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Abstract. Temporal logics and model-checking techniques have proved
successful to respectively express biological properties of complex bio-
chemical systems, and automatically verify their satisfaction in both
qualitative and quantitative models. In this paper, we propose a finite
time horizon model-checking algorithm for the existential fragment of
LTL with numerical constraints over the reals, with the ability to com-
pute the range of values of the real variables occurring in a formula that
makes it true in a model. We illustrate this approach for the analysis of
biological data time series, provide a set of biologically relevant patterns
of formulas, and evaluate them on models of the cell cycle control and
MAPK signal transduction.

1 Introduction

Temporal logics and model-checking techniques [1] have proved useful to respec-
tively express biological properties of complex biochemical systems and automat-
ically verify their satisfaction in both qualitative and quantitative models, i.e. in
boolean [2,3,4], discrete [5,6], stochastic [7,8] and continuous models [9,10,3].
This approach relies on a logical paradigm for systems biology that consists in
making the following identifications [11]:

biological model = transition system
biological property = temporal logic formulae

biological validation = model-checking

Having a formal language not only for describing models, i.e. transition systems
by either process calculi [12,13,14,15,16], rules [2,17,18], Petri nets [19], etc..., but
also for formalizing the biological properties of the system known from biological
experiments under various conditions, opens a whole avenue of research for de-
signing automated reasoning tools inspired from circuit and program verification
to help the modeler [20]. However, the formalization of the biological properties
as a specification in temporal logic remains a delicate task and a bottleneck of
the method.
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In this paper, we investigate the use of this logical paradigm to analyze nu-
merical data, and infer temporal logic specifications from experimental data time
series. There has been work on the inference of correlations and positive and neg-
ative influences between entities from numerical data time series, especially for
gene expression temporal data [21,22]. However to our knowledge, the inference
of temporal logic formulae with real valued variables from numerical data time
series is new.

In this paper, we generalize the finite time horizon model-checking algorithm
described in [9] and recalled in the next section, to the existential fragment of
LTL with numerical constraints over the reals. This first-order setting provides
the ability to compute those instantiations of a formula that are true in a model,
by giving the range of values of the real valued variables occurring in the formula
for which it is true. The completeness of the algorithm is shown for the considered
fragment of constraint-LTL in Sec. 3.

We illustrate the relevance of this approach to the analysis of biological data
time series, by providing a set of biologically relevant patterns of formulas in
Sec. 4, and by evaluating them on models of cell cycle control and of signal
transduction in Sec. 5. We then conclude on the results achieved so far, their
generality, and their use in on-going work.

2 Preliminaries on Model-Checking in Constraint-LTL
over the Reals

2.1 Constraint-LTL over the Reals

The Linear Time Logic LTL is a temporal logic [1] that extends propositional
or first-order logic with modal operators for qualifying when a formula is true in
a tree of timed states, called a Kripke structure. The temporal operators are X
(“next”, for at the next time point), F (“finally”, for at some time point in the
future), G (“globally”, for at all time points in the future), and U (“until”). These
operators enjoy some simple duality properties, ¬Xφ = X¬φ, ¬Fφ = G¬φ,
¬Gφ = F¬φ, ¬(ψUφ) = G¬φ ∨ (¬φU(¬φ ∧ ¬ψ)), and Fφ = true U φ.

A first-order version of LTL with constraints over the reals, called constraint-
LTL, is used in Biocham [9] to express temporal properties about molecular
concentrations. A similar approach is used in the Darpa BioSpice project [10].
Constraint-LTL considers first-order atomic formulae with equality, inequality
and arithmetic operators ranging over real values of concentrations and of their
derivatives. For instance F([A]>10) expresses that the concentration of A even-
tually gets above the threshold value 10. G([A]+[B]<[C]) expresses that the
concentration of C is always greater than the sum of the concentrations of A and
B. Oscillation properties, abbreviated as oscil(M,K), are defined as a change
of sign of the derivative of M at least K times:

F((d[M]/dt > 0) & F((d[M]/dt < 0) & F((d[M]/dt > 0)...))) The ab-
breviated formula oscil(M,K,V) adds the constraint that the maximum concen-
tration of M must be above the threshold V in at least K oscillations.
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2.2 Model-Checking Algorithm

In an ODE model, and under the hypothesis that the initial state is completely
defined, numerical integration methods (such as Runge-Kutta or Rosenbrock
method for stiff systems) provide a discrete simulation trace. This trace con-
stitutes a linear Kripke structure in which constraint-LTL formulae can be in-
terpreted. Since constraints refer not only to concentrations, but also to their
derivatives, we consider traces of the form

(< t0, x0, dx0/dt, d2x0/dt2 >, < t1, x1, dx1/dt, d2x1/dt2 >, ...)

where at each time point, ti, the trace associates the concentration values xi

of the variables, and the values of their first and second derivatives dxi/dt and
d2xi/dt2. This choice of derivatives is justified in section 4 as a facility for ex-
pressing positive or negative influences between entities. It is worth noting that
in adaptive step size integration methods, the step size ti+1 − ti is not constant
and is determined through an estimation of the error made by the discretization.

Algorithm 1 (trace-based constraint-LTL model-checking). [9,10]Given
an ODE model and a temporal property φ to verify within a finite time horizon,

1. compute a finite simulation trace;
2. label each trace point by the atomic sub-formulae of φ that are true at this

point;
3. add sub-formulae of the form Fφ (resp. Xφ) to the predecessors (resp. im-

mediate predecessor) of a point labeled with φ;
4. add sub-formulae of the form φ1 U φ2 to the points preceding a point labeled

with φ2 as long as φ1 holds;
5. add sub-formulae of the form Gφ to the last state if it is labeled by φ, and to

the predecessors of the points labeled by Gφ as long as φ holds.
6. return the time points labeled by φ.

Note that being limited to finite traces, and since Gφ =!F (!φ), we chose to
label the last state by Gφ if it satisfies φ, just like if the trace was completed
to the infinite by a loop on its last state. Note also that the notion of next
state (operator X) refers to the state of the following time point in a discretized
trace, and thus does not necessarily imply real time neighborhood. The rationale
of this algorithm is that the numerical trace contains enough relevant points, and
in particular those where the derivatives change abruptly, to correctly evaluate
temporal logic formulae. This has been very well verified in practice with various
examples of published mathematical models [9].

3 Formula Instantiation in ∃-Constraint-LTL over the
Reals

3.1 The Existential Fragment ∃-Constraint-LTL

Herewe consider the existential fragmentof constraint-LTL,where real valuedvari-
ablesareallowed in theconstraints,withan implicit existentialquantification.More
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precisely, the language of ∃-constraint-LTL formulae considered in this paper is de-
fined by the following grammar :

Constraint − ltl =
Atom | F (Constraint − ltl)
| G(Constraint − ltl) | X(Constraint − ltl)
| (Constraint − ltl)U(Constraint − ltl)
| (Constraint − ltl) and (Constraint − ltl)
| (Constraint − ltl) or (Constraint − ltl)
| (Constraint − ltl) ⇒ (Constraint − ltl)
| not (Constraint − ltl)

Atom =
V alue < V ariable | V alue ≤ V ariable

| V alue > V ariable | V alue ≥ V ariable

| V alue < V alue | V alue ≤ V alue

| V alue > V alue | V alue ≥ V alue

V alue =

float | [molecule] | d[molecule]/dt | d2[molecule]/dt2 | T ime

| V alue + V alue | V alue − V alue | − V alue | V alue × V alue

| V alue/V alue | V alueV alue

By an obvious transformation, negations and implications can be eliminated, by
propagating the negations down to the atomic constraints in the formula. From
now on, we will assume that all ∃-constraint-LTL formulae are in negation free
normal form.

3.2 Formula Instantiation Algorithm

Given a trace T representing a linear Kripke structure, and an ∃-constraint-LTL
formula φ with n variables, the formula instantiation problem, ∃v ∈ R

n (φ(v)), is
the problem of determining the valuation v of the variables for which the formula
φ is true in T . In other words, we look for the domain of validity Dφ ⊂ R

n such
that T |=LTL ∀v ∈ Dφ (φ(v)).

The domain of validity Dφ of φ can be computed using an algorithm similar
to the model-checking algorithm of section 2.2:

Algorithm 2 (trace-based ∃-constraint-LTL formula instantiation)
Given an ODE model and a temporal property φ with variables, to verify in
a finite time horizon,
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1. compute a finite simulation trace;
2. label each trace point by the atomic sub-formulae of φ and their domain of

validity as follows :
– for an atomic formula ψ without variables, label a time point ti by

(ψ, Dψ(ti) = R
n) if ψ is true at time ti, and (ψ, Dψ(ti) = ∅) otherwise;

– for an atomic formula [A] ≥ p (that is, of the form value ≥ variable)
label a time point ti by ([A] ≥ p, D[A]≥p(ti)) where D[A]≥p(ti) is the half-
space of R

n defined by p ≤ [A](ti);
– proceed similarly for other atomic formulae containing variables;

3. starting from the end of the trace, label each time point ti by the sub-formula
Fψ and its domain of validity DFψ(ti) = DFψ(ti+1) ∪ Dψ(ti);

4. starting from the end of the trace, label each time point ti by the sub-formula
Gψ and its domain of validity DGψ(ti) = DGψ(ti+1) ∩ Dψ(ti);

5. starting from the end of the trace, label each time point ti by the sub-formula
ψ1Uψ2 and its domain of validity Dψ1Uψ2(ti) = Dψ2(ti) ∪ (Dψ1Uψ2(ti+1) ∩
Dψ1(ti));

6. label each time point ti by the sub-formula Xψ and its domain of validity
DXψ(ti) = Dψ(ti+1);

7. label each time point ti by the sub-formula ψ1 or ψ2 and its domain of validity
Dψ1 or ψ2(ti) = Dψ1(ti) ∪ Dψ2(ti);

8. label each time point ti by the sub-formula ψ1 and ψ2 and its domain of
validity Dψ1 and ψ2(ti) = Dψ1(ti) ∩ Dψ2(ti);

9. return the domain Dφ(ti) for all time points ti where it is not empty.

This algorithm enjoys a strong completeness theorem for the chosen fragment
of constraints over the reals.

Theorem 1. The instantiation algorithm is correct and complete: a valuation
v makes φ true at time ti, T, ti |=LTL (φ(v)), if and only if v is in the computed
domain of φ at ti, v ∈ Dφ(ti).

Proof. Let us prove inductively on the constraint-LTL formula structure that
for any time t, any LTL formula φ and any instantiation v of the variables, if
φ(v, ti) is true then v ∈ Dφ(ti) and if v ∈ Dφ(ti) then φ(v, ti) is true :

– Atomic constraint-LTL formulae considered are of the formV alue R V ariable
or V alue R V alue where V alue is an evaluable arithmetic expression and R
an inequality operator. For all these atomic formulae the algorithm returns
the exact validity domain. For instance, formula ([A] ≤ p)(ti) is true if and
only if p is greater or equal to [A](ti) and the validity domain returned is
the half-space defined by p ≥ [A](ti);

– φ1 and φ2 . By algorithm construction Dφ1 and φ2(ti) = Dφ1(ti) ∩ Dφ2(ti)
hence : v ∈ Dφ1 and φ2(ti) ⇔ v ∈ Dφ1(ti) and v ∈ Dφ2(ti) ⇔ φ1(v, ti) and
φ2(v, ti) ⇔ (φ1 and φ2)(v, ti);

– φ1 or φ2 . By algorithm construction Dφ1 or φ2(ti) = Dφ1(ti)∪Dφ2(ti) hence :
v ∈ Dφ1 or φ2(ti) ⇔ v ∈ Dφ1(ti) or v ∈ Dφ2(ti) ⇔ φ1(v, ti) or φ2(v, ti) ⇔
(φ1 or φ2)(v, ti);



On the Analysis of Numerical Data Time Series in Temporal Logic 53

– F (φ). By algorithm construction DF (φ)(ti) =
⋃

j≥i(Dφ(tj)) hence : v ∈
DF (φ)(ti) ⇔ ∃j ≥ i, v ∈ Dφ(tj) ⇔ F (φ)(v, ti);

– G(φ). By algorithm construction DF (φ)(ti) =
⋂

j≥i(Dφ(tj)) hence : v ∈
DG(φ)(ti) ⇔ ∀j ≥ i, v ∈ Dφ(tj) ⇔ G(φ)(v, ti);

– X(φ). By algorithm construction DX(φ)(ti) = Dφ(ti+1) hence :
v ∈ DX(φ)(ti) ⇔ v ∈ Dφ(ti+1) ⇔ X(φ)(v, ti);

– φ1Uφ2. φ1Uφ2(ti) is true if and only if φ2(ti) is true or φ1(ti)is true and
(φ1Uφ2)(ti+1) is true. Moreover by construction D(φ1Uφ2)(ti) = Dφ2(ti) ∪
(Dφ1(ti) ∩ Dφ2(ti)) hence : v ∈ D(φ1Uφ2)(ti) ⇔ v ∈ Dφ2(ti) ∪ (Dφ1(ti) ∩
Dφ2(ti)) ⇔ (φ1Uφ2)(v, ti).

Now, let us define a box of R
n as a finite intersection of half-spaces and the

size S(D) of a domain as the minimum number of boxes the domain is made of.
Note that for a one dimension domain D = D1 ∪ D2 (resp. D = D1 ∩ D2), the
maximum size is S(D1) + S(D2) (resp. max(S(D1), S(D2))).

Theorem 2. In the worst case, the size of the validity domain of a LTL formula
of size k on a trace of length n is nk2

.

Proof. Let us prove inductively that the size of the projection on one variable
of the validity domain (i.e., the validity domain of a single variable) of a LTL
formula of size k, is at most nk. The size of the validity domain of an atomic
formula is at most 1. The maximum size of a one dimension domain of a formula
of size k is:

max(S(Dφ1(ti)), S(Dφ2(ti))) for Dφ1 and φ2(ti)
S(Dφ1(ti)) + S(Dφ2(ti)) for Dφ1 or φ2(ti)

∑

j≥i

S(Dφ(tj)) for DF (φ)(ti)

max
j≥i

S(Dφ(tj)) for DG(φ)(ti)

S(Dφ(ti+1)) for DX(φ)(ti)
max(S(Dφ1Uφ2(ti+1)), S(Dφ1(ti))) + S(Dφ2(ti)) for Dφ1Uφ2(ti)

In all these cases except operators F an U , the size of the domain is less than the
sum of the domains’ size of the subformulae at one time point, which entails a
size smaller than 2nk−1. The U and F operators make a sum on all time points
which entails a size of at most n × nk−1 = nk. Each projection’s size of the
validity domain is thus at most nk. The size of the validity domain of a formula
containing v variables is at most (nk)v ≤ (nk)k = nk2

.
The instantiation algorithm thus computes for each subformulae and each

time point a validity domain of size at most nk2
.
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4 Biologically Relevant Patterns of ∃-Constraint-LTL
Formulae

Temporal logic is sufficiently expressive to formalize a wide range of biologi-
cal properties known from experiments under various conditions. The formula
instantiation algorithm in ∃-constraint-LTL makes it possible to analyze concen-
tration traces and obtain semi-quantitative information. In particular, a quan-
titative counterpart of the purely qualitative properties in propositional CTL
studied in [3] can be expressed as follows, where variables are written using
lowercase letters:

Reachability : F([A]>=p), what threshold p species A attain in the trace ?
Checkpoints : not (([A]<p1)U([B]>p2)), for which thresholds p1 and p2 is it

false that [A] is lower than p1 until [B] is above p2, i.e., for which p1 and p2
[A] >= p1 is a checkpoint of [B]>p2?

Stability : G([A]=<p1 & [A]>=p2), what is the range of values taken by [A] ?
This range can be looked for in some context given by a condition like in
G(Time>10 -> ([A]<p1 & [A]>p2)).

Oscillation : F((d([A])/dt>0 & [A]>v1) & (F((d([A])/dt<0 & [A]<v2)))),
what amplitude (v1 − v2) is attained in at least one oscillation ? An oscil-
lation is defined as the change of sign of the derivative. This formula can be
extended for more oscillations and is abbreviated by oscil(M,K,p). It states
that M must have amplitude P in at least K oscillations. By applying the
algorithm for each value of K, beginning with 1, we can find the number of
oscillations in the trace and minimal amplitude P attained by K oscillations
for any K.

Influence : G(d[A]/dt>p1 -> d2[B]/dt2>=0), above which threshold does the
derivative of A have an influence on B ? The influence is positive if a high
value of d[A]/dt entails a positive second derivative of [B]. It is worth notic-
ing that, as multiple species might influence B, this formula only indicates a
correlation between the value of the derivative of A and the second derivative
of B and gives no proof of direct influence.

5 Application to the Inference of Temporal Properties
from Biological Time Series

5.1 Cell Cycle Data

In this section we present the application of the instantiation algorithm to the
budding yeast cell cycle data. For the purpose of evaluation of the method, we
do not use experimental data but simulation data obtained from the model of
[23]. The application of the method to experimental data is discussed in sec-
tion 5.3. Concentration traces are obtained by simulating the cell cycle control
model in Biocham. Then, we try to recover relevant properties of the model by
automatically analyzing the traces.
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The reaction rules of the model are the following:

(1) _=>Cyclin.
(2) Cyclin+Cdc2~{p1} => Cdc2-Cyclin~{p1,p2}
(3) Cdc2-Cyclin~{p1,p2} => Cdc2-Cyclin~{p1}
(4) Cdc2-Cyclin~{p1,p2} =[Cdc2-Cyclin~{p1}]=> Cdc2-Cyclin~{p1}
(5) Cdc2-Cyclin~{p1} => Cyclin~{p1}+Cdc2
(6) Cyclin~{p1} =>_
(7) Cdc2 => Cdc2~{p1}
(8) Cdc2~{p1} => Cdc2

Notations ~{p1} and ~{p1,p2} denote phosphorylated forms of a molecule.
Figure 1 displays the obtained simulation traces for four species of this model.

0
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0.5

 0  20  40  60  80  100

Cdc2-Cyclin~{p1}
Cdc2-Cyclin~{p1,p2}

Cdc2
Cyclin~{p1}

Fig. 1. Budding yeast cell cycle simulation trace over 100 time units made of 94 time
points

Such traces are remarkably informative, however to automate reasoning on
them, we propose to rely on constraint-LTL queries. For instance, a reachability
query provides the maximum concentration attained by an entity:

biocham: trace_analyze(F([Cdc2-Cyclin~{p1}]>=v)).
[[v=<0.194]]

The result returned is a list of domains represented by lists of constraints on
the variables, here a single domain is returned with a single constraint on v. In
formulae like F([Cdc2-Cyclin~{p1}]>=v)where the variable only appears in in-
equalities of the form V alue ≥ V ariable or V alue > V ariable, the most relevant
point of the domain is the highest value of v in the domain, i.e. its boundary. Its
value is here 0.194, the maximum concentration of Cdc2-Cyclin~{p1} in the
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Table 1. Results for reachability (maximum value), stability (bottom and top values
in the last third part of the trace) and amplitude of at least n oscillations

Reachability Stability Amplitude of at least n oscillations
Species n = 1 n = 2
Cdc2 0.500 (0.338,0.479) 0.141 0.138
Cdc2-Cyclin~{p1,p2} 0.311 (0.005,0.310) 0.306 0.306
Cdc2-Cyclin~{p1} 0.194 (0.002,0.194) 0.192 0.192
Cyclin~{p1} 0.159 (0.004,0.158) 0.155 0.154

trace. Table 1 gives the maximum reachable values for the four species displayed
in Figure 1.

For stability, let us find the range of values taken by [Cdc2] in the last third
part of the trace:

biocham: trace_analyze(G(Time>66 -> ([Cdc2]=<v1 & [Cdc2]>=v2))).
[[v1>=0.479, v2=<0.338]]

The domain is defined by the conjunction of the two constraints v1 >= 0.479
and v2 =< 0.338. These values are the maximum and minimum values attained
by [Cdc2] in the last third part of the trace. The results for the other species
are given in Table 1.

An oscillation query may compute several interval domains:

biocham: trace_analyze(oscil(Cdc2,1)).
[[v2>=0.338, v1=<0.479], [v2>=0.341, v1=<0.479]]

The result is the union of two boxes. In such domains, the most relevant point is
not obvious. Here we look for the maximum amplitude v1 − v2. The maximum
is obtained in the domain with v1 − v2 = 0.479 − 0.338 = 0.141. This result
states that at least one oscillation of Cdc2 has an amplitude greater or equal to
0.141. The number of oscillations is then incremented until obtaining an empty
validity domain. It is obtained for Cdc2 with the query oscil(Cdc2,3), stating
that there are only two oscillations of Cdc2 in the trace.

The results for the other species are given in Table 1. Obtaining the amplitude
of the oscillations is useful to distinguish between mixed amplitudes oscillations
in the trace. For instance, in noisy data the amplitude can be used to count the
number of oscillations regardless of small noise induced oscillations.

Whether Cdc2-Cyclin~{p1,p2} acts as a checkpoint for Cdc2-Cyclin~{p1}
can be investigated with the following formula:

not([Cdc2-Cyclin~{p1,p2}]<v1 U [Cdc2-Cyclin~{p1}]>v2)

The resulting domain is a union of ten boxes. Interpreting it requires examin-
ing each box to find interesting points of the domain. Checkpoint queries are
thus more delicate and perhaps not well suited for automatic analysis. In the
example, the values v1 = 0.311 and v2 = 0.014 are in the domain, stating that
Cdc2-Cyclin~{p1,p2} is not always less than 0.311 until Cdc2-Cyclin~{p1}
exceeds 0.014. In other words Cdc2-Cyclin~{p1,p2} goes beyond 0.311 before
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Cdc2-Cyclin~{p1} exceeds 0.014 pointing out that Cdc2-Cyclin~{p1,p2} is
indeed a checkpoint.

Now, the influence of a molecule A on a molecule B is looked for with for-
mula G(d[A]/dt>p1 -> d2[B]/dt2>0). The idea behind this formula is that if
a species B appears only in a reaction rule of the form A → B with a mass
action law kinetic, the following constraint-LTL formulae are true : G(d[A]/dt >
0 ⇒ d2[B]/dt2 > 0) and G(d[A]/dt < 0 ⇒ d2[B]/dt2 < 0).

In a typical system each species concentration is the result of the combined
effect of several other species. ∃-constraint-LTL formula search determines above
which threshold the above formulae are true, i.e. validity domains of variables
v1 and v2 in formulae G(d[A]/dt > v1 ⇒ d2[B]/dt2 > 0) and G(d[A]/dt < v2 ⇒
d2[B]/dt2 < 0).

By comparing these domains to the range of values of d[A]/dt, a score s ∈
[0, 1] is obtained indicating the influence of the derivative of [A] over the second
derivative of [B]. More precisely, if the domain of validity is v1 ≥ 0 it means that
the formula is true for any positive value of d[A]/dt resulting in a score 1. If the
domain of validity is v1 >= max(d[A]/dt)

2 it means that the formula is true for half
of the positive values of d[A]/dt resulting in a score 0.5. Table 2 gives influences
scores computed by this method for species Cdc2 and Cdc2-Cyclin~{p1,p2}.

Table 2. Positive influence scores of all species on Cdc2 and Cdc2-Cyclin~{p1,p2}.
Molecules appearing in rows (resp .columns) act as molecule A (resp. B) in formulae
G(d[A]/dt > v1 ⇒ d2[B]/dt2 > 0) and G(d[A]/dt < v2 ⇒ d2[B]/dt2 < 0) used to
compute these scores.

Species Cdc2 Cdc2-Cyclin~{p1,p2}
Cdc2 0.00 0.11
Cdc2~{p1} 0.01 0.12
Cyclin 0.00 0.34
Cdc2-Cyclin~{p1,p2} 0.00 0.02
Cdc2-Cyclin~{p1} 0.90 0.00
Cyclin~{p1} 0.50 0.09

According to the reaction rules, the only species having a positive influence
on [Cdc2] is [Cdc2-Cyclin~{p1}] (reaction (5)). The influence scores returned
correctly reflect this. The score obtained by Cyclin~{p1} is due to its close-
ness with [Cdc2-Cyclin~{p1,p2}] as it can be seen in the trace. These two
species both have a concentration rise coinciding with [Cdc2] own concen-
tration rise. Nevertheless, influence scores defined above enable to distinguish
[Cdc2-Cyclin~{p1}] over [Cyclin~{p1}] as molecule having a positive influ-
ence on Cdc2.

According to the reaction rules, the two species having a positive influence
on Cdc2-Cyclin~{p1,p2} are [Cyclin] and[Cdc2~{p1}] (reaction (2)). Notice
that as more species influence Cdc2-Cyclin~{p1,p2} than Cdc2, it is harder to
find correlations between single species and Cdc2-Cyclin~{p1,p2}. Therefore
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Fig. 2. MAPK model simulation trace over 20 time units made of 50 time points

overall influence scores are smaller in this case. In spite of this, the two species
having the highest scores are the correct ones.

5.2 MAPK Signal Transduction Data

The MAPK signal transduction data model is used in the same way as the cell
cycle model to evaluate the analysis method. Reaction rules used to simulate
concentration traces, displayed in Figure 2 are given below. All reactions rules
have mass action law kinetics.

(1) RAF + RAFK <=> RAF-RAFK
(2) RAF~{p1} + RAFPH <=> RAF~{p1}-RAFPH
(3) MEK~$P + RAF~{p1} <=> MEK~$P-RAF~{p1}

where p2 not in $P
(4) MEKPH + MEK~{p1}~$P <=> MEK~{p1}~$P-MEKPH
(5) MAPK~$P + MEK~{p1,p2} <=> MAPK~$P-MEK~{p1,p2}

where p2 not in $P
(6) MAPKPH + MAPK~{p1}~$P <=> MAPK~{p1}~$P-MAPKPH
(7) RAF-RAFK => RAFK + RAF~{p1}
(8) RAF~{p1}-RAFPH => RAF + RAFPH
(9) MEK~{p1}-RAF~{p1} => MEK~{p1,p2} + RAF~{p1}
(10) MEK-RAF~{p1} => MEK~{p1} + RAF~{p1}
(11) MEK~{p1}-MEKPH => MEK + MEKPH
(12) MEK~{p1,p2}-MEKPH => MEK~{p1} + MEKPH
(13) MAPK-MEK~{p1,p2} => MAPK~{p1} + MEK~{p1,p2}
(14) MAPK~{p1}-MEK~{p1,p2} => MAPK~{p1,p2} + MEK~{p1,p2}
(15) MAPK~{p1}-MAPKPH => MAPK + MAPKPH
(16) MAPK~{p1,p2}-MAPKPH => MAPK~{p1} + MAPKPH
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Reachability, stability and oscillations queries results are given in Table 3.
Stability queries return very small ranges of values in the last third part of the
trace for most species indicating stable behaviors. For instance, RAF is inside the
[0.310, 0.311] interval in the last third part of the trace. There are no oscillations
of the species except a very small one for RAFK.

Table 3. Results for Reachability (maximum value) and Stability (bottom and top
values in the last third part of the trace)

Reachability Stability Amplitude of at least n oscillations
Species n = 1
RAFK 1 (0.865,0.866) 0.001
RAF 1 (0.310,0.311) -
MEK 1 (0,519,0.537) -
MAPK} 1 (0.891,0.916) -
RAF~{p1}} 0.311 (0.311,0.311) -
MEK~{p1} 0.178 (0.174,0.178) -
MEK~{p1,p2} 0.060 (0.052,0.060) -
MAPK~{p1} 0.052 (0.039,0.052) -
MAPK~{p1,)2} 0.003 (0.001,0.003) -

This model is made of a cascade of phosphorylation reactions. According to
the reaction rules, RAFK acts as a kinase on RAF (reactions 1 and 7), RAF acts
as a kinase on MEK (reactions 3, 9 and 10) and MEK acts as a kinase on MAPK
(reactions 5,13 and 14).

We looked for positive influence of any species an all phosphorylated forms of
RAF, MEK and MAPK. The highest score for RAF~{p1} is 0.96 and is attained by
species [RAF-RAFK] while [RAFK] ’s score is 0. This is consistent with the way
phosphorylation reactions are written in the model, that is a complexation re-
action and then a decomplexation-phosphorylation rule. Highest influence score
for the phosphorylated form of MEK is correctly obtained for [MEK-RAF~{p1}],
while in the case of [MAPK~{p1}] the correct complex [MAPK-MEK~{p1,p2}]
only gets the second highest score, and the situation is even more confused for
[MAPK~{p1,p2}].

Notice that lots of other species have relatively high influence score, which
is no surprising given the similar shape of all curves in the trace. Nevertheless
retaining only species having the highest scores as having positive influence, gives
an overall good indication of the direct influences between species.

5.3 Experimental Data

Experimental data for measuring the evolution over time of gene expression
levels or of protein concentrations, typically involve between 6 and 50 time points
taken at regular intervals. Furthermore, experimental data are noisy, and it is
not one trace but several ones that have to be analyzed in order to extract their
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Table 4. Positive influence scores of all species on phosphorylated forms of RAF, MEK
and MAPK

Species RAF~{p1} MEK~{p1} MEK~{p1,p2} MAPK~{p1} MAPK~{p1,p2}
[RAFK] 0.00 0.11 0.46 0.77 0.50
[RAF] 0.00 0.00 0.00 0.20 0.02
[MEK] 0.26 0.00 0.00 0.00 0.00
[MAPK] 0.50 0.47 0.11 0.00 0.00
[MAPKPH] 0.50 0.49 0.20 0.01 0.00
[MEKPH] 0.48 0.06 0.00 0.00 0.00
[RAFPH] 0.14 0.00 0.00 0.00 0.00
[RAF-RAFK] 0.96 0.50 0.50 0.00 0.50
[RAFPH-RAF~{p1}] 0.00 0.22 0.47 0.42 0.50
[MEK-RAF~{p1}] 0.50 0.79 0.66 0.42 0.50
[MEK~{p1}-RAF~{p1}] 0.00 0.00 0.27 0.41 0.48
[MEKPH-MEK~{p1}] 0.00 0.00 0.34 0.45 0.49
[MEKPH-MEK~{p1,p2}] 0.00 0.00 0.00 0.60 0.34
[MAPK-MEK~{p1,p2}] 0.00 0.00 0.00 0.62 0.37
[MAPK~{p1}-MEK~{p1,p2}] 0.00 0.00 0.00 0.00 0.09
[MAPKPH-MAPK~{p1}] 0.00 0.00 0.00 0.00 0.19
[MAPKPH-MAPK~{p1,p2}] 0.00 0.00 0.00 0.00 0.00

significant features. The strategy here is thus to analyze the traces separately
and retain the intersection set of their properties, or the most frequent ones only.

In order to evaluate the instantiation algorithm on similar experimental-like
concentration traces, we extracted eleven equally spaced time points from the
cell cycle simulation trace. The obtained trace is displayed in Figure 3.

Table 5. Results for reachability, stability and oscillation queries in experimental-like
data

Reachability Stability Amplitude of at least n oscillations
Species n = 1 n = 2
Cdc2 0.500 (0.341,0.441) 0.125 0.089
Cdc2-Cyclin~{p1,p2} 0.311 (0.031,0.308) 0.279 0.222
Cdc2-Cyclin~{p1} 0.194 (0.002,0.194) 0.192 0.012
Cyclin~{p1} 0.100 (0.005,0.100) 0.095 0.018

We applied on this trace the same queries than on the original simulated one,
results are given in Tables 5 and 6. Oscillations properties are still obtained
but with smaller amplitudes, because the peaks are missed in the sampling. For
instance, Cdc2-Cyclin~{p1} has one oscillation of size 0.192 but two oscillations
of size only greater than 0.012. This is a limit inherent to a low number of
time points as the first peak of Cdc2-Cyclin~{p1} almost disappeared in this
trace. Having a small number of time points also tends to give high self positive
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Fig. 3. Curve of concentrations every 10 units of time extracted from the cell cycle
simulation trace

Table 6. Positive influence scores of all species on Cdc2 and Cdc2-Cyclin~{p1,p2}

Species Cdc2 Cdc2-Cyclin~{p1,p2}
Cdc2 0.59 0.00
Cdc2~{p1} 0.59 0.00
Cyclin 0.00 0.73
Cdc2-Cyclin~{p1,p2} 0.00 0.59
Cdc2-Cyclin~{p1} 0.49 0.00
Cyclin~{p1} 0.48 0.00

influence scores but considering only highest scores except self influence still
correctly determines the influence between species.

6 Conclusion

Considering the bottleneck of specifying in temporal logic with numerical con-
straints the biological properties of a system known from experiments, we have
proposed an algorithm for inferring constraint-LTL formulae from numerical
data time series. To this end, the finite time horizon model-checking algorithm
described in [9] has been generalized to an instantiation algorithm in the ex-
istential fragment of LTL with numerical constraints over the reals. A strong
completeness theorem stating that the ranges of real valued variables computed
for a formula describe exactly the solution space, has been shown, together with
a complexity bound in nk2

on the representation of the domain, where n is the
number of time points and k the size of the formula.
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For the purpose of evaluating the method, we worked with time series gen-
erated from models by simulation, and considered one experimental-like time
series extracted from the simulation trace in few time points taken at regular
intervals of time. In the near future, we plan to apply the method to the analysis
of experimental temporal data of FSH signaling proteins for designing a model
of FSH signal transduction together with its temporal specification, and proceed
similarly with cell cycle and circadian cycle data for cancer chronotherapies in
the framework of the EU project Tempo1.
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