
F. Oquendo (Ed.): ECSA 2007, LNCS 4758, pp. 279 – 283, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Dynamic Reconfiguration of
Software Architectures Through Aspects

Cristóbal Costa1, Nour Ali1, Jennifer Pérez2, José Ángel Carsí1 , and Isidro Ramos1

1 Department of Information Systems and Computation,
Polytechnic University of Valencia, Camino de Vera s/n, 46022 Valencia, Spain

ccosta@dsic.upv.es, nourali@dsic.upv.es,
pcarsi@dsic.upv.es, iramos@dsic.upv.es

2Technical University of Madrid (UPM)
E.U. Informática, Ctra. Valencia km 7, 28051 Madrid, Spain

jeperez@eui.upm.es

Abstract. Currently, most software systems have a dynamic nature and evolve
at run-time. The dynamic reconfiguration of software architectures has to be
supported in order to enable their architectural element instances and their links
to be created and destroyed at run-time. Complex components also need
reconfiguration capabilities to evolve their internal compositions. This paper
introduces an approach to support the dynamic reconfiguration of software
architectures taking advantage of aspect-oriented techniques. It enables complex
components to autonomously reconfigure themselves: they are capable of both
having knowledge of their current configuration and reconfiguring themselves
at run-time. This approach has been developed for the PRISMA aspect-oriented
architectural model. A new kind of aspect has been created in PRISMA in order
to provide dynamic reconfiguration services to each complex component; it is
called the Configuration Aspect.

Keywords: Dynamic reconfiguration, software architectures, AOSD.

1 Introduction

Currently, most software systems have a dynamic nature that requires them to evolve
and adapt to changes at runtime. The development of this kind of systems is a
complex task since they are large and may consist of heterogeneous entities. As a
result, a great effort has to be done in order to provide system reconfiguration at
runtime. Software architectures [8] provide techniques for describing the structure of
complex software systems in terms of architectural elements (components and
connectors) and interactions among them. Software architectures have a hierarchical
structure where components can be composed into complex components and these, in
turn, can be composed into more complex components.

Dynamic reconfiguration [3] has to be supported in order to enable architectural
element instances and links to be created and/or destroyed at run-time. In the last
years, a lot of research efforts have been done to address dynamic reconfiguration of
software architectures [1,2]. However, most of these approaches address dynamic

280 C. Costa et al.

reconfiguration from a centralized point of view: a global entity is responsible of
providing dynamic reconfiguration capabilities to all the architecture. However,
architectures are often made up of heterogeneous components and each one has
different reconfiguration needs. For this reason, complex components usually need to
reconfigure their internal composition by themselves in an autonomous way.

Aspect-Oriented Software Development (AOSD) [4] proposes the separation of the
crosscutting concerns of software systems into separate entities called aspects,
avoiding the tangled concerns of software and allowing the reuse of the same aspect
in different entities of the software system as well as its maintenance. Dynamic
reconfiguration is a concern that crosscuts the architecture of those software systems
that have a dynamic nature. In order to prevent the dynamic reconfiguration concern
from being tangled with the rest of the architecture, a new kind of aspect called
Configuration has been defined. Thereby, a Configuration aspect encapsulates the
properties and the behaviour of this concern. Only few proposals have addressed
dynamic reconfiguration through aspects [9], and their work is focused at the
implementation level instead of dealing reconfiguration at the architectural level.

This paper presents an approach for supporting dynamic reconfiguration in
software architectures by means of aspects. The approach enables PRISMA complex
components to autonomously reconfigure themselves at runtime, through a
Configuration aspect, whereas other systems or components of the software
architecture are unaware of these dynamic changes.

2 PRISMA

PRISMA [5] is a model that integrates AOSD and software architectures in order to
describe the architectural models of complex software systems. In PRISMA,
architectural elements are specified by importing a set of aspects. Aspects are first-
order citizens of software architectures and encapsulate the properties and the
behaviour of concerns (safety, coordination, etc) that crosscut the software
architecture. A PRISMA architectural element can be seen from two different views:
the internal and the external. In the external view, architectural elements encapsulate
their functionality as black boxes and publish a set of services through their ports. The
internal view shows an architectural element as a prism (white box view). Each side
of the prism is an aspect that the architectural element imports. The aspects of
architectural elements are synchronized among them through weavings relationships.

Fig. 1. PRISMA Systems

 Dynamic Reconfiguration of Software Architectures Through Aspects 281

«aspect»
Configuration

- ArchElements: string list[1..*]
- Attachments: string list[1..*]
- Bindings: string l ist[1..*]

+ newInstance(ae) : string
+ destroyInstance(archID) : void
+ getArchElements() : string list[1..*]
+ getArchElement(aeID) : ArchitecturalElement
+ addAttachment(att) : string
+ removeAttachment(attID) : void
+ getAttachments() : string list[1..*]
+ getAttachment(attID) : Attachment
+ addBinding(bind) : string
+ removeBinding(bindID) : void
+ getBindings() : string l ist[1..*]
+ getBinding(bindID) : Binding

Fig. 2. Configuration Aspect

PRISMA has three kinds of architectural elements: components, connectors, and
systems. Components and connectors are simple; systems are complex components. A
component captures the functionality of software systems whereas a connector acts as
a coordinator among other architectural elements. A PRISMA system is a complex
component that includes a set of architectural elements (connectors, components and
other systems), the connections among them, and its own aspects and weavings (see
Figure1).

3 Dynamic Reconfiguration Through an Aspect

A PRISMA system is an
architectural pattern that defines
the type of architectural elements a
system is composed of and the
kind of valid connections among
them. This architectural pattern is
instantiated to a specific
configuration in order to start the
architecture execution. However,
dynamic systems need to change
their initial configuration several
times as a result of its normal
behaviour (always satisfying their
architectural patterns). For this
reason, the system configuration at
run-time must be considered as a
part of the system state. Thus, a
system must have services to query
its current configuration, and to
change it at run-time. In this way,
a system is aware of its current configuration and can decide whether to change it or
not. A new concern has been created using the PRISMA Aspect-Oriented
Architecture Description Language (AOADL) [6] to encapsulate these services into
aspects. This is the Configuration concern. A Configuration aspect encapsulates every
property and behaviour related to dynamic reconfiguration. Any system that needs
reconfiguration capabilities to evolve its internal composition imports the
Configuration aspect.

This aspect has a set of attributes that contain the current configuration of the
system and a set of services that maintain and evolve this configuration. The attributes
the Configuration aspect provides are dynamic lists which store references to: (i) the
architectural element instances of the system at run-time (component, connector, and
system instances), and (ii) connection instances of the system at run-time. The
services that the Configuration aspect provides (see Figure 2) allow systems to know
and modify the data that these attributes store (the system configuration): (i) create or
destroy instances of system architectural elements, (ii) establish connections between
system architectural elements, and (iii) provide query services in order to make the

282 C. Costa et al.

system aware of its current configuration. In this way, reconfiguration characteristics
are specified without extending the PRISMA AOADL with new primitives, and the
reconfiguration concern is not tangled with other concerns.

The infrastructure where the software architecture is running is responsible for
providing to each system instance the mechanisms of dynamic reconfiguration.
PRISMA software architectures are executed by the PRISMANET middleware [7],
which provides the mechanisms required for knowing and modifying the running
configuration of each system instance at run-time. PRISMANET guarantees that the
configuration dependencies among the different elements are preserved.

4 Conclusions and Further Work

This paper has presented an approach to dynamically reconfigure software
architectures taking advantage of aspect-oriented techniques. This approach consists
of providing each complex component with an aspect called Configuration, that
provides dynamic reconfiguration services at run-time. As a result, this approach has
the advantage of keeping dynamic reconfiguration properties and behaviour from
being tangled with the rest of the architecture. This has been done without increasing
the complexity of the PRISMA AOADL, only by using its original primitives.

Autonomous system instance reconfigurations must satisfy the constraints of the
system architectural pattern. We are currently working on specifying how the
reflection mechanisms ensure that the requested changes do not violate the restrictions
described in the architectural pattern of the system.

Acknowledgements. This work is funded by the Dept. of Science and Technology
(Spain) under the National Program I+D+I, META project TIN2006-15175-C05-01.
This work is also supported by a fellowship from Conselleria d'Educació i Ciència (G.
Valenciana) to C. Costa.

References

1. Bradbury, J.S., Cordy, J.R., Dingel, J., Wermelinger, M.: A Survey of Self-Management in
Dynamic Software Architecture Specifications. In: WOSS’04. Proc. of 1st ACM SIGSOFT
Workshop on Self-Managed Systems, Newport Beach, California, pp. 28–33. ACM Press,
New York (2004)

2. Cuesta, C.E.: Dynamic Software Architecture Based on Reflection (in Spanish). PhD
Thesis, Department of Computer Science, University of Valladolid, Spain (2002)

3. Cuesta, C.E., Fuente, P.d.l., Barrio-Solárzano, M.: Dynamic Coordination Architecture
through the use of Reflection. In: SAC 2001. Proc. of 2001 ACM Symposium on Applied
Computing, pp. 134–140 (2001)

4. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier, J., Irwin, J.:
Aspect-Oriented Programming. In: Aksit, M., Matsuoka, S. (eds.) ECOOP 1997. LNCS,
vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

5. Pérez, J.: PRISMA: Aspect-Oriented Software Architectures. PhD Thesis, Department of
Information Systems and Computation, Polytechnic University of Valencia, Spain (2006)

 Dynamic Reconfiguration of Software Architectures Through Aspects 283

6. Pérez, J., Ali, N., Carsí, J.Á., Ramos, I.: Designing Software Architectures with an Aspect-
Oriented Architecture Description Language. In: Gorton, I., Heineman, G.T., Crnkovic, I.,
Schmidt, H.W., Stafford, J.A., Szyperski, C.A., Wallnau, K. (eds.) CBSE 2006. LNCS,
vol. 4063, pp. 123–138. Springer, Heidelberg (2006)

7. Pérez, J., Ali, N., Costa, C., Carsí, J.Á., Ramos, I.: Executing Aspect-Oriented Component-
Based Software Architectures on .NET Technology. In: Proc. of 3rd International
Conference on .NET Technologies, Pilsen, Czech Republic, pp. 97–108 (June 2005)

8. Perry, D.E., Wolf, A.L.: Foundations for the Study of Software Architecture. ACM
SIGSOFT Software Engineering Notes 17(4), 40–52 (1992)

9. Rasche, A., Polze, A.: Configuration and Dynamic Reconfiguration of Component-Based
Applications with Microsoft.NET. In: ISORC’03. Proc. 6th IEEE Int. Symposium on
Object-Oriented Real-Time Distributed Computing, Hakodate, Japan, pp. 164–171 (2003)

	Dynamic Reconfiguration of Software Architectures Through Aspects
	Introduction
	PRISMA
	Dynamic Reconfiguration Through an Aspect
	Conclusions and Further Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

