


Lecture Notes in Bioinformatics 4695
Edited by S. Istrail, P. Pevzner, and M. Waterman

Editorial Board: A. Apostolico S. Brunak M. Gelfand
T. Lengauer S. Miyano G. Myers M.-F. Sagot D. Sankoff
R. Shamir T. Speed M. Vingron W. Wong

Subseries of Lecture Notes in Computer Science



Muffy Calder Stephen Gilmore (Eds.)

Computational Methods
in Systems Biology

International Conference CMSB 2007
Edinburgh, Scotland, September 20-21, 2007
Proceedings

13



Series Editors

Sorin Istrail, Brown University, Providence, RI, USA
Pavel Pevzner, University of California, San Diego, CA, USA
Michael Waterman, University of Southern California, Los Angeles, CA, USA

Volume Editors

Muffy Calder
Department of Computing Science
The University of Glasgow
Glasgow, Scotland
E-mail: muffy@dcs.gla.ac.uk

Stephen Gilmore
Laboratory for Foundations of Computer Science
The University of Edinburgh
Edinburgh, Scotland
E-mail: stg@inf.ed.ac.uk

Library of Congress Control Number: 2007934798

CR Subject Classification (1998): I.6, D.2.4, J.3, H.2.8, F.1.1

LNCS Sublibrary: SL 8 – Bioinformatics

ISSN 0302-9743
ISBN-10 3-540-75139-4 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-75139-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12162642 06/3180 5 4 3 2 1 0



Preface

Systems biology is an exciting new field bringing together life scientists, mathe-
maticians, computer scientists and engineers to explore a new and deeper under-
standing of biological systems. Computational models and methods of analysis
are essential components of the systems biology programme, not only reflecting,
but also driving wet lab experimentation and the formation of new hypotheses
about system behaviour.

This volume contains the proceedings of the fifth meeting of the international
conference on Computational Methods in Systems Biology. The first conference
was in Trento, Italy in 2003. The second meeting was in Paris in 2004, and in
2005 the conference came to Edinburgh for the first time. Last year’s meeting
was again in Trento and this year the conference was again in Edinburgh.

This year the conference attracted over 60 paper submissions. Sixteen of
these were selected for presentation at the conference. In choosing the 16 best
papers, the conference Chairs received wonderful support from the Programme
Committee, who delivered thorough and insightful reviews of all papers in a very
short time scale. We thank all of the members of the Programme Committee
and their sub-referees for their industriousness. We also thank the authors for
responding swiftly to the comments of the referees and revising their papers to
address these comments earnestly.

The electronic submission of papers, refereeing and Programme Committee
work were made possible by the excellent EasyChair free conference management
system. EasyChair managed all of the aspects of the review process from submis-
sion to review and discussion, through to sending decisions by e-mail to authors.
EasyChair compiled the list of referees which appears in this front matter. We
give hearty thanks to Andrei Voronkov for providing this wonderful service to
the scientific community.

The conference received financial support this year from the e-Science In-
stitute, the Centre for Systems Biology in Edinburgh, and Microsoft Research,
Cambridge. In addition, the Engineering and Physical Sciences Research Coun-
cil supported the conference and contributed to the student bursaries, which
we distributed to PhD students to allow them to attend the conference free of
charge.

The conference this year was held in the e-Science Institute, Edinburgh. Lee
Callaghan and the administrative team at the e-Science Institute provided ex-
cellent support for all of the organisational aspects of the conference, allowing us
to concentrate on the technical aspects. We received additional support from the
administrative staff in our respective departments, assisting with the preparation
of this volume, and planning the associated opening reception and conference
dinner.
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We were very fortunate this year to have two outstanding invited speakers in
Daniel T. Gillespie and Mark Girolami.

July 2007 Muffy Calder
Stephen Gilmore
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Aurélien Naldi, Denis Thieffry, and Claudine Chaouiya

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249



Chemical Master Equation and Langevin

Regimes for a Gene Transcription Model

Raya Khanin1 and Desmond J. Higham2

1 University of Glasgow, Glasgow, G12 8QQ , UK
2 University of Strathclyde, Glasgow, G1 1XH, UK

Abstract. Gene transcription models must take account of intrinsic
stochasticity. The Chemical Master Equation framework is based on
modelling assumptions that are highly appropriate for this context, and
the Stochastic Simulation Algorithm (also known as Gillespie’s algo-
rithm) allows for practical simulations to be performed. However, for
large networks and/or fast reactions, such computations can be prohibi-
tatively expensive. The Chemical Langevin regime replaces the massive
ordinary differential equation system with a small stochastic differential
equation system that is more amenable to computation. Although the
transition from Chemical Master Equation to Chemical Langevin Equa-
tion can be heuristically justified, there is very little guidance available
about how closely the two models match. Here, we consider a transcrip-
tion model from the recent literature and show that it is possible to com-
pare first and second moments in the two stochastic settings. To analyse
the Chemical Master Equation we use some recent work of Gadgil, Lee
and Othmer, and to analyse the Chemical Langevin Equation we use Ito’s
Lemma. We find that there is a perfect match—both modelling regimes
give the same means, variances and correlations for all components in
the system. The model that we analyse involves ‘unimolecular reactions’,
and we finish with some numerical simulations involving dimerization to
show that the means and variances in the two regimes can also be close
when more general ‘bimolecular reactions’ are involved.

1 Background

Several experimental techniques are now available to measure gene expression,
even at the single cell level [1,2,3]. In parallel, mathematical models and simu-
lation algorithms have been developed to explain these observations and make
new predictions [4,5,6,7,8,9,10]. Key modeling and simulation challenges in this
area are that (a) some components may be present in relatively small quantities,
(b) there can be a wide range of natural time scales in operation, and (c) on
the level at which observations are made, the process is inherently stochastic.
A Markov process, or Chemical Master Equation (CME) framework is highly
appropriate in this context, and is now widely used. The CME methodology and
an accompanying simulation algorithm can be traced back to the work of Gille-
spie in the chemical kinetics literature [11,12]. Recent overviews can be found

M. Calder and S. Gilmore (Eds.): CMSB 2007, LNBI 4695, pp. 1–14, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



2 R. Khanin and D.J. Higham

in [6,13,14] and we note that there are close connections to Petri nets, discrete
event simulation and birth-and-death processes [15].

Because the CME framework takes account of every reaction, for many re-
alistic models it is too computationally expensive to be useful. The Chemical
Langevin Equation (CLE) provides an alternative model that retains some of
the main features of the CME whilst making simulations more feasible. The
CLE, which takes the form of an Ito stochastic differential equation (SDE),
can be derived from the CME via a series of reasonable modeling assumptions
[16], and under the extreme case where fluctuations in the CLE are ignored, we
recover the traditional deterministic Reaction Rate Equation (or Law of Mass
Action). Many authors are now developing multi-scale simulation methods that
automatically operate in the cheapest modeling regime that captures the appro-
priate behaviour [17,18]. For this reason it is important to have an understanding
of how the different modelling regimes compare. This motivates the work here,
where the means and variances of the CME and CLE are compared for a recent
gene transcription model. To analyse the CME we make use of the general first-
order reaction theory of Gadgil et al. [19] and to analyse the CLE we perform
what appears to be the first application of Ito’s lemma in this context.

The article is organised as follows. In the next section we give a very simple
example that illustrates the main concepts involved in our work. Then in sec-
tion 3 we set up the general specification of the CME and CLE and introduce
Ito’s lemma. The gene regulation model is described in section 4 and moments
for the CME and CLE are derived analytically in sections 5 and 6 respectively.
A numerical experiment involving dimerization is given in section 7 to show that
similar behaviour can also arise when we leave the first-order realm.

2 Illustrative Example: Unimolecular Decay

To illustrate the ideas in this work, we begin with the simplest possible type
of reaction; unimolecular decay. We suppose that there is only one species, S,
in our system, and the only event that can take place at any time is that one
molecule of S may decay. We could write the system symbolically as

S
c→ ∅ (1)

Here, c > 0 is a constant that relates to the propensity of the decay process.
We suppose that initially, at time t = 0, the number of molecules of S is known

to be N . The state of the system at time t is fully described by a non-negative
integer X(t), representing the number of molecules of S present. So X(t) may
take any of the values N,N − 1, N − 2, . . . , 1, 0. In the CME setting we regard
X(t) as a discrete-valued random variable at each point in time, and work in
terms of the probability pi(t) that X(t) = i, arriving at the ordinary differential
equation (ODE) system

d

dt
pN (t) = −cNpN(t), (2)

d

dt
pi(t) = c · (i+ 1) · pi+1(t)− c · i · pi(t), for i = N − 1, N − 2, . . . , 0. (3)
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The general ODE (3) has a natural interpretation. The rate of change of pi(t)
has a positive contribution c · (i+1) · pi+1(t), which corresponds to the fact that
we arrive at state i via one decay from state i+1. Conversely, there is a negative
contribution −c · i ·pi(t) due to the fact that, when in state i, we leave that state
when a decay takes place.

The system (2)–(3) is readily solved to give

pi(t) =
N !

i!(N − i)!
e−cit

(
1− e−ct

)N−i
, for i = 0, 1, 2, . . . , N. (4)

Using E[·] and Var[·] to denote the mean and variance, respectively, it follows
that

E [X(t)] = Ne−ct and Var [X(t)] = Ne−ct
(
1− e−ct

)
. (5)

Details can be found, for example, in [20] by observing that this system corre-
sponds to a pure death process in the context of stochastic population modelling.

In the CLE setting, we represent the amount of species S present at time t
by the real-valued stochastic process Y (t). In other words, at each time t, Y (t)
is a continuous-valued random variable. The CLE is then the Ito SDE [21,22]

dY (t) = −cY (t) dt−
√
cY (t) dW (t), Y (0) = N. (6)

Because the drift coefficient −cY (t) is linear, it follows immediately that E [Y (t)]
satisfies the ODE that arises when the noise is switched off, giving

E [Y (t)] = Ne−ct. (7)

To find the second moment, we may apply Ito’s lemma, as described in sec-
tion 3.2, to get

d

dt
E
[
Y (t)2

]
= −2 cE

[
Y (t)2

]
+ cE [Y (t)] .

Using the expression (7), this solves to give E
[
Y (t)2

]
= Ne−ct, so that

Var [Y (t)] = Ne−ct
(
1− e−ct

)
. (8)

Comparing (7) and (8) with (5), we see that the models give precisely the
same expressions for the mean and variance of S. This happens despite the fact
that one uses the discrete, integer-valued state vector X(t) and the other uses
the real-valued Y (t).

For completeness, we mention that the law of mass action, or reaction rate equa-
tion, formulation for the system (1) has the form of a scalar ODE dz(t)/dt =
−cz(t), where z(t) is a deterministic real-valued quantity representing the amount
of S present at time t. This is precisely the ODE for the mean in the CLE, and
hence z(t) = E[Y (t)] = Ne−ct.
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Two features of the CLE (6) for this simple model are generic.

1 The diffusion coefficient is nonlinear.
2 The description of the problem involves a square root, and hence the problem

is only well defined if the solution remains non-negative.

With regard to the second point, the particular CLE (6) is a special case of
a square root process. These SDEs are widely used as interest rate models in
mathematical finance, and it can be shown that the solution in (6) maintains
non-negativity with probability one [22]. However, we note that the issue of
negative solutions seems to be open for general CLEs. In this work, we will
always assume that the CLE has a well-defined, unique solution.

The main result in this article is that the coincidence of CME and CLE mean
and variance in the simple model (1) carries through to a gene transcription model.

3 Stoichiometric Formalization

3.1 Chemical Master Equation

Suppose that there are N chemical species, S1, S2, . . . , SN taking part in M
different chemical reactions. In the CME formulation, we have a state vector
X(t) ∈ R

N whose ith component, Xi(t), denotes the number of molecules of Si

present at time t. Hence, each Xi(t) is a non-negative integer. For each 1 ≤ j ≤
M we have a stoichiometric vector νj ∈ R

N , and propensity function aj (X(t)),
such that the jth reaction takes place over the infinitesimal interval [t, t + dt)
with probability aj (X(t)) dt and causes the change X(t) �→ X(t) + νj to the
state vector.

Letting P (x, t) denote the probability that X(t) = x, the CME is the ODE
system

dP (x, t)
dt

=
M∑

j=1

(aj(x− νj)P (x− νj , t)− aj(x)P (x, t)) . (9)

Generally, the CME cannot be solved analytically in any useful way, although
Gillespie’s Stochastic Simulation Algorithm (SSA) [11,12] gives a way to compute
realisations of {t,X(t)} that respect the CME. However, in the case where all
reactions are unimolecular (or first-order), detailed analysis is possible, both for
the first and second moments [19] and the general distributions [23]. In this
work we will show that, at least for a specific gene regulation model, useful
analytical results can also be derived for the CLE formulation described in the
next subsection.

3.2 Chemical Langevin Equation

The CLE uses a real-valued random variable Y(t) ∈ R
N to describe the state

of the system at time t. The jth component Yj(t) represents the amount of
species j. In moving from the CME to the CLE we (typically) make a dramatic
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reduction in the number of components, but pay the price that each component
is a real-valued random variable, rather than a non-negative integer. The CLE
takes the form of an Ito SDE [21,22]

dY(t) =
M∑

j=1

νj aj(Y(t)) dt +
M∑

j=1

νj

√
aj(Y(t)) dWj(t), (10)

where the {Wj(t)}M
j=1 are independent Brownian motions.

As background for the SDE analysis in section 6, we now state the relevant
part of Ito’s lemma; see, for example, [22]. For the general Ito SDE system with
n components and d independent Brownian motions

dYi(t) = bi (Y(t)) dt +
d∑

j=1

σij (Y(t)) dWj(t), 1 ≤ i ≤ n, (11)

we let
a (Y(t)) := σ (Y(t)) σ (Y(t))T ∈ R

n×n. (12)

Then for any function f : R
n → R that is twice continuously differentiable, Ito’s

lemma tells us that

d f (Y(t)) =

(
n∑

i=1

∂f (Y(t))
∂xi

bi (Y(t)) + 1
2

∑n
i=1

∑n
j=1

∂2f(Y(t))
∂xi∂xj

aij (Y(t))

)

dt

+ mart., (13)

where “mart.” denotes a martingale whose precise form is not relevant to our
work. We will use two particular cases of f . When f (Y) = Y 2

k , (13) becomes

d
(
Y 2

k

)
= (2 Yk bk (Y(t)) + akk (Y(t))) dt+ mart. (14)

and when f (Y) = YkYl, for k �= l, it becomes

d (YkYl) =
(
Ylbk (Y(t)) + Ykbl (Y(t)) + 1

2akl (Y(t)) + 1
2alk (Y(t))

)
dt + mart.

(15)

4 Gene Regulation Model

We now consider a model of eukaryotic gene regulation, originally proposed in [24].
This model incorporates two states of promoters: an inactive state,D, not permis-
sive of transcription, and an active state D� that is competent for transcription.
Transition between the two states of promoter is reversible and the total num-
ber of promoters is conserved, i.e. D +D� = DT . Transcription takes place from
the active state D� with the linear rate kr, resulting in production of messenger
RNA (mRNA) molecules that decay with rate γr. Proteins P are translated from
mRNA molecules with linear rate kp and they decay with rate γp.
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This model of gene regulation could be described by the following reactions:

ka

D � D� (16)
kd

kr

D� →M +D� (17)
γr

M → ∅ (18)
kp

M → P + M (19)
γp

P → ∅ (20)

We note that the representation in (16)–(20) leaves room for some ambiguity.
A formal and complete specification of the system in terms of stoichiometric
vectors and propensity functions can be found in section 6.

It is tempting to reduce the first two reactions (16) that involve two species D
and D� to just one reaction involving D� by exploiting the constraint D+D� =
DT . We could argue that D� is produced with the rate kaDT and decays with
the rate (ka + kd)D�:

kaDT

∅ → D�

ka + kd

D� → ∅

In this formalization, however, we cannot guarantee that once D� = DT no more
production of the active state D� will occur. This opens up the possibility of
D� > DT , which violates the conservation law. Hence, we will work with the full
system.

5 Moments for Chemical Master Equation

Gadgil et al. [19] considered generic systems of first-order chemical reactions and
derived ODEs that describe the evolution of the first two moments of all species.
They split first-order reactions into four categories. The gene transcription model
(16)–(20) fits into that framework and involves three of these categories. Reac-
tions D � D� are of conversion type, D� → M + D� and M → P + M are
catalytic, i.e. the reaction affects one species at a rate that is is proportional to
some other species, and M → ∅ and P → ∅ are degradation type reactions. The
fourth type of reaction in [19], production from a source, is not present in this
model.
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If we use the symbols D(t), D�(t), M(t) and P (t) to denote the number of
molecules of each species present at time t, [19, equation (28)] shows that the
mean values arising from the CME model satisfy the ODE system

d

dt

⎡

⎢⎢
⎣

E [D(t)]
E [D�(t)]
E [M(t)]
E [P (t)]

⎤

⎥⎥
⎦ = K ·

⎡

⎢⎢
⎣

E [D(t)]
E [D�(t)]
E [M(t)]
E [P (t)]

⎤

⎥⎥
⎦ , where K =

⎡

⎢⎢
⎣

−ka kd 0 0
ka −kd 0 0
0 kr −γr 0
0 0 kp −γp

⎤

⎥⎥
⎦ . (21)

Then introducing a time dependent symmetric matrix V (t) ∈ R
4×4 to store

the second moments and correlations in the form

V (t) :=
⎡

⎢
⎢
⎣

E
[
D(t)2 −D(t)

]
E [D(t)D�(t)] E [D(t)M(t)] E [D(t)P (t)]

E [D(t)D�(t)D(t)] E
[
D�(t)2 −D�(t)

]
E [M(t)D�(t)] E [P (t)D�(t)]

E [M(t)D(t)] E [M(t)D�(t)] E
[
M(t)2 −M(t)

]
E [M(t)P (t)]

E [P (t)D(t)] E [P (t)D�(t)] E [M(t)P (t)] E
[
P (t)2 − P (t)

]

⎤

⎥
⎥
⎦ ,

we may appeal to [19, equation (29)], which says

d

dt
V (t) = KV (t) + (KV (t))T + Γ (t) + Γ (t)T , (22)

where, in our case, Γ (t) ∈ R
4×4 has the form

Γ (t) =

⎡

⎢
⎢
⎣

0 0 0 0
0 0 krE[D�(t)] 0
0 0 0 kpE[M(t)]
0 0 0 0

⎤

⎥
⎥
⎦ .

Substituting the expressions in (21) for the means, we obtain ODEs for the
second moments;

dE[D2]
dt

= −2kaE[D2] + 2kdE[DD�] + kaE[D] + kdE[D�], (23)

dE[D�2]
dt

= −2kdE[D�2] + 2kaE[DD�] + kaE[D] + kdE[D�], (24)

dE[M2]
dt

= −2γrE[M2] + 2krE[D�M ] + krE[D�] + γrE[M ], (25)

dE[P 2]
dt

= −2γpE[P 2] + 2kpE[MP ] + kpE[M ] + γpE[P ]. (26)

Here, and henceforth, to avoid cluttering the equations we suppress the time
dependence, so, for example, D(t) is written simply as D. Similarly, for the
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correlations we find that
dE[DD�]

dt
= −(ka + kd)E[DD�] + kaE[D2] + kdE[D�2]− kaE[D]

− kdE[D�] (27)
dE[DM ]

dt
= −(ka + γr)E[DM ] + krE[DD�] + kdE[D�M ], (28)

dE[DP ]
dt

= −(ka + γp)E[DP ] + kpE[DM ] + kdE[D�P ], (29)

dE[D�M ]
dt

= −(kd + γr)E[D�M ] + krE[D�2] + kaE[DM ], (30)

dE[D�P ]
dt

= −(kd + γp)E[D�P ] + kaE[DP ] + kpE[D�M ], (31)

dE[MP ]
dt

= −(γr + γp)E[MP ] + kpE[M2] + krE[D�P ]. (32)

6 Moments for Chemical Langevin Equation

The CLE formulation described in subsection 3.2 uses a general state vector
Y(t). For the model (16)–(20), in order to make comparisons easier, we will
re-use the notation from section 5, so that

⎡

⎢
⎢
⎣

Y1(t)
Y2(t)
Y3(t)
Y4(t)

⎤

⎥
⎥
⎦ =:

⎡

⎢
⎢
⎣

D
D�

M
P

⎤

⎥
⎥
⎦ .

However, we emphasize that D, D�, M and P in the CLE are real-valued ran-
dom variables, whereas those in CME take non-negative integer values. We also
emphasize that the time-dependency is not made explicit in this notation.

The stoichiometric vectors for reactions (16)–(20) take the form

ν1 =

⎡

⎢
⎢
⎣

−1
1
0
0

⎤

⎥
⎥
⎦ , ν2 =

⎡

⎢
⎢
⎣

1
−1
0
0

⎤

⎥
⎥
⎦ , ν3 =

⎡

⎢
⎢
⎣

0
0
1
0

⎤

⎥
⎥
⎦

ν4 =

⎡

⎢⎢
⎣

0
0
−1
0

⎤

⎥⎥
⎦ , ν5 =

⎡

⎢⎢
⎣

0
0
0
1

⎤

⎥⎥
⎦ , ν6 =

⎡

⎢⎢
⎣

0
0
0
−1

⎤

⎥⎥
⎦ ,

and the propensity functions are a1 = kaD, a2 = kdD
�, a3 = krD

�, a4 = γrM ,
a5 = kpM and a6 = γpP . Hence the CLE (10) is an SDE of the form (11) with
drift function b : R

4 → R
4 given by

b(Y(t)) =

⎡

⎢
⎢
⎣

−kaD + kdD
�

kaD − kdD
�

krD
� − γrM

kpM − γpP

⎤

⎥
⎥
⎦ (33)
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and diffusion function σ : R
4 → R

4×6 given by

σ(Y(t)) =

⎡

⎢
⎢
⎣

−
√
kaD

√
kdD� 0 0 0 0√

kaD −
√
kdD� 0 0 0 0

0 0
√
krD� −

√
γrM 0 0

0 0 0 0
√
kpM −

√
γpP

⎤

⎥
⎥
⎦ . (34)

So a in (12) satisfies

a =

⎡

⎢
⎢
⎣

kaD + kdD
� −kaD − kdD

� 0 0
−kaD − kdD

� kaD + kdD
� 0 0

0 0 krD
� + γrM 0

0 0 0 kpM + γpP

⎤

⎥
⎥
⎦ . (35)

Because the drift coefficient in (33) is linear, taking expectations in the SDE
leads to the linear ODE (21) that we obtained for the CME.

Applying Ito’s lemma to f(Y) = D2, using (14) and the expressions in (33)
and (35), we find that

d
(
D2
)

= (2D (−kaD + kdD
�) + (kaD + kdD

�)) dt + mart.

so, after taking expectations,

dE[D2]
dt

= −2kaE[D2] + 2kdE[DD�] + kaE[D] + kdE[D�],

which matches (23). Similarly, (14) shows that the other second moments satisfy
the ODEs (24)–(26). In the same manner, we may apply Ito’s lemma to f(Y) =
DD�, using (15), to find that

d (DD�) = (D� (−kaD + kdD
�) +D (kaD − kdD

�)
+ 1

2 (−kaD − kdD
� − kaD − kdD

�)
)
dt + mart.

So, after taking expectations,

dE[DD�]
dt

= −(ka + kd)E[DD�] + kaE[D2] + kdE[D�2]− kaE[D]− kdE[D�],

matching (27). Similarly, the other correlations are found to satisfy (28)–(32).
In summary, the means, variances and correlations for all components satisfy

the same ODEs for both the CME and CLE formulations of the model, and
hence they are equal for all time.

7 Numerical Experiment for a Bimolecular Case

All reactions in the model (16)–(20) are first-order in the sense of [19]. An im-
portant instance where a first-order model is not sufficient arises when proteins
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produced from the mRNA may combine to form complexes, such as dimers.
There is ample experimental evidence to suggest that protein subunits can de-
grade less rapidly when associated in multimeric complexes, an effect referred
to in [25] as “cooperative stability”. For dimeric transcription factors, this effect
leads to a concentration-dependence in the degradation rate because monomers,
which are predominant at low concentrations, will be more rapidly degraded.
Thus, cooperative stability can effectively widen the accessible range of protein
levels in vivo and a few-fold difference between the degradation rate of monomers
and dimers can already enhance the function of these circuits substantially. In
[25], the effect of cooperative stability through nonlinear degradation in a sim-
ple genetic circuit with feedback was studied without incorporating stochastic
effects. On the other hand, SSA simulations were used in [26], but without con-
sidering rapid degradation of monomers compared to dimers.

To illustrate a model that incorporates dimerization, we begin with a simpli-
fied version of the model in section 4 where there is only a single, active, state
of the gene

kr

D� → M +D�

kp

M → P +M
γr

M → ∅
γp1

P → ∅

Then we may allow the protein monomers P to form dimers P2, which degrade
less rapidly than the monomers (γp2 < γp1):

ka

P + P � P2

kd

γp2

P2 → ∅

Our aim is to test whether the correspondence between first and second mo-
ments for the CME and CLE that we proved for the model with unimolecular
reactions in section 4 carries through to this case, where a dimerization (and
hence second-order) reaction is present. A full Monte Carlo simulation of the
CME and CLE would be very expensive (for example, the CLE contains seven
independent Brownian motions, so an expected value corresponds to an integral
over seven dimensions). Hence, we will focus on a reduced model that contains
dimerization. If we assume that the protein arises as production from a source
and ignore any possible reversibility of the dimerization, we arrive at the com-
putationally simpler model
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∅ k1→ P (36)

P + P
ka→ P2 (37)

P
γp→ ∅ (38)

P2
γp2→ ∅ (39)

We emphasize that we are using this model simply to test whether the con-
clusions of sections 5–6 are close to holding in an example with second order
reactions. Writing the state vector as

[
X1(t)
X2(t)

]
=:
[
P
P2

]
,

the stoichiometric vectors take the form

ν1 =
[

1
0

]
, ν2 =

[
−2
1

]
, ν3 =

[
−1
0

]
ν4 =

[
0
−1

]

and the propensity functions are a1 = ka, a2 = kaP (P − 1)/2, a3 = γPP and
a4 = γP2P2.

In this case the CLE takes the form

d

[
P
P2

]
=
[
k1 − kaP (P − 1)− γPP
kaP (P − 1)/2− γP2P2

]
dt

+
[√

k1 dW1 −
√
kaP (P − 1) dW2 −

√
γPP dW3√

kaP (P − 1)/2 dW2 −
√
γP2P2 dW4

]
.

In this SDE the first equation shows that P is uncoupled from P2 (a fact which is
also clear from the original formulation (36)–(39)), so we may consider separately
the SDE

dP =(k1 − kaP (P − 1)− γPP ) dt+
√
k1 dW1−

√
kaP (P − 1)dW2−

√
γPP dW3.

Taking expectations leads to an ODE for E[P ] that involves E[P 2]. Similarly,
applying Ito’s lemma to f(Y ) = P 2 gives an ODE for E[P 2] that involves E[P 3].
Because the system is not closed, this does not lead to an analytical formula for
the moments, and also hints that our moment matching approach from sections 5
and 6 is unlikely to be successful.

We therefore proceed computationally. Choosing the values k1 = 5, ka = 0.01,
γP = 0.1 and γP2 = 0.01 with initial conditions P (0) = 10 and P2(0) = 2, we
consider the time interval 0 ≤ t ≤ 20. For the purposes of illustration, in Figure 1
we show one path for the monomer P and the dimer P2 from the CME, computed
with SSA, and from the CLE, approximated with the Euler–Maruyama method
[21,22]. We note that the two computations use different, independent, noise
sources (from MATLAB’s rand and randn) and hence there is no reason for the
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two paths to be close. Then, using Monte Carlo simulations over K = 105 paths
we computed sample mean approximations to E[P ], E[P 2], E[P2] and E[P 2

2 ] at
time t = 20. The results are given in Table 1. Here, we have presented 95%
confidence intervals for each sample mean by adding ±1.96 std/

√
K, where std

denotes the sample’s standard deviation. All values have been rounded to four
significant digits. CLEa denotes the results for Euler–Maruyama using a stepsize
20/500 = 0.04. The table also shows results for Euler–Maruyama with stepsize
0.004, labeled CLEb, in order to check that numerical discretization errors are
not significant.
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30

CLE: Dimer

CME: Dimer

CME: Monomer

CLE: Monomer

Time

N
u

m
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s

Fig. 1. One path from the Chemical Master Equation (CME) and Chemical Langevin
Equation (CME) for the dimerization model (36)–(39). Diamonds: P from CME;
Squares: P2 from CME; Triangles: P from CLE; Circles: P2 from CLE.

We see from Table 1 that there is overlap between the computed CME and
CLE confidence intervals for both sets of first and second moments. We conclude
that, to the typical accuracy obtained from large scale Monte Carlo simulations,
the means are indistinguishable.

We wrap up by mentioning some possible directions for future work in this
area.



Chemical Master Equation and Langevin Regimes 13

Table 1. 95% confidence intervals for Monte Carlo sample mean approximations to
E[P ], E[P 2], E[P2] and E[P 2

2 ] at time t = 20 in (36)–(39) from the CME and CLE.
CLEa uses Euler–Maruyama with stepsize 0.04 and CLEb uses Euler–Maruyama with
stepsize 0.004.

E[P ] E[P 2] E[P2] E[P 2
2 ]

CME [17.97, 18.01] [337.3, 339.0] [28.05, 28.10] [806.1, 809.2]
CLEa [17.96, 18.01] [337.0, 338.8] [28.07, 28.13] [807.6, 810.8]
CLEb [17.97, 18.02] [337.4, 339.2] [28.06, 28.11] [807.0, 810.1]

1. We believe that the moment matching in sections 5 and 6 arises for arbitrary
first-order reaction systems, and we are currently putting together a proof
of this result.

2. Further computational testing would help to reveal the extent to which mo-
ments match for more general models, and in this case some analysis might
be possible that gives bounds on the discrepancies and indicates parameter
regimes where there is a close match.

3. Generally, there is a need for existence and uniqueness results for the SDEs
that can appear in the CLE formulation. The conditions under which the
CLE (10) is derived in [16] make it clear that the model is likely to be
unrealistic when components Yi(t) approach zero—this is precisely where
the issue of negative arguments inside the square root function rouses itself.
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and EP/E049370/1 (DJH) and by a Synergy grant from the Universities of
Strathclyde and Glasgow (RK and DJH).
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Abstract. Stochastic models of biological networks are well-established
in computational systems biology. However, models are abstractions and
parameters may be inaccurate or perturbed. An important topic is thus
the sensitivity of analysis results to parameter perturbations. This inves-
tigates how seriously potential parameter perturbations affect the analy-
sis results and to which parameters the results are most sensitive. In this
paper, a stochastic simulation algorithm is presented that yields results
for multiple perturbed models from a single simulation experiment and
that is thus able to perform comparisons of results for various parameter
sets without explicitly simulating each of these separately. The algorithm
essentially makes use of likelihood ratios in a similar fashion as in the
Importance Sampling technique for variance reduction. With a suitable
adaptation to the context of perturbed model parameters it yields sub-
stantial runtime savings compared to multiple separate simulations of
the perturbed models without any loss in statistical accuracy.

Keywords: Biological Networks, Stochastic Simulation, Parameter
Perturbations, Importance Sampling, Likelihood Ratios.

1 Introduction

Living systems consist of interacting biological components forming networks
that determine the functionality of cells and organisms. Gaining insights to such
complex living systems is the primary scope of systems biology. Since biologi-
cal and genetic networks are enormously complex, mathematical modeling and
computer based analysis are highly important. Randomness within biological
and genetic networks has become apparent and was pointed out many times,
and today it is highly evident that stochastic models are capable to appropri-
ately model the dynamics of living systems, see e.g. [1,2,3,4,5,6].

In the stochastic approach, the system state at any time is given by the number
of molecules of each species and the system evolves acording to a Markov pro-
cess where the system dynamics are governed by the chemical master equation
which is a system of differential equations. Since direct solution of the chemical
master equation is usually analytically intractable due to size and complex-
ity of the underlying chemical reaction sets, stochastic simulation is the most
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widespread tool for model-based analysis in this context. The most frequently
applied method of choice is the direct method for stochastically exact generation
of trajectories of the underlying Markov process. In the biological community this
is known as the Gillespie algorithm [7,8]. Approximations have been proposed to
enhance trajectory generation, most notably the tau-leaping method [9], amongst
others.

However, any model is an abstraction, all analysis approaches are applied to
an abstract model and the usefulness of the analysis results strongly depends on
the appropriateness of the model. Any analysis is at best as good as the model
reflects reality. Thus, model parameters must be chosen such that they fit to re-
ality. If they are inaccurate or perturbed, the analysis results are so, too. Highly
perturbed results are useless and if not recognized as perturbed, they may lead
to wrong conclusions regarding the reality of the system being modeled. Hence,
it is important to know how sensitive the results are to parameter perturbations.
Small changes in certain model parameters may have a big impact on the results.
Common approaches to sensitivity analysis - see [10] for applications to biolog-
ical models - are usually based on obtaining gradients which imposes a serious
additional difficulty that may be even more complex than the model analysis
itself. Moreover, the values of gradients do not directly provide results for the
considered model but only indicate the degree of sensitivity.

In this paper, an algorithm for simultaneously obtaining trajectories of mul-
tiple (perturbed) models from one single simulation run is presented. The al-
gorithm is based on the use of likelihood ratios and related to the Importance
Sampling technique for variance reduction. Performing several independent sim-
ulation runs of one single model in this manner provides results (expectations
of the numbers of molecules of the involved species at any time) for all the con-
sidered perturbed models that otherwise had to be simulated separately. The
main purposes and the focus of the paper are exhaustive and accurate expla-
nations of the theoretical foundations and the derivation of the simultaneous
simulation algorithm itself rather than an excessive presentation of numerical
results.

In the remainder of the paper, we proceed in Section 2 with the background
and the mathematical specification of stochastic models for biological networks
followed by the direct method for stochastic simulation in Section 3, thereby
introducing terminology and notation used throughout the paper. This is done
a bit more comprehensively than it would be necessary for only presenting the
model formulation and the direct simulation algorithm since we also want to
shed some light on modeling and simulation of biological networks from a more
general Markovian viewpoint. Section 4 provides the necessary theory for the
simultaneous simulation algorithm, starting with the foundations of Importance
Sampling followed by the derivation of the appropriate framework for biological
networks. Then, taking a different perspective on Importance Sampling by re-
versing the roles of the probability measures involved, it is shown how one can
make use of this for simultaneous simulation of multiple models after which the
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relevant algorithm is formulated. Runtime comparisons are done in Section 5.
Finally, Section 6 concludes the paper and outlines further research directions.

2 Stochastic Modeling of Biological Networks

The basic building blocks of biochemical systems are coupled molecular reactions
where the rules at the molecular level are defined in terms of stoichiometric
equations. In chemical terminology the fundamental rule of a molecular reaction
is given by a stoichiometry

sm1Sm1 + · · · smrSmr −→ smr+1Smr+1 + + · · · sm�
Sm�

(1)

with r, � ∈ N, r ≤ �, where sm1 , . . . , sm�
∈ N are stoichiometric coefficients,

Sm1 , . . . , Smr are called reactants, Smr+1 , . . . , Sm�
are called products and both

reactants and products are molecular species. Such a chemical equation expresses
that the left hand side of the arrow can be transformed to the right hand side
of the arrow. Complex chemical processes are given by sets of such reactions.
The stoichiometry thus defines which molecular species may react to result in a
certain product and how many molecules are involved in a reaction. The temporal
behavior is further specified by assigned reaction rates. Several mathematical
model approaches reflect different (but of course related) viewpoints and the
exact meaning of the reaction rates depends on the chosen model type.

2.1 Stochastic Chemical Kinetics

The application of Markov processes with discrete state space and continuous
time to the study of chemical reaction kinetics has a long tradition. It can be
traced back to the beginning of the 1940s where the work of Delbrück [11] on au-
tocatalytic reactions was probably the first on the topic. In the 1950s Singer [12]
considered chain reactions and some types of coupled reactions, and Bartholo-
may [13] provided a large body of theory resulting in a series of papers on
topics covering sequences of unimolecular and bimolecular reactions, reaction
rate constants, and several applications, see [14,15,16] for detailed reviews of the
early literature with many more references. These early works already included,
though using a different terminology, what is today commonly called the chem-
ical master equation and known to be equivalent to the Kolmogorov differential
equations resulting from Markov process theory. Stochastic modeling of chemical
reactions by Markov processes is also in accordance with the theory of thermo-
dynamics. A formulation on a physical basis has been provided by Gillespie in
[7], [8] and later on rigorously derived in [17]. The basic assumptions are that
the system is well stirred and thermally equilibrated, meaning that a well stirred
mixture of d ∈ N

+ molecular species S1, . . . , Sd inside some fixed volume inter-
act at constant temperature. In the following we specify the terminology and
notation that shall be used throughout the paper.

The system state at any time t ≥ 0 is a discrete d-dimensional random vector
X(t) = (X1(t), . . . , Xd(t)), where for each species Sk, k ∈ {1, . . . , d} and t ≥ 0
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a discrete random variable Xk(t) describes the number of molecules of species
Sk present at time t. The set S ⊆ N

d of all possible system states constitutes
the system’s state space. The conditional transient (time dependent) probability
that the system is in state x ∈ S at time t, given that the system starts in an
initial state x0 ∈ S at time t0, is denoted by

p(t)(x) := p(t)(x|x0, t0) = P (X(t) = x | X(t0) = x0) . (2)

The system changes its state due to chemical reactions between molecules of
some species. These reactions can be decomposed into unidirectional reaction
channels R1, . . . , RM such that each reaction channel takes the form (1). The
reaction rate of each Rm,m ∈ {1, . . . ,M} is given by a well defined function
αm, called the propensity function of reaction channel Rm, where αm(x)dt is the
conditional probability that a reaction of type Rm occurs in the infinitesimal
time interval [t, t+ dt), given that the system is in state x at time t. That is

αm(x)dt = P (Rm occurs in [t, t+ dt) | X(t) = x) . (3)

If cm is the stochastic reaction rate constant1 assigned to reaction Rm with
stoichiometry (1) then the propensity function is simply given by cm times the
number of possible combinations of the required reactants and thus computes as

αm(x) = cm ·
mr∏

i=1

(
xmj

smj

)
(4)

where xmj denotes the number of molecules of species Smj present in state x,
and smj is the stoichiometric coefficient according to (1).

Given that the system starts in an initial state x0 ∈ S at time t0, the temporal
evolution of the system is expressed by the chemical master equation (CME)

∂p(t)(x)
∂t

=
M∑

m=1

(
αm(x− vm)p(t)(x− vm)− αm(x)p(t)(x)

)
(5)

where vm = (vm1, . . . , vmd) is a state change vector and vmk, k ∈ {1, . . . , d}
denotes the change of molecules of species Sk due to a reaction of type Rm.

2.2 Relation to Continuous-Time Markov Chains

The propensities are time-independent since the probability that a reaction oc-
curs within a specific time interval only depends on the length of this interval and
not on the interval endpoints. Thus, given a current system state, the next state
in the system’s time evolution only depends on this current system state and
neither on the specific time nor on the history of reactions that led to the current
1 Note that it is easy to convert this stochastic reaction rate constant to/from the rate

constant provided by the law of mass actions. Only the volume and the Avogadro
number must be appropriately taken into account, see [7,18] for details.
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state. Hence, the time evolution of the system is mathematically described by
a stochastic process (X(t))t≥0 with d-dimensional state space S ⊆ N

d, and due
to the just stated independence of time and history this stochastic process is a
discrete-state Markov process, in other words it is a Markov jump process, or a
continuous-time Markov chain (CTMC). Since terminology and notation in the
theory of CTMCs is usually rather different from that used to express the CME,
we briefly explain how they correspond to each other. In fact it turns out that
the CME is equivalent to the Kolmogorov differential equations which is a much
more familiar notion in the general theory of Markov processes.

The multidimensional discrete state space can be mapped to the set N of
nonnegative integers, i.e. each state x ∈ S is uniquely assigned to an integer
i ∈ {1, . . . , |S|}. The probability that a transition from state i ∈ N to state
j ∈ N occurs within a time interval of length h ≥ 0 is denoted by pij(h), and
correspondingly P(h) = (pij(h))i,j∈N is a stochastic matrix, where P(0) equals
the unit matrix I, since no state transitions occur within a time interval of
length zero. It is well known (cf. [19,16]) that a CTMC is uniquely defined by an
initial probability distribution and a transition rate matrix, also referred to as
infinitesimal generator matrix, Q = (qij)i,j∈N consisting of transition rates qij

where Q is the derivative at 0 of the matrix function h �→ P(h). The relation of
each P(h) to Q and an explanation for the term infinitesimal generator matrix
is given by P(h) = exp(hQ). In that way Q generates the transition probability
matrices by a matrix exponential function which is basically defined as an infinite
power series. Hence, all information on transition probabilities is covered by
the single matrix Q. In terms of P and Q the Kolmogorov forward differential
equations, the Kolmogorov backward differential equations, and the Kolmogorov
global differential equations can be expressed by (from left to right):

∂

∂t
P(t) = P(t)Q,

∂

∂t
P(t) = QP(t),

∂

∂t
p(t) = p(t)Q, (6)

where p(t) denotes the vector of the transient state probabilities corresponding
to (2). Explicitly writing the Kolmogorov global differential equations in terms
of the coefficients and some algebra yields

∂p
(t)
i

∂t
=
∑

j:j �=i

p
(t)
j qji −

∑

j:j �=i

p
(t)
i qij =

∑

j:j �=i

(
p
(t)
j qji − p

(t)
i qij

)
. (7)

Now, the equivalence of the CME and the Kolmogorov differential equations can
be easily seen by interpreting i ∈ N as the number assigned to state x ∈ S, i.e.
p
(t)
i = p(t)(x), qij = αm(x) if j is the number assigned to state x + vm, and
qji = αm(x− vm) if j is the number assigned to state x− vm.

3 Direct Stochastic Simulation of Single Models

The essential part of any simulation is to imitate the system under consideration.
Consequently, stochastic simulation of biological networks consists of generating
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trajectories of a CTMC where the dynamics of CTMCs are imitated. To do so,
one has to consider how a CTMC behaves which is in principle known since the
days where Markov processes were introduced. When the process is in some state
it resides there for an exponentially distributed sojourn time where the mean of
this sojourn time is given by the reciprocal of the sum of all outgoing transi-
tion rates (independent of the history of the process). When a state transition
occurs the probability that the process enters a particular state (the transition
probability) is given by the transition rate to that state divided by the afore-
mentioned sum of all outgoing transition rates. Hence, at the transition epochs
the CTMC behaves just like a discrete-time Markov chain (DTMC) which en-
ables us to speak of a Markov jump process where a DTMC is embedded at the
transition epochs and the times between the transition epochs are exponentially
distributed. Though known for a long time before, it seems that Bortz et al [20]
were the first who applied this direct method of CTMC trajectory generation
to chemical/physical systems. Gillespie [7,8], in addition to the specific formula-
tion of the chemical master equation, also proposed to use stochastic simulation
for analyzing coupled chemical reactions where he presented the direct gener-
ation of CTMC trajectories in terms of propensity functions as we described
in Section 2.1. Therefore, with this terminology it is often called the ”Gille-
spie algorithm” in the biochemical literature, see Algorithm 1 for an according
formulation.

Algorithm 1. Direct Method
Init t := t0 and x := x0

repeat
for all m = 1, . . . , M do

Compute αm(x)
end for
α0(x) := αm(x) + · · · αM (x)
Generate two random numbers u1, u2, uniformly distributed on (0, 1)
Generate time τ to next reaction: τ = − ln(u1)/α0(x)
Determine reaction type: m = min{k : α1(x) + · · · + αk(x) > u2α0(x)}
Update t := t + τ ; x := x + vm

Store/Collect/Handle Data
until terminating condition

Gillespie [7] also discussed an equivalent method that he called the ”First
Reaction Method” which is due to an equivalent interpretation of the dynamic
behavior of CTMCs. Given any state, the tentative times until entering a partic-
ular state are all exponentially distributed where the mean is the reciprocal of
the according transition rate. Hence, the next state will be entered according to
the ”fastest” transition rate, i.e. the minimum of the exponentially distributed
times. Since the minimum of exponential distributions is again exponentially dis-
tributed where the mean is given by the reciprocal of the sum of the parameters
(rates) of the involved exponential distributions, the equivalence to the former
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interpretation easily follows. Note that this interpretation is often called a race
in the literature on computer performance evaluation, particularly common in
the context of stochastic Petri nets.

Applying this equivalent ”race version” of the CTMC dynamics, Gibson and
Bruck [21] presented a method called the ”Next Reaction Method”. Their es-
sential improvement over a naive formulation of the First Reaction Method is
simply a more efficient implementation. Roughly speaking, only properties that
change are recalculated (others are reused) after a reaction is simulated, and
some more advanced data structures are used. For some time this algorithm has
been accepted in the according community to be more efficient than the direct
method. However, it seems obvious by simply counting the number of neces-
sary operations that this cannot be true. In fact, not surprisingly, Cao, Li and
Petzold [22] showed that an optimized implementation of the direct method is
indeed more efficient than the Next Reaction Method.

We also like to state that it seems not obvious that it is statistically harmless
to reuse calculated random numbers since this may introduce bias to the result-
ing estimators. To get an intuitive understanding of our doubts, assume that
at a certain time in the simulation a random number is generated that implies
a very large tentative time of a particular reaction. This can happen even if
this reaction is a fast (possibly the fastest) reaction. If random numbers are not
reused, it is very likely that in the next steps the tentative times for this reaction
are smaller and there is an appropriate probability for this reaction to occur. If
random numbers are reused, then it is unlikely that this reaction will ever occur.
At the current stage, we are not yet sure if this is a statistically significant effect
with regard to the unbiasedness of resulting estimators but it definitely deserves
some further investigation in the future. However, the mentioned result of Cao,
Li and Petzold implies that the direct method should be preferred anyway. Con-
sequently, we shall choose the direct method as a basis of (statistically) exact
stochastic simulation of biological networks.

In any case, it is of course not sufficient to generate only one single trajectory
since this only corresponds to one single realization obtained by one specific set of
random numbers. Different sets of random numbers imply different trajectories
and the resulting estimator, the sample mean, is formally a random variable that
has a variance. It is thus necessary to perform sufficiently many independent
simulation runs (generate sufficiently many trajectories) such that the variance
of the sample mean lies within a reasonable range. In words of Gillespie, it is
“necessary to make several simulation runs from time 0 to the chosen time t,
all identical with each other except for the initialization of the random number
generator” [8]. In fact the reliability of simulation results strongly depends on
the estimator’s variance.

4 Simultaneous Stochastic Simulation of Multiple Models

In this section, we start with the mathematical foundations of Importance Sam-
pling and the use of likelihood ratios as we shall do in our simultaneous simulation
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algorithm. Then we derive an appropriate framework for biological networks and
give the necessary reversed view of the roles of the probability measures involved
resulting in the simultaneous simulation algorithm.

4.1 Mathematical Foundations of Importance Sampling

Importance Sampling in its basic purpose is a variance reduction technique that
makes use of a change of measure and likelihood ratios. The original system is
simulated under a different probability measure, and the systematically biased
results are weighted by a correcting factor to yield unbiased estimates. The most
general description of Importance Sampling is in measure theoretic terms from
which all applications to specific model types and domains can be obtained as
special cases. Consider two probability measures P and P ∗ on a measurable
space (Ω,A), where P is absolutely continuous with respect to P ∗, that is for
all A ∈ A, P ∗(A) = 0 ⇒ P (A) = 0. Then, the Radon-Nikodym theorem
(cf. e.g. [23,24]) guarantees that the Radon-Nikodym derivative L = dP/dP ∗

exists and that

∀A ∈ A : P (A) =
∫

A

L(ω)dP ∗. (8)

In the context of Importance Sampling, the probability measure P ∗ is called the
Importance Sampling measure, and the Radon-Nikodym derivative L is usually
referred to as the likelihood ratio. The basic property exploited by Importance
Sampling is that for any random variable Y on (Ω,A), expectations with respect
to P are identical to expectations with respect to P ∗ when weighting by the
likelihood ratio. That is

EP [Y ] =
∫

Y (ω)dP =
∫

Y (ω)L(ω)dP ∗ = EP ∗ [Y L] (9)

where EP and EP ∗ denote expectations with respect to the probability measures
P and P ∗, respectively.

Hence, when a simulation is performed under P ∗ the sample mean of Y L is
an unbiased estimator for EP [Y ]. As usual, the variance of the sample mean can
be unbiasedly estimated by its sample variance. From that, confidence intervals
can be obtained as another important indicator of statistical robustness.

Choosing P ∗ in place of P is referred to as the change of measure, and when
the aim is to apply Importance Sampling for variance reduction purposes, it is
the essential part and the art of Importance Sampling to perform this change of
measure such that estimators with significantly reduced variance are achieved.
Many early applications of Importance Sampling, most often concerned with
multidimensional Monte Carlo integration, can be found in [25]. The framework
for stochastic processes, which is of special interest in our setting of coupled
molecular reactions, is given in [26].

It is important to emphasize that Importance Sampling – in the same manner
as stochastic simulation in general – is not limited to the estimation of the
“raw” expectation of a given objective random variable such as the expected
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number of molecules, but it is also applicable to the estimation of expectations
of functions of random variables. Equation (9) is valid for any random variable Y .
Since real-valued functions of random variables are again random variables, it
is possible to estimate the expectation of any real-valued function of a random
variable. More concretely, if X is the random variable of interest and one wants
to estimate the expectation of g(X) where g is any real-valued function, then
one sets Y = g(X) and applies equation (9). Explicitly rewritten, in this context
equation (9) becomes

EP [g(X)] =
∫

g(X(ω))dP =
∫

g(X(ω))L(ω)dP ∗ = EP ∗ [g(X)L]. (10)

Although, as explained, already covered by (9), the generality and flexibility of
Importance Sampling may be more clearly expressed by (10). Particularly im-
portant cases are arbitrary moments of X that are simply powers of X, mixtures
of moments with the variance as one special case, and probabilities of arbitrary
events that can be estimated via expectations of indicator functions. In the con-
text of Markov processes, the random variable X describes a path of the process,
and Y = g(X) may be any function on a path. For instance, in the simple setting
of estimating the expected number of molecules of species Sk at time t we have
Y = g(X) = Xk(t), but many more properties can be considered. For Markov
processes it may be of interest how often certain specific transitions (reaction
types in the context Section 2.1) occur, how often certain sets of states are
reached, or at what time certain (possibly absorbing) states are reached for the
first time. For stochastic chemical kinetics the latter corresponds to the question
how long it takes until molecules of certain species are exhausted.

4.2 Importance Sampling for Biological Networks

For CTMCs, the probability measures P and P ∗ are path distributions and
absolute continuity corresponds to the condition that all paths that are pos-
sible under P, that is in the original model, must remain possible under P ∗.
In continuous time this can be obviously achieved by the condition that for all
positive transition rates in the original model the corresponding transition rates
under Importance Sampling are positive. Since we deal with CTMCs given in
terms of biochemical notation as described in Section 2.1, we need an appro-
priate framework for the application of Importance Sampling to that type of
models. Applying Importance Sampling to coupled molecular reactions first of
all requires the distribution or density, respectively, of reaction paths that we
will derive in the following.

The discrete state of the system changes due to molecular reactions. Let t1 <
t2 < . . . denote the successive time instants at which reactions occur and Rmi the
reaction type that occurs at time ti, where mi ∈ {1, . . . ,M}. Define τi := ti+1−ti
the time between the i-th and the (i+1)-th reaction. Hence, state x(ti) is reached
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due to the i-th reaction Rmi at time ti and remains unchanged for a sojourn time
of τi after which the (i+1)-th reactionRmi+1 occurs at time ti+1 and changes the
state to x(ti+1). Thus, the time evolution of the system is completely described
by the sequence of states and corresponding sojourn times, and in compact form
(x(t0), τ0), (x(t1), τ1), (x(t2), τ2), . . . describes a trajectory. For a trajectory up
to the R-th reaction, considering the Markovian property which in turn implies
exponentially distributed sojourn times, the reaction path density is given by

dP ((x(t0), τ0), . . . , (x(tR), τR)) =

p(t0)(x0) ·
R∏

i=1

αmi−1 (x(ti−1)) exp (α0(x(ti−1))τi−1) (11)

where α0(x(ti−1)) := α1(x(ti−1))+· · ·αM (x(ti−1)), similarly as explained before
and used in the direct generation of CTMC trajectories. Note that for a given
time horizon over which the system is observed (and should be simulated) the
number R of reactions is not known in advance and in particular not determin-
istic. Formally, R is a random stopping time2 which is in accordance with the
requirement of dP being a density of a probability measure P defined on the
path space of the Markov process.

Now, in order to perform an Importance Sampling simulation, we need to
change the underlying probability measure, which is in the case of coupled molec-
ular reactions determined by the propensity functions. Since the only require-
ment for the application of Importance Sampling is absolute continuity of the
probability measures involved, there is a great freedom in how to change the
measure. It is only necessary that all reaction paths that are possible (have pos-
itive probability) under the original measure remain possible. That means each
probability measure on the path space that meets the aforementioned condition
can be considered, even non-Markovian models are allowed as long as they assign
positive probabilities to all possible reaction paths.

Nevertheless, we should avoid a large increase in trajectory generation ef-
forts compared to the original measure. Thus, obviously the most natural (and
valid) change of measure is to remain in the Markovian world and the easi-
est way is to simply change the original propensity functions to ”Importance
Sampling propensity functions” α∗

m such that for all m ∈ {1, . . . ,M} we have
α∗

m(x) = 0 ⇒ αm(x) = 0, x ∈ S, or equivalently, starting with the original
propensity functions, αm(x) > 0 ⇒ α∗

m(x) > 0, x ∈ S. Importance Sampling
then generates trajectories according to the changed propensity functions and
multiplies the results with the likelihood ratio to get unbiased estimates for the
original system. The trajectory generation is thereby performed as before, e.g.
by applying the direct method, where now the changed propensity functions are
used, yielding a sequence of states with associated sojourn times and reaction

2 The term random stopping time does not only refer to random variables that have
a “real-life interpretation” as times but its definition is a general one in the context
of random variables, see e.g. [19,23,24] for formal definitions.
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path density as in (11). Thus, denoting by p∗(t0) the initial distribution for the
states, the likelihood ratio becomes

L(ω) =
p(t0)(x0) ·

R∏

i=1

αmi−1 (x(ti−1)) exp (α0(x(ti−1))τi−1)

p∗(t0)(x0) ·
R∏

i=1

α∗
mi−1

(x(ti−1)) exp (α∗
0(x(ti−1))τi−1)

. (12)

Rewriting this likelihood ratio yields

L(ω) =
p(t0)(x0)
p∗(t0)(x0)

·
R∏

i=1

αmi−1 (x(ti−1)) exp (α0(x(ti−1))τi−1)
α∗

mi−1
(x(ti−1)) exp (α∗

0(x(ti−1))τi−1)
(13)

which shows that the likelihood ratio can be efficiently computed during trajec-
tory generation without much extra computational effort by successively updat-
ing its value after each simulated reaction according to the running product. In
particular, the unbiased number of molecules can be obtained at any time. In the
case of a given initial state (initial numbers of molecules of each species) all the
probability mass is centered on this state, thus the initial distribution assigns
the probability of one to the initial state and zero to all other states. If we keep
the same initial state as in the original model under Importance Sampling, the
initial distribution remains unchanged, too, which means that the initial distri-
butions in the original model and under Importance Sampling both assign the
probability of one to the initial state and zero to all other states. Thus, the ratio
of the probabilities of the initial state is one, and the likelihood ratio becomes

L(ω) =
R∏

i=1

αmi−1 (x(ti−1)) exp (α0(x(ti−1))τi−1)
α∗

mi−1
(x(ti−1)) exp (α∗

0(x(ti−1))τi−1)
(14)

which again can be efficiently updated after each simulated reaction.
Although naturally arising, the change of measure as described above may be

too restrictive in a variance reduction setting. In cases where more flexibility is
needed, it is possible to use a different change of measure in each simulation step
or propensity functions that depend on the number of already occurred reactions
(corresponding to a nonhomogeneous model) or the history of the just executed
simulation steps. Formally, define functions β(r)

m (x(t0), . . . , x(tr)), where for all
m ∈ {1, . . . ,M} : αm(x(tr)) > 0 ⇒ β

(r)
m (x(t0), . . . , x(tr)) > 0. Then the

reaction path density under Importance Sampling is

dP ((x(t0), τ0), . . . , (x(tR), τR)) =

p(t0)(x0) ·
R∏

i=1

β(i−1)
mi−1

(x(t0), . . . , x(ti−1)) exp(β0(x(t0), . . . , x(ti−1))τi−1) (15)

and the corresponding likelihood ratio (leaving the initial distribution unchanged)
becomes

L(ω) =
R∏

i=1

αmi−1 (x(ti−1)) exp (α0(x(ti−1))τi−1)

β
(i−1)
mi−1 (x(t0), . . . , x(ti−1)) exp(β0(x(t0), . . . , x(ti−1))τi−1)

. (16)
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However, the latter form of the change of measure is more involved than the
straightforward one, and our purpose in this paper is not to reduce the variance
of the estimator but to provide an efficient method for comparisons of multiple
parameter settings that need not be chosen but are given through the objective
of the study. Therefore, we shall rely on the change of measure that preserves
the Markovian structure of the set of coupled reactions.

4.3 Reversing Roles in Importance Sampling

Originally, Importance Sampling was not intended for comparing multiple mod-
els but for reducing the variance of the simulation estimator for a single model.
However, if we reverse the roles of the original distribution and the Importance
Sampling distribution, we can elegantly obtain estimates for (in principle arbi-
trarily many) models simultaneously from one single simulation experiment (as
usual consisting of independent simulation runs).

Consider the nominal model, that is the model assumed to be the appropriate
unperturbed one, as the Importance Sampling model. That means, according to
the usual procedure of Importance Sampling, the simulation will be performed
only with the dynamics (according to the reaction rates and propensity func-
tions) of that model. Then any perturbed model can take the role of the original
model in the equations derived in Section 4.2 and applying Importance Sampling
means to simulate the nominal model and weighting the outcomes by the likeli-
hood ratio to obtain unbiased estimates for the perturbed model. It is important
that this is valid for any perturbed model where the stoichiometry is the same
as for the unperturbed (original) model. Hence, arbitrary changes/perturbations
of the rate constants and thus the propensity functions can be considered.

For simultaneously simulating more than one perturbed model we keep track
of multiple likelihood ratios resulting from the perturbed models and update
them all after each simulated reaction for the nominal model, similarly as sug-
gested by (13) and (14), respectively. In this paper we consider perturbations in
the reaction rates and keep the initial numbers of molecules unperturbed which
seems very reasonable since the sources of modeling errors are usually the reac-
tion rates that rely on, e.g., observations from laboratory experiments or similar
experiences, whereas initial numbers of molecules are controlled parts of exper-
imental settings. Thus, the appropriate form of the likelihood ratio for us here
is (14) and we are now ready to formulate an algorithm based on the theoretical
derivations of the previous sections.

Note that such an algorithm involves trajectory generation of the nominal
model and thus naturally relies on an according algorithm for this purpose
and extends this algorithm by incorporating the likelihood ratio computations.
Hence, the main effort in developing a method for simultaneous stochastic sim-
ulation of many models and showing its correctness has been already done with
our previous theoretical derivations. Now, in principle, any suitable algorithm
for trajectory generation can be used, e.g. the direct method, the First Reaction
Method, the Next Reaction Method and even any version of tau leaping or other
approximate algorithms, and equipped with the feature of Importance Sampling.
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As mentioned in Section 3, we choose the direct method for trajectory gener-
ation. We assume that N perturbed models should be simulated simultaneously.
The propensity functions of the nominal model are denoted by α∗

m and the
propensity functions of the perturbed models by α

(1)
m , . . . , α(n), m = 1, . . . ,M

where, as before, M is the number of reaction channels. Since all perturbed mod-
els follow the same stoichiometry as the nominal model, they all have the same
state change vectors as the nominal model. With these notation, Algorithm 2
performs the simultaneous simulations.

Algorithm 2. Simultaneous Stochastic Simulation Algorithm
Init t := t0, x := x0, L1 = · · · = LN = 1
repeat

for all m = 1, . . . , M do
Compute α∗

m(x)
end for
α∗

0(x) := α∗
m(x) + · · · α∗

M (x)
for all i = 1, . . . , N do

for all m = 1, . . . , M do
Compute α

(i)
m (x)

end for
α(i)

0 (x) := α
(i)
1 (x) + · · · + α

(i)
M (x)

end for
Generate two random numbers u1, u2, uniformly distributed on (0, 1)
Generate time τ to next reaction: τ = − ln(u1)/α∗

0(x)
Determine reaction type: m = min{k : α∗

1(x) + · · · + α∗
k(x) > u2α

∗
0(x)}

for all i = 1, . . . , N do
Update Li = Li · α

(i)
m (x)/α∗

m(x) · exp((α∗
0(x) − α

(i)
0 (x)) · τ )

end for
Update t := t + τ ; x := x + vm

Store/Collect/Handle Data
until terminating condition

As can be easily seen, compared to Algorithm 1 the extra effort is in the nec-
essary computation of all propensity functions of all perturbed models and the
update of the likelihood ratios that have to be done after each simulated reac-
tion of the nominal model (inside the repeat loop). Neither additional random
numbers must be generated nor additional reactions must be simulated.

5 Runtime Comparison

In order to demonstrate the savings in runtime yielded by simultaneous simula-
tion, we consider the estimation of expected numbers of molecules. Note that,
as explained in Section 4.1, this is only one of the many possible applications.
However, the extra effort is independent of the objective and it is thus the same
for other objectives like, e.g., variances, higher moments, or absorption times.
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Hence, for the purpose of demonstrating the efficiency gain it is sufficient to
consider the estimation of expected numbers of molecules.

Given that we rely on the direct method for generating trajectories it does
not make sense to present comparisons of the sample means of trajectories gen-
erated by separate simulation experiments with the direct method and simulta-
neous simulations weighted by likelihood ratios. Not surprisingly, since - as we
have shown - the appropriately weighted results from simultaneous simulations
and the results from separate simulations are both unbiased estimators of the
expected numbers of molecules at any time, they should not show statistically
significant differences if a sufficient number of simulation runs is performed. This
theoretical consideration was indeed also observed in practice when verifying the
implementation with a couple of different models.

Of course, it is of interest how the extra effort affects the runtime. If this extra
effort for each model was in the order of the effort of simulating a single model
separately, simultaneous simulations would provide no gain. Hence, what must
be demonstrated is that the overhead due to the likelihood ratio updates is signif-
icantly smaller than the effort for a single simulation. Note that our purpose here
is not a comprehensive study of a specific large model but the demonstration of
the runtime gain provided by the simultaneous stochastic simulation algorithm.
Of course, the algorithm is valid for any stochastic model of biological networks
in the framework of Section 2.1, of any size and complexity, and there are no
additional requirements or restrictions on the model structure.

As a representative example that we systematically studied we present run-
times obtained for the decaying dimerization reaction set

S1
c1→ ∅, S1 + S1

c2−⇀↽−
c3

S2, S2
c4→ S3

that was also chosen for instance in [9,27] to study the performance of differ-
ent tau-leaping methods. The parameter choices were taken in accordance with
the mentioned references as X1(0) = 400, X2(0) = 798, X3(0) = 0 for the
initial numbers of molecules and c1 = 1, c2 = 10, c3 = 1000, c4 = 0.1 for the
rate constants. Thus the propensity functions are given by α1(x) = x1, α2(x) =
5x1(x1 − 1), α3(x) = 1000x2, α4(x) = 0.1x2. The model was simulated up to
time horizon t = 0.2 and up to time horizon t = 0.5 For both time horizons
we performed two series of simulations of perturbed models In the first series
exactly one of the reaction rates was perturbed by ±3%. Hence, altogether eight
parameter settings were considered. In the second series, all reaction rates were
considered to be potentially perturbed by ±3% at the same time. Hence, includ-
ing the nominal one, altogether 34 = 81 parameter settings were considered, i.e.
80 differently perturbed parameter settings.

Table 1 contains the runtimes of matching simulations with the direct method
and the simultaneous method. With the direct method 8 and 80, respectively,
separate simulation experiments, each consisting of 104 simulation runs up to the
given time horizons, were done according to Algorithm 1. With the simultaneous
method the 8 and the 80, resp., perturbed parameter settings were simulated
with 104 simulation runs according to Algorithm 2. Not surprisingly, the runtime
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Table 1. Runtime Comparisons for the Decaying Dimerization Reaction with Multiple
Perturbations. Runtimes are given in seconds.

t = 0.2 t = 0.5

# Perturbed Models Direct Simult Direct Simult

8 28928 8178 72504 18528

80 290155 51449 725871 99303

of the direct method for N perturbed parameter settings is roughly N times
the runtime for one single setting. With the simultaneous method the runtime
grows significantly less with increasing number of parameter settings. This shows
that the extra effort according to the likelihood ratio computation is far less
than the effort for a separate simulation. More formally and generally, let r
denote the runtime for one separate simulation experiment (with sufficiently
many independent runs) for the nominal parameter settings3 with the direct
method. Then the runtime for simulating N parameter settings separately is
Rsep ≈ Nr. For the simultaneous method the runtime is Rsimult = r + Nv
where v denotes the runtime due to the overhead (extra effort) for one additional
parameter setting. Obviously, when only one parameter setting is considered
Rsep = r < r + v = Rsimult which simply means that in this case of course no
extra effort should be introduced. In general,

Rsimult < Rsep ⇔ v < r − r

N
. (17)

Hence, we have a condition under which the simultaneous method is faster. This
condition is very likely to be met for all models, of any size and complexity. As a
final remark we state that we performed (less systematical) runtime comparisons
for several different reference reaction sets with a moderate number (up to ten)
of reaction channels.

6 Conclusion

We have presented an algorithm for simultaneous simulation of multiple param-
eter settings within one single simulation experiment. The algorithm is based
on likelihood ratios that appropriately weight the simulation results to obtain
unbiased estimates. The algorithm is particularly useful for comparisons of a
large number of parameter settings and it yields a large amount of runtime
gain compared to multiple separate simulations. Thereby, no approximation
and thus no loss in statistical validity and accuracy is introduced. Further re-
search includes analytical investigations of the algorithm performance as well as
the incorporation of other methods for trajectory generation such as, e.g., tau
leaping.
3 For small parameter perturbations this runtime is roughly the same for all perturbed

parameter settings.
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Abstract. In this paper we present a quantified model concerning the
synthesis of pre-rRNAs. The chemical kinetics simulation software Dizzy
has been chosen as both the modelling and simulation framework of our
study. We discuss the validation of the model against the available ex-
perimental data and we show some preliminary results obtained from the
study of our model. All the analyses are based on stochastic simulation.

1 Introduction

Eukaryotic cells contain a huge variety of RNA species, almost all of which are
synthesised by post-transcriptional processing [1,2]. The Tollervey Lab at the
University of Edinburgh is investigating the mechanisms and regulation of RNA
processing and turnover, using yeast as a model organism. In this paper we
present a quantified model of one such synthesis pathway in yeast, pre-rRNA
processing. We are particularly interested in the relative frequency of two al-
ternative forms of the pathway. In the first pathway a complete pre-rRNA is
formed and processed in a series of cleavage and modification steps. In the second
variant, known as co-transcriptional cleavage (CoTC), part-formed pre-rRNA is
cleaved from the nascent transcript and begins cytosolic modification, whilst the
remainder continues transcription. The dynamics of the processing is studied
using stochastic simulation in the Dizzy tool [7,8].

In this paper we present the construction of a computational model which
encompasses both forms of the pre-rRNA processing and explain the subtleties
required in order to validate the model against experimental data. The inter-
mediate products of the pre-rRNA processing are not readily measurable unless
labelled by radioactive uracil. Thus the experimental data is presented in terms
of labelling intensity, rather than directly recorded amounts of the precursors.
As a consequence the labelling mechanism must also be incorporated into the
computational model.

This lack of accessibility of the biological entities are one of the main motiva-
tions for using computational models to support the wet lab experiments for this
system. The Dizzy software package [7,8] has been used as the modelling and
analysis framework of our work. A stochastic simulation, based on Gillespie’s
algorithm, was chosen as it allowed us fine-grained control over elements of pri-
mary importance such as the relative frequency of co-transcriptional cleavage.

M. Calder and S. Gilmore (Eds.): CMSB 2007, LNBI 4695, pp. 32–47, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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We also present the validation of the model against the available experimental
data and preliminary experiments investigating the sensitivity of the accumu-
lation of the various intermediate products to different proportions of DNAs
exhibiting co-transcriptional cleavage.

There is a substantial literature modelling yeast and/or RNA. In particular
we mention [3,4,5]. In [3] a kinetic-dynamic model was proposed to simulate
RNA processing by determining the essential reaction rates, including the rates
of transcription, pre-mRNA turnover, pre-mRNA splicing, and mRNA decay. A
simulator based on the family competition evolutionary algorithm was applied
on several artificial datasets and on a simplified yeast expression dataset. The
authors of [4] presented and analysed a model of protein translation at the
scale of an individual messenger RNA (mRNA) transcript. In [5] the authors
proposed the development of mathematical models that quantitatively describe
the complex process of transcription, RNA processing, transport, translation and
mRNA turnover.

The study of the synthesis pathway presented in this paper is novel. Also the
use of Dizzy for modelling and analysis in this field is new.

Structure of this paper. In Section 2 we present the biological model on which
our study is based. We follow this in Section 3 with a detailed presentation
of the computational model, developed for the stochastic simulator, Dizzy. In
Section 4 we present a comparison of the output of our model and the available
experimental data. Finally, we present conclusions in Section 5.

2 Biological Model

RNA plays a fundamental role in the translation of genes into proteins. In ad-
dition to the messenger RNA (mRNA) which is transcribed from the gene and
serves as a template for the protein formation, the translation itself takes place
on ribosomes which may be thought of as molecular machines comprised of
several molecules of ribosomal RNA (rRNA). Whilst mRNA is specific to the
particular protein being translated, ribosomes and the associated rRNA are more
general, translating various mRNA. For this reason vast numbers of ribosomes,
and therefore also rRNA molecules, are needed.

The rRNA molecules are transcribed from DNA in the same way as mRNA.
RNA polymerase moves along the DNA which can be regarded as a template,
from the 5’ end to the 3’ end (left to right in our diagrams), joining together
the nucleotides in the order specified by the template. Thus as the polymerase
progresses along the DNA a growing chain of nucleotides is formed. Because
rRNA is required in large amounts within the cell there are multiple copies of
the genes, arranged in tandem along the genome. So at any particular time for
each gene there will be numerous partially formed rRNA molecule, at different
lengths/stages of synthesis and this will be repeated on the many copies of the
gene within the cell. This situation is illustrated in Fig. 1. These partially formed
rRNA molecules are termed nascent transcripts (NT).
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Fig. 1. Visualisation of rRNA transcription (from [6]). Each feather-like structure con-
sists of a ribosomal DNA (the central spine) and a number of actively transcribed
rRNA units (polymerase chains) of increasing length.

At the end of transcription the molecule formed is termed pre-rRNA, or a
precursor, because it will be subject to further modification before it is ready for
incorporation into the ribosome. The processing which these pre-rRNA molecules
undergo is an area of active research. For yeast cells, quite a lot of detail is
known about the processing and many intermediate stages have been detected
experimentally. The intermediate elements are measured in terms of Svedberg
units or S values, which are a measure of the rate at which they sediment out in
an ultracentrifuge.

In this paper we consider the processing pathway from the fully formed pre-
cursor 35S shown in Fig. 2. In addition to the reactions shown, 35S may split
into 23S and 27SB (react4 ). We consider the possibility that the polymerase
chain does not remain intact for the whole transcription, but instead completed
elements of 20S become detached, whilst transcription is still in progress. This
is termed co-transcriptional cleavage (CoTC) and is illustrated in Fig. 3. Whilst
this alternative behaviour is known to occur there is no consensus about how
common it is with respect to transcription without intermediate cleavage. More-
over, it is also unknown at what stage of transcription the cleavage occurs. For
example, it could occur as soon as the polymerase chain contains a complete 20S
element, but also at any point later in the chain development. Answering these
questions has been a major motivation for the development of the computational
model which we present in this paper.

3 The Dizzy model

In this section we give an account of the model which we have developed. We
used the Dizzy software package [7,8], and so the section starts with a brief intro-
duction to that package. The remainder of the section is devoted to a description
of the model. In particular we focus on the two major challenges that we faced
in developing the model:
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Fig. 2. The ribosome synthesis pathway, without co-transcriptional cleavage
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Fig. 3. The ribosome synthesis pathway, following co-transcriptional cleavage

– adequately capturing the choice between the usual transcription and CoTC
to allow suitable experimentation;

– representing the labelling process, especially with respect to the initial pe-
riod, as this is intrinsic in the experimental data.

We consider only one cell, as each cell is supposed to act independently for
this process. Within each cell there are approximately 100 copies of the rRNA
gene [15], which we will term rDNA sequences, responsible of the pre-rRNA
transcription.

3.1 Dizzy

Dizzy [7,8] is a chemical kinetics simulation software package written in Java.
It provides a model definition environment and an implementation of both
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stochastic and deterministic simulation algorithms. The choice of Dizzy was
motivated by the fact that our analysis is founded on stochastic simulation and
Dizzy offers the implementation of well-known and widely-used simulation algo-
rithms. Furthermore, its simple input language, defined for modelling biological
systems, allowed us to represent our model in an effective and straightforward
way, at the level of details we are interested in. Indeed, as we describe below,
our study is based on DNA intervals of around 400 bases (the length of DNA
transcripted in the time of the pulse-labelling experiments) instead of the single
basis and this can be easily modelled in Dizzy.

Dizzy uses the Chemical Model Definition Language (CMDL) as input lan-
guage. A CMDL model definition consists of a series of statements that define the
model elements, such as species and reactions, but also parameters and compart-
ments. In the former part of a CMDL model there are definitions of the species
and possibly of compartments and parameters. Each is described by a symbol
name associated with a value (the initial amount for species). This is followed by
reaction statements. A reaction statement defines a one-way chemical reaction
involving zero or more reactants, and zero or more products. Reaction state-
ments have three elements: reaction name, the list of reactants and of products,
and the reaction rate.

AmongthedifferentsimulationimplementationsofferedbyDizzy[10,11,12,9,16],
in thisworkwe choseGillespie’sDirectMethod for the analysis.This uses theMonte
Carlotechniquetogenerateanapproximatesolutionofthemasterequationforchem-
ical kinetics. Broadly speaking, the algorithm tracks the evolution of the system
starting from an initial state by computing the time and the kind of the next reac-
tion by means of two probability density functions. At each step the global state is
updatedand theprocedure repeats until the simulation time is reachedorno further
reactions can be fired.

3.2 Usual transcription and CoTC

A main process in the model is the transcription of pre-rRNAs from the rDNA
sequence. We abstract away from the simple elementary steps that compose
transcription and so consider it as a unique biological process. We model both
the alternative pathways reported in Figs. 2 and 3.

The mechanism of selection between the usual transcription and CoTC is still
not completely known, nor the frequency with which the two alternatives occur.
In order to model the choice between the two different kinds of transcription
the frequencies p1 and p2 are introduced, representing the probabilities to have
the usual transcription and CoTC, respectively (p2 = 1 − p1). Furthermore we
divide the rDNA sequences in the cell into two groups. The elements of the former
group, indicated by the name DNA, are involved in the usual transcription and
the elements of the latter group, indicated by DNACoTC , in CoTC. Since in one
cell there are about 100 rDNA sequences involved in the rRNA synthesis [15],
we have globally 100 ∗ p1 DNAs and 100 ∗ p2 DNACoTC. We must also account
for the partially formed transcripts. Thus, in addition, we have to consider 100 ∗
p2 DNAp27SA2, which represent the partial transcription of 27SA2 obtained
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from cleavages that have happened before the initial time. The values of the
two frequencies are hypothesised to be 0.7 and 0.3 from the current biological
knowledge of the process, but these values must be checked. In the analysis of
the system, the parameters p1 and p2 are varied to study the influence that the
kind of transcription selected has on the evolution of (the concentration of) some
species.

The exact point at which the CoTC starts is unknown. In the present model
it is supposed that CoTC happens soon after the transcription of the 20S (end
of region 11). However it is possible to consider different possibilities and see
how this influences the production of the pre-rRNAs.

3.3 Labelling

Broadly speaking, the labelling describes the process during which radioactive
uracil, a base nucleotide, is introduced into the cell and is incorporated in the
pre-rRNA during transcription. The resulting elements are labelled and can be
detected in the experiments.

The following hypotheses concerning the labelling are made:

1. the radioactive uracil is introduced into the cell at time t0 = 0;
2. the labelling equilibration is very fast (a few seconds) and we do not need

to consider it;
3. the radioactive uracil is in large quantity and does not lose radioactivity (at

least for the time considered). So we can suppose a constant supply of it:
all additions to polymerase chains after the introduction of the label will
incorporate it.

In order to model the labelling we need to distinguish between the initial
period, during which the nascent transcripts exhibit different levels of labelling
according to their stage of transcription when the labelling was introduced, and
the situation after some time, in which only fully-labelled elements are obtained.

During the initial period, we distinguish different states of the nascent tran-
scripts at time t0. Indeed, different initial transcription situations lead to dif-
ferent levels of labelling in the resulting pre-rRNAs. For instance, if at time t0
a transcription has almost completed the resulting transcript will be only min-
imally labelled. On the other hand, if the transcription started just before t0 a
fully labelled element will be obtained.

To model the different steps in the transcription and the resulting different
levels in the labelling, the whole DNA sequence of interest has to be discretized
into regions. It is split into 400 -base regions, corresponding to the bases tran-
scribed in the period of 10 s. This corresponds to the time period of observations
in the pulse-labelling experiments. As the total sequence has a length of about
6660 bases, 17 regions are obtained. We use the index i to indicate the different
regions, starting from 1 (rightmost region) to 17 (leftmost region). They corre-
spond to the different levels of labelling (from minimum to maximum) of the
resulting pre-rRNA.
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17 16 15 14 13 12 6 5 4 3 127891011
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Fig. 4. Discretization of the rDNA sequence in 17 regions of 400b

Figure 4 reports a schema of the discretization. It is also shown the position
of CoTC, that in the present model is fixed at the end of region 11 (end of 20S).

The various pre-rRNA and rRNA involve different numbers of regions. For
instance 20S and 18S involve the regions from 16 to 11, 5.8 and 7S the region
10, while 25S involves the regions from 9 to 1. The elements 27SA2 and 27SB
cover the regions from 10 to 1.

In the case of the intermediate elements, the level of labelling depends on the
labelling of the initial pre-rRNA from which it is derived and on which regions
are present in the element. For instance in the case of 35S we can have 17 states
of labelling. The pre-rRNA 20S has 6 levels of labelling plus the unlabelled state,
obtained when the 35S from which 20S is derived is labelled up to level 10.

We use the suffix li to refer to the initial transcription situation and to indicate
the level of labelling of the different elements. The maximum level refers to the
situation beyond the initial labelling period.

3.4 Description of the model

In this section we give a brief description of the Dizzy model.

Frequencies p1 and p2. The variable p1 and p2 are introduced to describe the
frequencies of the two kinds of transcription. We have the statements:

p1 = 0.7;
p2 = 0.3;

Species and initial amounts. Each species used in the reaction must be defined
in the model. We have two main groups of species: the ones involved in the
transcription and the ones representing the intermediate and final elements of
the pathways. For the former kind, we have the following species:

– DNAli for i = 1, 2, ..., 17;
– DNACoTC li for i = 11, 12, ...17;
– DNAp27SAli for i = 1, 2, .., 10.

The former species represent the case of nascent transcripts whose transcription
is initially in the region i and the transcription is the usual one. DNACoTC li

has a similar meaning, but in the case of CoTC. This only considers 7 regions
because CoTC happens at the end of region 11. Finally DNAp27SAli refer to
the transcription of the last part of 27SA2 after the cleavage. It concerns the
regions from 1 to 10. The only species initially different from zero are the ones



Modelling Yeast Pre-rRNA Processing 39

Table 1. The list of reactions in the Dizzy model

transcr li DNAli → DNAli+1 + El35Sli , rt; i=1,2,...,16
transcr l17 DNAl17 → DNAl17 + El35Sl17 rt;

transcrp27SAli
DNAp27SAli

→ DNAp27SAli+1
+ El27SA2li , rt; i=1,2,...9

transcrp27SAl10
DNAp27SAl10

→ El27SA2l10 , rt;

transcrCOTC l(i+10) DNACoTC l(i+10) →
DNACoTC l(i+11) +DNAp27SAl10

+20Sli ,
rt; i=1,...6

transcrCOTC l17 DNACoTC l17 →
DNACoTC l17 + DNAp27SAl10

+ 20Sl6 ,
rt;

React3li El35Sli → El20Su + El27SAli r3; i=1,2,..10
React3li El35Sli → El20Sll(i−10) + El27SA2l10 r3; i=11,12,..16

React3l17 El35Sl17 → El20Sll6 + El27SA2l10 , r3;

React4li El35Sli → El23Su + El27SBli , r4; i=1,2,..10
React4li El35Sli → El23Sl(i−10) + El27SBl10 , r4; i=11,12,..17

React5li El20Sli → El18li , r5; i=1,2,..6
React5u El20Su → El18u, r5;

React6li El27SA2li → El27SBli , r6; i=1,2,...,10

React7li El27SBli → El5.8Su + El25Sli , r7; i=1,...,9
React7l10 El27SBl10 → El5.8Sli + El25Sl9 , r7;

React8l1 El7Sl1 → El5.8l1 , r8;
React8u El7Su → El5.8u, r8;

that refer to the rDNA regions where the nascent transcripts are close to the
end of transcription at time t0. These species may be considered soon “active”:

DNAl1 = p1 ∗ 100;
DNACoTC l11 = p2 ∗ 100;
DNAp27SAl1 = p2 ∗ 100;
All others are considered null as they are initially “blocked” for transcription,

only becoming active as the polymerase chains incorporating radioactive uracil
move along the rDNA.

For the other species in the pathway, different statements are defined to repre-
sent the species at different levels of labelling. Each of these species are initially
null as the labelling starts at time t0. The unlabelled elements are not considered
as they cannot be detected by the experiments.

Reactions. The reactions of the model are summarised in Table 1. They are all
irreversible one-reactant reactions with mass action kinetics. The reaction names
used in Dizzy correspond to the labels used in Figs. 2 and 3. The former three
groups concern transcription, whereas the remaining ones describe the remaining
reactions in the pathway with the addition of the labelling. It is worth noting
that for each biological reaction in the two pathways we have as many reactions
as the number of levels of labelling for that reactant.

The first kind of reactions is indicated by the name transcrli with i =
1, 2, ..., 17 and describes the usual transcription (the first reaction on the top
in Fig. 2). For i = 1, 2, 3, ...16, the transcription of a nascent transcript initially
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Table 2. Rate values for the reactions of the model

rate name rt r3 r4 r5 r6 r7 r8

value (s−1) 0.25 0.25 0.15 0.005 0.028 0.022 0.01

at level i results in pre-rRNA 35S at the level i of labelling, and DNAli+1 . In-
deed after this transcription, the nascent transcripts initially at level i + 1 are
“activated”. The last reaction describes the final situation in which we obtain
fully-transcribed elements. The second and the third groups of reactions repre-
sent the translation with CoTC (the first reaction on the top in Fig. 3). The
approach is similar to the one used in the usual transcription. The reactions
labelled with transcrp27SAli indicate the transcription of the 27SA2 region in
the case CoTC has happened before time t = 0 (i = 1, 2, .., 9) and in the case
CoTC happens later (i = 10).

All the other reactions correspond to the remaining interactions shown in
Figs. 2 and 3. These reactions represent either the cleavage of a pre-rRNA into
two parts or in the degradation of some fragments (not represented explicitly in
the model). The element El35Sli is involved in two reactions: React3i and Re-
act4i for i = 1, ..., 17. These are the cleavage of 35S into El20Sli and El27SASli

and into El23Sli and El27SBli, respectively. The reactions with names React5i
for i = 1, ..., 6 and React5u are the transformation of the pre-rRNA 20S in the
final rRNA 18S and, similarly, the reactions with name React6i for i = 1, ..., 10
stand for the transformation of 27SA2 into 27SB and React81 and React8u for
the transformation of 7S into the final rRNA 5.8S. Finally the cleavage of 27SB
into 25S and 7S is described by the reactions React7i for i = 1, ..., 10.

Rates. One of the main problems with the definition of the model has been the
determination of the rates. Indeed the quantitative information and the data
currently available from the experiments are neither complete nor numerous.
We applied some parameter estimation algorithms discussed in [13,14] to our
model. Broadly speaking, these algorithms are based on one objective function
that measures the distance between the model and the experimental data. The
parameters of the model are then adjusted to minimize the objective function.
Among the different algorithms proposed in the literature we considered some
global stochastic otimization methods, such as simulated annealing, genetic al-
gorithms and evolutionary programming and some deterministic ones, such as
steepest descent and Levenberg-Marquardt methods. In all cases either the ap-
proximation estimator errors were large or some errors occurred and the pro-
cedure stopped. In the future we aim to repeat the estimation procedure using
many data-sets.

However, some information about the half life of the elements and the dura-
tion of the single reactions can be obtained from the literature and from some
biological observations. Therefore we made use of these. A summary of the rates
values used is reported in Table 2.
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The transcription/labelling rate is assumed to be rt = 0.25s−1. This value is
calculated by considering that the transcription of each region happens in 10 s
and an average of 2.5 transcripts for each region for each DNA is produced. We
consider the number of transcripts equally distributed over the entire sequence.
So we have: rt = 2.5

10 = 0.25s−1. For all the other reactions, the constant rates are
derived from the estimated duration of the reactions using the relation rate =
1/time. It is worth noting that the rate of a reaction does not depend on the
labelling.

4 Validation and Experimentation

In this section we report the validation of the model and some analysis results.
Gillespie’s Direct Method is the simulation algorithm considered in this work.

4.1 Validation of the model

In order to validate the model, we simulate the model and compare the resulting
curves with the known behaviours. In this study we are interested in reproducing
results consistent with the knowledge of the model and not necessarily perfectly
fitting the experimental data. Indeed at the moment we have only a few experi-
mental data. However, they are sufficient to give an idea of the behaviour of the
system. The variability of the experimental data is presumed to be relatively
high, on average in the range of 10%. This does not change the overall shape of
the curves.

Experimental data. In order to measure the amount of different elements,
the pulse-labelling technique is used. Initially the cells are pulse-labelled with
radioactive uracil. At different times, the pre-rRNA are extracted and isolated
in a gel solution to be analysed. From this it is possible to derive the radioactive
intensity of each element corresponding to a density “line”. An example result of
the experiment is shown in Fig. 5. The figure reports the variation of radioactive
intensity for the different pre-rRNA and RNA with respect to time. The data
derived from the pulse-labelling represent the radioactive density for some of the
element in the pathway, normalised by the total number of uracil.

As the result of the simulation is given in terms of the amounts of species, we
have to relate the intensity to the number of elements. The intensity depends on
the number of the radioactive uracil and the proportion of uracil is approximately
the same (30%) for each region. As a consequence of this, we can suppose that
the intensity is proportional to the length of the labelled sequences. Given a
pre-rRNA X composed of nx levels of labelling, the intensity I of that element
in a given time t is:

I ∝
nx∑

k=1

k

N
Xk(t) (1)
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Fig. 5. Pulse-labelling experiment result: different pre-rRNAs are deposited at differ-
ent levels within the gel according to their relative sizes (horizontal bands). As time
progresses greater amounts of radioactive uracil are present and the intensity increases
(vertical stripes moving from left to right).

whereN = 17 is the total number of possible levels. The proportional factor is ob-
tained by considering the experimental steady state values of all the components.

In Dizzy we can define new species representing the intensity of the elements
detected in the experiments by using the expression 1.

Comparison. Figure 6 shows the time series obtained from experiments (on
the left) and the results of the simulations (right). The experimental data refers
to only one data-set, but this is expected to reproduce the correct biological
behaviour, with the exception of some possible experimental error. The time
for all the simulations is 500s, that is the time of the experimental data, and
each is repeated for 100 runs. Each simulation lasts only a few minutes. In
order to evaluate the goodness of the simulation we evaluated the confidence
intervals for each simulation time point. In the case of a confidence coefficient
α = 0.05 we obtain that the confidence interval width is 3%− 15% of the steady
state value of the respective species, with the exception of 35S, where the width
can be larger. If we consider 1000 runs, the width of the confidence intervals
decreases by an average of 50% with respect to the previous cases, but the
simulation time increases to several minutes. Moreover, this variability in the
simulation runs is in agreement with the variability intrinsic to the the biological
model.

The simulation results are in agreement with the expected behaviours. The
steady-state values obtained are comparable with the experimental data. There
are however some discrepancies, in particular the drop around time t=300s in
the 35S data and around time t=280s for 20S. These may be due to unknown
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Fig. 6. Validation of the model. Experimental time-course data (one dataset, left) and
the simulation result of species (right).

biological phenomena and further experiments are needed to investigate this
aspect.

Concerning the first two plots at the top, 35S increases rapidly till its steady
state. With respect to the experimental data, 35S increases faster in the first
period, but in both cases the steady state is reached quite rapidly. In the case
of 27SA2, 27SB and 20S the simulation results are in good agreement with the
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Fig. 7. Analysis results. Simulation of 20S for different values of the probabilities p1
and p2.

experimental data (curves in the middle). 27SA2 increases quickly and reaches
the steady state quite rapidly. The element 27SB increases more slowly than
27SA2 in the first period but then it increases rapidly and reaches a steady
state that is about twice the one of 27SA2. In the case of 20S the initial growth
depends only on CoTC, but after some time there are also 20S obtained from
35S. Finally, 18S is very low in the first period, as it is obtained only after some
steps in the pathway. After some time, it starts to accumulate, as expected.

4.2 Some analysis results

In the following we report some simulation results.

Influence of CoTC on the 20S formation. A first point to investigate is
the influence of CoTC in the formation of the pre-rRNA 20S. In order to do this
we plot 20S for different values of the frequencies p1 and p2. Some results are
reported in Fig. 7. It shows the cases p1 = 1, p1 = 0.7 (the one chosen in the
model) and p1 = 0.5. The change in the values of p1 (and consequently of p2)
leads to a variation in the growth of 20S, especially in the first period. Indeed
CoTC is responsible for the initial growth of 20S and in the case that we have
no CoTC (p1 = 1) the curve initially increases very slowly. On the other hand
the value of 35S is higher than in the case of p1 = 0.7. In the case of p1 = 0.5 the
value of 20S increases faster and reaches a higher steady state, while the value
of 35S is very low. For p1 = 1 and p1 = 0.5 the proportion of 20S with respect
to 35S given in the experimental data is not consistent.

In order to see if the curves in Fig. 7 are statistically different from each
other we consider the confidence interval for each time point. The confidence
coefficient is fixed to 0.05. For most of the time points the interval confidences
of the curves are not overlapping and so can be considered distinct.

These simulations seem to support the idea that the frequency of CoTC is
non-null and it is a value close to the one chosen in the model.
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Point of CoTC. We investigate by means of our model the influence of the
point where CoTC happens on the growth of 20S and of 27S2. The results are
reported in Fig. 8. The graph on the left concerns 20S and considers as point of
CoTC the end of region 7, the end of region 13 and the end of the region 15.
We see that the discrepancy between the different curves is minimal. However
we can observe that the initial growth of 20S depends on the point of CoTC, in
particular if CoTC happens towards the end of the transcription 20S increases
slowly. Indeed by considering the confidence intervals for the points on the three
curves, they overlap for most of the time points considered in the simulation.
The graph on the right reports the same simulations for 27SA2. In this case the
overlapping of the 3 curves is evident.

Fig. 8. Analysis results. Time series for 20S and 27SA2 for different points of CoTC.

5 Conclusions

In this paper we have presented a model describing the synthesis of pre-rRNA.
In particular we focus on two aspects: the description of the process of labelling
and on the choice between usual transcription and CoTC. Dizzy was chosen as
the modelling and simulation framework for our study. The validation and the
analysis have been made by means of stochastic simulation (Gillespie).

The model is able to reproduce the expected results and the simulations of
the main elements are comparable with the experimental data. The fit is not
exact but, as explained in the paper, there is currently little experimental data
available. The experiments are quite complex and time-consuming and so the
model can be used to make predictions that can then be checked by further
experiments. Furthermore, as more experimental data becomes available we will
be able to refine our model. Here we have shown the results of some prelimi-
nary studies. In particular we have used the model to investigate CoTC and its
influence on the formation of 20S.

A major problem in the definition of the model has been the definition of
the rates. In the present model they are derived from the literature or from
experimental observations about the duration of reactions. One topic for future
investigation will be the derivation of more precise rates, obtained by applying
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parameter estimators [13] to a set of experimental data. Currently the experi-
mental data we have are not enough to estimate the parameters by using these
techniques. In the present work we have primarily been interested in reproducing
of results comparable with the experimental data and our choice of parameters
seems able to do that.

Another topic of future work will be to explore the present discrepancies
between the experimental data and the model. In particular in the present ex-
perimental data there are some drops that are not captured by our model. Some
further experiments are necessary to investigate the causes of these drops. If
they are found to have biological causes we will modify our model in order to
account for them.

Furthermore, we will try changing some of the hypotheses we have made. For
example, our current model assumes that rates are constant, and that reactions
follow a mass action kinetics. We could change this assumption and investigate
if some alternative form of kinetic law is more appropriate for describing some
of the processes in the biological model.

Last but not least, we aim to use our model to answer further biological
questions about the synthesis pathway.
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Abstract. Temporal logics and model-checking techniques have proved
successful to respectively express biological properties of complex bio-
chemical systems, and automatically verify their satisfaction in both
qualitative and quantitative models. In this paper, we propose a finite
time horizon model-checking algorithm for the existential fragment of
LTL with numerical constraints over the reals, with the ability to com-
pute the range of values of the real variables occurring in a formula that
makes it true in a model. We illustrate this approach for the analysis of
biological data time series, provide a set of biologically relevant patterns
of formulas, and evaluate them on models of the cell cycle control and
MAPK signal transduction.

1 Introduction

Temporal logics and model-checking techniques [1] have proved useful to respec-
tively express biological properties of complex biochemical systems and automat-
ically verify their satisfaction in both qualitative and quantitative models, i.e. in
boolean [2,3,4], discrete [5,6], stochastic [7,8] and continuous models [9,10,3].
This approach relies on a logical paradigm for systems biology that consists in
making the following identifications [11]:

biological model = transition system
biological property = temporal logic formulae

biological validation = model-checking

Having a formal language not only for describing models, i.e. transition systems
by either process calculi [12,13,14,15,16], rules [2,17,18], Petri nets [19], etc..., but
also for formalizing the biological properties of the system known from biological
experiments under various conditions, opens a whole avenue of research for de-
signing automated reasoning tools inspired from circuit and program verification
to help the modeler [20]. However, the formalization of the biological properties
as a specification in temporal logic remains a delicate task and a bottleneck of
the method.

M. Calder and S. Gilmore (Eds.): CMSB 2007, LNBI 4695, pp. 48–63, 2007.
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In this paper, we investigate the use of this logical paradigm to analyze nu-
merical data, and infer temporal logic specifications from experimental data time
series. There has been work on the inference of correlations and positive and neg-
ative influences between entities from numerical data time series, especially for
gene expression temporal data [21,22]. However to our knowledge, the inference
of temporal logic formulae with real valued variables from numerical data time
series is new.

In this paper, we generalize the finite time horizon model-checking algorithm
described in [9] and recalled in the next section, to the existential fragment of
LTL with numerical constraints over the reals. This first-order setting provides
the ability to compute those instantiations of a formula that are true in a model,
by giving the range of values of the real valued variables occurring in the formula
for which it is true. The completeness of the algorithm is shown for the considered
fragment of constraint-LTL in Sec. 3.

We illustrate the relevance of this approach to the analysis of biological data
time series, by providing a set of biologically relevant patterns of formulas in
Sec. 4, and by evaluating them on models of cell cycle control and of signal
transduction in Sec. 5. We then conclude on the results achieved so far, their
generality, and their use in on-going work.

2 Preliminaries on Model-Checking in Constraint-LTL
over the Reals

2.1 Constraint-LTL over the Reals

The Linear Time Logic LTL is a temporal logic [1] that extends propositional
or first-order logic with modal operators for qualifying when a formula is true in
a tree of timed states, called a Kripke structure. The temporal operators are X
(“next”, for at the next time point), F (“finally”, for at some time point in the
future), G (“globally”, for at all time points in the future), and U (“until”). These
operators enjoy some simple duality properties, ¬Xφ = X¬φ, ¬Fφ = G¬φ,
¬Gφ = F¬φ, ¬(ψUφ) = G¬φ ∨ (¬φU(¬φ ∧ ¬ψ)), and Fφ = true U φ.

A first-order version of LTL with constraints over the reals, called constraint-
LTL, is used in Biocham [9] to express temporal properties about molecular
concentrations. A similar approach is used in the Darpa BioSpice project [10].
Constraint-LTL considers first-order atomic formulae with equality, inequality
and arithmetic operators ranging over real values of concentrations and of their
derivatives. For instance F([A]>10) expresses that the concentration of A even-
tually gets above the threshold value 10. G([A]+[B]<[C]) expresses that the
concentration of C is always greater than the sum of the concentrations of A and
B. Oscillation properties, abbreviated as oscil(M,K), are defined as a change
of sign of the derivative of M at least K times:

F((d[M]/dt > 0) & F((d[M]/dt < 0) & F((d[M]/dt > 0)...))) The ab-
breviated formula oscil(M,K,V) adds the constraint that the maximum concen-
tration of M must be above the threshold V in at least K oscillations.
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2.2 Model-Checking Algorithm

In an ODE model, and under the hypothesis that the initial state is completely
defined, numerical integration methods (such as Runge-Kutta or Rosenbrock
method for stiff systems) provide a discrete simulation trace. This trace con-
stitutes a linear Kripke structure in which constraint-LTL formulae can be in-
terpreted. Since constraints refer not only to concentrations, but also to their
derivatives, we consider traces of the form

(< t0, x0, dx0/dt, d
2x0/dt

2 >,< t1, x1, dx1/dt, d
2x1/dt

2 >, ...)

where at each time point, ti, the trace associates the concentration values xi

of the variables, and the values of their first and second derivatives dxi/dt and
d2xi/dt

2. This choice of derivatives is justified in section 4 as a facility for ex-
pressing positive or negative influences between entities. It is worth noting that
in adaptive step size integration methods, the step size ti+1 − ti is not constant
and is determined through an estimation of the error made by the discretization.

Algorithm 1 (trace-based constraint-LTL model-checking). [9,10]Given
an ODE model and a temporal property φ to verify within a finite time horizon,

1. compute a finite simulation trace;
2. label each trace point by the atomic sub-formulae of φ that are true at this

point;
3. add sub-formulae of the form Fφ (resp. Xφ) to the predecessors (resp. im-

mediate predecessor) of a point labeled with φ;
4. add sub-formulae of the form φ1 U φ2 to the points preceding a point labeled

with φ2 as long as φ1 holds;
5. add sub-formulae of the form Gφ to the last state if it is labeled by φ, and to

the predecessors of the points labeled by Gφ as long as φ holds.
6. return the time points labeled by φ.

Note that being limited to finite traces, and since Gφ =!F (!φ), we chose to
label the last state by Gφ if it satisfies φ, just like if the trace was completed
to the infinite by a loop on its last state. Note also that the notion of next
state (operator X) refers to the state of the following time point in a discretized
trace, and thus does not necessarily imply real time neighborhood. The rationale
of this algorithm is that the numerical trace contains enough relevant points, and
in particular those where the derivatives change abruptly, to correctly evaluate
temporal logic formulae. This has been very well verified in practice with various
examples of published mathematical models [9].

3 Formula Instantiation in ∃-Constraint-LTL over the
Reals

3.1 The Existential Fragment ∃-Constraint-LTL

Herewe consider the existential fragmentof constraint-LTL,where real valuedvari-
ablesareallowed in theconstraints,withan implicit existentialquantification.More
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precisely, the language of ∃-constraint-LTL formulae considered in this paper is de-
fined by the following grammar :

Constraint− ltl =
Atom | F (Constraint− ltl)
| G(Constraint− ltl) | X(Constraint− ltl)
| (Constraint− ltl)U(Constraint− ltl)
| (Constraint− ltl) and (Constraint− ltl)
| (Constraint− ltl) or (Constraint− ltl)
| (Constraint− ltl)⇒ (Constraint− ltl)
| not (Constraint− ltl)

Atom =
V alue < V ariable | V alue ≤ V ariable

| V alue > V ariable | V alue ≥ V ariable

| V alue < V alue | V alue ≤ V alue

| V alue > V alue | V alue ≥ V alue

V alue =

float | [molecule] | d[molecule]/dt | d2[molecule]/dt2 | T ime

| V alue+ V alue | V alue− V alue | − V alue | V alue× V alue

| V alue/V alue | V alueV alue

By an obvious transformation, negations and implications can be eliminated, by
propagating the negations down to the atomic constraints in the formula. From
now on, we will assume that all ∃-constraint-LTL formulae are in negation free
normal form.

3.2 Formula Instantiation Algorithm

Given a trace T representing a linear Kripke structure, and an ∃-constraint-LTL
formula φ with n variables, the formula instantiation problem, ∃v ∈ R

n (φ(v)), is
the problem of determining the valuation v of the variables for which the formula
φ is true in T . In other words, we look for the domain of validity Dφ ⊂ R

n such
that T |=LTL ∀v ∈ Dφ (φ(v)).

The domain of validity Dφ of φ can be computed using an algorithm similar
to the model-checking algorithm of section 2.2:

Algorithm 2 (trace-based ∃-constraint-LTL formula instantiation)
Given an ODE model and a temporal property φ with variables, to verify in
a finite time horizon,
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1. compute a finite simulation trace;
2. label each trace point by the atomic sub-formulae of φ and their domain of

validity as follows :
– for an atomic formula ψ without variables, label a time point ti by

(ψ,Dψ(ti) = R
n) if ψ is true at time ti, and (ψ,Dψ(ti) = ∅) otherwise;

– for an atomic formula [A] ≥ p (that is, of the form value ≥ variable)
label a time point ti by ([A] ≥ p,D[A]≥p(ti)) where D[A]≥p(ti) is the half-
space of R

n defined by p ≤ [A](ti);
– proceed similarly for other atomic formulae containing variables;

3. starting from the end of the trace, label each time point ti by the sub-formula
Fψ and its domain of validity DFψ(ti) = DFψ(ti+1) ∪ Dψ(ti);

4. starting from the end of the trace, label each time point ti by the sub-formula
Gψ and its domain of validity DGψ(ti) = DGψ(ti+1) ∩ Dψ(ti);

5. starting from the end of the trace, label each time point ti by the sub-formula
ψ1Uψ2 and its domain of validity Dψ1Uψ2(ti) = Dψ2(ti) ∪ (Dψ1Uψ2(ti+1) ∩
Dψ1(ti));

6. label each time point ti by the sub-formula Xψ and its domain of validity
DXψ(ti) = Dψ(ti+1);

7. label each time point ti by the sub-formula ψ1 or ψ2 and its domain of validity
Dψ1 or ψ2(ti) = Dψ1(ti) ∪ Dψ2(ti);

8. label each time point ti by the sub-formula ψ1 and ψ2 and its domain of
validity Dψ1 and ψ2(ti) = Dψ1(ti) ∩ Dψ2(ti);

9. return the domain Dφ(ti) for all time points ti where it is not empty.

This algorithm enjoys a strong completeness theorem for the chosen fragment
of constraints over the reals.

Theorem 1. The instantiation algorithm is correct and complete: a valuation
v makes φ true at time ti, T, ti |=LTL (φ(v)), if and only if v is in the computed
domain of φ at ti, v ∈ Dφ(ti).

Proof. Let us prove inductively on the constraint-LTL formula structure that
for any time t, any LTL formula φ and any instantiation v of the variables, if
φ(v, ti) is true then v ∈ Dφ(ti) and if v ∈ Dφ(ti) then φ(v, ti) is true :

– Atomic constraint-LTL formulae considered are of the formV alue R V ariable
or V alue R V alue where V alue is an evaluable arithmetic expression and R
an inequality operator. For all these atomic formulae the algorithm returns
the exact validity domain. For instance, formula ([A] ≤ p)(ti) is true if and
only if p is greater or equal to [A](ti) and the validity domain returned is
the half-space defined by p ≥ [A](ti);

– φ1 and φ2 . By algorithm construction Dφ1 and φ2(ti) = Dφ1(ti) ∩ Dφ2(ti)
hence : v ∈ Dφ1 and φ2(ti)⇔ v ∈ Dφ1(ti) and v ∈ Dφ2(ti)⇔ φ1(v, ti) and
φ2(v, ti)⇔ (φ1 and φ2)(v, ti);

– φ1 or φ2 . By algorithm construction Dφ1 or φ2(ti) = Dφ1(ti)∪Dφ2(ti) hence :
v ∈ Dφ1 or φ2(ti) ⇔ v ∈ Dφ1(ti) or v ∈ Dφ2(ti) ⇔ φ1(v, ti) or φ2(v, ti) ⇔
(φ1 or φ2)(v, ti);
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– F (φ). By algorithm construction DF (φ)(ti) =
⋃

j≥i(Dφ(tj)) hence : v ∈
DF (φ)(ti)⇔ ∃j ≥ i,v ∈ Dφ(tj)⇔ F (φ)(v, ti);

– G(φ). By algorithm construction DF (φ)(ti) =
⋂

j≥i(Dφ(tj)) hence : v ∈
DG(φ)(ti)⇔ ∀j ≥ i,v ∈ Dφ(tj) ⇔ G(φ)(v, ti);

– X(φ). By algorithm construction DX(φ)(ti) = Dφ(ti+1) hence :
v ∈ DX(φ)(ti) ⇔ v ∈ Dφ(ti+1)⇔ X(φ)(v, ti);

– φ1Uφ2. φ1Uφ2(ti) is true if and only if φ2(ti) is true or φ1(ti)is true and
(φ1Uφ2)(ti+1) is true. Moreover by construction D(φ1Uφ2)(ti) = Dφ2(ti) ∪
(Dφ1(ti) ∩ Dφ2(ti)) hence : v ∈ D(φ1Uφ2)(ti) ⇔ v ∈ Dφ2(ti) ∪ (Dφ1(ti) ∩
Dφ2(ti)) ⇔ (φ1Uφ2)(v, ti).

Now, let us define a box of R
n as a finite intersection of half-spaces and the

size S(D) of a domain as the minimum number of boxes the domain is made of.
Note that for a one dimension domain D = D1 ∪ D2 (resp. D = D1 ∩ D2), the
maximum size is S(D1) + S(D2) (resp. max(S(D1), S(D2))).

Theorem 2. In the worst case, the size of the validity domain of a LTL formula
of size k on a trace of length n is nk2

.

Proof. Let us prove inductively that the size of the projection on one variable
of the validity domain (i.e., the validity domain of a single variable) of a LTL
formula of size k, is at most nk. The size of the validity domain of an atomic
formula is at most 1. The maximum size of a one dimension domain of a formula
of size k is:

max(S(Dφ1(ti)), S(Dφ2(ti))) for Dφ1 and φ2(ti)
S(Dφ1(ti)) + S(Dφ2(ti)) for Dφ1 or φ2(ti)

∑

j≥i

S(Dφ(tj)) for DF (φ)(ti)

max
j≥i

S(Dφ(tj)) for DG(φ)(ti)

S(Dφ(ti+1)) for DX(φ)(ti)
max(S(Dφ1Uφ2(ti+1)), S(Dφ1(ti))) + S(Dφ2(ti)) for Dφ1Uφ2(ti)

In all these cases except operators F an U , the size of the domain is less than the
sum of the domains’ size of the subformulae at one time point, which entails a
size smaller than 2nk−1. The U and F operators make a sum on all time points
which entails a size of at most n × nk−1 = nk. Each projection’s size of the
validity domain is thus at most nk. The size of the validity domain of a formula
containing v variables is at most (nk)v ≤ (nk)k = nk2

.
The instantiation algorithm thus computes for each subformulae and each

time point a validity domain of size at most nk2
.



54 F. Fages and A. Rizk

4 Biologically Relevant Patterns of ∃-Constraint-LTL
Formulae

Temporal logic is sufficiently expressive to formalize a wide range of biologi-
cal properties known from experiments under various conditions. The formula
instantiation algorithm in ∃-constraint-LTL makes it possible to analyze concen-
tration traces and obtain semi-quantitative information. In particular, a quan-
titative counterpart of the purely qualitative properties in propositional CTL
studied in [3] can be expressed as follows, where variables are written using
lowercase letters:

Reachability : F([A]>=p), what threshold p species A attain in the trace ?
Checkpoints : not (([A]<p1)U([B]>p2)), for which thresholds p1 and p2 is it

false that [A] is lower than p1 until [B] is above p2, i.e., for which p1 and p2
[A] >= p1 is a checkpoint of [B]>p2?

Stability : G([A]=<p1 & [A]>=p2), what is the range of values taken by [A] ?
This range can be looked for in some context given by a condition like in
G(Time>10 -> ([A]<p1 & [A]>p2)).

Oscillation : F((d([A])/dt>0 & [A]>v1) & (F((d([A])/dt<0 & [A]<v2)))),
what amplitude (v1 − v2) is attained in at least one oscillation ? An oscil-
lation is defined as the change of sign of the derivative. This formula can be
extended for more oscillations and is abbreviated by oscil(M,K,p). It states
that M must have amplitude P in at least K oscillations. By applying the
algorithm for each value of K, beginning with 1, we can find the number of
oscillations in the trace and minimal amplitude P attained by K oscillations
for any K.

Influence : G(d[A]/dt>p1 -> d2[B]/dt2>=0), above which threshold does the
derivative of A have an influence on B ? The influence is positive if a high
value of d[A]/dt entails a positive second derivative of [B]. It is worth notic-
ing that, as multiple species might influence B, this formula only indicates a
correlation between the value of the derivative of A and the second derivative
of B and gives no proof of direct influence.

5 Application to the Inference of Temporal Properties
from Biological Time Series

5.1 Cell Cycle Data

In this section we present the application of the instantiation algorithm to the
budding yeast cell cycle data. For the purpose of evaluation of the method, we
do not use experimental data but simulation data obtained from the model of
[23]. The application of the method to experimental data is discussed in sec-
tion 5.3. Concentration traces are obtained by simulating the cell cycle control
model in Biocham. Then, we try to recover relevant properties of the model by
automatically analyzing the traces.
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The reaction rules of the model are the following:

(1) _=>Cyclin.
(2) Cyclin+Cdc2~{p1} => Cdc2-Cyclin~{p1,p2}
(3) Cdc2-Cyclin~{p1,p2} => Cdc2-Cyclin~{p1}
(4) Cdc2-Cyclin~{p1,p2} =[Cdc2-Cyclin~{p1}]=> Cdc2-Cyclin~{p1}
(5) Cdc2-Cyclin~{p1} => Cyclin~{p1}+Cdc2
(6) Cyclin~{p1} =>_
(7) Cdc2 => Cdc2~{p1}
(8) Cdc2~{p1} => Cdc2

Notations ~{p1} and ~{p1,p2} denote phosphorylated forms of a molecule.
Figure 1 displays the obtained simulation traces for four species of this model.
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Fig. 1. Budding yeast cell cycle simulation trace over 100 time units made of 94 time
points

Such traces are remarkably informative, however to automate reasoning on
them, we propose to rely on constraint-LTL queries. For instance, a reachability
query provides the maximum concentration attained by an entity:

biocham: trace_analyze(F([Cdc2-Cyclin~{p1}]>=v)).
[[v=<0.194]]

The result returned is a list of domains represented by lists of constraints on
the variables, here a single domain is returned with a single constraint on v. In
formulae like F([Cdc2-Cyclin~{p1}]>=v)where the variable only appears in in-
equalities of the form V alue ≥ V ariable or V alue > V ariable, the most relevant
point of the domain is the highest value of v in the domain, i.e. its boundary. Its
value is here 0.194, the maximum concentration of Cdc2-Cyclin~{p1} in the
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Table 1. Results for reachability (maximum value), stability (bottom and top values
in the last third part of the trace) and amplitude of at least n oscillations

Reachability Stability Amplitude of at least n oscillations
Species n = 1 n = 2

Cdc2 0.500 (0.338,0.479) 0.141 0.138
Cdc2-Cyclin~{p1,p2} 0.311 (0.005,0.310) 0.306 0.306
Cdc2-Cyclin~{p1} 0.194 (0.002,0.194) 0.192 0.192
Cyclin~{p1} 0.159 (0.004,0.158) 0.155 0.154

trace. Table 1 gives the maximum reachable values for the four species displayed
in Figure 1.

For stability, let us find the range of values taken by [Cdc2] in the last third
part of the trace:

biocham: trace_analyze(G(Time>66 -> ([Cdc2]=<v1 & [Cdc2]>=v2))).
[[v1>=0.479, v2=<0.338]]

The domain is defined by the conjunction of the two constraints v1 >= 0.479
and v2 =< 0.338. These values are the maximum and minimum values attained
by [Cdc2] in the last third part of the trace. The results for the other species
are given in Table 1.

An oscillation query may compute several interval domains:

biocham: trace_analyze(oscil(Cdc2,1)).
[[v2>=0.338, v1=<0.479], [v2>=0.341, v1=<0.479]]

The result is the union of two boxes. In such domains, the most relevant point is
not obvious. Here we look for the maximum amplitude v1− v2. The maximum
is obtained in the domain with v1 − v2 = 0.479 − 0.338 = 0.141. This result
states that at least one oscillation of Cdc2 has an amplitude greater or equal to
0.141. The number of oscillations is then incremented until obtaining an empty
validity domain. It is obtained for Cdc2 with the query oscil(Cdc2,3), stating
that there are only two oscillations of Cdc2 in the trace.

The results for the other species are given in Table 1. Obtaining the amplitude
of the oscillations is useful to distinguish between mixed amplitudes oscillations
in the trace. For instance, in noisy data the amplitude can be used to count the
number of oscillations regardless of small noise induced oscillations.

Whether Cdc2-Cyclin~{p1,p2} acts as a checkpoint for Cdc2-Cyclin~{p1}
can be investigated with the following formula:

not([Cdc2-Cyclin~{p1,p2}]<v1 U [Cdc2-Cyclin~{p1}]>v2)

The resulting domain is a union of ten boxes. Interpreting it requires examin-
ing each box to find interesting points of the domain. Checkpoint queries are
thus more delicate and perhaps not well suited for automatic analysis. In the
example, the values v1 = 0.311 and v2 = 0.014 are in the domain, stating that
Cdc2-Cyclin~{p1,p2} is not always less than 0.311 until Cdc2-Cyclin~{p1}
exceeds 0.014. In other words Cdc2-Cyclin~{p1,p2} goes beyond 0.311 before
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Cdc2-Cyclin~{p1} exceeds 0.014 pointing out that Cdc2-Cyclin~{p1,p2} is
indeed a checkpoint.

Now, the influence of a molecule A on a molecule B is looked for with for-
mula G(d[A]/dt>p1 -> d2[B]/dt2>0). The idea behind this formula is that if
a species B appears only in a reaction rule of the form A → B with a mass
action law kinetic, the following constraint-LTL formulae are true : G(d[A]/dt >
0⇒ d2[B]/dt2 > 0) and G(d[A]/dt < 0 ⇒ d2[B]/dt2 < 0).

In a typical system each species concentration is the result of the combined
effect of several other species. ∃-constraint-LTL formula search determines above
which threshold the above formulae are true, i.e. validity domains of variables
v1 and v2 in formulae G(d[A]/dt > v1 ⇒ d2[B]/dt2 > 0) and G(d[A]/dt < v2 ⇒
d2[B]/dt2 < 0).

By comparing these domains to the range of values of d[A]/dt, a score s ∈
[0, 1] is obtained indicating the influence of the derivative of [A] over the second
derivative of [B]. More precisely, if the domain of validity is v1 ≥ 0 it means that
the formula is true for any positive value of d[A]/dt resulting in a score 1. If the
domain of validity is v1 >= max(d[A]/dt)

2 it means that the formula is true for half
of the positive values of d[A]/dt resulting in a score 0.5. Table 2 gives influences
scores computed by this method for species Cdc2 and Cdc2-Cyclin~{p1,p2}.

Table 2. Positive influence scores of all species on Cdc2 and Cdc2-Cyclin~{p1,p2}.
Molecules appearing in rows (resp .columns) act as molecule A (resp. B) in formulae
G(d[A]/dt > v1 ⇒ d2[B]/dt2 > 0) and G(d[A]/dt < v2 ⇒ d2[B]/dt2 < 0) used to
compute these scores.

Species Cdc2 Cdc2-Cyclin~{p1,p2}
Cdc2 0.00 0.11
Cdc2~{p1} 0.01 0.12
Cyclin 0.00 0.34
Cdc2-Cyclin~{p1,p2} 0.00 0.02
Cdc2-Cyclin~{p1} 0.90 0.00
Cyclin~{p1} 0.50 0.09

According to the reaction rules, the only species having a positive influence
on [Cdc2] is [Cdc2-Cyclin~{p1}] (reaction (5)). The influence scores returned
correctly reflect this. The score obtained by Cyclin~{p1} is due to its close-
ness with [Cdc2-Cyclin~{p1,p2}] as it can be seen in the trace. These two
species both have a concentration rise coinciding with [Cdc2] own concen-
tration rise. Nevertheless, influence scores defined above enable to distinguish
[Cdc2-Cyclin~{p1}] over [Cyclin~{p1}] as molecule having a positive influ-
ence on Cdc2.

According to the reaction rules, the two species having a positive influence
on Cdc2-Cyclin~{p1,p2} are [Cyclin] and[Cdc2~{p1}] (reaction (2)). Notice
that as more species influence Cdc2-Cyclin~{p1,p2} than Cdc2, it is harder to
find correlations between single species and Cdc2-Cyclin~{p1,p2}. Therefore
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Fig. 2. MAPK model simulation trace over 20 time units made of 50 time points

overall influence scores are smaller in this case. In spite of this, the two species
having the highest scores are the correct ones.

5.2 MAPK Signal Transduction Data

The MAPK signal transduction data model is used in the same way as the cell
cycle model to evaluate the analysis method. Reaction rules used to simulate
concentration traces, displayed in Figure 2 are given below. All reactions rules
have mass action law kinetics.

(1) RAF + RAFK <=> RAF-RAFK
(2) RAF~{p1} + RAFPH <=> RAF~{p1}-RAFPH
(3) MEK~$P + RAF~{p1} <=> MEK~$P-RAF~{p1}

where p2 not in $P
(4) MEKPH + MEK~{p1}~$P <=> MEK~{p1}~$P-MEKPH
(5) MAPK~$P + MEK~{p1,p2} <=> MAPK~$P-MEK~{p1,p2}

where p2 not in $P
(6) MAPKPH + MAPK~{p1}~$P <=> MAPK~{p1}~$P-MAPKPH
(7) RAF-RAFK => RAFK + RAF~{p1}
(8) RAF~{p1}-RAFPH => RAF + RAFPH
(9) MEK~{p1}-RAF~{p1} => MEK~{p1,p2} + RAF~{p1}
(10) MEK-RAF~{p1} => MEK~{p1} + RAF~{p1}
(11) MEK~{p1}-MEKPH => MEK + MEKPH
(12) MEK~{p1,p2}-MEKPH => MEK~{p1} + MEKPH
(13) MAPK-MEK~{p1,p2} => MAPK~{p1} + MEK~{p1,p2}
(14) MAPK~{p1}-MEK~{p1,p2} => MAPK~{p1,p2} + MEK~{p1,p2}
(15) MAPK~{p1}-MAPKPH => MAPK + MAPKPH
(16) MAPK~{p1,p2}-MAPKPH => MAPK~{p1} + MAPKPH
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Reachability, stability and oscillations queries results are given in Table 3.
Stability queries return very small ranges of values in the last third part of the
trace for most species indicating stable behaviors. For instance, RAF is inside the
[0.310, 0.311] interval in the last third part of the trace. There are no oscillations
of the species except a very small one for RAFK.

Table 3. Results for Reachability (maximum value) and Stability (bottom and top
values in the last third part of the trace)

Reachability Stability Amplitude of at least n oscillations
Species n = 1

RAFK 1 (0.865,0.866) 0.001
RAF 1 (0.310,0.311) -
MEK 1 (0,519,0.537) -
MAPK} 1 (0.891,0.916) -
RAF~{p1}} 0.311 (0.311,0.311) -
MEK~{p1} 0.178 (0.174,0.178) -
MEK~{p1,p2} 0.060 (0.052,0.060) -
MAPK~{p1} 0.052 (0.039,0.052) -
MAPK~{p1,)2} 0.003 (0.001,0.003) -

This model is made of a cascade of phosphorylation reactions. According to
the reaction rules, RAFK acts as a kinase on RAF (reactions 1 and 7), RAF acts
as a kinase on MEK (reactions 3, 9 and 10) and MEK acts as a kinase on MAPK
(reactions 5,13 and 14).

We looked for positive influence of any species an all phosphorylated forms of
RAF, MEK and MAPK. The highest score for RAF~{p1} is 0.96 and is attained by
species [RAF-RAFK] while [RAFK] ’s score is 0. This is consistent with the way
phosphorylation reactions are written in the model, that is a complexation re-
action and then a decomplexation-phosphorylation rule. Highest influence score
for the phosphorylated form of MEK is correctly obtained for [MEK-RAF~{p1}],
while in the case of [MAPK~{p1}] the correct complex [MAPK-MEK~{p1,p2}]
only gets the second highest score, and the situation is even more confused for
[MAPK~{p1,p2}].

Notice that lots of other species have relatively high influence score, which
is no surprising given the similar shape of all curves in the trace. Nevertheless
retaining only species having the highest scores as having positive influence, gives
an overall good indication of the direct influences between species.

5.3 Experimental Data

Experimental data for measuring the evolution over time of gene expression
levels or of protein concentrations, typically involve between 6 and 50 time points
taken at regular intervals. Furthermore, experimental data are noisy, and it is
not one trace but several ones that have to be analyzed in order to extract their
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Table 4. Positive influence scores of all species on phosphorylated forms of RAF, MEK
and MAPK

Species RAF~{p1} MEK~{p1} MEK~{p1,p2} MAPK~{p1} MAPK~{p1,p2}
[RAFK] 0.00 0.11 0.46 0.77 0.50
[RAF] 0.00 0.00 0.00 0.20 0.02
[MEK] 0.26 0.00 0.00 0.00 0.00
[MAPK] 0.50 0.47 0.11 0.00 0.00
[MAPKPH] 0.50 0.49 0.20 0.01 0.00
[MEKPH] 0.48 0.06 0.00 0.00 0.00
[RAFPH] 0.14 0.00 0.00 0.00 0.00
[RAF-RAFK] 0.96 0.50 0.50 0.00 0.50
[RAFPH-RAF~{p1}] 0.00 0.22 0.47 0.42 0.50
[MEK-RAF~{p1}] 0.50 0.79 0.66 0.42 0.50
[MEK~{p1}-RAF~{p1}] 0.00 0.00 0.27 0.41 0.48
[MEKPH-MEK~{p1}] 0.00 0.00 0.34 0.45 0.49
[MEKPH-MEK~{p1,p2}] 0.00 0.00 0.00 0.60 0.34
[MAPK-MEK~{p1,p2}] 0.00 0.00 0.00 0.62 0.37
[MAPK~{p1}-MEK~{p1,p2}] 0.00 0.00 0.00 0.00 0.09
[MAPKPH-MAPK~{p1}] 0.00 0.00 0.00 0.00 0.19
[MAPKPH-MAPK~{p1,p2}] 0.00 0.00 0.00 0.00 0.00

significant features. The strategy here is thus to analyze the traces separately
and retain the intersection set of their properties, or the most frequent ones only.

In order to evaluate the instantiation algorithm on similar experimental-like
concentration traces, we extracted eleven equally spaced time points from the
cell cycle simulation trace. The obtained trace is displayed in Figure 3.

Table 5. Results for reachability, stability and oscillation queries in experimental-like
data

Reachability Stability Amplitude of at least n oscillations
Species n = 1 n = 2

Cdc2 0.500 (0.341,0.441) 0.125 0.089
Cdc2-Cyclin~{p1,p2} 0.311 (0.031,0.308) 0.279 0.222
Cdc2-Cyclin~{p1} 0.194 (0.002,0.194) 0.192 0.012
Cyclin~{p1} 0.100 (0.005,0.100) 0.095 0.018

We applied on this trace the same queries than on the original simulated one,
results are given in Tables 5 and 6. Oscillations properties are still obtained
but with smaller amplitudes, because the peaks are missed in the sampling. For
instance, Cdc2-Cyclin~{p1} has one oscillation of size 0.192 but two oscillations
of size only greater than 0.012. This is a limit inherent to a low number of
time points as the first peak of Cdc2-Cyclin~{p1} almost disappeared in this
trace. Having a small number of time points also tends to give high self positive
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Fig. 3. Curve of concentrations every 10 units of time extracted from the cell cycle
simulation trace

Table 6. Positive influence scores of all species on Cdc2 and Cdc2-Cyclin~{p1,p2}

Species Cdc2 Cdc2-Cyclin~{p1,p2}
Cdc2 0.59 0.00
Cdc2~{p1} 0.59 0.00
Cyclin 0.00 0.73
Cdc2-Cyclin~{p1,p2} 0.00 0.59
Cdc2-Cyclin~{p1} 0.49 0.00
Cyclin~{p1} 0.48 0.00

influence scores but considering only highest scores except self influence still
correctly determines the influence between species.

6 Conclusion

Considering the bottleneck of specifying in temporal logic with numerical con-
straints the biological properties of a system known from experiments, we have
proposed an algorithm for inferring constraint-LTL formulae from numerical
data time series. To this end, the finite time horizon model-checking algorithm
described in [9] has been generalized to an instantiation algorithm in the ex-
istential fragment of LTL with numerical constraints over the reals. A strong
completeness theorem stating that the ranges of real valued variables computed
for a formula describe exactly the solution space, has been shown, together with
a complexity bound in nk2

on the representation of the domain, where n is the
number of time points and k the size of the formula.
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For the purpose of evaluating the method, we worked with time series gen-
erated from models by simulation, and considered one experimental-like time
series extracted from the simulation trace in few time points taken at regular
intervals of time. In the near future, we plan to apply the method to the analysis
of experimental temporal data of FSH signaling proteins for designing a model
of FSH signal transduction together with its temporal specification, and proceed
similarly with cell cycle and circadian cycle data for cancer chronotherapies in
the framework of the EU project Tempo1.
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Abstract. For modeling and analyzing regulatory networks based on
qualitative information and possibly additional temporal constraints, ap-
proaches using hybrid automata can be very helpful. The formalism fo-
cussed on in this paper starts from the logical description developed by
R. Thomas to capture network structure and qualitative behavior of a
system. Using the framework of timed automata, the analysis of the dy-
namics can be refined by adding a continuous time evolution. This allows
for the incorporation of data on time delays associated with specific pro-
cesses. In general, structural aspects such as character and strength of
interactions as well as time delays are context sensitive in the sense that
they depend on the current state of the system. We propose an enhance-
ment of the approach described above, integrating both structural and
temporal context sensitivity.

1 Introduction

Logical modeling of bioregulatory networks started more than thirty years ago
with the work of Sugita, Kauffman, Glass, and Thomas [10,4,3,12]. R. Thomas [12]
introduced a logical formalism in the 1970s, which, over the years, has been further
developed and successfully applied to different biological problems (see [13], [14]
and references therein). Network components are modeled as discrete variables,
the values of which correspond to the different expression levels of the component.
In the simplest case, there are only two expression levels, 0 and 1, representing
for instance whether or not a substance has surpassed some threshold concentra-
tion associated with a network interaction. A directed graph is used to represent
interactions between the network components. Edges are labeled with signs cor-
responding to the character of the interaction, i. e., activating or inhibiting, and
information on the thresholds associated with the interaction. In order to derive
the dynamics of the system, parameters are introduced that take discrete values
and determine for each network state the influence of enabled interactions on the
system’s behavior. To obtain a deterministic behavior, one would need sufficient
data on the time delays associated with the different changes of expression level for
all network components. In the classical Thomas formalism, the only assumption
made is that all those time delays are different, resulting in a non-deterministic,
asynchronous description of the dynamics. If more temporal data, e. g. in the form
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of time constraints, is available, we need a refined modelling approach allowing for
the incorporation of such data. In [8] we proposed such a formalism based on the
theory of timed automata. Here, each component is equipped with a clock used
to evaluate conditions imposed on the time delays of this component during the
evolution of the system.

In both approaches described so far the assumption is made that the informa-
tion used for modeling is valid regardless of the state of the system. This assump-
tion is often not met in reality. We have to deal with context sensitivity in the sense
that characteristics of network interactions as well as time delays associated with
changes in expression level may depend on the current state of the system. Whether
some substance has an activating or inhibiting influence on the transcription of a
gene, for example, may very well depend on the concentration of that substance.
This is an example for structural context sensitivity. Moreover, the time delay for
some component a to reach expression level 1 from 0 may be significantly shorter
if the expression level change follows from activation by component b rather than
from some influence exerted by component c, indicating temporal context sensitiv-
ity. Both kinds of phenomena may be of crucial importance for the system’s func-
tional purpose. Changes in the modeling formalism pertaining to both the logical
modeling of the network structure and the parameter definition as well as the con-
struction of the timed automaton model are necessary to capture the behavior of
such context sensitive systems.

Specification of a model comprises three levels, allowing for a stepwise exten-
sion of the model in accordance with the available data. All the structural and
discrete dynamical information about the network can be expressed in a context
sensitive logical modeling framework based on the classical Thomas formalism.
We develop this framework in Section 2. In a second step, discussed in Section 4,
we show the translation of the context sensitive Thomas model into the framework
of timed automata. At this stage we are able to incorporate information on time
delays, using the properties of timed automata we introduced in Section 3. The re-
sulting modeling approach constitutes a generalization of the one presented in [8].
As a final contribution we present a way to deal with the incorporation of context
sensitive time delays in Section 5. We illustrate our methodology by examples, in
particular the analysis of a regulatory network of bacteriophage λ, which we have
implemented using the verification tool UPPAAL. We end the paper by discussing
problems and perspectives of our approach

2 Context Sensitive Thomas Formalism

In this section we give a formal definition of a regulatory network based on the
modeling approach of R. Thomas (see for example [13] and [14]). In contrast to
Thomas’ original approach our formalism allows for a rigorous description of a
context sensitive system. The product of the cI gene in bacteriophage λ, for ex-
ample, activates the cI gene by positive autoregulation. However, as the product
concentration increases, the influence on its gene becomes inhibiting, thus pre-
venting overexpression. In the classical Thomas formalism the interaction of cI
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with itself is represented by a signed edge in the network graph, the sign char-
acterizing the interaction as activating or inhibiting. In the described situation
neither choice of sign reflects reality. It is still possible to choose the parameter
values governing the system’s dynamics to accommodate both activating and in-
hibiting effects, but that renders the edge sign meaningless. Since the edge signs
play an important role in formulating general mathematical relations between mo-
tifs in the network graph and possible dynamical behavior, it seems important to
keep them in the model of the network structure. Thus, we represent interactions
capable of displaying activating as well as inhibiting effects by two edges, one neg-
ative, the other positive. In other words, while Thomas uses a directed graph to
capture the structure of a network, we use a directed multigraph allowing for par-
allel edges. Consequently, we also need to alter Thomas’ method of determining
the system’s dynamics from the graph. Multigraphs have already been used in [6]
and [7], however, those graphs are derived from given discrete functions describing
the system’s behavior.

Definition 1. An interaction (multi-)graph (or bioregulatory (multi-)graph) I
is a labeled directed multigraph with

– vertex set V := {α1, . . . , αn}, n ∈ IN, and
– edge (multi-)set E ⊆ V × V . Let T (αj) be the set of all edges whose tail is
αj, and H(αi) the set of edges whose head is αi. Each edge e from αj to αi

is labeled with a sign εe ∈ {+,−} and a set Me ⊆ {1, . . . , dj}, dj ∈ IN. For
each sign ε ∈ {+,−} there is at most one edge αj → αi labeled with ε.

Let pj be the maximal value of the union of all sets Me with e ∈ T (αj). We call
{0, . . . , pj} the range of αj. For each i ∈ {1, . . . , n} we denote by Pred(αi) the
set of vertices αj such that αj → αi is an edge in E.

The vertices of this graph represent the components of the regulatory network,
e. g. genes, the range of a vertex the different expression levels of the corre-
sponding component affecting the behavior of the network. For example, if we
only consider a component to be active or inactive, its range is {0, 1}. Thus, the
vertices can be interpreted as variables that take values in the corresponding
range. An edge e from αj to αi signifies that αj influences αi in a positive or
negative way, depending on εe and provided that the current expression level
of αj is in Me. If there is more than one edge leading from αj to αi, then the
character of the interaction depends on the context. Figure 1 (a) shows a simple
interaction graph comprising two vertices. The two different edges leading from
α2 to α1 signify that α2 has an inhibiting influence on α1 if its expression level
is 1. However, on the higher expression level 2 the influence becomes activating.
Furthermore, there are two edges, e3 and e4, from α2 to itself. The correspond-
ing sets Me3 and Me4 intersect. It is not clear from the interaction graph alone,
whether α2 with expression level 1 inhibits or activates itself. The outcome de-
pends on the interplay between the influence from α2 on itself and the influence
of α1 on α2. Thus, in order to determine the dynamical behavior of the system
we need further information.
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α1 α2

−

0 1

0 0

1 1

1 0

1 20 2

+

{1}
{1} {1, 2}

{2}
{1}

{1}

+
−

−−

e1 := (α1, α1,−, {1}),
e2 := (α1, α2,−, {1}),
e3 := (α2, α2, +, {1, 2}),
e4 := (α2, α2,−, {1}),
e5 := (α2, α1,−, {1}),
e6 = (α2, α1, +, {2})

α1 α2 α′
1 α′

2 α′
1 α′

2

0 0 K1,{e1,e5} K2,{e2,e4} 1 1
1 0 K1,{e5} K2,{e4} 0 0
0 1 K1,{e1} K2,{e2,e3} 0 2
1 1 K1,∅ K2,{e3} 0 0
0 2 K1,{e1,e5,e6} K2,{e2,e3,e4} 1 2
1 2 K1,{e5,e6} K2,{e3,e4} 1 1

(a)

(b)

Fig. 1. In (a), interaction graph of a regulatory system comprising two components
and six interactions. In (b), state table for general parameters with specific values, and
the resulting state transition graph.

Definition 2. Let I be an interaction graph. A state of the system described by
I is a tuple s ∈ Sn := {0, . . . , p1} × · · · × {0, . . . , pn}. The set of resource edges
Ri(s) of αi in state s is the set

{e ∈ H(αi) | (εe = + ∧ sj ∈Me) ∨ (εe = − ∧ sj /∈Me)}.

Finally, given a set

K(I) := {Ki,Ri(s) | i ∈ {1, . . . , n}, s ∈ Sn}

of (logical) parameters Ki,Ri(s), which take values in the range of αi, we call the
pair (I,K(I)) a bioregulatory network.

In a given state s only the edges e with stail(e) ∈Me represent active influences.
The set of edge resources Ri(s) contains all active positive edges and all inactive
negative edges reaching αi. That is, we interpret the absence of an inhibiting
influence as activating influence. The value of the parameter Ki,Ri(s) then indi-
cates how the expression level of αi will evolve. It will increase (resp. decrease) if
the parameter value is greater (resp. smaller) than si. The expression level stays
the same if both values are equal.

Typically, the set of resources Ri(s), and with it the logical parameters, is
defined as the set of predecessors of αi (instead of edges reaching αi) having
an activating influence on αi (see [2]). Since we allow for context sensitivity,
knowledge of the current expression level of a predecessor of αi is not enough
to determine the character of the corresponding interaction. In the table given
in Figure 1(b) we see in the second column the logical parameters determining
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the state s′ the system will evolve to from the state s given in the first column.
The third column provides a specification of the parameter values. The resulting
network behavior cannot be described in the classical Thomas formalism, since
it is highly context sensitive. For example, we see that if α2 has expression level
1, it activates itself in the absence of α1, since K2,{e2,e3} = 2. If α1 is present,
resulting in an effective inhibiting edge e2, then α2 inhibits itself, as indicated
by the parameter choice K2,{e3} = 0. For an interaction graph without parallel
edges, the notion of edge resources and vertex resources are equivalent.

The signs on the edges together with the sets Me determine whether a com-
ponent is an activator or an inhibitor of some other component in a given state.
An activating influence, i. e., an effective activator or a non-effective inhibitor,
cannot induce a decrease in expression level of the target component. This is
reflected in the following parameter constraint:

ω ⊆ ω′ ⊆ H(αi)⇒ Ki,ω ≤ Ki,ω′ (1)

for all i ∈ {1, . . . , n}. In the following we will always assume that this constraint
is satisfied.

To conclude this section, we describe the dynamics of the system by means
of a state transition graph.

Definition 3. The state transition graph SN corresponding to the bioregulatory
network N = (I,K(I)) is a directed graph with vertex set Sn. There is an edge
s → s′ if there is i ∈ {1, . . . , n} such that s′i = si + sgn(Ki,Ri(s) − si) �= si and
sj = s′j for all j ∈ {1, . . . , n} \ {i}.

To describe the dynamics of the system we use the so-called asynchronous up-
date, i. e., a state differs from a successor state in one component only. If s is
a state such that an evolution in more than one component is indicated, then
there will be more than one successor of s. Note that s is a steady state if s has
no outgoing edge. In Figure 1(b) we see the state transition graph corresponding
to the state table also given in the figure.

3 Timed Automata

In this section we formally introduce timed automata. We mainly use the defini-
tions and notations given in [1]. To introduce the concept of time in our system,
we consider a set C := {c1, . . . , cn} of real variables that behave according to
the differential equations ċi = 1. These variables are called clocks. They progress
synchronously and can be reset to zero under certain conditions. We define the
set Φ(C) of clock constraints ϕ by the grammar

ϕ ::= c ≤ q | c ≥ q | c < q | c > q |ϕ1 ∧ ϕ2 ,

where c ∈ C and q is a rational constant.
A clock interpretation is a function u : C → IR≥0 from the set of clocks to

the non-negative reals. For δ ∈ IR≥0, we denote by u+ δ the clock interpretation
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that maps each c ∈ C to u(c)+ δ. For Y ⊆ C, we indicate by u[Y := 0] the clock
interpretation that maps c ∈ Y to zero and agrees with u over C \ Y . A clock
interpretation u satisfies a clock constraint ϕ if ϕ(u) = true. The set of all clock
interpretations is denoted by IRC

≥0.

Definition 4. A timed automaton is a tuple (L,L0, Σ, C, I, E), where

– L is a finite set of locations,
– L0 ⊆ L is the set of initial locations,
– Σ is a finite set of events (or labels),
– C is a finite set of clocks,
– I : L → Φ(C) is a mapping that labels each location with some clock con-

straint called the invariant of the location,
– E ⊆ L×Σ × Φ(C)× 2C × L is a set of switches.

A timed automaton can be represented as a directed graph with vertex set L.
The vertices are labelled with the corresponding invariants and are marked as
initial locations if they belong to L0. The edges of the graph correspond to the
switches and are labelled with an event, a clock constraint called guard specifying
when the switch is enabled, and a subset of C comprising the clocks that are
reset to zero with this switch. While switches are instantaneous, time may elapse
in a location. To describe the dynamics of such an automaton formally, we use
the notion of a transition system.

Definition 5. Let A be a timed automaton. The (labelled) transition system TA

associated with A is a tuple (Q,Q0, Γ,→), where Q is the set of states (l, u) ∈
L×IRC

≥0 such that u satisfies the invariant I(l), Q0 comprises the states (l, u) ∈ Q
where l ∈ L0 and u ascribes the value zero to each clock, and Γ := Σ ∪ IR≥0.
Moreover, →⊆ Q× Γ ×Q is defined as the set comprising

– transitions (l, u) δ−→ (l, u+ δ) for δ ∈ IR≥0 such that for all 0 ≤ δ′ ≤ δ the
clock interpretation u+ δ′ satisfies the invariant I(l), and

– transitions (l, u) a−→ (l′, u[R := 0]) for a ∈ Σ such that there is a switch
(l, a, ϕ,R, l′) in E, u satisfies ϕ, and u[R := 0] satisfies I(l′).

The elements of → are called transitions.

The first kind of transition is a state change due to elapse of time, while the sec-
ond one is due to a location-switch and is called discrete. Again we can visualize
the object TA as a directed graph with vertex set Q and edges corresponding
to the transitions given by →. Note, that by definition the set of states may
be infinite and that the transition system is in general nondeterministic, i. e., a
state may have more than one successor. Moreover, it is possible that a state is
the source for edges labelled with a real value as well as for edges labelled with
events. However, although every discrete transition corresponds to a switch in
A, there may be switches in A that do not lead to a transition in TA. That is
due to the additional conditions placed on the clock interpretations.
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Finally, we obtain a modified transition system by considering only the lo-
cation vectors as states, dropping all transitions labelled with real values, but
keeping every discrete transition of TA. We call this the discrete (or symbolic)
transition system of A.

4 Augmenting the Context Sensitive Thomas Formalism
with Time Delays

We now present a generalization of the modeling approach using timed automata
introduced in [8] suitable for regulatory networks displaying structural context
sensitivity. Basically, we model each component of the system individually as
a timed automaton, and then present a procedure to combine those elements
to a timed automaton capturing the dynamical behavior of the system. This
is done much in the same way a product automaton is derived from n timed
automata (see [1]) and has been explained in detail in [8] and [9]. We illustrate
the procedure and in particular the differences occurring due to the incorporation
of context sensitivity using the example in Figure 1. Rigorous definitions will of
course also be given for the alterations necessary in this more general approach.

4.1 Modeling the Components

We start modeling the components α1 and α2 of the system given in Figure 1
as timed automata A1 and A2.

Clocks. We use a single clock ci for each component in order to measure the time
needed for changes in expression level of that component. Even when introducing
context sensitive time delays later on, we do not need more than one clock.

Locations. For each Ai we need a set of locations Li. We introduce locations αk
i

for k in the range of αi representing a situation where αi maintains expression
level k. They are called regular locations. Since we want to measure time delays
corresponding to the increase or decrease of expression level, we furthermore
define locations αk+

i (resp. αk−
i ) for k ∈ {0, . . . , pi − 1} (resp. k ∈ {1, . . . , pi})

indicating that the expression level is still k but is in the process of increasing
(resp. decreasing). We call them intermediate locations. Lastly, we define L0

i :=
{αk

i ; k ∈ {0, . . . , pi}}. In Figure 2 the four locations ofA1 and the seven locations
of A2 are drawn as ellipses.

Invariants. The invariants of regular and intermediate locations are fundamen-
tally different. Whether or not the component remains in a regular location does
not depend on how much time has passed since it entered that location. In that
sense regular locations are stable. This is reflected by assigning the invariant
ci ≥ 0, which is true for every clock value, to every location αk

i . In contrast,
the intermediate locations are of transient character. The component will leave
an intermediate location when the time needed for the corresponding expres-
sion level change has passed. We assign the location αkε

i the invariant ci ≤ T kε
i ,
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ε ∈ {+,−}, where T kε
i ∈ Q≥0 denotes the maximal time delay of the correspond-

ing expression level change. In Figure 2 the invariant of each location is given in
the line beneath the location name.

Switches and events. In the same way we use the invariants in the intermediate
locations to include maximal time delays, we use the guards of the switches in
Ei to introduce the minimal time delay tkε

i ∈ Q≥0 needed for an expression level
change. For all k ∈ {0, . . . , pi − 1}, we have (αk+

i , ak+
i , ϕk+

i , {ci}, αk+1
i ) ∈ Ei,

with ϕk+
i = (ci ≥ t

k+)
i ), representing increase of expression level. Furthermore,

for l ∈ {1, . . . , pi}, the switch (αl−
i , al−

i , ϕl−
i , {ci}, αl−1

i ) with ϕl−
i = (ci ≥ tl−i )

belongs to Ei and represents expression level decrease. Every switch entails a
reset of the component clock. The events akε

i ∈ Σi will be used later to identify
location changes due to elapse of time, and thus correspond to the intermediate
locations and the switches in Ei. We set Σi := {ak+

i , am−
i ; k ∈ {0, . . . , pi −

1},m ∈ {1, . . . , pi}}.
The automaton A1 has only two switches, A2 only four, as can be seen in

Figure 2. Thus it is clear that the dynamics of the system given in Figure 1 is
not yet captured by the automata A1 and A2. This does not surprise since we
have not incorporated the way both components interact with each other. In a
next step we translate the information inherent in the interaction graph and the
parameter values of the system in Figure 1 into conditions determining when
a location change, independent of clock values, should occur in Ai. We call the
resulting conditions switch conditions. Note that they can only be evaluated in
the network context since they generally depend on the expression level of more
than one component.

Switch conditions. The definition of the switch conditions deviates from the
one given in [8] and [9], despite appearing similar due to notation similar to
that in the earlier papers. However, we have to keep in mind that we use the
context sensitive version of the Thomas formalism resulting in basic conceptual
differences. Here, we give the new definition for the general situation of a network
comprising n components, i. e., n automata Ai = (Li, L

0
i , Σi, Ci, Ii, Ei) defined

as above.
To formulate the switch conditions, we need to know how to obtain from

a location the expression level of the corresponding component. We use the
function ι :

⋃
j∈{1,...,n} Lj → IN0 that maps the locations αk

j , αk+
j and αk−

j to k.
Let k ∈ {1, . . . , pi − 1} and consider a location of Ai that represents expression
level k. First we determine the resource edges (see Def. 2) that influence the
behavior of Ai in this location. For every edge e ∈ H(αi) with tail αj and lj a
location of Aj let

λe
i (lj) :=

{
ι(lj) ∈Me , εij = +
ι(lj) /∈Me , εij = − , λ

e

i (lj) :=
{
ι(lj) /∈Me , εij = +
ι(lj) ∈Me , εij = − .

Thus, if λe
i (lj) evaluates to true, then e is a resource edge if the system is in

location lj of Aj (and thus αj has expression level k). If the negation is true, e
is no resource edge in location lj. We are now interested in the sets of resource
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2

ι(l1) /∈ {1}
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α1−
1

c1 ≤ T 1−
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ι(l2) /∈ {1}∧ι(l2) ∈ {2}

Fig. 2. Components A1 and A2 representing α1 and α2 in Figure 1

edges that effect a change in the expression level, and thus the location, of
Ai. This information lies in the parameter values. Let ω1, . . . , ωm1

i
, υ1, . . . , υm2

i

be the subsets of H(αi) such that the parameter inequalities Ki,ωh
> k for all

h ∈ {1, . . . ,m1
i } as well as Ki,υh

< k for all h ∈ {1, . . . ,m2
i } hold. In our example,

if we choose location α1
2, i. e., k = 1, we can derive from the table in Figure 1(b)

that ω1 = {e2, e3} and ω2 = {e2, e3, e4}, and υ1 = {e3} and υ2 = {e4}.
Now we formulate conditions that check whether the system is in a state that

provides the sets of resource edges necessary for an expression level change. Let
l ∈ L1 × · · · × Ln, where li is the chosen location in Ai. Denote for each edge e
by t(e) the index of the tail of e, i. e., the tail of e is αt(e). Then we define

λωh
i (l) :=

∧

e∈ωh

λe
i (lt(e)) and λυh

i (l) :=
∧

e∈H(αi)\υh

λ
e

i (lt(e)).

If λωh
i (l) is true for some ωh, then an increase of expression level of gene αi

is indicated. If λυh

i (l) is satisfied for some υh, then the component will start the
process of expression level decrease. In our example in location α1

2 we obtain for
ω1 and υ1 as determined above the conditions λω1

2 (l) = (ι(l1) /∈ {1}) ∧ (ι(l2) ∈
{1, 2}) and λυ1

2 (l) = (ι(l1) ∈ {1}) ∧ (ι(l2) ∈ {1}).
In order to induce a corresponding change in expression level, it is sufficient

if the condition λωh

i (l) resp. λυh

i (l) holds for some ωh resp. υh. Due to this
observation we set

Λk+
i (l) :=

∨

h∈{1,...,m1
i}
λωh

i and Λk−
i (l) :=

∨

h∈{1,...,m2
i}
λυh

i .

We define Λ0+
i and Λpi−

i accordingly.
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Now, we assign all locations αk
i , k ∈ {1, . . . , pi − 1} the conditions Λk+

i and
Λk−

i . The location α0
i resp. αpi

i is labelled with Λ0+
i resp. Λpi−

i only, since the lo-
cation represents the lowest resp. highest expression level possible. Furthermore,
we want to check in an intermediate location whether the condition that led to
the process of changing the expression level is still valid. If that is not the case,
the system should not remain in that location. Thus, we associate with location
αk+

i the condition ¬Λk+
i for all k ∈ {0, . . . , pi−1}, and allot to location αk−

i the
condition ¬Λk−

i for all k ∈ {1, . . . , pi}.
All the above considerations on how the switch conditions should influence the

behavior of the system will be realized in the definition of the timed automaton
representing the network dynamics.

Although the switch conditions look quite complicated, they often can be
considerably simplified. Since condition (1) holds we can make the following
observation. Whenever ωh1 ⊆ ωh2 for sets ωh, then λ

ωh1
i (l) is true if λωh2

i (l)
is true. Since condition (1) implies that Ki,ωh2

≥ Ki,ωh1
> k, we can delete

condition λ
ωh2
i (l) from the expression Λk+

i (l). Analogously, if υh1 ⊆ υh2 , we
can delete the condition λ

υh1
i (l) from the expression Λk−

i (l). Furthermore, any
inequality λe

i (li) concerning the expression level ι(li) of the component Ai the
inequality is associated with can be evaluated immediately. So, in the example we
considered above, we have ω1 ⊆ ω2 and we can eliminate the condition λω2

2 (l)
from Λ1+

2 (l) = λω1
2 ∨ λω2

2 , i. e., Λ1+
2 (l) = ι(l1) /∈ {1}. For Λ1−

2 (l) we have to
consider both λυ1

2 (l) and λυ2
2 (l). However, we know that ι(l2) = ι(α1

2) = 1, and
thus we can simplify λυ1

2 (l) = (ι(l1) ∈ {1}) ∧ (ι(l2) ∈ {1}) = ι(l1) ∈ {1}. The
same reasoning shows that λυ2

2 (l) = (ι(l1) ∈ {1})∧ (ι(l2) /∈ {1, 2}) is always false
in location α1

2. Thus we can eliminate the second condition from Λ1−
2 and obtain

Λ1−
2 = ι(l1) ∈ {1}. In Figure 2 the switch conditions for each location are listed

below the invariant of the location.

4.2 Capturing the Network Dynamics

To obtain an automaton A from which we can derive the dynamics of the net-
work, we have to combine the automata representing the individual components
of the network. Again, we omit the details, which can be found in [9] and, with
slightly different notation, in [8].

Locations, invariants and clocks. The set of locations of A is the product
space of the location sets of the components Ai. Each location carries the con-
junction of invariants of its components. A part of the timed automaton derived
from the components A1 and A2 of our running example can be seen in Fig-
ure 3(a). Again, locations are shown as ellipses labeled with the location name
and the corresponding invariant. The automaton A is equipped with the set of
all component clocks.

Switches and events. Switches from the component automata persist, repre-
senting location changes that only affect the corresponding component of the
location vector of A. Those edges are labeled with the events in Σi and depend
only on the respective time delays. In our example automaton in Figure 3 two
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Fig. 3. In (a), part of the product automaton A derived from the components A1 and
A2 given in Fig. 2. In (b), a path in the symbolic transition system respecting the time
constraints given in the figure.

such edges leave the location (α0+
1 , α0+

2 ). The one labeled with a0+
1 is inherited

from A1, the other one from A2.
Furthermore, given a location l of A, we can evaluate all the switch conditions

belonging to the component locations li. We define switches in A starting in l
leading to a location l′ differing from l in all those components li with true
switch conditions. More precisely, if li = αk

i is a regular location with true
switch condition Λkε

i with expression level k and ε ∈ {+,−}, then l′i = αkε
i .

This corresponds to the interpretation of a true switch condition as a set of
resource edges effecting a process of expression level change. If li = αkε

i is an
intermediate location with true switch condition, then l′i = αk

i , since the true
switch condition signifies that the current state of the system does not support
the process of expression level change of αi any longer. The switches resulting
from the evaluation of the switch conditions are labeled with the event a and
have no guard, or rather they are labeled with the guard true. When executing
such a switch all the clocks of the components undergoing a location change
are reset. In our example we can see such a switch starting in (α0

1, α
0
2) leading

to (α0+
1 , α0+

2 ), since the switch conditions of both locations of the respective
component automata given in Figure 2 are true.
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Transition system. The graph representing the automaton A does not rep-
resent the possible dynamical behavior of the system, since we have not yet
evaluated the time constraints on switches and locations. Thus we have to de-
rive the corresponding transition system. Basically, we follow the paths along
the discrete location and switches in the graph representing A, if there exist
clock values consistent with the time constraints we encounter along the way.
That is, time may pass in locations as long as the maximal time delays in the
invariants are not exceeded. Switches can be activated when the clock values
are larger than the minimal time delays in the guards. Of course, every switch
with the guard true can be executed regardless of the clock values. Executing
switches is instantaneous and the reset commands have to be obeyed. We refine
the resulting transition system in one aspect. Whenever the system is in a state
allowing for the execution of a switch resulting from the evaluation of the switch
conditions, i. e., a switch labeled with a, time is not allowed to elapse further in
the corresponding location of A. Thus we ensure that the network interactions
primarily determine the behavior of the system. For details see [8].

However, additional information about the time delays may lead to consider-
able refinement of the analysis of the system’s dynamics. The state transition
graph of our running example is strongly connected (see Figure 1(b)), prohibit-
ing precise predictions of the system’s behavior. This is also illustrated by Fig-
ure 3(a), which shows all the locations of the automaton A reachable from the
location (α0

1, α
0
2). However, given the additional information that the expression

level increase from 0 to 1 is always faster for α2, signifying for instance a higher
production rate of a gene, and that the expression level decrease from 1 to 0 is
always faster for α1, representing for instance a high decay rate of some sub-
stance, we can obtain a much stronger understanding of the dynamics. Under
those assumptions the system will reach, starting from (α0

1, α
0
2), a cycle, that is

a sustained oscillation, as shown in Figure 3(b).

5 Context Sensitivity of Time Delays

The current state of the system may not only influence the character of the
network interactions but also the time delays associated with an expression level
change. In this section we motivate why and illustrate how to incorporate context
sensitivity of time delays into our modeling approach by considering the genetic
switch of bacteriophage λ.

Phage λ is a virus that can act in two different ways upon infection of a
bacterium. If they display the lytic response, the virus multiplies and lyses the
cell. In other cases the viral DNA integrates into the bacterial chromosome,
rendering the viral genome harmless for the so-called lysogenic bacterium. In
[11] the authors propose a logical model of the genetic network underlying the
behavior described above. It comprises the genes cI, cro, cII and N , the choice
of parameter values and thresholds is based on experimental data. The resulting
model is given in Figure 4. Here the inhibiting influence of cI on itself mentioned
in Section 2 is not incorporated since it only takes place under conditions not of
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α1 α2

K1,{e21} = 2
K1,{e31} = 2
K1,{e11,e21} = 2
K1,{e11,e31} = 2
K1,{e21,e31} = 2
K1,{e11,e21,e31} = 2

K2,{e12} = 2
K2,{e12,e22} = 3

K3,{e13,e23,e43} = 1

K4,{e14,e24} = 1

α4α3

(cI) (cro)

(cII) (N)

−+

{1}

{2}
{3}

{1, 2}

{1, 2, 3}

{2, 3}

− {2}

−

−
− −

{3}
+

+{1}

−

{2}

Fig. 4. Model of the phage λ network. Edges are denoted by eij with αi the tail and
αj the head of the edge. Only non-zero parameter values are given.

interest for the analysis of the behavioral switch (see again [11]). The lytic and
lysogenic behavior can be identified in the state transition graph. The former is
represented by the steady state (2, 0, 0, 0) and the latter by a cycle comprising
the states (0, 2, 0, 0) and (0, 3, 0, 0).

We have modeled this system as a timed automaton and implemented it in
UPPAAL (see http://www.uppaal.com), a software that allows for verification
and analysis via a model checking engine. In our model we exploited available
temporal data to refine the results concerning the dynamical behavior (see [9]
for details). However, certain aspects of the system are not correctly captured in
the model as we will explain in the following. While genes cI and cro define the
lysogenic and lytic states respectively, studies have shown the importance of cII
in the switching process. The time delay values associated with accumulation
and decay of the product of cII can be linked to environmental conditions such
as richness of the medium (see [5]). Furthermore, it has been shown that the
influence of cII leads to rapid synthesis of the cI product. When considering the
parameter values given in Figure 4 we see that both the presence of cII and the
absence of cro product are sufficient for cI to obtain its highest expression level.
We lack the means to express the different time delays associated with the cI
expression level change with respect to cII activity. However, since our modeling
approach is highly suited for context sensitive systems, we can easily extend the
model to capture the addressed properties.

Enhancing the Framework

The process of changing the expression level is represented by the intermediate
location of the component automaton. If we want to associate different time
delays with such a process we simply introduce two (or more) intermediate loca-
tions for the same process. We indicate the difference in the location name, e. g.
with ε ∈ {+,−} we denote by αkε,s

i (resp. αkε,f
i ) the slow (resp. fast) process of

expression level change. For each location we choose a maximal time delay T kε,s
i

(resp. T kε,f
i ) for the invariant. Each location is connected to the location αl

i,

http://www.uppaal.com
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1

c1 ≤ T 0+,s
1
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1
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1

a0+,f
1
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Fig. 5. Part of the timed automaton representing cI . Dashed arrows signify location
changes due to evaluation of switch conditions.

with l = k ± 1 depending on ε, via an edge labeled with the guard representing
the corresponding minimal time delay tkε,s

i (resp. tkε,f
i ), an event akε,s

i (resp.
akε,f

i ), and a reset for the component clock. In Figure 5 we see a part of the
timed automaton representing cI with two intermediate locations representing
the expression level change from 0 to 1.

In the context of the automaton representing the network, we decide via
evaluation of the switch conditions if a system component executes a location
change ending in an intermediate location. Now we have to classify the switch
conditions such that we can distinguish between switches leading to different
locations that represent the same process of expression level change. To do so
we consider again the locations αkε,s

i and αkε,f
i . If ε = +, we need to classify

the switch conditions in location αk
i . As a first step to formulating the switch

conditions we determine the sets of resource edges ω1, . . . , ωm1
i
⊂ H(αi) that

lead to the process of increasing the expression level k (see Section 4). Now we
group the sets ωh that lead to a fast change of expression level in a set Ωf and
the others in a set Ωs. Then we derive a switch condition for the sets in Ωf just
as described in Section 4. If the system is in a state that the condition is true
the component changes to the location αk+,f

i . We derive the switch condition for
Ωs also as described in Section 4, but additionally we demand that the switch
condition of Ωf is false. If this condition is met, then the component executes a
location change to αk+,s

i . The switch conditions for both intermediate locations
are, as usual, the negation of the switch conditions leading to the corresponding
switch. If ε = −, we proceed analogously using the sets υ1, . . . , υm2

i
.

In order to model the more rapid expression level increase of cI in the presence
of cII product, we first consider the sets of resource edges leading to the increase
from 0 to 1. They are given in the left column of parameter values in Figure 4.
A fast change is effected whenever e31 is a resource edge. Thus, we have {e31},
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{e11, e31}, {e21, e31} and {e11, e21, e31} in the set Ωf . After the simplification of
the switch condition as introduced in Section 4, we obtain ι(l3) ∈ {1} as switch
condition leading to fast expression level change. The switch condition for Ωs is
ι(l2) /∈ {1, 2, 3}, and thus satisfying the condition (ι(l2) /∈ {1, 2, 3, }) ∧ (ι(l3) /∈
{1}) leads to the intermediate location α0+,s

1 . The same considerations can be
applied for the expression level change from 1 to 2. Part of the automaton is
given in Figure 5. Here dashed arrows signify the location changes governed by
the switch conditions in the network context.

Againwe have implemented themodel inUPPAAL andanalyzed the behavior of
the system. In a model with basically the same time delays for all location changes,
we find that both the steady state representing the lysogenic behavior and the cycle
representing lysis are reachable in the non-deterministic transition system. How-
ever, a faster expression level increase from 0 to 1 and a slower decrease from 1
to 0 of cII (both can be effected by a slower degradation rate) renders the cycle
representing lysogeny unreachable. Thus, the system will always display lytic be-
havior. In contrast, smaller time delays for the expression level decrease and slower
expression level increase of cII ensure that the system displays lysogenic behavior.

Regardless of the satisfactory result in the example considered above, the
modeling of the context sensitive time delays may still be improved. Given the
situation that the process of expression level change is nearly completed in the
slow intermediate location, a change in the system’s state that satisfies the con-
ditions for a fast expression level change would lead to a repetition of the process
of expression level change. All the progress made in the slow location would be
lost. Although we could introduce switches leading directly from the slow to the
fast intermediate location, we still have to decide which value to assign the clock
upon execution of such a switch. The framework of timed automata only allows
for two possibilities. Either the clock keeps its current value or it is reset to some
constant. Obviously both choices do not reflect the desired behavior.

6 Perspectives

In this paper, we introduced a rigorous framework for the logical modeling of
context sensitive systems. It extends our work on a hybrid formalism based on
the classical Thomas approach and the theory of timed automata (see [8], [9]) in
two directions. We are now not only able to model systems displaying context
sensitivity regarding network interactions as described in Section 2, but can also
deal with the context sensitivity of time delays, cf. Section 5. In many cases
this allows for a more realistic representation of biological systems and a refined
analysis of the resulting dynamics.

Generally, many interesting questions regarding modeling and dynamical anal-
ysis in this framework remain to be considered. For example, concepts like stability
should now be phrased in a hybrid way, taking into account the time constraints
associated with a certain behavior. This would allow for a more precise evalua-
tion of asymptotical behavior, thus leading to more reliable predictions in case of
system simulation as well as a better basis for model comparison.
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In the current framework progress achieved in an intermediate location to-
wards an expression level change, e. g. an increase in some substance concen-
tration nearly up to the threshold, is completely negated if a location change
signifying the abortion of the expression level change occurs. A more realistic
representation should allow for a time delay, depending on how much time has
passed in the intermediate location, associated with the loss of the progress made.
This difficulty was already addressed at the end of the preceding section. It has
to be considered whether the use of a more general class of hybrid automata
would resolve this problem. However, powerful results concerning analysis and
verification of models by means of model checking techniques exist in the theory
of timed automata. Since effective methods to analyze large transition systems
are needed in the context of biological systems, we should ensure that we do not
loose advantages in that area. Rather, suitability and possibilities of applying
model checking techniques for analyzing the behavior of biological networks need
to be studied further.
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Università di Bologna, Dipartimento di Scienze dell’Informazione
Mura Anteo Zamboni 7, 40127 Bologna, Italy

{versari,busi}@cs.unibo.it

Abstract. The Gillespie stochastic simulation algorithm represents one
of the main physical abstractions exploited for the simulation of biolog-
ical systems modeled by means of concurrent calculi. While the faithful
modelling of bio-systems often requires multi-compartment semantics,
the original Gillespie algorithm considers only one fixed-size volume. In
this paper we introduce an extended formalisation of the above algo-
rithm which preserves the original model but allows the stochastic sim-
ulation in presence of multiple compartments with dynamical structure
and variable sizes. The presented algorithm can be then used as basis
for simulating systems expressed in an extended version of the stochastic
π-Calculus, the Sπ@ language, obtained by means of polyadic synchro-
nisation. Despite of its conservativeness, Sπ@ is showed to allow flexible
modelling of multiple compartments with dynamical structure and to
provide increased biological faithfulness.

1 Introduction

The Gillespie stochastic simulation algorithm (SSA for short) represents one of
the main physical abstractions exploited for the simulation of discrete, stochastic
processes which model chemical and biological systems [1,2,3,4]. a single adia-
batic compartment of fixed volume, containing a uniform mixture of chemical
species interacting and producing new chemical reactants. While the abstraction
of single, adiabatic, fixed-volume compartment is well suited for an isolated, gas-
phase system as assumed in [5], the simulation of biological systems requires to
enrich the model with some non-trivial details. As denoted by many recent ap-
proaches (e.g. [3,6,7]) the multi-compartment structure appears as a natural and
indispensable requirement for the faithful representation of biological systems.

The most intuitive way to adapt the SSA to multiple compartments [8] is
to consider each compartment as an isolated system evolving in parallel with
the others, so that each compartment is implemented as an instance of the
SSA. Even if correct, the above approach is based on strong assumptions which
severely limit its application.

In fact, the distinctive behaviour of biological systems is the continuous in-
teraction of their constituting elements. A compartmentalised model of a bio-
systems cannot dispense with the capability of interaction between adjacent
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c© Springer-Verlag Berlin Heidelberg 2007
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compartments by means of interaction of their respective elements or exchange
of material: a refined model should also be able of representing a dynamical
compartment structure. When the simulation of compartments is obtained by
independent instances of the SSA under its original assumptions, the interaction
between compartments must obey the hypothesis of volume invariance but, for a
liquid-state system like biological ones usually are, this means that the exchanged
elements must be inappreciable with respect to the dimension of the whole com-
partments. This approximation can be tolerated until very few molecules walk
through during the time of the simulation, but becomes unreasonable when the
aim is the modelling of compartments with dynamical structure (i.e. the sys-
tem is subject to complex structural changes like for example the movement,
merging, splitting of compartments), a necessary step towards a satisfactory
representation of biological systems.

Besides the limit of static compartment structure, the above approach presents
another relevant drawback. Consider the system in Fig. 1 (a), composed of two
compartments with different volume. According to the model of the SSA, the
molecules m1 and m2 have different probability of collision when floating in
compartment C1 instead of C2. In fact, since C2 is characterised by a larger
volume, the probability to collide is lower than in C1. Since the SSA requires
to specify the reaction rate (more precisely, the “reaction probability per unit
time”) for each reaction, the same kind of reaction (like for example the one
between m1 and m2) is characterised by a different rate for each compartment. In
other words, in presence of K compartments, the same reaction rule (performed
by the same kind of reactants, with the same physical properties) will have K
different rates depending on the compartment the reaction is localised into, hence
K different representations, one for each instance of the SSA.

In this paper we follow a different approach to the extension of the SSA to the
multi-compartment model: here we show that by introducing in the model the
informations pertaining the volumes, the SSA can be transparently adapted to
the exact representation of multiple compartments. Furthermore, we show that
the extended model is consistent with the kinetic hypotheses of the original one,
but closer to the biological scenario and simpler w.r.t. to the approach discussed
above, since allows to give unique description of elements and reactions while
keeping consistent their rates in function of the enclosing compartment.

Then we show how the extended SSA can be smoothly used as basis for the
simulation of systems modeled in a stochastic version of the π-Calculus added
with polyadic synchronisation. This extension, we called Sπ@, exhibits a signif-
icant increase of expressiveness and faithfulness towards biological modellings,
despite of its conservativeness w.r.t. both the π-Calculus and the original Gille-
spie model.

We consider the reader familiar with the Gillespie algorithm [5] and the SpiM
simulator [4].

Structure of the paper. In Sect. 2 the extension of the original Gillespie stochas-
tic model to the multi-compartment context is presented. In Sect. 3 the Sπ@
language is formalised and the multi-compartment version of the SSA is coded.
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In Sect. 4 some chemical and biological modelling examples are shown and in
Sect. 6 the pros and cons of the approach and future improvements are discussed.

2 Multi-Compartment Gillespie Stochastic Model

The original SSA considers a gas-phase system of fixed volume V , filled (in
the simplest case) with two (distinct) molecular species S1 and S2 which can
undergo the reaction R1 (that is react through the reaction channel R1). By
simple kinetic deductions, the probability c dt of collision of two molecules m1

and m2 (modeled as hard spheres of radii d1 and d2) in the infinitesimal time
interval (t, t+ dt) is calculated as

c dt = dVcoll/V = V −1πd2
12v12 dt

where dVcoll is the average “collision volume”, d12 = d1 + d2 and v12 is the
average relative velocity of the two molecules. In the same way, the probability
c1 dt of reactive collision of two molecules can be calculated as

c1 dt = c cr dt = V −1πd2
12v12 cr dt

where cr represents the probability that a given collision is actually reactive. In
general, there exists a constant r which depends only on the physical properties
of the two molecules and the temperature of the system, such that

c1 dt = V −1 r dt

Furthermore, if X1 and X2 are the number of molecules of type S1 and S2

respectively, the probability a1 dt that an R1 reaction will occur somewhere
inside V in the infinitesimal time interval (t, t + dt) is

a1 dt = X1X2c1 dt = V −1X1X2r dt (1)

The value a1 captures all the informations pertaining the concentration of the
reactants S1 and S2. In the case of a single compartment of fixed volume, a1

depends only on the quantity of reactants inside V , while in the case of multiple
compartments or variable volume, expression (1) allows to calculate the effec-
tive reaction rates in function of the number of involved molecules inside each
compartment and the volume of the compartment itself.

The effect of compartments is to separate the enclosed elements, that is to
prevent the interaction between elements placed in different compartments. If
m11,m21 are two molecules of species S1 and S2 inside compartment C1, and
m12,m22 are two molecules of species S1 and S2 inside compartment C2, even
if m11 may interact with m22 by an R1 reaction, their collision is prevented be-
cause of the separation granted by compartment boundaries. Even if the pairs
m11,m21 and m12,m22 may undergo the same reaction of type R1, the reac-
tion R1 of elements inside compartment C1 is completely independent of the
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same reaction R1 of elements inside compartment C2. Therefore, in a multi-
compartment environment each reaction channel should be denoted not only by
the type of reaction but also by the compartment the reaction happens in.

By following these intuitions, the SSA can be transparently adapted to simu-
late the multi-compartment model (we call multi-compartment Gillespie model,
MCGM for short) without affecting its original kinetic hypotheses.

If S1, . . . , SN are the chemical species and R1, . . . , RM are the reaction types,
X11, . . . , XNK are the number of molecules of each of the N species inside each
of the K compartments, R11, . . . , RMK are the reaction channels (in the number
of M · K, one for each reaction type inside each compartment) then we can
introduce, in place of P(τ, μ)dτ [5], the expression P(τ, (μ, c))dτ which denotes
the probability that, given the state (X11, . . . , XNK) at time t, the next reaction
in V will occur in the infinitesimal time interval (t+ τ, t+ τ +dτ), and will be a
reaction through the channel Rμc. Then, according to expression (1), we define
the propensity function of the reaction Rμc:

aμc dt = V −1
c hμcrμ dt (2)

is the probability that an Rμc reaction (that is an Rμ reaction inside compartment
c) will occur in the system in (t, t + dt), given that the system is in the state
(X11, . . . , XNK) at time t, where

– rμ dt is the average probability that a particular molecular pair will react
according to Rμ in the infinitesimal time interval dt inside a compartment
whose volume is equal to 1 in the given volume measure unit

– hμc is the number of distinct Rμc molecular reactant combinations available
in the state (X11, . . . , XNK) (that is the molecular reactant combinations
pertaining reaction Rμ inside compartment c)

– Vc is the volume of compartment c.

According to [5], for a reaction of the kind S1 + S2 → S3, hμc is the product
X1cX2c, while for a reaction 2S1 → S2, hμc = X1c(X1c − 1)/2.

Finally, by the same considerations stated in [5], the following expression can
be easily derived:

P(τ, (μ, c)) =

⎧
⎨

⎩

aμc exp(−a0τ) 0 ≤ τ < +∞,
μ = 1, . . . ,M c = 1, . . . ,K

0 otherwise
(3)

where aμc = V −1
c hμcrμ and a0 =

∑M
ν=1

∑K
γ=1 aνγ .

3 The Stochastic π@ Language

The MCGM is a transparent generalisation of the original Gillespie model, pa-
rameterised w.r.t. the compartments the system is composed of. The price of
this generalisation is the insertion, in the implementation of the model, of the
informations pertaining the volume size of each compartment, which can be
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accomplished in different ways. The most immediate method would be the defi-
nition of a function Vol : C → R returning the volume size of each compartment,
but this would not allow to model variable volumes.

The approach chosen here is to allow (but not require) the specification of
the volume Vi for each element i, which represents the (average) increment of
volume of a compartment c needed for including the additional element i. In
the case of constant volume, Vi = 0 for each i. In fact, the additional volume
required to include any further element is 0 if the volume is constant. Conversely,
at constant and homogeneous temperature and pressure, for a single chemical
species S occupying volume V , Vi can be calculated as

Vi =
V

n
=

m

n
· 1
D

=
wS

D

where n is the number of molecules of S inside V , m is the total mass, D is the
density of S, wS its molecular weight.
Vi is a function depending on the kind of the element i but also on the com-

partment c, since the chemical composition of c may vary the average distance
between the inner elements, because of atomic-level forces like van der Waals
interactions and hydrogen bonds. Under the assumption (tolerable if the dis-
cussed variation is reasonably small or the chemical composition of the com-
partments is almost the same) of constant Vi for each i, the volume Vc of each
compartment c can be easily calculated as the sum of Vi for each i inside c,
even in the case of exchange of molecules or reorganisations in the compartment
structure.

In the next section, the syntax and semantics of Sπ@ is defined according to
the above assumptions. In Sect. 4 some useful examples are presented and it
is shown how the approach chosen for Sπ@ is both general and simple, since it
allows to represent the function Vol : C → R discussed above as well as the single-
compartment situation but also multiple compartments with variable volumes,
without increasing the computational complexity of the algorithm, complicat-
ing the notation or forcing the introduction of unessential informations in the
model.

3.1 Syntax and Semantics

The π@ language [9] is a conservative extension of the π-Calculus [10,11,12]
provided with polyadic synchronisation [13] and different levels of priority for
actions [14]. The Sπ@ language presented here can be considered in first approxi-
mation as the stochastic version of a core π@ limited to two levels of priority and
two names for each channel. The capability of giving infinite rates to reactions
replaces the two priority levels of this core π@, while the two names denot-
ing each action assume different meaning, since the first represents the type of
(chemical) reaction, while the second the compartment where the reaction takes
place.
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Definition 1. Let N , C be distinct sets of names on finite alphabet, with m,n
ranging over N , a, b over C and x, y over X = N ∪ C. Let also v range over R

within the interval [0,+∞[. The syntax of the Sπ@ language is defined as

P ::= 0
∣
∣
∣
∑

i∈I

πi.Pi

∣
∣
∣ P

∣
∣ Q

∣
∣
∣ !π.P

∣
∣
∣ (ν x)P

π ::= n@a :v(x̃)
∣
∣∣ n@a :v〈x̃〉

where x̃ represents zero or more names x1, . . . , xi ranging over X .

0 is the null process, capable of doing nothing.
∑

i∈I πi.Pi, written also π1.P1 +
π2.P2 in the case |I| = 2, represents the guarded choice between different actions.
P
∣
∣ Q means that P and Q are two processes executing in parallel. !π.P is the

guarded replication. (ν x)P allows the scope restriction of the name x: the re-
striction of compartment names allows the creation of new compartments, while
the restriction of reaction names is used in several ways, like for representing
bindings between different elements. The expressions n@a :v(x̃) and n@a :v〈x̃〉
represent respectively the polyadic input and output capabilities of a process,
where

– n is the kind of reaction the process is ready to perform: in Expr. 2 it
corresponds to the index μ denoting the reaction Rμ;

– a is the compartment where the reaction may take place;
– v corresponds to the average volume Vi of each element i discussed above

and represents the volume occupied inside compartment a by the process
ready to perform the input or output action.

For sake of simplicity, the set N of reaction names is kept distinct from com-
partment names C. In order to retain syntactical and semantical compatibility
with SPiM, the additional informations of compartment and volume are kept
optional, that is the grammar is implicitly added with the rules

π ::= n@a(x̃)
∣∣
∣ n@a〈x̃〉

∣∣
∣ n :v(x̃)

∣∣
∣ n :v〈x̃〉

∣∣
∣ n(x̃)

∣∣
∣ n〈x̃〉

which allow to omit volume and compartment informations if not needed. If
omitted, the volume v is considered 0, while the compartment c is given a de-
fault, distinct value. For sake of simplicity, the additional grammar rules are not
considered in the following definitions but their inclusion is straightforward.

Definition 2. The congruence relation ≡ is defined as the least congruence sat-
isfying alpha conversion, the commutative monoidal laws with respect to both
(
∣∣ ,0) and (+,0) and the following axioms:

(ν x)P
∣
∣ Q ≡ (ν x)(P

∣
∣ Q) if x /∈ fn(Q)

(ν x)P ≡ P if x /∈ fn(P )

!π.P ≡ π.( !π.P
∣∣ P )
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where the function fn is defined as

fn(n@a :v(x̃))
def
= {n, a} fn(n@a :v〈x̃〉) def

= {n, a, x̃}

fn(0)
def
= ∅ fn((ν x)P )

def
= fn(P ) \ {x}

fn(π.P )
def
= fn(π) ∪ fn(P ) fn(

∑

i∈I

πi.Pi)
def
=
⋃

i

fn(πi.Pi)

fn(P
∣
∣ Q)

def
= fn(P ) ∪ fn(Q) fn( !π.P )

def
= fn(π.P )

Definition 3. Sπ@ semantics is given in terms of the following reduction system:

(C)
(n@a :v1(x̃).P + M)

∣
∣ (n@a :v2〈ỹ〉.Q + N)

rate(n)−−−−→ P{ỹ/x̃}
∣
∣ Q

(R)
P

r−→ P ′

(ν x)P
r−→ (ν x)P ′

(P )
P

r−→ P ′

P
∣
∣ Q

r−→ P ′
∣
∣ Q

(E)
P ≡ Q P

r−→ P ′ P ′ ≡ Q′

Q
r−→ Q′

The rule (C) allows the communication of the names x̃ from process P to Q,
where they are properly substituted to names ỹ. The function rate : N →
(R ∪ +∞) is an external function which permits to associate the correct rate
to each reaction, where the rate corresponds to the value rμ of Expr. 2. Rules
(R), (P ), (E) allow the transition of processes in presence of restriction, parallel
operator or by exploiting structural equivalence.

Definition 4. A Sπ@ system S is said to be in standard form if

S = (ν x̃)
(
P1

∣
∣ · · ·

∣
∣ Pj

∣
∣ !Pj+1

∣
∣ · · ·

∣
∣ !Pk

)

and each Pi is a non-empty sum.

Proposition 1. For every Sπ@ system S, there exists a system S′ such that
S ≡ S′ and S′ is in standard form.

In order to calculate the value hμc of Expr. 2, we introduce, according to [4],
the function Act which permits to know the number of possible combinations of
inputs and outputs on a reaction channel inside a given compartment.

Definition 5. The activity Act of channel n inside compartment a in the system
S is defined as

Actn@a(S) = (Inn@a(S) ·Outn@a(S))−Mixn@a(S)

where S is in standard form, Inn@a(S) and Outn@a(S) are the number of un-
guarded inputs and outputs on channel n inside compartment a, and Mixn@a(S)
is the sum of Inn@a(

∑
i) ·Outn@a(

∑
i) for each summation

∑
i in S.

The function chan allows to know all the active channels inside each compart-
ment in a given system S.
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Definition 6. Given a Sπ@ system S in standard form

S = (ν x̃)
(
P1

∣
∣ · · ·

∣
∣ Pj

∣
∣ !Pj+1

∣
∣ · · ·

∣
∣ !Pk

)

the function chan is defined recursively as follows:

chan(S) =
k⋃

i=1

chan(Pi) chan(
∑

i∈I

πi.Pi) =
⋃

i∈I

chan(πi)

chan(n@a :v(x̃)) = chan(n@a :v〈x̃〉) = {n@a}

The volume Vc of Expr. 2 is calculated as the sum of the volumes occupied
by each process ready to perform a reaction inside compartment c. It is worth
noticing that in the case of nested compartments as in Fig. 1 (a), the volumes of
the compartments inside c must not be summated to Vc in order to respect Expr.
2, since the elements of c are not allowed to diffuse into the inner compartments
and consequently their concentration does not depend on inner compartments
volumes.

Definition 7. Given a Sπ@ system S in standard form

S = (ν x̃)
(
P1

∣
∣ · · ·

∣
∣ Pj

∣
∣ !Pj+1

∣
∣ · · ·

∣
∣ !Pk

)

the volume Vola of the compartment a in the system S is calculated as follows:

Vola(S) =
k∑

i=1

Vola(Pi)

Vola(
∑

i∈I

πi.Pi) =
∑

i∈I

Vola(πi)

Vola(n@a :v〈x̃〉) = Vola(n@a :v(x̃))

Vola(n@b :v(x̃)) =
{
v a = b
0 otherwise

If Vola(S) = 0, then a is given the default volume value 1.

When Vola(S) = 0, all the informations on the volumes v occupied by the
reactants inside a have been omitted. This is the case of modelling in Spi, hence
it is quite natural to redefine Vola(S) as 1 so that the reaction rates defined for
Spi programs coincide with the reaction rates calculated in Sπ@.

The volume of a compartment depends on all the enclosed objects, not only
on reacting ones. Consequently, the volume of non reacting elements must be
taken in account and inserted into the program when such volume informations
are relevant for the simulation.

Finally, the multi-compartment stochastic simulation algorithm (MSSA) is
defined as extension of the SSA given in [5], according to the previous definitions
and the MCGM:
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Definition 8. Given a Sπ@ system S in standard form, the selection of the next
reaction Next(S) and of the delay Delay(S) relative to the MSSA are described
by the following algorithm:

1. For each channel ci in chan(S), with chan(S) = {c1, . . . , cj}, calculate

ai = Actn@b(S) ∗ rate(n)/Volb(S)

where ci = n@b for some n ∈ N , b ∈ C.
2. Calculate a0 =

∑j
i=1 ai

3. Generate two random numbers k1, k2 ∈ [0, 1] and calculate τ, μ such that

τ = (1/a0) ln(1/k1)
μ−1∑

i=1

ai < k2a0 ≤
μ∑

i=1

ai

4. Next(S) = cμ and Delay(S) = τ .

The value cμ = n@b for some n, b denotes the reaction channel n and the com-
partment c of the next reaction happening after τ time. The two processes per-
forming the synchronisation step on cμ are then randomly chosen as for SPiM.

As noted in [4] for the activities Act, the volumes Vol can be calculated by
difference with the respective volumes of the previous execution step, so that
the computational complexity order of the algorithm is unvaried.

4 Examples

In this section some examples of chemical and biological modelling are presented,
in order to illustrate the simplicity of the language and the increased biochemical
faithfulness.

4.1 Chemical Reactions

If m1 and m2 are two molecules floating inside the only, fixed-size compartment
of the system, it is quite useless to specify the compartment they are in and the
volume they occupy: this is the exact case of modelling in Spi. As discussed after
Def. 1, the system composed of m1 and m2 could easily be written in Sπ@ as well:

M1 ≡ r1.N M2 ≡ r1 S ≡ M1

∣
∣ M2

where m1 and m2 are supposed to undergo a reaction of type R1 (represented by
channel r1) and produce a new chemical reactant n. As previously discussed, in
absence of volume and compartment informations, the volume of the reactants is
considered as 0, while that of the (only, unspecified) compartment is considered
as 1, so that also the function rate(r1) is consistent – and actually coincides,
according to Expr. 2 – with the rate given for the simulation in Spi.
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The situation in Fig. 1 (a), which presents multiple compartments could be
encoded as

M11 ≡ r1@c1.N(c1) M21 ≡ r1@c1 M12 ≡ r1@c2.N(c2) M22 ≡ r1@c2
S ≡ M11

∣
∣ M21

∣
∣ M12

∣
∣ M22

if supposing c1 and c2 of the same, fixed-size. If their volumes v1, v2 are con-
stant, but different, it is possible to specify them by adding two further elements
d1, d2 which do not take part in the reactions but allow to insert the desired
informations:

M11 ≡ r1@c1.N(c1) M21 ≡ r1@c1 M12 ≡ r1@c2.N(c2) M22 ≡ r1@c2
D1 ≡ (ν n)n@c1 : v1 D2 ≡ (ν n)n@c2 : v2

S ≡ M11

∣
∣ M21

∣
∣ M12

∣
∣ M22

∣
∣ D1

∣
∣ D2

Even if the processes D1, D2 are unable to perform any reaction, v1 and v2 are
taken into account when calculating c1 and c2 volumes. According to Def. 7,
since the volume occupied by each of the other processes is 0, c1 and c2 volumes
turn out to be v1 and v2 respectively, as required. In this way the volumes of K
compartments (and consequently the rate of each reaction inside them) can be
specified directly inside the program by adding not more than K non-reactive
elements. Alternatively, it is possible to specify the volumes Vm1 , Vm2 occupied
by each molecule and ensure that the volume of their chemical product n is equal
to the sum of theirs (as it approximately happens in many real reactions). In
general, it is possible to specify only the volumes of the desired elements while
keeping consistent compartment volumes with reaction rates.

One of the major advantages of Sπ@ approach is the possibility to specify once
the behaviour of one element and create instances of it inside any compartment,
which is very convenient when the same objects are present in several different
places. The previous system could be rewritten as

T1 ≡ !m1(c).r1@c.N(c) T2 ≡ !m2(c).r1@c

S ≡ m1〈c1〉
∣∣ m1〈c2〉

∣∣ m1〈c1〉
∣∣ m1〈c2〉

∣∣ T1

∣∣ T2

∣∣ D1

∣∣ D2

by exploiting the possibility of giving infinite rate to channels m1,m2 so that
the creation of the instances is immediate.

4.2 Biological Modellings

In this section we outline the way some simple biological entities and phenom-
ena [15] can be intuitively represented in Sπ@. The interaction or exchanging
of molecules between compartments constitute the easier and more interesting
situations.

Membrane Receptor. Consider the simple scheme of a cell membrane receptor
whose behaviour is to detect molecules of kind m1 outside the cell and signal
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their presence inside the cell by transforming molecules of kind m2 into m3, as
in Fig. 1 (b). If we use the membrane as compartment boundary, by modelling
the space outside the cell as compartment e and c as the cell itself, the receptor
– which is a transmembrane protein – lies partially in both compartments. This
means that the process R representing the receptor needs to know the names of
the two compartments and to use them for interacting both outside and inside
the cell. The system could be for example encoded as

M1 ≡ bind m1@e M2 ≡ conv m2@c R ≡ !bind m1@e.conv m2@c.M3(c)

where the names bind m1, conv m2 carry the interaction between the receptor
R and the molecules m1 and m2. The process M3(c) represents the transformed
molecule m3 inside compartment c.

Pump. The conveyance of molecules or ions across a membrane constitutes a sim-
ple example for showing how the exchange of elements between compartments is
straightforward in Sπ@: the sodium/potassium pump represents a quite classi-
cal modelling candidate. The Na+/K+ ATPase (Fig 1 (c)) is a ion pump which
moves three Na+ ions out and two K+ ions into the cell for each consumed ATP
molecule. The pump can be schematised by process P

ATP (d) ≡ atp@d P ≡ !atp@c.na@c.na@c.na@c.

ADP (d) ≡ adp@d
(
ADP (c)

∣∣ k@e.k@e.

NA(d) ≡ na@d (NA(e)
∣
∣ NA(e)

∣
∣ NA(e)

∣
∣

K(d) ≡ k@d K(c)
∣∣ K(c))

)

which first recruit the ATP molecule, then binds the three sodium ions inside
the cell, releases the ADP molecule deriving from the hydrolysed ATP, binds
the two K+ ions outside the cell and finally releases the captured ions into the
proper compartments.

Osmosis. The last considered example allows to observe the limits of the previ-
ous models and the need to introduce volume information specified in Expr. 2,
in order to manage correctly the relative rates of reactions in function not only
of the number of elements for each reactant, but also of its concentration. The
system in Fig. 1 (d) depicts a compartment c of variable size containing a water
solution placed in a hypotonic environment e. The compartment is bounded by
a semipermeable membrane, i.e. a filter which allows only the water to move
across. Experience shows that this situation causes a net movement of water
towards compartment c, due to the so called osmosis phenomenon. Biological
occurrence of this circumstance is common both in animal and vegetal cells. A
typical animal cell swells when placed in hypotonic and shrinks when in hyper-
tonic solution even if the cell membrane is poorly permeable to water, thanks
to the presence of water-channel proteins which allow only water to flow, in either
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directions. The process A may describe a simple abstraction of water-channel
protein acquaporin:

HOH(d) ≡ hoh@d : vH2O S(d) ≡ s@d : vS

A(f, g) ≡ !hoh@f.HOH(g)
∣∣ !hoh@g.HOH(f)

S is the solute, HOH represents a water molecule able to interact with the
acquaporin A and move through the membrane of the cell. In this very simple
layout, the acquaporin is completely symmetrical. The system in Fig. 1 (d) may
be written as

Sys ≡ HOH(e)
∣
∣ · · ·

∣
∣ HOH(e)

︸ ︷︷ ︸
m1

∣
∣ S(e)

∣
∣ · · ·

∣
∣ S(e)

︸ ︷︷ ︸
n1

∣
∣ A(c, e)

∣
∣

HOH(c)
∣
∣ · · ·

∣
∣ HOH(c)

︸ ︷︷ ︸
m2

∣
∣ S(c)

∣
∣ · · ·

∣
∣ S(c)

︸ ︷︷ ︸
n2

where m1 and n1 represent the number of water molecules and salt ions outside,
m2 and n2 the number of molecules and ions inside the cell membrane and
only one acquaporin is present, for simplicity. If we discard the informations
on the volumes Ve and Vc of the two compartments in Expr. 2, we are first
forced to introduce asymmetry in the encoding of the acquaporin A, in order
to differentiate the rate re of molecules entering from the rate rc of molecules
leaving the cell. The system can be considered in equilibrium when the the
probability of a water molecule entering is equal to the probability of a water
molecule leaving the cell, that is when

h′ere = h′crc (4)

where h′e is the number of possible combinations of acquaporin–water molecule
outside, h′c the possible combinations inside the cell. Since only one acquaporin
is present, we have that he = m′

1 and hc = m′
2, where m′

1 and m′
2 are the number

of water molecules at equilibrium. Hence Expr. 4 becomes

m′
2/m

′
1 = re/rc

meaning that the equilibrium depends on the rate of the molecules initially con-
veyed, which is not true. In reality, under the hypothesis of uniform temperature
and pressure, the equilibrium is reached when the concentration of the two so-
lutions is the same, that is when

m′
2/n

′
2 = m′

1/n
′
1 (5)

where n′
1 and n′

2 are the number of salt ions in the respective compartments.
Conversely, this dependence is coherently modeled if we consider the right ex-
pressions for Ve and Vc. In fact, by Expr. 2, we have

V −1
e h′ere = V −1

c h′crc (6)
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(a) (b) (c) (d)

Fig. 1. (a) Two equivalent molecule pairs floating in compartments of different volume.
(b) Membrane receptor. (c) Ion Pump. (d) Osmosis by semipermeable membrane in
hypotonic solution.

Since the volumes are obtained as the sum of the average volume occupied by
each element, we have

Ve =
∑

e

vH2O +
∑

e

vS = m′
1vH2O + n′

1vS

Vc =
∑

c

vH2O +
∑

c

vS = m′
2vH2O + n′

2vS

which – under the initial symmetric assumption re = rc – properly substituted
in 6 leads to

1

vH2O + n′
1

m′
1
vS

=
1

vH2O + n′
2

m′
2
vS

that is clearly satisfied by equation 5.
Osmosis involves most of living cells, and expression (5) describes only one

of the possible equilibrium conditions. For example, plant cells are surrounded
by rigid walls which prevent them from increasing their volume. Consequently,
if placed in hypotonic solution, these cells absorb water until the pressure on
cell walls equals the osmotic pressure, which depends on the absolute tempera-
ture T and the difference of salt ions/molecules concentration. This equilibrium
condition cannot be expressed in Sπ@, since any pressure evaluation lacks. Such
kind of informations may be introduced in the model by defining reaction rates
as functions of the absolute temperature T and pressure pc of the compartment,
where pc may be in turn calculated as function of the compartment c, the ab-
solute temperature and the elements surrounded by c. This would allow to take
into account temperature, pressure and some of the structural informations per-
taining mechanical properties of compartment boundaries. Depending on the
kind of function used for evaluating pc, the computational complexity of the
algorithm may grow significantly.

5 Related Work

Extensions of theSSAhandling varying volumeswere already considered in [16,17].
Thechosenapproachconsists intheexpressionofthepropensity functionsasknown,
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time-dependent functions. While this approach provides faster simulations, it can
be applied only in the case that the variation is deterministic and it is known in ad-
vance. Conversely, the MSSA allows to introduce the variation of volumes in the
discrete and stochastic behaviour of the system, in perfect agreement with the in-
tention of the original SSA.

The next subvolume method (NSM) [18] handles multiple volumes, in order
to provide efficient simulation of chemical systems in presence of molecular diffu-
sion. The NSM is thought for a high number of volumes with statical structure,
of fixed and equal size. Although the NSM is faster than the MSSA, it does not
handle dynamical compartments with varying volumes and cannot be directly
extended with this aim without losing its computational efficiency.

6 Conclusion

The osmosis example shows a simple (and biologically common) situation where
the SSA happens not to be faithful if taken “as it is”, since the volume of each
element (and not only compartment volumes) must be properly considered dur-
ing the simulation in order to obtain the correct values for reaction rates in
function of reactants concentration. The reason is that SSA already embodies
the unique, fixed-size volume hypothesis, which is correct for fluid systems un-
der the conditions stated in [5] and needs to be properly translated into another
chemical or biological context. The presented adaptation of the SSA to multiple
compartments allows to take in account the informations on the concentration
of reactants in function of volumes without changing the underlying probabilis-
tic/kinetic model, so that the MSSA results somehow closer to the biological
scenario. Anyway, Sπ@ modelling is still far from being complete w.r.t. biologi-
cal reality, for a number of reasons. Here are some:

– temperature and pressure are considered constant and uniform, reasonable
condition in most (but not all) of the biological situations, as discussed in
the next section;

– many atomic-level phenomena (e.g. van der Waals or electrostatic effects,
hydrogen bonds, . . . ) are disregarded in the kinetic model;

– all the particles are considered to be small, free floating and homogeneously
distributed in their respective compartments while many biological elements
are not small, neither homogeneously distributed nor allowed (or only par-
tially) to move freely;

– all the physical and dimensional informations on biological elements and
structures (e.g. properties like tridimensional position or shape, or surface
area, fluidity, thickness of membranes, mechanical resistance, elasticity, . . . )
cannot be modeled.

In addition, Sπ@ inherits two significant limits – strict seriality and not more
than two reactants (but unlimited products) for each reaction, which are due to
the point-to-point, interleaving synchronisation semantics of the π-Calculus.

On the other hand the presented approach has several advantages. The most
important is the capability of modelling dynamical compartment structures. This
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can be achieved by preserving several compartment semantics, like for example
atonality of BioAmbients [3] or bitonality of Brane Calculi [6]. In fact, both these
calculi can be reproduced by adapting the encodings presented in [9] to Sπ@.

Despite of the increased expressiveness, the calculus is very conservative. The
original kinetic/stochastic hypotheses of Gillespie’s model are completely pre-
served and Sπ@ semantics is very close to that of the stochastic π-Calculus.
This allows to obtain a correct Sπ@ machine by simple extension of SPiM and
also to easily adapt the related graphical representation [19].

Beyond the fact that SPiM [4] programs can be directly executed on Sπ@ by re-
taining the same semantics, the additional informations pertaining compartment
and volume can be inserted only when necessary and only for the desired elements
and do not increase the computational complexity of the original Gillespie algo-
rithm. Fixed-size or variable volume, single or multiple compartments can be mod-
eled but reaction rates have a unique representation, independent of (but coherent
with the volume of) the compartment where the reaction happens. In the same
way elements can be defined once and easily instantiated in any compartment, or
moved across without readjusting their behaviour, typical feature only of calculi
with explicit compartment semantics like BioAmbients or Brane.

The inclusion of further physical properties (like temperature and pressure)
and the parallelisation of the algorithm in the way of [20] by Gillespie’s tau
leaping [21] are left for future work.
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14. Cleaveland, R., Lüttgen, G., Natarajan, V.: Priority in process algebra. In:
Bergstra, J., Ponse, A., Smolka, S. (eds.) Handbook of Process Algebra, pp. 711–
765. Elsevier Science Publishers, Amsterdam (2001)

15. Lodish, H., Berk, A., Matsudaira, P., Kaiser, C.A., Krieger, M., Scott, M.P.,
Zipursky, L., Darnell, J.: Molecular Cell Biology. W. H. Freeman, New York (2004)

16. Lu, T., Volfson, D., Tsimring, L., Hasty, J.: Cellular growth and division in the
gillespie algorithm. In: Systems Biology, IEE Proceedings, pp. 121–128 (2004)

17. Lecca, P.: A time-dependent extension of gillespie algorithm for biochemical
stochastic π-calculus. In: SAC ’06: Proceedings of the 2006 ACM symposium on
Applied computing, New York, NY, USA, pp. 137–144. ACM Press, New York
(2006)

18. Elf, J., Ehrenberg, M.: Spontaneous separation of bi-stable biochemical systems
into spatial domains of opposite phases. Systems Biology 1(2), 230–236 (2004)

19. Phillips, A., Cardelli, L., Castagna, G.: A graphical representation for biological
processes in the stochastic pi-calculus, vol. 4230, pp. 123–152 (2006)

20. Cazzaniga, P., Pescini, D., Besozzi, D., Mauri, G.: Tau leaping stochastic simulation
method in p systems. In: Hoogeboom, H.J., Păun, G., Rozenberg, G., Salomaa, A.
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Abstract. Quantum dot fluorophores provide a photo and bio-stable optical 
marker signal well suited to the tracking of lineage within large cell populations 
over multiple generations. We have used a Monte Carlo algorithm to model the 
process of dot partitioning and dilution by cell mitosis. A Genetic Algorithm 
was used to compare simulated and experiment quantum dot distributions, 
which shows that the dot fluorescence is divided with a stochastic variation 
about an asymmetric mean split ratio. 

Keywords: Cell division, Quantum dot fluorophores, Monte-Carlo simulation, 
Genetic algorithm. 

1   Introduction 

The ability to track the evolution of large cell populations over time is crucial, not 
only for providing a means of monitoring the general health of a population of cells, 
but also for informing on the outcome of specific assays (e.g. pharmacodynamic 
assay). The overall aim of the current study has been to determine if a targeted 
quantum dot (QD) fluorescent reporter system provides labeling of cell proliferation 
independent of cell cycle. A key component to this has been the computational 
simulation of the QD dilution via cell mitosis. Modeling of this kind provides detailed 
insights into the evolution of cell lineage; providing insight at the individual cell level 
from whole population experiments i.e. flow cytometry analysis as opposed to cell to 
cell tracking via time-lapse imaging. Traditional approaches used for determining cell 
proliferation require knowledge of population size or the behavior of a cellular marker 
diluted on a cell-to-cell basis. The latter approach can utilize samples of populations 
and a frequently used chemical marker is based on an organic fluorophore CFSE 
(carboxy-fluorescein diacetate succinimidyl ester). CSFE diffuses freely into cells 
where intracellular esterases cleave the acetate groups converting it to a fluorescent, 
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membrane-impermeant dye that is retained within the cytoplasm of the cell (1,2). 
During each round of subsequent cell division, the relative intensity of the dye 
fluorescence is halved. Cells can be analyzed by flow cytometry to determine the 
intensity distribution of the fluorophore signal within the cell population and thereby 
quantify the extent of proliferation (3). As with all organic fluorophores CFSE has 
inherent disadvantages of bio and photo-instability when used in longer-term live cell 
assays. We have therefore considered the use of QDs (inorganic nanocrystals). The 
advantages of using QDs in the place of traditional organic fluorophores have been 
widely reported (4). Firstly, they are photostable (5), allowing long-term labeling of 
live cell populations. Secondly QDs have a broad-band absorption meaning that when 
using multi-color labeling cells a single excitation wavelength can be used (6). They 
have a major advantage over conventional organic fluorophores: they are chemically 
stable and are not metabolized by the cell. Not only is their fluorescent signal very 
much brighter than an organic fluorophore (7,8) but it should also remain unperturbed 
by intra-cellular bio-chemical reactions. It is the stability and persistence of the QD 
signal within cells over multiple generations that we are exploiting. The objective is 
to develop a robust assay of integrated fluorescence cellular readout which reports the 
extent of cellular bifurcation within a complex population (ie cell division and 
lineages), potentially providing profiles of drug resistance, cell clonality and levels of 
aneuploidy in complex tumour populations. In particular we have exploited the 
tracking capability to detect proliferative sub-fractions within tumour populations 
(human osteosarcoma cell line U-2 OS; ATCC HTB-96) subjected to a cell-cycle 
perturbing drug ICRF-193, that has the capacity to inhibit cell division. We have used 
the commercially available Qtracker® 705 system which delivers CdTe/ZnS core-
shell QDs, with peak fluorescent emission at 705 nm, to the endosomal compartment 
and provides long term tracking potential (> six sequential generations). 

2   Experimental Results 

Time-lapse microscopy experiments were carried out to determine whether the 
endosomal targeted QDs had any perturbing effect on the U-2 OS population. By 
conducting single cell analysis rather than whole population cell counting we were 
able to detect small and transient perturbations of cell growth and relate this to cell 
cycle induced stress responses (9). A mitotic event curve was derived from measuring 
cumulative time to mitosis of individual cells, each contributing to a kinetic picture of 
the population response. U-2 OS ATCC cells were loaded with a single concentration 
of Qtracker® 705 (4 nM), cell growth was determined via transmission time-lapse 
microscopy for a period of 24 hours (10). Manual image analysis provided the ability 
to extract the time-to-event curves which demonstrated the dynamics of event 
delivery in quantum dot loaded and control conditions. The process of targeted 
labeling with QDs showed no acute effects on the ability of the cells to traverse the 
cell cycle and deliver to mitosis. The carrier alone showed a slight perturbation 
(between 7 to 14 hours) with a subsequent recovery over the remaining 10 hours. In 
control conditions all of the events during the course of the sequence were successful 
cell divisions leading to two daughters. We conclude that there is a minimal 
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perturbation to the cell cycle when loading near-infrared quantum dots via the 
endosomal pathway. 

Studies of large cell samples (104 cells) were carried out using flow cytometry. 
Tracking of the population via the QD fluorescence was carried out at 24 hr intervals 
after an initial 24 hr period to allow for stabilization of the signal following dot 
uptake. A typical set of histograms is shown in figure 1a, these data have been gated 
using the side and forward cell scatter signals to identify the viable cell component 
and thus remove debris from the sample set (practically this entails removing 
measurements at the low and high end limits of the scattered light intensity range). 
The endosomal targeting of the QDs produces a large dynamic range in the dot 
fluorescence and hence the acquisition using a logarithmic detection scale.  

100 10 2 10 4
0

20

40

60

80

C
el

l C
ou

nt

Fluorescence Intensity (a.u.)

72hr

48hr

24hr

24 48 72
0.00

0.25

0.50

0.75

1.00

1.25

1.50
A

ri
th

m
et

ic
 M

ea
n

Hours (hrs)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

C
V

(a) (b)

 

Fig. 1. a.) Quantum dot fluorescence intensity histograms taken at 24 hour intervals following 
take-up; b.) Statistics from the histograms: arithmetic mean (solid line with squares) and 
coefficient of variation (solid line with circle). The dotted line represents the expected mean 
due to halving of the dot density per cell every 24 hours. 

As the assay progresses the histograms move down on the x-axis and broaden 
leading to a reduced peak cell count. The loss of fluorescence signal is expected as the 
dot density per cell becomes diluted by partitioning upon cell division. The mean 
inter-mitotic time (IMT), calculated from time lapse images’ is 22.5 hours with a 
standard deviation of 6 hous. If the dot partitioning is symmetric, holding to a ~ 50:50 
split in the percentage of dots passed onto daughter cells, then the distribution should 
shift to half the x-axis value with an unchanged peak cell count (all histograms have 
the same sample number of 104). The broadening of the distribution therefore 
indicates that dot partitioning is asymmetric and the flow data supports the 
observation of asymmetric splitting in the microscope images. At this point in our 
studies it is not clear whether the asymmetry is ‘biological’ relating to uneven 
partitioning of organelles or ‘extrinsic’ and due to uneven take up of dots within 
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endosomes. The physical mechanism of the asymmetry is unimportant in relation to 
the cell proliferation studies reported in this paper as the validity of the QD assay is 
based purely on tracking of their fluorescence. To quantify the distributions we use 
two statistical measures; the arithmetic mean ( x ) which can be interpreted as the 

average dot fluorescence per cell and the co-efficient of variation ( xCV σ=  ) which 

is a measure of the distribution width relative to its mean value. The values of x , 
normalized to the 24 hour value, and the CV are plotted in figure 1b. The mean 
should halve in each 24 hour period as QDs are diluted between daughter cell pairs; 
the solid line in the figure shows an exact halving and the measured fluorescence 
signal is within ~ 10% of this thus confirming that the dots do provide a persistent and 
stable optical tracking signal. The CV doubles between 24 and 72 hours due to the 
asymmetric division of the QDs (for symmetric partitioning x  and σ halve upon 
division). These simple, statistical descriptors of the fluorescence histograms are 
therefore powerful analytical outputs, validating the integrity of the tracking signal 
and providing an insight to the mechanics of the dot dilution by the growing  
cell population. 

3   Computational Simulations 

3.1   Overview 

A more sophisticated data analysis has been performed based on a stochastic model of 
cell mitosis within a population in order to simulate the fluorescence histogram 
evolution and so provide a more detailed picture of the quantum dot partitioning 
during cell division. The QD fluorescence data taken at 24 hours was used as an input 
set for this computational analysis. From this data we determine the number of dots 
allocated to each of the 104 cells (the number of dots is taken to be proportional to the 
fluorescent intensity). The model assumes that these cells are randomly distributed 
uniformly through the cell cycle period. The model increments time using a time step 
determined in order to correctly predict the statistics of cell mitosis. A Monte Carlo 
algorithm is then applied to determine whether or not a cell splits during this time 
increment. The algorithm utilizes a Gaussian distributed inter-mitotic time 
distribution (mean IMT = 22.5 hours, σ = 6 hours) measured using lapse 
measurements referred to above. A normal distribution was used for two reasons: (i) 
we are evaluating a large data set, i.e. > 104 cells and thus is a good approximation to 
the more commonly used binomial distribution and, (ii) due to the very nature of the 
cell splitting process there is an intrinsic variance of the mean splitting ratio between 
cells and a normal distribution allows this to be easily adopted with in the simulation. 

On splitting we assume that the number of quantum dots is conserved i.e. the total 
number of dots in each daughter cell is equal to the number of dots in the parent cell. 
The number of dots allocated to each daughter cell is chosen at random from a 
Gaussian distribution of division ratios. At the set ‘measurement’ time a fluorescent 
histogram is calculated by determining the number of dots in each cell, this histogram 
can then be compared directly with the experimental data.  
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Fig. 2. Computed (grey trace) and measured (black trace) fluorescence histograms 72 hours 
after quantum dot uptake. The modeled fit has a peak probability of partitioning ratio of 74:26 
% with a 6 % standard deviation. 

The correct choice of Gaussian distribution of division ratios i.e. the mean and 
standard deviation is determined by using a genetic algorithm (11) to best fit the data. 
The fitness of the modeled histograms was determined by least squares fitting of 
calculated and measured data sets. The modeled histogram at 72 hours, computed 
from the 24 hour data, is shown in figure 2 together with the measured distribution. 
This fit is achieved with an asymmetric fluorescence partitioning of 74:26 % with a 
standard deviation of 6 %. The two data sets are virtually indistinguishable and so this 
substantiates the experimental observation that the dot dilution is an asymmetric 
process and indicates that there is a stochastic variation about the mean. 

3.2   Details of the Simulation 

A flow chart depicting the main steps of the stochastic cell-splitting algorithm is 
shown in figure 3. Firstly, the recorded data describing the fluorescence of the 
quantum dots within the cells at 24 hours is taken as an input set for the program. 
Each of the 104 input cells is stochastically given a cycle time, which is determined 
randomly from a normal distribution centered on the IMT and with a standard 
deviation of 6 hours. This step mimics the fact that each of the 104 cells in the 
experiment will be at a different stage of the cell cycle. The cycle time of each cell is 
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incremented in 1 hour time steps in conjunction with the laboratory frame of each 
time a loop of the algorithm is completed reference. 

The next step of the algorithm determines if a particular parent cell has split or not. 
Again this choice is stochastically determined, where the previously assigned cycle 
time of a cell together with the laboratory time is used to generate a cumulative 
distribution specific to the individual cell in question. In figure 4 below, a case where 
a particular cell has been given a cycle time of 12.5 hours, resulting in a cumulative 
distribution centered on 35 hours, this point and the standard deviation range (dot-
dash line and dashed lines respectively) are indicated on the figure. 

A splitting event occurs if a random number, uniformly distributed over the 
interval [0 1], lies below the cumulative frequency curve at the laboratory time. For 
example, the filled black circle indicates the probability of a split occurring for this 
particular cell at a laboratory time of 27 hours, the graph indicates a 10% chance of 
this split occurring. This stochastic sampling is applied to each cell every hour. 

Yes

No

Input 24 hour
experimental data

Stochastically assign
local time to parent cell

Determine if parent
cell has split

Reset mean lifetime
of daughters

Update cell
population

Next parent cell

Increment time
by 1 hour

Randomly determine how the
 number of qunatum dots is

distributed to the daughter cells

 

Fig. 3. Flowchart indicating the main steps of the stochastic cell-splitting algorithm 
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However, if the split does occur, the algorithm determines how the embedded 
quantum dots are distributed from the parent cell to the two daughter cells. Once more 
this choice is stochastically driven; selection is determined by a normal distribution 
centered on the mean splitting rate, μ, which has an associated standard deviation, σ. 
Both these parameters are numerically determined by means of genetic algorithm, the 
details of which are elucidated in the following paragraph.  

10 20 30 40 50 60

0.2

0.4

0.6

0.8

1.0

Laboratory Time (hrs)

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n

μ

σ

27

0.1

0.0

 

Fig. 4. Cumulative distribution associated with a cell with an initial cycle time of 12.5 hours. 
Plot indicates that at a laboratory time of 27 hours the cell has a 10% chance of splitting. 

A modified random normal distribution routine is used to generate these values for 
each split cell. This routine efficiently calculates of values μ only in the unit interval  
[0 1]. Values generated by standard random normal distribution can lie outside this 
range. They can frequently occur due to the random sampling process, particularly 
when μ is close to the extremities of the interval and σ is relatively large; in this 
application such values are meaningless and must be disregarded. Once the daughter 
cells have been assigned their respective quantum dot population, the algorithm resets 
their cycle time equal to their parents plus the experimentally deduced IMT. This 
action ensures that the probability of two newly formed daughter cells splitting again 
in the immediate future is small. The final stage of the algorithm simply stores both 
daughter and the initial parent cells yet to split in the first hour in the laboratory frame 
of reference. Thus, the total population is now > 104. Both the laboratory and cycle 
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time of the cells is incremented by 1 hour and a new population of 104 out of the 
augmented populace is randomly chosen to sample using the above methods. This 
process is repeated until, in this particular case the laboratory time reaches 72 hours. 

As mentioned in the section outline, a genetic algorithm is employed to fit both the 
mean splitting value of the parent cells and also the associated standard deviation. A 
flow chart depicting the main steps of the genetic algorithm is shown below in figure 5. 
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Generate random
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Evaluate fitness of 
chromosomes

Mutate 
chromosome

End

Mate chromosomes

 

Fig 5. Flowchart of the genetic algorithm used to determine how the quantum dots are 
distributed from parent to daughter cells 

As is typical of such algorithms, an initial population of chromosomes is randomly 
generated to span the parameter space, 0 to 1 for both μ and σ variables. In this 
particular case a population of 10 chromosomes was sufficient to ensure convergence 
of the algorithm. Each chromosome consisted of 16 genes, split evenly between the 
two minimization variables. Each chromosome’s value for μ and σ was evaluated by 
running through the splitting procedure outlined in Figure 3, and is depicted by the 
function f(X) in Figure 5, where X is a vector whose components are the 
minimization variables. The fitness of these values was next determined by 
calculating the Euclidean norm of the difference between the experimental and 
simulated data over the entire intensity range at 72 hours. Although, the simulated 
data does not produce a fluorescent signal, but rather a number detailing the number 
of quantum dots per cell, a meaningful comparison between the experimental and 
simulated data can be made on the supposition that florescence is proportional to cell 
dot density. The fitness of the chromosome population is then evaluated by 
normalizing the calculated norms. If the fitness of these chromosomes does not fit the 
desired convergence criteria, the chromosomes are mated according to fitness and 
elitism (11) and a new-population born. Also, in each generation there is a small 
probability that each new-population chromosome undergoes a random mutation. The 
new-generation of chromosomes is again evaluated in the manner above until a 
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suitable convergence criterion is achieved; i.e. the magnitude of the minimized 
parameters varied by less than 5% across the chromosome population. 

The genetic algorithm located strong minima for the parameters μ and σ at values of 
0.76 and 0.06 respectively. Figure 6 above displays both the experimental and 
simulated quantum dot fluorescence intensity at 24, 48 and 72 hours, plots (a) and (b) 
respectively, when using the above values to describe how the quantum dots 
embedded within the parent are passed to their daughters.  
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Fig. 6. (a) Experimental and (b) simulated quantum dot fluorescence intensity histograms taken 
at 24 hour intervals following take-up 

4   Summary 

We have reported on experimental methods that enable lineage tracking of quantum 
dot fluorophores within large cell populations over multiple generations. To 
complement these experimental investigations, a numerical model that mimics the cell 
division behavior has been developed. By utilizing a genetic algorithm in conjunction 
with the numerical model we have been able to achieve favorable fits of the 
theoretically predicted quantum dot distributions with that measured experimentally. 
These fits indicate that dot fluorescence is divided with a stochastic variation about an 
asymmetric mean split ratio of 74:26% (12) with a standard deviation of 6%. 
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Lorenzo Dematté1,2, Corrado Priami1,2,
Alessandro Romanel1,2, and Orkun Soyer1

1 The Microsoft Research - University of Trento Centre for Computational and
Systems Biology

2 Dipartimento di Informatica e Telecomunicazioni, Università di Trento
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Abstract. This paper presents a formal approach to the study of evo-
lution of biological pathways. The basic idea is to use the Beta Work-
bench to model and simulate pathway in connection with evolutionary
algorithms to implement mutations. A fitness function is used to select
individuals at any generation. The feasibility of the approach is demon-
strated with a simple example.

1 Introduction

Biological pathways are studied using several methods, including but not limited
to analysis of their single components, reconstruction of their series of chemical
reactions and simulation of their dynamics.

Many approaches include modelling techniques to represent and analyse dy-
namics of complex pathways. In particular, process calculi have been recently
applied to model and simulate biological systems [1]. The main activities up to
now have been oriented to define new primitives and to show their feasibility for
describing biological phenomena. Some simulation engines have been developed
especially based on the stochastic π-calculus [2] like SPiM [3] or BIOSPI [4], and
recently on an extension of the Beta-binders language [5]1.

Recently, there is an interest in using evolutionary approaches to study path-
ways. Understanding how pathways emerged during evolution can help us to
understand their basic properties, such as the role of complexity and the impor-
tance of topology and feedback loops. Existing approaches to study evolution are
commonly based on comparative genomics or proteomics and on phylogenetic
analysis [6,7]. These studies compare pathways from different organisms to see
how evolution affects the internal structure of the network of interactions.

An alternative approach is to simulate evolution in silico, using an algorithm
that mimic this process, as in [8,9,10,11]. However, these approaches use ad-hoc
tools and representations of pathway dynamics, while current available tools
to model and simulate pathway dynamics, discussed above, do not allow for
evolutionary simulations.
1 Available at url http://www.cosbi.eu/Rpty Soft BetaWB.php
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On the other hand, tools that mimic evolution are also known in the Com-
puter Science domain. However, these tools and algorithms are designed for
specific tasks, such as machine learning and optimization or search problems (as
pioneered in 1966 by Fogel [12]), and therefore lose the strict connection with
biology and they are no more adequate to study biological evolution in a realistic
way.

Here, we aim at developing a specific framework to allow straightforward study
of pathway evolution based on the Beta Workbench (BetaWB) [5]. The great
flexibility of the Beta-binders process calculus in the definition of the structure of
proteins allows us to introduce interesting primitives for mutations used to build
domain-based interaction and mutation models. Moreover, pathway dynamics
can be easily modelled, and the interactions of emerged pathways analysed. Our
formal framework aims at extending the features of the BetaWB to obtain a full
integration with the existing software environment. In this paper we describe the
novelty of the approach unravelling the formal theory on which it is based, and
we show the feasibility of the proposed solution to study evolution of pathways.

The paper is organised as follows. In the next section we briefly recall the
language and the software tool BetaWB on top of which we built our work for
simulating the evolution of biological pathways. The model we used to describe
the general structure of signalling pathways is also introduced and explained.
Sect. 3 discusses the evolutionary framework, the integration of the BetaWB
simulation engine within an evolutionary algorithm and how mutations are per-
formed on the model. An example of application of the whole framework is given
in Sect. 4, and conclusions and future work directions close the paper.

2 Description of Pathway Dynamics

To study biological evolution of pathways, we need to describe pathway dynamics
and an algorithm to simulate pathway evolution from a generation to the next
one. We start describing the modeling and simulation tool.

2.1 The Beta Workbench

The Beta Workbench is a software framework for modelling and simulating bi-
ological processes [5]. It incorporates a language, a compiler to a stochastic
abstract machine, the execution environment and some graphical interface com-
ponents. The BetaWB language is based on β-binders [13], a process calculus
developed to represent the interactions between biological entities.

The Language. A BetaWB program, called also β-system, is a tuple Z=〈B,E, ξ〉
made up of a bio-process B, a list of events E and ambient ξ. The bio-process B
intuitively represents the structure of the system, that is a set of entities inter-
acting in the same environment, E represents the list of possible events enabled
on the system and the ambient ξ contains information about the environment,
like the set T of the considered types (ranged over by Δ, Γ0, Σ′, · · · ), a function
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ρ : N → R that associates stochastic rates2 to names in N and the function
α : T 2 → R

3, which describes the affinity relation between couples of types. In
particular, given two types Δ and Γ , the application of α(Δ,Γ ) returns a triple of
stochastic rates (r, s, t), where the value r, denoted with αc(Δ,Γ ), represents the
complexation rate, the value s, denoted with αd(Δ,Γ ), represents decomplexation
rate and the value t, denoted with αi(Δ,Γ ), represents the inter-communication
rate of the two entities exposing the types Δ and Δ.

The syntax of the BetaWB language is the following.

B ::= Nil | B[P ] | B||B
B ::= β̂(x, r,Δ) | β̂(x, r,Δ)B
β̂ ::= β | βh | βc

P ::= nil | P |P | !π.P |M
M ::= π.P |M +M

π ::= x(y) | x〈y〉 | (τ, r) | (die, r) | (ch(x,Δ), r) |
(hide(x), r) | (unhide(x), r) | (expose(x, s,Δ), r)

cond ::= B[P ] : r | |B[P ]| = n | B[P ],B[P ] : r
verb ::= new(B[P ], n) | split(B[P ],B[P ]) | join(B[P ]) | delete
event ::= • | (cond) verb
E ::= event | event :: E

where x, y ∈ N , n ∈ N and r ∈ R
+ ∪ {∞} is a stochastic rate.

Processes generated by the non terminal symbol P are referred as pi-processes.
Bio-processes(boxes) are defined as pi-processes prefixed by specialised binders
B that represent interaction capabilities. An elementary beta binder β̂ has the
form β(x, r, Γ ) (active), βh(x, r, Γ ) (hidden) or βc(x, r, Γ ) (complexed), where
the name x is the subject of the beta binder and Γ represents the type of x.
Although types can be any general structure for which exist a decidable equality
relation, without loss of generality we assume here that types are names taken
from a countably infinit set T such that T ∩ N = ∅. A bio-process B is either
the deadlock beta-process Nil or a parallel composition of boxes B[P ]. A box
B[P ] models a single biological entity, where intuitively the beta binders list
B represents the interface of the entity, while the pi-process P represents its
internal structure or process-unit. Moreover, the language is provided with a
graphical representation of boxes:

P

(x1 : Δ1)r (x2 : Δ2)
h
s (x3 : Δ3)t

The pairs xi : Δi represent the sites through which the box may interact with
other boxes. Types Δi express the interaction capabilities at xi. The value r rep-
resents the stochastic rate associated to the name x inside the box, h represents
2 A stochastic rate is the single parameter defining an exponential distribution that

drives the stochastic behaviour of an action. The rate ∞ is used to denote immediate
actions, i.e., actions that are executed as soon as they become enabled.
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the hidden status and the black line over the last beta binder represents the
complexed status.

The dynamics of the system is formally specified through the operational
semantics of the language available in [5], which uses a notion of structural
congruence ≡. Intuitively, that two β-systems Z=〈B,E, ξ〉 and Z ′=〈B′, E′, ξ′〉
are structurally congruent (Z ≡ Z ′), if their bio-processes B and B′ and their list
of events E and E′ are identical up to structure (B ≡b B

′ and E ≡e E
′) and their

ambients are equal (ξ=ξ′). Moreover, two boxes representing interacting entities,
are considered of the same species only if they are structurally congruent. Given
a β-system, its temporal evolution is described by three types of actions.

Monomolecular actions describe the dynamics of single boxes. More pre-
cisely, an intra-boxes communication allows components to interact within the
same box, the expose action adds a new site of interaction to the interface of the
box containing the expose, the change action modifies the type of an interaction
site, hide and unhide actions make respectively invisible and visible an interac-
tion site. Finally, the die action eliminates the box that performs the action and,
recursively, all the boxes directly or indirectly complexed with them.

Bimolecular actions describe interactions that involves two boxes. The com-
plex operation creates a dedicated communication binding between boxes over
compatible and unhidden elementary beta binders, while the decomplex opera-
tion destroys an already existing dedicated binding. The stochastic rates asso-
ciated to complex and decomplex operations are, respectively, the complexation
and decomplexation rates derived from the affinity function. In the example,
the complexation rate is αc(Δ,Γ ), while the decomplexation rate is αd(Δ,Γ ).
The information about the existing dedicated bindings is maintained in the en-
vironment. The last bimolecular action is the inter-boxes communication, which
enables interaction between boxes over compatible and unhidden elementary
beta binders. Suppose Δ and Γ be the types associated to the involved elemen-
tary beta binders. If αc(Δ,Γ ) > 0, then the inter-communication is enabled,
with rate αi(Δ,Γ ), only after a dedicated communication binding, over the in-
volved beta binders, has been created by a complex operation. Otherwise, the
inter-boxes communication is simply enabled with rate αi(Δ,Γ ).

An Event is the composition of a condition cond and an action verb and it is
triggered only when the condition associated with the event is satisfied. Events
were designed to substitute the join and split actions of the original beta-binders
language with a more efficient construct. They can be considered as global rules
on the system which can substitute, create and delete boxes. In particular, verbs
originate five types of events: join, which substitutes two boxes with single ones;
split, which substitutes a box with two boxes; new, which introduces a specified
number of instances of a box; delete, which eliminates boxes. These different
types of events are triggered three kinds of conditions : conditions on the presence
of a bioprocess, conditions on cardinality of a bioprocess, and conditions on time.

Definition 1. The BetaWB Stochastic Transition System (STS) is referred as
S = (Z, r−→s , Z0), where Z is the set of β-systems, Z0 ∈ Z is the initial β-system
and r−→s ⊆ Z×R×Z is the stochastic transition relation, where r is a stochastic
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rate constant and is derived using information in the syntax and in the ambient
of the β-system.

For a more detailed and formal description of the language, its operational se-
mantics and the laws of its structural congruence relation we refer the reader
to [5].

2.2 A Compositional Model For Signalling Pathways

A signalling pathway is any biological process that converts one kind of signal
or stimulus into another; this conversion is also called signal transduction. In
general, a signalling pathway results in a composition or cascade of biochemical
reactions that are carried out by proteins and linked through second messengers.
Biological signal transduction allows a cell or organism to sense its environment
and react accordingly. Typically, a signalling pathway has one (or more) input,
represented by any environmental stimulus, and one (or more) output, repre-
sented by an active protein. In the BetaWB language we represent a protein

Fig. 1. Our representation of protein interaction through sensing and effecting domains.
Arrows indicate compatibility of the types, according to the α function specification
reported on the right of the figure.

as a biological entity composed by a set of sensing domains, a set of effecting
domains and an internal structure. Sensing domains are the places where the
protein receives signals, effecting domains are the places that a protein uses for
propagating signals, and the internal structure codifies for the mechanism that
transforms an input signal into a protein conformational change, which can re-
sult in the activation or deactivation of another domain. This is inspired by the
available knowledge of protein structure and function (see for example [14]).

As explained in Sec.2.1, the Beta Workbench is a general framework for mod-
eling and simulating biological processes; each biological entity is modelled with
a box, which is a composition of an interface and an internal process unit. This
gives an effective way for modeling proteins by decomposing the domains of in-
teraction and the internal structure into two different constructs. Moreover, the
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compositional nature of the language allows us to design and apply mutations
on biological entities in an effective, simple and intuitive way.

In this application of evolutionary algorithms to β-systems we designed a
general methodology for modeling proteins by providing patterns for modeling
interaction domains and internal structures. Domains are represented using beta
binders (A+ andA−), interaction sites with an affinity. As shown in Fig. 1 (where
we omit subjects and rates of beta binders for the sake of readability), the sensing
domain is represented by a pair of binders, one for receiving a signal of activation
(e.g. phosphorylation) and the other for receiving a signal of deactivation (e.g.
dephosphorylation) sent to the protein. The effecting domain (Ao) is instead
used to communicate, and so to activate or inhibit, other proteins. Pattern of
pi-processes and boxes for modeling proteins with single sensing and effecting
domains are the following:

ps1 � act(ι).(unhide(o),∞).deact(ι).(hide(o),∞).x〈ω〉.nil
pr1 � !x(ι).ps1 | ps1
pss2 � deact(ι).(hide(o),∞).xp〈ω〉.nil
ps2 � !xp(ι).(act(ι).(unhide(o),∞).pss2 + deact(ι).x〈ω〉.nil)
pr2 � !x(ι).act(ι).xp〈ω〉.nil | act(ι).xp〈ω〉.nil

Adeact1 � βh(o, r,Δo)β(act, r,Δ+)β(deact, r,Δ−)
[ pr1 | !o〈ω〉 ]

Aact1 � β(o, r,Δo)β(act, r,Δ+)β(deact, r,Δ−)
[ !x(ι).ps1 | deact(ι).(hide(o),∞).x〈ω〉.nil | !o〈ω〉 ]

Adeact2 � βh(o, r,Δo)β(act, r,Δ+)β(deact, r,Δ−)
[ ps2 | pr2 | !o〈ω〉 ]

Aact2 � β(o, r,Δo)β(act, r,Δ+)β(deact, r,Δ−)
[ !x(ι).act(ι).xp〈ω〉.nil | pss2 | ps2 | !o〈ω〉 ]

where ρ(x) = ρ(xp) = ∞. The boxes Adeact1 and Aact1, which uses the pi-
processes ps1 and pr1, represent respectively the inactive and active state of
a protein which can be activated by a single external signal. In particular, if
the box Adeact1 executes an inter-boxes communication through the elemen-
tary beta binder β(act, r,Δ+), the action act(ι) in Adeact1 is consumed and
immediately also the action (unhide(o),∞) is consumed (because its rate is ∞).
The obtained box is structurally congruent to Aact1 and hence the protein has
reached its active form, where the elementary beta binder β(o, r,Δo) is now
unhidden and the box can execute inter-communications through it. Now, if
the box Aact1 executes an inter-boxes communication through the elementary
beta binder β(deact, r,Δ−), the reverse mechanism is executed and the protein
returns back in its inactive form Adeact1.

The boxes Adeact2 and Aact2, which uses the pi-processes ps2, pss2 and pr2,
represent respectively the inactive and active state of a protein which can be
activated by receiving a signal twice. The activation and deactivation mechanism
is similar to the one described for single signal activation.
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Obviously these patterns can be easily extended for modelling proteins with
more than one sensing and effecting domains and for modeling mechanisms of
activation based on the reception of more than two external signals.

3 Evolutionary Framework

We design a framework for simulating the evolution of pathways in silico. Evo-
lution proceeds through selection acting on the variance generated by random
mutation events. Individuals replicate in proportion to their performance, re-
ferred to as fitness. This process can be modelled as shown in Tab. 1. This

Table 1. Generic EvolutionAlgorithm

EvolutionAlgorithm ():
Population := GenerateInitialPopulation();
for i = 0 to generations do

for each Individual in Population do
output := Simulate(Individual);
fitnesses[Individual] := ComputeFitness(output);

NewPopulation := ReplicateAndMutate(fitnesses, Population);
Population := NewPopulation;

algorithm differs slightly from the generic evolutionary algorithms used in com-
puter science, being more closer to real biological observations made for the
asexual reproduction of organisms.

There are four main procedures in the algorithm:

– GenerateInitialPopulation: the initial population can be generated ran-
domly, from a predefined pathway configuration to be used as a starting
point, or it can be a pathway with no interactions. All the individuals in the
initial population can be equal at the beginning, as they will be differentiated
later by the mutation phase.

– Simulate: each individual in the population is simulated separately using
the BetaWB stochastic simulator, introduced in Sec. 2.1.

– ComputeFitness: the output of the simulation is used to compute the
fitness value of the current individual. Note that the fitness value is problem-
dependent; for an example, refer to Sec. 4.

– ReplicateAndMutate: this is the most important part of the algorithm;
like in a real environment, individuals with the highest fitness values are more
likely to survive, replicate and produce a progeny that resembles them, being
not, however, completely equal to them.

The ReplicateAndMutate algorithm (Tab. 2) creates a new population with
the same number of individuals of the current generation, using as a base the
current individuals. At each step it chooses one individual, with probability
proportional to its fitness (ChooseOneIndividual in the code above). This
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Table 2. The ReplicateAndMutate algorithm

ReplicateAndMutate (fitnesses, Population):
for i = 0 to i < Population.Size do

Individual := ChooseOneIndividual(Population, fitnesses);
for each Protein in Individual.Proteins do

if Random() < DuplicationProbabily then
Protein2 := Protein.Duplicate();
Individual.P roteins.Add(Protein2);

for each Domain in Protein.Domains do
if Random() < MutationProbability then

MutationType := GetRandomMutation();
if IsMutationFeasible(Domain, MutationType) then

Domain2 := Individual.PickCompatibleDomain(Domain, MutationType);
Individual.Mutate(Domain, Domain2, MutationType);

NewPopulation.Add(Individual);

return NewPopulation;

is achieved by constructing a cumulative probability array a from the fitness
array, generating a random number in the range 0...a[Population.Size], and
then finding the index into which the random number falls.

The selected individual will replicate and pass to the next generation. During
the replication, each protein in the “genome” of the individual is given the chance
to mutate, according to a probability.

A mutation is selected among all the possible types by the GetRandomMu-

tation function, and this mutation is applied. Finally the individual, that can
be equal to its predecessor or can be mutated, is added to the new population.
We now define in more detail the kind of mutations that we consider in our
framework.

3.1 Mutations

The different types of mutations we consider are based on real biological pro-
cesses where mutations can happen at DNA and protein level. These ultimately
effect pathway dynamics. For example, point mutations in a DNA sequence can
change the protein amino-acid sequence, leading to changes in its tertiary struc-
ture with implications on the affinity of this protein with other proteins or sub-
strates. Similarly, events at DNA level as gene duplication or domain shuffling
can alter pathway structure and dynamics.

A computer program that wants to mimic evolution of a specie have to im-
plement random mutations in individual during replication as well. Here, we
can easily implement these molecular processes using the domain and pathway
model we discussed in Sect. 2.2.

We will take as an example the three-protein pathway represented in Fig. 2(a)
and we will illustrate how different mutations are possible using the BetaWB
language.
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(a) (b)

(c) (d)

Fig. 2. Different kinds of mutations: in (a) the initial configuration, displaying the α
function as a list of tuples; in (b) duplication of protein C followed by mutation of
domain ΔCo in (c). Finally, (d) displays how the internal structure could change to
accommodate the duplication of a domain.

Duplication and Deletion of Proteins: Gene duplication at DNA level was
implemented in our framework with a duplication of the bio-processes associ-
ated to the protein the gene codifies for. The new bio-process will have the same
internal structure and the same binder subjects, while types of binders will be
new but will have the same interaction capabilities. This is achieved by copying
the affinities of the original types. Duplication of types is needed because subse-
quent mutations on one of the binders of the duplicated protein must not affect
the original one. Furthermore, since the new protein is a new separated entity,
it must not be structural equivalent to the original one. Following the model
presented in Sec. 2.2, the bio-process for protein C

Cdeact1 � βh(o, r,ΔCo)β(act, r,ΔC+)β(deact, r,ΔC−)[ pr1 | !o〈ε〉 ]

will be duplicated to

Cdeact1 � βh(o, r,ΔCo)β(act, r,ΔC+)β(deact, r,ΔC−)[ pr1 | !o〈ε〉 ]

C′deact1 � βh(o, r,ΔC′o)β(act, r,ΔC′+)β(deact, r,ΔC′−)[ pr1 | !o〈ε〉 ]

The same duplication will be done also for the bio-process representing the active
forms of the protein. Deletion can be implemented removing the associated bio-
process, or setting its cardinality to zero.
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Mutation of Domains: Point mutations in DNA can change the protein
amino-acid sequence, and consequently lead to the mutation of a domain and to
changes in the interaction capabilities of the protein to which it belongs. In our
formalism, this is achieved by changing the α function on the two domains that
take part in the interaction. More specifically, the mutation on a domain can be a
change of interaction, for which we modify the affinity adding a number sampled
from a normal distribution with mean zero and a little variance, an addition of
an interaction between two domains d1 and d2, modelled as the addition of an
affinity α(d1, d2) = x, whit x > 0, and finally a removal of an interaction, be-
tween two domains d1 and d2, setting α(d1, d2) = 0. For example, the mutation
on domain oC that can be observed in Fig.2(c) is obtained by changing the α
function from α(Co,B−) = 1.0 to α(Co,B−) = 0.0,α(Co,B+) = 0.9

Duplication and Deletion of Domains: The last possible mutation, domain
duplication or deletion due to DNA shuffling, is more complex as it requires
modification of the internal behaviour in response to stimuli. Duplicating or re-
moving domains can be easily done acting on the binders list and on the affinity
function α; however, for these domains to act as sensing or effecting domains
in cooperation or in antagonism with the existing ones, the internal behaviour
of the process must also be changed. We devised several possible modifications
of the behaviour when a domain is added, such as require communication on
all the sensing domains before activating the protein (double phosphorylation,
as in Fig. 2(d)), different patterns of activation when more than an effecting
domain exists, and so on. All these modifications can be done manipulating the
abstract syntax tree of the bio-process, duplicating parts of it in a regular way. In
Fig. 3.1, for example, it is shown how it is possible to manipulate a bioprocess
to transform a protein activated (or deactivated) by a single phosphorylation

Fig. 3. Program transformation for the modification of a sensing domain
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into a protein that is activated (or deactivated) by a double phosphorylation,
encoding an intermediate step of “half-activation”. However, not all of the pos-
sible combinations of transformations have a correspondent biological meaning;
a more rigorous investigation on these kind of mutations is to be done before
including them in our framework and tool.

3.2 Measure of Fitness

The measure of fitness is problem dependent: it varies with the kind of pathways,
with the characteristics a scientist wants to investigate, and so on. This measure
can be done in various ways, including stability analysis, integration of the signal,
measure of the derivative. We will illustrate in our example how fitness can be
computed using integration of a response.

4 An Example: MAPK Cascade

The mitogen-activated protein kinase cascade (MAPK cascade) is a series of
three protein kinases, which is responsible for cell response to growth factors. In
[15], an model for the MAPK cascade was presented (Fig.4) and analysed using
ODEs; the cascade was shown to perform the function of an ultra-sensitive switch
and the response curves were shown to be steeply sigmoidal. A process calculi

Fig. 4. MAPK cascade as described in [15]. KKK denotes MAPKKK, KK denotes
MAPKK and K denotes MAPK. The signal E1 transforms KKK to KKKp, which
in turn transforms KK to KKp to KKpp, which in turn transforms K to Kp to Kpp.
In particular, when an input E1 is added, the output of Kpp increases rapidly. The
transformations in the reverse direction are the result of the signal E2, the KKpase
and the Kpase. In particular, by removing the signal E1, the output level of Kpp revert
back to zero.

based analysis of the MAPK cascade was presented in [16]. For simplicity, in
this paper we rely on a simplified version of the model, where all the enzymatic
reactions of the form:

E + S �KES

K−1
ES

ES ⇀KEP EP ⇀∞ E + P

are substituted with simplest reactions of the form:

E + S ⇀KEP E + P

Using the design patterns presented in 2, a β-system for the MAPK cascade
has been developed. Following [16], we set all the reaction rates to a nominal
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Fig. 5. (a) Basic individual of the initial configuration. Only signals E1 and E1 are
enabled. (b) A particular individual we obtained, with a “reverse” cascade. (c) A simil-
mapk we obtained, with a good fitness value.

value of 1.0 and we initialize the system with two of E1, E2, KKPase and
KPase, 20 of KKK and 200 of KK and K. Simulating the MAPK β-system
with the BetaWB simulator, similar response profiles (modulo timescale) were
observed for the output of Kpp with respect to the model presented in [15],
despite the differences in the simulation parameters; the system still behaves as
an ultra-sensitive switch.

We use this simplified MAPK cascade β-system as a toy model for testing
our evolutionary framework. In particular, we want to analyse the evolution of a
population according to a fitness function which captures the essential behaviour
of our MAPK cascade model.

In detail, we generate an initial population of 500 individuals containing the
pathway shown in Fig.5a. This pathway resembles the observed MAPK cascade,
in that it contains three kinases, two phosphatases and two signalling molecules.
However, it lacks any interactions among these. In other words, we consider
an ancestral organism that possessed all these proteins but lacked a signalling
system similar to the MAPK cascade as observed today. The dynamic of each
individual is then simulated; we run each individual for 7000 simulation steps
and we remove the signal E1 at the step 1500 using a time-triggered delete event,
introduced in Sec. 2.1. Using the output of the simulation, we then measure for
each individual the corresponding fitness. The fitness function we implemented
measures how rapidly the output of Kpp increases, how much the output of
Kpp persists after removing the signal E1 and how rapidly the output of Kpp
returns back to zero. Let out = {n0, n1, ..., n7000} be the tuple representing
the Kpp dynamics in time of an individual, then the fitness for out is formally
computed by the following formula:

fitness(out) = μ+
( ∑e1

j=i1
nj

KppM ∗ (e1− i1)
−
(
γ ∗

∑e2
j=i2

nj

KppM ∗ (e2− i2)

))
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(a) (b)

Fig. 6. (a) Time course of the Kpp concentration over the simulation time, super-
imposed to the integral areas for the fitness function we implemented. The fitness
parameters are i1 = 0, e1 = 2000, i2 = 5000 and e2 = 7000. (b) An individual with
high fitness.

The two sums, that we denote respectively with A1 and A2, represent discrete
integrals and are normalised with respect to their possible maximum values (see
Fig.6). The values i1, e1, i2 and e2 are changeable parameters that define the
boundaries for the computation of the two discrete integrals present in the for-
mula, and the value KppM represents the maximum value for the Kpp response.
Moreover, μ represents the minimum fitness and γ controls the relative impor-
tance to responding to a signal and turning the response off after its removal. The
reported results are for i1 = 0, e1 = 2000, i2 = 5000, e2 = 7000, KppM = 200,
μ = 0.1 and γ = 0.65.

According to the algorithms presented in the previous section, the population
is evolved. In this case study only mutations of domains are applied. Moreover, in
order to maintain a biological validity for the new individuals, possible mutations
are the one that satisfies the following constraints: (1) Signals E1 and E2 act
only on KKK; (2) signal E1 and E2 cannot be removed; (3) a kinase can
only activate other kinases or itself; (4) phosphatases are not specific but can
only deactivate kinases. We iterate the evolution algorithm for 1000 generations,
for different values of fitness function parameters. The dynamic for one of the
obtained pathways is shown in Fig.6(b). Examples of obtained individuals are in
Fig. 5, while the variation of fitness during a simulation is depicted in Fig. 7. In
particular, we do not obtain individuals with a perfect MAPK cascade pathway,
but individuals in (b) and (c) are only a reordering and a protein duplication
event away from it.

Moreover, we observe three different plateaus on the average fitness variation
shown by the first chart in Fig. 7. The first one is obtained after pathways
evolve a kinase interaction, the second one is obtained after pathways evolve
addition of a phosphatase interaction, and the third one, which persists till the
final generation, is obtained after addition of other two interactions -one from a
kinase and one from a phosphatase-.
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Fig. 7. The modification of fitness during three different runs of the in silico evolution

5 Conclusions and Future Work

In this paper we present a formal approach for simulating the evolution of path-
ways in silico. Pathway dynamics are described with the BetaWB language, a
process algebra that, thanks to its biological-inspired nature, allows for modelling
proteins, domains and interactions in a modular way.

We developed a modular description of signalling pathways, an evolutionary al-
gorithm and a prototype to test our concepts. The prototype showed the potential
of our approach, and the beta-binders language proved to be well-suited for this
task. As presented in the small example in Sec. 4, by simulating evolution we can
gain interesting insights in pathway structure and on the role of different processes.

We implemented the simpler kinds of mutations, but other interesting varia-
tions like modification of internal process structure are feasible and it will surely
be a subject worth of future investigation and development.

Also, an easy to use and integrated tool for the simulation and analysis of
pathway evolution under development. Finally, we plan to use the same frame-
work also from an optimization perspective to help discovering new pathways.
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Abstract. We present a novel algorithm for reconstructing the topology
of regulatory networks based on the Stochastic Logical Network model.
Our method, by avoiding the computation of the Markov model param-
eters is able to reconstruct the topology of the SLN model in polynomial
time instead of exponential as in previous study [29]. To test the perfor-
mance of the method, we apply it to different datasets (both synthetic
and experimental) covering the expression of several cell cycle regulators
which have been thoroughly studied [18,11]. We compare the results of
our method with the popular Dynamic Bayesian Network approach in
order to quantify the ability to reconstruct true dependencies. Although
both methods able to recover only a part of the true dependencies from
realistic data, our method gives consistently better results than Dynamic
Bayesian Networks in terms of the number of correctly reconstructed
edges, sensitivity and statistical significance.

1 Introduction

Modelling and reconstruction of regulatory networks is currently considered one
of the central problems in Computational Biology. Since the genomic data is
readily available for many organisms we face now the problem of deciphering
the regulatory code driving the expression of thousands of genes. Experimental
approach to reverse engineering a genetic network can be done with remarkable
results, such as the work of Davidson [7]. However the number of biological ex-
periments required to reconstruct such a network prevents this approach from
wider adoption. This leads us to consider computational approaches to under-
stand these complex processes. Such methods, based on the analysis of expression
data could be very helpful in limiting the number of required wet lab experiments
by pointing out the plausible topology of regulatory dependencies.

Due to the advances in microarray technology, it is now relatively inexpensive
to obtain high-throughput expression measurements. Moreover such data is now
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available in public databases such as Arrayexpress [20] being an invaluable source
of information on the regulatory processes taking place in many organisms. Un-
fortunately, the inference of regulatory dependencies from microarray data on
a genomic scale faces many problems stemming from the inherent properties of
the microarray data: large amount of noise (coming both from the stochastic
nature of the process and from measurement errors) and incomplete sampling of
the expression space. Overcoming these problems is a major goal for researchers
in this active field of research.

1.1 Related Work

Microarray experiments provide data in the form of snapshot images capturing
the expression of many genes averaged among thousands of individual cells. If
multiple microarray experiments are performed on one biological system of inter-
est, we obtain a sample from the expression space of that system. In the case of
microarray time-series when we have measurements taken from a synchronized
cell colony at different time-points we may assume, that each measurement rep-
resents a state on the trajectory in the state space of our system. The theoretical
work on this problem was pioneered in the REVEAL algorithm [15] using the
model of synchronous Boolean networks and the measure of mutual informa-
tion to infer the most likely wiring of the regulatory network. In the follow-up
study [1], authors show that the reconstruction of Boolean networks from a rea-
sonable number of experiments (∼ 100) may be done reliably only for networks
with limited in-degree (< 2) and under the assumption of error-free measure-
ments. Since both of these assumptions are not true in case of real biological
networks, there is a need for a more robust method of network reconstruction
that would take into account the stochastic nature of the biological processes.

Friedman [12] proposed to use a method of learning Bayesian Networks as a
natural way of handling the probabilistic aspects of inference from microarray
data. Their approach was dedicated to the analysis of static microarray data and
was later adapted by Husmeier [13] to the analysis of microarray time-series. His
study used the Markov Chain Monte Carlo heuristic method for inference of
Dynamic Bayesian Networks (DBN) [21,17]. This approach was later extended
by Dojer et al. [9] by adapting an optimal algorithm proposed by Ott et al. [19]
instead of MCMC heuristic and allowing for knockout experiments. In this work
we use the algorithm proposed by Dojer [8] for DBN reconstruction, since it is
the most efficient implementation currently available.

Other approach to gene network reconstruction employs Probabilistic Boolean
Networks (PBN) [25]. There is a very recently published [33] method of inference
for DBNs based on the Minimum Description Length (MDL) principle which
promises better computational complexity for inferring DBNs using the MDL
score. This method restricts the space of DBN networks to the ones that can also
be modelled using PBN models. Unfortunately we could not directly compare
with that method since there is no publicly available implementation, but the
results should match closely those obtained by DBN approach with MDL scoring
function.
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All the mentioned methods assume that the expression data is qualitative
rather than quantitative and use discretized expression levels for inference. We
agree that it is reasonable, since the measurement errors and problems with cross
array normalization and comparisons justify this assumption. It should be noted,
however that there are other methods based on processing of non-discretized
data such as BNRC score for Bayesian Networks [14], parameter estimation for
Stochastic Differential Equations (SDE) [4] and very recent MTDC method [24].
We could not directly compare our result with these methods, since most of the
data we used in this work comes from discrete models for which they are not
applicable.

2 Approach

Our approach is based on our previous work on the Stochastic Logical Network
model for regulatory networks [29]. Here we provide new efficient algorithm
for the problem of network topology reconstruction. In this section we briefly
introduce the SLN modelling and present our algorithm.

2.1 Stochastic Logical Networks

The SLN model extends the kinetic logic approach [26] by taking into account
the stochastic nature of regulatory processes. In the kinetic logic approach, the
Boolean gene network is viewed as a discrete version of a dynamical system
with regulatory dependencies described with ordinary differential equations of
the form:

∂vi

∂t
= −vi · λi + Fi(v(t)) (1)

where the production rate Fi of i-th gene depends on the sum of products of
concentrations of other genes :

Fi(v(t)) =
∑

X⊆{1..n}
IX,i ·

∏

j∈X

sigmk (vj(t)− θj,i) , (2)

where sigmk(x) = 1
1+e−kx , λi is a degradation constant of i-th gene, IX,j ∈ R is

the influence of the presence of all genes from the subset X on the production
of ith gene and θi,j is the activation threshold of the influence of j-th gene
on i-th. Under these assumptions, the activation thresholds θk,j for k ∈ 1..n
divide the concentrations of j-th gene into at most n+ 1 intervals. Thomas [26]
observed that we can treat all states that fall into the same intervals as equal
since the production rates are almost constant for them. For the discrete system,
the production rates from Equation (2) can be transformed into a generalized
Boolean rule similar to alternative of conjunctions.

This formalism has been proved to be applicable to modelling of many known
regulatory networks in different organisms [22,16,11] and it is useful for verifi-
cation of the qualitative properties of a known system [3]. Unfortunately, it is
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not well suited for the task of network reconstruction since, mainly due to the
non-deterministic nature of the process, there are exponentially many models
that can explain any given dataset [29].

The SLN model overcomes this deficiency by replacing the non-deterministic
state transitions by a stochastic process. It is achieved by addition of a Gaussian
noise to each of the production rates from Equation (1):

∂vi

∂t
= −vi · λi + Fi(v(t)) + ε∂W. (3)

Since we do not modify the production rate functions Fi, the discretization may
be unchanged and we keep the correspondence between the discrete and contin-
uous system. However, instead of a non-deterministic state transition we now
have a natural probability distribution on all neighbours of any given discrete
state. This leads to a Markov process that has the same state space as the dis-
crete kinetic logic model. The advantage of the SLN model is that it introduces
the noise factor at the continuous level which is more natural than doing so at
the discrete level.

2.2 Fast SLN Reconstruction Algorithm

In the previous work [29] we proposed to reconstruct the whole SLN model
from discretized time series. This means, that we had to estimate the param-
eters of the Markov chain with a state space that is exponential in the size of
the reconstructed network. For small networks this can be done with very good
results using a modified Baum-Welch algorithm [2]. Unfortunately even for net-
works containing 10 nodes it is impractical both because of the computational
complexity of this task and because of the fact that the estimation of so many
parameters would require enormous amounts of experimental data.

However, if we are interested only in reconstructing the topology of the SLN
network, we can avoid the exhaustive computation. We should recall the pro-
cedure for retrieving the topology of the network, given the parameters of the
Markov chain from our previous paper [29]. It is based on the fact that the exis-
tence of a non-trivial dependency between two genes follows from the presence
of the so-called witness of regulation. We say that a pair of states 〈X,X ′〉 is a
witness of regulation of gene i-th by j-th if these states differ only by the concen-
tration of j-th gene and the ratios of probabilities of raising and decreasing the
concentration of gene i-th are different for them (see Figure 1). It is important
to note that, assuming the observed data is representative for the true distribu-
tion, considering pairs of states is sufficient for reconstruction of all regulatory
interactions.

The key observation behind the fast algorithm is that we can look at the
observed frequencies instead of transition probabilities in the Markov chain. We
can treat the observed state transitions as samples from the state space. Testing
if a pair of observed states is a witness of regulation may be now solved by
statistical test for the equality of proportions. We should take into account that
the sample size may be small so we follow the suggestions of D’Agostino et al. [6]
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Fig. 1. The projection of the discrete state space on the two dimensions corresponding
to genes i and j. The pair of states X an X ′ witnesses the regulation dependency i → j
if PXZ/PXY �= PX′Z′/PX′Y ′ and X(m) = X ′(m) for m �= i.

to use of Student t-test in such cases. The only drawback of this method is that
we are unable to draw conclusions from unobserved states, so we may recover
less interactions than with the previous approach.

The algorithm now is very simple iteration over all pairs of states that can
possibly be witnesses of regulation:

Calculate the observed frequencies of state changes
foreach observed state X

foreach state X ′ differing from X only by i-th gene
foreach gene j

test the hypothesis that 〈X,X ′〉 witness i→ j

The complexity of the algorithm is O(D · n2), where D denotes the number
of observed states and n is the number of nodes in the network.

2.3 Inferring the Type of Regulation

Once we have the topology of regulatory dependencies it is interesting to see
if we can predict the type of the dependencies. In general, we are interested
in discerning between expression activators and repressors. To this end we may
exploit the fact, that for each pair of states 〈X,X ′〉 which witness the regulation
i→ j we can judge if the production rate of j grows with increase of i (activation)
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or with decrease of i (repression). We assign a type to each edge based on the
type suggested by majority of all witnesses for it. In case of a tie we do not
assign any type.

In Figures 2-5, the type of dependencies in regulatory networks is traditionally
represented by different kinds of arrows: pointed for activators and blunt for
repressors.

3 Methods

3.1 Generating Artificial Expression Data

For the first artificial network (see Fig. 2) we have constructed a system of
stochastic differential equations consistent with the assumptions of the SLN
model. Then, we generated three time series corresponding to each of the cycles
in the networks. The data was then discretized into binary values by subtracting
from the expression of each gene the mean value of its expression. Then we
have chosen all time points where the discrete state was changed which gave
altogether 96 pairs of consecutive states.

In the case of the data from the Boolean model by Faure [11], we have selected
all the discrete states comprising the cell cycle and selected all state transitions
between them that are possible under the assumed model. This gave us 24 pairs
of consecutive states, however the state of three genes (CYCD, RB and CKI)
remained unchanged under this condition so we have added 3 additional state
transitions possible under the assumed model that correspond to the perturba-
tions of these genes.

In the case of the kinetic model of Novak [18], we have used the model files
provided by the authors on their website [30] and used the Xpp-aut software [10]
to generate the trajectory of the system undergoing three cell cycles. Then we
have sampled 150 equally distant time-points and discretized them into binary
values using the same procedure as in the first case.

3.2 Microarray Data Material

The dataset published by Whitfield [28] contains 5 time-series containing alto-
gether 106 pairs of consecutive experiments. Unfortunately the expression of the
genes corresponding to Cyclin A1 (CYCA) and Cadherin 1 (CDH1) was not
measured across all experiments, so they were excluded from the analysis.

3.3 Measuring Quality of Reconstruction

In this work we always assume that we know the correct topology of the network
so in order to measure the quality of a reconstruction we need to compare the
reconstruction with the original network. This is a reasonable assumption, since
our main goal is the verification of the proposed method performance on the
data coming from a known source. In general, the ultimate check for the quality
of reconstruction is experimental verification of reported interactions, however
this is definitely out of scope of this work.
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We represent all networks as directed graphs with labels on the edges. To
measure the statistical significance of a reconstruction of the network consisting
of n nodes correctly assigning k labels to the edges we calculate the probability
of obtaining not less than k successes in n Bernoulli trials:

P(n, k) =
n∑

i=k

(
n
k

)
pi(1− p)n−i

The probability of success was set to 1/2 in case of predicting the presence of
directed edges, and to 1/3 if we allow for dependencies of two types (activators
and repressors). In Tables 1-4, we report p-values for the model with p = 1/3.

The sensitivity and specificity are traditionally defined in the following way:

Sens =
TP

TP + FN
,

Spec =
TN

TN + FP
,

where TP, TN, FP and FN represent true positives, true negatives, false posi-
tives and false negatives, respectively. The values of sensitivity and specificity
presented in Tables 1-4, are calculated for the case of predicting interactions
regardless of their type.

3.4 Software Implementation

The algorithm for SLN reconstruction was implemented in Python programming
language and is available under the GNU General Public license. It can be down-
loaded from the supplementary website [32]. We have also implemented a web
server allowing for running our method using a web interface [31].

4 Experiments

We have made several experiments in order to test the accuracy of our method.
All our tests are made in the same manner and consist of a model with known
(or at least postulated) topology, and a discretized expression time-series ob-
tained from this system. For all datasets, we perform the reconstruction using
our method and using Dynamic Bayesian Networks (both with MDL and BDE
scores) on the same data for comparison. In order to measure the quality of
reconstruction for all evaluated methods we treat the reconstructed networks as
predictions, where for each ordered pair of genes, the method independently pre-
dicts the presence and type of dependency. In this setting we can use standard
measures for the quality of prediction:

– number of predicted dependencies
– Number of correctly predicted dependencies (with and without type),
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– p-value of such prediction quality using binomial distribution as the null-
model (we report p-value for the model with p = 1/3 suitable for predicting
labelled edges),

– sensitivity and specificity of this prediction ().

All reconstructed networks are presented in Figures 2-5, with correctly recon-
structed edges presented as solid lines and incorrectly predicted as dotted lines,
the color versions of the images are available from the supplementary website
(http://bioputer.mimuw.edu.pl/papers/bw/cmsb07).

4.1 Artificial Networks

Since SLN model was tailored for reconstruction of homeostatic systems, we have
tested our method on synthetic data obtained by simulation of very simplistic
homeostatic loops proposed by Thomas and D’ari [27]. According to the seminal
work of [26], the logical network is capable of homeostatic behaviour only if
it contains a cycle with an odd number of negative regulatory dependencies.
The simplest possible network for benchmarking of our method would consist
of a single negative cycle. In the previous paper we were able to analyze such
networks of size 2, 3 and 4 but could not scale it to larger networks. We have
verified that, the algorithm presented here produces exactly the same results
(not shown) for these small networks as the previous method [29]. Since this
method is capable of dealing with much larger networks, we have constructed a
simplistic network consisting of three independent feedback loops containing four
genes each, presented in Fig. 2 (a). The reconstructed networks are presented
graphically in Figure 2 and the performance of all methods on this dataset is
given in the corresponding Table 1.

Original (a) SLN (b) BDE (c) MDL (d)

Fig. 2. Comparison of the networks reconstructed from the synthetic data using differ-
ent methods to the one postulated by the Boolean model. Solid lines represent correctly
reconstructed edges, dotted lines are false positives.

4.2 Discrete Boolean Network Model of Mammalian Cell Cycle

Recently Faure et al. [11] published a study summarizing current knowledge of
the regulatory dependencies among key mammalian cell cycle regulators. They
present a topology of the network as well as the regulatory functions, so the

http://bioputer.mimuw.edu.pl/papers/bw/cmsb07/
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Table 1. Results of the reconstruction from artificial data from simple Boolean net-
work consisting of 3 4-gene loops (12 vertices, 12 edges)

method Edges Correct(w/type) p-value Sens. Spec.

SLN 12 12 (12) 4.4 · 10−70 1.00 1.00
DBN(BDE) 24 9 (9) 6.3 · 10−42 0.75 0.89
DBN(MDL) 30 12 (9) 1.7 · 10−35 1.00 0.86

types of all relationships are known. The mathematical model they choose for
representation of the network is the kinetic logic approach with slightly modi-
fied state transition. Instead of fully non-deterministic and asynchronous state
changes, the authors choose a mixed model, where some genes act synchronously
whereas others change their state asynchronously. The model they present shows
cyclic behaviour under natural conditions during cell cycle and agrees with the
knowledge on the behaviour of some mutants. We have analyzed the dataset
representing the natural cell cycle in this model. The result are presented in
Figure 3 and Table 2.

Original SLN BDE MDL

Fig. 3. Comparison of the networks reconstructed from the synthetic data using differ-
ent methods to the one postulated by the Boolean model. Solid lines represent correctly
reconstructed edges, dotted lines are false positives.

Table 2. Results of the reconstruction from artificial data from Boolean network
published in [11] (10 vertices, 38 edges)

method Edges Correct(w/type) p-value Sens. Spec.

SLN 28 18 (16) 1.6 · 10−11 0.47 0.84
DBN(BDE) 16 8 (7) 2.9 · 10−8 0.21 0.87
DBN(MDL) 22 13 (11) 2.8 · 10−9 0.34 0.84

4.3 Continuous Kinetic Model of Mammalian Cell Cycle

An earlier study of Novak and Tyson [18] proposes a more detailed kinetic model
of the mammalian cell cycle. This model aims to provide more quantitative data
on the regulation of the cell cycle. The set of genes is slightly different (the
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UBCH10 and RB proteins are included only in the model by Faure [11]), but
for all other gene products the kinetic equations describing the system dynamics
are provided. The authors provide the model in the form of ordinary differential
equations allowing for generating trajectories of the system, so we have used
one such trajectory to test our method. The expression profiles of all genes were
generated in 150 points over three cell cycles and discretized into binary values.
The results are summarized in Table 3 and the resulting networks are presented
in Figure 4.

In order to provide the correct topology of the regulatory dependencies we
assume the existence a regulatory dependence of X on Y if a concentration of a
protein X has a non-zero effect on the derivative of the concentration of protein
Y . Although this is the most straightforward way of defining topology it should
be noted, that it ignores the impact of indirect dependencies, especially if the
intermediate entity is not a single protein (e.g. a protein complex) and thus its
concentration is not taken into account in the analyzed dataset.

Original SLN BDE MDL

Fig. 4. Comparison of the networks reconstructed from the synthetic data using differ-
ent methods to the one postulated by the kinetic model. Solid lines represent correctly
reconstructed edges, dotted lines are false positives.

Table 3. Results of the reconstruction from kinetic model data published in [18]
(8 vertices, 27 edges)

method Edges Correct(w/type) p-value Sens. Spec.

SLN 29 14 (10) 4.7 · 10−2 0.51 0.59
DBN(BDE) 20 9 (5) 7.8 · 10−2 0.33 0.70
DBN(MDL) 25 12 (8) 4.7 · 10−2 0.44 0.65

4.4 Reconstruction of Mammalian Cell Cycle Network from
Microarray Data

A final, and most important test of our method is the evaluation of its perfor-
mance on the experimental Microarray data. For mammalian cell cycle there
are two publicly available published datasets: the study of cell cycle in human
fibroblasts by Cho et al. [5] and the work of Whitfield et al. [28] based on the
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HeLa cancer cell line. Interestingly enough, the analysis of data from the first
study has given results of no statistical significance at all (data presented on sup-
plementary website [32]) for our method, as well as for the Dynamic Bayesian
approach. This is not surprising, since Shedden and Cooper [23] have analysed
this very dataset and concluded that the level of noise in the data is so high that
it is not feasible to recover any cyclic behaviour of genes at all. The authors also
suggest that the reason behind this problem is the improper synchronization of
the cells.

Unfortunately, the second dataset is also carrying a bias, since it was obtained
from cancer cells. Nonetheless, both our method and Dynamic Bayesian approach
were able to correctly recover approximately one third of the true edges. The
results are presented in Table 4 and Figure 5.

Table 4. Results of the reconstruction from experimental microarray data published
in [28] (8 vertices, 20 edges)

method Edges Correct(w/type) p-value Sens. Spec.

SLN 19 7 (5) 2.9 · 10−4 0.35 0.73
DBN(BDE) 16 6 (3) 7.0 · 10−4 0.30 0.73
DBN(MDL) 39 12 (6) 8.9 · 10−1 0.60 0.39

Original SLN BDE MDL

Fig. 5. Comparison of the networks reconstructed from the experimental microar-
ray data using different methods to the topology postulated by the most recent
Boolean model. Solid lines represent correctly reconstructed edges, dotted lines are false
positives.

5 Discussion

The problem of network topology reconstruction from high-throughput expression
data is very important to help us understand the complex mechanisms behind
biological processes. The results of such analyses should be regarded as an input
to further experimental validation rather than as a complete solution. We see our
method as a potentially helpful tool to indicate plausible regulatory dependencies
among any group of genes interesting from biological point of view. Before such a
tool may be put to use, one has to validate its performance on realistic data.
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In this paper, we take advantage of the presence of a well studied system
such as the mammalian cell cycle, for which we have the necessary experimen-
tal data and corresponding formal models of the regulatory interactions. Using
all this information we can properly evaluate the performance of our proposed
method also in comparison with a different approach through Dynamic Bayesian
Networks.

The results of the experiments performed on the simplest data from artificial
network show that the presented faster algorithm yields exactly the expected
results if there is enough data generated from assumed model.

In the second case, where data was generated from a very similar Boolean
model, our method was still able to provide highly significant results recon-
structing half of the true interactions with a relatively small number of wrong
predictions (84% sensitivity). It is even more interesting if we take into account
the fact that the second prediction was based on significantly less data-points
than the first one. The performance of the DBN approach is comparable in terms
of statistical significance and specificity (approx. 85%), but it shows significantly
lower sensitivity.

The third dataset obtained with a kinetic model of the cell cycle surprisingly
seems to be even more difficult for both methods than the microarray data.
The statistical significance of the reconstructed networks (0.1 > p > 0.01) is
questionable and the sensitivity and specificity are not satisfactory.

The results of our method for the real microarray data is considerably higher
that in the previous case. Even though we have reconstructed little over one
third of the edges in the correct network (and only 5/19 with correctly assigned
type of dependency) the specificity of our prediction is much higher than the one
obtained for previous dataset. At the same time it is quite surprising, that the
performance of DBN approach on this dataset is highly dependent on the choice
of the scoring function: while BDE score performs comparably with our method,
MDL returns almost three times more interactions which makes its result close
to random.

In summary, our method seems to perform comparably or better than Dy-
namic Bayesian Networks on all considered datasets. It should be noted, that in
all cases (ruling out the statistically insignificant MDL prediction for microarray
data) our method correctly reconstructed more edges than DBN method, also
the precision ratio of correctly predicted edges to all predicted edges used by
Shi et al. [24] favours our method above the DBN approach. It is also clear that
both methods (SLN and DBN) are able to arrive at much higher recall rates
(the fraction of all interactions that were correctly predicted used by Shi [24])
that the methods suited for use on the genome scale [24,33].

It should be also noted, that due to the fast algorithm for SLN reconstruction
we were able to compute all the results of the presented experiments in times
well under 10 seconds on a standard PC which is considerably faster than the
reconstruction of DBN models (especially in the case of BDE score) which for
the same data took up to a minute on the same hardware.
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6 Conclusion

In this paper, we present a novel approach to the problem of regulatory network
reconstruction from microarray data. Our algorithm is polynomial in the size of
the data so it can be applied to datasets of realistic size. An important part of
this work is the analysis of the performance of the method in comparison with
Dynamic Bayesian Network approach on different datasets, both synthetic and
experimental. The results of the experiments show that both methods can be
considered a valuable tool for the task of finding regulatory dependencies from
expression data and that our method yields consistently better results than
DBNs.
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Abstract. The aim of this work is twofold. First, we propose an high
level textual modelling language, which is meant to be biologically intu-
itive and hence easily usable by life scientists in modelling intra-cellular
systems. Secondly, we provide an automatic translation of the proposed
language into Beta-binders, a bio-inspired process calculus, which allows
life scientists to formally analyse and simulate their models. We use the
Gp130 signalling pathway as a case study.

1 Introduction and Motivations

Process calculi, originally developed for modelling mobile communicating sys-
tems [1], have proved to be both useful and powerful tools for modelling bio-
logical signalling pathways [2,3,4,5,6]. The need for such modelling approaches
has arisen from the complexity of these processes, which is not easily analysed
by biological intuition [7]. A key challenge in the application of process calculi
to biological problems is the specification of models. The issue poses several
practical and computational problems. First, it is unlikely that most practising
biologists would be motivated to formulate their ideas in a non-intuitive lan-
guage devised for computational execution. Second, the process of specifying
the model can identify areas of ignorance or uncertainty in biological under-
standing which may not be apparent to a computer scientist taking models from
the literature. The biological literature frequently articulates biological models
in the form of informal diagrams or employs various formal graphical notations
(e.g. Kohn molecular interaction maps [8] and Kitano diagrams [9]), but these
can be confusing or ambiguous and particularly may conceal or abstract biologi-
cal knowledge that may be useful for the computational modeller. It is also clear
that a two-dimensional static representation may not adequately represent all
pertinent features of the dynamic evolution of a temporal and spatially directed
process. Indeed these ways of describing a biological process in reality involve
the biologist translating a narrative of events into a graphical format.

Prompted by these considerations we here present an approach to biological
model specification which is based on a narrative style language. In developing
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this language there were three desiderata. First, the language should be bio-
logically intuitive using formalisms and syntax familiar to biologists. Second,
the language should exploit the specific advantages of a process calculus based
approach to modelling highlighting, for example, the roles of concurrency, de-
pendency and spatial confinement. Thirdly, the language should encourage the
biologists to critically examine their understanding in the process of model spec-
ification highlighting points of uncertainty.

In the proposed framework, biologists can specify their model by providing a
textual description of the system, containing the list of compartments, the list
of entities (i.e. proteins) composing the model, the list of reactions with their
rate parameters, and a narrative describing the evolution of the system.

A translation into process calculus (namely, Beta-binders [4]) has been de-
veloped and a few models have been specified into the proposed language and
translated into Beta-binders. This allowed us to run the models by using the
BetaWB simulator [10].

The front-end of the translation is designed to be independent of the lan-
guage, so that when implementing a translation to other modelling languages
it could be reused. The main aim of the current work, in fact, is to define an
high level language which hides the implementation details to the modeller, and
is generic so that it could be translated into other kinds of formalisms different
from Beta-binders (e.g. other process algebras, SBML [11], and possibly differen-
tial equations). This allows us to have a common ground in which models could
be specified, and it also allows modellers to choose the output language that
better fits their aims. In fact it is difficult to find one formal language which
is appropriate to describe all kinds of systems, or that could be used to study
all aspects of the systems. In addition, starting with the same input model, the
comparison of different formalisms would be much easier.

We use as a case study the Gp130 signalling pathway [12]. This was chosen as
an example of signalling concurrency which has yet to be explicitly articulated
in a process calculus model.

In Sect. 2 the modelling language is described, using the Gp130 pathway as
a modelling example. In Sect. 3 the translation algorithm is described, and the
generated Gp130 pathway Beta-binders model is shown. Finally, we draw some
conclusions on the pros of our approach and on issues that need to be tackled.

2 The Narrative Language

In this section we present the modelling language. The structure of models in the
proposed language is inspired by SBML [11], one of the most well known descrip-
tion languages for biology. The main differences between the two languages are
the following ones. First, SBML species have only one possible state, while in our
language they can have multiple states (this choice was made bearing in mind
that our target language, process algebra, is a multistate one). Second, SBML
is very abstract and it does not represent details about species and reactions,
while the proposed language can easily represent them. Finally, the description
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of system evolution in SBML is given in terms of reactions with reactants and
products, while in our language it is given in terms of a narrative of events.

A model in our language is composed of four sections:

– the description of the biological compartments in which the involved entities
can be located during the evolution of the system;

– the description of the entities composing the system;
– the description of the occurring reactions;
– the narrative description of the evolution of the system, i.e. the list of the

occurring events.

A compartment is identified by an integer number; moreover, its name, size,
and number of spatial dimensions can be specified. Compartments could repre-
sent cellular or sub-cellular compartments, but also abstract locations.

A component (i.e. a protein) is identified by its name, and it can be seen as
a list of interaction sites. Each site is defined by a name and a state (e.g. phos-
phorylated, bound, active, etc.). This choice reflects the fact that each basic
event in the evolution of intra-cellular systems is the modification of one inter-
action site for each protein involved in the reaction. However, since interaction
sites are not always known, states can also be associated to the protein itself,
to represent modifications involving generic interaction sites. If the position of
the protein is relevant, the compartments in which it can be located during the
system evolution can be specified. Finally, the initial quantity/concentration of
the component should be set.

A reaction is identified by an integer number; its type (e.g. phosphorylation,
binding, etc.) and the reaction rate parameter should also be specified.

A reliability value can be associated to each numerical value (e.g. rate pa-
rameters and initial quantities); it is a percentage value that can be used to
distinguish between values that are certain because obtained from wet experi-
ments, and others which are the result of not verified assumptions. Modellers can
take this information into account during the important step of model refining
by means of parameter space search and sensitivity analysis.

Finally, the evolution of the system is described by means of a narrative of
events. This narrative is a sequence of basic events, each of which is a textual de-
scription of a reaction involving at most two components. Events can be grouped
into processes.

An event is identified by an integer number; in addition to the textual semi-
formal description of the event, the identifier of the reaction associated with
the event should be specified. The description of the event is a string of the
form if condition then event descr, with the conditional part being optional.
A condition is a string of the form component is state, component.site is state,
component is in compartment, etc. Multiple conditions can be specified by sep-
arating them with the keyword and. Event descr is a string of the form compo-
nent reaction for monomolecular events, or component reaction component for
bimolecular events, where reaction can be for example phosphorylates, de-
phosphorylates, binds, activates. As mentioned before, we assume that each
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event involves an interaction or modification of one site for each involved pro-
tein. If the exact site is known, it can be specified with a clause of the form
on sites ; otherwise, it is assumed that one of the component’s defined states is
involved. Hence, conceptually, each step involves a single site; however, a list of
sites (separated by semicolons) can be specified as a shortcut for simultaneous
steps involving different sites (e.g. simultaneous phosphorylation of two sites).

In real life, two events occurring in a system of interacting entities can be
either concurrent (independent events, e.g. events involving different proteins),
or sequential (one event can occur only after the other one has occurred, e.g. a
phosphorylation of a site of a protein allowed only after it is bound to another
protein), or alternative (if one event occurs, the other one cannot occur, e.g.
binding of competing ligands to a receptor).

Consequently, in our language it is necessary to distinguish between concur-
rent, sequential, and alternative events. If a reaction event is alternative to an-
other one, the identifier of the alternative event should be specified. Conditions
should be used to enforce the ordering of sequential events. Events that are not
explicitly declared either alternative or sequential, are considered independent
and are treated as concurrent events.

The grammar of the language follows. Some attributes are left as optional and
are not actually used in the translation to Beta-binders, because they refer to
details that cannot be easily handled in Beta-binders, or about which we are not
interested at the moment; they have been added to allow them to be used in an
hypothetical translation to other languages that might handle those details.

〈model〉 ::= 〈comparts decl〉〈compons decl〉〈reacts decl〉〈procs decl〉
〈comparts decl〉 ::= Compartments 〈comparts list〉
〈compons decl〉 ::= Components 〈compons list〉
〈reacts decl〉 ::= Reactions 〈reacts list〉
〈procs decl〉 ::= Narrative 〈procs list〉

〈comparts list〉 ::= 〈compartment〉
| 〈compartment〉〈comparts list〉

〈compons list〉 ::= 〈component〉
| 〈component〉〈compons list〉

〈reacts list〉 ::= 〈reaction〉
| 〈reaction〉〈reacts list〉

〈procs list〉 ::= 〈proc〉
| 〈proc〉〈procs list〉

〈compartment〉 ::= (〈id〉, 〈compart name〉, 〈opt size〉, 〈opt unit〉, 〈opt dim〉)
〈component〉 ::= (〈name〉, 〈opt inform descr〉, 〈opt sites def〉,

〈opt states def〉, 〈opt comparts def〉, 〈initial quantity〉)
〈reaction〉 ::= (〈id〉, 〈react type〉, 〈rate const〉)
〈proc〉 ::= Process 〈opt inform descr〉〈events list〉
〈events list〉 ::= 〈event〉

| 〈event〉〈events list〉
〈event〉 ::= (〈id〉, 〈form descr〉, 〈react id〉, 〈opt altern event〉)
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〈opt sites def〉 ::=
| 〈sites def〉

〈sites def〉 ::= 〈site def〉
| 〈site def〉; 〈sites def〉

〈site def〉 ::= 〈name〉 : 〈state name〉 : 〈is active〉

〈opt states def〉 ::=
| 〈states def〉

〈states def〉 ::= 〈state def〉
| 〈state def〉; 〈states def〉

〈state def〉 ::= 〈state name〉 : 〈is active〉

〈opt comparts def〉 ::=
| 〈comparts def〉

〈comparts def〉 ::= 〈compart def〉
| 〈compart def〉; 〈comparts def〉

〈compart def〉 ::= 〈id〉 : 〈is active〉

〈initial quantity〉 ::= (〈quantity〉, 〈opt reliability〉)
〈rate const〉 ::= (〈rate〉, 〈opt unit〉, 〈opt reliability〉)

〈form descr〉 ::= 〈event descr〉
| if 〈conds〉 then 〈event descr〉

〈conds〉 ::= 〈cond〉
| 〈cond〉 and 〈conds〉

〈cond〉 ::= 〈names〉 is 〈state name〉
| 〈names〉 is not 〈state name〉
| 〈names〉 is in 〈id〉
| 〈names〉 is not in 〈id〉

〈names〉 ::= 〈name〉
| 〈name〉.〈name〉
| 〈name〉; 〈names〉
| 〈name〉.〈name〉; 〈names〉

〈sites〉 ::= 〈name〉
| 〈name〉; 〈sites〉

〈event descr〉 ::= 〈complex name〉〈bimol react〉〈complex name〉 on 〈sites〉
| 〈complex name〉〈bimol react〉〈complex name〉
| 〈complex name〉〈monomol react〉 on 〈sites〉
| 〈complex name〉〈monomol react〉
| 〈complex name〉 relocates to 〈id〉
| 〈complex name〉 degrades
| 〈complex name〉 degrades 〈complex name〉
| 〈complex name〉 synthesises 〈complex name〉
| 〈complex name〉 homodimerises
| 〈complex name〉 dehomodimerises
| 〈complex name〉 dimerises with 〈complex name〉
| 〈complex name〉 dedimerises from 〈complex name〉

〈complex name〉 ::= 〈name〉
| 〈name〉 : 〈complex name〉
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〈id〉 ::= Int
〈opt size〉 ::=

| Int
〈opt unit〉 ::=

| Str

〈opt dim〉 ::=
| Int

〈name〉 ::= Ide
〈opt inform descr〉 ::=

| Str
〈quantity〉 ::= Int | Real
〈opt reliability〉 ::=

| Int
〈rate〉 ::= Int | Real | inf
〈react id〉 ::= Int
〈opt altern event〉 ::=

| alternative to 〈id〉
〈is active〉 ::= Bool

〈compart name〉 ::= nucleus | cytosol | exosol
| cellMembrane | nucleusMembrane | Ide

〈react type〉 ::= phosphorylation | dephosphorylation
| binding | unbinding
| homodimerization | dehomodimerization
| dimerization | dedimerization
| activation | deactivation
| hydrolysis | dehydrolysis
| degradation | synthesis | relocation

〈state name〉 ::= phosphorylated | bound | active | hydrolysed | dimer

〈bimol react〉 ::= phosphorylates | dephosphorylates | binds | unbinds
| activates | deactivates | hydrolyses | dehydrolyses

〈monomol react〉 ::= phosphorylates | dephosphorylates | hydrolyses | dehydrolyses

2.1 Case Study: A Narrative Model of the Gp130 Signalling
Pathway

In this section we describe a model of the Gp130 signalling pathway in the
proposed language.

The Gp130 pathway is the subject of significant clinical and biological inter-
est, not least due to the key role it plays in human fertility, neuronal repair and
haematological development [12]. Robust experimental platforms are available
and there is much information on pathway components and behaviour. Vari-
ous features of this pathway make it an attractive case study for the modelling
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approach. First, the Gp130 signalling pathway involves a family of private and
public receptors where biological outcomes are dictated by the relative occupa-
tion of different receptor combinations. Thus, it exhibits signalling concurrency,
which has not been explicitly tackled by computational modelling approaches
yet. Moreover, a key feature of the Gp130 system is nuclear/cytoplasmic shut-
tling of key signalling components whose dynamics have been investigated using
imaging techniques; hence, this is an excellent test case for developing spatially
confined compartment models which can be tested against high quality datasets.

The model is made of six entities: two ligands (LIF and OSM), three mem-
brane-bound receptors (gp130, LIFR and OSMR) and one effector (STAT3).

Four compartments are involved in the system: the exosol (the extracellular
space, where the two ligands are located), the cell membrane (location of the
receptors), and the cytosol and the nucleus (compartments between which the
effector shuttles). Table 1 lists the compartments with their attributes. The sizes
of the compartments are their volumes, except for the cellular membrane whose
size, being a 2D compartment, is its surface area.

Table 1. List of compartments (The volumes are calculated based on the average cell
radius and ratio between intra-cellular compartments volumes stated in [13])

id name size unit of measure dimensions

1 exosol 9.95 · 10−12 l 3
2 cellMembrane 12.57 · 10−8 dm2 2
3 cytosol 2.10 · 10−12 l 3
4 nucleus 0.25 · 10−12 l 3

The components representing the involved proteins are listed in Table 2. The
definition of each component contains its name, an informal description, the list
of sites (each defined by its name, state, and a boolean flag specifying whether
it is or not in an active state at system initialisation), the list of protein states
(each defined by its name and the active/inactive flag), the list of compartments
in which the protein could be located (each defined by its identifier referring
to the definition in Table 1, and the active/inactive flag), and finally its initial
quantity and the reliability of this numerical value.

Table 3 contains the list of reactions. Each reaction definition contains an
identifier, its type, and a rate parameter with its unit of measure and reliability.
The rate parameter is the reaction kinetic constant (Ka, Koff , etc.). In order to
be used in stochastic models (such as Beta-binders), the given kinetic constants
need to be translated into stochastic reaction rates. As described in [14], for first
order reactions (unbinding, phosphorylation and relocation events) the stochastic
rate r is equal to the kinetic rate k; for second order heterologous reactions
(binding events) r = k

V ·NA
, where V is the reaction volume and NA is Avogadro’s

number, while for second order homologous reactions (homodimerization events)
r = 2·k

V ·NA
. The reaction volume is the volume in which the reaction occurs.

For reactions occurring in a 3D compartment or at the internal side of a 2D
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Table 2. List of components (The initial quantities values for the ligands LIF and
OSM are calculated based on the known extracellular concentration values, 500pM)

name descr site site state site act state state act compart compart act initial quant reliab

LIF ligand bound false 1 true 3000 100%
OSM ligand bound false 1 true 3000 100%
gp130 receptor LIF bound false dimer false 2 true 1000 50%

OSM bound false
Y767 phospho false
Y814 phospho false
Y905 phospho false
Y915 phospho false

LIFR receptor LIF bound false dimer false 2 true 1000 50%
OSM bound false
Y981 phospho false
Y1001 phospho false
Y1028 phospho false

OSMR receptor OSM bound false dimer false 2 true 1000 50%
Y917 phospho false
Y945 phospho false

STAT3 effector Y705 phospho false dimer false 3 true 5000 0%
gp130 bound false 4 false
LIFR bound false
OSMR bound false

Table 3. List of reactions

id type rate unit of measure reliability

1 binding 8 · 105 M−1s−1 (ka) 50%
2 unbinding 6 · 10−4 s−1 (koff) 50%
3 binding 8 · 105 M−1s−1 (ka) 50%
4 unbinding 6 · 10−3 s−1 (koff) 50%
5 binding 8 · 105 M−1s−1 (ka) 50%
6 unbinding 6 · 10−3 s−1 (koff) 50%
7 binding 8 · 105 M−1s−1 (ka) 50%
8 unbinding 6 · 10−4 s−1 (koff) 50%
9 binding 8 · 105 M−1s−1 (ka) 50%

10 unbinding 6 · 10−4 s−1 (koff) 50%
11 dimerization inf M−1s−1 50%
12 phosphorylation 0.2 s−1 (kcat) 50%
13 binding 104 M−1s−1 (ka) 50%
14 dimerization inf M−1s−1 (ka) 50%
15 phosphorylation 0.2 s−1 (kcat) 50%
16 unbinding 10−3 s−1 (koff) 50%
17 homodimerization inf s−1 50%
18 relocation 10 min (t1/2) 50%
19 relocation 100 min (t1/2) 50%

membrane enclosing a compartment, it is the volume of the compartment. For
reactions occurring on a membrane or at its external side, it is the volume
of a spherical shell, external to the membrane, of a given radius (e.g. for cell
membrane, this radius can be assumed to be half of the cell radius).
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Table 4. List of events

id description react alt

LIF-LIFR binding
1 if LIFR.LIF is not bound and LIF is not bound then LIF binds LIFR on LIF 1
2 if LIFR.LIF is bound and LIF is bound then LIF unbinds LIFR on LIF 2

LIF-gp130 binding
3 if gp130.LIF is not bound and LIF is not bound then LIF binds gp130 on LIF 3
4 if gp130.LIF is bound and LIF is bound then LIF unbinds gp130 on LIF 4

OSM-LIFR binding
5 if LIFR.OSM is not bound and OSM is not bound then OSM binds LIFR on OSM 5 1
6 if LIFR.OSM is bound and OSM is bound then OSM unbinds LIFR on OSM 6

OSM-OSMR binding
7 if OSMR.OSM is not bound and OSM is not bound then OSM binds OSMR on OSM 7
8 if OSMR.OSM is bound and OSM is bound then OSM unbinds OSMR on OSM 8

OSM-gp130 binding
9 if gp130.OSM is not bound and OSM is not bound then OSM binds gp130 on OSM 9 3

10 if gp130.OSM is bound and OSM is bound then OSM unbinds gp130 on OSM 10
LIF pathway

11 if LIFR.LIF is bound then LIFR dimerises with gp130 11 2
12 if gp130 is dimer then gp130 phosphorylates on Y767;Y814;Y905;Y915 12
13 if LIFR is dimer then LIFR phosphorylates on Y981;Y1001;Y1028 12

OSM pathway
14 if LIFR.OSM is bound then LIFR dimerises with gp130 11 6
15 if OSMR.OSM is bound then OSMR dimerises with gp130 14 8
16 if gp130 is dimer then gp130 phosphorylates on Y767;Y814;Y905;Y915 12
17 if OSMR is dimer then OSMR phosphorylates on Y917;Y945 12

STAT3 pathway
18 if gp130.Y767 is phospho and STAT3 is in 3 then gp130 binds STAT3 on gp130 13
19 if LIFR.Y981 is phospho and STAT3 is in 3 then LIFR binds STAT3 on LIFR 13
20 if OSMR.Y917 is phospho and STAT3 is in 3 then OSMR binds STAT3 on OSMR 13
21 if STAT3.gp130 is bound then STAT3 phosphorylates on Y705 15
22 if STAT3.LIFR is bound then STAT3 phosphorylates on Y705 15
23 if STAT3.OSMR is bound then STAT3 phosphorylates on Y705 15
24 if STAT3.gp130 is bound and STAT3.Y705 is phospho

then gp130 unbinds STAT3 on gp130 16
25 if STAT3.LIFR is bound and STAT3.Y705 is phospho

then LIFR unbinds STAT3 on LIFR 16
26 if STAT3.OSMR is bound and STAT3.Y705 is phospho

then OSMR unbinds STAT3 on OSMR 16
27 if STAT3.Y705 is phospho and STAT3.gp130 is not bound and STAT3.LIFR

is not bound and STAT3.OSMR is not bound then STAT3 homodimerises 17
28 if STAT3 is in 3 and STAT3 is dimer then STAT3 relocates to 4 18
29 if STAT3 is in 4 then STAT3 relocates to 3 19

Finally, the narrative of events is shown in Table 4. The events are grouped
into processes, relative to the binding/unbinding of ligand/receptor pairs, the
downstream LIF and OSM pathways, and the downstream STAT3 pathway,
which starts with the binding of STAT3 to one of the receptors and ends in
its translocation into the nucleus. Each event is described by an identifier, the
semiformal description, the identifier of the reaction referring to the definition
in Table 3 and the optional identifier of the alternative event.

3 The Translation into Beta-binders

3.1 Beta-binders

Beta-binders [4] is a language, which belongs to the family of the bio-inspired
process calculi, strongly inspired by pi-calculus. The main advantage of process
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calculi is that, in addition to simulation, they allow for analysing statically the
models (e.g. causality, locality, equivalence and reachability analysis). They also
allow the modeller to easily execute so called in silico genetics experiments, i.e.
to modify some components of the system, and execute simulations to verify the
modified system behaviour.

Beta-binders language is quite new, but much work has been done with it in
the past few years, and a simulator has also been recently developed [10].

Beta-binders was developed to better adhere to the structure and dynamics
of biological systems. By introducing the concept of affinity, the calculus relaxes
the key-lock model of interaction, commonly assumed in classical process calculi,
and hence it permits to model more correctly domains and interactions between
enzymes and small molecules based on their types and affinities. In Beta-binders,
pi-processes are encapsulated into boxes (also called bio-processes) with interac-
tion capabilities, represented by specialised binders (called beta binders). Beta
binders have the form β(x : Γ ) (active) or βh(x : Γ ) (hidden) where the name
x is the subject of the beta binder and Γ represents the type of x. The main
actions that bio-processes can execute are communications (x(y) for input and
x〈y〉 for output) and operations to manipulate the interaction sites of the boxes
(expose(x, Γ ), hide(x), unhide(x) and chtype(x, Γ )). These actions can be pre-
fixed by conditions on the visibility and on the type of beta binders. The system
is a parallel composition of bio-processes that can be either the deadlock bio-
process Nil or the elementary bio-process B[ P ].

The reader is referred to [10] for a detailed description of the syntax and
semantics of the language.

3.2 The Translation Algorithm

Beta-binders bio-processes are an intuitive representation of proteins, and hence
in the translation into Beta-binders we choose to have one bio-process for each
component. Each component interaction site and state is translated into one
beta binder on the interface of the respective bio-process, and its active/inactive
state is represented by different types of the binder (the initial type is given by
the active/inactive flag value); similarly, the location of the component is also
translated into a beta binder whose type represents the current location of the
component.

The translation is subdivided in two main steps. First, one bio-process is
created for each component (Algorithm 1.). Then, the pi-processes representing
the translation of events are added to the bio-processes (Algorithm 7.).

As Algorithm 1. describes, the bio-processes are initially empty, and then beta
binders are added on their interface.

The names and types of the beta binders representing possible compartments,
states and sites are constructed based on their names. As Algorithm 2. shows,
the type of the beta binder representing a compartment is the compartment
name concatenated with the compartment identifier. In the example, STAT3
is located in compartment 3 (the cytosol), hence a binder β(loc : cytosol 3) is
added to STAT 3 bio-process.
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Algorithm 1. ComponentsToBioprocesses
1: for all component ∈ Components do � each component is a bio-process
2: component.bioprocess ← new empty bio-process
3: CompartsToBetaBinders (component)
4: StatesToBetaBinders (component)
5: SitesToBetaBinders (component)
6: end for

Algorithm 2. CompartsToBetaBinders (component)
1: binder ← new beta binder in component.bioprocess
2: binder.name ←“loc” � the location is a beta binder
3: if component is in compartment at initial state then
4: binder.type ← compartment.name∧compartment.id � β(loc : cytosol 3)
5: end if

As Algorithm 3. shows, a beta binder is created to represent a state in
its active/inactive form: its subject is the state name, while its type is the
state name concatenated with the component name. In the example, LIFR
can be a dimer (but it is a monomer at system initialisation), hence a binder
β(dimer : monomer LIFR) is added to LIFR bio-process.

Algorithm 3. StatesToBetaBinders (component)
1: for all state ∈ component.states do � each state is a beta binder
2: binder ← new beta binder in component.bioprocess
3: binder.name ← state.name
4: if component is in state at initial state then � β(dimer : dimer LIFR)
5: binder.type ← state.name∧component.name
6: else � β(dimer : monomer LIFR)
7: binder.type ← state.opposite name∧component.name
8: end if
9: end for

As Algorithm 4. shows, a beta binder is created to represent a site in its
active/inactive form: its subject is the site name concatenated with the state
name, while its type is the state name concatenated with the component name
and the site name. In the example, site Y981 of receptor LIFR can be phos-
phorylated (but it is dephosphorylated at system initialisation), hence a binder
β(Y 981 pho : depho LIFR Y 981) is added to LIFR bio-process.

As Algorithms 5., 6. and 7. describe, each monomolecular event step is trans-
lated into one sequential pi-process which is placed into the bio-process repre-
senting the involved component, while each bimolecular event step is translated
into two sequential pi-processes which are placed into the bio-processes repre-
senting the involved components.
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Algorithm 4. SitesToBetaBinders (component)
1: for all site ∈ component.sites do � each site is a beta binder
2: binder ← new beta binder in component.bioprocess
3: binder.name ← site.name∧site.state.name
4: if site is in state at initial state then � β(Y 981 pho : pho LIFR Y 981)
5: binder.type ← site.state.name∧component.name∧site.name
6: else � β(Y 981 pho : depho LIFR Y 981)
7: binder.type ← site.state.opposite name∧component.name∧site.name
8: end if
9: end for

Algorithm 5. EventToPiprocess (event)
1: if event.reaction is relocation then
2: piproc ← chtype(“loc”, new location type)
3: else if event.reaction is phosphorylation then
4: piproc ← chtype(binder site pho, site phosphorylated type)
5: else if event.reaction is dephosphorylation then
6: piproc ← chtype(binder site pho, site dephosphorylated type)
7: else if ... then
8: end if
9: if event.condition is specified then

10: piproc ← if (binder cond, cond state type) then piproc
11: end if

Algorithm 6. EventToPiprocesses (event)
1: if event.reaction is phosphorylation then
2: piproc1 ← binder event id〈〉
3: piproc2 ← binder site pho().chtype(binder site pho, site phosphorylated type)
4: AddAffinity (binder event id type, site dephosphorylated type)
5: else if ... then
6: end if
7: if event.condition is specified on event.component1 then
8: piproc1 ← if (binder cond, cond state type) then piproc1
9: end if

10: if event.condition is specified on event.component2 then
11: piproc2 ← if (binder cond, cond state type) then piproc2
12: end if

The constructed pi-processes consist in sequences of communications and
chtype operations, which can be prefixed by conditions on the type of binders to
represent the specified conditions on events (Algorithms 5. and 6.). The names of
bio-processes, pi-processes, beta binders and types follow a template, so that they
are standardised, it is possible to refer to the previously defined beta binders,
and no name clash occurs. Reaction rates and types affinities are assigned based
on the input definitions. The constructed sequence of events represents a single



148 M.L. Guerriero, J.K. Heath, and C. Priami

event step, so the reaction rate is assigned to the first action, while the oth-
ers are assigned infinite rates (so that after the first one occurs, the others are
immediately executed). The actual sequence of actions depends on the reaction
type. In the example, event 17 involves the phosphorylation of sites Y917 and
Y945 on OSMR, translated into a sequence of two chtype actions. Moreover,
the phosphorylations can occur only if OSMR is a dimer, hence the sequence
is prefixed by a condition on the beta binder representing the dimer state. The
final pi-process, added to OSMR bio-process is, therefore,

Pho 17 = if (dimer, dimer OSMR) then chtype(0.2, Y 917 pho, pho OSMR Y 917) .

chtype(inf, Y 945 pho, pho OSMR Y 945) . Pho 17 .

The ordering of the events is given in the following way (Algorithm 7.). If two
reactions are concurrent, they are translated into processes placed in parallel
composition. If, instead, they have to be executed one after the other, the second
one is prefixed by a condition on the type of the binder which is modified at the
end of the first one (satisfied if the type is the one modified by the first reaction).
If, finally, they are mutually exclusive, both events are prefixed by a condition
on the type of the binder which is modified at the end of the other one (satisfied
if the type is not the one modified by the other reaction).

Algorithm 7. NarrativeToPiprocesses
1: for all ev ∈ Events do  each event is one or two sequential pi-processes
2: if ev is monomolecular then  one pi-process is inserted into the bio-process

of the involved component

3: pproc ← EventToPiProcess (ev)
4: if ev is alternative to prev ev then
5: pproc ← if not(prev ev.mod binder, prev ev.mod type) then pproc
6: prev ev.pproc ← if not(ev.mod binder, ev.mod type) then prev ev.pproc
7: end if
8: AddPiprocessInParallel (ev.component.bioproc, pproc)
9: else if ev is bimolecular then  one pi-processes is inserted into the bio-process

of each involved component

10: 〈 pproc1, pproc2 〉 ← EventToPiProcesses (ev)
11: if ev is alternative to prev ev then
12: if both ev and prev ev involve ev.component1 then
13: pproc1 ← if not(prev ev.mod binder, prev ev.mod type) then pproc1
14: prev ev.pproc ← if not(ev.mod binder, ev.mod type) then prev ev.pproc
15: end if
16: if both ev and prev ev involve ev.component2 then
17: pproc2 ← if not(prev ev.mod binder, prev ev.mod type) then pproc2
18: prev ev.pproc ← if not(ev.mod binder, ev.mod type) then prev ev.pproc
19: end if
20: end if
21: AddPiprocessInParallel (ev.component1.bioproc, pproc1)
22: AddPiprocessInParallel (ev.component2.bioproc, pproc2)
23: end if
24: end for

3.3 Case Study: The Translation of the Gp130 Signalling Pathway
Model

A prototype of the tool has been developed and integrated into BetaWB. The
model described in Sect. 2.1 was translated into Beta-binders by using this
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Fig. 1. The Gp130 pathway Beta-binders model imported in BetaDesigner

prototype, and then simulated by using BetaWB. Figure 1 is a BetaDesigner
screenshot showing the graphical visualisation and part of the imported Beta-
binders code which has been obtained from the translation of the Gp130 pathway
model.

We do not present in this work any biologically relevant result: in order to
achieve this final goal, more details on the pathway dynamics should be taken
into account and more precise information on reaction rates should be acquired.
Moreover, some aspects of the translation should be improved for the tool to
be practically used for translation of complex models. This work was primar-
ily meant to be a sort of feasibility study. We believe that the proposed lan-
guage, together with the automatic translation into Beta-binders and the ex-
isting simulator, allows the modeller to describe biological systems in simple
words, simulate the model, and obtain sensible results. The Gp130 model we
have described in this work was developed by a biologist who had no previous
experience in modelling. This gives us some confidence that our main goal, which
is to have a user-friendly language which biologists feel comfortable with, was
achieved.
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4 Conclusions and Further Work

The proposed modelling language and the automatic translation into a formal
language allow us to hide the formal details from life scientists. Therefore, we be-
lieve that life scientists could easily use the textual language to describe systems,
and automatically obtain simulation and analysis results.

The choice of which primitives had to be included in our language has been
done to have a simple and basic set of events which could be described. The
language and the tool can be extended with new constructs and some improve-
ments on the already present ones can be done. The Beta-binders code obtained
from the translation is quite intuitive; however, the usage of other Beta-binders
features which could make the translation even more intuitive and efficient (e.g.
events [10] and biological transactions [15]) is under investigation.

Several description languages (both textual and graphical) have recently been
proposed to model biological systems. A formal comparison with those descrip-
tion languages will be done, and the interchangeability with graphical notations
will also be taken into account.

Finally, we believe that in order to fully benefit from this approach an in-
tegration with some of the many existing biological databases would be much
useful. This would allow, for example, the automatic extraction of data and pa-
rameters from those databases. In addition to this, another interesting aspect is
the automatic extraction of information from the simulation output to be used
again to refine the input model.
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Abstract. We explore some presynaptic mechanisms of the calyx of
Held synapse through a stochastic model. The model, drawn from a ki-
netic approach developed in literature, exploits process calculi as formal
grounds, enjoys nice compositional properties, has a direct computational
implementation that supports simulation trials, and, to our knowledge,
represents the first process calculi based model of a presynaptic terminal.
Simulation results have shown coherence with experimental data and ro-
bustness against sensitivity analysis. The core model has been extended
in order to address some issues related to open problems: we discuss
hypotheses on short-term synaptic enhancement (facilitation) and de-
pression, i.e. plasticity mechanism that are related to memory and learn-
ing. The two aims of our work, i.e. addressing neural mechanisms and
validating and possibly improving, process calculi based modeling tech-
niques are discussed throughout the paper, together with the results of
experiments.

1 Motivations

Research in life sciences is benefiting from a large availability of formal descrip-
tion techniques and analysis methodologies. These allow both the phenomena
investigated to be precisely modeled and virtual experiments to be performed in
silico. Such experiments may result in easier, faster, and satisfying approxima-
tions of their in vitro/vivo counterparts. A promising approach is represented by
the study of biological phenomena as a collection of interactive entities through
process calculi equipped with stochastic semantics. These exploit formal grounds
developed in the theory of concurrency in computer science, account for the not
continuous, nor discrete, nature of many phenomena, enjoy nice compositional
properties and allow for simulations that have been demonstrated to be coherent
with data in literature. The huge amount of information produced in the field
of neurobiology and the complex dynamics of the biological processes require
the utilization of mathematical and computational modeling methods [15,8].
Neurons represent the elementary components of the nervous systems, able to
communicate with each other at highly specialized contact sites called synapses.
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In general, each neuron consists of a somatic cellular body, on which a vari-
able number of thin elongated structures called dendrites converge and from
which a long single structure called axon emerges, branching in several synaptic
terminals. The synaptic terminals of the transmitting neuron (the presynaptic
element) send signals by releasing chemical molecules (neurotransmitters) to the
dendritic part of the receiving neuron (postsynaptic term) [1].

The synapses are the places of functional contacts between neurons, where
the information is stored and transmitted from one to another neuron. Synaptic
transmission is a complex process and current knowledge on synapses is based on
the analysis of a limited number of experimental synaptic models [10]. Synaptic
transmission involves the presence of calcium ions in the presynaptic terminal,
which control the transmitter release process [38], consisting in the exocitosis
of synaptic vescicles (small elements containing the neurotransmitters) located
at the presynaptic so-called active zone [35].

The electrical signals (action potentials) arriving at the synaptic terminal
induce the opening of the Ca2+ channels. The transient elevation of the in-
ternal Ca2+ concentration in the presynaptic terminal triggers synaptic vescicle
exocitosis, and hence the neurotransmitter release (calcium-triggered-release hy-
pothesis). Interestingly, chemical messengers (intracellular) and modulators (ex-
tracellular) regulate the relationship between action potential and release in a
synaptic terminal, which is also altered by the repeated activity. All these things
make the presynaptic terminal a kind of computational unit, which changes its
output based on its previous activity and ongoing modulation.

Theoretical and functional studies have suggested that Ca2+ acts on presy-
naptic vescicles by a local huge and short-lived elevation of its concentration.
The locality and rapidity of the concentration variation render the study of this
phenomenon not approachable with the conventional microscopic imaging tech-
niques. Among the methods envisaged to overcome this limitations, one very
fruitful is the so-called reverse approach, in which Ca2+ uncaging is induced in
the presynaptic element. The uncaging method induces spatially homogeneous
Ca2+ elevation, implying that measuring the Ca2+ fluorescent indicator gives an
indication of the real Ca2+ sensed by the vescicles. This experimental method
has been applied to the study of the large synapse of the auditory tract of the
central nervous system, called calyx of Held. Moreover, it has been possible to
build a minimal kinetic model for the process of the Ca2+ triggered vescicle
release. Also, one can infer local Ca2+ signal waveform which is compatible with
the experimental data on the time course and amplitude of release [30,31].

Most of the models treating the calcium triggered release issues present some
methodological limitations. These deterministic models, and among them the ca-
lyx of Held model, use differential equations, known as reaction rates equations,
to describe the time course of [Ca2+], the Ca2+ concentration (mole× liter−1)
interacting with the synaptic vescicles. This approach implies that [Ca2+] is
continuous, while it is clearly not [17]. For example, with a Ca2+ concentration
of 10 μM in a volume of 60 nm3 there is a single free ion. Another common
assumption is that the binding of the Ca2+ to the release sensor of the vescicle
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does not affect the [Ca2+] concentration [17]. Also this assumption is not prop-
erly adequate: considering that the dimensions of the vescicle diameters range
in the interval 17-22 nm, in a volume of 60 nm3 there could be few Ca2+ ions,
and when some of them bind to the vescicle sensors, the number of calcium ions
could change substantially.

In general, when the fluctuations in the molecular population levels are rele-
vant, e.g. when the numbers per unit volume of the molecular species involved
are small, the stochastic approach has to be preferred. The fluctuations, that
can be seen as random variations about a mean number of molecules, can signif-
icantly alter the dynamics of biochemical pathways. Just to cite few examples,
fluctuations might decrease or increase the steepness of a nonlinear stimulus-
response relationship. In other cases, via the so-called stochastic resonance, they
can increase the reliability of response to small signals [33].

Hence, in these cases, the use of a stochastic approach appears to be much
more appropriate, since the deterministic approach fails to capture the nature
of chemical kinetics, which at low concentrations is discrete and stochastic [37].

In the stochastic approach, the system is described by the so-called “master
equation”, which usually is intractable. A stochastic simulation algorithm has
been proposed in [11] to overcome these difficulties.

Recently, stochastic techniques have been also adopted in computer science
to model quantitative aspects of interactive systems within concurrency theory.
Concurrency theory aims to model the behaviour and the structure of systems
composed of autonomous computational entities, which dynamically interact
one with another, possibly reconfiguring the system itself. At the beginning,
stochastic models have been used to study performance/time related properties,
e.g. [12]. The strong analogies between concurrent and living systems, “cells as
computation” [25], has fostered the development of Systems Biology [14,6], a
systemic approach to living system modeling.

According to this metaphor, cells, molecules and biological “active” compo-
nents, i.e. those capable of exhibiting a behaviour, are assimilated to computer
processes, the computational units of a concurrent software system. Then, bi-
ological interaction corresponds to process communication. By communicating,
processes may exchange information or synchronise themselves, i.e. they inter-
act one with another. Finally, a biological experiment, or biological activity in
general, has then a direct correspondence into computation. That is, biological
processes can not only be simulated by in silico experiments, but it is also pos-
sible to formally reason about their computational models and infer properties
of interest. Process calculi are a formalism to describe such models: systems are
compositionally described in terms of suitable abstractions of their component
behaviour. Several process calculi whose “operators” are oriented to describing
different aspects of biological interaction have been proposed e.g. [19,23,24,5].
Some of these calculi have been equipped with stochastic semantics in order
to study the quantitative evolutions of systems, e.g. [22,23,16,4]. This approach
benefits from conjugating the abstract and compositional algebraic models, the
possibility of precisely describe their semantics and formally reasoning about
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them, and the quantitative analysis provided by stochastic semantics. Executable
implementations of the calculi and analysis tools are provided.

In this context, motivated by addressing some aspects of the functioning of
neural synapses, we have developed a stochastic model of the calcium triggered
release in the calyx of Held synapse.

Our work starts from a deterministic model presented in [30], from which we
have derived a suitable stochastic model. This has subsequently been formalised
in a variant of the Pi-calculus [18], in which the behaviour of Ca2+ and vescicles
has been described and composed to form the presynaptic terminal. Model de-
velopment has benefited from the above mentioned features, like modular design,
abstract representation of the component functioning and stochastic interpreta-
tion of the system dynamics. Then, in silico experiments have been carried out by
means of the stochastic Pi-calculus simulator SPiM [21], which represents one of
the most complete and expressive simulation environment for stochastic calculi
currently available. Beyond on the availability of a suitable execution environ-
ment, the choice of Pi-calculus has been based on its expressiveness. Although
not all its distinguishing features have been exploited here, like the dynamic
creation of new interaction capabilities (new names), it has seemed reasonable
not to renounce to them, which might reveal useful when further detailing the
model. The definition of the “right” representation language still appears as an
open problem.

The developed model has been firstly tested against sensitivity and robustness,
then tuned for our experiments of interest and, finally, used to investigate two
aspects of the presynaptic plasticity mechanisms: paired pulse facilitation and
short term depression.

Obtained results are coherent with those in literature and appear useful for
better understanding and testing hypothesis on not fully understood parts of
the two addressed issues.

Taking advantage of the compositionality of our approach, assemblying the
more detailed neural model has been quite straightforward and, also, has sug-
gested interesting directions for the enhancement of the expressive power of the
representation language.

In the long term, we are interested in further pursuing the investigation along
two complementary paths: from the biological viewpoint, we are interested to
address models of synaptic plasticity, i.e. activity dependent change mechanisms,
which are the bases of memory and learning processes, and to build more com-
prehensive stochastic models of synaptic functioning; from the computer science
viewpoint, we aim at further developing the theory of concurrent biological in-
teraction. In this sense, addressing a notion of (spatial) locality along the line
suggested by the experiments would be a challenging task.

Synopsis. The proposed model is described in Section 2, experiment results and
a discussion on the model are presented in Section 3. Related works are discussed
throughout the paper, while Section 4 contains concluding remarks. Preliminary
results of our work have appeared in [3].
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2 A Process Calculi Based Stochastic Model

In this paper we have applied a stochastic model, based on the algorithm in-
troduced in [11], to describe the calcium triggered release mechanisms studied
in the model system of the synapse calyx of Held. Our staring point was a phe-
nomenological kinetic model, described in [30], in which five calcium binding
steps and a cooperativity factor b are needed for vescicle activation and release.
The kinetic model parameters were computed by fitting experimental data, ob-
tained by means of elevating the intracellular presynaptic [Ca2+] in a controlled,
homegeneous and step-like manner (calcium uncaging) [30]. We transformed
the equations of the above cited model by utilising the relationship between the
stochastic rate constants (c) and deterministic rate constants (k) [13]. For re-
actions of the first order, c = k. For reactions of second order, the relationship
becomes: c = k/(NA×V ol), where NA represents the Avogadro’s number and
V ol the volume of the reaction. Hence, in order to determine the values of the
stochastic rate constants, we needed to estimate the value of V ol. Spatially, the
calyx of Held is organized as a “parallel” arrangement of a large array of active
zones, ranging from 300 to almost 700 [29]. Active zones, each containing up to
10 vescicles, are clustered in groups of about 10 of them, in a volume having a
diameter of almost 1 μm. Each action potential activates all the active zones.
Such particular morpho-functional organization of this synapse has allowed us
to model a subunit of the presynaptic element, consisting of a cluster of 10 active
zone, each containing 10 vescicles, in a volume of 0.5 10 −15 liter. With this vol-
ume estimate, we have obtained the following values for the stochastic constants:
con = 9 × 107 / (6.02 × 1023 × 0.5 × 10−15) s−1 = 0.3 s−1, coff = 9500 s−1,
γ = 6000 s−1 and b = 0.25, and the following numbers of Ca2+ ions: 300, 3000
and 6000, corresponding to molar concentrations [Ca2+] of 1, 10 and 20 μM.
The equations of the stochastic model are:

Ca2+
i + V

5con−−−→
←−−−−
coff b0

V
Ca2+

i
+ Ca2+

i

4con−−−→
←−−−−−
2coff b1

V2Ca2+
i

+ Ca2+
i

3con−−−→
←−−−−−
3coff b2

V3Ca2+
i

+ Ca2+
i

V3Ca2+
i

+ Ca2+
i

2con−−−→
←−−−−−
4coff b3

V4Ca2+
i

+ Ca2+
i

con−−→
←−−−−−
5coff b4

V5Ca2+
i

γ−→T

where Ca2+
i represents the number of intracellular calcium ions, V the number

of vescicles, T the released vescicle.
Our simulations have confirmed the results obtained with the deterministic

model: high sensitivity of vescicles to calcium concentrations [30]. While several
other synapses require a calcium concentration in the range of 100-300 μM for
triggering vescicle release [35], it is known that the local calcium concentration
can be much lower than 100 μM in the calyx of Held [30]. Our results have also
confirmed this result, by showing that concentrations as low as 1, 10 and 20 μM
are able to deplete the releasable pool in a few milliseconds. In the following,
we will graphically report our results. Each figure consists of three pictures: on
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the left side the time course of Ca2+ is displayed (together with the extrusion
mechanism (P) and its occupancy (CaP) when present, and the intermediate Ca2+

bindings); in the middle the same picture is shown in logarithmic scale so as to
appreciate the intermediate states of calcium binding and vescicle activation
(Vstar) and release (T); on the right side the focus is on activated vescicle
(Vstar) and the total number of the transmitter released (T).

Figure 1 shows simulation results for the step-like calcium case with the fol-
lowing parameters: V = 100; Ca2+ = 6000; con = 0.3; coff = 9500; γ = 6000;
b = 0.25. It can be observed that the pool of vescicles is 80% depleted within 3
ms, coherently to the experimental findings [30].

 0

1000

2000

3000

4000

5000

6000

7000

 0  0.0005  0.001  0.0015  0.002  0.0025  0.003  0.0035  0.004  0.0045  0.005

V

Ca2

V1Ca

V2Ca

V3Ca

V4Ca

Vstar

T

P

 1

 10

 100

 1000

10000

 0  0.0005  0.001  0.0015  0.002  0.0025  0.003  0.0035  0.004  0.0045  0.005

V

Ca2

V1Ca

V2Ca

V3Ca

V4Ca

Vstar

T

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

100

 0  0.0005  0.001  0.0015  0.002  0.0025  0.003  0.0035  0.004  0.0045  0.005

Vstar

T

Fig. 1. Step-like calcium uncaging (V=100; Ca=6000; Con=0.3; Coff=9500; γ=6000;
b=0.25)
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Fig. 2. Wave-like calcium uncaging (V=100; Ca=6000; Con=0.3; Coff=9500; γ=6000;
b=0.25)

The experiments and models on Ca2+ uncaging [30] showed a high sensitivity
of vescicle release in response to a uniform elevation of [Ca2+] in the range 10 μM.
It was not clear whether very short [Ca2+] elevations are sufficient to induce a
release similar to that induced during an action potential. A recent experimental
work [2] has addressed this issue. A spatially uniform and very rapidly decaying
[Ca2+] transient, obtained by Ca2+ uncaging in the presence of added Ca2+

buffers, was induced in the presynaptic element of a calyx of Held synapse. This
short-lived elevation (wave-like) of calcium concentration has been revealed to
be able to trigger vescicle release. We have introduced in our model a simple
mechanism of calcium extrusion utilized in a previously developed model [7],
adapting the rate constants to fulfill our needs:
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Ca2+
i + P

c1−→
←−
c2

CaP
c3−→ Ca2+

o

where Ca2+
o is the extruded calcium, P is an abstraction of a pumping mecha-

nism, c1 = 8 s−1, c2 = 25 s−1 and c3 = 10000 s−1. We have obtained a simulated
calcium wave lasting about 1 ms and with a half width 0.5 ms, conforming to
the experimental requirements [2]. Such a kind of calcium wave with a peak
value of about 6000 ions, corresponding to a peak calcium concentration of 20
μM, can be seen on the left-side of Figure 2. In the right side of the same figure,
the release of one vescicle can be observed. Considering that a whole presynaptic
element can be made of about 70 of our simulated clusters, this implies that a
single action potential, and accordingly a single calcium wave, is able to release
a significant amount of vescicles. This is also along the line of the experimental
findings [30,31,2].

For both models (step-like and wave-like calcium), we have performed a pa-
rameter variation study (sensitivity analysis). We have run simulations for dif-
ferent values of the number of vescicles (reference value 100, other values: 10,
50, 200 and 500), the number of calcium ions Ca2+ (reference values 300, 3000
and 6000, others: 12000, 18000, 24000), the stochastic coefficients con (reference
value 0.3, others: 0.1, 0.2, 0.4 and 0.5), coff (reference value 9500, others: 5500,
7500, 11500 and 13500), b (reference value 0.25, others: 0.1, 0.2, 0.3 and 0.4) and
γ (reference value 6000, others: 2000, 4000, 8000 and 10000).

One of the results of this analysis is that the forward coefficient con seems to
have a critical role: higher values of this coefficient correspond to a faster release,
in the step-like case, and to a switch from no-release to a consistent release, in
the wave-like case. For the step-like case, we showed that a simple variation of
the coefficients con and b changes the dynamics of the release processes in an
unpredictable manner.

This kind of experiments are of interest when addressing the problem of the
variations in the release rate, one of the still obscure phenomena which have
been observed about vescicle release. These variations have been explained by
the recruitment of new vescicles within the same active zone or by a different
sensitivity to calcium ions of the vescicle belonging to same cluster. Our kind
of analysis might give some contributions to the debate on the interpretation of
these controversial experimental data [30,31,2].

2.1 Neuro-processes

In order to illustrate the main features of the formal model used to stochastically
represent the behaviour of the calyx of Held synapse, we briefly sketch some of its
parts. Excerpts from the model, viz. its implementation for the SPiM stochastic
interpreter [21], are in Figure 3. The representation language models interaction
as pairs of input/output actions over the same communication channel (?c/!c).
These atomic actions can be composed in a sequence (;) or in alternative choices
(?c or ?d) so as to form a process (p()= ...). Processes can run in parallel
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(p()|q()). Initially, the length of the simulation is set (here 0.005s), then some
stochastic parameters are defined. Communication channels can be (dynami-
cally) created by means of the new command and have associated a stochastic
rate (this and the current quantities of reactants determine the probability of a
reaction “happening” through the channel). A calcium ion (ca()) can interact
with a vescicle (v()) over channel vca with rate con5=1.5 (beyond being able to
do other things). After this communication, ca() disappears and v() becomes
v ca(), representing the binding of the two. This realises a second order reaction.

directive sample 0.005

val con5 = 1.5

val b = 0.25

val coff5 = 47500.0 * b * b * b * b

new vca@con5:chan

ca() = do ?vca;()

or ?v2ca;()

...

or ?cp;()

v() = !vca; v_ca()

v_ca() = do !bvca; v()

or !v2ca; v_2ca()

Dv_ca() = ?bvca; ( ca() | Dv_ca() )

w(cnt:int) = do delay@40000.0;

if 0 <= cnt then ( 80 of ca() | 80 of w(cnt - 1)) else ()

or !void; ()

run 1 of w(1) 1000 of p() 100 of v() 1 of (Dv_ca() | Dv_2ca()| ... )

Fig. 3. The calyx of Held SPiM code

First order reactions are modeled as interactions with a single dummy molecule
(so as not to alter stochastic dynamics). For instance, v ca() can then either
accept other calcium bindings or degradate back to an unbound vescicle by
communicating through bvca with Dv ca(), which restores ca() and itself. So
far, the system has been described by specifying simple atomic behaviour, ba-
sically corresponding to chemical reactions, and then composing them together.
The parametric process w(cnt:int) allows us to suitably modulate the calcium
wave. After a stochastic delay, it replicates 80 copies of itself in parallel with 80
ca() if its integer parameter cnt is positive, otherwise it dies. This realises an
exponential growth, which can be controlled by the delay rate and the parameter
in its rapidity and quantity. Finally, the initial state can be populated specifying
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how many molecules of each specie are present (1 wave, 1000 pumping molecules,
100 vescicles and 1 copy of the needed dummy molecules).

3 Results and Model Evaluation

Exploiting the developed model, we have addressed some open issues regarding
the presynaptic mechanisms for Ca2+ triggered vescicle release. More specifically,
we have considered temporal and spatial aspects of the release which appear in-
tertwined and relevant for synaptic plasticity. On the one hand, we have studied
the behaviour of the synaptic terminal in the presence of a train of action po-
tentials occurring within short temporal intervals. We report on an analysis of
two Ca2+ waves and discuss how this is related to facilitation, i.e. a form of ac-
tivity dependent enhancement of the synaptic strength. On the other hand, we
have tried to find a suitable model of the spatial (and functional) distribution of
vescicles within the presynaptic terminal. This has been done in order to support
the verification of competing hypotheses on the mechanisms ruling short-term
synaptic depression. With this aim we have analysed the relationship between
the measured pattern of the time course of release and the possible existence of
two pools of different vescicles in the active zone [9,28,36,27].

In order to tune the model for these two experiments, we have beforehand run
a series of simulations (not reported here) with the aim of both evaluating the
variance of the results of different runs, and of tuning the model to the hypotheses
of the experiments. In particular, the hypotheses about vescicle distribution has
required us to revise the assumption on the number, and also the behaviour, of
vescicles. This is needed to obtain average release values during a single action
potential that are coherent with the experimental findings in the scenaria of
interest. In particular, setting the number of the readily releasable vescicles (V )
to 50 and increasing their propensity to calcium binding (con) to 0.4s−1 has
resulted in an average number of released vescicles of about 2, which is about 4%
of the (readily releasable) vescicle pool, adherent to the experimental findings [9].

The compositionality of the chosen representation language has permitted us
to easily embed the new features in the model by means of modular changes.
Moreover, the challenge of dealing with the illustrated spatial and temporal
aspects seems to suggest fruitfully directions for extending the expressiveness of
the representation language. Both these aspects are discussed in Section 3.3.

With this more detailed model, we have hence studied the phenomenon of
synaptic transmission called paired pulse facilitation (Section 3.1) and synaptic
depression during sustained depolarization of the synapse (Section 3.2), which
are examples of short-term synaptic plasticity still puzzling neuroscientists. In
the following, we report the simulations that better illustrate our results, out of
a more detailed statistical analysis which is scope for future work.

3.1 Paired Pulse Facilitation

The term synaptic facilitation indicates a form of activity-dependent synap-
tic enhancement observed in several synapses, in which the synaptic strength
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increase during a train of action potentials [9,38]. In general, facilitation depends
by pre- and post-synaptic mechanisms. In this paper, we focus on the presynaptic
side of facilitation. It is generally accepted that the intracellular Ca2+ remain-
ing from previous activity (the so-called residual Ca2+) causes facilitation, but
the mechanisms that make this happen are still not clearly understood [35]. In
general, the residual Ca2+ is less than 1 μM (in our model this correspond to
less than 300 Ca2+ ions) and for most synapses the local [Ca2+] increase needed
for release is between 100 and 300 μM. This implies that, typically, the residual
Ca2+ is not sufficient to induce facilitation.

Some other underlying mechanisms for facilitation have been proposed, such
as, just to cite some, the permanence of Ca2+ bound to the high affinity binding
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Fig. 4. Two wave-like calcium pulses at different intervals (V=50; Con=0.4)

sites of the secretory machinery, Ca2+ buffer saturation or an increased size of
the readily releasable (see Section 3.2) pool [9].

We have run a series of simulations in which we have used a double Ca2+ wave
in order to study facilitation. We report in Figure 4 a small sample selection of
our simulations with varying time delays between waves, each row represents a
simulation. In the left pictures, and correspondingly in the others, it is possible
to appreciate the occurrence of the two waves with varying delays. From upper
to lower row, the time interval betwee Ca2+wave decreases (12, 8 and 2 ms) and
it can be observed that for smaller delay the amount of release due to the second
wave increases notably.
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The possible underlying mechanisms could be suggested by observing the
central column of Figure 4. Just before the second calcium wave develops, the
amount of residual Ca2+is bigger when the delay decreases. This causes a con-
comitant increase of the release.

At the same time, it seems that other parts of the release machinery could be
involved in facilitation, such as the occupancy of P or the intermediate steps of
vescicle binding. In our simulations, also these parts seem to be influenced by
residual Ca2+, as can be seen, for instance, by looking at the level of occupancy
of P. Hence, the residual Ca2+ seems to have a central role in the facilitation
process, even at very low concentrations.

Summing up, our simulations support the hypothesis that in calyx of Held,
facilitation is likely due to residual Ca2+ and to occupancy of Ca2+buffers, which
are cellular elements which control, by reducing it, the Ca2+ concentration. Our
simulations show that our model is consistent with the idea that a very low level
of residual Ca2+ might account for the particular form of short-term synaptic
plasticity named paired pulse facilitation [9,38].

3.2 Short-Term Synaptic Depression

It is known by experimental data that the vescicles of the active zone can be
divided in two virtually separated and equally populated pools: one consisting
of so-called readily releasable vescicles and the other one of so-called reluctantly
releasable vescicles [20,28,36].

During a single action potential discharge, which we represent as a single
calcium wave, the vescicles released belong to the readily releasable pool. The
amount of release corresponds to about 4% of the readily releasable pool, hence
in our model to 2-3 vescicles [9]. Whereas, when the synapse is depolarized to
elicit maximal Ca2+ influx, all the vescicles of the active zone are released (readly
and reluctantly releasable) and the synapse active zone is completely depleted.
In this case the time course of the release process is charachterized by two time
constants, which are about 3 and 30 ms, during which the readily and reluctant
vescicle are released, respectively [20,32]. It is also known that the reluctant
vescicles are replaced much more rapidily than the readily releasable ones.

The precise mechanisms through which this form of release happens are still
debated. For some cells, such as the chromaffin cells, it is likely that the reluctant
vescicles differ, in their intrinsic kinetics, from the readily releasable ones [34].

For the calyx of Held synapse, it has been suggested, by means of a qualitative
model, that the reluctant vescicles are precursors of the rapidly releasing ones
and that they become readily releasable by laterally moving toward the read-
ily releasable pool [20]. Based on these suggestions, we have built a stochastic
multi-pool model of the possibile mechanisms underlying short-term synaptic
depression. The coefficients have been in part obtained from the literature and
in part obtained by trails and errors, because generally unknown.

In this stochastic model, one pool represents the readily releasable vescicles
(docked to the active zone), which are released according to the model previously
developed and whose starting number has been set to 50.
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The reluctant vescicles (whose starting number is 50) go back and forth be-
tween two other pools, in which they are undocked (Rct V), i.e. not releasable,
and docked (R V), i.e. releasable, respectively. The undocked reluctant are ra-
pidily replenished from a forth pool (Inf V) of vescicles, which represents the
reservoir of the reluctant vescicles:

Inf V
10s−1

−−−−→
←−−−
1s−1

Rct V
2.5s−1

−−−−→
←−−−−
0.1s−1

R V + Ca2+
i

5con−−−→
←−−−−
coff b0

. . .

con−−→
←−−−−
coff b4

R V5Ca
2+
i

γ−→T

The results of the simulations are reported in Figure 5 for the case of 300 and
1000 Inf V vescicles, respectively. Here, the left picture shows calcium dynamics
as usual, the center one reports calcium again and the four kind of vescicles and
their activation and release in logarithmic scale, while the rightmost picture
reports again activated vescicles and the corresponding cumulative release. In
both simulations, the continuous depolarization was mimicked by a step like
calcium wave. In the central column it can be seen the synchronous release
(darker, within the first 3 ms) and the asynchronous one (lighter in the picture).
In the right pictures, it is very clearly visible the double slope of the cumulative
release curves. The two right pictures are qualitatively similar: it can be observed
a fast release (during about 3 ms) of about 50 vescicles, followed by a slower
release. In the first row of Figure 5, during the slower release, 50 vescicles (rather
than 150 of the second row) are released in about 30 ms, which is most adherent
to the experimental findings.

This model helps to clarify the mechanisms of delocalization of vescicles in
the active zone, helps to determine some unknown parameters (stochastic co-
efficients, number of vescicles) and reproduces some experimental observations.
It must be noted that it is a partial description of the complex and still poorly
understood short-term synaptic depression process [35]. Nevertheless, it suggests
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Fig. 5. Multipools vescicle activation (Con=0.4; V=50; R V=0; Rct V=50;
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that the stochastic constants cannot be effectively constant: they would need to
be modulated during the ongoing process of release, otherwise the movements
of the vescicle would be out of equilibrium condition during the rest state of
the synapse (see for example [34,26]). This last condition could explain the dis-
crepancy between the values of some coefficients utilized in the model and the
corresponding values found in the literature, for example the value 2.5 for the
coefficient was indicated to be 0.25.

3.3 Extending the Stochastic Model and Further Considerations

The core Calyx of Held stochastic model, i.e. the one featuring step-like or (one)
wave-like Ca2+ uncaging, has been easily extended in order to support the pre-
sented experiments.

The generation of a second wave trivially consists of running a second iden-
tical wave-generator process (see Figure 3). Calling the second generator with
a different name (w2(1)) allows us to more easily distinguish the two pulses,
when needed. Moreover, in order to control the delay of the second wave, a pro-
cess that activates the generator after a parametric nondeterministic delay has
been introduced: snd w() = delay@125.0; w2(1). Although varying the delay
parameter has allowed us to simulate a wide range of delays (some of which re-
ported in Figure 4), this experiment has suggested the utility of a more precise
time control over processes. In general, there might be several cases in which one
would like to be able to express something like

run 1 of w(1) at 0.002

meaning that the stochastic process w(1) is supposed to start at about (in a
sense to be specified according to the stochastic nature of the approach) time
0.002 of the simulation. This issue is under study.

The presence of residual calcium has been analogously modeled by modularly
adding a generative process. Tuning the recursive branching factor and the delay
parameter (e.g. 80 and 4000 for the case of w(cnt) in Figure 4) has allowed us
to control the amount of Ca2+ and the time interval needed by the extrusion
mechanism to clear it.

Besides the temporal aspects, also the spatial ones have needed to be en-
gineered so that the desired behaviour is suitably modeled. According to the
multi-pool hypothesis we have distinguished the reluctant vescicles of replenish-
ing pools (inf v()) from those undocked (rct v()) and those docked (rv()):

inf_v() = !vinfgo; rct_v()

rct_v() = do !rvgo; rv() or !bvinfgo; inf_v()

rv() = do !vca; rv_ca() or !brvgo; rct_v()
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Accordingly to the presented model, the behaviour of rv() is undistinguishable
from that of the readily releasable v() with respect to calcium binding. Indeed,
note that once docked, rv() interacts with ca() through the same channel vca
used by v(). This preserves correctness of the model since, coherently with
the interpretation of docked rv(), both kind of vescicles participate to calcium
dynamics (and both concur, insisting on the same communication channels, to
the Gillespie-based stochastic dynamics [21]). Such name distinction allows us
to clearly mark fast and slow vescicles in Figure 5.

Although this reading of a “spatially” distributed (over different pools or
classes of processes) behaviour has allowed us to perform coherent simulations,
it seems worth investigating more expressive spatial primitives. A starting point
is naturally represented by location-aware calculi a là Ambient calculus, like the
Brane Calculi [5]. However, the problem of understanding the relation between
stochastic dynamics and spatial information, e.g. how the traversal of an axon
modifies signal strength, and hence its “interaction capability”, is still open.
Along this line goes the possibility of dynamically modifying the stochastic rates
during a run, as advocated in Section 3.2.

4 Conclusion

The presented results are encouraging about the validity of the stochastic ap-
proach in studying the synaptic processes, which consist of many discrete-like
events and involve arrays of vescicles and hundreds of different molecules. Many
of these molecules have roles in the process of synaptic transmission which still
are not fully understood [35]. We started by studying the release process by us-
ing data of a simplified experimental model, in which the concentration of Ca2+

was controlled and homogeneous. Under these hypotheses, the issue of spatial
locality could not have been considered. We have extended the model in order to
study events taking place during prolonged neural activity. To this aim, we added
more details on vescicle trafficking and cluster compartimentalisation [20], and
we studied short-term synaptic plasticity, facilitation and synaptic depression.
Embedding these processes in the model might shed some light on the ways the
nervous system processes and stores information. In order to support these, and
others, developments the underlying process calculus might be extended, too.
Surely, the problem of expressing locality, already addressed by several calculi,
could be valuably addressed within a stochastic viewpoint.
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Abstract. We develop a process calculus – the nanoκ Calculus – for
modeling, analyzing and predicting the properties of molecular devices.
The nanoκ Calculus is equipped with a simple stochastic model, that we
use to model and simulate the behaviour of a molecular shuttle, a basic
nano device currently used for building more complex systems.

1 Introduction

In 2006 the University of Bologna funded an interdisciplinary project of its
Departments of Chemistry and Computer Science – the CompReNDe Project
(Compositional and executable Representations of Nano Devices). The project
combines the expertises of two groups, one specialized in the design and con-
struction of devices and machines of molecular size [3,2] and the other one qual-
ified in formal models, based on the theory of process calculi, for describing and
analyzing molecular systems [7,14]. Such expertises are joined together in or-
der to accomplish three main endeavours: (i) deliver a programming model for
describing molecular machines that is also amenable to automated simulations
and verifications by means of existing algorithms, (ii) apply the model for a
formal analysis of real cases of molecular machines to possibly reveal complex
behaviours that have not been experimentally observed yet, and (iii) use the
simulations as tools to assist chemists in the design of novel nano devices.

The CompReNDe research activity started with the initial goal of formalizing
a [2]rotaxane [20] into the κ calculus [7] in order to simulate its behaviour in
silico by means of some contemporary stochastic evaluator [10,19,5]. [2]rotax-
anes [20] (simply rotaxanes in the following) are systems composed of a molecular
axle surrounded by a ring-type (macrocyclic) molecule. Bulky chemical moieties
(“stoppers”) are placed at the extremities of the axle to prevent the disassembly
of the system. In rotaxanes containing two different recognition sites on the axle
(“stations”), it is possible to switch the position of the macrocyclic ring between
the two stations by an external energy input as illustrated in Figure 1. Several
rotaxanes of this kind, known as molecular shuttles, have been already devel-
oped (see [6] and the references therein) and used for building more complex
systems [13,12,2].

M. Calder and S. Gilmore (Eds.): CMSB 2007, LNBI 4695, pp. 168–183, 2007.
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Fig. 1. Schematic representation of a two-station rotaxane and its operation as a con-
trollable molecular shuttle

The κ calculus is a formal language idealizing protein-protein interactions, as
a particular restricted kind of graph-rewriting. Bindings are explicit: proteins
are nodes with fixed numbers of sites, complexes are connected graphs built
over such nodes where bonds are represented by names. Biological reactions are
modeled by two kinds of rewriting rules: complexations, which create bonds,
and decomplexations, which destroy bonds. Notably, the κ calculus has been
compiled into π-calculus [16] introducing a finer-grained concurrent model, the
mκ calculus, where reactions have to be at most binary. The significant property
of mκ calculus is to be protein-centred, rather then reaction-centred as it was the
case for κ calculus, thus being amenable to distributed implementations.

We therefore undertook the formalization of a molecular shuttle in mκ calculus
and we soon realized that such calculus was inadequate as well. The mκ calculus
is much too verbose because it compels designers to reason in terms of bonds
and complexations and decomplexations. There are reactions that are neither
complexations nor decomplexations, such as the ion exchanges. These reactions,
used in our molecular shuttle to stimulate the movement of the macrocyclic ring,
might be implemented by sequences of complexations and decomplexations, thus
changing the granularity of the chemical semantics. The mκ calculus model is
much too abstract because it overlooks quantitative aspects. Such aspects, in
particular reaction rates and the derived stochastic semantics are a must for
providing meaningful simulations of molecular machines.

We overcome these inadequacies of the mκ calculus by defining a new model,
the nanoκ Calculus, having three types of reactions – creations, destructions,
and exchanges – and retaining a stochastic semantics. This stochastic semantics
is problematic for the nanoκ Calculus because it uses names for representing
molecular bonds. In this respect, our model is close to Milner’s pi calculus [16].
However, instead of following the techniques of the stochastic pi calculus [18],
we have preferred for nanoκ Calculus to extend Cardelli’s language of stochastic
interacting processes [4]. In facts, in this way, we get a simple model that may
be easily simulated or verified by means of existing well known algorithms [9].

We then apply the nanoκ Calculus to describe and analyze an instance of
rotaxane, RaH [15,1], for which the dynamic behaviour has been experimentally
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characterized in detail [8]. We have considered two groups of simulations. The
first ones are used to validate the model, checking whether the experiments
reproduced in silico coincides with those already performed in vitro. The sec-
ond ones simulate in silico the expected behaviour of the rotaxane RaH under
conditions not yet observed in vitro. Interestingly, we show that under extreme
conditions of very low concentration of rotaxane RaH, some of the assumptions,
usually taken about the behaviour of the rotaxane in standard conditions of
concentration, are no longer valid.

2 The nanoκ Calculus: Syntax and Semantics

Two disjoint countable sets of names will be used: a set of species, ranged over
by A, B, C, · · · ; and a totally ordered set of bonds, ranged over by x, y, z, · · · .
Species are sorted according to the number of fields and sites they possess. Let
sf (·) and ss(·) be two functions returning naturals; the integers 1, 2, · · · , sf (A)
and 1, 2, · · · ss(A) are respectively the fields and the sites of A. (sf (A) = 0
means there is no field; ss(A) = 0 means there is no site). In the following, fields
are ranged over by h, i, j, · · · ; sites are ranged over by a, b, c, · · · .

Sites may be either bound to other sites or unbound, i.e. not connected to
other sites. The state of sites are defined by injective maps, called interfaces and
ranged over by σ, ρ, · · · . Given a species A, its interfaces are partial functions
from {1, · · · , ss(A)} to the set of bonds or a special empty value ε. A site a is
bound with bond x in σ if σ(a) = x; it is unbound if σ(a) = ε. For instance, if
A is a species with three sites, (2 �→ x, 3 �→ ε) is one of its interfaces. In order
to ease the reading, we write this map as 2x + 3 (the empty value is always
omitted). This interface σ does not define the state of the site 1, which may be
bound or not. In the following, when we write σ+σ′ we assume that the domains
of σ and σ′ are disjoint. Interfaces, being injective on bonds, cannot express that
the endpoints of a bond belong to the same species (cf. self complexation in [7]).
This design choice simplifies the presentation of nanoκ Calculus.

Fields represent the internal state of a species. The values of fields are defined
by maps, called evaluations, and ranged over by u, v, · · · . For instance, if A is a
species with three fields, [1 �→ 5, 2 �→ 0, 3 �→ 4] is an evaluation of its. As before,
we write this map as 15 + 20 + 34. We assume there are finitely many internal
states, that is every field h is mapped into values in {0, · · · , nh}. In the following,
we use partial evaluations and, when we write the union of evaluations u + v,
we implicitly assume that the domains of u and v are disjoint.

Definition 1 (Molecules and Solutions). A molecule A[u](σ) is a term
where u is a total map on the fields of A. Solutions, ranged over by S, T, · · · ,
are defined by the following grammar

S ::= A[u](σ) | S,S

The operator “,” is assumed to be associative, so (S,S′),S′′ is equal to S,(S′,S′′)
(and we always omit parentheses).
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Solutions retain the property that bond names always occurs exactly twice. Let
∅ be the empty map. We use the following shorthand notations: A(σ) instead of
A[∅](σ), A[u] instead of A[u](∅), and simply A instead of A[∅](∅).

Example 1. As a running example we consider two typical chemical reactions:

– Na + Cl ←→ Na+ + Cl− (sodium chloride) and
– H + H ←→ H2 (hydrogen gas) .

In the first reaction, an ion is exchanged between two instances of species Na
and Cl. The molecules of the two species can be in two possible states: either
they have the extra ion Na+ and miss an ion Cl− or they are in the states with
all the ions Na and Cl. We model these two possible states using one field ion
with values 0 and 1 respectively denoting the absence or the presence of the ion.
Formally we can use Na[ion0] and Na[ion1] for Na and Na+, and Cl [ion0] and
Cl [ion1] for Cl− and Cl, respectively.

The second chemical reaction represents the creation/destruction of a bond
between two hydrogen atoms. This may be described by using a site 1 and bond
names. For instance, the solution with H2 is modelled by H (1x),H (1x). An
unbound instance of hydrogen is simply represented by H , as its evaluation and
interface are both empty.)

Definition 2 (Reactions). Reactions of nanoκ Calculus are either creations
C, or destructions D, or exchanges E. The format of the first two types is
((A, a, u, u′, σ), (B, b, v, v′, φ), λ);while the format of exchanges is ((A, u, u′, ρ, ρ′),
(B, v, v′, ψ, ψ′), λ), such that:

1. dom(u′) = dom(u) and u and u′ are partial evaluations of A, dom(v′) =
dom(v) and v and v′ are partial evaluations of B,

2. ran(σ) = ran(φ) and σ and φ are interfaces of A and B, respectively, such
that a /∈ dom(σ) and b /∈ dom(φ);

3. (for exchanges) ρ, ρ′ and ψ, ψ′ are interfaces of A and B, respectively, with
ran(ρ′) = ran(ψ) and either ρ = ρ′ and ψ = ψ′ or ρ = ax + ρ′′, ρ′ = a + ρ′′

and ψ = b+ ψ′′, ψ′ = bx + ψ′′;
4. and λ ∈ R

+ ∪ {∞}.

For readability’s sake, we write creations as A[u](a+σ),B [v](b+φ)
λ
� A[u′](ax+

σ),B [v′](bx + φ), destructions as A[u](ax + σ),B [v](bx + φ)
λ
� A[u′](a + σ),

B [v′](b + φ), and exchanges as A[u](ρ),B [v](ψ)
λ
� A[u′](ρ′),B [v′](ψ′).

The difference between the three kinds of rules is concerned with the modification
of the interfaces: creations produce a new bond between the two unbound sites a
and b, destructions remove the bond between the sites a and b, while exchanges
either leave the interfaces unchanged or move one bond from a reactant to the
other (bond-flipping exchange).1

1 The terms creation and destruction have been preferred to complexation and decom-
plexation used in [7,14] because they have a more neutral chemical meaning.
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Example 2. The nanoκ Calculus reactions that corresponds to the two reactions
of the sodium chloride are

Na[ion0],Cl [ion1]
100
� Na[ion1],Cl [ion0]

Na[ion1],Cl [ion0]
10
� Na[ion0],Cl [ion1]

where we have considered a rate 100 for the left to right direction and 10 for the
right to left direction.

The nanoκ Calculus reactions that corresponds to the two reactions of the
hydrogen gas are

H (1),H (1)
5
� H (1x),H (1x) H (1x),H (1x)

0.05
� H (1),H (1)

where the right direction has been given rate 5 and the left direction has been
given rate 0.05.

The formal definition of reactants and the corresponding products of reactions
follows. We use μ to range over ρL, ı, x and ρR, ı, x and ρL, ı and ρR, ı and ρ. Let
μ be the following operation (notice that μ = μ):

μ
def
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ρR, ı, x if μ = ρL, ı, x
ρL, ı, x if μ = ρR, ı, x
ρR, ı if μ = ρL, ı
ρL, ı if μ = ρR, ı
ρ if μ = ρ

Definition 3 (Basic transition relation). The basic transition relation of
solutions, written

μ−→� ∪
μ−→�,�′ , is the least relation that satisfies the following

rules (ı are always injective renamings on bonds):

– (creations) if ρ = A[u](a+σ),B [v](b+φ)
λ
� A[u′](ax +σ),B [v′](bx +φ) and

dom(ı) = ran(σ) (= ran(φ)) and z /∈ ran(σ ◦ ı + ν) then both A[u + w](a +
σ ◦ ı+ ν)

ρL,ı,z−→ 1 A[u′ + w](az + σ ◦ ı+ ν) and B [v + w](b + φ ◦ ı + ν)
ρR,ı,z−→ 1

B [v′ + w](bz + φ ◦ ı+ ν);

– (destructions) if ρ = A[u](ax + σ),B [v](bx +φ)
λ
� A[u′](a+ σ),B [v′](b+φ)

and dom(ı) = ran(σ) (= ran(φ)) then both A[u + w](ax + σ ◦ ı + ν)
ρL,ı,x−→ 1

A[u′+w](a+σ◦ı+ν) and B [v+w](bx+φ◦ı+ν)
ρR,ı,x−→ 1 B [v′+w](b+φ◦ı+ν);

– (exchanges) if ρ = A[u](σ),B [v](φ)
λ
� A[u′](σ′),B [v′](φ′) and dom(ı) =

ran(σ) (= ran(φ)) then both A[u+ w](σ ◦ ı + ν)
ρL,ı,υ−→ 1 A[u′ + w](σ′ ◦ ı+ ν)

and B [v + w](φ ◦ ı + ν)
ρR,ı,υ−→ 1 B [v′ + w](φ′ ◦ ı + ν), where υ is either ε or

ı(x), according to ran(σ) \ ran(σ′) is ∅ or {x};
– (lifts) if S

μ−→� S′ and, when ρ is a creation, (name(S′)\name(S))∩name(T)=
∅, then both S,T

μ−→� S′,T and T,S
μ−→�′+� T,S′, where T has �′ molecules;

– (communications) if S
μ−→� S′ and T

μ−→�′ T′ then S,T
ρ−→�,�′′+�′ S′,T′,

where ρ is the rule of μ and S has �′′ molecules. If ρ is a creation, then the
bond used by the reaction is the least one that is not used in S,T.
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The basic transition relation definitely deserves to be spelled out. A reaction,
such as Na[ion0],Cl [ion1]

100
� Na[ion1],Cl [ion0] is a schema, namely it only

addresses the fields and the the sites of the reactants that are useful for the
reaction. For example, it may be the case that Na retains a site to be used
for other complexes, such as the sodium peroxide. In this case, the rule may be
applied either to Na[ion0], where the site is unbound, or to Na[ion0](1x). In this
latter case, the reaction is instantiated as the transition:

Na[ion0](1x),Cl [ion1]
ρ−→1,2 Na[ion1](1x),Cl [ion0]

The basic transition relation is indexed by numbers. Since the solutions are
sequences, these numbers give the exact positions of the reactants in the se-
quences. In the first three cases, the position is always 1 because the solution
consists of one molecule. In the fourth case, the index is increased by the number
of the molucules on the left, if any. The last case models a reaction: the solution
is split into two parts S and T containing the reactants at positions � and �′,
respectively. In the composite solution S,T, the reactants are at � and �′′ + �′,
where �′′ is the number of molecules of S. For example let kM be M, · · · ,M︸ ︷︷ ︸

k times

and

let ρ be the hydrogen gas reaction. The following transitions are possible

3H (1)
ρ−→1,2 2H (1x),H (1)

3H (1)
ρ−→1,3 H (1x),H (1),H (1x)

3H (1)
ρ−→2,3 H (1),2H (1x)

The basic transition relation is labelled by finite injective renamings. To clar-
ify this point, consider the creation ! = Na(1x + 2),Na(1x + 2)

10
� Na(1x +

2y),Na(1x + 2y) (a bond is created between two sodium molecules provided
they are already bound). Then take the solution Na[ion0](1z +2),Na[ion0](1v +
2),Na[ion1](1z + 2), Na[ion0](1v + 2). We derive the expected transition

Na[ion0](1z + 2),Na[ion0](1v + 2),Na[ion1](1z + 2),Na[ion0](1v + 2)
�−→1,3 Na[ion0](1z + 2y),Na[ion0](1v + 2),Na[ion1](1z + 2y), Na[ion0](1v+2)

following a structured operational semantics approach [17]. Namely, we focus
on the single reactants and lift the transitions to “,”-contextes. This is cor-
rect inasmuch as one records the instantiation of bonds in the left-hand sides of
reactions with the actual names of the molecules: the two reactants must instan-
tiate bonds in the same way. This is the reason why the first two molecules of
the above solution cannot react with !. More precisely, Na[ion0](1z + 2)

�L,ı,y−→ 1

Na[ion0](1z + 2y), where ı = [x �→ z], and Na[ion0](1v + 2) ��R,ı,y−→ 1.
Our final remarks regard the fourth and fifth items of Definition 3. Whenever

S
ρ,ı,x−→� T and ρ is a creation, the basic transition relation also admits S

ρ,ı,y−→�

T{y/x}, where y is fresh. This nondeterminism is removed when the reaction
occurs because the bond has to be the least name not occurring in S. It is also
worth to notice that there is no rule lifting a transition

μ−→�,�′ to a context “,”:
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we use the associativity of , to partition a solution S into S′,S′′ such that the
reactants are in S′ and S′′.

The basic transition relation is excessively intensional to be sensible for chem-
istry. Consider a solution containing hundreds of molecules of the species A and
B that could react with ρ. The relation

μ−→�,�′ distinguishes the two pairs of
reactants, and this is not possible in practice. More reasonably, the transition re-
lation should represent collectively all the possible combinations of one molecule
of species A with one molecule of species B. For instance, the solution A,A,B

transits with
ρ−→1,3 and

ρ−→2,3. Abstracting out the order of the molecules, we
obtain a unique transition whose rate is twice the rate of ρ. However quotient-
ing the solutions with commutativity axioms of “,” does not yield an adequate
extensionality. In facts, when ρ is a destruction, between A and B, the solution
A(ax),A(ay),B(ax),B(ay) transits with

ρ−→1,3 and
ρ−→2,4 into two solutions

that cannot be equated by permutations of the molecules in the solution. In
these cases one has to use injective renamings of bonds.

Definition 4 (Structural equivalence). The structural equivalence between
solutions, noted ≡, is the least equivalence satisfying the following two rules (we
remind that solutions are already quotiented by associativity of “,”):

1. S,T ≡ T,S;
2. S ≡ T if there exists an injective renaming ı on bonds such that S = ı(T).

Example 3. Commutativity and injective renaming of the structural equivalence
permit to prove the two following equivalences, respectively

Na[h0],Cl [h1] ≡ Cl [h1],Na[h0] H (bx),H (bx) ≡ H (by),H (by)

Combining both commutativity and injective renaming we can prove that

H (bx),H (bx),H (bz),H (bz) ≡ H (by),H (bk),H (bk),H (by)

Proposition 1. Let S ≡ S′.

1. If S
μ−→� T then there is T′ and a renaming ı such that S′ ı(μ)−→�′ T′ and

T′ ≡ S′;
2. if S

ρ−→�,�′ T then there is T′ such that S′ ρ−→�′′,�′′′ T′ and T′ ≡ S′.

The following notations are relevant for the definition of the stochastic transition
relation:

– rate(ρ) returns the rate of the reaction ρ;
– next(S) = {(ρ�,�′ ,T) | S

ρ−→�,�′ T}; next∞(S) = {(ρ�,�′ ,T) | S
ρ−→�,�′

T and rate(ρ) = ∞};
– S has finite rates if, for every (ρ�,�′ ,T) ∈ S, rate(ρ) is not ∞;
– let S be a set of pairs (X,T′) (the second element is a solution; the first

one is not specified), [S]T is the subset of S of those pairs (X,T′) such that
T′ ≡ T;
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– can(S) is defined over sets of pairs (X,T) such that the solutions occurring
as second element of the pairs are all structurally equivalent. It returns a
solution S such that there is X with (X,S) ∈ S.

Definition 5 (Stochastic transition relation). The nanoκ Calculus stochas-
tic transition relation λ�−→, where λ ∈ R

+ ∪ {∞}, is the least relation satisfying
the following rules:

– if S
ρ−→�,�′ T and rate(ρ) =∞ then S ∞�−→ can([next∞(S)]T);

– if S
ρ−→�,�′ T and next(S) has finite rates then S λ�−→ can([next(S)]T), where

λ =
∑

(ρ�,�′ ,T′)∈[next(S)]T

rate(ρ)

We notice that, by definition, the nanoκ Calculus stochastic transition system
is such that there is no state with outgoing ∞�−→ and λ�−→ (λ finite) transitions.
Hereafter, the states with ∞�−→ outgoing transitions are called transient states,
the other ones are called markovian states.

The interrelation between basic and stochastic transition relations is as fol-
lows: the stochastic one partitions the products of a solution (according to the
basic transition relation) into equivalence classes, takes a canonical representa-
tive of the class, and defines a transition whose label is the sum of the rates of
the reactions in the basic one that yield solutions in the equivalence class.

Example 4. As examples of stochastic transitions, we consider the reactions
of sodium chloride (called ρ) and hydrogen gas (called ρ′) of Example 1 for
the solution 2Na[ion0],Cl [ion1],3H . This solution may transit with

ρ−→1,3 and
ρ−→2,3 into solutions that are structural equivalent. Therefore we obtain a unique

stochastic transition:

2Na[ion0],Cl [ion1],3H (1) 200�−→ Na[ion1],Na[ion0],Cl [ion1],3H (1)

We also observe that there is a unique transition 15�−→ outgoing the initial solution

and corresponding to
ρ′

−→4,5,
ρ′

−→4,6, and
ρ′

−→5,6.

3 Markov Chains and the nanoκ Calculus

The stochastic transition relation of nanoκ Calculus corresponds to an Inter-
active Markov Chain (IMC) transition system with only silent interactive tran-
sitions [11]. These transitions, which are those labelled ∞ in our model, are
executed in the IMC model instantaneously and under the maximal progress
assumption. That is, the so-called sojourn time in a transient state is 0, which
amounts to favour silent interactive transitions to those labelled with finite rates
(called markovian transitions). On the contrary, in a markovian state with n
outgoing markovian transitions labelled λ1, · · · , λn, the probability that the
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sojourn time is less than t is exponentially distributed with rate
∑

i λi, i.e.
Prob{delay < t} = 1 − e−t

∑
i λi , and the probability that the j-th transition is

taken is λj/(
∑

i λi).
However the models underlying traditional simulation algorithms such as [9]

are Continuos Time Markov transition systems (CTMC) that do not include
interactive transitions. Having a CTMC is therefore primary to run automatic
analysis tools for experimenting in silico the dynamics of nano-machines speci-
fications in nanoκ Calculus.

The mismatch between IMC with only silent actions and CTMC systems is
due to two main reasons: (i) the nondeterminism and (ii) the persistency of
the silent interactive transitions. As regards (i), consider two silent actions that
apply to the same reactants and give two different products. If these products
have only markovian transitions it is not possible to collect them in a unique
solution. As regards (ii), if an infinite sequence of silent interactive transitions
exists then the simulation time of the CTMC system will not advance anymore.
Therefore collapsing all these transitions, by identifying the initial and final
solutions of the sequence, is again not possible.

However, there are cases where the downgrading of an IMC system to a CTMC
one is possible without modifying the semantics. This is when all silent actions
may be partitioned into confluent directed acyclic graphs of finite depth. In fact,
when the silent interactive transitions are partitioned into confluent directed
acyclic graphs, there are no loops (there is no infinite sequence of silent interac-
tive transitions), and all sequences of silent interactive transitions starting from
the same state share the same final state, to which the initial state may be safely
collapsed. The meaning of this collapse is that we are removing a finite amount
of work which is performed in zero time.

The formal definition of downgrading of IMC to CTMC systems follows. We
first introduce the auxiliary function next markovian state defined on solutions
and yielding sets:

– nextm(S) = {((λ,T′),T) | S λ�−→ T′ ∞�−→
∗

T and λ ∈ R
+ and T � ∞�−→}

We notice that nextm(S) is undefined when S is transient.

Definition 6 (Downgrading of an IMC system). An IMC system (S, λ�−→)
is strictly-markovian if

1. states are either transient or markovian and
2. every subsystem consisting of silent interactive transitions is a confluent di-

rect acyclic graph of finite depth.

Let (S, λ�−→) be strictly-markovian; the transition relation ν
�=⇒, where ν ∈ R

+, is
the least one such that:

– if S is markovian then S ν
�=⇒ can([nextm(S)]T) with

ν =
∑

((λ,T′),T′′)∈[nextm(S)]T

λ
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It is easy to verify that the relation ν
�=⇒ defines a CTMC system. Moreover, the

properties below are direct consequences of the construction:

– the probability distribution of the sojourn time in a markovian state is the
same in the IMC and in the downgraded CTMC and

– the probability that one of the paths S λ�−→ ∞�−→
∗

T′ with T′ ≡ T is taken

in the IMC corresponds to the probability the unique transition S λ′
�=⇒ T′′,

with T′′ ≡ T, is taken in the downgraded CTMC.

Actually the correspondence between strictly-markovian IMC and the associated
CTMC is much stronger: the IMC semantics, the markovian bisimulation [11],
is still a markovian bisimulation on the CTMC when restricted to its states. We
will detail the correspondence in the full paper.

4 nanoκ Calculus at Work: The Rotaxane Case Study

The investigated rotaxane RaH (Figure 2) [15,1] is made of a stoppered axle con-
taining an ammonium (A) and an electron acceptor bipyridinium (B) stations
that can establish hydrogen-bonding and charge-transfer interactions, respec-
tively, with the ring component, which is a crown ether with electron donor
properties. Since the hydrogen bonding interactions between the macrocyclic
ring and the ammonium center are much stronger than the charge-transfer in-
teractions of the ring with the bipyridinium unit, the rotaxane exists as only
one of the two possible translational isomers, denoted as RaH in Figure 2. In
solution, addition of a base (e.g., tributylamine) converts the ammonium cen-
ter into an amine function, giving the transient state Ra that is transformed
into the stable state Rb as a consequence of the displacement of the macrocycle

Fig. 2. Schematic representation of the shuttling processes of the molecular ring in the
examined rotaxane
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onto the B station. The process can be reversed by addition of acid (e.g., tri-
fluoroacetic acid) and the initial state is restored, passing through the transient
state denoted as RbH. Nuclear magnetic resonance, absorption and lumines-
cence spectroscopic experiments, together with electrochemical measurements,
indicate that the acid-base controlled switching, which is fully reversible and
relatively fast, exhibits a clear-cut on-off behaviour [1].

The Rotaxane RaH is particularly appropriate to test the modeling approach
described in the present paper because it is one of the very few cases wherein not
only the thermodynamic properties, but also the dynamic behavior of the system
have been experimentally characterized in detail. Specifically, the macrocycle’s
shuttling process between the ammonium/amine and bipyridinium stations in
this rotaxane, driven by the successive addition of base and acid, have been in-
vestigated in solution [8]. The rate constants for the “forward” (Ra→Rb) and
“backward” (RbH→RaH) shuttling motions (vertical processes in Figure 2) of
the molecular ring, which occur, respectively, upon deprotonation and reproto-
nation of the ammonium/amine recognition site on the axle (horizontal processes
in Figure 2), were found to be 0.72s−1 and 40s−1 at 293◦K, respectively.

4.1 Modeling the Rotaxane RaH in nanoκ Calculus

The nanoκ Calculus molecules. Figure 3 illustrates the nanoκ Calculus mod-
eling of the rotaxane RaH. We use four species:

– Nh models the ammonium/amine station of the rotaxane: it has one field h
and two sites ring and axle;

– Axle models the spacer between the two stations: it has two fields s and h
and three sites nh, bipy, and ring;

– Bipy models the bipyridinium station: it has one field h and two sites ring
and axle;

– Ring models the crown ether ring: it has no field and one site link.

Fig. 3. Initial state of the Rotaxane RaH in nanoκ Calculus
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The pairs of sites axle of Nh and nh of Axle, and axle of Bipy and bipy
of Axle are always linked in our modeling. They model the covalent bonds
maintaining the structural integrity of the axle. Exactly one site ring of Nh,
Bipy , and Axle is linked at a given moment at link of Ring. The first two
cases respectively model the “stable” RaH and Rb states of Figure 2 in which
the ring is steadily located around the Nh or the Bipy molecules, respectively.
The last case models the “unstable” states; these are the Ra and RbH states
of Figure 2 in which the ring is not steadily located. In order to distinguish
between the Ra and RbH states, we use the field s of the Axle: it holds the
value 0 if the ring is around the Nh (Ra state), 1 if it is around the Bipy (RbH
state).

Ammonium and amine functions have different chemical nature but can be
seen as protonated and deprotonated version of the same species. Thus we model
both by the same nanoκ Calculus species Nh. Its field h is used to record the
presence or absence of a proton on Nh: its value is 1 if it is protonated, and 0
otherwise.

As Ring’s movements are triggered by protonations and deprotonations due
to acid-base reactions, we also need to have acid and base molecules in our
modeling. We consider the species Acid and Base both with one field h having
value 1 in case the acid/base molecule holds the proton to be exchanged, 0
otherwise (for instance Acid [h1] and Base [h0] are respectively an acid molecule
ready to give a proton and a base molecule ready to receive a proton).

The initial state for rotaxane RaH is thus modeled by the term:

Nh[h1](axles + ringx) , Axle[s0 + h1](nhs + bipyr + ring) ,
Bipy [h1](axler + ring) , Ring(linkx)

graphically depicted in Figure 3.
Note that the Nh is initially protonated (and this information is present also

in the Axle and the Bipy), the Axle is bound to the Nh and the Bipy , and the
Ring is bound to the Nh.

The nanoκ Calculus reactions. We now present the reactions used in our
modeling. Reactions 1, 2, 7 and 8 are presented with a double arrow (that are
reversible reactions). Formally they correspond to two nanoκ Calculus reactions,
one achieved reading the reaction from left to right considering the rate over the
arrow, and another one achieved reading it from right to left considering the
rate below. In this section we do not consider numerical values of rates, this is
detailed in part 4.2.

A base can get the proton of a protonated Nh, and a Nh can get a proton
from an acid. These acid-base reactions are reversible. Reactions 1 and 2 model
this phenomena. The systems corresponding to the left-hand side and right-
hand side coexist, even if one can be much predominant according to the ratio
nh base/base nh (and acid nh/nh acid).
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Nh[h1],Base[h0]
nh base

�

�

base nh

Nh[h0],Base[h1] (1)

Nh[h0],Acid [h1]
acid nh

�

�

nh acid

Nh[h1],Acid [h0] (2)

The protonation state of the molecule Nh needs to be known by Bipy because
it affects its interaction with Ring. Reactions 3 and 4 achieve this by passing
information from Nh to Bipy through Axle. These updates are instantaneous
because the reactions have infinite rates (this is relevant for the correctness of
our simulation, since these reactions have no counterpart in chemistry).

if (α �= β)
Nh[hα](axles),Axle[hβ ](nhs)

∞
� Nh[hα](axles),Axle[hα](nhs) (3)

and:
Axle[hα](bipyr),Bipy [hβ](axler)

∞
� Axle[hα](bipyr),Bipy [hα](axler) (4)

We achieve the modeling of Ring movements in two steps. Firstly the instan-
taneous reactions to deprotonation/reprotonation (reactions 5–8), and secondly
the actual Ring shuttling (reactions 9 and 10). As reactions 5–8 represent imme-
diate consequences of deprotonation or reprotonation of Nh, they have infinite
rates. Reactions 9 and 10 are reversible, because the Ring is susceptible to return
to the previous station due to the Brownian motion.

Nh[h0](axles + ringx),Axle[s0](nhs + ring)
∞
�

Nh[h0](axles + ring),Axle[s0](nhs + ringx) (5)
Bipy [h1](axler + ringx),Axle[s1](biaxr + ring)

∞
�

Bipy [h1](axler + ring),Axle[s1](biaxr + ringx) (6)
Axle[s0](nhs + ringx),Nh[h1](axles + ring)

∞
�

Axle[s0](nhs + ring),Nh[h1](axles + ringx) (7)
Axle[s1](nhs + ringx),Bipy [h0](axles + ring)

∞
�

Axle[s1](nhs + ring),Bipy [h0](axles + ringx) (8)

Axle[s0](bipyr + ringx),Bipy [h0](axler + ring)
link bipy

�

�

unlink bipy

Axle[s1](bipyr + ring),Bipy [h0](axler + ringx) (9)

Axle[s1](nhs + ringx),Nh[h1](axles + ring)
link nh

�

�

unlink nh

Axle[s0](nhs + ring),Nh[h1](axles + ringx) (10)

4.2 Simulation Results

It is not difficult to verify that the above modeling of rotaxane RaH in nanoκ
Calculus yields a stictly markovian IMC system. Therefore we may safely down-
grade it to a CTMC system that we use to simulate in silico the behaviour of
the rotaxane RaH.
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As previously discussed the rates for the ring movements are respectively
link bipy = 0.72 and link nh = 40. On the basis of the estimated equilibrium
constants, the rates for the reverse reactions are quantified two orders of mag-
nitude smaller, i.e. unlink bipy = 0.0072 and unlink nh = 0.4.

(A) (B)

Fig. 4. Comparing the simulations in silico with the experiments in vitro. Grey traces:
number of Rings located around Bipys during the “forward” Ra→Rb (part A) and the
“backward” RbH→RaH (part B). Black traces: UV absorbance changes observed upon
the occurrence of the same respective shuttling processes.

The aim of the first two simulations depicted in Figure 4 is to check whether
the experimentation in silico can reproduce the results observed in in vitro [8].
The techniques used for the in vitro experimentation did not permit to observe
and quantify the deprotonation/reprotonation rates (this is not surprising as
these are very fast acid-base reactions). Thus, in the simulation we have con-
sidered instantaneous deprotonation/reprotonation, i.e. nh base = acid nh = ∞
and base nh = nh acid = 0. In both simulations, we have considered 1000 rotax-
anes: in the first one we have simulated deprotonation and “forward” (Ra→Rb)
shuttling, in the second one reprotonation and “backward” (RbH→RaH) shut-
tling. In the first simulation the shuttling phase is completed in around 6 seconds,
while in the second one in 0.1 seconds; this is a consequence of the different rates
of the two directions of shuttling. Very remarkably, simulated data are in strike
agreement with the experimental results.

After these initial encouraging results, we have decided to use the in silico
simulation techniques to provide a comprehensive view of the overall reactions
depicted in Figure 2, simulating also the deprotonation/reprotonation phases
not observed in the in silico experimentation. More precisely, the aim of this
second group of simulations was to either validate or invalidate the assumption
according to which deprotonation/reprotonation can be considered “instanta-
neous” with respect to the shuttling time. To this aim, we have simulated depro-
tonation/reprotonation under two different concentrations of rotaxanes. In fact,
this is a bimolecular reaction whose rate is influenced by the concentration of
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the reactants. For instance, at the concentration considered in [8], i.e. 10−5M ,
assuming 1000 instances of rotaxane and base/acid, a plausible rate for depro-
tonation/reprotonation is 2 × 102s−1 (with reverse reaction rate on the order
of 2 × 10−5s−1) while at the concentration 10−8M it is 0.2s−1 (with reverse
reaction on the order of 0.2× 10−7s−1).

(A) (B)

Fig. 5. Number of Rings located around Bipys (grey trace) and number of protonated
rotaxanes (black trace) during the “forward” shuttling in the presence of base molecules
(part A) and the “backward” shuttling in the presence of acid molecules (part B)

We have performed the two simulations, namely deprotonation with subse-
quent “forward” shuttling and reprotonation with subsequent “backward” shut-
tling, considering the two different concentrations.

The results at concentration 10−5M are not reported in the paper as they es-
sentially confirm the validity of the “instantaneous” deprotonation/reprotonation
assumption. We report in Figure 5 the results for concentration 10−8M as they
are definitely more interesting; the rings start moving before the deprotonation/
reprotonationphase is over. This proves that in the rotaxaneRaH the stimulus and
the subsequent shuttling could interplay, and this opens interesting scenarios that
requires further investigation. For instance, it could be the case that using weak
acid/basemolecules (for which the ratio between the deprotonation/reprotonation
rate and the reverse rate is smaller) the interplay between the stimulus and the
shuttling could give rise to currently unknown emerging behaviours.
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Abstract. This paper presents a simulation algorithm for the stochastic
π-calculus, designed for the efficient simulation of biological systems with
large numbers of molecules. The cost of a simulation depends on the
number of species, rather than the number of molecules, resulting in a
significant gain in efficiency. The algorithm is proved correct with respect
to the calculus, and then used as a basis for implementing the latest
version of the SPiM stochastic simulator. The algorithm is also suitable
for generating graphical animations of simulations, in order to visualise
system dynamics.

1 Introduction

In recent years, there has been considerable research on designing programming
languages for complex parallel computer systems. Interestingly, some of this
research is also applicable to biological systems, which are typically highly com-
plex and massively parallel. In particular, a mathematical programming language
known as the stochastic π-calculus has recently been used to model and simulate
a range of biological systems [7,12,13]. The calculus allows the components of a
biological system to be modelled independently, rather than modelling the indi-
vidual reactions. This allows large models to be constructed by composition of
simple components [2]. The calculus also facilitates mathematical analysis of sys-
tems using a range of established techniques, which could eventually shed light
on some of the fundamental properties of biological systems. Various stochastic
simulators have been developed for the calculus [13,9,1], in order to perform vir-
tual experiments on biological system models. Such in silico experiments can be
used to formulate testable hypotheses on the behaviour of biological systems, as
a guide to future experimentation in vivo.

Currently available simulators for the stochastic π-calculus are implemented
based on standard theory of chemical kinetics, using an adaptation of the Gille-
spie algorithm [5]. This algorithm has the distinct advantage of being mathemati-
cally exact, enabling accurate simulation of biological models. Unfortunately, the
algorithm is also highly computationally intensive, particularly when simulating
large models. As a result, there has been considerable research on optimisations
for the Gillespie algorithm, resulting in a plethora of alternatives, both exact and
approximate [4,6,15]. Like the original algorithm, these alternatives are defined
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in terms of systems of chemical reactions, the de facto standard for biological
modelling. This reaction view of systems differs in many ways from the com-
ponent view of the stochastic π-calculus. As a result, techniques for efficient
simulation of chemical reactions cannot be directly applied to the stochastic π-
calculus, but need to be adapted to account for the differences between the two
formalisms [10]. Given these differences, and given the importance of efficiency
in the stochastic simulation of biological models, research on efficient simulation
algorithms for the stochastic π-calculus seems of interest. There has already been
substantial research on efficient implementation techniques for variants of the π-
calculus, in the context of programming languages for parallel computer systems
[16]. However, this research does not take into account the specific properties of
biological systems, which differ from most computer systems in fundamental
ways. One key difference is that biological systems are often composed of large
numbers of processes with identical behaviour, such as thousands of proteins of
the same type.

This paper presents a simulation algorithm for the stochastic π-calculus, de-
signed for the efficient simulation of biological systems with large numbers of
molecules. The paper is structured as follows. Section 2 illustrates the princi-
ple of the simulation algorithm with the help of a biological example. Section 3
presents the full definition of the algorithm, and Sec. 4 outlines a proof of cor-
rectness with respect to the stochastic π-calculus. Finally, Sec. 5 shows how the
algorithm can be mapped to executable program code, in order to implement a
stochastic simulator.

2 Biological Example

This section introduces the simulation algorithm for the stochastic π-calculus,
with the help of a biological example. The example describes a system of three
genes with negative control that mutually repress each other, as presented in
[11]. The system consists of an environment, which contains definitions for a
Gene(a, b) and a Protein(b), together with a top-level process, which contains
three genes executing in parallel :

{Gene(a, b)=τt.(Gene(a, b) | Protein(b)) + ?a.τu.Gene(a, b),

P rotein(b) = !b.P rotein(b) + τd}
�
Gene(a, b) | Gene(b, c) | Gene(c, a)

A Gene(a, b) is parameterised by its promoter region a, together with the pro-
moter region b that is recognised by its transcribed proteins. The gene can per-
form one of two actions, represented as a choice (+). Either it can transcribe a
Protein(b) by doing a stochastic delay τt, after which the new protein is executed
in parallel with the gene, or it can block by doing an input ?a on its promoter
region a and then unblock by doing a stochastic delay τu. A Protein(b) can
repeatedly do an output !b on the promoter region b, or it can degrade by doing
a stochastic delay τd. According to the reduction rules of the calculus, the input
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?b of a Gene(b, c) can interact with the output !b of a corresponding protein,
becoming blocked as a result. The three genes in the system can mutually re-
press each other, since Gene(a, b) produces proteins that can block Gene(b, c),
which produces proteins that can block Gene(c, a), which produces proteins that
can block Gene(a, b), completing the cycle. Stochastic behaviour is incorporated
into the system by associating each of the channels a, b, c with corresponding
interaction rates given by ρ(a), ρ(b), ρ(c), respectively, and by associating each
of the delays τt, τu, τd with corresponding delay rates given by t, u, d. These rates
are used to calculate the probabilities of all the reactions in the system, where
the probability of a reaction is proportional to its rate.

The above system is simulated by encoding it to a system E � V of the
stochastic π-machine, which consists of a machine environment E and a machine
term V :

{Gene(a, b)=τt.(Gene(a, b) | Protein(b)) + ?a.X(a, b),

X(a, b)=τu.Gene(a, b),

P rotein(b)=!b.P rotein(b) + τd}
�
∅, {a �→ (1,0,0,0), b �→ (1,0,0,0), c �→ (1,0,0,0), t �→ (3,3t)},

{Gene(a, b) �→ 1, {t �→ 1, a �→ (1,0)}, τt.(Gene(a, b) | Protein(b)) + ?a.X(a, b),

Gene(b, c) �→ 1, {t �→ 1, b �→ (1,0)}, τt.(Gene(b, c) | Protein(c)) + ?b.X(b, c),

Gene(c, a) �→ 1, {t �→ 1, c �→ (1,0)}, τt.(Gene(c, a) | Protein(a)) + ?c.X(c, a)}

The machine environment E is similar to a calculus environment, with the ad-
ditional constraint that each choice of one or more actions must be associated
with a corresponding identifier. In order to satisfy this constraint, the encoding
creates a new definition X(a, b), which keeps track of the number of genes in
a blocked state. Note that the constraint is not enforced at the calculus level,
since this would be too much of syntactic burden. Instead, the extra definitions
are created by the encoding.

The machine term V consists of a set of channels Z, a store of reactions S and
a heap of species H . The set Z denotes the set of all the private channels in the
system, which is empty in this example. The store S records the apparent rate
of all the delays and channels in the system. The apparent rate of a delay of rate
r is given by the number of possible delays τr multiplied by r. The apparent rate
of a channel x is given by the number of possible interactions on the channel
multiplied by ρ(x). This information is recorded in the Store S, where each delay
is mapped to the number of delays and the apparent rate of the delay, and each
channel is mapped to the number of inputs, outputs, mixed interactions (i.e.
the number of pairs of inputs and outputs that cannot interact with each other)
and the apparent rate of the channel. In the above example, there are initially
three delays of rate t and one input on each channel a, b, c. The heap H records
information about each species that is currently being simulated, including the
population of the species, the choice of actions that the species can perform
and the number of each type of action. Initially there are three species in the
system, Gene(a, b), Gene(b, c) and Gene(c, a), where each gene with a given set
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a b

c d

Fig. 1. Graphical representation of a network of three genes with inhibitory control
that mutually repress each other. It is assumed that ρ(a) = ρ(b) = ρ(c) and ρ(a) �
t � d � u. Initially there is one copy of each gene (a), and one of the genes then
transcribes a protein (b). After a sequence of reduction steps, two of the genes become
blocked, and the third gene produces 100 proteins (c). The mutual repression of genes
gives rise to alternate oscillations of protein levels, as shown in the simulation plot
(d), where the vertical axis represents the number of proteins and the horizontal axis
represents the simulation time. The results were obtained with ρ(a) = 1.0, t = 0.1
d = 0.001 and u = 0.0001.

of parameters denotes a separate species. The Gene(a, b) can do a delay at rate
t or an input on channel a, and similarly for the remaining genes in the system.

A corresponding graphical representation for this system is shown in Fig. 1(a)
based on [11], where a separate graph is drawn for each gene. Each shape in the
graph represents a species, and each labelled edge represents an action that the
species can perform. Multiple edges from a species correspond to a choice, while
multiple edges from a horizontal bar correspond to a parallel composition.

In order to execute this system, the stochastic π-machine chooses one of the
possible reactions using an adaptation of the Gillespie algorithm [5], where the
probability of a reaction is proportional to its rate. Initially, the machine can
do one of three delay reactions with rate t, where the apparent rate of the
delay is 3t. The machine chooses one of these delays with equal probability.
Suppose the Gene(a, b) is chosen to perform the delay. An additional Protein(b)
is produced, giving rise to the following machine term, which corresponds to
Fig. 1(b):
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∅, {a �→ (1,0,0,0), b �→ (1,1,0,ρ(b)), c �→ (1,0,0,0), d �→ (1,d), t �→ (3,3t)},

{Gene(a, b) �→ 1, {t �→ 1, a �→ (1,0)}, τt.(Gene(a, b) | Protein(b)) + ?a.X(a, b),

P rotein(b) �→ 1, {d �→ 1, b �→ (0,1)}, !b.P rotein(b) + τd,

Gene(b, c) �→ 1, {t �→ 1, b �→ (1,0)}, τt.(Gene(b, c) | Protein(c)) + ?b.X(b, c),

Gene(c, a) �→ 1, {t �→ 1, c �→ (1,0)}, τt.(Gene(c, a) | Protein(a)) + ?c.X(c, a)}

The Gillespie algorithm is then used to execute the next reaction. Assum-
ing ρ(b) � t there is a high likelihood that a reaction on b will be chosen,
which blocks Gene(b, c). Subsequently, a Protein(a) is transcribed, which blocks
Gene(a, b). Since both Gene(b, c) andGene(a, b) are blocked, no more Protein(c)
or Protein(b) are produced. Eventually 100 copies of Protein(a) are produced,
giving rise to the following machine term, which corresponds to Fig. 1(c):

∅, {a �→ (0,100,0,0), b �→ (1,0,0,0), c �→ (1,0,0,0), t �→ (1,t), u �→ (2,2u), d �→ (100,100d)},

{X(a, b) �→ 1, {u �→ 1}, τu.Gene(a, b),

X(b, c) �→ 1, {u �→ 1}, τu.Gene(b, c),

Gene(c, a) �→ 1, {t �→ 1, c �→ (1,0)}, τt.(Gene(c, a) | Protein(a)) + ?c.τu.X(c, a),

P rotein(a) �→ 100, {d �→ 1, a �→ (0,1)}, !a.Protein(a) + τd}

This represents the first oscillation cycle from the simulation results of Fig. 1(d).
Note how the graphical representation relies on the ability to count the num-
ber of copies of each species, in order to label the corresponding node with its
population. The graphs are generated using a translation to DOT syntax [3]
based on [11]. The resulting sequence of pictures can also be used to produce
a 3D animation of the simulation, as shown in [9]. Note that the simulation
algorithm does not require the countable species of a simulation to be known
beforehand. Rather, the populations of species are grouped on-the-fly according
to the species name and parameters. In the above example, at the start of the
simulation there are three definitions for Gene(a, b), X(a, b) and Protein(a) in
the environment, and three species Gene(a, b), Gene(b, c) and Gene(c, a) in the
heap. As the simulation proceeds, additional species are dynamically created
in the heap by instantiating the definitions with different parameters. In the
general case, a new species is dynamically created for each new combination of
parameters, which is potentially unbounded.

3 Simulation Algorithm

This section presents a formal definition of the stochastic π-machine (SPiM).
The syntax of processes and environments in SPiM is given in Definition 1. This
is a subset of the syntax of the stochastic π-calculus (Definition 10), with the
additional constraint that each choice of one or more actions can only occur at
the top level of a definition, as in [11]. Stochastic behaviour is incorporated into
the system by associating each channel x with a corresponding interaction rate
given by ρ(x), and by associating each delay τr with a corresponding delay rate
r. Each rate characterises an exponential distribution, such that the probability
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P, Q ::= 0 Null

| X(ñ) Instance

| P | Q Parallel

| νx P Restriction

M ::= 0 Null

| π.P + M Action

C ::= νñM Choice

E ::= ∅ Empty

| E, X(m̃)=P Process

| E, X(m̃)=C Choice

π ::= ?x(m̃) Input

| !x(ñ) Output

| τr Delay

Definition 1. Syntax of processes and environments in SPiM. For convenience, D is

used to denote the body of a definition, which can be a process P or a choice C. For

each definition of the form X(m̃)=D it is assumed that fn(D) ⊆ m̃.

S ::= ∅ Empty

| S, r �→ (Delayr, ar) Delay

| S, x �→ (Inx, Outx, Mixx, ax) Channel

U ::= ∅ Empty

| U, r �→ Delayr Delay

| U, x �→ (Inx, Outx) Channel

Definition 2. Syntax of stores and substores in SPiM..

V ::= Z, S, H Term

I ::= X(ñ) Instance

H ::= ∅ Empty

| H, I �→ (i, U, C) Species

Definition 3. Syntax of terms in SPiM. For each mapping I �→ (i, U, C) it is assumed

that I ≡ C according to Definition 12(19) and U = Sub(C) according to Definition 4.

Inx(?x(m̃).P + M) � 1 + Inx(M)

Inx(π.P + M) � Inx(M) if π �= ?x(m̃)

Outx(!x(ñ).P + M) � 1 + Outx(M)

Outx(π.P + M) � Outx(M) if π �= !x(ñ)

Delayr(τr.P + M) � 1 + Delayr(M)

Delayr(π.P + M) � Delayr(M) if π �= τr

Sub(νñ M) � {x �→ (i, o) | i = Inx(M) ∧ o = Outx(M) ∧ (i, o) �= (0, 0) ∧ x /∈ ñ}
∪ {r �→ d | d = Delayr(M) ∧ d �= 0}

Definition 4. Creating a substore in SPiM, where Inx(0)=Outx(0)=Delayr(0)=0.
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of a reaction with rate r occurring within time t is given by F (t) = 1−e−rt. The
average duration of the reaction is given by the mean 1/r of this distribution.

The syntax of machine terms is given in Definitions 2 and 3. A machine term
V consists of a set of private channels Z, a store S and a heap H . The store S
records the activity and apparent rate of all the unguarded delays and channels in
the system. The activity of a delay with rate r is given by Delayr, which records
the total number of delays of rate r. The apparent rate ar of the delay is equal
to r×Delayr. The activity of a channel x is given by the triple Inx,Outx,Mixx,
which records the total number of inputs, outputs and mixed interactions on
x, respectively, where the number of mixed interactions denotes the number of
pairs of inputs and outputs that cannot interact on x. The apparent rate ax of
the channel is equal to ρ(x) × (Inx ×Outx −Mixx). The heap H keeps track of
the number of copies of identical species in the system, and consists of zero or
more mappings from species I to triples (i, U, C), where the number i records
the population of the species, the choice C records the actions that the species
can perform, and the substore U records the number of inputs and outputs on
each channel in C, together with the number of each type of delay in C. The
notation H(I) denotes the values associated to I in the heap H , as usual. A
substore U is created from a choice C according to Definition 4.

The system is executed according to the reduction rules of the stochastic
π-machine, described in Definition 9. The rules rely on a number of auxiliary
functions, given in Definitions 5-8. The expression S⊕U adds a substore U to a
store S, as described in Definition 5. This is used to update the store each time
the population of a species changes during a simulation. The number of delays,
inputs and outputs in the species are added to the totals in the store, where the
number of mixed interactions is calculated incrementally. Subtraction S ! U is
defined in a similar way.

The expression (Z, S,H)⊕ {I �→ C} adds a species I with body C to a term
(Z, S,H), as described in Definition 6. If a binding (i, U, C) for I is already
present in the heap then the population i of the species is incremented (1).
Otherwise, a new binding (i, U, C) for I is created, where the substore U denotes
the total activity of the species, given by Sub(C), and the population of the
species is set to 1 (2). Note that whenever a new species is added to a term,
the substore U of the species needs to be added to the store S. The expression
(Z, S,H)!{I �→ C} removes a species I with body C from a term (Z, S,H) (3).

The expression V ⊕ P adds a machine process P to a machine term V , as
described in Definition 7. The null process 0 is discarded (4). If an instance X(ñ)
is defined as a choice X(m̃)=C then the term is updated with a mapping from
X(ñ) to the body of the definition, in which the parameters m̃ are instantiated
with the values ñ (5). If an instance X(ñ) is defined as a process X(m̃)=P then
the body of the definition is added to the term, in which the parameters m̃ are
instantiated with the values ñ (6). A parallel composition P | Q is split so that
each process is added separately (7). A restriction νxP is added to a term by
replacing x with a fresh channel y and adding this to the set of private channels
Z (8).
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S ⊕ ∅ � S

S ⊕ (U, r �→ d) � (S ⊕ U), r �→ (d, (d × r)) if S(r) = ∅
(S, r �→ (d, a)) ⊕ (U, r �→ d′) � (S ⊕ U), r �→ (d + d′, a + d′ × r)

S ⊕ (U, x �→ (i, o)) � (S ⊕ U), x �→ (i, o, i × o, 0) if S(x) = ∅
(S, x �→ (i, o, m, a)) ⊕ (U,x �→ (i′, o′)) � (S ⊕ U), x �→ (i + i′, o + o′, m + i′ × o′, a′)

if a′ = a + (i × o′ + i′ × o) × ρ(x)

Definition 5. Adding a substore to a store in SPiM.

(Z, S, H) ⊕ {I �→ C} � Z, (S ⊕ U), H{I �→ (i+1, U, C)} if H(I) = (i, U, C) (1)

(Z, S, H) ⊕ {I �→ C} � Z, (S ⊕ U), H{I �→ (1, U, C)} if H(I) = ∅, U = Sub(C) (2)

(Z, S, H) � {I �→ C} � Z, (S � U), H{I �→ (i−1, U, C)} if H(I) = (i, U, C), i>0(3)

Definition 6. Adding and removing a species from a term in SPiM.

V ⊕ 0 � V (4)

V ⊕ X(ñ) � V ⊕ {X(ñ) �→ C{ñ/m̃}} if X(m̃)=C (5)

V ⊕ X(ñ) � V ⊕ P{ñ/m̃} if X(m̃)=P (6)

V ⊕ (P | Q) � V ⊕ P ⊕ Q (7)

(Z, S, H) ⊕ (νx P ) � (Z ∪ {y}, S, H) ⊕ P{y/x} if y fresh (8)

Definition 7. Adding a process to a term in SPiM.

1. Calculate a0 =
∑N

i=1 ai for all the reactions θ1, . . . , θN in the domain of S
2. Generate two random numbers n1, n2 ∈ [0, 1] and calculate t, μ such that:

t = (1/a0) ln(1/n1)

μ−1∑

i=1

ai < n2a0 ≤
μ∑

i=1

ai

3. Gillespie(Z, S, H) = θμ, t

Definition 8. Choosing the next reaction in SPiM using the Gillespie algorithm [5].

r, t = Gillespie(V )
V ′ = V � {I �→ νm̃ (τr.P + M)}

V
r−→ V ′ ⊕ (νm̃P )

(9)

x �∈ m̃1 ∪ m̃2

ñ ∩ m̃2 = ∅
m̃1 ∩ m̃2 = ∅

x, t = Gillespie(V )
V ′=V �{I1 �→ νm̃1 (!x(ñ).P1 + M1)}�{I2 �→ νm̃2 (?x(m̃).P2 + M2)}

V
ρ(x)−→ V ′ ⊕ νm̃1 νm̃2 (P1 | P2 {ñ/m̃})

(10)

Definition 9. Reduction in SPiM.
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The expression Gillespie(V ) chooses the next channel or delay on which to
perform a reaction and calculates the duration t of the reaction, as described in
Definition 8.

Finally, the expression V
r−→ V ′ simulates a single reaction for a machine

term V and produces an updated machine term V ′, as described in Definition 9.
The rate of the reaction is given by r, and the simulation time is incremented
by the reaction time t. If a delay with rate r has been chosen from a term
V by the Gillespie algorithm, and if the term contains a species with a delay
τr.P , the term can perform a reaction with rate r and then execute the process
νm̃ P (9). If an interaction on channel x has been chosen from a term V by the
Gillespie algorithm, and if the term contains a species with an output !x(ñ).P1,
together with a species with a corresponding input ?x(m̃).P2 then the input
and output can interact on channel x with rate ρ(x) and evolve to the process
νm̃1 νm̃2 (P1 | P2 {ñ/m̃}), where the value ñ is bound to m̃ in P2 (10).

4 Correctness

This section outlines a proof of correctness of the stochastic π-machine with
respect to the stochastic π-calculus. Once the main technical lemmas and defi-
nitions have been formulated, the proofs themselves are relatively direct. .

The syntax of the stochastic π-calculus (SPi) is given in Definition 10, and is
identical to the syntax described in [11]. The reduction rules of the calculus are
given in Definition 11. In the general case, each rule is of the form E � P

r−→
E � P ′, which states that a system E � P can reduce to a system E � P ′ by
doing a reaction with rate r. Since the environment E remains constant over
time, the rules can be abbreviated to the form P

r−→ P ′. The reduction rules
rely on a structural congruence relation, given in Definition 12, which defines a
notion of equality on processes.

In this setting, the probability of performing the reaction P
r−→ P ′ is given

by r/R(P ), where R(P ) denotes the apparent rate of P . This corresponds to the
sum of the rates of all the reactions in P , and is defined as

R(P ) �
∑

θ∈P

R(θ, P ) (38)

for all the delays and channels in P , where θ can be a delay r or a channel x.
By definition, R(θ, P ) is the apparent rate of θ in process P , as described in
Definition 13. The apparent rate of a given channel x is equal to the number of
possible combinations of inputs and outputs on x, multiplied by the rate of x
(34). The functions Inx(P ) and Outx(P ) return the number of unguarded inputs
and outputs on channel x in P , respectively, while Mixx(P ) returns the sum of
Inx(Mi) × Outx(Mi) for each choice Mi in P . The definition of apparent rate
takes into account the fact that an input and an output in the same choice cannot
interact, by subtracting Mixx(P ) from the product of the number of inputs and
outputs on x. The apparent rate of a delay r is equal to the rate of the delay
times the number of unguarded delays of rate r in P , written Delayr(P ) (35).
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P, Q ::= M Choice

| X(ñ) Instance

| P | Q Parallel

| νx P Restriction

M ::= 0 Null

| π.P + M Action

E ::= ∅ Empty

| E, X(m̃)=P Definition

fn(P ) ⊆ m̃

π ::= ?x(m̃) Input

| !x(ñ) Output

| τr Delay

Definition 10. Syntax of SPi, as defined in [11].

τr.P + M
r−→ P (11)

!x(ñ).P + M | ?x(m̃).Q + N
ρ(x)−→ P | Q{ñ/m̃} (12)

P
r−→ P ′ ⇒ νx P

r−→ νx P ′ (13)

P
r−→ P ′ ⇒ P | Q

r−→ P ′ | Q (14)

Q ≡ P
r−→ P ′ ≡ Q′ ⇒ Q

r−→ Q′ (15)

Definition 11. Reduction in SPi.

P | 0 ≡ P (16)

P | Q ≡ Q | P (17)

P |(Q | R) ≡ (P | Q) |R (18)

X(ñ) ≡ P{ñ/m̃} ifX(m̃)=P (19)

νx0 ≡ 0 (20)

νx νy P ≡ νy νx P (21)

νx (P | Q) ≡ P |νx Q if x /∈ fn(P ) (22)

Definition 12. Structural Congruence Axioms in SPi. Structural congruence is de-

fined as the least congruence that satisfies these axioms. Processes in SPi are also

equal up to renaming of bound names and reordering of terms in a choice, as in [8].

The apparent rate R(V ) of a machine term V can be defined in a similar
fashion, where R(θ, V ) denotes the apparent rate of θ in term V , as described
in Definition 14. The apparent rate of an unrestricted channel x is equal to the
apparent rate of x in the heap (36). The apparent rate of a delay r is equal to
the apparent rate of r in the heap, plus the apparent rates of all the restricted
channels of rate r (37). The apparent rate of a restricted channel is recorded
as a delay in order to ensure that the machine preserves the compositionality
properties of the calculus. This is useful in cases where multiple machines are
executed in parallel, for example in distributed or multi-core systems. In this
setting, the restricted channels of a given machine are not be visible outside the
scope of the machine, and interactions on these channels appear externally as
delays.

The function �E � P � encodes a system E � P in SPi to a corresponding sys-
tem in SPiM, as described in Definition 17. A corresponding decoding from the
stochastic π-machine to the stochastic π-calculus is described in Definition 18.
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Inx(νx P ) � 0 (23)

Inx(νy P ) � Inx(P ) if x �= y (24)

Inx(P | Q) � Inx(P ) + Inx(Q) (25)

Inx(X(ñ)) � Inx(P{ñ/m̃}) if X(m̃)=P (26)

Delayr(νx P ) � Delayr(P ) if ρ(x) �= r (27)

Delayr(νx P ) � Delayr(P ) + Actx(P ) if ρ(x) = r (28)

Delayr(P | Q) � Delayr(P ) + Delayr(Q) (29)

Delayr(X(ñ)) � Delayr(P{ñ/m̃}) if X(m̃)=P (30)

Mixx(M) � Inx(M) × Outx(M) (31)

Actx(P ) � Inx(P ) × Outx(P ) − Mixx(P ) (32)

(33)

R(x,P ) � ρ(x) × (Actx(P )) (34)

R(r, P ) � r × Delayr(P ) (35)

Definition 13. Apparent Rate in SPi based on [11]. The definitions of Inx(P ),

Outx(P ) and Delayx(P ) are given for processes P in SPi and extend the definitions of

Inx(M), Outx(M) and Delayr(M) from Definition 4. The definitions of Mixx(P ) and

Outx(P ) are similar to that of Inx(P ) and are omitted.

R(x, (Z, H,S)) � a if H(x) = (i, o, m, a) and x /∈ Z (36)

R(r, (Z, H,S)) � a + Σiai if H(r) = (d, a) and xi ∈ Z (37)

and ρ(xi) = r and H(xi) = (ji, oi, mi, ai)

Definition 14. Apparent Rate in SPiM.

Theorem 1 ensures that the terms of the stochastic π-machine are closed under
reduction.

Theorem 1. ∀E, V ∈ SPiM. E � V r−→ E � V ′ ⇒ E � V ′ ∈ SPiM

Proof. By induction on the derivation of reduction in SPiM "#

Theorem 2 and Theorem 3 ensure that the stochastic π-calculus and the stochas-
tic π-machine are reduction equivalent.

Theorem 2. ∀E, V ∈ SPiM. E � V r−→ E � V ′ ⇒ �E � V �
r−→ �E � V ′�

Proof. By induction on the derivation of reduction in SPiM "#

Theorem 3. ∀E,P ∈ SPi. E � P r−→ E � P ′ ⇒ �E � P �
r−→≡ �E � P ′�



Efficient, Correct Simulation of Biological Processes 195

�∅� � ∅ (39)

�E, X(m̃)=D� � �E� ∪ �X(m̃)=D� (40)

�X(m̃)=νñ
∑N

i=1πi.Pi� �
⋃N

i=1Ei, X(m̃)=νñ
∑N

i=1πi.P
′
i if Ei � P ′

i = �Pi� (41)

�X(m̃)=P � � E′, X(m̃)=P ′ if E′ � P ′ = �P � and P �= C (42)

Definition 15. Encoding an environment from SPi to SPiM, based on [11]. The

notation
∑N

i=1 πi.Pi is an abbreviation for a choice between zero or more actions

π1.P1 + . . . + πN .PN + 0.

�0� � ∅ � 0 (43)

�νñ M� � �X(m̃)=νñM� � X(m̃) if m̃ = fn(νñ M) and M �= 0 andX fresh(44)

�X(ñ)� � ∅ � X(ñ) (45)

�P1 | P2� � E1 ∪ E2 � P ′
1 | P ′

2 if E1 � P ′
1 = �P1� and E2 � P ′

2 = �P2� (46)

�νx P � � E � νx P ′ if E � P ′ = �P � and P �= νñ M (47)

Definition 16. Encoding a process from SPi to SPiM, based on [11].

�E � P � � �E� ∪ E′ � (∅, ∅, ∅) ⊕ P ′ if E′ � P ′ = �P � (48)

Definition 17. Encoding a system from SPi to SPiM.

�E � V � � E � �V � (49)

�Z, S, H� � νZ �H� (50)

�∅� � 0 (51)

�H,X(ñ) �→ (i, U,C)� � X(ñ) | . . . | X(ñ)
︸ ︷︷ ︸

i

| �H� (52)

Definition 18. Decoding a system from SPiM to SPi. The environment E is un-

changed (49), and for each mapping X(ñ) �→ (i, U, C) in the heap, i copies of the

instance are executed in parallel (52).

Proof. By induction on the derivation of reduction in SPi, where machine terms
are structurally congruent up to renaming of definitions, garbage-collection of
unused definitions and structural congruence of processes. These assumptions
are necessary since the definitions created in the encoding �E � P � can have
different names to those created in �E � P ′�. Similarly, �E � P ′� can have less
definitions than �E � P � after the process P has been reduced. "#

Finally, Theorem 4 and Theorem 5 ensure that the apparent rate of reactions
is preserved by encoding and decoding.

Theorem 4. ∀P, θ ∈ SPi.R(θ, P ) = R(θ, �P �)

Proof. By induction on the derivation of encoding in SPi "#
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Theorem 5. ∀V, θ ∈ SPiM.R(θ, V ) = R(θ, �V �)

Proof. By induction on the derivation of decoding in SPiM "#

5 Implementation

This section shows how the simulation algorithm of Sec. 3 can be mapped to
functional program code, in order to implement a stochastic simulator. The
mapping is relatively direct, indicating that the algorithm is sufficiently low-
level to be readily implemented.

The processes of the stochastic π-machine are implemented as functional
datatypes, as shown in Fig. 2. In addition, the environment, the store and
the heap are implemented using a standard map library, where StringMap,
SpeciesMap and ValueMap are maps indexed by strings X , species I and values
θ, respectively, and a value can be a delay r or a channel x. A term is imple-
mented as a triple consisting of a counter, a store and a heap. Each time a fresh
channel is created, the counter is incremented and used to generate a fresh name.
As a result, the term does not need to explicitly store all the private channels
in the system, since the counter keeps track of all the channels that have been
created, thereby preventing name clashes.

The implementation of reduction is also described in Fig. 2. The function
reduce is based on Definition 9 while the function add is based on Definition 7.
The function remove is based on equation (3) of Definition 6, and is implemented
so that each delay of a given rate r or interaction on a given channel x has an
equal probability of being selected, once a particular delay rate or interaction
channel has been chosen by the Gillespie algorithm. The new simulator has been
tested on the full range of examples available from [9], in most cases with signif-
icant improvement in efficiency. For instance, the example from Sec. 2 with 100
copies of each gene and simulation time 200000 took 8 minutes in the previous
version of SPiM, but just 10 seconds in the optimised version (compared with 21
minutes in the BioSPI simulator). As a first step this paper focuses on reducing
the algorithmic complexity of the simulation algorithm, rather than optimising
the final implementation.

In the previous version of the simulator, a separate process is created for
each gene or protein in the system, as described in [10]. In terms of efficiency,
this is analogous to defining the heap H of a machine term as a list of choices
C1 :: . . . :: CN instead of a mapping I1 �→ (i1, U1, C1), . . . , IM �→ (iM , UM , CM )
to keep track of the number of copies of each choice. In both versions the cost
of computing the Gillespie algorithm to choose the next reaction is unchanged.
However, in the previous version the cost of finding a choice to execute a reaction
is O(N), where N is the number of choices, while the cost of inserting a choice is
constant, since choices are inserted at the head of the list. In the new version the
cost of finding a choice to execute a reaction is O(M), where M is the number
of species, while the cost of insertion is O(log M), assuming that the heap is a
balanced tree. In addition, the new version pre-computes the number of inputs,
outputs and delays for each species in the substore U , so that the store S can be
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type action =
Input of value * pattern

| Output of value * value
| Delay of value

type process =
Null

| Instance of string * value
| Parallel of process * process
| New of value * process

type choice =
value * ((action * process) list)

type definition =
Process of process

| Choice of choice

type env = (pattern * definition) StringMap.t
type record = (int * int * int * int * float)
type store = record ValueMap.t
type heap = (int * store * choice) SpeciesMap.t
type term = int * store * heap

let reduce (e:env) (t:term) = match gillespie t with
None -> None

| Some(Rate(r),time) -> ( match remove (Delay(r)) t with
Some(m,Delay(r),p,t’) -> Some(time,add e (New(m,p)) t’)

| -> None )
| Some(Channel(x),time) -> match remove (Input(x,m0)) t with

Some(m1,Input(x,m),p1,t’) -> ( match remove (Output(x,v0)) t’ with
Some(m2,Output(x,n),p2,t’) ->

let p2 = bind (eval n) m p2
in Some(time,add e (New(m1,New(m2,Parallel(p1,p2)))) t’)

| -> None )
| -> None

Fig. 2. Implementing SPiM in OCaml

quickly updated whenever there is a change in the species population. Inferring
a species name for each choice also allows various additional optimisations to
be implemented. For example, the current version of SPiM keeps a lookup table
inside U to track which species can input and output on which channels, allow-
ing the cost of finding a species to be further reduced to a lookup O(log M).
In situations where each species has a population of 1 there will be little im-
provement, apart from not having to re-compute the number delays, inputs and
outputs for each species. However, in situations where the population of species
is large, which is very common in a biological setting, there will be significant
improvement. For example, in the system of Fig. 1 there are generally thousands
of copies of a given protein.

6 Conclusions

This paper presented a simulation algorithm for the stochastic π-calculus, de-
signed for the efficient simulation of biological systems with large numbers of
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molecules. The algorithm was proved correct with respect to the calculus, and
then used as the basis for implementing an efficient simulator. To our knowl-
edge, this is the first provably correct simulation algorithm for the stochastic
π-calculus to formalise such optimisations.

Previous simulators for the stochastic π-calculus include the BioSPI simulator
[1], the StoPi simulator [13], and an earlier version of the SPiM simulator [9]. The
main difference with the current work is that these simulators do not formally
describe an algorithm for keeping track of identical processes. The simulation
algorithm of [10] was proved correct with respect to a variant of the stochastic
π-calculus, and then mapped to executable program code in order to implement
a stochastic simulator. This paper uses similar techniques, applied to a more
efficient algorithm. In more recent work [11], a graphical variant of the stochas-
tic π-calculus was presented, together with a corresponding graphical execution
model. The graphical calculus required each choice to be associated with a cor-
responding identifier, so that it could be traced during execution. This paper
uses similar syntactic constraints, allowing a graphical representation to be gen-
erated after each reaction as shown in Fig. 1, by adapting the graph generation
algorithm of [11].

There are a number of improvement in this paper with respect to the original
algorithm in [10]. In addition to the syntactic constraint placed on calculus pro-
cesses, choices are dynamically grouped into species during execution according
to their identifier and associated parameters. The algorithm also introduces store
and substore data structures, which keep track of all the possible reactions in
the heap and in the individual species, respectively. The corresponding correct-
ness proof takes into account these extensions by checking that the store and
substore data structures remain consistent with the heap, and by ensuring that
the syntactic constraints do not introduce simulation errors.

There are a number of areas of future work. In the short term, the prototype
simulator presented in this paper will form the basis of the next release of the
Stochastic Pi Machine, available from [9]. The algorithm presented in this pa-
per is also being extended in order to efficiently handle the dynamic creation
of complexes during a simulation. Preliminary results indicate that a suitable
extension can be defined with relatively few changes to the existing machine.
The algorithm presented in this paper exploits the fact that biological systems
typically contain large numbers of processes with identical behaviour, in contrast
with most computer systems. In future, more specific optimisations for the algo-
rithm could be investigated, such as the use of more refined data structures like
priority queues, in the style of [4]. There also seems to be a close link between
models that can be efficiently simulated, and those that are amenable to formal
analysis, since the size of the model needs to be reduced in both cases. More
generally, the simulation algorithm presented in this paper has a broader scope
beyond the stochastic π-calculus, and could in principle be applied to a range
of name-passing process calculi for biological modelling such as [14], in order to
develop efficient simulators that are provably correct.
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Abstract. We give a description of a Petri net-based framework for
modelling and analysing biochemical pathways, which unifies the qualita-
tive, stochastic and continuous paradigms. Each perspective adds its con-
tribution to the understanding of the system, thus the three approaches
do not compete, but complement each other. We illustrate our approach
by applying it to an extended model of the three stage cascade, which
forms the core of the ERK signal transduction pathway. Consequently
our focus is on transient behaviour analysis. We demonstrate how quali-
tative descriptions are abstractions over stochastic or continuous descrip-
tions, and show that the stochastic and continuous models approximate
each other. A key contribution of the paper consists in a precise defi-
nition of biochemically interpreted stochastic Petri nets. Although our
framework is based on Petri nets, it can be applied more widely to other
formalisms which are used to model and analyse biochemical networks.

1 Motivation

Biochemical systems are inherently governed by stochastic laws. However, due
to the computational efforts required to analyse stochastic models, two abstrac-
tions are more popular: qualitative models, abstracting away from any time
dependencies, and continuous models, commonly used to approximate stochas-
tic behaviour by a deterministic one. The interrelationships between these three
models are not always properly understood; for example, how the kinetics of a
biochemical reaction, when described by a continuous model, is related to the
stochastic nature of the underlying molecular mechanism.

In a previous paper [GH06] we developed an approach for modelling and
analysing biochemical networks using discrete and continuous Petri nets. Our
current work has taken this forward by considering stochastic Petri nets and
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developing an overall framework to unify these three approaches, providing a
family of related models with high analytical power.

A key contribution of this paper is the precise definition of biochemically in-
terpreted stochastic Petri nets in a generic manner, and we demonstrate the
benefit of their incorporation into the model development process. We show
how the general definition can be tailored to very specific kinetic assumptions
by appropriate adjustments of the general hazard function. Also we discuss the
relation of the stochastic Petri net to its time-free, purely qualitative abstrac-
tion - the standard Petri net, as well as to its continuous approximation - the
continuous Petri net (i.e., an ordinary differential equation system).

This paper is organised as follows. The following section provides an overview
of the biochemical context and introduces our running example. Next we outline
our framework, discussing the special contributions of the three individual anal-
ysis approaches with special emphasis on the transient behaviour analysis, and
examining their interrelations. We then present the individual approaches and
discuss mutually related properties in all three paradigms in the following order:
we start off with the qualitative approach, which is conceptually the easiest, and
does not rely on knowledge of kinetic information, but describes the network
topology and presence of the species. The qualitative modelling and analysis
basically adheres to the steps proposed in [GH06]. In addition, we show how to
systematically derive and interpret the partial order run of the signal response
behaviour. We then demonstrate how the validated qualitative model can be
transformed into the stochastic representation by addition of stochastic firing
rate information. Next, the continuous model is derived from the qualitative or
stochastic model by considering only deterministic firing rates. Suitable sets of
initial conditions for all three models are constructed by qualitative analysis. We
conclude with a summary and outlook regarding further research directions.

2 Biochemical Context

We have chosen a model of the mitogen-activated protein kinase (MAPK) cas-
cade published in [LBS00] as a running case study. This is the core of the ubiq-
uitous ERK/MAPK pathway that can, for example, convey cell division and
differentiation signals from the cell membrane to the nucleus. The model does
not describe the receptor and the biochemical entities and actions immediately
downstream from the receptor. Instead the description starts at the RasGTP
complex which acts as a kinase to phosphorylate Raf, which phosphorylates
MAPK/ERK Kinase (MEK), which in turn phosphorylates Extracellular signal
Regulated Kinase (ERK). This cascade (RasGTP → Raf → MEK → ERK) of
protein interactions controls cell differentiation, the effect being dependent upon
the activity of ERK. We consider RasGTP as the input signal and ERKPP (ac-
tivated ERK) as the output signal.

The bipartite graph in Figure 1 describes the typical modular structure for
such a signalling cascade. Each layer corresponds to a distinct protein species.
The protein Raf in the first layer is only singly phosphorylated. The proteins
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Fig. 1. The bipartite graph for the extended ERK pathway model. The graph has been
derived by SBML import and automatic layout, manually improved, from the set of the
ODEs in [LBS00]. Circles stand for species (proteins, protein complexes). Protein com-
plexes are indicated by an underscore “ ” between the constituent protein names. The
suffixes P or PP indicate phosphorylated or doubly phosphorylated forms respectively.
Squares stand for irreversible reactions, while two concentric squares specify reversible
reactions. The species that are read as input/output signals are given in grey.

in the two other layers, MEK and ERK respectively, can be singly as well as
doubly phosphorylated. In each layer, forward reactions are catalysed by kinases
and reverse reactions by phosphatases (Phase1, Phase2, Phase3). The kinases in
the MEK and ERK layers are the phosphorylated forms of the proteins in the
previous layer, see also [CKS07].

3 Overview of the Framework

In the following we describe our overall framework, illustrated in Figure 2, that
relates the three major ways of modelling and analysing biochemical networks
described in this paper: qualitative, stochastic and continuous.
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Fig. 2. Conceptual framework

The most abstract representation of a biochemical network is qualitative and
is minimally described by its topology, usually as a bipartite directed graph with
nodes representing biochemical entities or reactions, or in Petri net terminology
places and transitions (see Figure 1). Arcs can be annotated with stoichiometric
information, whereby the default stoichiometric value of 1 is usually omitted.

The qualitative description can be further enhanced by the abstract represen-
tation of discrete quantities of species, achieved in Petri nets by the use of tokens
at places. These can represent the number of molecules, or the level of concen-
tration, of a species, and a particular arrangement of tokens over a network is
called a marking. The standard semantics for these qualitative Petri nets (QPN)
does not associate a time with transitions or the sojourn of tokens at places, and
thus these descriptions are time-free. The qualitative analysis considers how-
ever all possible behaviour of the system under any timing. The behaviour of
such a net forms a discrete state space, which can be analysed in the bounded
case, for example, by a branching time temporal logic, one instance of which is
Computational Tree Logic (CTL), see [CGP01].

Timed information can be added to the qualitative description in two ways –
stochastic and continuous. The stochastic Petri net (SPN) description preserves
the discrete state description, but in addition associates a probabilistically dis-
tributed firing rate (waiting time) with each reaction. All reactions, which occur
in the QPN, can still occur in the SPN, but their likelihood depends on the
probability distribution of the associated firing rates (waiting times). Special
behavioural properties can be expressed using e.g. Continuous Stochastic Logic
(CSL), see [PNK06], a probabilistic counterpart of CTL. The QPN is an ab-
straction of the SPN, sharing the same state space and transition relation with
the stochastic model, with the probabilistic information removed. All qualitative
properties valid in the QPN are also valid in the SPN, and vice versa.

The continuous model replaces the discrete values of species with continuous
values, and hence is not able to describe the behaviour of species at the level
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of individual molecules, but only the overall behaviour via concentrations. We
can regard the discrete description of concentration levels as abstracting over the
continuous description of concentrations. Timed information is introduced by the
association of a particular deterministic rate information with each transition,
permitting the continuous model to be represented as a set of ordinary differential
equations (ODEs). The concentration of a particular species in such a model will
have the same value at each point of time for repeated experiments. The state
space of such models is continuous and linear. It can be analysed by, for example,
Linear Temporal Logic with constraints (LTLc) in the manner of [CCRFS06].

The stochastic and continuous models are mutually related by approxima-
tion. The stochastic description can be used as the basis for deriving a continu-
ous Petri net (CPN) model by approximating rate information. Specifically, the
probabilistically distributed reaction firing in the SPN is replaced by a particular
average firing rate over the continuous token flow of the CPN. This is achieved
by approximation over hazard functions of type (1), described in more detail in
section 5.1. In turn, the stochastic model can be derived from the continuous
model by approximation, reading the tokens as concentration levels, as intro-
duced in [CVGO06]. Formally, this is achieved by a hazard function of type (2),
see again section 5.1.

It is well-known that time assumptions generally impose constraints on be-
haviour. The qualitative and stochastic models consider all possible behaviours
under any timing, whereas the continuous model is constrained by its inherent
determinism to consider a subset. This may be too restrictive when modelling
biochemical systems, which by their very nature exhibit variability in their be-
haviour.

In the following the reader is assumed to be familiar with the standard Petri
net terminology as well as foundations of temporal logics, for an introduction
see, e.g., [Mur89] and [CGP01].

4 The Qualitative Approach

4.1 Qualitative Modelling

We interpret the graph given in Figure 1 as a place/transition Petri net, and call
the circles places , and the rectangles transitions . Reversible reactions have to be
modelled explicitly by two opposite transitions in the basic Petri net notation.
However in order to retain the elegant graph structure of Figure 1, we use macro
transitions, each of which stands here for a reversible reaction. The entire (flat-
tened) place/transition Petri net consists of 22 places and 30 transitions, where
k1, k2, . . . stand for reaction (transition) labels.

We associate a discrete concentration with each of the 22 species. In the
simplest way, these concentrations can be thought of as being “high” or “low”
(above or below a certain threshold), resulting in a two-level model where each
species can be read as a Boolean variable. More generally, we could apply a
multi-level approach by differentiating between a finite number of discrete levels,
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each standing for an equivalence class of possibly infinitely many concentrations.
Then species can be read as integer variables.

4.2 Qualitative Analysis

Analysis of general behavioural properties. The Petri net enjoys the three
orthogonal general properties of a discrete Petri net: boundedness, liveness and
reversibility. The decision about the first two can be made for our running exam-
ple in a static way, while the last property requires dynamic analysis techniques.
The necessary steps of the systematic analysis procedure follow basically those
given in [GH06]. We restrict ourselves here to the most essential points.

The net is strongly connected and thus self-contained, i.e. a closed system. In
order to bring the net to life, we construct an initial marking using P-invariants.
These are non-trivial non-negative integer solutions of the homogeneous linear
equation system x · C = 0, where C stands for the incidence matrix of the net.
There are seven minimal P-invariants covering the net, and consequently the net
is bounded for any initial marking. All these P-invariants xi contain only entries
of 0 and 1, permitting a short-hand specification by just giving the names of the
places involved.

x1 = (RasGTP, Raf RasGTP)
x2 = (Raf, Raf RasGTP, RafP, RafP Phase1, MEK RafP, MEKP RafP)
x3 = (MEK, MEK RafP, MEKP RafP, MEKP Phase2, MEKPP Phase2,

ERK MEKPP, ERKP MEKPP, MEKPP, MEKP)
x4 = (ERK, ERK MEKPP, ERKP MEKPP, ERKP, ERKPP Phase3,

ERKP Phase3, ERK PP)
x5 = (Phase1, RafP Phase1)
x6 = (Phase2, MEKP Phase2, MEKPP Phase2)
x7 = (Phase3, ERKP Phase3, ERKPP Phase3)

Each P-invariant stands for a reasonable conservation rule, the species preserved
being given by the first name in the invariant. In signal transduction networks
a P-invariant typically comprises all the different states of one species. In a
Boolean approach, each species can be only in one state at any time, thus each
P-invariant gets exactly one token. Within a P-invariant, the species with the
most inactive (i.e. non-phosphorylated) or the monomeric (non-complexed) state
is chosen. Following these criteria, the initial marking is: one token on each of Raf,
RasGTP, MEK, ERK, Phase1, Phase2 and Phase3, while all remaining places
are empty. With this marking, the net is covered by 1-P-invariants (exactly one
token in each P-invariant), and is therefore 1-bounded.

Generalising this reasoning to a multi-level concept, we could assign n tokens
to each place, representing the most inactive state, in order to indicate the
highest concentration level for them in the initial state. The “abstract” mass
conservation within each P-invariant would then be n tokens, which could be
distributed fairly freely over the P-invariant’s places during the behaviour of the
model. This results in a dramatic increase of the state space, cf. the discussion
in Section 5.2, while not improving the qualitative reasoning.
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Model validation should include a check of all T-invariants for their biological
plausibility. T-invariants are non-trivial non-negative integer solutions of the
homogeneous linear equation system C · y = 0. The entries of a T-invariant
can be read as the specification of a multiset of transitions, which reproduce a
given marking by their firing. If there are non-trivial solutions, then there are
infinitely many ones. Therefore, the plausibility check is usually restricted to
the consideration of all minimal solutions. The net representations of minimal
T-invariants (their transitions plus their pre- and post-places and all arcs in
between) characterise minimal self-contained subnetworks with an identifiable
biological meaning.

The net under consideration is covered by T-invariants, a necessary condi-
tion for bounded nets to be live. Besides the expected ten trivial T-invariants
for the ten reversible reactions, there are five non-trivial, but obvious minimal
T-invariants, each corresponding to one of the five phosphorylation / dephos-
phorylation cycles in the network structure:

y1 = (k1, k3, k4, k6), y2 = (k7, k9, k16, k18), y3 = (k10, k12, k13, k15),

y4 = (k19, k21, k28, k30), y5 = (k22, k24, k25, k27).

The interesting net behaviour, demonstrating how input signals cause finally
output signals, is contained in a non-negative linear combination of all five non-
trivial T-invariants, y1−5 = y1 + y2 + y3 + y4 + y5, which is called an I/O
T-invariant in the following. The I/O T-invariant is systematically constructed
by starting with the two minimal T-invariants, involving the input and output
signal, which define disconnected subnetworks. Then we add minimal sets of
minimal T-invariants to get a connected subnet. For our running example, the
solution is unique, which is not generally the case.

We check the I/O T-invariant for feasibility in the constructed initial mark-
ing, which then involves the feasibility of all trivial T-invariants. We obtain an
infinite partial order run, the beginning of which can be characterised in a short-
hand notation by the following partially ordered word out of the alphabet of all
transition labels (“;” stands for “sequentiality”, “‖” for “concurrency”):

( k1; k3; k7; k9; k10; k12;

( (k4; k6) ‖ ( (k19; k21; k22; k24); ( (k13; k15; k16; k18) ‖ (k25; k27; k28; k30) ) ) ) ),

see [GHL07] for a graphical representation. This partial order run gives further
insight into the dynamic behaviour of the network, which may not be apparent
from the standard net representation, e.g. we are able to follow the (minimal)
producing process of the proteins RafP, MEKP, MEKPP, ERKP and ERKPP,
compare [GHL07], and we notice the clear independence of the dephosphoryla-
tion in all three levels.

The reachability graph of the net is finite because the net is bounded, and has
in the Boolean token interpretation 118 states out of 222 theoretically possible
ones, forming one strongly connected component. Therefore, the Petri net is
reversible, i.e. the initial system state is always reachable again, or in other
words the system has the capability of self-reinitialization. Moreover, from the
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viewpoint of the discrete model, all of these 118 states are equivalent, and each
could be taken as an initial state resulting in exactly the same total (discrete)
system behaviour. This prediction will be confirmed by the observations gained
during quantitative analyses, see Sections 5.2 and 6.2.

Model checking of special behavioural properties. Temporal logic is par-
ticularly helpful in expressing special behavioural properties of the expected
transient behaviour, whose truth can be determined via model checking. We
confine ourselves here to two CTL properties, checking the generalizability of
the insights gained by the partial order run of the I/O T-invariant. In the fol-
lowing, places are interpreted as Boolean variables, in order to simplify notation.

Property Q1: The signal sequence predicted by the partial order run of the
I/O T-invariant is the only possible one. In other words, starting at the initial
state, it is necessary to pass through states RafP, MEKP, MEKPP and ERKP
in order to reach ERKPP.

¬ [ E ( ¬ RafP U MEKP ) ∨ E ( ¬ MEKP U MEKPP ) ∨
E ( ¬ MEKPP U ERKP ) ∨ E ( ¬ ERKP U ERKPP ) ]

Property Q2: Dephosphorylation takes place independently. E.g., the dura-
tion of the phosphorylated state of ERK is independent of the duration of the
phosphorylated states of MEK and Raf.

( EF [ Raf ∧ ( ERKP ∨ ERKPP ) ] ∧ EF [ RafP ∧ ( ERKP ∨ ERKPP ) ] ∧
EF [ MEK ∧ ( ERKP ∨ ERKPP ) ] ∧
EF [ ( MEKP ∨ MEKPP ) ∧ ( ERKP ∨ ERKPP ) ] )

In subsequent sections we will use Q1 as a basis to illustrate how the stochastic and
continuous approaches provide complementary views of the system behaviour.

5 The Stochastic Approach

5.1 Stochastic Modelling

As with a qualitative Petri net, a stochastic Petri net maintains a discrete num-
ber of tokens on its places. But contrary to the time-free case, a firing rate
(waiting time) is associated with each transition t, which are random variables
Xt ∈ [0,∞), defined by probability distributions. Therefore, all reaction times
can theoretically still occur, but the likelihood depends on the probability dis-
tribution. Consequently, the system behaviour is described by the same discrete
state space, and all the different execution runs of the underlying qualitative
Petri net can still take place. This allows the use of the same powerful analysis
techniques for stochastic Petri nets as already applied for qualitative Petri nets.

For a better understanding we describe the general procedure of a particular
simulation run for a stochastic Petri net. Each transition gets its own local
timer. When a particular transition becomes enabled, meaning that sufficient
tokens arrive on its pre-places, then the local timer is set to an initial value,
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which is computed at this time point by means of the corresponding probability
distribution. In general, this value will be different for each simulation run. The
local timer is then decremented at a constant speed, and the transition will fire
when the timer reaches zero. If there is more than one enabled transition, a race
for the next firing will take place.

Technically, various probability distributions can be chosen to determine the
random values for the local timers. Biochemical systems are the prototype for
exponentially distributed reactions. Thus, for our purposes, the firing rates of
all transitions follow an exponential distribution, which can be described by
a single parameter λ, and each transition needs only its particular, generally
marking-dependent parameter λ to specify its local time behaviour.

Definition 1 (Stochastic Petri net, Syntax). A biochemically interpreted
stochastic Petri net is a quintuple SPNBio = (P, T, f, v,m0), where

– P and T are finite, non empty, and disjoint sets. P is the set of places, and
T is the set of transitions.

– f : ((P × T ) ∪ (T × P )) → IN0 defines the set of directed arcs, weighted by
non-negative integer values.

– v : T → H is a function, which assigns a stochastic hazard function ht to
each transition t, whereby
H :=

⋃
t∈T

{
ht |ht : IN|•t|

0 → IR+
}

is the set of all stochastic hazard func-
tions, and v(t) = ht for all transitions t ∈ T .

– m0 : P → IN0 gives the initial marking.

The stochastic hazard function ht defines the marking-dependent transition rate
λt(m) for the transition t. The domain of ht is restricted to the set of pre-places
of t, i.e. •t := {p ∈ P |f (p, t) �= 0}, to enforce a close relation between network
structure and hazard functions. Therefore λt(m) actually depends only on a
sub-marking.

Stochastic Petri net, Semantics. Transitions become enabled as usual, i.e.
if all pre-places are sufficiently marked. However there is a time, which has to
elapse, before an enabled transition t ∈ T fires. The transition’s waiting time
is an exponentially distributed random variable Xt with the probability density
function:

fXt(τ) = λt(m) · e(−λt(m)·τ), τ ≥ 0.

The firing itself does not consume time and again follows the standard firing
rule of qualitative Petri nets. The semantics of a stochastic Petri net (with
exponentially distributed reaction times for all transitions) is described by a
continuous time Markov chain (CTMC). The CTMC of a stochastic Petri net
is isomorphic to the reachability graph of the underlying qualitative Petri net,
while the arcs between the states are now labelled by the transition rates. For
more details see [Mur89], [BK02].

Based on this general SPNBio definition, specialised biochemically inter-
preted stochastic Petri nets can be defined by specifying the required kind of
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stochastic hazard function more precisely. We give two examples, reading the
tokens as molecules or as concentration levels. The stochastic mass-action haz-
ard function tailors the general SPNBio definition to biochemical mass-action
networks, where tokens correspond to molecules:

ht := ct ·
∏

p∈•t

(
m(p)
f(p, t)

)
, (1)

where ct is the transition-specific stochastic rate constant, and m(p) is the cur-
rent number of tokens on the pre-place p of transition t. The binomial coefficient
describes the number of non-ordered combinations of the f(p, t) molecules, re-
quired for the reaction, out of the m(p) available ones.

Tokens can also be read as concentration levels, as introduced in [CVGO06].
The current concentration of each species is given as an abstract level. We as-
sume the maximum molar concentration is M , and the amount of different levels
is N + 1. Then the abstract values 0, . . . , N represent the concentration inter-
vals 0, (0, 1 ∗M/N ], (1 ∗M/N, 2 ∗M/N ], . . . , (N − 1 ∗M/N, N ∗M/N ].
Each of these (finite many) discrete levels stands for an equivalence class of (in-
finitely many) continuous states. The stochastic level hazard function tailors the
general SPNBio definition to biochemical mass-action networks, where tokens
correspond to concentration levels:

ht := kt ·N ·
∏

p∈•t

(
m(p)
N

), (2)

where kt is the transition-specific deterministic rate constant, and N the num-
ber of the highest level. The transformation rules between the stochastic and
deterministic rate constants are well-understood, see e.g. [Wil06]. In practice,
kinetic rates are taken from literature, textbooks etc. or determined from bio-
chemical experiments. Hazard function (2) is the means whereby the continuous
model (see the framework in Figure 2 and Section 6) can be approximated by the
stochastic model; this can generally be achieved by a limited number of levels –
see Section 5.2.

5.2 Stochastic Analysis

Due to the isomorphy of the reachability graph and the CTMC, all qualitative
analysis results obtained in Section 4 are still valid. The influence of time does
not restrict the possible system behaviour. Specifically it holds that the CTMC
of our case study is reversible, which ensures ergodicity; i.e. we could start the
system in any of the reachable states, always resulting in the same CTMC with
the same steady state probability distribution.

In the following our main focus is on the analytic model checking approach. In
Section 4.2 we employed CTL to express behavioural properties. Since we have
now a stochastic model, we apply Continuous Stochastic Logic (CSL) [PNK06],
which replaces the path quantifiers (E, A) in CTL by the probability operator
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P�p, whereby "# p specifies the probability of the given formula. For example,
introducing in CSL the abbreviation Fφ for trueUφ, the CTL formula EFφ
becomes the CSL formula P≥0[Fφ ], and AFφ becomes P≥1[Fφ ].

In order to use the probabilistic model checker PRISM [PNK06], we encode
the extended ERK pathway in its modelling language, as proposed in [DDS04].
This translation requires knowledge of the boundedness degree of all species
involved, which we acquire by the structural analysis technique of P-invariants.

We only consider here the level semantics. Since the continuous concentrations
of proteins in the ERK pathway are all in the same range (0.1. . . 0.4 mMol in
0.1 steps), we employ a model with only 4, and a second version with 8 levels.
The corresponding CTMCs (and reachability graphs) comprise 24,065 states for
the 4 level version and 6,110,643 states for the 8 level version.

Equivalence check by transient analysis. We start with a transient analysis
to prove the sufficient equivalence between the stochastic model in the level
semantics and the corresponding continuous model, justifying the interpretation
of the properties gained by the stochastic model also in terms of the continuous
one. The probabilistic model checker PRISM permits the analysis of the transient
behaviour of the stochastic model, e.g., the concentration of RafP at time t is
given by:

CRafP (t) = 0.1
s ·

4s∑

i=1

(
i · P (LRafP (t) = i)

)

︸ ︷︷ ︸
expected value of LRafP (t)

.

The random variable LRafP (t) stands for the level of RafP at time t. We set
s to 1 for the 4 level version, and to 2 for the 8 level version. The factor 0.1

s
calibrates the expected value for a given level to the concentration scale. In the
4 level version a single level represents 0.1 mMol and 0.05 mMol in the 8 level
version. Figure 3 shows the simulation results for the species MEK and Ras-
GTP in the time interval [0..100] according to the continuous and the stochastic
models respectively. These results confirm that 4 levels are sufficiently adequate
to approximate the continuous model, and that 8 levels are preferable if the
computational expenses are acceptable.
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Probabilistic model checking of special behavioural properties. We
give two properties related to the partial order run of the I/O T-invariant, see
Section 4.2 and qualitative property Q1 therein, from which we expect a con-
secutive increase of RafP, MEKPP and ERKPP. Both properties are expressed
as so-called experiments, which are analysed varying the parameter L over all
levels, i.e. 0 to N. For the sake of efficiency, we restrict the U operator to 100
time steps. Note that places are read as integer variables in the following.

Property S1: What is the probability of the concentration of RafP increasing,
when starting in a state where the level is already at L (the latter side condition
is specified by the filter given in braces)?

P=? [ ( RafP = L ) U<=100 ( RafP > L ) { RafP = L } ]

The results indicate, see Figure 4(a), that it is absolutely certain that the con-
centration of RafP increases from level 0 and likewise there is no increase from
level N; this behaviour has already been determined by the qualitative analysis.
Furthermore, an increase in RafP is very likely in the lower levels, increase and
decrease are almost equally likely in the intermediate levels, while in the higher
levels, but obviously not in the highest, an increase is rather unlikely (but not
impossible). In summary this means that the total mass, circulating within the
first layer of the signalling cascade, is unlikely to be accumulated in the activated
form. We need this understanding to interpret the results for the next property.

Property S2: What is the probability that, given the initial concentrations of
RafP, MEKPP and ERKPP being zero, the concentration of RafP rises above
some level L while the concentrations of MEKPP and ERKPP remain at zero,
i.e. RafP is the first species to react?

P=? [ ( ( MEKPP = 0 ) ∧ ( ERKPP = 0 ) ) U<=100 ( RafP > L )

{ ( MEKPP = 0 ) ∧ ( ERKPP = 0 ) ∧ ( RafP = 0 ) } ]

The results indicate, see Figure 4(b), that the likelihood of the concentration
of RafP rising, while those of MEKPP and ERKPP are zero, is very high in
the bottom half of the levels, and quite high in the lower levels of the upper
half. The decrease of the likelihood in the higher levels is explained by property
S1. Property S2 is related to the qualitative property Q1 (Section 4.2), and the
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continuous property C1 (Section 6.2) – the concentration of RafP rises before
those of MEKPP and ERKPP.

Due to the computational efforts of probabilistic model checking we are only
able to treat properties over a stochastic model with 4 or at most 8 levels. This
restricts the kind of properties that we can prove; e.g., in order to check increases
of MEKPP and ERKPP – as suggested by the qualitative property Q1 and done
above for RafP in the stochastic properties S1 and S2 – we would need 50 or 200
levels respectively.

Analytic probabilistic model checking becomes more and more impracticable
with increasing size of the state space. Hence, the computation time of a prob-
abilistic experiment, which typically consists of a series of probabilistic queries,
can easily exceed several hours on a standard workstation. In order to avoid
the enormous computational power required for larger state spaces, the time-
dependent stochastic behaviour can be simulated by dedicated algorithms, e.g.
[Gil77], or approximated by a continuous one, see next section.

6 The Continuous Approach

6.1 Continuous Modelling

In a continuous Petri net the marking of a place is no longer an integer, but
a positive real number, which can be read as the concentration of the species
modelled by the place. Transitions fire continuously, whereby the current deter-
ministic firing rate generally depends on the current marking of the pre-places,
i.e. of the current concentrations of the reactants. For our running case study,
we derive the continuous model from the qualitative Petri net by associating a
mass action rate with each transition in the network, i.e., the reaction labels
are now read as the deterministic rate constants. We can likewise derive the
continuous Petri net from the stochastic Petri net by approximating over the
hazard function of type (1), see for instance [Wil06]. In both cases, we obtain a
continuous Petri net, preserving the structure of the discrete one, see Figure 2.

The semantics of a continuous Petri net is defined by a system of ODEs,
whereby one equation describes the continuous change over time on the token
value of a given place by the continuous increase of its pre-transitions’ flow and
the continuous decrease of its post-transitions’ flow, i.e., each place subject to
changes gets its own equation. See [GH06] for more details.

The initial concentrations as suggested by the qualitative analysis correspond
to those given in [LBS00], when mapping non-zero values to 1. For reasons of
better comparability we have also considered more precise initial concentrations,
where the presence of a species is encoded by biologically motivated real values
varying between 0.1 and 0.4 in steps of 0.1. The complete system of non-linear
ODEs generated from the continuous Petri net is given in [GHL07].

6.2 Continuous Analysis

Steady state analysis. Since there are 22 species, there are 222 possible ini-
tial states in the qualitative Petri net (Boolean token interpretation). Of these,
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118 were identified by the reachability graph analysis (Section 4.2) to form one
strongly connected component, and thus to be “good” initial states. We then
computed the steady state of the set of species for each possible initial state. In
summary, our results show that all of the ’good’ 118 states result in the same
set of steady state values for the 22 species in the pathway, within the bounds
of computational error of the ODE solver. None of the remaining possible initial
states results in a steady state close to that generated by the 118 markings in the
reachability graph; for details see [GHL07]. This is an interesting result, because
the net considered here is not covered by the class of net structures discussed in
[ADLS06] with the unique steady state property.

In Figure 5 (a) we reproduce the computed behaviour of MEK for all 118 good
initial states, showing that despite differences in the concentrations at early time
points, the steady state concentration is the same in all 118 states.
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Continuous model checking of the transient behaviour. Corresponding
to the partial order run of the I/O T-invariant, see Section 4.2, we expect a
consecutive increase of RafP, MEKPP, ERKPP, which we get confirmed by the
transient behaviour analysis, compare Figure 5 (b). To formalise the visual eval-
uation of the diagram we use the continuous linear logic LTLc [CCRFS06], which
is interpreted over the continuous simulation trace of ODEs.

The following three queries confirm together the claim of the expected propaga-
tion sequence. In the queries we have to refer to absolute values. The steady state
values are obtained from the steady state analysis in the previous section; these
are 0.12 mMol for RafP, 0.008 mMol for MEKPP and 0.002 mMol for ERKPP, all
of them being zero in the initial state. If a species’ concentration is above half of its
steady state value, we call this concentration level significant. Note that in order
to simplify the notation, places are interpreted as real variables in the following.

Property C1: The concentration of RafP rises to a significant level, while the
concentrations of MEKPP and ERKPP remain close to zero; i.e. RafP is really
the first species to react.

( (MEKPP < 0.001) ∧ (ERKPP < 0.0002) ) U (RafP > 0.06)
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Property C2: if the concentration of RafP is at a significant concentration
level and that of ERKPP is close to zero, then both species remain in these
states until the concentration of MEKPP becomes significant; i.e. MEKPP is
the second species to react.

( (RafP > 0.06) ∧ (ERKPP < 0.0002) ) ⇒
( (RafP > 0.06) ∧ (ERKPP < 0.0002) ) U (MEKPP > 0.004)

Property C3: if the concentrations of RafP and MEKPP are significant, they
remain so, until the concentration of ERKPP becomes significant; i.e. ERKPP
is the third species to react.

( (RafP > 0.06) ∧ (MEKPP > 0.004) ) ⇒
( (RafP > 0.06) ∧ (MEKPP > 0.004) ) U (ERKPP > 0.0005)

Note that properties C1, C2 and C3 correspond to the qualitative property
Q1, and that S2 is the stochastic counterpart of C1.

7 Tools

The bipartite graph in Figure 1 and its interpretation as the three Petri net mod-
els have been done using Snoopy [Sno], a tool to design and animate hierarchical
graphs, including SBML import.

The qualitative analyses have been made using the Integrated Net Analyser
INA [SR99] and the Model Checking Kit [SSE04]. We employed PRISM [PNK06]
for probabilistic model checking, and Biocham [CCRFS06] for LTLc-based con-
tinuous model checking.

MATLAB [SR97] was used to produce the steady state analysis of all ini-
tial states in the continuous model, and the transient analysis was done using
BioNessie [Bio], an SBML-based simulation and analysis tool for biochemical
networks.

8 Summary and Outlook

In this paper we have described an overall framework that relates the three major
ways of modelling biochemical networks – qualitative, stochastic and continuous
– and illustrated this in the context of Petri nets. In doing so we have given a pre-
cise definition of biochemically interpreted stochastic Petri nets. We have shown
that the qualitative time-free description is the most basic, with discrete values
representing numbers of molecules or levels of concentrations. The qualitative
description abstracts over two timed, quantitative models. In the stochastic de-
scription, discrete values for the amounts of species are retained, but a stochastic
rate is associated with each reaction. The continuous model describes amounts
of species using continuous values and associates a deterministic rate with each
reaction. These two time-dependent models can be mutually approximated by
hazard functions belonging to the stochastic world.

We have illustrated our framework by considering qualitative, stochastic and
continuous Petri net descriptions of the ERK signalling pathway, based on the
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model from Levchenko et al [LBS00]. We have focussed on analysis techniques
available in each of these three paradigms, in order to illustrate their complemen-
tarity. Our special emphasis has been on model checking, which is especially use-
ful for transient behaviour analysis, and we have demonstrated this by discussing
related properties in the qualitative, stochastic and continuous paradigms. Al-
though our framework is based on Petri nets, it can be applied more widely to
other formalisms which are used to model and analyse biochemical networks.

We are now working on the incorporation of deterministic time into stochastic
models, as well as the integration of continuous and stochastic aspects into one
model.
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2004. LNCS, vol. 3280, pp. 543–552. Springer, Heidelberg (2004)

[GH06] Gilbert, D., Heiner, M.: From Petri nets to differential equations - an
integrative approach for biochemical network analysis. In: Donatelli, S.,
Thiagarajan, P.S. (eds.) ICATPN 2006. LNCS, vol. 4024, pp. 181–200.
Springer, Heidelberg (2006)

http://www.bionessie.org


216 D. Gilbert, M. Heiner, and S. Lehrack

[GHL07] Gilbert, D., Heiner, M., Lehrack, S.: A unifying framework for modelling
and analysing biochemical pathways using Petri nets. TR I-02, CS Dep.,
BTU Cottbus (2007)

[Gil77] Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions.
The Journal of Physical Chemistry 81(25), 2340–2361 (1977)

[LBS00] Levchenko, A., Bruck, J., Sternberg, P.W.: Scaffold proteins may bipha-
sically affect the levels of mitogen-activated protein kinase signaling and
reduce its threshold properties. Proc. Natl. Acad. Sci. USA 97(11), 5818–
5823 (2000)

[MGF] Max-Gruenebaum-Foundation,
http://www.max-gruenebaum-stiftung.de

[Mur89] Murata, T.: Petri nets: Properties, analysis and applications. Proc.of the
IEEE 77 4, 541–580 (1989)

[PNK06] Parker, D., Norman, G., Kwiatkowska, M.: PRISM 3.0.beta1 Users’ Guide
(2006)

[Sno] Snoopy. A tool to design and animate hierarchical graphs. BTU Cottbus,
CS Dep., http://www-dssz.informatik.tu-cottbus.de

[SR97] Shampine, L.F., Reichelt, M.W.: The MATLAB ODE Suite. SIAM Jour-
nal on Scientific Computing 18, 1–22 (1997)

[SR99] Starke, P.H., Roch, S.: INA - The Intergrated Net Analyzer. Humboldt
University, Berlin (1999),
www.informatik.hu-berlin.de/∼starke/ina.html
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Abstract. One of the main challenges in systems biology is the estab-
lishment of the metabolome: a catalogue of the metabolites and bio-
chemical reactions present in a specific organism. Current knowledge of
biochemical pathways as stored in public databases such as KEGG, is
based on carefully curated genomic evidence for the presence of specific
metabolites and enzymes that activate particular biochemical reactions.
In this paper, we present an efficient method to build a substantial por-
tion of the artificial chemistry defined by the metabolites and biochemical
reactions in a given metabolic pathway, which is based on bidirectional
chemical search. Computational results on the pathways stored in KEGG
reveal novel biochemical pathways.

Keywords: Artificial chemistry, biochemical reaction, metabolic
pathway.

1 Introduction

Metabolism can be regarded as a network of chemical reactions activated by en-
zymes and connected via their substrates and products, and a metabolic pathway
can be regarded as a coordinated sequence of biochemical reactions [1]. The defi-
nition of a metabolic pathway is not exact, and most pathways constitute indeed
highly intertwined cyclic networks. In a cell, the substrates of a pathway are usu-
ally the products of another pathway, and there are junctions where pathways
meet or cross [2].

The analysis of metabolic pathways is motivated by the rapidly increasing
quantity of available information on metabolic pathways for different organ-
isms. One of the most comprehensive sources of metabolic pathway data is [3].
There are also several databases on metabolic pathways, such as aMAZE [4],
BRENDA [5], MetaCyc [6], KEGG [7], and WIT [8]. These databases contain
hundreds of metabolic pathways and thousands of biochemical reactions, and
even the metabolic pathway for a small organism constitutes a large network.
For instance, the proposed metabolic pathway for the bacterium E. coli consists
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of 436 compounds (substrates, products, and intermediate compounds) linked
by 720 reactions [9].

An artificial chemistry [10], on the other hand, is a computational model of a
chemical system that consists of a set of objects (molecules), a set of reaction rules
(that allow for the production of new molecules from already existing molecules),
and a definition of the dynamics of the system (that is, application conditions for
the reaction rules), aimed at answering qualitative questions about the chemical
system. Thus, artificial chemistries model real chemistries, in which molecules rep-
resent chemical compounds and reaction rules represent chemical reactions and,
in particular, artificial chemistries model organic chemistries [11,12,13].

The chemical description of molecules in an artificial chemistry can be made
at different levels of resolution, from simple molecular descriptors to structural
formulas. One of these representations are chemical graphs, with nodes corre-
sponding to the atoms of the molecules and edges indicating the bonds between
them. Chemists have used chemical graphs to distinguish isomers since the sec-
ond half of the nineteenth century. In first course Organic Chemistry classes,
chemical reactions are explained in terms of constitutional formulas and a hand-
ful of reaction mechanisms, which are nothing but chemical graphs and rules to
modify them by means of breaking, forming and changing the type of bonds.
This leads in a natural way to artificial chemistries based on labeled graphs as
molecules and graph transformation rules as reactions. Several such artificial
chemistries have been proposed so far: see, for instance, [11,12,13,14,15].

Artificial chemistries can also be used to model biochemical systems such as
metabolic pathways, in which molecules represent metabolites and reaction rules
represent biochemical reactions [16], and they allow for answering qualitative ques-
tions about metabolism. In this paper, we present an efficient method to build a
substantial portion of the artificial chemistry defined by the metabolites and bio-
chemical reactions in a given metabolic pathway. Our method is based on bidirec-
tional chemical search, and its implementation uses chemical graphs to represent
sets of molecules. We report also on the results of some experiments applying this
method to pathways stored in KEGG, which reveal novel biochemical pathways.

2 Modeling Biochemical Reactions as Chemical Graph
Transformations

Following [15], by a chemical graph we understand a complete labeled weighted
graph (V,E, �, μ), with (V,E) an undirected graph (without multiple edges or
self-loops), � a labeling mapping that labels every node v ∈ V with a chemical
element �(v), and μ : E → N an edge weight function. We shall denote the weight
of the edge joining nodes v and w by μ(v, w); notice that μ(v, w) = μ(w, v)
because the graph is undirected. A weight of 0 stands for a non-existing bond, a
weight of 1 for a single bond, a weight of 2 for a double bond, etc. The valence
of a node in a chemical graph is the total weight of the edges incident to it.

To simplify the language, we shall call a multimolecule to any set of molecules.
Such a multimolecule is described by the disjoint union of the chemical graphs
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Fig. 1. A multimolecule and a simplified representation of it as a chemical graph. Only
some weight 0 edges needed to make the graph connected are shown, for clarity.

representing the molecules and then adding weight 0 edges between atoms of
different molecules. In this way, the molecules in the set are identified as maximal
subgraphs with non-zero weight edges; see Fig. 1.

Given two chemical graphs G1 = (V1, E1, �1, μ1) and G2 = (V2, E2, �2, μ2), an
atom mapping between them is a bijection M : V1 → V2 such that, for every
v1 ∈ V1:

– �1(v1) = �2(M(v1))
–
∑

w1∈V1
μ1(v1, w1) =

∑
w1∈V1

μ2(M(v1),M(w1)).

When there exists an atom mapping between two chemical graphs G1 and
G2, these chemical graphs (and the multimolecules they represent) are said to
be compatible: this means that they have the same number of nodes for each
possible pair (label, valence).

A chemical reaction graph is a structure R = (G1, G2,M), where G1 = (V1,
E1, �1, μ1) and G2 = (V2, E2, �2, μ2) are compatible chemical graphs, called the
substrate and the product chemical graphs respectively, and M : V1 → V2 is an
atom mapping between them.

The application of a chemical reaction graph to a given chemical graph, con-
sists of breaking, forming and changing bonds in a subgraph of the chemical
graph which is isomorphic to the substrate of the chemical reaction graph. Re-
versible chemical reaction graphs can also be applied in the opposite direction,
by breaking, forming and changing bonds in a subgraph of the chemical graph
which is isomorphic to the product of the chemical reaction graph.

The size of an atom mapping M between two chemical graphs G1 = (V1, E1,
�1, μ1) and G2 = (V2, E2, �2, μ2) is given by

size(M) =
∑

(v,w)∈E1

|μ2(M(v),M(w)) − μ1(v, w)| .

Given two compatible chemical graphs G1 = (V1, E1, �1, μ1) and G2 = (V2, E2,
�2μ2), an optimal atom mapping between them is an atom mapping of minimal
size, which always exists (but it needs not be unique). An optimal atom mapping
models the classical principle of minimum structure change, by which a chemical
reaction normally occurs through the redistribution of the minimum number of
valence electrons, that is, the formation and breaking of the least number of
covalent bonds [17].
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The size of a chemical reaction graph R = (G1, G2,M) is simply the size of
the corresponding atom mapping M .

3 Reconstructing Metabolic Pathways by Bidirectional
Chemical Search

Artificial chemistries [10] are computational models of chemical systems and,
in particular, of biochemical systems such as metabolic pathways. An artificial
chemistry consists of a set of molecules, a set of reaction rules that produce new
molecules from already existing molecules, and the definition of the dynamics of
the system, which specifies the application conditions of the rules, the preference
in their application, etc. [16].

A metabolic pathway can be regarded as a coordinated sequence of bio-
chemical reactions and is often described in symbolic terms, as a succession
of transformations of one set of substrate molecules into another set of product
molecules [18]. Substrate and product must be compatible chemical graphs for
a pathway between them to exist [15,16,18].

Metabolic pathways are often represented as directed hypergraphs, with sub-
strate and product molecules as nodes and biochemical reactions as hyperarcs.
Since a chemical graph can represent the disjoint union of a set of molecules,
though, the equivalent representation of artificial chemistries and, in particu-
lar, metabolic pathways as directed graphs becomes more natural. An artificial
chemistry defined by a set of chemical reaction graphs, is thus represented as
a directed second-order graph with the chemical graphs that represent the sets
of substrate and product molecules as vertices and applications of the chemical
reaction graphs, including information on atom mapping, as arcs.

Unfortunately, the size of the artificial chemistry defined by a set M of chemi-
cal graphs and a set R of chemical reaction graphs is often exponential in the size
of M and R and thus, artificial chemistries are known for very small instances
only, involving a few dozens of molecules and biochemical reactions. Therefore,
we consider in this paper the problem of obtaining a substantial portion of the
artificial chemistry defined by a set of biochemical reactions while avoiding the
complexity of reconstructing the whole artificial chemistry.

The constraints we impose on the reconstruction process are threefold:

(1) The initial chemical graphs represent all sets of at mostmmetabolites among
those involved in the set R or reactions, for some fixed, but arbitrary, m (in
examples and applications in this paper we shall always take m = 2).

(2) The reconstruction process is restricted to a fixed, but arbitrary, number k
of derivation steps.

(3) The initial and final sets of metabolites of every metabolic pathway belong
to the set of initial chemical graphs.

While the first two constraints (on the size of the initial chemical graphs
and the lengths of the metabolic pathways under inspection) are motivated by
complexity considerations alone, the third constraint allows for directing the
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search of new metabolic pathways inside the artificial chemistry. That is, instead
of building the artificial chemistry by applying the biochemical reactions in every
possible way to each of the initial chemical graphs, we perform a bidirectional
search by constructing forward metabolic pathways of length at most k starting
in initial chemical graphs and backward metabolic pathways of length at most k
ending in initial chemical graphs, and then gluing them to obtain all metabolic
pathways of length at most 2k starting and ending in initial chemical graphs.

Given a set R of biochemical reactions and a number k of derivation steps,
the detailed procedure for reconstructing all metabolic pathways of length up to
2k using the metabolites and reactions in R and starting and ending in multi-
molecules of at most m components, is the following:

– First, we extract the set M of all chemical graphs representing sets of at most
m any metabolites appearing in substrates and products of the reactions in
R. We call the elements of M the initial chemical graphs.

– Next, we identify all compatibility classes in M (maximal subsets of com-
patible initial chemical graphs). Biochemical reactions transform chemical
graphs into compatible chemical graphs, and therefore the origin and the end
of a metabolic pathway will be compatible sets of metabolites. Thus, since
we restrict ourselves to metabolic pathways starting and ending in initial
chemical graphs, we can restrict ourselves to search for metabolic pathways
starting and ending in each compatibility class of initial chemical graphs.

– Then, each compatibility class C in M is considered as potential substrates
C

(0)
F and potential products C(0)

R for the reactions in R.
– For every i = 1, . . . , k, the forward application of the reactions in R to the

elements of C(i−1)
F produces a set of multimolecules C(i)

F , while the reverse
application of these reactions to the molecules in C

(i−1)
R produces a set of

multimolecules C(i)
R .

– Any nonempty intersection of a set obtained by forward application and a set
obtained by reverse application of reactions yields a new pathway between
elements of C. To avoid repetitions, it is enough to check whether each C

(i)
F

intersects C(i)
R and C

(i−1)
R . More specifically:

• For i = 1, the forward application of the reactions in R to the molecules
in C

(0)
F produces a set C(1)

F of new molecules, and the reverse application
of the reactions in R to the molecules in C

(0)
R produces a set C(1)

R of new
molecules.

C
(0)
F C

(1)
F C

(1)
R C

(0)
R

Then,
∗ every member of C(1)

F ∩C(0)
R yields a new pathway C(0)

F → C
(1)
F ∩C(0)

R

of length 1;
∗ every member of C(1)

F ∩ C
(1)
R yields a new pathway C

(0)
F → C

(1)
F ∩

C
(1)
R → C

(0)
R of length 2.
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• For i = 2, the forward application of the reactions in R to the molecules
in C

(1)
F produces a set C(2)

F of new molecules, and the reverse application
of the reactions in R to the molecules in C

(1)
R produces a set C(2)

R of new
molecules.

C
(0)
F C

(1)
F C

(2)
F C

(2)
R C

(1)
R C

(0)
R

Then,
∗ every member of C(2)

F ∩ C(1)
R yields a new pathway of length 3

C
(0)
F → C

(1)
F → C

(2)
F ∩ C(1)

R → C
(0)
R .

∗ every member of C(2)
F ∩ C(2)

R yields a new pathway of length 4

C
(0)
F → C

(1)
F → C

(2)
F ∩ C(2)

R → C
(1)
R → C

(0)
R .

• And, recursively, the forward application of the reactions in R to the
molecules in IF = C

(i−1)
F produces a set CF = C

(i)
F of new molecules,

and the reverse application of the reactions in R to the molecules in
IR = C

(i−1)
R produces a set CR = C

(i)
R of new molecules.

C
(0)
F

· · · IF CF CR IR · · · C
(0)
R

Then:
∗ Every member of CF ∩ IR yields a new pathway of length 2i− 1

C
(0)
F → · · · → IF → CF ∩ IR → · · · → C

(0)
R .

∗ Every member of CF ∩ CR yields a new pathway of length 2i

C
(0)
F → · · · → IF → CF ∩ CR → IR → · · · → C

(0)
R .

The following result shows that in this way we obtain all metabolic pathways
of length at most 2k under constraints (1) and (3) above.

Lemma 1. For every i = 1, . . . , k, all metabolic pathways of length 2i− 1 and
2i starting and ending in initial chemical graphs are obtained in the i-th iterative
step of the procedure explained above.

Proof. If
m0 → m1 → · · · → mi → · · · → m2i−1

is a pathway with m0 and m2i−1 initial chemical graphs, then mj ∈ C
(j)
F for

every j = 0, . . . , i and m2i−1−l ∈ C
(l)
R for every l = 0, . . . , i − 1, and hence,

in particular, mi ∈ C
(i)
F ∩ C

(i−1)
R . Therefore, this path is obtained in the i-th

iterative step of the procedure explained above.
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On the other hand, if

m0 → m1 → · · · → mi → · · · → m2i

is a pathway with m0 and m2i initial chemical graphs, then mj ∈ C
(j)
F for every

j = 0, . . . , i and m2i−l ∈ C
(l)
R for every l = 0, . . . , i, and hence, in particular,

mi ∈ C
(i)
F ∩ C(i)

R . Therefore, this path is also obtained in the i-th iterative step
of that procedure. "#

Example 1. Let a, b, c, d, e, f be metabolites such that b, d, e, f are compatible
with each other, a is compatible with b + b and c is compatible with b + b + b.
Consider the toy artificial chemistry given by the following reactions (where only
the first four reactions are reversible):

a+ b↔ c, a↔ d+ e, b+ d↔ b+ e, b + b↔ d+ f
c→ e+ b+ b, d+ d→ a, a + f → b+ e+ e

Let us look for metabolic pathways starting and ending with metabolites and
pairs of metabolites a, . . . , e globally compatible with b + b + b. Then, the set
M of all initial chemical graphs can be identified with the set of monomials of
total weight at most 2 over the alphabet {a, b, c, d, e, f} and the class C of the
initial chemical graphs compatible with bbb (we omit henceforth the + sign for
simplicity) is

C = {c, ab, ad, ae, af }.
So, we are looking for metabolic pathways starting and ending in elements of this
setC. The intermediate multimolecules of these pathways will belong to the set of
all multimolecules formed by metabolites a, b, c, d, e, f compatible with bbb: these
are the multimolecules in C plus any combination of three metabolites b, d, e, f .

Taking
C

(0)
F = C

(0)
R = C = {c, ab, ad, ae, af },

we obtain the following one step derivations:

C
(0)
F → C

(1)
F

c → (ab, bbe)
ab → (c, bde)
ad → dde
ae → dee
af → (def , bee)

C
(1)
R → C

(0)
R

(def , ddf) → af
(dde, dee) → ae
(dde, ddd) → ad

(c, bde, bdd)→ ab
ab → c

Notice that some elements of C(1)
F and C

(1)
R do no longer belong to M , as we

warned.
Then

C
(1)
F = {c, ab, bbe, bde, bee, dde, dee, def }

C
(1)
R = {c, ab, bdd, bde, ddd, dde, ddf, dee, def }

and hence

C
(1)
F ∩ C(0)

R = {ab, c}, C
(1)
F ∩ C(1)

R = {ab, c, bde, dde, dee, def }.
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From these intersections we deduce that all metabolic pathways of lengths 1 and
2 starting and ending in C are

c→ ab, ab→ c, c→ ab→ c, ab→ c→ ab, ab→ bde→ ab,
ad→ dde→ ad, ad→ dde→ ae, ae→ dee→ ae, af → def → af .

For k = 2 we obtain:

C
(0)
F → C

(1)
F → C

(2)
F

c → (ab, bbe) → ((c, bde), (bbd,def ))
ab → (c, bde) → ((ab, bbe), (ab, bdd, bee))
ad → dde → (ad, ae)
ae → dee → ae
af → (def , bee) → ((af , bbe), bde)

C
(2)
R → C

(1)
R → C

(0)
R

((af , bbe), bbd) → (def , ddf) → af
(ad, ae) → (dde, dee) → ae
(ad, ∅) → (dde, ddd) → ad

(ab, (ab, bdd, bee), bde) → (c, bde, bdd) → ab
(c, bde, bdd) → ab → c

Then
C

(2)
F = {c, ab, ad, ae, af , bbd, bbe, bdd, bde, bee, def }

C
(2)
R = {c, ab, ad, ae, af , bbd, bbe, bdd, bde, bee}

and hence

C
(2)
F ∩ C(1)

R = {c, ab, bdd, bde, def },
C

(2)
F ∩ C(2)

R = {c, ab, ad, ae, af , bbd, bbe, bdd, bde, bee}.

From these intersections we deduce that all metabolic pathways of lengths 3 and
4 starting and ending in C are

c→ ab→ c→ ab c→ ab→ bde→ ab
ab→ c→ ab→ c ab→ bde→ bdd→ ab
af → bee→ bde→ ab c→ bbe→ def → af
ab→ bde→ ab→ c c→ ab→ c→ ab→ c
c→ bbe→ bbd→ ddf → af c→ ab→ bde→ ab→ c
c→ ab→ bde→ bdd→ ab ab→ c→ ab→ c→ ab
ab→ c→ ab→ bde→ ab ab→ c→ bbe→ def → af
ab→ bde→ ab→ c→ ab ab→ bde→ ab→ bde→ ab
ab→ bde→ bdd→ ab→ c ab→ bde→ bdd→ bde→ ab
ab→ bde→ bee→ bde→ ab ad→ dde→ ad→ dde→ ad
ad→ dde→ ae→ dde→ ae ae→ dee→ ae→ dde→ ae
af → def → af → def → af af → def → bbe→ def → af
af → bee→ bde→ ab→ c af → bee→ bde→ bdd→ ab

As it can be seen in the previous example, the raw application of the procedure
explained above generates all metabolic pathways of length up to 2k starting and
ending in sets of at most m metabolites used by the reactions in R, but most of
these metabolic pathways will be redundant, for instance because they are cyclic,
or because they do not contain any new multimolecule that has not appeared in
shorter metabolic pathways. Therefore, several reconstruction problems may be
addressed in this context. In this work we consider only two of them: first, to
produce all metabolic pathways of length up to 2k, and second, to produce all
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shortest metabolic pathways of length up to 2k, in both cases under restrictions
(1) to (3) made explicit above.

We give our reconstruction algorithms in full pseudocode next. The first one
formalizes the procedure explained above.

Algorithm 1. Given a set R of biochemical reactions and a number k of deriva-
tion steps, obtain the set of all metabolic pathways of length up to 2k using the
metabolites and reactions in R starting and ending in sets of at most m metabo-
lites among those involved in the reactions in R.

M ← substrate and product metabolites of the reactions in R
M ←

⋃m
j=1 M

j

E ←M/∼= where m ∼= m′ if and only if m and m′ are compatible
foreach C ∈ E do

IF ← IR ← C
foreach i← 1 to k do

NF ← ∅
foreach m ∈ IF do

foreach r ∈ R do
foreach n← forward application of r to m do

NF ← NF ∪ {n}

NR ← ∅
foreach m ∈ IR do

foreach r ∈ R do
foreach n← reverse application of r to m do

NR ← NR ∪ {n}

output C → · · · → IF → NF ∩ IR → · · · → C
output C → · · · → IF → NF ∩NR → IR → · · · → C
IF ← NF

IR ← NR

The first three lines of this algorithm produce the different compatibility classes
of initial chemical graphs. Then, for each compatibility class C and for each
i = 1, . . . , k:

– It receives the sets IF = C
(i−1)
F and IR = C

(i−1)
R of the results of all direct

and reverse applications, respectively, of i − 1 consecutive rules in R to
multimolecules in C (when i = 1, C(0)

F = C and C
(0)
R = C) and it produces

the sets C
(i)
F and C

(i)
R of the results of all direct and reverse applications,

respectively, of rules in R to multimolecules in IF and IR, respectively. That
is, the sets of the results of all direct and reverse applications, respectively,
of i consecutive rules in R to multimolecules in C.

– The lines starting with output call a procedure that outputs the list of all
metabolic pathways of lengths 2i− 1 and 2i obtained so far. When i = 1:
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• the first output line gives all length 1 pathways m→ m
(1)
f , with m ∈ C,

• the second output line gives all length 2 pathways m→ m
(1)
r → m′ with

m,m′ ∈ C,
And when i > 1
• the first output line gives all length 2i− 1 pathways

m→m
(1)
f →· · ·→m

(i−1)
f →m

(i)
f = m(i−1)

r →m(i−2)
r →· · ·→m(1)

r →m′

with m,m′ ∈ C,
• the second output line gives all length 2i pathways

m→ m
(1)
f → · · · → m

(i−1)
f →m

(i)
f = m(i)

r → m(i−1)
r → · · · → m(1)

r → m′

with m,m′ ∈ C.
The next algorithm produces a metabolic network containing all metabolic

pathways up to a given length.

Algorithm 2. Given a set R of biochemical reactions and a number k of deriva-
tion steps, obtain the metabolic network (X,Y ) containing all metabolic pathways
of length up to 2k, using the metabolites and reactions in R starting and ending
in sets of at most m metabolites among those involved in the reactions in R.

M ← substrate and product metabolites of the reactions in R
M ←

⋃m
j=1 M j

E ← M/∼= where m ∼= m′ if and only if m and m′ are compatible
X ← Y ← ∅
foreach C ∈ E do

IF ← IR ← C
foreach i ← 1 to k do

NF ← ∅
foreach m ∈ IF do

foreach r ∈ R do
foreach n ← forward application of r to m do

NF ← NF ∪ {n}
X ← X ∪ {m, n}
Y ← Y ∪ {(m, n)}

NR ← ∅
foreach m ∈ IR do

foreach r ∈ R do
foreach n ← reverse application of r to m do

NR ← NR ∪ {n}
X ← X ∪ {m, n}
Y ← Y ∪ {(n, m)}

IF ← NF

IR ← NR

return (X, Y )
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Now, upon the metabolic network (X,Y ) obtained with the previous algo-
rithm, the set of all shortest metabolic pathways of length up to 2k, using the
metabolites and reactions in R starting and ending in sets of at most m metabo-
lites among those involved in the reactions in R, can be obtained by using an
all-pairs shortest path algorithm.

Example 2. The toy artificial chemistry of Example 1, obtained from the class
C = {c, ab, ad, ae, af } of the initial chemical graphs compatible with bbb by
bidirectional search of metabolic pathways of length up to 4, is the following:

Then, the enumeration of all-pairs shortest paths in (X,Y ) starting and end-
ing in the elements of C = {c, ab, ad, ae, af } produces the following derivations:

c

ab

ad

ae

af

bbd

bbe
bdd

bde

bee

ddd

dde

ddf

dee

def

c→ ab
c→ bbe→ def → af
ab→ c
ab→ c→ bbe→ def → af
ad→ dde→ ae
af → bee→ bde→ ab
af → bee→ bde→ ab→ c

4 Results and Discussion

The metabolic reconstruction algorithm was implemented as a Perl script, using
the Chemistry::Reaction module from the PerlMol collection of Perl modules
for computational chemistry [19].

We have performed a series of experiments in order to reconstruct metabolic
pathways for all known reference pathway maps. The protocol we have used is
as follows.
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Table 1. Number of new molecules (# mol) and new pathways (# path) of length up
to 2k found by bidirectional chemical search upon the metabolites and reactions stored
in KEGG for several reference maps, together with the number of compounds in the
solved reactions and total number of compounds (# cpd) and the number of solved
and total number of reactions (# rn) in each reference map

map # # # k = 1 k = 2 k = 3 k = 4 # #
cpd mol rn mol path mol path mol path mol path mol path

00020 20/38 230 10/29 569 1 552 1,351 1
00030 31/53 527 19/43 1,052 148 1,494 27 906 361 4,340 175
00120 31/62 527 18/46 2,148 2 1,102 3,777 2
00251 20/51 230 9/36 237 1 38 1 506 1
00260 61/91 1,952 32/66 934 2 406 288 67 3,647 2
00290 21/46 252 10/29 291 3 64 607 3
00340 37/60 740 19/38 1,350 1 504 1 2,595 1
00360 31/63 527 13/53 471 1 55 1,053 1
00410 34/56 629 16/34 1,370 1 1,566 2,717 2,058 8,340 1
00590 43/76 989 20/64 2,545 30 2,278 1,859 1,927 9,598 30
00906 38/100 779 23/103 685 6 167 12 1,643 6

1. Obtain reference pathway maps from the KEGG [20] database. We have used
KEGG release 42.0 in all our experiments.

2. Solve the optimal atom mapping problem for all of the reactions in the
reference pathways.

3. Reconstruct metabolic pathways of length up to 8 for each reference pathway.
4. Orient the reactions, according to the study of irreversibility of reactions in

KEGG carried out in [21].
5. Filter out those metabolic pathways that involve irreversible reactions ap-

plied in the reverse direction.
6. Identify the new metabolites thus obtained, by chemical structure search in

CheBi [22], MetaCyc [6], KEGG [20], and SciFinder Scholar [23].
7. Analyze the new metabolic pathways for coexistence of metabolites and en-

zymes in each particular organism.

Preliminary results obtained by following the aforementioned experimental
protocol upon 11 of the 322 reference pathway maps in KEGG are summarized
in Table 1. For the reference pathway map β-Alanine metabolism (00410), for
instance, the optimal atom mapping problem was solved for 16 of the 34 reactions
annotated to this pathway, which involve 34 of the 56 metabolites annotated to
β-Alanine metabolism and thus, 34 + 34 · 35/2 = 629 initial and final molecules
(metabolites and metabolite pairs). During the bidirectional chemical search for
k = 1, the number of new metabolites was 1370 and one new metabolic pathway
was obtained, and for k = 2, 3, 4, the number of new metabolites was 1566,
2717, and 2058, respectively, while no further new metabolic pathway was found
and thus, one new metabolic pathway was found while generating 8340 new
metabolites.
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Among the novel metabolic pathways found by bidirectional search, using the
metabolites and reactions stored in KEGG for carotenoid biosynthesis (reference
pathway map 00906) we have obtained the following metabolic pathway:

C14146 + C13455 => R06958 => C14146 + C13456
<= R06961 <= C08586 + C13456

alpha -Zeacarotene + Abscisic aldehyde
=> R06958 => alpha -Zeacarotene + Abscisic alcohol
<= R06961 <= delta -Carotene + Abscisic alcohol

A KEGG pathway reference map contains information for several organisms.
Thus, it is important to find evidence that all four metabolites appearing in this
pathway are present in a same organism and also, that the enzyme activating
the reverse biochemical reaction R06961 (carotene 7,8-desaturase, 1.14.99.30) is
indeed expressed in that particular organism.

Carotenoid biosynthesis spans several related pathways: spheroidene, normal-
spirilloxanthin, unusual-spirilloxanthin, abscisic acid biosynthesis, and astaxan-
thin biosynthesis. However, there are organisms whose metabolism does not
include both carotenoid biosynthesis and abscisic acid biosynthesis. In fact, Ara-
bidopsis thaliana (thale cress) is the only organism for which the four metabo-
lites are annotated in KEGG to carotenoid biosynthesis, and the gene coding for
carotene 7,8-desaturase, AT3G04870, is indeed expressed in A. thaliana [24,25].

Fig. 2. A novel metabolic pathway found in the biosynthesis of steroids

On the other hand, there is a biosynthetic pathway, the plastidic 2C-methyl-
D-erythritol 4-phosphate (MEP) pathway, that involves the four metabolites
and occurs in plastids, protozoa, most bacteria, and algae [26]. In the MEP
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Table 2. Number of potential biochemical reactions between sets of at most m metabo-
lites among those involved in the reactions stored in KEGG for several reference maps.
For each value of m, the first column gives the number of classes with two or more
molecules (which indicates the possibility of a biochemical reaction among them) and
the second column gives the total number of classes.

map m = 1 m = 2 m = 3 m = 4 m = 5

00020 1 37 92 635 2,083 6,674 22,919 48,490 158,580 263,999
00030 7 41 253 688 3,511 6,580 27,476 41,628 144,858 192,953
00120 10 50 382 1,029 6,372 12,444 276,344 102,763 449,679 633,533
00251 3 48 199 1,082 5,145 14,886 69,825 136,383 568,520 870,618
00260 5 84 607 3,039 22,862 61,663 64,121 771,862 4,135,143 6,264,157
00290 8 37 260 618 3,646 6,258 30,895 43,888 183,141 231,422
00340 1 59 249 1,505 7,581 21,718 100,699 192,640 738,598 1,119,577
00360 7 51 354 1,070 5,957 11,920 52,707 83,189 297,431 406,549
00410 3 53 223 1,288 5,903 18,075 77,188 160,014 582,868 939,397
00590 10 29 207 385 2,081 3,168 13,660 18,541 66,703 84,116
00906 18 67 768 1,567 12,677 19,691 116,769 155,837 699,670 852,128

pathway, carotenoid biosynthesis is a precursor of abscisic acid biosynthesis [26,
Fig. 1]. In the novel metabolic pathway, alpha-Zeacarotene (C14146) and delta-
Carotene (C08586) are involved in carotenoid biosynthesis whereas Abscisic alde-
hyde (C13455) and Abscisic alcohol (C13456) are involved in abscisic acid biosyn-
thesis. Such a possible link between the early and later stages of the biosynthesis
of steroids was established in [26], where it is argued that only specific carotenoid
intermediates (direct precursors of the abscisic acid biosynthesis) are increased
or reduced, and further studied in [27] when regulating the early stages of ab-
scisic acid biosynthesis in plants. The new metabolic pathway, shown in Fig. 2,
is thus a novel pathway in the biosynthesis of carotenoid indeed.

While these preliminary results already reveal a number of new biochemical
pathways, the artificial chemistry reconstruction starting from all sets of at most
m metabolites among those involved in the set of reactions (the third constraint
imposed on the reconstruction process) might reveal the existence of a much
larger number of new biochemical pathways for m > 2. As can be seen in Table 2,
the number of potential biochemical reactions grows fast with m for the reference
maps stored in KEGG.

Another interesting avenue for further research is the extraction of all acyclic
derivations from the artificial chemistry produced by Algorithm 2.
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Abstract. The complexity of biological regulatory networks calls for the
development of proper mathematical methods to model their structures
and to obtain insight in their dynamical behaviours. One qualitative
approach consists in modelling regulatory networks in terms of logical
equations (using either Boolean or multi-valued discretisation).

In this paper, we propose a novel implementation of the generalised
logical formalism by means of Multi-valued Decision Diagrams. We show
that the use of this representation enables the development of efficient
algorithms for the analysis of specific dynamical properties of the reg-
ulatory graphs. In particular, we address the question of determining
conditions insuring the functionality of feedback circuits, as well as the
identification of stable states. Finally, we apply these algorithms to log-
ical models of T cell activation and differentiation.

Keywords: Regulatory networks, logical modelling, decision diagrams,
regulatory circuits, stable states.

1 Introduction

Modelling is a crucial step towards a functional understanding of the complex
interaction networks that govern fundamental cellular processes. In this respect,
in order to overcome the lack of quantitative data, logical approaches have been
successfully applied to a wide variety of genetic networks involved in cell differen-
tiation and pattern formation (for an introduction to logical modelling of genetic
networks, see [12,3]). However, when facing very large regulatory networks, even
logical abstraction leads to hard combinatorial problems. In other contexts, deci-
sion diagrams have been successfully applied to similar combinatorial problems,
in particular for symbolic model-checking (e.g. [2]). Here, we show how decision
diagrams can be used to represent sophisticated logical rules and enable the de-
velopment of efficient algorithms to determine the conditions insuring specific
dynamical roles for the different regulatory circuits, as well as to identify all the
stable states of large and complex systems, without explicitly constructing the
state transition graph and independently of any initial conditions.

Finally, we apply these algorithms to: (i) a model of Th1/2 differentiation [8]
and (ii) a model of the TCR signalling pathway [7].
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2 Logical Modelling of Gene Regulatory Networks

Our modelling approach leans on the generalised logical formalism initially de-
veloped by R. Thomas and collaborators [13,3]. In this context, a regulatory
network and its dynamics are both represented in terms of oriented graphs.

2.1 Regulatory Graphs

A regulatory network is defined as a labeled directed graph R = (G,A,K) called
regulatory graph, where:

– G = {g1, . . . , gn} is the set of nodes of the regulatory graph, representing
genes (or, more generally, regulatory components). Each gi ∈ G is associated
with its maximum expression level Maxi (Maxi ∈ N

∗) and its current
expression level xi (xi ∈ [0,Maxi]).

– A is the set of arcs. An arc (gi, gj) specifies that the gene gi regulates the
gene gj (when there is no possible confusion, we often write i for gi). A
regulatory graph may contain self-loops (e.g. a self-regulated gene gi with
an arc (i, i)).

For each gene gj , Reg(j) denotes the set of its regulators: i ∈ Reg(j) if
and only if (i, j) ∈ A.

If Maxi > 1, gi may have different effects onto a gene gj, depending on
the actual activity level of gi. Thus the arc (i, j) may be indeed a multi-arc
encompassing different interactions. The multiplicity of the arc (i, j) (i.e. the
number of its constitutive interactions), is denoted mi,j (1 ≤ mi,j ≤Maxi).
A threshold θi,j,k (integer taking its values in [1,mi,j ]) is associated to the kth

interaction (denoted (i, j, k), k ∈ [1,mi,j ]), with 1 ≤ θi,j,1 < . . . < θi,j,mi,j ≤
Maxi. The kth interaction is active, when the level of its source gi lays
between the threshold of this interaction and that of the next interaction:
θi,j,k ≤ xi < θi,j,k+1 (by convention, θi,j,mi,j+1 = Maxi + 1).

– K = (K1, . . . ,Kn) defines the dynamics of the system: each Ki is a multi-
valued logical function defining the evolution of the variable xi, depending
on the incoming active interactions of gi:

Ki :

⎛

⎝
∏

j∈Reg(i)

[0,mj,i]

⎞

⎠→ [0,Maxi] .

For example, if g2 and g3 are regulators of g1 (Reg(1) = {2, 3}), K1(0, 1) is
the focal value of g1 when no interaction from g2 is active (i.e. x2 < θ2,1,1)
and the first interaction from g3 is active (θ3,1,1 ≤ x3 < θ3,1,2).

Note that the biologists often consider different types of interactions: activa-
tions (resp. repressions) have a positive (resp. negative) effect on their targets.
However the actual effect of an interaction often depends on the presence of
co-factors; its sign may even change depending on the context. In any case, the
signs of interactions can be derived from the logical functions.
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2.2 Dynamics of a Regulatory Graph

A state x of the regulatory graph is a n-tuple (x1, . . . , xn) of the expression
levels of the genes: x ∈

∏n
i=0[0,Maxi]. Given a state and for each gene gi, it is

then possible to determine the set of interactions operating onto gi (the active
interactions). We thus define the functions K′

i(x)s, which follow from the logical
functions Kis and directly depend on the current state x of the system:

K′
i :
∏n

j=1[0,Maxj ] −→ [0,Maxi]

x −→ Ki

(mj,i∑

k=1

k.1[θj,i,k,θj,i,k+1[(xj)

)

j∈Reg(i)

.

where 1 denotes the indicator function.
In the following, for simplicity, K′

i will be denoted Ki (omitting the prime
sign).

Given the current state x, the level of each gi tends toward the focal value
given by Ki(x). If this is greater (resp. lower) than xi (the current value of gi),
there is a call to increase (resp. decrease) by one the value of gi.

The dynamics of the regulatory graph can then be represented by a state
transition graph, where nodes represent states (giving the levels of the regula-
tory components) and arcs represent transitions between states (i.e. changes of
the values of some components). This state transition graph is computed by
means of the Kis, which indicate the transitions leading from the current state
to its following states (here, we consider an asynchronous updating, where each
transition corresponds to a change of a unique variable, see [3] for further details).
When facing large regulatory networks (i.e. dozens or hundreds of components),
combinatorial problems impede the full computation of state transition graphs.
In this paper, we assess the use of Decision Diagrams to handle this combinato-
rial problem for complex multi-valued logical models.

3 Regulatory Graphs and Multi-valued Decision
Diagrams

Multi-valued logical functions have a finite number of possible values, depending
on a set of decision variables, which also take a finite range of values. Such
functions can be represented using efficient data structures (see [1] for further
details).

Decision Diagrams are particularly promising in our context. Indeed, Garg
et al. have already used BDD to represent the whole state transition graph of
Boolean models of biological regulatory networks (their approach is contrasted
with ours in the conclusion).

In the following section, we recall the definitions at the basis of our novel
implementation of logical functions.
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3.1 Decision Diagrams

A Boolean function f : {0, 1}n → {0, 1} can be represented as a binary decision
tree where non-terminal nodes are labelled by a decision variable and where ter-
minal nodes are labelled either 1 (true) or 0 (false). The edge from a decision
node to its left child (resp. right child) corresponds to an assignment of the vari-
able to 0 (resp. to 1). Given a state x ∈ {0, 1}n (defining the values of n decision
variables), a unique path from the root to a terminal node (a leaf) is defined.
Along this path, the child chosen for each non-terminal node is labelled with
the value of the corresponding variable in state x. The terminal node reached
through this path gives the value of f(x).

Reduced Binary Decision Diagrams (RBDDs) have been introduced to im-
prove this representation, which requires exponential space (2n+1 − 1 nodes).
RBDDs are obtained applying two reduction rules: (i) merge isomorphic sub-
graphs and (ii) bypass nodes whose children are the roots of isomorphic subdi-
agrams. The resulting structure is then a rooted directed acyclic graph. Bryant
further extended this representation by the use of a fixed variable ordering which
leads to canonical representations of logical functions. The resulting graphs are
called Reduced Ordered BDDs (ROBDDs), commonly referred to as BDDs. Note
that the size of BDDs may depend on the variable ordering (see Figure 1 for an
illustration of the impact of the ordering).

BDDs have been generalised to the multi-valued case: a discrete multi-valued
function can be represented by a Multi-valued Decision Diagram (MDD), where
decision nodes may have as many children as the number of their possible values
and the terminal nodes are labelled by the values of the function (see Figure 1
for an illustration) [6]. The ordering and reduction rules defined for BDDs apply
also to this multi-valued generalisation.

3.2 Use of MDDs to Represent Logical Functions

The functions Kis, which take their values in [0,Maxi], can be represented as
MDDs, with the regulators of gi as decision variables. During the simulation (i.e.
the construction of the state transition graph), the focal value of a gene gi is
obtained in O(#Reg(i)) in the worst case, traversing the corresponding MDD.
This data structure thus definitely improved the performance of GINsim, our
software implementing the logical formalism [5].

Moreover the representation of the Kis by means of MDDs greatly facilitates
the analysis of specific dynamical properties as showed in the following sections.

In the sequel, for simplicity, diagrams will be named after the multi-valued
functions they represent. For a given regulatory graph, an arbitrary ordering on
the set of variables is used consistently for all the related MDDs.

4 Analysis of Regulatory Circuits

In what follows, we consider elementary circuits (circuits, for short), i.e. finite
closed paths in the regulatory graph, where all the nodes are distinct.
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(a)
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xB xB

order (xB ,xA) xB

Fig. 1. Example of a simple logical regulatory graph with its MDD representation: (a)
The regulatory graph, the table defining the function KC together with its decision
tree representation. (b) The reduced MDDs (considering the two different ordering of
xA and xB) representing KC , with xA and xB as decision variables and the values of
KC labelling the leaves.

It is well established that complex dynamical behaviours of regulatory net-
works are related to their topological structures. In particular, the roles of regu-
latory circuits have been emphasised by R. Thomas, who proposed that negative
circuits are required to observe oscillatory behaviours, whereas positive circuits
are necessary for multistationarity (the sign of a circuit is given by the product of
the signs of its interactions) [11]. Proofs of these conditions have been presented
within different modelling formalisms [10,9]. But the sole presence of a circuit
in a network does not guarantee the appearance of the corresponding dynamical
behaviour. The circuit must be functional [11]. Figure 2 illustrates how the
regulators of one of its components can prevent a circuit from generating the
expected behaviour. We thus define the context of functionality of a circuit as
a set of constraints on the values of the external inputs acting on that circuit.
Our definition of functionality context may serve as a basis to formally prove
the relationship between the functionality of a circuit and the corresponding
dynamical properties.

In the multi-valued case, circuits containing multiple interactions can be split-
ted into multiple “elementary circuits” and considered separately. In the sequel
we restrict ourselves to the case of single interactions to simplify the notation:
the threshold of an interaction can be thus denoted θi,j (instead of θi,j,k).
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Fig. 2. Illustration of the influence of external inputs on the dynamics of a regulatory
circuit. In the regulatory graphs of panels (a) and (d), activations are depicted by
normal arrows whereas inhibitions are depicted by blunt arrows. (a) A simple positive
circuit affected by a negative input. (b) Values for KA and KB : two situations arise,
depending on the value of xC (component A regulated by both B and C). (c) The two
possible behaviours, depending on xC : for xC = 0 there are two stable states (top),
while a unique stable state exists for xC = 1 (bottom). (d,e,f) A simple negative circuit
affected by a positive input; oscillations only appear in the absence of the input.

4.1 Functionality Context and Sign of an Interaction

In general, we say that an interaction (i, j) is functional when it affects the
focal value of its target: Kj(x1, . . . , θi,j − 1, . . . , xn) �= Kj(x1, . . . , θi,j , . . . , xn).
In the context of a circuit, this change must further affect the activity of the
next interaction in the circuit (the threshold of the next interaction must be
crossed to reach the focal value). This additional constraint is only relevant for
multi-valued genes, as it is always satisfied in the Boolean case.

In the following, we define the functionality of the interaction (i, j) and its
context, that is the set of constraints upon the regulators of j (target of the
considered interaction).

Definition 1. Let consider an interaction (i, j), member of a circuit C with a
threshold θi,j. Let (j, k) be the next interaction in C, with a threshold θj,k. The
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interaction (i, j) is said to be functional in C if and only if there exists a variable
assignment for all regulators of gj except gi such that:

Kj(x1, . . . , xi−1, θi,j − 1, . . . , xn) < θj,k ≤ Kj(x1, . . . , xi−1, θi,j , . . . , xn), (1)
or Kj(x1, . . . , xi−1, θi,j , . . . , xn) < θj,k ≤ Kj(x1, . . . , xi−1, θi,j − 1, . . . , xn). (2)

The functionality context of the interaction (i, j) in C is defined as the subset
of Πn

k=1[0,Maxk] of n-tuples such that the values of the regulators of gj let the
interaction (i, j) functional (i.e. Equation (1) or (2) satisfied). The interaction
is thus functional if its context is not empty.

Definition 1 establishes that the interaction (i, j) is functional provided its ac-
tivity affects the activity of the following interaction of the circuit (going out
gj). This depends on the values of Kj , considering values θi,j − 1 and θi,j for gi

and all possible values of other regulators of gj .
We can then define the sign of an interaction, as 0 when it is not functional,

or 1 (resp. -1) when it is functional and leads to an increase (resp. a decrease)
of the focal value of its target.

Definition 2. Let us consider consecutive interactions (i, j) and (j, k) in a cir-
cuit C. Given a variable assignment for all regulators of gj (except gi), the sign
of (i, j) in C is given by Γi,j, defined as follows:

Γi,j(x) =

⎧
⎨

⎩

1 if Equation (1) holds,
−1 if Equation (2) holds,
0 otherwise,

where x is a state (x ∈ Πn
k=1[0,Maxk]), for which the values corresponding to

the regulators of gj (except that of gi) equal the given assignment.
We say that (i, j) has a positive effect when Γi,j(x) = 1, a negative effect when

Γi,j(x) = −1 and no effect otherwise.

The construction of the MDD representing Γi,j for a given interaction (i, j) is
illustrated in Figure 3(a-b). The algorithm is given as supplementary material.
The leaves of the MDD give the sign of (i, j), depending on the path followed
to reach them. This path defines the conditions on the values taken by the
regulators of gj.

Remark 1. It may happen that the sign of an interaction (i, j) is context depen-
dent, that is, for an assignment of the regulators of gj (except gi) the sign of
the interaction is positive and for another assignment, it is negative. To sim-
plify the explanations in the next section (that defines the functionality of a
whole circuit), we exclude such a case, which is infrequent in genetic regulatory
networks.

4.2 Functionality Context and Sign of a Regulatory Circuit

We now consider the case of a whole elementary circuit. Definition 3 formalises
the functionality context of a circuit, as well as its sign, depending on its con-
stitutive interactions.
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First, we will consider the case of circuits which do not contain smaller cir-
cuit(s), or shortcuts. A circuit C = (c1, c2, . . . , cr) (with r + 1 = 1) contains a
shortcut if there exists ci which regulates ck, with k �= i+ 1 (ci ∈ C and ck ∈ C).
The simplest example of such a shortcut is an auto-regulation of a member of
the circuit. Then, we extend the definition of the functionality to the general
case (with, for simplicity, the restriction that no interaction of the circuit has a
context dependent sign).

Definition 3. The functionality context of a circuit with no shortcut is defined
as the intersection of the functionality contexts of its constitutive interactions;
the circuit is thus functional when this intersection is not empty (implying that
all its interactions are functional). The sign of the circuit C = (c1, c2, . . . , cr) is
defined as the product of the signs of its interactions:

ΓC(x) =
i≤r∏

i=1

Γci,ci+1(x).

Definition 4. Let consider a circuit C = (c1, c2, . . . , cr) which contains short-
cut(s). Its functionality context ΓC ⊆ Πn

k=1[0,Maxk] is defined as the intersec-
tion of the contexts of its interactions further restricted to insure that, for all ci
acting on a component ck of C different from ci+1, and an assignment ȳ of all
variables but ci:

(y1, . . . , θi,i+1 − 1, . . . yn) ∈ ΓC ⇐⇒ (y1, . . . , θi,i+1, . . . yn) ∈ ΓC .

When the above condition does not hold, all the tuples (y1, . . . , xi, . . . yn) are
removed from ΓC (for all possible values xi of ci). The circuit C is functional if
its functionality context ΓC is not empty. Its sign is defined as the product of the
signs of its interactions.

The above definition guarantees that, given a fixed assignment of all other vari-
ables compatible with ΓC (the functionality context of C), both states where ci
level is less or equal to θi,i+1 (the threshold of the interaction of C going from ci
to ci+1) are in ΓC (and this insures the functionality of this interaction).

The determination of the function ΓC requires two operations: (i) the de-
termination of all the Γi,j , giving the signs of single interactions; and (ii) the
computation of their product.

Assume that the diagrams giving the signs of the interactions composing the
circuit have been determined. The MDD giving the global sign of the circuit
is built as a product of the signs of the individual interactions. This product
is performed by means of the combination of MDDs Γ1 and Γ2, applying the
following rules (see Figure 3(c) for an illustration):

– if Γ1and Γ2 are reduced to single nodes, the product is a node, its value
being the product of those of Γ1and Γ2;

– else if Γ1 (resp Γ2) is a single node with value 1, the result is Γ2 (resp. Γ1);
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– else if Γ1 and Γ2 roots are internal nodes with the same order (hence cor-
responding to the same decision variable), the result is a root of this order,
and its children are recursive combinations of those of Γ1 and Γ2 roots;

– otherwise, if Γ2 is a single node with value (−1) or if the root of Γ1 has an
order less than that of the root of Γ2 (or symmetrically), the result is a root
such that:
• its order is the order of the root of Γ1;
• its children are recursive combinations of Γ2 with those of Γ1.

Finally, in the case of shortcuts in the circuit, as the sign of the circuit C
may depend on the levels of members of C, this dependancy is properly removed
while ensuring that every member of the circuit can cross its threshold. Further
details can be found in the supplementary material.
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5 Efficient Determination of Logical Stable States

In this section, we show how the MDD representation of the logical functions
Kis can be used to determine all the logical stable states of a parameterised
regulatory graph. A stable state x is such that the focal value of each gene is
identical to its current value:

x ∈ Πn
i=1[0,Maxi] is stable iff Ki(x) = xi, ∀i ∈ {1, . . . n}. (3)

The algorithm to determine the stable states encompasses two main steps.
First, for each gene gi, a MDD Si is constructed, which gives the logical stability
condition depending on its value xi and on those of its regulators (box (b) in
Figure 4). Second, the resulting MDDs are combined as described in 4.2.

For a gene gi, the first step amounts to transform the MDD representing the
logical function Ki. The decision variable xi is properly added and the leaves
values are set to 0 for a change (a decrease or an increase), or to 1 for no change.
The resulting MDD implements a logical function with value 1 (true) when the
node is stable, 0 (false) otherwise:

Si :
∏

j∈Reg(i)

[0,Maxj ]→ {0, 1},

with
Si =

{
0 if Ki(x) �= xi,
1 if Ki(x) = xi.

To simplify the notation, Si(x) and Ki(x) are considered beyond the sole
regulators of i, to encompass all components of x. The diagrams Si are then
pairwise combined (the combination of Si and Sj is the representation of the
logical stability condition for both gi and gj). As for the determination of the
sign of a circuit, each combination amounts to the product of the corresponding
MDDs. Ultimately, the diagram S1...n defines the stability condition for the
whole set of genes, hence the paths leading to 1-leaves give the stable states (see
Figure 4).

6 Application to Regulatory Networks Controlling T Cell
Activation and Differentiation

We have applied our novel analysis tools to two logical models recently pub-
lished: (i) the first (multi-valued) model accounts for the differentiation of naive
T-helper lymphocytes into two subtypes, called Th1 and Th2, controlling cellu-
lar and humoral immune responses, respectively [8]; (ii) the second, a Boolean
model, integrates the information available on T cell receptor (TCR) signalling,
taking into account several co-acting signals [7]. These two models are closely
related, as NFAT, one of the outputs of the TCR signalling pathway, is one of
the activators of the IFN-γ pathway.
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paths lead to the 1-leaf (they are depicted in bold), indicating that the regulatory graph
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diagrams are not fully reduced.

6.1 T Cell Differentiation

The regulatory graph is shown in Figure 5. The graph encompasses 17 regula-
tory components, including five cytokines or intercellular signalling molecules,
the interferons beta and gamma, and the interleukines 4, 12 and 18, the cor-
responding receptors, five mediatory molecules, SOCS1, IRAK, and STAT1,
4 and 6, as well as two transcription factors, Tbet and GATA3. All compo-
nents but four are modelled by Boolean variables. The cascade involving IFN-
γ, its receptor, STAT1 and Tbet are modelled by ternary variables as cells
presenting two different levels of activation of the IFN-γ pathway have been
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Fig. 5. The network controlling Th1/2 differentiation. All regulatory components but
four are modelled by Boolean variables. The remaining four (rectangular nodes) are
modelled by ternary variables. The first two nodes layers denote cytokines and their re-
ceptors. Normal arrows represent activations, whereas blunt arrows represent inhibitory
effects. Note that the original model of Mendoza encompasses two variants, including
an auto-activation for GATA3 (murine cells) or not (human cells).

experimentally observed. The experimental information in support of this graph,
as well as the delineation of the logical parameters can be found in the original
article published by Mendoza [8]. The logical model can be downloaded in a GIN-
sim dedicated XML format from the address http://gin.univ-mrs.fr/GINsim/.

The algorithm presented in Section 5 takes less than a second to identify the
four stable states reported by Mendoza:

– a Th0 state without any active component, corresponding to the naive, un-
differentiated cell;

– a Th1 state where IFN-γ, IFN-γR, STAT1, SOCS1 and Tbet are expressed;
– a Th1* state, similar to the previous one, but with higher expression levels

for IFN-γ, and T-bet (the expression of SOCS1 prevents IFN-γR and STAT1
from showing a higher expression level);

– a Th2 state showing expression of IL4, IL4R, STAT6 and GATA3.

Turning to the circuit functionality analysis, the algorithm described in Sec-
tion 4 leads to the identification of five functional circuits among the 22 circuits
found in the regulatory graph for the human model variant shown in Figure 5.
All of these functional circuits are positive, which is consistent with the fact that
this network is predominantly involved in the control of cell differentiation.
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– The auto-regulation of T-bet is functional in the absence of both GATA3
and STAT1, or yet in the presence of a medium level of STAT1. Note that
this circuit involves two different levels of Tbet and can thus enable the
presence of up to three stable states, each characterized by one of the possible
expression levels of Tbet.

– The (GATA3, IL4, IL4R, STAT6) circuit is functional in the absence of
STAT1, SOCS1 and T-bet. This circuit ensures a coupling between the ex-
pressions of GATA3, IL4, IL4R and STAT6. In the murine cells, this circuit
is not functional, replaced by the GATA3 auto-activation (functional in the
absence of Tbet and STAT6).

– The (GATA3, T-bet) circuit is functional in the presence of STAT1 and
STAT6. This cross-inhibitory circuit ensures the exclusive expressions of the
transcriptional regulators Tbet and GATA3, characteristic of Th1 and Th2
responses, respectively. In the absence of the activators of Tbet and GATA3
(STAT1 and STAT6), the cell remains trapped in the naive state.

– The last two functional circuits involve IFN-γ, IFN-γR, STAT1, SOCS1,
STAT6, and STAT4, plus a few additional components. Their contexts of
functionality are relatively restrictive (absence of Tbet and IFNbR, and
presence of IL12 and IL4, plus the absence of GATA3 in one of the two
cases).

On the basis of the results of the circuit functionality analysis, it is possible
to delineate specific perturbations affecting the stable state configuration.

6.2 T Cell Activation

The model recently published by Klamt et al. for T cell activation encompasses 40
regulatory components, hierarchically organised, from cell membrane receptors
(TCR, CD8 and CD45) to transcription factors (CRE, AP1, NF-κB, NFAT)
[7]. After adding three functional auto-activations on the input nodes (TCR,
CD8 and CD45), our stable state identification tool identifies seven alternative
stable states, each corresponding to a specific input configuration. Strikingly,
the input configuration with all receptors permanently activated does not lead
to any stable state, but rather to a complex periodic behaviour. However, in
normal physiological situations, one should expect only transient activations of
these receptors, thus ultimately leading to a unique stable state, corresponding
to the resting situation.

In this respect, cross-talks between the signalling cascades may play an im-
portant role. Here, our circuit functionality analysis tool can be useful. Apart
from the auto-activations purposively added on each of the three receptors, its
application to this system leads to the identification of only one negative func-
tional circuit out of nine: (ZAP70, cCBL). Under full stimulation (i.e. in the
presence of all three inputs), this circuit enables an oscillatory behaviour of
the involved regulatory components. These oscillations propagate downstream,
leading to cyclic expression of the transcription factors (outputs of this model).
In physiological situations, these oscillations must abort following the natural
receptor inactivation.
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7 Conclusion

In this paper, we have shown how Multi-valued Decision Diagrams (MDDs) can
be used to encode the logical functions governing the behaviours of individual
nodes in qualitative models of complex regulatory networks. Leaning on this
encoding, we have further delineated two algorithms, one to efficiently determine
all stable states of a logical model, the other to compute the functionality context
of each regulatory circuit, in terms of conditions on the values of the variables
acting on this circuit.

As mentionned above, Garg et al. have already represented Boolean state
transition graphs in terms of BDD. They considered the particular case of net-
works where genes are expressed provided all their inhibitors are absent and at
least one of their activators are present [4]. Based on their BDD representation,
the authors propose an efficient method to determine stable states, and even
more complex attractors. In contrast, our proposal refer to multi-valued logical
networks where the logical functions can be more subtle. More importantly, our
approach is based on a Decision Diagram representation of the transition func-
tions for each node. Stable states, as well as feedback circuit functionality, are
then determined through proper combinations of these diagrams.

On the basis of a prototype implementation of these algorithms, we are
presently analysing a series of regulatory models (Boolean or multi-valued) in-
volved in cell differentiation and pattern formation, encompassing dozens of regu-
latory components, involved in hundreds of regulatory circuits. For each of these
systems, the delineation of all stable states and the computation of feedback
circuit functionality domains took less than a second on a standard computer.

In section 6, we have briefly presented the results obtained for two recently
published logical models: (i) a multi-valued model of the network controlling
T-helper lymphocytes differentiation; (ii) a Boolean model encompassing some
of the main signalling cascades controlling the activation of T cells.

At this point, we believe that it should be possible to further improve the
performance of our algorithms. In particular, a proper ordering of decision vari-
ables can have a significant impact on the overall sizes of the MDDs (note that
a common ordering of the variables must be defined to ensure a coherent combi-
nation of the MDDs). Similarly, we observed that the order of consecutive MDD
combinations (e.g. in the course of the identification of all stable states) has a
strong effect on the overall performance.

Finally, this MDD representation opens interesting prospects for the modelling
of combinations of mutations or other perturbations through a rewriting of the
MDDs describing the wild-type model.

Supplementary Material

Further details on the algorithms, as well as on the T-helper cell differentiation
and activation models are available at the following URL:
http://gin.univ-mrs.fr/GINsim/publications/naldi2007.html.
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