
Efficient, Correct Simulation of Biological
Processes in the Stochastic Pi-calculus

Andrew Phillips and Luca Cardelli

Microsoft Research, 7 JJ Thomson Avenue, CB3 0FB Cambridge UK
{andrew.phillips,luca}@microsoft.com

Abstract. This paper presents a simulation algorithm for the stochastic
π-calculus, designed for the efficient simulation of biological systems with
large numbers of molecules. The cost of a simulation depends on the
number of species, rather than the number of molecules, resulting in a
significant gain in efficiency. The algorithm is proved correct with respect
to the calculus, and then used as a basis for implementing the latest
version of the SPiM stochastic simulator. The algorithm is also suitable
for generating graphical animations of simulations, in order to visualise
system dynamics.

1 Introduction

In recent years, there has been considerable research on designing programming
languages for complex parallel computer systems. Interestingly, some of this
research is also applicable to biological systems, which are typically highly com-
plex and massively parallel. In particular, a mathematical programming language
known as the stochastic π-calculus has recently been used to model and simulate
a range of biological systems [7,12,13]. The calculus allows the components of a
biological system to be modelled independently, rather than modelling the indi-
vidual reactions. This allows large models to be constructed by composition of
simple components [2]. The calculus also facilitates mathematical analysis of sys-
tems using a range of established techniques, which could eventually shed light
on some of the fundamental properties of biological systems. Various stochastic
simulators have been developed for the calculus [13,9,1], in order to perform vir-
tual experiments on biological system models. Such in silico experiments can be
used to formulate testable hypotheses on the behaviour of biological systems, as
a guide to future experimentation in vivo.

Currently available simulators for the stochastic π-calculus are implemented
based on standard theory of chemical kinetics, using an adaptation of the Gille-
spie algorithm [5]. This algorithm has the distinct advantage of being mathemati-
cally exact, enabling accurate simulation of biological models. Unfortunately, the
algorithm is also highly computationally intensive, particularly when simulating
large models. As a result, there has been considerable research on optimisations
for the Gillespie algorithm, resulting in a plethora of alternatives, both exact and
approximate [4,6,15]. Like the original algorithm, these alternatives are defined

M. Calder and S. Gilmore (Eds.): CMSB 2007, LNBI 4695, pp. 184–199, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Efficient, Correct Simulation of Biological Processes 185

in terms of systems of chemical reactions, the de facto standard for biological
modelling. This reaction view of systems differs in many ways from the com-
ponent view of the stochastic π-calculus. As a result, techniques for efficient
simulation of chemical reactions cannot be directly applied to the stochastic π-
calculus, but need to be adapted to account for the differences between the two
formalisms [10]. Given these differences, and given the importance of efficiency
in the stochastic simulation of biological models, research on efficient simulation
algorithms for the stochastic π-calculus seems of interest. There has already been
substantial research on efficient implementation techniques for variants of the π-
calculus, in the context of programming languages for parallel computer systems
[16]. However, this research does not take into account the specific properties of
biological systems, which differ from most computer systems in fundamental
ways. One key difference is that biological systems are often composed of large
numbers of processes with identical behaviour, such as thousands of proteins of
the same type.

This paper presents a simulation algorithm for the stochastic π-calculus, de-
signed for the efficient simulation of biological systems with large numbers of
molecules. The paper is structured as follows. Section 2 illustrates the princi-
ple of the simulation algorithm with the help of a biological example. Section 3
presents the full definition of the algorithm, and Sec. 4 outlines a proof of cor-
rectness with respect to the stochastic π-calculus. Finally, Sec. 5 shows how the
algorithm can be mapped to executable program code, in order to implement a
stochastic simulator.

2 Biological Example

This section introduces the simulation algorithm for the stochastic π-calculus,
with the help of a biological example. The example describes a system of three
genes with negative control that mutually repress each other, as presented in
[11]. The system consists of an environment, which contains definitions for a
Gene(a, b) and a Protein(b), together with a top-level process, which contains
three genes executing in parallel :

{Gene(a, b)=τt.(Gene(a, b) | Protein(b)) + ?a.τu.Gene(a, b),

P rotein(b) = !b.P rotein(b) + τd}
�
Gene(a, b) | Gene(b, c) | Gene(c, a)

A Gene(a, b) is parameterised by its promoter region a, together with the pro-
moter region b that is recognised by its transcribed proteins. The gene can per-
form one of two actions, represented as a choice (+). Either it can transcribe a
Protein(b) by doing a stochastic delay τt, after which the new protein is executed
in parallel with the gene, or it can block by doing an input ?a on its promoter
region a and then unblock by doing a stochastic delay τu. A Protein(b) can
repeatedly do an output !b on the promoter region b, or it can degrade by doing
a stochastic delay τd. According to the reduction rules of the calculus, the input

186 A. Phillips and L. Cardelli

?b of a Gene(b, c) can interact with the output !b of a corresponding protein,
becoming blocked as a result. The three genes in the system can mutually re-
press each other, since Gene(a, b) produces proteins that can block Gene(b, c),
which produces proteins that can block Gene(c, a), which produces proteins that
can block Gene(a, b), completing the cycle. Stochastic behaviour is incorporated
into the system by associating each of the channels a, b, c with corresponding
interaction rates given by ρ(a), ρ(b), ρ(c), respectively, and by associating each
of the delays τt, τu, τd with corresponding delay rates given by t, u, d. These rates
are used to calculate the probabilities of all the reactions in the system, where
the probability of a reaction is proportional to its rate.

The above system is simulated by encoding it to a system E � V of the
stochastic π-machine, which consists of a machine environment E and a machine
term V :

{Gene(a, b)=τt.(Gene(a, b) | Protein(b)) + ?a.X(a, b),

X(a, b)=τu.Gene(a, b),

P rotein(b)=!b.P rotein(b) + τd}
�
∅, {a �→ (1,0,0,0), b �→ (1,0,0,0), c �→ (1,0,0,0), t �→ (3,3t)},

{Gene(a, b) �→ 1, {t �→ 1, a �→ (1,0)}, τt.(Gene(a, b) | Protein(b)) + ?a.X(a, b),

Gene(b, c) �→ 1, {t �→ 1, b �→ (1,0)}, τt.(Gene(b, c) | Protein(c)) + ?b.X(b, c),

Gene(c, a) �→ 1, {t �→ 1, c �→ (1,0)}, τt.(Gene(c, a) | Protein(a)) + ?c.X(c, a)}

The machine environment E is similar to a calculus environment, with the ad-
ditional constraint that each choice of one or more actions must be associated
with a corresponding identifier. In order to satisfy this constraint, the encoding
creates a new definition X(a, b), which keeps track of the number of genes in
a blocked state. Note that the constraint is not enforced at the calculus level,
since this would be too much of syntactic burden. Instead, the extra definitions
are created by the encoding.

The machine term V consists of a set of channels Z, a store of reactions S and
a heap of species H . The set Z denotes the set of all the private channels in the
system, which is empty in this example. The store S records the apparent rate
of all the delays and channels in the system. The apparent rate of a delay of rate
r is given by the number of possible delays τr multiplied by r. The apparent rate
of a channel x is given by the number of possible interactions on the channel
multiplied by ρ(x). This information is recorded in the Store S, where each delay
is mapped to the number of delays and the apparent rate of the delay, and each
channel is mapped to the number of inputs, outputs, mixed interactions (i.e.
the number of pairs of inputs and outputs that cannot interact with each other)
and the apparent rate of the channel. In the above example, there are initially
three delays of rate t and one input on each channel a, b, c. The heap H records
information about each species that is currently being simulated, including the
population of the species, the choice of actions that the species can perform
and the number of each type of action. Initially there are three species in the
system, Gene(a, b), Gene(b, c) and Gene(c, a), where each gene with a given set

Efficient, Correct Simulation of Biological Processes 187

a b

c d

Fig. 1. Graphical representation of a network of three genes with inhibitory control
that mutually repress each other. It is assumed that ρ(a) = ρ(b) = ρ(c) and ρ(a) �
t � d � u. Initially there is one copy of each gene (a), and one of the genes then
transcribes a protein (b). After a sequence of reduction steps, two of the genes become
blocked, and the third gene produces 100 proteins (c). The mutual repression of genes
gives rise to alternate oscillations of protein levels, as shown in the simulation plot
(d), where the vertical axis represents the number of proteins and the horizontal axis
represents the simulation time. The results were obtained with ρ(a) = 1.0, t = 0.1
d = 0.001 and u = 0.0001.

of parameters denotes a separate species. The Gene(a, b) can do a delay at rate
t or an input on channel a, and similarly for the remaining genes in the system.

A corresponding graphical representation for this system is shown in Fig. 1(a)
based on [11], where a separate graph is drawn for each gene. Each shape in the
graph represents a species, and each labelled edge represents an action that the
species can perform. Multiple edges from a species correspond to a choice, while
multiple edges from a horizontal bar correspond to a parallel composition.

In order to execute this system, the stochastic π-machine chooses one of the
possible reactions using an adaptation of the Gillespie algorithm [5], where the
probability of a reaction is proportional to its rate. Initially, the machine can
do one of three delay reactions with rate t, where the apparent rate of the
delay is 3t. The machine chooses one of these delays with equal probability.
Suppose the Gene(a, b) is chosen to perform the delay. An additional Protein(b)
is produced, giving rise to the following machine term, which corresponds to
Fig. 1(b):

188 A. Phillips and L. Cardelli

∅, {a �→ (1,0,0,0), b �→ (1,1,0,ρ(b)), c �→ (1,0,0,0), d �→ (1,d), t �→ (3,3t)},

{Gene(a, b) �→ 1, {t �→ 1, a �→ (1,0)}, τt.(Gene(a, b) | Protein(b)) + ?a.X(a, b),

P rotein(b) �→ 1, {d �→ 1, b �→ (0,1)}, !b.P rotein(b) + τd,

Gene(b, c) �→ 1, {t �→ 1, b �→ (1,0)}, τt.(Gene(b, c) | Protein(c)) + ?b.X(b, c),

Gene(c, a) �→ 1, {t �→ 1, c �→ (1,0)}, τt.(Gene(c, a) | Protein(a)) + ?c.X(c, a)}

The Gillespie algorithm is then used to execute the next reaction. Assum-
ing ρ(b) � t there is a high likelihood that a reaction on b will be chosen,
which blocks Gene(b, c). Subsequently, a Protein(a) is transcribed, which blocks
Gene(a, b). Since both Gene(b, c) and Gene(a, b) are blocked, no more Protein(c)
or Protein(b) are produced. Eventually 100 copies of Protein(a) are produced,
giving rise to the following machine term, which corresponds to Fig. 1(c):

∅, {a �→ (0,100,0,0), b �→ (1,0,0,0), c �→ (1,0,0,0), t �→ (1,t), u �→ (2,2u), d �→ (100,100d)},

{X(a, b) �→ 1, {u �→ 1}, τu.Gene(a, b),

X(b, c) �→ 1, {u �→ 1}, τu.Gene(b, c),

Gene(c, a) �→ 1, {t �→ 1, c �→ (1,0)}, τt.(Gene(c, a) | Protein(a)) + ?c.τu.X(c, a),

P rotein(a) �→ 100, {d �→ 1, a �→ (0,1)}, !a.Protein(a) + τd}

This represents the first oscillation cycle from the simulation results of Fig. 1(d).
Note how the graphical representation relies on the ability to count the num-
ber of copies of each species, in order to label the corresponding node with its
population. The graphs are generated using a translation to DOT syntax [3]
based on [11]. The resulting sequence of pictures can also be used to produce
a 3D animation of the simulation, as shown in [9]. Note that the simulation
algorithm does not require the countable species of a simulation to be known
beforehand. Rather, the populations of species are grouped on-the-fly according
to the species name and parameters. In the above example, at the start of the
simulation there are three definitions for Gene(a, b), X(a, b) and Protein(a) in
the environment, and three species Gene(a, b), Gene(b, c) and Gene(c, a) in the
heap. As the simulation proceeds, additional species are dynamically created
in the heap by instantiating the definitions with different parameters. In the
general case, a new species is dynamically created for each new combination of
parameters, which is potentially unbounded.

3 Simulation Algorithm

This section presents a formal definition of the stochastic π-machine (SPiM).
The syntax of processes and environments in SPiM is given in Definition 1. This
is a subset of the syntax of the stochastic π-calculus (Definition 10), with the
additional constraint that each choice of one or more actions can only occur at
the top level of a definition, as in [11]. Stochastic behaviour is incorporated into
the system by associating each channel x with a corresponding interaction rate
given by ρ(x), and by associating each delay τr with a corresponding delay rate
r. Each rate characterises an exponential distribution, such that the probability

Efficient, Correct Simulation of Biological Processes 189

P, Q ::= 0 Null

| X(ñ) Instance

| P | Q Parallel

| νx P Restriction

M ::= 0 Null

| π.P + M Action

C ::= νñM Choice

E ::= ∅ Empty

| E, X(m̃)=P Process

| E, X(m̃)=C Choice

π ::= ?x(m̃) Input

| !x(ñ) Output

| τr Delay

Definition 1. Syntax of processes and environments in SPiM. For convenience, D is
used to denote the body of a definition, which can be a process P or a choice C. For
each definition of the form X(m̃)=D it is assumed that fn(D) ⊆ m̃.

S ::= ∅ Empty

| S, r �→ (Delayr, ar) Delay

| S, x �→ (Inx, Outx, Mixx, ax) Channel

U ::= ∅ Empty

| U, r �→ Delayr Delay

| U, x �→ (Inx, Outx) Channel

Definition 2. Syntax of stores and substores in SPiM..

V ::= Z, S, H Term

I ::= X(ñ) Instance

H ::= ∅ Empty

| H, I �→ (i, U, C) Species

Definition 3. Syntax of terms in SPiM. For each mapping I �→ (i, U, C) it is assumed
that I ≡ C according to Definition 12(19) and U = Sub(C) according to Definition 4.

Inx(?x(m̃).P + M) � 1 + Inx(M)

Inx(π.P + M) � Inx(M) if π 	= ?x(m̃)

Outx(!x(ñ).P + M) � 1 + Outx(M)

Outx(π.P + M) � Outx(M) if π 	= !x(ñ)

Delayr(τr.P + M) � 1 + Delayr(M)

Delayr(π.P + M) � Delayr(M) if π 	= τr

Sub(νñ M) � {x �→ (i, o) | i = Inx(M) ∧ o = Outx(M) ∧ (i, o) 	= (0, 0) ∧ x /∈ ñ}
∪ {r �→ d | d = Delayr(M) ∧ d 	= 0}

Definition 4. Creating a substore in SPiM, where Inx(0)=Outx(0)=Delayr(0)=0.

190 A. Phillips and L. Cardelli

of a reaction with rate r occurring within time t is given by F (t) = 1−e−rt. The
average duration of the reaction is given by the mean 1/r of this distribution.

The syntax of machine terms is given in Definitions 2 and 3. A machine term
V consists of a set of private channels Z, a store S and a heap H . The store S
records the activity and apparent rate of all the unguarded delays and channels in
the system. The activity of a delay with rate r is given by Delayr, which records
the total number of delays of rate r. The apparent rate ar of the delay is equal
to r × Delayr. The activity of a channel x is given by the triple Inx, Outx, Mixx,
which records the total number of inputs, outputs and mixed interactions on
x, respectively, where the number of mixed interactions denotes the number of
pairs of inputs and outputs that cannot interact on x. The apparent rate ax of
the channel is equal to ρ(x) × (Inx × Outx − Mixx). The heap H keeps track of
the number of copies of identical species in the system, and consists of zero or
more mappings from species I to triples (i, U, C), where the number i records
the population of the species, the choice C records the actions that the species
can perform, and the substore U records the number of inputs and outputs on
each channel in C, together with the number of each type of delay in C. The
notation H(I) denotes the values associated to I in the heap H , as usual. A
substore U is created from a choice C according to Definition 4.

The system is executed according to the reduction rules of the stochastic
π-machine, described in Definition 9. The rules rely on a number of auxiliary
functions, given in Definitions 5-8. The expression S ⊕U adds a substore U to a
store S, as described in Definition 5. This is used to update the store each time
the population of a species changes during a simulation. The number of delays,
inputs and outputs in the species are added to the totals in the store, where the
number of mixed interactions is calculated incrementally. Subtraction S � U is
defined in a similar way.

The expression (Z, S, H) ⊕ {I �→ C} adds a species I with body C to a term
(Z, S, H), as described in Definition 6. If a binding (i, U, C) for I is already
present in the heap then the population i of the species is incremented (1).
Otherwise, a new binding (i, U, C) for I is created, where the substore U denotes
the total activity of the species, given by Sub(C), and the population of the
species is set to 1 (2). Note that whenever a new species is added to a term,
the substore U of the species needs to be added to the store S. The expression
(Z, S, H)�{I �→ C} removes a species I with body C from a term (Z, S, H) (3).

The expression V ⊕ P adds a machine process P to a machine term V , as
described in Definition 7. The null process 0 is discarded (4). If an instance X(ñ)
is defined as a choice X(m̃)=C then the term is updated with a mapping from
X(ñ) to the body of the definition, in which the parameters m̃ are instantiated
with the values ñ (5). If an instance X(ñ) is defined as a process X(m̃)=P then
the body of the definition is added to the term, in which the parameters m̃ are
instantiated with the values ñ (6). A parallel composition P | Q is split so that
each process is added separately (7). A restriction νxP is added to a term by
replacing x with a fresh channel y and adding this to the set of private channels
Z (8).

Efficient, Correct Simulation of Biological Processes 191

S ⊕ ∅ � S

S ⊕ (U, r �→ d) � (S ⊕ U), r �→ (d, (d × r)) if S(r) = ∅
(S, r �→ (d, a)) ⊕ (U, r �→ d′) � (S ⊕ U), r �→ (d + d′, a + d′ × r)

S ⊕ (U, x �→ (i, o)) � (S ⊕ U), x �→ (i, o, i × o, 0) if S(x) = ∅
(S, x �→ (i, o, m, a)) ⊕ (U,x �→ (i′, o′)) � (S ⊕ U), x �→ (i + i′, o + o′, m + i′ × o′, a′)

if a′ = a + (i × o′ + i′ × o) × ρ(x)

Definition 5. Adding a substore to a store in SPiM.

(Z, S, H) ⊕ {I �→ C} � Z, (S ⊕ U), H{I �→ (i+1, U, C)} if H(I) = (i, U, C) (1)

(Z, S, H) ⊕ {I �→ C} � Z, (S ⊕ U), H{I �→ (1, U, C)} if H(I) = ∅, U = Sub(C) (2)

(Z, S, H) � {I �→ C} � Z, (S � U), H{I �→ (i−1, U, C)} if H(I) = (i, U, C), i>0(3)

Definition 6. Adding and removing a species from a term in SPiM.

V ⊕ 0 � V (4)

V ⊕ X(ñ) � V ⊕ {X(ñ) �→ C{ñ/m̃}} if X(m̃)=C (5)

V ⊕ X(ñ) � V ⊕ P{ñ/m̃} if X(m̃)=P (6)

V ⊕ (P | Q) � V ⊕ P ⊕ Q (7)

(Z, S, H) ⊕ (νx P) � (Z ∪ {y}, S, H) ⊕ P{y/x} if y fresh (8)

Definition 7. Adding a process to a term in SPiM.

1. Calculate a0 =
∑N

i=1 ai for all the reactions θ1, . . . , θN in the domain of S
2. Generate two random numbers n1, n2 ∈ [0, 1] and calculate t, μ such that:

t = (1/a0) ln(1/n1)

μ−1∑

i=1

ai < n2a0 ≤
μ∑

i=1

ai

3. Gillespie(Z, S, H) = θμ, t

Definition 8. Choosing the next reaction in SPiM using the Gillespie algorithm [5].

r, t = Gillespie(V)
V ′ = V � {I �→ νm̃ (τr.P + M)}

V
r−→ V ′ ⊕ (νm̃P)

(9)

x 	∈ m̃1 ∪ m̃2

ñ ∩ m̃2 = ∅
m̃1 ∩ m̃2 = ∅

x, t = Gillespie(V)
V ′=V �{I1 �→ νm̃1 (!x(ñ).P1 + M1)}�{I2 �→ νm̃2 (?x(m̃).P2 + M2)}

V
ρ(x)−→ V ′ ⊕ νm̃1 νm̃2 (P1 | P2 {ñ/m̃})

(10)

Definition 9. Reduction in SPiM.

192 A. Phillips and L. Cardelli

The expression Gillespie(V) chooses the next channel or delay on which to
perform a reaction and calculates the duration t of the reaction, as described in
Definition 8.

Finally, the expression V
r−→ V ′ simulates a single reaction for a machine

term V and produces an updated machine term V ′, as described in Definition 9.
The rate of the reaction is given by r, and the simulation time is incremented
by the reaction time t. If a delay with rate r has been chosen from a term
V by the Gillespie algorithm, and if the term contains a species with a delay
τr.P , the term can perform a reaction with rate r and then execute the process
νm̃ P (9). If an interaction on channel x has been chosen from a term V by the
Gillespie algorithm, and if the term contains a species with an output !x(ñ).P1,
together with a species with a corresponding input ?x(m̃).P2 then the input
and output can interact on channel x with rate ρ(x) and evolve to the process
νm̃1 νm̃2 (P1 | P2 {ñ/m̃}), where the value ñ is bound to m̃ in P2 (10).

4 Correctness

This section outlines a proof of correctness of the stochastic π-machine with
respect to the stochastic π-calculus. Once the main technical lemmas and defi-
nitions have been formulated, the proofs themselves are relatively direct. .

The syntax of the stochastic π-calculus (SPi) is given in Definition 10, and is
identical to the syntax described in [11]. The reduction rules of the calculus are
given in Definition 11. In the general case, each rule is of the form E � P

r−→
E � P ′, which states that a system E � P can reduce to a system E � P ′ by
doing a reaction with rate r. Since the environment E remains constant over
time, the rules can be abbreviated to the form P

r−→ P ′. The reduction rules
rely on a structural congruence relation, given in Definition 12, which defines a
notion of equality on processes.

In this setting, the probability of performing the reaction P
r−→ P ′ is given

by r/R(P), where R(P) denotes the apparent rate of P . This corresponds to the
sum of the rates of all the reactions in P , and is defined as

R(P) �
∑

θ∈P

R(θ, P) (38)

for all the delays and channels in P , where θ can be a delay r or a channel x.
By definition, R(θ, P) is the apparent rate of θ in process P , as described in
Definition 13. The apparent rate of a given channel x is equal to the number of
possible combinations of inputs and outputs on x, multiplied by the rate of x
(34). The functions Inx(P) and Outx(P) return the number of unguarded inputs
and outputs on channel x in P , respectively, while Mixx(P) returns the sum of
Inx(Mi) × Outx(Mi) for each choice Mi in P . The definition of apparent rate
takes into account the fact that an input and an output in the same choice cannot
interact, by subtracting Mixx(P) from the product of the number of inputs and
outputs on x. The apparent rate of a delay r is equal to the rate of the delay
times the number of unguarded delays of rate r in P , written Delayr(P) (35).

Efficient, Correct Simulation of Biological Processes 193

P, Q ::= M Choice

| X(ñ) Instance

| P | Q Parallel

| νx P Restriction

M ::= 0 Null

| π.P + M Action

E ::= ∅ Empty

| E, X(m̃)=P Definition

fn(P) ⊆ m̃

π ::= ?x(m̃) Input

| !x(ñ) Output

| τr Delay

Definition 10. Syntax of SPi, as defined in [11].

τr.P + M
r−→ P (11)

!x(ñ).P + M | ?x(m̃).Q + N
ρ(x)−→ P | Q{ñ/m̃} (12)

P
r−→ P ′ ⇒ νx P

r−→ νx P ′ (13)

P
r−→ P ′ ⇒ P | Q

r−→ P ′ | Q (14)

Q ≡ P
r−→ P ′ ≡ Q′ ⇒ Q

r−→ Q′ (15)

Definition 11. Reduction in SPi.

P | 0 ≡ P (16)

P | Q ≡ Q | P (17)

P |(Q | R) ≡ (P | Q) |R (18)

X(ñ) ≡ P{ñ/m̃} ifX(m̃)=P (19)

νx0 ≡ 0 (20)

νx νy P ≡ νy νx P (21)

νx (P | Q) ≡ P |νx Q if x /∈ fn(P) (22)

Definition 12. Structural Congruence Axioms in SPi. Structural congruence is de-
fined as the least congruence that satisfies these axioms. Processes in SPi are also
equal up to renaming of bound names and reordering of terms in a choice, as in [8].

The apparent rate R(V) of a machine term V can be defined in a similar
fashion, where R(θ, V) denotes the apparent rate of θ in term V , as described
in Definition 14. The apparent rate of an unrestricted channel x is equal to the
apparent rate of x in the heap (36). The apparent rate of a delay r is equal to
the apparent rate of r in the heap, plus the apparent rates of all the restricted
channels of rate r (37). The apparent rate of a restricted channel is recorded
as a delay in order to ensure that the machine preserves the compositionality
properties of the calculus. This is useful in cases where multiple machines are
executed in parallel, for example in distributed or multi-core systems. In this
setting, the restricted channels of a given machine are not be visible outside the
scope of the machine, and interactions on these channels appear externally as
delays.

The function �E � P � encodes a system E � P in SPi to a corresponding sys-
tem in SPiM, as described in Definition 17. A corresponding decoding from the
stochastic π-machine to the stochastic π-calculus is described in Definition 18.

194 A. Phillips and L. Cardelli

Inx(νx P) � 0 (23)

Inx(νy P) � Inx(P) if x 	= y (24)

Inx(P | Q) � Inx(P) + Inx(Q) (25)

Inx(X(ñ)) � Inx(P{ñ/m̃}) if X(m̃)=P (26)

Delayr(νx P) � Delayr(P) if ρ(x) 	= r (27)

Delayr(νx P) � Delayr(P) + Actx(P) if ρ(x) = r (28)

Delayr(P | Q) � Delayr(P) + Delayr(Q) (29)

Delayr(X(ñ)) � Delayr(P{ñ/m̃}) if X(m̃)=P (30)

Mixx(M) � Inx(M) × Outx(M) (31)

Actx(P) � Inx(P) × Outx(P) − Mixx(P) (32)

(33)

R(x,P) � ρ(x) × (Actx(P)) (34)

R(r, P) � r × Delayr(P) (35)

Definition 13. Apparent Rate in SPi based on [11]. The definitions of Inx(P),
Outx(P) and Delayx(P) are given for processes P in SPi and extend the definitions of
Inx(M), Outx(M) and Delayr(M) from Definition 4. The definitions of Mixx(P) and
Outx(P) are similar to that of Inx(P) and are omitted.

R(x, (Z, H,S)) � a if H(x) = (i, o, m, a) and x /∈ Z (36)

R(r, (Z, H,S)) � a + Σiai if H(r) = (d, a) and xi ∈ Z (37)

and ρ(xi) = r and H(xi) = (ji, oi, mi, ai)

Definition 14. Apparent Rate in SPiM.

Theorem 1 ensures that the terms of the stochastic π-machine are closed under
reduction.

Theorem 1. ∀E, V ∈ SPiM. E � V
r−→ E � V ′ ⇒ E � V ′ ∈ SPiM

Proof. By induction on the derivation of reduction in SPiM ��

Theorem 2 and Theorem 3 ensure that the stochastic π-calculus and the stochas-
tic π-machine are reduction equivalent.

Theorem 2. ∀E, V ∈ SPiM. E � V
r−→ E � V ′ ⇒ �E � V �

r−→ �E � V ′�

Proof. By induction on the derivation of reduction in SPiM ��

Theorem 3. ∀E, P ∈ SPi. E � P
r−→ E � P ′ ⇒ �E � P �

r−→≡ �E � P ′�

Efficient, Correct Simulation of Biological Processes 195

�∅� � ∅ (39)

�E, X(m̃)=D� � �E� ∪ �X(m̃)=D� (40)

�X(m̃)=νñ
∑N

i=1πi.Pi� �
⋃N

i=1Ei, X(m̃)=νñ
∑N

i=1πi.P
′
i if Ei � P ′

i = �Pi� (41)

�X(m̃)=P � � E′, X(m̃)=P ′ if E′ � P ′ = �P � and P 	= C (42)

Definition 15. Encoding an environment from SPi to SPiM, based on [11]. The
notation

∑N
i=1 πi.Pi is an abbreviation for a choice between zero or more actions

π1.P1 + . . . + πN .PN + 0.

�0� � ∅ � 0 (43)

�νñ M� � �X(m̃)=νñM� � X(m̃) if m̃ = fn(νñ M) and M 	= 0 andX fresh(44)

�X(ñ)� � ∅ � X(ñ) (45)

�P1 | P2� � E1 ∪ E2 � P ′
1 | P ′

2 if E1 � P ′
1 = �P1� and E2 � P ′

2 = �P2� (46)

�νx P � � E � νx P ′ if E � P ′ = �P � and P 	= νñ M (47)

Definition 16. Encoding a process from SPi to SPiM, based on [11].

�E � P � � �E� ∪ E′ � (∅, ∅, ∅) ⊕ P ′ if E′ � P ′ = �P � (48)

Definition 17. Encoding a system from SPi to SPiM.

�E � V � � E � �V � (49)

�Z, S, H� � νZ �H� (50)

�∅� � 0 (51)

�H,X(ñ) �→ (i, U,C)� � X(ñ) | . . . | X(ñ)
︸ ︷︷ ︸

i

| �H� (52)

Definition 18. Decoding a system from SPiM to SPi. The environment E is un-
changed (49), and for each mapping X(ñ) �→ (i, U, C) in the heap, i copies of the
instance are executed in parallel (52).

Proof. By induction on the derivation of reduction in SPi, where machine terms
are structurally congruent up to renaming of definitions, garbage-collection of
unused definitions and structural congruence of processes. These assumptions
are necessary since the definitions created in the encoding �E � P � can have
different names to those created in �E � P ′�. Similarly, �E � P ′� can have less
definitions than �E � P � after the process P has been reduced. ��

Finally, Theorem 4 and Theorem 5 ensure that the apparent rate of reactions
is preserved by encoding and decoding.

Theorem 4. ∀P, θ ∈ SPi.R(θ, P) = R(θ, �P �)

Proof. By induction on the derivation of encoding in SPi ��

196 A. Phillips and L. Cardelli

Theorem 5. ∀V, θ ∈ SPiM.R(θ, V) = R(θ, �V �)

Proof. By induction on the derivation of decoding in SPiM ��

5 Implementation

This section shows how the simulation algorithm of Sec. 3 can be mapped to
functional program code, in order to implement a stochastic simulator. The
mapping is relatively direct, indicating that the algorithm is sufficiently low-
level to be readily implemented.

The processes of the stochastic π-machine are implemented as functional
datatypes, as shown in Fig. 2. In addition, the environment, the store and
the heap are implemented using a standard map library, where StringMap,
SpeciesMap and ValueMap are maps indexed by strings X , species I and values
θ, respectively, and a value can be a delay r or a channel x. A term is imple-
mented as a triple consisting of a counter, a store and a heap. Each time a fresh
channel is created, the counter is incremented and used to generate a fresh name.
As a result, the term does not need to explicitly store all the private channels
in the system, since the counter keeps track of all the channels that have been
created, thereby preventing name clashes.

The implementation of reduction is also described in Fig. 2. The function
reduce is based on Definition 9 while the function add is based on Definition 7.
The function remove is based on equation (3) of Definition 6, and is implemented
so that each delay of a given rate r or interaction on a given channel x has an
equal probability of being selected, once a particular delay rate or interaction
channel has been chosen by the Gillespie algorithm. The new simulator has been
tested on the full range of examples available from [9], in most cases with signif-
icant improvement in efficiency. For instance, the example from Sec. 2 with 100
copies of each gene and simulation time 200000 took 8 minutes in the previous
version of SPiM, but just 10 seconds in the optimised version (compared with 21
minutes in the BioSPI simulator). As a first step this paper focuses on reducing
the algorithmic complexity of the simulation algorithm, rather than optimising
the final implementation.

In the previous version of the simulator, a separate process is created for
each gene or protein in the system, as described in [10]. In terms of efficiency,
this is analogous to defining the heap H of a machine term as a list of choices
C1 :: . . . :: CN instead of a mapping I1 �→ (i1, U1, C1), . . . , IM �→ (iM , UM , CM)
to keep track of the number of copies of each choice. In both versions the cost
of computing the Gillespie algorithm to choose the next reaction is unchanged.
However, in the previous version the cost of finding a choice to execute a reaction
is O(N), where N is the number of choices, while the cost of inserting a choice is
constant, since choices are inserted at the head of the list. In the new version the
cost of finding a choice to execute a reaction is O(M), where M is the number
of species, while the cost of insertion is O(log M), assuming that the heap is a
balanced tree. In addition, the new version pre-computes the number of inputs,
outputs and delays for each species in the substore U , so that the store S can be

Efficient, Correct Simulation of Biological Processes 197

type action =
Input of value * pattern

| Output of value * value
| Delay of value

type process =
Null

| Instance of string * value
| Parallel of process * process
| New of value * process

type choice =
value * ((action * process) list)

type definition =
Process of process

| Choice of choice

type env = (pattern * definition) StringMap.t
type record = (int * int * int * int * float)
type store = record ValueMap.t
type heap = (int * store * choice) SpeciesMap.t
type term = int * store * heap

let reduce (e:env) (t:term) = match gillespie t with
None -> None

| Some(Rate(r),time) -> (match remove (Delay(r)) t with
Some(m,Delay(r),p,t’) -> Some(time,add e (New(m,p)) t’)

| -> None)
| Some(Channel(x),time) -> match remove (Input(x,m0)) t with

Some(m1,Input(x,m),p1,t’) -> (match remove (Output(x,v0)) t’ with
Some(m2,Output(x,n),p2,t’) ->

let p2 = bind (eval n) m p2
in Some(time,add e (New(m1,New(m2,Parallel(p1,p2)))) t’)

| -> None)
| -> None

Fig. 2. Implementing SPiM in OCaml

quickly updated whenever there is a change in the species population. Inferring
a species name for each choice also allows various additional optimisations to
be implemented. For example, the current version of SPiM keeps a lookup table
inside U to track which species can input and output on which channels, allow-
ing the cost of finding a species to be further reduced to a lookup O(log M).
In situations where each species has a population of 1 there will be little im-
provement, apart from not having to re-compute the number delays, inputs and
outputs for each species. However, in situations where the population of species
is large, which is very common in a biological setting, there will be significant
improvement. For example, in the system of Fig. 1 there are generally thousands
of copies of a given protein.

6 Conclusions

This paper presented a simulation algorithm for the stochastic π-calculus, de-
signed for the efficient simulation of biological systems with large numbers of

198 A. Phillips and L. Cardelli

molecules. The algorithm was proved correct with respect to the calculus, and
then used as the basis for implementing an efficient simulator. To our knowl-
edge, this is the first provably correct simulation algorithm for the stochastic
π-calculus to formalise such optimisations.

Previous simulators for the stochastic π-calculus include the BioSPI simulator
[1], the StoPi simulator [13], and an earlier version of the SPiM simulator [9]. The
main difference with the current work is that these simulators do not formally
describe an algorithm for keeping track of identical processes. The simulation
algorithm of [10] was proved correct with respect to a variant of the stochastic
π-calculus, and then mapped to executable program code in order to implement
a stochastic simulator. This paper uses similar techniques, applied to a more
efficient algorithm. In more recent work [11], a graphical variant of the stochas-
tic π-calculus was presented, together with a corresponding graphical execution
model. The graphical calculus required each choice to be associated with a cor-
responding identifier, so that it could be traced during execution. This paper
uses similar syntactic constraints, allowing a graphical representation to be gen-
erated after each reaction as shown in Fig. 1, by adapting the graph generation
algorithm of [11].

There are a number of improvement in this paper with respect to the original
algorithm in [10]. In addition to the syntactic constraint placed on calculus pro-
cesses, choices are dynamically grouped into species during execution according
to their identifier and associated parameters. The algorithm also introduces store
and substore data structures, which keep track of all the possible reactions in
the heap and in the individual species, respectively. The corresponding correct-
ness proof takes into account these extensions by checking that the store and
substore data structures remain consistent with the heap, and by ensuring that
the syntactic constraints do not introduce simulation errors.

There are a number of areas of future work. In the short term, the prototype
simulator presented in this paper will form the basis of the next release of the
Stochastic Pi Machine, available from [9]. The algorithm presented in this pa-
per is also being extended in order to efficiently handle the dynamic creation
of complexes during a simulation. Preliminary results indicate that a suitable
extension can be defined with relatively few changes to the existing machine.
The algorithm presented in this paper exploits the fact that biological systems
typically contain large numbers of processes with identical behaviour, in contrast
with most computer systems. In future, more specific optimisations for the algo-
rithm could be investigated, such as the use of more refined data structures like
priority queues, in the style of [4]. There also seems to be a close link between
models that can be efficiently simulated, and those that are amenable to formal
analysis, since the size of the model needs to be reduced in both cases. More
generally, the simulation algorithm presented in this paper has a broader scope
beyond the stochastic π-calculus, and could in principle be applied to a range
of name-passing process calculi for biological modelling such as [14], in order to
develop efficient simulators that are provably correct.

Efficient, Correct Simulation of Biological Processes 199

References

1. Bloch, A., Haagensen, B., Hoyer, M.K., Knudsen, S.U.: The StoPi-calculus and
Simulator, http://www.cs.aau.dk/bh/education.html

2. Blossey, R., Cardelli, L., Phillips, A.: A compositional approach to the stochastic
dynamics of gene networks. Transactions in Computational Systems Biology 3939,
99–122 (2006)

3. Gansner, E.R., North, S.C.: An open graph visualization system and its applica-
tions to software engineering. Software-Practice and Experience , 1–5 (1999)

4. Gibson, M.A., Bruck, J.: Efficient exact stochastic simulation of chemical systems
with many species and many channels. J. Phys. Chem. 104, 1876–1889 (2000)

5. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys.
Chem. 81(25), 2340–2361 (1977)

6. Gillespie, D.T.: Approximate accelerated stochastic simulation of chemically react-
ing systems. J. Chem. Phys. 115, 1716–1733 (2001)

7. Lecca, P., Priami, C.: Cell cycle control in eukaryotes: a biospi model. In: BioCon-
cur’03. ENTCS (2003)

8. Milner, R.: Communicating and Mobile Systems: the π-Calculus. Cambridge Uni-
versity Press, Cambridge (1999)

9. Phillips, A.: The Stochastic Pi-Machine (2006), Available from
http://research.microsoft.com/∼aphillip/spim/

10. Phillips, A., Cardelli, L.: A correct abstract machine for the stochastic pi-calculus.
In: Bioconcur’04, ENTCS (August 2004)

11. Phillips, A., Cardelli, L., Castagna, G.: A graphical representation for biological
processes in the stochastic pi-calculus. Transactions in Computational Systems
Biology 4230, 123–152 (2006)

12. Priami, C., Regev, A., Shapiro, E., Silverman, W.: Application of a stochastic
name-passing calculus to representation and simulation of molecular processes.
Information Processing Letters 80, 25–31 (2001)

13. Regev, A., Silverman, W., Shapiro, E.: Representation and simulation of biochem-
ical processes using the pi- calculus process algebra. In: Pacific Symposium on
Biocomputing, vol. 6, pp. 459–470 (2001)

14. Romanel, A., Dematte, L., Priami, C.: The Beta Workbench. Available from,
http://www.cosbi.eu/Rpty Soft BetaWB.php

15. Tian, T., Burrage, K.: Binomial leap methods for simulating stochastic chemical
kinetics. J. Chem. Phys. 121, 10356–10364 (2004)

16. David, N.: Turner. The Polymorphic Pi-Calculus: Theory and Implementation.
PhD thesis, June, CST-126-96 (also published as ECS-LFCS-96-345) (1996)

http://www.cs.aau.dk/bh/education.html
http://research.microsoft.com/~aphillip/spim/
http://www.cosbi.eu/Rpty_Soft_BetaWB.php

	Efficient, Correct Simulation of Biological Processes in the Stochastic Pi-calculus
	Introduction
	Biological Example
	Simulation Algorithm
	Correctness
	Implementation
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

