all k ≥ 2.

The key result is that ΠΩk is incomparable with Υ for all k ≥ 2. Therefore,
ΠΩk is a new class of failure detectors that is strictly weaker than Ωk, but is
strong enough to solve k-set agreement in shared-memory systems with arbitrary
failure patterns. It is the only class known (to our best knowledge) that solves
k-set agreement with arbitrary failure patterns and is strictly weaker than Ωk

and is incomparable with Υ .4

3.2 Solving k-Set Agreement with ΠΩk

The algorithm using ΠΩk to solve k-set agreement is based on an extension of
the k–converge algorithm presented in [21]. The original k–converge algorithm
forces every participant to use the same value of “k”. With ΠΩk failure detectors,
we need processes in each component to try to converge on some decisions,
the number of which is bounded by the lbound output of the failure detector.
Therefore we extend the k–converge algorithm by moving “k” into the parameter
of the routine and rename the routine to converge(). We adjust the specification
of converge() as follows.

Routine converge() takes in three parameters: � is the upper bound on the
number of values can be committed (this parameter corresponds to the “k” in
k–converge), p is the process identifier, and v is the input value of the process.
It outputs a pair (c, v′), where c is a boolean and v′ is one of the input value.
When p outputs (c, v′), we say that p picks v′, and if c = True, we say that p
commits to v′. The routine satisfies the following properties: (1) C-Termination:
Every correct process picks some value. (2) C-Validity: If a process p picks value

3 In [6] we show that a variation of failure detectors that output isLeader and lbound,
named Ω′′

k , is equivalent to Ωk failure detectors.
4 The Υ k failure detector proposed in [10] only solves k-set agreement in systems with

at most k failures.
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Shared variables:
Register D, initially ⊥
converge() instances: converge[ ][ ]

Output of failure detector ΠΩk on process pi:
isLeaderi, lboundi, cidi

Code for process pi:
1 v ← the input value of pi

2 repeat
3 cid ← cidi

4 until cid �= ⊥
5 r ← 0
6 repeat
7 c ← False
8 if isLeaderi = True then
9 r ← r + 1
10 (c, v) ← converge[cid][r](lboundi, i, v)
11 if c = True then
12 D ← v; return (D)
13 until D �= ⊥
14 return (D)

Fig. 2. k-set agreement algorithm using ΠΩk

v, then some process q invoked converge() with parameter v. (3) C-Agreement:
If a process p commits to a value, then at most �max values are picked, where
�max is the maximum � that processes pass into converge(). (4) Convergence: If
all processes use the same value in the � parameter (� > 0), and if there are no
more than � distinct input values, then every process that picks a value commits.
The first two properties are the same as in [21], while the last two properties
are adjusted to accommodate different input values of �. Although the interface
and the specification are changed, the algorithm is exactly the same as in [21],
and the proof only needs some minor adjustment. The algorithm and its proof
are included in [5].

Based on the converge() routine, we provide an algorithm to solve k-set agree-
ment using ΠΩk in Figure 2. The algorithm is straightforward. We use cid output
of failure detectors to isolate each component and make sure only processes in
the same component could run the same instance of converge() routine. Within
a component, only those processes with isLeader output being True can run
converge() instances. Each converge() instance only uses the output of the pre-
vious converge() instance as the input, which is important to guarantee the
safety of the algorithm. In any converge() instance if some process p commits to
a value v, then p writes v to a shared variable D and decides on v, and eventually
all correct processes will see a non-⊥ D value and decide. The following theorem
summarizes the correctness of the algorithm.

Theorem 2. Algorithm in Figure 2 solves k-set agreement using failure detec-
tors in ΠΩk, for any k ≥ 1.

Proof. It’s obvious that k-set Validity holds.
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For Uniform k-Agreement, we only need to consider decisions made in line 12,
since decisions made in line 14 do not generate new decision values. Consider
every component Pi. If some process decides in line 12, we consider the earliest
such decision, say by a process p ∈ Pi. Process p decides v because it commits to
v in an instance converge[cid][r](). By the C-Agreement property of converge(),
at most �max values can be picked in this converge[cid][r]() instance, where
�max is the maximum lbound values in the input of this instance. Since the
algorithm guarantees for any r′ > r, instances converge[cid][r′]() only uses the
values picked in instance converge[cid][r](), we know that there are at most �max

values can be decided in line 12 by processes in component Pi. By definition,
�max ≤ lbound(Pi). Then, by property (ΠΩ1), there are at most k values that
can be decided. So Uniform k-Agreement holds.

For k-set Termination, first by property (ΠC2) all correct processes eventu-
ally exit the loop in lines 2–4. In the live component Pj that satisfies (ΠΩ2–5),
eventually there is at least one correct process and at most � processes in Pj

invoking converge(), where � is the eventually converged lbound output value.
Moreover, all these processes invoke converge() with the same first parameter
value �. Thus, the C-Termination and Convergence properties guarantee that
all correct processes in Pj eventually commit to some value in some converge()
instance. Therefore, eventually D is written. Once D is written, all correct pro-
cesses eventually decide. �

4 Failure Detector ΠΩΥ k

After defining ΠΩk, our next step is to find a mixture of ΠΩk and Υ such that
the new failure detectors are weaker than both and are still strong enough to
solve n-set agreement. Since we know that ΠΩk and Υ are not comparable, it
immediately means that the new failure detectors are strictly weaker than both
ΠΩk and Υ . This leads us to the discovery of failure detectors ΠΩΥ k.

The output of ΠΩΥ k for process p is a tuple (S, lbound, cid), where S is a
subset of P that informally matches the output of Υ , and lbound and cid outputs
have the same value range and same informal meaning as the ones in ΠΩk. For
a component Pj , let correct(Pj) = correct(F ) ∩ Pj , the set of correct processes
in Pj (under a failure pattern F ).

A failure detector D is in the class ΠΩΥ k if for any failure pattern F and any
failure detector history H ∈ D(F ), there exists a partition π = {P1, . . . , Ps} of P ,
such that the following properties hold. The cid properties and safety properties
are the same as ΠΩk, namely (ΠC1), (ΠC2), and (ΠΩ1). The liveness part
specifies that there exists one partitioned component Pj such that (ΠΩ2) of
ΠΩk and the following property hold:

(ΠΥ1) Pj contains at least one correct process, and eventually all correct pro-
cesses in Pj output the same S ⊆ Pj such that S is not the set of correct
processes in Pj and either S = ∅ or the number of correct processes is
bounded by the eventual lbound output. Formally, correct(Pj) = ∅ ∧ ∃S0 ⊆
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Pj , S0 = correct(Pj), ∃t0, (∀p ∈ correct(Pj), ∀t > t0, (H(p, t).S = S0 ∧ (S0 =
∅ ∨ |correct(Pj)| ≤ H(p, t).lbound))).

We call a component that satisfies the liveness properties (ΠΩ2) and (ΠΥ1) a
live component, and other components non-live components. Intuitively, in the
live component Pj , the S output behaves almost the same as the output of Υ ,
except that S may eventually stabilize to ∅, in which case the number of correct
processes in Pj must be bounded by the eventual lbound output. This mixture is
important in making ΠΩΥ k strictly weaker than Υ . In particular, ΠΩΥ 0 is well-
defined since lbound outputs could always be 0. However, in ΠΩΥ 0 the above
mixture of requirements on S and on lbound is gone, and we will show that ΠΩΥ 0

is equivalent to Υ (the proof is not straightforward though).
The follow theorem summarizes the results on the strength of ΠΩΥ k com-

paring with ΠΩk and Υ , which is captured in Figure 1 and will be studied in
Section 5. The key result is that ΠΩΥ k is strictly weaker than Υ for any k ≥ 1,
and as k increases, its strength is strictly weakened. Therefore, we found a new
family of n classes of failure detectors that are all strictly weaker than Υ . It not
only shows that Υ is not the weakest failure detector ever, but also suggests that
there are still quite some room under Υ to fit in non-trivial failure detectors.

Theorem 3. The followings hold regarding the strength of ΠΩΥ k. (1) ΠΩΥ 0 ≡
Υ . (2) ΠΩΥ k ≺ ΠΩΥ k−1 for all k ≥ 1. (3) ΠΩj � ΠΩΥ k for all 1 ≤ k ≤ n
and 1 ≤ j ≤ n. (4) ΠΩΥ k � ΠΩj for all k ≥ j ≥ 1. (5) ΠΩΥ k � ΠΩj for all
j ≥ k + 2 and k ≥ 1.

The algorithm that solves n-set agreement using ΠΩΥ k is based on the algorithm
using Υ in [10], with modifications to (a) isolate the algorithm for each individual
component; (b) obtain the size of each component; and (c) deal with the case
that S = ∅ in the live component. The full algorithm and its proof are included
in [5].

5 Comparing Failure Detectors

This section is the central place to show all the results captured in Figure 1
and stated in Theorems 1 and 3. Since Υ is already a very weak failure detec-
tor, one can imagine that it would be a subtle and delicate task to show that
under Υ there are still such structure in which a series of failure detectors have
various strengths. Indeed, besides those obvious transformations, other results
on possible or impossible transformations are quite delicate and require subtle
techniques to prove them (and a few of them are still open). These proofs really
show the subtle relationship between the failure detectors. Unfortunately, due to
the space constraint, we can only include the full proofs in [5]. To compensate,
we provide intuitive ideas and proof outlines for some key proofs.

5.1 Possible Transformations

For possible transformations, we need to prove all the arrows in Figure 1. Most
transformations are obvious from the failure detector definitions.
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Lemma 1. (1) ΠΩk � ΠΩk−1; (2) ΠΩΥ k � ΠΩΥ k−1; (3) ΠΩk � Ωk; (4)
ΠΩΥ k � Υ .

Proof. The first two parts hold directly by the definition of failure detectors.
The last two parts hold because we can treat Ωk and Υ as a special case of
partitioned failure detectors with only a single component P . �

Lemma 2. ΠΩΥ k � ΠΩk for all k ≥ 1.

Proof Outline. For the transformation from ΠΩk to ΠΩΥ k, the idea is for each
component to come up with the set of at most lbound leaders, then the S output
of ΠΩΥ k is the complement of the leader set with respect to the component, and
lbound and cid outputs of ΠΩΥ k are copied from ΠΩk. The key is that for a live
component, the leader set stabilizes and contains at least one correct process.
Therefore, its complement S cannot be the set of correct processes. Moreover,
if S = ∅, it means that all processes in the component are eventual leaders, in
which case the lbound must be at least the number of correct processes in the
component. The transformation still needs to solve the problem of estimating the
membership of each component, which is addressed in the full transformation
algorithm and its proof in [5]. �

Lemma 3. (1) Ω1 � ΠΩ1; (2) Υ � ΠΩΥ 0

The transformations for the above lemma are not straigthforward [5].

5.2 Impossible Transformations

Proving the impossible transformations is the critical step to establish the results
of this paper. For these proofs, it is sometimes convenient to view it as an
adversary trying to defeat any possible transformations. The adversary can (a)
see the current output generated by a transformation; (b) manipulate the outputs
of the failure detector to be transformed; (c) schedule the executions of processes;
and (d) crash processes to prevent the transformation from succeeding.

Among all the impossible transformations captured by the non-existent di-
rected path in Figure 1, several of them are critical ones, meaning that their
impossibility implies the rest impossible transformations. This is based on the
fact that if we show that C1 $ C2, then for all C3 � C1 and all C4 $ C2, we have
C3 $ C4. The following lemma shows one such critical impossible transforma-
tions.

Lemma 4. ΠΩ2 cannot be transformed into Υ , i.e., ΠΩ2 $ Υ .

Proof Outline. We know that Ωn can be transformed to Υ easily by taking the
complement of the Ωn output. The reason that this transformation cannot be
adapted to ΠΩk is that ΠΩk allows a live component Pj in which all processes
are eventual leaders and lbound stabilizes to |Pj |. If we take the complement of
the leader set in Pj with respect to Pj we get an empty set. The proof explores
this basic idea.
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In the case of ΠΩ2, suppose for a contradiction that there is a transformation
T from ΠΩ2 to Υ . The adversary constructs a run in which the ΠΩ2 has a
partition π = {P1, P2}, where P1 = {p}. It sets lbound of every process to 1
and p’s isLeader always to True, making P1 a live component of ΠΩ2. It will
manipulate the isLeader outputs for processes in P2 to create a contradiction.
Whenever the S output of Υ in P stabilizes to some subset Si, the adversary
suppresses all processes in P \ Si (i.e., prohibit these processes from taking any
steps) for long enough time to force T to stabilize the S output to a different
set Si+1 = Si, because Si appears to be the exact set of correct processes. Once
T changes the S output, the adversary releases the suppressed processes so that
they take some steps, and then it repeats the procedure for Si+1, and so on. The
adversary can keep doing so because P \ Si contains either p or some process in
P2, and thus it can always set isLeader of some process in P \Si to True without
violating the ΠΩ2 requirement. The result is that the adversary forces T into an
infinite run in which the S output never stabilizes, a contradiction. �

Lemma 4 implies that for all ΠΩk with k ≥ 2, ΠΩk cannot be transformed into
Υ . This is the first key result. Moreover, because ΠΩk can be transformed into
ΠΩΥ k, Lemma 4 further implies that ΠΩΥ k is strictly weaker than Υ , the second
key result of the paper. Next lemma shows another key result of the paper.

Lemma 5. Υ cannot be transformed into ΠΩn when n ≥ 2.

Proof Outline. Suppose there is a transformation T . If the partition of ΠΩn

generated by transformation T contains only a single component, then the proof
is the same as proving Υ cannot be transformed into Ωn in [10]. If the partition
of ΠΩn has at least two components, let P1 be one of the components. The
adversary first sets the Υ output to P \ P1, and then repeatedly suppress the
leader processes in all components that are potentially live components for ΠΩn

(these are called quasi-live components in the proofs), the purpose of which is
to construct an infinite run in which there is no live component. The only way
the transformation can counter this measure is by setting the lbound outputs of
processes in P1 to |P1|. But the adversary can counter this again by crashing all
processes in P1, setting Υ output to P1, and re-apply the suppression technique.
The result is a run in which no live component exists. The key is that the
adversary need to wait until the lbound output on P1 is at least the size of a
component to crash the component. This guarantees that the transformation
cannot set lbound on P \ P1 to |P \ P1| to defeat the adversary. �

Lemma 4 and 5 establish that Υ and ΠΩk with k ≥ 2 are not comparable.
Together with the possible transformations of Lemma 2, they immediately imply
that ΠΩΥ k is strictly weaker than both Υ and ΠΩk for any k ≥ 2.

Next lemma summarizes all other critical impossible transformations proven
so far. The proofs to these results are technically involved and can be found
in [5].

Lemma 6. The following results hold: (1) Ωk $ ΠΩk−1 for any k ≥ 2. (2)
ΠΩΥ k $ ΠΩΥ k−1 for any k ≥ 1. (3) ΠΩk+1 $ ΠΩΥ k−1 for any k ≥ 2.
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In conclusion, Theorem 1 is implied by Lemma 1(1)(3), Lemma 3(1), Lemma 4,
Lemma 5 and Lemma 6(1). Theorem 3 is implied by Lemma 1(2)(4), Lemma
3(2) and Lemma 6(2)(3).

There are still an open problem left before we can completely characterize all
relationships in Figure 1. It is whether ΠΩk can be transformed into ΠΩΥ k−1 for
any k ≥ 2. We conjecture that this transformation is impossible. If so, Figure 1
is indeed a full characterization of all relationships.

6 Results in the Message-Passing Model

Partition approach can also be applied in the message-passing model to define
weaker failure detectors for k-set agreement. We briefly summarize some of the
results we obtained in the message-passing model. The complete results are
included in [7].

In the message-passing model, it is shown in [17] that besides Ωk a majority of
correct processes is required to solve k-set agreement. The majority requirement
can be generalized to the class of quorum failure detectors Σ defined in [8]:
a failure detector in Σ outputs a set of processes called quorum such that:
(Σ1) any two quorums intersect; and (Σ2) eventually all quorums contain only
correct processes. Thus, we applied the partition approach to the class of failure
detectors Ωk ×Σ to define weaker failure detectors.5

We first applies static partitions to Ωk × Σ and define Πk, which is similar
to ΠΩk but replacing the cid output with the quorum output. More specifically,
the output of a failure detector D in Πk for process p is a tuple (isLeader, lbound,
Quorum), where isLeader is a Boolean value indicating whether this process is
a leader, lbound is a non-negative integer indicating the upper bound on the
number of possible leaders in p’s partitioned component, and Quorum ⊆ P . A
failure detector D is in the class Πk if for any failure pattern F and any failure
detector history H ∈ D(F ), there exists a partition π = {P1, . . . , Ps} of P , such
that H satisfies the following set of safety and liveness properties. The safety
properties are (ΠΩ1) as for ΠΩk and the following two properties related to the
quorum outputs:

(ΠΣ1) The quorum output of a process p is always contained within p’s parti-
tioned component. Formally, ∀t ∈ T , ∀p ∈ F (t), H(p, t).Quorum ⊆ π[p].

(ΠΣ2) The quorum outputs in the same partitioned component always in-
tersect. Formally, ∀t1, t2 ∈ T , ∀p1 ∈ F (t1), ∀p2 ∈ F (t2), π[p1] = π[p2] ⇒
H(p1, t1).Quorum ∩H(p2, t2).Quorum = ∅.

The liveness part specifies that there exists one partitioned component Pj such
that the properties (ΠΩ2–5) of ΠΩk hold plus the following:

(ΠΣ3) Eventually the quorum outputs by all processes in Pj contain only cor-
rect processes. Formally ∃t0 ∈ T , ∀t ≥ t0, ∀p ∈ Pj \ F (t), H(p, t).Quorum ⊆
correct(F ).

5 Given two classes of failure detectors C1 and C2, class C1 ×C2 is the cross-product of
the two, i.e., C1 × C2 = {(D1,D2) | D1 ∈ C1,D2 ∈ C2}.
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ΠS
1

Π2

Π1

Ωk × Σ

Πk

ΠS
k

Πk−1

Ωk−1 × Σ

Ω2 × Σ

Ω1 × Σ

ΠS
k−1

ΠS
2

Fig. 3. Relationship diagram for failure detectors in the message-passing model. All
failure detector classes in the diagram can be used to solve k-set agreement (n ≥ 2k−2
is required to show that transformations from Ωk ×Σ to ΠS

k−1 and stronger classes are
impossible).

From the definition, we can see that Πk follows the partition approach and is
a static partitioning of Ωk × Σ: each component Pi has a failure detector with
all the safety properties of Ωki × Σ resticted to Pi where ki = lbound(Pi) and∑

ki ≤ k, while at least one component Pj also satisfies all liveness properties
of Ωkj ×Σ.

Next we further weaken Πk by allowing dynamic splitting of components
during the run, which leads to the definition of ΠS

k . Failure detectors in ΠS
k

output a tuple (isLeader, lbound,Quorum, cid). Informally, a failure detector in
ΠS

k allows partitioned components to further split during the run, but it uses
cid to differenciate different components and requires the quorum outputs in
a component after the splitting intersects with all quorum outputs before the
splitting. The formal definition is included in [7].

With the new families of failure detectors {Πz}1≤z≤k, and {ΠS
z }1≤z≤k, we

compare their strengths with {Ωz ×Σ}1≤z≤k. Based on a siginificant amount of
proof work, we summarize their relationship with a nice lattice structure shown
in Figure 3. Several important results are summarized by the lattice. First, as
we expected Πk weakens Ωk × Σ,6 and ΠS

k further weakens Πk for all k > 1.
Second, even failure detectors in Π2 with just two components is not strong
enough to be transformed into Ωk × Σ, and even failure detectors in ΠS

2 with
only one dynamic split is not strong enough to be transformed into Πk. This
shows that partitioning and dynamic splitting are indeed efficient techniques
that weaken failure detectors. Third, for all z ≥ 2, none of the classes Ωz ×Σ,
Πz, and ΠS

z can be transformed into Ωz−1×Σ, Πz−1, or ΠS
z−1. In fact, using a

result in [17] we further show that Ωz ×Σ, Πz, and ΠS
z are not strong enough

to solve (z − 1)-set agreement. In [7], we further show that the lattice structure

6 Actually, Πk weakens Σ in all cases, and weakens Ωk in most cases.
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in Figure 3 still holds (under certain mild assumptions) even if we assume that
a majority of processes are correct in the system model.

Finally, we design a new algorithm in the message-passing model that solves
k-set agreement using ΠS

k . The algorithm is based on the Paxos algorithm struc-
ture [15], but has significant new additions with much more complicated proofs
to deal with the subtleties introduced by dynamic splittings of partitioned failure
detectors.

7 Concluding Remarks

In [5] we further demonstrate the partition approach by defining a new failure
detector ΠΥ , which is the result of applying the approach directly to Υ . We show
that ΠΥ is enough to solve n-set agreement but is strictly weaker than Υ . ΠΥ is
stronger than ΠΩΥ n−1 but is incomparable with ΠΩΥ k for k ≤ n− 2.

We have shown that the partition approach is effective in weakening a num-
ber of failure detectors for k-set agreement. However, the partition approach
proposed is still an informal method, and sometimes it requires ad-hoc adjust-
ments. One future direction is to see how the approach and the partitioned
failure detectors can be formally treated. In particular, it would be interesting
to see if one could formally define a general class of partitioned failure detectors
and define the weakest failure detectors among all partitioned failure detectors
for k-set agreement.

The discovery of failure detectors even weaker than Υ may suggest that the
conjecture made in [10] that n-set agreement is the minimum decision task in
terms of minimum information required might not be true. This is another re-
search direction to see if there is any other decision task strictly weaker than
n-set agreement in terms of failure information needed to solve the problem.
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Abstract. Distributed storage algorithms implement the abstraction of
a shared register over distributed base objects. We study a specific class
of storage algorithms, which we call amnesic: these have the pragmatic
property that old values written in the implemented register might be
eventually forgotten, i.e., they are not permanently kept in the storage
and might be overwritten in the base objects by more recent values. This
paper precisely captures this property and argues that most storage al-
gorithms are amnesic. We establish a fundamental impossibility of an
amnesic storage algorithm to implement a robust register abstraction
over a set of base objects of which at least one can fail arbitrarily, even
if only in a responsive manner, unless readers are allowed to write to the
base objects. Our impossibility helps justify the assumptions made by
practical robust storage algorithms. We also derive from this impossibil-
ity the first sharp distinction between safe and regular registers. Namely,
we show that, if readers do not write, then no amnesic algorithm can
implement a regular register using safe registers.

1 Introduction

Storage is a critical aspect of modern computing systems. Today, there is strong
interest in distributed storage architectures, either server-based or in the form
of storage area networks (SANs), which leverage the technological advances in
networks of attached commodity disks to provide increased storage space, avail-
ability, and disaster recovery. At the heart of a distributed storage architecture
lies an algorithm that implements the read and write operations of a register
abstraction over several underlying base objects, sometimes called servers. Such
distributed storage algorithms constitute an active area of research. A major
challenge addressed by these algorithms is to ensure that (high-level) read and
write implementations tolerate asynchrony, contention, and failures.

We study in this paper the fundamental limitations of a specific class of
storage algorithms, which we define precisely and call amnesic. As we explain
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later (Section 5), most previously suggested storage algorithms are amnesic,
e.g., [15,6,13,17,2,16,8,11,12,3], although the notion has never been specifically
highlighted. Roughly speaking, an amnesic storage algorithm is one that eventu-
ally forgets old values previously stored in the implemented register after some
sequence of new values is written. For instance, an algorithm that stores in base
objects the last k values written in the implemented register, for some k ≥ 0,
e.g., [6,13,2,3], is amnesic, because a sequence of k new writes erases all pre-
viously stored values. On the other hand, an algorithm that stores the entire
history of values written in the base objects, (where values are drawn from an
unbounded domain), e.g., [10], is not amnesic. In this sense, amnesia can be seen
as a restriction on an algorithm’s space consumption, although it is not explic-
itly formulated this way. Instead, we capture the notion of amnesia in an ab-
stract way in terms of reachable configurations of a distributed storage algorithm
(Section 3).

Our motivation for refraining from an explicit space restriction is twofold.
First, we are interested in algorithms that manipulate potentially unbounded
value domains, such as integers, or files. Although in every execution, such an
algorithm’s space consumption is finite (and depends on the sizes of the written
values), it is inherently unbounded. Second, many practical algorithms employ
monotonically increasing timestamps [17,14,18,2,10,3,12], which are considered
pretty cheap in practice. Thus, the classical concept of bounded memory is in-
adequate for reasoning about many interesting algorithms. We further note that
the concept of bounded memory, by itself, does not capture “reasonable” space
restrictions. For example, it does not preclude an algorithm that manipulates
a large but finite domain (e.g., files of size 1KB), from storing all the (28192)
values in its domain if they were all written at some point. Focusing on amnesic
algorithms with unbounded domains provides an abstract way to rule out such
algorithms, without precluding the use of increasing timestamps.

We establish in this paper (Section 4) a fundamental limitation on amnesic
storage algorithms. We prove that it is impossible for an amnesic storage al-
gorithm to robustly implement a register abstraction using a set of distributed
(failure-prone) base objects, when readers do not write to the base objects. Un-
derlying our impossibility lies the notion of robustness. In short, we consider
as robust an algorithm that implements a live regular register [15] in the pres-
ence of contention, asynchrony, and arbitrary (Byzantine) failures of base ob-
jects [13,5,4]. Our impossibility holds if at least one base object can fail in a
responsive yet arbitrary manner (R-Arbitrary failure [13]) among an arbitrarily
large set of atomic base objects. (A fortiori, the result also holds if a base object
may fail in a non-responsive arbitrary (NR-arbitrary) manner). Such arbitrary
failures capture software bugs or malicious intrusions, which cannot be ruled out
when the service is geographically disperse. We do not require that the algorithm
tolerate process failures, which also strengthens our impossibility result.

The assumption that readers do not write is important for large systems
with many readers. Whereas it is reasonable for storage servers to communicate
using an authenticated channel with a single trusted writer and to assume it
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not to be malicious1, a storage that is accessible to a large population of readers
cannot typically trust all of them (authenticating all readers to prevent storage
corruption might be infeasible). Hence, a more feasible alternative is to disallow
the readers to modify the base object states, which is the assumption under
which our impossibility is proven.

Given the vast amount of work on practical robust storage, our impossibility
result may come as a surprise. In fact, our result does not imply that prac-
tical robust storage is unattainable, but rather justifies why previous solutions
have had to employ authentication [8,17,19], store unbounded histories [10], have
servers actively push updates to clients [18], give up on liveness in some situ-
ations [2], allow readers to write [3,11], or implement safe registers instead of
regular ones [13,17,2,12] (see Section 5).

Our impossibility indeed holds if the implemented register needs to be regular
but not if it needs to be safe. In a sense, regularity conveys an important as-
pect of robustness in the face of concurrency: no value can be returned if it was
not written. Since many amnesic robust storage solutions implement safe regis-
ters [13,17], we can use our impossibility to derive the first sharp line between
safe and regular semantics. We prove that there is no amnesic implementation
of a regular register with an unbounded domain from safe ones, if readers do
not write (Section 6). The line we draw between safety and regularity is anal-
ogous to the celebrated sharp line drawn by Lamport between atomicity and
regularity [15], which states that no bounded memory algorithm can implement
an atomic register using regular ones, if the readers do not write [15]. No such
separation between safety and regularity has ever been established. We identify
such a separation by replacing the notion of bounded algorithm in Lamport’s
formulation with our alternative notion of amnesic algorithm.
To summarize, this paper makes the following contributions:

– We define the notion of amnesia, capturing a pragmatic property of many
storage algorithms.

– We prove the impossibility of devising a storage algorithm that is robust and
amnesic without allowing readers to write.

– We derive the first sharp distinction between safe and regular register se-
mantics.

2 Model

2.1 Shared Memory Model

Weconsider anasynchronous sharedmemorysystemconsisting of afinite collection
of processes interacting through n base objects O1, . . . , On. The term base objects
is used to distinguish these from the higher level object abstraction implemented
by the shared memory algorithm.

1 With a compromised writer, the stored information is rendered meaningless anyway,
regardless of any distributed storage algorithm’s actions [17,19].
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We consider storage algorithms that tolerate at least one arbitrary failure of a
base objects. We focus on a weak form of such failures, called responsive arbitrary
(R-Arbitrary) [13]. This means that the base objects always respond to an invoca-
tion, but may respond with an arbitrary value. This assumption strengthens our
impossibility result, which directly applies to the more severe non-responsive arbi-
trary (NR-Arbitrary) [13] failures.

Processes are sequential in their ways of invoking high-level operations. That
is, after invoking a high-level operation, and until it obtains a response, a process
does not invoke a new high-level operation. After invoking a high-level operation,
a process might invoke a sequence of low-level operations. We do not assume these
low-level invocations to be sequential. That is, a process might invoke several op-
erations on low-level base objects concurrently.

The solutionmust be live in the sense that every high-level operationmust even-
tually complete. We do not require the algorithm to terminate in the presence of
process failures, i.e., it does not have to be wait-free.

2.2 Registers

Westudymore specifically storagealgorithmsthatdeterministically implement the
abstraction of a register, which is accessed using Read() and Write() operations. If
the base objects are also registers, we denote their (low-level) operations as read()
and write(), to avoid confusion with the high-level operations. To strengthen our
impossibility result, we restrict our attention to storage algorithms that emulate
a single-writer single-reader (SWSR) register: that is, the emulated register is
only writable by a single process (the writer), and is read by a single process
(the reader). The result a fortiori holds for multi-writer multi-reader registers.
We assume an infinite value domain V from which the parameters of the Write()
operation can be arbitrarily chosen by the writer. When it completes, Write()
simply returns an Ok indication. A Read() operation does not have any input
parameter, and returns a value from V upon completion.

The sequential specification of a register stipulates that a read should return the
last value written. When read and write operations may overlap, several semantics
have been defined [15]: A register is called safe if every read operation that does not
overlap any write operation returns the register’s value when the read was invoked,
i.e., the latestwritten value or the initial value of the register if no valuewaswritten.
A register is regular if it is safe and every read operation that overlaps some write
operations returns either one of the values written by overlappingwrites or the reg-
ister’s value before the first overlapping write is invoked. A register is atomic if it is
regular and if, for any two write operations W and W ′ with respective input values
v and v′ such thatW ′ is invoked afterW returns, and any two read operationsR and
R′ such that R′ is invoked after R returns, if R′ returns v, then R does not return
v′. To strengthen our impossibility result, we will allow base objects to be atomic.

2.3 Configurations

In this paper, we are only interested in the states of base objects, and not of
processes. Therefore, by slight abuse of terminology, we define a configuration
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to be a set of states of all the correct base objects (and not the processes).
Basically, the system starts from an initial configuration and each atomic step of
the algorithm, e.g., a low-level write() on a base object, leads the system to a new
configuration. The execution of a high-level operation involves several atomic
steps that lead the system from a configuration C to another configuration C′.
The assumption that the reader does not write means that C′ = C in case no
Write() is invoked.

We say that a configuration C′ is write-reachable from a configuration C
if there is a sequence S of Write() operations that, when executed without
overlapping with any other high-level operation, leads the system to C′. If all
input parameters of the Write() operations of sequence S are from a set V ′ ⊂ V ,
we say that C′ is write-reachable from C using V ′.

3 Amnesic Storage Algorithms

We introduce in this section the notion of an amnesic storage algorithm. We
characterize this notion in terms of configurations and write-reachability.

Intuitively, a storage algorithm is amnesic if all but a finite number of config-
urations reached by the algorithm can be eventually erased if a sufficient number
of different values are written after them. In short, erasing a configuration C′,
itself obtained from some configuration C, means reaching a new configuration
C′′ (after writing a sufficient number of different values) that makes it impossi-
ble to tell whether C′ was indeed reached. That is, C′′ could be reached directly
from C without going through C′. The sequence that reaches C′′ from C′ is in a
sense an eraser sequence. An observer of C′′ does not know whether C′ occurred
or not.

To preclude the trivial case where erasing a configuration is always performed
by the very same sequence, i.e., some sort or reset sequence, we require that
the configuration C′′ could be obtained from C by using values from any infinite
subset of values. Notice that we do not require that any sufficiently long sequence
erases every configuration. Yet, our definition is rather weak because we simply
require that every configuration has an eraser sequence using any infinite subset
of values: such a weak definition strengthens our impossibility result. Formally,

Definition 1 (Amnesic Storage). A storage algorithm A is amnesic if in
every execution of A in which infinitely many different values are written, there
is a point t, so that for every configuration C reached from point t onward,
every configuration C1 write-reachable from C, and every infinite subset of values
V ′ ⊂ V , there is a configuration C2 that is write-reachable from both C and C1
using V ′.

We say that (see Figure 1) t is the amnesia point, C2 is an eraser configuration
of C1 from C using V ′; the sequence of Writes() used to reach C2 from C1 is
an eraser sequence of C1 from C using V ′; the sequence used to reach C2 from
C is a bypass sequence of C1 from C using V ′.

Clearly, an algorithm that recalls the entire history of written values in the
base registers is not amnesic. On the other hand, an algorithm that stores in all
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eraser sequence (only values from V’)

(only values from V’)bypass sequence

amnesia point C
erased configuration eraser configuration

C1 C2

Fig. 1. Amnesia

base registers the last k values written in the high-level register is amnesic. The
eraser sequence S2 simply needs to be of size k and from V ′. The amnesia point
captures a situation where an algorithm initially stores some finite number of
values forever, but eventually, (at the amnesia point), its storage is “exhausted”
and it cannot store additional values forever. To be non-amnesic, an algorithm
with an infinite domain needs to be able to recall (in the sense that they cannot
be erased) infinitely many configurations that it visited.

It is important to notice here that storage algorithms can also record times-
tamps while being amnesic. Consider for instance an algorithm that stores in
the base registers the last k values written, as well as the total number of values
written. Consider a configuration C1 obtained after writing i values, starting
from an initial configuration C. An eraser sequence using some infinite subset
V ′ consists of k new different Write() invocations with parameters from V ′, and
a bypass sequence consists of i+k different Write() invocations with parameters
from V ′, the latter k being the same as for the eraser sequence.

Note that violating amnesia does not directly translate to excessive storage
requirements. An algorithm may be able to represent some property of an un-
bounded history in a bounded way, much like a finite-state automaton can recall
that an unbounded string belongs to some regular language2. Nevertheless, we
are unaware of any previous storage algorithm that employs such a succinct
representation, and so our impossibility result has broad applicability.

4 Impossibility of Amnesic Robust Storage

In this section, we establish the impossibility of devising a storage algorithm
that is at the same time amnesic and robust when readers do not write. Recall
that in our context, a storage algorithm is robust if (a) at least one base object
can suffer an (R-arbitrary) failure; (b) the implemented register is regular, i.e.,
tolerates contention; (c) every invoked high-level operation terminates, including
in the presence of contention.

4.1 Simplifications

As we assume that only the writer of the implemented register can modify the
base objects, these are also, without loss of generality, single-writer registers,
with the same writer as that of the implemented register. Still without loss of
generality, since we preclude the reader from writing, we can assume that:
2 We are grateful to Prasad Jayanti for pointing this out.
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1. Every high level Read() invocation translates into a finite series of concurrent
read invocations of all base objects O1, O2, .., On.

2. The set of configurations obtained after performing any sequence S of Write()
operations without any overlapping Read() is the same as if this sequence was
invoked concurrently with this Read(). Recall that our definition of configu-
rations only includes base object states.

4.2 Overview of the Impossibility Proof

To prove our impossibility, we proceed by contradiction. More specifically, we
assume that there is an amnesic robust storage algorithm A that implements a
register over an infinite domain V and we exhibit a scenario where A violates
the regularity of the register.

We show that A violates regularity by having the reader return a value that
was never written to the implemented register. Not surprisingly, this value is
obtained from a low-lever read of the faulty base register. Our scenario has the
reader unable to distinguish the response of the faulty base register from the
response of a correct one, precisely because A is amnesic, and readers do not
write. The proof then goes through three steps:

– Step 1. (Using the amnesia assumption.) We construct an execution E, which
we call an amnesic execution, where sequences of Write() operations erase
each other in turn, using n different subsets of value domains, V1, . . . , Vn.
We will argue that every amnesic storage algorithm can generate such an
execution.

– Step 2. (Using the assumption that readers do not write.) We next construct
a slight modification E′ of E, where the reader samples one base register
after each sequence above has erased the previous configuration. No matter
how many samples are taken, the reader still cannot obtain evidence of any
written value from more than one base register, because the evidence is
continuously erased. Finally, the reader returns some value vi from some
subset Vi, for which it saw evidence in some base register Oi.

– Step 3. (Using robustness.) Finally, we construct an execution E′
i in which

no value from Vi is written, bypassing the configurations where values from
Vi are stored. In E′

i, Oi incurs an R-arbitrary failure, and returns the same
values as in E′. Since the reader cannot distinguish E′

i from E′, it returns
vi, which was never written.

4.3 Impossibility

Theorem 1. No storage algorithm can be amnesic and robust if a single base
register can suffer a responsive arbitrary failure and readers do not write.

Proof (Proof of Theorem 1.). We assume a storage algorithm A that determin-
istically implements the abstraction of a register with an infinite value domain
V , using a collection of n base objects O1, . . . , On. We assume by contradiction
that A is robust and amnesic.
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We partition V into n + 1 infinite subsets V0, V1, . . . , Vn. (The intersection of
every two subsets is empty, and the union of all subsets is V ).

Step 1. We construct an infinite execution of A, E, which we call an amnesic
execution (see Figure 2). E goes through the infinite sequence of configurations:

C1,1, . . . , C1,n, C2,1, . . . , C2,n, . . . , Cj,1, . . . , Cj,n, . . .

such that for every i ∈ {1, .., n}, there is an execution Ei such that (a) Ei is the
subsequence of E obtained by omitting all the configurations Ck,i, k > 0. (That
is, configurations Ck,i for all k are skipped.) And (b) no value from Vi is ever
written in Ei.

C1,1 C1,2 C1,n C2,2C1,3 C2,1

E2 bypassE2 bypass

E1 bypass ... ...

En bypass

V4V1 V2 V3 V1 V2 V3Vn

E1 bypass
using V2

using V3

using V1

using V3

using V2

E

C
V0

Fig. 2. Amnesic execution E; execution E2 (bypassing V2) highlighted

We construct E recursively as follows. We perform a series of Writes() of
different values from V0 until the algorithm reaches an amnesia point at some
configuration C. Then we apply a Write() of a single value from V1. We denote
the resulting configuration C1,1. Then we use the assumption that the storage
algorithm is amnesic and apply to C1,1 a sequence that erases C1,1 from C us-
ing V2. We denote the resulting configuration by C1,2. Then we use again the
assumption that the storage algorithm is amnesic and apply to C1,2 a sequence
that erases C1,2 from C1,1 using V3. We denote the resulting configuration by
C1,3. And so forth recursively. We apply to Cj,k a sequence that erases Cj,k from
Cj,k−1 using Vk+1, where Cj,n+1 = Cj+1,1 and Vn+1 = V1. The resulting execu-
tion E is infinite and can be generated from every amnesic storage algorithm.

In addition, for every 1 ≤ i ≤ n, execution Ei is constructed, also recursively,
as follows (see Figure 2). Up to C1,i−1, Ei is exactly like E and hence no Write()
uses any value from Vi. Configuration C1,i+1 is then (directly) reached from
C1,i−1 via the bypassing sequence of C1,i from C1,i−1 using values from Vi+1.
Then we continue as in E until C2,i−1, at which point we execute the bypass
sequence of C2,i from C2,i−1. And so forth: we apply the same sequence as in E
to reach Cj,k from Cj,k−1 for k = i, and for i, we apply the bypass sequence of
Cj,i from Cj,i−1 to reach Cj,i+1 from Cj,i−1. It is easy to see that properties (a)
and (b) above hold for every Ei, for i ∈ {1, .., n}.
Step 2. We now construct an execution E′ interleaving a single Read() with the
sequences of Write() operations involved in E. Remember that, without loss of
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generality, we assume that every Read() implementation consists of a sequence
of concurrent invocations of all base objects. The interleaving in execution E′

is constructed as follows. Read() is invoked when the base objects are in con-
figuration C1,1. The reader returns from the kth read() of base object Oj when
the system is in configuration Ck,j . For instance, the reader returns from the
first read() of the first base object, O1, when the system is in configuration C1,1,
then from the first read() of the second base object, O2, when the system is in
configuration C1,2.

By the assumption that the reader does not write, execution E′ can also be
generated by every amnesic storage algorithm. By our liveness assumption, the
Read() eventually returns a value. Since the Read() is invoked after the first
write from V1, by regularity, it returns a value vi from some Vi for 0 < i ≤ n.
Step 3. We now make use of our assumption of robustness to derive a contradic-
tion. We construct execution E′

i, which is the same as Ei, with two exceptions:

1. For every j = i, as in E′, we apply the kth read() of base object Oj when
the system is in configuration Ck,j .

2. The kth read() of base object Oi occurs during the kth bypass.
3. Oi returns the same response to its kth read invocation in E′

i as in in exe-
cution E′.

Execution E′
i can also be generated by every amnesic storage algorithm with

base object Oi failing in an arbitrary way. Executions E′ and E′
i look the same

to the reader (by construction), which then returns a value vi from Vi in E′
i. But

no value from Vi is written in E′
i, contradicting regularity.

5 Amnesic Algorithms and Circumventing the
Impossibility

Our impossibility justifies certain assumptions and design decisions made by
existing storage algorithms. In this section, we illustrate the importance of the
notion of amnesia, by showing that the majority of reliable storage algorithms in
the literature are amnesic, and discuss how existing algorithms circumvent our
impossibility result.

First note that every bounded memory algorithm is by definition trivially am-
nesic, because no infinite sub-domains of its domain exist. Since our impossibility
result only applies to algorithms that can store values from unbounded domains,
it is more interesting to consider algorithms that can manipulate such domains.
Interestingly, most bounded memory algorithms in the literature can be easily
extended to support unbounded domains. For example, Jayanti et al. [13] present
an emulation of a safe register from ones that can suffer NR-Arbitrary faults.
Although originally described as a bounded memory algorithm, it does not make
any use of the domain size, and only stores values from the domain. Hence, this
algorithm can easily work with an unbounded domain, where in each execution,
it consumes storage as required for representing the values written in that execu-
tion. This algorithm circumvents our impossibility result by implementing only
safe storage.
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Lamport [15] presents a bounded memory algorithm for implementing a wait-
free regular register from safe bits, with readers that do not write. Given the
existence of robust safe register emulations [13,17,2], had this algorithm manip-
ulated unbounded domains, it would have contradicted our impossibility. How-
ever, this algorithm is aware of its value domain and makes heavy use of this
knowledge– it stores one bit for each value in the value domain of the register.
The algorithm works as follows: a write operation of the ith value in the domain
changes the ith bit to 1, and subsequently writes 0 in bits i− 1, i− 2, . . . , 1. The
reader reads the bits 1, 2, 3, . . . until it encounters a 1 in some bit i, at which
point it stops reading and returns i. We observe that neither the reader nor the
writer ever accesses a bit higher than the one pertaining to the largest written
value. Therefore, this algorithm too can be extended to unbounded domains, e.g.,
integers, by allocating the ith bit the first time a value greater or equal to i is
written. Despite its exponential storage requirements, the resulting algorithm is
also amnesic, since writing a single value larger than all previously written ones
is an eraser sequence. So how does this algorithm circumvent our impossibility
result? We observe that the extended algorithm no longer ensures liveness, be-
cause if the writer writes an infinite monotonically increasing sequence of values
(an amnesic sequence), the reader can “trail” the writer, and never encounter a
1 in any register. Thus, even such exponential storage does not save us from the
impossibility.

Many algorithms that store unbounded timestamps are also amnesic, includ-
ing the classical ABD [6] algorithm, which tolerates only crash failures of base
objects, and the safe register emulations of [17,2,12]. Other amnesic algorithms
provide atomic semantics (which are stronger than regular) either by assuming a
stronger model where data is self-verifying (and hence cannot be forged by base
objects), or by having readers write [17,16,8,11,3].

It is also possible to circumvent our impossibility with amnesic algorithms by
providing weaker (non-terminating in case of contention) termination guaran-
tees [2]. Specifically, Abraham et al. [2] propose a termination condition called
finite writes (FW), which guarantees progress only in executions with a finite
number of writes, and present a amnesic storage algorithm implementing a reg-
ular FW-terminating register.

A few algorithms circumvent our impossibility by forgoing amnesia. These
include the Pasis system [10], which achieves atomic semantics. It circumvents
our impossibility by having authenticated readers that are allowed to modify the
data stored at the base registers (storage nodes). The storage nodes also keep
all versions of data that have been written in the execution, and are therefore,
not amnesic. To prevent storage exhaustion, the system implements a garbage
collection mechanism, which works well in practice, but, as the authors point
out in [9], might fail to terminate in some scenarios.

Martin et al. [18], as well as Bazzi and Ding [7] also provide atomic seman-
tics. They assume storage servers (instead of base registers) that communicate
with each other, and a subscription model whereby storage servers push writer
updates to subscribed clients. Since theoretically, there is no bound on the
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number of messages in the reliable push channel in an asynchronous system,
these algorithms are also not amnesic. This approach nevertheless, is a viable
design alternative in the settings where servers are available and the number of
clients is limited.

6 Sharp Separation Between Regularity and Safety

Many amnesic robust storage solutions implement safe registers [13,17,2]. This
maybe surprising, as safe and regular semantics are commonly believed to be
“equivalent”, justified by the existence of known bounded memory reductions
from regular registers to safe ones. In particular, Lamport [15] presents a bounded
memory algorithm for emulating a regular register from safe ones, in which read-
ers do not write. The algorithm assumes a bounded value domain and its storage
requirements, as well as the number of memory accesses in the algorithm, are no-
toriously high (proportional to the number of possible values the regular register
can hold).

The following theorem is an immediate corollary of Theorem 1 and the exis-
tence of amnesic storage algorithms that implement a t-tolerant wait-free safe reg-
ister (with unbounded value domains) from a collection of n base registers up to
t of which can suffer arbitrary failures [13,17,2].

Theorem 2. If readers do not write, it is impossible to implement a live regular
register from safe ones with an amnesic algorithm and an infinite domain.

Interestingly, Lamport has proved the following [15] :

If readers do not write, it is impossible to implement an atomic register
from regular ones with a bounded algorithm.

Thus, Lamport has shown that in bounded memory implementations, disallow-
ing readers to write draws a sharp line between regularity and atomicity, but not
between safety and regularity.

Hence, our result shows that, when one considers amnesic with infinite value
domain instead of bounded memory, the same sharp line does exist between reg-
ularity and safety.

7 Concluding Remarks

The observation that no existing storage algorithm with reasonable space require-
ments that is regular, live in the presence of contention, and does not require read-
ers to write, or preclude arbitrary faults of base registers was made by Abraham
et al. [1]. They conjectured that, roughly speaking, if readers do not write, then
the storage size grows linearly with the number of values written over the execu-
tion’s time span. The difficulty in proving this conjecture stems from the lack of
appropriate definitions, since the classical notion of bounded memory cannot cap-
ture “linear growth” in storage requirements. Our notion of amnesic memory is
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an attempt to capture practical limitations on the information an algorithm re-
calls about its history, and gives an explanation to the observation that led to this
conjecture. An interesting direction for future work may be providing a concrete
lower bound on the space requirements of robust storage algorithms that are not
amnesic. In addition, we believe that more impossibilities and fine grained distinc-
tions could be obtained if one reconsiders bounded memory restrictions with our
amnesic notion in mind.
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Abstract. We give a distributed approximation algorithm for the vertex-
packing problem in unit-disk graphs. Given a graph H , the algorithm finds
in a unit-disk graph G a collection of pairwise disjoint copies of H of size
which is approximately equal to the packing number of H in G. The algo-
rithm is deterministic and runs in a poly-logarithmic number of rounds in
the message passing model.

1 Introduction

Distributed complexity of vast majority of graph-theoretic problems is still far
from well understood. In contrast to the sequential or parallel model of computa-
tions, the distributed model has resisted efficient solutions for even the most sim-
ple graph-theoretic problems. Consider, for example, the maximal independent
set problem. A trivial sequential solution for the problem exists, a non-trivial de-
terministic PRAM algorithm is known (Small-spaces derandomization procedure
of Luby [L86]) but the distributed complexity of the maximal independent set
problem is still an outstanding open problem. As distributed complexity of many
graph-theoretic problems seems very hard to be determined in general graphs, it
is natural to consider important sub-classes of graphs. In this paper, we will con-
sider a class of unit-disk graphs and give an efficient distributed approximation
algorithm for the vertex-packing problem. The algorithm is purely deterministic
and finds a solution of value which is within (1− o(1)) of the optimal.

Many different distributed models can be considered (see Peleg [P00]) each
capturing different aspect of distributed computations. Here, we will work in the
distributed message-passing model of computations (see for example Linial [L92])
in which the underlying network forms a graph with vertices which correspond to
computational units and edges that correspond to communication links between
the units. The computations are synchronized and proceed in rounds. In a single
round each vertex can send messages to its neighbors, can receive messages from
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its neighbors, and can perform local computations. In this model the emphasis
on the extent to which local computations can be used to determine a global
function of the network. The global function considered in this paper comes from
the vertex-packing problem. In this problem, we are given a graph H of a fixed
size and want to find a maximum number of vertex-disjoint copies of H in the
underlying network G. More formally, let G be graph on |G| vertices and let H
be a graph on a fixed (independent of G) number of vertices. An L-packing of
H in G is a collection of pairwise vertex-disjoint subgraphs H1, H2, . . . , HL of G
such that each Hi is isomorphic to H . The packing number of H , νH(G), is the
largest L such that an L-packing of H in G exists. Finding νH(G) is a classical
problem in graph theory with many important special cases. In particular, the
size of a maximum matching in graph G is equal to νK2(G).

1.1 Model and Notation

As noted before, we will consider the message-passing synchronized distributed
model of computations from [L92]. In addition, we assume that vertices in the
network have unique identifiers which are in the set {1, . . . , m} where m is a
polynomial in |G| and is globally known. The underlying topology of the network
will be of a unit-disk graph which is commonly used to model mobile ad-hoc
networks. A graph G = (V, E) is called a unit-disk graph if there is an injective
function f : V → R2 such that {u, v} ∈ E if and only if ||f(u) − f(v)||2 ≤ 1.
Although the fact that G is a unit-disk graph is critical for our analysis, we will
assume that no information (including the Euclidean distance) about a geometric
representation of G is available to nodes. Finally, we will use the graph-theoretic
notation and terminology from [D05]. In particular, we will denote by |G| the
number of vertices of G and by ||G|| the number of edges.

1.2 Results

We give a distributed approximation algorithm for the packing problem in unit-
disk graphs. The algorithm is deterministic, runs in a poly-logarithmic num-
ber of rounds, and does not use any information about a geometric represen-
tation of the unit-disk graph. Let H be a graph and let G be a unit-disk
graph. Given k and H , the algorithm finds in a poly-logarithmic number of
rounds a collection of pairwise vertex-disjoint subgraphs H1, . . . , HL of G with
L ≥ (1 − O(1/ logk |G|))νH(G) (Theorem 3). The algorithm extends the clus-
tering procedure from [CH06b] by adopting it to a more general class of graphs
than the one considered in [CH06b]. Specifically, we will consider the so-called
(C, q)-bounded growth graphs (see Definition 1 on page 155) which arise natu-
rally when considering certain auxiliary graphs of a unit-disk graph. In [CH06b]
a clustering algorithm for (C, 2)-bounded growth graphs with C constant is
given. Here, we found it necessary to generalize the procedure from [CH06b] to
(C, q)-bounded growth graphs for which q is constant but C may depend on |G|.
The algorithm essentially works as follows. First a maximal independent set is
found. The set is used to partition the graph into clusters of two types: the large
clusters that contain many vertices and the other clusters. In the large clusters
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copies of H are packed greedily into subgraphs induced by N [v]. The packing
problem in the rest of the graph is reduced to the problem of approximating a
maximum independent set in a special graph. We argue that error made in both
of the above parts is small and prove that there exists a solution to the packing
problem of value which approximates the optimal with the property that every
copy of H is either entirely contained in large clusters or is contained in the rest
of the graph.

1.3 Related Work

Studying distributed message passing approximation algorithms for unit-disk
graphs was initiated by Kuhn et. al. in [KMNW05b] where efficient approxima-
tions for the Maximum Independent Set (MaxIS) Problem and the Minimum
Dominating Set (MDS) Problem are given. Research described in the series of
papers [KMW05], [KMNW05b], and [KMNW05a] is the main motivation for
our work here. Continuing the program of Kuhn et. al., we recently gave dis-
tributed approximations for two additional problems, the Minimum Connected
Dominating Set (MCDS) Problem and the Maximum Matching (MM) Problem
(see [CH06b]). All of the above results indicate that distributed poly-logarithmic
approximations are fairly easy to find if the underlying graph has the unit-disk
graph topology. The second motivation for our study comes from the recent work
[CH06a] and [CHS06] in which distributed approximations for MaxIS Problem,
MM Problem, and MDS Problem in planar and minor-closed families of graphs
are given. The vertex-packing problem is another important problem which ad-
mits a distributed approximation in unit-disk graphs. Although minor-closed
families of graphs provide different challenges than unit-disk graphs, we also
hope that some of the techniques developed in this paper will prove useful in
attacking the packing problem for such families of graphs. It is possible that the
running time of our packing algorithm can be improved but it seems unlikely
that the poly-log bound can be beaten as for example in the case of general
graphs, it is shown in [KMW04] that required to achieve a constant or a poly-
logarithmic approximation ratio for an inclusion maximal matching is at least
Ω(
√

log |G|/ log log |G|) or Ω(log Δ/ log log Δ), where Δ denotes the maximum
degree of the graph.

1.4 Organization

In the next section we will give our modified clustering algorithm. The algorithm
and its analysis follows the pattern of the corresponding discussion in in this
[CH06b]. In Section 3, we will present the main result of the paper, a distributed
algorithm which yields an almost exact approximation of the vertex-packing
problem in unit-disk graphs.

2 Clustering Algorithm

We shall start with the following basic property of unit-disk graphs. Although
very rudimentary, the property is a key to our clustering and packing algorithms.
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A geometric representation of a unit-disk graph G is an injective function f :
V (G) → R2 such that two distinct vertices u, v from V (G) form an edge in G if
and only if ||f(u)− f(v)||2 ≤ 1.

Lemma 1. Let G be a unit-disk graph and let k be a positive integer. For any
independent set I in G and any geometrical representation f of G, the number
of vertices from f(I) which are contained in a ball in R2 of radius k is at most
4(k + 0.5)2.

2.1 Clustering Algorithm

Our algorithm for unit-disk graphs uses a small modification of the clustering
procedure from [CH06b] which in turn is based on the ruling set algorithm from
[AGLP89]. In [CH06b] it is shown that the clustering procedure works in the
so-called (C, 2)-bounded growth graphs (see Definition 1) where C is a constant.
Here, we will need a modification of this algorithm which works in a more general
class of graphs. Recall that the distance between two vertices u, v in a graph G,
dG(u, v), is the length of the shortest path in G joining u with v.

Definition 1. A graph G has a (C, q)-bounded growth if for every vertex v in
G and every nonnegative integer m,

|{u ∈ V (G) : dG(u, v) ≤ m}| ≤ Cmq + 1.

In our applications q will always be a fixed constant, C however will depend
on the graph G. In fact, to get a desired approximation error we will set C :=
Θ(logl |G|) for a fixed constant l. Algorithm from [CH06b] uses the ruling forest
technique from [AGLP89] and relies on the (C, 2)-bounded growth property. We
will show that a modification of the algorithm from [CH06b] yields a general-
ization which is can be applied to the packing problem. The performance of the
modified algorithm is summarized in the next theorem.

Theorem 1. Let q be a fixed constant. There is a distributed algorithm which
given a (C, q)-bounded growth graph G with identifiers in {1, . . . , m}, |G| ≤ m,
and 0 < ε = ε(|G|) ≤ 1 finds a partition (V1, . . . , Vs) of V (G) such that the
following two properties are satisfied.

– The number of edges between different partition classes is O(εC|G|) and
– For i = 1, . . . , s, the diameter of G[Vi] is O

(
log C+log 1/ε

ε

)
.

The algorithm runs in O

(
C
(

log C+log 1/ε
ε

)q+1

logq+1 m log 1/ε

)
rounds.

The algorithm from Theorem 1 is the procedure Clustering which we will
describe shortly. The algorithm is based on the ruling set procedure of Awerbuch
et. al. [AGLP89]. A D-ruling set in a graph G = (V, E) is a subset S of V that
has two properties:

– For any two distinct vertices s, s′ from S, the distance (in G) between s and
s′ is at least D.
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– For any vertex v ∈ V there is a vertex s ∈ S such that the distance between
s and v is at most D log |G|.

There is an easy distributed algorithm which finds a D-ruling set in any graph.

Theorem 2 ([AGLP89]). Let G be a graph such that identifiers of vertices
from V (G) are in {1, . . . , m} where m is globally known and is a polynomial
in |G|. There is a distributed algorithm which finds in G a D-ruling set in
O(D log |G|) rounds.

Our algorithm uses parameters ε, D, and F (used in Clustering) and as-
sumes that graph G has the (C, q)-bounded growth. Parameter q is assumed to
be constant, C and ε can depend on |G|. For 0 < ε < 1 and C, let l∗ be the
smallest positive integer with the property

(1 + ε)l∗ ≥ Clq∗ + 1. (1)

It is easy to check that when q is constant and ε is small then

l∗ = O

(
log C + log 1/ε

ε

)
. (2)

In addition, let D be such that

D > 2l∗. (3)

In the next two procedures we will find a clustering of a graph which has a
(C, q)-bounded growth. First procedure is essentially one iteration of the main
algorithm. We will denote by N(U) the set of vertices in G which are at distance
at most one of a vertex from U .

ClusterSet

Input: Constant q. Graph G = (V, E) which has (C, q)-bounded growth and such
that identifiers of V are bounded by m. Parameters: 0 < ε < 1 (arbitrary) and
D which satisfies (3).
Output: A family of subsets of V .

(1) Find a D-ruling set {v1, v2, . . . , vl} in G.
(2) For every vi in parallel:

(a) Let Ui := {vi}, Ni := N(Ui) \ Ui.
(b) while |Ni| ≥ ε|Ui|

• Ui := Ui ∪Ni, Ni := N(Ui) \ Ui.
(3) Return U1, U2, . . . , Ul.

We shall start the analysis of CluserSet with the following property of the
D-ruling set obtained in step one.

Lemma 2. The number of vertices in the D-ruling set obtained in step one of
ClusterSet is at least

|G|/(CDq logq |G|+ 1).
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Proof. Let {v1, v2, . . . , vl} denote the ruling set obtained in step one. For every
vi consider the set Wi of vertices in G which are within distance D log |G| of vi.
From Definition 1, |Wi| ≤ CDq logq |G| + 1. Since vi’s form a D-ruling set we
have |G| ≤ |

⋃l
i=1 Wi|. Thus

|G| ≤ l(CDq logq |G|+ 1).

In the next two lemmas we will show that each of Ui’s has small diameter and
more importantly the total number of edges that intersect different Ui’s is small.

Lemma 3. Let l∗ be such that inequality (1) holds and let {v1, v2, . . . , vl} be the
ruling set from step one. Then for every i = 1, . . . , l,

max
u∈Ui

dG(vi, u) ≤ l∗.

Proof. Let U
(l)
i denote the set Ui in the lth iteration of the while loop from

step 2(b). Then |U (0)
i | = 1 and in the lth iteration |U (l)

i | ≥ (1 + ε)l. On the
other hand, by Definition 1, |U (l)

i | ≤ Clq + 1. Consequently, if l∗ is the smallest
positive integer such that (1 + ε)l∗ ≥ Clq∗ + 1 then l ≤ l∗ and so for any u ∈ Ui,
the distance dG(vi, u) ≤ l∗.

Lemma 4. Sets U1, U2, . . . , Ul returned by ClusterSet are pair-wise disjoint.
In addition, if e(Ui, V \ Ui) denotes the number of edges between Ui and V \ Ui

then
l∑

i=1

e(Ui, V \ Ui) = O(Cε

l∑
i=1

|Ui|).

Proof. From Lemma 3 for every u ∈ Ui, dG(vi, u) ≤ l∗ and so if Ui ∩ Uj is
non-empty then the distance between vi and vj is at most 2l∗ which contradicts
the fact that vi, vj are in the D-ruling set with D > 2l∗ by (3). To prove the
second part, note that for every Ui returned in step 3, the set Ni = N(Ui) \ Ui

is such that |Ni| < ε|Ui|. Since G has the maximum degree of at most C, the
number of edges between Ui and Ni is Cε|Ui|.

Recall that identifiers of V are in set {1, . . . , m}. We finally note that the
running time of ClusterSet is O

(
D log m + log C+log 1/ε

ε

)
.

Lemma 5. The number of rounds ofClusterSet is O
(
D log m + log C+log 1/ε

ε

)
.

Proof. There are O(D log m) rounds to find the D-ruling forest in step 1. This
is followed by l∗ = O

(
log C+log 1/ε

ε

)
iterations in step 2.

Our main clustering procedure will call ClusterSet repeatedly. In each call,
sets U1, . . . , Ul are obtained and vertices in

⋃
Ui are deleted from the graph G.

Finally, after trimming G with repeated application of ClusterSet, the re-
maining vertices will form one-element clusters.
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Clustering

Input: Constant q. Graph G = (V, E) which has (C, q)-bounded growth and such
that the identifiers of V are positive integers which are less than or equal to m.
Parameters: 0 < ε < 1 (arbitrary), D (must satisfy (3)), F (arbitrary).
Output: A partition P of V .

(1) Repeat F times:
(a) Call ClusterSet in G. Add all sets Ui obtained from ClusterSet to

family P .
(b) Delete from G vertices from

⋃
Ui and edges incident to these vertices.

(2) For every vertex left in G create a set which contains only this vertex and
add it to P . Return P .

We will analyze Clustering in the next two lemmas.

Lemma 6. Let P = (V1, . . . , Vt) be a partition of V returned by Clustering.
The number of edges of G = (V, E) connecting vertices from different Vi’s is

O

(((
1− 1

CDq logq |G|+ 1

)F

+ ε

)
C|G|

)
.

Proof. First note that since G is a graph with a maximum degree O(C),
||G|| = O(C|G|). Consider sets added to P in iterations from step 1. Edges
with exactly one endpoint in these sets are deleted in step 1(b) and by Lemma
4, the number of them is O(Cε|G|). The remaining edges which must be counted
are the edges of G from step two. To estimate these, we note that by Lemma

2, the number of vertices in this graph is O(
((

1− 1
CDq logq |G|+1

)F

|G|
)

. Con-

sequently, the number of edges of G connecting vertices from different Vi’s is

O

(((
1− 1

CDq logq |G|+1

)F

+ ε

)
C|G|

)
.

Lemma 7. Clustering runs in O
(
F
(
D log m + log C+log 1/ε

ε

))
rounds.

Proof. There are F iterations of step 1, in which, by Lemma 5, the sets are
found in O

(
D log m + log C+log 1/ε

ε

)
rounds.

Proof of Theorem 1. Let D := 2l∗ + 1 = O
(

log C+log 1/ε
ε

)
and let F :=

�(log 1/ε)CDq logq m�. Then, by Lemma 7, the number of rounds is

O

(
F

(
D log m +

log C + log 1/ε

ε

))
=O

(
C log 1/ε

(
log C + log 1/ε

ε

)q+1

logq+1 m

)
.

The number of edges which connect different clusters is O(εC|V |) by Lemma 6 and
the diameter of each cluster is O(l∗) by Lemma 3 which by (1) is O

(
log C+log 1/ε

ε

)
.
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3 Main Algorithm

3.1 Properties of Vertex-Packing in Unit-Disk Graphs

Let G = (V, E) be a unit-disk graph and let H be a fixed connected graph
with h = |H |. An L-packing of H in G is a collection {H1, . . . , HL} of pairwise
vertex-disjoint subgraphs of G such that each Hi is isomorphic to H . Let νH(G)
be the maximum integer L such that there exists an L-packing of H in G. In
this section, we will give a distributed algorithm which given a constant k finds
in a poly-logarithmic number of rounds a collection of L subgraphs H1, . . . , HL

of G such that each Hi is isomorphic to H and

L ≥ (1−O(1/ logk |G|))νH(G).

A starting point to the algorithm is a maximal independent set in G which can
be found using the procedure from [KMNW05a] which gives an auxiliary graph
Aux(G). Properties of this auxiliary graph will be useful when proving some
facts about an optimal packing of H in G.

Definition 2 (Auxiliary graph). Let I = {v1, . . . , vz} be a maximal indepen-
dent set in graph G = (V, E), H be a graph with h = |H |, and l be a fixed positive
number. Let Vi be the set of neighbors of vi such that if w ∈ Vi then vi is the
neighbor of w in I with the least identifier, that is

Vi = {w ∈ N(vi) : ID(vi) = min{ID(a) : a ∈ N(w) ∩ I}},

and let V̄i = Vi ∪ {vi}. Let

B = {i : |V̄i| ≥ 2h3 logl |G|},S = {i : |V̄i| < 2h3 logl |G|},

and
B =

⋃
i∈B

V̄i, S =
⋃
i∈S

V̄i.

In addition, let Aux(G) be the graph (W , E) with W = {1, . . . , z} and {i, j} ∈ E
whenever i = j and there is an edge in G between a vertex from V̄i and a vertex
from V̄j .

Clearly, we have
|B| ≥ 2h3|B| logl |G|

and because G is a unit-disk graph, for every i, the subgraph induced by V̄i is a
union of at most five cliques. As a result, for every i ∈ B we can pack H ’s greedily
in Vi’s as long as the number of vertices is at least 5(h − 1) + 1. Consequently
we can pack at least (2h3 logl |G| − 5(h− 1) + 1)/h ≥ h2 logl |G| vertex-disjoint
copies of H in G[V̄i].

In addition, from Lemma 1, we see that Aux(G) has the (C, 2)-bounded
growth with C = 48.

Lemma 8. Aux(G) has (48, 2)-bounded growth.
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In particular, the maximum degree of Aux(G) is at most 48 and the number of
vertices in Aux(G) which are within distance h of B is at most 48h2 + 1.
We first observe that it is possible to obtain an almost optimal solution to the
packing problem with the property that every copy of H is either disjoint with
all V̄i with i ∈ B or is entirely contained in some V̄i with i ∈ B.

Lemma 9. Let H1, . . . , HL be an L-packing of a connected graph H in G with
L = νH(G). There exists an M -packing H ′

1, . . . , H
′
M of H in G with the following

properties.

1. For every i = 1, . . . , M , either V (H ′
i) ⊆ V̄j for some j ∈ B or V (H ′

i)∩V̄j = ∅
for every j ∈ B.

2. M ≥ (1 −O(1/ logl |G|))νH(G).

Proof. We will call a vertex H-saturated by a packing if it is contained in a copy
of H from the packing and we call the vertex H-free otherwise. We start with and
optimal L-packing H1, . . . , HL and modify it as follows. For every i = 1, . . . , L
if there is a j ∈ B, with 0 < |V (Hi) ∩ V̄j | < |V (Hi)| then delete Hi from the
packing. In the next step, for every j ∈ B ∪ S if there are at least 5h H-free
vertices in V̄i then pack as many copies of H in G[V̄i] as possible. This will result
in an M -packing H ′

1, . . . , H
′
M of H with at most 5h− 1, H-free vertices in every

V̄j . Now we count vertices which were H-saturated in the first packing and are
H-free in the second packing. Since we deleted copies of H that had at least
one vertex in B, the vertices of such H ’s are contained in V̄j ’s which are within
distance h (in Aux(G)) of B. As all these V̄j ’s will have the property that there
are at most 5h− 1, H-free vertices in V̄j in the second packing, the number of
vertices which are H-saturated in the first packing and are H-free in the second
is at most

(5h− 1)|B|(48h2 + 1) = O(h3|B|).
As a result, M ≥ L−O(h2|B|). On the other hand,

L ≥ h2|B| logl |G|

as we can pack at least h2 logl |G| copies of H in each V̄i. Thus

M ≥ (1−O(1/ logl |G|))νH(G).

We will now turn our attention to the set S from Definition 2 and we extract a
few useful properties of G[S]. Obviously as an induced subgraph of G, G[S] is a
unit-disk graph. In addition, the maximum degree, ΔS , of G[S] satisfies

ΔS < 96h3 logl |G|. (4)

However much more is true, in fact G[S] must have the (48(ΔS +1), 2)-bounded
growth. Let BG(v, r) be the set of vertices in G which are within distance r in
G of v. If for some r and v, |BG[S](v, r)| > 48(ΔS + 1)r2 + 1 then the graph
induced by B(v, r) contains an independent set with more than 48r2 vertices.
However all vertices from BG[S](v, r) must be contained in Euclidean ball of
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radius r around v in any geometrical representation of G[S] which contradicts
Lemma 1. Although the fact that G[S] has bounded growth is an indication of
the direction the algorithm will take, we need to consider a different auxiliary
graph.

Definition 3. Let G = (V, E) be a unit-disk graph and let H be a connected
graph on h vertices. Let GH be the h-uniform hypergraph with the vertex set V
and hyperedge on the set U ⊂ V if and only if |U | = h and H is a subgraph
of G[U ]. In addition, let Gc = (W, F ) be the graph obtained from GH by setting
W = E(GH) and connecting e, f ∈ W by an edge when e = f and e ∩ f = ∅.
Any packing of H in G[S] corresponds to an independent set in G[S]c. Conse-
quently to approximate an optimal packing in G it is enough to approximate
a maximum independent set in G[S]c. To do the latter we will again use the
bounded growth property.

Lemma 10. Graph G[S]c has (M, 2h)-bounded growth with M < h(48(ΔS +
1)h2)h.

Proof. Let e be a vertex in G[S]c and let m be a nonnegative integer. To estimate
|BG[S]c(e, m)| we first observe that vertices from G[S] which are contained in f ’s
with f ∈ BG[S]c(e, m) are within distance hm of any vertex which is contained
in e. Consequently the number of such vertices is at most 48(ΔS + 1)(hm)2 + 1.
The number of hyperedges on this vertex set is therefore less than (48(ΔS +
1)(hm)2 + 1)h which is Mm2h for M < h(48(ΔS + 1)h2)h.

3.2 Algorithm

Our algorithm proceeds in two main steps. In the first step, we find a maximal
independent set I = {v1, . . . , vl} in a unit-disk graph G using the procedure
from [KMNW05a]. Set I leads via Definition 2 to sets V̄i and to B and S.
Lemma 9 implies that it is enough to approximate a packing of H with the
property that every copy of H is either entirely contained in B or in S. Finding
a packing in G[B] is trivial and follows again from Lemma 9. Finding a packing
in G[S] requires clustering and an approximation of a maximum independent
set in Gc[S]. We will first give a procedure that finds an approximation of a
maximum independent set in a (C, q)-bounded growth graph.

ApproxMaxIS

Input: Constants q, and l (positive integer). G = (V, E) which has (C, q)-bounded
growth and which identifiers are bounded by m, number K = K(|G|).
Output: An independent set I in G.

(1) Let ε := 1
C2K . Use the algorithm from Theorem 1 to find a partition P of G.

(3) For every set P ∈ P , let P̄ be the set obtained from P by deleting all vertices
in P which have a neighbor in V \ P . In parallel, for each P ∈ P , find a
maximum independent set IP in G[P̄ ].

(4) Return
⋃

P IP .
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Lemma 11. Let G be a (C, q)-bounded growth graph with identifiers which are
in {1, . . . , m}. Algorithm ApproxMaxIS finds an independent set I in G with

|I| ≥ (1 −Θ(1/K))α(G)

where α(G) is the size of a maximum independent set in G. The algorithm runs
in

O

(
C

(
log C + log 1/ε

ε

)q+1

logq+1 m log 1/ε

)
rounds, where ε = 1/(C2K).

Proof. First note that I =
⋃

P IP returned by the algorithm is an independent
set. Let I∗ be an independent set in G of size α(G). For every P ∈ P ,

|IP | ≥ |I∗ ∩ P̄ |. (5)

Then

|I|+ |V (G) \
⋃
P

P̄ | ≥
∑
P

|I∗ ∩ P̄ |+ |V (G) \
⋃
P

P̄ | ≥ |I∗| = α(G). (6)

Finally, |V (G)\
⋃

P P̄ | ≤ εC|V (G)| and since Δ(G) ≤ C we have (C +1)α(G) ≥
|V (G)|. Therefore, as ε = 1

C2K ,

|V (G) \
⋃
P

P̄ | ≤ Θ(α(G)/K). (7)

By (6) and (7),
|I| ≥ (1−Θ(1/K))α(G).

To establish the time complexity, note that by Theorem 1, the partition P is
found in

O

(
C

(
log C + log 1/ε

ε

)q+1

logq+1 m log 1/ε

)

rounds. The diameter of each graph G[P ] is at most O
(

log C+log 1/ε
ε

)
and each

Ii can be found locally in diam(G[P ]) rounds.

ApproxPackingUDG

Input: Constant k. Unit-disk graph G = (V, E), and graph H on a fixed number
of vertices h.
Output: Packing of H in G.

(1) Call Kuhn et. al. algorithm from [KMNW05a] to find a maximal independent
set in G. Consider the sets V̄1, . . . , V̄s and B, S given in Definition 2 with
l := k.

(2) For every vi ∈ B find an optimal packing of H in G[V̄i].
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(3) Consider graph Gc[S]. Set C := h(48(96h3 logk |G|+ 1)h2)h and let q = 2h.
Call ApproxMaxIS in Gc[S] with K := logk |G| to find an independent set
I in Gc[S].

(4) For each i ∈ I, add the hyperedge of GH (copy of H) which corresponds to
i to the packing.

Theorem 3. For given k and graph H, algorithm ApproxPackingUDG finds
in a unit-disk graph G an M -packing of H with

M ≥
(
1−O(1/ logk |G|)

)
νH(G)

where νH(G) is the packing number of H in G. The algorithm runs in logO(kh2)

|G| rounds.

Proof. From Lemma 9 there is an M -packing of H in G with M ≥ (1 −
O(1/ logk |G|))νH(G) and such that every copy of H is either entirely contained
in V̄j , for some j ∈ B, or does not intersect any of V̄j ’s with j ∈ B. Let MB be
the number of copies of H in this packing which are contained in V̄j , for some
j ∈ B and let MS be the number of remaining copies of H . Then M = MB +MS

and the number of copies of H , solB, found in the step 2 of the algorithm is such
that

solB ≥MB. (8)

Any copy of H counted by MS is entirely contained in G[S]. Therefore, MH ≤
α(Gc[S]) as any independent set in Gc[S] gives a packing of H in G[S] and any
packing of H in G[S] gives an independent set in Gc[S].

By Lemma 10, Gc[S] has (L, 2h)-bounded growth with L < h(48(96h3 logk

|G|+ 1)h2)h. As K = logk |G|, by Lemma 11, ApproxMaxIS finds in Gc[S] an
independent set I of size

|I| ≥ (1−Θ(1/ logk |G|))α(Gc[S]).

Therefore,

solS = |I| ≥ (1 −Θ(1/ logk |G|))α(Gc[S]) ≥ (1−Θ(1/ logk |G|))MS . (9)

Consequently, by (8) and (9), the number of copies of H in our solution is at
least

solB + solS ≥ (1−Θ(1/ logk |G|))M ≥ (1−Θ(1/ logk |G|))
(
1 − O(1/ logk |G|)

)
νH(G)

and so
solB + solS ≥ (1−O(1/ logk |G|))νH(G).

To prove the time complexity, note that identifiers of V are bounded by a
polynomial in |G|. In addition h and k are fixed constants, K = O(logk |G|),
C = O(logkh |G|), ε = 1/(C2K), and q = 2h is constant. Therefore, Approx-

PackingUDG runs in logO(kh2) |G| rounds.
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From Crash-Stop to Permanent Omission:

Automatic Transformation and Weakest Failure
Detectors
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Abstract. This paper studies the impact of omission failures on asyn-
chronous distributed systems with crash-stop failures. We provide two
different transformations for algorithms, failure detectors, and problem
specifications, one of which is weakest failure detector preserving. We
prove that our transformation of failure detector Ω [1] is the weakest
failure detector for consensus in environments with crash-stop and per-
manent omission failures and a majority of correct processes. Our re-
sults help to use the power of the well-understood crash-stop model to
automatically derive solutions for the general omission model, which has
recently raised interest for being noticeably applicable for security prob-
lems in distributed environments equipped with security modules such
as smartcards [2,3,4].

1 Introduction

Message omission failures, which have been introduced by Hadzilacos [5] and
been refined by Perry and Toueg [6], put the blame of a message loss to a specific
process instead of an unreliable message channel. Beyond the theoretical interest,
omission models are also interesting for practical problems like they arise from
the security area: Assume that some kind of trusted smartcards are disposed on
untrusted processors. If these smartcards execute trusted algorithms and are able
to sign messages, then it is relatively easy to restrict the power of a malicious
adversary to only be able to drop messages of the trusted smartcards or to
stop the smartcards themselves. Following this approach, omission models have
lead to the development of reductions from security problems in the Byzantine
failure model [7] such as fair-exchange [4,3], and secure multiparty computation
[2] to well-known distributed problems in the general omission model, such as
consensus [8], where both process crashes and message omissions may take place.
Apart from that, omission failures can model overflows of local message buffers
in typical communication environments.
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The message omission and crash failures are considered here in asynchronous
systems. Due to classical impossibility results concerning problems as consen-
sus [9] in asynchronous systems, following the failure detector approach [10], we
augment the system with oracles that give information about failures.

The extension of failure detectors to more severe failure models than crash
failures is unclear [11], because in these models failures may depend on the
scheduling and on the algorithm. As it is easy to transform the general omission
model into a model with only permanent omissions using standard techniques like
the piggybacking of messages, we consider only permanent omissions and crashes.
This means that if an omission failure occurs, then it occurs permanently. In this
model, precise and simple definitions for failure detectors can easily be deduced
from the ones in the crash-stop model.

To provide the permanent omission model with the benefits of a well-under-
stood system model like the crash-stop model, we give automatic transformations
for problem specifications, failure detectors, and algorithms such that algorithms
designed to tolerate only crash-stop failures can be executed in permanent omis-
sion environments and use transformed failure detectors to solve transformed
problems. Specifically, we give two transformations. At first, one that works in
every environment, but that transforms uniform problems into problems with
only limited uniformity, and at second one that works only with a majority of
correct processes, but transforms uniform crash-stop problems into their uni-
form permanent omission counterpart. An interesting point is the fact that the
transformation of the specification gives for most of the classical problems the
standard specification in the message omission and crash failure model. For ex-
ample, from an algorithmic solution A of the consensus problem with a failure
detector D in the crash-stop model, we automatically get A′ = trans(A), an al-
gorithmic solution of the consensus problem using D′ = trans(D) in the message
omission and crash failure model.

Moreover, our first transformation preserves also the “weaker than” relation
[1] between failure detectors. This means that if a failure detector is a weakest
failure detector for a certain (crash-stop) problem, then its transformation is a
weakest failure detector for the transformed problem. We can use this to show
that our transformation of failure detector Ω [1] is the weakest failure detector
for (uniform) consensus in an environment with permanent omission failures and
a majority of correct processes. It is interesting to note that this transformed
version of Ω can be implemented in partially synchronous models using some
weak timing assumptions [12].

The problem of automatically increasing the fault-tolerance of algorithms
in environments with crash-stop failures has been extensively studied before
[13,14,15,16]. The results of Neiger and Toueg [14], Delporte-Gallet et al. [15],
and Bazzi and Neiger [16] assume in contrast to ours synchronous systems
and no failure detectors. Neiger and Toueg [14] propose several transforma-
tions from crash-stop to send omission, to general omission, and to Byzan-
tine faults. Delporte-Gallet et al. [15] transform round-based algorithms with
broadcast primitives into crash-stop-, general omission-, and Byzantine-tolerant
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algorithms. Asynchronous systems are considered by Basu, Charron-Bost and
Toueg [13] but in the context of link failures instead of omission failures and
also without failure detectors. The types of link failures that are considered by
Basu, Charron-Bost and Toueg [13] are eventually reliable and fair-lossy links.
Eventually reliable links can lose a finite (but unbounded) number of messages
and fair-lossy links satisfy that if infinitely many messages are sent over it, then
infinitely many messages do not get lost. To show our results, we extend the
system model of Basu, Charron-Bost and Toueg [13] such that we can model
omission failures, failure patterns, and failure detectors. Another definition for a
system model with crash-recovery failures, omission failures, and failure detec-
tors is given by Dolev et al. [17]. In this model, the existence of a fully connected
component of processes that is completely detached from all other processes is
assumed and only the processes in this component are declared to be correct.

To the best of our knowledge, this is the first paper that investigates an au-
tomatic transformation to increase the fault tolerance of distributed algorithms
in asynchronous systems augmented with failure detectors.

We organize this paper as follows. In Section 2, we define our formal system
model, in Section 3, we define our general problem and algorithm transforma-
tions, in Section 4 we state our theorems, and finally, in Section 5, we summarize
and discuss our results. Due to the lack of space, we omit some parts of the proofs
here. They can be found elsewhere [18].

2 Model

The asynchronous distributed system is assumed to consist of n distinct fully-
connected processes Π = {p1, . . . , pn}. The asynchrony of the system means,
that there are no bounds on the relative process speeds and message transmission
delays. To allow an easier reasoning, a discrete global clock T is added to the
system. The system model used here is derived from that of Basu, Charron-
Bost and Toueg [13]. It has been adapted to model also failure detectors and
permanent omission failures.

Algorithms. An algorithm A is defined as a vector of local algorithm modules
(or simply modules) A(Π) = 〈A(p1), . . . , A(pn)〉. Each local algorithm module
A(pi) is associated with a process pi ∈ Π and defined as a deterministic infinite
state automaton. The local algorithm modules can exchange messages via send
and receive primitives. We assume all messages to be unique.

Failures and Failure Patterns. A failure pattern F is a function that maps
each value t from T to an output value that specifies which failures have occurred
up to time t during an execution of a distributed system. Such a failure pattern
is totally independent of any algorithm. A crash-failure pattern C : T → 2Π

denotes the set of processes that have crashed up to time t (∀t : C(t) ⊆ C(t+1)).
Additionally to the crash of a process, it can fail by not sending or not re-

ceiving a message. We say that it omits a message. The message omissions do
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not occur because of link failures, they model overflows of local message buffers
or the behavior of a malicious adversary with control over the message flow
of certain processes. It is important that for every omission, there is a pro-
cess responsible for it. As we already mentioned, we consider only permanent
omissions and leave the treatment of transient omissions over to the underlying
asynchronous communication layer. Intuitively, a process has a permanent send
omission if it always fails by not sending messages to a certain other process
after a certain point in time. Analogously, a process has a permanent receive
omission if it always fails by not receiving messages from a certain other process
after a certain point in time. The permanent omissions are modeled via a send-
and a receive-omission failure pattern: OS : T → 2Π×Π and OR : T → 2Π×Π .
If (ps, pd) ∈ OS(t), then process ps has a permanent send-omission to process
pd after time t. If (ps, pd) ∈ OR(t), then process pd has a permanent receive-
omission to process ps after time t. All the failure patterns defined so far can be
put together to a single failure pattern F = (C, OS , OR).

With such a failure pattern, we define a process to be correct, if it experiences
no failure at all. We assume that at least one process is correct. A process p
is crash-correct (p ∈ cr.-correct(F)) in F , if it does not crash. An in-connected
process is a process that is crash-correct and receives all messages from a correct
process (possibly indirectly) and an out-connected process is a process where a
correct process receives all messages from it (also possibly indirectly). If a pro-
cess p is in-connected and out-connected in a failure pattern F , then we say
that p is connected in F (p ∈ connected(F)). This means that between con-
nected processes there is always reliable communication possible. With a simple
relaying algorithm, every message can eventually be delivered. Note that it is
nevertheless still possible that connected processes receive messages from dis-
connected processes or disconnected processes receive messages from connected
ones. The difference between connected and disconnected processes is that the
former are able to send and to receive messages to/from correct processes and
therefore are able to communicate in both directions. It is easy to see that
crash-correct(F) ⊇ connected(F) ⊇ correct(F).

We say that a failure pattern F ′ is an omission equivalent extension of another
failure pattern F (F ≤om F ′), if the set of crash-correct processes in F is at all
times equal to the set of connected processes in F ′ and there are no omission
failures in F . We define an environment E to be a set of possible failure patterns.
Ef

c.s. denotes the set of all failure patterns where only crash-stop faults occur and
at most f processes crash. Ef

p.o. denotes the set of all failure patterns where crash-
stop and permanent omission faults may occur and at most f processes are not
connected (clearly, Ef

c.s. ⊆ Ef
p.o.).

Failure Detectors. A failure detector provides (possibly incorrect) information
about a failure pattern [10]. Associated with each failure detector is a (possibly
infinite) range R of values output by that failure detector. A failure detector
history FDH with range R is a function from Π×T to R. FDH(p, t) is the value
of the failure detector module of process p at time t. A failure detector D is a
function that maps a failure pattern F to a set of failure detector histories with
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range R. D(F) denotes the set of possible failure detector histories permitted
by D for the failure pattern F . Note that a failure detector D is specified as a
function of the failure pattern F of an execution. However, an implementation
of D may use other aspects of the execution such as when messages are arrived
and executions with the same failure pattern F may still have different failure
detector histories. It is for this reason that we allow D(F) to be a set of failure
detector histories from which the actual failure detector history for a particular
execution is selected non-deterministically.

Take failure detector Ω [1] as an example. The output of the failure detector
module of Ω at a process pi is a single process, pj, that pi currently considers to
be crash-correct. In this case, the range of output values is RΩ = Π . For each
failure pattern F , Ω(F) is the set of all failure detector histories FDHΩ with
range RΩ that satisfy the following property: There is a time after which all the
crash-correct processes always trust the same crash-correct process:

∃t ∈ T , ∃pj ∈ cr.-correct(F), ∀pi ∈ cr.-correct(F), ∀t′ ≥ t : FDHΩ(p, t′) = pj

The output of failure detector module Ω at a process pi may change with time,
i.e. pi may trust different processes at different times. Furthermore, at any given
time t, processes pi and pj may trust different processes.

A local algorithm module A(pi) can access the current output value of its
local failure detector module using the action queryFD.

Histories. A local history of a local algorithm module A(pi), denoted H [i], is a
finite or an infinite sequence of alternating states and events of type send, receive,
queryFD, or internal. We assume that there is a function time that assigns every
event to a certain point in time and define H [i]/t to be the maximal prefix of
H [i] where all events have occurred before time t. A history H of A(Π) is a
vector of local histories 〈H [1], H [2], . . . , H[n]〉.

Reliable Links. A reliable link does not create, duplicate, or lose messages.
Specifically, if there is no permanent omission between two processes and the
recipient executes infinitely many receive actions, then it will eventually receive
every message. We specify, that our underlying communication channels ensure
reliable links.

Problem Specifications. Let Π be a set of processes and A be an algorithm.
We define H(A(Π), E) to be the set of all tuples (H,F) such that H is a history
of A(Π), F ∈ E , and H and F are compatible, that is crashed processes do
not take any steps after the time of their crash, there are no receive-events
after a permanent omission, etc. A system S(A(Π), E) of A(Π) is a subset of
H(A(Π), E). A problem specification Σ is a set of tuples of histories and failure
patterns, because (permanent) omission failures are not necessarily reflected in
a history (e.g., if a process sends no messages). A system S satisfies a problem
specification Σ, if S ⊆ Σ. We say that an algorithm A satisfies a problem
specification Σ in environment E , if H(A(Π), E) ⊆ Σ.
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Take consensus as an example (see Table 1): It is specified by making state-
ments about some variables propose and decide in the states of a history (e.g.
the value of decide has eventually to be equal at all (crash-)correct processes).
This can be expressed as the set of all tuples (H,F) where there exists a time
t and a value v, such that for all pi ∈ cr.-correct(F), there exists an event e in
H [i] with time(e) ≤ t and for all states s after event e, the value of the variable
decide in s is v.

3 From Crash-Stop to Permanent Omission

We will give here two transformations: one general transformation for all environ-
ments, where we provide only restricted guarantees for disconnected processes,
and one for environments where less than half of the processes may not be con-
nected, where we are able to provide for all processes the same guarantees as for
the crash-stop case.

To improve the fault-tolerance of algorithms, we simulate a single state of
the original algorithm with several states of the simulation algorithm. For these
additional states, we augment the original states with additional variables. Since
an event of the simulation algorithm may lead to a state where only the augmen-
tation variables change, the sequence of the original variables may stutter. We
call a local history H ′[i] a stuttered and augmented extension of a history H [i]
(H [i] ≤sa H ′[i]), if H [i] and H ′[i] differ only in the value of the augmentation
variables and some additional states caused by differences in these variables (in
particular, H [i] ≤sa H [i] for all H [i]). If H [i] ≤sa H ′[i] for all pi ∈ Π , we write
H ≤sa H ′. We say that a problem specification Σ is closed under stuttering and
augmentation, if (H,F) ∈ Σ and H ≤sa H ′ implies that (H ′,F) is also in Σ.
Most problems satisfy this natural closure property (e.g. consensus).

3.1 The General Transformation

Transformation of Problem Specifications. To transform a problem speci-
fication, we first show a transformation of a tuple of a trace and a failure pattern.
Based on this transformation, we transform a whole problem specification. The
intuition behind this transformation is that we demand only something from
processes as long as they are connected. After their disconnection, processes
may behave arbitrary. More formally, let tc.s.(i) be the time at which process pi

crashes in F (tc.s.(i) = ∞, if pi never crashes). Analogously, let t′p.o.(i) be the
time at which process pi becomes disconnected in F ′ (t′p.o.(i) = ∞, if pi never
becomes disconnected). Then:

(H ′,F ′) ∈ trans((H,F)) :⇔ ∀pi ∈ Π : H [i]/tc.s.(i) ≤sa H ′[i]/t′p.o.(i)

and for a whole problem specification:

trans(Σ) := {(H ′,F ′) | (H ′,F ′) ∈ trans((H,F)) ∧ (H,F) ∈ Σ}

A transformation of non-uniform consensus, where properties of certain
propose- and decision-variables of (crash-)correct processes are specified would
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lead to a specification where the same properties are ensured for the states of con-
nected processes, because only histories with the same states (disregarding the
augmentation variables) are allowed in the transformation at this processes (see
Table 1). We also take the states of processes before they become disconnected
into account, because they (e.g. their initial states for the propose variables) may
also have an influence on the fulfillment of a problem specification, although they
are after their disconnection not allowed to have this influence anymore. Since
we impose no restriction on the behavior of processes after their disconnection,
the transformed problem specification allows them to decide a value that was
never proposed (although our transformation algorithms guarantee that this will
not happen).

A transformation of uniform consensus leads to a problem specification where
the uniform agreement is only demanded for processes before their time of dis-
connection. This means that it is allowed that after a partitioning of the network,
the processes in the different network partitions come to different decision val-
ues. Another transformation, in which uniform consensus remains truly uniform
is given in Section 3.2.

Transformation of Failure Detector Specifications. We allow all failure
detector histories for a failure pattern F in trans(D) that are allowed in the
crash-stop version F ′ of F in D:

trans(D)(F) :=
⋃
F ′
{D(F ′) | F ′ ≤om F}

Consider failure detector Ω [1]. Ω outputs only failure detector histories that
eventually provide the same crash-correct leader at all crash-correct processes.
Then, trans(Ω) outputs these failure detector histories if and only if they provide
a connected common leader at all connected processes.

Transformation of Algorithms. In our algorithm transformation, we add
new communication layers such that some of the omission failures in the sys-
tem become transparent to the algorithm (see Figure 1). We transform a given
algorithm A into another algorithm A′ = trans(A) in two steps:

– In the first step, we remove the send and receive actions from A and sim-
ulate them with a three-way-handshake (3wh) algorithm. The algorithm is
described in Figure 2. The idea of the 3wh-algorithm is to substitute every
send-action with an exchange of three messages. This means that to send a
message to a certain process, it is necessary for a process to be able to send
and to receive messages from it. Moreover, while the communication between
connected processes is still possible, processes that are only in-connected or
only out-connected (and not both) become totally disconnected. Hence, we
eliminate influences of disconnected processes not existing in the crash-stop
case.

– Then, in the second step, we remove the send and receive actions from the
three way handshake algorithm and simulate them with a relaying algorithm.
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Fig. 1. Additional Communication Layers

The idea of the relay algorithm is to relay every message to all other pro-
cesses, such that they relay it again and all connected processes can commu-
nicate with each other, despite the fact that they are not directly-reachable.
It is similar to other algorithms in the literature [19]. Its detailed description
can be found in Figure 3.

To execute the simulation algorithms in parallel with the actions from A, we
add some new (augmentation) variables to the set of variables in the states of
A. Whenever a step of the simulation algorithms is executed, the state of the
original variables in A remains untouched and only the new variables change
their values. Whenever a process queries a local failure detector module D(pi),
we translate it to a query on trans(D)(pi). The relaying layer overlays the network
with the best possible communication graph and the 3wh-layer on top of it cuts
the unidirectional edges from this graph.

Algorithm 3wh

1: procedure 3wh-send(m, pj)

2: relay-send([1, m], pj);

3:

4: procedure 3wh-receive(m)

5: relay-receive([l, m′]);
6: if (l = 1) then relay-send([2, m′], sender([l, m′])); m := ⊥;

7: elseif (l = 2) then relay-send([3, m′], sender([l, m′])); m := ⊥;

8: elseif (l = 3) then m := m′;
9: elseif [l, m′] = ⊥ then m := ⊥;

Fig. 2. The Three Way Handshake Algorithm for Process pi
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Algorithm Relay

1: procedure init

2: relayedi := ∅; deliveredi := ∅;
3:

4: procedure relay-send(m,pj)

5: for k := 1 to n do

6: send([m, pj ], pk);

7: relayedi := relayedi ∪ {[m, pj ]};
8:

9: procedure relay-receive(m)

10: receive([m′, pk]);

11: if ([m′, pk] = ⊥) then m := ⊥;

12: elseif (k = i) and (m′ �∈ deliveredi) then

13: m := m′; deliveredi := deliveredi ∪ {m′};
14: elseif (k �= i) and ([m′, pk] �∈ relayedi) then

15: for l := 1 to n do

16: send([m′, pk], pl);

17: relayedi := relayedi ∪ {[m′, pk]}; m := ⊥;

Fig. 3. The Relaying Algorithm for Process pi

3.2 The Transformation for n > 2f

If only less than a majority of the processes are disconnected (n > 2f), then we
only need to adapt the problem specification to the failure patterns of the new
environment. We indicate this adaptation of a problem specification with the
index p.o. and specify it in the following way:

Σp.o. := {(H,F) | ∃(H,F ′) ∈ Σ ∧ F ′ ≤om F}

If we adapt consensus to omission failures, then we get Consensusp.o. as
in Table 1. The failure detector specifications can be transformed as in Sec-
tion 3.1. The algorithm transformation trans2 works similar as in the previ-
ous section, but we add an additional two-way-handshake (2wh) layer between
the relaying layer and the 3wh layer. The algorithm is described in Figure 4
and is similar to an algorithm in the literature [13]. The idea of the algo-
rithm is to broadcast every message to all other processes and to block un-
til f + 1 processes have acknowledged the message. In this way, disconnected
processes block forever (since they receive less than f + 1 acknowledgements)
and connected processes can continue. Thus, we emulate a crash-stop
environment.
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Table 1. Transformations of the Consensus Problem

Consensus trans(Consensus) Consensusp.o.

Validity: The decided value The decided value The decided value
of every process of every connected of every process
must have been process must have must have been
proposed. been proposed. proposed.

Non-Uniform No two cr.-correct No two connected No two connected
Agreement: processes decide processes decide processes decide

differently. differently. differently.

Uniform No two processes No two processes No two processes
Agreement: decide differently. decide differently decide differently.

before their dis-
connection.

Termination: Every cr.-correct Every connected Every connected
process eventually process eventually process eventually
decides. decides. decides.

Algorithm 2wh

1: procedure init

2: receivedi := ∅; Acki := 0;

3:

4: procedure 2wh-send(m, pj)

5: relay-send([m, pj ,ONE], pk) to all other pk; Acki := 1;

6: while (Acki ≤ f) do

7: relay-receive([m′, pk,num]));

8: if (num = TWO) and (m′ = m) and (k = j) then inc(Acki);

9: elseif (num = ONE) then add [m′, pk,num] to receivedi;

10:

11: procedure 2wh-receive(m))

12: m := ⊥; relay-receive(m′);
13: if (m′ �= ⊥) then add m′ to receivedi;

14: if ([m′′, pk,ONE] ∈ receivedi) for any m′′, pk then

15: relay-send([m′′, pk,TWO], sender([m′′, pk,ONE]));

16: if (k = i) then m := m′′;

Fig. 4. The Two Way Handshake Algorithm for Process pi

4 Results

In our first theorem, we show that for any algorithm A, for any failure detectorD,
and for any problem specification Σ, trans(A) using trans(D) solves trans(Σ) in
a permanent omission environment if and only if A using D solves Σ in a crash-
stop environment. This theorem does not only show that our transformation
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works, it furthermore ensures that we do not transform to a trivial problem
specification, but to an equivalent one, since we prove both directions.

Theorem 1. Let Σ be a problem specification closed under stuttering and aug-
mentation. Then, if A is an algorithm using a failure detector D and A′ =
trans(A) is the transformation of A using trans(D), it holds that:

∀f with 0 ≤ f ≤ n : (H(A(Π), Ef
c.s.) ⊆ Σ ⇔ (H(A′(Π), Ef

p.o.) ⊆ trans(Σ)

Proof. (Sketch) Due to lack of space, we only sketch the proof of the theorem
here. The detailed proof can be found elsewhere [18]. The proof is divided up into
two parts. Let Sc.s. := (H(A(Π), Ef

c.s.) and Sp.o. := (H(A′(Π), Ef
p.o.) and assume

that A′ = trans(A).

“⇒”: Assume that Sc.s. ⊆ Σ. By constructing for a given (H,F) in Sp.o. a
tuple (H ′,F ′) in Sc.s. with (H,F) ∈ trans((H ′,F ′)), we can show that
Sp.o. ⊆ trans(Sc.s.). In this construction, we remove the added communi-
cation layers from H and use the properties of our two send-primitives to
prove the reliability of the links in H ′. We ensure “No Loss” with the relay-
ing algorithm and “No Creation” with the three way handshake algorithm.
As we know from the definition of trans, that trans(Sc.s.) ⊆ trans(Σ), we
can conclude that Sp.o. ⊆ trans(Σ).

“⇐”: Assume that Sp.o. ⊆ trans(Σ) and (H,F) ∈ Sc.s.. We then build a
new history H ′ from H and simulate all links according to the specifica-
tion of the three-way-handshake and the relay algorithm such that (H ′,F) ∈
trans((H,F)) and (H ′,F) ∈ Sp.o. ⊆ trans(Σ) (F ∈ Ef

c.s. implies that F
is in Ef

p.o). This means that there exists a (H ′′,F ′′) ∈ Σ, with (H ′,F) ∈
trans((H ′′,F ′′)).
Since in both, F ′′ and F occur only crash failures, F ′′ = F and therefore
for all pi, H ′′[i] ≤sa H ′[i]. Together with the fact that Σ is closed under
stuttering and augmentation, we can conclude that (H ′,F) ∈ Σ. H ′ and
H differ only in the augmentation variables that are not relevant for the
fulfillment of trans(Σ) and therefore: (H,F) ∈ Σ.

Our second theorem shows, that with a majority of connected processes (n > 2f),
trans2 can be used to solve the adaptation of a problem to the general omission
model.

Theorem 2. If A is an algorithm using a failure detector D and A′ = trans2(A)
is the transformation of A using trans2(D) and Σ is closed under stuttering and
augmentation, then it holds that:

∀f with f < n/2 : (H(A(Π), Ef
c.s.) ⊆ Σ ⇒ (H(A′(Π), Ef

p.o.) ⊆ Σp.o.

Proof. (Sketch) Due to lack of space, we only sketch the proof of the theorem
here. The detailed proof can be found elsewhere [18]. Let Sc.s. := (H(A(Π), Ef

c.s.)
and Sp.o. := (H(A′(Π), Ef

p.o.) and assume that A′ = trans(A). It is sufficient to
show, that

∀(H,F) ∈ Sp.o., ∃(H ′,F ′) ∈ Sc.s. : (H ′ ≤sa H) ∧ (F ′ ≤om F) (1)
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To show this, we construct (H ′,F ′) ∈ Sc.s. for a given (H,F) ∈ Sp.o. in the
following way: We first remove the variables, events, and states of the relay-
algorithm, then remove the same for the 2wh-algorithm, and then remove the
3wh-algorithm to get H ′. F ′ is a failure pattern, such that F ′ ≤om F . We need to
show, that (H ′,F ′) fulfills the properties of equation 1. From the construction it
is clear, that H ′ ≤sa H and F ′ ≤om F . It remains to show, that (H ′,F ′) ∈ Sc.s..
This means, that at most f processes crash in F ′, H ′ is a history of A(Π) using
D, all links are reliable in (H ′,F ′), and H ′ and F ′ are compatible. Here we can
use the properties of the 2wh-algorithm to ensure that a process that is crashed
in F ′ takes no steps in H ′ after the time of its crash.

Weakest Failure Detectors. A failure detector [1] is a weakest failure detector
for a problem specification Σ in environment E , if it is necessary and sufficient.
Sufficient means, that there exists an algorithm using this failure detector that
satisfies Σ in E , whereas necessary means, that every other sufficient failure
detector is reducible to it. A failure detector D is reducible to another failure
detectorD′, if there exists a transformation algorithm TD→D′ , such that for every
tuple (H,F) ∈ H(TD→D′(Π), E), H is equivalent to a failure detector history
FDH in D′(F). We call the problem specification that arises in emulating D′,
Probl(D′). In the following theorem, we show that trans preserves the weakest
failure detector property for non-uniform1 failure detectors.

Theorem 3. For all f with 1 ≤ f ≤ n: If a non-uniform failure detector D is
a weakest failure detector for Σ in Ef

c.s. and Σ is closed under stuttering and
augmentation, then trans(D) is a weakest failure detector for trans(Σ) in Ef

p.o..

Proof. If D is a weakest failure detector for Σ in Ef
c.s., then trans(D) is sufficient

for trans(Σ) in Ef
p.o. (Theorem 1). It remains to show that trans(D) is also

necessary.
Assume a failure detector D′ is sufficient for trans(Σ) in Ef

p.o.. Clearly, Σ ⊆
trans(Σ) (since H ≤sa H for all H). Therefore, D′ is sufficient for Σ in Ef

c.s.,
and moreover, D′ is reducible to D in Ef

c.s. (since D is a weakest failure detector
for Σ in Ef

c.s.). This means that it is possible to emulate D using D′ (i.e. a
problem specification Probl(D) that is equivalent to D). If the reduction algorithm
is TD′→D, then trans(TD′→D) using trans(D′) emulates trans(Probl(D)) in Ef

p.o.

(Theorem 1) and since D is non-uniform, the transformation of the problem
specification, trans(Probl(D)) is equivalent to the transformation of the failure
detector trans(D) (trans does not change the meaning of Probl(D) since only
the states of connected processes matter). Therefore, D′ is reducible to trans(D)
in Ef

p.o..

With Theorem 1, 2, and 3 we are able to show, the following:

Theorem 4. trans(Ω) is a weakest failure detector for uniform Consensusp.o.

with a majority of correct processes.
1 A non-uniform failure detector D outputs always the same set of histories for two

failure patterns F and F ′ in which correct(F) = correct(F ′) (i.e. D(F) = D(F ′)).
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Proof. Since we know, that Ω is a weakest failure detector for non-uniform Con-
sensus [1] and Ω is clearly non-uniform, together with Theorem 3, trans(Ω) is a
weakest failure detector for non-uniform trans(Consensus). Since non-uniform
trans(Consensus) is strictly weaker than uniform Consensusp.o., trans(Ω) is es-
pecially necessary for uniform Consensusp.o.. To show that trans(Ω) is sufficient
for uniform Consensusp.o., we can simply use Theorem 2, since we know that Ω
is sufficient for uniform Consensus with a majority of correct processes.

5 Conclusion

We have given transformations for algorithms, failure detectors, and problem
specifications, so crash-stop resilient algorithms can be automatically enhanced
to tolerate the more severe general omission failures, highly applicable in practi-
cal settings running security problems. Furthermore we have shown that trans(Ω)
is the weakest failure detector for consensus in an environment with permanent
omission failures where less than half of the processes may crash. Additionally,
we have proven that our transformation preserves the weakest failure detector
property for all non-uniform failure detectors. As an open problem, we think that
it would be interesting to replace the requirement of a correct majority in our
second transformation with a failure detector Σ [20] that will also be sufficient.
Apart from that, it may be possible to give more specific transformations that
are less general, but also less communication expensive than our transformation.
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EDCC 2005. LNCS, vol. 3463, pp. 55–71. Springer, Heidelberg (2005)

5. Hadzilacos, V.: Issues of fault tolerance in concurrent computations (databases,
reliability, transactions, agreement protocols, distributed computing). PhD thesis,
Harvard University (1985)

6. Perry, K.J., Toueg, S.: Distributed agreement in the presence of processor and
communication faults. IEEE Trans. Softw. Eng. 12(3), 477–482 (1986)

7. Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM Trans.
Program. Lang. Syst. 4(3), 382–401 (1982)



178 C. Delporte-Gallet et al.

8. Chaudhuri, S.: Agreement is harder than consensus: set consensus problems in to-
tally asynchronous systems. In: Proceedings of Principles of Distributed Computing
1990 (1990)

9. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. J. ACM 32(2), 374–382 (1985)

10. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-
tems. Journal of the ACM 43(2), 225–267 (1996)

11. Doudou, A., Garbinato, B., Guerraoui, R., é Schiper, A.: Muteness failure detec-
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Abstract. The paper presents a deterministic distributed algorithm
that given an n node unweighted graph constructs an O(n3/2) edge 3-
spanner for it in O(log n) time. This algorithm is then extended into a de-
terministic algorithm for computing an O(k n1+1/k) edge O(k)-spanner
in 2O(k) logk−1 n time for every integer parameter k � 1. This estab-
lishes that the problem of the deterministic construction of a linear (in
k) stretch spanner with few edges can be solved in the distributed setting
in polylogarithmic time.

The paper also investigates the distributed construction of sparse
spanners with almost pure additive stretch (1 + ε, β), i.e., such that the
distance in the spanner is at most 1 + ε times the original distance plus
β. It is shown, for every ε > 0, that in O(ε−1 log n) time one can de-
terministically construct a spanner with O(n3/2) edges that is both a
3-spanner and a (1+ ε, 8 log n)-spanner. Furthermore, it is shown that in

nO(1/
√

log n) +O(1/ε) time one can deterministically construct a spanner
with O(n3/2) edges which is both a 3-spanner and a (1 + ε, 4)-spanner.
This algorithm can be transformed into a Las Vegas randomized algo-
rithm with guarantees on the stretch and time, running in O(ε−1 +log n)
expected time.
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which can be thought of intuitively as a generalization of the concept of spanning
trees. We say that H is an (α, β)-spanner of a graph G if H is a spanning sub-
graph of G and dH(u, v) � α ·dG(u, v)+β for all nodes u, v of G, where dX(u, v)
denotes the distance from u to v in the graph X . A pair (α, β) for which H is
an (α, β)-spanner is called stretch of H , and the size of H is the number of its
edges. An (α, 0)-spanner is also referred to as an α-spanner. The quality of a
spanner is measured by the trade-off between its stretch and size.

The locality level of constructing a graph spanner can be measured by the
time needed to construct such a spanner. In the distributed setting, the best a
node can do in t time units is to collect information from its t neighborhood.
Hence the time complexity of a distributed algorithm for a given problem can be
related to the amount of information needed to solve the problem. Many funda-
mental problems such as maximal independent set (MIS), coloring, and sparse
covers and decompositions, have been studied from the locality point of view in
the past. In general, such problems appear to have time efficient distributed al-
gorithms in the randomized setting or for some restricted families of graphs. By
“efficient” we mean algorithms breaking the polylogarithmic time barrier. How-
ever, no deterministic distributed algorithms having a polylogarithmic running
time for every graph are known for any of these problems. The main difficulty
in solving such problems is to break the symmetry in a distributed and efficient
way when making decisions. While randomization helps to achieve the goal of
symmetry breaking, trying to do it by a deterministic method leads to nontrivial
combinatorial and algorithmic problems, essentially due to the local nature of
distributed computations. Deterministic construction of graph spanners is also a
typical problem where breaking the symmetry appears as the major problem for
finding fast algorithms. In this paper we overcome this difficulty, showing that
near-optimal high quality graph spanners can be constructed in polylogarithmic
time. Our algorithm is based on breaking the symmetry using independent dom-
inating sets and on a new sequential construction of spanners exploiting some
particular stretch-size properties for bipartite graphs.

Constructing spanners efficiently is also of interest from a practical point
of view, since such structures are often used in many applications. In fact,
graph spanners are in the basis of various applications in distributed systems
(cf. [23]). For instance, the relationship between the quality of spanners and the
time and message complexity of network synchronizers is established in [24] (see
also [1,21]). Spanners are also implicitly used for the design of low stretch rout-
ing schemes with compact tables [11,16,25,27,29], and appear in many parallel
and distributed algorithms for computing approximate shortest paths and for
the design of compact data-structures, a.k.a. distance oracles [8,20,28,30,10].

Related Work: We consider unweighted connected graphs with n nodes. Sparse
and low stretch spanners can be constructed from the sparse partitions and
covers of [6] or the (d, c)-decompositions of [5], which give a partition of the
graph into clusters of diameter at most d such that the graph obtained by
contracting each cluster can be properly c-colored. There are several determin-
istic algorithms for constructing (d, c)-decompositions [2,3,4,22]. The resulting
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distributed algorithms provide O(k)-spanners of size O(n1+1/k), for any inte-
gral parameter k � 1. However, these algorithms run in Ω(n1/k+ε) time, where
ε = Ω(1/

√
log n ), and provide a stretch at least 4k−3. Better stretch-size trade-

offs exist but with an increasing time complexity. More recently, a deterministic
distributed algorithm has been proposed for constructing a (2k − 1)-spanner of
size O(n1+1/k) in O(n1−1/k) time [13]. The latter stretch-size trade-off is opti-
mal since, according to an Erdös Conjecture verified for k = 1, 2, 3, 5 [32], there
are graphs with Ω(n1+1/k) edges and girth 2k + 2 (the length of the smallest
induced cycle), thus for which every (α, β)-spanner requires Ω(n1+1/k) edges if
α + β < 2k + 1.

More time efficient algorithms were given in [12] at the price of slightly increas-
ing the stretch. The algorithm runs in nO(1/

√
log n) times and provides (αk, βk)-

spanners with O(log k · n1+1/k) edges where αk and βk depend on the positions
of the two leading 1’s in the binary representation of k and are essentially in
order of klog2 5. In particular, for k = 2, the stretch is (3, 2).

Randomized distributed algorithms achieving better performances exist. There
is a straightforward (Las Vegas1) randomized implementation of the algorithms
of [12] that provides O(klog2 5)-spanners of O(log k · n1+1/k) edges in O(log n) ex-
pected time. An algorithm for sparsifying a graphwas used in [15] at the bottleneck
of constructing small connected dominating sets. This (Monte-Carlo2) algorithm
constructs, with high probability, a O(log n)-spanner with O(n) edges in O(log3 n)
time. A (Monte Carlo) algorithm that computes a (2k− 1)-spanner with expected
size O(k n1+1/k) in O(k2) time was given in [9].

However, as mentioned in [3], a randomized solution (in particular those com-
ing from Monte Carlo algorithms) might not be acceptable in some cases, es-
pecially for distributed computing applications. In the case of graph spanners,
deterministic algorithms that guarantee a high quality spanner are of more than
a theoretical interest. Indeed, one cannot just run a randomized distributed al-
gorithm several times to guarantee a good decomposition, since checking the
global quality of the spanner in the distributed model is time consuming.

Sequential and distributed algorithms for constructing (1 + ε, β)-spanners
were developed in [17,19,18]. The resulting spanner size is O(βn1+δ) and the
construction time is O(nδ), where β = β(δ, ε) is independent of n but grows
super-polynomially in δ−1 and ε−1. Recently, a sequential algorithm based on
a randomized sampling technique was given in [31], providing a spanner with
O(k n1+1/k) edges such that the distance d between any two nodes in the orig-
inal graph is bounded by d + o(d) in the spanner. Pure additive spanners, i.e.,
spanners whose stretch is on the form (1, β), are known only for k = 2 and
k = 3. Sequential algorithms that construct a (1, 2)-spanner with O(n3/2) edges
and a (1, 6)-spanner with O(n4/3) edges were given respectively in [18] and in [7].
See [26] for further discussions.

Main results: In this paper, we construct in O(log n) time and for every graph
a 3-spanner with O(n3/2) edges. This result is generalized to construct in 2O(k)

1 The bounds on the stretch and the size are always guaranteed.
2 There are no deterministic guarantees for the size and the stretch.
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logk−1 n time and for every graph a (4k−3)-spanner with O(k n1+1/k) edges for
every k � 1. Our construction improves all previous deterministic constructions
of low stretch spanners with few edges.

Our algorithms are based on two main ideas. The first idea enables us to
achieve the polylogarithmic time complexity. It is based on clustering the graph
using any known time-efficient algorithm for constructing an independent ρ-
dominating set, namely, a set X of pairwise non-adjacent nodes such that every
node of the graph is at distance at most ρ from X . The second idea enables us
achieve the linear stretch bound with the desired size. It is based on spanning
independently in parallel (i) the intra-cluster edges using any known sequential
algorithm, and (ii) the inter-cluster edges in the border of each cluster using a
new size-constrained spanner for bipartite graphs. Known algorithms for con-
structing independent ρ-dominating sets are more time consuming when ρ is
small (typically when ρ is a constant). The key point of our fast construction is
to use our spanner algorithm for bipartite graphs in order to keep the stretch
low and to choose ρ to be any parameter possibly depending on n. In particu-
lar, we show that the parameter ρ does not affect the stretch but only the time
construction. The construction time of low stretch spanner is then dominated
by the construction of an independent ρ-dominating set. Since the fastest known
deterministic algorithm for constructing an independent ρ-dominating set is ob-
tained for ρ = O(log n) and has running time O(log n), we are able to construct
the desired low stretch spanner in polylogarithmic time.

A generic scheme called Generic Spanner that utilizes these ideas is first
described and analyzed in Section 2. Our generic scheme assumes the existence
of a sequential algorithm Z Spannerk for bipartite graphs that constructs a
spanner with some desired constraints on the size and the stretch. For the case
k = 2, such an algorithm is described and analyzed in detail in Section 3, yielding
our first main result: the deterministic construction of an optimal 3-spanner with
O(n3/2) edges in O(log n) time (Theorem 1). This result is generalized for any k
in Section 4, giving Algorithm Z Spannerk which yields our second main result:
the deterministic construction of a (4k − 3)-spanner with O(k n1+1/k) edges in
2O(k) logk−1 n time (Theorem 2).

We also investigate the construction of almost pure additive spanners for
k = 2. In Section 5, we construct an almost pure additive (1 + ε, β)-spanner
with O(n3/2) edges for any ε > 0. This is obtained by simply adding breadth-
first searching (BFS) trees up to some fixed parameter around the dense clusters
constructed by Generic Spanner for k = 2. This allows us to reduce the stretch
while preserving the size bound and increasing the time complexity by only a
small factor. Several bounds on the stretch and the time complexity are then
obtained by using either an independent O(log n)-dominating set algorithm or
a MIS algorithm. More precisely, we refine our 3-spanner construction to obtain
two fast distributed algorithms. The first one runs in O(ε−1 log n) time and
provides additive stretch β = 8 logn. The second algorithm runs in nO(1/

√
log n)+

O(ε−1) time and provides additive stretch β = 4. The latter algorithm can also
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be implemented in O(ε−1 + log n) expected time (using O(log n) expected time
algorithm for MIS) with deterministic stretch and size.

Model and definitions: We assume the classical LOCAL distributed model of
computation (cf. [23], Chapter 2). More precisely, the network is modeled by a
connected graph G, whose nodes represent the autonomous computation enti-
ties of the network and whose edges represent direct communication links. For
simplicity, we assume that communication is synchronous, i.e., there exists a
common global clock that generates pulses. At each pulse, nodes can send and
receive messages of unlimited size. We assume that a message which is sent at
a given pulse arrives before the beginning of the next pulse. The local com-
putations done by a node are assumed to take negligible time. Define the time
complexity of a distributed algorithm to be the worst-case number of pulses from
the beginning of the algorithm execution to its termination.

Given an integer t � 1, the t-th power of G, denoted by Gt, is the graph
obtained from G by adding an edge between any two nodes at distance at most
t in G. For a set of nodes H , G[H ] denotes the subgraph of G induced by H .
For X, Y ⊆ V , let dG(X, Y ) = min {dG(x, y) : x ∈ X and y ∈ Y }.

We associate with each v ∈ V a region, denoted by R(v), which is a set
of nodes containing v and inducing a connected subgraph of G. We denote by
R+(v) = {u ∈ V : dG(u, R(v)) � 1}. Given a set U ⊆ V , we denote by ΓG(U)
the neighborhood of the set U , i.e., ΓG(U) = {u ∈ V : dG(u, U) = 1}. Note that
ΓG(R(v)) = R+(v) \R(v).

Given a region R(v), the surrounding graph of R(v) is the graph Bv induced
by the edges {x, y} ∈ E(G) such that x ∈ R(v) and y ∈ ΓG(R(v)). Informally
speaking, Bv is the collection of the outgoing edges of R(v), namely, the edges
having one of their end-points in R(v) and the other one outside R(v). One can
easily see that Bv is a collection of connected bipartite subgraphs of G lying at
the frontier of R(v).

The eccentricity of a node v in G is defined as maxu∈V dG(u, v). For a node
v ∈ X , we denote by BFS(v, X) a breadth-first search tree rooted at v and
spanning X . We denote by IDS(G, ρ) (respectively, MIS(G)) any independent ρ-
dominating set (resp., maximal independent set) of G. One can check that a set
is an MIS(G) if and only if it is an IDS(G, 1). We denote by IDS(n, ρ) the time
complexity needed to construct an independent ρ-dominating set on a graph of
n nodes. We note that MIS(n) = IDS(n, 1).

Due to lack of space, the proofs of our lemmas and theorems are omitted and
will appear in the full version of the paper.

2 A General Scheme

In this section we give a high level description of Algorithm Generic Spanner

(see Fig 1). It uses two sub-routines:

• Seq Spannerk: can be any algorithm that given an n-node graph and a
parameter k > 0 constructs a s(k)-spanner with O(k n1+1/k) edges.
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• Z Spannerk: can be any algorithm that given a bipartite graph B = (W ∪
V, E) and a parameter k > 0 constructs a z(k)-spanner with O(|V ∪W | +
|W | · |V ∪W |1/k) edges.

These two algorithms are executed by only some nodes locally and in a non-
interfering manner. Thus, we can use any two possibly sequential algorithm
without affecting the distributed time complexity of the overall algorithm.

Many algorithms are known for the first of the latter tasks, namely, providing
spanners with O(k n1+1/k) edges and stretch s(k) = 2k − 1 for any graph. In
contrast, no trivial constructions are known for the second task, of providing
spanners with both a low stretch z(k) and the constrained size O(|V ∪W | +
|W | · |V ∪W |1/k) for bipartite graphs. Solving this latter task will be the aim
of sections 3 and 4. In the rest of this section, we simply assume the existence
of such a construction and focus on the properties of the general scheme defined
by Generic Spanner.

2.1 Description of the Generic Scheme

Algorithm Generic Spanner (Fig. 1) is based on clustering the dense regions of
the graph and spanning the edges of these regions efficiently. The algorithm works
in at most k iterations, each of six steps. Step 1 computes the set L of light nodes,
that is, the nodes whose corresponding regions have a sparse neighborhood.
Step 2 considers (in parallel) each light region R(v) and its surrounding graph
Bv. Fig. 2 gives an idea of how a region R(v) and the graph Bv may look like.Each
connected component of Bv is a bipartite subgraph having one set of nodes on
the border of R(v) and the other set outside R(v). The intra-region edges are

Input: a graph G = (V, E) with n = |V |, and integers ρ, k � 1.
Output: a spanner S of G with stretch max {z(k), s(k)} and size O(k n1+1/k).

Set U := V ; r = 0; S := ∅; ∀v ∈ V , R(v) := {v} and c(v) := v;
For i := 1 to k do:

Span light regions
1. L := {v ∈ U : |R+(v)| � ni/k};
2. For all v ∈ L do (in parallel):

(a) Let Bv be the surrounding graph R(v);
(b) S := S ∪ Seq Spannerk(G[R(v)]) ∪ Z Spannerk(Bv);

Form new dense regions
3. X := IDS(G2(r+1)[U \ L], ρ);
4. ∀z ∈ U , if dG(z, X) � (2ρ+1)r+2ρ, then set c(z) to be the closest

node of X, breaking ties with identities;
5. ∀v ∈ X, R(v) := {z ∈ V : c(z) = v};
6. U := X and r := (2ρ + 1)r + 2ρ;

Fig. 1. Algorithm Generic Spanner
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using Algorithm Seq Spannerk whereas the inter-region edges (those, of the
surrounding graph Bv) are spanned using Algorithm Z Spannerk. This step
can be performed efficiently by collecting a copy of R+(v) in v that computes
the result and then broadcasts this information.

Algorithm Z Spannerk spans inter-region edges using paths zigzagging from
the border to the outside of a region, thus avoiding to use long paths going from
the border to the center v. The intra-region edges are spanned using any dis-
tributed or sequential algorithm in order to guarantee the best possible stretch-
size trade-offs inside a region. The radius of constructed regions (which depends
only on parameter ρ) will affect only the time complexity but not the stretch of
the obtained spanner. This observation will enable us to use a fast IDS algorithm
without constraining ρ to be too small (typically, by taking ρ order of log n).

B3

v

B1

B2

B4

B5

R+(v)

R(v)
Seq Spanner(R(v))

Z Spanner(B5)

Fig. 2. A region R(v) and its surrounding graph Bv =
⋃

j∈[1,5]

Bj .

After Step 2, only the neighborhood of sparse regions are spanned. In the
other steps, the remaining dense regions are processed the in order to merge
them together. The goal here is to grow the dense regions until they become
sparse. Thus, we would be able to span them without adding too many edges.

In fact, in Steps 3, 4, and 5, we construct new dense regions centered around
some well chosen dense nodes. First, we construct an independent ρ-dominating
set X of the graph G2(r+1)[U \ L] where r is an upper bound of the radius of
any region and U is the set of remaining dense nodes. Then, using a classical
consistent coloring mechanism (cf. [23], Chapter 22, Lemma 22.1.2), all dense
regions are merged into new regions having the nodes of the IDS as their centers
(note that a light region might get merged with a dense one). The merging
process guarantees that the new regions are disjoint and connected, and their
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radius grows up by at most a multiplicative factor O(ρ). In addition, one should
remark that by considering the 2(r + 1) power of G, it is guaranteed that the
neighborhood of the regions induced by the set X are disjoint. Thus, each new
formed region contains at least its neighborhood. This observation is essential
to obtain the desired size for our spanner.

In Step 6, the set of dense regions is updated for the next iteration. On
iteration k the sparsity condition of Step 1 is always true, hence all the regions
are light, which guarantees that all nodes are spanned.

2.2 Analysis of the Algorithm

For every phase i, denote by Li (resp. Xi) the set L (resp. X) computed during
phase i, i.e., after Steps 1 and 3 of phase i. Similarly, denote by ci(z) the color
of z assigned during phase i, i.e., after Step 4 of phase i. Denote by Ui the set U
at the beginning of phase i, and let ri denote the value of r at the beginning of
phase i. Observe that Ui = Xi−1 for every i > 1. For a node v ∈ Ui, denote by
Ri(v) the region of v at the beginning of phase i. The following lemma is easily
proved by induction relying on the description of the algorithm.

Lemma 1. For every phase i > 0, and for every v ∈ Ui, |Ri(v)| � n(i−1)/k, and
if v ∈ Xi, then R+

i (v) ⊆ Ri+1(v).

Inspired by the proofs of lemmas 1 to 4 in [12], one can prove the following:

Lemma 2. in Algorithm Generic Spanner, the following holds:

– For every phase i and for every v ∈ Ui, ri is the eccentricity of v in G[Ri(v)].
– For every phase i and for all nodes u = v ∈ Ui, Ri(u) ∩Ri(v) = ∅.
– For every node u ∈ V , there exists a phase i and a node v such that u ∈ Ri(v)

and v ∈ Li ∩ Ui.

The following two main lemmas are used in our construction.

Lemma 3. The output S of Algorithm Generic Spanner is a max {z(k), s(k)}-
spanner of G with at most O(k n1+1/k) edges.

Lemma 4. Algorithm Generic Spanner can be implemented in the distributed
LOCAL model in O((2ρ + 1)k−2 · IDS(n, ρ) + (2ρ + 1)k−1) time.

3 3-Spanner Construction

In order to apply Lemma 3, it is necessary to provide an algorithm that given
a surrounding graph Bv of some region R(v) constructs a spanner with the
desired constraints on the stretch and the size. Since any surrounding graph Bv

is a collection of connected bipartite components, it is clear that the desired
stretch and size spanner can be obtained by providing an algorithm with these
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properties for bipartite graphs and then applying that algorithm in parallel for
each connected component.

In this section we describe in detail a Z Spanner algorithm providing the
desired properties for a bipartite graph. More precisely, we prove the following
more powerful result.

Lemma 5. Every connected bipartite graph B = (W ∪ V, E) has a spanner S
with at most O(|V |+ |W | ·

√
|V |) edges satisfying the following stretch properties:

∀v, w ∈ V ∪W, dS(v, w) �
{

2 · dB(v, w) + 1 if dB(v, w) is odd
2 · dB(v, w) + 2 otherwise.

Let us remark that for k = 2 in Generic Spanner, Lemma 5 leads to the con-
struction of a 3-spanner. In [23], it is shown how to construct a (2 log n, 3)-ruling
set in O(log n) deterministic time. A (ρ, s)-ruling set with s > 1 is in particu-
lar an independent ρ-dominating set. Thus, one can construct an independent
2 logn-dominating set deterministically in O(log n) time. Hence, for k = 2 and
ρ = 2 log n in Generic Spanner, we obtain:

Theorem 1. There exists a distributed algorithm that given an n-node graph
constructs a 3-spanner with O(n3/2) edges in O(log n) deterministic time.

In the rest of this section, we give a Z Spanner2 algorithm providing the prop-
erties claimed in Lemma 5.

3.1 Description of Z Spanner2

Algorithm Z Spanner2 with input a bipartite graph B is based on a sequential
greedy technique (see Fig. 3):

Input: a connected bipartite graph B = (W ∪ V, E).
Output: a 3-spanner S of B with O(|V | + |W | ·

√
|V |) edges.

Set V1 := V ; W1 := W ; B1 := B; S := ∅; i := 1;
While Wi �= ∅ do:

1. Let wi ∈ Wi with the highest degree in Bi, breaking ties arbitrary.
2. Ni := ΓBi({wi}).
3. S := S ∪ Bi[Ni].
4. For every j < i such that wi ∈ ΓB(Nj) do:

(a) Let ej,wi be an edge in E connecting Nj to wi.
(b) S := S ∪ {ej,wi}.

5. Construct the new graph Bi+1:
(a) Vi+1 := Vi \ Ni and Wi+1 := Wi \ {wi}.
(b) Bi+1 := Bi[Vi+1 ∪ Wi+1].

6. i := i + 1;

Fig. 3. Algorithm Z Spanner2
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In each iteration i ∈ {1, . . . , |W |}, a new graph Bi = (Wi∪Vi, Ei) is considered
on the basis of the graph Bi−1 corresponding to the previous iteration (B1 := B).
Some edges of B are added to the spanner S as follows: Select a node wi ∈ Wi

with the highest degree in Bi, and add to S its neighborhood Ni in Bi (with
its incident edges). Then, if wi is connected in the original graph B to Nj with
j < i, a set computed at some previous step, an edge ei,wj connecting wi to Nj

is added to S. (See Fig. 4).

N1 N2 Ni−1 Ni

w2w1 wi−1

e2,wi

wi

Vi

Wi+1

Wi

Vi+1

Fig. 4. The i-th iteration Algorithm Z Spanner2

3.2 Analysis of Z Spanner2

Lemma 6. Let u, v, w be three nodes of a bipartite graph B = (W ∪ V, E) such
that u ∈ V , {u, v} ∈ E and {u, w} ∈ E. The output spanner S of Algorithm
Z Spanner2(B) satisfies dS(u, v) � 3 and dS(v, w) � 4.

Lemma 7. For any bipartite graph B = (W ∪ V, E), the output spanner of
Z Spanner2(B) has O(|V |+ |W | ·

√
|V |) edges.

Using the previous lemmas, we are able to prove the stretch and size bounds as
stated in Lemma 5.

4 O(k)-Spanner Construction

Algorithm Z Spanner2 can be extended for k > 2. The extended algorithm,
Z Spannerk, is given in Fig. 5. Given a bipartite graph B = (W ∪ V, E), we
carefully construct a partial partition of B containing clusters of small radius.
More precisely, at each iteration, a cluster is grown in a layered fashion around
some node w ∈ W until the cluster becomes sparse. Once a cluster is constructed,
the neighborhood of the cluster is spanned by a BFS tree and the cluster is
removed from the graph B. The algorithm terminates when all the nodes of W
are clustered. We remark that at the end of our algorithm, some nodes in V
may remain uncovered by the clustering, however each node in W belongs to a
cluster.

The originality of our algorithm comparing with classical sparse partition (or
covers) algorithms is to compute the sparsity of a layer depending on the range of
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the layer. Let C be a cluster being constructed in the while loop of Z Spannerk.
Suppose that C contains i successive layers L0, . . . ,Li−1. Then, consider the new
layer Li to be processed. Since B is bipartite, then either Li ⊆ V (if i is odd)
or Li ⊆ W (if i is even). In the first case, we add Li to the cluster C if it is
dense enough comparing with layer Li−1. In the second case, we add Li to the
cluster C if it is dense enough comparing with layer Li−2. The main observation
that will guarantee the desired size is that in the two cases layers Li−1 or Li−2

belong to W .

Input: a connected bipartite graph B = (W ∪ V, E) and an integer k > 0.

Output: a (4k − 3)-spanner S of B with O(|V ∪ W | + |W | · |V ∪ W |1/k) edges.

S := ∅;
while W 
= ∅ do

pick a node v ∈ W ;
C := {v}, L0 := {v} and i := 1;
dense := True;
while dense do

Li := ΓB(C);
j := i − 2 + (i mod 2);

if |Li| > |V ∪ W |1/k · |Lj | then
C := C ∪ Li;
i := i + 1;

else
dense := False;

S := S ∪ BFS(v, C ∪ Li);
W := W \ C and V := V \ C;

Fig. 5. Algorithm Z Spannerk

By analyzing Algorithm Z Spannerk, we can show that:

Lemma 8. Let k � 1. Every connected bipartite graph B = (V ∪W, E), has a
(4k − 3)-spanner with O(|V ∪W |+ |W | · |V ∪W |1/k) edges.

Combining Lemma 3 and 4 for ρ = 2 logn, we obtain:

Theorem 2. There exists a distributed algorithm that given an n-node graph
and an integer k � 1, constructs a (4k − 3)-spanner for it with O(k n1+1/k)
edges in 2O(k) logk−1 n deterministic time.

5 Improving the Stretch for k = 2

It is shown in [14,18] that every graph has a (1, 2)-spanner with O(n3/2) edges.
Nevertheless, no fast distributed construction of such a spanner is known. In
this section, we give fast distributed constructions that enable us to obtain 3-
spanners of size O(n3/2) which are also almost pure additive spanners. More
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precisely, the multiplicative component on the stretch is (1+ ε) and the additive
component is independent of ε but depends on the time complexity.

Our construction works in two stages. In the first stage, we run Algorithm
Generic Spanner with parameter k = 2 and we obtain a spanner S1 and a
set of dense nodes X . The set X here denotes the set of nodes computed by the
first iteration of Generic Spanner, i.e., X = X1. In the second stage, we add
to S1 a BFS tree up to a depth 2ρ + β rooted at each node v ∈ X (β is a given
parameter).

By setting ρ = 2 logn and β = Θ(ε−1 log n) with ε > 0, and using the O(log n)
time deterministic algorithm for independent (2 log n)-dominating sets, one can
prove:

Lemma 9. There exists a distributed algorithm that given an n-node graph G
and a parameter ε > 0, constructs in O(ε−1 log n) deterministic time a 3-spanner
S with O(n3/2) edges and satisfying the following stretch properties:

∀u, v ∈ V, dS(u, v) �
{

dG(u, v) + 8 logn if dG(u, v) � 8ε−1 log n
(1 + ε) dG(u, v) + 8 logn otherwise.

Note that if the distance to be approximated is d = ω(log n), then the distance
in the spanner is at most (1 + ε) · d + o(d). Also, by choosing ε = o(1), Lemma 9
implies the construction in log1+o(1) n time of a 3-spanner with O(n3/2) edges
which is also a (1 + o(1), 8 logn)-spanner.

In order to obtain a better additive stretch, we use an MIS algorithm at
the price of increasing the time complexity. In fact, it is also well-known that
a MIS can be constructed by a deterministic (resp. randomized) algorithm in
nO(1/

√
log n) (resp. O(log n) expected) time. Thus by taking ρ = 1 and β =

Θ(MIS(n)), one can prove:

Lemma 10. There exists a distributed algorithm that given an n-node graph G,
constructs in nO(1/

√
log n) deterministic time a spanner S with O(n3/2) edges and

stretch (α, β) as given by Table 1.

Table 1. Stretches (α, β) for distances d

dG(u, v) dS(u, v) (α, β)

1 3 (2, 1)

2 6 (2, 2)

3 7 (2, 1)

4 8 (2, 0)

5 9 (1.8, 0)

d > nO(1/
√

log n) (1 + o(1)) d (1 + o(1), 0)

d � nO(1/
√

log n) d + 4 (1, 4)
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We observe that the spanner constructed in Lemma 10 has stretch at most (2, 1)
except for nodes at distance 2.

Combining previous lemmas we obtain:

Theorem 3. There exists a distributed algorithm that given an n-node graph G
and a parameter ε > 0 constructs in nO(1/

√
log n) + O(ε−1) (resp. O(ε−1 log n))

deterministic time a 3-spanner with O(n3/2) edges which is also a (1 + ε, 4)-
spanner (resp. a (1 + ε, 8 logn)-spanner).

6 Open Problems

While it is well-known that every graph has a (1, 2)-spanner with O(n3/2) edges,
we leave open the problem to find (distributively or not), for each k > 2, a
(1, f(k))-spanner of size O(n1+1/k) where f is a polynomial (or even an expo-
nential) function.
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Abstract. Consider a distributed network of n nodes that is connected
to a global source of “beats”. All nodes receive the “beats” simultane-
ously, and operate in lock-step. A scheme that produces a “pulse” every
Cycle beats is shown. That is, the nodes agree on “special beats”, which
are spaced Cycle beats apart. Given such a scheme, a clock synchroniza-
tion algorithm is built. The “pulsing” scheme is self-stabilized despite any
transient faults and the continuous presence of up to f < n

3
Byzantine

nodes. Therefore, the clock synchronization built on top of the “pulse” is
highly fault tolerant. In addition, a highly fault tolerant general stabilizer
algorithm is constructed on top of the “pulse” mechanism.

Previous clock synchronization solutions, operating in the exact same
model as this one, either support f < n

4
and converge in linear time,

or support f < n
3

and have exponential convergence time that also
depends on the value of max-clock (the clock wrap around value). The
proposed scheme combines the best of both worlds: it converges in linear
time that is independent of max-clock and is tolerant to up to f < n

3

Byzantine nodes. Moreover, considering problems in a self-stabilizing,
Byzantine tolerant environment that require nodes to know the global
state (clock synchronization, token circulation, agreement, etc.), the work
presented here is the first protocol to operate in a network that is not
fully connected.

1 Introduction

Most distributed tasks require some sort of synchronization. Clock synchroniza-
tion is a very basic and intuitive tool for supplying this. pulse synchronization
can be used as an underlying building block to achieve clock synchronization, as
well as solving other synchronization problems; in a sense, pulse synchronization
is a more fundamental synchronization problem.

It thus makes sense to require an underlying pulse synchronization mech-
anism to be highly fault-tolerant. This paper presents a pulse synchroniza-
tion algorithm that is self-stabilizing and is tolerant to permanent presence of
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Byzantine faults. That is, it attains synchronization, once lost, while containing
the influence of the permanent presence of faulty nodes.

Consider a system in which the nodes execute in lock-step by regularly re-
ceiving a common “pulse” or “tick” or “beat”. The objective is to agree on some
“special beats” that are Cycle beats apart. We will use the “beat” notation for
the “global” signal received, and “pulse” for the “special beats” agreed upon.

The pulse synchronization problem is to ensure that eventually all correct
nodes pulse together, and as long as enough nodes remain correct, they continue
to pulse together, Cycle beats apart. For example, given Cycle = 7 we would
like all correct nodes, that may start at arbitrary initial states, to eventually
pulse together every 7 beats, and continue so as long as there are enough correct
nodes.

The global beat system provides some measure of synchronization. For ex-
ample, given a global beat system with beat interval at least as long as the
worst-case execution-time for terminating Byzantine agreement, the pulse syn-
chronization problem is solved by initiating a Byzantine agreement on the next
time when the nodes should pulse, each time a beat is received. The crux of the
problem is to achieve synchronization when it is not given by the global beat
system; that is, when the beat interval length is in the order of the commu-
nication’s end-to-end delay. Since in that scenario the global beat system does
not provide - by itself - enough synchronization, and a more complex algorithm
is required to exert the required synchronization. The main contribution of the
current paper is achieving exactly that.

Related Work: pulseing has been used as an underlying fault tolerant mecha-
nism in clock synchronization, token circulation and to create a general stabilizer
(see [4] for an overview). All of these algorithms are self-stabilizing and Byzantine
tolerant, due to the fault tolerant nature of the underlying pulse mechanism.
This gives the motivation for producing robust and efficient pulseing algorithms,
as they can be used to improve the robustness of a variety of applications.

Clock synchronization is one of the first problems that was solved in a self-
stabilizing and Byzantine tolerant fashion. In [9] and [12] it was solved directly,
and in [4] it was solved using an underlying pulseing algorithm. [9] was the first
work to discuss the exact same model as presented here, as opposed to [4], which
operates without a global beat system.

Synchronization of clocks of integer values was previously termed digital clock
synchronization ([2,7,8,16]) or “synchronization of phase-clocks” ([11]). However,
in this paper we concentrate on the pulseing mechanism, as it yields clock
synchronization as well as other fault tolerant protocols.

Several fault tolerant stabilizers exist (see [1], [10] and [13]) with varying
requirement and features (such as local containment of faults). In [3], it was
shown that pulse synchronization can be used to create a generalized stabilizer.
However, in [3] the stabilizer is complex, and can stabilize a narrow class of
algorithms. In Section 9 we show a simpler stabilizer, which can stabilize a
wider range of algorithms.
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Some of the previous results combining Byzantine faults and self-stabilization
consider a class of problems in which the state of each correct node is determined
locally. Usually such solutions can operate in a general graph (see [17], [15]
and [14]) without the need to aggregate or accumulate information across the
network. In the class of problems in which the state of each correct node is
correlated with the state of the other correct nodes, the current paper is the
first paper to present a solution that operates in a network that is not fully
connected.

Contributions: We construct a self stabilizing pulseing algorithm, that is tol-
erant to up to f < n

3 Byzantine nodes, and converges in linear time, for any
target interval of pulsing.

As will be shown in Section 8, clock synchronization and pulse synchroniza-
tion are equivalent. Hence, this work is compared to the state of the art of
previous clock synchronization results that operate in the exact same model.

Previous results have either linear convergence time with f < n
4 (see [12]) or

exponential convergence time with f < n
3 (see [9]). In this paper we obtain a

linear convergence time with f < n
3 . Moreover, our convergence time is indepen-

dent of the max-clock value (the clock wrap around value) of the digital clock,
in contrast to [9].

In addition, our algorithm is the first one in this model and for this type of
problems that does not require each node to be connected to every other node,
it only requires that there are 2 · f + 1 distinct routes between any two correct
nodes, matching the lower bound of [5].

2 Model and Definitions

Consider a fully connected network of n nodes (we later generalize the results to
a more general network). All the nodes are assumed to have access to a “global
beat system” that provides “beats” with regular intervals. The communication
network and all the nodes may be subject to severe transient failures, which
might leave the system in an arbitrary state.

We say that a node is Byzantine if it does not follow the instructed algorithm
and non-Byzantine otherwise. Thus, any node whose failure does not allow it
to exactly follow the algorithm as instructed is considered Byzantine, even if
it does not behave fully maliciously. A non-Byzantine node will be called non-
faulty. In the following discussion f will denote the upper bound on the number
of Byzantine nodes.1 The presented solution supports f < n

3 .

Definition 1. The system is coherent if there are at most f Byzantine nodes,
and each message sent at a beat to a non-faulty destination arrives and is pro-
cessed at its destination before the next beat.

Nodes are instructed to send their messages immediately after the occurrence
of a beat from the global beat system. Therefore, when the system is coherent
1 In the literature the term ”permanent” Byzantine node is sometimes used.
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message delivery and the processing involved can be completed between two
consecutive global beats, by any node that is non-faulty. More specifically, the
time required for message delivery and message processing is called a round, and
we assume that the time interval between global beats is greater than and in
the order of such a round. Due to transient faults, different nodes might not
agree on the current beat/round number. We will use the notion of an external
beat number r, which the nodes are not aware of, but will simplify the proofs’
presentation and discussion.

At times of transient failures there can be any number of concurrent Byzantine
faulty nodes; the turnover rate between faulty and non-faulty behavior of nodes
can be arbitrarily large and the communication network may also behave ar-
bitrarily. Eventually the system behaves coherently again. At such case a non-
faulty node may still find itself in an arbitrary state. Since a non-faulty node
may find itself in an arbitrary state, there should be some time of continues
non-faulty operation before it can be considered correct.

Definition 2. A non-faulty node is considered correct only if it remains non-
faulty for Δnode rounds during which the system is coherent.2

The algorithm parameters n, f, as well as the node’s id are fixed constants and
thus are considered part of the incorruptible correct code at the node. Thus, it is
assumed that non-faulty nodes do not hold arbitrary values of these constants.

2.1 The pulseing Problem

We say that a system is [φ, ψ]-pulsing if all correct nodes pulse together in the
following pattern: φ consecutive beats of pulses followed by ψ consecutive beats
of non-pulse. That is, the system has a Cycle of length φ+ψ beats, out of which
only the first φ beats are pulses. More formally, denote by pulsedp(r) = True
if p pulsed on beat r and pulsedp(r) = False, otherwise.

Definition 3. A system is [φ, ψ]-pulsing in the beat interval [r1, r2] if there
exists some 0 ≤ k < φ+ψ, such that for every correct node p, and for every beat
r ∈ [r1, r2], it holds that:

1. pulsedp(r) = True, in case 0 ≤ r − k (mod φ + ψ) < φ; and
2. pulsedp(r) = False in case φ ≤ r − k (mod φ + ψ) < φ + ψ.

(k denotes the offset, from r1, of the first pulse in the pattern.)

For example, consider “1” to represent a beat in which all correct nodes pulse,
and “0” a beat in which all correct nodes do not pulse. Using this notation, the
following is a pulseing pattern of a [φ, ψ]-pulsing system.

[. . . ,

φ beats︷ ︸︸ ︷
1, 1, . . . , 1,

ψ beats︷ ︸︸ ︷
0, 0, . . . , 0︸ ︷︷ ︸

Cycle beats

,

φ beats︷ ︸︸ ︷
1, 1, . . . , 1,

ψ beats︷ ︸︸ ︷
0, 0, . . . , 0︸ ︷︷ ︸

Cycle beats

, . . .]

2 The assumed bound on the value of Δnode is defined in Remark 3.
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Definition 4. The pulseing problem:
Convergence: Starting from an arbitrary state, the system becomes
[φ, ψ]-pulsing after a finite number of beats.
Closure: If the system is [φ, ψ]-pulsing in the beat interval [r1, r2] it is also
[φ, ψ]-pulsing in the interval [r1, r2 + 1].

Definition 5. a [φ, ψ]-pulser is an algorithm A, such that once the system is
coherent (and stays so), it solves the pulseing problem.

The objective is to develop an algorithm that pulses only once every Cycle.

Notation: We denote a [1, ψ]-pulser as [ψ + 1]-pulser.

Using the previously used notation of “1” for pulseing and “0” for non-
pulseing, a [Cycle]-pulser looks as follows:

[. . . , 1, 0, 0, . . . , 0︸ ︷︷ ︸
Cycle beats

, 1, 0, 0, . . . , 0︸ ︷︷ ︸
Cycle beats

, . . .]

The goal is to build a [Cycle]-pulser for any Cycle > 0. That is, a self-
stabilizing, Byzantine tolerant algorithm that eventually pulses every Cycle
beats. The following section outlines the solution.

3 Constructing a [Cycle]-pulser

In contrast to previous solutions that were very involved, the new solution pre-
sented below is more modular. Addressing the problem in a modular way en-
abled us to unwrap the difficulties in solving the problem, and to come up with
a tight solution. Its modularity also enables to simplify the proof of correct-
ness and to better present the intuition behind it. The core of the protocol is
the Large-Cycle-Pulser algorithm that produces a [Δ, Δ + Cycle′]-pulser. This
module uses another module called BBB to limit the ability of the Byzantine
nodes to disrupt the protocol. To obtain the complete solution the core protocol
is wrapped with two additional modules, as detailed below.

We first show how to construct a [Δ, Δ + Cycle′]-pulser A for any Cycle′ >
Δ, where Δ is a bound on running a given distributed agreement protocol. We
continue by showing how to construct a [φ+ψ]-pulser from any [φ, ψ]-pulser.
Using this, we construct a [2 ·Δ+Cycle′]-pulser A′ for any Cycle′ > Δ. Lastly,
using A′, we construct a [Cycle]-pulser for any Cycle ≥ 1.

Remark 1. Note that [φ+ψ]-pulser is actually [1, φ+ψ−1]-pulser, and hence
a [φ, ψ]-pulser (pulses for φ beats then it is quiet for ψ beats) is transformed
into a [1, φ + ψ − 1]-pulser (pulses once, then it is quiet for φ + ψ − 1 beats).

The construction of A uses a building block that is essentially a Byzantine con-
sensus. We denote this building block by BBB (Byzantine Black Box).



198 D. Dolev and E.N. Hoch

3.1 The Byzantine Black Box Construction

BBB is defined to be a round based distributed protocol, such that each node p
has a binary input value vp and a binary output value Vp. BBB has the following
properties:

1. Termination: The algorithm terminates within Δ rounds.
2. Agreement : All non-faulty3 nodes agree on the same output value V . That

is, for any two non-faulty nodes p, p′ it holds that Vp = Vp′ = V .
3. Validity: If n− f non-faulty nodes have the same input value ν then that is

the output value, V = ν.

BBB is required to be Byzantine tolerant, but is not required to be self-
stabilizing. The self-stabilization of the [φ + ψ]-pulser A (presented later) will
not be hampered by this.4 In addition, A will rely only on the properties of
BBB (when it is executed by enough correct nodes) for its operation. In A all
messages exchanged among the nodes will use BBB. Since the presented BBB
can tolerate f < n

3 faulty nodes, A can tolerate the same failure ratio.

Remark 2. BBB can be implemented via any algorithm that solves the Byzantine
consensus problem; the only difference lies in the “validity” condition, where
instead of limiting the validity to the case that “all correct nodes” start with
the same initial value, BBB limits the validity condition to having only n − f
non-faulty nodes with the same initial value, even if there happen to be more
non-faulty nodes at that instance.

Remark 3. A non-faulty node that has recently recovered from a transient failure
cannot immediately be considered correct. In the context of this paper, a non-
faulty node is considered correct once it remains non-faulty for at least Δnode =
Δ + 1, and as long as it continues to be non-faulty.

3.2 A [Δ, Δ + Cycle′]-pulser

Figure 1 presents an algorithm that produces a [Δ, Δ + Cycle′]-pulser, for
Cycle′ > Δ. This algorithm executes Δ simultaneous BBB protocols. Consider
BBBi as a “pointer” to a BBB instance, hence the statement

BBB2 := BBB1;BBB1 := new BBB(“1”);

means that BBB2 will contain the previous instance of BBB1, and BBB1 will
contain a new instance of BBB initialized with the input value 1. The output
value of BBBi is V(BBBi).

3 In the context of BBB, a node is considered non-faulty only if it is non-faulty through-
out the whole execution of BBB.

4 BBB is initiated, executed and terminated repeatedly; each instance starts with a
“clean slate”, thus not harming the self-stability of the algorithm that uses it.
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Algorithm Large-Cycle-Pulser /* executed repeatedly at each beat */

1. for each i ∈ {1, .., Δ} do
execute the ith round of the BBBi protocol;

2. (a) if Counter > 0 then
Counter := min{Counter − 1, Cycle′};
WantToPulse := 0;

(b) else
WantToPulse := 1;

3. if V(BBBΔ) = 1 then
(a) do pulse;
(b) Counter := Cycle′;

4. for each i ∈ {2, ..., Δ} do
BBBi := BBBi−1;

5. initialize a new instance of BBB, BBB1 = BBB(WantToPulse).

Fig. 1. A [Δ, Δ + Cycle′]-pulser algorithm for Cycle′ > Δ

4 Proof of Large-Cycle-Pulser’s Correctness

All the lemmata, theorems, corollaries and definitions hold only as long as the
system is coherent. We assume that nodes may start in an arbitrary state, and
nodes may fail and recover, but from some time on, at any round there are at
least n− f correct nodes.

Let G denote a group of non-Byzantine nodes that behave according to the
algorithm, and that are not subject to (for some pre-specified number of rounds)
any new transient failures. We will prove that if |G| ≥ n − f and all of these
nodes remain non-faulty for a long enough period of time (Ω(Δ) global beats),
then the system will converge.

For simplifying the notations, the proofs refer to some “external” beat number.
The nodes do not maintain it and have no access to it; it is only used for the
proofs’ clarity.

Definition 6. A group G is Correct(α, β) if |G| ≥ n−f , and every node p ∈ G
is correct during the beat interval [α, β]. Let δ mark the length of the interval,
that is δ = β − α + 1.

Note that each node p ∈ G, when G is Correct(α, β), has not been subject to
a transient failure in the beat interval [α −Δnode, β]; and is non-faulty during
that interval.

Definition 7. We say that a system is Correct(α, β) if there exists a set G
such that G is Correct(α, β).

In the following lemmata, G refers to any set implied by Correct(α, β), without
stating so specifically. The proofs hold for any such set G.

Note that if the system is coherent, and there has not been a transient failure
for at least Δ + 1 beats, then, by definition, G contains all nodes that were
non-faulty during that period.
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Lemma 1. ∀β ≥ α: If the system is Correct(α, β) then at any beat r ∈ [α, β],
either all nodes in G pulse or they all do not pulse.

Proof. A node pulses only in Line 3.a, which is executed only when the value
of V(BBBΔ) = 1. All nodes in G have not been subject to transient failures
in the Δnode = Δ + 1 beats preceding r. Therefore, BBBΔ has been initialized
properly Δ beats ago, and during the Δ rounds of BBBΔ’s execution, it has
been executed properly by at least n− f nodes. Hence, according to Agreement
of BBB, all nodes in G have the same value of V(BBBΔ). Therefore, all nodes in
G “act the same” when considering Line 3.a: either all of them execute Line 3.a
or they all do not execute it. This holds for any beat after α (as long as G
continues to contain n−f correct nodes). Therefore, at any such beat r ∈ [α, β],
either all nodes in G pulse or they all do not pulse. ��

Lemma 2. ∀β ≥ α+Δ+Cycle′: If the system is Correct(α, β), then at some
beat r ∈ [α, β] all nodes in G pulse.

Proof. According to the previous lemma, all nodes in G pulse together during
the interval [α, β]. Hence, if one of them pulsed in the interval [α, α + Cycle′],
all of them pulsed, proving the claim.

Otherwise, consider the case where no node in G has pulsed in the interval
[α, α + Cycle′]. Hence, at beat α + Cycle′, for all the nodes in G, the Counter
variable has decreased to 0 or is negative. This is because Counter is bounded
from above by Cycle′ (which is a fixed parameter of the protocol and is identical
at all nodes); and as long as it holds a positive value, it decreases by 1 during
each beat of the interval [α, α + Cycle′] (since no node pulses in that interval,
Counter never increases). Since the interval is at least Cycle′ beats long, the
value of Counter is less than (or equal to) 0.

Therefore, at beat α + Cycle′ there are |G| ≥ n − f correct nodes with
WantToPulse = 1. Therefore, according to Validity of BBB, Δ beats after-
wards V(BBBΔ) will output 1, and all nodes in G will pulse. Thus, in the
interval [α, α + Δ + Cycle′] all nodes in G pulse. Therefore, the claim holds for
any beat interval [α, β], where β ≥ α + Δ + Cycle′]. ��

Remark 4. The above lemma proves progress. That is, starting from any state,
eventually there will be a pulse.

Consider a system that is Correct(α, β) (for β ≥ α + Δ + Cycle′), from
Lemma 1, starting from beat α all nodes in G pulse together. From Lemma 2,
by beat α + Δ + Cycle′ all nodes in G have pulsed. Therefore, by that round
they have all reset their Counter values at the same beat. Since WantToPulse
depends solely on the value of Counter, and since all nodes in G agree on the
output value of the BBB protocols, all nodes in G perform exactly the same lines
of code following each beat in the beat interval [α + Δ + Cycle′, β].

Lemma 3. ∀β ≥ α+3 ·Δ+2 ·Cycle′: If the system is Correct(α, β), then the
system is [Δ, Δ + Cycle′]-pulsing in the beat interval [α + 3 ·Δ + 2 ·Cycle′, β].
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Proof. According to previous lemmas, all correct nodes pulse at some beat γ,
no later than beat α + Δ + Cycle′; and from then on they all pulse together.
At beat γ they all reset their counters and will have positive Counter values for
at least Cycle′ rounds. Since Cycle′ > Δ, in the following Δ beats, the value of
WantToPulse will be 0, and hence BBB1 is initialized during these beats with
the value 0. Therefore, once these values will emerge from BBB, there will be
a period of Cycle′ > Δ with no pulses. That “quiet” period will start at beat
γ +Δ. This quiet period might be longer than Cycle′, if there were other pulses
during the beat interval [γ, γ + Δ]. In any case, a quiet period will commence at
beat γ + Δ and will be at least Cycle′ beats long, and no more than Cycle′ + Δ
beats long.

Now consider what happens after this quiet period. Eventually, the value of
WantToPulse will be set to 1 (after no more than Cycle′ + Δ beats), and
will stay so until the next pulse. Mark the beat at which all nodes in G set
WantToPulse to 1 as γ′. Notice that because the quiet period is greater than
Δ, then once its values start emerging of BBBΔ there will be a quiet period for
at least Δ beats. Hence, once WantToPulse is set to 1, it will stay that way for
Δ beats, until 1 comes out of BBBΔ. This will happen at beat γ′ +Δ. Once this
happens, there are Δ 1’s “on the way” in the coming BBBs. Therefore, there
will be a pulse for Δ beats. Due to the first pulse, WantToPulse will be 0 for
all the Δ pulse beats. After the last pulse beat, WantToPulse will be 0 for an
additional Cycle′ beats. Afterwards, WantToPulse will turn to 1, and will stay
so for Δ beats. Thus there is a pattern of WantToPulse being 0 for Δ + Cycle′

beats then being 1 for Δ beats, and so on. Therefore, the pulseing pattern will
satisfy the requirement.

Note that the pulseing pattern starts on beat γ′+Δ, and the pattern contin-
ues (at least) until beat β. Hence, the system is [Δ, Δ + Cycle′]-pulsing in the
beat interval [γ′+Δ, β]. Because γ′ ≤ γ+Cycle′+Δ and since γ ≤ α+Δ+Cycle′,
we conclude that γ′ + Δ ≤ α + 3 ·Δ + 2 · Cycle′, as required. ��

Remark 5. The above lemma shows that the convergence time of the pulseing
algorithm depends on the value of Cycle. However, since for clock synchro-
nization the value of Cycle is in the order of Δ, the convergence of the clock
synchronization will depend on Δ and not on the value of max-clock (the wrap
around value of the digital clock).

The following theorem states that we have constructed a [Δ, Δ+Cycle′]-pulser.

Theorem 1. The Large-Cycle-Pulser algorithm is a [Δ, Δ + Cycle′]-pulser.

Proof. By Lemma 3, once there are enough nodes that have not been subject to
transient failures for 3 ·Δ+2 ·Cycle′ beats, the system becomes [Δ, Δ+Cycle′]-
pulsing for the beat interval [γ′ + Δ, β] . This is true for any β ≥ α + 3 ·
Δ + 2 · Cycle′. Hence, as long as the system is coherent, once the system is
[Δ, Δ+Cycle′]-pulsing in the beat interval [γ′+Δ, β], it is also [Δ, Δ+Cycle′]-
pulsing in the beat interval [γ′ + Δ, β + 1]; and therefore Large-Cycle-Pulser
algorithm is a [Δ, Δ + Cycle′]-pulser. ��
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5 A [Cycle]-pulser for Cycle > 0

In the previous section a [Δ, Δ + Cycle′]-pulser was presented, for any value
of Cycle′ > Δ. Now a general way to transform a [φ, ψ]-pulser into a [φ + ψ]-
pulser is given. Combining this with the previous result produces a [2 · Δ +
Cycle′]-pulser. Since Cycle′ > Δ, this technique constructs a [Cycle]-pulser,
for any Cycle > 3 ·Δ. In Subsection 5.2 this requirement is eliminated, and the
objective of building [Cycle]-pulser is achieved for any Cycle > 0.

5.1 [φ, ψ]-pulser to [φ + ψ]-pulser

Given a [φ, ψ]-pulser A, the algorithm B in Figure 2 uses A as a black-box:

Note that the above algorithm B does not rely on anything other than the output
of A in the current and previous beats. Hence, if A is self-stabilizing, so is B.

Algorithm [φ + ψ]-pulser /* executed repeatedly at each beat */

1. execute a single round of A;
2. if A pulsed at the current beat and A did not pulse at the previous beat,

then B pulses at the current beat.

Fig. 2. An algorithm that transforms a [φ, ψ]-pulser into a [φ + ψ]-pulser

Theorem 2. The algorithm B is a [φ + ψ]-pulser.

Proof. A is a [φ, ψ]-pulser, hence, it pulses in a pattern of φ pulses, then ψ
quiet rounds. Therefore, once every φ + ψ beats, there is a transition from not
pulseing to pulseing. Thus, the pulseing output of A, implies that exactly
once every φ + ψ beats it holds that A pulsed at the current beat, and did not
pulse at the previous beat. This is continuously true (as long as A continues to
pulse), which implies that the proposed algorithm B will pulse exactly once
every φ + ψ beats, in a pattern of a single pulse, and then φ + ψ − 1 beats of
quiet rounds.

Since A is a [φ, ψ]-pulser, starting from an arbitrary state, it eventually
starts pulseing in the required pattern, and continues so as long as the system
is coherent. Hence, the above algorithm B will eventually start pulseing in the
expected pattern, and will continue so as long as the system is coherent. Hence
it is a [φ + ψ]-pulser. ��

5.2 Case Cycle ≤ 3 · Δ

Building upon the [2 · Δ + Cycle′]-pulser, B, from the previous subsection, a
[Cycle]-pulser, C, for any Cycle ≤ 3 ·Δ is presented in Figure 3.

Theorem 3. The algorithm C is a [Cycle]-pulser for any 1 ≤ Cycle ≤ 3 ·Δ.
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Algorithm [Cycle ≤ 3 · Δ]-pulser /* executed repeatedly at each beat */

/* set Cycle′ > Δ to be such that Cycle′ + 2 · Δ is divisible by Cycle */

1. execute B;
2. if B pulsed at the current beat then

Counter := Cycle′ + 2 · Δ;
3. if Counter is divisible by Cycle then

C pulses at the current beat;
4. Counter := Counter − 1.

Fig. 3. A [Cycle]-pulser algorithm for 1 ≤ Cycle ≤ 3 · Δ

Proof. Since B is a [Cycle′ + 2 · Δ]-pulser, starting from an arbitrary state,
eventually it starts pulseing in a pattern of a single pulse, and then Cycle′ +
2·Δ−1 beats of quiet rounds (and continues so as long as the system is coherent).
Therefore, eventually, all correct nodes will see the same pulseing output from
B. Hence, each time B pulses, all correct nodes set Counter to Cycle′+2 ·Δ, and
have the same value of Counter at each beat (because they all set it together, and
decrease it together). Thus, each time a correct node enters Line 3, all correct
nodes do the same. Therefore, all correct nodes have C pulse together. Lastly,
since each Cycle beats Counter will be divisible by Cycle, C pulses once every
Cycle beats.
Therefore, for each pulse of B we have 2·Δ+Cycle′

Cycle pulses of C. Due to the
choice of Cycle′ such that 2 · Δ + Cycle′ is divisible by Cycle, the pulses are
nicely aligned with the pulses of B; and therefore, the above algorithm C is a
[Cycle]-pulser. ��

Theorem 4. For any Cycle > 0, a [Cycle]-pulser can be constructed.

Proof. If Cycle > 3·Δ, then set Cycle′ := Cycle−2·Δ. By Theorem 1, construct
a [Δ, Δ+Cycle′]-pulser and by Theorem 2 construct a [2 ·Δ+Cycle′]-pulser.
According to the choice of Cycle′ the required [Cycle]-pulser is constructed.

If Cycle ≤ 3 · Δ, calculate Cycle′ such that Cycle′ > Δ and 2·Δ+Cycle′

Cycle is
an integer number. Now, by Theorem 1 build a [Δ, Δ + Cycle′]-pulser. From
Theorem 2 construct a [2·Δ+Cycle′]-pulser. Finally, from the above algorithm
construct an algorithm that is a [Cycle]-pulser, as required. ��

6 Network Connectivity

The above discussion did not assume anything about the network connectivity.
More precisely, the only connectivity assumption was about the behavior of the
BBB protocol. That is, whatever connectivity BBB requires to operate properly,
is the required connectivity in order for the [Cycle]-pulser construction to work
properly.
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In [5] it is shown that Byzantine agreement is achievable if and only if:

1. f is less than one-third of the total number of nodes in the system.
2. f is less than one-half of the connectivity of the system (that is, between

any two nodes there are at least 2 · f + 1 distinct paths).

These lower bounds clearly hold for Byzantine consensus. Therefore, since
BBB is implemented by executing Byzantine Consensus for each node’s input
value, BBB can be tolerant to up to n−1

3 Byzantine faults. In addition BBB can
work properly even if the connectivity graph is not fully connected, but rather
there are at least 2 · f + 1 distinct paths between any two non-faulty nodes.

Remark 6. As noted in [5], the nodes are required to know the connectivity
graph while executing the algorithm. This implies, due to self-stabilization, that
each node has the network connectivity as incorruptible data.5

Since the pulseing algorithm presented in this paper depends solely on BBB
for communication with other nodes, it is tolerant up to n−1

3 Byzantine faults
and can operate in a network where there are at least 2 · f + 1 distinct paths
between any two nodes, and it is optimal with respect to these two parameters.

Previous synchronization algorithms do not easily extend to operate in a net-
work that is not fully connected. This is a result of the dependency of their
“current state” on messages received in the “current round”; in a network that
is not fully connected, such messages are received D rounds later, where D is
the diameter of the network.

For example, in [12], the DigiClock value depends on the values sent in the
current round. Therefore, if the network is not fully connected, node p does not
receive messages from node p′ that is not his neighbor, in the same round. Hence,
p cannot change its current state according to the algorithm’s definition. This
does not mean that previous algorithms cannot be transformed to operate in
such a setting, just that it is not straightforward.

7 Complexity Analysis

Using pulseing for clock synchronization leads using a Cycle that is in the
order of Δ. Hence, the pulseing algorithm presented in the previous sections
converges in O(Δ) beats. If the system is fully connected, then Δ = 2f + 3,
because efficient implementations of Byzantine consensus require about 2f + 3
rounds. Therefore, convergence is reached in O(f) beats.

If the system is not fully connected, as discussed in the previous section, and
the diameter is D, then Δ = D · 2 · (f + 1). Therefore, convergence is reached in
O(D · f) beats.

5 One can somewhat relax this assumption, but then either a flooding algorithm needs
to be used, or one needs to come up with an algorithm that finds enough independent
paths on the fly - despite the Byzantine behavior; we are not aware of any self-
stabilizing algorithm to do that.
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Considering message complexity, at each beat Δ BBBs are executed simulta-
neously. Since BBB can be implemented via Byzantine consensus (see Remark 2),
it requires n2 messages at each beat. Hence we have that the message complexity
at each beat is O(f ·n2). Note that one can use early stopping agreements. Such
agreements will use less messages, if the number of faults is small, but will still
take the same worse case time.

8 The Digital Clock Synchronization Problem

In the digital clock synchronization problem, each node has a variable DigiClock,
and the objective is to have all correct nodes agree on the value of DigiClock
and increase it by one at each beat. A more detailed discussion of this problem
(along with a solution) is given in [12].

The digital clock synchronization problem is equivalent to the pulseing prob-
lem. Given an algorithm that solves the digital clock synchronization problem,
simply pulse every time the DigiClock variable is divisible by Cycle. This pro-
duces a [Cycle]-pulser algorithm.

The other direction is a bit more complicated. Given a [f + 2]-pulser al-
gorithm, every pulse execute a Byzantine agreement on what the DigiClock
value will be in the next pulse. In addition, each beat DigiClock is increased
by 1, and when the Byzantine agreement terminates, the DigiClock is set to
the agreement value (similar to [6]). This way, all nodes agree on the value of
DigiClock and increase it by one at each beat.

Note that the digital clock synchronization problem has been solved directly
in [12] for f < n

4 and assuming a fully connected graph. Due to the equivalence
to the pulseing problem, a digital clock synchronization algorithm can be built
with an underlying pulseing algorithm presented in this paper, which supports
f < n

3 and assumes only that there are 2 · f + 1 distinct paths between any two
nodes. That produces a digital clock synchronization algorithm that is optimal
in these two aspects.

9 Byzantine Tolerant Stabilizer

We now present briefly how a stabilizer can be built using the pulseing algorithm
provided in the above sections. The stabilizer will stabilize a Byzantine tolerant
algorithm A0. That is, given a Byzantine tolerant algorithm A0 that is not self-
stabilizing, the stabilizer will transform it into a self stabilizing version of A0

(preserving the Byzantine tolerance).
Clearly, not all algorithms can be viewed as self-stabilizing. E.g. an algorithm

that is allowed to do some action Act only once, cannot be a self-stabilizing
algorithm. We do not discuss here the requirements of an algorithm A0 so that
it can be stabilized. For a more in depth discussion of such requirements, refer
to [10] and [13]. In the following, it is assumed that the Byzantine tolerant
algorithm A0 has a meaning as a self-stabilizing algorithm.
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Intuitively, every so often, all nodes will collect a global snapshot S of the
local states of all nodes. Then, all nodes inspect S for any inconsistencies. If any
are found, all nodes reset their local state to some consistent state.

Given a general Byzantine tolerant algorithm A0, we construct an algorithm
Byz-State-Check. Byz-State-Check gathers a global snapshot of the local states
at each node and ensures that the local states are consistent. In addition if the
states were consistent to start with, then Byz-State-Check does not alter them.
That is, Byz-State-Check alters the local states to a consistent state, only if
required. Figure 4 presents the algorithm Byz-State-Check.

Algorithm Byz-State-Check /* executed at node p*/

1. execute a Byzantine agreement on local state of A0;
2. Δagree beats after the the beginning of the execution of line 1:

(a) if S represents a legal state
repair local state if it is inconsistent with S ;

(b) otherwise
reset local state.

Fig. 4. A Byzantine tolerant state validation and reset

Remark 7. Δagree is an upper bound on the number of rounds it takes to execute
Byzantine agreement (2f+3fora typical efficient implementation).Sinceall correct
nodes wait Δagree beats from entering line 1 until entering line 2, it is ensured that
all correct nodes enter line 2 after they see the same global snapshot S.

Given a general Byzantine tolerant algorithm A0, a [Δagree + 1]-pulser P and
a Byz-State-Check algorithm C, the algorithm SS-Byz-Stabilizer is constructed,
as in Figure 5.

Algorithm SS-Byz-Stabilizer /* executed at each beat */
/* A0 is the algorithm to be stabilized */
/* C is an instance of Byz-State-Check*/

/* P is a [Δagree + 1]-pulser */

1. execute a single round of A0;
2. execute a single round of C;
3. execute a single beat of P ;
4. if P pulsed this beat re-initialize C.

Fig. 5. A Self-stabilizing Byzantine tolerant Stabilizer

Theorem 5. SS-Byz-Stabilizer transforms a Byzantine tolerant algorithm A0

into Self-stabilizing Byzantine tolerant algorithm.

Proof. P is a [Δagree+1]-pulser. Hence, eventually it starts pulseing Δagree+1
beats apart. When this happens, C is re-executed periodically, and terminates
between such 2 executions . Hence, C performs correctly. This means that the
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local states of A0 will be consistent. And we have that starting from any initial
state of A0’s local states, eventually A0’s local states are consistent. ��
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Abstract. We study oblivious deterministic gossip algorithms for multi-channel
radio networks with a malicious adversary. In a multi-channel network, each of
the n processes in the system must choose, in each round, one of the c chan-
nels of the system on which to participate. Assuming the adversary can disrupt
one channel per round, preventing communication on that channel, we establish

a tight bound of max
(
Θ
(

(1−ε)n
c−1

+ logc n
)

, Θ
(

n(1−ε)

εc2

))
on the number of

rounds needed to solve the ε-gossip problem, a parameterized generalization of
the all-to-all gossip problem that requires (1− ε)n of the “rumors” to be success-
fully disseminated. Underlying our lower bound proof lies an interesting con-
nection between ε-gossip and extremal graph theory. Specifically, we make use
of Turán’s theorem, a seminal result in extremal combinatorics, to reason about
an adversary’s optimal strategy for disrupting an algorithm of a given duration.
We then show how to generalize our upper bound to cope with an adversary that
can simultaneously disrupt t < c channels. Our generalization makes use of se-
lectors: a combinatorial tool that guarantees that any subset of processes will be
“selected” by some set in the selector. We prove this generalized algorithm opti-
mal if a maximum number of values is to be gossiped. We conclude by extending
our algorithm to tolerate traditional Byzantine corruption faults.

1 Introduction

Malicious adversaries pose a particular threat to radio networks. Due to the shared na-
ture of the communication medium, an adversary can prevent any information exchange
between honest processes by jamming the channel with noise. The first attempts to
tackle this problem assumed that the malicious adversary could only corrupt honest
processes, but not interfere with communication [1, 2, 3]. Another approach assumed
that the adversary interferes only in a probabilistic manner, causing either random tran-
sient message corruption [4], or random permanent process corruptions [5]. More recent
work allows malicious interference—but bounds the number of times that the adversary
can disrupt communication [6, 7].
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In this paper, we place no such restrictions on the adversary. Instead, we shift our
focus to multi-channel radio networks in which each process can make use of any
one of c available channels in each round. The adversary can disrupt communication
by broadcasting concurrently on a channel with an honest process, causing a colli-
sion. This setting is appealing because of its practicality. Almost every major commer-
cial/industrial/military radio device—including sensor motes, laptops running 802.11,
and bluetooth-enabled devices—has the capability to switch between multiple commu-
nication channels. These multi-channel networks have been studied previously in the
context of communication capacity and throughput (e.g., [8, 9]). They have also been
studied in the field of Cognitive Radio Networks [10,11,12], where algorithms attempt
to adaptively compensate for (semi-permanently) disrupted communication channels.

The Gossip Problem. We study the fundamental problem of gossip in which processes
attempt to exchange rumors. Variants of this problem have been well-studied in (syn-
chronous) single-channel radio networks: for broadcast in a fault-free network, see, for
example, [13, 14, 15, 16]; for omissions and crash failures, see, for example, [17, 18].
We introduce a parameterized version of the gossip problem, called ε-gossip, in which
(1 − ε)n rumors must be disseminated to at least n − 1 processes. (As we later show,
it is impossible to disseminate even a single value to all n receivers in this setting). The
ε-gossip problem is a generalization of classical all-to-all gossip (0-gossip) that allows
for flexibility in the number of rumors that need to be spread—a desirable feature for
many applications (e.g., when only a majority vote is needed).

Basic Setting. We assume that honest processes maintain no shared secrets (e.g., infor-
mation unknown to the adversary). The honest processes could use such information
to derive a transmission pattern that appears random to an outside observer. (Military
communication systems, like those used by the MILSTAR satellite system, use such a
scheme to evade eavesdroppers). We omit this possibility for three reasons. First, we
are interested in deterministic solutions that guarantee correctness even in the worst
case. Second, for low-resource devices—such as RFID tags or tiny sensor motes—
cryptographic calculations (particularly of the public-key variety) and secure key dis-
semination may be prohibitively expensive. Third, shared secrets are hard to maintain
when the adversary can corrupt and hijack honest devices (addressed in Section 9).

With such devices in mind, we focus on oblivious algorithms—those in which a
process’s decision to transmit or listen in a given round on a given channel is a func-
tion only of its unique identifier, the round number, and the number of processes and
channels in the network. Oblivious algorithms are appealing because they are consid-
ered easy to construct and deploy. (In Section 10, we briefly discuss randomized and
adaptive solutions.)

Results. We prove that max
(
Θ
(

(1−ε)n
c−1 + logc n

)
, Θ
(

n(1−ε)
εc2

))
rounds are neces-

sary and sufficient to solve ε-gossip in a setting where the adversary can disrupt one
channel per round, and n is the total number of processes. We demonstrate necessity by
first reducing ε-gossip to a graph-theoretic game—(n, ε)-clique destruction—in which
a player tries to remove enough edges from an n-clique to destroy any clique of size
greater than εn, and then proving a lower bound on this game by appealing to Turán’s
Theorem [19], a seminal result in extremal combinatorics.
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To demonstrate sufficiency, we describe a matching deterministic oblivious algo-
rithm that proceeds in two phases. During the first phase, a sufficient number of values
are disseminated to a distinguished group of listeners distributed among the channels.
The resulting construction, when considered in the context of extremal graph theory,
produces a Turán Graph. During the second phase, these values are disseminated to in-
creasingly larger sets of processes until n−1 have learned the total requisite knowledge.

We then generalize our algorithm for the multi-channel adversary that can simultane-
ously disrupt up to t < c channels. This models a network with t adversarial processes,
each potentially disrupting a different channel. Our algorithm presented for t = 1 ex-
tends naturally to this scenario: the generalized first phase, in fact, relates to a conjec-
tured hypergraph-generalization of Turán’s Theorem; the second phase uses selectors, a
combinatorial device introduced by [20], to generalize the dissemination schedule. We
show this solution to be optimal for the natural case of ε = t/n (i.e., trying to gossip
the maximum possible number of values). We conclude by describing how to modify
our algorithm to tolerate traditional Byzantine corruption faults.

2 Model

We consider a system of n honest processes, each assigned a unique identifier in the
range [1..n]. The processes inhabit a single-hop radio network comprised of c commu-
nication channels: 1 < c ≤ n. We first assume the presence of a malicious adversary
that can corrupt one channel per round. We then consider the general case where it can
simultaneously disrupt t < c channels in each round.

Synchronous Rounds. Executions proceed in synchronous rounds. In each round, each
process chooses a single channel on which to participate: it can either transmit or receive
on that channel. In each round the adversary chooses up to t channels to disrupt. If
exactly one process transmits a message m on channel k in a round, and the adversary
does not disrupt channel k, then every process receiving on channel k receives message
m. When two processes broadcast in the same round on the same channel, the message
is lost. (We do not assume that the processes have the capacity to detect collisions.)

Deterministic and Oblivious. We consider deterministic, oblivious gossip algorithms.
An oblivious algorithm is one in which the broadcast schedule is determined in advance.
Formally, a deterministic oblivious algorithm is a sequence A = 〈A1, . . . , Ar〉 where
each Ar : [1..n]→ {trans, recv,⊥}× [1..c] is a function describing the behavior of the
processes in round i. For example, when Ar(i) = 〈trans, k〉, it indicates that in round
r, process i transmits on channel k; when Ar(i) = 〈recv, k〉, then process i receives on
channel k. Without loss of generality, for the lower bound we consider full information
protocols in which processes always transmit their entire state. Also without loss of
generality, we assume each initial value is unique.

3 The Gossip Problem

Each process begins with an initial value (or “rumor”) which it attempts to disseminate
to the other processes. In this paper we consider the (ε, δ)-gossip problem in which all
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but δn processes must receive a common set of all but εn of the initial values. This
definition is a generalization of commonly considered communication primitives: for
example, all-to-all gossip is (0, 0)-gossip and one-to-all broadcast is (1− 1

n , 0)-gossip.
Formally, algorithm A solves the (ε, δ)-gossip problem if and only if, for all possible
adversarial choices, at least (1 − δ)n honest processes successfully receive a common
set of at least (1 − ε)n initial values.

In this setting, it is clearly impossible to ensure that all n honest processes success-
fully receive even one common initial value. Assume there existed such an (ε, 0)-gossip
algorithmA, and consider the adversarial strategy C in which the adversary always dis-
rupts the channel on which process 1 either transmits or receives. Under these condi-
tions, process 1 can never successfully transmit or receive any value: it neither learns
the initial value of any other process, nor does any other process learn its initial value,
implying that A does not solve (ε, 0)-gossip. By the same argument, it is impossible to
solve (0, δ)-gossip.

Hence, we focus on solving the (ε, t/n)-gossip problem where t/n ≤ ε ≤ 1, that
is, the problem in which all but εn initial values are disseminated to all but t processes.
(Considering larger values of δ does not allow for significantly faster termination for
most values of ε.) For the remainder of the paper, we refer to the (ε, t

n )-gossip problem
where t/n ≤ ε ≤ 1 simply as: ε-gossip.

Roadmap. In Sections 4, 5 and 6, we address the case where t = 1. In Section 4
we present a lower bound, in Section 5 we present a matching algorithm, and in Sec-
tion 6 we outline the proof. In Section 7, we extend our algorithm to tolerate a multi-
channel adversary that can block an arbitrary t < c channels. In Section 9, we consider
a more general model in which the adversary can corrupt honest players (rather than
simply disrupting communication). We conclude with a discussion of open questions in
Section 10.

4 A Lower Bound for ε-Gossip Where t = 1

Let A be an arbitrary deterministic oblivious algorithm for ε-gossip where t = 1. We
show that A requires

max

(
Θ

(
(1 − ε)n

c − 1
+ logc n

)
, Θ

(
n(1 − ε)

εc2

))
rounds to terminate. The first term dominates when ε ≥ 1/c (i.e., only a small number

of values need to be disseminated), and it follows from the observation that at most
c − 1 values can be broadcast in each round. In this section, we focus predominantly
on the (more interesting) case where ε < 1/c. For every execution α of algorithm
A, let round Rtrans(α) be the minimum round such that the following is true: at least
(1−ε)n of the honest processes have broadcast without being disrupted by the adversary
in the prefix of α through round Rtrans(α). We show that for some execution α of A,
Rtrans(α) ≥ Ω(n(1−ε)

εc2 ). It follows that the protocol cannot terminate in α prior to round
Rtrans(α)—implying the second term of our bound.
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We prove this result by exploiting an interesting connection between oblivious ε-
gossip and graph theory. An oblivious algorithm can be imagined as a sequence of edge
removals from an n-clique, and the adversary’s optimal strategy can be described by
the largest clique that remains after these removals. Accordingly, we turn to the field of
extremal combinatorics and apply Turán’s Theorem [19] to argue precisely about the
size of the cliques that remain in a graph, which in turn tells us the adversary’s best
strategy.

Definition 1 (The (n, ε)-Clique Destruction Game). Let G = (V, E) be a graph de-
scribing a clique on n nodes. We say that a subset of edges S ⊆ E is a solution to the
(n, ε)-clique destruction game if and only if the graph G′ = (V, E − S) contains no
clique of size greater than εn.

Turán’s theorem relates the largest clique in a graph and the number of edges in a graph:

Theorem 1 (Turán’s Theorem [19]). If graph G = (V, E) has no subgraph that is a
clique of size k + 1, then |E| ≤ (1− 1/k)

(
n2/2

)
.

From this we derive an immediate corollary:

Corollary 1. Fix S ⊆ E a solution to the (n, ε)-clique destruction game. Then |S| ≥
n(1− ε)/(2ε).

Proof. By Theorem 1 where k = εn: subtract from the
(
n
2

)
edges in an n-clique the

maximum number of edges in a graph with no cliques of size εn+1, as per Theorem 1,
to get the minimum size of S.

We next connect the (n, ε)-clique destruction game to the ε-gossip problem:

Lemma 1. If for every execution α of algorithm A, Rtrans(α) ≤ r, then there exists a
solution S to the (n, ε)-clique destruction game such that |S| ≤ c2r.

Proof. Without loss of generality, assume thatA assigns exactly one process to transmit
on each channel in each round. Construct S as follows: add edge (a, b) to S if, for some
round r′ ≤ r, processes a and b both broadcast in round r′. Since for each r′ ≤ r there
are at most

(
c
2

)
such pairs, we conclude that |S| ≤ c2r.

Suppose, for contradiction, that nodes V ′ ⊆ V form a clique of size > εn in the
residual graph. We construct the following strategy to thwartA: whenever a process in
V ′ attempts to broadcast on channel k, the adversary disrupts channel k. This is always
possible as no two processes in V ′ broadcast in the same round (by the construction of
S). This violates the correctness ofA, implying a contradiction.

We combines these two lemmas to obtain our final bound:

Theorem 2. For any deterministic oblivious algorithm,A, that solves ε-gossip,

|A| ≥ max

(
Θ

(
(1 − ε)n

c − 1
+ logc n

)
, Θ

(
n(1 − ε)

εc2

))
.
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Proof. If A solves ε-gossip, then for every execution α of algorithm A, there exists a
round r such that Rtrans(α) ≤ r. We begin by establishing the first term of the bound.
Since at most c − 1 values can be transmitted without disruption in each round, it is
clear that r ≥ (1− ε)n/(c− 1). Let r′ be the round in which the last of these (1− ε)n
values is transmitted. For each of the n− 1 processes that ultimately learn all (1 − ε)n
values, there must be some round ≥ r′ in which it listens on a non-disrupted channel.
Let r′′ be the latest of these rounds. We know r′′ ≥ r′ + logc n − 1, as over the first
logc n− 1 rounds there are only clogc n−1 < n− 1 different channel-listening patterns
a process can follow; by the pigeonhole principle this results in two processes listening
on the same channels for these first logc n − 1 rounds, allowing the adversary to block
both processes. Together these two pieces form the first term of the lower bound.

For the second term of the lower bound we turn to our Turán-derived results. From
Lemma 1 we know there exists a set of edges S that solves the (n, ε)-clique destruction
game, such that c2r ≥ |S|. By Corollary 1 we know: |S| ≥ n(1− ε)/(2ε). This implies

r ≥ Θ
(

n(1−ε)
εc2

)
.

5 An Upper Bound for ε-Gossip Where t = 1

In this section we describe a deterministic oblivious algorithm for solving the ε-gossip
problem when ε < 1/c. In Section 8, we discuss the (simpler) case where ε ≥ 1/c. For
the sake of concision, we make a few simplifying assumptions. First, we assume that
n > 6c. For smaller values of n, the algorithm can simply restrict itself to a subset of
the channels. Second, we assume that the number of channels c is even. For odd c, the
algorithm can restrict itself to c−1 channels. Finally, we assume that ε ≥ 2c+1

n (slightly
larger than the trivial ε ≥ 1/n lower bound for ε). In Section 5.3 we describe how to
remove this last assumption.

5.1 The Gossip Protocol

The gossip protocol (see Figure 1) constructs an oblivious algorithm that solves the
ε-gossip problem for ε < 1/c. Recall, an oblivious algorithm is a sequence A =
A1, A2, . . . where each Ai is a function from processes [1 . . . n] to actions {trans, recv}
and channels [1 . . . c]. Throughout the description, we use the notation divide(S, k) to
refer to a partition of the set S into �|S|/k� sets of size k, one of which may have fewer
than k elements if |S| does not divide evenly by k. Also, i [b] refers to the bth bit of the
binary representation of i. Our protocol proceeds in two parts.

Part I: Initially, the processes are divided into two sets: a set of 2c listeners, consisting
of processes P� = {1, . . . , 2c}, and a set of (at least 4c) transmitters Ptran, consist-
ing of the remaining processes. Each channel is assigned a pair of two listeners. Next,
the InfoTransfer(ε′) routine is used to transfer all but ε′n + 2c of the initial values
to some pair of listeners. (The additive 2c represents the listeners’ values that are not
transmitted.) By choosing ε′ = ε − 2c/n, this ensures that all but εn initial values are
known to some pair of listeners (in Section 5.3 we discuss how to allow the listeners to
participate).

Part II: The goal of the second part is to disseminate the information acquired by each
pair of listeners to all but one process. We say that a set is knowledgeable with respect to
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1 Gossip(ε)
2 ; Part I: Transfer info from transmitters to listeners.

3 P� ← {i | 1 ≤ i ≤ 2c}
4 Ptran ← {i | 2c < i ≤ n}
5 channel-assignment ← divide(P�, 2)
6 InfoTransfer(ε − 2c

n
, Ptran, P�, channel-assignement, 〈A1,. . . 〉)

7

8 ; Part II, Step 1: Create c knowledgable sets in two steps.

9 Psets ← divide(Ptran, 	Ptran/c
)
10 for (chan = 1 to c/2) do
11 disseminate2(channel-assignment[chan], Psets[chan], chan, chan+c/2, 〈B1, . . . 〉)
12 for (chan = c/2+1 to c) do
13 L ← channel-assignment[chan]
14 disseminate2(channel-assignment[chan], Psets[chan], chan-c/2, chan, 〈C1, . . . 〉)
15

16 ; Part II, Step 2: Combine channels.

17 r ← 1
18 while (|Psets| > 1) do
19 newPsets ← ∅
20 s ← �|Psets|/2�
21 for (i = 1 to s) do
22 P ← combine(Psets[i], Psets[i+s], i, i + c/2, 〈Dr, . . .〉)
23 newPsets ← newPsets ∪ P

24 ; If the size of Psets is odd, we let the last set pass through uncombined.

25 if (2s+1 = |Psets|) then
26 newPsets ← newPsets ∪ Psets[2s+1]
27 Psets ← newPsets

28 r ← r + 6	 log n 
 + 36
29 return A.B.C.D

Fig. 1. An algorithm for solving the ε-gossip problem (ε < 1/c)

some set of initial values if all but one process in the set has received the initial values.
The second part of the gossip protocol proceeds in two steps. First, the transmitter pro-
cesses are divided into c sets, one per channel. (The variable Psets stores these c sets).
The two listeners associated with each channel disseminate the information acquired in
Part I to the set of transmitters assigned to that channel. This dissemination step uses
two channels, and thus we can run c/2 instances in parallel: in the first �log n� rounds,
we perform the dissemination for channels 1, . . . , c/2; in the next �log n� rounds, we
perform the dissemination for channels c/2 + 1, . . . , c. In each case, this dissemination
is accomplished using the disseminate2 routine. At the end of this step, each set of pro-
cesses in Psets is knowledgeable with respect to the set of values known to the listeners
on their channel.

In the second step, we repeatedly combine pairs of knowledgeable sets (via the
combine routine) into larger knowledgeable sets in which the processes know values
from both of the original sets. We continue combining sets until we are left with a
single set in which the processes know the required (1− ε)n values.
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1 InfoTransfer(ε′, Ptran, P�, channel-assignment, 〈A1, . . .〉)
2 ; Assign listeners to channels.

3 for every round r, for every channel k do
4 {a, b} ← channel-assignment[k]
5 Ar(a) ← 〈recv, k〉
6 Ar(b) ← 〈recv, k〉
7 ; Assign transmitters to channels.

8 r ← 0
9 for every B ∈ divide(Ptran ∪ P�, 1/ ε′) do

10 Bsubs ← divide(B, c/2)
11 for every (S1, S2) ∈ Bsubs × Bsubs do
12 chan ← 1
13 for every i ∈ S1 ∪ S2

14 Ar(i) ← 〈trans, chan〉
15 chan ← chan+1
16 r ← r+1

Fig. 2. Routines to transfer information from transmitters to listeners

1 disseminate2(L, P, c1, c2, 〈A1, . . .〉)
2 {a1,a2} ← L

3 for b = 1 to 	lg n

4 Ab(a1) ← 〈trans, c1〉
5 Ab(a2) ← 〈trans, c2〉
6 for b = 1 to 	lg n

7 for each i ∈ P

8 if i[b] = 0 then
9 Ab(i) ← 〈recv, c1〉

10 else if i[b] = 1 then
11 Ab(i) ← 〈recv, c2〉

Fig. 3. A routine that disseminates data from listeners to arbitrary sets

The Information Transfer Routine. The goal of the InfoTransfer routine (Figure 2) is to
ensure that all but ε′n + 2c of the initial values are received by some pair of listeners.
Each channel is assigned two listeners, and we assign transmitters to each channel in
each round such that the resulting induced graph, as formulated in terms of Lemma 1
and the clique destruction game, forms a Turán Graph.1

We divide all processes into sets {B1, B2, . . . , Bε′n} of size 1/ε′; there are ε′n such
sets. Our goal is to ensure that all but (at most) one transmitter in each set Bi succeeds
in transmitting its value to a pair of listeners. We proceed as follows: For each set
Bi, we sub-divide Bi into subsets of size c/2, and schedule each of the

(
(2/ε′c)

2

)
pairs

of subsets to broadcast in a round (omitting listeners, which are already occupied).

1 A Turán Graph for value k (say, k = εn + 1), is the unique graph, as proved by Turán, to
contain no cliques of size k and to contain the maximum number of edges for which this
condition can be true, as established by the theorem of the same name.
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1 combine(S1, S2, c1, c2, 〈A1, . . .〉)
2 r ← 0
3 for (i = 1 to 2) do
4 ; Use i and i+2 as witnesses for S1 :
5 L ← S1[i] ∪ S1[i+2]
6 P ← S1 ∪ S2 − L

7 disseminate2(L, P, c1, c2, 〈B1, . . .〉)
8 A ← A . B

9 for (i = 1 to 3) do
10 ; Use i and i+3 as witnesses for S2 :
11 L ← S2[i] ∪ S2[i+2]
12 P ← S1 ∪ S2 − L

13 disseminate2(L, P, c1, c2, 〈B1, . . .〉)
14 A ← A . B

15 return S1 ∪ S2

Fig. 4. A routine to combine knowledgeable sets

Since every pair of non-listeners in Bi broadcast together in some round, the adversary
can block at most one non-listener in each set Bi from communicating its value to a
listener. Running Time: �ε′n

(
2/ε′c

2

)
�.

The Disseminate Routines. The disseminate2(L, P, c1, c2, . . .) routine (Figure 3) dis-
seminates all values known by both processes in the set L to all but (at most) one
process in the set P , using channels c1 and c2. (We assume |L| = 2). First, we assign
the two processes in L to transmit on channels c1 and c2 for �log n� rounds. In each
round b, each process in P chooses a channel on which to receive based on its iden-
tifier i: if i[b] = 0, it chooses channel c1; if i[b] = 1, it chooses channel c2. Thus,
for any pair of processes in P , there is some round in which they receive on different
channels. Running Time: �log n�.

The Combine Routine. The combine(S1, S2, c1, c2, . . .) routine (Figure 4) begins with
two knowledgeable sets. (We assume that S1 and S2 each contain at least 6 processes.)
Using two channels, the combine function creates a new knowledgeable set S1∪S2 such
that all but (at most) one process in the combined set knows the shared information from
both S1 and S2. The routine accomplishes this goal by running disseminate2 five times.
The first two times, it uses pairs of witnesses from set S1 to disseminate information
to set S2. Since at most one node in S1 is not knowledgeable, we can conclude that
one of these pairs of witnesses is knowledgeable. Hence after the first two calls to the
disseminate2 routine, all but one node in S1 ∪ S2 are knowledgeable with respect to
the values from S1. The next three times, it uses pairs of witnesses from set S2 to
disseminate information to set S1. Notice that there may be two nodes in S2 that are
not fully knowledgeable: one node may not be knowledgeable about S2’s values, and
one node may not be knowledgeable about S1’s values. Thus for one of the three pairs
of witnesses, both are knowledgeable, and the dissemination succeeds in informing all
but one node in S1 ∪ S2. Running Time: 5�logn�.
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5.2 Running Time of the Gossip Protocol

The running time for Gossip is calculated as:

[InfoTransfer] + 2[disseminate2] + �log c�[combine] .

This equals: �ε′n
(
2/ε′c

2

)
� + 2�log n� + �log c�(5�log n��). We can simplify this to

Θ( n
ε′c2 ). Because ε < 1/c ≤ 1/2, this is equivalent to Θ(n(1−ε)

ε′c2 ). The modified
algorithm, presented in the next section, improves the running time (marginally) to
Θ(n(1−ε)

εc2 ), exactly matching our lower bound for the case where ε < 1/c. As men-
tioned, in Section 8 we provide an algorithm (matching within an additive factor of
log2 c) for the less involved case of ε ≥ 1/c.

5.3 Achieving ε-Gossip for Small ε

The algorithm presented in the previous section assumes that ε ≥ (2c + 1)/n. We now
discuss modifying the algorithm to require only ε ≥ 1/n, the minimum value of ε
for which the problem can be solved. The difficulty occurs in the InfoTransfer routine,
where the listeners do not participate in transmitting their values. Unlike the transmit-
ters, their initial values are known only to themselves, not to a pair of processes. The
first step in our modification is to schedule the listeners, P�, as well as the transmitters,
Ptran, to transmit their values during the InfoTransfer. If only one of the two listeners
assigned to channel k is scheduled to transmit in a round, then it broadcasts on channel
k, resulting in no difficulties.

Consider the problematic case where both listeners for channel k are scheduled to
transmit in the same round. Since the division into sub-blocks of size c/2 is arbitrary, we
can ensure that each of the listeners for channel k is in a different sub-block. Thus, there
is only one round for which both listeners for a channel might be forced to broadcast. In
this case, two “backup listeners” are recruited to monitor channel k during that round.
Since there are only c processes scheduled to broadcast in that round, and only 2c
listeners, there remain at least 2c processes to play the role of backup listener. Every
channel may be forced to recruit one pair of backup listeners, resulting in 4c listeners
and backup listeners whose values need to be propagated in the second part of the
protocol; the described algorithm extends immediately to this case.

6 Analysis

We now outline an argument that the algorithm from Section 5 solves ε-gossip (when
ε < 1/c). We focus on some of the key invariants satisfied by the different components
of the construction. First, we observe that the InfoTransfer routine guarantees that a
sufficient number of values are transmitted without adversarial disruption:

Lemma 2. During the first r = �εn
(
2/εc

2

)
� rounds, all but εn of the processes transmit

their values in some round ≤ r without disruption.

This claim follows from the construction of the schedule: for each of the εn sets, all
pairs of processes broadcast together in some round. We therefore conclude that the
listeners receive a sufficient set of values:
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Corollary 2. At the end of the InfoTransfer routine, there exists some set of values V
of size at least (1 − ε)n such that each value v ∈ V is known to some set of 2 listeners
or backup listeners.

We next observe that after the first step of Part II (i.e., after the disseminate2 routines)
each set in Psets is knowledgeable with respect to some subset of the values V :

Lemma 3. There exists a partition V1, . . . Vc of the values in V such that after the
disseminate2 routines (i.e., by line 15), each set Psets [i] is knowledgeable with respect
to Vi, 1 ≤ i ≤ c.

The proof for this claim follows from the fact that the disseminate2 routine successfully
transmits the values from the listeners (or backup listeners) to the remaining nodes in
the set; since every node’s identifier is unique, there will be some round during the
disseminate2 routine in which each pair of nodes is listening on a different channel, and
hence will receive the appropriate set of values. Finally, we observe that the combine
routine successfully merges knowledgeable sets, which concludes the proof:

Lemma 4. If Pi and Pj are knowledgeable sets with respect to some sets of values Vi

and Vj , then set P ← combine(Pi, Pj , . . .) is knowledgeable with respect to Vi ∪ Vj .

This fact follows from the correctness of the disseminate2 routine. We thus conclude:

Theorem 3. Let A be the deterministic oblivious algorithm constructed by Gossip. If
ε < 1/c, thenA solves the ε-gossip problem in time O(n(1 − ε)/εc2).

7 The Multi-channel Adversary (t < c)

The algorithm described in Section 5 tolerates an adversary that can disrupt one channel
in each round. The algorithm naturally extends to an adversary that can disrupt t < c
channels. (Again, for the purpose of brevity, we focus on the case where ε < t/c, as
this is the more interesting case. The case of ε ≥ t/c is described in Section 8.) The
overall algorithm maintains the same structure as that presented in Section 5: in the first
part, the nodes transmit their values to a set of listeners; in the second part, the listeners
become transmitters and create ever-expanding knowledgeable sets.

Part I. First, we assign t + 1 listeners to each channel, instead of 2 listeners. The
InfoTransfer routine is modified as follows: The processes are divided into εn/t sets of
size t/ε (instead of εn sets of size 1/ε). Each of these sets is subdivided into subsets of
size c/(t+1) (instead of size 2). All

(
t(t+1)/cε

t+1

)
combinations of subsets are scheduled.

This ensures that any combination of t + 1 nodes in a set broadcast in the same round,
and thus that there are at most t·εn/t nodes that fail to transmit their value. The resulting

running time is O
(

net+1

cεt

)
(approximating the binomial and the fact that t < c). Notice

that the resulting schedule can be reduced to a (t + 1)-hypergraph, in the same manner
that the schedules for t = 1 could be reduced to a graph. If this construction is optimal,
then it corresponds to a hypergraph-generalization of a Turán Graph. Finding such an
entity (and proving it optimal) remains an open problem in extremal graph theory.
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Part II. In the second part, the listeners disseminate the information to groups of nodes.
The basic routine here is a disseminate[t + 1] routine that uses t + 1 channels to dis-
tribute data from t + 1 listeners to a set that becomes knowledgeable. Each of t + 1
listeners transmits on one channel throughout the dissemination phase; the rest of the
nodes in the set are scheduled to listen on different channels in different rounds such
that any set of t + 1 nodes is scheduled in some round to listen on different channels.

To accomplish this, we need to introduce an additional tool: selectors, as introduced
by Komlos and Greenberg [20] (the term “selector” was coined later by [21]). Let S be a
family of sets, where each S ∈ S is a subset of [1, . . . , n]. For integer k ≤ n, we say that
S is a (n, k, 1)-selector if for every set A ⊆ [1, . . . , n] where |A| = k, there exists a set
S ∈ S such that |S ∩A| = 1. In [20], it was shown that there exist (n, k, 1)-selectors of
size at most O(k log n/k), and [22] shows how to explicitly construct selectors of size
O(kpolylog(n)). For this section, we use the existential bounds from [20], and assume
that for all k ≤ n, Sk is a family of selectors of size O(k log n/k).

The schedule is constructed recursively. We define T (c′) recursively to be the number
of rounds needed to construct the schedule for c′ channels. In the beginning, we are
constructing a schedule for all c′ = t + 1 channels. If c′ = 2, then the recursion
terminates: schedule the remaining nodes to listen on those two channels as per the
disseminate2 routine, i.e., each node chooses a channel based on its identifier. This
takes T (2) = O(log n) rounds. If c′ > 2, then we use the family of selectors Sc′ : for
each set S ∈ Sc′ , schedule the nodes in S to listen on one channel for T (c′−1) rounds,
and recursively schedule the remaining nodes on the remaining c′−1 channels. For each
set in Sk this takes T (c′ − 1) rounds, and thus T (c′) = |Sc′ |T (c′ − 1). Since selector
Sc′ is of size at most O(c′ log n/c′), we conclude that the entire schedule for T (t + 1)
is (roughly) O((t+1)t logt n). To see that it satisfies the desired property, consider any
subset of t + 1 nodes: by definition, exactly one node is selected by one of the sets in
St+1; at the next step of the recursion, one node is selected by a set in St, one by a set
in St−1, and so on, until the recursion bottoms out at the simple two-channel case. Thus
there exists some round in which all t + 1 nodes listen in the same round.

The remaining generalizations of the algorithm from Section 5 are straightforward:
the combine routine merges sets S1 and S2 as follows: first, it chooses (t + 1)(t + 1)
witnesses from set S1 and runs t + 1 iterations of disseminate[t + 1] to set S2; it then
chooses (2t+1)(t+1) witnesses from set S2 and runs 2t+1 iterations of disseminate[t+
1] to set S1. (By contrast, in the t = 1 case, there were two pairs of witnesses chosen
for the first dissemination and three pairs of witness chosen for the second.) It should
be noted that using selectors here too would result in improved performance. Thus each
combine costs O((t+1)t+1 logt n). Since each combine uses t+1 channels, it requires

c
t+1 log c iterations of the main loop to combine all c knowledgeable sets.

Noting that t < c < n, we thus conclude that the total running time of the gossip
protocol is:

O

(
net+1

cεt
+ c(t + 1)t logt+1 n

)
Lower Bound. Proving a matching lower bound for the general case remains an open
question. We can prove that the result is optimal for the natural case of ε = t/n, that is,
trying to disseminate the maximum possible number of values. Specifically, we claim
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n

t+1

)
/
(

c
t+1

)
rounds to be necessary for all but t nodes to transmit even once without

being disrupted. The numerator follows from the observation that in order to transmit
all but t values without interference, there must exist, for each combination of t + 1
processes, a round in which all t + 1 processes transmit concurrently (otherwise, the t
adversaries can always interference when any of these processes transmit). The denom-
inator follows from the observation that at most

(
c

t+1

)
unique sets of t + 1 processes

can transmit concurrently on c channels during a single round. This fraction simpli-
fies directly to Θ(nt+1

ct+1 ), matching our above bound for InfoTransfer (within a factor
of O(et)). Again, notice that proving a hypergraph-generalization of Turán’s Theorem
would result in an immediate lower bound. (See [23, 24] for more on hypergraph gen-
eralizations of Turán’s Theorem.)

8 Achieving ε-Gossip for Large ε

In this section, we describe an algorithm to solve ε-gossip when ε > t/c.
In the case where t = 1, we again divide the protocol into a transmission phase and

a dissemination phase. In the transmission phase, we attempt to ensure that (1 − ε)n
values are known to a set of 6c processes. This is accomplished by assigning six listeners
to each channel, and dividing the nodes into groups of size c; each group is assigned
one round to broadcast for (1− ε)n/(c− 1) ≤ n/c rounds, ensuring that in each round
c−1 nodes succeed. The listeners then exchange their values amongst themselves using
the combine routine described in Section 5. The total running time of the transmission
phase is O((1 − ε)n/(c− 1) + log2 c).

In the dissemination phase, we repeat the following twice, each time with a disjoint
set of c “listeners” from the previous phase: each of the “listeners” broadcasts on one of
the c channels, and each of the remaining nodes chooses a channel to listen on in each
round using the “base-c” representation of its identifier. Since each identifier is unique,
we can be sure that for any pair of nodes, in one of these rounds the two nodes choose
different channels to listen on, and hence at least one receives the appropriate set of
values. The total running time for the dissemination phase is O(logc n). Thus the final
overall running time of both phases is O((1 − ε)n/(c− 1) + logc n + log2 c).

When t > 1, this strategy generalizes in the natural way: we assign (2t + 1)(t + 1)
listeners in the transmission phase, and c nodes broadcast in each round; at least c − t
of them succeed, resulting in at least (1 − ε)n values being received by listeners since
(1 − ε)n/(c − t) ≤ n/c; as before, the combine routine, generalized for the multi-
channel adversary, is then used to combine the data. The total running time in this case
is (1− ε)n/(c− t) + O(c(t + 1)t logt+1 n).

9 Byzantine Adversary

The algorithms described in Sections 5 and 7 tolerate an adversary that can disrupt
communication, but not an adversary that can directly corrupt an “honest” player. It is
easy, however, to extend our algorithm to tolerate a Byzantine adversary that corrupts up
to t honest players. Each corrupt player can either disrupt a channel or send a message
in each round. (Thus, up to t channels can be disrupted, as in the previous case.)
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The main modification involves the transmission phase: more listeners are needed
on each channel, as some may be Byzantine. Instead of t + 1 listeners on each channel,
we assign (2t + 1)(t + 1). We then run the disseminate and combine routines 2t + 1
times, each time with a different set of t + 1 listeners representing each channel. An
honest process accepts a value as authentic only if it was received in at least t+1 of the
(2t + 1) runs of disseminate and combine. The running time is increased by a factor of
Θ(t). With further care, the number of listeners can be reduced. However, we conjecture
that the problem is solvable only if n = Ω(tc), for example, in the case where t = c−1.

10 Open Questions

The problems discussed introduce several new directions for future research. First, it
remains to close the gap between the upper and lower bounds in the case of a multi-
channel adversary. Such a result would have interesting connections to a hypergraph
generalization of Turán’s Theorem, an open problem in extremal graph theory.

Second, adaptive algorithms can likely achieve better performance than oblivious
algorithms. It remains an interesting open question to determine how much efficiency
adaptiveness provides. Similarly, it is possible to achieve better performance using a
randomized algorithm, at the cost of some probability of failure. A trivial randomized
algorithm can solve 1/n-gossip in O(n log n) time (w.h.p.). Is it possible to do better?

Third, we believe the techniques developed here for single-hope networks extend to
multi-hop networks. Fourth, prior research on the problem of malicious interference has
assumed that the adversary can cause only a bounded number of collisions. It may be
interesting to consider the possibility of bounded collisions in a multi-channel network.

Finally, this paper considers an adversary who wants to prevent communication.
Other research (e.g., [25]) has considered an eavesdropper who wants to compromise
the secrecy of the information (but who may not disrupt communication). This leaves
open the question of whether it is possible to achieve reliable and secret communication
in a multi-channel network in the presence of a malicious and disruptive adversary.
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Abstract. The timestamp problem captures a fundamental aspect of
asynchronous distributed computing. It allows processes to label events
throughout the system with timestamps that provide information about
the real-time ordering of those events. We consider the space complex-
ity of wait-free implementations of timestamps from shared read-write
registers in a system of n processes.
We prove an Ω(

√
n) lower bound on the number of registers required.

If the timestamps are elements of a nowhere dense set, for example the
integers, we prove a stronger, and tight, lower bound of n. However, if
timestamps are not from a nowhere dense set, this bound can be beaten;
we give an algorithm that uses n − 1 (single-writer) registers.
We also consider the special case of anonymous algorithms, where pro-
cesses do not have unique identifiers. We prove anonymous timestamp
algorithms require n registers. We give an algorithm to prove that this
lower bound is tight. This is the first anonymous algorithm that uses a
finite number of registers. Although this algorithm is wait-free, its step
complexity is not bounded. We also present an algorithm that uses O(n2)
registers and has bounded step complexity.

Keywords: timestamps, shared memory, anonymous, lower bounds.

1 Introduction

In asynchronous systems, it is the unpredictability of the scheduler that gives
rise to the principle challenges of designing distributed algorithms. One approach
to overcoming these challenges is for processes to determine the temporal order-
ing of certain events that take place at different locations within the system.
Examples of tasks where such temporal information is essential include imple-
menting first-come first-served processing of jobs that arrive at different locations
in the system and knowing whether a locally cached copy of data is up-to-date.
Temporal information about the scheduling of events can also be used to break
symmetry, e.g., the first process to perform some step can be elected as a leader.

If processes communicate via messages or shared read-write registers, it is
impossible for them to determine the exact temporal ordering of all events.
However, timestamps provide partial information about this ordering in such sys-
tems. A timestamp algorithm allows processes to ask for labels, or timestamps,
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which can then be compared with other timestamps. Timestamps have been
used to solve several of the most fundamental problems in distributed comput-
ing. Examples include mutual exclusion [17] (and the more general k-exclusion
problem [2]), randomized consensus [1], and constructing multi-writer registers
from single-writer registers [13, 19, 22]. Timestamps have also been employed in
anonymous systems as building blocks for implementations of wait-free atomic
snapshots and other data structures [12].

Despite the central importance of the timestamp problem, its complexity is
not well-understood. In this paper, we present the first study on the number of
registers required for wait-free implementations of timestamps.

The history of timestamps begins with Lamport [18], who defined a partial
ordering on events in a message-passing system; one event “happens before”
another if the first could influence the second (because they are by the same
process or because of messages sent between processes). He defined a logical
clock, which assigns integer timestamps to events such that, if one event happens
before another, it is assigned a smaller timestamp. There is no constraint on the
relationship between timestamps assigned to other pairs of events.

Fidge and Mattern [11, 20] introduced the notion of vector clocks, where time-
stamps are vectors of integers rather than integers. Two vectors are compared
component-wise: one vector is smaller than or equal to another when each com-
ponent of the first is smaller than or equal to the corresponding component of
the second. Their vector clock algorithms satisfy the property that one event
gets a smaller vector than another if and only if it happens before the other
event. This property is not possible to ensure using integer timestamps, because
concurrent events may need to be assigned incomparable vectors. Charron-Bost
[5] proved that the number of components required by a vector clock is at least
the number of processes, n.

In message-passing algorithms, the timestamps reflect the partial order rep-
resenting (potential) causal relationships. In shared-memory systems, we are
concerned, instead, with the real-time ordering of events.

The simplest shared-memory timestamp algorithm uses single-writer registers
[17]. To get a new timestamp, a process collects the values in all the single-writer
registers and writes one plus the maximum value it read into its single-writer
register. This value is its new timestamp.

Dwork and Waarts [8] described a vector timestamp algorithm that uses n
single-writer registers. To obtain a new timestamp, a process increments its
register and collects the values in the registers of all other processes. It returns
the vector of these n values as its timestamp. These timestamps can be compared
either lexicographically or in the same way as in the vector clock algorithm.

Attiya and Fouren [3] gave a vector timestamp algorithm that is considerably
more complicated. It uses an unbounded number of registers but has the advan-
tage that the number of components in the timestamp (and the time required
to obtain it) is a function of the number of processes running concurrently.

Guerraoui and Ruppert [12] described an anonymous wait-free timestamp
algorithm, but the number of registers used and the time-complexity of getting



The Space Complexity of Unbounded Timestamps 225

a timestamp increases without bound as the number of labelled events increases.
Thus, their algorithm is not bounded wait-free.

In all the above algorithms, the size of timestamps grows without bound as the
number of labelled events increases. This is necessary to describe the ordering
among an unbounded number of non-concurrent events. For some applications,
one can restrict the events about which order queries can be made, for example,
only the most recent event by each process. This restriction allows timestamps to
be reused, so they can be of bounded size. This restricted version of timestamps
is called the bounded timestamp problem. In contrast, the general version of the
problem is sometimes called the unbounded timestamp problem. Israeli and Li [14]
gave a bounded timestamp algorithm, assuming timestamps are only generated
by one process at a time. Dolev and Shavit defined and solved the problem
allowing multiple processes to obtain timestamps concurrently [6]. This and other
known implementations of bounded concurrent timestamps [7, 8, 13, 15] are quite
complex, as compared to unbounded timestamps.

It is known that bounded timestamp algorithms must use Ω(n) bits per time-
stamp [14]. In contrast, unbounded timestamp algorithms can use timestamps
whose bit lengths are logarithmic in the number of events that must be labelled.
Thus, if the number of events requiring timestamps is reasonable (for example,
less than 264), timestamps will easily fit into one word of memory. The work
on the bounded timestamp problem is of great interest and technical depth.
However, since bounded timestamp algorithms are complicated and require long
timestamps, the unbounded version is often considered more practical. This pa-
per focusses exclusively on the unbounded timestamp problem.

1.1 Our Contributions

In this paper, we study the number of read-write registers needed to implement
timestamps. We present both upper and lower bounds. For our upper bounds, we
give wait-free algorithms. The lower bounds apply even if algorithms must only
satisfy the weaker progress property of obstruction-freedom. Our most general
lower bound shows that any timestamp algorithm must use Ω(

√
n) registers.

Previously known wait-free algorithms use n registers. We show how to modify
one of these algorithms to use n− 1 registers.

Some existing timestamp implementations use timestamps drawn from a
nowhere dense set. Intuitively, this means that between any two possible time-
stamps, there are a finite number of other timestamps. For this restricted case,
we show that any such implementation must use at least n registers, exactly
matching known implementations. Interestingly, our lower bound can be beaten
by using timestamps from a domain that is not nowhere dense, namely, pairs of
integers, ordered lexicographically.

We also prove matching upper and lower bounds for anonymous systems,
where processes do not have unique identifiers and are programmed identically.
We give a wait-free algorithm using n registers, whereas previous algorithms used
an unbounded number. We also provide another, faster anonymous algorithm.
It uses O(n2) registers and a process takes O(n3) steps to obtain a timestamp.
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We prove a tight lower bound of n for the number of registers required for an
anonymous timestamp implementation. This establishes a small but interesting
space complexity separation between the anonymous and general versions of the
timestamp problem, since n − 1 registers suffice for our algorithm, which uses
identifiers. Lower bounds for anonymous systems are interesting, in part, because
they provide insight for lower bounds in more general systems [9, 10].

Guerraoui and Ruppert [12] used timestamps as a subroutine for their anony-
mous implementation of a snapshot object. Plugging in our space-optimal anony-
mous timestamp algorithm yields an anonymous wait-free implementation of an
m-component snapshot from m + n registers. This is the first such algorithm to
use a bounded number of registers. Similarly, if our second anonymous timestamp
algorithm is used, we obtain an anonymous wait-free snapshot implementation
from O(m + n2) registers where each Scan and Update takes O(n2(m + n))
steps. This is the first bounded wait-free anonymous snapshot implementation.

2 The Model of Computation

We use a standard model for asynchronous shared-memory systems, in which
a collection of n processes communicate using atomic read-write registers. We
consider only deterministic algorithms. If processes have identical programmes
and do not have unique identifiers, the algorithm is called anonymous; otherwise,
it is called eponymous [21]. An execution of an algorithm is a possibly infinite
sequence of steps, where each step is an access to a shared register by some
process, followed by local computation of that process. The subsequence of steps
taken by each process must conform to the algorithm of that process. Each read
of a register returns the value that was most recently written there (or the initial
value of the register if no write to it has occurred). If P is a set of processes,
a P-only execution is an execution in which only processes in P take steps. A
solo execution by a process p is a {p}-only execution. We use α · β to denote
the concatenation of the finite execution α and the (finite or infinite) execution
β. A configuration is a complete description of the system at some time. It is
comprised of the internal state of each process and the value stored in each
shared register. A configuration C is reachable if there is an execution from an
initial configuration that ends in C. In an execution, two operation instances are
called concurrent if neither one ends before the other begins.

We consider processes that may fail by halting. An algorithm is wait-free
if every non-faulty process completes its tasks within a finite number of its
own steps, no matter how processes are scheduled or which other processes fail.
A stronger version of the wait-freedom property, called bounded wait-freedom,
requires that the number of steps be bounded. A much weaker progress property
is obstruction-freedom, which requires that each process must complete its task
if it is given sufficiently many consecutive steps.

In our algorithms, each register need only be large enough to store one time-
stamp. For our lower bounds, we assume that each register can hold arbitrarily
large amounts of information. In our algorithms, we use the convention that
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shared registers have names that begin with upper-case letters and local vari-
ables begin with lower-case letters. If R is a set or array of registers, we use
Collect(R) to denote a read of each register in R, in some unspecified order.

Our lower bounds use covering arguments, introduced by Burns and Lynch
[4]. We say a process p covers a register R in a configuration C if p will write to
R when it next takes a step. A set of processes P covers a set of registers R in
C if |P| = |R| and each register in R is covered by exactly one process in P . If
P covers R, a block write by P is an execution in which each process in P takes
exactly one step writing its value.

3 The Timestamp Problem

A timestamp implementation provides two algorithms for each process: GetTS

and Compare. GetTS takes no arguments and outputs a value from a uni-
verse U . Elements of U are called timestamps. Compare takes two arguments
from U and outputs a Boolean value. If an instance of GetTS, which outputs
t1, finishes before another instance, which outputs t2, begins, then any subse-
quent instances of Compare(t1, t2) and Compare(t2, t1) must output true and
false, respectively. Thus, two non-concurrent GetTS operations cannot return
the same timestamp. Unlike the bounded timestamp problem, Compare can
compare any previously granted timestamps, so U must be infinite.

This definition of the timestamp problem is weak, which makes our lower
bounds stronger. It is sufficient for some applications [12], but it is too weak
for other applications. For example, consider the implementation of atomic
multi-writer registers from single-writer registers [13, 19, 22]. Suppose readers
determine which value to return by comparing timestamps attached to each
written value to find the most recently written value. If two writers write different
values concurrently, and two readers later read the register, the readers should
agree on which of the two values to return. To handle this kind of application,
we can define a stronger version of the timestamp problem which requires that,
for each pair t and t′, all Compare(t, t′) operations in the same execution must
return the same value. A static timestamp algorithm is one that satisfies a still
stronger property: for each pair, t and t′, the Compare(t, t′) always returns
the same result in all executions. Static timestamp algorithms have the nice
property that Compare queries need not access shared memory. The algorithms
we present in this paper are all static. The lower bounds in Sections 4.1 and 7
apply even for non-static implementations.

A natural way to design a static timestamp algorithm is to use timestamps
drawn from a partially ordered universe U , and answer Compare queries using
that order; Compare(t1, t2) returns true if and only if t1 < t2. A partially
ordered set U is called nowhere dense if, for every x, y ∈ U , there are only a
finite number of elements z ∈ U such that x < z < y. The integers, in their
natural order, and the set of all finite sets of integers, ordered by set inclusion,
are nowhere dense. Any set of fixed-length vectors of integers, where x ≤ y if and
only if each component of x is less than or equal to the corresponding component
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of y is too. However, for k ≥ 2, the set of all length-k vectors of integers, ordered
lexicographically, is not nowhere dense.

Another desirable property is that all timestamps produced are distinct, even
for concurrent GetTS operations. In eponymous systems, this property is easy
to satisfy by incorporating the process’s identifier into the timestamp gener-
ated [17]. In anonymous systems, it is impossible, because symmetry cannot be
broken using registers.

4 Eponymous Lower Bounds

We prove lower bounds on the number of registers needed to implement time-
stamps eponymously. First, we give the most general result of the paper, proving
that Ω(

√
n) registers are needed. Then, we prove a tight lower bound of n if the

timestamps are chosen from a partially ordered set that is nowhere dense.

4.1 A General Space Lower Bound

We use a covering argument, showing that, starting from a configuration where
some registers are covered, we can reach another configuration where more regis-
ters are covered. The following lemma allows us to do this, provided the original
registers are covered by three processes each. The complement of a set of pro-
cesses S is denoted by S.

Lemma 1. Consider any timestamp algorithm. Suppose that, in a reachable
configuration C, there are three disjoint sets of processes, P1, P2, and Q that
each cover the set of registers R. Let Ci be the configuration obtained from C by
having the processes in Pi do a block write, βi, for i = 1, 2. Then for all disjoint
sets S1 ⊆ P2 ∪ Q and S2 ⊆ P1 ∪ Q, with some process not in S1 ∪ S2, there is
an i ∈ {1, 2} such that every Si-only execution starting from Ci that contains a
complete GetTS writes to a register not in R.

Proof. Suppose there exist disjoint sets S1 ⊆ P2 ∪ Q and S2 ⊆ P1 ∪ Q, an S1-
only execution α1 from C1 and an S2-only execution α2 from C2 that both write
only to registers in R, and q /∈ S1∪S2. Also suppose α1 and α2 contain complete
instances of GetTS, I1 and I2, that return t1 and t2, respectively. Let γ be an
execution starting from C that begins with a block write to R by Q, followed by
a solo execution in which q performs a complete instance of Compare(t1, t2).
Then, β1 ·α1 · β2 ·α2 · γ and β2 ·α2 · β1 ·α1 · γ are valid executions starting from
C that are indistinguishable to q. Hence, in both, q returns the same result for
Compare(t1, t2). This is incorrect, since I1 precedes I2 in β1 ·α1 ·β2 ·α2 · γ, but
I2 precedes I1 in β2 · α2 · β1 · α1 · γ. ��

Theorem 2. Every obstruction-free timestamp algorithm for n processes uses
more than 1

2

√
n− 1 registers.

Proof. First, we show that at least one register is required. To derive a contra-
diction, suppose there is an implementation that uses no shared registers. Let
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α and β be solo executions of GetTS by different processes, p and q, starting
from the initial configuration. Suppose they return timestamps t and t′. Let
γ be a solo execution of Compare(t, t′) by p immediately following α. Since
α · β · γ is indistinguishable from β · α · γ to p, it must return the same result
for Compare(t, t′) in both. However, it must return true in α · β · γ and false in
β · α · γ. This is a contradiction. This suffices to prove the claim for n ≤ 4.

For the remainder of the proof, we assume that n ≥ 5. Consider any timestamp
algorithm that uses r > 0 registers. To derive a contradiction, assume r ≤
1
2

√
n− 1. We show, by repeated applications of Lemma 1 that it is possible to

reach a configuration where all r registers are covered by three processes each.
One further application of Lemma 1 will then show that some process must
write to some other register, to produce the desired contradiction. We prove the
following claim by induction on k.

Claim: For k = 1, . . . , r, there is a reachable configuration with k registers each
covered by r − k + 3 processes.

Base case (k = 1): Let p1, p2 and q be any three processes. Applying Lemma 1
with initial configuration C, R = ∅, P1 = P2 = Q = ∅, S1 = {p1}, and S2 = {p2}
proves that the solo execution of GetTS by either p1 or p2 must write to some
register. Thus, all except possibly one process must write to a register during
a solo execution of GetTS starting from C. Consider an execution consisting
of the concatenation of the longest write-free prefixes of n − 1 of these solo
executions. In the resulting configuration, there are n − 1 processes covering
registers. Since there are r registers and n− 1 ≥ (2r)2 > r(r + 1), there is some
register that is covered by at least r + 2 = r − k + 3 processes.

Induction Step: Let 1 ≤ k ≤ r − 1 and suppose the claim is true for k. Let C be
a reachable configuration in which there is a set R of k registers that are each
covered by r−k+3 ≥ 3 processes. Let P1, . . . ,Pr−k+3 be disjoint sets that each
cover R with |Pi| = k for all i.

Divide the n−(r−k+3)k processes not in P1∪· · ·∪Pr−k+3 into two sets, U1 and
U2, each containing at least �(n− (r − k + 3)k)/2� processes. Let S1 = P1 ∪ U1

and S2 = P2 ∪ U2. Then S1 ⊆ P2 ∪ P3 and S2 ⊆ P1 ∪ P3 are disjoint. Since
|P3| = k ≥ 1, there is a process q ∈ P3 − (S1 ∪ S2). For i = 1, 2, let Ci be the
configuration obtained from C by having the processes in Pi do a block write.
By Lemma 1, there exists i ∈ {1, 2} such that every Si-only execution starting
from Ci that contains a complete GetTS writes to a register not in R.

Let m = |Si|. We inductively define a sequence of solo executions α1, α2, . . . ,
αm by each of the processes of Si such that α1 · α2 · · ·αm is a legal execution
from Ci that does not write to any registers outside R and each process covers
a register not in R. Let 1 ≤ j ≤ m. Assume that α1, . . . , αj−1 have already been
defined and satisfy the claim. Consider the Si-only execution δ = α1 ·α2 · · ·αj−1 ·
α from Ci, where α is a solo execution by another process pj ∈ Si that contains
a complete GetTS operation. Then δ must include a write by pj to a register
outside R during α. Let αj be the prefix of α up to, but not including, pj’s first
write outside of R. This has the desired properties.
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Let C′ be the configuration reached from Ci by performing the execution
α1 ·α2 · · ·αm. Then at C′, each process in Si covers one of the r−k registers not in
R and |Si| ≥ k+�(n−(r−k+3)k)/2� ≥ ((2r)2−(r−k+1)k)/2 > (r−k)(r−k+1),
since 2r > 2r−k, r−k+1 > 0. Thus, by the pigeonhole principle, some register
R not in R is covered by at least r − k + 2 processes. Let R′ = R ∪ {R}. Each
register in R is covered by one process from each of P3, . . . ,Pr−k+3 and P3−i.
Thus, each of the k + 1 registers in R′ is covered by r − k + 2 processes in the
configuration C′, proving the claim for k + 1.

By induction, there is a reachable configuration in which all r registers are
covered by three processes each. By Lemma 1, there is an execution in which a
process writes to some other register. This is impossible. ��

The first paragraph of the proof also shows that, if a timestamp algorithm uses
only single-writer registers, then at most one process never writes and, hence, at
least n− 1 single-writer registers are necessary.

4.2 A Tight Space Lower Bound for Static Algorithms Using
Nowhere Dense Universes

We now turn to the special case where timestamps come from a nowhere dense
partial order, and Compare operations can be resolved using that order, without
accessing shared memory. The following theorem provides a tight lower bound,
since it matches a standard timestamp algorithm [17].

Theorem 3. Any static obstruction-free timestamp algorithm that uses a
nowhere dense partially ordered universe of timestamps requires at least n
registers.

Proof. We prove by induction that, for 0 ≤ i ≤ n, there is a reachable configu-
ration Ci in which a set Pi of i processes covers a set Ri of i different registers.
Then, in configuration Cn, there are processes poised at n different registers.
Base Case (i = 0): Let C0 be the initial configuration and let P0 = R0 = ∅.
Inductive Step: Let 1 ≤ i ≤ n. Assume Ci−1,Ri−1 and Pi−1 satisfy the claim.

If i = 1, let p be any process. Otherwise, let p ∈ Pi−1. Consider an execution α
that starts from Ci−1 with a block write by the processes in Pi−1 to the registers
of Ri−1, followed by a solo execution by p in which p completes its pending
operation, if any, and then performs GetTS, returning some timestamp t. Let
q be a process not in Pi−1 ∪ {p}. We show that a solo execution by q, starting
from Ci−1, in which it performs an infinite sequence of GetTS operations must
eventually write to a register not in Ri−1. Let tj be the timestamp returned by
the j’th instance of GetTS by q in this solo execution. Then tj < tj+1 for all
j ≥ 1. Since {j ∈ N | t1 < tj < t} is finite, there exists j ∈ N such that tj < t.

Suppose that q does not write to any register outside Ri−1 during the solo
execution, β, of j instances of GetTS, starting from Ci−1. Then β · α is in-
distinguishable from α to p, so p returns t as the result of its last GetTS in
β · α. Therefore, tj < t. This contradicts the definition of j, so q must write
outside Ri−1. Consider the solo execution of q starting from Ci−1 until it first
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Code for process pi (for 1 ≤ i ≤ n − 1):
GetTS

t ← max(Collect(R)) + 1
R[i] ← t
return (t, 0)

Code for process pn:
GetTS

t ← max(Collect(R))
if t > oldt then c ← 0
c ← c + 1
oldt ← t
return (t, c)

Fig. 1. An eponymous algorithm using n − 1 registers

covers some register R outside Ri−1. Let Ci be the resulting configuration. Then
Pi = Pi−1 ∪ {q} and Ri = Ri−1 ∪ {R} satisfy the claim for i. ��

Jayanti, Tan and Toueg proved that linearizable implementations of perturbable
objects require at least n− 1 registers [16]. Roughly speaking, an object is per-
turbable if some sequence of operations on the object by one process must be
visible to another process that starts executing later. General timestamps do
not have this property. However, the proof technique of [16] can be applied to
the special case considered in Theorem 3 (even though timestamps are not lin-
earizable). The proof technique used in Theorem 3 is similar to theirs, but is
considerably simpler, and gives a slightly stronger lower bound. Although our
improvement to the bound is small, it is important, since it proves a complexity
separation, showing that using nowhere dense sets of timestamps requires more
registers than used by the algorithm of the next section.

5 An Eponymous Algorithm

In this section, we show that there is a simple wait-free eponymous algorithm
that uses only n − 1 single-writer registers, which is optimal. The timestamps
generated will be ordered pairs of non-negative integers, ordered lexicographi-
cally. This shows that the lower bound in Sect. 4.2 is not true for all domains.

The algorithm uses an array R[1..n−1] of single-writer registers, each initially
0. Processes p1, . . . , pn−1 use this array to collaboratively create the first com-
ponent of the timestamps by the simple method [17] discussed in Sect. 1. The
second component of any timestamp they generate is 0. The last process, pn,
reads the registers of the other processes to determine the first component of its
timestamp, and produces the values for the second component of its timestamp
on its own. Process pn does not write into shared memory.

The implementation of GetTS is presented in Figure 1. In the code for pn,
oldt and c are persistent variables, initially 0. Compare((t1, c1), (t2, c2)) returns
true if and only if either t1 = t2 and c1 < c2 or t1 < t2. The value stored in
each component of R does not decrease over time. So, if two non-concurrent
Collects are performed on R, the maximum value seen by the later Collect

will be at least as big as the maximum value seen by the earlier Collect.

Theorem 4. Figure 1 gives a timestamp algorithm using n − 1 registers with
step complexity O(n).
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Proof. Suppose an instance, I1, of GetTS returns (t1, c1) before the invocation of
another instance I2 of GetTS, returns (t2, c2). We show that Compare((t1, c1),
(t2, c2)) returns true. We consider several cases.
Case 1: I1 and I2 are both performed by pn. It follows from the code that pn

generates an increasing sequence of timestamps (in lexicographic order): each
time pn produces a new timestamp, it either increases the first component or
leaves the first component unchanged and increases the second component.
Case 2: pn performs I2 but some process pi = pn performs I1. During I2, the value
pn sees when it reads R[i] is at least t1, so t2 ≥ t1. Furthermore, c2 ≥ 1 > 0 = c1.
Case 3: I2 is not performed by pn. Then t1 was the value of some component of R
some time before the end of I1 (because it was either read by pn while performing
I1, or was written by another process while performing I1). The value of this
component of R is at least t1 when I2 reads it, so t2 ≥ t1 + 1.

In all three cases, a Compare((t1, c1), (t2, c2)) will return true, as required.
Since R has n− 1 components, the step complexity of GetTS is O(n). ��

6 Anonymous Algorithms

We present two new anonymous timestamp algorithms. The first uses n registers
and, as we shall see in Sect. 7, it is space-optimal. However, this algorithm, like
Guerraoui and Ruppert’s algorithm [12], is not bounded wait-free. The second
algorithm uses O(n2) registers, but it is bounded wait-free. It is an open question
whether there is a bounded wait-free algorithm that uses O(n) registers.

6.1 A Wait-Free Algorithm Using n Registers

The first algorithm uses an array A[1..n] of registers, each initially 0. The
timestamps are non-negative integers. Before a process returns a timestamp,
it records it in A so that subsequent GetTS operations will see the value and
return a larger one. We ensure this by having a process choose its timestamp
by reading all timestamps in A and choosing a larger one. The anonymity of
the algorithm presents a challenge, however. In a system with only registers,
two processes running in lockstep, performing the same sequence of steps, have
the same effect as a single process: there is no way to tell these two executions
apart. Even the two processes themselves cannot detect the presence of the other.
Consider an execution where some process p takes no steps. We can construct
another execution where p runs as a clone of any other process q, and p stops
taking steps at any time, covering any register that q wrote to. Thus, at any
time, a clone can overwrite any value written in a register (except the first such
value) with an older value. In the timestamp algorithm, if the value t chosen by
one process and recorded in A is overwritten by values smaller than t, another
process that begins performing GetTS after the value t has been chosen could
again choose t as a timestamp, which would be incorrect.

To avoid this problem, we ensure that the evidence of a timestamp cannot be
entirely overwritten after GetTS returns it. We say that a value v is established
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GetTS

t ← max(Collect(A)) + 1
for i ← 1..M(t)

for j ← 1..n
if A[j] < t then A[j] ← t

end for
end for
return(t)

Fig. 2. A wait-free anonymous timestamp algorithm using n registers

in configuration C if there exists a shared register that, in every configuration
reachable from C, contains a value larger than or equal to v. (Note that, if a
value larger than v is established, then v is also established.) Once a value v
is established, any subsequent GetTS can perform a Collect of the registers
and see that it should return a value greater than v. Thus, our goal is to ensure
that values are established before they are returned by GetTS operations.

The algorithm, shown in Fig. 2, uses several measures to do this. The first is
having processes read a location before writing it and never knowingly overwrite
a value with a smaller value. This implies a value in a register is established
whenever there are no processes covering it, poised to write smaller values. This
measure alone is insufficient: if p writes to a register between q’s read and write
of that register, q may overwrite a larger value with a smaller one. However,
it limits the damage that a process can do. Another measure is for GetTS to
record its output in many locations before terminating. It also writes to each
of those locations repeatedly, using a larger number of repetitions as the value
of the timestamp gets larger. The number of repetitions, M(t), that GetTS

uses to record the timestamp t, is defined recursively by M(1) = 1 and M(t) =
n(n − 1)

∑t−1
i=1 M(i) for t > 1. Solving this recurrence yields M(t) = n(n −

1)(n2−n+1)t−2 for t > 1. The Compare(t1, t2) algorithm simply checks whether
t1 < t2. Correctness follows easily from the following lemma.

Lemma 5. Whenever GetTS returns a value t, the value t is established.

Theorem 6. Figure 2 gives a wait-free anonymous timestamp algorithm using
n registers.

When GetTS returns t, it performs Θ(n2t−1) steps. Thus, the algorithm is wait-
free, but not bounded wait-free. In an execution with k GetTS operations, all
timestamps are at most k, since GetTS can choose timestamp t only if another
(possibly incomplete) GetTS has chosen t − 1 and written it into A. Each of
the n registers must contain enough bits to represent one timestamp.

6.2 A Bounded Wait-Free Algorithm Using O(n2) Registers

The preceding algorithm is impractical because of its time complexity. Here,
we give an algorithm that runs in polynomial time and space. As in the pre-
ceding algorithm, timestamps are non-negative integers and a process chooses
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GetTS

t ← max(max(Collect(A), t) + 1
row ← t mod (2n − 1)
for i ← 1..n

A[row, i] ← t
if max(Collect(A)) ≥ t + n − 1 then return(t)

end for
return(t)

Fig. 3. A bounded wait-free anonymous timestamp algorithm using O(n2) registers

a timestamp that is larger than any value recorded in the array A. However,
now, A[0..2n − 2, 1..n] is a two-dimensional array of registers and the method
for recording a chosen value in A is quite different. Before a process p returns
a timestamp t, it writes t into the entries of one row of the array, chosen as
a function of t. A careful balance must be maintained: p should not write too
many copies of t, because doing so could overwrite information written by other,
more advanced processes, but p must write enough copies to ensure that t is not
expunged by other, less advanced processes.

Process p attempts to write t into all entries of one row, but stops writing if it
sees value t+n−1 or larger anywhere in the array. We show that, if this occurs,
then another process q has already returned a timestamp larger than t. (In that
case, q will have already ensured that no future GetTS will ever return a value
smaller than its own timestamp, so p can safely terminate and return t.) This
avoids the problem of p writing too many copies of t.

To avoid the problem of p writing too few copies of t, the rows are chosen in a
way that ensures that one value cannot be overwritten by another value unless
those two values are sufficiently far apart. This ensures that other processes will
terminate before obliterating all evidence of the largest timestamp written in A.

The algorithm is presented in Fig. 3. In addition to the shared array A, each
process has a persistent local variable t, initialized to 0. Again, Compare(t1, t2)
is performed by simply checking whether t1 < t2.

We remark that, if a value v > 0 is written into A, then v − 1 appeared in A
earlier. The correctness of the algorithm follows easily from the lemma below.

Lemma 7. Whenever GetTS returns a value t, the value t is established.

Proof. We prove the lemma by induction on the number of return events.
Base case: If no return events have occurred, the lemma is vacuously satisfied.
Induction step: Let k > 0. Assume that, at each of the first k − 1 return events,
the returned value is established.

Consider the configuration C just after the kth return event, in which process
p returns t. We show t is established in C by considering two cases, depending
on the termination condition that p satisfies.

Case 1: Suppose p returns t because it saw some value m ≥ t + n− 1 in A.
Some process wrote m before p read it. It follows that each of the values

t, t+1, t+2, . . . , t+n−1, . . . , m appeared in A at some time during the execution
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before C. For 1 ≤ i ≤ n− 1, let pi be the process that first wrote the value t + i
into A. These processes do not include p, since p returns t at configuration C. If
all of these n− 1 processes are distinct, then no process will ever write a value
smaller than t after C, so t is established. Otherwise, by the pigeonhole principle,
pi = pj for some i < j. Process pi must have completed the instance of GetTS

that first wrote t + i before it began the instance of GetTS that first wrote
t+ j. The former instance returns t+ i, so the value t+ i is established when it is
returned, by the induction hypothesis. Thus, in C, the value t + i is established
and, hence, so is the value t.

Case 2: Suppose p terminates after it has completed all n iterations of the loop.
If t < 2n−1, in the first loop iteration of the GetTS that returns t, p writes t

into A[t, 1]. No value smaller than t can ever be written there, so t is established.
Now assume t ≥ 2n − 1. The values t − 1, t − 2, . . . , t − n were written into

A prior to the completion of p’s first Collect. For 0 ≤ i < n, let pi be the
process that first wrote the value t − n + i into A. If pi = p for some i, then p
returned t − n + i before starting the instance of GetTS that returned t, and
the value t − n + i is established, by the induction hypothesis. Otherwise, by
the pigeonhole principle, we must have pi = pj for some 0 ≤ i < j < n. When
process pi first wrote t − n + i, it returns t − n + i, that value is established,
by the induction hypothesis. In either case, some value greater than or equal to
t−n is established by the time that p completes its first Collect. Hence, t−n
is also established.

We show no process writes values smaller than t in row t mod (2n− 1) more
than once after p’s first write of t. Suppose not. Let q be the process that first
does a second such write. Suppose the first such write by q writes the value
t1 < t and the second writes the value t2 < t. Then t1 ≤ t − (2n − 1), since
t1 mod (2n− 1) = t mod (2n− 1) and t1 < t. Similarly, t2 ≤ t− (2n− 1). When
q performs Collect just after it writes t1, it sees a value t− n or larger in A,
since t − n is established. Furthermore, t − n ≥ (t1 + 2n− 1) − n = t1 + n − 1
and the loop terminates. So, when q writes t2, that write is part of a different
instance of GetTS. Again, when q performs Collect in the first line of that
instance of GetTS, it must see a value t−n or larger, since t−n is established.
Thus, t2 ≥ t− n + 1, contradicting the fact that t2 ≤ t− 2n.

Thus, when p returns t, it has written the value t into all n entries of row
t mod (2n−1) of A and at most n−1 of those copies are subsequently overwritten
by smaller values. So, t is established. ��

The worst-case running time of GetTS is O(n3), since each Collect takes
Θ(n2) steps. Timestamps are bounded by the number of GetTS operations
invoked, and each register must be large enough to contain one timestamp.

Theorem 8. Figure 3 gives a wait-free anonymous timestamp algorithm using
O(n2) registers with step complexity O(n3).
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7 A Tight Space Lower Bound for Anonymous
Algorithms

The anonymous timestamp algorithm given in Sect. 6.1 uses n registers. In it, a
process may write its timestamp value to each of the n registers. Intuitively, this
is done to ensure that other processes, which could potentially cover n − 1 of
the registers, cannot overwrite all evidence of the timestamp. Here, we sharpen
this intuition into a proof that at least n registers are required for anonymous
timestamp algorithms. This applies to obstruction-free implementations of time-
stamps (and therefore to wait-free implementations).

Lemma 9. Let n ≥ 2. In any anonymous obstruction-free timestamp implemen-
tation for n processes, a solo execution of k ≤ n instances of GetTS, starting
from an initial configuration, writes to at least k different registers.

Proof. Suppose not. Consider the smallest k such that there is a solo execution of
k ≤ n instances of GetTS by a process p, starting from an initial configuration,
which writes to a set R of fewer than k different registers. Let α be the prefix
of this execution consisting of the first k − 1 instances of GetTS. By definition
of k, it writes to at least k − 1 different registers. Thus, |R| = k − 1 and R is
the set of registers written to during α. Let C be the configuration immediately
after the last write in α (or the initial configuration, if there are no writes in α).

We define another execution β. First, add clones of p to execution α, such
that one clone continues until just before p last writes to each register in R. Let
q be the last of these clones to take a step. (If R is empty, then let q be any
process other than p.) Then p performs one more instance of GetTS after those
it performed in α. Let t be the value returned by this operation. Note that p
only writes to registers in R. Next, let the clones do a block write to R. Let C′

be the configuration immediately after the block write. Finally, q runs solo to
complete its operation, if necessary, and then does one more GetTS.

Each register has the same value in configurations C and C′ and p’s state in
C is the same as q’s state in C′. Thus, q’s steps after C′ will be identical to p’s
steps after C, and q’s last GetTS will also return t. This is a contradiction,
since that operation begins after p’s last GetTS, which also returned t, ended.

Theorem 10. Any n-process anonymous obstruction-free timestamp algorithm
uses at least n registers.
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Abstract. We study adaptive routing algorithms in a round-based
model. Suppose we are given a network equipped with load-dependent
latency functions on the edges and a set of commodities each of which is
defined by a collection of paths (represented by a DAG) and a flow rate.
Each commodity is controlled by an agent which aims at balancing its
traffic among its paths such that all used paths have the same latency.
Such an allocation is called a Wardrop equilibrium.

In recent work, it was shown that an infinite population of users each
of which carries an infinitesimal amount of traffic can attain approximate
equilibria in a distributed and concurrent fashion quickly. Interestingly,
the convergence time is independent of the underlying graph and depends
only mildly on the latency functions. Unfortunately, a direct simulation
of this process requires to maintain an exponential number of variables,
one for each path.

The focus of this work lies on the distributed and efficient compu-
tation of the adaptation rules by a finite number of agents. In order
to guarantee a polynomial running time, every agent computes a ran-
domised path decomposition in every communication round. Based on
this decomposition, agents remove flow from paths with high latency
and reassign it proportionally to all paths. This way, our algorithm can
handle exponentially large path collections in polynomial time.

1 Introduction

We consider routing problems in the Wardrop model. We are given a network
equipped with non-decreasing latency functions mapping flow on the edges to
latency. For each of several commodities a fixed flow rate has to be routed from a
source to a sink via a collection of paths. A flow vector is said to be at Wardrop
equilibrium if for all commodities the latencies of all used paths are minimal
with respect to this commodity. Whereas such equilibria can be formulated as
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convex programs (under some mild assumptions on the latency functions) and
can thus be solved by centralised algorithms in polynomial time, in this work,
we study distributed algorithms to compute Wardrop equilibria.

A common interpretation of the Wardrop model is that flow is controlled by an
infinite number of selfish agents each of which carries an infinitesimal amount of
flow. In [12] it was shown that in this setting such a population approaches War-
drop equilibria quickly by following a simple round-based load-adaptive rerouting
policy. This policy, called the replication policy, is executed by all agents in par-
allel and proceeds in the following way. Each agent samples another agent at
random and, if this improves the latency, migrates to this agent’s path with a
probability that increases with the latency gain. In this setting, a natural goal
is to reach approximate equilibria in the following bicriterial sense. We say that
a flow is at δ-ε-equilibrium if at most an ε-fraction of the flow utilises paths
whose latency exceeds the average latency of their commodity by more than a
δ-fraction of the overall average latency. Remarkably, the number of rounds to
reach an approximate equilibrium in this sense is independent of the size and
the topology of the underlying graph and chiefly depends on the approximation
parameters and the elasticity of the latency functions.

In this work, we consider a different setting, in which the flow is controlled
by a finite number of agents only, each of which is responsible for the entire
flow of one commodity. Each agent has a set of admissible paths among which
it may distribute its flow. To be able to represent exponentially large collections
of paths we assume that these are represented by an arbitrary DAG connecting
the source and the sink of the agent. Each agent aims at balancing its own flow
such that the jointly computed allocation will be at Wardrop equilibrium. Let us
remark that agents do not aim at minimising the overall latency of their flow, but
seek to minimise the maximum latency of their commodity. Unfortunately, the
replication policy does not yield a feasible distributed algorithm in this setting
directly. Simulating an infinite number of agents each of which chooses one out
of the given collection of paths would require maintaining one variable for each
path and computing a quadratic number of migration rates between pairs of
paths. As the number of paths may be exponential in the size of the network
this approach is rendered computationally infeasible.

We present two approaches to circumvent this problem. Our first approach
exploits the fact that, for a simplified variant of the replication policy, the up-
dates of the edge flows can be expressed in a way that merely uses the edge flow
variables themselves (rather than the path flow variables). Thus, the updates
can be computed in polynomial time. Unfortunately, the convergence time of
this variant is only pseudopolynomial in the latency functions since it depends
on the maximum slope of the latency functions.

Since the original replication policy cannot be expressed in this compact way,
we consider a second approach to achieve convergence in a polynomial number
of communication rounds. Consider a collection of paths for one of the com-
modities. In a first step, our algorithm samples a polynomial number of paths
with probability proportional to their flow. We thus obtain a randomised path
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decomposition. We consider paths in this decomposition with above-average la-
tency. From such paths, a fraction of the flow is removed and reallocated propor-
tionally among all admissible paths. If this is done carefully, oscillations can be
avoided, and a potential function argument ensures convergence towards War-
drop equilibria. Thus, we achieve essentially the same convergence rates as in
the setting with an infinite number of agents and keep the computation time of
one communication round polynomial. Altogether, we can compute approximate
Wardrop equilibria in polynomial time.

1.1 Related Work

The game theoretic traffic model considered in this paper was introduced by
Wardrop [19]. Many aspects of Wardrop equilibria have been studied, the most
prominent being the degradation of performance due to the selfish behaviour,
called the price of anarchy [18] as well as the inverse, the increase of the maximum
latency incurred to an agent due to optimal routing [17]. It has also been shown
that the price of anarchy can be decreased by imposing taxes on the edges [9,14].
Cominetti etal. consider the price of anarchy in a model with finitely many agents
aiming at minimising their average latency [10].

For solving the corresponding classical goal of finding a minimum cost multi-
commodity flow, several algorithms are known. For an overview see, e. g., [1]
and [7]. An efficient distributed steepest-descent algorithm for solving multi-
commodity flow problems with linear latency functions has been presented re-
cently in [3]. In [2], a stateless algorithm for this problem is presented.

It is also known that the problems of finding an optimal allocation and find-
ing a Wardrop equilibrium are essentially equivalent. Under mild conditions on
the latency functions, a flow at Wardrop equilibrium with respect to so-called
marginal-cost latency functions is optimal with respect to the original latency
functions, see e. g. [5] and [18].

Several authors (e. g. [4,8]) consider dynamic routing from an online-learning
perspective. Awerbuch and Kleinberg [4] present an algorithm for the online
shortest path problem in an end-to-end feedback model. Blum etal. [8] show
that approximate Wardrop equilibria defined in a similar way can be attained
if the agents follow no-regret algorithms. Their bounds on the convergence time
depend polynomially on the regret bounds and network size and depend pseu-
dopolynomially on the maximum slope of the latency functions.

The problem of load-balancing has also been studied in various discrete set-
tings for networks of parallel links. For the case of identical links, both sequen-
tial [15] and concurrent distributed algorithms were considered [6]. Even-Dar et
al. [11] consider distributed algorithms for load balancing on links with speeds
using sampling rules which depend pseudopolynomially on the speed of the
links.

The rerouting policy upon which our algorithms are based was introduced
in [13] and [12]. It was shown that an infinite number of agents executing this
policy can attain a Wardrop equilibrium quickly in a concurrent setting.
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2 Model and Problem Statement

2.1 Wardrop’s Traffic Model

We consider Wardrop’s traffic model originally introduced in [19]. We are given
a graph G = (V, E) with non-decreasing differentiable latency functions �e :
R≥0 → R≥0. Furthermore, we are given a set of commodities [k] = {1, . . . , k}
specified by source-sink-pairs (si, ti) ∈ V × V , a directed acyclic subgraph Gi

of G connecting si and ti and flow demands ri ∈ R≥0. The total demand is
r =
∑

i∈[k] ri, and we normalise r = 1 for simplicity. Let Pi denote the admissible
paths of commodity i, i. e., all paths connecting si and ti in Gi, and let P =⋃

i∈[k] Pi. We may assume that the sets Pi are disjoint and define iP to be the
unique commodity to which path P belongs.

A non-negative path flow vector (fP )P∈P is feasible if it satisfies the flow
demands

∑
P∈Pi

fP = ri for all i ∈ [k]. We denote the set of all feasible
flow vectors by F . A path flow vector (fP )P∈P induces an edge flow vector
f = (fe,i)e∈E,i∈[k] with fe,i =

∑
P∈Pi:e∈P fP . The total flow on edge e is

fe =
∑

i∈[k] fe,i. Furthermore, for v ∈ V and i ∈ [k], the total flow of com-
modity i through node v is fv,i =

∑
(u,v)∈E f(u,v),i =

∑
(v,w)∈E f(v,w),i for

v /∈ {si, ti} and fsi,i = fti,i = ri. The latency of an edge e ∈ E is given
by �e(fe) and the latency of a path P is given by the sum of the edge laten-
cies �P (f) =

∑
e∈P �e(fe). Finally, the weighted average latency of commodity

i ∈ [k] is given by Li(f) =
∑

e∈E �e(f) · (fe,i/ri) and the overall average latency
is L(f) =

∑
e∈E �e(f) · fe/r. We drop the argument f of �(·) and L(·) whenever

it is clear from the context.
A flow vector in this model is considered stable when no fraction of the flow

can improve its sustained latency by moving unilaterally to another path. This
implies that all used paths must have the same minimal latency. Unused paths
may have larger latency.

Definition 1 (Wardrop equilibrium). A feasible flow vector f is at Wardrop
equilibrium if for every commodity i ∈ [k] and paths P1, P2 ∈ Pi with fP1 > 0 it
holds that �P1(f) ≤ �P2(f).

It is well-known that Wardrop equilibria are exactly those allocations that min-
imise the following potential function introduced in [5]:

Φ(f) =
∑
e∈E

∫ fe

0

�e(u) du .

This potential precisely absorbs progress: If an infinitesimal amount of flow dx is
shifted from path �P to �Q, thus improving its latency by (�P −�Q), the potential
decreases by (�P−�Q) dx. We will make use of this fact frequently. The minimum
potential is denoted by Φ∗ = minf∈F Φ(f). Every flow vector f with Φ(f) = Φ∗

is then at Wardrop equilibrium. We assume that Φ∗ is positive. The case that
Φ∗ = 0 can be treated by adding virtual offsets to the latency functions. For a
detailed treatment see [12].
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Let us remark, that the problems of computing a Wardrop equilibrium and
computing a flow minimising L are equivalent. It is sufficient to replace the
latency functions �e by so-called marginal-cost latency functions he(x) = (x ·
�e(x))′ = �e(x) + x · �′e(x). If for all e ∈ E, x · �e(x) is convex, then Wardrop
equilibria with respect to (he)e∈E minimise L [5,18].

The algorithms presented in this paper will compute approximate equilibria
in the following bicriterial sense.

Definition 2 (δ-ε-equilibrium). Consider a flow vector f and let Pδ
i = {P ∈

Pi | �P (f) > Li(f) + δ L(f)} denote the set of δ-expensive paths. A flow vector
is at a δ-ε-equilibrium if

∑
i∈[k]

∑
P∈Pδ

i
fP ≤ ε.

This definition of approximate Wardrop equilibria requires that almost all flow
utilises paths with a latency that is close to the average of their own commodity.
A similar definition of approximate Nash equilibria is used, e. g., in [8].

2.2 Elasticity of Latency Functions

Our algorithms take the steepness of the latency functions into account when
deciding how much flow to shift from one path to another. In [12] it was shown
that the critical parameter in this setting is not the slope but the elasticity.

Definition 3. For any positive differentiable function � : R≥0 → R≥0, the elas-
ticity of � at x is d(x) = x·�′(x)

�(x) .

In other words, the elasticity of a function is bounded from above by d if the
(absolute) slope at any point is at most by a factor of d larger than the slope
of the line connecting the origin and the point (x, �(x)). Note that a polynomial
with positive coefficients and degree d has elasticity at most d, hence, elasticity
can be considered as a generalisation of the degree of such a polynomial. The
function a · exp(λx), x ∈ [0, 1] has maximum elasticity λ.

2.3 Implicit Path Decomposition

Wardrop equilibria are defined with respect to path flows. Our algorithms, how-
ever, will make use only of the edge flow vectors, which do not determine a vector
of path flows uniquely. However, in a DAG, an edge flow vector (fe)e∈E induces
a natural vector of path flows by starting with the flow injected at the source,
and splitting the flow at each node v such that the set of paths containing the
outgoing edge e receives a flow proportional to fe. Since the decomposition for
one commodity i ∈ [k] is independent of the flow of other commodities, we can
omit the index i for simplicity.

Definition 4. Consider any edge flow vector (fe)e∈E (for some commodity i).
For any path P = (v1, . . . , vl) let

f̃P = fv1 ·
l−1∏
j=1

f(vj ,vj+1)

fvj

.
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It is easily verified by induction on the distance from the source that this is
actually a valid flow decomposition of (fe)e∈E , i. e., fe =

∑
Pe f̃P .

2.4 Distributed Computation Model

Our algorithms operate in the following setting. Agents operate in a synchronous,
round-based fashion. We assume that there is a billboard via which the agents
are able to share information. On this billboard, each agent can observe the edge
flows of its own commodity and the latency values of the paths it uses. Agents
know an upper bound d on the elasticity of the latency functions, but they do not
know the latency functions themselves. However, it is easily possible to extend
our algorithm such that it does not rely on the knowledge of a bound on the
elasticity.

In every round an agent can update the edge flows of its own commodity on
the billboard. These updates become visible to all agents only in the next round.
All agents execute the same algorithm in parallel. Therefore, in the descriptions
of our algorithms, we may omit the index for the commodity, i. e., fe refers to
the flow fe,i of commodity i on edge e.

3 A Pseudopolynomial Algorithm

Our first approach works by simulating the replication policy presented in [12].
We will see that this can be done in polynomial time although this policy operates
on an exponential number of paths.

3.1 The Replication Policy

Let us start by introducing the replication policy formally. We consider an infinite
population of agents each of which controls an infinitesimal amount of flow which
it assigns to a path. In each round agents may migrate their flow from the current
path to another one. Consider an agent in commodity i ∈ [k] currently using
path P ∈ Pi. Whenever activated, it performs two steps.

1. Sampling. Sample another path Q where the probability to sample any path
Q′ equals fQ′/ri.

2. Migration. There are two cases:
(a) �Q ≥ �P . In this case, the agent stays with its old path.
(b) �Q < �P . The agent migrates to the sampled path Q with probability

λ · (�P − �Q) for some constant λ > 0 to be determined later.

Altogether, we can characterise our policy by specifying the rate of agents mi-
grating from one path P ∈ Pi to another path Q ∈ Pi with �Q(f) < �P (f) within
one round. This rate can be obtained by multiplying the probabilities speciefied
in steps (1) and (2) with the volume of agents using path P . For this rate we
obtain

ρPQ = λ · fP ·
fQ

ri
· (�P − �Q)
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if �Q < �P and ρPQ = 0 otherwise. Thus, we can compute a sequence of flow
vectors (fP (t))P∈P generated by this policy by summing over all paths Q:

fP (t + 1) = fP (t) +
∑

Q∈Pi

ρQP −
∑

Q∈Pi

ρPQ

= fP (t) + λ fP

∑
Q∈Pi

fQ

ri
(�Q − �P )

= fP (t) + λ fP (Li − �P ) . (1)

3.2 Convergence Towards Equilibria

For the time being assume that agents are migrating in a continuous fashion as
described by the above rules. Then, an infinitesimal amount of flow dx migrating
from a path P to another path Q improving its latency from �P to �Q causes
the potential Φ to reduce by (�P − �Q) dx. Since we only accept migrations that
improve the latency, this implies that the potential always decreases which in
turn implies convergence towards a Wardrop equilibrium by Lyapunov’s direct
method if all paths are used in the initial flow. However, in our concurrent round-
based model, flow is not shifted continuously, but in finite chunks. Thus, if these
chunks are chosen too large, overshooting and oscillation effects may occur. This
issue can be resolved by choosing the migration rate in step 2b of the replication
policy carefully. In [13] it was shown that if we choose λ = Θ(1/�′max) small
enough with

�′max = max
P∈P

max
f∈F

∑
e∈P

�′e(f) ,

convergence towards Wardrop equilibria can be guaranteed. We may assume that
�′max > 0 since otherwise all latency functions are constant and our problem can
be solved trivially by assigning the entire flow to the path with lowest latency.

Theorem 1 ([13,12]). If λ = Θ(1/�′max) sufficiently small, the replication pol-
icy given by Equation (1) with initial flow f(0) = f0 converges towards a War-
drop equilibrium if f0

P > 0 for all P ∈ P. Furthermore, the number of rounds in
which the flow is not at a δ-ε-equilibrium is

O
(

1
ε2 δ2

· �′max

�min
· ln
(

Φ(f0)
Φ∗

))
.

One may observe that the ratio between maximum slope and minimum latency
used in this theorem depends on the scale by which we measure flow. This scale,
however, is fixed since we have normalised the total flow demand to be r = 1.

3.3 Simulating the Replication Policy

By a naive application of Theorem 1 we can compute a sequence of flow vectors
(f(t))t≥0 according to Equation (1) to obtain approximate Wardrop equilibria.
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However, this approach is rendered computationally intractable by the fact that
there may be an exponential number of variables fP .

In the following, we describe an algorithm that computes the iterative change
rates of the edge flows according to the implicit flow decomposition f̃ described
in the preceding section. To that end, we show that the change rates of the edge
flows fe can be expressed solely in terms of edge flows and edge latencies (i. e.,
without explicit reference to the fP variables). It suffices to know the weighted
average latencies of all paths containing e defined as

Le =
∑
Pe

fP

fe
· �P

Recall that we have fixed a commodity here, so we may drop the index i.

Lemma 1. Consider an edge flow vector (fe(t))e∈E and its path decomposition
f̃(t), and let f̃(t+1) denote the flow generated by the replication policy in Equa-
tion (1) from f̃(t). Finally, let fe(t + 1) =

∑
Pe f̃P (t + 1). Then,

fe(t + 1) = fe(t) + λ · fe · (L− Le) .

Proof. Let f = f(t) and f ′ = f(t + 1). By definition of fe,

f ′
e − fe =

∑
Pe

f ′
P − fP = λ ·

∑
Pe

fP · (L− �P ) = λ · fe ·
(

L−
∑

Pe fP �P

fe

)
,

where the last term equals Le. ��

In order to obtain the value of Le, we implicitly compute the path decomposition
f̃ , i. e., for every edge e′ we compute the flow caused by paths containing e on
edge e′. This is done by Algorithm SimulatedReplication (Algorithm 1) in
time O (m) for every edge e ∈ E. Since there are m edges, each iteration can be
performed in time O

(
m2
)
.

Algorithm 1. SimulatedReplication() (executed by all commodities in par-
allel; (fe)e∈E denotes the edge flows vector of commodity i)
1: for all edges e ∈ E do
2: sort all edges (v, w) in the subgraph reachable from e topologically

3: compute total flow of all paths containing e and (v, w) f̃
(v,w)
e =

∑
(u,v)∈E f̃

(u,v)
e ·

f(v,w)
fv

4: reverse all edges and repeat steps 2 and 3 for edges between e and s

5: compute Le =
∑

e′
fe′

e
fe

�e′

6: f ′
e ← fe + λ · fe · (L − Le) with λ = 1/�′max

7: end for
8: replace (fe)e∈E on the billboard with (f ′

e)e∈E
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Corollary 1. The sequence of flow vectors computed by Algorithm Simulat-

edReplication converges towards the set of Wardrop equilibria. Furthermore,
the number of rounds in which the flow is not at a δ-ε-equilibrium with respect
to f̃ , is bounded by

O
(

1
ε2 δ2

· �′max

�min
· ln
(

Φ(f0)
Φ∗

)
,

)
where f0 is the initial flow vector. Each iteration takes time O

(
m2
)
.

Proof. Lemma 1 implies that the edge flow vector computed by the algorithm
equals the edge flow vector obtained by applying the replication policy given by
Equation (1) to the path decomposition (f̃)P∈P . Combining this with the upper
bounds on the convergence time given in [12], the claim follows. ��

4 The Polynomial Time Algorithm

The migration probability specified for step 2b of the replication policy can get
very small since the latency difference �P −�Q may become small in relation to λ
if λ is chosen constant. This causes the algorithm to obtain only a pseudopolyno-
mial convergence time depending on the maximum slope of the latency functions.
In this section we present an approach that gets rid of this dependence.

To this end, we choose the amount of flow removed from a path proportional
to its relative deviation (�P −LiP )/�P from the average and the reciprocal of the
elasticity d to obtain a polynomial number of communication rounds. Whereas in
the preceding section the amount of flow removed or added to a path within one
round could be expressed in a nice closed form as λ ·fP · (L− �P ) (Equation (1)),
this is now no longer possible.

To compute flow updates in polynomial time we use a randomised flow de-
composition. First we sample a path at random according to the implicit path
decomposition f̃ , i. e., the probability to sample path P is f̃P /riP . Since the
length of a path is bounded by n this is possible in time n logn by representing
adjacent nodes and their flows in a binary tree. Now, the path is assigned a
certain flow volume fP . For the time being, assume that we assign the entire
bottleneck flow to P . Then, if P has latency above LiP , we remove a portion of

x = Θ

(
fP ·

�P − LiP

d �P

)
of its flow and distribute it proportionally among all admissible paths, i. e., after
removing a flow of x from path P , the flow on every edge e ∈ E is increased by
(fe,i/ri) · x.

Why does this process decrease the potential quickly? As long as we are not
at a δ-ε-equilibrium, the probability of sampling a δ-expensive path is at least ε.
In this case, the latency gain and thus the potential gain per flow unit will be
large and proportional to f̃P . If we sample only a single path, we may in fact
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assign the entire bottleneck flow to it. We can lower bound the probability that
this bottleneck flow is not too small (Lemma 2). To increase the potential gain
we repeat this process several times. Doing this, we can no longer assign the
entire bottleneck to a path since it may happen that an edge is sampled several
times. Hence, we assign at most a Θ(1/ log m) fraction of the bottleneck while
at the same time sampling T = m logm paths rather than only a single one. It
thus becomes unlikely that an edge becomes empty along the way if its flow is
O (1/m). In order to achieve the same result for edges with larger flow, we limit
the amount of flow consumed in one step to O (1/(m log m)). More precisely, let

Δe = min
{

1
7 m log m

,
fe

7 log m

}
.

We start with an empty decomposition. In a round in which path P is sampled
we increase fP by Δe∗ where e∗ is a bottleneck edge in P . We say that an edge
is alive if the overall flow assigned to paths containing e is at most fe−Δe (i. e.
it can be sampled one more time without having our decomposition exceeding
the flow of e). Our algorithm terminates as soon as there are any edges that
are not alive. The final algorithm RandomisedBalancing(d) is described in
Algorithm 2.

Under the assumption that the latency functions are constant, we can thus
show that the potential decreases in every round by a factor that only depends
on ε and δ, and the elasticity d (Lemma 5). We furthermore show that due to
our careful migration rate the potential gain with respect to the true latency
functions is still at least half of the potential gain with respect to constant
latencies (Lemma 4). Finally, we show that the expected potential gain implies
a bound on the time to reach a minimum potential (Lemma 6). Altogether, this
yields the following upper bound for our algorithm.

Theorem 2. The sequence of flow vectors computed by Algorithm Random-

isedBalancing converges towards the set of Wardrop equilibria. Furthermore,
the expected number of rounds in which the flow is not at a δ-ε-equilibrium with
respect to f̃ , is bounded by

O
(

d

ε3 δ2
log
(

Φ(f0)
Φ∗

))
,

if d is an upper bound on the elasticity of the latency functions. The computation
time of each round is bounded by O (n logn ·m log m).

We present the proof after establishing the necessary lemmas.
Note that our algorithm can be easily modified for the case that the elasticity

of the latency functions is not known to the algorithm in advance.

4.1 Randomised Decomposition

Our algorithm generates a randomised flow decomposition using a sampling pro-
cess based on f̃ . In this section, we lower bound the probability that the bottle-
neck flows of the sampled paths are not too small. Furthermore, we show that
the flow removed from every edge is at most fe with high probability.
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Algorithm 2. RandomisedBalancing(d) (executed by all commodities in
parallel; (fe)e∈E denotes the edge flows vector of commodity i)
1: for T = m log m times do

2: sample a path P where P [P ] = f̃P
ri

3: let e∗ denote the bottleneck edge of P ; let fP = Δe∗

4: if �P > Li then
5: reduce the flow on all edges e ∈ P by ΔfP = fP · �P −Li

4 d �P

6: if for any e ∈ P , e is not alive then
7: abort loop and continue in line 11
8: end if
9: end if

10: end for
11: increase the flow on all edges e ∈ E proportionally by fe

ri
·
∑

P∈Pi
ΔfP

Lemma 2. Consider a flow vector f of volume 1 and a set of paths Pε with∑
P∈Pε

f̃P = ε. Then, PP∼f̃

[
P ∈ Pε ∧mine∈P fe ≥ ε

2 m

]
≥ ε

2 .

Proof. We consider a scaled flow vector which supports only paths in Pε.

f ′
P =

{
f̃P

ε P ∈ Pε

0 P /∈ Pε .

Observe that the total volume of f ′ is 1 again, hence
PP∼f ′ [P = Q] = PP∼f̃ [P = Q | P ∈ Pε]. Now,

PP∼f̃

[
P ∈Pε ∧min

e∈P
fe ≥

ε

2 m

]
=PP∼f̃ [P ∈ Pε] · PP∼f̃

[
min
e∈P

f ′
e ≥

1
2 m

| P ∈Pε

]
=ε · PP∼f ′

[
min
e∈P

f ′
e ≥

1
2 m

]
≥ ε

2
, (2)

where the first equality uses the definition of f ′ and the second one uses the
above observation.

Now, let d(x, y) denote the number of edges of a shortest path connecting
x and y. We can show that P [e = (v, w) ∈ P ] = fe by induction on d(s, v).
This holds for d(s, v) = 0 by definition of f̃ . Now, assume that the statement
holds for all edges (u, v) with d(s, u) = k and consider an edge e = (v, w) with
d(s, v) = k + 1.

P [e ∈ P ] = P [v ∈ P ] · P [e ∈ P | v ∈ P ] =
∑
(u,v)

P [(u, v) ∈ P ] · fe

fv

=
∑
(u,v)

f(u,v) ·
fe

fv
= fe .

With E′ = {e ∈ E | fe ≤ 1/(2 m)},

P [P ( e : e ∈ E′] ≤
∑
e∈E′

P [e ∈ P ] ≤
∑
e∈E′

fe ≤
|E′|
2 m

≤ 1
2

.

Substituting this into Equation (2) yields our desired bound. ��
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We now consider a sequence of T = m log m rounds. Observe that Δe is an
upper bound on the flow removed from a path containing e by our algorithm,
since for the bottleneck edge e∗, Δe∗ = mine∈P {Δe}. The flow on e may decrease
to below zero only if it is contained in the sampled path at least fe/Δe times.
In the following we show that this is unlikely.

Lemma 3. With probability 1−o(1), after a sequence of T = m log m iterations,
all edges are still alive.

Proof. In the proof of Lemma 2 we have seen that the probability to hit edge e
in one round equals fe. Let the random variable X denote the number of hits in
T rounds. We have E [X ] = T fe. An edge is alive if X ≤ fe/Δe − 1. There are
two cases:

1. fe < 1
m implying Δe = fe/(7 log m). Then,

P

[
X >

fe

Δe
− 1
]

= P

[
X > E [X ] ·

(
7

fe m
− 1

T fe

)]
≤ P

[
X > E [X ] ·

(
6

fe m

)]
≤ 2−E[X]· 6

fe m = m−6 .

The first inequality is the definition of T and Δe and uses our assumption
that fe · m < 1, and the second inequality is Chernoff’s inequality (which
asserts that P [X ≥ r · E [X ]] ≤ 2−r·E[X] for r ≥ 6 for a random variable X
that is the sum of 0-1 random variables, see [16]).

2. fe ≥ 1
m implying Δe = 1/(7 T ). This case can be treated similarly.

In both cases, the probability that edge e is not alive at the end of a sequence of
T iterations is bounded by m−6. Using a union bound, the probability that at
least one edge does not survive is at most m−5 and consequently the probability
that all edges survive the sequence is at least 1−m−5. ��

4.2 Lower Bounding the Potential Gain

We use a potential function argument to prove convergence. In order to show
that our algorithm avoids oscillations, we consider the potential gain achieved
within one round. We show that this potential gain is at least half of the potential
gain that would occur if latencies values were fixed at the beginning of a round.
A second lemma shows that, in expectation, the potential decreases by a factor
in every round, as long as we are not yet at an approximate equilibrium.

Lemma 4. Let d denote an upper bound on the elasticity of the latency func-
tions. For a flow vector f consider a flow vector f ′ generated by Algorithm Ran-

domisedBalancing(d) (Algorithm 2) with positive probability. For any P ∈ P
let ΔfP denote the amount of flow removed from path P . Then, Φ(f)−Φ(f ′) ≥
1
2 ·
∑

P∈P(�P (f)− LiP ) ·ΔfP .

Due to space limitations, we defer the proof to the full version.
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Lemma 5. Assume that f is a flow that is not at δ-ε-equilibrium and let the
random variable f ′ denote a flow generated by our algorithm. Then, E [Φ(f ′)] ≤
Φ(f) ·

(
1−Ω

(
ε3δ2

d

))
.

Proof. For the time being, assume that the latency functions are constant. By
Markov’s inequality, the total volume of flow in commodities with Li > 2 ·L/ε is
at most ε/2. We consider only commodities with Li ≤ 2 · L/ε. In total, at least
a flow volume of ε utilises δ-expensive paths and there is still at least a volume
of ε/2 left in the commodities we consider. Consider such a commodity i ∈ [k]
and denote the flow volume using δ-expensive paths in this commodity by εi.

Consider any iteration satisfying the precondition that all edges are alive. Let
P denote the path sampled by the algorithm. By Lemma 2, the probability that
�P ≥ Li + δ L and the minimum edge flow along P is at least εi/(2 m) is at least
εi/(2 ri) (we have to scale the flow of this commodity by a factor 1/ri to make
it a unit flow). The amount of flow removed from this path by our algorithm is

εi

2 m
· 1
7 log m

· �P − Li

4 d �P
≥ εi ε δ

113 dm log m

where we have used that �P ≥ Li + δ L and Li ≤ 2 L/ε. The latency gain of this
path is then at least δ L and since this event happens with probability εi/(2 ri)
the expected virtual potential gain of such a path is then at least

ε2i ε δ2

226 d ri m log m
L .

By Lemma 3 the probability that in this iteration all edges are alive is 1− o(1)
and the expected potential gain computed above is independent of this event.
Summing up over all T = m log m iterations and all commodities, the total
expected virtual potential gain of one round is at least

(1− o(1)) ·
∑
i∈[k]

ε2i ε δ2

226 d ri
L ≥ (1 − o(1)) · ε3δ2

226 d
L .

For the last inequality we have used the Cauchy-Schwarz Inequality which asserts
that for two vectors (ai) and (bi),

∑
i a2

i ≥ (
∑

i ai bi)2/
∑

b2
i . Using ai = εi/

√
ri

and bi =
√

ri yields the result. This implies the claim since L is an upper bound
on Φ and Lemma 4 ensures that the true potential gain with respect to the
real latency functions is at least half of the potential gain with respect to the
constant latency functions. ��

4.3 From Expected Potential Gain to Expected Stopping Time

The preceding section has shown that in every round the potential decreases by
a factor in expectation. Intuitively, this implies an expected running time that
is logarithmic in this factor and the initial values. This intuition is made precise
by the following lemma.
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Lemma 6. Let X0, X1, . . . denote a sequence of non-negative random variables
and assume that for all i ≥ 0 E [Xi | Xi−1 = xi−1] ≤ xi−1 · α for some constant
α ∈ (0, 1). Furthermore, fix some constant x∗ ∈ (0, x0] and let τ be the random
variable that describes the smallest t such that Xt ≤ x∗. Then, E [τ | X0 = x0] ≤

2
log(1/α) · log

(
x0
x∗
)
.

We defer the proof to the full version. Finally, we can proof our main result.

Proof (Proof of Theorem 2). Let f0, f1, . . . denote a sequence of flow vectors
generated by Algorithm 2. Lemma 5 implies that

E [Φ(ft+1) | Φ(ft) = φ] ≤ φ ·
(

1−Ω

(
ε3 δ2

d

))
.

Thus, the sequence (Φ(ft))t≥0 satisfies the conditions of Lemma 6 and the
expected time until Φ(ft) reaches its minimum Φ∗ implying that ft is a δ-ε-
equilibrium is

2

log
((

1−Ω
(

ε3 δ2

d

))−1
) log

(
Φ(f0)
Φ∗

)
= O

(
d

ε3 δ2
log
(

Φ(f0)
Φ∗

))
,

our desired bound.
One path can be sampled in time O (n log n), the bottleneck edge can be found

in time O (n), and the flow update can be computed in time O (n). Altogether,
at most T = m log m iterations have to be computed. Finally, the removed flow
can be reinserted in time O (n). ��

5 Open Problems

Our algorithm works by redistributing flow of overloaded paths. To identify such
paths we face the subproblem of finding a flow decomposition that assigns much
flow to paths with high latency. In our algorithm we have used a randomised path
decomposition to achieve this goal. It is not obvious whether this randomisation
can be avoided, and, in fact, naive deterministic approaches like longest path
first decompositions fail.

In the long run, our algorithm converges towards the set of Wardrop equi-
libria. A weakness of our notion of approximate equilibria, however, is the fact
that the average latency may be arbitrarily far away from the minimum latency.
As an alternative, one could also consider deviations from the minimum latency
rather than from the average latency. It is unclear whether convergence towards
approximate equilibria in this sense can be guaranteed in polynomial time. Fur-
thermore, it would be desirable to design specialised (not necessarily distributed)
algorithms to compute (exact) Wardrop equilibria that improve upon the stan-
dard solution via convex programming.
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12. Fischer, S., Räcke, H., Vöcking, B.: Fast convergence to Wardrop equilibria by
adaptive sampling methods. In: Proc. 38th Symposium on Theory of Computing
(STOC), pp. 653–662. ACM, New York (2006)
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Abstract. The paper considers broadcasting protocols in radio net-
works with known topology that are efficient in both time and energy.
The radio network is modelled as an undirected graph G = (V, E)
where |V | = n. It is assumed that during execution of the communi-
cation task every node in V is allowed to transmit at most once. Under
this assumption it is shown that any radio broadcast protocol requires
D + Ω(

√
n − D) transmission rounds, where D is the diameter of G.

This lower bound is complemented with an efficient construction of a de-
terministic protocol that accomplishes broadcasting in D + O(

√
n log n)

rounds. Moreover, if we allow each node to transmit at most k times,
the lower bound D + Ω((n − D)1/(2k)) on the number of transmission
rounds holds. We also provide a randomised protocol that accomplishes
broadcasting in D + O(kn1/(k−2) log2 n) rounds. The paper concludes
with a discussion of several other strategies for energy efficient radio
broadcasting and a number of open problems in the area.

1 Introduction

1.1 Background

This paper concerns the study of simultaneously energy and time efficient com-
munication protocols under an abstract model of radio networks, where uniform
transmitting and receiving devices form a set of nodes V in an undirected graph
G = (V, E) of size |V | = n. Two nodes v, w ∈ V are neighbours in G, i.e., there
is an edge (v, w) in E, whenever v and w can communicate (i.e., send and receive
messages) directly with each other. Nodes that are not connected by edges must
communicate via intermediate nodes. We consider synchronous networks, where
the processing and transmission speeds of nodes are uniform across the entire
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network. Communication is performed in rounds. During any round, each node
can be either in a transmitting mode or in a receiving mode, meaning that a
node cannot both transmit and receive messages during the same round. More-
over, if a node v transmits in a given round, the message is delivered to all its
neighbours. However, a node w in a receiving mode in a given round will receive
the message from its transmitting neighbour v if and only if v is the only trans-
mitting neighbour of w in this round. The efficiency of communication protocols
in synchronous networks is often expressed as the time (the number of rounds)
required to accomplish the task. In this paper, apart from the time complexity
we are also interested in another important efficiency measure, namely the en-
ergy efficiency. We consider strategies for efficient radio communication in the
context of the broadcasting task.

In the broadcasting problem, a distinguished node s in the network, referred
to as the source node, has a message that has to be distributed to all other
nodes in the network. Energy efficient radio broadcasting was mostly studied
in the context of geometric networks, where the network nodes are embedded
into 2-dimensional plane. In particular, the goal in the energy efficient broadcast
tree problem is to find a transmission graph that minimizes the total power con-
sumption and contains a directed spanning tree rooted at the source node s. The
problem is known to be NP-hard [8] and if the distance function is arbitrary, it
has no logarithmic factor approximation unless P = NP [16]. For the Euclidean
distance model, Wan et al. [22] and with improved reasoning Klasing et al. [17]
argued that the algorithm that computes a minimal spanning tree for the set of
nodes yields the approximation ratio 12.15. The approximation ratio was fur-
ther reduced to 7.6 by Flammini et al. [10] and later to 6.33 by Navarra [21].
Recently Ambühl [1] showed that the minimum spanning tree yields an approx-
imation ratio 6, which is as far as one can go with this approach, in view of the
lower bound presented in [22].

In our model of radio communication spatial information is not available, thus
there is a need for an alternative definition of energy consumption. Since the net-
work nodes are uniform, it is natural to assume that transmissions performed by
every node cost exactly the same. Moreover, we are interested in balancing the
energy consumption at the nodes. This would serve to avoid energy consumption
bottlenecks at some wireless nodes, especially if they operate on limited power
sources, e.g., batteries, and may thus help to prolong the operational lifetime of
the entire system. With this goal in mind, we consider energy efficient strategies
in which every node is allowed to transmit at most once during the execution
of any communication task, in our case the broadcasting procedure. We refer
to such energy efficient strategies as 1-shot protocols. Such a strategy for en-
ergy efficient radio communication was very recently studied in the context of
broadcasting and gossiping in radio networks of random topology, see [5].

Research on time efficient broadcasting in known topology radio networks,
where an entire schedule of node transmissions can be precomputed in advance,
was initiated in [6]. In this paper Chlamtac and Weinstein provided a broadcast
schedule with the running time O(D log2 n), where D is diameter of the network.
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Later an Ω(log2 n) time lower bound was proved for the family of radius 2
graphs [3]. While it was known for quite a while [4] that for every n-vertex
radio network of diameter D there exists a deterministic broadcasting schedule
of length O(D log n + log2 n), an appropriate efficient construction for such a
schedule was proposed only very recently in [18]. Another type of a broadcast
schedule requiring D + O(log5 n) rounds is due to Gaber and Mansour, see [11].
Elkin and Kortsarz in [9] presented deterministic constructions of broadcasting
schedules of length D + O(log4 n) for arbitrary graphs and D + O(log3 n) for
planar graphs. The existential proof that the optimal D + O(log2 n) broadcast
schedule is feasible was given by Gasieniec et al. in [12]. Explicit constructions
of broadcasting schedules operating in O(D+log2 n) and D+O( log3 n

log log n ) rounds
can be found in [19] and [7] respectively.

1.2 Our Results

In this paper we focus on simultaneously time and energy efficient broadcast-
ing protocols in radio networks with known topology. In Section 2 we show
that any 1-shot radio broadcast protocol requires D + Ω(

√
n−D) rounds of

transmission, where D is the diameter of G. In Section 3 we provide an ef-
ficient construction of a deterministic protocol that accomplishes broadcast-
ing in D + O(

√
n log n) rounds. Section 4 contains results in the model where

each node is allowed to transmit at most k times. We prove a lower bound
D + Ω((n − D)1/(2k)) and we design a randomised protocol that accomplishes
broadcasting in D + O(kn1/(k−2) log2 n) rounds. Finally in Section 5 we discuss
several other strategies for energy efficient radio broadcasting and state a num-
ber of open problems in the area. All algorithms presented in the paper are
deterministic and constructible in polynomial time.

2 A D + Ω(
√

n − D) Lower Bound for 1-Shot
Broadcasting

In this section we show that there exist radio networks in which every 1-shot
broadcasting strategy requires at least D +Ω(

√
n−D) rounds of transmissions.

Specifically, we show that for any positive integer n there exists an n-node bi-
partite graph on which any 1-shot broadcasting protocol requires Ω(

√
n) com-

munication rounds. Consider the binomial graph B(x) = ({r}∪U ∪L, E), where
{r}, U and L are disjoint, |U | = x, |L| = y, and y =

(
x
2

)
. The singleton set

{r} is intended as the source while the set U (respectively, L) forms the upper
(resp., lower) layer of B(x). The nodes in U are labelled by the integers 1 to
x and the nodes in L by unordered pairs {a, b} such that 1 ≤ a < b ≤ x. The
node r is connected to all the nodes in U , and a node in L labelled by {a, b} is
connected to exactly two nodes a and b in U. For example, see structures of B(3)
and B(4) in Figures 1(a) and 1(b) respectively. In the first step, the message is
transmitted by r to reach all the nodes in U . Our analysis concerns the process
by which the message is disseminated from the nodes of U to the nodes of L.
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The proof is based on the observation that in any 1-shot broadcasting protocol,
exactly one node from the upper layer U is permitted to transmit in each round.
Consider the first round of any broadcasting procedure. Assume first that two
nodes a and b in U decide to transmit simultaneously. Their shared neighbour
{a, b} in the lower layer L gets neither of the messages due to collision. Moreover,
this node will not receive any other messages in the future since its only neigh-
bours already transmitted and they are allowed to do this only once. This proves
that multiple transmissions in the first round are not allowed. Now assume that
during the first round a single node a from U transmits and all neighbours of a
in L receive the broadcast message. Removing a from U and all its neighbours
from L, we obtain a smaller binomial graph B(x− 1). Thus the next round of the
broadcasting protocol must again consist of a transmission from a single node in
U . This argument is repeated until a binomial graph B(1) with no edges between
the layers U and L is obtained. This leads to the conclusion that any 1-shot broad-
casting protocol in a binomial graph B(x) requires x−1 consecutive transmission
rounds. Since n = x + y + 1 for y =

(
x
2

)
, the number of communication rounds

required by any 1-shot broadcasting procedure is Ω(
√

n).

Theorem 1. There exists a radio network of size n and diameter D in which
any 1-shot broadcasting protocol requires D + Ω(

√
n−D) transmission rounds.

Proof. The lower bound of D+Ω(
√

n−D) can be derived directly from the lower
bound for 1-shot broadcasting strategies in binomial bipartite graphs. Consider
a graph formed by attaching a path P of length D − 2 to the node r of the
binomial bipartite graph B(x), where x is the largest integer satisfying D− 2 +
x(x + 1)/2 ≤ n, and placing the broadcasting source at the far (from B(x)) end
of the path P . The time required by any 1-shot broadcasting procedure includes
D − 2 rounds to move the broadcast message along P and Ω(

√
n− (D − 2))

additional rounds to inform every node in the lower layer of B(x). The lower
bound D − 2 + Ω(

√
n− (D − 2)) = D + Ω(

√
n−D) follows.

3 1-Shot Broadcasting in D + O(
√

n log n) Rounds

For ease of presentation, we first provide a 1-shot radio broadcasting strategy
for all n-node bipartite graphs (with the message already available at all nodes
of the upper layer), consisting of O(

√
n) transmission rounds. This result is then

combined with the new ranking scheme given in Section 3.2, and admits 1-shot
radio broadcasting in D + O(

√
n log n) rounds for arbitrary undirected graphs.

3.1 Broadcasting in Bipartite Graphs

Consider a bipartite graph B = (U ∪L, E) with the upper layer U and the lower
layer L. In what follows we assume that U forms a minimal covering set (MCS)
of L, see [13], i.e., that the removal of any node from U , along with all edges
incident to it, isolates some nodes in L. Define another graph G′ = (U, E′) on
the basis of B as follows. For every node v ∈ L of degree at least two, pick two
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Fig. 1. (a) the structure of B(3);(b) the graph G′ based on B(4)

arbitrary neighbours of v in U , and add to E′ an edge between them. Note that
by this construction, |E′| ≤ |L|. For example, a graph G′ defined on the basis of
the layers U and L in the binomial graph B(4) is presented in Figure 1(b).
A set of nodes in an undirected graph is independent if no two nodes in it are
directly connected by an edge. For a subset Q ⊆ U , let I(Q) ⊆ L denote the set
containing all nodes in L having exactly one neighbour in Q. We say that a subset
Q ⊆ U in the bipartite graph B is permissible if simultaneous transmissions from
Q inform a subset I(Q) ⊆ L and the removal of all nodes in Q from U , along
with their incident edges, does not isolate nodes in L \ I(Q).

Lemma 1. An independent set of nodes Q in the graph G′ forms a permissible
set in B.

Proof. By the definition of I(Q), it suffices to show that removing all nodes in
Q from the upper layer U , along with their incident edges, does not isolate any
nodes in L \ I(Q). Indeed, consider an arbitrary node v ∈ L with neighbour set
A in B. If v has no neighbour in Q, then after the removal, v is still connected to
some node in U \Q. If v has exactly one neighbour in Q, then v ∈ I(Q), hence
v /∈ L \ I(Q). Finally, suppose v is connected to at least two nodes in Q. In this
case, v must also have another neighbour outside of Q. To see this, note that
by construction, the graph G′ includes an edge between some two nodes of A.
Hence if A ⊆ Q, then Q fails to be independent in G′, leading to contradiction.

The following fact, related to the efficient construction of large independent sets,
was proved in the context of parallel computing in [14].
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Lemma 2. In a graph G′ = (U, E′), where |U | = x and |E′| = y, one can
construct in time polynomial in x + y an independent set Q ⊆ U such that
|Q| ≥ x2

2y+x .

Combining Lemmas 1 and 2 we conclude:

Lemma 3. In a bipartite graph B(U∪L, E), where |U | = x, |L| = y and x ≥ √y,
there exists a permissible transmission set of size at least � x2

2y+x�.

We are ready to state the main theorem for 1-shot radio broadcasting strategies
in bipartite graphs.

Theorem 2. In any n-node bipartite graph, the broadcast message can be dis-
tributed from the upper layer to the lower layer in O(

√
n) rounds using a 1-shot

broadcasting strategy.

Proof. Assume that U ′ ⊆ U is a subset of nodes in the upper layer that forms a
minimal covering set of the lower layer L, where |U ′| = x and |L| = y. Note that
if x2 ≤ 2y + x then nodes from U ′ can transmit sequentially in time x = O(

√
n)

since x2 ≤ 2y +x < 2(y +x) = 2n. Otherwise, assume that x2 > 2y +x. We first
show how to reduce the size of the upper layer to

√
y log y in O(

√
n) rounds,

and later how to perform further reductions to obtain a set of size
√

y in O(
√

y)
additional rounds. After the reduction process is accomplished, the nodes still
present in the upper layer transmit sequentially in at most

√
y = O(

√
n) rounds.

Assume first that after some number of rounds of the reduction process the size
of the upper layer x′ is still larger than

√
y log y, where the size of the lower layer

is y′ ≤ y. By Lemma 3, the current set U ′ (after the removal of nodes and edges
in the construction process) contains a permissible transmission set of size at
least (x′)2

2y′+x′ . We can assume that x′ ≤ y′ (the upper layer constitutes a minimal
covering set) and consequently that there exists a permissible transmission set
of size at least (x′)2

3y′ . In this case, after one round of transmissions the size of

the upper layer is reduced to x′′ = x′ − (x′)2

3y′ = x′(1 − x′
3y′ ). Since we assumed

x′ >
√

y log y and also y′ ≤ y, it follows that x′′ ≤ x′(1−
√

y log y

3y ) = x′(1− log y
3
√

y ).
This means that the size of the upper layer can be reduced in one round by
a fraction of 1 − log y

3
√

y and consequently in at most 3
√

y

log y rounds by a constant
fraction, for as long as x′ >

√
y log y. Thus repeating this reduction process

for O(log y) times, the size of the upper layer becomes smaller than
√

y log y.
The total number of rounds in the entire reduction process is O(

√
y), where√

y = O(
√

n).
After the size of the upper layer is reduced to

√
y log y, the remaining reduction

process is split into 0 ≤ i ≤ log log y stages, where during stage i, the size x′ of
the upper layer U ′ is reduced from at most

√
y log y

2i to at most
√

y log y

2i+1 . Consider
an arbitrary stage i, where y′ ≥ x′ is the size of the lower layer. By Lemma 3, U ′

contains a permissible transmission set of size at least x′2
2y′+x′ . Since x′ ≤ y′ ≤ y

and x′ ≥
√

y log y

2i+1 we conclude that there exists a permissible transmission set
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of size x′2
3y′ ≥ (

√
y log y

2i+1 )2/3y ≥ log2 y
22(i+2) . To move from stage i to stage i + 1 one

has to remove from the upper layer U ′ at most
√

y log y

2i+1 nodes. Since during each
round we know how to remove at least log2 y

22(i+2) nodes, the number of rounds

required to move to stage i+1 is bounded by
√

y log y

2i+1 / log2 y
22(i+2) = 2i+3√y

log y . Thus the

total number of rounds of all log log y stages is bounded by
∑log log y

i=0
2i+3√y

log y =
8
√

y

log y ·
∑log log y

i=0 2i = O(
√

y), and
√

y = O(
√

n).
Finally, when the size of the upper layer U ′ becomes smaller than

√
n, the

remaining nodes accomplish broadcasting via sequential transmissions.

3.2 Broadcasting in Arbitrary Graphs

In this section we introduce a new tree ranking scheme that enables 1-shot
broadcasting protocols in an arbitrary n-node graph G = (V, E) of diameter D,
in D + O(

√
n log n) rounds.

The most time-efficient radio broadcasting algorithms in known graphs use
the concept of tree ranking, see e.g., [12,19], where the ranks are computed for es-
pecially designed BFS spanning tree rooted in the source node s. The algorithms
use two types of transmissions. Fast transmissions are performed along paths in
the tree containing nodes with the same rank. Slow transmissions are designed
to move instances of the broadcast message between nodes with different ranks
at neighbouring BFS levels. In this type of radio broadcasting algorithms, most
nodes are involved in transmissions of both types. Note, however, that in the
setting used in this paper, each node is allowed to transmit at most once, which
means that the concepts of fast and slow transmissions have to be unified. We
therefore propose a new ranking scheme in which the rank of a node corresponds
to the unique number of a round when the node transmits. The new rank is a
combination of two types of ranks, external and internal.

External ranks. The external rank of every node in the network is computed
on the basis of the ranking mechanism proposed in the context of gathering-
broadcasting BFS spanning trees [12]. The nodes in the spanning tree get ranks
according to a simple principle. All leaves are assigned the rank 1 and each
internal node calculates its rank by looking at the maximum rank among its
children. If the maximum rank m occurs in only one child, then the rank of the
parent is also set to m; otherwise, the parent gets the rank m + 1. It is known
that the rank of the root s in a gathering-broadcasting spanning tree of size n
is at most log n. The spanning tree constructed in [12] has also an important
property that at any BFS level d, if two nodes v and w as well as their respective
(disjoint) parents p(v) and p(w) share the same rank, then there are no edges in
the network G between nodes p(v) and w as well as between p(w) and v. This
property allows simultaneous (collision free) transmissions from the two parents
towards their children. Note that nodes having the same rank in the spanning
tree form a collection of disjoined paths leading towards the root of the tree. We
refer to these paths as chains. The bottom end (from the root) of each path is
called a tail of the chain. Note that some chains can contain only singleton nodes.
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For example, all leaves are tails in their chains. Now, if the rank (as defined in
[12]) of a node is l, then the node is assigned the external rank lex = 2l−1 if it is
the tail of some chain; otherwise, it gets the external rank 2l. Thus the external
rank of the root s in the spanning tree is at most 2 log n. We refer to new shorter
paths based on external ranks as channels.

Internal ranks. The system of internal ranks is computed on the basis of ex-
ternal ranks and the broadcasting scheme for bipartite graphs provided in Sec-
tion 3.1. Let d(v) be the distance between a node v and the root s. Network
nodes with the same distance d(·) form BFS layers in G. Assume that all nodes
in the network obtained the external rank from the range 1, . . . , 2 log n. The set
of network nodes V is partitioned into channels, where Pi,j denotes jth channel
containing nodes with rank i. Each channel Pi,j constitutes a supernode in the
upper layer of the internal rank bipartite graph BIR(i), for i = 1, . . . , 2 logn. The
bottom layer of each BIR(i) is formed of all nodes in the network. A supernode
Pi,j is connected to a node w in the lower layer of BIR(i) if there exists a node
v ∈ Pi,j such that (v, w) ∈ E, d(w) − d(v) = 1, and lex(v) > lex(w). Note that
each graph BIR(i), for i = 1, . . . , 2 logn, has at most 2n vertices, since there are
at most n supernodes (they are disjoint subsets of nodes from graph G) and at
most n nodes in the lower layer of graph BIR(i). In each BIR(i) we apply the
broadcasting scheme from Section 3.1, which allocates to each supernode Pi,j

in the upper layer a unique number k (of a transmission round) from the range
1, . . . , f(n) = O(

√
2n) = O(

√
n). In fact, the number k defines the internal rank

lin(v) for any node v present in the supernode Pi,j . The examples of internal
and external ranking can be found in Figure 2.

Combined ranking scheme. The new ranking scheme provides a rank to each
node v ∈ V based on its BFS layer d(v), as well as its internal and external
ranks, lin(v) and lex(v). More precisely, for any node v ∈ V, where 0 ≤ d(v) ≤
D, 1 ≤ lex(v) ≤ 2 logn and 0 ≤ lin(v) < f(n) = O(

√
n), define the delay factor

of v as δ(v) = 2 logn− lex(v). The new rank of the node v is then

l(v) = d(v) + 3[δ(v)f(n) + lin(v)] . (1)

Essentially, the new combined rank l(v) corresponds to the transmission time of
the node v. In other words, in the new broadcasting scheme the node v transmits
only once, in round l(v). This means, e.g., that the running time of the new
broadcasting scheme is trivially bounded by D+O(

√
n log n). What is left to be

shown is that the broadcasting scheme works correctly, i.e., that each network
node receives the broadcast message on time (before its transmission round).

The intuition behind the definition of l(v) is as follows. The summand d(v)
is necessary since in any case, node v cannot receive the source message faster
than its distance from the source. Then, node v may need to wait for some
number of rounds in order to avoid collisions, which is expressed by the second
summand. The reason for the factor 3 is that in order to avoid collisions between
the transmissions of v and those of nodes at distance 2 from it, we allow only
nodes of distances 3, 6, 9. . . . from node v to transmit simultaneously with it. To
avoid collisions with nodes on the same BFS layer but with a different external
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Fig. 2. The old ranks, new external ranks and bipartite graphs BIR(3) and BIR(4)

ranking, node v waits for δ(v) “time windows” of f(n) rounds each. Having done
this, only nodes with the same external rank as v may interrupt its transmissions,
which is dealt with by waiting an additional lin(v) rounds. The formal analysis
of correctness of the algorithm follows.

The proof of the following lemma is deferred to the full version of the paper.
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Lemma 4. Each network node v with 0 ≤ d(v) ≤ D, 1 ≤ lex(v) ≤ 2 log n and
0 ≤ lin(v) < f(n) = O(

√
n) receives the broadcast message prior to the round

l(v) = d(v) + 3[δ(v)f(n) + lin(v)].

The following theorem holds.

Theorem 3. In every radio network of size n and a diameter D there exists a
1-shot broadcasting protocol that runs in D + O(

√
n log n) rounds

Proof. Recall that each node v is scheduled to transmit only once during time
l(v) = d(v)+3[δ(v)f(n)+lin(v)], where 0 ≤ d(v) ≤ D, δ(v) = 2 log n−lex(v), 1 ≤
lex(v) ≤ 2 log n and 0 ≤ lin(v) < f(n) = O(

√
n). Lemma 4 ensures that each

node receives the broadcast message before its transmission time. The time com-
plexity follows directly from the new ranking scheme, where the running time
is bounded by the ranking of nodes at the BFS level farthest from the source
node s, thus it is not more than D + O(

√
n log n).

4 k-Shot Protocols

A natural extension of 1-shot strategies is a model in which each node in the
network can transmit at most k times. We show here that under this assump-
tion, both deterministic and randomised radio broadcasting requires Ω(n1/(2k))
transmission rounds in bipartite graphs, and that this lower bound can be
nearly matched by a randomised algorithm. These results could also be gen-
eralised for networks with a diameter D, in the same fashion as in Sections 2
and 3.2, resulting in the lower bound D + Ω(n1/(2k)) and the upper bound
D +O(kn1/(k−2) log n). Please note that due to the space limit almost all proofs
in this section are deferred to the full version of the paper.

4.1 Lower Bound

The lower bound argument mimics the proof for 1-shot protocols.

Theorem 4. There exist bipartite graphs of size n in which any k-shot broad-
casting scheme requires Ω(n1/(2k)) transmission rounds.

Using the same argument as in the proof of Theorem 1 we come to the following
conclusion.

Corollary 1. There exist bipartite graphs of size n and diameter D in which
any k-shot broadcasting scheme requires D + Ω((n−D)1/(2k)) rounds.

Moreover, it follows that in order to guarantee fast broadcast in bipartite graphs,
namely, in O(polylog n) rounds (or in general graphs in D+O(polylog n) rounds),
an Ω( log n

log log n )-shot protocol must be used, since n
log log n
2 log n =

√
log n. The same

bounds hold also for randomised protocols.
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4.2 Randomised k-Shot Protocol

Consider a graph G = (U, L, E). Assume that n ≥ 8 (otherwise there exists a
direct constant length schedule) and 5 ≤ k < log n

5+log log n + 2. Note that for k ≤ 4
one can use efficient deterministic 1-shot protocol described in section 3. And
for k ≥ log n

5+log log n + 2 the broadcast protocol proposed in this section runs in at
most O(log3 n/ log log n) rounds, i.e., almost matches the lower bound Ω(log2 n)
for unbounded energy broadcast, see [3]. We say that an event holds with high
probability if the probability is at least 1− n−c/k, for some constant c ≥ 1.

We compute first an MCS for |U | ≤ n/2 ≤ |L| and then we define a k-shot
protocol RandBroadcast(k) as follows. Let a = k − 2. Note that 3 ≤ a <

log n
5+log log n . The protocol proceeds in a epochs, where each epoch (apart from the
first one) is formed of T = 64n1/a log n consecutive rounds. The first epoch is
different and it is executed in (a + 1) · T rounds. We define also a sequence of
numbers 〈pi〉, for 2 ≤ i ≤ a, where

pi =
16 logn

n(i−1)/a
and p′i =

{
p2, i = 2,

pi∏ i−1
j=2(1−pj)

, otherwise.

Applying the inequality a < log n
5+log log n we get pi < 1/2, for every 2 ≤ i ≤

a, and consequently pi < (p2)i−1 < (1/2)i−1 <
∏i

j=1(1 − pj). Therefore the
following fact holds.

Fact 5. 0 < pi ≤ p′i ≤ 1 for every 2 ≤ i ≤ a.

A pseudocode of the k-shot protocol for a node v ∈ U is presented below.

Algorithm RandBroadcast(k):

1. Epoch 1:
– Select, one by one, uniformly at random (with repetitions allowed) a+1

integers from the set {1, 2, . . . , (a+1) ·T }; Let α1(v) be the first selected
integer.

– During the period {1, 2, . . . , (a+1)·T } transmit in rounds with the index
corresponding to selected integers.

2. A random bit selection:
– Select a random bit β2(v), set to 1 with probability p′2 and to 0 otherwise.
– For i = 3 to a do:

(i) If βj(v) = 0 for every 2 ≤ j ≤ i− 1, then select a random bit βi(v),
set to 1 with probability p′i and to 0 otherwise.

3. For i = 2 to a do: // iterating epochs i = 2, . . . , a

If βi(v) = 1 then
– select uniformly at random an integer 1 ≤ αi(v) ≤ T , and
– transmit in round (a + i− 1)T + αi(v).



264 L. Ga̧sieniec et al.

Lemma 5. For every v ∈ U ,
1. βi(v) = 1 with probability pi, for every 2 ≤ i ≤ a; and
2.
∑a

j=2 βj(v) ≤ 1 with probability 1.

Note that every node v transmits at most once throughout epochs i = 2, ..., a,
and in epoch 1 it performs at most a + 1 additional transmissions. Hence obtain
the following corollary.

Corollary 2. RandBroadcast(k) is a k-shot protocol with probability 1.

The algorithm runs in time O(k) at each node. Thus the total number of trans-
mission rounds is bounded by (a + 1) · T + (a− 1) · T = O(kn1/(k−2) log n).

We prove here that the k-shot protocol performs radio broadcasting with
high probability. We start with two technical observations referring to placing
balls in bins. Given x balls and y bins, consider a process in which each ball is
placed uniformly and independently in a random bin. This process is used to
model random selection of transmitting rounds, where nodes (balls) choose their
transmission rounds (bins) randomly. We say that an event is good when more
than x/2 bins are occupied, i.e., which where more than x/2 different rounds
are selected by a node. Let P be the probability of a good event. Note that
a good event admits existence of a round selected by exactly one node among
all considered subset of nodes. (This is due to the fact that at least one bin is
occupied by exactly one ball).

Lemma 6. P ≥ 1−
∑�x/2�

j=1

(
e·(x/2)

y

)x−j

.

Proof. Let j be the number of occupied bins. We have

P = 1−
�x/2�∑
j=1

(
y

j

)( j

y

)x

≥ 1−
�x/2�∑
j=1

(e · y
j

)j

·
( j

y

)x

= 1−
�x/2�∑
j=1

ej ·
( j

y

)x−j

≥ 1−
�x/2�∑
j=1

(e · (x/2)
y

)x−j

.

Lemma 7. If 8 logn ≤ x ≤ 3T /8 and y ≥ T , then with probability at least
1− 3/n3 there exists a bin with exactly one ball.

Proof. It is sufficient to prove that P ≥ 1−1/n3, since if the number of occupied
bins is larger than x/2 then there is a bin containing exactly one ball. Using
Lemma 6 for x balls and y = T bins,

P ≥ 1−
�x/2�∑
j=1

(e · (x/2)
y

)x−j

≥ 1−
x−1∑

�=�x/2�

(3eT /16
T

)�

≥ 1−
(3e

16

)x/2

· 1
1− 3e

16

≥ 1− 3 ·
(3e

16

)(8 log n)/2

≥ 1− 3/n3 .
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Lemma 8. Every node w ∈ L gets the source message with high probability.

Therefore the following theorem holds.

Theorem 6. Algorithm RandBroadcast(k) is a k-shot protocol and it ac-
complishes radio broadcasting in O(kn1/(k−2) log n) rounds with high probability.

Note that the ranking scheme proposed in Section 3.2 can be used in conjunction
with k-shot protocols. I.e., any O(f(n))-time k-shot broadcasting scheme for bi-
partite graphs admits D + O(f(n) log n) broadcast in arbitrary graphs with the
diameter D. In particular, the k-shot randomised protocol RandBroadcast(k)
for bipartite graphs can be extended in polynomial time into a protocol for com-
pleting broadcast on an arbitrary D-hop radio network in D+O(kn1/(k−2) log2 n)
rounds, with high probability. More precisely, given a arbitrary graph G(V, E)
with diameter D, we construct bipartite graphs BIR(i) as in section 3.2, and for
each node v we compute k internal ranks lin(1, v), lin(2, v), . . . , lin(k, v), instead
of one internal rank lin(v), using RandBroadcast(k) algorithm in place of 1-shot
deterministic algorithm. Note that lin(j, v), for 1 ≤ j ≤ k, are now from the
range 1, . . . , f(k, n), where f(n, k) = O(kn1/(k−2) log n) due to theorem 6. Thus
combining the concept of external ranks with newly obtained k different internal
ranks (there are at most k different rounds in which node v transmits) in the
same fashion as in formula (1) in section 3.2 we get the following corollary.

Corollary 3. There exists a polynomial time constructable k-shot randomised
broadcasting protocol that runs in D + O(kn1/(k−2) log2 n) rounds in every radio
network of size n and a diameter D, with high probability.

5 Further Discussion

This paper presents a new broadcasting scheme that performs the communica-
tion task under assumption that each node can transmit at most once. It turns
out that there is a clear distinction between the model with bounded and un-
bounded number of transmissions. In the unbounded model the lower bound and
the upper bound is known to be D + Θ(log2 n) in view of [3] and [12] while in
the model with unique transmissions the lower bound is D + Ω(

√
n−D). Note

also that our new 1-shot broadcasting scheme requires D+O(
√

n log n) rounds of
communication. This leaves an interesting open problem on the exact complexity
of 1-shot broadcasting strategies in radio networks with known topology.

Broadcasting with bounded number of transmissions at each node. In
the more general case where each node can transmit up to k times during a broad-
casting process, it is shown that radio broadcasting requires Ω(n1/(2k)) transmis-
sion rounds in bipartite graphs, and D+Ω((n−D)1/(2k)) in graphs of diameter D.
These complexities can be nearly matched by randomised algorithms, however
the exact complexity of k-shot broadcasting in bipartite and arbitrary radio
networks with known topology remains open (the gap is nearly n1/k). In partic-
ular, a randomised k-shot broadcasting algorithm needs D +O(kn1/(k−2) log2 n)
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rounds to succeed in any D-hop network, with high probability. Constructing,
in polynomial time, an efficient k-shot deterministic protocol is another problem
that remains open.

Broadcasting with the minimum number of transmissions. Another pos-
sible strategy for energy efficient radio broadcasting is to minimise the total
number of transmissions, without targeting the best possible running time of a
broadcasting procedure. In this model one can provide almost immediately an
approximate solution based on the efficient computation of minimal connected
dominating sets with logarithmic approximation ratio in general graphs [15] and
constant approximation ratio in unit disk graphs, see e.g. [2]. An interesting
related open problem is to look for trade-offs between the total number of trans-
missions and the broadcasting time.
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Abstract. Communication in networks suffers if a link fails. When the
links are edges of a tree that has been chosen from an underlying graph
of all possible links, a broken link even disconnects the network. Most
often, the link is restored rapidly. A good policy to deal with this sort
of transient link failures is swap rerouting, where the temporarily broken
link is replaced by a single swap link from the underlying graph. A rapid
replacement of a broken link by a swap link is only possible if all swap
links have been precomputed. The selection of high quality swap links is
essential; it must follow the same objective as the originally chosen com-
munication subnetwork. We are interested in a minimum diameter tree
in a graph with edge weights (so as to minimize the maximum travel time
of messages). Hence, each swap link must minimize (among all possible
swaps) the diameter of the tree that results from swapping. We propose
a distributed algorithm that efficiently computes all of these swap links,
and we explain how to route messages across swap edges with a compact
routing scheme.

1 Introduction

For communication in computer networks, often only a subset of the available
connections is used to communicate at any given time. If all nodes are con-
nected using the smallest number of links, the subset forms a spanning tree of
the network. Depending on the purpose of the network, there is a variety of de-
sirable properties of a spanning tree. We are interested in a Minimum Diameter
Spanning Tree (MDST), i.e., a tree that minimizes the largest distance between
any pair of nodes, thus minimizing the worst case length of any transmission
path. The importance of minimizing the diameter of a spanning tree has been
widely recognized (see e.g. [2]); essentially, the diameter of a network provides
a lower bound on the computation time of most algorithms in which all nodes
participate.
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One downside of using a spanning tree is that a single link failure disconnects
the network. Whenever the link failure is transient, i.e., the failed link soon
becomes operational again, the best possible way of reconnecting the network is
to replace the failed link by a single other link, called a swap link. Among all
possible swap links, one should choose a best swap w.r.t. the original objective
[5,6,7,8], that is in our case, a swap that minimizes the diameter of the resulting
swap tree. Note that the swap tree is different from a minimum diameter spanning
tree of the underlying graph that does not use the failed link. The reason for
preferring the swap tree to the latter lies in the effort that a change of the
current communication tree requires: If we were to replace the original MDST
by a tree whose edge set can be very different, we would need to put many edges
out of service, many new edges into service, and adjust many routing tables
substantially — and all of this for a transient situation. For a swap tree, instead,
only one new edge goes into service, and routing can be adjusted with little
effort (as we will show). Interestingly, this choice of swapping against adjusting
an entire tree even comes at a moderate loss in diameter: The swap tree diameter
is at most a factor of 2.5 larger than the diameter of an entirely adjusted tree [6].

In order to keep the required time for swapping small, for each edge of the tree,
a best swap edge is precomputed. We show in the following that this distributed
computation of all best swaps has the further advantage of gaining efficiency
(against computing swap edges individually), because dependencies between the
computations for different failing edges can be exploited.

Related Work. Nardelli et al. [6] describe a centralized (i.e., non-distributed)
algorithm for computing all best swaps of a MDST in O(n

√
m) time and O(m)

space, where the given underlying communication network G = (V, E) has n =
|V | vertices and m = |E| edges. For shortest paths trees, an earlier centralized
algorithm has been complemented by a distributed algorithm [7] using totally dif-
ferent techniques for finding all best swap edges for several objectives [3,4], with
either O(n) messages of size O(n) (i.e., a message contains O(n) node labels, edge
weights, etc.) each, or O(n∗) short messages with size O(1) each, where n∗ denotes
the size of the transitive closure of the tree, where edges are directed away from
the root. In a so-called preprocessing phase of this algorithm, some information is
computed along with the spanning tree construction using O(m) messages. A dis-
tributed algorithm for computing a MDST in a graph G(V, E) in an asynchronous
setting has O(n) time complexity (in the standard sense, as explained in Section 3)
and uses O(nm) messages [2]. However, no efficient distributed algorithm to com-
pute the best swaps of a MDST had been found to date.

Our Contribution. In this paper, we propose a distributed algorithm for com-
puting all best swaps of a MDST using no more than O(max{n∗, m}) messages
of size O(1) each. The size of a message denotes the number of atomic values
that it contains, such as node labels, edge weights, path lengths etc., and n∗ is
the size of the transitive closure of the MDST with edges directed away from
a center of the tree. Both n∗ and m are very natural bounds: When each sub-
tree triggers as many messages as there are nodes in the subtree, the size of the
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transitive closure describes the total number of messages. Furthermore, it seems
inevitable that each node receives some information from each of its neighbours
in G, across each potential swap edge. Our algorithm runs in O(‖D‖) time (in
the standard sense, as explained in Section 3), where ‖D‖ is the hop-length of
the diameter path of G; note that this is asymptotically optimal. The message
and time costs of our algorithm are easily subsumed by the costs of construct-
ing a MDST distributively using the algorithm from [2]. Thus, it is cheap to
precompute all the best swaps in addition to constructing a MDST initially.

Just like the best swaps algorithms for shortest paths trees [3,4], our algorithm
(like many fundamental distributed algorithms) exploits the structure of the tree.
This tree, however, is substantially different in that it requires a significantly
more complex invariant to be maintained during the computation: We need to
have just the right collection of pieces of paths available so that on the one hand,
these pieces can be maintained efficiently, and on the other hand, they can be
composed to reveal the diameter at the corresponding steps in the computation.

Furthermore, we propose a compact routing scheme for trees which can quickly
and inexpensively adapt routing when a failing edge is replaced by a best swap
edge. Notably, our scheme does not require an additional full backup table, but
assigns a label of c log n bits to each node (for some small constant c); a node
of degree δ stores the labels of all its neighbours (and itself), which amounts to
δc log n bits per node, or mc logn bits in total. Given this labelling, knowledge of
the labels of both adjacent nodes of a failing edge and the labels of both adjacent
nodes of its swap edge is sufficient to adjust routing.

In Section 2, we formally define the distributed all best swaps problem. Section 3
states our assumptions about the distributed setting and explains the basic idea of
our algorithm. In Section 4, we study the structure of diameter paths after swap-
ping, and we propose an algorithm for finding best swaps. The algorithm uses in-
formation that is computed in a preprocessing phase, described in Section 5. Our
routing scheme is presented in Section 6. Section 7 concludes the paper.

2 Problem Statement and Terminology

A communication network is a 2-connected, undirected, edge weighted graph
G = (V, E), with n = |V | vertices and m = |E| edges. Each edge e ∈ E has a
non-negative real length w(e). The length |P| of a path P is the sum of the lengths
of its edges, and the distance d(x, y) between two vertices x, y is the length of a
shortest path between x and y. The hop-length ‖P‖ of a path P is the number of
edges that P contains. Throughout the paper, we are only dealing with simple
paths. Given a spanning tree T = (V, E(T )) of G, let D(T ) := 〈d1, d2, . . . , dk〉
denote a diameter of T , that is, a longest path in T (see Fig. 1). Where no
confusion arises, we abbreviate D(T ) with D. Furthermore, define the center
dc of D as a node such that the lengths of DL := 〈d1, d2, . . . , dc〉 and DR :=
〈dc, dc+1, . . . , dk〉 satisfy |DL| ≥ |DR| and have the smallest possible difference
|DL| − |DR|. The set of neighbours of a node z (excluding z itself) in G and in
T is written as NG(z) and NT (z) ⊆ NG(z), respectively.
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Fig. 2. A swap edge f = (z, z′) for e =
(x, p(x))

Let T be rooted at dc, and let, for each node x = dc, node p(x) be the parent
of x and C(x) the set of its children. Furthermore, let Tx = (V (Tx), E(Tx)) be
the subtree of T rooted at x, including x. Let VL (L stands for “left”) be the set
of nodes in the subtree rooted at dc−1, VR the set of nodes in the subtree rooted
at dc+1, and VC all other nodes.

Now, the removal of any edge e = (x, p(x)) of T partitions the spanning tree
into two trees Tx and T \Tx (see Fig. 2). Note that T \Tx does not contain the
node x. A swap edge f for e is any edge in E\E(T ) that (re-)connects Tx and
T \Tx, i.e., for which T \{e} ∪ {f} =: Te/f is a spanning tree of G\{e}. Let S(e)
be the set of swap edges for e. A best swap edge for e is any edge f ∈ S(e) for
which |D(Te/f )| is minimum. A local swap edge of node z for some failing edge
e is an edge in S(e) adjacent to z. The distributed all best swaps problem for
a MDST is the problem of finding for every edge e ∈ E(T ) a best swap edge
(with respect to the diameter). Throughout the paper, let e = (x, p(x)) denote
a failing edge and f = (z, z′) a swap edge, where z is a node inside Tx, and z′ a
node in T \Tx.

3 Algorithmic Setting and Basic Idea

In our setting, nodes have unique identifiers that possess a linear order. Further,
let each node know its own neighbours in T and in G, and for each neighbour
the length of the corresponding edge. We assume port-to-port communication
between neighbouring nodes. The distributed system of nodes is totally asyn-
chronous. Each message sent from some node to one of its neighbours eventually
arrives (there is no message loss). As usual, we define the asynchronous time
complexity of an algorithm as the longest possible execution time assuming that
sending a message requires at most one time unit. Furthermore, nodes do not
need to know the total number of nodes in the system (although it is easy to
count the nodes in T using a convergecast).

3.1 The Basic Idea

Our goal is to compute, for each edge of T , a best swap edge. A swap edge for a
given failing edge e = (x, p(x)) must connect the subtree of T rooted at x to the
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part of the tree containing p(x). Thus, a swap edge must be adjacent to some
node inside Tx. If each node in Tx considers its own local swap edges for e, then
in total all swap edges for e are considered. Therefore, each node inside Tx finds
a best local swap edge, and then participates in a minimum finding process that
computes a (globally) best swap edge for e. The computation of the best local
swap edges is composed of three main phases: In a first preprocessing phase, a
root of the MDST is chosen, and various pieces of information (explained later)
are computed for each node. Then, in a top-down phase each node computes and
forwards some “enabling information” (explained later) for each node in its own
subtree. This information is collected and merged in a third bottom-up phase,
during which each node obtains its best local swap edge for each (potentially
failing) edge on its path to the root. The efficiency of our algorithm will be due
to our careful choice of the various pieces of information that we collect and use
in these phases.

To give an overview, we now briefly sketch how each node computes a best
local swap edge. First observe that after replacing edge e by f , the resulting
diameter is longer than the previous diameter only if there is a path through f
which is longer than the previous diameter, in which case the path through f
is the new diameter. In this case, the length of the diameter equals the length
of a longest path through f in the new tree. For a local swap edge f = (z, z′)
connecting node z ∈ V (Tx) and z′ ∈ V \V (Tx), such a path consists of

(i) a longest path inside T \Tx starting in z′,
(ii) edge f , and
(iii) a longest path inside Tx starting in z.

Part (i) is computed in a preprocessing phase, as described in Section 5. Part (ii)
is by assumption known to z, because f is adjacent to z. Part (iii) is inductively
computed by a process starting from the root x of Tx, and stopping in the leaves,
as follows. A path starting in z and staying inside Tx either descends to a child
of z (if any), or goes up to p(z) (if p(z) is still in Tx) and continues within Tx\Tz.
For the special case where z = x, node x needs to consider only the heights of
the subtrees rooted at its children. All other nodes z in Tx additionally need to
know the length of a longest path starting at p(z) and staying inside Tx\Tz. This
additional enabling information will be computed by p(z) and then be sent to z.

Once the best local swap edges are known, a best (global) swap edge is iden-
tified by a single minimum finding process that starts at the leaves of Tx and
ends in node x. To compute all best swap edges of T , this procedure is executed
separately for each edge of T . This approach will turn out to work with the
desired efficiency:

Main Theorem. All best swap edges of a MDST can be computed in an asyn-
chronous distributed setting with O(max{n∗, m}) messages of constant size, and
in O(‖D‖) time.

We will prove this theorem in the next sections, by proving that the preprocessing
phase can be realized with O(m) messages, and after that the computation of
all best swap edges requires at most O(n∗) additional messages.
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This algorithm requires that each node knows which of its neighbours are
children and which neighbour is its parent in T . Although this information is
not known a priori, it can be easily computed in a preprocessing phase, during
which a particular diameter and a root of T are chosen.

4 How to Pick a Best Swap Edge

In our distributed algorithm, we compute for each (potentially) failing edge the
resulting new diameter for each possible swap edge candidate. This approach
can be made efficient by exploiting the structure of diameter path changes, as
described in the following.

4.1 The Structure of Diameter Path Changes

For a given failing edge e, let Pf be a longest path in Te/f that goes through
swap edge f for e. Then, we have the following:

Lemma 1. The length of the diameter of Te/f is |D(Te/f )| = max{|D(T )|, |Pf |}.

Proof. Let T1 and T2 be the parts into which T is split if e is removed. It is easy
to see that

|D(Te/f )| = max{|D(T1)|, |D(T2)|, |Pf |}. (1)

Since T is a MDST, we have

|D(Te/f )| ≥ |D(T )|. (2)

Because T1 and T2 are contained in T ,

|D(T1)| ≤ |D(T )| and |D(T2)| ≤ |D(T )|. (3)

If |Pf | ≥ |D(T )|, it is clear that |Pf | is a largest term in (1), so the claim holds.
On the other hand, if |Pf | < |D(T )|, then either T1 or T2 must contain a diameter
of length exactly |D(T )| (otherwise, either (2) or (3) would be violated). Thus,
the claim holds also in this case. ��

That is, for computing the resulting diameter length for a given swap edge
f = (z, z′) for e, we only need to compute the length of a longest path in Te/f

that goes through f . For node z in the subtree Tx of T rooted in x, and z′ outside
this subtree, such a path Pf consists of three parts. To describe these parts, let
L(H, r) denote a longest path starting in node r and staying inside the graph
H . The first part is a longest path L(T \Tx, z′) in T \Tx that starts in z′. The
second part is the edge f itself. The third part is a longest path L(Tx, z) starting
in z and staying inside Tx. This determines the length of a longest path through
f as |Pf | = |L(Tx, z)|+ w(f) + |L(T \Tx, z′)|.
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4.2 Distributed Computation of |L(Tx, z)|
For a given failing edge e = (x, p(x)), each node z in Tx needs its |L(Tx, z)| value
to check for the new diameter when using a swap edge. This is achieved by a
distributed computation, starting in x. As x knows the heights of the subtrees of
all its children (from the preprocessing), it can locally compute the height of its
own subtree Tx as |L(Tx, x)| = maxq∈C(x){w(x, q) + height(Tq)}, where C(x) is
the set of children of x. For a node z in the subtree rooted at x, a longest simple
path either goes from z to its parent and hence has length |L(Tx\Tz ∪ {z}, z)|,
or goes into the subtree of one of its children and hence has length |L(Tz, z)|
(see Fig. 3). The latter term has just been described, and the former can be
computed by induction by the parent r of z and can be sent to z. This inductive
step is identical to the step just described, except that z itself is no candidate
subtree for a path starting at r in the induction. In total, each node r computes,
for each of its children q ∈ C(r), the value of

|L(Tx\Tq ∪ {q}, q)| =

w(q, r) + max
{
|L(Tx\Tr ∪ {r}, r)|, max

s∈C(r),s�=q
{w(r, s) + height(Ts)}

}
,

and sends it to q, where we assume that the value |L(Tx\Tr ∪ {r}, r)| was pre-
viously sent to r by p(r).

A bird’s eye view of the process shows that each node z first computes
|L(Tx, z)|, and then computes and sends |L(Tx\Tq ∪ {q}, q)| for each of its chil-
dren q ∈ C(z). Computation of the |L(Tx, z)| values finishes in Tx’s leaves. Note
that a second value will be added to the enabling information if (x, p(x)) ∈ D,
for reasons explained in the next section.

4.3 Distributed Computation of |L(T\Tx, z′)|
In the following, we explain how z can compute |L(T \Tx, z′)| for a given swap
edge f = (z, z′). In case the failing edge e = (x, p(x)) /∈ D, we show below that
the information obtained in the preprocessing phase is sufficient.

For the sake of clarity, we analyze two cases separately, starting with the
simpler case.

Case 1: The removed edge e is not on the diameter. For this case, we
know from [6] that at least one of the longest paths in T \Tx starting from z′

contains dc. If z′ ∈ VL, we get a longest path from z′ through dc by continuing
on the diameter up to dk, and hence we have |L(T \Tx, z′)| = d(z′, dc) + |DR|.
If z′ is in VC or VR, some longest path from z′ through dc continues on the
diameter up to d1, yielding |L(T \Tx, z′)| = d(z′, dc) + |DL|. Remarkably, in this
case |L(T \Tx, z′)| does not depend on the concrete failing edge e = (x, p(x)),
apart from the fact that (z, z′) must be a swap edge for e.

Case 2: The removed edge e is on the diameter. We analyze the case
e ∈ DL, and omit the symmetric case e ∈ DR. If z′ ∈ VL or z′ ∈ VC , we know
from [6] that again, one of the longest paths in T \Tx starting at z′ contains dc.
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Thus, for z′ ∈ VL we are in the same situation as for the failing edge not on
the diameter, leading to |L(T \Tx, z′)| = d(z′, dc) + |DR|. For z′ ∈ VC , after dc a
longest path may continue either on DR, or continue to nodes in VL. In the latter
case, the path now cannot continue on DL until it reaches d1, because edge e
lies on DL. Instead, we are interested in the length of a longest path that starts
at dc, proceeds into VL, but does not go below the parent p(x) of x on DL; let
us call this length λ(p(x)). As announced before, we include the λ(p(x)) value
as a second value into the enabling information received by p(x); then, we get
|L(T \Tx, z′)| = d(z′, dc) + max{|DR|, λ(p(x))}. It remains to consider z′ ∈ VR.
For this case (see Fig. 4), we know (from [6]) that at least one of the longest
paths in T \Tx starting at z′ passes through the node u′ closest to z′ on D(T ).
After u′, this path may either continue on DR up to dk, or continue through
dc going inside VC or VL (without crossing e = (x, p(x))), or continue towards
dc only up to some node di on Dr, going further on non-diameter edges inside
VR. It remains to show how the length of a longest path of this last type can be
found efficiently. We propose to combine three lengths, in addition to the length
of the path from z′ to u′. The first is the length of a longest path inside VR that
starts at dk; let us call this length μR. In general, this path goes up the diameter
path DR for a while, and then turns down into a subtree of VR, away from the
diameter, at a diameter node that we call ρR (see Fig. 4). Given μR, the distance
from u′ to ρR, and the distance from ρR to dk, the desired path length of an
upwards turning path inside VR is d(z′, u′)+d(u′, ρR)+μR−d(dk, ρR). Note that
while it may seem that ρR needs to lie above u′ on DR, this is not really needed
in our computation, because the term above will not be largest (among all path
choices) if ρR happens to be below or at u′. In total, we get |L(T \Tx, z′)| =
max {d(z′, dk), d(z′, dc) + λ(p(x)), d(z′, u′) + d

(
u′, ρR

)
+ μR − d

(
dk, ρR

)}
.1

Tx\Tz ∪ {z}
x
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z
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Fig. 3. Illustration of the tree Tx\Tz∪{z}
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Fig. 4. Computing |L(T\Tx, z′)| if e ∈
DL, z ∈ VL and z′ ∈ VR

All of these path length computations can be carried out locally with no
message exchanges, if the constituents of these sums are available locally at
a node. We will show in the next section how to achieve this in an efficient
preprocessing phase.
1 Recall that in the definition of λ(p(x)), paths inside VC starting from dc are also

considered.
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4.4 The BestDiamSwap Algorithm

For a given edge e = (x, p(x)) that may fail, each node z in the subtree Tx rooted
at x executes the following steps:

(i) Wait for the enabling information from the parent (unless x = z), and then
compute |L(Tx, z)|. Compute the enabling information for all children and
send it.

(ii) For each local swap edge f = (z, z′), compute |L(T \Tx, z′)| as described in
Section 4.3.

(iii) For each local swap edge f = (z, z′), locally compute

|D(Te/f )| = max{|D(T )|, |L(Tx, z)|+ w(f) + |L(T \Tx, z′)|}.

Among these, choose a best swap edge f∗
local and store the resulting new

diameter as |D(Te/f∗
local

)|.
(iv) From each child q ∈ C(z), receive the node label of a best swap edge

candidate f∗
q and its resulting diameter |D(Te/f∗

q
)|. Pick a best swap edge

candidate f∗
b among these, i.e., choose b := arg minq∈C(z) |D(Te/f∗

q
)|. Com-

pare the resulting diameter of f∗
b and f∗

local, and define fbest as the edge
achieving the smaller diameter (or any of them if their length is equal), and
its diameter as |D(Te/fbest

)|.
(v) Send the information fbest, |D(Te/fbest

)| to the parent.

The above algorithm computes the best swap edge for one (potentially) failing
edge e, based on the information available after the preprocessing phase. In order
to compute all best swap edges of T , we execute this algorithm for each edge of
T independently.

Analysis of the Algorithm. We now show that the proposed algorithm indeed
meets our efficiency requirements:

Theorem 1. After preprocessing, executing the BestDiamSwap algorithm in-
dependently for each and every edge e ∈ E(T ) costs at most O(n∗) messages of
size O(1) each, and O(‖D‖) time, using a “Farthest-to-Go” queuing policy [1].

Proof. Correctness follows from the preceding discussion. Preprocessing ensures
that all precomputed values (such as |L(T \Tx, z′)|) defined for the other end z′ of
a candidate swap edge are available locally at z′. As to the message complexity,
consider the execution of the BestDiamSwap algorithm for one particular edge
e = (x, p(x)). Starting in node x ∈ V \{dc}, each node in Tx sends a message
containing the “enabling information” (i.e., L(Tx\Tq, q) and possibly λ(p(x)))
containing O(1) items to each of its children. Furthermore, each node in Tx

(including finally x) sends another message with size O(1) up to its parent in
the minimum finding process. Hence, two messages of size O(1) are sent across
each edge of Tx, and one message is sent across e. Thus, the computation of a
best swap for e requires 2 · |E(Tx)|+ 1 = 2 · |V (Tx)| − 1 messages. The number
of messages exchanged for computing a best swap edge for each and every edge
(x, p(x)) where x ∈ V \{dc} is

∑
x (2 · |V (Tx)| − 1) = 2n∗ − (n− 1).
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As to the time complexity, note that the best swap computation of a single
edge according to the BestDiamSwap algorithm requires at most O(‖D‖) time.
Now note that this algorithm can be executed independently (and thus concur-
rently) for each potential failing edge: In this fashion, each node x in T sends
exactly one message to each node in Tx during the top-down phase. Symmetri-
cally, in the bottom-up phase, each node u in T sends exactly one message to
each node on its path to the root. The crucial point here is to avoid that some of
these messages block others for some time (as only one message can traverse a
link at a time). Indeed, one can ensure that each message reaches its destination
in O(‖D‖) time as follows. A node z receiving a message with destination at
distance d from z forwards it only after all messages of the protocol with a des-
tination of distance more than d from z have been received and forwarded. By
induction over the distance of a message from its destination, it is easily proven
that this “Farthest-to-Go” queuing policy allows each message to traverse one
link towards its destination after at most one time unit of waiting. Thus, the
O(‖D‖) time complexity also holds for the entire algorithm. ��

Instead of sending many small messages individually, we can choose to sequence
the process of message sending so that messages for different failing edges are
bundled before sending (see also [3,4] for applications of this idea). This leads
to an alternative with fewer but longer messages:

Corollary 1. After preprocessing, the distributed all best swaps problem can be
solved using O(n) messages of size O(n) each, and O(‖D‖) time.

5 The Preprocessing Phase

The preprocessing phase serves the purpose of making the needed terms in the
sums described in the previous section available at the nodes of the tree.

In the preprocessing phase, a diameter D of T is chosen, and its two ends
d1 and dk as well as its center dc are identified. This can be done essentially
by a convergecast, followed by a broadcast to distribute the result (see e.g. [9]);
we omit the details. Hence, after preprocessing exchanges O(n) messages, each
node knows the information that is requested in (A) and (C) below. It is crucial
that during preprocessing, each node obtains enough information to later carry
out all computational steps to determine path components (i), (ii) and (iii).
More precisely, each node gets the following global information (the same for all
nodes):

(A) The endpoints d1 and dk of the diameter, the length |D| of the diameter,
and the lengths |DL| and |DR|.

(B) The length μR of a longest path starting in dk that is fully inside Tdc+1 ,
together with the node ρR on D where such a path leaves the diameter.
Figure 5 illustrates such a longest path μR. Moreover, the distance d(ρR, dc)
must be known. Symmetrically, the length μL of a longest path starting in
d1 that is fully inside Tdc−1 , with the corresponding node ρL and distance
d(ρL, dc) are required.
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In addition, each node z obtains the following information that is specific for z:

(C) For each child q ∈ C(z) of its children, the height Tq of q’s subtree.
(D) Is z on the diameter D, yes or no.
(E) The distance d(z, dc) of z to dc.
(F) The identification of the parent p(z) of z in T .
(G) To which of VL, VC and VR does z belong.
(H) If z /∈ D, the closest predecessor u of z on the diameter; the distance d(u, dc)

from u to dc.
(I) If z is on the left (right) diameter DL (DR), with z = di, the length λ(di) of a

longest path in T starting at dc and neither containing the node dc+1 (dc−1)
nor the node di−1 (di+1) (see Fig. 5).

(J) For each of the neighbours z′ of z in G, which of VL, VC and VR contains
z′; the distance d(z′, dc) from z′ to dc; the nearest predecessor u′ of z′ on
D, the distance d(u′, dc).

Computing the Additional Information. Recall that the first preprocess-
ing part ends with a broadcast that informs all nodes about the information
described in (A) and (C). The second part of the preprocessing phase follows
now.

A node z receiving the message about D can infer from the previous converge-
cast whether it belongs to D itself by just checking whether the paths from z to
d1 and dk go through the same neighbour of z.

Information (E) is obtained by having the center node send a “distance from
dc” d(dc, d∗) message to both neighbours dc+1 and dc−1 on D, which is forwarded
and updated on the diameter. This information is used by the diameter nodes for
computing λ(di), required in (I). The center initiates the inductive computation
of λ(di):

– λ(dc) is the depth of a deepest node in VC .
– For each dj , 1 ≤ j < c, λ(dj) = max{λ(dj+1), d(dc, dj) + h2(dj)}, h2 being

the height of a highest subtree of dj apart from the diameter subtree.
– For each dj , c < j ≤ k, λ(dj) = max{λ(dj−1), d(dc, dj) + h2(dj)}.

In order to compute μL and μR as required in (B), we define μ(di) for each
node di on DL as the length of a longest path starting in d1 that is fully inside
Tdi, together with the node ρ(di) on DL where such a path leaves the diameter.
For di on DR, the definition is symmetric. We then have μL = μ(dc−1) and
μR = μ(dc+1). The inductive computation of μ(di) is started by d1 and dk, and
then propagated along the diameter:

– μ(d1) = μ(dk) = 0;
– for each dj , 1 < j < c, μ(dj) = max{μ(dj−1), d(d1, dj) + h2(dj)};
– for each dj , c < j < k, μ(dj) = max{μ(dj+1), d(dk, dj) + h2(dj)}.

Along with μ(dj), ρ(dj) and d(ρ(dj), dc) can be computed as well. The computa-
tion stops in dc, which receives the messages (μ(dc−1), ρ(dc−1), d(ρ(dc−1), dc)) =
(μL, ρL, d(ρL, dc)) and (μ(dc+1), ρ(dc+1), d(ρ(dc+1), dc)) = (μR, ρR, d(ρR, dc)).
Altogether, this second preprocessing part operates along the diameter and takes
O(‖D(T )‖) = O(n) messages.
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Fig. 5. Definition of λ(di), μR and ρR
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Fig. 6. Only some nodes need to know
about failure of edge e = (x, p(x))

Distributing the Information. When the computation of (μL, ρL, d(ρL, dc))
and (μR, ρR, d(ρR, dc)) completes in dc, the center packs these values plus the
values |DL| and |DR| into one message M∗. It adds the appropriate one of the
labels “VL”,“VR” and “VC” to M∗, before forwarding M∗ to dc−1, dc+1 and any
other neighbour of dc in T and then flooding the tree. Additionally, M∗ contains
the “distance from dc” information which is updated on forwarding, such that
all nodes know their distance to the center2. When M∗ is forwarded from a node
u ∈ D to a node not on D, it is extended by the “distance from u” information,
which is also updated on forwarding. In addition, d(u, dc) is appended to M∗.
Finally, if node z receives M∗ from node v, then z learns that v is its parent.

At the end of this second part of the preprocessing phase, each node z′ sends
a message M ′ to each of its neighbours z in G\T . Note that this is the only
point in our solution where messages need to be sent over edges in G\T . M ′

contains d(z′, dc) and exactly one of { “z′ ∈ VL”, “z′ ∈ VC” , “z′ ∈ VR” },
whichever applies. Furthermore, let u′ be the nearest ancestor of z′ on D; the
distance d(u′, dc) is also appended to M ′.

As a consequence, after each node has received its version of the message M∗,
the information stated in (B), (E), (F), (G), (H) is known to each node. Further-
more, each node that has received M ′ from all its neighbours in G knows the in-
formation stated in (J). The distribution of this information requires O(‖D(T )‖)
time and O(m) messages. Let us summarize.

Lemma 2. After the end of the two parts of the preprocessing phase, which
requires O(‖D‖) time, all nodes know all information (A)− (J), and O(m) mes-
sages have been exchanged.

Recognizing Swap Edges Using Labels. A node v ∈ Tx must be able to
tell whether an incident edge f = (v, w) is a swap edge for e = (x, p(x)) or
not. We achieve this by the folklore method of numbering nodes in two ways, a
preorder traversal and a reverse preorder traversal. After this, a node can decide
in constant time whether an edge is a swap edge. For details, see [3,4].

2 The nodes on D already have that information at this point, but all other nodes still
require it.
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6 Routing Issues

A natural question arises concerning routing in the presence of a failure: After
replacing the failing edge e by a best swap edge f , how do we adjust our routing
mechanism in order to guide messages to their destination in the new tree Te/f?
And how is routing changed back again after the failing edge has been repaired?
Clearly, it is desirable that the adaptation of the routing mechanism is as fast
and inexpensive as possible.

Existing Approaches. The simplest routing scheme uses a routing table of n
entries at each node, which contains, for each possible destination node, the link
that should be chosen for forwarding. This approach can be modified to allow
swaps by storing additional n entries for the swap links at each node [3]. In [5]
a scheme is proposed that stores only one swap entry, at the cost of choosing
suboptimal swap edges. All these approaches require O(n2) routing entries in
total.

In the following, we propose to use a compact routing scheme for arbitrary
trees (shortest paths, minimum diameter, or any other) which requires only δ
entries, i.e. δc log n bits, at a node of degree δ, thus n entries or mc logn bits in
total, which is the same amount of space that the interval routing scheme of [10]
requires. The header of a message requires c log n bits to describe its destination.

Our Routing Scheme. Our routing scheme for trees is based on the labelling
γ : V → {1, . . . , n}2 described in the end of Section 5. Note that γ allows to
decide in constant time whether a is in the subtree of b (i.e., a ∈ Tb) for any two
given nodes a and b.

Basic Routing Algorithm:
A node s routes message M with destination d as follows: (i) If d = s,
M has arrived at its destination. (ii) If d /∈ Ts, s sends M to p(s).
(iii) Otherwise, s sends M to the child q ∈ C(s) for which d ∈ Tq.

This algorithm clearly routes each message directly on its (unique) path in T
from s to d. Before describing the adaptation in the presence of a swap, observe
that a node s which receives a message M with destination d can locally decide
whether M traverses a given edge e = (x, p(x)): edge e is used by M if and only
if exactly one of s and d is in the subtree Tx of x, i.e., if (s ∈ Tx) = (d ∈ Tx).
Thus, it is enough to adapt routing if all nodes are informed about a failing edge
(and later the repair) by two broadcasts starting at its two incident nodes (the
points of failure). However, the following lemma shows that optimal rerouting
is guaranteed even if only those nodes which lie on the two paths between the
points of failure and the swap edge’s endpoints are informed about failures,
which allows “piggybacking” all information for routing adjustment on the first
message arriving at the point of failure after the failure occurred.

Lemma 3. Let e = (x, p(x)) be the failing edge, and f = (z, z′) the best swap
of e, where z is in Tx and z′ in T \Tx, as shown in Figure 6. If all nodes on the
path from x to z know that e is unavailable and that f = (z, z′) is a best swap
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edge, then any message originating in s ∈ Tx will be routed on the direct path
from s to its destination d. Symmetrically, if all nodes on the path from p(x) to
z′ know about e and f , then any message originating in s ∈ T \Tx will be routed
on the direct path from s to its destination d.

Proof. Let M be any message with source s ∈ Tx. If d ∈ Tx, then trivially M
will be routed on its direct path, because it does not require edge e. If d ∈ T \Tx,
consider the path PT from s to d in T , and the path PTe/f

from s to d in Te/f .
Consider the last common node i of PT and PTe/f

in Tx. The path composed
of the paths 〈x, . . . , i〉, 〈i, . . . , z〉 is exactly the unique path in T from x to z, so
node i lies on that path.

Obviously, M will be routed on the direct path towards d up to i. As i lies on
the path from x to z, it knows about the failure and the swap, and will route
M towards z. The lemma assumes that any node on the path from i to z also
knows about the swap. Thus, such nodes will route M on the direct path to z.
At z, M will be routed over the swap edge f , and from z′ on M is forwarded on
the direct path from z′ to d. ��

Given Lemma 3, we propose the following “lazy update” procedure for informing
nodes about an edge failure:

Algorithm Swap:
If an edge fails, no action is taken as long as no message needs to cross
it. As soon as a message M which should be routed over the failing edge
arrives at the point of failure, information about the failure and its best
swap is attached to message M , and M is routed towards the swap edge.
On its way, all nodes which receive M route it further towards the swap
edge, and remember for themselves the information about the swap.

Observation (Adaptivity). After one message M has been rerouted from the
point of failure to the swap edge, all messages originating in the same side of T
as M (with respect to the failing edge) will be routed to their destination on the
direct path in the tree (i.e., without any detour via the point of failure).

If a failing edge has been replaced by a swap edge, then all nodes which know
about that swap must be informed when the failure has been repaired. Therefore,
a message is sent from the point of failure to the swap edge (on both sides if
necessary), to inform these nodes, and to deactivate the swap edge.

7 Discussion

We have presented a distributed algorithm for computing all best swap edges
for a minimum diameter spanning tree. Our solution is asynchronous, requires
unique identifiers from a linearly ordered universe (but only for tiebreaking to
determine a center node), and uses O(‖D‖) time and O(max{n∗, m}) small mes-
sages, or O(n) messages of size O(n). It remains an open problem to extend
our approach to subgraphs with other objectives; for instance, can we efficiently
compute swap edges for failing edges in a spanner?
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Abstract. Many recommend planning for the worst and hoping for the best. In
this paper we devise efficient indulgent consensus algorithms that can tolerate
crash failures and arbitrarily long periods of asynchrony, and yet perform (asymp-
totically) optimally in well-behaved, synchronous executions with few failures.
We present two such algorithms: In synchronous executions, the first has optimal
message complexity, using only O(n) messages, but runs in superlinear time of
O(n1+ε). The second has a message complexity of O(n polylog(n)), but has
an optimal running time, completing in O(f) rounds in synchronous executions
with at most f failures. Both of these results improve significantly over the most
message-efficient of previous indulgent consensus algorithms which have a mes-
sage complexity of at least Ω(n2) in well-behaved executions.

1 Introduction

As in many other fields, it is considered good computing practice to plan for the worst
and hope for the best. In the context of distributed computing, this typically translates
into devising algorithms that, on the one hand tolerate process failures and arbitrarily
long periods of asynchrony, whilst on the other hand, are particularly effective under
best-case conditions, namely, few failures and synchrony. Such best-case conditions are
usually considered frequent in practice and it makes sense to optimize algorithms with
these conditions in mind.

In this paper, we explore this idea in the context of consensus [1, 2] in a system
of n processes of which a minority can fail by crashing. Given a set of n crash-prone
processes, each with initial value vi; each process needs to decide an output satisfying:
(1) (agreement) every process decides the same value; (2) (validity) if a process decides
value v, then v is the initial value for some process; (3) (termination) every correct
process eventually decides.

The question we ask is how “efficient” can a consensus algorithm be when the sys-
tem is synchronous and f ≤ �n/2� − 1 failures actually occur, if the algorithm needs
to tolerate arbitrarily long periods of asynchrony. Consensus algorithms that tolerate
arbitrarily long periods of asynchrony include [3, 4, 5, 6, 7, 8]: they have been called
indulgent [9]; indulgent consensus is impossible when there are more than a minority
of crash failures [3].

A. Pelc (Ed.): DISC 2007, LNCS 4731, pp. 283–297, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Message Complexity Round Complexity

Alg. 1 (Section 4): O(n) O(n1+ε)

Alg. 2 (Section 5): O(n log6 n) O(f)

Fig. 1. Message and round complexity of the two algorithms presented in this paper. Both refer
to synchronous executions in which there are no more than f ≤ t failures.

Addressing this question requires defining what it means for a consensus algorithm
to be “efficient.” Usually, this is measured in terms of rounds of communication needed
for processes to reach a decision (see, e.g., [10]). There indeed exists an indulgent con-
sensus protocol that reaches a decision in O(f) (in fact, f + 2) rounds when the system
is synchronous and f processes fail [11]. This algorithm, and in fact all indulgent con-
sensus algorithms that are optimized for synchronous periods (e.g., [12,4,8]), exchange
Ω(n2) messages: all processes send messages to all processes in every round. (In fact,
most use at least Θ(n2f) messages.) This pattern of full message exchange is a key
subprotocol underlying those algorithms, and is used to detect synchrony and adapt the
decision time to the actual number of failures. It is natural to ask whether such a pattern
is necessary and whether Θ(n2) messages really need to be exchanged.

In other words, is it possible to devise an indulgent consensus protocol that reaches
a decision in O(f) rounds when the system is synchronous and no more than f pro-
cesses fail, while exchanging fewer than Θ(n2) messages? If the algorithm does not
need to tolerate asynchrony, then the answer is yes [11]: [13] presented a protocol that
uses O((f + 1)n) messages and [14] later demonstrated that O(n + fnε) messages
are sufficient. However, it is not immediately obvious whether similar results can be
achieved if the algorithm must tolerate periods of asynchrony. Clearly, during such a
period processes could have divergent views: some may believe the system to be syn-
chronous whereas others may not; some may observe only a small number of failures
and hence believe it safe to decide, while others may not. In algorithms with a pattern
of full message exchange, these inconsistencies are easy to resolve. The key difficulty
in constructing an efficient algorithm that tolerates asynchrony is devising message-
efficient techniques for producing a consistent view of the (a)synchrony of the world.

Results

We present in this paper two indulgent consensus algorithms (see Table 1). Both tolerate a
minority of the processes failing, and output a decision when the system becomes stable.
When the system is synchronous, both algorithms guarantee good performance, both in
terms of message-efficiency and round complexity. Each is (asymptotically) optimal in a
different sense. The first guarantees optimal message complexity—O(n) messages—in
synchronous executions, and terminates in O(n1+ε) rounds. The second is adaptive: it
guarantees optimal round complexity—O(f) rounds—in a synchronous execution with
no more than f ≤ t failures, and has a message complexity of O(n log6 n).

The key idea in both algorithms is to simulate an efficient synchronous consensus
algorithm, while at the same time detecting asynchrony. If the execution is synchronous,
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then efficient performance is achieved. If the execution is not synchronous, however,
the processes synchronize their view of the world via message-efficient gossip, and
eventually fall-back to a less efficient consensus protocol that can better tolerate the
uncertain synchrony.

In the case of the second algorithm, which is adaptive, the simulation of the ef-
ficient synchronous protocol is more involved: different processes may complete the
simulation at different times and (again) with different views of the world. In message-
expensive algorithms, this is easy to resolve, as typically all processes decide within
one round of each other due to nodes flooding their decision prior to termination. In our
case, the combination of adaptivity and possible asynchrony complicated the matters.
Throughout the simulation, processes must efficiently determine whether any processes
have already produced a decision which is clearly difficult because a process cannot
distinguish a failed process from one whose messages are delayed. The solution, again,
is through careful use of efficient gossip protocols to synchronize the status of the pro-
cesses prior to deciding.

Interestingly, both our algorithms can be viewed as generic transformations from
synchronous consensus (and gossip) protocols to partially synchronous consensus pro-
tocols. Thus future improvements in synchronous algorithms will result immediately in
improved indulgent consensus algorithms.

Previous and Related Work

The problem of consensus was first introduced by Pease, Shostak and Lamport [1].
Fisher, Lynch and Paterson [2] showed that consensus is unsolvable in an asynchronous
system in which even one process can crash. Thus research on consensus has often fo-
cused on synchronous and partially synchronous models of computation. In a seminal
paper [3], Dwork, Lynch, and Stockmeyer introduced a model of eventual synchrony in
which clock skew and message delivery eventually stabilize at some unknown point in
the execution. This is the model we adopt in this paper. They showed in [3] that consen-
sus can be solved in the eventually synchronous model if and only if n ≥ 2t + 1, where
t is the tolerable number of crash failures. In [9], Guerraoui coins the term “indulgent”
to describe algorithms that can tolerate arbitrarily long periods of asynchrony.

Fisher and Lynch [15] showed that a synchronous solution to consensus requires t+1
rounds, where t is the tolerable number of failures. Dolev and Strong [16] introduce the
idea of early stopping, or adaptive, consensus protocols, and Lamport and Fischer [17]
show that it is possible to terminate in only f + 2 rounds in executions with f < t
failures. Dolev, Reischuk and Strong [18] show that at least min(f + 2, t + 1) rounds
are necessary. In the context of indulgent consensus, Dutta and Guerraoui [11] show
that at least t + 2 rounds are required, even in a synchronous execution. There has been
a significant amount of recent work on optimizing the running time of consensus in
failure-free executions; see, for example [12, 19, 8].

In a synchronous setting, it is relatively straightforward to observe that there is an
Ω(n) lower bound on the message complexity of fault-tolerant synchronous consensus.
Dwork, Halpern and Waarts [20] found a solution with O(n log n) messages but expo-
nential time. Finally, Galil, Mayer and Yung [14] developed an algorithm with O(n)
messages, thus showing that this is the optimal message-complexity. The drawback of
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their solution is that it runs in superlinear time O(n1+ε), for any fixed 0 < ε < 1. Galil,
Mayer and Yung [14] also found an adaptive solution with O(n+ fnε) communication
complexity, for any 0 < ε < 1. Chlebus and Kowalski reduced the number of messages
to O(n log2 n) for consensus in case n−t = Ω(n) [21], and recently they developed an
adaptive algorithm that tolerates up to n− 1 crashes and achieves O(n log5 n) message
complexity [22]. The message complexity of consensus when no failures actually occur,
was studied by Amdur, Weber and Hadzilacos [23] and by Hadzilacos and Halpern [24],
and results in the following fact which implies that O(n) message complexity is opti-
mal, regardless of the actual number of failures:

Fact 1 (Amdur, Weber and Hadzilacos [23]). The message complexity of every (even-
tually)-synchronous consensus protocol is at least Ω(n), even in failure-free executions.

Roadmap

In Section 2 we describe the eventually synchronous model, and in Section 3 we define a
series of building blocks, synchronous protocols that will be used in the construction of
our algorithms. In Section 4, we describe our first algorithm which guarantees optimal
message complexity (in synchronous executions). In Section 5, we describe our second
algorithm which is adaptive and guarantees optimal round complexity (in synchronous
executions). We outline the proof of correctness in Section 6. In Section 7, we describe
instantiations of the building blocks from Section 3, which allows us to analyze the
performance of our algorithms in Section 8. We conclude in Section 9.

2 System Model

In this section we describe a basic system model for a partially synchronous (or even-
tually synchronous) system, as in [3]. The model is defined by three parameters that are
known a priori: n, the number of processes, δ, an eventual bound on clock skew, and
d, an eventual bound on message delay. There is also a stabilization time, referred to as
GST, that is unknown. We say that an execution is synchronous if GST= 0.

In more detail, we consider a system consisting of n message-passing processes,
each of which has a unique identifier from the set [n] = {1, 2, . . . , n}. Each process
is capable of communicating directly with all other processes: prior to GST, messages
may be arbitrarily delayed; after GST, every message is delivered within d time. Each
process has a local clock, and after GST the clock skew of every process is bounded by
δ, i.e., eventually the ratio of the rates of two processes’ clocks is at most δ.

We assume that up to t < �n/2� processes may crash, and that processes do not
restart or recover. We say that a process is correct if it does not crash. We do not assume
reliable multicast: if a process crashes while sending a message to multiple recipients,
then an arbitrary subset of the recipients may receive the message.

We are specifically interested in the performance of algorithms in synchronous ex-
ecutions. We say that an algorithm A solves consensus by time τ in the presence of f
failures if for every synchronous execution with no more than f failures, every node
has decided by time τ . We say that algorithmA has message complexity μ if for every
synchronous execution, the total number of messages sent is no more than μ.
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3 Building Blocks Protocols

We construct our protocol out of three synchronous building blocks: synchronous con-
sensus, synchronous gossip, and synchronous wake-up. We also use one eventually-
synchronous building block, a consensus protocol. In this section, we describe each of
these building blocks, and enumerate their properties. In Section 7 we describe how
each building block can be implemented from existing protocols.

Synchronous Consensus Protocol. The first basic building block, SynchConsensus,
is a protocol that solves consensus in synchronous executions. The protocol guarantees
the following properties: (1) Agreement: In every synchronous execution, all decision
values are the same. (2) Unconditional validity: In every execution (synchronous or
otherwise), every decision is the initial value of some process. (3) Termination: In every
synchronous execution, every process eventually decides and terminates.

The second property, unconditional validity, is the only guarantee in an execution
that is not synchronous. For every 0 ≤ f ≤ t, define τcons(f) to be the earliest
round in which every execution of SynchConsensus with no more than f failures
terminates. (This is of particular relevance when the consensus protocol is adaptive.)

Synchronous Conditional Gossip. The second building block is a protocol Gossip(k)
that solves the conditional gossip problem in synchronous executions with no more than
k failures. It is called “conditional” since its guarantees only hold when there are ≤ k
failures. Each process begins the gossip protocol with a rumor vi. The protocol satisfies
the following: (1) Completion: In every synchronous execution with at most k ≤ f < n
failures, every non-failed process eventually receives a rumor from every non-failed
process; and (2) Unconditional validity: In every execution (synchronous or otherwise),
every rumor received is the initial value of some process. For every 0 ≤ f ≤ t, define
τgossip(f) to be the earliest round in which every execution of Gossip(f) with no
more than f failures terminates.

Synchronous Conditional Wake-Up. The third building block is a protocol WakeUp(k)
that solves the conditional wake-up problem. In conditional wake-up, initially, some
subset S of the processes are designated awake, while the rest are designated asleep. The
goal of conditional wake-up is that if every process is initially asleep, i.e., S = ∅, then
every process remains asleep and no messages are sent by any process. Conversely, if
S = ∅, then every non-failed process wakes up. Again, it is referred to as “conditional”
since its guarantees only hold when there are ≤ k failures. In more detail, the protocol
guarantees the following: (1) Completion: In every synchronous execution with at most
k ≤ f < n failures, if S = ∅, then eventually the protocol terminates and every process
concludes that it is awake. (2) Validity: In every synchronous execution, if S = ∅, then
every process remains asleep and no messages are sent. For every 0 ≤ f ≤ t, define
τwakeup(f) to be the earliest round in which every execution of WakeUp(f) with no
more than f failures terminates.

Partially-Synchronous Consensus Protocol. The final building block is an arbitrary
eventually-synchronous consensus protocol PartSynchConsensus; it guarantees
the usual properties of consensus: agreement, validity, and termination. There are a va-
riety of protocols that satisfy these requirements, including, for example, [5, 3].
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4 Indulgent Consensus

In this section we present our first indulgent consensus protocol. When instantiated us-
ing the appropriate building-block protocols, the result is an (asymptotically) message-
optimal algorithm. (See Theorem 3.) The main idea is to first simulate an efficient
synchronous consensus protocol SynchConsensus (see Section 7.1), and then de-
termine whether it has completed successfully. If so, then each process can decide that
value and terminate; otherwise processes run a fall-back partially synchronous con-
sensus protocol that is not as message efficient. The main difficulty, then, is correctly
detecting when an execution is synchronous without sending too many messages.

4.1 Simulating Synchronous Rounds

Each process simulates synchronous rounds in the standard manner based on message
delay d and clock skew δ. Recall that in a synchronous execution, at time τ the clock at
every process i is in the range [(1 − δ)τ, (1 + δ)τ ]. Let ρ = (1 + δ)/(1 − δ). The first
simulated round r1 ends at time d/(1− δ) according to the local clock at each process.
Simulated round r ends for each process at time: τsim(r) = d

1−δ

∑r−1
j=0 ρj according

to the local clock of that process. In a synchronous execution, every message sent at the
beginning of round r according to the local clock of the sending process is received by
the end of round r according to the local clock of the receiving process.

4.2 Protocol Description

The protocol proceeds in four phases: (1) Agreement Phase, (2) Locking Phase, (3) De-
cision Phase, (4) Fall-back Phase. When the protocol begins, the proposal for process i
is stored in ei, its estimate. Process i also maintains a variable statusi that indicates
its current status. Initially statusi = proposal, indicating that the estimate is the initial
value. As the status advances during the protocol to higher levels, it never returns to a
lower level.

1. Agreement Phase. In the first phase, the processes together simulate the consensus
protocol SynchConsensus for τcons(t) rounds. If the execution is, in fact, syn-
chronous, then for each correct process the consensus simulation will output a decision;
all such decisions will agree. If the execution is not synchronous, then the consensus
protocol may not terminate, or may output different decisions at different processes. If
a process discovers that its simulation reaches a decision, then this decision is stored
as its estimate ei, and its status is advanced to candidate. Notice that processes do not
decide on the value output by SynchConsensus at this time.

The agreement phase continues until τcons(t) rounds have been simulated (where
t < �n/2� is the maximum tolerated number of failures). If the simulated consensus
protocol SynchConsensus has not terminated, then the simulation is halted. In this
case, any process that has not decided will (eventually) enter the fall-back phase.

2. Locking Phase. In the second phase, the processes together simulate the synchronous
conditional gossip protocol Gossip(t) for τgossip(t) rounds. Each process i uses
ei and statusi as its initial rumor. Thus, in a synchronous execution, every non-failed
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process receives the rumors of all other non-failed processes. At the end of the phase,
process i advances its status under the following conditions: (1) it has received a rumor
from at least �n/2� + 1 processes that have a status of candidate, locked, or decided
for some value v; (2) estimate ei = v; and (3) statusi = proposal or candidate. In this
case, process i updates its status to locked. We will argue (Lemma 1) that at most one
value is locked in an execution.

3. Decision Phase. In the third phase, the processes repeat the (synchronous) conditional
gossip protocol Gossip(t) for τgossip(t) further (synchronous) rounds. Each pro-
cess i again uses ei and statusi as its initial rumor. At the end of the third phase, process
i advances its status under the following conditions: (1) it receives a rumor from at least
�n/2�+1 processes that have a status of locked or decided for same value v; and (2) es-
timate ei = v; and statusi = locked. In this case, process i updates statusi = decided,
and decides ei. If all the processes have decided, then from this point on no further
messages are broadcast, and the protocol is considered to be terminated.

4. Fall-back Phase. In the final phase, if any process has not yet decided, then the pro-
cesses all resort to the fall-back consensus protocol PartSynchConsensus. This
phase occurs only in executions that are not synchronous. The synchronous round sim-
ulation is abandoned at this point.

The first step in the fall-back phase is to collect the final status of all the other processes.
This proceeds as follows: (1) Each process i that has not yet decided in the previous phase
sends a fall-back message to every other process: 〈fallback, ei, statusi〉. (2) Any process
that receives a fall-back message enters the fall-back phase and, if it has not already done
so, immediately sends a fall-back message 〈fallback, ej , statusj〉 to every process, even
if it has previuosly decided. (3) When a process i receives �n/2�+1 fall-back messages,
it determines if there are any locked values. That is, if any fall-back message contains
status locked, then process i sets its estimate ei to the value of that message.

Since every message is eventually delivered, and since a majority of processes are
correct, it is easy to see that if any correct process begins the fall-back phase, then
eventually every process receives �n/2� + 1 fall-back messages. Thus, if any value
has been locked by a majority of the processes during the initial three phases, then
each process executing the fall-back phase will adopt that value as its estimate. Every
process that has received a fall-back message then executes PartSynchConsensus,
where process i uses estimate ei as its proposal. Eventually PartSynchConsensus
produces a decision, and each process decides this value and terminates.

5 Adaptive Indulgent Consensus

In this section we show how to modify the protocol presented in Section 4 to develop
an adaptive indulgent consensus protocol. Recall that the protocol in Section 4 begins
by simulating the consensus protocol SynchConsensus in the agreement phase. If
SynchConsensus is adaptive, it terminates early in synchronous executions with few
failures. The goal of this section is to detect when the SynchConsensus simulation
has terminated. This detection is accomplished by pausing the consensus simulation
every so often and executing a variant of the locking and decision phases, using con-
ditional gossip primitives designed for f ≤ t failures. Before resuming the consensus
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protocol simulation, we execute a conditional wake-up protocol: if some processes have
decided and other have not yet decided, this protocol wakes the processes that have al-
ready decided so that they can continue with the (simulated) consensus protocol.

We divide the agreement phase into log n epochs numbered from 0 to log n − 1.
Epoch x has length O(2x), and simulates O(2x) rounds of SynchConsensus. The
epochs are structured such that by the end of epoch x, the system has finished executing
round τcons(2x) of SynchConsensus; thus in a synchronous execution with ≤ 2x

failures, SynchConsensus completes by the end of epoch x. (Notice that there are
< 2log n−1 = n/2 failures.)

In more detail, each epoch consists of four phases: (1) Wake-up: waking the pro-
cesses that have already decided; (2) Agreement: simulating some rounds of the con-
sensus protocol; (3) Locking: execute conditional gossip and determine if any of the
values can be locked, and (4) Deciding: execute conditional gossip and determine if
any of the values can be decided. If, at the end of log n epochs a process has not yet
decided, then it enters the fall-back phase.

1. Waking the Processes. At the beginning of epoch x, there are three possibilities:
all the processes have decided, none have decided, or some have decided and some
have not. In this last case, a problem might occur if some processes have decided,
and thus stopped participating voluntarily in future epochs, while others have not yet
decided and need to continue the protocol. The first step in epoch x, then, is to execute
WakeUp(2x): each process that has decided is initially asleep and each process that
is undecided is initially awake. This step takes τwakeup(2x) rounds, and guarantees
that if the execution is synchronous and there are no more than 2x failures, then every
process is awake.

2. Agreement. The second step in epoch x is to simulate some rounds of the consensus
protocol SynchConsensus, continuing from the last round simulated in the previous
epoch. In epoch 0, the processes simulate the first τcons(1) rounds of the protocol.
In epoch x > 0, the process simulate rounds τcons(2x−1) + 1, . . . , τcons(2x) of
the consensus protocol. If a process has decided in an earlier epoch, then it continues
to execute the simulation of SynchConsensus only if it was awoken in the wake-up
step, and if there are further rounds to simulate.

As in Section 4, each process i maintains two variables: ei, its estimate, and statusi,
its status. Initially, ei is process i’s proposal, and statusi = proposal. If process i dis-
covers that its simulated consensus protocol has decided value v, and if process i has
status equal to proposal, then process i sets ei = v and advances statusi = candidate.
If an execution is synchronous and has fewer than 2x failures, then the simulated con-
sensus protocol will terminate for all non-failed processes by the end of epoch x.

3. Locking. The third step in epoch x is to simulate the conditional gossip protocol
Gossip(2x) for τgossip(2x) (simulated) rounds, with ei and statusi as the rumor
for process i. This step is equivalent to the locking phase described in Section 4, except
that Gossip(2x) is executed, instead of Gossip(t). If at the end of the locking phase,
process i has received rumors from at least �n/2�+1 processes that all have value ei as
a candidate, locked, or decided, and if statusi = proposal or candidate, then process i
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locks value ei. If a process has decided in an earlier epoch, then it executes the gossip
only if it was awoken in the wake-up step; otherwise, it remains silent.

4. Deciding. The fourth step in epoch x is to again together simulate Gossip(2x)
for τgossip(2x) (simulated) rounds, again with ei and statusi as the rumor for pro-
cess i. This step is equivalent to the deciding phase described in Section 4, except that
Gossip(2x) is executed, instead of Gossip(t). If at the end of the deciding phase,
process i has received rumors from at least �n/2�+ 1 processes that have all locked or
decided value ei, and if statusi = decided, then process i decides value v. As in the
previous step, if a process has decided in an earlier epoch, then it executes the gossip
protocol only if was awoken in the wake-up step; otherwise, it remains silent.

Fall Back. If, at the end of all log n epochs, any process has not yet decided, then it
enters the fall-back phase, as described in Section 4, sending and collecting fall-back
messages, and running PartSynchConsensus.

6 Analysis

In this section we provide an outline of the proof that the protocol presented in Sec-
tion 5 guarantees agreement, validity, and termination. Performance results are given
in Section 8. We begin by showing that in every execution, there is at most one value
that is decided. The key lemma, in this case, is that at most one value is locked during a
locking phase. Notice that this does not depend in any way on the agreement property
of SynchConsensus which only holds in synchronous executions.

Lemma 1. In every execution, there is at most one value v such that ei = v and
statusi = locked for any i.

Proof. Assume for the sake of contradiction that i and j have locked two distinct values
v and v′ (possibly in two different epochs). This implies that each received rumors dur-
ing a locking phase from a majority of processes indicating that v and v′, respectively,
were candidate, locked, or decided values. Thus, some process k (in the intersection
of the two majorities) must have at one point had value v as a candidate, locked, or
decided value and at another point value v′ as a candidate, locked, or decided value.
But a process never changes its estimate after it has become a candidate, implying a
contradiction.

Lemma 2. In every execution, there is at most one value v that is decided.

Proof. Suppose for contradiction that processes i and j decide two different values v
and v′. There are three cases: (Case 1) Both decide prior to the fall-back phase: This
contradicts Lemma 1, as prior to the fall-back phase, a process only decides a value that
has been previously locked. (Case 2) Both decide during the fall-back phase: This con-
tradicts the agreement property of PartSynchConsensus, which guarantees that at
most one value is decided. (Case 3) One (say, i) decides v prior to the fall-back phase
and one (say, j) decides v′ during the fall-back phase: We argue that every process k
begins the fall-back phase with initial value v. Process i decides prior to the fall-back
phase only if it receives gossip messages indicating that a majority of processes have
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locked value v. In the first step of the fall-back phase, process k receives fall-back
messages from a majority of the processes. Since a process never changes its estimate
once it is locked (prior to the fall-back phase), we can conclude that process k receives
a message indicating that value v has been locked. Since there is at most one locked
value, by Lemma 1, we conclude that process k adopts value v as its proposal in the
fall-back phase. Since every process proposes value v in the fall-back phase, the validity
of PartSynchConsensus implies that every non-failed process decides v, resulting
in a contradiction.

Next, it follows immediately from the unconditional validity of SynchConsensus
and Gossip(t), and from the validity of PartSynchConsensus, that the decision
is valid:

Lemma 3. If v is decided in some execution, then for some process i, initially ei = v.

Finally, it is easy to see that, due to the fall-back protocol, the protocol eventually ter-
minates in all executions:

Lemma 4. In all executions, every process eventually decides and stops sending
messages.

7 Implementing the Three Synchronous Building Blocks

In this section we describe efficient implementations of the building-block protocols
described in Section 3.

7.1 Implementing SynchConsensus

This section describes two synchronous consensus protocols, both derived from prior
work. The first is adaptive and uses O(n log6 n) messages; the second uses a superlinear
number of rounds but has optimal O(n) message complexity.

Adaptive Synchronous Consensus. In this section, we outline the construction of
an adaptive synchronous consensus protocol that is message efficient. We proceed in
three steps: we start with a synchronous binary consensus developed in [22]; then we
construct a multivalue consensus protocol; finally we transform the resulting protocol
into an adaptive protocol. In each step, the challenge is to not increase the asymptotic
running time and message complexity too much.

Efficient binary synchronous consensus. In [22], Chlebus and Kowalski introduce a bi-
nary, message-efficient consensus protocol that tolerates up to n−1 failures, decides in
time O(n) and sends O(n log5 n) point-to-point messages.

From binary to multivalue consensus. While the protocol presented in [22] is for binary
consensus, it can be readily modified to efficiently support multivalue consensus. Typi-
cally, binary consensus protocols are translated into multivalue consensus protocols by
agreeing on each bit one at a time. In order to achieve unconditional validity and to
avoid increasing time complexity above Θ(n), a slightly different approach is needed.
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We construct a binary tournament tree and use binary consensus to navigate the tree.
This results in a synchronous multivalue consensus protocol that runs in O(n) times
and O(n log6 n) message complexity.

Adaptive synchronous consensus Chlebus and Kowalski show in [22] how to transform
a message-efficient, synchronous consensus protocol into an adaptive message-efficient
synchronous consensus protocol, with an (additive) additional O(n log4 n) message
complexity. The end result is a synchronous, adaptive, message-efficient, that is having
O(n log6 n) message complexity, consensus protocol SynchConsensus that guar-
antees unconditional validity:

Proposition 1. There exists a synchronous multivalue consensus protocol with message
complexity O(n log6 n) and round complexity O(f) in executions with ≤ f failures.

Message-Optimal Synchronous Consensus. In this section we outline the
construction of a message-optimal synchronous consensus protocol that uses only O(n)
messages and runs in times O(n1+ε) for every 0 < ε < 1. We begin by describing a
protocol that solves the Interactive Consistency problem, a stronger variant of consen-
sus in which processes agree not simply on a single value, but rather on a vector of
decision values, including one for each correct process1. Formally, the IC problem is
defined as follows: each process i begins with an initial value vi, and outputs a deci-
sion vector Di such that the following properties are satisfied: (1) Agreement: In every
synchronous execution, the decision vector Di of all processes is the same. (2) Uncon-
ditional validity: In every execution (synchronous or otherwise), if Di is the decision
vector of process i, then D[j]i is either the initial value of process j or ⊥. (3) Condi-
tional validity: If the execution is synchronous and j is correct, then D[j]i = ⊥. (4)
Termination: Eventually every process outputs a decision vector Di and terminates.

In [14], there is a synchronous protocol that efficiently solves the checkpoint prob-
lem, a variant of IC. In particular, the checkpoint problem requires each process i to
output a set of processes Pi (rather than a set of values) where every correct process
is in the set Pi, and every process in Pi is non-failed at the beginning of the execu-
tion. We claim that every synchronous checkpoint protocol can be transformed into a
synchronous algorithm for IC:

Lemma 5. If A solves synchronous checkpoint in τ rounds with message complexity μ,
then there exists a synchronous protocol A′ that solves IC in τ rounds with message
complexity μ.

We conclude from Lemma 5, along with the checkpoint protocol from [14]:

Proposition 2. There exists a synchronous multivalue consensus protocol with message
complexity O(n) and round complexity O(n1+ε), for any 0 < ε < 1.

7.2 Implementing Gossip(k)

In this section, we describe two synchronous (conditional) gossip protocols. The first
terminates in O(k) rounds and uses O(n log4 n) messages, while the second uses a
superlinear number of rounds but has O(n) message complexity.

1 It is interesting to notice that IC cannot be solved in a partially synchronous model [9]. We
depend on the IC protocol only in synchronous executions, and hence there is no contradiction.
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Adaptive Conditional Gossip. In [22], Chlebus and Kowalski present a gossip proto-
col tolerating up to n − 1 failures that has message complexity O(n log4 n) and com-
pletes in O(log3 n) rounds. When k ≥ log3 n, the running time is O(k), as desired.
When k ≤ log3 n, we resort to a simpler two-round protocol in order to guarantee
termination time O(k): in the first round, each process sends its rumor to processes
[1, . . . , k + 1]; in the second round, processes [1, . . . , k + 1] send all the received ru-
mors to all the other processes. Notice that this satisfies the conditional completion
property, as there are at most k failures, and is message efficient, as it requires at most
2(k + 1)n = O(n log3 n) messages when k < log3 n.

Proposition 3. For all f < n, there exists a synchronous conditional gossip protocol
with message complexity O(n log4 n) and round complexity O(f) in executions with at
most f failures.

Message-Efficient Conditional Gossip. Recall from Section 7.1, there exists a pro-
tocol solving Interactive Consistency in O(n1+ε) rounds with O(n) messages. Notice
that any solution to Interactive Consistency is also a solution to gossip, as each process
outputs a set of initial values from every correct process. We thus conclude:

Proposition 4. There exists a synchronous conditional gossip protocol with message
complexity O(n) and round complexity O(n1+ε) in executions, for any 0 < ε < 1.

7.3 Implementing WakeUp(k)

The conditional wake-up problem is quite close to the conditional gossip problem; the
primary difference is that processes initially designated to be asleep must not send any
messages at least until they have received a message from a process that was initially
awake. Thus, from the point of view of the gossip algorithm, a sleeping process can be
treated as faulty until it is awoken. Thus the wake-up problem can be solved using any
synchronous gossip protocol that satisfies the following additional Polling Property:
in every execution, for every faulty process i there is some process j that, prior to
failing, sends a message to i. Nearly every “reasonable” gossip protocol, including the
one described in Section Section 7.2, has this property. The simple two-round protocol
(when k ≤ log3 n)) also clearly has this property. We conclude:

Proposition 5. For all f ≤ t, there exists a synchronous conditional wake-up protocol
that has message complexity O(n log4 n) and round complexity O(f) in executions with
at most f failures.

8 Performance Analysis

In this section, we analyze the efficiency of the two algorithms. We begin with the
adaptive protocol from Section 5 where SynchConsensus is instantiated by the con-
sensus protocol posited by Proposition 1, Gossip(k) is instantiated by the gossip pro-
tocol posited by Proposition 3, and WakeUp(k) is instantiated by the wake-up protocol
posited by Proposition 5.
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Lemma 6. For every synchronous execution with no more than f ≤ t failures, every
process decides by time O(f), terminating prior to the beginning of the fall-back phase.

Proof. If f = 1, consider epoch x = 0; otherwise, consider epoch x such that 2x−1 <
f ≤ 2x. There are two possibilities at the beginning of epoch x: either some process
has already decided in an earlier epoch, or no process has decided in an earlier epoch.
By the conditional guarantee of the wake-up protocol, however, in either case every
non-failed process awakes to participate in epoch x.

Next, by the adaptivity property of SynchConsensus, we can conclude that the
simulated consensus protocol has output a decision at each non-failed process by the
end of the agreement step of epoch x. Thus every non-failed process has status either a
candidate, locked, or decided. Since the simulated consensus protocol guarantees agree-
ment, every process with status candidate has the same value. Since every value that
is locked or decided was previously a candidate, we can conclude that every process in
fact has the same value.

In the locking step of epoch x, since there are no more than 2x failures, the con-
ditional gossip ensures that each non-failed process receives rumors from a majority
of processes, all of which have value v as candidate, locked, or decided. We can thus
conclude that at the end of the locking step, every non-failed process has either locked
or decided value v. Similarly, in the decision step of epoch x, since there are no more
than 2x failures, the conditional gossip ensures that each non-failed process receives
rumors from a majority of processes. We can thus conclude that at the end of the de-
cision phase, every process has decided value v. From this point on, no process sends
any further messages. Thus we conclude that by the end of epoch x, every non-failed
process has terminated.

Finally, we calculate the total running time through the end of epoch x. First, simulat-
ing SynchConsensus through the end of epoch x requires O(τcons(2x)) rounds,
which by the choice of SynchConsensus is O(2x) rounds. Next, notice that for every
epoch y ≤ x, each process executes two instances of Gossip(2y) and one instance of
WakeUp(2y); these instances take time O(τgossip(2y)) and O(τwakeup(2y)), re-
spectively, which are both, by assumption, O(2y). Thus, for each epoch y, the wake-up,
locking, and decision phases cost O(2y) rounds, and hence when summed from epoch
0 to epoch x result in a running time of O(2x) rounds. Thus the total running time to
the end of epoch x, in terms of synchronous rounds, is O(2x) = O(f), implying a
termination time of τsim(O(f)) = O(f).

We next argue that the resulting protocol is message efficient:

Lemma 7. In every synchronous execution, the processes send O(n log6 n) messages.

Proof. During the entire simulation of SynchConsensus, the processes collectively
send O(n log6 n) messages. In each epoch x, each (non-failed) process executes two
instances of Gossip(x) and one instance of WakeUp(x); each such instance uses
O(n log4 n) messages, resulting in O(n log6 n) messages total. By Lemma 6, we con-
clude that each process decides no later than the final epoch, as desired.

Thus we conclude:
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Theorem 2. There exists an adaptive indulgent consensus protocol with message com-
plexity Θ(n log6 n) and running time O(f) in synchronous executions with no more
than f failures.

We next briefly examine the performance of the protocol presented in Section 4, where
SynchConsensus is instantiated by the protocol posited by Proposition 2 and
Gossip(k) is instantiated by the gossip protocol posited by Proposition 4. Since the
structure of the protocol is identical to that of one epoch of the adaptive protocol, we
conclude (much as in Section 6, and omitted to avoid redundancy and save space) that
the protocol solves the gossip problem and eventually terminates:

Theorem 3. There exists an indulgent consensus protocol with message complexity
Θ(n) and a running time O(n1+ε) in synchronous executions.

9 Discussion and Open Questions

We have shown how to implement efficient indulgent consensus algorithms in an even-
tually-synchronous network. In fact, the algorithms described, with minor modifica-
tions, tolerate an even less well-behaved environment. First, even if messages are lost
prior to GST, both algorithms continue to behave correctly, as long as each process that
has entered the fall-back phase repeats its fall-back message until a decision is reached.
Second, even if the bounds d and δ are incorrect, both algorithms continue to solve
consensus as long as the network eventually stabilizes for some (unknown) d̂ and δ̂;
only the message-efficiency is sacrificed. Third, in synchronous executions both algo-
rithms can tolerate more failures, in fact, up to n − 1 failures, as long as no more than
a minority fail in executions that are not synchronous.

One major open question raised by this paper is whether there exists a protocol that
is both optimal in message complexity and linear in round complexity. The answer is
unknown even for synchronous networks. Another question is whether it is possible
to achieve better message complexity in an adaptive algorithm. For some values of f
(when f is much smaller than n), it is possible to use an alternative instantiation of the
building blocks derived from [14] to achieve a somewhat better message complexity,
while terminating in O(f) time.
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Abstract. Let consider n autonomous mobile robots that can move in
a two dimensional plane. The gathering problem is one of the most fun-
damental tasks of autonomous mobile robots. In short, given a set of
robots with arbitrary initial locations, gathering must make all robots
meet in finite time at a point that is not predefined. In this paper, we
study about the feasibility of gathering by mobile robots that have φ-
absolute error dynamic compasses. While the direction of each local co-
ordinate system is fixed in usual systems, the dynamic compass model
allows the angle difference between a local coordinate system and the
global coordinate system to vary with time in the range of [0, φ]. This
paper proposes a semi-synchronous gathering algorithm for n robots with
(π/2−ε)-absolute error dynamic compasses, where ε is an arbitrary small
constant larger than zero. To the best of our knowledge, the proposed
algorithm is the first one that considers both inaccurate compass models
and more than two robots. We also show the optimality of our algorithm.
It is proved that for any φ ≥ π/2, there is no algorithm to gather two
robots with φ-absolute error dynamic compasses.

1 Introduction

In recent years, cooperations of a large number of autonomous mobile robots
have received much attention. Because of its interesting features, such as inex-
pensiveness, fault tolerance, and high-level parallelism, many researchers study
about them from several kinds of aspects. In particular, the algorithmic issues of
autonomous mobile robots are actively studied in the literature of the distributed
computing.

In most of algorithmic studies about autonomous mobile robots, a robot is
modeled as a point in a plane, and its capability is quite weak. It is usually as-
sumed that robots are oblivious (no memory to record past situations), anony-
mous and uniform (no IDs to distinguish two robots, and all robots run an
identical algorithm). In addition, it is also assumed that each robot has no ex-
plicit direct means of communication. Typically, the communication between
two robots is done in the implicit way that each robot observes the environ-
ment, which includes the position of other robots. From practical aspects, such
weak capabilities of robots are favorable in the point of cost and implementabil-
ity. However, too-weak robot systems are hard to accomplish the task to be
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completed. Thus, revealing “the weakest” capability of robot systems to accom-
plish a given task is one of worthwhile challenges in the theoretical studies of
autonomous mobile robots.

This paper is also an exploration of such weakest capabilities. The problem
considered in this paper is gathering, which is one of the most fundamental
tasks of autonomous mobile robots. In short, given a set of robots with arbi-
trary initial locations, gathering must make all robots meet in finite time at a
point that is not predefined. Because of its simplicity, the gathering problem
is actively studied before now: Many researchers tackle this problem, and show
a number of possibility/impossibility results under the different assumptions
[1,2,4,5,7,10,11,12,13,14]. In particular, we focus on the disagreement of local
coordinate systems. As we mentioned, robots implicitly communicate with each
other by observing environments. Then, the observation of each robot is done
in terms of its local coordinate system, and thus it differentiates the capability
of robots how local coordinate systems agree with each other. The seminal pa-
per by Suzuki and Yamashita [13] shows that even two oblivious robots cannot
achieve gathering if there is no agreement about their local coordinate systems.
On the other hand, it also shows that it is possible to gather any number of
robots if all of their local coordinate systems are consistent. These two results
yield an interesting question, “how much agreement is necessary to accomplish
gathering task?”

The study to answer this question is independently and concurrently origi-
nated by two papers [6,11]. Both of two papers quantify the agreement level of
local coordinate systems by the angle difference for the global coordinate sys-
tem (Figure 1), and show that, in asynchronous systems, two-robot gathering is
possible if the differences of two robots’ coordinate systems are bounded by a
certain degree. The upper bounds proposed by the above two papers are π/4,
and it is improved to π/3 by Katayama et al. [7]. More recently, this upper bound
is drastically improved to π − ε, where ε is an arbitrary small constant larger
than zero [14]. While these results assume that the differences of local coordinate
systems are fixed constants, the paper by Katayama et al. [7] also considers the
dynamic compass model, which allows the difference of a local coordinate system
to vary with time. It also shows that it is possible to gather two robots with
dynamic compasses in asynchronous systems if the maximum angle difference of
each local coordinate systems is at most π/4.

This paper has also the same research direction as the above papers. The con-
tribution of this paper is as follows: This paper assumes the Suzuki-Yamashita
model (SYm), which is also known as the semi-synchronous systems [13]. In
typical algorithmic robot models, an execution of a robot consists of consecutive
cycles. One cycle includes the observation of environments, local computation,
and movement. While fully-asynchronous systems assume no bound on the time
length of one cycle, semi-synchronous ones assume that each robot works under
synchronized rounds. Each robot can execute one cycle in one round. However,
different from fully-synchronous systems, every robot does not necessarily exe-
cute one cycle in every round. Only a subset of all robots, which is determined



300 T. Izumi et al.

Fig. 1. A local coordinate system with
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by the scheduler, executes one cycle in each round (Figure 2). We present an
algorithm that gathers n robots having the dynamic compasses whose maximum
difference is at most π/2 − ε, where ε is an arbitrary small constant. The most
important contribution of our result is to consider n robots. To the best of our
knowledge, our gathering algorithm is the first one considering both the dis-
agreement of local coordinate systems and more than two robots. We present a
comparison between existing algorithms and ours in Figure 3. The n-robot algo-
rithm is designed in a constructive way: We first design the algorithm for gather-
ing two robots having dynamic compasses whose maximum difference is π/2− ε.
Then, slightly modifying the two-robot algorithm, we obtain a conditional n-
robot algorithm, where “conditional” implies that the algorithm correctly works
only when the initial configuration satisfies a certain condition. To remove the
condition, we further design an algorithm that reduces any configuration to one
satisfying the condition. The general n-robot algorithm is obtained by combining
these two algorithms. We also show that there is no algorithm that gathers two
robots having the dynamic compasses whose maximum difference is larger than
or equal to π/2 in SYm. This impossibility results implies that our algorithm is
optimal in the sense of the angle difference of local coordination systems.

The rest of this paper is organized as follows. In Section 2, we introduce
the robot model, dynamic compass model, and several necessary definitions and
notations. In Section 3, we present a two-robot gathering algorithm, which is
the basis of the n-robot one. In Section 4, we explain the construction of the
n-robot gathering algorithm which is obtained from the two-robot algorithm in
Section 3. The impossibility result is shown in Section 5. Section 6 addresses the
relation between our model and another inaccurate compass models.

2 The System Model

2.1 Robots with Dynamic Compasses

The robot system considered in this paper is the Suzuki-Yamashita model (SYm),
which is also known as the semi-synchronous robot model [13]. The system con-
sists of a set of autonomous mobile robots R = {R1, R2, · · · , Rn}. One robot is
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Timing Compass Angle #Robots
Assumption Model Difference

Souissi et al. [11] Async. Fixed π/4 2

Imazu et al. [6] Async. Fixed π/4 2

Katayama et al. [7] Async. Fixed π/3 2

Katayama et al. [7] Async. Dynamic π/4 2

Yamashita et al. [14] Async. Fixed π − ε ∗ 2

This paper SemiSync. Dynamic π/2 − ε ∗ n

∗ : Optimal Upper Bound
Async. : Asynchronous Systems
SemiSync. : Semi-Synchronous Systems

Fig. 3. The comparison of this paper’s algorithm

modeled as a point located on a two-dimensional space. To specify the location of
each robot consistently, we introduce the global Cartesian coordinate system. In
addition, we also introduce the discrete global time 0, 1, 2, . . .. Notice that these
global entities are introduced only for ease of explanations, and thus each robot
cannot be aware of them. Each interval [t, t + 1] is called a round. The global co-
ordinate where a robot Ri stays at time t is denoted by Ri(t). Throughout this
paper, any coordinate is represented by a vector. To denote vectors, we use bold-
faced characters. For a vector V, |V| and θ(V) denote the length and the polar
angle of V (i.e., the value d and θ (0 ≤ θ < 2π) satisfying V = d(cos θ, sin θ)T ).

The robots are anonymous and oblivious. That is, each robot has no identifier
distinguishing itself and others, and cannot explicitly remember the history of its
execution. In addition, no device for direct communication is equipped. Cooper-
ations of robots are done in an implicit manner: Each robot has a sensor device
to observe the environment (i.e., the positions of all robots). The observation of
an environment is represented as the set of points on the local coordinate system
that the observer has. The local coordinate system of a robot is the Cartesian
coordinate system whose origin is the current position of the robot. Local co-
ordinate systems have only weak (or no) agreement on their unit lengths and
the directions of x-axis and y-axis. A compass model defines the agreement level
of local coordinate systems. In this paper, we consider the φ-absolute error dy-
namic compass model, which is first introduced by Katayama et al. [7].1 The
φ-absolute error model allows each robot to have a local coordinate system that
is counterclockwisely tilted from the global coordinate system by a degree less
than or equal to φ.2 The dynamism of compasses implies that the tilt angle of

1 While the original paper defines two kinds of dynamic compass models, called semi-
dynamic compass and full-dynamic compass, we do not distinguish them and simply
use the term “dynamic compass” because the original two compass models are de-
fined on the fully-asynchronous model (Corda ) [8,9] and they are equivalent in
SYm.

2 The original paper defines the range of tilt angle in φ-absolute error model as
[−φ/2, φ/2]. However, this paper defines it as [0, φ] for ease of presentations. Both
of two definitions are equivalent.



302 T. Izumi et al.

each local coordinate system can vary with time. The tilt angle of Ri’s local
coordinate system in round t is called the compass difference of Ri at t, and is
denoted by φi(t) (0 ≤ φi(t) ≤ φ). The compass configuration Φ(t) in round t
is the n-tuple whose i-th entry is φi(t). The compass model considered in this
paper also allows each robot has a different unit length. For any robot Ri, the
ratio of the unit length in Ri’s coordinate system to that in the global coordinate
system is called the scaling ratio of Ri, and is denoted by sci. For each robot Ri,
we define the observation function Z(i,t)(p) that transforms a global coordinate
p to the coordinate in terms of Ri’s local coordination system at t. Formally,
the observation function Z(i,t)(p) of Ri at time t is defined as follows:

Z(i,t)(p) =
1

sci

(
cosφi(t) sinφi(t)

− sin φi(t) cosφi(t)

)
(p−Ri(t))

The inverse function of Z(i,t) is denoted by Z−1
(i,t). The configuration C(t) at time

t is defined as the n-tuple of global coordinates (R1(t),R2(t), . . . ,Rn(t)). We
also define the point set P (t) as a set of global coordinates {Ri(t)|i ∈ [1, · · · , n]}
without multiplicity. In this paper, we assume that each robot cannot detect the
multiplicity of robots. That is, robots cannot distinguish the configuration where
two or more robots are located at a point and one where only one robot is located
at the same point. It implies that if a robot observes the environment it cannot
obtain the current configuration, but the current point set. We also define the
observation function Z(i,t) over all point sets, i.e., Z(i,t)(P (t)) = {Z(i,t)(p)|p ∈
P (t)}.

2.2 Algorithms, Executions, and the Gathering Problem

At any round t(t = 0, 1, 2, · · ·), each robot is either active or inactive. If a robot
is active at t, it observes the environment, and computes the destination point of
the movement performed in round t. Therefore, an algorithm is defined as a func-
tion ψ that maps any point set to a vector that represents the destination. Since
each robot observes an environment in terms of its local coordinate systems, the
current point set P (t) does not directly passed to ψ as an input. Actually, in ac-
tivation of robot Ri at time t, the conversion of P (t) by the observation function
Z(i,t) is passed to the algorithm. By the same reason, the output of the algorithm
is also converted by the inverse function Z−1

(i,t). Therefore, if a robot Ri is active
at t, the global coordinate where Ri stays at t + 1 is Z−1

(i,t)(ψ(Z(i,t)(P (t)))).
Since this paper considers only deterministic algorithms, the configuration

C(t + 1) is determined by the previous configuration C(t), the set of ac-
tive robots in round t, and the compass configuration in round t. Thus,
we can describe an execution of the system as an alternating sequence
C(0), (Γ (0), Φ(0)), C(1), (Γ (0), Φ(0)), C(2), · · ·, where Γ (t) is the set of active
robots in round t. In this paper, we only consider fair executions, i.e., infinite
executions where every robot becomes active infinitely many times. The gather-
ing problem must ensure that all robots eventually meet at a point that is not
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Fig. 4. The illustration of the algo-
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predefined, beginning from any configuration. Formally, we say that an algo-
rithm A solves the gathering problem if for any fair execution of A, there exists
a time te such that |P (t)| = 1 holds for any t > te.

3 The Two-Robot Algorithm

3.1 Algorithm GatherTwoRobots

In this section, we first show a gathering algorithm GatherTwoRobots for two
robots with (π/2− ε)-absolute error dynamic compasses, where ε is an arbitrary
small constant satisfying 0 < ε < π/2. The algorithm GatherTwoRobots consists
of three types of moves, Approach, Wait, and Roundabout. The approach is
a movement that the robot moves to the point of the other robot. The wait
is a movement that the robot has no movement actually. Letting a robot R
observe the other at the coordinate V in its local coordinate system, it performs
approach move if π < θ(V) ≤ 3π/2 + ε, and performs wait move if 0 < θ(V) ≤
π/2 + ε. Otherwise, the robot R performs roundabout move: The destination of
R’s roundabout move is the coordinate |V|(cos(θ(V)+π−2ε), sin(θ(V)+π−2ε))
(i.e., the robot R moves to the direction at angle θ(V) + π − 2ε by length V).
We illustrate the behavior of our algorithm in Figure 4 and 5.

The correctness of our algorithm derives from two key properties: The first
one is that any movement decreases the angle formed by the global Y -axis and
the line passing through the positions of two robots unless gathering is achieved.
Then, it is guaranteed that two robots eventually observe each other in the
directions near the global north and south respectively 3 if they does not gather.
The second key idea is that if two robots observe each other in the direction near
the global north or south, they necessarily performs approach-move and wait-
move respectively, regardless of their difference. Then, gathering is achieved.

We show the correctness of the algorithm GatherTwoRobots. We define a vector
AB(t1, t2) as B(t2) − A(t2), where A, B ∈ {R1, R2} and t1 and t2 are global
times. In particular, let R1R2(t, t) = R(t) for short. Without loss of generality,

3 The global north/south imply the positive/negative direction of the global Y -axis.
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we assume π/2 − ε < θ(R1R2(0)) ≤ 3π/2 − ε (i.e., the names R1 and R2 are
assigned in the manner satisfying this assumption).

Lemma 1. If π/2 − ε < θ(R(t)) ≤ π/2 + ε holds, no roundabout move occurs
at t or later.

Proof. The robots R1 and R2 observe each other in the direction θ(R(t))−φ1(t)
and θ(R(t)) + π − φ2(t) in terms of their local coordinate systems respectively.
Then, we obtain 0 < θ(R(t)) − φ1(t) ≤ π/2 − ε and π < θ(R(t)) + π − φ2(t) ≤
−ε + 3π/2. These imply that R1 and R2 can perform only wait and approach
move respectively. �

This lemma yields the following corollary because simultaneous wait of two
robots never occurs.

Corollary 1. If π/2−ε < θ(R(t)) ≤ π/2+ε holds, two robots eventually gather.

Lemma 2. For any t, 2ε ≥ θ(R(t))− θ(R(t + 1)) ≥ ε holds unless gathering is
achieved at t + 1.

Proof(sketch). If two robots respectively perform approach and wait, the gath-
ering clearly achieved. Since simultaneous wait of two robots never occurs, we
need to consider only the cases a robot R1 performs roundabout. Figure 6 shows
all of such cases. The illustrations (a), (b), and (c) respectively indicate the cases
where the other robot R2 performs wait, approach, roundabout. In any case, we
can see θ(R(t)) decreases by ε′ such that ε ≤ ε′ ≤ 2ε holds. This implies that the
lemma holds. �

Theorem 1. The algorithm GatherTwoRobots achieves gathering of two robots
with (π/2− ε)-absolute error dynamic compasses.

Proof. By Lemma 2,the value θ(R(t)) gradually decreases with the progress of
time t, and eventually θ(R(t)) ∈ (π/2 − ε, π/2 + ε] holds at a certain time t.
Then, by Corollary 1, gathering is achieved. �

4 The n-Robot Algorithm

This section provides a gathering algorithm for n robots with (π/2− ε)-absolute
error dynamic compasses. The n-robot algorithm consists of two sub-algorithms.
The first one, called GatherNRobots, is obtained from the algorithm GatherTwo-
Robots. It achieves gathering of n robots under the assumption that the point
set of the initial configuration has a unique longest-distance segment(LDS): The
LDS at t is the maximum-length segment of all defined by any pair of points in
P (t). Notice that two or more segments become LDSs because of the equality of
their lengths. If the initial configuration has two or more LDSs, the algorithm
GatherNRobots does not work correctly. To handle such initial configuration,
we use the second algorithm ElectOneLDS, which works as a preprocessor of
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GatherNRobots. The objective of ElectOneLDS is to make the system reach a
configuration where (1) a unique LDS is elected, or (2) gathering is achieved.
Consequently, the combination of GatherNRobots and ElectOneLDS becomes an
n-robot gathering algorithm that works correctly from any arbitrary initial con-
figuration.

4.1 Gathering Under a Unique Longest-Distance Segment

In this subsection, we first introduce the algorithm GatherNRobots that achieves
gathering under the assumption of a unique LDS. The LDS at time t is denoted
by l(t) if it is uniquely determined. Let pla(t) and plb(t) be two endpoints of l(t).
The vector plb(t) − pla(t) is denoted by l(t). Then, without loss of generality,
we assume π/2− ε < θ(l(t)) ≤ 3π/2− ε. For a time t when the LDS is uniquely
determined, we define Rl(t) = {Ri ∈ R|Ri(t) = pla(t) or Ri(t) = plb(t)}.
Intuitively Rl(t) is the set of robots that stay at one of the end points of the
LDS. If Rl(t) = R, we say that the configuration C(t) (or the point set P (t)) is
2-gathered.

The algorithm GatherNRobots has the algorithm GatherTwoRobots as its sub-
routine, and its key idea is almost same as that of GatherTwoRobots: The al-
gorithm GatherNRobots first gathers all robots at the endpoints of the unique
LDS. Then, by the same scheme as GatherTwoRobots, it gradually reduces the
angle θ(l(t)) to π/2. If θ(l(t)) is near π/2 and all robots are gathered at two end-
points of l(t), all robots perform approach move or wait move. Thus, gathering
is achieved.

In the followings, we briefly explain the behavior of GatherNRobots: If the cur-
rent configuration is not 2-gathered, the algorithm first makes the configuration
2-gathered. More precisely, if a robot Ri ∈ Rl(t) observes and recognizes that
the current configuration is not 2-gathered, it moves to either pla(t) or plb(t).
All robots in Rl(t) wait until the current configuration becomes 2-gathered. If
the current configuration becomes 2-gathered, the behavior of each robot fol-
lows the algorithm GatherTwoRobots. The robots decrease the angle θ(l(t)) by
counterclockwisely rotating the LDS. Then, even if all robots are gathered at the
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endpoints of the LDS before the rotation, robots may stay at three or more points
at the configuration after the rotation (notice that two robots at a same point
can behave differently because their compass difference is not same). However,
even in the case where the robots stay at three or more points, it is guaran-
teed that a LDS l(t + 1) satisfying ε ≤ θ(l(t)) − θ(l(t + 1)) ≤ 2ε is uniquely
determined.

We present a proof outline for the correctness of GatherNRobots. A number of
proofs are omitted because of lack of space. The following lemma clearly holds.

Lemma 3. Let C(t) be a configuration that has a unique LDS, but that is not
2-gathered. Then, the system reaches to a 2-gathered configuration having the
same LDS as C(t).

Lemma 4. Let C(t) be a 2-gathered configuration. Then, the system eventually
reaches to the configuration C(t′) such that gathering is achieved in C(t′) or
ε ≤ θ(l(t)) − θ(l(t′)) ≤ 2ε holds.

Proof(sketch). If no roundabout move occurs, the system eventually achieves
gathering because any approach movement is performed (1) only by ones at pla(t)
and the destination is plb(t), or (2) only by ones at plb(t) and the destination
is pla(t). Thus we only have to consider the case where a roundabout move
eventually occurs. Assume that a roundabout move occurs in round t′−1 (t′ > t).
Then, the point set P (t′) consists of two, three or four points (Figure 7). In the
case of two points we can show the lemma by the same way as Lemma 2. In the
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case of three points or four points, the configuration is not 2-gathered. However,
in both cases, the point set P (t′) has a unique LDS l(t + 1). In addition, by the
same argument as the proof of Lemma 2, we can show 2ε ≥ θ(l(t))− θ(l(t′)) ≥ ε
holds. Thus, the lemma holds. �.

The following lemma is a simple extension of Lemma 1 for n-robot systems, and
can be proved by the same way as the proof of Lemma 1.

Lemma 5. If π/2− ε ≤ θ(l(t)) ≤ π/2 + ε holds, no roundabout move occurs at
t or later.

By combining Lemmas 3, 4, and 5, we can obtain the following theorem. The
proof is almost same as that for Theorem 1.

Theorem 2. If the point set of the initial configuration C(0) has a unique
LDS, the algorithm GatherNRobots achieves gathering of n robots with (π/2−ε)-
absolute error dynamic compasses.

In addition to the above main theorem, we also show the following subtheorem,
which guarantees that the behavior of GatherNRobots and one of ElectOneLDS
do not conflict (the proof is omitted).

Theorem 3. Let C(t) be the configuration having a unique LDS. Then, any
configuration following C(t) has a unique LDS unless it achieves gathering.

4.2 Election of a Unique LDS

This section provides the algorithm ElectOneLDS that reduces any configuration
to one where a unique LDS is elected or gathering is achieved. To explain the
behavior of ElectOneLDS, we first introduce the several notations and definitions.
For a point set P (t), we define H(t) as its convex hull. The number of edges
constituting H(t) is denoted by #H(t). A convex hull H(t) is symmetric if all
edges constituting the convex hull H(t) have a same length.4 The convex hull
that is not symmetric is asymmetric. We say that the configuration C(t) is
contractable if (1) its convex hull H(t) is symmetric and any point in P (t) is a
vertex of H(t) or the center of gravity of H(t), or (2) H(t) is asymmetric and any
point in P (t) is a vertex of H(t). Let Ri be the robot such that its coordinate
Ri(t) is a vertex of H(t). Then, we define the left neighbor of Ri at t as the
next vertex of Ri(t) in the counterclockwise traversal on H(t)’s border. We also
define the right neighbor in the same fashion. Then the segments between Ri

and its right/left neighbors are called the left/right arm of Ri at t respectively.
The algorithm ElectOneLDS works only when the current point set has two or

more LDS. By Theorem 3, once the system reaches to the configuration having a
unique LDS, it is guaranteed that ElectOneLDS never works again. In addition,
the algorithm GatherNRobots works only when a unique LDS is elected. These
imply that the algorithms ElectOneLDS and GatherNRobots do not disturb each
other, and thus their composition is possible.
4 Notice that, while it is not essential, a symmetric convex hull is not necessarily a

regular polygon. For example, a rhomboid is symmetric.
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Roughly speaking, the behavior of ElectOneLDS is that (1) if the current con-
figuration is not contractable, the algorithm reduces it to a contractable one, and
(2) if the current configuration is contractable, the algorithm carries forward the
election of a unique LDS. More precisely, in the first case, each robot that does
not stay at a vertex of H(t) (or stay at neither a vertex of H(t) nor H(t)’s
center of gravity when H(t) is symmetric) moves to a certain vertex of H(t).
Then, the convex hull eventually becomes contractable. In the second case, the
algorithm decreases the number of edges #H(t) until the point set has a unique
LDS. Notice that this scheme necessarily elects a unique LDS because the convex
hull H(t) eventually becomes a segment when #H(t) = 2. The number of edges
#H(t) is decreased by contracting a shortest-length edge in H(t): A contracting
robot are defined as one whose left arm is a shortest-length edge in H(t) and
the right arm is not the shortest.If a contracting robot observes and recognizes
that the current configuration is contractable, it moves the coordinate of its left
neighbor. The contracting robots move to their left neighborhood points, and
consequently their left arms are contracted (Figure 8). Then, during the con-
traction, all non-contracting robots do not move. The shortest-edge contraction
correctly works if the current convex hull H(t) is asymmetric. However, if H(t) is
symmetric, all edges in H(t) is shortest, and thus no edge contraction occurs. To
handle this case, we introduce another contraction scheme (symmetry-breaking
movement): If a robot recognizes that the current configuration is contractable
but the corresponding convex hull is symmetric, it moves to H(t)’s center of
gravity. Then, if all robots simultaneously moves to the center of gravity, gath-
ering is clearly achieved. Otherwise, the number of edges constituting the convex
hull eventually decreases (Figure 9).

We can show that the following theorem (The proof is omitted for lack of
space). This theorem implies that the composition of ElectOneLDS and Gather-
NRobots becomes a gathering algorithm for n robots with (π/2 − ε)-absolute
error dynamic compasses.

Theorem 4. The algorithm ElectOneLDS correctly elects a unique LDS unless
gathering is achieved.
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5 Impossibility Result

In this section, we show that there is no gathering algorithm for two robots with
φ-absolute error dynamic compass when φ ≥ π/2.

Throughout the following proofs, we suppose for contradiction that there ex-
ists a gathering algorithm for two robots with φ-absolute error dynamic com-
passes (φ ≥ π/2), which is denoted by A. We first give the definition of termi-
nation vector, which is an important notion to prove the impossibility.

Definition 1 (Termination vector). The vector V = Z(1,t)(R1R2(t)) is
a termination vector of A if R1(t) = R1(t + 1) holds in the execution
C(t), ({R1}, (0, 0)), C(t + 1).

Intuitively, a termination vector V is one such that even if an active robot
observing the other at the coordinate V in terms of its local coordinate system,
it does not change the position. The following lemma is a fundamental lemma
about gathering algorithms for robots with erroneous compasses.

Lemma 6. Letting V1 and V2 be any two termination vectors of the algorithm
A, |θ(V1)− θ(V2)| < π − φ holds.

Proof. Suppose |θ(V1) − θ(V2)| ≥ π − φ for contradiction. Without loss of
generality, we assume θ(V1) > θ(V2). Let τ = θ(V1)−θ(V2). Then, we consider
the initial configuration C(0) as follows:

– The robot R1 is located at the origin of the global coordinate system. The
local coordinate system of R1 is identical to the global one.

– The robot R2 is located at the point represented by V1. The scaling ratio sc2

is |V1|/|V2|.
Now we consider the execution E beginning from C(0) such that φ2(t) = π − τ
(≤ φ) and φ1(t) = 0 holds for any t. Then, since Z(1,t)(R1R2(t, t)) = V1 and
Z(2,t)(R2R1(t, t)) = V2 hold for any t, both R1 and R2 do not move at all, and
thus gathering is not achieved. It is a contradiction. �

Let C(t) be a configuration. We say that C(t) is 2-movement if there exist
two tilt angles ρ1, ρ2 ∈ {0, π/2} such that two robots changes their position in
the one-round execution E = C(t), ({R1, R2}, (ρ1, ρ2)), C(t + 1).

Lemma 7. Any configuration C(t) is 2-movement.

Proof. Let V = R1R2(t, t) for short. We first consider the execution E =
C(t), ({R1, R2}, (0, 0)), C(t + 1). If both R1 and R2 moves in E, the C(t) is
2-movement. Thus, we only consider the case where at least one robot does
not change its position in E. From Lemma 6, either V or −V is not ter-
mination vector. Thus, one robot changes the position in E. Without loss of
generality, we assume that R2 is such one. Then, we consider the execution
E′ = C(t), ({R1, R2}, (π/2, 0)), C(t+1). From Lemma 6, the vector Z(1,t)(V) in
E′ is not termination vector because |θ(Z(1,t)(V))− θ(V)| = π/2 holds in E′. It
follows that two robots change their positions in the execution E′. That is, C(t)
is 2-movement. �
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Lemma 8. There exists an infinite execution of A where gathering is not
achieved and both R1 and R2 become active infinitely-many times.

Proof. Let C(t) be a configuration. From lemma 7, there exists an execution
E = C(t), ({R1, R2}, (ρ1, ρ2)), C(t+1), where R1 and R2 change their positions.
Then, we consider two executions E1 = C(t), ({R1}, (ρ1, ρ2)), C1(t+1) and E2 =
C(t), ({R2}, (ρ1, ρ2)), C2(t + 1). If C(t + 1) achieves gathering, both C1(t + 1)
and C2(t + 2) do not achieve gathering. In contrast, if either E1 or E2 achieves
gathering, E does not achieve gathering. This implies that for any configuration
C, there exists one-round execution beginning from C where (1) gathering is not
achieved, and (2) arbitrary one of R1 and R2 is active. It follows that there exists
infinite fair execution where gathering is not achieved. �

This lemma implies the main theorem.

Theorem 5. There is no gathering algorithm for two robots with φ-absolute
error dynamic compasses when φ ≥ π/2.

6 Discussion

More recently, Cohen and Peleg introduced another model of erroneous com-
passes [3], where each robot may observe another robot at a position slightly
different from the actual one. In this section, we explain the relation between
the above model and our model.

The model by Cohen and Peleg introduces two accuracy measurements θ0

and ε0 for angle and distance respectively. In this model, each robot R1 at the
coordinate d(cos θ, sin θ) can be observed by other robots as it stays a coordinate
d′(cos θ′, sin θ′) such that d′ ∈ [d− ε0, d + ε0] and θ′ ∈ [θ− θ0, θ + θ0] holds. The
model restricting by ε0 = 0 (say Mrr−) may seem to be equivalent to our model
with θ0-absolute error dynamic compasses. However, those two models inherently
different and incomparable. In our model, while the coordinate system within
each robot is agreed (i.e., in each cycle of a robot, the observation phase and
move phase uses a same coordinate system), the coordinate systems between
two or more robots are not agreed. On the other hand, the model Mrr− has no
agreement between observation phases and move phases in each cycle, however,
the tilt angle of each local coordinate system is the same as the global one
(and thus all local coordinate systems are agreed with each other). A typical
example that differentiates the ability of these compass models is as follows: Let
us consider the system of two robots. In our model, it is possible that a robot
moves to the position of another robot, which is impossible in Mrr− because
the robot cannot detect the exact location of another one. In contrast, in the
model Mrr−, it is possible that two robot moves to a same direction (e.g., the
global north). However, such movement is impossible in our model because tilt
angles of local coordinate systems can be different.

It should be noted that the original paper of dynamic compass models [7]
introduces two different classes of dynamic compass models, semi-dynamic com-
pass model and full-dynamic compass model. The semi-dynamic compass is one
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considered in this paper. The full-dynamic compass is more weaker model of
semi-dynamic one, which allows compass differences to vary during a cycle, i.e.,
the compass difference can be disagreed between the observation phase and the
move phase within a cycle. This implies that the full-dynamic compass model is
also weaker than Mrr−.
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12. Souissi, S., Défago, X., Yamashita, M.: Using eventually consistent compasses to
gather oblivious mobile robots with limited visibility. In: Datta, A.K., Gradinariu,
M. (eds.) SSS 2006. LNCS, vol. 4280, pp. 471–487. Springer, Heidelberg (2006)

13. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: Formation of
geometric patterns. SIAM Journal of Computing 28(4), 1347–1363 (1999)

14. Yamashita, M., Souissi, S., Défago, X.: Tight bound on the gathering of oblivious-
mobile robots with inconsistent compasses. Unpublished (2007)



Compact Separator Decompositions in Dynamic

Trees and Applications to Labeling Schemes

Amos Korman1,� and David Peleg2,��

1 Information Systems Group, Faculty of IE&M, The Technion, Haifa 32000, Israel
pandit@tx.technion.ac.il

2 Department of Computer Science and Applied Mathematics,
The Weizmann Institute of Science, Rehovot 76100, Israel

david.peleg@weizmann.ac.il

Abstract. This paper presents an efficient scheme maintaining a sepa-
rator decomposition representation in dynamic trees using asymptotically
optimal labels. In order to maintain the short labels, the scheme uses rel-
atively low message complexity. In particular, if the initial dynamic tree
contains just the root, then the scheme incurs an O(log3 n) amortized
message complexity per topology change, where n is the current num-
ber of nodes in the tree. As a separator decomposition is a fundamental
decomposition of trees used extensively as a component in many static
graph algorithms, our dynamic scheme for separator decomposition may
be used for constructing dynamic versions to these algorithms.

The paper then shows how to use our dynamic separator decomposi-
tion to construct rather efficient labeling schemes on dynamic trees, using
the same message complexity as our dynamic separator scheme. Specifi-
cally, we construct efficient routing schemes on dynamic trees, for both
the designer and the adversary port models, which maintain optimal la-
bels, up to a multiplicative factor of O(log log n). In addition, it is shown
how to use our dynamic separator decomposition scheme to construct
dynamic labeling schemes supporting the ancestry and NCA relations
using asymptotically optimal labels, as well as to extend a known result
on dynamic distance labeling schemes.

Keywords: Distributed algorithms, dynamic networks, routing schemes,
graph decompositions, informative labeling schemes.

1 Introduction

Background: A distributed representation scheme is a scheme maintaining
global information using local data structures (or labels). Such schemes play an
extensive and sometimes crucial role in the fields of distributed computing and
communication networks. Their goal is to locally store useful information about
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the network and make it readily and conveniently accessible. As a notable exam-
ple, the basic function of a communication network, namely, message delivery,
is performed by its routing scheme, which in turn requires maintaining certain
topological knowledge. Often, the performance of the network as a whole may
be dominated by the quality of the routing scheme and the accuracy of the
topological information. Representation schemes in the static (fixed topology)
setting were the subject of extensive research (e.g., [1,5,6,9,13,15]). The com-
mon measure for evaluating a static representation scheme is the label size, i.e.,
the maximum number of bits used in a label. In this paper, a representation
scheme with asymptotically optimal label size is termed compact.

The more realistic (and more involved) distributed dynamic setting, where
processors may join or leave the network or new connections may be established
or removed, has received much less attention. Clearly, changes in the network
topology may necessitate corresponding changes in the representation. Conse-
quently, in the distributed dynamic setting, an update protocol is activated where
the topology change occurs, and its goal is to update the vertices, by transmitting
messages over the links of the underlying network. Ideally, the update protocol
maintains short labels using only a limited number of messages.

In this paper we consider representation schemes in dynamic trees, operating
under the leaf-dynamic tree model, in which at each step, a leaf may either
join or leave the tree. We consider the controlled dynamic model, which was also
considered in [3,16], in which the topological changes do not occur spontaneously.
Instead, when an entity wishes to cause a topology change at some node u, it
enters a request at u, and performs the change only after the request is granted
a permit from the update protocol. The controlled model may be found useful
in Peer to Peer applications and in other popular overlay networks. See [16] for
more details and motivations regarding the controlled model.

In this paper, we present several dynamic representation schemes, which are
efficient in both their label size and their communication complexity. Specifically,
if the initial tree contains only the root, then all our dynamic schemes incur
O(log3 n) amortized message complexity, per topological change. We first present
a compact representation scheme of a separator decomposition in dynamic trees,
and then use this basic scheme to derive compact labeling schemes supporting the
ancestry and NCA relations on dynamic trees. In addition, we present dynamic
routing schemes which have optimal label size up to O(log log n) multiplicative
factor, for both the adversary and the designer port models. Finally, we show
how to use our dynamic separator decomposition to extend a known result on
dynamic distance labeling schemes.

Related work: An elegant and simple compact labeling scheme was presented
in [13], for supporting the ancestry relation on static n-node trees using labels
of size 2 logn. Applications to XML search engines motivated various attempts
to improve the constant multiplicative factor in the label size, see [1,2].

Static compact labeling schemes were presented for two types of NCA relations
on trees. For the id-based NCA relation (which is the type of NCA relation we
consider in this paper), a static labeling scheme was developed in [19] using labels
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of Θ(log2 n) bits on n-node trees. A static labeling scheme supporting the label-
based NCA relation using labels of Θ(log n) bits on n-node trees was presented in
[5]. In addition, [5] gave a survey on applications and previous results concerning
NCA queries on trees, in both the distributed and centralized settings.

Labeling schemes for routing on static trees were investigated in a number of
papers until finally optimized in [9,10,24]. For the designer port model, in which
the designer of the scheme can freely enumerate the port numbers of the nodes,
[9] shows how to construct a routing scheme using labels of size O(log n) on
n-node trees. In the adversary port model, where the port numbers are fixed by
an adversary, it is shown how to construct a routing scheme using labels of size
O(log2 n/ log log n) on n-node trees. In [10] it is shown that both label sizes are
asymptotically optimal. Independently, a routing scheme for trees of label size
(1 + o(1)) log n was given in [24] for the designer port model.

Dynamic data structures for trees have been studied extensively in the cen-
tralized model, cf. [7,22,21]. For comprehensive surveys on centralized dynamic
graph algorithms see [11,20].

A survey on popular link state dynamic routing protocols (e.g. OSPF) can be
found in [23]. Compared to our dynamic routing schemes, these routing schemes
are more robust on weaker dynamic models, such as ones which allow sponta-
neous faults, however, their message complexity is higher.

The controlled model is presented in [3], which also establishes an efficient
dynamic controller that can operate in the leaf-increasing tree model, where the
only topology change allowed is that a leaf joins the tree. This controller can,
in particular, be used to maintain a constant approximation of the number of
nodes in the (leaf-increasing) tree, using O(n log2 n) messages. In [16] an ex-
tended controller was derived for the controlled model, which can operate under
both insertions and deletions of both leaves and internal nodes. In particular,
that controller can be used to efficiently maintain a constant approximation of
the number of nodes in the dynamic tree, undergoing both deletions and ad-
ditions of nodes, using low message complexity. Specifically, the approximation
scheme incurs O(n0 log2 n0)+O(

∑
j log2 nj) messages, where n0 is the initial tree

size, and nj is the size of the tree immediately after the j’th topology change.
(Note, that if the initial tree contains just the root, then this complexity can be
considered as O(log2 n) amortized message complexity, per topology change).

A dynamic routing scheme in the leaf-increasing tree model was given in [4]
using identities of size O(log2 n), database size O(Δ log3 n) (where Δ is the
maximum degree in the tree) and amortized message complexity O(log n).

Dynamic distance labeling schemes on trees were presented in [17,18] for the
serialized model, in which it is assumed that the topology changes are spaced
enough so that the update protocol can complete its operation before the next
topology change occurs. Two dynamic β-approximate distance labeling schemes
(in which given two labels, one can infer a β-approximation to the distance
between the corresponding nodes) were presented in [17]. The first scheme applies
to a model in which the tree topology is fixed but the edge weights may change,
and the second applies to a model in which the only topological event that
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may occur is that an edge increases its weight by one. The amortized message
complexity of the first scheme depends on the local density parameter of the
underlying graph and the amortized message complexity of the second scheme
is polylogarithmic. Both schemes have label size O(log2 n + log n log W ) where
W denotes the largest edge weight in the tree.

Two general translation methods for extending static labeling schemes on
trees to the dynamic setting were considered in [18] and [14], for the serial-
ized model. Both approaches fit a number of natural functions on trees, such
as ancestry relation, routing, NCA relation etc. The translation methods incur
overheads (over the static scheme) in both the label size and the message com-
plexity. Specifically, the method of [14] yields dynamic compact labeling schemes,
although the amortized message complexity is high, namely, O(nε). On the other
hand, the label sizes of the dynamic labeling schemes in [14], which use polylog-
arithmic amortized message complexity, have a multiplicative overhead factor of
O(log n/ log log n) over the optimal size.

Our contributions: In this paper we consider a dynamic tree T operating
under the leaf-dynamic tree model and the controlled model, and present sev-
eral efficient dynamic schemes for T . All our schemes incur O(n0 log3 n0) +
O(
∑

j log3 nj) messages, where n0 is the initial number of nodes and nj is the
number of nodes immediately after the j’th topology change. Note, that if the
initial tree contains just the root, then the amortized message complexity is
O(log3 n), per topological change, where n is the current number of nodes in T .

We first present an efficient protocol maintaining a compact (i.e., with opti-
mal label size) separator decomposition representation in T . Let us note that,
the general translation method of [14] may also yield such a dynamic compact
scheme, however, their resulted scheme uses high amortized message complexity,
namely, O(nε).

Our basic dynamic separator scheme is then used in order to construct several
other dynamic labeling schemes for the dynamic tree T , which improve known
results. Specifically, we present dynamic compact labeling schemes supporting
the ancestry and the NCA relations, and we establish routing schemes for both
the designer and the adversary port models, which use optimal label size up to
a multiplicative O(log log n) factor. For any of the above mentioned functions f ,
the best known label size for dynamic labeling schemes supporting f , that use
polylogarithmic amortized message complexity, has a multiplicative overhead
of O(log n/ log log n) over the optimal label size. In addition, the best known
amortized message complexity for dynamic compact labeling schemes supporting
f is O(nε).

Finally, we show that our dynamic separator decomposition can also be used
to allow the dynamic distance labeling schemes of [17] to operate under a more
general dynamic model. In addition to allowing the edges of the underlying
tree to change their weight, the extended dynamic model allows also leaves
to be added to or removed from the tree. The extended scheme incurs an ex-
tra O(n0 log3 n0) + O(

∑
j log3 nj) additive factor to the message complexity.
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Paper outline: For clarity of presentation, in the extended abstract we consider
only the serialized model, and defer the modifications required for operating
under the controlled model. We first assume the leaf-increasing tree model. The
adaptation to the leaf-dynamic model is done according to the method described
in [16] (the idea is to ignore deletions, maintain an estimate to the number of
topological changes and initialize the tree every Θ(n) topological changes). Also,
due to lack of space, this extended abstract contains mainly intuition regarding
the construction of the dynamic separator decomposition and its applications to
dynamic ancestry and routing labeling schemes, in the leaf-increasing model. The
formal description and analysis of the separator decomposition construction, as
well as the description and analysis of the other applications and the adaptation
to the leaf-dynamic model, will appear in the full paper.

Our separator scheme for the leaf-increasing tree model is based on an adap-
tation of our static scheme (described in Section 3). The adaptation requires a
number of components whose tasks are maintaining estimates on the sizes of the
various subtrees managed in the decomposition, manipulating and reorganizing
these subtrees, and maintaining the corresponding labels and topological data.
These components are Protocol Shuffle, Protocol Maintain W and Protocol
Dyn Sep. Generally speaking, Protocol Maintain W is used to allow each sep-
arator v to maintain a constant approximation to the number of nodes in the
the subtree T ∗(v) for which v was chosen as a separator. Whenever the size of
T ∗(v) grows by some constant factor, the main protocol Dyn Sep invoke Proto-
col Shuffle on T ∗(v) which calculates a new separator decomposition on T ∗(v)
which is consistent with the global separator decomposition. The correct opera-
tion of each of these protocols relies on the assumption that certain properties
hold at the beginning of their execution, and in turn, each of these components
guarantees that certain properties hold upon their termination. Hence the cor-
rectness proof of the entire algorithm depends on establishing an intricate set of
invariants and showing that these invariants hold throughout the execution.

2 Preliminaries

Our communication network model is restricted to tree topologies. Let T be a
tree rooted at vertex r and let T (v) denote the subtree of T rooted at v. For
every vertex v ∈ T , let D(v) denote the depth of v, i.e., the unweighted distance
between v and the root r. For a non-root vertex v, denote by p(v) its parent in the
tree. The ancestry relation is defined as the transitive closure of the parenthood
relation. Define the weight of v, denoted ω(v), as the number of vertices in T (v),
i.e., ω(v) = |T (v)|. Let n denote the number of vertices in the tree, i.e., n = ω(r).
The ports at each node (leading to its different neighbors) are assigned unique
port-numbers. The enumeration of the ports at a node v is known only to v.

For every two numbers a < b, let [a, b) denote the set of integers a ≤ i < b.
For every integer q ≥ −1 let Iq = [3 · 2q+2, 3 · 2q+3) and for every m ≤ n and
−1 ≤ q ≤ log m, let Jq(m) = [ m

2q+1 , m
2q ) and let Ĵq(m) = [ m

2q+1 , m
2q−1 ). In other

words, Ĵq(m) = Jq(m) ∪ Jq−1(m).
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Separator decomposition: We first define a separator decomposition of a tree
T recursively as follows. At the first stage we choose some vertex v in T to be the
level-1 separator of T . By removing v, T breaks into disconnected subtrees which
are referred to as the subtrees formed by v. Each such subtree is decomposed
recursively by choosing some vertex to be a level-2 separator, etc.

Let T subtrees be the collection of all subtrees obtained by the resulting par-
titioning, on all levels of the recursion. Note that the trees on each level are
disjoint but the entire collection contains overlapping trees. Moreover, in this
partitioning, each vertex v in T belongs to a unique subtree Tl(v) ∈ T subtrees on
each level l of the recursion, up to the level l(v) in which v itself is selected as
the separator. The subtrees T = T1(v), T2(v), · · · , Tl(v)(v) are referred to as the
ancestor subtrees of v. Define the separator tree T sep to be the tree rooted at the
level-1 separator of T , with the level-2 separators as its children, and generally,
with each level j + 1 separator as the child of the level j separator above it in
the decomposition. For a vertex v in T , let sj(v) denote the level-j separator of
v, i.e., the ancestor of v in T sep at depth j. We associate each vertex v with the
subtree T ∗(v) = Tl(v)(v) for which v is chosen as its separator. If v is a level j
separator, then T ∗(v) is referred to as a level j subtree. (See Figure 1.)
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Fig. 1. In the depicted tree T , rooted at r, the node v is the level-1 separator of T .
By deleting v, T breaks into T 1(v) and T 2(v). Similarly, w is the separator of T 1(v)
and u is the separator of T 2(v), therefore w and u are the children of v in T sep. By
deleting u, T 2(v) breaks into three subtrees, one of which contains z as its separator.
We have T ∗(v) = T , T ∗(w) = T 1(v) and T ∗(u) = T 2(v).

For 1/2 ≤ δ < 1, a δ-separator of T is a vertex v whose removal breaks T into
disconnected subtrees of at most δ|T | vertices each. It is a well known fact that
every tree has a δ-separator (even for δ = 1/2), and that one can recursively
partition the tree by δ-separators. Such a decomposition is termed δ-separator
decomposition. It is easy to see that the depth of the corresponding separator
tree T sep is O(log |T |). In the special case where δ = 1/2, the separator node
is called a perfect separator, and the decomposition is called a perfect separator
decomposition.
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Representations for separator decompositions: One may define a distributed rep-
resentation for separator decompositions in trees in various ways. For our pur-
poses, we define a separator decomposition representation as follows. Each vertex
v in a tree T is given a label L(v) so that the following hold.

1. Each vertex has a unique label, i.e., L(u) = L(v) for every two vertices
u, v ∈ T .

2. Given the label L(v) of some vertex v and an integer 1 ≤ i ≤ l(v), one can
extract the label L(u) where u is the level-i separator of v.

Note that by the first requirement, the maximum number of bits in a label in
any n-node tree is Ω(log n) for any separator decomposition representation.

The functions: We consider the following functions F on pairs of vertices u, v of
a rooted tree.
(a) Routing: F (u, v) is the port number at u leading to the next vertex on the
(shortest) path from u to v.
(b) Ancestry relation: if u is an ancestor of v in the tree then F (u, v) = 1,
otherwise, F (u, v) = 0.
(c) NCA relation: assuming each vertex z has a unique identifier id(z) (en-
coded using O(log n) bits), F (u, v) is the identifier id(z) of the nearest common
ancestor (NCA) z of u and v, i.e., the common ancestor of both u and v of
maximum depth.

Labeling schemes: An F -labeling scheme π = 〈Mπ,Dπ〉 is composed of the
following components:

1. A marker algorithmMπ that given a tree, assigns a label L(v) to each vertex
v in the tree.

2. A polynomial time decoder algorithm Dπ that given the labels L(u) and L(v)
of two vertices u and v in the tree, outputs F (u, v).

We note that in our schemes, the labels given to the vertices may contain
several fields. In order to distinguish between the different fields of some label
one can use an additional label L′(v) for v, which has the same number of bits
as L(v) and whose 1’s mark the locations where the fields of L(v) begin. Clearly,
adding L′(v) does not increase the asymptotic label size.

The dynamic models: The following types of topology changes are considered.
Add-leaf: A new vertex u is added as a child of an existing vertex v.
Remove-leaf: A leaf u of a tree is deleted.

Subsequent to a topology change, both relevant nodes u and v are informed
of it. When a new edge is attached to a node v, the corresponding port at v
is assigned (either by an adversary or by v) a unique port-number (i.e., at any
time, the port numbers at v are distinct), encoded using O(log n) bits.

In this paper, all our results, except for our results on routing, concern the
weak adversary model in which an adversary can freely select and change the
port numbers at any node (as long as they remain disjoint at that node). Our
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dynamic routing schemes consider the following two port models. In the designer
port model, each node v is allowed at any time, to freely select and change the
port numbers on its incident ports (as long as they remain disjoint) and in the
adversary port model, the port numbers at each node are fixed by an adversary
(once the adversary assigns a port number, the number remains unchanged).

Various dynamic models are considered in the literature. In the leaf-increasing
tree model, cf. [4,14,18], the only topology change allowed is that a leaf joins the
tree, and in the more general leaf-dynamic tree model, cf. [3,14,18], leaves can
either be added to or removed from the tree. All the results in this paper apply
for the leaf-dynamic tree model.

After every topological change, an update protocol U is activated in order to
maintain the labels L(v) of the vertices v to fit the requirements of the corre-
sponding problem. As mentioned before, in the context of distributed networks,
the messages are sent over the edges of the underlying graph.

For simplicity of presentation, in this extended abstract, we analyze our pro-
tocols assuming the serialized model (e.g., [18,17,14]) in which the topological
changes occur in a serialized manner and are sufficiently spaced so that the up-
date protocol has enough time to complete its operation in response to a given
topological change, before the occurrence of the next change. This model allows
us to concentrate on the combinatorial aspects of the problem without consid-
ering asynchrony issues. Let us remark, however, that our schemes can operate
under the weaker controlled model (considered also in [16,3], see [16] for more
details and motivations). In this model, when a topological change τ wishes to
occur at vertex v, a request Rτ to perform τ arrives at v. Vertex v performs
the topological change τ only when the request Rτ is granted a permit from
the update protocol. It is guaranteed that every request to perform a topo-
logical change is eventually granted a permit. Moreover, in the leaf-increasing
model, our dynamic schemes can operate under the weak uncontrolled model
in which the topological changes may occur in rapid succession or even concur-
rently. Correctness, however, is required only at quiet times, i.e., times for which
all updates concerning the previous topological changes have occurred. (It can
easily be shown that no dynamic compact separator decomposition scheme, can
be expected to operate correctly also in non-quiet times). Due to lack of space,
the analysis of our schemes under the weaker models is deferred to the full paper.

For a static scheme π on n-node trees, model, we are interested in the following
complexity measures.

The label size, LS(π, n), is the maximum number of bits in L(v) taken over
any vertex v.

The message complexity, MC(π, n), is the maximum number of messages (of
size O(log n)) sent by a distribute algorithm assigning the labels of π.

For a dynamic scheme π, operating in the leaf-increasing model, the above
definitions are taken over all scenarios where n is the final (and maximum) num-
ber of nodes in the tree. In the leaf-dynamic tree model, instead of measuring the
message complexity in terms of the maximal number of nodes in the scenario, we
use more explicit time references employing the notation (n1, n2, . . . , nt) where
nj is the size of the tree immediately after the j’th topological event takes place.
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3 The Static Separator Representation Scheme πStat Sep

Let us first note that a static compact separator representation scheme is implic-
itly described in [12]. However, we were not able to extend that scheme to the
dynamic scenario. Instead, in this section we present a new static compact sep-
arator decomposition representation scheme πStat Sep (which is in some sense a
relaxation of the scheme in [12]), which we find easier to extend to the dynamic
scenario. Scheme πStat Sep enjoys label size Θ(log n) and message complexity
O(n log n).

Recall that in a δ-separator decomposition of the tree T , each node v is a
separator of some level. Given a δ-separator decomposition, a simple way of
constructing a representation for it is to assign each vertex a disjoint identity
and then to label each vertex by the list of identities of v’s ancestors in T sep.
However, this simple scheme has label size O(log2 n). In order to reduce the label
size to O(log n) we exploit the liberty of choosing the labels of the separators. As
in the simple scheme described above, our marker algorithm assigns each vertex v
a different label Lsep(v) containing l(v) fields. However, in contrast to the simple
scheme mentioned above, for any 1 < l ≤ l(v), the l’th field Lsep

l (v) of Lsep(v)
does not contain the identity of the level-l separator of v. Instead, it contains the
binary representation of a number proportionate to |Tl−1(v)|/|Tl(v)|. Moreover,
the label of the level-k separator of v is the prefix of Lsep(v) containing the
first k fields in Lsep(v). Informally, these properties are achieved in the following
manner. Define the labels Lsep(v) of the separators v by induction on their level.
The label of the level-1 separator is set to be 〈0〉. Assume that we have defined the
labels of all the level-(l−1) separators. For each level-(l−1) separator v, we now
define the labels of its children v1, v2, · · · in T sep as follows. For each k, vk is first
assigned a unique number ρ(vk) (in the sense that if k = g then ρ(vk) = ρ(vg))
such that ρ(vk) ∈ [3 ·2q+2, 3 ·2q+3) iff |T ∗(v)|/2q+1 < |T ∗(vk)| ≤ |T ∗(v)|/2q ,
or in other words, ρ(vk) ∈ Iq iff |T ∗(vk)| ∈ Jq(|T ∗(v)|).

Note that for each q, there could be at most 2q+1 children vk of v in T sep

such that |T ∗(v)|/2q+1 < |T ∗(vk)| ≤ |T ∗(v)|/2q. Therefore, the interval Iq =
[3 · 2q+2, 3 · 2q+3) contains sufficiently many integers so that every separator vk

satisfying |T ∗(vk)| ∈ Jq(|T ∗(v)|) can be issued a distinct integer in Iq.
For every k, after assigning each vertex vk a number ρ(vk) as described above,

the label of vk is set to be the concatenation Lsep(vk) = Lsep(v)◦ρ(vk). The fact
that for each k, ρ(vk) is unique is used to show that the labels are disjoint. Note
that the label of a level-l separator u can be considered as a sequence of l fields
Lsep(u) = Lsep

1 (u) ◦ · · · ◦ Lsep
l (u). Moreover, for each 1 ≤ j < l, the label of the

level-j separator of u is simply Lsep
1 (u) ◦ · · · ◦Lsep

j (u). In addition, for 1 ≤ j ≤ l,
the j + 1’st field Lsep

j+1(u) is proportionate to |Tj(u)|/|Tj+1(u)|. This property is
used to show that the label size is O(log n).

In order to implement πStat Sep by a distributed protocol, when the separator
v wishes to assign a unique value ρ(vk) ∈ Iq to one of its children (in T sep), it
somehow needs know which values it had already assigned in the range Iq. For
this purpose, for every −1 ≤ q ≤ �log n�, v maintains a counter cq(v) counting
the number of values ρ(vk) ∈ Iq that were already assigned by it. Whenever v
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wishes to assign a new value ρ(vk) ∈ Iq, it simply selects 3 · 2q+2 + cq(v) and
then raises cq(v) by 1. The fact that ρ(vk) indeed belongs to Iq follows from the
following invariant, which holds throughout the execution at every vertex v.

Counters invariant at v: For every −1 ≤ q ≤ �log n�, the set of currently
assigned values in Iq is a prefix of Iq, namely, [3 · 2q+2, 3 · 2q+2 + cq(v) − 1].

The formal description and analysis of the distributed Protocol Stat Sep(T ),
which is initiated at the root of a given tree T and assigns each vertex v the
label Lsep(v), are deferred to the full paper.

Lemma 1. Protocol Stat Sep(T ) constructs a compact separator decomposi-
tion on a static n-node tree T using O(n log n) messages.

4 Protocol Shuffle

Protocol Shuffle is invoked in the dynamic scenario on subtrees T ′ ∈ T subtrees

that are suspected to violate some balance properties required in order to main-
tain the compact separator decomposition on the whole tree T . The goal of
Protocol Shuffle(T ′) is to recompute a separator decomposition representa-
tion on T ′ while keeping it consistent with the global separator decomposition
representation on T . Specifically, we assume that each separator v keeps ω∗

0(v),
the number of vertices in T ∗(v) after the last application of Protocol Shuffle on
a subtree containing T ∗(v). Let v be a level-l separator and let T 1(v), T 2(v), · · ·
be the subtrees formed by v. Let T ′ be one of those subtrees, w.l.o.g. T ′ = T 1(v).

The correct operation of Protocol Shuffle relies on the fact that throughout
the dynamic scenario, the following invariants are maintained for every level-l
separator v.

The balance invariants:
B1: For every vertex u ∈ T ∗(v), if Lsep

l+1(u) ∈ Iq for some q then |Tl+1(u)| ∈
Ĵq(ω∗

0(v)).
B2: |T ∗(v)| ∈ [ω∗

0(v), 5
4 · ω∗

0(v)].

The growth property:
Just before Protocol Shuffle is invoked on T ∗(v), we have |T ∗(v)| ≥ γ · ω∗

0(v)
where γ =

√
5/4.

Protocol Shuffle(T ′) is conceptually composed of three stages. In the first
stage, all the labels in T ′ are initialized to be Lsep(v) (which contains l fields).
At the second stage, the l + 1’st field of the labels in T ′, ρ(T ′), is initialized so
that it is proportionate to ω∗

0(v)/|T ′| and disjoint from ρ(T i) for every i > 1. At
the third stage, Protocol Stat Sep is invoked on T ′ to initialize the following
(i.e., the l + 2’nd, l + 3’rd, etc) fields of the labels in T ′ according to a perfect
separator decomposition of T ′. It is relatively easy to implement the first and
third stages of Protocol Shuffle(T ′).

Let us now describe informally how Protocol Shuffle implements the sec-
ond stage. In order for the new assigned value ρnew(T ′) to be proportionate
to ω∗

0(v)/|T ′|, it may need to be in some different interval Iq than before. We
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use the counters cq(v) (described in the previous section) to count the num-
ber of values in Iq that were already assigned. When v wishes to assign T ′ a
new value ρnew(T ′) ∈ Iq , it selects the value 3 · 2q+2 + cq(v) and then raises
cq(v) by 1. However, in contrast to Protocol Stat Sep, the counters invariant
is not necessarily maintained. Instead, the fact that 3 · 2q+2 + cq(v) ∈ Iq results
from the following more involved argument. After applying S, the last Protocol
Shuffle to be applied on a subtree containing v, cq(v) was relatively small.
Let T ′′ be one of the subtrees T i(v) that received a new value in Iq after S
was invoked and let S′′ be the Shuffle protocol applied on T ′′ after which
T ′′ received this value. By combining the balance invariant B2 (for the sepa-
rator of T ′′) with the growth property (for T ′′), we obtain that the number of
vertices that have joined T ′′ from the time S was invoked until the time S′′

was invoked is proportionate to ω∗
0(v)/2q. On the other hand, by B2, the total

number of nodes joining T ∗(v) from the time S was invoked is at most ω∗
0(v)/4.

Combining these two observations, we obtain that the number of subtrees that
received a new value in Iq after S was invoked is small enough to guarantee that
3 · 2q+2 + cq(v) ∈ Iq.

The formal description of Protocol Shuffle as well as its analysis are deferred
to the full paper, where we show the following Lemma.

Lemma 2. MC(Shuffle(T ′)) = O(|T ′| log |T ′|).

5 Protocol Maintain W

The goal of Protocol Maintain W is to allow each separator v in the dynami-
cally growing tree to maintain a constant approximation to the number of nodes
in T ∗(v). In [3] and [16], they show how to allow the root to maintain a constant
approximation to the number of nodes in a growing tree, using O(n log2 n) mes-
sages, where n is the final (and maximum) number of nodes in the growing tree.
Let us denote such a protocol by Protocol Weight Watch. In this section, for
each separator v, we consider T ∗(v) as rooted at v. Protocol Maintain W sim-
ply invokes Protocol Weight Watch on T ∗(v), for each separator v. Therefore,
each vertex u participates in l(u) applications of Protocol Weight Watch, one
for each subtree Ti(u). This can be implemented easily assuming each node u
knows, for each 1 ≤ i < l(u), the port number leading to its parent in Ti(u)
and the port numbers leading to its children in Ti(u). This assumption can be
removed by slightly modifying protocol Shuffle.

Note that if a δ-separator decomposition is maintained then every vertex u par-
ticipates in l(u) = O(log n) concurrent executions of Protocol Weight Watch.
We therefore obtain the following lemma.

Lemma 3. Assuming the leaf-increasing tree model, Protocol Maintain W al-
lows each vertex v in the dynamic tree to maintain a constant approximation
to the number of nodes in T ∗(v). Moreover, if a δ-separator decomposition is
maintained at all times then MC(Maintain W, n) = O(n log3 n).
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6 Dynamic Separator Decomposition

We now briefly sketch Protocol Dyn Sep, whose goal is to maintain a compact
separator decomposition representation in the leaf-increasing model. Protocol
Dyn Sep uses Protocol Maintain W as a subroutine and from time to time
invokes Protocol Shuffle on different subtrees. Therefore, the correctness of
Protocol Dyn Sep depends on the correctness of Protocol Maintain W and on
the fact that the Shuffle properties are maintained whenever a Shuffle pro-
tocol is invoked. However, these are only guaranteed assuming that the balance
invariants and the growth property are maintained when the Shuffle protocols
take place and assuming that a δ-separator decomposition is maintained at all
times. Protocol Dyn Sep guarantees these assumptions by invoking Protocol
Shuffle(T ∗(v)) whenever the number of vertices in some T ∗(v) grows by some
constant factor. This is implemented as follows. Every vertex v keeps the value
ω∗

0(v) which is the number of vertices in T ∗(v) after the last Shuffle proto-
col on a subtree containing v. Whenever the counter ω̃∗(v) (which is used by
v in order to estimate |T ∗(v)|) satisfies ω̃∗(v) ≥

√
5/4 · ω∗

0(v), vertex v invokes
Protocol Shuffle(T ∗(v)). The formal description of Protocol Dyn Sep and the
proof of the following theorem are deferred to the full paper.

Theorem 1. Assuming the leaf-increasing tree model, Protocol Dyn Sep main-
tains a compact separator decomposition using O(n log3 n) messages.

7 Applications: Dynamic Labeling Schemes for Trees

In this section we describe the ideas behind our dynamic labeling schemes, all
of which use O(log3 n) amortized message complexity. In this extended abstract
we sketch the improved dynamic ancestry and routing schemes. The formal de-
scription and analysis of these applications as well as the formal description and
analysis of the NCA labeling schemes and the extended distance labeling are de-
ferred to the full paper. We begin with sketching the ideas behind our dynamic
compact ancestry labeling schemes.

Improved ancestry labeling schemes on dynamic trees: We first introduce a new
static compact labeling scheme, πStat Anc = 〈MSA,DSA〉, supporting the an-
cestry relation, and then show how to extend it to the dynamic setting. Scheme
πStat Anc uses the separator decomposition representation obtained by Scheme
πStat Sep. For every two vertices v and u, let s(v, u) denote the NCA of v and
u in T sep. Scheme πStat Anc is based on the fact that a vertex v is an ancestor
of a vertex u iff v is an ancestor of s(v, u) and u is a descendant of s(v, u). The
label L(v) given by the marker algorithm MSA to a vertex v is composed of
two sublabels, namely, the separation sublabel, Lsep(v), and the relative sublabel,
Lrel(v). The separation sublabel Lsep(v) is the label given to v by the scheme
πStat Sep. The relative sublabel Lrel(v) is composed of l(v) fields. The j’th field
of Lrel(v) contains two bits indicating whether sj(v), the level-j separator of v,
is an ancestor of v in T , descendant of v in T or neither.
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Given two labels L(v) and L(u), of two vertices v and u, one can extract
the level i of s(v, u) using the corresponding separation sublabels and then find
whether in T , v is an ancestor of s(v, u) and u is a descendant of s(v, u), using
the i’th field of the corresponding relative sublabels.

In the dynamic scenario, the separation sublabels are maintained using the
dynamic scheme πDyn Sep. Throughout the dynamic scenario, whenever a vertex
v is assigned a new level j separator, the j’th field in its relative sublabel is
updated appropriately, according to whether v is an ancestor (or a descendant)
of this separator. By Theorem 1 we therefore obtain the following theorem.

Theorem 2. Assuming the leaf-increasing model, Scheme πDyn Anc maintains
a compact ancestry labeling scheme using O(n log3 n) messages.

Dynamic routing labeling schemes: We now sketch our dynamic routing
schemes πrout which have optimal label size up to a multiplicative factor of
O(log log n). I.e., the label size of πrout is O(log n · log log n) for the designer port
model, and O(log2 n) for the adversary port model.

Let v be some vertex, and let l(v) be level for which v was chosen as a separa-
tor. For each 1 ≤ i ≤ l(v), let si(v) be the i’th separator of v. The label of v given
by πrout is composed of three sublabels. The first is the separator sublabel Lsep(v)
which is the label given to v by πDyn Sep (recall that Lsep(v) contains l(v) fields).
The second and third sublabels are the port-to-separator sublabel Lto−sep(v) and
the port-from-separator sublabel Lfrom−sep(v). Each of these sublabels also con-
tains l(v) fields. The i’th field in Lto−sep(v), namely Lto−sep

i (v), is the port
number leading from v to the next vertex on the shortest path connecting v and
si(v). The i’th field in Lfrom−sep(v), namely Lfrom−sep

i (v), is the port number
leading from si(v) to the next vertex on the shortest path connecting si(v) and
v. By slightly modifying Protocol Shuffle, we can ensure that whenever Pro-
tocol Dyn Sep updates the i’th field in Lsep(v), the i’th fields in the sublabels
Lto−sep(v) and Lfrom−sep(v) are also updated appropriately.

Given the labels L(u) and L(v) of two vertices u and v, the port number
leading from u to the next vertex on the shortest path connecting u and v is
determined as follows. If Lsep(u) is a prefix of Lsep(v) and Lsep(u) contains i

fields, then u = si(v) and therefore the desired port number is Lfrom−sep
i (v). If,

on the other hand, Lsep(u) is not a prefix of Lsep(v) then let i be the last index
such that Lsep

i (u) = Lsep
i (v). In this case, the i’th separator of u, si(u), must

be on the path connecting u and v and must be different than u. Therefore, the
desired port number is Lto−sep

i (u).
Scheme πrout is clearly a correct dynamic routing schemes. Let us now analyze

its label size. First, for each vertex v, the separator sublabel Lsep(v) contains
O(log n) bits. Both the port-to-separator sublabel Lto−sep(v) and the port-from-
separator sublabel Lfrom−sep(v) contain O(log n) fields, where each such field
contains a port number. Recall that it is assumed that each port number is
encoded using O(log n) bits. It follows that in the adversary port model, the
label size of Scheme πrout is O(log2 n). Let us now consider the designer port
model and describe the method by which each vertex u chooses its port numbers,
so that the label size of Scheme πrout is O(log n · log log n). Let Esep(u) be the
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set of edges leading from u to the next vertex on the shortest path connecting
u and one of its ancestors in T sep. Since u has l(u) = O(log n) such ancestors,
Esep(u) contains O(log n) edges. For each edge e ∈ Esep(u), vertex u chooses
a unique port number in the range {1, 2, · · · , l(u)}. Therefore, each such port
number can be encoded using O(log log n) bits. We therefore immediately get
that for every vertex v, the port-to-separator sublabel Lto−sep(v) can be encoded
using O(log n · log log n) bits. We now describe the method by which each vertex
u chooses its remaining port numbers, i.e., the port numbers of the edges not in
Esep(u). For each such edge e, let T i(u) be the corresponding subtree formed by
u. The corresponding port number at u is set to be the number l(u) + ρ(T i(u)),
where ρ(T i(u)) is the number given to T i(u) by Protocol Dyn Sep. We therefore
obtain that the port numbers incident to u are disjoint. For a fixed vertex v and
i ≤ l(v), the port number Lfrom−sep

i (v) is leading from si(v) to x, the next
vertex on the shortest path connecting si(v) and v. If the edge (si(v), x) belongs
to Esep(si(v)) then Lfrom−sep

i (v) is encoded using O(log log n) bits. Otherwise,
the number of bits in Lfrom−sep

i (v) is O(log log n) plus the number of bits used
to encode the i + 1’st subfield in Lsep(v). Therefore, the number of bits used to
encode Lfrom−sep(v) is at most O(log n·log log n)+O(log n) = O(log n·log log n).
We therefore obtain the following theorem.

Theorem 3. Assuming the leaf-increasing model, Scheme πrout is a correct dy-
namic routing scheme that uses O(n log3 n) messages. Moreover, the labels it pro-
duces are of optimal length, up to a multiplicative factor of O(log log n). I.e., the
label size of πrout is O(log2 n) for the adversary port model, and O(log n·log log n)
for the designer port model.
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Abstract. We study the impact of faulty processors on the communi-
cation cost of distributed algorithms in a message-passing model. The
system is synchronous but prone to various kinds of processor failures:
crashes, message omissions, (authenticated) Byzantine faults. One of
the basic communication tasks, called fault-tolerant gossip, or gossip for
short, is to exchange the initial values among all non-faulty processors.
In this paper we address the question if there is a gossip algorithm which
is both fault-tolerant, fast and communication-efficient? We answer this
question in affirmative in the model allowing only crash failures, and in
some sense negatively when the other kinds of failures may occur. More
precisely, in an execution by n processors when f of them are faulty, each
non-faulty processor contributes a constant to the message complexity,
each crashed processor contributes Θ(fε) (ε > 0 could be an arbitrarily
small constant independent from n, f but dependent on the algorithm),
each omission (or authenticated Byzantine) processor contributes Θ(t),
and each—even potential—Byzantine failure results in additional Θ(n)
messages sent.

1 Introduction

Communication tasks, like broadcast, multicast or gossip, are among fundamen-
tal algorithmic problems in distributed computing. All of them have fast and
fault-tolerant solutions in a synchronous message-passing system. However still
not much is known about the communication complexity incurred by faulty pro-
cessors while performing a communication task. In this paper we address this
issue for a gossip problem. A fault-tolerant gossip requires that all non-faulty
processors learn initial values (called rumors) of all other non-faulty processors.
We study deterministic solutions terminating in constant time, which is asymp-
totically the best time complexity we can achieve for this problem, and tolerating
different kinds of failures: crashes, message omissions, authenticated Byzantine
and Byzantine faults.

Gossip algorithms are important tools for solving decision problems (e.g., con-
sensus [3,4,11]) and cooperation problems (e.g., performing tasks [12]). The addi-
tional motivation for studying constant-time message-efficient algorithms comes
� Supported in part by KBN Grant N206 001 32/00924 and COST Action 295.

A. Pelc (Ed.): DISC 2007, LNCS 4731, pp. 328–342, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



On the Communication Surplus Incurred by Faulty Processors 329

from the crucial property that reducing the number of messages increases the
stability of many underlying networking systems (see e.g., [5]). More precisely,
substantially reducing the number of messages in the system is more important
for efficient queuing and processing of messages than decreasing latency by a
constant number of rounds.

We denote the number of processors in the system by n, the upper bound
on the number of failures (in other words, the number of potential failures) by
t < n, and the real number of failures that occur during the execution of the
algorithm by f ≤ t. Parameters n, t are known to all processors. Algorithm is
called t-resilient if it solves the problem correctly unless the number of failures
exceeds t.

The naive fault-tolerant gossip solution, in which each processor sends its
rumor to all other processors in the first round, suffers from the fact that every
processor, even non-faulty one, sends n − 1 = Ω(n) messages. Another popular
algorithm, based on the set of leaders (see e.g., [10,13]), requires that firstly each
processor sends its rumor to all the leaders, and then every leader sends back the
combined message to all other processors. This approach however is inefficient
if the number of leaders, and hence the number of tolerated failures, is big. For
example, an algorithm tolerating up to t failures should choose at least t + 1
leaders, which yields Ω(t) messages per each, again even non-faulty, processor.
Our goal is to improve the message complexity of deterministic fault-tolerant
time-efficient gossip algorithms, wherever it is possible, and show the actual
impact of faulty processors to the message complexity of the gossip problem.

1.1 Our Contribution

A straightforward lower bound for the message complexity of a gossip problem is
Ω(n), since each processor must send its value at least once. In the model without
failures, this lower bound is matched by the algorithm with one leader, described
above. If crashes or even more malicious failures are allowed, this algorithm no
longer works since the leader may crash and every other processor receives no
message.

We show that indeed every crash failure induces additional cost of Ω(tε)
messages for any constant-time t-reliable gossip algorithm, where ε > 0 could be
an arbitrarily small constant which depends on the algorithm. This distinguishes
between the models with crash failures and without failures, for f > n1−ε. On
the other hand, we design a deterministic gossip algorithm where each crash
failure contributes O(fε) to the message complexity, for any constant ε > 0. This
can not be achieved against omission failures, since each such failure contributes
Θ(t) to the message complexity (we show both a lower bound and a deterministic
algorithm that matches it). The same holds for authenticated omission failures.

Finally, we show that Byzantine failures are the most costly ones, since each
even potentially Byzantine fault results in additional Θ(n) message complexity.
Similarly as above, we show a lower bound and refer to the algorithm described
in [8] that matches this bound. Table 1 summarizes the results.
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Table 1. Message complexity incurred by different kinds of failures. ε > 0 is a constant
that depends on the algorithm. The results without a reference are obtained in this
paper.

Kind of failures Lower bound Upper bound

additional cost per crash Ω(fε) O(fε)

additional cost per omission/auth.-Byzantine Ω(t) O(t)

additional cost per potential Byzantine failure Ω(n) O(n) [8]

Another important contribution of this paper is a general framework for fault-
tolerant gossip algorithms, which is used to obtain efficient gossip algorithms in
every considered model of failures. It is based on two classes of generic subrou-
tines: (adaptive) mix and request. Using specific combinations of these subrou-
tines allows to handle efficiently different kinds of failures.

1.2 Previous and Related Work

There is a vast body of literature concerning fault-tolerant gossip in different
settings, here we present only the most relevant results. Dolev and Reischuk [8]
introduced a simple constant-time t-resilient gossip algorithm with O(n) mes-
sages per each potentially Byzantine failure. Chlebus and Kowalski [3] devel-
oped a t-resilient gossip algorithm against crash failures, where t < cn for a
positive constant c < 1, working in O(log2 n) rounds with message complexity
O(polylog n) per each crash during the execution. That result was extended over
all values t < n by Georgiou et al. [12] who presented a gossip algorithm working
in time O(log2 n) and with O(nε) communication cost per each crash, for any
constant 0 < ε < 1. Recently, Chlebus and Kowalski [4] developed a solution
tolerating up to n − 1 crashes in time O(log3 n) and with O(n log4 n) message
complexity. Note that apart from Dolev and Reischuk’s [8], those results are not
in constant number of rounds, therefore they can not be directly compared with
or transformed into constant-time gossip solutions. In the more restricted model
of static crashes, Diks and Pelc [7] solved a gossip problem with cn faults (for
any constant 0 < c < 1) in time O(log n) and with O(n) messages.

Book [13] presents some aspects of fault-tolerant solutions of the gossip prob-
lem in general networks. Related problems of gathering and spreading informa-
tion in shared-memory system were also broadly studied, but from slightly differ-
ent perspective, see e.g., [6]. For the purpose of our algorithms we define graphs
with specific fault-tolerant properties. Different kinds of graphs with expansion
properties were studied before in the context of fault-tolerant communication
in a message-passing system [3,4,7,12], networks in general (for references see
e.g., [2]) and shared memory [6]. Graphs defined in this paper have not been
studied before.

We compare the results obtained for the gossip problem with another fun-
damental problem in fault-tolerant distributed computing, which is a consensus
problem. Fisher and Lynch [9] showed that a synchronous solution requires f +1
rounds. This proves that consensus—as a decision problem— is more complex
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than the gossip problem from the perspective of time complexity. For crash fail-
ures, Galil, Mayer and Yung [11] designed a consensus algorithm working in
time O(f) and with communication complexity overhead O(tε) per each crash,
for any constant ε > 0. Their solution was based on a diffusion tree. This re-
sult has been recently improved by Chlebus and Kowalski [4] who decreased the
communication complexity overhead to O(polylog n) per each crash. That result
compared with the result from this paper emphasizes another difference between
gossip and consensus problems: for time-optimal algorithms, the communication
impact of a crash is much smaller for consensus than for gossip. Regarding the
other types of faults, the additional message complexity incurred in a consen-
sus algorithm by an omission or an authenticated Byzantine failure is Θ(t), and
Θ(n) by a Byzantine failure, as shown by Dolev and Reischuk [8]. Surprisingly,
for these kinds of failures the results for gossip and consensus problems are the
same.

1.3 Organization of the Paper

Basic definitions and notations are given in Section 2. Section 3 provides the
main framework for efficient gossip algorithms against all considered types of
failures. The following three sections present the results for the gossip problem
in considered models of failures: Section 4 for crash failures, Section 5 for omis-
sion and authenticated Byzantine failures, and Section 6 for Byzantine failures.
A discussion in Section 7 concludes the paper. The missing proofs, due to the
lack of space, are deferred to the full version of the paper.

2 Technical Preliminaries

In this paper we consider a synchronous message-passing model with failures, as
described in [1,15].

Processors and communication. A distributed system considered in this pa-
per is synchronous, with all processors having access to a global clock. There are
n processors, each with a unique integer name (identifier) in set P = {1, . . . , n}.
Parameter n is known to all processors, in the sense that it is a part of code
of an algorithm. Processors communicate by sending messages. Clock cycles are
partitioned into rounds during which every processor can receive all the mes-
sages delivered at the beginning of this round, perform any finite computation
(with exception of breaking cryptographic protocols used in the authenticated
Byzantine case), and send point-to-point messages to any subset of processors.
A message sent in a round is delivered to its destination at the beginning of the
next round, unless the sender or the receiver is faulty; in that case a message
could be lost (see the next paragraph for description of the models of failures).

Processor failures. We consider the classic model of processor failures (see
i.e., [1,15] for detailed description). To avoid much formalism, we use the notion
of an adversary who incurs failures into the system. The adversary is adaptive
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in the sense that it knows the algorithm and may cause failures during the
execution of the algorithm. A processor failure is permanent, that is once a
processor becomes faulty it remains faulty till the end of the computation. The
total number of processor failures in any execution is bounded by t < n. The
real number of failures occurring during an execution is denoted by f ≤ t. We
consider the following types of failures.

Crash failures: after crashing a processor stops its activity, in particular it stops
sending and receiving any messages till the end of the computation. When a
processor crashes while sending a message to a subset of processors, the message
can be delivered only to some of them, depending on the choice of the adversary.

General omission failures: a faulty processor may omit to send or receive any
message. More precisely, the adversary has a choice for every message sent by
or to a faulty processor if it is received or not. Although the number of faulty
processors is bounded by t, there is no limit on the number of omitted messages
during the execution. Note that this model is more severe than one with crashes
since here no processor can infer a failure of any other by lack of messages from
it (since it might be faulty itself). This model also differs from one in which
particular faulty links can drop off messages (see [14] for details and further
references).

Byzantine failures: a faulty processor may behave in any malicious way desired
by the adversary. In particular, it may avoid sending messages or send messages
with malicious content. In authenticated Byzantine model there is a restriction
that each processor may sign any part of a message with its identifier, and
such messages may not be forged (only relied unchanged to other processors
or be omitted by a faulty processor). From the point of view of performing
a communication task, an authenticated Byzantine processor is similar to an
omission-prone processor [15].

Fault-tolerant gossip problem. We are given a set of n processors. Initially
each of them has a distinct piece of information, called a rumor. A t-resilient
gossip solution must satisfy the following requirements in the presence of any
pattern of at most t failures, and under the assumption that all processors start
in the same round:
Correctness: Each non-faulty processor learns the rumors of all non-faulty pro-

cessors;
Termination: Each non-faulty processor terminates its protocol.
We assume that an algorithm (code) executed by each processor is the same,
and that each processor knows at the beginning values n and t, as well as its
own unique identifier i ∈ {1, 2, . . . , n} and its own unique data rumori.

Complexity measures. In this paper we consider constant-time algorithms,
i.e., terminating in a constant number of rounds. We measure their message com-
plexity, that is, the total number of point-to-point messages sent by processors
before termination. We compute this complexity as a function of parameters n,
t and f . Note that message complexity is also an upper bound on the number
of received messages.
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3 Algorithmic Framework

In this section we define a basic framework for our gossip algorithms. This in-
cludes a specification of local data structures, content of messages and update
procedures based on received messages, communication patterns and subrou-
tines. An adaptation of this framework to particular model of failures may re-
quire additional data structures; this will be addressed while describing specific
algorithms.

3.1 Local Memory, Messages and Updates

Local memory. A processor p stores the following structures:

Rumorsp[1 . . . n] : array of known processor’s rumors. A field Rumorsp[q] con-
tains a rumor of processor q, or one of the special values faulty or unknown.
Initially Rumorsp[p] = rumorp, and all remaining fields contain value un-
known.

Activep[1 . . . n] : array of processors’ activities. A field Activep[q] contains value
unknown (initial) or active (the meaning of this value depends on particular
algorithm and will be made clear later).

Informedp[1 . . . n] : array of known processors’ statuses in the gossip task.
A field Informedp[q] contains value unknown (initial) or informed (which
means that processor q has collected all required rumors).

All the arrays are gradually filled in during the execution. In particular, array
Rumorsp is filled in with rumors or values faulty for processors that are known to
be faulty. When processor p has no value unknown in the array Rumorsp, is sets
Informedp[p] = informed, and is called informed. If all non-faulty processors
are informed, the gossip is solved (however some of them may not terminate yet).

Messages and memory update. For simplicity, we use only one format of
messages. It contains the local data structures of the sender. At the beginning
of each round, every processor receives messages and updates its local data
structures by overwriting values unknown with newly received values.

3.2 Communication Graphs

Before describing subroutines used in our algorithms, we need to define three
classes of graphs which will be used in subroutines to determine the communi-
cation pattern. In each subroutine we identify the processors with nodes of the
used graph, and we assume that processors send messages only to their neighbors
in this graph.

All graphs presented below are undirected, and nodes/processors usually com-
municate both ways along the adjacent edges (unless stated otherwise). For a
graph G = (V, E) and a subset of nodes B ⊆ V , we denote the set of all neighbors
of B in graph G by NG(B).

Constructions and probabilistic proofs of existence of the following graphs are
deferred to the full version of the paper.
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Distributor Communicator
Each sufficiently big set of workers (grey) After removing any set of nodes (black)

has a big set of neighboring leaders (black) there remains a big set with small
(only some edges displayed) diameter (grey) (edges not displayed)

Distributors. A distributor is a bipartite unbalanced expander graph with
degree Δ and expansion rate Δ

4 (for small subsets) on the bigger side. Formally,
we say that a bipartite graph G = (W, L, E), where W, L are disjoint sets of
nodes, is a (n, x, Δ)-distributor iff it satisfies the following properties:

(a) |W | = n, |L| = 2n
x ;

(b) maximum degree of a node in set W is at most Δ;
(c) for every f < 2n

x2 , every set Y ⊆ W of size 4f
Δ has more than f neighbors.

Set W is called a set of workers and set L is called a set of leaders.

Theorem 1. There exists a (n, x, Δ)-distributor, for any n, Δ ≥ 4 and x ≥ 8.

Communicators. A communicator is a graph in which every large subset of
nodes contains a large subgraph with small diameter. We say that graph G =
(L, E) with n nodes and of degree Δ is a (n, x, Δ)-communicator, iff

For each set B ⊆ L of size m ≥ 6nx
Δ there exists set C ⊆ B of size bigger

than m
2 , such that the subgraph of G induced by set C has diameter at

most 2 logx n.

Theorem 2. There exists a (n, x, Δ)-communicator, for any n, Δ and x ≥
2 logn.

Adaptive communicators. An adaptive communicator is a graph in which
removal of a small set of nodes never detaches a bigger set from the main con-
nected part. Formally, graph G = (L, E) of n nodes and degree Δ is called a
(n, x, Δ)-adaptive-communicator iff
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For each f ≤ n
x and set B ⊆ L of size n−f there exists set C ⊆ B of size

at least n− 2f , such that the subgraph of G induced by C has diameter
at most 2 logΔ n.

Theorem 3. There exists a (n, x, Δ)-adaptive-communicator, for any n, x ≥ 6
and Δ ≥ 36.

Note that a complete graph with n nodes is a (n, x, n − 1)-(adaptive)-commu-
nicator, for any 1 ≤ x ≤ n.

3.3 Subroutines

Using the classes of graphs defined above, we design three simple subroutines
that are used in our algorithms. Each subroutine gets the following input pa-
rameters: a set of leaders L, parameters x and Δ. For a given subroutine and
its input parameters L, x, Δ, there is a fixed corresponding graph, which is, a
(|L|, x, Δ)-distributor for subroutine DistributedRequest(L, x, Δ), a (|L|, x, Δ)-
communicator for subroutine Mixing(L, x, Δ), and a (|L|, x, Δ)-adaptive com-
municator for subroutine AdaptiveMixing(L, x, Δ). In particular, it means that
for a given subroutine and parameters L, x, Δ, each processor knows its neigh-
boring processors in the corresponding graph. Based on the input and the prop-
erties of the corresponding graph, the exact running time of a subroutine can be
computed, as it will be described later for each kind of subroutine. Therefore if
processors start the same subroutine all in the same round, they will also finish
it simultaneously, which is important for the coordination of processors’ actions
in the course of the algorithm.

DistributedRequest(L, x, Δ), where Δ ≥ 4. The aim of this subroutine is to
gather a large number of processors’ rumors in the leaders. Recall that all pro-
cessors running this subroutine know the same fixed (n, x, Δ)-distributor graph
G = (L, W, E), where L is a pre-defined set of leaders and W is the set of all
processors. In the first round of the subroutine every processor from set L re-
quests its neighbors in G. During the second round every requested processor
replies for all the requests (by sending a message to each processor from which
it has received a request), and in the third round the answers are received and
processed by the leaders.

We will use three variants of this subroutine, depending on if a leader p ∈ L
wants to request all its neighbors in graph G, or only those neighbors whose
rumors are unknown (those q for which Rumorsp[q] = unknown), or only un-
informed neighbors (those q for which Informedp[q] = unknown).

Summarizing the complexity, the subroutine works in 3 rounds, with O(nΔ)
message complexity.

Mixing(L, x, Δ). The purpose of this subroutine is to exchange knowledge
among the leaders. Recall again that all processors running this subroutine know
the same (|L|, x, Δ)-communicator graph G = (L, E), where L is a pre-defined
set of leaders given as a part of the input. Every processor in L keeps sending a
message to all its neighbors in G during 2 logx n subsequent rounds.
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This subroutine works in 2 logx n rounds, and processors send O(|L|Δ logx n)
point-to-point messages in total. We will use this subroutine only for x being a
polynomial in n, and in that case the subroutine takes a (fixed) constant number
of rounds and has O(|L|Δ) message complexity.

AdaptiveMixing(L, x, Δ), where Δ ≥ 36. This procedure is identical to sub-
routine Mixing(L, x, Δ), with the only difference that instead of a communicator
graph, a fixed (|L|, x, Δ)-adaptive-communicator is used.

This subroutine works in 2 logΔ n rounds and generates O(|L|Δ logΔ n) point-
to-point messages. It will be applied only for Δ being a polynomial in n, and
in that case the subroutine lasts a (fixed) constant number of rounds and has
O(|L|Δ) message complexity.

4 Crash Failures

Theorem 4. Every t-crash-resilient gossip algorithm terminating in constant
time sends Ω(n+f1+ε) messages when f ≤ t crashes occur during the execution,
for some constant ε > 0. I.e., each faulty processor contributes Ω(fε).

Proof. Consider a t-resilient gossip algorithm A. The lower bound Ω(n) is obvi-
ous from the fact that in the execution without failures each processor must send
at least one message. We show the lower bound Ω(f1+ε). Let c be a constant
upper bound on the time complexity of algorithm A. We prove the existence of
an admissible execution with f crashes, for any 1 ≤ f ≤ t, in which algorithm A
sends more than f1+ε

2 messages, where ε = 1
c+1 . We consider only a nontrivial

case when fε > 2.
Assume the contrary, that the message complexity M of algorithm A is smaller
than f1+ε

2 . We show a strategy of the adversary in which it crashes f processors
in a way that algorithm A turns out to be incorrect. The strategy is as follows:
in each round the adversary crashes each processor that receives at least fε mes-
sages in this round. By the assumption, the number � of such processors in the
whole execution is at most M

fε < f
2 , thus only � < f

2 processors are crashed in
that way. In order to be consistent with the assumption that the adversary fails
f processors during the execution, at the end of the last round c the adversary
additionally crashes some of the remaining processors in order to have the total
number of crashes equal to f ; we call them last-minute crashes and define later.
We denote the whole execution by E and the part of the execution before last-
minute crashes by E∗. Note that E is an admissible execution and, by the fact
that time complexity is at most c, all messages received in E are also received
during E∗.

It remains to prove that execution E violates correctness of gossip algorithm
A, which means that there is a non-crashed processor that has not got all the
rumors of non-crashed processors by the end of round c. Consider the partial
execution E∗. A straightforward inductive argument shows that since each non-
crashed processor receives at most fε − 1 messages in any round i, it knows at
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most
∏j

i=1 fε rumors by the end of round j ≤ c. Consequently, it knows at most∏c
i=1 fε = f cε = f c/(c+1) = f1−ε < f

2 < f − � rumors at the end of the partial
execution E∗. Still there are f−� last-minute crashes to be done by the adversary
at the very end of the execution E . Therefore, if the adversary chooses a processor
p that is non-faulty in E∗ and in the last-minute it crashes all processors which
rumors have been collected by p (there are less than f − � of them), p knows no
rumor of non-faulty processor at the end of the whole execution. Additionally the
adversary does some other last-minute crashes (arbitrarily selected), still keeping
processor p alive, to assure that the total number of crashes during execution E
is exactly f . Thus E violates correctness of the gossip algorithm. �

Observe that the lower bound does not depend on parameter t. Moreover, a large
number of crashes, e.g., n/3, increases the message complexity by polynomial
factor, comparing to the executions without failures.

We now show how to solve the gossip task in the presence of crash failures,
in constant number of rounds and with O(n + f1+ε) message complexity, for
any given ε > 0. Our algorithm GosCrash(ε) is composed of two parts. Part I
(see Figure 1) attempts to solve the gossip using a small number 2n1−ε/6 of
leaders. It uses O(n) messages, independently of the number of failures. If most
of the leaders are non-crashed, precisely f < n1−ε/3, after this part the gossip
is completed and all processors are informed. Otherwise, all processors that are
uninformed after Part I perform Part II (see Figure 2), which costs additional
O(1) rounds and O(f1+ε) messages in total.

Algorithm initialization and control. For a given constant parameter 0 <
ε ≤ 1, let k = � 6

ε� and s = max{2, �nε/6�}. We define L (the set of leaders) to
be the set of the first �2n/s� processors. Recall that P stands for the set of all
processors. Each processor first runs Part I of the algorithm. If, after Part I, it is
still not informed then it executes Part II. Otherwise, it waits during the period
corresponding to the execution of Part II, and it only replies to all messages
received during this period (by sending back all its local data as described in
Section 3).

Part I. In this part we first run k + 1 gathering Phases, parameterized by
i = 0, . . . , k, in order to gather the rumors by the leaders, and then we per-
form k + 1 informing Phases, parameterized by i = 0, . . . , k, in order to spread
gathered information from the leaders to all non-faulty processors. The pro-
cesses of gathering and informing are symmetric to each other, in the sense
that they both use the same communication pattern and the only difference is
that in the gathering process the goal is to request and get the answer, while
in the informing part the aim is to send the data and then get the confirma-
tion. Therefore we give a pseudo-code for a generic phase, see Figure 1, pointing
our clearly all the places where both processes differ, that is, where either un-
known processors (in gathering phases) or uninformed processors (in informing
phases) are considered. Parameter i is responsible for limiting the number of
requests sent during Phase(i); more precisely, si is the upper bound on the
number of requests arriving at a single processor. Intuitively, we start with a
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Generic Phase(i) (code for processor p): % a generic phase can be either
gathering or informing

1. Run AdaptiveMixing(L, 6, s)
2. If there are at most 8n/si values unknown in Rumorsp (in gathering phase) or

Informedp (in informing phase), set Activep[p] = active and reset the rest of the
array Activep. If not, reset the whole array Activep

3. Run AdaptiveMixing(L, 6, s)
4. If Activep[p] = active and there are more than |L|/2 values active in Activep, set

Activep[p] = active and reset the rest of the array Activep. If not, reset the whole
array Activep

5. Run AdaptiveMixing(L, 6, s)
6. If Activep[p] = active and there are more than |L|/2 values active in Activep, run

DistributedRequest(L, s, si), requesting unknown neighbors (in gathering phase)
or uninformed neighbors (in informing phase)

7. After receiving any replies, set Rumorp[q] = faulty for every unknown processor
q requested in the previous line

Algorithm GosCrash, Part I:

– For i := 0 to k run gathering Phase(i)
– For i := 0 to k run informing Phase(i)

Fig. 1. Algorithm GosCrash, Part I

small number of requests, and increase this number gradually with the consec-
utive phases in order to assure that each processor will be asked eventually by
some other processor.

We briefly describe a gathering Phase(i); an informing phase—as we argued—
is analogous. In line (1) the leaders exchange their knowledge running Adaptive-
Mixing(L, 6, s). Any leader that knows enough rumors, that is all but at most
8n/si, considers itself active in line (2). Only an active processor will have a
chance to send requests later in line (6). In lines (3) to (5), every active leader
perform two additional AdaptiveMixing(L, 6, s), in order to check if it has suf-
ficiently many leaders (at least 3n/si−1) in distance 2k, and to exchange its
knowledge with other leaders with this property. The reason why it performs
adaptive mixing twice is that the information exchange between two such lead-
ers is in practice made via some intermediate leader, which is in distance 2k from
both of them. In line (6) only the leaders that in both predeceasing runs of adap-
tive mixing (lines (3) and (5)) had at least 3n/si−1 leaders in distance at most
2k perform DistributedRequest(L, s, si). This protocol guarantees that any two
requesting leaders exchanged their knowledge while executing lines (3) to (5).
As we will show in the analysis, this also gives a desired upper bound on the
number of requested processors, and therefore on the total number of requests
(contributing substantially to the message complexity). On the other hand, the
property of subroutine DistributedRequest(L, s, si) assures that at least 1/s frac-
tion of rumors that are unknown to active leaders does not receive any request
from them, providing there are sufficiently many active leaders. Finally, every
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Generic Phase(i, j) (code for processor p): % a generic phase can be either
gathering or informing

1. Run Mixing(P , s, si)
2. If (i = j) or there are at most 3n/sj−2 values unknown in Rumorsp (in gathering

phase) or Informedp (in informing phase), set Activep[p] = active and reset the
rest of the array Activep. If not, reset the whole array Activep

3. Run Mixing(P , s, si)
4. If Activep[p] = active and there are more than 3n/si−1 values active in Activep,

set Activep[p] = active and reset the rest of the array Activep. If not, reset the
whole array Activep

5. Run Mixing(P , s, si)
6. If Activep[p] = active and there are more than 3n/si−1 values active in Activep,

send requests to unknown neighbors (in gathering phase) or uninformed neigh-
bors (in informing phase) in the (n, s, sj)-communicator

7. After receiving any replies, process them and make updates; set Rumorp[q] =
faulty for every unknown processor q requested in the previous line

Epoch(i):

– For j := i to k run gathering Phase(i, j)
– For j := i to k run informing Phase(i, j)

Algorithm GosCrash, Part II:

– For i := 1 to k run Epoch(i)

Fig. 2. Algorithm GosCrash, Part II

processor that was requested in line (6) answers in line (7), and therefore the
number of unknown rumors to the active leaders decreases by fraction 1/s (again,
providing there are sufficiently many active leaders).

Part II. Part II contains k Epochs, each being a slightly modified version of
Part I, handling a different range of the number of failures. The main difference
from Part I is that different graphs for mixing and requests are used, due to the
fact that subsequent epochs handle larger and larger number of crashes, trading
them for the increasing communication cost. More precisely, we will show that
for each i, Epoch(i) costs O(n1+ε/3) messages, and successfully solves gossip
whenever the number of correct processors is at least 6n/si−1. In each Epoch,
consecutive Phases work analogously to Phases in Part I, with the similar role of
corresponding lines in the pseudo-code; therefore we skip an informal description
and refer directly to Figure 2 for details.

4.1 Analysis of Algorithm GosCrash

Correctness of the algorithm follows from the fact that in the first line of
Epoch(k) of Part II, uninformed processors send messages to all their
neighbors in (n, s, n − 1)-communicator (which is a complete graph), and re-
ceive the answers. After this line all processors are informed.
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Time complexity is a constant, which can be seen directly from the construc-
tion: k is a constant, each used subroutine lasts O(1) rounds, and each line of the
code of Part I and Part II lasts a constant number of rounds. We now analyze
the message complexity. The following lemmas describe the progress and the
message complexity of the algorithm after Part I and Part II.

Lemma 1. If f ≤ n1−ε/3 then after Part I all non-faulty processors are in-
formed.

Lemma 2. The number of messages sent during Part I is O(n).

Lemma 3. If there are at least 6n/si−1 non-faulty processors at the end of
Epoch(i) of Part II, then all of them are informed by that time.

Lemma 4. Each epoch of Part II contributes O(n1+ε/3) to the message com-
plexity.

Lemma 5. The number of messages sent during Part II is O(f1+ε).

Combining Lemmas 2 and 5 we obtain the final result.

Theorem 5. Each crash failure contributes O(fε) to the message complexity of
algorithm GosCrash.

5 Omission and Authenticated Byzantine Failures

Since an omission-faulty processor may, for example, omit all messages start-
ing from some given round, omission failures are at least as hard to handle as
crashes. In this section we prove that from the point of view of the gossip they
are substantially more severe. In particular, each omission-faulty processor con-
tributes Θ(t) to the message complexity of the gossip problem. The following
lower bound holds for all t-omission-reliable gossip algorithms.

Theorem 6. Every t-omission-resilient gossip algorithm has message complex-
ity Ω(n + ft), that is, each faulty processor contributes Ω(t).

We present an algorithm, called GosOmission, based on the generic framework
described in Section 3. It uses subroutines DistributedRequest and AdaptiveMix-
ing. The main difference between this algorithm and algorithm GosCrash is
that in case of omission failures it might be not enough to send a request once
to every processor. The lack of answer might as well indicate that the sender is
faulty, not necessarily the receiver as it was for crashes. Thus in order to confirm
that some processor is faulty, at least t + 1 messages must be sent to it, each
by different processor. Let L be the set of the first 2n

5
6 processors, T be the

set of the first min{3t + 1, n} processors, and P be the set of all processors.
Figure 3 presents the pseudo-code of the algorithm. A detailed description and
the analysis are deferred to the full version of the paper.

Theorem 7. GosOmission is a constant-time omission-resilient gossip algo-
rithm with message complexity O(n+ft), that is, O(t) per each faulty processor.

Using the simulation from [15], our algorithm can be adapted to tolerate authen-
ticated Byzantine faults with the same asymptotic time and message complexity.
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1. Run DistributedRequest(L,n
1
6 , 8)

2. Run AdaptiveMixing(L, n
1
6 , n

1
6 )

3. Run DistributedRequest(L,n
1
6 , 8)

4. Run AdaptiveMixing(P , 6, n
1
3 ); a processor that knows more than n−2n

2
3 rumors

only answers the requests
5. Each processor in T that knows at least n−4t rumors sends requests to all unknown

processors; requested processors reply in the next round, and the answers are
delivered in the second next round

6. Run DistributedRequest(L,n
1
6 , 8)

7. Run AdaptiveMixing(L, n
1
6 , n

1
6 )

8. Run DistributedRequest(L,n
1
6 , 8)

9. Run AdaptiveMixing(P , 6, n
1
3 ); an informed processor only answers the requests

10. Finalizing phase: every uninformed processor sends requests to all processors in T ;
requested processors reply in the next round, and the answers are delivered in the
second next round

Fig. 3. Algorithm GosOmission

6 Byzantine Failures

From the message complexity point of view, the Byzantine failures are indeed
the most severe failures among the considered ones.

Theorem 8. Every potentially-Byzantine processor contributes Ω(n) to the mes-
sage complexity of a t-Byzantine-resilient gossip algorithm.

The proof of Theorem 8 is deferred to the full version of the paper. On the other
hand, the matching upper bound was established in [8].

Theorem 9. [8] There is a constant-time t-Byzantine-resilient gossip algo-
rithm for which each potential Byzantine failure results in additional O(n) mes-
sages, for every 0 < t < n.

7 Conclusions and Applications

In this paper we analyzed the impact of different kinds of failures to the mes-
sage complexity of a constant-time gossip problem. In particular we showed that
crashes cost more messages than non-faulty processors, however still polynomially
less than more severe types of failures like omissions and (authenticated) Byzan-
tine. There are several additional properties of the gossip algorithms designed in
this paper, apart that they are fast, fault-tolerant and generate minimum required
number of messages. The algorithms designed to handle crashes and omissions also
provide to each non-faulty processor some extra information about each faulty
processor: its rumor or a special value faulty. The extra information provided by
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the algorithm for authenticated Byzantine failures is slightly weaker: a message
sent by the faulty processor at some point of the execution or a special value faulty.

There are several open questions related to the efficient fault-tolerant gossip.
A tradeoff between time and message complexity in the model with crash failures
is one of the intriguing problems (compare this work with [3,4]). Another open
direction is to analyze fast fault-tolerant gossip in general network topologies.
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Abstract. Consider a network whose inputs change rapidly, or are sub-
ject to frequent faults. This is expected often to be the case in the foreseen
huge sensor networks. Suppose, that an algorithm is required to output
the majority value of the inputs. To address such networks, it is desir-
able to be able to stabilize the output fast, and to give guarantees on
the outputs even before stabilization, even if additional changes occur.

We bound the instability of the outputs (the number of times the
output changes) of majority consensus algorithms even before the final
stabilization. We show that the instability can be traded off with their
time adaptvity (how fast they are required to stabilize the output if f
faults occurred). First, for the extreme point of the trade-off, we achieve
instability that is optimal for the class of algorithms that are optimal
in their output time adaptivity. This is done for various known versions
of majority consensus problem. The optimal instability for this case is
Ω(log f) and is shown to be O(log f) for most versions and O(log n)
in some cases. Previous such algorithms did not have such a guarantee
on the behaviour of the output before its final stabilization (and their
instability was Ω(n)). We also explain how to adapt the results for other
points in the trade off.

The output stabilization in previous algorithms was adaptive only if
the faults ceased for O(Diam) time. An additional result in this paper
uses adaptations of some previous tools, as well as the new tools devel-
oped here for bounding the instability, in order to remove this limitation
that is undesirable when changes are frequent.

1 Introduction

Consider an action that is to be taken according to some value measured by
sensors composing a network. The measurements at some of the sensors may be
different (possibly, because of measurements inaccuracies, or because of faults).
To overcome that, the network computes a majority consensus. An outside action
may be taken according to this consensus. For example, travelers in the woods
may consult the sensor near them to decide whether to unfold a tent, since a
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storm is coming, or whether to fold the tent and continue the walk in the case
that the rain has gone.

A fast answer is sometimes crucial. However, if one insists that a warning
always come as fast as possible, then some false warnings are unavoidable. For
example, if all the near-by sensors predict a storm, then the initial answer must
be that a storm is about to break. If those near by sensors are a small minority,
then the answer changes eventually. The false alarm may have consumed some
resources (e.g., the effort of unfolding and then re-folding). An external system
using the output may even act incorrectly if the output changes too frequently.
For example, various machines, if turned on and off too often, would break.

Note, that changes in the output may be unavoidable even if the travelers
are willing to wait. The inputs of the sensors may change, for example, when a
chance of a storm is indeed increasing. Moreover, the inputs change not all at
the same time. Hence, at some point, the travelers should decide that they are
willing to act upon the best answer the network can give them at present.

The stability (or instability) of the output for a distributed consensus was
discussed in [1,2]. It is the number of times the output may change when the
input changes. The output time complexity, or the output stabilization time, in
self stabilizing systems1, is the time it takes for the system to start outputting
the correct and final output, following input changes (e.g. introduced by faults).
These two measures of complexity seem, intuitively, related. (For example, the
number of changes in the output of a node cannot be larger than the time
complexity). Still, they were discussed only separately in the literature. The
stability problem was studied also outside the setting of distributed systems, in
the context of mechanical engineering, see e.g. [11].

Note, that instability cannot be avoided altogether. In every setting of the
Consensus problem, some inputs dictate a certain output value, while some oth-
ers dictate a different one. For any other set of inputs, the algorithm enjoys the
freedom to decide the value to output. In [1], they explore how the stability is
increased (the instability is decreased) as a function of this freedom.

In this paper, we explore the way the freedom along another dimension influ-
ences the stability. In the Majority Consensus problem, the output value must
be that of the majority (as opposed to cases studied in [1]). However, (a different
kind of) freedom exists in this system too: if there are changes in the inputs of
some f nodes (or any other changes by f state faults), then the output is permit-
ted to be incorrect (i.e., different than the majority of the inputs) for some finite
time. We note that allowing such a freedom is unavoidable in distributed sys-
tems where inputs may change. This is because it takes some time for a changed
input in one node to be communicated to the other nodes. Such a freedom is
especially assumed in the context of self stabilization [18] (except for the case of
a very limited set of tasks [8] that does not include the task of Consensus).

In optimal time adaptive systems [16,12], this unavoidable output freedom is
restricted to the unavoidable duration, as a function of the number of faults. For

1 Self stabilization and stability are two different notions. The use of both may be
confusing, but we chose not to change terms that are common in the literature.
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Majority Consensus, if f faults occur, the output is required to stabilize to the
correct final value in O(f) time.

Definition 1. Assume, that the outputs of all the network nodes is stable (will
not change unless the inputs are changed) at some time t0. Assume further, that
a set of faults and changes occur at some time tf > t0. The instability of an
algorithm is the number of times the output will change in the worst case starting
from tf and until the output eventually stabilizes (if it ever does) or until further
faults or input changes occur.

Several time adaptive algorithms exist for the Persistent Value Problem [16,12]
and the Majority Consensus with Persistence Problem [21]. For these algorithms,
the instability for an optimal time adaptive algorithm was Ω(n). This means that
the output of a node could change every time unit until the final stabilization.
Some algorithms give (different kinds of) guarantees for outputs even before the
final stabilization, but these guarantees apply only for non- faulty nodes, and
the algorithms were not time adaptive. See, e.g. [15]. Self stabilizing algorithms
in general have been criticized for not giving much guarantee for the value of
the outputs before stabilization. This is especially problematic in networks that
rarely stabilize. Hence, reducing the instability (especially of faulty nodes) below
O(n) can be viewed as a step in the right direction for such network. Another
result the can be obtained using our methods for and with fast changing networks
as a motivation, is time adaptivity even when additional faults occur before
stabilization.

Main results: We address the problems of (One Time) Majority Consensus,
Persistent Value (and the related “Majority Consensus with Persistence”), and
Repeated Majority Consensus. On the negative side, it is easy to show that no
algorithm for these problems that is asymptotically optimal in its time adaptivity
can have instability that is better than Ω(log f). This is the case even if the
algorithm is not required to self stabilize. We then present algorithms that both
have optimal time adaptivity and have O(log f) instability for non-faulty nodes,
and O(log f) (for some cases) or O(log n) (for other cases) for faulty nodes.
That is, our algorithms are asymptotically optimal in their output stability for
the class of optimal time adaptive algorithms. We then show how to generalize
the results, such that if the time complexity is allowed to grow beyond O(f),
the instability shrinks below Ω(log f). The instability of our algorithms in most
cases is adaptive too, that is, it does not depend on n, but only on f .

Additional results: The proofs of the following additional results are deferred
because of space considerations, and do not appear in this extended abstract.
While previous algorithms for the Persistent Value Problem self stabilized in any
case (as do the algorithms in the current paper), they were time adaptive only
when the faults occurred in one batch at a time, and no additional faults occurred
until the eventual full state stabilization (not just until output stabilization).
This happens in Ω(n) time. Our results can be proved for a more realistic model,
where faults can occur at any time, and not just in batches.
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As tools for the our algorithms, we had to design a building block broadcast
module (Protocol ABC) that is both error confined ([15]) and time adaptive
([12]). In contrast, the error confined tool of [15] was not time adaptive, while
the time adaptive tool of [12,19] was not error confined. We also had to add to
the tool a snap stabilizing (see [8]) action we term Cancel.

2 Model, Definitions, and Some Very Related Work

The system is modeled as a fixed undirected connected graph G = (V, E), where
|V | = n. Nodes represent processors and edges represent bi-directional commu-
nication links. Every node has a unique identity ID that cannot be changed by
faults. For the sake of this extended abstract, we assume that the network is
synchronous, even though methods to translate protocols such as ours to asyn-
chronous networks are known, such as in [19,21]. The distance between two nodes
u, v ∈ V , denoted dist(u, v), is the minimum number of edges in a path connect-
ing them. Given a node v ∈ V , let Ballv(r) = {u ∈ V | dist(v, u) ≤ r} be the
ball of radius r around v. The radius of the network around a node v, denoted
Radiusv, is the minimal r such that Ballv(r) = V . RRadiusv is the first power
of 2 larger than or equal to Radiusv. Diam (the diameter) is the maximum over
all v ∈ V of Radiusv. For the purpose of saving in memory only, we assume that
the diamter is bounded by MaxDiam. For simplicity of exposition, we assume
often that RRadiusv = Radiusv. In the extended abstract, we assume that the
topology of the network is known (this assumption is lifted in the full paper, see
a short discussion in Section 6 below).

Definition 2. A state corrupting fault is an action that alters the state arbi-
trarily in some subset of nodes. We terms these node faulty.

For simplicity, we assume that after a fault, each node is in a legal local state
(otherwise, the node can detect the fault). Our approach in modeling faults is
similar to the one in [9,22]. The model of state-corrupting faults is implicit in the
work of Dijkstra about self stabilization [18]: put in our terminology, a system is
called self-stabilizing if after some arbitrary state-corrupting faults occur (pos-
sibly, hitting all nodes) the system starts behaving correctly eventually. (Issues
arising from different definitions of self stabilization are discussed in [10]). See
the full paper for more detailed definitions.

We find it convenient to define two sets Πstate, Πoutput of correct behaviors.
For defining Πoutput, we assume that every node has a part of its state called
the output. Moreover, only assignment to this variable are external actions of the
protocol. Hence, only such actions show in behaviors in this case. The specific
legal behavior Πoutput is given in the definition of every problem to be solved.
We say that Πoutput determines output stabilization.

A protocol is time adaptive for the output stabilization if the system starts
behaving correctly after a time which depends only on f , the number of faults
(rather than on n). In other words, the output stabilization time is O(g(f)) for
some function g(f). The problems we solve is defined next.
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Definition 3. The One Time Majority Consensus problem: Every node has an
input that can be changed only once and only by the environment and an output
variable read by the environment. (In the extended abstract, we assume that b is
binary). For every node, it is required that,
Eventual Agreement- the output stabilizes to the majority value of the inputs
eventually.

To unify the discussion, we consider the majority value as the correct one, and
nodes with the minority input as faulty. A second problem- the Persistent Value
Problem, is defined below.

Definition 4. The Persistent Value problem [16,12] (somewhat rephrased): A
value b was given exactly once by the environment to every node (the same b
to all the nodes) before the faults started. (In the extended abstract, we assume
that b is binary). This value was stored in each node in a storage variable. To
be compatible with previous papers dealing with the persistent value problem, we
name this storage variable the input variable. This (and every other) variable
can be changed by faults, or by the node. Every node also has an output variable
read by the environment. It is required that:
Persistence: it is required that both the output and the input of every node stabilize
to b eventually.

We note that persistence implies eventual agreement. The algorithm we present
here solves only the requirements for the output, while the requirement for the
input variable is solved by the Input Correction Module taken from [12] (the
current algorithm and the above module are executed as co-routines). We note
that we termed the storage variable the input since that storage variable is the
input for the algorithm module designed in the current paper (though it may be
changed by the other module, the one taken from [12]). The properties of the
Input Correction Module are listed in Subsection 5.2.

Note, that designing the Output Stabilization Module for the Persistent Value
problem is a harder task than designing the One Time Majority Consensus, since
our algorithm must take into account the fact that its input may be changed not
only by the environment (at some time tf the faults occur), but also (later) by
the Input Correction Module.

In Repeated Majority Consensus, changes may continue to occur. The time
and the number of changes are counted from the last time the network was
stable.

Additional very related work: The distinction between output stabilization and
state stabilization is used and discussed in a number of papers [4,16,12,28,3,5].
Fast stabilization of output variables has been demonstrated in a number of
algorithms [7,6,24,25,16,17,26,19,5] and some general methods to achieve time
adaptivity [12,26]. In [20], the importance of output stability for practical Inter-
net protocols was emphasized and obtained using time adaptivity methods.
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3 Lower Bound

We establish a lower bound for the instability of a protocol given that the output
of the protocol is required to stabilize (to the correct value) as fast as possible
(asymptotically). The requirement about the fast output stabilization is used
heavily in the proof. Furthermore, we see in this section that relaxing this re-
quirement leads to weakening the lower bounds. This establishes the lower bound
side of the trade off between output time and instability. We note that the lower
bound holds even for synchronous networks, and even for algorithms that are
not required to self stabilize.

Theorem 1. The instability of any deterministic asymptotically optimal time
adaptive protocol for the Persistent Value Problem, or for the Majority Consen-
sus Problem, is Ω(log f).

The formal proof are deferred to the full paper. Informally, it considers a line
network with v as the first node in the line. In the first, say, X time units, v
receives only votes (broadcasts of input values) from the nearest X nodes. If all
of them vote some value b1, then v cannot distinguish between this case and the
case that f = 0. To be time adaptive, v must start outputting b1 within some
constant time C. (We then choose X = C). Next, assume that out of the C2

closest to v, the majority (C2 − C) vote b0. Now, v must change its output to
b0 to be time adaptive (since it may be the case that f = C). Next, we consider
the C3 nodes closest to v. This argument is carried forward to show Ω(log f).

A problem with initial algorithmic ideas: At first glance, the proof of the lower
bound seems to suggest an algorithm: (1) collect votes (broadcasted input values
of the other nodes), (2) after changing the output, do not change the output
again, before the number of votes received is grows by a factor of some C. This
would have implied a logarithmic instability in the case that no vote may change
or may be corrupted by a fault. Unfortunately, it is possible that votes arriving
at v (by broadcasts) cease to arrive, or change their value. This can be caused
by faults at the sources of such votes, or at nodes on the route from them to v,
or by the action of the algorithm that corrects the faults.

4 A Building Block: Error-Confined and Adaptive
Broadcast

As mentioned at the end of Section 3, changes in a vote received at v increase
the instability. Some such changes cannot be avoided, since they represent real
changes in the inputs. We use a tool that avoids some changes- informally, it
allows a node s to broadcast its input such that if s and a recipient v are not
faulty, no node on the way from s to v can change the value received at v
(though the protocol may fail to deliver any value sometimes). This is termed
an error confined broadcast in [15]. See the exact properties of this protocol,
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ABC (Adaptive Broadcast with Confinement, in Theorem 2 (the definitions of
the broadcast task and of error confinement appear in the appendix).

As compared in ”Additional Results” above, these properties of ABC are a
combination of those of the tools used in previous papers [16,12,21,8]. Still, if
the algorithms of those papers are modified to use our tool, instead of their own
tools, their instabilities would still be high. However, the ABC tool proved useful
for our algorithms and may prove useful by itself in the future.

Definition 5. The value of the broadcast of a node s received in a node v is
authentic if it was indeed communicated by s (rather than a value resulting from a
corruption in some channel or some intermediate node) 2dist(v, s) time earlier.
Operation Cancel performed by v on the ABC of s causes the value of s received
at v to become undefined (⊥). Moreover, if v starts again receiving s’s broadcast,
then the value received is authentic, and was broadcast by s after the last Cancel
of v (unless v itself suffered another fault meanwhile). (The motivation for this
operation is similar to that of snap stabilization. [8]).

The detailed description of protocol ABC and the proof of the following theorem
are deferred to the full paper. They do not use cryptographic assumptions (but
alternative implementations that do use cryptographic assumptions may save in
communication complexity).

Theorem 2. Consider any node v. Let tf be the last time the faults occurred.
Let tb be the time that s started broadcasting a value b. Finally, let tCancel be
either the last time v performed Cancel on the broadcast of s, or the last time
that the value of the broadcast of s at v became ⊥ (whichever came later). Below,
if some of these times ti is undefined, then max{ti, tj , tk} = max{tj, tk}.
1. Speed: As long as the value b broadcast by the source node s does not change,

Protocol ABC of s at v outputs b starting at time max{tf , tb, tCancel} +
2dist(s, v).

2. Time adaptivity: (even for faulty nodes): At any time t such that t ≥
max{tf + f, tCancel}, the output value (for s’s broadcast) is either authen-
tic or is undefined (equal to ⊥).

3. Error Confinement (for non-faulty nodes): Let tf(v) be the last time that a
fault hit node v. Assume, that the vote of some s changed in v from some
b = ⊥ after time tf(v). Then, it first changes to ⊥. In addition, starting from
that time, the output value (for s’s broadcast in v) is either authentic or is
⊥. Finally, if the value does become authentic (after changing first to ⊥ then
is stays authentic, unless additional faults occur.

5 Instability Upper Bounds

Theorem 3. There exists a self stabilizing protocol for Majority Consensus,
such that if the local states of f of the nodes are changed arbitrarily, then

– Time Adaptivity: The output values are restored everywhere in O(f) time;
– Instability: The instability in each process is O(log f).
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Theorem 4. There exists a protocol for the Persistent Value Problem such that
if the local states of f < n/2 of the nodes are changed arbitrarily, then Time
Adaptivity is achieved, and, in addition,

– Instability: The instability is O(log f) for non- faulty nodes and O(log n),
for faulty nodes .

– Complete state stabilization occurs in O(Diam) time units.
– There is no change in the input of any correct process.

Note, that the requirement that f < n/2 in the statement of Theorem 4 is re-
quired by the Input Correction Module of [12], to ensure persistence (not stabil-
ity, nor stabilization). We note that these are the best possible output- and state-
stabilization times even when the instability is allowed to be higher [12]. However,
if the time is allowed to be higher then the instability can be smaller. The protocols
claimed in the theorems are presented in two subsections below.

5.1 Stable Adaptive Majority Algorithm (Theorem 3)

The algorithm for this easier problem is given in figure 1. Its informal descrip-
tion is given in the full paper. In short, each node broadcasts (using ABC) its
input and collects the values broadcasted by the others. The node outputs the
majority of the votes it receives, but only from a ball of radius Scanned around

Broadcast (using algorithm ABC) inputv;
Receive every arriving broadcast of other nodes; (* possibly, ⊥ *)

Let NearestUndef = min{dist(s, v) | valuev[s] = ⊥};
(* valuev[s] is s’s vote as received in v *)

If NearestUndef �= Undefined then (* Received some ⊥ *)
Let Reduced ← max{integer i|2i < NearestUndef}. (* Reduce to exclude ⊥ *)

Set Majority to the majority value in Ballv(2Scanned);

Suspects ← {w ∈ Ballv(2Scanned) | ⊥ �= (valuev[w] �= Majority
Wait ← min{Wait − 1, |Suspects|}; (* Delay reducing Scanned *)
If Wait ≤ 0 and Reduced < Scanned then (* without violating adaptivity. *)

Scanned ← min{Reduced, Scanned };
Cancel the broadcast of every node outside Ballv(Scanned);

Wait ← |Ballv(2Scanned)|.

If for every node u in Ballv(2Scanned+1) the arriving valuev[s] is not ⊥ then
Scanned ← min{log RRadiusv, Scanned + 1};
Wait ← |Ballv(2Scanned)|;
Cancel the broadcast of every node outside Ballv(2Scanned).

Set output to the majority value in Ballv(2Scanned).

Fig. 1. Stable Adaptive Majority Consensus Algorithm (with adaptive instability)
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it. The algorithm decreases Scanned, carefully, to exclude votes it suspects their
authenticity, and increases Scanned, carefully, when it guesses that votes in a
larger ball are authentic. It is easy to demonstrate that changing the algorithm
so that it would change Scanned more “drastically” (e.g. would restart from
Scanned = 0 every time a vote changes) would either not be adaptive, or would
have high instability, or both. For example, the event that some vote becomes
⊥ can happen f times. Had the algorithms restarted to Scanned = 0 each time
some vote became ⊥, the instability could have grown to Ω(f).

Had there been only increases (the last “If” statement), it seems easy to prove
the O(log n) upper bound (maybe also the O(log f)). Bounding the number of
decreases in the radius (the first “If” statement) is somewhat harder. Still harder,
is bounding the number of decreases to be O(log f) rather than O(log n) even in
a node v that is faulty. Intuitively, all the votes that a faulty node v “believes”
it received, it may have not received actually (which means that they are not
authentic in v), so the effect on the instability at v is as if there were n faults.
The “wait” mechanism in the code is intended to allow non- authentic votes
at v to disappear before decreasing Scanned. The node cannot wait too much,
however, since this would have caused it not to be time adaptive. Hence, the
node waits as much as possible given a lower bound ( |Suspects|) it computes for
the number of faults. This Wait method bounds the number of times Scanned is
decreased, even in a faulty node.

Lemma 1. The instability of the Stable Adaptive Majority Algorithm of Figure
1 is O(log f).

The proof of the lemma is deferred to the full paper. We bring here only the
most interesting case (that uses the Wait mechanism). This is the case that the
value of Scanned is reduced at some time τ0 < Cf . The main reason this case
is interesting, since this is the case that votes in v may not be authentic (they
become either authentic or ⊥ after O(f) time). This can have an effect on v that
is similar to a number of faults that is larger than f , which makes the proof of
O(log f) instability harder.

Let v’s output after the reduction be some b1. By the selection of the size of
Wait, the number of votes received at v for  b1 (= b1) must be some X0 ≤ Cf .

Now, consider the next reduction at time τ1, that flips the value of the output
to  b1. The number of votes for  b1 may have increased by some X1 nodes who
were not counted among the X0 above. (Some, or all of the old X0 may have
changed their vote too.) Note, that these X1 nodes voted b1 right after τ0 (and
not ⊥, nor  b1). By Item 3 of Theorem 2, the votes of these X1 nodes at τ1 are
authentic. Hence, their votes will not change, by the same theorem. If X1 > Cf
then the next flipping reduction (to output b1) is delayed Cf time, and there
are no more changes in v’s output, as shown above. Hence, X1 < Cf .

Let us now consider the next flipping reduction (to output b1) at τ2. As in the
previous argument, there may now be some new Y2 nodes who did not support
b1 in the previous flipping reduction, but do support b1 now, and Y2 < Cf .

So far, we established that the number of supporters of b1, as well as the
number of supporters of  b1 are smaller than Cf . From the code, it is easy to



352 S. Kutten and T. Masuzawa

see that the new value of Scanned is selected such that there are no ⊥ voters in
Ballv(2Scanned). Hence, at that point, Scanned ≤ 2Cf . The number of additional
reductions possible before the next increase is O(log f). The lemma then follows
from the proof for the increases in the value of Scanned (which follows immedi-
ately from the fact that Cancel is performed when the value of Scanned changes,
and from Theorem 2; details are deferred to the full paper). The following lemma
that bounds the “damage” of the Wait mechanism.

Lemma 2. The Stable Adaptive Majority Algorithm of Fig. 1 is time adaptive.

The proof of Lemma 2 bears similarities to those of [12,13]. The differences
result from the following three mechanisms used in the current algorithm: (a)
the algorithms in the previous paper outputs the majority of all the arriving
votes, while here the algorithm outputs just those in a certain ball; (b) the
current algorithm outputs the majority (in a ball) only when there are non- ⊥
votes from all the nodes (in the ball); (c) the Wait here may cause v to wait
before changing the output to that of the majority. Correspondingly, the current
proof needs to show the following: (a) the radius of the ball indeed reaches a size
that is larger than 2f fast enough (so the majority of the votes in the radius
are of correct nodes); (b) the radius of the ball is not too large (since otherwise,
authentic votes from all the nodes it in may not be received fast enough; (c) the
Wait mechanism does not delay the final output longer than O(f). The proof
is deferred to the full paper. Intuitively, within O(f) time all the non-authentic
votes disappear by Theorem 2 and authentic votes arrive from all the nodes
in the ball of radius O(f) around v. If Scanned starts “small” after the faults,
then it can be increased to more than O(2f + 1), since the ⊥ values disappear
from that ball in O(f) time. More than f authentic votes in that ball imply a
correct output. If Scanned starts large, when the non- authentic votes disappear
(in O(f) time) the majority it receives is correct. If v receives “many” non- ⊥
votes, then the output is correct. Otherwise, Scannedv is reduced. Finally, when
non- authentic votes disappear, |Suspects| ≤ f and hence, Wait ≤ f .

5.2 Stable Time Adaptive Self Stabilized Persistent Value

(The proof of Theorem 4): We now move to deal with problems where the input
may change not just as a result of faults. In particular, solutions for the the
Persistent Value Problem have two modules. One, the Input Correction module,
maintains (and changes) the storage (input) value (see Definition 4). Here, we
only replace the second module- the Output Stabilization Module. The latter
uses the above storage value as its input. We assume the use of the Input Cor-
rection Module introduced in [12]. The following is assumed for that Module
(and proven in [12], given a module that stabilizes the output in O(f) time): If
f < n/2 then the Input Correction Module never changes the value of a non-
faulty node. It changes the value of an incorrect node at most twice: the last of
these changes is from the incorrect value to the correct one.

The algorithm presented in this section is a modification of the algorithm of
Figure 1. Recall, that each decrease in Scanned in that algorithm may cause
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the output to change. An additional down side to decreasing Scanned is that
if |Ballv(2Scanned)| becomes smaller than 2f , then the output may be incorrect
(since the majority in the ball may be the faulty nodes) late after the algorithm
was supposed to stabilize. This is why the algorithm of Figure 1 would not have
been adaptive had it been used for the Persistent Value Problem. (Recall, that
here a vote arriving at v may become ⊥, and then change value, after Ω(n) time;
we do not want that to cause a reduction in Scanned).

The new algorithm does not cut the value of Scanned every time an arriving
broadcast changes its value. Instead, Scanned is reduced only when a constant
fraction of the nodes in the ball change their mind. In addition, the algorithm
attempts to output in the new ball the same value it outputted the previous
time (if any) it used for that ball. Only if a significant number of votes changed
in the new ball (from that last time) the output is not the output used the last
time that new ball was used. This reduces the instability. Additional informal
explanations, as well of the proofs of the following claim, are deferred to the full
paper. The pseudo code appears in Figure 2.

Claim. For any i, the second time (after the faults ended, and after the first
increase in Scanned after the faults) that Scanned = i + 1, all the votes received
at v are authentic.

Lemma 3. If each input changes only a constant number of times (starting from
some time t) in the Stable Persistent Value Algorithm, then the number of times
Scanned = i gets assigned the value i is bounded by a constant.

Proof Sketch: First, we claim that the number of times Scanned can be reduced
from some i + 1 to i is bounded by a constant. Let s be the node such that the
change in its ABC broadcast vote caused v to cut Scanned from i + 1 to i. First
consider the case that the changed vote had not been authentic. By Claim 5.2,
this can happen at most twice per value of Scanned.

Now, assume that Scanned is reduced because the number of authentic votes
for OldOutput(i + 1) is below 1

4 |Ballv(2i+1)| (or below 1
4 |Ballv(RRadius)|).

The first sub-case is when Scanned < logRRadiusv. The first time Scanned
is reduced from i + 1 after the faults, the value of OldOutput(i + 1) could be
one that was set by the adversary (remember the setting of self stabilization).
However, in later times this value is one that was set by the algorithm, since we
are computing the instability at a period when there are no additional faults.
Hence, and by Claim 5.2, every time (starting from the second time) Scanned =
is increased to i + 1, the real majority of the inputs in Ballv(2i+1) is the value
assigned to OldOutput(i + 1). This means that at the kth time Scanned is
reduced from i+1 (k ≥ 3), at least a quarter of the nodes in Ballv(2i+1) changed
their input since the (k − 1)th time. However, by the properties of the input
correction module, a node can change its input at most twice after the faults
(if it is a faulty node, otherwise, it cannot change its value at all). Hence, the
number of times Scanned can be reduced from i+1 to i is a constant. The second
sub-case is when Scanned is reduced from logRRadiusv to logRRadiusv − 1.
(The proof is similar to the proof of the previous sub-case.)
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Now, consider the case that Scanned is set to i by an increase (and not by a
reduction). To be increased again to i, the value of Scanned must first be reduced
to i− 1, since a reduction is performed to a consecutive value. Thus, the proof
follows from the proof for reductions.

Finally, notice that v may change its output only when it changes the value of
Scanned. Since the number of different values for Scanned is logRRadius, this
leads only to an instability of O(log RRadius) which is O(log n). By a somewhat
more precise analysis we obtain the following improved result. In most of the
cases, the proof of the following lemma resembles that of Lemma 3. The main
difference is in the case that a decrease in Scanned is due to unauthentic votes
that disappear. This can happen only at a faulty node v. A sketch of the proof
of the next lemma, highlighting the differences between this proof and that of
Lemma 3 is deferred to the full paper, together with the proof of Lemma 5
(which bears similarities to the proof of Lemma 2). Theorem 4 follows from the
two lemmas bellow and from the assumptions on the Input Correction Module.

Lemma 4. The instability of the algorithm of Figure 2 is O(log f) for a non-
faulty node, and O(min{log n, f}) for a faulty nodes.

Broadcast the input value and receive every arriving broadcast of other nodes
(*possibly, undefined (⊥)*).

Do while Scanned > 0 and

( (Scanned < log RRadiusv

and NumV otes(OldOutput(Scanned) < 1
4
|Ballv(2Scanned)|)

or
(Scanned = log RRadiusv

and NumV otes(OldOutput(Scanned) < � 1
2
|Ballv(2Scanned)|� + 1)

or

OldOutput(Scanned) = ⊥ )
OldOutput(Scanned) ← ⊥;
Scanned ← Scanned − 1;

Cancel the broadcast of every node outside Ballv(2Scanned).
If Scanned = 0 then OldOutput(Scanned) ← output ← input;
else output ← OldOutput(Scanned).

Let i > Scanned be the smallest for which ∃b �= ⊥|NumV otes(b) > 1
2
|Ballv(2i)| ;

(* If i is not undefined then *) Scanned ← i;
Set output to the majority value in Ballv(Scanned);
OldOutput(Scanned) ← output;

Cancel the broadcast of every node outside Ballv(2Scanned).

Fig. 2. Stable Persistent Value Algorithm: actions at node v. NumVotes(b) is the number
of votes v is currently receiving by ABC from nodes in Ballv(2Scanned) for the value b.
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Lemma 5. The Stable Persistent Value Algorithm Algorithm of Figure 2 is time
adaptive.

5.3 Repeated Faults, Majority Consensus with Persistence, and
Repeated Majority Consensus

Previous algorithms for the Persistent Value problem assumed (for the sake of
obtaining time adaptivity) that all the faults occurred in one batch, and another
batch may occur only after full state stabilization. A useful property of the
algorithm of Figure 2 is that this assumption is not necessary. Indeed, we did
not use it in the proofs. Given that, it is not difficult to change that algorithm
to solve the problem of Majority Consensus with Persistence, and using that
solution to solve also the Repeated majority Consensus. We omit the changes
required to solve these problems from the extended abstract.

6 Conclusion and Future Work

As claimed above, if the algorithms are allowed to be less adaptive, it is easy
to change them to have a lower instability, to match the more generalized lower
bound of Section 3.

In the extended abstract, we assumed that the topology of the network is
known to every node in advance. To lift this assumption, a node needs to detect
that some broadcasts it receives are claimed to be arriving from nodes that do
not actually exist. We deffer this in the full paper.

We studied the instability for the case that the freedom was in the time till
stabilization. It may be interesting to combine that with the freedom to decide
what is correct, as studied in [1]. This may be especially interesting since it was
demonstrated in [2] that multiple possible input values complicate their problem,
while this does not seem the case here.

We studied instability in the context of Consensus (and in the context of
Persistence). Instability is expensive in other contexts as well. For example,
when a network changes, the routing changes. Instability in the routing tables
causes routed messages to loop. It is hoped that the understanding gained here
will prove useful for increasing the stability for other problems.

A common criticisms against self stabilizing algorithms is that they do not
provide much guarantees on the output of nodes until the stabilization. The
current paper provides some such guarantees. It would be interesting to find
which additional such guarantees are possible.
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A Appendix

Definitions for Broadcast with Error Confinement

Definition 6. A protocol P is said to be an error-confined protocol for task Π
if for any execution with behavior β (possibly, containing a fault) there exists a
legal behavior β′ of Π such that

(1) For each non-faulty node v, βv = β′
v.

(2) For each faulty node v, there exists a suffix βv of βv and a suffix β′
v of β′

v

such that βv = β′
v.

The main point in the definition above is that the behavior of non-faulty nodes
must be exactly as in the specification: only faulty nodes may have some period
(immediately following the fault) in which their behavior does not agree with
the specification.

The broadcast task is defined as follows.

Broadcast (BCAST
Input actions: inps(b), done at node s ∈ V , for b in some set D. Node

s is called the source.
Output actions: outp(b), required at every node v ∈ V ,

where b ∈ D ∪ {⊥}.
Legal behaviors: There is at most one inps action. Each node v outputs

outp(⊥) in each step up to some point, and then it outputs outp(b)
in each step, where b is the value input by the inp action.
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Abstract. Weak fairness guarantees that continuously enabled actions
are executed infinitely often. Strong fairness, on the other hand, guar-
antees that actions that are enabled infinitely often (but not necessarily
continuously) are executed infinitely often. In this paper, we present
a distributed algorithm for scheduling actions for execution. Assuming
weak fairness for the execution of this algorithm, the schedule it provides
is strongly fair. Furthermore, this algorithm is maximal in that it is ca-
pable of generating any strongly fair schedule. This algorithm is the first
strongly-fair scheduling algorithm that is both distributed and maximal.

1 Introduction

An action system models a distributed systems as a set of actions, each of which is
either enabled or disabled. A fairness assumption controls the selection of actions
from this set for execution. For example, weak fairness requires that an action
that is enabled continuously be selected while enabled infinitely often. Strong
fairness, on the other hand, requires that an action that is enabled infinitely
often (but perhaps not continuously) be selected while enabled infinitely often.

Weak fairness is useful because of the minimal assumption it makes and the
simple scheduling algorithm required to implement it: Select every action in-
finitely often. Strong fairness, on the other hand, is useful for simplifying the
design of synchronization and communication protocols since it rules out the
starvation of actions that are repeatedly enabled. While weak fairness reflects
an asynchronous and independent scheduling of individual actions, strong fair-
ness reflects some scheduling coordination to rule out certain pathological traces.
The advantages of both models can be achieved by constructing a strongly-fair
scheduler on top of an assumption of weak fairness.

A program is correct if it can exhibit only behaviors permitted by its specifica-
tion. A correct program is maximal [4] if it can exhibit all behaviors permitted by
its specification. Maximal programs are important for testing component-based
systems because they prevent a component implementation from providing un-
necessarily deterministic behavior and, in this way, masking errors in its clients.
For example, if a scheduling algorithm is not maximal, it is incapable of gener-
ating some traces that are otherwise possible under the corresponding fairness
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assumption. These traces are no longer observable behaviors for the system built
on top of such a limited scheduler.

In this paper, we present a strongly-fair scheduler, layered on top of a weak
fairness assumption. This algorithm is distributed: it does not maintain a global
set of enabled actions and it permits concurrent selection of independent actions.
Furthermore, this algorithm is maximal: any trace that satisfies strong fairness is
a possible behavior of the scheduler. To our knowledge, this is the first strongly-
fair scheduler that is both distributed and maximal.

2 Maximality and Fairness

2.1 Maximality

A program is maximal if it is capable of generating any behavior permitted by
a specification [5,12]. This notion is similar to bisimulation [11,13]. However,
bisimulation involves relating artifacts with similar mathematical representa-
tions, while maximality relates a program text to a formal specification.

Proving the maximality of a program P with respect to a specification S
is carried out in three stages. Firstly, one defines a set of specification variables
mentioned by S and derives properties of traces of these variables from S .
Next, one shows that an arbitrary trace σ ∈ |S| satisfying these properties is
a possible execution of an instrumented version P ′ of P (chronicle correspon-
dence). Finally, one proves that every fair execution of P ′ corresponds to a fair
execution of P (execution correspondence). Since σ is a possible execution of
P ′ and every execution of P ′ corresponds to a possible execution of P , σ is
a possible execution of P . Hence, any trace in S is a possible execution of P .

Constructing P ′ is carried out by adding new variables, assignments to new
variables within existing actions, guards to existing actions, and actions that
assign to only new variables. These additions ensure that safety properties of P
are safety properties of P ′ . The new variables typically include read-only chron-
icle variables that encode the trace σ and auxiliary variables (e.g., variables that
encode the current point in the computation).

Proving chronicle correspondence, requires showing that the execution of P ′

follows a given trace σ . Proving execution correspondence requires showing that
(i) each added guard in P ′ is infinitely often true and (ii) the truth of each added
guard is preserved by the execution of every other action in P ′ . These properties
ensure that each action is infinitely often executed in a state where the additional
guard is true. Thus, every weakly-fair execution of P ′ corresponds to a weakly-
fair execution of P .

2.2 Fairness

Consider the following UNITY [2] program:
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Program fairness
var b : boolean

x, y : int
initially b
assign

A : true −→ x := x + 1 ‖ b := ¬b
B : b −→ y := x

Action A is always enabled. It increments x and sets b to ¬b . Action B
is enabled in states where b is true and assigns to y the value of x .

Weak fairness requires that every action be selected infinitely often. Under this
assumption, the fairness program satisfies: the safety property (i) x increases by
at most one in each step, and the progress properties (ii) x eventually increases
and (iii) b eventually changes value. More formally: (i) x = k next |x−k| ≤ 1 ,
(ii) x = k � x = k , and (iii) b = k � b = k . Progress properties (ii)
and (iii) follow from the fact that action A is infinitely often executed in a state
where it is enabled.

The only property involving y is one of safety: at each step of the computa-
tion, y either remains the same or changes to the value of x . Since action B
may never be selected while enabled, no progress properties for y can be proven.
For example, consider the sequence of actions: 〈A, B, A, A, B, A, A, B, . . .〉 . This
schedule is weakly fair since all actions are selected infinitely often, but B never
executes from an enabled state and so y never changes value.

Strong fairness, on the other hand, requires that any action that is infinitely
often enabled be selected while enabled infinitely often. Under strong fairness,
the fairness program satisfies the same properties as it did under weak fairness.
In addition, the program also satisfies new properties, including the progress
property y increases eventually

2.3 Maximality and Scheduling
Assertions should be as strong as possible and must hold in every possible pro-
gram execution. A maximal scheduler ensures that the strongest properties we
prove using the program text and a notion of fairness are the strongest proper-
ties of the actual system behavior. A non-maximal scheduler eliminates possible
executions and therefore allows us to assert stronger properties that hold on only
a subset of possible program executions.

To illustrate, consider a non-maximal strongly-fair scheduler that allows an
action to be disabled at most twice before being scheduled for execution in a
state in which it is enabled. This scheduler is correct—actions which are in-
finitely often enabled are infinitely often executed in a state in which they are
enabled. However, the scheduler clearly generates a small subset of possible cor-
rect schedules.

If we schedule the program fairness using this scheduler, we see action A can
execute at most four times before action B must execute in a state in which it is
enabled. This allows us to prove much stronger properties about y , for example:
x− y ≤ 4 is a program invariant.
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Although we can now assert a stronger program property, this is undesirable,
for instance, in the case of testing. If one were to test the program fairness
composed with such a non-maximal scheduler, one may be led to believe that
x− y ≤ 4 is indeed an invariant of the system. In fact, it would be impossible
to design a test case to expose the fact that it is not.

3 Specification

3.1 Description of the System

The system is comprised of a set of processes, each comprised of two components—
a client layer and a scheduler layer. Clients can be enabled, and an enabled client
can be granted a lock. Holding a lock allows the client to access some resource,
perform some action(s), or otherwise modify the system state, including enabling
or disabling other clients. When a client modifies system state, it simultaneously
increments its own count and releases the lock it holds.

The scheduler layer manages locks. If a process is infinitely often enabled, the
scheduler ensures that it is infinitely often granted a lock. We say two processes
u and v are neighbors if u or v ’s client can affect the other’s enabledness. If
the scheduler guarantees that no two neighboring processes simultaneously hold
a lock, the client layer guarantees that held locks are eventually relinquished.

The composed system generates a strongly-fair schedule—if a process is in-
finitely often enabled, it infinitely often changes its count.

3.2 Formal Specification of the Strong Fairness Problem

The system is comprised of a set of processes, P . All processes have access
to a symmetric neighbor relation N ⊆ P2 . We define N(u, v) if u or v can
affect the other’s enabledness.1. Each process u ∈ P has boolean variables
u.enabled and u.lock representing that process being enabled and holding a
lock, respectively. A third variable, u.count , is the number of times action u
has executed. Since the execution of actions is atomic, there is no state in which
an action is executing. Consequently, we require that when an action u executes,
u.count is incremented.

3.3 Client Layer Specification

The client layer is responsible for execution of the action associated with a
process. Intuitively, a client is “idle” until it is granted a lock. When granted a
lock, the client eventually executes its action and increments its count, releasing
the lock. The specification for client u is:

1 This neighbor relation is irreflexive, it is never the case N(u, u) . This is not to say
that a process cannot enable/disable itself by executing its action; this is captured
in the specification. The irreflexitivity of N only simplifies presentation.
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(∀ v : v = u : constant v.lock ) (C0)
(∀ v : v = u : constant v.count ) (C1)
(∀ v, b : ¬N(u, v) : constant v.enabled = b ) (C2)
(∀ v, b, a, k : N(u, v) : stable ¬u.lock ∧ u.count = k

∧ v.enabled = b ∧ u.enabled = a ) (C3)
(∀ v, b, a, k : N(u, v) : u.lock ∧ u.count = k

∧ v.enabled = b ∧ u.enabled = a

unless ¬u.lock ∧ u.count = k + 1 ) (C4)
Hypothesis: invariant (∀ v : N(u, v) : ¬(u.lock ∧ v.lock) ),

invariant u.lock ⇒ u.enabled

Conclusion: u.lock � ¬u.lock (C5)

Properties (C0)–(C2) ensure that clients can modify only the enabledness of
neighbors. Property (C3) ensures that a lock is necessary for a client to act.
Propery (C4) ensures that count is incremented and enabledness of neighbors
affected only with the release of a lock. Property (C5) is a conditional prop-
erty; if the scheduling layer maintains the properties that neighbors do not hold
locks simultaneously and that only enabled clients hold locks, the client layer
guarantees that a lock is eventually relinquished.

The mutual exclusion property and the invariant in the hypothesis of (C5)
are important; neighboring processes are permitted to modify the enabledness
of their neighbors. If two neighboring processes u and v simultaneously hold
locks, a process, say u , may execute its action and disable the other. Then v is
not guaranteed to become re-enabled and execute its action, releasing the lock.

3.4 Scheduler Layer Specification

This layer schedules actions for execution by granting client processes locks—
when a client process holds a lock it is free to execute its associated action.

constant u.count (S0)
stable u.lock (S1)
invariant u.lock ⇒ u.enabled (S2)
invariant (∀ v : N(u, v) : ¬(u.lock ∧ v.lock) ) (S3)
Hypothesis: true � u.enabled, C0, C2, C3, C4, C5,
Conclusion: true � u.lock (S4)

Properties (S0) and (S1) ensure that the scheduling layer does not modify
the count, nor revoke a lock once granted. Property (S2) ensures that locks are
granted only to enabled processes, while property (S3) ensures that neighbors
do not hold locks simultaneously. Property (S4) is a conditional property that
captures the notion of strong fairness. If a correct client process is infinitely often
enabled, the scheduler infinitely often grants the process a lock.
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3.5 Composed Specification

Given the client and scheduler specifications, the composed specification of
the system satisfies the strong fairness property: if a process is infinitely often
enabled, it infinitely often increases its execution count.

Formally, client ‖ scheduler satisfies:

Hypothesis: true � u.enabled

Conclusion: u.count = k � u.count = k + 1

4 Algorithm for Scheduling Layer

Solving the strong fairness scheduling problem entails providing an algorithm
that satisfies the specification of the scheduling layer from the previous section.
In addition, our goal is for this algorithm to be maximal with respect to the
composed specification.

The challenge in designing a strongly fair scheduler lies in limiting
concurrency—no correct scheduler can always allow processes sharing a mu-
tual neighbor to concurrently hold locks. As an illustration, consider the system
with P = {x, y, z} and {〈x, y〉, 〈x, z〉} representing N . Suppose y and z are
enabled while x is disabled. A scheduler that always allows processes sharing a
mutual neighbor to concurrently hold locks permits both y and z to acquire
locks. Now suppose y executes its action, leaving x and y both enabled. Since
z still holds its lock and N(x, z) , x may not acquire a lock. Now suppose z
executes its action, disabling x but leaving z enabled. The system is now in
back in the state where y and z are enabled while x is disabled. A scheduler
that always allows processes with a mutual neighbor to concurrently hold locks
allows this sequence of events to repeat continually, resulting in a schedule where
x is infinitely often enabled but never executed.

We overcome this challenge by bounding the number of times a process allows
its neighbors to hold locks concurrently. Although unintuitive, this will not af-
fect the maximality of our solution: our scheduler will be capable of generating
any schedule satisfying the strong fairness property. Furthermore, any correct
algorithm satisfying the strong fairness scheduler specification can be viewed as
a refinement of our algorithm.

4.1 Scheduler Design

In order to ensure the mutual exclusion property S3 , we associate with each
pair of neighboring processes u, v a shared lock token, tok(u, v) . A process may
only be granted a lock if it holds all of its shared tokens. A process u also
stores a read-only boolean array, u.en , storing the enabledness of its neighbors.
A process v notifies a neighbor u of its enabledness by assigning to u.en[v] .

To ensure progress, each process u is has a height, u.ht , representing its
priority. A process is higher-priority than another if it has greater height. We
require a process’s height to be unique among its neighbors. Ties in priority
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between non-neighbors are broken by a static order on processes, say by process
id. We will call lock tokens shared with higher-priority neighbors high tokens
and lock tokens share with lower-priority neighbors low tokens.

A process only changes its priority after it has executed its action and released
a held lock, at which point it lowers its height by a nondeterministically chosen
finite but unbounded amount. A process which has released a lock holds all of
its tokens until it lowers its height, at which point it gives up all its high tokens.

Processes always release tokens to higher-priority neighbors (high neighbors).
An enabled process does not relinquish tokens to lower priority neighbors (low
neighbors) and, in order to limit concurrency while still ensuring progress, a
disabled process releases at most one low token.

In order to ensure there are no wait-cycles, a disabled process u releases a
low token only to its highest priority low neighbor, v . If u.en[w] holds later for
some higher-priority low neighbor w , u retrieves the shared token from v by
assigning true to v.en[u] . It is guaranteed to eventually receive the token as
processes always relinquish high tokens.

In addition, process u includes a boolean variable u.gate . If u.gate is true,
u is free to exchange tokens with its neighbors or grant itself a lock. When u
grants itself a lock, it sets u.gate to false. Upon releasing a lock, the process
sets u.gate to true, lowers its height, and releases its high tokens.

The following predicates are associated with a process u :

– u.sendtok.v for all neighbors v of u . u.sendtok.v is true if a process u
should send its shared token to process v . u.sendtok.v is true if v is a
high neighbor of u and either u.en[v] or ¬u.enabled . u.sendtok.v is true
when v is a low neighbor of u and v is the highest-priority among all low
neighbors of u , w = v , for which u.en[w] = true .

u.sendtok.v ≡ tok(u, v) = u

∧ ( ( u.ht < v.ht ∧ (¬u.enabled ∨ u.en[v]))
∨ ( u.ht > v.ht ∧ u.en[v]
∧ (∀w : N(u, w) ∧ w.ht < u.ht : tok(u, w) = u )
∧ v.ht = (Maxw : N(u, w) ∧ w.ht < u.ht ∧ u.en[w] : w.ht )))

– u.maylock . u.maylock is true if u is enabled and holds all its tokens.

u.maylock ≡ u.enabled ∧ (∀ v : N(u, v) : tok(u, v) = u )

– u.retr.v for all neighbors v of u . u.retr.v is true if u has granted a low
token to v and now some higher low neighbor of u is enabled.

u.retr.v ≡ tok(u, v) = v

∧ (∃w : N(u, w) ∧ u.en[w] : v.ht < w.ht < u.ht )

Figure 1 shows this implementation of u ’s scheduler layer. Actions Uu,v

and Tu,v are understood to be quantified across all neighbors v of u .
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Program SFu

var u.enabled, u.gate, u.lock : bool
u.ht : integer
u.en : array of bool

initially ( ∀ v : N(u, v) : u.ht �= v.ht )
¬u.lock
u.gate

assign
Uu,v true −→ v.en[u] := u.enabled ∨ u.retr.v
Tu,v u.sendtok.v ∧ u.gate −→ tok(u, v) := v
Lu u.maylock ∧ u.gate −→ u.lock := true;

u.gate := false
Du ¬u.lock ∧ ¬u.gate −→ u.gate := true;

u.ht :=? st u.ht < u.ht′ ∧ ( ∀ v : N(u, v) : u.ht �= v.ht );
( ‖ v : N(u, v) ∧ u.ht < v.ht : tok(u, v) := v )

Fig. 1. Maximal Strong Fairness Scheduling Algorithm

Action Uu,v updates v.en[u] by assigning true if u.enabled or u.retr.v and
assigns false otherwise. Action Tu,v sends a token to v if u is free to exchange
tokens and u.sendtok.v is true. Action Lu grants a lock to process u and stops
further communication by setting u.gate to false. Finally, action Du frees u
to exchange tokens with neighbors, lowers its height by a finite but unbounded
amount, and releases u ’s high tokens. Du is enabled only after a process has
relinquished a lock and executed its action.

Note: In the algorithm SF , we assume that a process can read the height
of its neighbors. In practice, this information can be encoded on shared tokens
as differences in height, and by storing locally the height of the (unique) low
neighbor holding a token.

5 Correctness of SFu

Properties (S0), (S1), and (S2) follow directly from the program text. Property
(S3) is satisfied since a process must hold all its shared tokens to grant itself a
lock and a process does not relinquish its tokens while it holds a lock.

The progress property (S4) (that an infinitely often enabled process holds
a lock infinitely often) requires a more thorough treatment. In the interest of
space, however, we only sketch the key proof ideas here. The complete proof is
available in [9].

In order to prove (S4), we show: (i) the system is free from deadlock, (ii) a pro-
cess with no higher priority neighbors that becomes enabled eventually acquires
a lock, (iii) a continually enabled process eventually is granted a lock, and finally
(iv) an infinitely often enabled process eventually is granted a lock.

Part (i) follows from the acyclicity of the partial order of priorities. The re-
maining parts rely on the identification of a metric. We define u.M to be the
sum of the difference in height between u and all processes with higher priority
than u that are reachable from u by following the neighbor relation through
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higher-priority processes. More formally, we define the set u.ab =
⋃

u.abn where
u.abn is defined by recursion:

u.ab0 = { v | u.ht < v.ht ∧ N(u, v) }
u.abi+1 = { v | (∃w : w ∈ u.abi : N(v, w) ∧ u.ht < w.ht ) }

Then u.M = (
∑

v : v ∈ u.ab : v.ht− u.ht ) .
By definition, u.M is bounded below by zero when u.ab = ∅ and u has

no higher-priority neighbors. Furthermore, u.M is non-increasing unless u ac-
quires a lock and lowers its height. To show the progress property, we demon-
strate that if u.M = k and u is infinitely often enabled, eventually either
u.M < k or u.lock . Since u.M is bounded below and non-increasing unless u
acquires a lock, eventually u acquires a lock.

6 The Maximality of SF

Since maximality is noncompositional, we use the rely-guarantee style proof out-
lined in [10] as a template. This method for proving the maximality of composed
systems involves stipulating that other processes in the system satisfy certain
properties beyond their formal specification and proving the maximality of the
composed system using these properties. These additional properties entail that
the client process our system is composed with is maximal and can be constrained
in a way to establish its maximality.

In the interest of space and clarity, we only present the intuition behind the
proof of maximality in this section. The interested reader should refer to [9] for
a thorough proof of maximality of SF .

In this section we reverse the priority relation described in Section 4 to clarify
presentation and allow the reader to maintain an intuition about the behavior
of the constrained system. In Section 4 a process was higher priority if it had a
greater height and processes lowered their priority by lowering their height. In
this section, we will reverse this—a process has higher priority if it has a lesser
height, thus a process lowers its priority by increasing its height.

6.1 Proving the Maximality of SF

In order to prove SF is a maximal implementation of the strong-fairness specifi-
cation, we need to show that any trace satisfying the strong-fairness specification
is a possible trace of SF . In order to accomplish this, we create a constrained
program SF ′ from SF that accepts as input any trace σ satisfying the strong-
fairness specification. We then show that at each point i in the trace σ , the state
of the system is exactly that of σi . This establishes σ as a possible execution
of SF ′ .

Next we need to show that any fair execution of SF ′ corresponds to a fair
execution of SF . Then, since any trace σ satisfying the specification of the
strong fairness problem is a possible execution of SF ′ , any trace satisfying the
strong fairness problem is a possible execution of SF .
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However, this simple view is not quite complete. Since we want to show that
any schedule of action executions is a possible behavior of the composed sys-
tem, we need to stipulate that the client process composed with SF satisfies
some additional requirements. Namely, we require that this client process can
be constrained to produce client′ which, when composed with SF ′ , can take
the “steps” in the computation that σ dictates. i.e., if at some point i in σ
some process u is to execute and enable/disable itself or its neighbors, client′

can compute this step. The additional requirements are that the client process
is maximal, client′ satisfies the safety properties of the client specification,
and that client′ is created in a way that ensures the correspondence between
executions of client′ and the client process.

In order to compute σ , we introduce a variable p shared by client′ and
SF ′ that marks the current point in the trace (i.e., σp ). We then prove (i) it is
invariant that the current state is σp and (ii) the point p eventually increases.
It follows that σ is a possible execution of SF ′ ‖ client′ .

6.2 A Strong Fairness Trace

Let σ be a stutter-free sequence of tuples σ = 〈σ0, σ1 . . .〉 representing the
state of processes in an execution satisfying the strong-fairness specification.
σi = 〈E, C〉i is a tuple containing two arrays, Ei and Ci , representing the en-
abledness and count of processes in state σi . That is, Eu

i = true if u.enabled
in σi and Cu

i = k if u.count = k in σi . σ is stutter-free in that each tuple
in the sequence differs from the previous by at least one element, unless the
execution is in a state of quiescence (each processes is disabled forever).

Since σ is a correct trace of the strong fairness scheduling problem, it obeys
certain properties. Namely, it satisfies the following: in subsequent states in σ ,
at most one process changes count (by incrementing it by one) and if a process
changes enabledness, a process must change count. Also, if a process is infinitely
often enabled in the trace, it infinitely often changes its count.

Given a trace σ , we create an isomorphic trace σ′ by inserting a stuttering-
state in between every σi and σi+1 . That is, σ′

0 = σ0 and σ′
i+1 is σ′

i if i is
even and is σ(i+1)/2 if i is odd.

6.3 Requirements of client′
u

We require that a client process u can be constrained to produce client′u . The
requirements on client′u are as follows:

– client′u is produced from the client process by only adding new variables,
assignments to new variables, and new guards referencing new and existing
program variables. Furthermore, if random assignments in the client process
are replaced with deterministic assignments, we require that the assigned
value satisfy the predicate on the random assignment. These requirements
ensure that client′u satisfies the safety properties of the client process.

– The additional guards of client′u are infinitely often true and the enabledness
of each guard is preserved by the execution of any other action in the system.
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– At each point p in the computation, it is invariant that u.enabled = Eu
p

and u.count = Cu
p .

– client′u does not assign to σ and only changes p by at most one.
– If SF ′

u ensures u holds a lock at a point p = k in the trace where Cu
k =

Cu
k+1 (i.e., u executes its action), client′u guarantees that p is incremented

and the lock is released.

These requirements on the client process ensure that client′ will compute the
transitions dictated by σ . It is then the obligation of SF ′ to ensure that processes
hold locks when σ dictates u executes its action and increments its count.

6.4 The Constrained Program SF ′
u

In the constrained program SF ′
u we introduce the following objects not found

in SFu : the input trace σ and the point p , a function u.next to compute the
next point at which process u executes its action and increments its count, a
predicate u.done to indicate whether or not u increments its count again after
the current point in the computation, and a predicate u.quiet which indicates
whether or not u is enabled after the current point in the computation.

Formally, u.quiet , u.done , and u.next are defined as the following.

u.quiet ≡ (∀ i : i ≥ p : ¬Eu
i )

u.done ≡ (∀ i : i ≥ p : Cu
i = Cu

i+1 )

u.next = (Min i : i ≥ p : Cu
i = Cu

i+1 ) if ¬u.done

(Min i : i ≥ p : (∀ j : j ≥ i : ¬Eu
j ∧

(∀ v : v = u : v.ht = j ) ) ) otherwise

Figure 2 shows the instrumented program.
The key property that follows from this instrumentation is that a process u ’s

height corresponds to the next point in the computation when u increments
its count. At that point, u is the highest priority enabled process among its
neighbors (i.e., lowest height). Any process with a higher priority (lower height)
than u at that point is in a state of quiescence.

If a process u has executed for the last time, we set its height to be after the last
point in the trace that it is enabled. This ensures that any process that executes
and enables/disables u will be higher priority than u until u is quiescent. Such
a point is guaranteed to exist by the assumption that the process has executed for
the last time; if no such point exists, the process must be infinitely often enabled
(and therefore execute again).

The motivation for the introduction of stutter states in σ is to ensure that
a process that never executes again can be assigned a unique height. If σ were
stutter-free, it is not guaranteed that such a point exists.
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Program SF ′
u

var u.enabled, u.gate, u.lock : bool
u.ht : integer
u.en : array of bool

initially p = 0
u.enabled = Eu

p

¬u.done ⇒ u.ht = u.next
u.done ⇒ u.ht ≥ min i ( ∀ j : i ≤ j : ¬Eu

j )
( ∀ v : N(u, v) : u.ht �= v.ht )
¬u.lock
u.gate

assign
U ′

u,v true −→
true −→ v.en[u] := u.enabled ∨ u.retr.v

T ′
u,v true −→

u.sendtok.v ∧ u.gate −→ tok(u, v) := v
L′

u (u.ht = p ∧ ¬u.done) ∨ u.quiet −→
u.maylock ∧ u.gate −→ u.lock := true;

u.gate := false
D′

u true −→
¬u.lock ∧ ¬u.gate −→ u.gate := true;

u.ht := u.next;
( ‖ v : N(u, v) ∧ u.ht < v.ht : tok(u, v) := v )

Q′ σi = σi+1 −→ p := p + 1

Fig. 2. Constrained Strong Fairness Scheduling Algorithm

A key invariant of SF ′
u is that if ¬u.done and u.gate hold, u.ht = u.next .

SF ′
u inherits the safety properties of SFu as guards are only strengthened and ex-

isting program variables are not assigned to, except for the replacement of the ran-
dom assignment to u.ht with a deterministic assignment. However, at the point
of the assignment to u.ht , u.next > u.ht and is unique by definition of u.next
and the properties of σ .

6.5 Proof Sketch of the Maximality of SF

There are two main obligations to dispatch: (i) SF ′ ‖ client′ computes σ and
(ii) every fair execution of SF ′ ‖ client′ corresponds to a fair execution of the
original system.

(i) is proved by showing u.enabled = Eu
p ∧ u.count = Cu

p is an invariant of
the system and p = k � p = k+1 . (ii) requires showing that the truth of each
additional guard in the system is preserved by the execution of any other action
and that each additional guard is infinitely often true. Then each additional
guard is executed infinitely often in a state where it is true, corresponding to a
fair execution of the original program.
Proving the invariant: The invariant in (i) is initially true by the initially pred-
icates in SF ′

u . Also, each action of SF ′ maintains the invariant as no action
assigns to the trace, u.enabled , or u.count and the only action that assigns to
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p only increments p in a stuttering state. Thus, since the invariant is also a
property of client′u , it is an invariant of the composed system.
Proving p = k � p = k +1 : There are two cases to consider — the case where
the current point is a stuttering-state, in which action Q′ increments p , and a
non-stuttering state. In a non-stuttering state, there exists some process u such
that Cu

p = Cu
p+1 . It was a requirement on client′u that if u holds a lock in

such a state, client′u eventually increments p . It is the responsibility of SF ′

to ensure that in such a state process u eventually acquires a lock.
At that point in the computation u.next = p and ¬u.done holds. Without loss

of generality, assume u.gate holds as well, so by the invariant of SF ′
u , u.ht = p .

Also, by the way height is assigned u is the highest priority process among all its
neighbors that are enabled. So u eventually acquires all its tokens and acquires
a lock.
Proving the stability of additional guards: Since client′u is required to satisfy this
property, it suffices to show that the guard of L′

u is not falsified by any action
of SF ′

u . It is easy to see that the only actions which might affect the truth of
the additional guard of L′

u are Q′ , which assigns to p , and D′
u , which assigns

to u.ht .
Since u.quiet is stable, neither Q′ nor D′

u can falsify it. Now, if u.ht =
p ∧ ¬u.done hold, it is implied by the invariant that σp = σp+1 , so Q′ is
disabled in such a state. If action D′

u is enabled, ¬u.lock ∧ ¬u.gate holds.
Then since ¬u.lock ∧ ¬u.gate holds, client′u must have released a lock and
incremented the point, which implies u.ht < p . So if L′

u is enabled, D′
u is not.

Proving additional guards are infinitely often true: Again, since this was a re-
quirement of client′u , we only need consider the guard of L′

u . Now, since u.quiet
is stable and if u.done ever holds, eventually u.quiet holds, it suffices to show
that u.ht = p ∧ ¬u.done is infinitely often true if ¬u.quiet is an invariant
of the trace. Assuming ¬u.quiet is an invariant of the trace, ¬u.done is an
invariant of the trace as well.

Now, if ¬u.gate holds at any point in the computation, it must be the case
¬u.lock holds as well and both continue to hold until eventually D′

u is exe-
cuted. The execution of D′

u in an enabled state ensures u.gate holds. Then
the invariant of SF ′

u dictates that u.ht = u.next and, since u.next ≥ p and
p = k � p = k + 1 , eventually u.ht = p . Thus, the additional guard of L′

u is
infinitely often true.
The Maximality of SF : The preceding arguments establish that any trace σ
satisfying the strong-fairness specification is a possible execution of SF com-
posed with a client process meeting the requirements described. It follows that
SF is a maximal strongly-fair scheduler.

7 Discussion

Fairness is a well-researched and developed notion in existing literature, both
in terms of interaction fairness [1] and in terms of selection of actions in non-
deterministic guarded command programs [8]. Although a large body of work
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surrounds fairness issues, our algorithm is unique in that it is the first solution for
strongly-fair scheduling of atomic actions that is both maximal and distributed.

In [7], Karaata gives a distributed self-stabilizing algorithm for the strongly-
fair scheduling of atomic actions under weak fairness. A key property of the
algorithm is that an action u can disable another action v at most twice before
action v must execute, and therefore this algorithm is not maximal. In addition,
although there is no notion of a “lock,” the algorithm precludes two processes
with a shared neighbor from both having the “right” to execute their actions.
Although this does not affect the possible schedules the algorithm can gener-
ate, it does limit the algorithm from being generalized to a situation where the
mutual exclusion property of the strong-fairness specification can benefit pro-
cesses (e.g., processes perform some computation before releasing the lock and
affecting their neighbors). Then the concurrency of non-neighboring processes
holding locks is a valuable property. Karaata’s algorithm has the advantage of
being self-stabilizing, whereas ours does not. Also, Karaata provides a brief mes-
sage complexity analysis of the algorithm while we make no claims regarding the
message complexity of our algorithm.

In [6], Joung develops a criterion for implementability of fairness notions for
multiparty interactions. If a fairness notion fails to meet the criterion, then
no deterministic scheduling algorithm can meet the fairness requirement in an
asynchronous system. In the general case, both strong interaction fairness and
strong process fairness fail to meet the criterion.

The dining philosophers problem proposed by Dijkstra [3] is superficially sim-
ilar (as also pointed out in [7]) to the strong-fairness problem in that one can
map the state ¬u.enabled to thinking, u.enabled ∧ ¬u.lock to hungry, and
u.enabled ∧ u.lock to eating. However, in the dining philosophers problem, a
process becomes hungry autonomously, not as a result of the behavior of other
processes in the system. Furthermore, processes remain hungry until the arbi-
tration layer affects a change in state to eating.

The possibility for processes to affect the enabledness of neighboring processes
adds complexity to the strong fairness scheduling problem. For example, a so-
lution to the dining philosophers problem can maintain an invariant that if a
process holds a request from a neighbor, that neighbor is hungry. No correspond-
ing invariant can be shown for a solution to the strong-fairness problem without
synchronization between a process and its neighbor’s neighbors.

8 Conclusions

In this work we presented a formal specification of the distributed strong fairness
scheduling problem and described a maximal solution SF to the problem.

The importance of a maximal scheduling algorithm was discussed in detail in
Section 2, making the maximality of the SF algorithm a key contribution of
the work. The maximality of SF also implies that any correct implementation
of the strong-fairness specification is a refinement of the SF algorithm in that
any correct algorithm’s behavior is a subset of the behavior of SF .
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Abstract. We study replacement algorithms for non-uniform access
caches that are used in distributed storage systems. Considering access
latencies as major costs of data management in such a system, we show
that the total cost of any replacement algorithm is bounded by the total
costs of evicted blocks plus the total cost of the optimal off-line algo-
rithm (OPT). We propose two off-line heuristics: MIN-d and MIN-cod,
as well as an on-line algorithm: HD-cod, which can be run efficiently and
perform well at the same time.

Our simulation results with Storage Performance Council (SPC)’s
storage server traces show that: (1) for off-line workloads, MIN-cod per-
forms as well as OPT in some cases, all is at most three times worse in all
test case; (2) for on-line workloads, HD-cod performs closely to the best
algorithms in all cases, and is the single algorithm that performs well in
all test cases, including the optimal on-line algorithm (Landlord). Our
study suggests that the essential issue to be considered be the trade-off
between the costs of victim blocks and the total number of evictions in or-
der to effectively optimize both efficiency and performance of distributed
storage cache replacement algorithms.

1 Introduction

Widely used distributed storage systems have two unique features: storage de-
vice heterogeneity and multi-level caching management. In a typical multi-level
heterogeneous distributed storage system, I/O buffer caches are installed at hi-
erarchical levels. Access latencies to data blocks are no longer a constant due to
non-uniform access times caused by heterogeneous storage devices and hierar-
chical caching. This adds another dimension to the management of distributed
storage caches, which is a significant impact factor to the system performance.
However, most existing replacement algorithms in practice focus on minimizing
miss rate as the single metric for performance optimization, treating access la-
tency as a constant. For example, recent studies on replacement algorithms such
as 2Q, ARC, LIRS, and MQ mainly aim to improve the traditional LRU heuris-
tic1, which consider only block recency or balance both recency and frequency

1 A brief overview of these algorithms is available in [1].
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to reduce miss rate. These algorithms may not be suitable to manage caches of
variable access latencies in distributed storage systems.

The replacement problem for caches with non-uniform access latencies can
be modeled by the weighted caching problem, which can be solved off-line in
O(kn2) time by reduction to the minimal cost flow problem [2], where k is
the cache size and n is the number of total requests. However, this optimal
algorithm is resource intensive in terms of both space and time for real-world
system workloads, particularly when k and n are large. As an example, for a
sequence of only 16K requests and a buffer cache of as small as 1.5 MBytes, the
best known implementation of the minimum-cost flow algorithm [3] takes more
than 17 GBytes of memory and multiple days to run on a dual-core 2.8GHz
SMP Xeon server. Therefore, as current workloads and cache capacity con-
tinue to scale up, it becomes too unrealistic to timely make optimal replacement
schedules.

In face of this problem, we study replacement algorithms for non-uniform ac-
cess latency caches. Similar to previous studies, we use variable cost to model the
non-uniform access latency in order to improve the efficiency and performance
of replacement algorithms. In general, our model can be used for a distributed
storage system with other non-uniform features, such as non-uniform energy
consumption per access by instantiating costs as energy access consumption for
different blocks to minimize total the energy consumption.

We show that for any replacement algorithm, the total access cost is bounded
by the total cost of the evicted blocks (see Section 3) of the replacement algorithm
plus the total access cost of the optimal algorithm (OPT). Therefore, the key to
design variable-cost cache replacement algorithms lies in the trade-off between
the number of evictions and the cost of victim blocks. Based on this principle,
we propose two off-line algorithms: MIN-d and MIN-cod. Specifically, we take
the variable cost consideration into MIN – the optimal replacement algorithm
for uniform caches [4]. We found that choosing replacement victims based on the
ratio of cost and forward distance (see Section 3.1) is effective for minimizing the
total costs. Using this heuristic, we also propose an on-line replacement algorithm
HD-cod, which adaptively selects victims among blocks of largest recency from
different cost groups.

We have evaluated the performance of the proposed algorithms with Stor-
age Performance Council’s storage server traces [5] by comparing our algorithms
with OPT, Landlord [6] – a theoretically optimal on-line cost-aware algorithm ,
and other well-known cost-unaware replacement algorithms such as LRU, LFU,
MRU, and Minimal Cost First (MCF). The results demonstrate that the pro-
posed algorithms can be executed efficiently. Among all the algorithms, MIN-cod
performs best in all cases, whose total cost is the same as OPT in some cases,
and is at most four times of the lower bound of OPT in all cases. MIN-d performs
similarly to MIN-cod when the cost distribution is small. In on-line scenarios,
HD-cod performs close to the best algorithms in all cases and is the single algo-
rithm that performs well in all test cases.
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2 Preliminaries

The weighted caching problem [6] is defined as follows. Given a request sequence
of data blocks:r1, ..., rn, each block has a cost (or weight) cost(r). For a cache
of size k, upon each request r, if the requested block is not in cache(a miss), it
is fetched in with cost(r). At the same time, one block in the cache is replaced
to make space for r. If the requested block is already in cache, then no cost is
involved. The goal is to minimize the total cost to serve the request sequence.
An algorithm for the problem which assumes prior knowledge of the complete
request sequence is an off-line algorithm. If an algorithm only knows the current
and past requests in the sequence, then it is an on-line algorithm.

OPT: An Optimal Off-Line Algorithm. Chrobak et al. [7] gave an optimal
off-line algorithm for the weighted caching problem by reducing it to the minimal
cost maximum flow problem [2]. Since the minimum-cost maximum flow problem
can be solved in O(kn2) time and the reduction step takes only O(n2 + k) time,
the problem can be solved in O(kn2) in total. Therefore, this optimal offline
algorithm is resource intensive, especially when k and n are large. For example,
for a request sequence of one million blocks, the flow network has around one
thousand billion arcs to process and needs several terabytes storage, which is
well beyond the capability of current off-the-shelf servers.

2.1 MIN: An Off-Line Algorithm for Uniform Cost Cases

Belady’s MIN algorithm [4] is based on the assumption of a uniform block access
cost. It always replaces the block to be requested furthest in the future. Belady
proved that MIN can minimize the total number of misses, thus minimizing the
total cost when the access cost to each block is uniform. Compared with OPT,
MIN is much more efficient – it can be implemented in O(n log k) time and O(n)
space.

In a variable-cost cache, MIN’s replacement decision can be far from optimal,
since the furthest blocks can carry high fetch costs and lead to subsequent high
miss penalties. Next we analyze its performance in variable-cost cases.

Definition 1. A cache configuration is the set of (distinct) blocks resident in a
given cache C.

Given a request sequence S and an initial cache configuration cfg(C), let
tc(Alg, cfg(C), S) denote the total fetch costs incurred by an algorithm Alg;
and let tf(Alg, cfg(C), S) denote the total number of fetches (misses).

Let S be a request sequence, and cfg(C) be an initial cache configuration. Let
costmin = minr∈S cost(r) and costmax = maxr∈S cost(r) be the minimal fetch
cost and the maximum fetch cost among all requests, respectively. it is easy to
verify the following relationship.

tf(MIN, cfg(C), S) ∗ costmin ≤ tc(OPT, cfg(C), S) ≤
tc(MIN, cfg(C), S) ≤ tf(MIN, cfg(C), S) ∗ costmax
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When costmax/costmin is sufficiently small, MIN works pretty well; indeed,
tc(MIN, cfg(C), S) is bounded together with tc(OPT, cfg(C), S) – the optimal
cost by a narrow range. Actually, if a cache-resident block with an access cost
of costmin is to be referenced furthest in the future, it is the optimal victim
candidate for replacement. However, it is not easy to choose victims when the
furthest-to-be-referenced block has a non-minimal cost. Therefore, a new heuris-
tic is needed to choose victims efficiently and accurately.

3 Cost-Aware Cache Replacement

A storage cache is a fully associative cache. It has two kinds of misses: cold miss
and capacity miss [8]. Therefore, any replacement algorithm’s total fetch cost
can be divided into cold-miss cost and capacity-miss cost. Since cold miss is
compulsory, it is the same for any algorithm including OPT, which means the
cold-miss cost is no greater than the total cost of OPT. Therefore, we have the
following observation.

Definition 2. Given a request sequence S, on each fetch of any replacement
algorithm, a block is evicted if it is replaced and is to be requested later in the
remaining request sequence.

Observation 1. Let S be a request sequence, cfg(C) be an initial cache con-
figuration, Alg be a replacement algorithm. Let v1, v2, . . . , vm be the sequence
of blocks evicted by Alg when it serves S. It holds that tc(Alg, cfg(C), S) ≤
tc(OPT, cfg(C), S) +

∑m
1 cost(vi).

Observation 1 shows that the key to design replacement algorithms for a weighted
cache is the trade-off between the cost of eviction victims and the total number of
evictions to minimize

∑m
1 cost(vi). If a replacement algorithm is wise in choosing

replacement victims such that no eviction is needed, then the total cost involved
is the same as OPT. Otherwise, it performs at most

∑m
1 cost(vi) worse than

OPT.
In addition, unlike competitive analysis involving some unknown constant,

observation 1 shows that a concrete upper bound of extra cost compared with
OPT can be determined by simply adding the costs of all the evicted blocks,
which can be implemented with negligible overhead in real systems. Such an
upper bound is useful for evaluating the cache efficiency of a replacement algo-
rithm. On the other hand, it can also be used to calculate the lower bound of
OPT so as to estimate its total cost by deducting the eviction costs from the
total costs of tested replacement algorithms.

Aimed at minimizing
∑m

1 cost(vi), next we propose two off-line algorithms
and one on-line algorithm.

3.1 MIN-d Algorithm

Our first algorithm, MIN-d, is an extension of MIN. It chooses the minimal-cost
block from the d+1 furthest blocks (d ≥ 0) as victim rather than choose the one
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Input: request sequence S and initial cache configuration cfg(C).
for each request r in S do

if r /∈ cfg(C) then
Let Q ⊆ cfg(C) be the set of d + 1 resident cache blocks having the largest
forward distances. Let b ∈ Q be the block having the smallest cost among Q.
Replace b and read block r.

Update cfg(C) and the forward distances of resident cache blocks.

Fig. 1. MIN-d Algorithm

furthest block without consideration of costs. In particular, when d = 0, MIN-d
is MIN. Before giving the details of MIN-d, depicted in Figure 1, we make the
following definition.

Definition 3. Given a block r resident in the cache, the forward distance of r,
denoted by fwd(r), is the number of distinct accesses from the current position
to the next access of r in the request sequence.

For example, suppose that the current cache configuration is {r1, r2, r3}, and
the remaining request sequence (that has not be served) is r2, r4, r5, r4, r3, r1.
Then we have fwd(r1) = 4, fwd(r2) = 0, and fwd(r3) = 3.

We claim that MIN-d’s total number of misses is small, if d is relatively small
compared to the cache size. Actually, the extra number of misses for MIN-d
can be at most n ∗ ln k−1

k−d−1 , where k is the cache size, n is the number of total
requests.

Bound of Miss Count for MIN-d. In what follows, we fix a request sequence
S of length n. For simplicity of exposition, we assume that the ith request of S
occurs at time i. Let S[i, j] be the subsequence of S consisting of the requests
at time from i to j (inclusive).

Given a set H and two elements x, y, the notation H − x + y refers to the set
(H \ {x}) ∪ {y}.

Definition 4. Let seq(t, b) be the first occurrence of a block b in the sequence S
after time t; if b is not requested in S after time t then let seq(t, b) = ∞. For
example, if S = {a, b, a, d, c, b}, then seq(4, b) = 6 and seq(3, a) = ∞.

Definition 5. When S is being served by a given cache C, the cache config-
uration of C changes only when a miss occurs. Let curi(C) be the time when
the ith miss occurs (namely, if the rth request of S incurs the ith miss, then
curi(C) = r). Let cfgi(C) be the cache configuration of C after i misses have
occurred. For example, cfg0(C) is the initial cache configuration of C.

Let HSi(C) = {seq(curi(C), b) = ∞ | b /∈ cfgi(C)}. In words, if a block b is not
in the cache configuration cfgi(C) and if b is requested after curi(C), then the
first occurrence of b after curi(C) is in HSi(C). Note that the next cache miss
after curi(C), namely curi+1(C), would occur at the earliest time in HSi(C).
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Let H1 and H2 be two sets of positive integers, we write H2≺H1 if |H2∩[1, x]| ≥
|H1 ∩ [1, x]|, for any x ≥ 1. For example, {1, 2, 4, 5, 7} ≺ {2, 3, 5, 6}.

Claim 1. (i) Let H ′
1 and H ′

2 be the (nonempty) set after removing the smallest
element from H1 and H2, respectively. If H2 ≺ H1 then H ′

2 ≺ H ′
1.

(ii) Let H ′
1 = H1 + h1 and H ′

2 = H2 + h2. If H2 ≺ H1 and h2 ≤ h1, then
H ′

2 ≺ H ′
1.

Lemma 1. Given a request sequence S, let C1 and C2 be two caches such that
|C1| = d+1+ |C2| and cfg0(C2) ⊂ cfg0(C1). If MIN-d is used for C1 and MIN

is used for C2, then curr(C2) ≤ curr(C1) and HSr(C2) ≺ HSr(C1), for each r ≥ 0
(satisfying HSr(C1) = ∅).

Proof. By induction on r. When r = 0, it is easy to verify that the claim holds.
Assume the claim holds for r = i. Next we show that the claim holds for r = i+1.

Let z1 = curi+1(C1) and z2 = curi+1(C2). By definition, z1 and z2 are the
earliest times in HSi(C1) and HSi(C1), respectively. This immediately implies
z2 ≤ z1, since HSi(C2) ≺ HSi(C1). It remains to prove HSi+1(C2) ≺ HSi+1(C1).

t1

t2

z1

z2

C1 with MIN-d

C2 with MIN

Fig. 2. Here, z1 = curi+1(C1) is the time when the (i+1)th miss occurs in C1. At time
z1, the block h1 is fetched into C1 and v1 is the victim block. The time t1 is the first
occurrence of v1 (in S) after z1. The numbers z2 and t2 are defined similarly on C2.
Note that z1 ≥ z2, but t1 may be smaller than t2.

Let h1 be the block being requested (in S) at time z1, and v1 be the victim
block (in C1) replaced by MIN-d at the same time. Let h2 be the block being
requested at time z2, and v2 be the victim block (in C2) replaced by MIN at
the same time. Let t1 = seq(z1, v1) and t2 = seq(z2, v2). See Figure 2.

For simplicity, we focus on the cases when t1 = ∞ and t2 = ∞, and omit
the other cases (when t1 = ∞ or t2 = ∞) since they are similar. Consider the
difference between HSi(C1) and HSi+1(C1). It is easy to see that z1 is the earliest
time in HSi(C1), and it is not in HSi+1(C1). Also note that t1 is in HSi+1(C1) but
not in HSi(C1). All other elements in HSi(C1) remains unchanged in HSi+1(C1).
Therefore, it holds that

HSi+1(C1) = HSi(C1)− z1 + t1. (1)

Similarly, we have

HSi+1(C2) = HSi(C1)− z2 + t2. (2)
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1. t1 ≥ t2. By Claim 1 (i), we have HSi(C1)−z1 ≺ HSi(C2)−z2, since z1 and z2

are the earliest times in HSi(C1) and HSi(C1), respectively. Now, by Claim
1 (ii), it is easy to verify HSi+1(C1) ≺ HSi+1(C2), since t2 ≤ t1.

2. t1 < t2. We need to show that |HSi+1(C2) ∩ [1, x]| ≥ |HSi+1(C1) ∩ [1, x]|, for
any integer x ≥ 1.

(i) x ≤ z1. We have HSi+1(C1)∩ [1, x] = ∅ (recall that z1 is the earliest time
in HSi(C1), which implies that the earliest time in HSi+1(C1) is larger than
z1). The claim trivially follows.

(ii) z1 < x < t1. Note that z2 ≤ z1 and t1 < t2. By Eq. (1) and Eq. (2), we
have |HSi+1(C1) ∩ [1, x]| = |HSi(C1) ∩ [1, x]| − 1 and |HSi+1(C2) ∩ [1, x]| =
|HSi(C2) ∩ [1, x]| − 1. The claim immediately follows, by the induction hy-
pothesis |HSi(C1) ∩ [1, x]| ≤ |HSi(C2) ∩ [1, x]|.
(iii) x ≥ t1. Note that HSi+1(C1) ∩ [1, z1] = ∅ and HSi+1(C2) ∩ [1, z2] = ∅,
by similar arguments to (i). As such, it suffices to prove

|HSi+1(C1) ∩ [z1 + 1, x]| ≤ |HSi+1(C2) ∩ [z2 + 1, x]| . (3)

Let B1 be the set of distinct blocks in S[z1 +1, x], and R1 ⊆ B1 be the set of
distinct blocks in S[z1 + 1, x] that are in cfgi+1(C1). Similarly, let B2 be the
set of distinct blocks in S[z2+1, x], and R2 ⊆ B2 be the set of distinct blocks
in S[z2 + 1, x] that are in cfgi+1(C2). Now, notice that the LHS of Eq. (3)
is the number of distinct blocks in S[z1 + 1, x] that are not in cfgi+1(C1),
which is equal to |B1|−|R1|, and the RHS of Eq. (3) is the number of distinct
blocks in S[z2 +1, x] that are not in cfgi+1(C2), which is equal to |B2|−|R2|.
Therefore, we need to prove that

|B1| − |R1| ≤ |B2| − |R2| .

By the MIN-d algorithm, v1 is one of the d+1 furthest block to be requested
at time z1. Therefore, |R1| ≥ |C1| − (d + 1) = |C2|. On the other hand,
|R2| ≤ |C2|. It follows that |R1| ≥ |R2|. Furthermore, by the definition,
B1 ⊆ B2, since z1 ≥ z2. This implies that |B1| ≤ |B2|. It thus follows that
|B1| − |R1| ≤ |B2| − |R2|, as required. ��

The following corollary is straightforward:

Corollary 1. Let S be a request sequence, C1 and C2 be two caches such at
|C1|= |C2|+d+1 and cfg0(C1)⊇cfg0(C2). It holds that tf(MIN-d, cfg(C1), S) <=
tf(MIN, cfg(C2), S).

Due to the limit of space for presentation, we omit the proofs of the following
lemma and theorem. Details can be found in [9].

Lemma 2. Let S be a given request sequence and C1 and C2 be two caches such
that |C1| = |C2| + 1 and cfg(C1) ⊇ cfg(C2). The number of fetches by MIN on
C2 is at most n/ |C2| larger than the number of fetches by MIN on C1. That is,
tf(MIN, cfg(C2), S) ≤ tf(MIN, cfg(C1), S) + n/ |C2|.
The following theorem follows from Corollary 1 and Lemma 2.
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Input: request sequence S and initial cache configuration cfg(C).
for each request r in S do

if r /∈ cfg(C) then

Let b ∈ cfg(C) be the resident block having the smallest Cod value cost(b)
fwd(b)

in current cache configuration cfg(C). If there is a tie, choose b as the one
with the largest forward distance. Replace b and read block r.

Update cfg(C) and the forward distances of resident cache blocks.

Fig. 3. MIN-cod Algorithm

Theorem 1. Let S be a request sequence of length n and C be a cache of size
k. We have tf(MIN-d, cfg(C), S) ≤ tf(MIN, cfg(C), S)+ n ln k−1

k−d−1 , namely, the
MIN-d algorithm performs at most n ln k−1

k−d−1 more fetches than MIN.

3.2 MIN-cod Algorithm

The MIN-d algorithm takes block cost into consideration for replacement deci-
sions without significantly increasing the number of misses. However, it is con-
servative in nature as the scope of the candidate victim blocks is small (d + 1
furthest blocks). In reality, it is possible that some blocks to be accessed recently
are much cheaper than the d + 1 furthest blocks such that evicting those near
blocks to keep those expensive blocks despite of more misses is still beneficial.
Obviously, MIN-d cannot make efficient decisions in these cases, thus its perfor-
mance is limited, especially when the cost differences among the blocks are large.
Therefore, we propose an algorithm that more aggressively pursues an optimal
trade-off between the number of evictions and block costs by considering every
block as a potential replacement candidate.

As described in Figure 3, the algorithm MIN-cod makes replacement decisions
based on the ratio of the cost over forward distance (Cod) among all the resident
blocks in cache. If two blocks have the same ratio, the block with a larger forward
distance is chosen. Clearly, if a block has the minimal cost among all resident
blocks and is the furthest block, MIN-cod will replace it upon a miss, which is
necessary for OPT too. However, if one block has a smaller cost and a shorter
forward distance than another block, then it is unclear which one is a better
victim block to reduce the total cost. Note that the number of evictions for
keeping a block is closely related with its forward distance. Assuming keeping a
block is beneficial, then it must not be evicted before its next request, otherwise
the sooner it is evicted the better so as to save space for other blocks. Since
the space for this block is occupied from the current request to the block’s next
request, keeping a block can be viewed as effectively reducing the cache size by
one during this period. Based on the reasoning of Lemma 2, it is not difficult
to know that the upper bound of extra misses caused for keeping this block
in comparison to keeping a nearer block is roughly in proportion to its forward
distance. Therefore, the cost/fwd essentially represents the minimal average cost
savings per extra miss. The Cod heuristic chooses to replace the furthest block
that generates the smallest saving.
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The Running Times of MIN-d and MIN-cod. A naive implementation of
MIN-d and MIN-cod, on each request, scans the resident blocks in cache to find
the victim and update fwd values. Therefore, the total execution times of both
algorithms are O(nk).

There are two observations that can lead to a faster implementation for
MIN-d, which uses only O(n log k) time. First, MIN-d only requires to main-
tain the relative forward distances among the blocks to choose victims from.
Second, after serving a new request, the cache configuration changes by only
one element, and at most one resident cache block changes its relative forward
distance. Therefore, if we use a priority queue to maintain the (relative) forward
distances of resident blocks, we only need log k time for processing each request,
resulting a total running time of O(n log k).

In real systems, the number of different fetch costs of blocks is relatively
small, because only a limited number of different storage devices and levels exist
in a system. Therefore, by keeping the resident blocks in binary trees of different
costs, MIN-cod only needs to compare the blocks of the largest (relative) forward
distance within each tree to find the right victim, whose total execution steps
are in proportion to the number of different trees, thus can be considered as
O(1). Since the maintenance of each binary tree needs O(log k) time, the overall
running time is bounded by O(n log k), which is much faster than OPT.

3.3 An On-Line Algorithm HD-cod

The off-line algorithms assume complete knowledge of future requests, which is
not always realistic in practice. In this section, we present HD-cod, an on-line
algorithm based on MIN-cod.

In on-line algorithms, we can only estimate the forward distance of a resident
block. To this end, we use the recency of a resident cache block b as the estimated
forward distance of b. (Recency is a concept borrowed from the well-known
LRU replacement algorithm.) More specifically, the recency of b is the difference
between its current request sequence number and the request sequence number
of the last request of b.

It is widely recognized that the LRU replacement algorithm, which estimates
the forward distance of a block by its recency, works well for most workloads
with strong temporal locality. However, it performs poorly for workloads with
weak locality such as those with looping or random access patterns, where a
recent access of a block does not indicate its re-access is near. These observa-
tions suggest that different considerations of forward distance can be used when
evaluating Cod value of each block for the choice of replacement victims.

In HD-cod, we use cost
fwdα to evaluate each block, where α is a workload de-

pendent parameter in [0, 1]. For workloads with LRU-like temporal locality, α
approaches 1 because the forward distance estimation is accurate, so that the
Cod heuristic is appropriate. For non-LRU-like workload, α approaches 0 be-
cause the estimation of forward distance is inaccurate and the forward distance
becomes less relevant, so that the replacement decision can be more dependent
on the cost.
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To determine the workload type, HD-cod maintains an LRU queue (ordered
by recency) for all the resident blocks. It divides the queue into multiple con-
tiguous regions of a fixed size, which is a system run-time parameter and usually
small. HD-cod traces the hit count in each recency region to generate the hit
density curve of the workloads, so that α can be set dynamically based on the
locality feature. Therefore the algorithm is called Hit Density(HD)-cod. On each
replacement decision, HD-cod walks through the regions to calculate α. (More
details can be found in [9]). Since HD-cod maintains each queue using LRU
order whose overhead is very small, its time complexity is O(n).

4 Evaluation

Methodology: We evaluate our proposed algorithms through trace-driven simu-
lation. We compare the performance of our proposed algorithms with the op-
timal off-line algorithm OPT, representative non-cost-aware algorithms includ-
ing MIN, Least Recently Used (LRU), Most Recently Used (MRU), Most Fre-
quently Used (LFU) as well as cost-aware algorithms including Landlord and
Minimal Cost First (MCF). Landlord is an optimal on-line cost-aware caching
algorithm [10,6]. Upon each replacement, it chooses the block with the minimal
residual cost as victim, and decreases each resident block’s residual cost by this
minimal value. Then upon each hit, the block’s residual cost is updated by a
value that is between current value and its original cost. It is proved in [6] that
Landlord is a k-competitive algorithm, hence an optimal on-line replacement
algorithm. It is also a generalization of the GreedyDual algorithm [11], which is
studied in WWW-proxy cache management.

The traces used in our experiments are production storage I/O traces from
Storage Performance Council (SPC) [5] – a vendor-neutral standards body. They
include both OLTP application I/O and search engine I/O. The OLTP traces
are with strong temporal locality, i.e. repeated accesses to the same block, if any,
are usually separated by a small (compared with cache size in blocks) count of
accesses to other blocks. And the OLTP traces also include a significant portions
of concurrent sequential accesses due to both the nature of server workloads and
OLTP itself. The search engine traces comprise mostly random accesses, which
are mostly non-sequential accesses with weak temporal locality, i.e. repeated
accesses to the same block, if any, are usually separated by a large (compared
with cache size in blocks) count of accesses to other blocks. Due to the resource-
intensive nature of the OPT algorithm, which makes replaying the complete
trace computationally intractable on our system, we split an entire trace into
smaller traces by the ASU (Application Specific Unit) field of each request, so
that logically related requests are grouped in the same trace file. We randomly
generate the cost for each block based on two cost distributions. One cost dis-
tribution spans a wide range with differences as large as 70,000 times, the other
spans a small range with differences at most 3 times. Specific values used and
their distributions can be found in [9].
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Fig. 4. Total cost comparison of three workloads between OPT and different algorithms

Impact of Cost-Aware Replacement: We compare OPT with both existing and
our proposed replacement algorithms to evaluate the impact of weighted cache
on replacement performance. In this experiment, we set one eighth of the working
set size as the cache size.

Figure 4 shows the performance ratio of various algorithms over OPT for
three small workloads using two different cost distributions. Overall, a signifi-
cant performance degradation is observed using non-cost-aware replacement al-
gorithms. For example, the optimal non-cost-aware algorithm MIN is 182% worse
than OPT for OLTP2 using large cost distribution, so is LRU 537% worse. In
contrast, the cost-aware algorithms including Landlord, MIN-d, and MIN-cod
perform better almost in all these cases. The only exception is for the small
cost distribution, MIN performs closer to OPT than Landlord, since in these
scenarios, miss count is more important in the trade-off for overall performance.

The results also show that the extent of the performance degradation is related
with the workload itself. As we can see, OLTP2 is much more sensitive to the
cost-awareness of the algorithms than the other two, because the other two traces
have very few reused blocks.

Miss Rate of MIN-d: We measure the miss rate of both OLTP and WebSearch
workloads. The OLTP workload has a working set of around 300K blocks, while
the WebSearch workload has a working set of around 480K. The results show
that the miss rate does not increase noticeably until d is larger than 6% of the
cache size. Based on this empirically result, in the following experiments, we set
d to be 1/16 of the cache size.

Off-line Algorithm Results: Figure 5 shows the experiment results comparing
off-line algorithms (MIN-d and MIN-cod) with existing off-line algorithm MIN.
We also include the comparison with on-line algorithms: MCF and Landlord
for two reasons: a) MIN and MCF represent two ends on the trade-off between
miss count and cost. MIN considers only misses in replacement decisions, while
MCF considers only cost; b)since Landlord is the state-of-the-art cost aware
replacement algorithm, the inclusion of it gives us an idea on the benefit of
complete request knowledge to variable-cost cache replacement.
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Fig. 5. Comparison of off-line cost aware algorithms using different cache sizes

Overall, MIN-cod consistently performs the best for all workloads. It reduces
up to 62% of the total cost of MIN and up to 50% of Landlord. Other algorithms
perform differently depending on the workloads. For example, as expected, MIN-
d performs close to MIN-cod for the small cost distribution; however it is signifi-
cantly worse than MIN-cod for the large distribution due to its scope limitation
of victim candidates. Compared with Landlord, MCF performs poorly for the
OLTP workloads, while it performs better for the Websearch workloads. Using
the lower bound measured, it also shows that when the cache size is 50% of the
workload, in seven out of the eight cases MIN-cod performs the same as OPT,
while for one of the WebSearch workloads, MIN-cod has a total cost 20% larger
than the lower bound of OPT. In all cases, using the bound reported, we can
guarantee that MIN-cod’s performance is at most four times of optimal.

The above results show that the Cod heuristic works well with all the work-
loads tested. Since MIN-cod balances the cost of evicted blocks and the number
of misses the replacement decision can cause, it is effective for a cost-aware
replacement algorithm.

On-line Algorithm Results: Figure 6 compares HD-cod with online algorithms:
LRU, LFU, MRU, MCF, and Landlord. Overall, HD-cod performs very close to



Cost-Aware Caching Algorithms for Distributed Storage Servers 385

10

20

30

40

50

60

70

80

50% 25% 12.50% 6.25%

M
il

li
o

n
s

Percentage of Working Set

T
o

ta
l C

o
st

LRU
LFU
MRU
MCF
LANDLORD
HD-cod

200

300

400

500

600

700

800

900

1000

1100

50% 25% 12.50% 6.25%

B
ill

io
n

s

Percentage of Working Set

T
o

ta
l C

o
st

LRU
LFU
MRU
MCF
LANDLORD
HD-cod

0

10

20

30

40

50

60

70

80

50% 25% 12.50% 6.25%

M
il

li
o

n
s

Percentage of Working Set

T
o

ta
l C

o
st

LRU
LFU
MRU
MCF
LANDLORD
HD-cod

(a) OLTP4-small (b) OLTP4-large (c) OLTP5-small

0

400

800

1200

1600

2000

2400

2800

50% 25% 12.50% 6.25%

B
il

li
o

n
s

Percentage of Working Set

T
o

ta
l C

o
st

LRU
LFU
MRU
MCF
LANDLORD
HD-cod

30

40

50

60

70

50% 25% 12.50% 6.25%

M
il

li
o

n
s

Percentage of Working Set

T
o

ta
l C

o
st

LRU
LFU
MRU
MCF
LANDLORD
HD-cod

200

400

600

800

1000

1200

50% 25% 12.50% 6.25%

B
il

li
o

n
s

Percentage of Working Set

T
o

ta
l C

o
st

LRU
LFU
MRU
MCF
LANDLORD
HD-cod

(e) OLTP5-large (f) WebSearch1-small (g) WebSearch1-large

50

100

150

200

250

300

50% 25% 12.50% 6.25%

M
il

li
o

n
s

Percentage of Working Set

T
o

ta
l C

o
st

LRU
LFU
MRU
MCF
LANDLORD
HD-cod

0

1

2

3

4

5

50% 25% 12.50% 6.25%

T
ri

ll
io

n
s

Percentage of Working Set

T
o

ta
l C

o
st

LRU
LFU
MRU
MCF
LANDLORD
HD-cod

(h) WebSearch2-small (i) WebSearch2-large

Fig. 6. Comparison of on-line cost aware algorithms using different cache sizes

the best algorithm in each test scenario. Specifically, for the OLTP workload,
HD-cod performs comparably as Landlord, yet reduces up to 68% of the total
cost of MCF; for the WebSearch workload, HD-cod performs similarly as MCF,
yet reduces up to 15% of the total cost of Landlord.

The above results show that for on-line cost-aware replacement algorithms
where the forward distance of a block is not known, the balance between the
two metrics (cost and forward distance) needs to be conducted adaptively based
on the workloads. Since the Landlord algorithm only considers future accesses
as with LRU-like locality, it does not perform well for workloads with the non-
LRU-like locality. Since HD-cod detects workload characteristics by tracing the
hit density, it adapts itself to behave more like MCF when temporal locality
is weak and to behave more like Landlord when temporal locality is strong.
Therefore, HD-cod performs close to the best algorithm in all test cases.

5 Related Work

Previous work on cost-aware cache replacement includes both theoretical results
and system studies. Young [12] studied the weighted caching problem and pro-
posed an on-line algorithm – GreedyDual. Cao et al. [11] studied WWW-proxy
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caching and proposed GreedyDual-size to incorporate file size into replacement
decision. Landlord [6] is a generalization of both GreedyDual and GreedyDual-
size. Chrobak et al. [7] proposed on-line algorithms: Rotate and Balance. All
these algorithms are proved to be k-competitive, thus theoretically optimal.
GreedyDual-size has also been demonstrated to be effective experimentally us-
ing simulation experiments on Web proxy traces. Although competitive analysis
provides a bound for approximation algorithms, the bound is usually too loose
to be attractive. For example, k in the above results is the cache size in blocks,
which is at the magnitude of millions with current technology; and it keeps in-
creasing as the technology evolves. Although experimental results are provided
to demonstrate the effective of GreedyDual-size [3], it focuses on the variance
of document size rather than the access cost of uniform-sized block in storage
system. Therefore, they compare with popular replacement algorithms such as
LRU, LFU and other size-aware algorithms. Forney et al. [10] studied partition-
based cache management scheme for heterogeneous storage devices and proposed
to use equal device wait time as a metric for dynamic cache allocation, which is
orthogonal to our studies.

Compared with previous work, our work demonstrates that the upper-bound
of performance degradation of any replacement algorithm over OPT can be
determined by keeping track of the costs of evicted blocks, which is more practical
and meaningful than the k-competitive result. We also point out that the key
design issue for efficient cost-aware replacement algorithms is to make an effective
trade-off between victim blocks’ cost and the total number of evictions. Our Cod
heuristic which is based on the principle is demonstrated to outperform previous
cost-aware and cost-unaware algorithms in real storage server traces simulations.

6 Conclusions

We have proposed both off-line and on-line algorithms that have performance
comparable to the optimal replacement algorithm (OPT) measured by the total
cost, yet are much faster to run in practice. The algorithms’ design is guided by
the following findings of ours. The performance of any replacement algorithm is
deviated from OPT by at most the cost of evicted blocks, such that the key to
design cost-aware replacement algorithm is to trade-off the number of evictions
and the cost of victim blocks. Our work provides analytical bases for buffer
cache management in distributed storage systems. We will further understand
the implications of our study in our experimental system research.
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Abstract. In contrast to peer-to-peer file sharing, live streaming based
on peer-to-peer technology is still awaiting its breakthrough. This may be
due to the additional challenges live streaming faces, e.g., the need to meet
real-time playback deadlines, or the increased demands on robustness un-
der churn. This paper presents and evaluates novel neighbor selection and
data distribution schemes for peer-to-peer live streaming. Concretely, in
order to distribute data efficiently and with minimal delay, our algorithms
combine low-latency push operations along a structured overlay with the
flexibility of pull operations. The protocols ensure that all peers are able
to obtain the required data blocks of a live stream in time, and that due to
the loop-free dissemination paths, the overhead is low.

1 Introduction

Currently, we are witnessing an explosion of online video content provided on
websites such as YouTube1. It is likely that in the near future, the Internet will
also revolutionize television. Due to its scalability, peer-to-peer (p2p) technology
is an appealing paradigm for providing live TV broadcasts over the Internet. Live
p2p streaming is not only an active field of research, but there are already com-
mercial products emerging, e.g., JumpTV 2, PPLive3, SopCast4, among others,
which provide television to thousands of viewers.

Live streaming faces several challenges that are not encountered in other p2p
applications such as file sharing. The streaming content is required to be re-
ceived with respect to hard real-time constraints, and data blocks that are not
obtained in time are dropped, resulting in a reduced playback quality. Addi-
tionally, a live broadcast ought to be received by all users simultaneously and
with minimal delay. Moreover, as video streams often already demand a high
transmission rate themselves, it is of paramount importance that the overhead
caused by redundant transmissions of the protocol itself be minimized. Yet an-
other crucial property of any successful live streaming system is its robustness
to peer dynamics: It is likely that peers join and leave the system continuously
and concurrently, called churn.
1 See http://www.youtube.com/
2 See http://www.jumptv.com/
3 See http://www.pplive.com/
4 See http://www.sopcast.com/
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While there already exist several solutions both in literature and in practice,
many of these systems fail to take all the aforementioned criteria into account.
This may partly be explained by the fact that some of the optimization goals
are inherently antagonistic. For example, a low delay can be achieved by having
each peer immediately forward all incoming data blocks to its neighboring peers
(pushing). Unfortunately, such a naive solution results in a significant overhead,
as a peer may receive the same block repeatedly from different neighbors. Al-
ternatively, peers could request missing blocks explicitly. This scheme is referred
to as pulling since all peers have to initiate the transmission of data blocks
towards themselves. While a pull-based approach circumvents the problem of
receiving duplicates, it comes at the cost of intolerable latencies, as notifications
and requests have to be sent back and forth. Hence, there is a trade-off between
overhead and efficiency.

This paper presents and evaluates novel data distribution mechanisms which
combine the benefits of pull-based approaches with the advantages of push-based
approaches. In our mechanism, a fresh data block is quickly pushed to a well-
defined set of peers. Due to the structured, prefix-based neighbor selection policy,
this can be achieved without any redundant transmissions. The remaining peers
which have not received the blocks in this initial phase use the pull mechanism
to distribute the new data block amongst themselves.

We have implemented the algorithms presented in this paper in our own peer-
to-peer live streaming system Pulsar.5 Apart from real-world tests such as the
broadcast of the IPTPS 2007 conference, we have performed extensive simu-
lations of our protocol. According to our emulations with up to 100,000 peers
(using the real code base), the system scales well as the network topology has
a low diameter and guarantees small round trip times due to the latency-aware
choice of neighbors. The proposed push-to-pull data dissemination policy is effi-
cient: The time required from the moment a fresh data block becomes available
at the source until it has reached virtually all peers is around 1,500 ms in a
overlay consisting of 10,000 peers, and having 100,000 peers instead of 10,000
incurs a moderate additional delay of less than 250 ms. Finally, the Pulsar sys-
tem tolerates a large fraction of peers crashing simultaneously without entailing
any underflows at the remaining peers, i.e., all packets arrive before their play-
back deadline. This indicates that our protocols also perform well in dynamic
environments.

The remainder of this paper is organized as follows. After reviewing related
work in Section 2, the design of our protocol is presented in Section 3, followed
by its evaluation in Section 4. In Section 5, the paper concludes.

2 Related Work

Although it has been expected that one-to-many broadcast would be offered
through IP multicast since the early 1990s, it is not used in practice at all due
to its limited support by the Internet Service Providers (ISPs). An attractive
5 See http://www.getpulsar.com/
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alternative to native IP multicast is to use a peer-to-peer network overlay built
on the application layer to distribute the content.

Existing peer-to-peer approaches are mainly categorized according to the
topology maintained among the peers or, equivalently, the neighbor selection
algorithms the peers employ. Simple multicast systems are based on overlay
trees [2,4,13]. Trees have the advantage that the topology is simple, once it is
constructed the overhead is small in a static setting, and there are no duplicates
as every peer receives its data blocks from its sole parent. However, there are
rather serious drawbacks which render such systems inefficient. For example, re-
sources are wasted as all the leaves of such a tree do not contribute anything to
the system. Moreover, inner nodes having two or more children need to upload
at least at twice the bitrate of the stream. This means that high-quality video
streams cannot be transmitted unless one can guarantee that all inner nodes have
a lot of spare upload capacity. Finally, the fragile tree structure is not resilient to
any kind of node failures or churn. In order to overcome these problems, systems
have been proposed to split the content of the stream into several disjoint stripes
and disseminate this information along multiple disjoint trees. SplitStream [1] is
a prominent example which uses multiple description coding (MDC) [3] to split
the stream into different stripes in order to distribute them on several trees.
Multiple description coding allows for the reconstruction of the original stream
using any subset of the stripes. As each peer is also required to be an inner node
in one of the trees, this approach solves the single tree’s problem of having a
large fraction of free-riding leaf peers. The CoopNet [7] approach is similar in
that it also uses MDC and multiple trees; however, its goal is merely to com-
plement the traditional client-server model as opposed to completely replace it.
In this protocol, the server handles all the join requests and centrally manages
all trees which limits the system’s scalability. MDC is still an active research
effort and no implementations for practical use are available. In addition, the
overhead of multiple description coding harms the system’s efficiency which may
raise concerns whether multiple description coding is currently suitable for this
kind of application. While maintaining several trees improves the robustness of a
system, each tree can break individually, and the overhead potentially increases
as more trees have to be repaired continuously (and concurrently).

Various systems using other approaches to cope with the shortcomings of
tree-based topologies have also been presented. The Bullet [6] system uses a
mesh on top of an arbitrary tree overlay in order to increase robustness. The
additional links introduced by the mesh increase robustness by reducing the
dependency of peers on their parents. The stream is split into disjoint blocks
and distributed within the tree. Only as many blocks are sent to children as
bandwidth is available, and missing blocks are then localized and retrieved us-
ing the mesh. However, the encoding of blocks, the duplicates, the requests for
missing blocks, and the tree maintenance entail a substantial overhead in Bullet.
ChunkySpread [12] strives to redeem the shortcomings of tree-based topologies
by providing more efficient protocols to build and repair trees. By adding a
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“weak” tit-for-tat model and locality awareness, additional important aspects of
peer-to-peer live streaming are considered.

The overhead of any tree-based protocol is generally large as the trees have to
be repaired and the topology maintained. This is particularly true if there is a lot
of churn in the network. Another disadvantage of trees is its lack of control over
selfish peers: It is difficult to enforce that peers actually forward the data blocks
to their designated children. Due to these inherent problems, a lot of research
has also focused on tree-less protocols.

Since a rigidly structured overlay requires permanent maintenance, care has
to be taken not to burden the individual peers. Therefore, unstructured over-
lays have been favored over structured overlays, and various protocols based
on unstructured overlays have been proposed, e.g., CoolStreaming/DONet [15],
Chainsaw [8] and GridMedia [14], all published in 2005. CoolStreaming/DONet
makes a strong case for a data-centric design of the overlay, which means that
the availability of data at certain nodes must steer the content dissemination, in
contrast to having the predefined overlay dictate the data flow. Chainsaw and
Gridmedia also follow this paradigm and mainly differ in the number of stored
links to other peers, block sizes, buffer lengths, etc.—generally, parameters which
have an impact on the overlay’s robustness and overhead.

Typically, in unstructured overlays, peers have to notify neighboring peers
about available blocks of data, and peers that are interested in obtaining these
blocks must explicitly request them before any data is exchanged, because there is
no structure in the network that could be used to disseminate data. Note that this
scheme has the disadvantage that notifying peers and subsequently requesting
data blocks potentially results in long delays before any data is exchanged.

Our approach differs from all these protocols in that it uses a structured over-
lay, based on a prefix-routing neighbor selection policy [9,10]. This policy guar-
antees a logarithmic diameter, robustness to massive crash failures and churn,
and it also ensures that the entire network remains connected. At the same time,
the protocol uses the flexibility of this neighbor selection scheme to take latency
and bandwidth considerations into account when building up and maintaining
the routing tables. Our mechanism further uses novel push algorithms tailored
specifically for prefix-routing-based topologies to quickly disseminate the content
to a fraction of all peers, thereby significantly reducing the delay experienced
in other pull-based protocols. The benefits of push-to-pull strategies are well-
known in theory, e.g., in the context of efficient rumor spreading [5]. Hence, this
push-to-pull-based technique possesses the advantages of the pull-based schemes
and in addition has the efficiency of push-based algorithms.

3 Push-to-Pull Protocol

This section presents the design of our protocol for peer-to-peer live streaming.
It is based on two concepts: First, the protocol defines the overlay structure,
i.e., it specifies how peers are to select their neighboring peers. The overlay is
inspired by the structured topologies of distributed hash tables (DHTs) which
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guarantee connectivity and a logarithmic diameter. The flexibility of the neigh-
bor selection strategy is used to account for additional factors which influence
performance, for instance, bandwidth requirements and latency constraints. The
topology aims at being resilient to churn and massive correlated failures. Second,
the protocol specifies how data is distributed in the overlay network. Concretely,
the protocol advocates the data-driven streaming paradigm, and introduces a
novel combination of fast pushing operations and robust pull operations.

3.1 Overlay and Neighbor Selection

The proposed overlay consists of an unstructured and a structured part. Initially,
a peer is assigned a random set of neighbors by a network entry point. Over time,
a refinement process takes place as peers learn about other peers from their neigh-
bors and add them to their routing table depending on the following criteria: Since
peers strive to maintain several connections to close-by peers, new neighbors are
continuously accepted based on the latency measured to these peers.

While truly random networks are known to have desirable properties, con-
straining the choice of neighbors to peers that are close-by may lead to clusters
and consequently threaten the efficiency or even the connectivity of the overlay.
Therefore, our protocol uses d-bit peer identifiers in order to build a DHT-like
topology (of course, without the data storage semantics). These identifiers can
be used for prefix-routing, as links to neighbors are stored for different shared
prefix lengths. Let β denote the number of bits that can be fixed at a peer to
route any message to an arbitrary destination. For i = {0, β, 2β, 3β, . . .}, a peer
chooses, if possible, 2β − 1 neighbors whose identifiers are equal in the i most
significant bits and differ in the subsequent β bits by one of 2β − 1 possibilities.
For random bit strings, this ensures an expected logarithmic network diameter
and peer degree. Similarly to DHTs based on prefix-routing, our solution has
the advantage over more rigid DHT structures such as Chord [11] that there is
a large choice of neighbors for short prefixes, which means that an optimizing
secondary criterion can be used to pick neighbors. For example, as the identifiers
of roughly half of all peers start with 0, any of those peers can be used as the
routing table entry for this prefix, while about one fourth of all peers are suit-
able for the prefix 00 etc. This freedom is used in our protocol to choose peers
according to their latency (locality awareness), but also in order to construct
different push mechanisms as described in the following section.

3.2 Pushing and Pulling Data

The prime objective of the pushing component is to quickly distribute a data
block to a certain number of peers, in order to fuel the subsequent pull-based
exchanges. As we have argued before, such a mechanism is needed due to the
long delays of purely pull-based approaches; the pushing phase brings the data
block into the vicinity of virtually all peers.

In this section, various aspects of pushing data blocks to neighbors are dis-
cussed. In particular, we present two concrete algorithms where each of these
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algorithms has its own merits. The first algorithm, denoted by ALG1, is simple,
robust, and has a low overhead; it needs fewer neighbors per peer and deals bet-
ter with heterogenous bandwidths. However, it cannot guarantee that the push
mechanism reaches a considerable share of all peers and specific care has to be
taken to make sure that no duplicates can occur. The second algorithm,ALG2, is
more sophisticated: All the peers can be reached without the use of the pulling
mechanism, and there are provably no retransmissions. Note that a loop-free
transmission implies that data is distributed on induced spanning trees, which
are generally not comparable to structures where the overlay graph consists of
one or more trees which must be used to disseminate data. Our graph is still
hypercubic, and, in accordance with the data-driven streaming paradigm, each
packet can theoretically induce a different tree on which it is broadcast.

Due to the simplicity and robustness of ALG1, it is better suited for dynamic
environments and also in settings where peers may act selfishly. As we will show
in Section 4, in order to boost the dissemination process it suffices to push fresh
data blocks to a subset of all peers. This implies that the lack of guarantee that
many peers can be reached using this push mechanism is not a severe limitation.
Nevertheless, the ability of ALG2 to efficiently push new blocks to practically
all peers may be preferable in various scenarios. For example, there may be
situations where one wants to precisely control the fraction of peers reached
by the pushing operation only. In a more stable network or a network where
incentives are of no concern, more peers should be reached by pushing blocks for
efficiency reasons, so that only a small number of pulls are necessary to distribute
the new block among the remainder of the peers.

In the following, let, for two peers u and v with identifiers bu
0 . . . bu

d−1 and
bv
0 . . . bv

d−1, where bu
i and bv

i , denote the ith bit of their respective identifiers,
�(u, v) = k if bu

j = bv
j for all j ∈ {0, . . . , k − 1} and bu

k = bv
k. Furthermore,

let Nv be the set of all neighboring peers of v. We first present ALG1 and
discuss its properties. Let β again denote the number of bits that the prefix
routing algorithm fixes at each hop. The source selects 2β peers from its routing
table, if possible, such that the identifiers of any two peers differ in at least
one bit of the first β bits. A new block is pushed to these peers along with the
information that they must only forward the block to peers with which they
share the first β bits of their identifiers. Recursively, upon receiving such a push
message with the specified prefix length π that they must not modify, a recipient
selects 2β peers that share the prefix of length π with itself and that differ in
at least one bit between the (π + 1)st and the (π + β)th bit and so on. This
straightforward approach to pushing on prefix-based overlays has an obvious
shortcoming: Assume that β = 2 and that the source peer has the identifier
consisting of only zeros. It will push the block, among others, to a peer whose
identifier starts with 00 which will in turn forward the block to a peer whose
identifier starts with 0000. This peer might then forward the block back to the
source again, as the identifier of the source also starts with 000000. Such loops
can occur on all paths. If a peer v pushes the block solely to all the 2β − 1
peers that differ in at least one bit from the identifier of v itself, there are no
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duplicates; however, this reduction would cut off entire branches of peers which
could never benefit from the push mechanism.

A viable solution to the duplicates problem is to include a list L of critical
predecessors of the induced spanning tree. Only the peer identifiers having a
prefix of length π + β in common are sent along. The push message any peer v
receives contains the parent p in the induced spanning tree, the fixed prefix length
π, and the list of critical predecessors L.6 The parent is potentially a critical peer
for one of the children, and therefore it is added to the list L. Afterwards, using
the local subroutine getChildren, the l ≤ 2β children are selected from the routing
table for which it holds that they all share a prefix of length at least π with peer
v itself, the identifiers of any two of those children differ in at least one of the
following β bits, and they do not occur in the list L. In the next step, the lists
Lj of critical predecessors are created for all children. Note that any critical
predecessor pi is added to at most one list Lj , and only if it is still critical for
this child vj , i.e., �(vj , pi) ≥ π + β. The source v0 pushes data blocks containing
the parameters p := v0, π := β, and L := ∅ to its children. This push strategy
ALG1 is summarized in Algorithm 1.

Algorithm 1. ALG1: push(p, π,L) at peer v.
1: L := L ∪ {p}
2: {v1, . . . , vl} := getChildren(v, π,L)
3: for all pi ∈ L do
4: j := arg maxj∈{1,...,l} �(vj , pi)
5: if �(vj , pi) ≥ π + β then Lj := Lj ∪ {pi} fi
6: od
7: for j = 1, . . . l do send push(v, π + β,Lj) to vj od

It is easy to see that ALG1 is indeed loop-free, and that the expected length
of the list L is bounded by

∑∞
j=2

1
(2β)j = 1

2β(2β−1) which is less than one entry.
However, the worst-case length of the list is log(n)/β. Another shortcoming of
this algorithm is that it is likely that not all peers can be reached, because once
a peer is reached that only has connections to peers that are in the list L for a
certain prefix, this branch of the tree is cut off.
ALG2 avoids these problems by modifying the topology and using a different

routing scheme. For simplicity, we present the neighbor selection strategy and
the push algorithm for the case β = 1. In order to use ALG2, the peers must
store links to a totally different set of neighbors: A peer v with the identifier
bv
0 . . . bv

d−1 stores links to peers whose identifiers start with bv
0b

v
1 . . . bv

i−1b
v
i b

v
i+1

and bv
0b

v
1 . . . bv

i−1b
v
i b

v
i+1 for all i ∈ {0, . . . , d− 2}. For example, the peer with the

identifier 0000 has to maintain connections to peers whose identifiers start with
the prefixes 10, 11, 010, 011, 0010, and 0011. Pseudo-code for the algorithm is
given in Algorithm 2.

6 For simplicity, as the data contained in the push messages does not have any influence
on the push procedures, it is omitted in our notation.
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Algorithm 2. ALG2: push(π, vc) at peer v.
1: S := {v′ ∈ Nv | �(v′, v) ≥ π + 1}
2: choose v1 ∈ S : �(v1, v) ≤ �(ṽ, v) ∀ṽ ∈ S
3: if v1 �= ∅ then send push(�(v1, v), v) to v1 fi
4: if vc �= ∅ then
5: choose v2 ∈ Nv: �(v2, vc) = π + 1
6: if v2 = ∅ then v2 := getNext(v) from vc fi
7: if v2 �= ∅ then send push(�(v2, vc), vc) to v2 fi
8: else
9: choose v2 ∈ Nv: �(v2, v) = π

10: if v2 �= ∅ then send push(π + 1, vc) to v2 fi
11: fi

The parameters are again the length π of the prefix that is not to be modified,
and at most one critical predecessor vc. If β = 1, any node v tries to forward
the push message to two peers v1 and v2. The procedure is called at the source
v0 with arguments π := 0 and vc := ∅, resulting in the two push messages
push(1, v0) to v1 and push(1, ∅) to v2. The peer v1 is chosen locally such that the
prefix its identifier shares with the identifier of v is the shortest among all those
whose shared prefix length is at least π + 1. This value �(v1, v) and v itself are
the parameters included in the push message to peer v1, if such a peer exists.
The second peer is chosen similarly, but with respect to vc and not v itself. If no
suitable peer is found in the routing table, the peer vc is inquired for a candidate
using the subroutine getNext which is described in Algorithm 3.

Algorithm 3. getNext(vs) at peer v

1: S := {v′ ∈ Nv | �(v′, v) > �(vs, v)}
2: choose vr ∈ S : �(vr, v) ≤ �(ṽ, v) ∀ṽ ∈ S
3: send vr to vs

This step is required because node v cannot deduce from its routing table
whether a peer v2 with the property �(v2, vc) ≥ π + 1 exists. In the special case
when vc = ∅, v2 is chosen locally, if possible, such that �(v2, v) = π. In Figure 1,
an example spanning tree resulting from the execution of ALG2 is depicted.

As mentioned earlier, ALG2 has the property that, at least in a static setting
where peers neither join nor leave the network, all peers can be reached. Due
to churn, any real overlay can never be considered static. However, this static
property implies that this pushing procedure is expected to reach a large number
of peers even if some peers appear and disappear during the push phase.

Theorem 3.1 In a static overlay, the push algorithm ALG2 has the following
properties:

(a) It does not induce any duplicate messages (loop-free), and
(b) all peers are reached (complete).
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v0

v1 v2

v3 v4 v6 v7

(1,v  )0 (1,0 )

(2,v  )0 (2,v  )2(2,v  )1 (2,0 )

0000

0101 1010

100 110110010 0 1 01

Fig. 1. The spanning tree induced by a push message initiated at peer v0 is shown.
The fixed prefix is underlined at each peer, whereas prefixes in bold print indicate that
the parent peer has been constrained to push the packet to peers with these prefixes.

Proof. Throughout the proof, we will use the fact that ∀u, v, w : �(u, v) = σ and
�(v, w) = τ implies that �(u, w) = min(σ, τ) which we will refer to as Fact (1).

(a) Loop-free: If a peer v receives a push message μ and forwards it to other
peers which in turn forward the message and so on, let Cv(μ) denote the set of
peers that are reached recursively. We first show that if any peer v forwarding
push messages μ′ and μ′′ to two peers v′ and v′′, these peers will subsequently
forward the message to disjoint sets of peers, i.e., Cv′(μ′) ∩ Cv′′(μ′′) = ∅. Then,
we will show that peers never send messages back to predecessors.

Let v be the peer receiving the push message and let πv denote the prefix
length that peer v can no longer modify. As in the description of the algorithm,
the two peers the message is forwarded to are v1 and v2. Let further vp denote
the peer that sent the message to v. In order to prove that disjoint sets are
constructed, it suffices to show that �(v, v1) ≥ πv + 1 and �(v, v2) = πv at any
peer v.

The first inequality follows immediately from the algorithm. If vc = ∅ then
�(v, v2) = πv also follows by definition. Therefore we can assume in the following
that vc = ∅. If vp = vc we have that �(vp, v2) ≥ πv + 1, as v was chosen from
S according to this criterion. It further holds that �(v, vp) = πv because the
parameter πv that p sends to v in the message is precisely �(v, vp). According to
Fact (1), we get that �(v2, v) = πv. Similarly, if vp = vc, it holds that �(vc, v2) ≥
πv + 1, due to the fact that either vp found peer v in its routing table, implying
that �(vc, v2) = πv + 1, or the procedure getNext has been invoked which by
definition means that �(vc, v2) > πv + 1. As p sends the value �(v, vc) to v,
it holds at peer v that πv = �(v, vc), again leading us to the conclusion that
�(v, v2) = πv.

This concludes the proof that the resulting peer sets are always disjoint. Since
peers might forward push messages back to a predecessor, we cannot yet conclude
that no duplicates are produced. Let v(0) � v(1) � . . . � v(k), where k ≤ πv,
denote the path from peer v(0) := v back to the source v(k). Note that the
value π steadily increases downwards, implying that πv(0) > πv(1) > . . . > πv(k) .
Let us first assume that vc = ∅ on the entire path. If vc = v(1) then it holds
that �(v, v(1)) = πv according to the algorithm. In the case vc = v(1), then by
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definition �(v, vc) = πv and as �(v(1), vc) = πv(1) < πv, we get that in all cases
�(v, v(1)) ≤ πv. Inductively, the same argument can be applied to the maximal
prefix length between v(1) and v(2) which is bounded by πv(1) etc. Using Fact (1),
we have that �(v, v(i)) ≤ πv for all 1 ≤ i ≤ k. If for some i∗ ∈ {0, . . . , k−1} a peer
is reached that received vc = ∅ from v(i∗+1), it holds according to the definition of
ALG2 that all other peers closer to the source on this path also received vc = ∅.
This entails that �(v(k), v(k−1)) = 0, �(v(k−1), v(k−2)) = 1 and so on, down to
�(v(i∗), v(i∗+1)) = k− i∗ ≤ πv. Applying the same inductive argument as before,
we can conclude that �(v, v(j)) ≤ πv also for all j > i∗ if such an i∗ exists. Since
the first πv bits are not changed at peer v when forwarding the message to other
peers, it is impossible for v to send the push message to a predecessor as all
predecessors’ identifiers differ in at least one bit among the first πv bits, which
concludes the proof that no duplicates can occur and the resulting structure is
a spanning tree.

(b) Complete: It remains to be shown that all peers are reached using this pro-
cedure. Using �(v, v1) ≥ πv + 1 and �(v, v2) = πv at any peer v, it follows that,
when forwarding push messages, the current prefix is extended with a 0 and a
1, and the value π is increased. Note that care has to be taken only if identifiers
with certain prefixes do not exist. If no peer v1 such that �(v1, v) = π + 1 exists,
the next bit can be tried by choosing v1 such that �(v1, v) = π + 2 and so on.
Given that v1 is chosen among all peers in S such that the �(v1, v) is minimal, it
is guaranteed that no peer is left out. Similarly, if there is no peer v2 such that
�(v2, vc) = πv, the next bit is tried by calling the function getNext at peer vc

which chooses v2 the same way as peer v chooses v1. This means that prefixes
are only left out if no peer’s identifier has this particular prefix and thus every
peer can be reached. ��
Observe that at any time, at most one predecessor is critical and has to be
included in a push packet. A disadvantage of ALG2, compared to ALG1, is that
peers have to maintain twice as many connections to other peers. Since all peers
ideally communicate regularly with all their neighbors, it is best to keep the set
of neighboring peers small.

However, both algorithms are not sufficient to quickly disseminate data to
all peers in dynamic environments such as the Internet. Due to the perpetual
arrival and departure of peers, which results in inaccurate routing tables, only
a certain fraction of all peers are effectively reached through pushing. Thus, a
second mechanism has to be used where peers having received new data blocks
notify their neighbors about the corresponding sequence numbers. A peer can
then obtain data blocks it is interested in by explicitly requesting them from a
neighbor (pull operation). Hence, a data block is never forwarded twice to the
same peer, and there are no redundant transmissions. The initial distribution
of new data blocks through pushing ensures that almost every peer has at least
one other peer in its vicinity that offers the missing data block.
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4 Evaluation

Our protocol has been evaluated in several respects. We have performed exten-
sive emulations (simulations using the real code base of the Pulsar system in a
simulated network) with up to 100,000 peers on a single Core2 Quad personal
computer with 4GB of RAM. Our emulation results have also been confirmed in
tests on PlanetLab. Finally, a real-world beta test has shown that the protocol
manages to cope well with the peculiarities of the Internet and to distribute the
content reliably. Due to space constraints, we only present results concerning
the key concepts introduced in this paper, namely the neighbor selection and
the push- and pull-based data dissemination policy.

4.1 Topology and Neighbor Selection

First, we have evaluated the properties of the streaming topology itself. We have
streamed data over a network of 100 to 100,000 peers and counted the total
number of hops taken by each data packet. Figure 2 shows that, as expected, the
hypercubic structure induced by the neighbor selection results in a logarithmic
network diameter.

As described in Section 3, the flexibility of our topology allows for locality
awareness, i.e., for the choice of close peers as neighbors. This indeed helps to
reduce the round trip times significantly compared to a random neighbor se-
lection strategy, as Figure 3 clearly suggests. Figure 3 depicts the number of
neighbors that the average peer maintains for any given round trip time. In
this emulation, peers are distributed uniformly on a square with a minimum
delay of 10 ms and maximum delay of 200 ms which corresponds to the square’s
diagonal.

Fig. 2. Number of hops taken by each
data packet to reach the destination peer.
The network diameter scales logarithmi-
cally with the total number of peers.

Fig. 3. Effect of locality awareness with
10,000 peers: The average round trip
times to all neighboring peers are signifi-
cantly smaller in the network constructed
using our protocol than in a network
where neighbors are chosen at random



Push-to-Pull Peer-to-Peer Live Streaming 399

4.2 Push-to-Pull Data Distribution

Figure 4 compares the two push strategies ALG1 and ALG2 introduced in
Section 3 with a pull-only strategy like the one adopted by Chainsaw.

The figure shows that, compared to pull-only protocols, pushing considerably
speeds up the distribution of new data blocks and thereby reduces the playback
delay. Once a sufficient number of peers have received a block, the remainder
of the peers can retrieve the fresh data block using the pull mechanism with a
moderate additional overhead. It is evident from Figure 4 that ALG1 is almost
as fast as ALG2, although only about one third of all peers obtain the new data
block through pushing, while almost all peers are reached using ALG2 in this
test.

Fig. 4. Time required until the push strategies ALG1, ALG2, and a pull-only strategy
reach a given fraction of all peers in a network of 10,000 peers

Figure 5 depicts the percentage of all data packets received through pushing
for both algorithms ALG1 and ALG2 for increasing network sizes. Independent
of the chosen algorithm, less packets are received through pushing as the network
grows. This decline is due to the increased chance of branches of the distribution
trees being cut off, because of inaccurate routing tables, before a substantial
number of peers is reached. As expected, the fraction of pushed packets decreases
much more rapidly when ALG1 is used. However, it is sufficient to reach only
a fraction of all peers in the pushing phase, as the subsequent pull operations
can be performed efficiently and with a small additional delay. Note that both
pushing strategies greatly benefit from the locality awareness which not only
decreases the chances of packet loss but also allows the use of short timeouts for
acknowledgments.

A second test studies the scalability of the ALG1 pushing algorithm. Figure 6
indicates that the network scales well with the number peers, as exponentially
more peers merely results in a linear increase of the delays. Moreover, all peers
experience a delay of not more than 1.5 seconds.
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Fig. 5. As the network grows, less data is
received in the pushing phase. The frac-
tion of data obtained through pushing
decreases considerably faster when algo-
rithm ALG1 is used.

Fig. 6. Given an exponential increase of
the number of peers, the delays increase
only linearly

Fig. 7. Effect of 50% simultaneous random crashes in a network of 5,000 peers. “One
alive” shows the percentage of prefixes for which at least one connection is present,
while “All alive” depicts the percentage of prefixes for which all connections are still
alive. In both cases, already after 3 seconds, the peers are again fully connected.

4.3 Robustness to Churn

The high connectivity of our hypercubic network topology and the flexible choice
of neighbors allows to build up and fix routing tables quickly. Several scenarios
have been considered in which a large fraction of peers leaves simultaneously. It
turns out that it is easy to maintain the topology and to recover even from such
massive concurrent network changes.

Figure 7 shows a network where a random set of 50% of the 5,000 peers leave
simultaneously. A severe network failure is assumed where all the peers crash
without notice (no “leave message”). For each prefix stored in the routing ta-
ble, a peer maintains roughly 2 to 3 connections to other peers whose identifiers
match the specific prefix. Immediately after the network failure, for approxi-
mately 80% of the stored prefixes, at least one connection to a peer that is still
alive is retained. After roughly 3 seconds, the routing table is again almost com-
pletely repaired. The figure also depicts the percentage of prefixes for which all
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connections are still alive. This short loss of connectivity is only due to the lack
of a proper leave message. In case disconnecting peers are able to send a leave
message, which is certainly the normal case, the network is hardly affected if
as many as 50% of the peers leave, and the prefix connectivity does not drop
noticeably, as peers immediately search for suitable replacements.

Due to the fast repairing process, our system also copes well with membership
changes occurring continuously over time.

5 Conclusions

Given the growing number of radio stations and TV channels available online,
peer-to-peer live streaming is able to overcome the limitations of traditional,
centralized approaches, and it enables content providers to both increase play-
back quality and to reduce costs. Thus, the p2p paradigm has the potential to
democratize the streaming world in that it enables everyone to broadcast her
own media content—similarly to how the world wide web revolutionized the
distribution of information more than a decade ago: Nowadays, everyone can
publish her thoughts on her own blog or website at virtually no cost.

By combining pull-based and push-based techniques, our push-to-pull protocol
for live streaming achieves high efficiency and robustness, both essential features
of a reliable p2p streaming service. As a second central ingredient, our protocol
makes use of the lessons learnt from distributed hash tables by structuring the
overlay topology while still maintaining a large degree of flexibility. The resulting
system is locality-aware and has a guaranteed logarithmic diameter. Moreover,
it enables the source to push new data blocks to speed up data dissemination.
Having a push mechanism allows to reduce the notification frequency, which
leads to a substantially smaller overhead.
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Abstract. Byzantine-fault-tolerant service protocols like Q/U and FaB
Paxos that optimistically order requests can provide increased efficiency
and fault scalability. However, these protocols require n ≥ 5b + 1 servers
(where b is the maximum number of faults tolerated), owing to their
use of opaque Byzantine quorum systems; this is 2b more servers than
required by some non-optimistic protocols. In this paper, we present a
family of probabilistic opaque Byzantine quorum systems that require
substantially fewer servers. Our analysis is novel in that it assumes
Byzantine clients, anticipating that a faulty client may seek quorums
that maximize the probability of error. Using this as motivation, we
present an optional, novel protocol that allows probabilistic quorum sys-
tems to tolerate Byzantine clients. The protocol requires only one addi-
tional round of interaction between the client and the servers, and this
round may be amortized over multiple operations. We consider actual
error probabilities introduced by the probabilistic approach for concrete
configurations of opaque quorum systems, and prove that the probability
of error vanishes with as few as n > 3.15b servers as n and b grow.

1 Introduction

For distributed systems consisting of a large number of servers, a Byzantine-
fault-tolerant replication algorithm that requires all servers to communicate with
each other for every client request can be prohibitively expensive. Therefore, for
large systems, it is critical that the protocol have good fault scalability [1]—the
property that performance does not (substantially) degrade as the system size
is increased—by avoiding this communication.

Byzantine-fault-tolerant service protocols must assign a total order to requests
to provide replicated state machine semantics [2]. To minimize the amount of
communication between servers, protocols like Q/U [1] and FaB Paxos [3] use
opaque quorum systems [4] to order requests optimistically. That is, servers in-
dependently choose an ordering, without steps that would be required to reach
agreement with other servers; the steps are performed only if servers choose
different orderings. Under the assumption that servers independently typically
choose the same ordering, the optimistic approach can provide better fault scala-
bility in the common case than protocols like BFT [5], which require that servers
perform steps to agree upon an ordering before choosing it [1]. However, opti-
mistic protocols have the disadvantage of requiring at least 5b + 1 servers to
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tolerate b server faults, instead of as few as 3b + 1 servers, and so they cannot
tolerate as many faults for a given number of servers.

In this paper, we present probabilistic opaque quorum systems (POQS), a new
type of probabilistic quorum system [6], in order to increase the fraction of faults
that can be tolerated by an optimistic approach from fewer than n/5 to as many
as n/3.15. A POQS provides the same properties as the strict opaque quorum
systems used by, e.g., Q/U and FaB Paxos, but is probabilistic in the sense
that quorums are not guaranteed to overlap in the number of servers required
to ensure safety. However, we prove that this error probability is negligible for
large system sizes (for a given ratio of b to n). Application domains that could
give rise to systems of such scale include sensor networks and edge services.

Byzantine clients are problematic for all probabilistic quorum systems because
the combination of high fault tolerance and low probability of error that can be
achieved is based on the assumption that clients choose quorums uniformly at ran-
dom (and independently of other quorums and the state of the system, e.g., the
values held by each server, and the identities of faulty servers). This can be seen in
our results that show: (i) that probabilistic opaque quorum systems can tolerate
up to n/3.15 faults (compared with less than n/5 faults for strict opaque quorum
systems) assuming that all quorums are selected uniformly at random, but that
the maximum fault tolerance drops to n/4.56 faults if Byzantine clients are al-
lowed to choose quorums according to their own goals; and (ii) that to achieve a
specified error probability for a given degree of fault tolerance, substantially more
servers are required if quorums are not selected uniformly at random.

Therefore, we present a protocol with which we constrain clients to using
pseudo-randomly selected access sets (sets of servers contacted in order to find
quorums, c.f., [7]) of a prescribed size. In the limit, we can set the sizes of
access sets to be the sizes of quorums, thereby dictating that all clients use
pseudo-randomly selected quorums, and providing a mechanism that guarantees,
in practice, the behavior of clients that is assumed by probabilistic quorum
systems. However, as shown in Section 4.3, the notion of restricted access sets
allows us a range of options in trading off the low error probability and high
fault tolerance of completely random quorum selection, for the guaranteed single-
round access provided when there is an available quorum (one in which all servers
respond) in every access set.

Our contributions are as follows:

– We present the first family of probabilistic opaque quorum system construc-
tions. For each construction, we: (i) show that we are able to reduce the
number of servers below the 5b + 1 required by protocols that use strict
opaque quorums, (ii) prove that it works with vanishing error probability
as the system size grows, and (iii) evaluate the characteristics of its error
probability over a variety of specific system sizes and configurations.

– We present the first analysis of a probabilistic quorum system that accounts
for the behavior of Byzantine clients. We anticipate that a faulty client may
choose quorums with the goal of maximizing the error probability, and show
the effects that this may have.
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– We present an access-restriction protocol that allows probabilistic quorum
systems to tolerate faulty clients with the same degree of fault tolerance as if
all clients were non-faulty. One aspect of the protocol is that servers work to
propagate the values of established writes to each other in the background.
Therefore, we provide analysis, unique to opaque quorum systems, of the
number of servers that must propagate a value for it to be accepted by
another server.

2 Related Work

Strict Opaque Quorum Systems. Opaque Byzantine quorum systems were
introduced by Malkhi and Reiter [4] in two variants: one in which the number
of non-faulty servers in a quorum is at least half of the quorum, and the other
in which the number of non-faulty servers represents a strict majority of the
quorum. The first construction makes it unnecessary for the client to know the
sets of servers of which the system can tolerate failure (hence the term ‘opaque’),
while the second construction additionally makes it possible to create a protocol
that does not use timestamps. The paper also proves that 5b is the lower bound
on the number of servers for the first version; simply changing the inequality to
a strict inequality proves 5b+1 is the lower bound for the second. In this paper,
we are concerned with the second variant.

The constraints on strict opaque quorums have also been described in the
context of consensus and state-machine-replication protocols, e.g., the Q/U [1]
and FaB Paxos [3] protocols, though not explicitly as opaque quorums. Abd-
El-Malek et al. [1] provide generic (not just threshold) opaque quorum system
constraints that they prove sufficient for providing state-machine replication se-
mantics where both writes and reads complete in a single (pipelined) phase when
there is no write–write contention. Martin and Alvisi [3] use an opaque quorum
system of acceptors in FaB Paxos, a two-phase consensus protocol (with a des-
ignated proposer) and three-phase state-machine-replication protocol requiring
at least 5b + 1 servers.

Probabilistic Quorum Systems. Table 1. Minimum servers needed for proba-
bilistic and strict quorum variants

prob. strict presented
Opaque 3.15b + 1 5b + 1 Here
Masking 2.62b + 1 4b + 1 [6]

Dissemination b + 1 3b + 1 [6]

A Probabilistic Quorum System
(PQS), as presented by Malkhi et
al. [6], can provide better avail-
ability and fault tolerance than
provided by strict quorum sys-
tems; Table 1 compares proba-
bilistic quorums with their strict
quorum counterparts.1 Malkhi et
al. provide constructions for dissemination and masking quorums, and prove
properties of load and availability for these constructions. They do not address

1 The 2.62b lower bound for masking quorums is not shown in [6], but can be quickly
derived using our results from Section 4.
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opaque quorum systems, or the effects of concurrent or Byzantine writers; we
address each of these. In addition, in Section 4, we borrow analysis techniques
from [6], but our analysis is more general in the sense that clients are not all as-
sumed to communicate only with quorums of servers. We also use a McDiarmid
inequality [8] in our technical report [9] for bounding the error probability; this
provides a simpler bounding technique for our purposes than do the Chernoff
bounds used there. The technique that we present in Section 5 for restricting
access to limited numbers of servers should be applicable to the constructions of
Malkhi et al. equally well.

Other Work. Signed Quorum Systems [10] and k-quorums [11,12] also weaken
the requirements of strict quorum systems but use different techniques; our tech-
nical report [9] has a more detailed discussion. There has been work on strict
quorum systems that can tolerate Byzantine clients (e.g., [13,14]) but this is
fundamentally unconcerned with the way in which quorums are chosen because
such choices cannot impact the correctness of strict quorum systems.

3 System Model and Definitions

We assume a system with a set U of servers, |U | = n, and an arbitrary but
bounded number of clients. Clients and servers can fail arbitrarily (i.e., Byzan-
tine [15] faults). We assume that up to b servers can fail, and denote the set of
faulty servers by B, where B ⊆ U . Any number of clients can fail. Failures are
permanent. Clients and servers that do not fail are said to be non-faulty. We
allow that faulty clients and servers may collude, and so we assume that faulty
clients and servers all know the membership of B (although non-faulty clients
and servers do not). We make the standard assumption that nodes are computa-
tionally bound such that they cannot subvert the effectiveness of cryptographic
primitives.

Throughout the paper, we use San Serif font to denote random variables,
uppercase ITALICS for set-valued constants, and lowercase italics for integer-
valued constants.

3.1 Behavior of Clients

We abstractly describe client operations as either writes that alter the state
of the service or reads that do not. Informally, a non-faulty client performs a
write to update the state of the service such that its value (or a later one)
will be observed with high probability by any subsequent operation; a write
thus successfully performed is called “established” (we define established more
precisely below). A non-faulty client performs a read to obtain the value of the
latest established write, where “latest” refers to the value of the most recent
write preceding this read in a linearization [16] of the execution. Therefore, we
define the correct value for the read to return to be the value of this latest
established write; other values are called incorrect. We assume that the read and
write operations by non-faulty clients take the following forms:
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– Writes: To perform a write, a non-faulty client selects a write access set
Awt ⊆ U of size awt uniformly at random and attempts to inform all servers
in Awt of the write value. Formally, the write is established once all non-
faulty servers in some set Qwt ⊆ Awt of size qwt ≤ awt servers have accepted
this write. (Intuitively, an access set is a set of servers contacted in order to
find a live quorum, c.f., [7].) We refer to qwt as the write quorum size; to any
Qwt ⊆ U of that size as a write quorum; and to Qwt = {Qwt ⊆ U : |Qwt| =
qwt} as the write quorum system.

– Reads: To perform a read, a non-faulty client selects a read access set Ard

of size ard uniformly at random and attempts to contact each server in Ard

to learn the value that the server last accepted. We denote the minimum
number of servers from which a non-faulty client must receive a response
to complete the read successfully by qrd ≤ ard. We refer to qrd as the read
quorum size; to any Qrd ⊆ U of that size as a read quorum; and to Qrd =
{Qrd ⊆ U : |Qrd| = qrd} as the read quorum system.

In a read operation, we refer to each response received from a server in Ard as a
vote for a read value. We assume that votes for two read values that result from
any two distinct write operations are distinguishable from each other, even if
the corresponding write values are the same (this is discussed in Section 5). The
read operation discerns the correct value from these votes in a protocol-specific
way. It is possible in an optimistic protocol such as Q/U [1], for example, that
the (at least qrd) votes may reflect a write operation but not provide enough
evidence to determine whether that write is established. In this case, the reader
may itself establish, or repair, the write value before returning it, to ensure that
a subsequent reader returns that value, as well (which is necessary to achieve
linearizability). In such a protocol, the reader does so by copying its votes for
that value to servers, in order to convince them to accept that write.

For this reason, the correctness requirements for POQS discussed in Section 4
treat not only the number of votes that a non-faulty reader observes for the
correct value, but also the number of votes that a faulty client can gather for
a conflicting value. A conflicting value is a specific type of incorrect value char-
acterized by the property that a non-faulty server would accept either it or the
correct value, but not both. Two values may conflict because, e.g., they both
bear the same timestamp, or are “conditioned on” the same established write in
the sense used in Q/U. We assume that this timestamp or similar information
can be used to distinguish older (stale) values from newer values. Enabling a
faulty client to obtain sufficiently many votes for a conflicting value would, e.g.,
enable it to convince other non-faulty servers to accept the conflicting value via
the repair protocol, a possibility that must be avoided for correctness.

Consequently, an error is said to occur when a non-faulty client fails to return
the correct value or a faulty client obtains sufficiently many votes for a conflicting
value. This definition (or specifically “sufficiently many”) will be made more
precise in Section 4.4. The error probability then refers to the probability of an
error when the client (non-faulty or faulty) reads from a read access set Ard

chosen uniformly at random. While we cannot force a faulty client to choose
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Ard uniformly at random, in Section 5 we demonstrate an access protocol that
enables a faulty client to assemble votes for a value that can be verified by servers
(and hence, e.g., to perform a repair in Q/U) only if Ard was selected uniformly
at random, which is good enough for our purposes. So, from here forward, we
restrict our attention to read access sets chosen in this way.

3.2 Communication

The communication assumptions we adopt are common to prior works in prob-
abilistic [6] and signed [10] quorum systems: we assume that each non-faulty
client can successfully communicate with each non-faulty server with high prob-
ability, and hence with all non-faulty servers with roughly equal probability. This
assumption is in place to ensure that the network does not significantly bias a
non-faulty client’s interactions with servers either toward faulty servers or to-
ward different non-faulty servers than those with which another non-faulty client
can interact. Put another way, we treat a server that can be reliably reached by
none or only some non-faulty clients as a member of B.

This assumption enables us to refine the read protocol of Section 3.1 in a
straightforward way so that non-faulty clients choose read quorums from an
access set uniformly at random. (More precisely, a faulty server can bias quorum
selection away from quorums containing it by not responding, but this decreases
the error probability, and so we conservatively assume that non-faulty clients
select read quorums at random from their access sets.) However, because a write
is, by definition, established once all of the non-faulty servers in any write quorum
within Awt have accepted it, the write quorum at which a write is established
contains all servers in Awt ∩ B; i.e., only the the non-faulty servers within the
write quorum are selected uniformly at random by a non-faulty client.

The access-restriction protocol of Section 5 requires no communication as-
sumptions beyond those of the probabilistic quorums it supports.

4 Probabilistic Opaque Quorum Systems

In this section, we present a family of probabilistic opaque quorum systems. We
begin by reviewing the properties of strict opaque quorum systems [4]. Define
the following functions (where Qrd and Qwt are as defined in Section 3.1):

correct(Qrd, Qwt) : |(Qrd ∩Qwt) \B| (1)
conflicting(Qrd, Qwt) : |(Qrd ∩B) ∪ (Qrd \Qwt)| (2)

correct(Qrd, Qwt) returns the number of non-faulty servers in the intersection
of a pair of read and write quorums, while conflicting(Qrd, Qwt) returns the
other servers in the read quorum, all of which may return a conflicting value in
some protocol execution. Let a read operation return a value that receives at
least r votes. Then, the consistency property for strict opaque quorum systems
is as follows:
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O-Consistency : ∀Qrd ∈ Qrd, ∀Qwt ∈ Qwt :
correct(Qrd, Qwt) ≥ r > conflicting(Qrd, Qwt). (3)

The property states that the number of non-faulty servers in the intersection
of any read quorum and write quorum must represent a majority of the read
quorum. Because of this and the fact that newer values can be distinguished
from older values, the correct value—which, by definition, is established by being
written to all of the non-faulty servers in a write quorum—can be distinguished
from other values, even if some non-faulty servers (and all faulty servers) present
conflicting or stale values. At a high level, O-Consistency guarantees:

P1 No two conflicting writes are both established.
P2 Every read observes sufficiently many votes for the correct value to identify

it as such.
P3 No (non-faulty or faulty) reader obtains votes for a conflicting value sufficient

to repair it successfully.

Given that the stated assumptions of a strict opaque quorum system hold,
the system behaves correctly. In contrast to this, probabilistic opaque quorum
systems (POQS) allow for a (small) possibility of error. Informally, this can be
thought of as relaxing O-Consistency so that a variant of it holds for most—but
not all—quorums. To ensure that the probability of an error happening is small,
POQS are designed so that P1, P2, and P3 hold with high probability.

In the remainder of this section, we model the worst-case behavior of faulty
clients (Section 4.1); derive a constraint (PO-Consistency, Section 4.2) that de-
termines the maximum fraction of faulty servers that can be tolerated (Sec-
tion 4.3) by POQS; and prove that the error probability goes to zero as n (and b)
is increased if this constraint is satisfied (Section 4.4).

4.1 Behavior of Faulty Clients

Because a faulty client can behave arbitrarily, we examine the way that a faulty
client should choose quorums to maximize the chance of error. Throughout this
section, let Awt denote a write access set from which Qwt (a quorum used for
an established write) is selected by a faulty client, let A′

wt be a write access set
used for a conflicting write by a faulty client, and let Ard be a read access set
from which Qrd, a read quorum, is selected by a faulty client. Again, we assume
that Awt, A′

wt, and Ard are selected uniformly at random, an assumption that
can be enforced using the protocol of Section 5.

A faulty client can increase the error probability with a write in one of two
ways: (i) by establishing a write at a write quorum that contains as many faulty
servers as possible, or (ii) by performing the write of a conflicting value in a way
that maximizes the number of non-faulty servers that accept it, i.e., by writing
to all of A′

wt \ Qwt. Since a faulty client may perform both such writes, we
assume that this client has knowledge of Awt and A′

wt simultaneously. However,
it is important to note that a faulty client does not have knowledge of the read
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Fig. 1. The preference (1st, 2nd, 3rd) a faulty client gives to a server when choosing
(a) Qwt, or (b) Qrd

access set A′
rd used by a non-faulty client—or specifically the non-faulty servers

within it, i.e., A′
rd \B—and so Qwt is chosen independently of A′

rd \B.2

Figure 1(a) shows the preferences that a faulty client gives to servers when
choosing Qwt to do both (i) and (ii). Goal (i) requires maximizing |Qwt ∩ B|
to maximize the probability that P1 or P2 is violated; hence, first preference
is given to the servers in Awt ∩ B in a write. Goal (ii) requires minimizing
|(Qwt ∩A′

wt) \B| to maximize the probability that P1 or P3 is violated; hence,
the servers in (Awt ∩A′

wt) \B are avoided to the extent possible.
A faulty client can increase the probability that P3 is violated by choosing

a read quorum with the most faulty servers and non-faulty servers that share
the same conflicting value. Figure 1(b) shows the preferences that a faulty client
gives to servers to do so. Because a faulty client can collude with the servers in
B, it can obtain replies from all servers in B that are also in Ard, i.e., the servers
in Ard∩B. It can also wait for responses from all of the non-faulty servers in Ard

with the conflicting value, i.e., those in Ard ∩ (A′
wt \Qwt). Only after receiving

all such responses, and only if these responses number fewer than qrd, must it
choose responses from servers with other values.

4.2 Probabilistic Constraint

In this section, we present PO-Consistency, a constraint akin to O-Consistency
specified in terms of expected values for POQS. As detailed below, let MinCorrect
be a random variable for the minimum number of non-faulty servers that report
the correct value in a randomly chosen read quorum taken by a non-faulty client.
(Recall that an error is caused by MinCorrect being too small only for reads
performed by a non-faulty client.) Also, let MaxConflicting be a random variable
for the maximum number of servers that report a conflicting value in a read
quorum taken from a randomly chosen read access set by a faulty client that seeks
to maximize MaxConflicting. (Recall that an error is caused by MaxConflicting

2 More precisely, with the access protocol in Section 5, A′
rd can be hidden unless, and

until, that read access set is used for repair, at which point it is too late for faulty
clients to choose Qwt so as to induce an error in that read operation.
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being too large even if the client is faulty.) Then the consistency property for
POQS is:

PO-Consistency : E [MinCorrect] > E [MaxConflicting] . (4)

As shown in Section 4.4, PO-Consistency allows us to choose a threshold, r,
for the number of votes used to determine the result of a read operation, while
ensuring that the error probability vanishes as we increase n (and b).

We now derive expressions for MinCorrect and MaxConflicting. Recall that B is
the set of up to b faulty servers. Let Awt be a randomly chosen write access set,
and let Ard be a randomly chosen read access set. As stated in the system model,
a write to Awt is established once it has been accepted by all of the non-faulty
servers in any Qwt, a write quorum within Awt. Therefore, we conservatively
assume that the number of faulty servers in Qwt is:

MalWrite = |Awt ∩B|. (5)

Here, Awt is a random variable taking on a write access set chosen uniformly at
random from Awt.

Qwt also contains qwt − MalWrite non-faulty servers, not necessarily chosen
at random, in addition to the MalWrite faulty servers. Let Cwt represent these
non-faulty servers:

Cwt = Qwt \B, (6)
|Cwt| = qwt −MalWrite, (7)

where Qwt is a random variable taking on the write quorum at which the write is
established, and Cwt is a random variable taking on the set of non-faulty servers
within this write quorum. Then, the number of non-faulty servers that return
the correct value in a read quorum selected by a non-faulty client is,

MinCorrect = |Qrd ∩ Cwt|, (8)

where Qrd is a random variable taking on a read quorum chosen uniformly at
random from Ard, itself chosen uniformly at random from Ard.

A faulty client may select its read quorum, Qrd, to maximize the number of
votes for a single conflicting value in an attempt to invalidate P3. Therefore, as
described in Section 4.1, the client first chooses all faulty servers in Ard. The
number of such servers is,

Malevolent = |Ard ∩B|. (9)

The faulty client also chooses the non-faulty servers that vote for the con-
flicting value that is most represented in Ard; these servers are a subset of
(Ard \ (Cwt ∪B)). This conflicting value has an associated write access set A′

wt

chosen uniformly at random from Awt, and no vote from a non-faulty server
not in A′

wt will be counted among those for this conflicting value (because votes
for any two write operations are distinguishable from each other as discussed in
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Section 3.1). Let A′
wt be a random variable taking on A′

wt. Then, the number of
non-faulty servers in Ard that vote for this conflicting value is,

Conflicting = |Ard ∩ (A′
wt \ (Cwt ∪B))|. (10)

A faulty client can choose all of these servers for Qrd. Therefore, since the sets of
servers measured by Malevolent and Conflicting are disjoint (the former consists
solely of faulty servers; the latter solely of non-faulty servers), the maximum
number of instances of the same conflicting value that a faulty client will select
for Qrd is,

MaxConflicting = Malevolent + Conflicting. (11)

4.3 Minimum System Sizes

In this section, we consider PO-Consistency under various assumptions concern-
ing the sizes of access sets and quorums in order to derive the maximum fraction
of faults that can be tolerated with decreasing error probability as a function of n
(and b). Our primary result is Theorem 1 which provides an upper bound on b for
which PO-Consistency holds. It is derived using the expectations of MinCorrect
and MaxConflicting (derived in our technical report [9]) that are computed using
the worst-case behavior of faulty clients presented in Section 4.1.

Theorem 1. PO-Consistency holds iff

b <
(ardqwtn− 2ardawtn + a2

wtard + qrdqwtn)n
n2ard − ardawtn + a2

wtard + qrdawtn
.

Table 2. Lower bounds on n for various con-
figurations

n > = n = n− b = n− 2b
3.15b - ard qrd awt qwt -
3.83b ard qrd awt qwt -
4.00b awt ard qrd qwt -
4.08b - ard awt qwt qrd

4.56b ard awt qrd qwt -
4.73b awt ard qwt qrd

5.49b - ard qrd awt qwt

6.07b ard qrd awt qwt

6.19b - ard awt qrd qwt

As shown in Section 4.4, a con-
struction exhibits decreasing error
probability in the limit with in-
creasing n if PO-Consistency holds.
Therefore, the remainder of this
section is concerned with interpret-
ing the inequality in Theorem 1.
Our analysis of this inequality is
given in Table 2 and shows that the
best bounds are provided when: (i)
both types of quorums are as large
as possible (while still ensuring an
available quorum), i.e., qrd = qwt =
n − b; and (ii), given (i), that ac-
cess sets as small as possible. Our
technical report [9] provides a more detailed analysis including an inequality for
systems with no Byzantine clients.

4.4 Bounding the Error Probability

Suppose a read operation always returns a value that receives more than r votes,
where E [MaxConflicting] ≤ r < E [MinCorrect]. Then, the error probability, ε, is
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ε = Pr(MaxConflicting > r ∨MinCorrect ≤ r). (12)

Theorem 2 states that if r is chosen so that

E [MinCorrect]− r = θ(n) and
r − E [MaxConflicting] = θ(n) (13)

then ε decreases as a function of n, assuming that the ratio of each of b, ard,
qrd, awt, and qwt to n remains constant. For example, r can be set equal to
(E [MaxConflicting] + E [MinCorrect])/2.

Theorem 2. Let MinCorrect, MaxConflicting, and r be defined as above (so PO-
Consistency holds) and let the ratio of each of b, ard, qrd, awt, and qwt to n be
fixed. Then,

ε = 2/eΩ(n) + 2/eΩ(n).

5 Access-Restriction Protocol

Our analysis in the previous sections assumes that all access sets are chosen uni-
formly at random by all clients—even faulty clients. Therefore, here we present
an access-restriction protocol that is used to enforce this. Recall from Section 3.1
that the need for read access sets to be selected uniformly at random is moti-
vated by repair. As such, protocols that do not involve repair may not require
this access-restriction protocol for read operations.

Our protocol must balance conflicting constraints. First, a client may be forced
to discard a randomly chosen access set—and choose another—because a given
access set (of size less than b servers more than a quorum) might not contain an
available quorum. However, in order to support protocols like Q/U [1] that use
opaque quorum systems for single-round writes, we cannot require additional
rounds of communication for each operation. This precludes, for example, a
protocol in which the servers collectively choose an access set at random and
assign it to the client for every operation. As such, a client must be able to
choose from multiple access sets without involving the servers for each. Yet, a
faulty client should be prevented from discarding access sets in order to choose
the one that has the highest probability of causing an error given the current
system state. In addition, we should ensure that a faulty client does not benefit
from waiting for the system state to change in order to use a previously chosen
access set that becomes more advantageous as a result of the change.

In our protocol, the client obtains one or more random values, each called a
Verifiable Random Value (VRV), with the participation of non-faulty servers.
Each VRV determines a unique, verifiable, ordered sequence of random access
sets that the client can use; the client has no control over the sequence. To deter
a client from discarding earlier access sets in the sequence for potentially more
favorable access sets later in the sequence, the protocol imposes an exponentially
increasing cost (in terms of computation) for the ability to use later access sets.
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The cost is implemented as a client puzzle [17]. We couple this with a facility for
the propagation of the correct value in the background so that any advantages
for a faulty client in the current system state are reduced if the client chooses
to delay performing the operation while it explores later access sets. Finally, to
deter a client from waiting for the system state to change, we tie the validity
of a VRV (and its sequence of access sets) to the state of the system so that as
execution proceeds, any unused access sets become invalid.

5.1 Obtaining a VRV

In order to get an access set, the client first must obtain a VRV from the servers.
Servers implement a metering policy, in which each server responds to a request
for a VRV only after a delay. The delay varies, such that it increases exponentially
with the rate at which the client has requested VRVs during some recent interval
of time—i.e., a client that has not requested a VRV recently will receive a VRV
with little or no delay, whereas a client that has recently requested many VRVs
will receive a VRV after a (potentially significant) delay. To offload work from
servers to clients (e.g., for scalability), the servers can make it relatively more
expensive (in terms of time) to ask for and receive a new VRV than to compute
a given number of access sets (potentially for multiple operations) from a single
VRV, using the mechanisms described below.

The VRV is characterized by the following properties:

– It can be created only with the consent of non-faulty servers;
– Its validity is tied to the state of the system, in the sense that as the system

state evolves (possibly merely through the passage of time), eventually the
VRV is invalidated;

– While it is valid, any non-faulty server can verify its validity and so will
accept it.

The VRV must be created with the consent of non-faulty servers because other-
wise faulty servers might collude to issue multiple VRVs to a faulty client with
no delay. Therefore, l, the number of servers required for the issuance of a VRV,
must be at least b + 1. However, of the non-faulty servers in the system, only
those among the (at least l−b) used to issue a VRV will impose additional delay
before issuing an additional VRV. Therefore, to minimize the time to get an
additional VRV, a faulty client avoids involving servers that have issued VRVs
recently. This strategy maximizes the number of VRVs to which the non-faulty
server contributing to the fewest VRVs has contributed. Thus, once k VRVs have
been issued, all n − b non-faulty servers have contributed to the issuance of at
least �k(l − b)/(n− b)� of these k. Since all non-faulty servers have contributed
to at least this many VRVs, and the delay is exponential in this number, the
time T (k) required for a client to obtain k VRVs is:

T (k) = Ω

(
exp
⌊

k(l − b)
n− b

⌋)
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In practice, T (k) for a client decays during periods in which that client does
not request additional VRVs, so that a client that does not request VRVs for a
period can obtain one with small delay.

The validity of the VRV (and its sequence of access sets) is tied to the state
of the system so that as execution proceeds, any unused access sets become
invalid. To implement this, the replication protocol may provide some piece
of data that varies with the state of the system—the Object History Set in
Q/U [1] is an example of this—with which the servers can compute a VRV,
but, in the absence of a suitable value from the protocol, the VRV can include
a timestamp (assuming that the non-faulty servers have roughly synchronized
clocks). The VRV consists of this value together with a digital signature cre-
ated using a (l, n)-threshold signature scheme (e.g., [18]), i.e., so that any set
of l servers can together create the signature, but smaller sets of servers can-
not. The signature scheme must be strongly unforgeable [19], meaning that an
adversary, given a VRV, is not able to find other valid VRVs. This is necessary
because otherwise a faulty client would be able to generate variations of a valid
VRV until finding one from which to select an access set that causes an error
(see below).

5.2 Choosing an Access Set

As motivated above: (i) the VRV determines a sequence of valid access sets; and
(ii) a client puzzle must make it exponentially harder to use later access sets
in the sequence than earlier ones. In addition, it is desirable for our protocol to
satisfy the following requirements:

– Each VRV must determine only a single valid sequence of access sets. This
is to prevent a faulty client from choosing a preferred sequence.

– The puzzle solutions must be easy to verify, so that verification costs do not
limit the scalability of the system in terms of the number of requests.

– There must be a solution to each puzzle. Otherwise a non-faulty client might
be unable to use any access set.

– No server can know the solution to the puzzle beforehand due to the Byzan-
tine fault model. Otherwise, a faulty client could avoid the exponential work
by asking a faulty server for the solution.

In our protocol, the sequence of access sets is determined as follows. Let v be
a VRV, let g be a hash function modeled as a random oracle [20], and let ac-
cess set be a deterministic operation that, given a seed value, selects an access
set of the specified size from the set of all access sets of that size in a uniform
fashion. Let the first seed, s1, be g(v), and the i’th seed, si, be g(si−1). Then the
i’th access set is access set(si). Our technical report [9] contains an example
specification of access set.

In order to use the i ’th access set, the client must solve a puzzle of suitable
difficulty. This puzzle must be non-interactive [21] to avoid additional rounds of
communication. There are many suitable candidate puzzle functions [21].
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5.3 Server Verification

Upon receiving a write request for the i ’th access set, each non-faulty server
in the chosen access set must verify that it is a member of the access set; for
a repair request it must verify that the relevant votes are from servers in the
access set of the read operation that gave rise to the repair. In addition, in either
case, before accepting the value, each server must verify that the VRV is valid,
that the access set corresponds to the i ’th access set of the sequence, and that
the client has provided a valid solution to a puzzle of the appropriate difficulty
level to use the i ’th access set.

While the client can obtain additional access sets from the VRV, each access set
used is treated as a different operation by servers as stated in Section 3.1; e.g., a
write operation using one access set, and then using another access set, is treated
as two different writes,3 so that a faulty client cannot “accumulate” more than
awt servers for its operation through the use of multiple write access sets.

5.4 Background Propagation

As described above, servers work to propagate the values of established writes to
each other in the background. Our main contribution in this area is our analysis
of the threshold number of servers that must propagate a value for it to be ac-
cepted by another server. While related Byzantine diffusion protocols (e.g., [22])
use the number b+1, we require a larger number because opaque quorum systems
allow that some non-faulty servers may accept conflicting values. We assume an
appropriate propagation algorithm (e.g., a variant of an epidemic algorithm [23]
such as [22]). At a high level, a non-faulty server has two responsibilities. First,
having accepted a write value and returned a response to the client, it periodi-
cally informs other servers that it has accepted the value. Second, if it has not
yet accepted a value upon learning that a threshold number, p, of servers have
accepted the value, it accepts the value. Faulty servers are all assumed to have
access to any conflicting value directly without propagation, so we assume no
additional constraints on their behavior.

Lemma 1. Let n < 2qwt − 2b and p = n − qwt + b + 1. Then an established
value will be accepted and propagated by at least p non-faulty servers, and no
conflicting value can be propagated by p servers (faulty or non-faulty).

For example, if qwt = n− b and n > 4b we set p = 2b + 1. Since the established
value will be accepted by at least p non-faulty servers, it will propagate. No
conflicting value will propagate.

If the conditions of Lemma 1 do not hold, we must allow for some probability
of error during propagation. We set p so that it is between the expectations
of the minimum number of non-faulty servers that accept an established write
(PCorrect), and the maximum number of servers that propagate a conflicting
value (PConflicting).
3 Typically, a Byzantine-fault-tolerant write protocol must already be resilient to par-

tial writes, which is how these writes using different access sets might appear to the
service.
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Lemma 2. PO-Consistency ⇒ E [PCorrect] > E [PConflicting].

Lemma 2 shows that we can set p as described for any system in which PO-
Consistency holds.

6 Evaluation

In this section, we analyze error probabilities for concrete system sizes. In addi-
tion to validating our results from Section 4, this shows that an access restriction
protocol like that of Section 5 can provide significant advantages in terms of
worst-case error probabilities.
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Fig. 2. Number of servers required to achieve given calculated worst-case error proba-
bility

Figure 2 plots the total number of nodes required to achieve a given calcu-
lated error probability for two configurations that tolerate faulty clients where
qwt = qrd = n− b: the restricted configuration (ard = qrd, awt = qwt) and the un-
restricted configuration (ard = n, awt = n). Since the unrestricted configuration
(Figure 2(b)) does not require the access-restriction protocol of Section 5, yet
yields better maximum ratios of b to n than the other configurations listed in
Table 2 in which qwt = awt− b or qrd = ard− b from Section 4.3, we do not eval-
uate the error probabilities for those configurations here. In all cases, the error
probabilities are worst-case in that they reflect the situation in which all b nodes
are in fact faulty. For each configuration, we provide plots for different ratios of
n to b, ranging from the maximum b for a given configuration, to n = 5b+1, as a
comparison with strict opaque quorum systems. Our technical report [9] provides
details of our calculations, as well as calculations for additional configurations.

In the figure, we see that to decrease the worst-case error probability, we can
either keep the same function of b in terms of n while increasing n, or hold n fixed
while decreasing the number of faults the system can tolerate. In addition, we see
that configurations that tolerate a larger b also provide better error probabilities
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for a given b. Overall, we find that our constructions can tolerate significantly
more than b = n/5 faulty servers, while providing error probabilities in the range
of 10−2 to 10−4 for systems with fewer than 50 servers to hundreds of servers.
Coupled with the dissemination of correct values between servers (off the critical
path), as described in Section 5.4, the error probability decreases between writes.

7 Conclusion

First, have presented probabilistic opaque quorum systems (POQS), a new type
of opaque quorum system that we have shown can tolerate up to n/3.15 Byzan-
tine servers (compared with n/5 Byzantine servers for strict opaque quorum sys-
tems) with high probability, while preserving the properties that make opaque
quorums useful for optimistic Byzantine-fault-tolerant service protocols. Second,
we have presented an optional, novel access-restriction protocol for POQS that
provides the ability for servers to constrain clients so that they use randomly
selected access sets for operations. With POQS, we expect to create probabilistic
optimistic Byzantine fault-tolerant service protocols that tolerate substantially
more faults than current optimistic protocols. While strict opaque quorums sys-
tems may be more appropriate for smaller systems that require no chance of
error, a POQS can provide increased fault tolerance for a given number of nodes,
with a worst-case error probability that is bounded and that decreases as the
system scales.
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Abstract. We examine the problem of detecting nested temporal pred-
icates given the execution trace of a distributed program. We present
a technique that allows efficient detection of a reasonably large class of
predicates which we call the Basic Temporal Logic or BTL. Examples
of valid BTL predicates are nested temporal predicates based on local
variables with arbitrary negations, disjunctions, conjunctions and the
possibly (EF or ♦) and invariant(AG or �) temporal operators. We in-
troduce the concept of a basis, a compact representation of all global
cuts which satisfy the predicate. We present an algorithm to compute
a basis of a computation given any BTL predicate and prove that its
time complexity is polynomial with respect to the number of processes
and events in the trace although it is not polynomial in the size of the
formula. We do not know of any other technique which detects a simi-
lar class of predicates with a time complexity that is polynomial in the
number of processes and events in the system. We have implemented a
predicate detection toolkit based on our algorithm that accepts offline
traces from any distributed program.

1 Introduction

In large distributed programs it is often desirable to have a formal guarantee
that the program output is correct. One approach is to model check the entire
program with respect to the given specification. This is impractical even for most
moderately complex programs. For many applications, predicate detection offers
a simple and efficient alternative over model checking the entire program. Pred-
icate detection involves verifying the execution trace of a distributed program
with respect to a given property (for example, violation of mutual exclusion).
The correctness properties or the predicates, which enable us to formally define
a correct execution, can have temporal implications.

In scientific computing, it may be vital to verify that the result of a computa-
tion was valid, and if it was invalid due to a rare ‘chance’ bug, the program can
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be re-executed. Predicate detection provides a formal guarantee on the validity
of the computation (assuming that the specifications are correct). If the spec-
ifications can be expressed in a supported logic then verification of the traces
requires a comparatively insignificant overhead (polynomial in the number of
processes and events) using the algorithm discussed in this paper. Note that this
approach is obviously not useful for critical real time applications where it is
essential that all runs be correct.

A distributed computation, i.e., the execution trace of a distributed program,
can either be modeled as a total order, or as a partial order on the set of events in
the computation. Representing the computation as a total order can mask some
of the bugs in other possible consistent interleavings. A partial order, in contrast,
captures all the possible causally consistent interleavings. In this paper we use
a partial order representation based on Lamport’s happened before relation [1].

The drawback of using a partial order model is that the number of global
states of the computation is exponential in the number of processes. This makes
predicate detection a hard problem in general [2,3]. A number of strategies like
symbolic representation of states and partial order reduction have been explored
to tackle the state explosion problem [4,5,6,7,8,9,10].

In this paper, we present a technique to efficiently detect all temporal pred-
icates that can be expressed in, what we call, Basic Temporal Logic or BTL.
An example of a valid BTL predicate would be a property based on local predi-
cates and arbitrarily placed negations, disjunctions and conjunctions along with
the possibly(♦) and invariant(�) temporal operators (the EF and AG operators
defined in [11]).

Our algorithm is based on computing a basis which is a compact representa-
tion of the subset of the computational lattice containing exactly those global
states (or cuts) that satisfy the predicate. In general, it is hard to efficiently com-
pute a basis for an arbitrary predicate. We utilize the fact that the set of global
states of a computation forms a distributive lattice and restrict the predicates
to BTL formulas. The basis introduced in this paper is a union of smaller sets
of cuts called semiregular structures.

Note that, without any restrictions on the predicate formula, predicate detec-
tion is NP-complete with respect to the formula size, and for arbitrary predicates
the time complexity could be exponential in the formula size. However, if the
input formula is in a ‘DNF like’ form after pushing in negations, our technique
detects it in polynomial time with respect to the formula size.

To summarize, this paper makes the following contributions:

– We introduce the concept of a basis and discuss representations of stable,
regular and semiregular predicates.

– We present an algorithm to efficiently compute the basis for BTL predicates.
This enables detection of BTL predicates in O(2k.|E|.n) time, where k is the
number of operators in the predicate, E is the set of events in the com-
putation and n is the number of processes. To the best of our knowledge,
there is no other known technique that can detect nested temporal predicates
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containing disjunctions or negations with a time complexity that is polyno-
mial in n and |E|.

– We discuss the implementation of our algorithm and compare it with existing
approaches like using SPIN [12] and POTA [13] to detect predicates in dis-
tributed programs. Our tool, BTV (Basis based Trace Verifier), can analyze
traces in a compatible format generated by any distributed program.

Note that currently known approaches, like slicing [14] or model checking
of traces, for detecting a similar class of predicates, are inefficient and require
exponential time with respect to the number of processes.

The remainder of the paper is organized as follows: Section 2 discusses related
work and section 3 explains in detail, the model and notation used in the paper.
Section 4 introduces the concept of a basis of a computation with respect to a
predicate and presents the main algorithm. In section 5, we present the com-
plexity analysis of our algorithm. We follow that with an example and a short
description of our implementation of a predicate detection toolkit based on the
algorithm in this paper.

2 Related Work

A number of approaches for checking computations using temporal logic have
been published. Temporal Rover [15], MaC [16] and JPaX [17] are some of the
available tools. Many of the tools are based on total ordering of events and hence
cannot be directly compared to our approach. These tools can miss potential
bugs which would be detected by partial order representations. JMPaX [18] is
based on a partial order model and supports temporal properties but its time
complexity is exponential in the number of processes in the computation.

Another available option to verify computation traces is to use a model check-
ing tool like SPIN [12,19]. The computation trace needs to be converted to the
SPIN input computation and verification takes exponential time in the number
of processes.

Computational slicing [14] based approaches can efficiently detect regular
predicates. POTA [13] is such a partial order based tool which uses computa-
tional slicing to detect predicates. POTA guarantees polynomial time complexity
only if the predicate can be expressed in a subset of CTL [11] called Regular CTL
or RCTL [20]. Disjunctions and negations are not allowed in RCTL. If POTA
is used with a logic that allows disjunctions or negations (like BTL), it uses a
model checking algorithm to explore the reduced state space. Hence the asymp-
totic time complexity using POTA is exponential in the number of processes
when the predicate contains disjunctions. Table 1 compares the time complexi-
ties of SPIN, POTA and our algorithms implemented in the BTV tool.

3 Model and Notation

This paper uses basic lattice theory constructs that are formally defined in the
technical report [21]. We assume a loosely coupled, message-passing,
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Table 1. Time complexities (n = number of processes)

SPIN POTA BTV
RCTL exponential in n polynomial in n polynomial in n
BTL exponential in n exponential in n polynomial in n

asynchronous system model. A distributed program consists of n sequential pro-
grams P1, P2, . . . , Pn. A computation is a single execution of such a program.
A distributed computation (〈E,→〉) is modeled as a partial order on the set
of events E, based on the happened before relation (→) [1]. The size of the
computation is the total number of events, |E|, in the computation.

Definition 1. (Consistent Cut) A consistent cut C is a set of events in the
computation which satisfies the following property: if an event e is contained in
the set C, then all events in the computation that happened before e are contained
in C.
∀e1, e2 ∈ E : (e2 ∈ C) ∧ (e1 → e2)⇒ e1 ∈ C.

In figure 1(i) the set {e1, f1} is a consistent cut, while {e1, e2} is not. In the
following discussion, we mean ‘consistent cut’ whenever we simply say ‘cut’.
For notational convenience, we simply mention the maximal elements on each
process that are elements of the cut to represent that cut. For example, the
cut {e1, e2, f1, f2, f3} is written as {e2, f3}. The set of all consistent cuts in a
computation is denoted by C. This set, C, forms a distributive lattice [22] (also
called the computational lattice) under the less than equal to relation defined as
follows.

Definition 2. Cut C1 is less than or equal to cut C2 if and only if, C1 ⊆ C2.

A cut C, in a computation E, satisfies a predicate P if the predicate is true in
the global state represented by the cut. This is denoted by (C, E) |= P or simply
C |= P where the context is clear.

The join of two cuts is simply defined as their union, and the meet of two
cuts corresponds to the intersection of those two cuts.

Figure 1 shows a computation and the distributive lattice formed by all the
consistent cuts in the computation. Birkhoff’s representation theorem [22] states
that a distributive lattice can be completely characterized by the set of its join
irreducible elements. Join irreducibles are elements of the lattice that cannot
be expressed as the join of any two elements.1 For example, in figure 1(ii),
cuts {}, {f1}, {f2}, {f3}, {e1, f1}, {e2, f1}, {e3, f1} are join irreducible. The cut,
{e1, f2} is not join irreducible because it can be expressed as the join of cuts
{f2} and {e1, f1}.

The initial cut is the least cut, i.e., the empty set {} and the final cut is the
greatest cut, i.e, the set of all events E, in the computational lattice.

1 Commonly, the bottom element is not considered to be a join irreducible element.
However, in this paper, for notational convenience, we include the bottom element
(the initial cut {}) in the set of join irreducible elements.
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f

Fig. 1. A computation and the lattice of its consistent cuts

Detecting a predicate in a distributed computation is determining if the initial
cut of the computation satisfies the predicate.

Definition 3. (Join-closed, Meet-closed and Regular Predicates) A predicate P
is join-closed if all cuts that satisfy the predicate are closed under union.
i.e., (C1 |= P ∧C2 |= P )⇒ (C1 ∪C2) |= P .

Similarly a predicate P is meet-closed if all the cuts that satisfy the predicate
are closed under intersection. A predicate is regular if it is join-closed and meet-
closed.

If cuts C1 and C2 satisfy a regular predicate, then by definition, C1 ∪ C2 and
C1 ∩C2 also satisfy that predicate. For example, the predicate “No process has
the token and the token in not in transit” is regular. All conjunctions of local
predicates are regular.

A predicate is stable if, once it becomes true, it remains true [23]. A stable
predicate is always join-closed.

Definition 4. A predicate P is stable, if ∀C1, C2 ∈ C : C1 |= P ∧ C1 ≤ C2 ⇒
C2 |= P .

Some examples of stable predicates are loss of a token, deadlocks, and termina-
tion.

Figure 2 depicts examples of the cuts satisfied by meet-closed, join-closed,
regular and stable predicates.

4 Basis of a Computation

We now introduce the concept of a basis of a computation. Informally, a basis is
an exact compact representation of the set of cuts which satisfy the predicate.

Definition 5. (Basis) Given a computational lattice C, corresponding to a com-
putation E, and a predicate P , a subset S[P ] of C is a basis of P if
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Fig. 2. Predicates

1. (Compactness) The size of S[P ] is polynomial in the size of computation that
generates C.

2. (Efficient Membership) Given any cut (global state) C ∈ C, there exists a
polynomial time algorithm that takes S[P ], E and C as inputs and deter-
mines if (C, E) |= P .

We denote the basis with respect to a predicate P as S[P ]. Given a predicate
P , a cut C belongs to a basis S[P ], if C satisfies that predicate. i.e., C ∈ S[P ]⇔
C |= P .

Note that direct enumeration of all the states satisfied by a predicate is, in
general, not a basis since determining if a cut is a member of that set could take
exponential time.

For a simple example of an basis, consider a class of predicates, such that
the cuts satisfying a predicate in that class form an ideal in the computational
lattice. (An ideal is a sublattice that contains every cut that is less than the
maximal cut in the sublattice.) A basis, for such a class of predicates, is just
the maximal cut of the ideal. It can be efficiently determined if a cut C ∈ Cp by
checking if the cut is less than or equal to the maximal cut.

Computational slicing, introduced in [14], is a technique to compute an effi-
cient predicate structure for regular predicates.

Definition 6. (Slice) The slice slice[P ] of a computation with respect to a predi-
cate P is the poset of the join irreducible consistent cuts representing the smallest
sublattice that contains all consistent cuts satisfying P .

Though the number of consistent cuts satisfying the predicate may be large, the
slice of a predicate can be efficiently represented by the set of the join irreducible
cuts in the slice. Slicing is the operation of computing the slice for the given
predicate.



426 V.A. Ogale and V.K. Garg

When the predicate is regular, the computed slice represents exactly those
cuts that satisfy the predicate. Given the slice with respect to a predicate, it is
possible to efficiently detect if a cut satisfies that predicate. Therefore, a slice
is an efficient basis for regular predicates. However, using slicing for predicate
detection of non-regular predicates can take exponential time.

In the remainder of this paper, we explore a technique to compute a basis for
a more general class of predicates, that we call BTL, which can have arbitrary
negations, disjunctions, conjunctions and the temporal possibly(♦) operator.
Since a BTL predicate can be non-regular, a slice of a BTL predicate is not a
valid basis. One naive approach to compute a predicate structure is to maintain
a set of slices instead of a single slice. Though this is polynomial in the number
of processes n, it results in a large number of slices (O(n2k

)), where k is the
size of the predicate. In this paper, we introduce a semiregular structure which
can efficiently represent a more general class than regular predicates. A BTL
predicate can be represented by using a set of semiregular structures.

����� ���	 
�� �� c2

����� ���	 
�� �� c1

������ ���������

c2

c1

Fig. 3. Representing stable predicates

We start off by looking at the representation of a stable predicate. Figure 3
shows an example of a stable predicate. The set of states satisfying a stable pred-
icate can be considered to be the union of a set of filters of the computational lat-
tice. Thus, a stable predicate can be represented by the set of minimal cuts that
satisfy the predicate.

Another representation is to identify a set of ideals, I = {I1, I2, . . .} of the
computational lattice such that all the cuts satisfying the stable predicate are
contained in the complement of

⋃
I∈I I. The stable predicate in figure 3 can

be represented by two ideals as seen in the figure. We use the set of ideals
representation in this paper for computational efficiency while dealing with BTL
predicates.
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Definition 7. (Stable Structure) Given a stable predicate P and the computa-
tional lattice C, a stable structure is the set of ideals I such that a cut satisfies
P iff it does not belong to any of the ideals in I. Therefore, C |= P ⇔ ¬(C ∈⋃

I∈I I).

A cut C is said to belong to the stable structure if C does not belong to
⋃

I∈I I.
Note that, any ideal is uniquely and efficiently represented by its maximal cut. In
the remainder of this paper we use I to represent a set of ideals representing the
stable predicate and simply maxCuts to denote the set containing the maximal
cut from each ideal in I.

Note that, this representation is not a basis since, the set of ideals could
be very large in general. However, we see later, that this leads to an efficient
representation when the predicate is expressed in BTL.

4.1 Semiregular Predicates and Structures

The conjunction of a stable predicate and a regular predicate is called a semireg-
ular predicate and is more expressive than either of them.

Definition 8. P is a semiregular predicate if it can be expressed as a conjunc-
tion of a regular predicate with a stable predicate.

We now list some properties of semiregular predicates.

1. All regular predicates and stable predicates are semiregular. This follows
from the definition of semiregular predicates since true is a stable and regular
predicate.

2. Since regular and stable predicates are join-closed, it follows that their con-
junction, a semiregular predicate, is also join-closed. However not all join-
closed predicates are semiregular. Figure 4 shows a join-closed predicate that
is not semiregular.

3. Semiregular predicates are closed under conjunction, i.e., if P and Q are
semiregular then P ∧Q is semiregular.

4. If P is a semiregular predicate then ♦P and �P are semiregular. If P is
semiregular, P has a unique maximal cut, say Cmax and ♦P is an ideal of
the lattice that contains all cuts less than or equal to Cmax.

We now present an alternative characterization of a semiregular predicate that
offers a different insight into the structure of the cuts satisfying such a predicate.

Lemma 1. Predicate P is semiregular iff

– P is join-closed, i.e, C1 |= P ∧ C2 |= B ⇒ (C1 ∪C2) |= P and
– The meet of two cuts that satisfy P is C, and C does not satisfy P , then

any cut smaller than C does not satisfy P . i.e., (C1 ∩ C2) |= P ∨ (∀C′ ≤
(C1 ∩ C2) : ¬(C′ |= P )).

A few examples of semiregular predicates are listed below.
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Predicate is true

{}

{e3, f2}

{f2}

{f3}

{f1}

{e1, f1}

{e2, f1}

{e3, f1}

{e3, f3}

{e2, f3}

{e1, f3}

{e1, f2}

{e2, f2}

Fig. 4. A join-closed predicate may not be semiregular

– All processes are never red concurrently at any future state and process 0
has the token. That is P = ¬♦(

∧
redi) ∧ token0.

– At least one process is beyond phase k (stable) and all the processes are red.

We now define a representation for semiregular predicates.

Definition 9. (Semiregular Structure) A semiregular structure, g, is represented
as a tuple (〈slice, I〉) consisting of a slice and a stable structure, such that the pred-
icate is true in exactly those cuts that belong to the intersection of the slice and the
stable structure.

Hence C ∈ g ⇔ (C ∈ slice) ∧ ¬(C ∈
⋃

I∈I I).

Note that, a cut is contained in a semiregular structure if it belongs to the slice
and the stable structure in the semiregular structure. The maximal cut in a
semiregular structure is the maximal cut in the slice if the semiregular structure
is nonempty.

We see later that any BTL predicate can be expressed as a basis consisting of
a union of semiregular structures. A semiregular structure enables us to easily
handle predicates of the form ¬♦P . Such a predicate can be represented by
n slices or by a single stable structure or a semiregular structure. We use this
in our algorithms and prove that it is possible to compute an efficient basis
representation for any BTL predicate.

4.2 Logic Model (BTL)

In this section formally define Basic Temporal Logic (BTL), such that any pred-
icate expressible in BTL can be efficiently detected using the algorithm pre-
sented later in this paper. The atomic propositions in BTL are local predicates,
i.e., properties that depend on a single process in the computation. Local predi-
cates and their negations are regular predicates. Let AP be the set of all atomic
propositions. Given the set of all consistent cuts, C, of a computation, a labeling
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function λ : C → 2AP assigns to each consistent cut, the set of predicates from
AP that hold in it. The operators ∧ and ∨ represent the boolean conjunction
and disjunction operators as usual, ¬ represent the negation of a predicate and
we define the possibly (♦) temporal operator (called EF in [4]).

Definition 10. If C is the set of all consistent cuts of the computation, then
♦P holds at consistent cut C, if and only if, there exists C′ ∈ C such that P is
true at C′ and C ⊆ C′.

The formal BTL syntax is given below.

Definition 11. A predicate in BTL is defined recursively as follows:

1. ∀l ∈ AP , l is a BTL predicate
2. If P and Q are BTL predicates then P ∨ Q, P ∧ Q, ♦P and ¬P are BTL

predicates

We formally define the semantics of BTL.

– (C, E, λ) |= l ⇔ l ∈ λ(C) for an atomic proposition l
– (C, E, λ) |= P ∧Q⇔ C |= P and C |= Q
– (C, E, λ) |= P ∨Q⇔ C |= P or C |= Q
– (C, E, λ) |= ♦P ⇔ ∃C′ ∈ C : (C ⊆ C′ and C′ |= P )
– (C, E, λ) |= ¬P ⇔ ¬(C |= P )

We use (C, E) |= P or simply C |= P in the rest of the discussion when E
and λ are obvious from the context. Note that, the AG operator in CTL [4] can
be written as ¬♦¬ in BTL.

4.3 Algorithm

We present an algorithm to compute a basis for any predicate expressed in BTL.
The computed basis consists of a set of semiregular structures such that a cut
belongs to the basis if it belongs to any semiregular structure in that set.

Definition 12. Given a BTL predicate P , we define a representation S of the
predicate that consists of a set of semiregular structures such that C |= P ⇔
(∃g ∈ S : C ∈ g).

We assume that the input predicate has negations pushed in to the local predi-
cates or the ♦ operators. In the following discussion, we often treat ¬♦ as single
operator. We see later that our algorithm returns an efficient predicate structure
which allows polynomial time detection of the predicate.

Each semiregular structure, g, is represented as a tuple 〈slice, maxCuts〉
where g.slice is the slice in g and g.maxCuts is the set of cuts correspond-
ing to the ideals representing the stable structure. The use of ideals instead of
filters is very important and results in the 2k bound (see theorem 2) on the size
of the stable structure. (The stable structures calculated by the algorithm could
require nk filters to represent it.)
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/*The input predicate Pin has all negations pushed
- inside to the ♦ operator or to the atomic propositions */
/* each semiregular structure is represented as a tuple 〈slice, maxCuts〉
- where maxCuts is the set of maximal cuts
- of the ideals I representing the stable structure */

function getBasis(Predicate Pin)
output: S[Pin], a set of semiregular structures

Case 1. (Base case: local predicates) : Pin = l or Pin = ¬l
S[Pin] := {〈slice(P ), {}〉}

Case 2. Pin = P ∨Q
S[P ] := getBasis(P ); S[Q] = getBasis(Q);
S[Pin] := {S[P ] ∪ S[Q]};

Case 3. Pin = P ∧Q
S[P ] := getBasis(P ); S[Q] = getBasis(Q);
S[Pin] :=

⋃
gp∈S[P ],gq∈S[Q]{(〈gp.slice ∧ gq.slice, gp.maxCuts ∪ gq.maxCuts〉)};

Case 4. Pin = ♦P
S[P ] := getBasis(P );
S[Pin] :=

⋃
g∈S[P ]{〈♦(g.slice), {}〉};

Case 5. Pin = ¬♦P
S[P ] := getBasis(P );
/* sliceorig is the original computation */
S[Pin] := {〈sliceorig,∪g∈S[P ]{maxCutIn(g.slice)}〉};

Remove all empty semiregular structures from S[Pin];

return S[Pin]

Fig. 5. Computing a basis

Figure 5 outlines the main algorithm to compute a basis of the computation
for any BTL predicate. For predicate detection, we simply check if the initial cut
of the computation is contained in the computed basis. To determine if a cut is
contained within the basis, we need to examine if it belongs to any semiregular
structure in the basis. A basis is nonempty if the predicate is true in any con-
sistent cut of the computation. Note that, in case we need to check whether a
predicate P is true at any cut in the computation (and not just the initial cut),
we can either apply our algorithm on the predicate ♦P or alternatively apply
the algorithm on P and check if the returned basis is nonempty.

The algorithm computes the basis by recursively processing the predicate
inside out.

– The base case is a local predicate. Note that, the negation of a local predicate
is also local. We know that for each atomic proposition li, slice[li] can be
computed in polynomial time. Efficient algorithms to compute slice[li] (or
slice[¬li]) when the atomic propositions are local predicates, can be found
in [14]. The basis of a local predicate has a single semiregular structure that
consists of a slice and an empty set of ideals. (A local predicate and its
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negation are regular predicates and hence a slice is an efficient basis for such
predicates).

– The second case handles disjunctions. If the input predicate Pin is of the
form P ∨ Q the basis is the structure containing all the cuts in S[P ] and
S[Q] and is obtained by computing the union of the sets S[P ] and S[Q].

– When the input predicate is of the form P ∧ Q, the resultant basis is the
pairwise intersection of each semiregular structure in S[P ] and S[Q]. Each
semiregular structure consists of a slice and a stable structure. The inter-
section of two semiregular structures, say gp and gq, is the tuple 〈gp.slice ∩
gq.slice, gp.stable structure ∩ gq.stable structure〉 . The grafting algorithm
described in [14] describes a technique to compute the intersection of two
slices. Since we use ideals to represent stable structures, the intersection of
the stable structures is represented by the union of the sets gp.maxCuts and
gq.maxCuts.

– The fourth case in the algorithm handles predicates of the form Pin = ♦P .
S[P ] is the union of a set of semiregular structures. The resultant basis is
obtained by computing ♦g for each g in S[P ] and taking the union. Note
that ♦g is equivalent to ♦(g.slice) and the algorithm for EF of a regular
predicate in [20] can be used to determine ♦(g.slice).

– Since ¬♦P is stable, the basis corresponding to ¬♦P contains a single
semiregular structure g. The slice in this semiregular structure is the origi-
nal computation while the ideals are represented by the maximal cuts of the
slice in each of the semiregular structures that belong to S[P ]. In this case,
it becomes clear that using the ‘set of ideals representation’ for stable struc-
tures is more efficient. The number of ideals is guaranteed to be k if S[P ]
had k semiregular structures. Using another representation like maintaining
a set of filters would have resulted in expensive operations since the number
of filters could be nk in this case.

After each step, the algorithm checks if any of the semiregular structures are
empty and discards the empty semiregular structures. A semiregular structure
is empty, if the maximal element of the slice is less than or equal to each cut in
g.maxCuts.

It can be seen that the structure returned by our algorithm contains exactly
those cuts which satisfy the input predicate. We show in section 5 that the
number of semiregular structures and the number of ideals required to represent
the stable structures returned by our algorithm is polynomial in n. This enables
us to check whether a cut belongs to the structure in polynomial time and hence
the structure is efficient.

5 Complexity Analysis

The time taken by the algorithm in figure 5 depends on the number of ideals
representing the stable structure in each semiregular structure and the total
number of semiregular structures in the resultant basis (the size of the basis).
The proofs for most the results in this section are presented in the technical
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report [21] due to space constraints. We first present a result on the bound on
the size of computed basis.

Theorem 1. The basis S[P ] computed by the algorithm in Figure 5 for a BTL
predicate P with k operators has at most 2k semiregular structures.

This leads to the following theorem.

Theorem 2. The total number of ideals |I| in the basis computed by the algo-
rithm in Figure 5 for a BTL predicate P is at most 2k.

The time required to compute the conjunction of two slices with respect to ∧ is
O(|E|n) [14]. It takes O(|E|n) time to compute the slice with respect to the ♦
operator.

Theorem 3. The time complexity of the algorithm in figure 5 is polynomial in
the number of events (|E|) and the number of processes (n) in the computation.

The algorithm simplifies the predicate by computing the basis one operator at
a time. Hence, if there are k operators in all, it requires k steps to compute the
basis for the entire predicate.

Theorem 1 states that after the lth operator is processed at most 2l new
semiregular structures are generated. The generation of each semiregular struc-
ture takes less than or equal to |E|n time. The time required to generate all the
semiregular structures is 2l.|E|n.

The algorithm compares each ideal to the maximal cut of a slice to check
if the semiregular structure is empty. There are at most 2l semiregular struc-
tures (theorem 1) which implies that there are no more than 2l slices (since each
semiregular structure contains exactly one slice). The total number of ideals is
less than or equal to 2l (theorem 2). Since comparing two cuts requires O(n)
time, it takes (2l + 2l)n time to check which semiregular structures are empty.
Hence the time required to process the lth operator is 2l.(|E|n) + n(2l+1) , i.e,
2l+1.n.(2|E|+ 1))

Therefore the total time required is Σk
l=12

l+1.n.(2|E|+ 1) = O(2k|E|n).
If the input predicate is in a ‘DNF-like’ form then predicate detection is even

more efficient (polynomial in k).

Theorem 4. If the input predicate has conjunctions only over regular predicates,
then the size of the predicate structure and the total number of ideals |I|, is at
most k.

Since conjunctions are allowed over regular predicates, the resulting predicate
is regular and can be represented by exactly one semiregular predicate with no
ideals.

6 Implementation

We have implemented a toolkit to verify computation traces generated by dis-
tributed programs. This toolkit accepts offline execution traces as its input.
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We used a Java implementation of the distributed dining philosophers algo-
rithm from [24] and checked for errors in the system. We injected faults in the
traces and verified the traces using, both, our toolkit and POTA [13]. Note that,
for predicates containing disjunctions, POTA reduces the computation size and
uses SPIN [19] to check for predicate violations. The POTA-SPIN combination
performs well in some runs (when the slice generated is lean or empty) but
it runs out of memory when the number of processes is increased, especially
when configured to list all predicate violations. BTV, as expected, scales well
and we could use it to verify computations with large number of processes. Our
implementation (including the Java source code) can be downloaded from our
laboratory website. Note that the toolkit relies on offline traces and hence it is
not necessary for the program that is being tested to be implemented in Java.
It can be used with any arbitrary distributed program that outputs a compati-
ble trace. The toolkit includes a utility to convert traces from the POTA trace
format.

7 Conclusions

We conclude that it is possible to efficiently detect nested temporal predicates
containing disjunctions and negations (along with conjunctions and ♦). We have
introduced the notion of a semiregular structure and have presented techniques
to efficiently compute an efficient basis given any BTL predicate. This has many
practical applications which require verification of traces. Apart from ensuring
the validity of runs, the technique discussed in this paper is also useful in dis-
tributed program debuggers. Since the computed basis contains exactly all states
where the predicate holds, we can use it to pinpoint the faults in the program.
One useful extension of this work would be an online version of the algorithm
which could be used to control distributed programs by changing their behavior
at runtime if faults are detected.
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Abstract. We consider the problem of minimizing the number of ADMs
in optical networks. All previous theoretical studies of this problem dealt
with the off-line case, where all the lightpaths are given in advance. In a
real-life situation, the requests (lightpaths) arrive at the network on-line,
and we have to assign them wavelengths so as to minimize the switching
cost. This study is thus of great importance in the theory of optical
networks. We present an on-line algorithm for the problem, and show
its competitive ratio to be 7

4
. We show that this result is best possible

in general. Moreover, we show that even for the ring topology network
there is no on-line algorithm with competitive ratio better than 7

4
. We

show that on path topology the competitive ratio of the algorithm is
3
2
. This is optimal for this topology. The lower bound on ring topology

does not hold when the ring is of bounded size. We analyze the triangle
topology and show a tight bound of 5

3
for it. The analyzes of the upper

bounds, as well as those for the lower bounds, are all using a variety of
proof techniques, which are of interest by their own, and which might
prove helpful in future research on the topic.

1 Introduction

1.1 Background

Optical wavelength-division multiplexing (WDM) is today the most promising
technology that enables us to deal with the enormous growth of traffic in commu-
nication networks, like the Internet. A communication between a pair of nodes is
done via a lightpath, which is assigned a certain wavelength. In graph-theoretic
terms, a lightpath is a simple path in the network, with a color assigned to it.

Given a WDM network G = (V, E) comprising optical nodes and a set of full-
duplex lightpaths P = {p1, p2, ..., pN} of G, the wavelength assignment (WLA)
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task is to assign a wavelength to each lightpath pi. Most of the studies in optical
networks dealt with the issue of assigning colors to lightpaths, so that every two
lightpaths that share an edge get different colors.

When the various parameters comprising the switching mechanism in these
networks became clearer, the focus of studies shifted, and today a large portion
of the studies concentrates on the total hardware cost. The key point here is that
each lightpath uses two Add-Drop Multiplexers (ADMs), one at each endpoint. If
two adjacent lightpaths, i.e. lightpaths sharing a common endpoint, are assigned
the same wavelength, then they can use the same ADM. Because ADMs are
designed to be used mainly in ring and path networks in which the degree af a
node is at most two, an ADM may be shared by at most two lightpaths. The
total cost considered is the total number of ADMs. A more detailed technical
explanation can be found in [GLS98].

Lightpaths sharing ADMs in a common endpoint can be thought as concate-
nated, so that they form longer paths or cycles. These paths/cycles do not use
any edge e ∈ E twice, for otherwise they cannot use the same wavelength which
is a necessary condition to share ADMs.

1.2 Previous Work

Minimizing the number of ADMs in optical networks is a main research topic
in recent studies. The problem was introduced in [GLS98] for the ring topology.
An approximation algorithm for ring topology with approximation ratio of 3/2
was presented in [CW02], and was improved in [SZ04, EL04] to 10/7 + ε and
10/7, respectively. For general topology [EMZ02] describe an algorithm with
approximation ratio of 8/5. The same problem was studied in [CFW02] and an
algorithm with an approximation ratio of 3

2 + ε was presented. This algorithm
is further analyzed in [FSZ06b].

The problem of on-line path coloring is studied in earlier works, such as [LV98].
The problem studied in these works has a different objective function, namely
the number of colors.

All previous theoretical studies on the problem of minimizing the number of
switches dealt with the off-line case, where all the lightpaths are given in advance.
In a real-life situation, the requests (lightpaths) arrive at the network on-line,
and we have to assign them wavelengths so as to minimize the switching cost.
An on-line algorithm is said to be c-competitive if for any sequence of lightpaths,
the number of ADMs used is at most c times that used by the optimal offline
algorithm (see [BEY98]).

1.3 Our Contribution

We present an on-line algorithm with competitive ratio of 7
4 for any network

topology. We prove that no algorithm has a competitive ratio better than 7
4

even if the topology is a ring.
We show that the same algorithm has a competitive ratio of 3

2 in path topolo-
gies, and that this is also a lower bound for on-line algorithms in this topology.
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The lower bound on ring topology does not hold when the ring is of a bounded
size. We study the triangle topology, and show a tight bound of 5

3 for the com-
petitive ratio on this topology, using another algorithm.

The analyses of the upper bounds, as well as those for the lower bounds, use a
variety of proof techniques, which are of interest on their own, and which might
prove helpful in future research on the topic.

In Section 2 we describe the problem and some preliminary results. The al-
gorithm and its competitive analysis are presented in Section 3. In Section 4
we present lower bounds for the competitive ratio of the problem on general
topology, ring and path topologies. In Section 5 we present tight bounds for
triangle networks. We conclude with discussion and open problems in Section 6.
Some proofs are sketched in this Extended Abstract; for full details the reader
is referred to [SWZ07].

2 Preliminaries

An instance α of the problem is a pair α = (G, P ) where G = (V, E) is an
undirected graph and P is a set of simple paths in G. In an on-line instance,
the graph G is known in advance and the set P of paths is given on-line. In this
case we denote P = {p1, p2, ..., pN} where pi is the i-th path of the input and
Pi = {pj ∈ P |j ≤ i} consists of the first i paths of the input.

In this work we need a number of notions introduced in [FSZ06a].

– The paths p, p′ ∈ P are conflicting or overlapping if they have an edge in
common. This is denoted as p + p′. The graph of the relation + is called the
conflict graph of (G, P ).

– A proper coloring (or wavelength assignment) of P is a function w : P ,→ N,
such that w(p) = w(p′) whenever p + p′.

– A valid chain (resp. cycle) of α = (G, P ) is a path (resp.cycle) formed by the
concatenation of distinct paths pi0 , pi1 , ..., pik−1 ∈ P that do not go over the
same edge twice. Note that the paths of a valid chain (resp. cycle) constitute
an independent set of the conflict graph.

– A solution S of an instance α = (G, P ) is a set of valid chains and valid
cycles of P such that each p ∈ P appears in exactly one of these sets.

Note that w is a proper coloring if and only if for any color c ∈ N, w−1(c) is
an independent set in the conflict graph.

In the sequel we introduce the shareability graph, which together with the
conflict graph constitutes another (dual) representation of the instance α. In the
sequel, except one exception, we will use the dual representation of the problem.

– The shareability graph of an instance α = (G, P ), is the edge-labelled multi-
graph Gα = (P, Eα) such that there is an edge e = (p, q) labelled u in Eα if
and only if p + q, and u is a common endpoint of p and q in G.

– A valid chain (resp. cycle) of Gα is a simple path pi0 , pi1 , ..., pik−1 of Gα, such
that any two consecutive edges in the path (resp. cycle) have distinct labels
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and its node set is properly colorable with one color (in G), or in other words
constitutes an independent set of the conflict graph.

– The sharing graph of a solution S of an instance α = (G, P ), is the following
subgraph Gα,S = (P, ES) of Gα. Two lightpaths p, q ∈ P are connected with
an edge labelled u in ES if and only if they are consecutive in a chain or
cycle in the solution S, and their common endpoint is u ∈ V . We will usually
omit the index α and simply write GS . d(p) is the degree of node p in GS .

Example: Let α = (G, P ) be the instance in the left side of Figure 1. Its share-
ability graph Gα is the graph at midle. In this instance P = {a, b, c, d}, and it
constitutes the set of nodes of Gα. The edges together with their labels are Eα =
{(b, c, u), (a, c, w), (a, b, x), (a, d, x)}, because a and b can be joined in their com-
mon endpoint x, etc.. Note that, for instance (b, d, x) /∈ Eα, because although b
and d share a common endpoint x, they can not be concatenated, because they
have the edge (x, u) in common. The corresponding conflict graph is at the right
side of the figure. It has the same node set and one edge, namely (b, d). The paths
b, d ∈ P are conflicting because they have a common edge, i.e. (u, x).

u

wx

v

a
d

c
b

t

a

d

bc
u

w

x

x

a

d

bc

Fig. 1. A sample input

Note that the edges of the conflict graph are not in Eα. This immediately
follows from the definitions. Note also that, for any node v of Gα, the set of
labels of the edges adjacent to v is of size at most two.

Valid chains and cycles of Gα correspond to valid chains and cycles of the
instance α. In the above example the chain a, d which is the concatenation of
the paths a and d in the graph G, corresponds to the simple path a, d in Gα and
the cycle a, b, c which is a cycle formed by the concatenation of three paths in
G corresponds to the cycle a, b, c in Gα. Note that no two consecutive labels are
equal in this cycle. On the other hand the paths b, a, d can not be concatenated
to form a chain, because this would require the connection of a to both b and d
at node x. The corresponding path b, a, d in Gα is not a chain because the edges
(b, a) and (a, d) have the same label, namely x.

S = {(d, a, c), (b)} is a solution with two chains. The sharing graph of this
solution has two edges (d, a) and (a, c). Note that for a chain of size at most
two, the distinct labelling condition is satisfied vacuously, and the independent
set condition is satisfied because no edge of Gα can be an edge of the conflict
graph.

We define ∀i ∈ {0, 1, 2} , Di(S)
def
= {p ∈ P |d(p) = i} and di(S)

def
= |Di(S)|.
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Note that d0(S) + d1(S) + d2(S) = |P | = N.
An edge (p, q) ∈ ES with label u corresponds to a concatenation of two paths

with the same color at their common endpoint u. Therefore these two endpoints
can share an ADM operating at node u, thus saving one ADM. We conclude
that every edge of ES corresponds to a saving of one ADM. When no ADMs are
shared, each path needs two ADM’s, a total of 2N ADMs. Therefore the cost of
a solution S is

cost(S) = 2 |P | − |ES | = 2N − |ES | .

The objective is to find a solution S such that cost(S) is minimum, in other
words |ES | is maximum.

The following definitions and Lemma appeared in [FSZ06b], we repeat them
here for completeness.

Given a solution S, d(p) ≤ 2 for every node p ∈ P . Therefore, the connected
components of GS are either paths or cycles. Note that an isolated vertex is a
special case of a path. Let PS be the set of the connected components of GS that
are paths. Clearly, |ES | = N − |PS |. Therefore cost(S) = 2N − |ES | = N + |PS |.

Let S∗ be a solution with minimum cost. For any solution S we define

ε(S)
def
=

d0(S)− d2(S)− 2 |PS∗ |
N

.

Lemma 2.1 For any solution S, cost(S) = cost(S∗) + 1
2N(1 + ε(S)).

Proof. Clearly |ES∗ | = N − |PS∗ |. On the other hand 2 |ES | is the sum of the
degrees of the nodes in GS , namely 2 |ES | = d1(S)+2d2(S) = N−d0(S)+d2(S).
We conclude:

cost(S) − cost(S∗) = |ES∗ | − |ES | = N − |PS∗ | − N − d0(S) + d2(S)
2

=
N

2
+

d0(S)− d2(S)− 2 |PS∗ |
2

=
1
2
N

(
1 +

d0(S)− d2(S)− 2 |PS∗ |
N

)
��

3 Upper Bounds

In this sectionwefirst describe an on-line algorithm, show that it is 7/4-competitive
on any network topology and 3/2-competitive on path topology.

3.1 Algorithm ONLINE-MINADM

In a general network, when the lightpaths are given one-by-one, we adopt a
simple coloring procedure. Basically, a new lightpath with endpoints u and v
looks for free ADM at its endpoints. If there are two of the same color, then it first
tries to make a cycle with the existing lightpaths, and if this is impossible then
it makes a path. If there are free ADMs (at one endpoint, or at both endpoints
but of different colors), then it tries to connect to any of them. Otherwise - when
there is no free ADM - it is assigned a new color.
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When we attempt to color some lightpath pi, a color λ is said to be feasible
for pi, if there is no other lightpath with the same color and overlapping with pi.
In other words λ is feasible for pi, if we can assign w(pi) = λ and w is a proper
coloring for Pi.

When a lightpath pi with endpoints ui and vi arrives,

– If there exists a chain of lightpaths with the same color λ with endpoints
ui, vi and λ is feasible for pi then, assign w(pi) = λ.

– Otherwise, If there exists a chain of lightpaths with the same color λ with
one endpoint from {ui, vi} and λ is feasible for pi then, assign w(pi) = λ.

– Otherwise, assign w(pi) = λ′, where λ′ is an unused color.

Note that, as in the last clause the algorithm resorts to an unused color, it
will never construct two chains with the same color. Therefore in the first clause,
the algorithm necessarily closes a cycle.

Algorithm ONLINE-MINADM is obviously correct: w is a proper coloring for
Pi, because if pi is colored by one the first two cases, then it is checked by the
algorithm for feasibility, otherwise w(pi) is assigned an unused color, therefore no
other path, in particular no path pj conflicting with pi may have w(pj) = w(pi).

In this and the following section we prove the following theorem.

Theorem 3.1 Algorithm ONLINE-MINADM is optimal for

– general topology, with competitive ratio of 7
4 ,

– ring topology, with competitive ratio of 7
4 ,

– path topology, with competitive ratio of 3
2 .

3.2 Analysis for General Topology

Lemma 3.1 The competitive ratio of ONLINE-MINADM is at least 7
4 .

Proof. Let G be a cycle of three nodes V = {v1, v2, v3}, E = {e1, e2, e3} where
e1 = (v1, v2), e2 = (v2, v3), e3 = (v3, v1) and let P = {p1, p2, p3, p4} where p1 =
(e3), p2 = (e1), p3 = (e2, e3), p4 = (e1, e2). The optimal solution assigns w(p1) =
w(p4) = λ1 and w(p2) = w(p3) = λ2, and uses 4 ADMs. Recall that ONLINE-
MINADM receives the paths of the input one at a time. It assigns w(p1) = λ1,
then w(p2) = λ1 because λ1 is feasible for p2, then w(p3) = λ2 because λ1 is not
feasible for p3 and finally w(p4) = λ3, because neither λ1 nor λ2 are feasible for
p4. It uses 7 ADM’s in total. ��

In the sequel S is a solution returned by the ONLINE-MINADM and S∗ is an
optimal solution.

Lemma 3.2 The competitive ratio of ONLINE-MINADM is at most 7
4 .

Proof. We direct each edge of GS∗ , such that each path becomes a directed
path and each cycle becomes a directed cycle. The direction chosen for every
path (resp. cycle) is arbitrary. Let

−→G S∗ be the digraph obtained by this process.
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Unless otherwise stated, din(p) and dout(p) denote the in and out degrees of p

in
−→G S∗ , respectively. Clearly, ∀p ∈ P , din(p) ≤ 1 and dout(p) ≤ 1. The following

definitions refer to
−→G S∗ :

LAST ∗ is the set of nodes that do not have successors in
−→G S∗ , namely

LAST ∗ def
= {p ∈ P |dout(p) = 0} .

Note that |LAST ∗| = |PS∗ |.
The functions Next∗ and Prev∗ are defined as expected: Next∗ (resp. Prev∗)

maps a node p to the next (resp. previous) node in
−→G S∗ whenever such a node

exists, namely:
Next∗ : P \ LAST ∗ ,→ P

and Next∗(p) is the unique node u such that there is an edge from p to u in
−→G S∗ . Prev∗ = Next∗−1.

With these definitions in hand, we partition D0(S) into the sets A, B, C and
D using the following classification procedure : Given a path p ∈ D0(S), if p ∈
LAST ∗ then p is in A and fA(p) = p. Otherwise, there is a node q = Next∗(p),
we decide according to the degree of q in S: if it has degree 2, then p is in B and
fB(p) = q, if it has degree 1, then p is in C and fC(p) = {p, q}, otherwise q has
degree 0, then p is in D.

It is also immediate from the description that fA : A ,→ LAST ∗, fB : B ,→
D2(S) and fC : C ,→ 2P .

We first show that D = ∅. Assume, by contradiction that p ∈ D for some p ∈
D0(S). Then there is q ∈ D0(S) such that q = Next∗(p), therefore (p, q) ∈ ES∗ ⊆
Eα. ONLINE-MINADM assigned unique colors to each of p and q. Assume
without loss of generality that q comes later than p in the input sequence. p is
assigned a unique color, therefore it is the only element in its chain. Then w(p)
is feasible for q. Then the algorithm should assign w(q) = w(p), a contradiction.

fA(p) = p, therefore it is a one-to-one function, i.e. |A| ≤ |LAST ∗| = |PS∗ |.
fB(p) = Next∗(p). Next∗ is one-to-one, therefore fB is one-to-one, i.e. |B| ≤

|D2(S)| = d2(S).
We will now show that the sets fC(p) are disjoint. Note that fC(p) = {p, q}

where p ∈ D0(S) and q /∈ D0(S). Assume that fC(p) ∩ fC(p′) = ∅. Let fC(p) =
{p, q} and fC(p′) = {p′, q′}. Then either p = p′ or q = q′. In the latter case
q = Next∗(p) = Next∗(p′) = q′, then p = p′. In both cases, we have p = p′. We
conclude that if p = p′, fC(p) ∩ fC(p) = ∅. As the sets fC(p), have exactly 2
elements, we conclude that |C| ≤ N

2 .
We have d0(S) = |D0(S)| = |A|+ |B|+ |C|+ |D| ≤ |PS∗ |+ d2(S) + N

2 . Then

ε(S)
def
=

d0(S)− d2(S)− 2 |PS∗ |
N

≤ 1
2
.

Substituting this in Lemma 2.1 and recalling that cost(S∗) ≥ N we get

Cost(S) ≤ Cost(S∗) +
1
2
N(1 +

1
2
) = Cost(S∗) +

3
4
N ≤ 7

4
Cost(S∗). ��
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3.3 Analysis for Path Topology

Lemma 3.3 ONLINE-MINADM is 3
2 -competitive in path topology.

Proof. Let V = {v1, v2, ...} be the nodes of the path from left to right, and
σi (resp. τi) be the set of paths having vi as their right (resp. left) endpoint.
It is well known that the number of ADMs used by an optimal solution is
Σi max {|σi| , |τi|}. In an optimal solution, at each node vi, exactly min {|σi| , |τi|}
pairs of paths are assigned one color per pair. In fact these pairs constitute
a maximum matching MMi of the complete bipartite graph (σi, τi, σi × τi).
The solution saves |MMi| = min {|σi| , |τi|} ADMs at node vi, in other words
ES∗ = -iMMi. Note that every matching of a complete bipartite graph can be
augmented to a maximum matching. Let S∗ be an optimal solution, such that
the matching in each node is obtained by augmenting the matching done by S
to a maximum matching, i.e. ES ⊆ ES∗ .

We will now define a function f : (ES∗ \ ES) ,→ ES .
Let e = (pi, pj) ∈ ES∗ \ ES . e ∈ ES∗ = -iMMi. Let e ∈ MMk. Assume

without loss of generality that i < j, i.e. path pi appears before pj in the input.
As e /∈ ES , none of pi, pj are paired with any path at node vk. Therefore when
pj appears in the input w(pi) is feasible for pj , if it is not assigned color w(pi),
this can be only because it is assigned color w(pj) = w(pi′ ), for some i′ < j.
Let the common node of pj and pi′ be vk′ . Then e′ = (pj , pi′) ∈ ES∗ . We define
f(e) = e′. Note that e′ is defined uniquely because there can not be a third path
except pj and pi′ getting the same color and ending at node vk′ . Necessarily
k′ = k, because we know that pj is not paired at node vk.

We claim that f is one-to-one. Assume, by contradiction that there is some
e′′ = e, such that f(e′′) = e′. Then e′′ ∈ ES∗ , therefore e′′ ∈ MMk′′ for
some node vk′′ . By the construction of f , k′′ is the other endpoint of pi′ .
Let e′′ = (pi′ , pi′′). By the discussion in the previous paragraph, symmetri-
cally it follows that j < i′, a contradiction. Therefore f is one-to-one, i.e.
|ES∗ | − |ES | = |ES∗ \ ES | ≤ |ES |, thus |ES | ≥ 1

2 |ES∗ |.
We conclude as follows. Cost(S) − Cost(S∗) = |ES∗ | − |ES | ≤ |ES∗ |

2 ≤ N
2 ≤

Cost(S∗)
2 , therefore:

Cost(S) ≤ 3
2
Cost(S∗). ��

4 Lower Bounds

4.1 General Topology

Lemma 4.1 There is no deterministic on-line algorithm with competitive ratio
< 7

4 .

Proof. Assume ALG is a deterministic on-line algorithm, with competitive ratio
ρ. We show that ρ ≥ 7

4 . For colors we use numbers 1, 2, .... The color assigned
to a lightpath a by ALG is denoted by w(a). We use the network depicted in
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A B C

HG

E D
F

K M

A B C

HG

E D
F

K M

21

y

Fig. 2. Proof of Lemma 4.1

Figure 2. The first lightpath in the input is EFG. Without loss of generality,
assume w(EFG) = 1.

The second lightpath in the input is. First assume w(BDG) = 1. In this case
if lightpath EABDG arrives, we have w(EABDG) = 2, then when lightpath
GFEAB arrives we have w(GFEAB) = 3. ALG thus uses 7 ADMs, while it
is easy to see the an optimal solution can use only 4 ADMs, thus ρ ≥ 7

4 , a
contradiction. Hence, w(BDG) = 2.

When the third lightpath in the input y=BAE arrives The situation is as
depicted in the right side of the figure. It is clear that w(y) = 3, since otherwise
ρ ≥ 6

3 > 7
4 , a contradiction. Thus w(y) = 1 or w(y) = 2.

– case a: w(y) = 1
Let z=EFKMHG be the next lightpath in the input sequence. Clearly w(z) =
1.Hencew(z) = 2orw(z) = 3. Ifw(z) = 2,when lightpathsGFEAB,EABDG,
BDGFE and EABCDG arrive, we get w(GFEAB) = 3, w(EABDG)
= 4, w(BDGFE) = 5, w(EABCDG) = 6, and ρ = 14

8 = 7
4 , a contradiction.

In the case w(z) = 3 for u=EABDCHG we have w(u) = 4, and ρ ≥ 9
5 > 7

4 , a
contradiction.

– case b: w(y) = 2
Let z=BDCHG. Clearly w(z) = 2. Hence w(z) = 1 or w(z) = 3. If w(z) = 1,
when lightpaths EABDG, GFEAB, GKFEAB, and EFGDB arrive, we have
w(EABDG) = 3, w(GFEAB) = 4, w(GKFEAB) = 5, w(EFGDB) = 6,
and ρ ≥ 14

8 = 7
4 , a contradiction. In the case w(z) = 3, for u=GHMKFEAB

we have w(u) = 4. Then ρ ≥ 9
5 > 7

4 , a contradiction.
��

4.2 Ring Topology

The result in the previous Lemma can be proven, though asymptotically even
for ring topologies.

Lemma 4.2 No deterministic on-line algorithm has a competitive ratio better
than 7/4, even for the ring topology.

Sketch of Proof. We first give the inutitive ideas behind the adversary. Suppose
we divide the ring into four segments R1, R2, R3 and R4. The adversary first
requests lightpaths R1 and R3.
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– If the on-line algorithm assigns the same color to them, we then request
two lightpaths (R2, R3, R4) and (R4, R1, R2). The on-line algorithm uses 8
ADMs while the offline algorithm can use 4 ADMs.

– If the on-line algorithm assigns different colors to them, we then request R2.
If the on-line algorithm assigns a third color to R2, we further request R4

making the on-line algorithm using at least 7 ADMs and the offline algorithm
using 4 ADMs only.

The only problematic case for the adversary is that the on-line algorithm assigns
R1 and R2 with the same color and R3 using a different color. In this case, the
adversary requests two lightpaths (R2, R3, R4) and (R3, R4, R1). Neither of these
can share ADMs with existing lightpaths. The on-line algorithm uses 7 ADMs
plus 2 ADMs for R3 while the offline algorithm uses 4 ADMs plus 2 ADMs for
R3. The adversary then repeats the process for k times such that the on-line
algorithm uses 7k + 2 ADMs and the offline algorithm uses 4k + 2 ADMs. This
gives a competitive ratio at least 7

4 − ε for any ε > 0. The crucial point in
repeating the process is to ensure later arrival lightpaths cannot share ADMs
with lightpaths in previous iterations. This can be done by careful division of
the ring and shifting of the division in every iterations. The details can be found
in [SWZ07]. ��

4.3 Path Topology

Lemma 4.3 For any ε > 0, there is no (3
2 − ε)-competitive deterministic algo-

rithm for path topology.

Proof. We prove using the following adversary. Let G be a path with 2k nodes
u1, v1, u2, v2, ..., uk, vk (see Figure 3). Let ALG be any deterministic algorithm.
The value of k will be determined later.

1a
1u

2a
3a ka

1'b

1b

2c

1v
2u 2v 3u 3v ku kv

Fig. 3. Proof of Lemma 4.3

The adversary works in two phases. In the first phase the input is a1, a2, ..., ak

where ∀i, ai = (ui, vi). In the second phase the input depends on the decisions
made by ALG during the first phase. For every 1 ≤ i < k, if w(ai) = w(ai+1)
then the input contains two paths bi = (u1, ui+1) and b′i = (vi, vk), otherwise
the input contains one path ci = (vi, ui+1).
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Let 0 ≤ x ≤ k − 1 be the number of times w(ai) = w(ai+1) is satisfied. Then
w(ai) = w(ai+1) is satisfied k − 1− x times.

During the first phase the algorithm uses 2k ADMs, one for each node.
For the paths bi and b′i, let λ = w(ai)(= w(ai+1)). λ is not feasible neither for

bi nor for b′i. Then the algorithm assigns other colors to bi and b′i, and it uses 4
ADMs, for a total of 4x ADMs.

For the path ci, let λ = w(ai) and λ′ = w(ai+1)(= λ), coloring ci with one of
these colors ALG uses one ADM, otherwise it uses 2 ADMs. Therefore for the
paths ci, ALG uses at least k − 1− x ADMs.

Summing up, we get that ALG uses at least 2k+4x+(k−1−x) = 3(k+x)−1
ADMs.

On the other hand the following solution is possible. For any consecutive paths
ci, ci+1, ..., ci+j color such that w(bi−1) = w(ai) = w(ci) = w(ai+1) = w(ci+1) =
... = w(ci+j) = w(ai+j+1) = w(b′i+j+1). This solutions use 2k + 2x ADM’s, one
ADM at each ui, vi, x additional ADMs at u1, and x additional ADMs at vk.

Therefore the competitive ratio of ALG is at least 3(k+x)−1
2(k+x) = 3

2 −
1

2(k+x) ≥
3
2 −

1
2k . For any ε > 0 we can choose k > 1

2ε , so that the competitive ratio of
ALG is bigger then 3

2 − ε. ��

5 Triangle Topology

In the previous sections we have shown that algorithm ONLINE-MINADM has
an optimal competitive ratio, in general topologies, ring and path topologies. In
this section we show an example of topology for which ONLINE-MINADM is not
optimal. Note that the proof of Lemma 3.1 implies that ONLINE-MINADM is
7
4 -competitive in the triangle topology. We will show in this section a tight bound
of 5

3 for this topology. Note that the lower bound proof for ring networks requires
the ring to be of unbounded size. The proof will not hold for rings of a bounded
size. In this section we show that this lower bound does not hold for triangles, and
give an optimal algorithm for this topology.

Lemma 5.1 There is no on-line algorithm with competitive ratio < 5
3 for tri-

angle topology.

Proof. Consider a triangle with edge set {e1, e2, e3}. We will use the following
adversary.
Release two lightpaths each of length 1, on edges e1 and e2. If w(e1) = w(e2),
then we continue as in Lemma 3.1, namely release two lightpaths of length 2
each {(e2− e3), (e1, e3}, and we get a competitive ratio of 7/4 > 5/3.

Otherwise w(e1) = w(e2), w.l.o.g. assume w(e1) = 1, w(e2) = 2. Release a
lightpath on edge e3. If w(e3) /∈ {1, 2} then the competitive ratio is 6/3 = 2 >
5/3, otherwise w.l.o.g w(e3) = 1. In this case we have w(e1) = w(e3) = 1 using 3
ADMs, w(e2) = 2 using 2 ADMs, for a total of 5 ADMs. The competitive ratio
is 5/3. ��

For the triangle topology, let us name the three edges in the triangle network
e1, e2, and e3. There are only six types of lightpaths, namely, (e1), (e2), (e3),
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(e1, e2), (e2, e3) and (e1, e3). For any lightpath p, we say that p is length-i if it
contains i edges. There are only length-1 and length-2 lightpaths in a triangle
topology.

We now present another algorithm ONLINE-TRIANGLE and show that it
is 5/3-competitive for triangle topology. Roughly speaking, the algorithm gives
highest priority to a pair of length-2 and length-1 lightpaths to share the same
color whenever possible. For length-1 lightpaths, we have seen in the lower bound
of ONLINE-MINADM in Lemma 3.1 that, if an on-line algorithm always colors
two adjacent length-1 lightpaths with the same color, the competitive ratio of
the algorithm is at least 7

4 . To overcome this barrier, when a length-1 lightpath,
say pi = (e1), arrives, ONLINE-TRIANGLE does not always color pi with an
adjacent length-1 lightpath using the same color. However, if we color three
length-1 lightpaths on a cycle each with a different color, this will result in
a competitive ratio of 2. Therefore, if there are two lightpaths pj = (e2) and
pk = (e3) with different colors, then ONLINE-TRIANGLE should color pi with
either of these colors if it is feasible. We formalize this concept by “marking”
the three lightpaths to represent they are grouped together and should not be
further considered when other length-1 lightpaths arrive.

Formally, the algorithm runs as follows. When a request of lightpath pi with
endpoints ui and vi arrives,

1. In case pi is length-2,
– If there exists a length-1 (marked or unmarked) lightpath with color λ

with endpoints ui, vi, and λ is feasible for pi, then assign w(pi) = λ.
– Otherwise, assign w(pi) = λ′, where λ′ is an unused color.

2. In case pi is length-1,
– If there exists a length-2 lightpath with color λ with endpoints ui, vi,

and λ is feasible for pi, then assign w(pi) = λ.
– Otherwise, if there exists a valid chain of two unmarked length-1 light-

paths with different colors λ1 and λ2 with endpoints ui, vi, and λ1 or λ2

is feasible for pi (w.l.o.g. assume λ1 is feasible), then assign w(pi) = λ1

and mark all three lightpaths involved.
– Otherwise, assign w(pi) = λ′, where λ′ is an unused color.

For example, suppose P = {p1, p2, · · · , p7} where pi is, in order, (e1), (e2),
(e3), (e2), (e1), (e3), (e1, e3). Then ONLINE-TRIANGLE will first assign w(p1) =
λ1, w(p2) = λ2, w(p3) = λ1 and mark all three p1, p2 and p3. Next, we assign
w(p4) = λ3 because there is no unmarked lightpath available. We further assign
w(p5) = λ4 and w(p6) = λ3. Finally, we assign w(p7) = λ2 because p7 and p2

form a cycle.
To analyze the performance of ONLINE-TRIANGLE, we first observe how

lightpaths are colored in an optimal solution. The proof of the following lemma
follows immediately from the definitions.

Lemma 5.2 The optimal solution S∗ always colors (e1, e2) and (e3) with the
same color if possible and similarly for the two other symmetric cases. Any
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remaining length-2 lightpath is colored a distinct color. If there are some length-
1 lightpaths remained after this, cycles of three length-1 lightpaths are colored
the same color; followed by chains of two length-1 lightpaths with same color and
finally remaining length-1 lightpaths with distinct colors. It can be verified such
coloring uses the minimum number of ADMs.

We then compare S and S∗ as follows. We first give a rough idea before formally
prove it in Lemma 5.3. Roughly speaking, in S, a length-2 lightpath can always
share ADM with a length-1 lightpath unless the length-1 lightpath has been
marked with the same color with some other length-1 lightpath. In this case, S∗

also has to use extra ADMs for these this length-1 lightpath, therefore, making
S∗ use a comparable number ADMs as S in total. As mentioned before, ONLINE-
TRIANGLE does not always color adjacent length-1 lightpaths using same color
to avoid the 7

4 lower bound. Furthermore, there is no marked cycle of length-1
lightpaths all with different color; for any marked cycle, S∗ uses at least 3 ADMs
for such cycle while S uses at most 5, which is indeed the worst case leading
to the 5

3 -competitive ratio. Also for the case S∗ is able to color two length-1
lightpaths with the same color while S has to use two different colors, this only
gives a ratio of 4

3 . Precisely, we prove the competitive ratio in the following
lemma giving more details.

Lemma 5.3 ONLINE-TRIANGLE is 5
3 -competitive in the triangle topology.

Sketch of Proof. Consider the solution S, the lightpaths can be partitioned into
five disjoint sets according to how they are colored. We start with defining the
set A whose edges will not be included in later sets and similarly for other sets.
Let A be the set of cycles containing a length-1 lightpath and a length-2 lightpath
with the same color; B be the set of length-2 lightpaths with distinct color; C
be the set of marked cycles containing two same colored length-1 lightpaths and
a third different colored one (excluding those later share color with a length-2
lightpath and thus included in A); D be the set of marked chains containing two
same colored length-1 lightpaths (excluding those in A or C); and E be the set
of remaining length-1 lightpaths. In the example given above, A contains p7 and
p2; C contains p4, p5 and p6; D contains p1 and p3; B and E are empty.

We denote |A|, |B|, |C|, |D|, and |E| by a, b, c, d and e, respectively. Note
that cost(S) = 2a + 2b + 5c + 3d + 2e.

We consider four cases depending on the set B. Case 1: B is empty, in other
words, every length-2 lightpath is colored the same color as a length-1 lightpath;
this is actually the same as in S∗. For length-1 lightpaths, by Lemma 5.2, S∗

colors all possible cycle of 3 lightpaths in the same color using 3 ADMs, then
chains of 2 lightpaths with same color using 3 ADMs, and finally 1 lightpath
with its own color using 2 ADMs. S needs at most 5, 4 and 2 ADMs for each of
the cases, respectively. Therefore, S

S∗ ≤ 5
3 .

Case 2: B contains all three types of length-2 lightpaths . In this case, both
C and E must be empty, otherwise, ONLINE-TRIANGLE would have colored
some lightpath p in B with the same color as the corresponding lightpath in C
or E, then p should be in A instead. In this case S∗ outperform S by grouping
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lightpaths in B with lightpaths in D. Even if so, there are still 2d− b length-1
lightpaths left unpaired in D. So S∗ uses at least 2a + 2b + 2d− b ADMs while
S uses 2a + 2b + 3d ADMs. Then, S

S∗ ≤ 3
2 .

In Case 3, B contains two types of length-2 lightpaths only; w.l.o.g., assume
they are (e1, e2) and (e2, e3). In Case 4, B contains one type of length-2 light-
paths only; . For these two cases, we can employ a similar argument as in Cases
1 and 2 and show that S

S∗ ≤ 5
3 . The full details can be found in [SWZ07]. ��

6 Conclusion and Possible Improvements

In this paper we presented an on-line algorithm with competitive ratio of 7
4

for any network topology, and proved that no algorithm has a competitive ratio
better than 7

4 , even if the topology is a ring. We showed that the same algorithm
has a competitive ratio of 3

2 in path topologies, and that this is also a lower bound
for any on-line algorithm on this topology. The lower bound on ring topology
does not hold when the ring is of a bounded size; we showed an optimal bound of
5
3 for the competitive ratio for the triangle topology, using a different algorithm.
The analyses of the upper bounds, as well as those for the lower bounds, are
all using a variety of proof techniques, which are of interest by their own, and
which might prove helpful in future research on the topic.

Our bounds pertain to deterministic on-line algorithms. It may be interesting
to explore probabilistic algorithms and obtain similar bounds. Following our
study, it might be interesting to determine the exact complexity of the on-line
problem for tree topologies, as a function of some parameter of the tree, and
of networks (e.g., rings or paths) of bounded size. An important extension is to
consider the on-line version of the problem when grooming is allowed; in graph-
theoretic terms, this amounts to coloring the paths so that at most g of them
are crossing any edge, and where each ADM can serve up to g paths that come
from at most two of its adjacent edges (see [GRS98, ZM03]). Another direction
of extension is to the case where more involved switching functions are under
consideration.
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Abstract. Three well studied progress conditions for implementing con-
current algorithms without locking are, obstruction-freedom, non-bloc-
king and wait-freedom. Obstruction-freedom is weaker than non-blocking
which, in turn, is weaker than wait-freedom. While obstruction-freedom
and non-blocking have the potential to significantly improve the per-
formance of concurrent applications, wait-freedom (although desirable)
imposes too much overhead upon the implementation.

In [5], Fich, Luchangco, Moir, and Shavit have presented an interesting
transformation that converts any obstruction-free algorithm into a wait-
free algorithm when analyzed in the unknown-bound semi-synchronous
model. The FLMS transformation uses n atomic single-writer registers,
n atomic multi-writer registers and a single fetch-and-increment object,
where n is the number of processes.

We define a time complexity measure for analyzing such transfor-
mations, and prove that the time complexity of the FLMS transforma-
tion is exponential in the number of processes n. This leads naturally to
the question of whether the time and/or space complexity of the FLMS
transformation can be improved by relaxing the wait-freedom progress
condition. We present several efficient transformations that convert any
obstruction-free algorithm into a non-blocking algorithm when analyzed
in the unknown-bound semi-synchronous model. All our transformations
have O(1) time complexity. One transformation uses n atomic single-
writer registers and a single compare-and-swap object; another transfor-
mation uses only a single compare-and-swap object which is assumed to
support also a read operation.

1 Introduction

1.1 Motivation

Three well studied progress conditions for implementing concurrent algorithms
without locking are, obstruction-freedom, non-blocking and wait-freedom. An
algorithm is wait-free if it guarantees that every process will always be able to
complete its pending operations in a finite number of its own steps. An algorithm
is non-blocking if it guarantees that some process will always be able to com-
plete its pending operation in a finite number of its own steps. An algorithm is
obstruction-free if it guarantees that a process will be able to complete its pend-
ing operations in a finite number of its own steps, if all the other processes “hold
still” long enough (that is, in the absence of interference from other processes).

A. Pelc (Ed.): DISC 2007, LNCS 4731, pp. 450–464, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Clearly, obstruction-freedom is weaker than non-blocking which, in turn, is
weaker than wait-freedom. The term lock-free algorithms refers to algorithms
that do not use locking in any way. Wait-free, non-blocking and obstruction-free
algorithms are by definition lock-free algorithms.1 Advantages of using lock-free
algorithms are that they are not subject to deadlocks or priority inversion, they
are resilient to process crash failures (no data corruption on process failure), and
they do not suffer significant performance degradation from scheduling preemp-
tion, page faults or cache misses.

While non-blocking and obstruction-freedom have the potential to signifi-
cantly improve the performance of concurrent applications, and can be used in
place of using locks in various cases, wait-free synchronization (although desir-
able) imposes too much overhead upon the implementation. Wait-free algorithms
are often very complex and memory consuming, and hence considered less prac-
tical than non-blocking algorithms. Furthermore, starvation can be sometimes
efficiently handled by collision avoidance techniques such as exponential backoff.

Requiring implementations to satisfy only obstruction-freedom can signifi-
cantly simplify the design of concurrent algorithms, as it eliminates the need to
ensure progress under contention. However, since obstruction-free algorithms do
not guarantee progress under contention, they may suffer from livelocks. Vari-
ous contention management techniques have been proposed to efficiently improve
progress of obstruction-free algorithms under contention. Existing lock-free con-
tention managers, which allow processes to run without interference long enough
until they can complete their operations, do not provide full guarantee to ensure
progress in all cases.

While obstruction-free algorithms are easier to design and are efficient in var-
ious cases, it is most desirable that a lock-free implementation do satisfy the
stronger non-blocking progress condition. Hence the importance of designing
efficient transformations that automatically convert any obstruction-free algo-
rithm into a non-blocking algorithm. Such transformations should not affect the
behaviour of the original (obstruction-free) algorithm in uncontended cases, or
in executions where the contention management technique used is effective.

The focus of this paper is on the design of such transformations in the
unknown-bound semi-synchronous model, where it is assumed that there is an
unknown upper bound on memory access time. All practical systems satisfy the
unknown-bound assumption.

1.2 Results

In [5], Fich, Luchangco,Moir, andShavit have presented an interesting transforma-
tion that converts any obstruction-free algorithm into a wait-free algorithm when
analyzed in the unknown-bound semi-synchronousmodel. The FLMS transforma-

1 In the literature, the terms lock-free and non-blocking are sometimes used as synony-
mous, or even with opposite meaning to the way they are defined here. As suggested
in [16], it is useful to distinguish between algorithms that do not require locking
(i.e., lock-free algorithms) and those that actually satisfy the non-blocking progress
condition.
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tion uses n atomic single-writer registers, n atomic multi-writer registers and a sin-
gle fetch-and-increment object.

We start by defining a time complexity measure for analyzing such trans-
formations, and prove that the time complexity of the FLMS transformation
is exponential in the number of processes n. Then, we present several efficient
transformations that convert any obstruction-free algorithm into a non-blocking
algorithm when analyzed in the unknown-bound semi-synchronous model.

All our transformations have O(1) time complexity. One of transformation
uses n atomic single-writer registers and a single compare-and-swap object; an-
other transformation uses only a single compare-and-swap object which is as-
sumed to support also a read operation.

1.3 Related Work

Our work is based on the transformation presented in [5]. A comprehensive
discussion of wait-free synchronization is given in [8]. In [11], the concept of a
non-blocking data structure is introduced. The notion of obstruction-freedom is
introduced in [9]. Contention management is discussed in [6,10,13].

The importance of the unknown-bound semi-synchronous model in the con-
text of shared memory systems was first investigated in [1]. In [12,14], indulgent
algorithm are investigated in semi-synchronous shared memory systems. The in-
terested reader will find in [15] a pedagogical description of several families of
semi-synchronous and timing-based algorithms. Message-passing algorithms for
partially synchronous systems were presented in various papers [3,4].

In [7], the weakest failure detectors that allow boosting an obstruction-free
implementation into a wait-free or a non-blocking implementation have recently
been identified (eventual prefect failures detector [2] is the weakest to implement
a wait-free contention manager, and Ω∗ is the weakest to implement a non-
blocking contention manager).

2 The Computational Model

The system is made up of n processes, denoted p1, . . . , pn, which communicate
via shared objects. It is assumed that any number of processes may crash. A
process that crashes stops its execution in a definitive manner.

The possibility and complexity of synchronization in a distributed environ-
ment depends heavily on timing assumptions. We focus on a semi-synchronous
shared-memory model of computation which provides a practical abstraction of
the timing details of concurrent systems. In this model, it is assumed that there
is an unknown upper bound on the time it takes a process to execute one step
and, in particular, on the time it takes to execute a step which involves access the
shared memory. This assumption is inherently different from the asynchronous
model where no such bound exists.

In the semi-synchronous model a process can delay itself explicitly by execut-
ing a statement delay(d), for some constant d. Executing the statement delay(d)
by a process p delays p for at least d time units before it can continue, and
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there is some (unknown) upper bound (as a function of d) on the time a correct
process can be delayed (for example, this bound can be 2d).

A key idea in designing algorithms for the semi-synchronous model is that a
process can delay itself for increasingly longer periods, and by doing so it can
ensure that eventually other processes will take “enough” steps during one of
these waiting periods. The appeal of the semi-synchronous model lies in the fact
that while it abstracts from implementation details, it is a better approximation
of real concurrent systems compared to the asynchronous model, as all practical
(shared memory) systems satisfy the unknown-bound assumption. Furthermore,
it enables to obtain more efficient solutions.

We point out that the semi-synchronous model, as defined here, is similar
(but not identical) to a model where it is assumed that there is an unknown
bound on the ratio of the maximum time and minimum time between the steps
of the processes. That is, some unknown bound exists on the relative execution
rates of any two processes in the system. In such a model, the delay statement
is simply implemented by counting steps. All our results and algorithms apply
also to this variant of the unknown bound semi-synchronous model.

Lock-free algorithms usually require the use of powerful atomic operations
such as compare-and-swap (CAS). A CAS operation takes three parameters: a
shared register r, and two values: old and new. If the current value of the register
r is equal to old, then the value of r is set to new and the value true is returned;
otherwise r is left unchanged and the value false is returned.

We consider three types of shared objects: (1) Atomic register – a shared
register that supports atomic read and write operations; (2) Compare-and-swap
object – a shared object that supports an atomic CAS operation; (3) Compare-
and-swap/read object – a shared object that supports both atomic CAS and
atomic read operations.

The FLMS transformation, and our transformations are all black box transfor-
mations: A transformation does not change anything in the original obstruction-
free algorithm, it only adds code to ensure that a stronger progress condition
is satisfied. Thus, a transformed algorithm performs the original algorithm on
the original shared objects and does not apply any other steps to these objects.
Below we define a time complexity measure for analyzing such transformations.
Let T be a transformation that converts an arbitrary obstruction-free algorithm,
denoted ALG, into a non-blocking or a wait-free algorithm.

Enabled Process: A process is enabled in a given finite run of transformation
T if its next step is a step of the original obstruction-free algorithm ALG, or if
its last step was a step of ALG.

Being enabled corresponds to holding a lock (i.e., being in the critical section)
in lock-based algorithms. We notice that being enabled is not exactly like being
in a critical section since exclusiveness is not guaranteed.

Time Complexity: The time complexity of transformation T, is the maximum
number of steps which involve access to the shared memory that a process may
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need to take until it becomes enabled since the last time some process has been en-
abled. Or, if no process has been enabled yet, since the beginning of the execution.

This definition corresponds to the way time complexity is usually defined in
lock-based (mutual exclusion) algorithms. In lock-based algorithms, time com-
plexity is usually measured by counting the amount of “work” (time units) a
winning process, a process that gets to enter its critical section, may need to do
(wait) since the last time some process has released its critical section.

Since all our algorithms require very few accesses to shared memory locations,
the definition does not distinguish between different types of shared memory
accesses. In a different context, it would make sense to distinguish between rel-
atively cheap operations like reads and writes to more expensive operations like
compare-and-swap.

Remark: The new complexity measure is a special case of the following more
general new complexity measure for synchronization algorithms, which might be
interesting in its own right. Given an algorithm, denoted SYNC, let us divide
its steps into three disjoint groups,

1. group A – the group of synchronization steps;
2. group B – the group of real work steps;
3. group C – the group of inexpensive steps.

In mutual exclusion algorithms, A may include the steps in the entry section, B
the steps in the critical section, and C all other steps. For a transformation that
converts an arbitrary obstruction-free algorithm, ALG, into a non-blocking or a
wait-free algorithm, A may include all the step which involve access to the shared
memory, B all the step of ALG, and C all other steps. A process is enabled in a
given finite run of SYNC if its next step is a step from B or if its last step was
a step from B. Next we define two possible complexity measures,

1. The maximum number of steps from group A that a process may need to
take until it becomes enabled since the last time some process has been
enabled. Or, if no process has been enabled yet, since the beginning of the
execution.

2. The longest time interval where no process is enabled, assuming there is an
upper bound of one time unit for step time and no lower bound.

The first measure generalizes the one used in this paper, the second measure
is called system response time in the context of mutual exclusion algorithms.
Other variants of these measures can be obtained by generalizing corresponding
measures for lock-based algorithms (see [15], Section 1.4).

3 The Time Complexity of the FLMS Transformation

We prove that the time complexity of the FLMS transformation is at least expo-
nential in the number of processes n. This exponential bound holds even when
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the transformation is executed in a fault-free environment. As already mentioned,
the transformation converts any obstruction-free algorithm into a wait-free al-
gorithm when analyzed in the unknown-bound semi-synchronous model, and
uses n atomic single-writer registers, n atomic multi-writer registers and a single
atomic fetch-and-increment object.

In the following, we describe only the part of the FLMS transformation that
is needed for proving the time complexity bound. When a process pi notices
that there is contention, it begins to participate in a strategy to ensure progress,
called the panic mode.

This strategy is as follows: using an atomic fetch-and-increment object,
process pi first acquires a timestamp, and initializes an atomic multi-
writer register, denoted T [i], with the value of its timestamp. Then pi

searches for the minimum timestamp by scanning the array T [1..n]. (Ini-
tially all entries of the T array are set to ∞.) During the search, all
timestamps that are not ∞, but are larger than the minimum times-
tamp pi has observed so far, are replaced by ∞. If process pi determines
that it has the minimum timestamp then pi becomes enabled.
If process pi determines that some other process, say pk, has the mini-
mum timestamp, pi waits for some time (the amount of time waited is
not relevant here), and then checks the status of pk. If pi does not notice
(after checking some shared register) that pk has taken steps while pi

was waiting, pi overwrites pk’s timestamp by setting T [k] to ∞. Then
pi restarts executing the strategy to ensure progress (i.e., go to the be-
ginning of the panic mode) using its original timestamp (i.e., pi uses the
same timestamp from the previous round). Similarly, if after it waits, pi

notices that T [k] = ∞, then pi also restarts executing the strategy to
ensure progress using its original timestamp.

The above partial description of the FLMS transformation is sufficient for prov-
ing its exponential time complexity.

Theorem 1. The time complexity of the FLMS transformation is exponential,
in the number of processes n.

Proof. Consider a finite run σ where: (1) all the n processes have just started to
execute the strategy to ensure progress (i.e, the panic mode); (2) each process
has chosen a timestamp such that process pi has chosen timestamp i, for all
i ∈ {1, ..., n}; and (3) all the entries of the T array are still set to their initial
value ∞.

For every i ∈ {1, ..., n−1}, let Ri denotes the maximum number of times, that
process pn has to scan the array T [1..n] starting from (the end of) run σ before
pn becomes the first enabled process, assuming that only the i + 1 processes
pn,...,pn−i may take steps in an extension of σ. We prove by induction that
Ri ≥ 2i for every i ∈ {1, ..., n− 1}, which would imply that the time complexity
is of order 2n−1 × n. Actually, we prove by induction the following (stronger)
claim:
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For every i ∈ {1, ..., n− 1}, there is an extension σi of σ where:
1. pn has performed 2i scans of T in σi.
2. Only the i+1 processes pn,...,pn−i have taken steps in the extension

σi of σ.
3. pn is enabled in σi, and no process is enabled in any strict prefix of

σi which extends σ.
4. For every j ∈ {1, ..., n− 1}, process pj is (again) at the beginning of

the (code of the) panic mode in σi, with timestamp j and T [j] = ∞.
5. In the last steps in σi process pn has scanned the array T [1..n]. We

denote by σ∗
i the prefix of σi which result from omitting this last

single scan of T by pn.
We notice that the existence of run σi implies that Ri ≥ 2i.

When i = 1, σ1 is constructed as follows: we first let process pn−1 set T [n−1] to
n− 1. Then, we run pn alone. Process pn searches for the minimum timestamp
by scanning the array T [1..n] once, and determines that process pn−1 has the
minimum timestamp. Then, process pn delays itself for some time and then
checks the status of pn−1. Since pn−1 has taken no steps while pn was waiting,
pn overwrites pn−1’s timestamp by setting T [n − 1] to ∞. Then pn restarts
executing the strategy to ensure progress (i.e., go to the beginning of the panic
mode) using its original timestamp. Next, pn sets T [n] to n, searches again for
the minimum timestamp by scanning T , determines that it has the minimum
timestamp and becomes enabled. Since pn has scanned T twice in σ1, we get,

R1 ≥ 21. (1)

When i = 2, σ2 is constructed as follows: we first repeat the extension from the
previous case and stop just before the last scan on T by pn (i.e., the extension
σ∗

1). Then we let process pn−2 set T [n− 2] to n − 2, and let both pn−1 and pn

scan T (notice that so far the number of scans of pn equals 21 as in σ1). Both
determine that process pn−2 has the minimum timestamp, each one delays itself
for some time and then checks the status of pn−2. Since pn−2 has taken no steps
while pn−1 and pn were waiting, they overwrite pn−2’s timestamp by setting
T [n− 2] to ∞. Then they restart executing the strategy to ensure progress. At
this point, from process pn−1 and process pn point of view, they are back at a
situation similar to the one at run σ. So, we repeat the construction from the
previous case of i = 1 (in which the number of scans of pn equals 21). Since pn

has scanned T four times in σ2, we get,

R2 ≥ 22. (2)

Induction hypothesis: we assume that a run σi−1 exists and prove that run σi

exists.
We consider now the general case where i + 1 processes participate. We first

repeat the extension from the case when only i processes participate and stop
just before the last scan on T by pn (i.e., the extension σ∗

i−1). Then we let
process pn−i set T [n − i] to n − i, and let the i processes pn−i+1 through pn
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scan T (notice that so far the number of scans by pn equals 2i−1 as in σi−1). All
the processes determine that process pn−2 has the minimum timestamp, they
delay themselves for some time and then check the status of pn−i. Since pn−i

has taken no more steps, they overwrite pn−i’s timestamp by setting T [n− i] to
∞. Then they restart executing the strategy to ensure progress. At this point,
from processes pn−i+1 through pn point of views, they are back at a situation
similar to run σ. So, we repeat the construction from the i−1 case in which only
i processes participate (in which the number of scans of pn equals 2i−1). Since
pn has scanned T 2× 2i−1 times in σi, we get,

Ri ≥ 2i. (3)

Thus, from the construction of run σn−1 where all the n processes participate,
we get,

Rn−1 ≥ 2n−1. (4)

We have proved that there is an extension of σ where the number times, that
process pn has to scan the array T [1..n] before it becomes the first enabled
process is at least 2n−1. Each such scan involves n accesses to shared memory
location. Thus, we conclude that the time complexity the FLMS transformation
is at least of order 2n−1 × n. ��

4 The Main Transformation

We now present our main transformation. It has O(1) time complexity, and uses
n atomic single-writer registers and a single compare-and-swap object which
supports also a read operation. The other transformations, presented later, are
variants of this transformation. One important strength of all the transforma-
tions is their simplicity.

To understand how the transformation works, let us start by assuming a
fault-free model in which no process ever crashes. In such a model, we can
design a simple transformation by using a single (mutual exclusion) lock. To
avoid interference between different operations, a process performs steps of the
original obstruction-free algorithm, denoted ALG, only inside its critical section
(after it has acquired the lock), within which the process is guaranteed exclusive
access with no interference to the original algorithm shared objects.

Using a single lock to prevent interference between different operations of
ALG may degrade the performance, as it enforces processes to wait for a lock
to be released, and thus, does not allow several processes with non-interfering
operations to proceed concurrently. Furthermore, when there is no contention,
acquiring the lock introduces additional overhead.

To overcome these limitations, before a process tries to acquire the lock, it
first tries to complete its operation of ALG without holding the lock. If there is
no contention or if the contention manager is effective the process will complete
its operation without any overhead. Otherwise if the process, after taking many
steps, does not succeed in completing its operation, it tries to acquire the lock.
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Of course, as a result of such an approach, a process that is already holding the
lock may experience interference. However, either some process will manage to
complete its operation (without holding the lock), or this interference will vanish
after some finite time.

Going back to our original model where processes may crash, using locks is
problematic as a process may crash while holding the lock, preventing all other
processes from ever completing their operations. Resolving this problem, is the
main difficulty in designing efficient transformations, and is done as follows: The
winner – the process that is currently holding the lock – is required to increment
a (single-writer) counter, denoted W [winner ] every few steps, of ALG. A process
p that fails to acquire the lock, reads the value of the winner’s counter and delays
itself for W [winner ] time units. Then, p checks W [winner ] again, and if the value
was updated p delays itself again, and so on. Otherwise, if W [winner ] has not
been changed, p assumes that the winner has crashed and releases the lock.

Releasing the lock by a process p, which is not the winner, is a very delicate
issue, since the winner might be alive but very slow, and as a result: (1) the
winner will notice that the lock has been released although it is interested in
holding it further; (2) we might end up with two or more processes holding the
lock at the same time; and (3) process p might be suspended just before releasing
the lock, and may release the lock at some unexpected time later on.

We address these problems as follows: when a winner process, say pi, notices
that the lock has been released pi tries to acquire the lock again. However, before
doing so, pi waits long enough so that other processes that have mistakenly
concluded that pi has crashed, will have enough time to release the lock (again)
before pi tries to acquire it again. Ensuring that eventually at most one correct
process will hold the lock, has to do with the fact that the value of the counter
of a winning process W [winner ] keeps on increasing over time. Thus, forcing
processes that fail to acquires the lock to delay themselves for increasingly longer
periods, and eventually – by the unknown-bound assumption, the waiting time
is long enough to guarantee that only one process will hold the lock and that
some process will complete its operation of ALG.

The code of our main transformation, Transformation 1, is given in Figure
1. Transformation 1 converts an arbitrary obstruction-free algorithm, denoted
ALG, which may include a contention manager, into a non-blocking algorithm.

Process pi first tries to execute X steps (for some predetermined constant X)
of the original obstruction-free algorithm ALG (line 1). If pi succeeds to complete
its operation, it returns (line 2), otherwise pi tries to acquire the lock. The lock
is implemented by a compare-and-swap object, named T . T = 0 means that the
lock is free, T = i means that process pi has acquired the lock. So process pi tries
to acquire the lock by setting the value of T to i (line 5). If pi succeeds it tries
to complete its operation by taking steps of the original algorithm ALG (lines
6 – 12). Every X such steps pi increments its counter W [i] by 1. It continues
doing so until it either completes its operation and releases the lock (line 9) or
finds that it is no longer holding the lock (line 12).
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shared
T : CAS/read object, initially 0 /* “the lock” */
W [1..n]: array of atomic single-writer registers /* initial values immaterial */

local /* initial values immaterial */
winner : ranges over {0, ..., n}; wait : integer; b: boolean

invoke(op)
1 execute up to X steps of ALG /* ALG is the original algorithm */
2 if op is completed then return response fi
3 W [i] := 1 /* contention possible – set initial delay */
4 repeat /* tries to execute op without interference */
5 if CAS(T, 0, i) then /* tries to acquires the “lock” */
6 repeat /* pi is enabled */
7 execute up to X steps of ALG /* original algorithm */
8 if op is completed then
9 CAS(T, i, 0) /* release “lock” */
10 return response
11 else W [i] := W [i] + 1 fi /* increase delay */
12 until read(T ) �= i /* equivalent to ¬CAS(T, i, i) */
13 delay(2 × W [i]) /* flash out processes waiting in lines 16–22 */
14 else /* loser */
15 winner := read(T ) /* tricky to imp. efficiently using CAS only */
16 if winner �= 0 then /* “lock” is captured by winner */
17 repeat /* wait for the winner to proceed */
18 wait := W [winner ] /* delay time */
19 delay(wait) /* wait as requested */
20 b := read(T ) = winner /* b := CAS(T, winner ,winner) */
21 until wait = W [winner ] ∨ ¬b /* winner crashed? */
22 if wait =W [winner ] ∧ b then CAS(T,winner , 0) fi fi fi /*release */
23 until op is completed

Fig. 1. Transformation 1. Program for process pi which invokes operation op.

In line 13, process pi delays itself, so that other processes that may have
concluded that pi has crashed (lines 16–21), will have enough time to release
the lock (line 22) before pi tries to acquire the lock again. After executing the
delay (line 13), process pi tries to acquire the lock again. We notice that pi may
decrease the value of W [i] only after it completes its operation of ALG.

If pi fails to acquire the lock (line 5), it executes the code at lines 15 – 22. It
finds out the identity of the winner (line 15), and waits for W [winner ] time units.
Then, pi checks W [winner ] again, and if the value has been updated (meaning
the winner is alive) pi delays itself again, and so on. pi does so until it notices
that either W [winner ] has not been changed or that the lock has been released
(line 21). If W [winner ] has not been changed, pi assumes that the winner has
crashed, releases the lock (line 22), and tries to acquire the lock (line 5).

Theorem 2. Transformation 1 converts any obstruction-free algorithm into a
non-blocking algorithm when analyzed in the unknown-bound semi-synchronous
model.
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Proof. Assume to the contrary that there exists an obstruction-free algorithm,
ALG, such that the transformation does not convert ALG into a non-blocking
algorithm when analyzed in the unknown-bound semi-synchronous model. Thus,
there exists a suffix, σ0, of an infinite run σ in which (1) no process succeeds to
complete an operation of ALG; and (2) no process executes line 1 or line 2. Let
P denotes the set of all correct processes that do no succeed to complete their
operations in σ0.

Clearly, there must be at least one process pi ∈ P , which succeeds to capture
the “lock” in line 5 infinitely often (that is, its compare-and-swap operation in
line 5 is successful infinitely often) and hence it executes the repeat loop in lines
6–12 infinitely often. This implies that the value of W [i] grows without bound in
σ0. Thus, there exists a suffix σ1 of σ0, in which the value of W [i] is big enough
such that immediately after pi executes the delay statement delay(2×W [i]) in line
13, no correct process is in the middle of executing any of the lines 16 – 22 while
having its local variable winner set to i. In particular, no process can successfully
execute the statement CAS(T, i, 0) in line 22 (without pi taking further steps).

Let us denote by r an upper bound on the number of time units required for
pi to go through the repeat loop at lines 6 – 12 once regardless of the activity
of the other processes (such a bound exists by the properties of the unknown-
bound semi-synchronous model). Let σ2 be a suffix of σ1 where (1) pi succeeds
in capturing the “lock” in line 5, and starts executing the repeat loop at lines 6
– 12, (2) W [i] ≥ r, and (3) no correct process is in the middle of executing any
of the lines 16 – 22 while having its local variable winner set to i.

Clearly, in σ2, no process pj will ever be able to successfully executes the
statement CAS(T, i, 0) in line 22, because each time pj will execute the delay
statement in line 19, pi will go through the loop at least once and increment W [i].
Thus, (1) from that point on the value of T forever equals i, and (2) process pi

will never leave the repeat loop at lines 6 – 12. Thus, in σ2, every other process
that is in the middle of executing the repeat loop at lines 6 – 12 will eventually
execute line 12 and exits the repeat loop. Thus, there exists a suffix σ3 of σ2

where pi forever executes the loop at lines 6 – 12 alone. This implies that in σ3

processes pi will execute its operation on ALG continuously without interference
and hence this operation must eventually be completed. A contradiction ��
Theorem 3. Transformation 1 has O(1) time complexity, and uses n atomic
single-writer registers and one CAS/read object.

Proof. Assume that process pi becomes enabled. Lets examine what is the max-
imum number of steps which involve access to the shared memory that pi may
need to take until it becomes enabled since the last time some process has been
enabled. Process pi can becomes enabled in one of three ways: (1) when it starts
it execution (line 1); (2) immediately after it succeeds to set the value of the
CAS object T to its id (line 5), and (3) starting to execute another round of
the repeat loop after executing lines 11 and 12. Option 1 requires 0 steps by pi.
Option 3 requires 2 steps by pi since pi was last enabled. So, lets assume that p
becomes enabled as a result of option 2. Process pi succeeds in setting the value
of T to its id (line 5) only when T = 0. As soon as the value of T is 0 it will
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take pi at most 5 steps (which involve access to the shared memory) to reach
line 5. Finally, if T = j and process pj crashes or is slow, it will take pi or some
other process at most 8 steps until they set T to 0 in line 22. The result about
the space complexity is obvious. ��

5 Transformation 2: Using a CAS Object with n Atomic
Registers

Our second transformation is a modified version of Transformation 1, in which
the three read(T ) operations from Transformation 1 (in lines 12, 15, and 20), are

shared
T : CAS object, initially 0 /* “the lock” */
W [1..n]: array of atomic single-writer registers /* initial values immaterial */

local /* initial values immaterial */
winner : ranges over {−1, 0, ..., n}; wait , t: integer; b: boolean

invoke(op)
1 execute up to X steps of ALG /* ALG is the original algorithm */
2 if op is completed then return response fi
3 W [i] := 1 /* contention possible – set initial delay */
4 repeat /* tries to execute op without interference */
5 if CAS(T, 0, i) then /* tries to acquires the “lock” */
6 repeat /* pi is enabled */
7 execute up to X steps of ALG /* original algorithm */
8 if op is completed then
9 CAS(T, i, 0) /* release “lock” */
10 return response
11 else W [i] := W [i] + 1 fi /* increase delay */
12 until ¬CAS(T, i, i)
13 delay(2 × W [i]) /* flash out processes waiting in line 22 */
14 else /* loser */
15.1 j := 0; winner := −1
15.2 repeat /* find the winner’s id*/
15.3 if j (mod n) + 1 �= i then

j := j (mod n) + 1 else j := j + 1 (mod n) + 1 fi
15.4 if CAS(T, j, j) then winner := j fi /* is j the winner? */
15.5 if CAS(T, 0, 0) then winner := 0 fi /* “lock” is released ? */
15.6 until winner �= −1 /* winner found */
16 if winner �= 0 then /* “lock” is captured by winner */
17 repeat /* wait for the winner to proceed */
18 wait := W [winner ] /* delay time */
19 delay(wait) /* wait as requested */
20 b := CAS(T,winner ,winner)
21 until wait = W [winner ] ∨ ¬b /* winner crashed? */
22 if wait =W [winner ] ∧ b then CAS(T,winner , 0) fi fi fi /*release */
23 until op is completed

Fig. 2. Transformation 2. Program for process pi which invokes operation op.
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type
lock : record {id : integer ; W [1..n]: array of integers}

shared
T : CAS/read object of type lock , initially T.id = 0 /* “the lock” */

local /* initial values immaterial */
temp, temp1, temp2: of type lock ; winner , wait : integer; b: boolean

invoke(op)
1 execute up to X steps of ALG /* ALG is the original algorithm */
2 if op is completed then return response fi
3 setW (1) /* set W [i] to 1 */
4 repeat /* tries to execute op without interference */
5 if setTid(0, i) then /* tries to acquires the “lock” */
6 repeat /* pi is enabled */
7 execute up to X steps of ALG /* original algorithm */
8 if op is completed then
9 setTid(i, 0) /* release “lock” */
10 return response
11 else temp := read(T ); setW (temp.W [i] + 1) fi /* increment W [i] */
12 until temp.id �= i /* until pi does not hold the lock */
13 delay(2 × temp.W [i]) /* flash out processes waiting in lines 16–22 */
14 else /* loser */
15 temp := read(T ); winner := temp.id
16 if winner �= 0 then /* “lock” is captured by winner */
17 repeat /* wait for the winner to proceed */
18 wait := temp.W [winner ] /* delay time */
19 delay(wait) /* wait as requested */
20 temp := read(T ); b := temp.id = winner
21 until wait = temp.W [winner ] ∨ ¬b /* winner crashed? */
22 if wait = temp.W [winner ] ∧ b then setTid(winner , 0) fi fi fi/*rel.*/
23 until op is completed

function setW (val : integer) /* W [i] := val */
1 repeat
2 temp1 := read(T ); temp2 := temp1; temp2.W [i] = val
3 until CAS(T, temp1, temp2)
end

function setTid (old :integer, new :integer) return: boolean /* CAS(T, old ,new) */
1 temp1 := read(T ); b := false
2 while temp1.id = old do
3 temp2 := temp1; temp2.id = new
4 b := CAS(T, temp1, temp2)
5 temp1 := read(T ) od
6 return(b)
end

Fig. 3. Transformation 3. Program for process pi which invokes operation op.
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implemented without using an implicit read operations of T . Transformation 2
has O(1) time complexity, and uses n atomic single-writer registers and a single
compare-and-swap object (which does not support a read operation). The code
of Transformation 2, is given in Figure 2.

The read(T ) operations in lines 12 and 20 are easy to implement, as we are
only interested in knowing whether the value of T equals some specific value.
Implementing the read(T ) operation in line 15, while preserving the O(1) time
complexity of the transformation is slightly more complicated. The easiest way to
implement read(T ) is to check, for each value i ∈ {0, ..., n}, whether the operation
CAS(T, i, i) returns true. However, such an implementation would increase time
complexity of the transformation to O(n). This can be easily fixed. First, we
observe that as long as the value of T (in Transformation 1) is different from
0, some process is enabled; and that only steps that are taken while no process
is enabled are counted. Thus, after each time we check whether the value of T
equals i for i = 0 (by executing CAS(T, i, i)) we check whether the value of T
equals 0 (by executing CAS(T, 0, 0)). The final implementation can be seen in
lines 15.1 to 15.6. Correctness follows from that of Transformation 1.

6 Transformation 3: Using a Single CAS/Read Object

Our third transformation is also a modified version of Transformation 1, in which
the values of the atomic registers W [1..n] are encoded as part of the state of the
CAS/read object T . Transformation 3 has O(1) time complexity, and uses a
single compare-and-swap/read object (with no atomic registers).

Using only a single shared object may degrade the performance, as it forces all
processes to reference the same shared memory location. Thus, under contention,
the average waiting time to access the shared object would be high. The code
of Transformation 3, is given in Figure 3. The correctness of Transformation 3
follows from that of Transformation 1.

7 Discussion

We have introduced a new complexity measure and presented three transforma-
tions which are shown very efficient according to this measure. The transforma-
tions convert any obstruction-free algorithm into a non-blocking algorithm when
analyzed in the unknown-bound semi-synchronous model.

As we have shown, the FLMS transformation has exponential time complexity.
It is an open question whether achieving wait-freedom must require exponential
time complexity when using only atomic registers and fetch-and-increment ob-
jects. It would be interesting to find tight bounds also when using other base
objects. In particular, in what cases obstruction-free to non-blocking transfor-
mations have better time complexity than obstruction-free to wait-free trans-
formations? Are transformations to wait-free implementations are inherently
expensive?
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Abstract. Eventual failure detectors, such as Ω or ♦P, can make ar-
bitrarily many mistakes before they start providing correct information.
This paper shows that any detector implementable in a purely asyn-
chronous system can be implemented as a function of only the order of
most-recently heard-from processes. The finiteness of this representation
means that eventual failure detectors can be enumerated and their rel-
ative strengths tested automatically. The results for systems with two
and three processes are presented.

Implementability can also be modelled as a game between Prover and
Disprover. This approach not only speeds up automatic implementabil-
ity testing, but also results in shorter and more intuitive proofs. I use
this technique to identify the new weakest failure detector anti-Ω and
prove its properties. Anti-Ω outputs process ids and, while not necessar-
ily stabilizing, it ensures that some correct process is eventually never
output.

1 Introduction

In purely asynchronous systems, messages between processes can take arbitrar-
ily long to reach their destinations. It is therefore impossible to distinguish a
faulty process from a very slow one [8], which causes many practical agreement
problems, such as consensus or atomic commit, to be unsolvable [5].

One method of dealing with this impossibility is by equipping the system with
failure detectors [3, 11]. A failure detector is an abstract distributed object that
processes can query to get information about failures in the system. Different
kinds of failure detectors provide different sorts of information, with different
reliability guarantees. For example, the eventually perfect detector (♦P) returns
a set of “suspected” processes, and guarantees that eventually it will equal the
set of faulty processes. The eventual leader detector (Ω) returns a single process,
and guarantees that eventually it will keep returning the same correct process.

Both ♦P and Ω are reliable only eventually. They can make mistakes for an
arbitrarily long but finite period of time, which is unknown to the application.
Such detectors are attractive because algorithms using them are indulgent ; they
never fully “trust” the detector, therefore they never violate safety, even if the
detector violates its specification [6]. This paper focuses exclusively on such
detectors.
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Different distributed problems require different failure detectors. A detec-
tor is implementable if there is an algorithm that implements it, in a given
model. A considerable amount of research has focused on determining the im-
plementability relationships both between problems and failure detectors, and
between failure detectors themselves [3, 4, 7, 9, 11]. For example, ♦P can im-
plement Ω, by outputting the non-suspected process with the smallest id. As a
result, every problem solvable with Ω is solvable with ♦P, but not vice versa [3].

Despite a number failure detectors identified in the literature, no compre-
hensive exploration of their design space has yet been attempted. As a result,
identifying new failure detectors is difficult, and their properties must typically
proved from scratch. This paper presents a method that greatly simplifies these
tasks: an efficient and fully mechanical procedure for determining the imple-
mentability relationship between eventual failure detectors in a system with a
given number of processes. The overall strategy to arrive at this result consists
of the following steps:

– Section 2 shows that, under reasonable assumptions, all eventual failure de-
tectors can be completely specified by the list of allowed sets of symbols
output infinitely often. For Ω, this list consists of singleton sets, each con-
taining a single correct process.

– Section 3 shows that, assuming immediate reliable broadcast, any imple-
mentable failure detector can be implemented as a function operating solely
on the sequence of past process steps.

– Section 4 shows that only the order of last occurrences of processes in the
above sequence matters. With finitely many possible such orderings, this
opens the door to automatic enumeration of failure detectors.

– Section 5 shows that any failure detector implementable in the immediate
reliable broadcast model remains so in the purely asynchronous model. In
particular, all results from Section 3 and 4 still apply.

– Section 6 generalizes the above results to automatically comparing relative
strengths of different failure detectors.

– Section 7 introduces a more intuitive, game-theoretic interpretation of the re-
sults from previous sections. It also identifies the weakest non-implementable
failure detector anti-Ω, and proves its properties.

– Section 8 presents the results of automatic enumeration of failure detectors
and their relative implementability in a three-process system. Game-solving
techniques are used to speed up the search.

The theorems and proofs referred to in this paper can be found in the extended
version [14].

2 System Model and Failure Detector Specifications

The system consists of a fixed set P = {1, 2, . . . , n} of processes, which commu-
nicate using asynchronous reliable channels: messages between correct processes
eventually get delivered, but there is no bound on message transmission delay.
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Processes can fail by crashing. In any run, the failure pattern is a function
alive(t), which returns the set of non-crashed processes at any given time t ∈ N.
Crashed processes do not recover, therefore alive(t) ⊇ alive(t + 1). Processes
that never crash (C =

⋂
t alive(t) = ∅) are called correct, the others are faulty.

Runs are fair : correct processes perform infinitely many steps.
The system may be equipped with a failure detector. When queried, the detec-

tor returns a symbol, for example, a process id (Ω) or a set of processes (♦P). The
failure detector history is a function hist(p, t), which gives the symbol returned
by the detector at process p at time t. A failure detector specification H is a func-
tion that maps each failure pattern alive into a set of allowed functions hist.
For example, for Ω, we have

HΩ(alive) = { hist | ∃t∈N ∃p∈(
⋂

t alive(t)) ∀p′∈P∀t′>t hist(p′, t′) = p }. (1)

2.1 Failure Detector Assumptions

The standard failure detector specification method [3] described above is very
general, but this results in complicated specifications (1). This section simplifies
this specification method by making the following assumptions:

1. The detector can behave arbitrarily for any finite amount of time.
2. The set of possible symbols output by the detector is finite.
3. The detector cannot distinguish otherwise indistinguishable runs.

For example, a detector that “eventually keeps outputting the process that
crashed first” violates Assumption 3: even knowing the entire infinite sequence
of system states in a given run is not enough to determine any upper bound on
processes’ crash times. This is because we cannot distinguish between a process
that crashed and one that simply does not take steps.

On the other hand, the set of correct processes, provided by ♦P, is deducible
from such an infinite sequence of states. Detector ♦P and others are useful
because they provide information about the entire infinite run at a finite time.

This paper additionally assumes that the detector is querier-independent, that
is, function hist depends only on time t, not on the querying process p. I do not
list this with other assumptions, because detectors not satisfying this assumption
can be emulated by ones that do (Section 3.1, (6)).

2.2 Failure Detector Specification

Assumptions 1–3 allow us to considerably reduce both the space of considered
failure detectors as well as the complexity of their descriptions. First, Thm. 3
shows that H depends only on the set C =

⋂
t alive(t) of correct processes, not

on the exact form of alive. This simplifies (1) to

HΩ(C) = { hist | ∃t∈N ∃p∈C ∀t′>t hist(t′) = p }. (2)

Theorem 4 shows that whether “hist ∈ H(C)” depends only on the set of values
that hist(t) takes infinitely often, not on the exact form of hist. Therefore, we
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Ω ♦S ♦P ♦?P

infset(1) 1
infset(2) 2
infset(12) 1,2 ,

: only process 1 is correct
: only process 2 is correct
: either 1 or 2 faulty
: no failures

Fig. 1. Specifications infset(C) for various failure detectors in a system with two pro-
cesses 1 and 2 (left), and the interpretation of the output symbols (right)

can specify a failure detector as the set infset(C) of allowed sets of symbols
output infinitely often. The description (2) simplifies to

infsetΩ(C) = { {p} | p ∈ C }. (3)

In general,

infset(C) def= { inf (s1 . . .) | sk = hist(k), hist ∈ H(C) }. (4)

where inf (s1 . . .) =
⋂

k=1,2,... {sk, sk+1, . . .} is the set of symbols sk’s that occur
infinitely often in s1 . . ., for example, inf (32413512212122 . . .) = {1, 2}. Since
a failure detector can behave better than required, S ⊆ T ∈ infset(C) implies
S ∈ infset(C) (Thm. 5). All free set variables in this paper, such as S, T , C in
the previous sentence, are implicitly assumed to be non-empty.

Examples. Figure 1 shows the specifications of several known detectors, in a
two-process system. Detectors Ω and ♦P have already been introduced. Anony-
mous ♦?P eventually detects whether all processes are correct ( ) or not ( ),
without revealing the identities of faulty processes. Detector ♦S is similar to ♦P:
it also outputs a set of suspected processes, however, ♦S can forever suspect
some, but not all, correct processes [3]. Figure 1 represents a set of suspected
processes as a vertical bitmap (eg. ), with one entry per process; black entries
mean “suspected”, white entries “not suspected”.

For each detector, Figure 1 shows the value of infset(C) for C = {1}, {2},
{1, 2}. For brevity, sets {a, b, . . .} are abbreviated to ab . . ., non-maximal elements
of infset(C) removed (Thm. 5), and external braces omitted. For example,

infset♦S({1, 2}) = {{ }, { }, { }, { , }, { , }} =⇒ infset♦S(12) = , .
(5)

This de-cluttering convention is used throughout the paper.

3 Implementability in the Immediate Broadcast Model

Our goal is to determine whether a given failure detector, as specified by its
infset , is implementable. Sections 3 and 4 will investigate this question in the
immediate broadcast model. This model is significantly stronger than the purely
asynchronous model, for example, its basic broadcast primitive of implements
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atomic broadcast, which in non-implementable in the asynchronous model [3, 5].
Surprisingly, however, as far as implementability of (eventual) failure detectors
is concerned, these two models are equivalent (Section 5).

In the immediate broadcast model, all messages are transmitted instanta-
neously and reliably. Processes take steps in any fair order: correct processes
take infinitely many steps, faulty ones finitely many steps. Processes never fail
in the middle of a step.

3.1 Failure Detector Implementations

Immediate and reliable broadcast ensures that each process always knows the
complete state of the system: the sequence p1 . . . pk of processes that have taken
steps until this moment. For example, the state at the end of

→ → → → → → → → time → → → → → → → →

2

1

2

3

2 2

3

is p1 . . . p7 = 2123223. Assuming determinism, all other state information can be
inferred from p1 . . . pk (the initial state is fixed). Therefore, the complete state of
any algorithm in this model depends only on p1 . . . pk. In particular, any failure
detector implementation can be modelled as a function output from sequences
of processes p1 . . . pk to output symbols sk.

A failure detector sensitive to the identity of the querying process has n func-
tions: output1, . . . , outputn, one per process. However, these can be transformed
into a single, querier-independent function outputting a composite symbol:

output(p1 . . . pk) = [sk1 . . . skn], where ski = outputi(p1 . . . pk). (6)

The original detector output at process i is the ski in the composite symbol
[sk1 . . . skn]. Thus, for any failure detector implementation output1, . . . , outputn,
there is a querier-independent detector implementation output that can emu-
late it. For this reason, this paper focuses on querier-independent detectors.

3.2 Failure Detector Specifications

From (4), an implementation output is consistent with a specification infset iff,
for any infinite sequence p1 . . . of processes, we have:

inf (s1 . . .) ∈ infset(C), where sk = output(p1 . . . pk) and C = inf (p1 . . .).
(7)

For example, consider a trivial failure detector:

infset trivial(C) = {X | X ⊆ C } for all C ⊆ P , (8)

which eventually outputs only correct processes. It can be implemented by re-
turning the most recent process to take a step, that is, output(p1 . . . pk) = pk.
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Similarly, returning the least recent process, for example, output(2123223) = 1,
will eventually keep outputting one stable faulty leader, if it exists:

infset faulty(C) = { {p} | p /∈ C } for all C ⊂ P . (9)

(Compare with (3).) By convention, the undefined case C = P allows arbitrary
behaviour.

For any set X , let perms(X) be the set of all permutations of elements of X .
Let order(p1 . . . pk) ∈ perms(12 . . . n) be obtained from p1 . . . pk by retaining
only the last occurrence of each process (eg. order(312233143433131) = 2431)1.
The implementations of failure detectors (8) and (9) can be succinctly written as

outputtrivial(p1 . . . pk) = last element of order(p1 . . . pk)
outputfaulty(p1 . . . pk) = first element of order(p1 . . . pk)

(10)

Note that both implementations ignore all information in p1 . . . pk, except for
order(p1 . . . pk). Theorem 1 shows that all implementable failure detectors can
be implemented this way, with sk = output(p1 . . . pk) = map(order(p1 . . . pk))
for some function map from perms(12 . . . n) to output symbols. For example,

maptrivial(q1 . . . qn) = qn, mapfaulty(q1 . . . qn) = q1. (11)

With a fixed number n of processes, the number such functions map is finite,
which enables us to automate implementability testing (Section 8).

In any run, as the sequence of steps p1 . . . pk grows, order(p1 . . . pk) keeps
changing. Since faulty processes take finitely many steps, eventually the prefix
of order(p1 . . . pk) consisting of all faulty processes will stabilize, while the rest,
consisting of correct processes, will keep changing. Therefore, the implementation
map is consistent (7) with the specification infset iff for any order q1 . . . qk of
faulty processes⋃

{map(q1 . . . qkr1 . . . rn−k) | r1 . . . rn−k ∈ perms(C) } ∈ infset(C), (12)

where C = P \ {q1 . . . qk}.
For example, we can show that Ω is not implementable. To obtain contradic-

tion, assume that it is. By Theorem 1, there is an implementation

outputΩ(p1 . . . pk) = mapΩ(order(p1 . . . pk)).

For any order q1 . . . qn, we must have mapΩ(q1 . . . qn) = qn because qn might be
the only correct process (12). In other words, this implementation of Ω always
outputs the last process to take a step. However, if more than one process is
correct, the output may never stabilize, violating the properties of Ω.

1 To ensure that order(p1 . . . pk) always contains all processes, even if some do not
occur in p1 . . . pk, I implicitly prefix each p1 . . . pk with 12 . . . n.
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1 function update(q1 . . . qn) is
2 simulate qn taking a step
3 set map(q1 . . . qn) ← failure detector output in the simulation

4 function update(q1 . . . qk<n) is
5 repeat
6 for each q /∈ q1 . . . qk do
7 update(q1 . . . qkq)
8 until (12) holds for q1 . . . qk

9 task construct map is
10 update(ε), where ε is the empty sequence

Fig. 2. Generating a map for a given failure detector implementation using failure
detector outputs in a specially constructed simulated run

4 Order Map Theorem

Section 3 used the fact that any implementable failure detector can be imple-
mented using some function map acting solely on the order of recent process
steps. This section proves this theorem. It is important because it restricts the
originally infinite number of possible functions output to those induced by one
of the functions map, whose number is finite.

Theorem 1. Any implementable detector has an implementation of the form
output(p1 . . . pk) = map(order(p1 . . . pk)) for some function map.

Proof. Figure 2 presents an algorithm that, for any implementable failure de-
tector, constructs a map that implements it, that is, is consistent (12) with
the detector’s infset . It takes the algorithm implementing the failure detector,
and collects its outputs in a simulated run. This run is constructed by func-
tion update(q1 . . . qi), which also updates map so that (12) holds for all q1 . . . qk

starting with q1 . . . qi. Therefore, update(ε) in line 10 produces a map that sat-
isfies (12) for all q1 . . . qk.

The implementation of update(q1 . . . qi) covers two cases. For q1 . . . qn consist-
ing of all processes, update makes the last process step, queries the detector, and
sets map(q1 . . . qn) to its output (lines 1–3). It trivially satisfies (12) because no
valid sequence of faulty processes can contain all processes.

For shorter q1 . . . qk, function update recursively ensures that (12) holds for
all extensions of q1 . . . qk, and then tests whether (12) holds for q1 . . . qk itself. If
not, the process is repeated until success (lines 5–8). This cannot go on forever,
because update(q1 . . . qk) makes only processes in C = P \ {q1 . . . qk} take steps.
Therefore, any implementable detector will eventually start outputting symbols
from some S ∈ infset(C), passing the test in line 8.

Example. Consider the faulty-leader detector (9) implemented by returning the
process that took least steps (not the least recent one to step), favouring lower
ids to break ties. This results in the following run of the algorithm in Figure 2
on page 471:
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→ → → → → → time → → → → → →

q1 111111112222222222222222233333333333333333 +: line 8 succeeded
q2 222333 11133333 111333 11111222 111222 -: line 8 failed
q3 3 2 3 1 1 3 1 2 2 1 2 1 ← step (line 2)

map 1+ 1++ 1+ 1-2+- 2+ 2++ 2-1+ 2+- 3+ 3+++← det output (line 3)

Function update() calls update(1), update(2), and update(3). The recursion in
update(1) eventually makes processes 2 and 3 step. In both cases, the detector
outputs 1, which results in mappings map(123) = map(132) = 1, which pass the
line 8 test in update(12), update(13), and then update(1).

Function update(2) encounters more problems. It first calls update(21), which
produces map(213) = 1, and then update(23). Function update(23) recursively
calls update(231), which produces map(231) = 1. Since 1infset(1), line 8 in
update(23) fails and update(231) is called again. It sets map(231) = 2, which
passes the test in update(23), but (together with map(213) = 1) fails the test
in update(2) because 12infset(13). Calling update(231) and update(213) again
results in map(213) = map(231) = 2, which passes the test in update(2).

Similarly, update(3) results in map(312) = map(321) = 3. The algorithm
in Figure 2 on page 471 has therefore transformed the original least-often-
stepping implementation of (9), into the least-recent-to-step implementation
map, highlighted above (11).

5 Implementability in the Asynchronous Model

This section shows that any failure detector implementable in the immediate
broadcast model (Sections 3 and 4) remains so in the purely asynchronous
model. (The opposite implication is obvious.) This result implies, for exam-
ple, that for any implementable failure detector, there is a querier-independent,
implementable failure detector that can emulate it (Section 3.1).

Consider a failure detector implementable in the immediate broadcast model.
Section 4 showed that there is a map consistent with it (12), which acts on the
process order q1 . . . qn. This process order must satisfy (12): (i) faulty processes
precede correct ones, and (ii) the order of faulty processes is fixed. Let Order
Oracle be an abstraction that, when queried, outputs an order that eventually
satisfies (i) and (ii). It is sufficient to show that Order Oracle is implementable
in purely asynchronous settings.

As an example, consider a four-process system with only processes 3 and 4
correct. Order Oracle can keep switching between 1234 and 1243 or between
2134 and 2143 in the same run. However, outputting both 1234 and 2134 in-
finitely often in the same run would violate (ii), and 2314 would violate (i).

In the algorithm in Figure 3 on page 473, processes reliably broadcast a mes-
sage whenever they take a step. Each process keeps track of steps taken by others
by storing the highest-numbered step for each process in the vector maxstep.
When the algorithm is asked for an order on processes, it returns them in the
increasing order of maxstep.
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1 maxstep[i] ← 0 for all processes i

2 when process i takes its k-th step do
3 reliably broadcast “process i, step k”

4 when reliably receive “process i, step k” do
5 maxstep[i] ← max {k, maxstep[i]}
6 when queried do
7 return the list of all processes i, ordered wrt increasing maxstep[i]
8 (ties broken deterministically)

Fig. 3. An implementation of Order Oracle in an asynchronous system

This simple algorithm is similar to the heartbeat failure detector [1], with one
important difference: it uses reliable broadcast [10] rather than ordinary broad-
cast. This ensures that not only maxsteps of correct processes keep increasing
without limit (i), but also that eventually maxsteps corresponding to faulty pro-
cesses will be the same at all correct processes (ii). Note that the agreement on
the order of faulty processes is only “eventual” in the same sense as reliable
broadcast makes correct processes agree on the set of broadcast messages. In
particular, it does not contradict FLP [5].

Conclusion. By taking the results from Section 4 and this section together, we
can conclude that a failure detector is implementable in the purely asynchronous
system iff there is a map consistent (12) with its specification infset .

6 Comparing Relative Strengths of Failure Detectors

This section shows that the theory developed in previous sections allows us not
only to mechanically test implementability, but also to compare relative strength
of failure detectors. In other words, we can test whether a given failure detector
(eg. ♦P) is implementable in the asynchronous system equipped with another
detector (eg. Ω).

For any failure detector S, consider a purely asynchronous system consisting of
real processes P and virtual processes RS , one for each possible output of S (its
range). For example, with a two-process ♦P, we have processes P = {1, 2} and
R♦P = { , , }. In general, the set of processes is the disjoint union [P, RS ], in
which members of P and RS keep separate identities2, even if they have identical
names (eg. RΩ = P ).

The scheduler ensures that virtual processes behave according to the detector
specification, that is, the set [C, S] ⊆ [P, RS ] of correct processes satisfies S ∈
infset(C). (A process is correct iff it takes infinitely many steps.) Given this
assumption, real processes p ∈ P can emulate the failure detector by always
outputting the most-recently heard-from virtual process s ∈ RS (Thm. 6).

2 Formally, [A1 . . . Ak] = { (a, i) | a ∈ Ai }. Then, [A, B] ⊆ [A′, B′] ⇔ A ⊆ A′∧B ⊆ B′.
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To check whether a failure detector S can implement another detector T , we
need to test whether T is implementable in the system [P, RS ]. The specification
of T in this system is

infsetT ([C, S]) = infsetT (C) for all S ∈ infsetS(C). (13)

By convention (9), the undefined cases [C, S] with S /∈ infsetS(C) allow arbitrary
behaviour: infsetT ([C, S]) = {X | X ⊆ RT }.

Example 1. Consider a two-process system equipped with ♦?P (Figure 1).
To show that ♦P is implementable in such a system, consider the requirements
(13):

infset♦P([1, ]) = , infset♦P([2, ]) = , infset♦P([12, ]) = .

To implement ♦P, output if ♦?P outputs . Otherwise output or , depending
whether the most recently heard-from process is 1 or 2. This strategy corresponds
to the following map, which satisfies (12):

21 , 2 1, 21, 2 1, 2 1 , 21 ,→ 12 , 1 2, 12, 1 2, 1 2 , 12 ,→
12 , 1 2, 21 , 2 1, 12, 21 ,→ 12 , 1 2 , 1 2, 21 , 2 1 , 2 1 ,→

Example 2. To show that Ω cannot implement ♦?P, consider the requirements

infset♦?P([1, 1̂]) = , infset♦?P([2, 2̂]) = ,

infset♦?P([12, 1̂]) = infset♦?P([12, 2̂]) = .

(I use 1̂, 2̂ for Ω outputs to avoid name collisions with processes 1, 2.) First,
infset([12, 2̂]) = and (12) imply that map(1̂122̂) = . However, infset([2, 2̂]) =
implies map(1̂122̂) = , which contradicts map(1̂122̂) = .

7 Game-Theoretic Interpretation of Implementability

Two players, YES and NO, play the following game. In the k-th turn, NO chooses
a set Ck ⊆ P , and YES chooses Sk ∈ infset(Ck). The sets must satisfy C1 ⊃
C2 ⊃ · · · = ∅, and S1 ⊇ S2 ⊇ · · · = ∅. The first player unable to make a move
loses. Theorem 7 shows that YES has a winning strategy iff the failure detector
is implementable.

Figure 4 (left) shows the game tree for the two-process Ω. Each path C1, S1,
. . . , starting at the root, represents a sequence of moves. For example, “12, 1̂,
1, 1̂” is a victory for YES, and “12, 2̂, 1” for NO. White nodes are wins for
YES, black ones for NO. The colour of a node can be easily computed using
the minimax algorithm [12]: Ck (resp. Sk) nodes are black iff all (resp. some)
of their children are black. Since C1 = 12 is black, NO has a winning strategy,
so the two-process Ω is not implementable. As Fig. 4 (right) suggests, similar
reasoning works for general n > 2 (Thm. 9).
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Fig. 4. Game trees for Ω with two processes (left), and three process (right)
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T1 =

[C2, S2] =

root

1, 2, 12,

root
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1, 2,

13,

1, 3,

23,

2, 3,

123,

(a) Ω, ♦?P, 2 (b) ♦?P, ♦P, 2 (c) ♦?P, ♦P, 3

Fig. 5. Game trees corresponding to implementing detector T in a system equipped
with detector S in an n-process systems, for three different (S, T, n)

7.1 Comparing Relative Detector Strengths Using Game Theory

With the modifications described in Section 6, the game-theory approach can
also be used to check whether one failure detector S can implement another de-
tector T . Since the system is now equipped with S, player NO chooses [C1, S1] ⊃
[C2, S2] ⊃ · · · = ∅. YES chooses T1 ⊇ T2 ⊇ · · · = ∅ with Tk ∈ infsetT ([Ck, Sk]).

We can assume that Sk ∈ infsetS(Ck) and Ck−1 ⊃ Ck, because otherwise
YES could always repeat its previous move, which cannot benefit NO (Lemma
8). With (13), this implies Tk ∈ infsetT (Ck).

Figure 5 shows game trees corresponding to implementing detector T in a
system equipped with detector S in an n-process systems, for three different
(S, T, n). Case (a) shows that Ω cannot implement ♦?P in a two-process system.
Detector ♦?P can implement ♦P with two processes (b), but not with three (c).

7.2 Anti-Ω: The Weakest Failure Detector

The anti-Ω failure detector is specified as

infsetanti-Ω(C) = {S | C � S ⊆ P }. (14)
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Fig. 6. Game tree for the three-process anti-Ω

It outputs process ids, and ensures that some correct process id will eventually
never be output. Note that the classic Ω ensures that such an id will eventually
always be output.

Theorem 10 shows that anti-Ω is not implementable: NO can win by playing
C1 = P and then always copying YES’s last move Ck+1 = Sk. This strategy
corresponds to the black nodes in the three-process anti-Ω game-tree shown in
Figure 6 on page 476. In this tree, each Sk-node has exactly one black child;
the minimax rule therefore implies that whitening any black node would make
the game winnable by YES. In a sense, anti-Ω is therefore a “locally weakest
detector”.

Theorem 12 uses the method from Section 7.1 to prove a stronger result:
anti-Ω is the (globally) weakest non-implementable eventual failure detector
in the sense that it can be implemented by any non-implementable detector.
In particular, anti-Ω is strictly weaker than Υ , the weakest stable detector [9]:

infsetΥ (C) = { {T } | C = T ⊆ P }. (15)

(A detector is stable iff it eventually outputs the same symbol, that is, all
infset(C)’s consist of singleton sets only.) As a by-product, this shows that some
failure detectors, such as anti-Ω, have no stable equivalents.

Anti-Ω is also the weakest detector that solves set agreement [13].

8 Automatic Failure-Detector Discovery Results

Section 6 introduced a mechanical procedure for comparing failure detector
strength in a system with a given number of processes. The game-theoretic ap-
proach of Section 7 dramatically improved the efficiency by using standard game
solving techniques (eg. alpha-beta cutting [12], proof-number search [2]). This
section gives a glimpse at the failure detector specification space by enumerating
eventual failure detectors and their relationships in systems with two and three
processes.
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8.1 Two Processes, All Detectors

This section enumerates and compares all failure detectors with two processes
and at most three outputs. The sets infset(1), infset(2), and infset(12) can each
take 18 possible values, giving the total of 183 = 5832 failure detectors. Computer
testing shows that they all fall into 5 equivalence classes, shown below (left) with
several members (right).

imple-
mentable Ω ♦?1 ♦?2 ♦P

infset(1) 1 1
infset(2) 2 2
infset(12) 12 1,2

equivalent to −→

♦S ?Ω ♦?12 ♦?21 ♦?P

1
2

, 1 , 2

Ω Ω ?1 ?2 ♦P

The implementability relationship between these classes is

implementable ♦?1

♦?2

♦P

implementable < Ω < ♦?1 < ♦ P
implementable < Ω < ♦?2 < ♦ P

Detectors ♦?1 and ♦?2, which eventually detect whether process 1 (resp. 2) is
correct, are of incomparable strength.

8.2 Three Processes, Symmetric Detectors

The number of three-process failure detectors with three outputs is 187 ≈ 6×108.
For this reason, this section considers only symmetric failure detectors, which
treat all processes equally, that is, do not favour any particular permutation of
processes or group of such permutations. Such detectors fall into two categories:
(i) those that output process-independent symbols, such as ♦?P, and (ii) those
that output process ids, such as Ω. There are 6024 such detectors, grouped into
28 equivalence classes shown in Figure 7.

Figure 7 contains several known failure detectors, such as Ω, anti-Ω, and ♦?P.
The strongest detector in Figure 7 on page 478 eventually outputs the number
k of correct processes. It is equivalent to ♦P, which it can emulate by suspecting
the n− k least recently heard-from processes.

The 28 equivalence classes in Figure 7 on page 478 do not contain all symmet-
ric detectors. Detectors that behave as class (i) or (ii), depending on the number
of correct processes, form 654 such classes. Allowing non-symmetric detectors
and/or more output symbols might increase this number even more. Based on
the relatively few failure detectors identified in the literature, such a high number
is rather unexpected (and we are only considering systems with three processes
here!).
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Fig. 7. Three-process failure detectors with three outputs

9 Conclusion

This paper investigated the space of eventual failure detectors. The key result is
Theorem 1: every implementable detector is a function of the order of recently
heard-from processes. By emulating failure detectors with virtual processes cor-
responding to their outputs, we can use the same technique to compare the
strengths of different detectors.

Implementability is also equivalent to a winning strategy in a particular two-
player game. The advantage of this approach is that it has more structure and
a more intuitive visual representation. This makes failure detectors easier to
analyse, and leads to more succinct, intuitive, and elegant proofs, using existing
results from game theory. As an example, this paper identified the weakest even-
tual failure detector anti-Ω. Every query returns a single process; the detector
might not stabilize, but there is a correct process that eventually will never be
output.

Both approaches produce a finite number of failure detectors, thereby making
comprehensive computer search possible. Such a search, applied to three-process
detectors with three outputs, generated many known detectors, but also revealed
an unexpected richness of non-equivalent failure detector classes. I hope that a
similar methodology can be used to explore the space of distributed problems
such as consensus, renaming, etc.

The benefits of computer search extend to theoretical results as well, many of
which would have been difficult to derive without it. For example, the ability of
quick implementability verification was very valuable in identifying anti-Ω and
proving its properties. I believe that using computer search as a tool for developing
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and testing one’s intuition about a problem is a useful and productive technique
that should become more popular in distributed-computing research.
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1 Context and Motivation

Recently, we challenged the belief that randomized Byzantine agreement proto-
cols are inefficient, by designing, implementing and assessing the performance
of a stack of protocols of that type [3]. That assessment lead us to a set of
properties desirable for Byzantine asynchronous binary consensus protocols: (1)
Strong validity – if all correct processes propose the same value v, the decision
is v (values proposed by Byzantine processes are often useless); (2) Asynchrony
– no time assumptions are made (systems are often prone to arbitrary delays);
(3) Decentralization – there is no leader (leader elections have a great impact on
performance); (4) Optimal resilience – n ≥ 3f +1 processes to tolerate f Byzan-
tine (extra processes are costly); (5) Optimal message complexity – O(n2) (high
impact on throughput); (6) Signature freedom (high impact of signatures based
on public-key cryptography on the performance); (7) Early decision – in “nice”
runs the protocol should decide in a few communication steps (good latency in
the “normal” case).

The main characteristic of the decentralized protocols we are interested in
this paper is that they can not require any reliable certificate from a process pi,
obtained in phase k or less, in order to justify a message sent in phase k + 1.
This is the case because, in our system model, this kind of certificate can only be
build with digital signatures (violating signature freedom) or reliable multicast
(that can not be executed by all processes maintaining a message complexity
O(n2)). Moreover, given the validity condition we stipulated (1), we require that
all correct processes communicate their proposals to each other (a process can
not trust another process to correctly communicate its value to a third process,
since there are no signatures).

2 The Tradeoff

Is it possible to design such a Byzantine asynchronous binary consensus protocol?
The main results in the paper are given by the following theorems:

� Work supported by project IST-4-027513-STP (CRUTIAL) and LaSIGE.
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Theorem 1 (Impossibility result). There is no decentralized algorithm that
solves asynchronous binary Byzantine consensus with n ≤ 5f , O(n2) message
complexity and without signatures.

Given this impossibility and several other results and protocols already described
in the literature, it is possible to define in which conditions a binary decentralized
Byzantine consensus protocol can exist:

Theorem 2 (Tradeoff). Decentralized algorithms that solve asynchronous bi-
nary Byzantine consensus can be build with and only with:

1. More Processes: n ≥ 5f + 1, O(n2) message complexity and signature
freedom;

2. More Messages: n ≥ 3f + 1, O(o) message complexity (n2 < o ≤ n2f)
and signature freedom;

3. Signatures: n ≥ 3f + 1, O(n2) message complexity and using signatures.

Notice that the bound established by Theorem 2 regarding more messages is
not tight: we do not know if it is possible to solve Byzantine consensus without
signatures and optimal resilience with message complexity lower than O(n2f),
but greater than O(n2).

3 Discussion

An interesting consequence of the theorems above is that decentralized protocols
are inherently more costly in terms of the three properties considered (resilience,
message complexity, signature) than leader-based Byzantine consensus protocols.
For instance, the CL-BFT state machine replication protocol, that can be triv-
ially adapted to solve consensus, is not subject to the tradeoff in Theorem 2 [2].
However, this protocol does not ensure the strong validity condition that we are
interested in and requires synchrony to be able to terminate.

Theorem 1 implies that a consensus protocol with all the desired properties
listed above can not be designed. However, we developed an improved protocol
based on Bracha’s Byzantine consensus [1], an algorithm that we believe is close
enough to the desired characteristics that we envisage. This protocol improves
the original Bracha’s protocol in two main points: (1.) its message complexity is
O(n2f) instead of O(n3); and (2.) it can terminate in one communication step
if some optimistic conditions hold (no faults and unanimity).
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Abstract. Distributed Greedy Coloring is an interesting and intuitive
variation of the standard Coloring problem. It still consists in coloring
in a distributed setting each node of a given graph in such a way that
two adjacent nodes do not get the same color, but it adds a further
constraint. Given an order among the colors, a coloring is said to be
greedy if there does not exist a node for which its associated color can be
replaced by a color of lower position in this order without violating the
coloring property. We provide lower and upper bounds for this problem in
Linial’s model and we relate them to other well-known problems, namely
Coloring, Maximal Independent Set (MIS), and Largest First Coloring.
Whereas the best known upper bound for Coloring, MIS, and Greedy
Coloring are the same, we prove a lower bound which is strong in the
sense that it now makes a difference between Greedy Coloring and MIS.

We discuss the vertex coloring problem in a distributed network. Such a network
consists of a set V of processors and a set E of bidirectional communication
links between pairs of processors. It can be modeled by an undirected graph
G = (V, E). We denote n = |V |, m = |E| and for each vertex v define its
neighborhood Nv = {u : {u, v} ∈ E} and vertex degree degG v = |Nv|. The set of
neighbours of high degree is denoted by N≥

v = {u ∈ Nv : deg u ≥ deg v}.
To color the vertices of G means to give each vertex a positive integer color

value in such a way that no two adjacent vertices get the same color. If at most k
colors are used, the result is called a k-coloring. In many practical considerations,
such as code assignment in wireless networks [1], it is desirable to minimise the
number of used colors. The smallest possible positive integer k for which there
exists a k-coloring of G is called the chromatic number χ(G). This value is
bounded from above by Δ + 1, where Δ denotes the maximal vertex degree of
the graph; consequently, a graph always admits a (Δ + 1)-coloring.
� The research was partially funded by the European projects COST Action 293,
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The problems discussed in this paper can be formulated using a local def-
inition: the goal is to achieve a state of the system in which the local state
variables associated with each node fulfill certain constraints with respect to the
local state variables of its neighbours.

Definition 1. The problems are defined by the following constraints on the local
variable1 c at vertex v:

(Δ + 1)-Coloring (COL): c(v) ∈ {1, . . . , Δ + 1} \ c(Nv)

Greedy Coloring (G-COL): c(v) = min {1, . . . , Δ + 1} \ c(Nv)

Largest-First Coloring (LF-COL): c(v) = min {1, . . . , Δ + 1} \ c(N≥
v )

Maximal Independent Set (MIS): c(v) �= 0 ⇔ c(Nv) = {0}

We provide lower and upper bounds on the deterministic distributed (Linial’s
model) time complexity of Greedy Coloring (G-COL) with respect to Coloring
(COL), Maximal Independent Set (MIS) and Largest First Coloring (LF-COL).
A summary of the results is contained in Table 1, where (*) indicates the new
results obtained in this paper. In particular, we derive new upper bounds for G-
COL and LF-COL and a new lower bound for G-COL. Whereas the upper bounds
for the COL, MIS, and G-COL are the same, we prove a strong lower bound in
the sense that our lower bound now makes a difference between G-COL and MIS.

Table 1. The time complexity of Greedy Coloring with respect to other well-known
problems in the distributed setting. The table can be read also vertically as (Δ + 1)-
Coloring ≤ Maximal Independent Set ≤ Greedy Coloring ≤ LF-Coloring.

Problem Lower Bound Upper Bound

(Δ + 1)-Coloring (COL) Ω(log∗ n) [2] 2O(
√

log n) [3,4]

Maximal Independent Set (MIS) Ω
(√

log n
log log n

)
[5]

2O(
√

log n) [3,4]
O(Δ + COL)

2O(
√

log n) (*)

Greedy Coloring (G-COL) Ω
(

log n
log log n

)
(*) O(Δ + COL) (*)

O(Δ2 + log∗ n) [2]

Largest-First Coloring (LF-COL) Ω(
√

n ) [6]
O(

√
n) (*)

O(Δ · MIS) [6]
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There is a proliferation of models for distributed computing, consisting of both
shared memory and message passing paradigms. Different communities adopt
different variants as the “standard” model for their research setting. Since sub-
tle changes in the communication model can result in significant changes to the
solvability/unsolvability or to the complexity of various problems, it becomes
imperative to understand the relationships between the many models. The sit-
uation becomes even more complicated when additional requirements such as
fault-tolerance are added to the mix. This motivates us to determine exactly un-
der what circumstances a program designed for one model and delivering some
set of additional guarantees can be converted into an “equivalent” programs for a
different model while delivering comparable guarantees. Once these relationships
are understood, they can be exploited in system design.

Our work addresses this question for networks of processors that communi-
cation by locally shared registers. A network that uses locally shared registers
can be modelled by a graph where nodes represent processors and there is an
edge between two nodes if and only if the corresponding processors communicate
directly by reading or writing registers shared between them. Two variants are
defined by specifying whether the registers are single-writer/multi-reader and
located at the nodes (called state models) or single-writer/ single-reader and
located on the edges (called link models).

The shared registers used by the communicating processors further distin-
guishes possible models. Lamport [4] defined three models of single-writer/multi-
reader registers, differentiated by the possible outcome of read operations that
overlap concurrent write operations. These three register types, in order of in-
creasing power, are called safe, regular, and atomic. Program design is easier
assuming atomic registers rather than weaker registers but the hardware imple-
mentation of an atomic register is costlier than the implementation of one of the
weaker ones.

By specifying either state or link communication, via shared registers that are
either regular, atomic, or safe we arrive at six different network models that use

� This work was partially supported by the program ACI ‘security and dependability’
FRAGILE and by the NSERC (Canada) Discovery Grant.
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locally shared registers. For example, the atomic-state model has atomic registers
located at the nodes of the network. The other models are named similarly. An
algorithm for any one of these networks could provide some fault tolerance. So,
we consider a third parameter, namely, wait-freedom, which captures tolerance
of stopping failures of components of the network, or self-stabilization, which
captures recovery of the network from transient errors of its components.

We seek to determine under what conditions it is possible to transform a
wait-free (respectively, self-stabilizing) solution to a given problem under one
of these models into a wait-free solution (respectively, self-stabilizing) solution
under another of the six models.

In an earlier paper [2], we proved that a wait-free compiler from atomic-
state systems to atomic-link systems requires that if two processors, a and b,
each share a register with a third processor c, then a and b must themselves
share a register. But, in a network, processors that are not neighbours cannot
share a register. A consequence of this essential distinction between networks
and globally shared memory systems is the impossibility: “There is no wait-
free compiler from atomic-state systems to regular-state systems for the same
network graph for any network graph that is not complete”. We also presented
a self-stabilizing compiler from network graphs where neighbours communicate
via atomic-state registers to systems where neighbours communicate via atomic-
link registers [2]. This compiler, however, had some shortcomings. It is not a
silence-preserving compiler; it requires that each processor in the atomic-state
system being implemented executes an atomic-state read operation infinitely
often; the implementation of the atomic-state write operation is not wait-free;
the implementation of the atomic-state read operation is not even obstruction-
free. Furthermore, the proof of correctness failed to characterize the legitimate
configurations: instead it only established that all computations of the compiled
algorithm are eventually linearizable.

Contributions. Our principal result is a self-stabilizing compiler from the atomic-
state model to the regular-state model. This compiler is also silent. That is, if,
once registers are stabilized, the atomic-state algorithm does not require the
participation of neighbours, then the transformed regular-state algorithm also
does not require the participation of neighbours. As a consequence, our compiler
does not add significant overhead to communication. The code and the self-
stabilization proof is presented in a technical report [3]. Our compiler has some
additional appealing properties: The size of each shared regular register used
by the compiled algorithm is log(M) + 1 + log(B) bits where M is the number
of processor states of the initial algorithm and B is greater than the network
degree. The compiled algorithm has strong progress guarantees. Specifically, the
implementation of any write operation is wait-free. The implementation of a
read is not wait-free, but it is obstruction-free.

For all the remaining relationships (bothpossibilities and impossibilities)among
the four models that use atomic and regular registers under either self-stabilizing
and wait-free requirements, we either observe that they have been answered by
existing research or we show how they can be derived from combinations of
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earlier results. Thus, our compiler closes the proposed questions among four of the
six models. These results are summarized in the following figure.

What remains open is whether or not there is a self-stabilizing compiler from
networks (state or link) with regular registers, to the corresponding network with
only safe registers. Interestingly, Lamport’s construction of single-writer single-
reader single-bit regular registers from single-writer single-reader single-bit safe
registers [4] fails to be self-stabilizing [1]. We conjecture that this shortcoming
can be rectified at the expense of wait-freedom.
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This brief announcement focuses on interoperability of software transactions
with ad hoc nonblocking algorithms. Specifically, we modify arbitrary nonblock-
ing operations so that (1) they can be used both inside and outside transactions,
(2) external uses serialize with transactions, and (3) internal uses succeed if and
only if the surrounding transaction commits. Interoperability enables seemless
integration with legacy code, atomic composition of nonblocking operations, and
the equivalent of hand-optimized, closed nested transactions.

The key to transaction safety is to ensure that memory accesses of operations
called from inside a transaction occur (or appear to occur) if, only if, and when
the surrounding transaction commits. We do this by making writes manifestly
speculative, with their fate tied to that of the transaction, and by logging reads
for re-validation immediately before the transaction commits. (Because correct
nonblocking code is designed to tolerate races, additional, intermediate valida-
tion is not required.) When called from outside a transaction, operations behave
as they did in the original nonblocking code, except that they aggressively abort
any transaction that stands in their way. Operations inside a transaction simi-
larly abort transactional peers. They are unaware of nontransactional peers.

We provide nonblocking objects with “transaction aware” versions of refer-
ences and other basic primitive types such as integer, long, etc. These provide
Get, Set, and CAS operations, which the programmer uses instead of conven-
tional accesses. If called inside a transaction, Get logs the target location for
later validation; Set and CAS speculatively modify the target location. Changes
become permanent at transaction commit time. If called outside a transaction,
all three operations “clean up” any encountered speculative updates, aborting
conflicting transactions if necessary. Given correct nonblocking code, the changes
required to create a transaction-safe version are mechanical.

To make a type transaction-aware, we must be able to distinguish between
real and speculative values. For some types (e.g., pointers in C) we may be
able to claim an otherwise unused bit, or use features such as runtime type
identification in strongly typed languages such as Java. For others we may use
a sentinel value to trigger address-based lookup in a separate metadata table.
With support for transaction aware primitives, we expect that construction of
transaction safe versions of nonblocking algorithms would require little or no

� This work was supported in part by NSF grants CNS-0411127 and CNS-0615139,
equipment support from Sun Microsystems Laboratories, and financial support from
Intel and Microsoft.
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Fig. 1. Performance of transaction safe nonblocking objects with varying percentage of
transactional and nontransactional invocations (50% inserts and 50% deletes). Experi-
ments on a 16-processor 6800 SunFire cache coherent multiprocessor machine. Compar-
ison with original nonblocking algorithms, and a natural transactional implementation.

additional programming effort, particularly if these primitives are supported in
standard libraries.

Our preliminary implementation is in the context of the ASTM [3] system,
where we extended the AtomicReference Java library class with a transaction aware
version TxAtomicRef. We leveraged ASTM’s transactional metadata structure
(which consists of an indirection object called the locator that determines the
current consistent version of the data, and its current writer transaction) to
represent speculative values of TxAtomicRefs.

We implemented several nonblocking algorithms using TxAtomicRef including
Michael and Scott’s lock-free queue [4] and Harris’ lock-free linked list [1] (results
in Figure 1). In all cases we simply replaced the AtomicReferences in the original
algorithms with TxAtomicRefs in our constructions. Our results suggest that while
transaction safety makes nonblocking data structures somewhat slower, the re-
sulting constructs interoperate smoothly with transactions, and can significantly
outperform the natural “fully transactional” alternatives.
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Fault-tolerant systems often require a means by which independent processes
or processors can arrive at an exact mutual agreement of some kind. The work
announced in this note studies the continuous consensus problem, which is a
general tool for enabling actions that are performed at the same time at different
sites of the system to be consistent with one another (e.g., mutual exlusion,
firing squad etc). Suppose that we are interested in maintaining a simultaneously
consistent view regarding a set of events E in the system. These are application-
dependent, but will typically record inputs that processes receive at various
times, values that certain variables have at a given time, and faulty behavior
in the form of failed or inconsistent message deliveries. A continuous consensus
(CC) protocol maintains at all times k ≥ 0 a core Mi[k] of events of E at every
site i. In every run of this protocol the following three properties are required to
hold, for all nonfaulty processes i and j.

Accuracy: All events in Mi[k] occurred in the run;
Consistency: Mi[k] = Mj [k] at all times k; and
Completeness: If the occurrence of an event e ∈ E is known to process j at

any point, then e ∈ Mi[k] must hold at some time k.

A CC protocol can replace the need for initiating separate instances of a consen-
sus protocol. By monitoring a number of events, the protocol can automatically
ensure consensus on a variety of issues. Continuous consensus was defined in
[2], where it was studied in the crash and sending omissions failure models. We
consider the continuous consensus problem in harsher failure models. More inter-
estingly, since continuous consensus is a service that should operate indefinitely,
we study it under the bounded failure interval assumption, which is parame-
terized by a pair (t, T ). The assumption states that at most t processes act in
a faulty manner over any interval consisting of T rounds. In particular, it may
well be the case that no process behaves correctly throughout an execution. This
model was introduced by Castro and Liskov [1], who termed the interval T a
Window of vulnerability, and studied protocols for such failure behavior in the
context of malicious Byzantine failures. Note that the standard assumption that
at most t processes fail overall is represented by the (t,∞) assumption. An im-
portant distinction between (t, T ) and (t,∞) is the fact that correct protocols in
this model must provide facilities for recovery of the data of processes that were
formerly faulty and have become rehabilitated. Since processes can alternate be-
tween being considered faulty and nonfaulty during the course of an execution,
we need to refine the specification of the continuous consensus problem slightly.
For the purpose of the definition, we consider a process nonfaulty at time k
if it behaves correctly in the preceding T rounds, as well as in the following
round k + 1.
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The current work provides the following advances regarding continuous con-
sensus in the different models.

– We show that for pairs (t, T ) with t ≥ T , no CC protocol can guarantee to
ever maintain a nonempty core, even in the crash failure or sending omis-
sions failure model. Interestingly, however, there are “lucky” behaviors of
the adversary in such models, in which the core does become nonempty. (In
such runs it is possible, for example, to reach simultaneous consensus.)

– We present an optimum and efficient polynomial-time solution to CC in the
crash and (sending) omissions failure models. For every pattern of failures,
the core maintained by this protocol at any given time is a superset of the
core that any given correct (even computationally unbounded) protocol for
CC would provide. Based on the (t, T ) failure assumption, failure information
may become outdated, allowing the adversary new powers to fail processes.
As a result, the time it takes information to enter the core may vary in both
directions (increasing and decreasing) during a given execution. Nevertheless,
we show that the core itself is never reduced in size. The protocol we design is
a non-trivial modification of the uniform CC protocol presented in [2] under
the (t,∞) bound assumption.

– We study CC in the general omissions (see [3]) and authenticated Byzantine
models ([4]). We modify a lower bound in [3] to prove that an optimum pro-
tocol for CC in these models requires NP-hard computations to be performed
between rounds. This news is not detrimental, since optimum solutions are
rare in general. For eventual consensus, for example, it has been shown in [3]
that no optimum protocol exists at all. We first present continuous consen-
sus protocols for (t, T ) failures of both types in which the information of
correct processes enters the core within t + 1 rounds. We then proceed to
provide CC protocols that place data in the core faster than that in many
runs. To this end, we present two types of protocols. One type consists of
computationally efficient protocols that have good behavior in the best case,
and more theoretical protocols that make use of an NP oracle and produce
good performance much more often.

We believe that both the the use of a continuous consensus service and the
(t, T )-bounded failures model are worthwhile abstractions that will find many
uses in a variety of applications.
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Abstract. We describe a distributed algorithm for convex constrained
optimization in networks without any consistent naming infrastructure.
The algorithm produces an approximately feasible and near-optimal so-
lution in time polynomial in the network size, the inverse of the permit-
ted error, and a measure of curvature variation in the dual optimization
problem. It blends, in a novel way, gossip-based information spreading,
iterative gradient ascent, and the barrier method from the design of
interior-point algorithms.

1 Problem Description

We consider an undirected graph G = (V, E), with V = {1, . . . , n}, in which
each node i has a non-negative decision variable xi. Our goal is to solve convex
optimization problems of the following form.

minimize f(x) =
n∑

i=1

fi(xi) (1)

subject to Ax = b

xi ≥ 0, i = 1, . . . , n

We assume that each function fi is twice differentiable and strictly convex, with
limxi↓0 f ′

i(xi) < ∞ and limxi↑∞ f ′
i(xi) = ∞. The elements of the m× n matrix

A and the vector b ∈ Rm are non-negative.
Although we seek a solution to the primal problem (1), instead of directly

enforcing the non-negativity constraints, we introduce a logarithmic barrier. For
a parameter θ > 0, we replace the objective function in (1) by

∑n
i=1(fi(xi) −

θ ln xi), and we remove the constraints xi ≥ 0 to obtain a primal barrier problem.
The associated Lagrange dual problem is the following optimization problem, for
which a feasible solution is any vector λ ∈ Rm.

maximize gθ(λ) = −bT λ +
n∑

i=1

inf
xi>0

(
fi(xi)− θ ln xi + aT

i λxi

)
(2)

We assume that the primal barrier problem is feasible; that is, there exists a
vector x ∈ Rn with xi > 0 such that Ax = b. As a result, the optimal value of
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the primal barrier problem is finite, and Slater’s condition implies that the dual
problem (2) has the same optimal value, and there exists a dual solution λ∗ that
achieves this optimal value. Since (2) is an unconstrained maximization problem
with a strictly concave objective function, the optimal solution λ∗ is unique.

2 Algorithm Description

Our approach to solving the primal problem (1) is to apply gradient ascent
for the dual barrier problem (2). The algorithm generates a sequence of feasible
solutions λ0, λ1, λ2, . . . for (2), where λ0 is an initial vector provided as input. To
update λk−1 to λk in an iteration k, the algorithm uses the gradient ∇gθ

(
λk−1

)
to determine the direction of the difference λk − λk−1.

For a dual solution λ, the gradient ∇gθ(λ) is given by ∇gθ(λ) = Ax(λ) − b,
where the vector x(λ) ∈ Rn is defined by xi(λ) = h−1

i

(
−aT

i λ
)
. Here, the function

hi is defined as hi(xi) = f ′
i(xi)− θ/xi, and ai is the ith column of the matrix A.

To compute a component j ∈ {1, . . . , m} of the gradient, the nodes estimate the
sum

∑n
i=1 Ajixi(λ) using a distributed summation algorithm by Mosk-Aoyama

and Shah (PODC, 2006). This is a randomized algorithm that takes an error
parameter ε1 as input, and is said to succeed if the output value it produces is
within a factor of 1± ε1 of the actual sum.

Based on the formula above for∇gθ(λ), the norm of the gradient measures how
far the vector x(λ) is from satisfying the equality constraints in (1). The nodes
continue to execute iterations of gradient ascent until the �2-norm ‖∇gθ(λ)‖ goes
below a threshold determined by an input error parameter, where λ is the current
dual solution. At this point, the algorithm terminates with the vector x(λ) as
the output. The number of iterations required for the algorithm to terminate
can be bounded in terms of the following quantity.

R =

(
maxi=1,...,n maxλ∈B(λ∗,‖λ0−λ∗‖)

(
h−1

i

)′ (−aT
i λ
))

σmax

(
AT
)2(

mini=1,...,n minλ∈B(λ∗,‖λ0−λ∗‖)
(
h−1

i

)′ (−aT
i λ
))

σmin (AT )2
(3)

Here, B(λ∗, r) = {λ | ‖λ − λ∗‖ ≤ r}, and σmin

(
AT
)

and σmax

(
AT
)

denote the
smallest and largest singular values, respectively, of the matrix AT .

Given an error parameter ε as input, the nodes set the parameters used in
the gradient ascent so that, provided that every invocation of the summation
subroutine succeeds, the number of iterations executed is bounded as follows.

Theorem 1. After O
(
R2 log

(
‖Ax
(
λ0
)
− b‖/(ε‖b‖)

))
iterations, the gradient

ascent terminates with a solution x(λ) such that ‖Ax(λ) − b‖ ≤ ε‖b‖. The ob-
jective function value of the solution satisfies f(x(λ)) ≤ OPT + ε‖b‖‖λ‖ + nθ,
where OPT is the optimal value of the primal program (1).

Some of the parameters in the gradient ascent are set by the nodes using quan-
tities, such as R, whose values would be unknown to the nodes. A complete
algorithm for computing an approximate solution to the primal problem (1)
with high probability can be obtained by adding an outer loop to the algorithm
that executes gradient ascent for different possible values of these quantities.
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Background. In the standard message passing models it is assumed that the
identity of a sender is known to the receiver. In practice, this often is not the case,
due to impersonation attacks by malicious adversaries. Various impersonation
attack schemes have been extensively investigated in the context of network
security or cryptography, in particular for peep-to-peer and sensor networks [4,5].
Here, we study this problem in the context of distributed computing theory.

Consider a set of n processors, p1, ..., pn, communicating by means of point-
to-point message passing between every pair of processors. Assume that the
message sender is identified by including its id in the message. For simplicity
the communication is assumed to be synchronous. The adversary is an external
entity capable of injecting messages with arbitrary content into the network
(but it is incapable of preventing the processors from receiving each other’s
messages). The ids of the processors are assumed to be fixed and known a priori,
thus injecting messages that impersonate the real processors is the only way by
which the adversary can interfere with the computation. Adversarial behavior
of this kind is known as stolen identities Sybil attack [4,5]. For the purpose of
formal analysis, the strength of the adversary is quantified by the number of
messages it is able to send to each processor in every round. A k-adversary can
generate up to k messages for every processor, so that a processor can receive up
to n+k messages in a round, instead of just n correct messages. This formulation
includes the particular cases of an adversary that in every round can impersonate
some specific k processors, or of a system with n + k processors, k of which are
Byzantine, capable of sending messages with arbitrary ids and content.

When a processor receives several messages tagged by pi, it might be impos-
sible to know which one of them is correct, in which case it is reasonable to drop
these messages altogether. If all the messages having a ”fake twin” are handled
this way, we end up with a synchronous mobile failures model [7] in which the
number of transmission failures with respect to every receiver is bounded by
k. This is known to be equivalent to the standard asynchronous crash failure
model [6]. The opposite direction, however, is not true - the k-adversary model
is strictly stronger than the asynchronous model with k failures, because all the
messages sent in every round by the processors are received. For example, in the
impersonation model each processor is able to compute (in a single round) an
upper bound on the input values of all the processors, which is impossible in the
asynchronous case even with a single failure. Thus the question of the relative
power of the impersonation model remains.
� This research was partially supported by Sir Charles Clore fellowship and the Min-

istry of Defence.
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Results. To answer the above question we have considered the k-set agreement
problem (and consensus in particular) and the renaming problem in the imper-
sonation model.

There exists a simple bivalency proof, similar to [1], which shows that de-
terministic consensus is impossible even in the presence of 1-adversary. For the
k-set agreement problem, there exists an algorithm in the presence of (k − 1)-
adversary, but no deterministic algorithm resilient against a k-adversary. The
proof of the latter result uses the combinatorial topology machinery from [3].

For the renaming problem1 there exists a simple order-preserving algorithm
resilient against a k-adversary, that has a target namespace of size n + k, which
is optimal. In the asynchronous case, the minimum possible size of the target
namespace of any order-preserving algorithm resilient to t failures is 2t(n− t +
1)−1 [2]. Whereas for asynchronous order-preserving renaming, the large target
namespace is a result of complete uncertainty about the input values of some
processors, in the impersonation model this uncertainty is reduced (eventually
the input of each processor is known to belong to a small set of possible values),
and as a result the size of the target namespace is significantly smaller.

In summary, our results show that the effects of an impersonation attack, mo-
bile failures and the loss of synchrony are very much alike. The subtle difference
in the computational power of the models is not evident for k-set agreement. On
the other hand, renaming, which is the easier among the coordination problems,
reveals that the models are not equivalent.
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We characterize Perfectly Secure Message Transmission (PSMT) between two
nodes S and R in directed wire model, assuming that n wires are directed from
S to R (also termed as top band) and u wires are directed from R to S (also
termed as bottom band). A mixed adversary (tb, tf) controls tb wires in Byzantine
fashion and tf in fail-stop fashion among these u+n wires with unbounded com-
puting power. S wishes to send a message m from a finite field F in a perfectly
secure manner to R such that the adversary gets no information whatsoever on
m, though he has unbounded computing power. Our characterization is the first
ever characterization for PSMT considering mixed adversary and reveals more
fault tolerance than the existing results [1]. Our protocols terminates in con-
stant number of phases1, performs polynomial computation and have polynomial
communication complexity. The values n, u, tb and tf are system parameters and
known publicly. The characterization for the PSMT depending upon the value
of u, tb and tf is as follows:

Theorem 1. Let G = (V, E) be a digraph and S, R ∈ V with u wires in the
bottom band and n wires in the top band such that the wires in the top band
and bottom band are disjoint. Let G be under the influence of a mixed adversary
(tb, tf ). Then depending upon the value of u, the following holds:

1. If 1 ≤ u ≤ tf , then PSMT is possible iff n = max{3tb+tf +1−u, 2tb+tf +1}.
2. If tf + 1 ≤ u ≤ tb + tf then PSMT is possible iff n = max{3tb + 2tf + 1 −

2u, 2tb + tf + 1}.
3. If u > tb + tf then PSMT is possible iff n ≥ 2tb + tf + 1.

Due to space constraint, we only consider the first case2.

� The Full Version of this paper is available at [2].
�� Work Supported by Project No. CSE/05-06/076/DITX/CPAN on Protocols for Se-

cure Communication and Computation Sponsored by Department of Information
Technology, Government of India.

1 A phase is a communication from S to R or vice-versa.
2 The complete proof is available at [2].
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Proof: Necessity: Any PSMT protocol should also be reliable for which there
should exist 2tb + tf + 1 wires in the top band3.

Sufficiency: We design a three phase PSMT protocol which securely sends m
from S to R provided there exists n = 2tb + tf + 1 wires Fi, 1 ≤ i ≤ n in the
top band and u > tb + tf wires Bj , 1 ≤ j ≤ u in the bottom band. We summarize
the properties of the protocol. Any adversary controlling at most tb + tf wires
among n + u wires gets no information about m. If S correctly receives the
original conflict graph through at least one wire in the bottom band, then S and
R will identify all Fi over which Q(x, i) had been changed during Phase I. The
communication complexity of the protocol is O(n4) field elements4.

Phase I: S to R

• S selects bivariate polynomial Q(x, y) =
∑ tb

i=0
∑ tb

j=0 rijxiyj , where rij ’s are randomly chosen from F

which are independent of m where r00 = Q(0, 0) = m. S evaluates Q(x, y) at y = 1, 2, . . . , n where each
Q(x, i) is a polynomial in x of degree tb and sends over Fi, 1 ≤ i ≤ n the polynomial Q(x, i) and the
values Q(x, j), 1 ≤ j ≤ n at x = i, denoted by vji. The n tuple [vj1vj2 . . . vjn], 1 ≤ j ≤ n corresponds
to the Reed-Solomon codeword of Q(x, j), 1 ≤ j ≤ n.

Phase II: R to S
• During Phase I at most tf wires may fail to deliver any values. However, R will receive in-
formation over at least 2tb + 1 wires. Let R receives information over Fi1 , Fi2 , . . . , Fiα where

2tb + 1 ≤ α ≤ 2tb + tf + 1. Suppose R receives over Fik
, 1 ≤ k ≤ α the polynomial Q′(x, ik) and the

values v′
jik

, 1 ≤ j ≤ n. The received codeword (possibly shortened) [v′
ji1

v′
ji2

. . . v′
jiα

] can differ from

corresponding the actual (shortened) codeword [vji1 vji2 . . . vjiα ] in at most tb locations.

• R creates a directed graph H = (W, E), called conflict graph such that W = {Fi1 , Fi2 , . . . , Fiα} and

(Fij
, Fik

) ∈ E if Q′(ik, ij) �= v′
ijik

, 1 ≤ ij , ik ≤ α. Thus there exists an arc from Fij
to Fik

in H if the

value of Q′(x, ij) received over Fij
when evaluated at x = ik does not match the corresponding value

v′
ijik

received over Fik
implying that either Fij

or Fik
or both are corrupted. Corresponding to each

arc (Fij
, Fik

) ∈ H, R adds a four tuple (Fij
, Fik

, Q′(ik, ij), v′
ij ik

) to a list X. R finally broadcasts the

list X to S through the bottom band.

Phase III from S to R
• During Phase II, the adversary might block the communication over at most tf wires in the bottom
band and change X to some arbitrary list X′. In the worst case, S may receive at most tb + 1 different
lists. Let S receives distinct lists L1, L2, . . . , Lβ through the bottom band, where 1 ≤ β ≤ tb +1. For each
such list Lp, S does the following: S creates a fault list denoted by Lpfault

which is initialized to ∅. For

each four tuple (Fij
, Fik

, Q′(ik, ij), v′
ijik

) present in the list Lp, S locally checks Q′(ik, ij)
?
= Q(ik, ij)

and vijik

?
= v′

ijik
. Depending upon the outcome of the test, S concludes that either R had received

incorrect Q(x, ij) through wire Fij
or R had received the value of the polynomial Q(x, ij) at x = ik

incorrectly through wire Fik
(or both) and hence accordingly add Fij

or Fik
(or both) to Lpfault

.

After performing the above steps for each received list Lp, S broadcasts to R the pairs (Lp, Lpfault
).

Message Recovery by R

R correctly receives the pairs (Lp, Lpfault
) and checks for the original X which it had sent during

Phase II. Since u > tb + tf , even if during Phase II the adversary had blocked communication over tf

wires and changed the original list X to X′ over tb wires, S will correctly receive X through at least one
wire. Hence after Phase III, R always finds the original list X in the received pairs (Lp, Lpfault

). Let

the received pair corresponding to list X be (Lz, Lzfault
). From Lzfault

, R comes to know the identity

of all incorrect Q(x, ij)’s out of the 2tb + 1 ≤ α ≤ 2tb + tf + 1 Q(x, i)’s that R had received during
Phase I, neglects them, interpolates Q(x, y) using the remaining Q(x, ij)’s and recovers m = Q(0, 0).

3 This is a necessary condition for reliable communication between S and R [2].
4 Full details can be found in [2].
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Introduction. In the deferred update technique for database replication, a num-
ber of database replicas are used to implement a single serializable database in-
terface. Its main idea consists in executing all operations of a transaction initially
on a single database replica. Transactions that do not change the database state
can commit locally to the replica they executed, but other transactions must be
globally certified and, if committed, have their update operations submitted to
all replicas. Despite its wide use, we are not aware of any work that explored the
inherent limitations and characteristics of deferred update database replication,
ours being the first attempt in this direction.

We specify a general abstract deferred update algorithm that embraces all the
protocols we know of. This general specification allows for a better understanding
of the technique, including its requirements and limitations and can be used to
ease designing and proving specific protocols.

The Deferred Update Abstraction. Due to the space limitation, we present
only the general idea of our approach and results in this brief announcement. In
our extended technical report [1], we present complete specifications and explain
the results in detail. We start with a general serializable database specification,
later used to prove our abstraction correct, and gradually move towards an
abstract deferred update algorithm. All our specifications have been translated
into the TLA+ specification language [2] and model checked.

From our initial specification of a serializable database, we formalize the no-
tion of order-preserving serializability, introduced by Beeri et al. in the context of
nested transactions [3], for its use in deferred update replication. While previous
works assumed replicas should satisfy order-preserving serializability to ensure
global serializability, we show that serializability is guaranteed if replicas satisfy
the weaker notion of active order-preserving serializability that we introduce.
Some multiversion concurrency control mechanisms [4], for example, are active
order-preserving but not strict order-preserving; yet, our results show that they
can be used in deferred updated protocols.

Our specification of serializability also allows us to reason better about the
actions required to implement it using a number of internal database replicas.
From that, we could specify the atomic actions that abstract the deferred update
technique, that is, the actions implemented by all deferred update protocols. The
abstract deferred update algorithm we present allows us to isolate the properties
� The work presented in this paper has been partially funded by the SNSF, Switzerland

(project #200021-170824).
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of the termination protocol, responsible for certifying and propagating update
transactions to the replicas. We specify three safety properties, namely Non-
triviality, Stability, and Consistency, and discuss their necessity. This discussion
brings out the result that update transactions cannot be propagated to replicas
in different orders, even if they operate (read or write) on completely disjunct
subsets of the data items, for it can break serializability. This is rather counter-
intuitive since serializability would allow such transactions to be scheduled in any
order. Our properties imply that the termination protocol must ensure some-
thing stronger than just the serializability of the update transactions, which
means that proving only that does not suffice.

By extending the termination protocol with a simple liveness property that en-
sures propagation of committed transactions, we were able to show that its prop-
erties necessarily implement, for committed transactions, the Sequence Agree-
ment problem explained in [5]. Briefly, in the sequence agreement problem, a set
of processes agree on an ever-growing sequence of values, built out of proposed
ones. This problem is a sequence-based specification of the celebrated Atomic
Broadcast problem. Our result implies that implementations of the termination
protocol are free to abort transactions, but they must atomically broadcast the
transactions they commit. As a consequence, any lower bound or impossibility
result for atomic broadcast and consensus applies to the termination protocol.

Conclusion. We have formalized the deferred update technique for database
replication and stated some intrinsic characteristics and limitations of it. Previ-
ous works have only considered new algorithms, with independent specifications,
analysis, and correctness proofs. To the best of our knowledge, our work is the
first effort to formally characterize this family of algorithms and establish its
requirements. Our general abstraction can be used to derive other lower bounds
as well as to create new algorithms and prove existing ones correct. Some algo-
rithms can be easily proved correct by a refinement mapping to ours. Others may
require an additional effort due to their extra assumptions, but the task seems
easier than with previous formalisms. In our experience, we have successfully
used our abstraction to obtain interesting protocols and correctness proofs.
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Prologue

DISC 2006 marked the 20th anniversary of the DISC conferences. We list below the
special events that took place during DISC 2006, together with some information and
perspectives on the past and future of DISC.

Special 20th Anniversary Events

The celebration of the 20th anniversary of DISC consisted in four main events: invited
talks by three of the brightest figures of the distributed computing community, and a
panel involving all the people who were at the very beginning of DISC (the abstracts of
the invited talks appear independently in these proceedings).

– An invited talk “Time, clocks and the ordering of my ideas about distributed sys-
tems’’ by Leslie Lamport.

– An invited talk “My early days in distributed computing theory: 1979-1982” by
Nancy Lynch.

– An invited talk “Provably unbreakable hyper-encryption using distributed systems”
by Michael Rabin.

– A panel that discussed the contributions of the WDAG/DISC community to dis-
tributed computing from a historical perspective. The panelists (Eli Gafni, Jan van
Leeuwen, Nicola Santoro, Shmuel Zaks) and the moderator (Michel Raynal) were
the members of the program committee of the second DISC (called WDAG at that
time), held in Amsterdam. The panel reviewed the status of many contributions to
network protocol design and to the understanding of distributed computing in gen-
eral. It also discussed the possible ways in which DISC may evolve in the future.

Past: A Short History

The Workshop on Distributed Algorithms on Graphs (WDAG) was initiated by Eli
Gafni, Nicola Santoro and Jan van Leeuwen in 1985. It was intended to provide a fo-
rum for researchers and other interested parties to present and discuss recent results and
trends in the design and analysis of distributed algorithms on communication networks
and graphs.

Then, more than 10 years later, the acronym WDAG was changed to DISC (the in-
ternational symposium on DIStributed Computing). This change was made to reflect the

A. Pelc (Ed.): DISC 2007, LNCS 4731, pp. 501–503, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



502 M. Raynal, S. Toueg, and S. Zaks

expansion from a workshop to a symposium as well as the expansion of the research areas
of interest. So, following 11 successful WDAGs, DISC’98 was the 12th in the series.

Since 1996 WDAG/DISC has been managed by a Steering Committee consisting
of some of the most experienced members of the distributed computing community.
The main role of this committee is to provide guidance and leadership to ensure the
continuing success of this conference. To do so, the committee oversees the continu-
ous evolution of the symposium’s research areas of interest, it forges ties with other
related conferences and workshops, and it also maintains contact with Springer-Verlag
and other professional or scientific sponsoring organizations (such as EATCS). The
structure and rules of the DISC Steering Committee, which were composed by Sam
Toueg and Shmuel Zaks, and approved by the participants at the the 1996 WDAG busi-
ness meeting in Bologna, can be found at http://www.disc-conference.org. This site also
contain information about previous WDAG and DISC conferences.

The location, program chairs, and proceedings of the WDAG/DISC meetings are
summarized in Table 1, and the Steering Committee Chairs are listed in Table 2.

Table 1. The past (and present) Wdag/Disc

Year Location Program Chair(s) Proceedings
1985 Ottawa N. Santoro and J. van Leeuwen Carleton Scientific
1987 Amsterdam J. van Leeuwen LNCS 312
1989 Nice J.-Cl. Bermond and M. Raynal LNCS 392
1990 Bari N. Santoro and J. van Leeuwen LNCS 486
1991 Delphi S. Toueg and P. Spirakis LNCS 579
1992 Haifa A. Segall and S. Zaks LNCS 647
1993 Lausanne A. Schiper LNCS 725
1994 Terschelling G. Tel and P. Vitányi LNCS 857
1995 Le Mont-Saint-Michel J.-M. Hélary and M. Raynal LNCS 972
1996 Bologna Ö. Babaoglŭ and K. Marzullo LNCS 1151
1997 Saarbrücken M. Mavronicolas and Ph. Tsigas LNCS 1320
1998 Andros S. Kutten LNCS 1499
1999 Bratislava P. Jayanti LNCS 1693
2000 Toledo M. Herlihy LNCS 1914
2001 Lisbon J. Welch LNCS 2180
2002 Toulouse D. Malkhi LNCS 2508
2003 Sorrento F.E. Fich LNCS 2848
2004 Amsterdam R. Guerraoui LNCS 3274
2005 Cracow P. Fraigniaud LNCS 3724
2006 Stockholm S. Dolev LNCS 4167
2007 Cyprus A. Pelc This issue

Table 2. Steering committee chairs

1996-1998 1998-2000 2000-2002 2002-2004 2004-2007
Sam Toueg Shmuel Zaks André Schiper Michel Raynal Alex Shvartsman
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Epilogue, and Future

Together with the whole DISC community, we congratulate DISC for its 20th anniver-
sary. We feel proud to have taken part in this important and successful activity of our
research community, and are confident that DISC will continue to play a central role in
years to come.

We wish to thank all those who contributed over the years to the success of DISC.
Each played an essential role, and each forms a vital link in the DISC chain:

– The local organizers, and their teams, who did everything to ensure a smooth and
successful conference,

– The program committee chairs, program committee members, and external refer-
ees, who ensured the high academic level of the conference,

– The participants of the WDAG and DISC conferences,
– The steering committee members,
– The sponsor organizations, for their generous support over the years,

and - last but not least -
– All the members of the distributed computing community who submitted papers to

WDAG and DISC.

We are confident that the DISC community will continue to play a central role within
the distributed computing and communication networks research communities for many
years to come.

HAPPY ANNIVERSARY TO DISC!

This photo is from DISC 2005 in Cracow, Poland, and was taken during the banquet
at Wierzynek 1364 restaurant (one of the oldest restaurants in Europe). It shows the
first five chairs of the DISC steering committee (from left to right: Shmuel Zaks, Alex
Shvartsman, Michel Raynal, André Schiper and Sam Toueg).
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Abstract. A guided tour through the labyrinth of my thoughts, from the Bakery
Algorithm to arbiter-free marked graphs. This exercise in egotism is by invitation
of the DISC 20th Anniversary Committee. I take no responsibility for the choice
of topic.
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Abstract. I first became involved in Distributed Computing Theory around 1978
or 1979, as a new professor at Georgia Tech. Looking back at my first few years in
the field, approximately 1979-1982, I see that they were tremendously exciting,
productive, and fun. I collaborated with, and learned from, many leaders of the
field, including Mike Fischer, Jim Burns, Michael Merritt, Gary Peterson, Danny
Dolev, and Leslie Lamport.

Results that emerged during that time included space lower bounds for mutual
exclusion; definition of the k-exclusion problem, with associated lower bounds
and algorithms; the Burns-Lynch lower bound on the number of registers needed
for mutual exclusion; fast network-wide resource allocation algorithms; the
Lynch-Fischer semantic model for distributed systems (a precursor to I/O au-
tomata); early work on proof techniques for distributed algorithms; lower bounds
on the number of rounds for Byzantine agreement; definition of the approximate
agreement problem and associated algorithms; and finally, the Fischer-Lynch-
Paterson impossibility result for consensus.

In this talk, I will review this early work, trying to explain how we were think-
ing at the time, and how the ideas in these projects influenced later work.
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Abstract. Encryption is a fundamental building block for computer and com-
munications technologies. Existing encryption methods depend for their security
on unproven assumptions. We propose a new model, the Limited Access model
for enabling a simple and practical provably unbreakable encryption scheme. A
voluntary distributed network of thousands of computers each maintain and up-
date random pages, and act as Page Server Nodes. A Sender and Receiver share a
random key K. They use K to randomly select the same PSNs and download the
same random pages. These are employed in groups of say 30 pages to extract One
Time Pads common to S and R. Under reasonable assumptions of an Adversary’s
inability to monitor all PSNs, and easy ways for S and R to evade monitoring
while downloading pages, Hyper Encryption is clearly unbreakable. The system
has been completely implemented.

Modern encryption methods depend for their security on assumptions con-
cerning the intractability of various computational problems such as the factor-
ization of large integers into prime factors or the computation of the discrete
log function in large finite groups. Even if true, there are currently no methods
for proving such assumptions. At the same time, even if these problems will be
shown to be of super-polynomial complexity, there is steady progress in the devel-
opment of practical algorithms for the solution of progressively larger instances
of the problems in question. Thus there is no firm reason to believe that any of the
encryptions in actual use is now safe, or an indication as to how long it will remain
so. Furthermore, if and when the current intensive work on Quantum Computing
will produce actual quantum computers, then the above encryptions will succumb
to these machines.

At present there are three major proposals for producing provably unbreakable
encryption methods. Quantum Cryptography employs properties of quantum me-
chanics to enable a Sender and Receiver to create common One Time Pads (OTPs)
which are secret against any Adversary. The considerable research and develop-
ment work as well as the funding invested in this effort are testimony to the need
felt for an absolutely safe encryption technology. At present Quantum Cryptog-
raphy systems are limited in range to a few tens of miles, are sensitive to noise
or disturbance of the transmission medium, and require rather expensive special
equipment.

The Limited Storage Model was proposed by U. Maurer. It postulates a public
intensive source of random bits. An example would be a satellite or a system
of satellites containing a Physical Random Number Generator (PRNG) beaming
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down a stream a of random numbers, say at the rate of 100GB/sec. S and R
use a small shared key, and use those bits and the key to form OTPs which are
subsequently employed in the usual manner to encrypt messages. The Limited
Storage Model further postulates that for any Adversary or group of Adversaries
it is technically or financially infeasible to store more than a fraction, say half, as
many bits as there are in a. It was proved by Aumann, Rabin, and Ding and later
by Dziembowski-Maurer, that under the Limited Storage Model assumptions, one
can construct schemes producing OTPs which are essentially random even for a
computationally unbounded (but storage limited) Adversary. The critique of the
Limited Storage Model is three-fold. It requires a system of satellites, or other
distribution methods, which are very expensive. The above rate of transmission
for satellites is right now outside the available capabilities. More fundamentally,
with the rapid decline of cost of storage it is not clear that storage is a limiting
factor. For example, at a cost of $ 1 per GB, storing the above mentioned stream
of bytes will cost about $ 3 Billion per year. And the cost of storage seems to go
down very rapidly.

The Limited Access Model postulates a system comprising a multitude of
sources of random bytes available to the Sender and Receiver. Each of these
sources serves as a Page Server Node (PSN) and has a supply ofrandom pages.
Sender and Receiver initially have a shared key K. Using K, Sender and Receiver
asynchronously in time access the same PSNs and download the same random
pages. The Limited Access assumption is that an Adversary cannot monitor or
compromise more than a fraction of the PSNs while the Sender or Receiver down-
load pages. After downloading sufficiently many pages, S and are make sure that
they have the same pages by employing a Page Reconciliation Protocol. They now
employ the common random pages according to a common scheme in groups of,
say, 30 pages to extract an OTP from each group. Let us assume that the extrac-
tion method is simply taking the XOR of these pages. The common OTPs are
used for encryption in the usual manner.

A crucially important point is that a Page Server Node sends out a requested
random page at most twice, then destroys and replaces it by a new page. Oppor-
tunity knocks only twice!

Why is this scheme absolutely secure? Assume that we have 5,000 voluntary
participants acting as PSNs. Assume that a, possibly distributed, Adversary can
eavesdrop, monitor or corrupt (including by acting as imposter) no more than
1000 of these nodes. Thus the probability that in the random choice of the 30
PSNs from which a group of 30 pages are downloaded and XORed, all 30 pages
will be known to the Adversary is smaller than (1/5)30, i.e., totally negligible.
But if an Adversary misses even one page out of the 30 random pages that are
XORed into an OTP then the OTP is completely random for him.

The send at most twice, then destroy policy, prevents a powerful Adversary
from asking for a large number of pages from each of the PSNs and thereby gain
copies of pages common to S and R. The worst that can happen is that, say, S
will down load a page P from PSNi and the Adversary (or another user of Hyper-
Encryption) has or will download the same page P from PSNi. When R now
requests according to the key K the same page from PSNi, he will not get it. So R
and S never have a page P in common if P was also downloaded by a third party.
The only consequence of an Adversary’s down-loading from too many PSNs is
denial of service to the legitimate users of the system. This is a problem for any
server system and there are ways of dealing with this type of attack.
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What if an Adversary eavesdrops onto the Sender and or Receiver while they
are downloading pages from PSNs. Well, S and R can go to an Internet caf or one
of those establishments allowing a customer to obtain an Internet connection.
They can use a device that does not identify them and download thousands of
pages from PSNs within a short time. The salient point is that S and R need not
time-synchronize their access to the PSNs. Once S and R have common OTPs,
they can securely communicate from their fixed known locations with immunity
against eavesdropping or code breaking.

The initial key K is continually extended and updated by S and R using com-
mon One Time Pads. Each pair of random words from K is used to select a PSN
and a page from that PSN only once and then discarded. This is essential for the
absolute security of Hyper Encryption.

With all these provisions Hyper Encryption in the Limited Access Model also
provides Ever Lasting Secrecy. Let us make a worst case assumption that the
initial common key K or its later extensions were lost or stolen after their use
to collect common random pages from PSNs. Those pages are not available any
more as a result of the send only twice and destroy policy. Thus the extracted
OTPs used to encrypt messages cannot be reconstructed and the encryption is
valid in perpetuity. By contrast, all the existing public or private key encryption
methods are vulnerable to the retroactive decryption attack if the key is lost or
algorithms come up that break the encryption algorithm.

We shall also describe an additional scheme based on the use of search engines
for the generation of OTPs and of unbreakable encryption.

Our systems were fully coded in Java for distribution as freeware amongst
interested users. All the protocols described below are running in the background
on the participating computers and impose negligible computational and storage
overheads on the host computer.
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