
F. Oquendo (Ed.): ECSA 2007, LNCS 4758, pp. 2 – 10, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

An Active Architecture Approach to Dynamic 
Systems Co-evolution 

Ron Morrison1, Dharini Balasubramaniam1, Flavio Oquendo2, Brian Warboys3, 
 and R. Mark Greenwood3 

1 University of St Andrews 
St Andrews, KY16 9SX, UK 

{ron,dharini}@cs.st-andrews.ac.uk 
2 University of South Brittany – Valoria 
BP 573, 56017 Vannes Cedex, France 
Flavio.Oquendo@univ-ubs.fr 

3 University of Manchester, Manchester, M13 9PL, UK 
{brian,markg}@cs.man.ac.uk 

Abstract. The term co-evolution describes the symbiotic relationship between 
dynamically changing business environments and the software that supports 
them. Business changes create pressures on the software to evolve, and at the 
same time technology changes create pressures on the business to evolve. More 
generally, we are concerned with systems where it is neither economically nor 
technologically feasible to suspend the operation of the system while it is being 
evolved. Typically these are long-lived systems in which dynamic co-evolution, 
whereby a system evolves as part of its own execution in reaction to both 
predicted and emergent events, is the only feasible option for change. Examples 
of such systems include continuously running business process models, sensor 
nets, grid applications, self-adapting/tuning systems, routing systems, control 
systems, autonomic systems, and pervasive computing applications. 

Active architectures address both the structural and behavioural require- 
ments of dynamic co-evolving software by modelling software architecture as 
part of the on-going computation, thereby allowing evolution during execution 
and formal checking that desired system properties are preserved through 
evolution. This invited paper presents results on active architectures from the 
Compliant System Architecture and ArchWare projects. We have designed and 
constructed the ArchWare-ADL, a formal, well-founded architecture 
description language, based on the higher-order typed π-calculus, which 
consists of a set of layers to address the requirements of active architectures. 
The ArchWare-ADL design principles, concepts and formal notations are 
presented together with its sophisticated reflective technologies for supporting 
active architectures and thereby dynamic co-evolution. 

1   Introduction 

Where software cannot change to keep up with the changing business goals, the 
business loses efficiency, and the perceived value of the software decreases [17]. 



 An Active Architecture Approach to Dynamic Systems Co-evolution 3 

Conversely, a business must continually intercept the potential of new technology to 
maintain its effectiveness and remain competitive. Thus business changes create 
pressures on the software to evolve, and at the same time software changes create 
pressures on the business to evolve [32]. We use the term co-evolution to describe the 
concept of the business and the software evolving sympathetically, but at potentially 
different rates, to satisfy changing requirements. 

More generally, we are concerned with what Milner termed “wide informatic 
systems” [21] to describe systems, assembled from components, that co-evolve with 
their environment. Such systems recognise that the business effects of introducing, or 
changing, a software system are potentially emergent, especially in terms of non-
functional requirements such as safety, reliability and performance. Typically these 
are long-lived applications in which dynamic co-evolution, whereby a system evolves 
as part of its own execution, is the only feasible option for change. Examples of such 
systems include continuously running business process models, sensor nets, grid 
applications, self-adapting/tuning systems, routing systems, control systems, and 
pervasive computing applications. 

Active architectures address the structural and behavioural requirements of 
dynamic co-evolving software by modelling the software architecture as part of the 
on-going computation, thereby allowing evolution during execution. They facilitate 
the design and engineering of dynamic co-evolving systems in a way that preserves 
the flexibility to adapt to new requirements while ensuring that important properties 
can be continuously verified. Fundamentally, users and developers must be able to 
understand a system, and its interactions with the environment, to define the 
appropriate evolutions. In our approach active architectures manage the co-
evolutionary process using: a formal description of the system’s structure and 
behaviour; self-monitoring capabilities to provide a view of the system’s dynamic 
behaviour; sophisticated evolutionary mechanisms including a model of the system 
itself at the appropriate level of abstraction and incremental checking tools for 
formally verifying that desired system properties are preserved over evolution. 

We have designed and constructed the ArchWare-ADL [26][27], a formal, well-
founded architecture description language based on the higher-order typed π-calculus 
[19], which consists of a set of layers to address the requirements of active 
architectures. The ArchWare-ADL design principles, concepts and formal notations 
are presented along with sophisticated reflective technologies for supporting active 
architectures and thereby dynamic co-evolution. 

2   Active Software Architecture 

A key aspect of the design of a software system is its architecture; the fundamental 
organisation of the system embodied in its components, their relationships to one 
another and to the environment. Two viewpoints are frequently used in describing 
software architectures: structural and behavioural [13]. 

The structural viewpoint may be specified in terms of: 

• components – units of computation of a system, 
• connectors – interconnections among components for supporting their interactions, and 
• configurations – of components and connectors. 



4 R. Morrison et al. 

From a structural viewpoint, an architecture description should provide a formal 
specification of the architecture in terms of components and connectors, how they are 
composed, and how the architectural structure may change. 

The behavioural viewpoint may be specified in terms of: 

• actions a system executes or participates in, 
• relations among actions to specify behaviours, 
• behaviours of components and connectors, and how they interact and change,  
• the state of the active system.  

We define an active architecture as dynamic in that it can evolve during execution 
by creating, deleting, reconfiguring and moving components, connectors and their 
configurations at runtime. Importantly, active architectures require the structural and 
behavioural viewpoints to specify static and dynamic behoviour and properties. A 
challenge for an Architecture Description Language (ADL) is to support active 
architectures by finding the abstractions and technologies that accommodate the 
dynamic evolution of components, connectors and configurations through their 
actions, relationships and behaviours. 

3   The Archware ADL 

The ArchWare-ADL [26] is a novel architecture description language (ADL) 
designed to accommodate active architectures. It is: 

• a formal, theoretically well-founded language based on the higher-order typed π-
calculus; 

• automated by tools, i.e. a specification and verification toolset providing support 
for automated checking; and 

• supported by a set of reflective technologies for dynamic co-evolution. 

The ArchWare-ADL takes its roots in previous work on the use of π-calculus as 
semantic foundation for architecture description languages [4][5]. When augmented 
with domain-specific architectural extensions it blends Turing completeness and high 
architecture expressiveness with a simple formal notation.  

The novelty of ArchWare lies in its holistic view of formal development, 
encompassing languages for formal specification, (i.e. ArchWare ADL), formal 
verification [18], and formal transformation [28]. As such it goes beyond existing 
formal methods in supporting architecture-centric model-driven engineering of 
software systems. 

Like formal methods such as B [1], Z [6], VDM [7], and FOCUS [31], ArchWare 
provides full support for formal description and development of software systems. 
Unlike these formal methods, ArchWare is based on a process algebra, the higher-
order typed π-calculus, and provides architectural support for formal architecture-
centric software engineering.  

The ArchWare-ADL consists of a set of layers to address the structural and 
behavioural requirements of active architectures. The novelty is that it models the 



 An Active Architecture Approach to Dynamic Systems Co-evolution 5 

architecture as part of the on-going computation, thereby allowing the evolution of the 
architecture in step with execution. 

There are five layers in the ArchWare-ADL: 

• The base layer defines a coordination language without data values correspond- 
ding to the monadic π-calculus. 

• The first order layer adds data values and abstractions and corresponds to 
polyadic π-calculus. 

• The higher order layer corresponds to higher-order polyadic π-calculus. 
• The analysis layer enables the specification of constraints on the styles. 
• The style layer allows the specification of components and connectors. 

The style layer provides constructs from which the base component-and-connector 
style and other derived styles can be defined. Conceptually, an architectural style 
provides: 

• a set of abstractions for architectural elements; 
• a set of constraints (i.e. properties that must be satisfied) on architectural 

elements, including legal compositions; and, 
• a set of additional analyses that can be performed on architecture descriptions 

constructed in the style. 

Thus the ArchWare-ADL provides a framework for formalising software architect- 
tures based on the concepts of components and connectors. Styles are used to define 
families of architectures that have a common structure and satisfy the same properties. 

The style layer makes use of both the underlying π-calculus layers and the analysis 
layer. Styles in ArchWare are defined as property-guarded abstractions that may be 
applied to yield instances of an architecture conforming to the style. The structure and 
behaviour of an architecture family are specified using the ArchWare-ADL [11] with 
the constraints on the family being specified using the analysis layer. 

The essential property of dynamic co-evolutionary systems is the ability to 
(partially) stop and decompose a running system into its constituent components, and 
compose evolved or new components to form a new system, while preserving any 
state or shared data if desirable. Once a co-evolving system receives an internal or 
external stimulus for evolution it can: (partially) suspend the component(s) to be 
evolved; decompose them into constituent parts; modify the components separately; 
recompile the components and bind them into the executing system. The support 
technologies for this are a decomposition operator, linguistic reflection and a system 
representation capable of capturing closure, called hyper-code [14]. 

4   Dynamic Co-evolution 

A dynamic co-evolving system is constantly in a state of flux as it evolves in reaction 
to external and internal stimuli. To understand and manage the co-evolutionary 
process, we introduce the concepts of incarnation, evolutionary step and locus [24]. 

A dynamic co-evolving system mutates from one incarnation to the next via an 
evolutionary step. Within a context we can observe a sub-system through a sequence of 
incarnations. Each incarnation includes a period of normal execution, followed by an 



6 R. Morrison et al. 

evolutionary step. The end of the evolutionary step defines the start of the next 
incarnation. Thus an incarnation can be considered as system execution between the end 
points of two subsequent evolutionary steps and consists of the code, data and meta-data 
not only for carrying out its present purpose, including architectural constraint checking, 
but also for a variety of possible future evolutionary steps. The change context, i.e. the 
set of entities that will change during an evolutionary step, is known as the locus. An 
evolutionary step is defined as a change to a locus and is made by an evolver internal to 
the locus. Thus it is the locus that evolves itself, in reaction to some external or internal 
stimulus. During normal execution, the locus continually monitors the incarnation to 
determine when an evolutionary step is necessary.  

A co-evolving application may be constructed in terms of loci. The internal evolver 
produces new incarnations of the locus. The structuring of loci within an application 
is static where it is possible to predict the sets of loci and interactions that are subject 
to change. In such cases, an evolver produces a new incarnation of its locus and the 
application changes without changing the structure of the loci. Where it is not 
possible to predict the sets of loci and interactions that are subject to change, a new 
locus may be defined dynamically to undertake the desired evolutionary step. Thus 
the structuring of the loci is dynamic. In both cases the locus determines those factors 
that change and those that remain constant during the evolutionary step. The objective 
is to make explicit the distinction between what can change and what remains 
unaffected by each evolutionary step, even though this may not be completely 
statically defined. 

We offer this initial set of intrinsic requirements for dynamic co-evolution [24]: 

• a method for structuring dynamic co-evolving systems as loci; 
• a technique for programming with incremental design; 
• a method of monitoring the internal and external environment; 
• a method of partially stopping and decomposing loci and their interactions; 
• a method of dynamically reifying the state of the computation; 
• a method of generating new loci using the reified state (IR6); 
• and, a method of rebinding the new loci into the executing system. 

5    Co-evolving Active Architecture 

We have developed the following technologies that satisfy the needs of the intrinsic 
requirements of adaptation [3][23][33][34] 

• Decomposition: a decompose operator to suspend execution and break up a 
locus into its constituent parts. 

• Reification: a reify operator to yield a dynamic representation of the executing 
locus.  

• Generation: a method of transforming the representation to create new 
representations. 

• Reflection: a reflect operator to compile the resultant representations and bind 
them into the running computation [30]. 

• Probes: a software mechanism to provide feed forward and feedback stimuli [2].  



 An Active Architecture Approach to Dynamic Systems Co-evolution 7 

• A persistent environment 
• Dynamic property checking 

Figure 1 illustrates the use of dynamic property checking to ensure that the execution 
and evolution of the active architecture preserves the essential properties of the 
system. The architectural style is expressed in terms on elements and constraints 
among these elements. These map on to the active architecture. The property checker 
monitors the execution and dynamically checks properties. When a violation occurs 
this is fed back to the executing architecture that then may form loci (ellipses) to 
evolve the architecture. 

Importantly, since the property checker is part of the active system, it may itself 
evolve to check new properties or use new technology. 

 

Fig. 1. A Dynamically Co-evolving System 

6   Decomposition and Hyper-code 

The two most unusual technologies supported by the Archware ADL are decomposi- 
tion and hyper-code.  

Decomposition suspends execution and breaks up a locus into its constituent parts. 
Unusually the semantics of decomposition are well suited for definition in the π-
calculus by allowing each constituent part to run to its reduction limit, that is where it 
is waiting for an interaction, and then breaking the communication channel and 
stopping the execution. 

Hyper-code is a representation of an active executing graph linking source code 
and existing values. It allows state and shared data to be preserved during evolution. 
Thus at any point during the computation the state of the execution may be inspected 
by viewing the hyper-code. 



8 R. Morrison et al. 

The importance of hyper-code is that it is rich enough to represent executing code 
since it captures the state of the computation. Since hyper-code can represent closure, 
it may be used to introspect an executing system, and thereby can be used to return 
the result of a decomposition operation. Together the facilities of hyper-code, 
decomposition, reflection and reification permit users to stop part of an executing 
system (while the rest of the system continues to execute), inspect its specification 
and state, evolve the part as necessary, and recompose the system. The generation 
may be performed by specifying a series of semantics preserving transformations 
using a programmable interface to the hyper-code graph such as supplied by the 
Metaprogramming Framework [19]. 

7   Conclusions 

There are many complementary architectural approaches to system evolution [8][9] [10] 
[12][15][16][25][29][35]. Active architectures address the structural and behavioural 
requirements of dynamic co-evolving software by modelling the software architecture 
as part of the on-going computation, thereby allowing it to evolve during execution. 

The judicious mixture of formality in the Archware-ADL and its sophisticated 
support technologies yield an innovative approach to implementing active 
architectures for dynamic co-evolution. The language can describe the system’s 
specification, the executing software and the reflective evolutionary mechanisms 
within a single computational domain in which all three may evolve in tandem. 

Acknowledgements 

The ArchWare Project was partially funded by the Commission of the European 
Union under contract No. IST-2001-32360 in the IST-V Framework. The work 
reported here also builds on earlier EPSRC-funded work in Compliant Systems 
Architectures [22] (GR/M88938 & GR/M88945). 

References 

[1] Abrial, J.-R.: The B-Book: Assigning Programs to Meanings. Cambridge University 
Press, Cambridge (1996) 

[2] Balasubramaniam, D., Morrison, R., Mickan, K., Kirby, G.N.C., Warboys, B.C., 
Robertson, I., Snowdon, R., Greenwood, R.M., Seet, W.: Support for feedback and 
change in self-adaptive systems. In: WOSS’04. Proc. ACM SIGSOFT Workshop on Self-
Managing Systems, Newport Beach, CA, USA, pp. 18–22. ACM Press, New York (2004) 

[3] Balasubramaniam, D., Morrison, R., Kirby, G.N.C., Mickan, K., Warboys, B.C., 
Robertson, I., Snowdon, B., Greenwood, R.M., Seet, W.: A software architecture 
approach for structuring autonomic systems. In: DEAS 2005. Proc. ICSE Workshop on 
the Design and Evolution of Autonomic Application Software, St Louis, MO, USA, pp. 
59–65 (2005) 

[4] Chaudet, C., Greenwood, M., Oquendo, F., Warboys, B.: Architecture-Driven Software 
Engineering: Specifying, Generating, and Evolving Component-Based Software Systems. 
IEE Journal: Software Engineering 147(6) (December 2000) 



 An Active Architecture Approach to Dynamic Systems Co-evolution 9 

[5] Chaudet, C., Oquendo, F.: A Formal Architecture Description Language Based on 
Process Algebra for Evolving Software Systems. In: ASE’00. Proceedings of the 15th 
IEEE International Conference on Automated Software Engineering, Grenoble, 
September 2000, IEEE Computer Society, Los Alamitos (2000) 

[6] Davies, J., Woodcock, J.: Using Z: Specification, Refinement and Proof. Prentice Hall 
International Series in Computer Science (1996) 

[7] Fitzgerald, J., Larsen, P.: Modelling Systems: Practical Tools and Techniques for 
Software Development. Cambridge University Press, Cambridge (1998) 

[8] Garlan, D., Cheng, S.W., Huang, A.C., Schmerl, B., Steenkiste, P.: Rainbow: 
Architecture-based self-adaptation with reusable infrastructure. IEEE Computer 37(10), 
46–54 (2004) 

[9] Godfrey, M.W., Tu, Q.: Evolution in Open Source Software: A Case Study. In: ICSM’00. 
Proceedings of the International Conference on Software Maintenance, Washington, DC, 
October 11 - 14, 2000, pp. 131–142. IEEE Computer Society, Los Alamitos (2000) 

[10] Gorlick, M.M., Razouk, R.R.: Using Weaves for Software Construction and Analysis. In: 
Proc. 13th International Conference on Software Engineering, Austin, Texas, United 
States, pp. 23–34. IEEE Computer Society Press, Los Alamitos (1991) 

[11] Greenwood, M., Balasubramaniam, D., Cimpan, S., Kirby, N.C., Mickan, K., Morrison, 
R., Oquendo, F., Robertson, I., Seet, W., Snowdon, R., Warboys, B., Zirintsis, E.: Process 
Support for Evolving Active Architectures. In: Oquendo, F. (ed.) EWSPT 2003. LNCS, 
vol. 2786, Springer, Heidelberg (2003) 

[12] Groenewegen, L.P.J., de Vink, E.P.: Evolution-On-The-Fly with Paradigm. In: 
Ciancarini, P., Wiklicky, H. (eds.) COORDINATION 2006. LNCS, vol. 4038, pp. 97–
122. Springer, Heidelberg (2006) 

[13] IEEE Std 1471-2000: IEEE Recommended Practice for Architectural Description of 
Software-Intensive Systems (October 2000) 

[14] Kirby, G.N.C., Connor, R.C.H., Cutts, Q.I., Dearle, A., Farkas, A.M., Morrison, R.: 
Persistent hyper-programs. In: Albano, A., Morrison, R. (eds.) Persistent Object Systems, 
1992. Proc. 5th International Conference on Persistent Object Systems, Italy, pp. 86–106. 
Springer, Heidelberg (1993) 

[15] Kramer, J., Magee, J.: The Evolving Philosophers Problem: Dynamic Change 
Management. IEEE Trans. on Software Engineering 16(11), 1293–1306 (1990) 

[16] Kramer, J., Magee, J.: Analysing Dynamic Change in Software Architectures: A Case 
Study. In: CDS 98. Proc. IEEE 4th Int. Conference on Configurable Distributed Systems, 
Annapolis, USA, May 1998, pp. 91–100. IEEE Computer Society Press, Los Alamitos 
(1998) 

[17] Lehman, M.M.: Laws of software evolution revisited. In: Montangero, C. (ed.) EWSPT 
1996. LNCS, vol. 1149, pp. 108–124. Springer, Heidelberg (1996) 

[18] Mateescu, R., Oquendo, F.: pi-AAL: An Architecture Analysis Language for Formally 
Specifying and Verifying Structural and Behavioural Properties of Software 
Architectures. ACM Software Engineering Notes 31(2) (March 2006) 

[19] Mickan, K.: A Meta-Programming Framework for Software Evolution. Ph.D. Thesis, 
University of St Andrews (2006) 

[20] Milner, R.: Communicating and Mobile Systems: The Pi-Calculus. Cambridge University 
Press, Cambridge (1999) 

[21] Milner, R.: Computing in space. In: 17th International Congress on Computer Assisted 
Radiology and Surgery (CARS2003) (2003), http://www.cl.cam.ac.uk/users/rm135/ 

[22] Morrison, R., Balasubramaniam, D., Greenwood, R.M., Kirby, G.N.C., Mayes, K., 
Munro, D., Warboys, B.C.: A Compliant Persistent Architecture. Software, Practice & 
Experience 30, 1–24 (2000) 

[23] Morrison, R., Kirby, G.N.C., Balasubramaniam, D., Mickan, K., Oquendo, F., Cîmpan, 
S., Warboys, B.C., Snowdon, B., Greenwood, R.M.: Support for evolving software 



10 R. Morrison et al. 

architectures in the ArchWare ADL. In: WICSA 4. Proc. 4th Working IEEE/IFIP 
Conference on Software Architecture, Oslo, Norway, pp. 69–78 (2004) 

[24] Morrison, R., Balasubramaniam, D., Kirby, G.N.C., Warboys, B.C., Greenwood, R.M.: A 
Framework for Supporting Dynamic Systems Co-evolution. Journal of Automated 
Software Engineering (accepted for publication, 2007) 

[25] Oreizy, P., Medvidovic, N., Taylor, R.N.: Architecture-Based Runtime Software 
Evolution. In: Proc. 20th International Conference on Software Engineering, Kyoto, 
Japan, pp. 177–186. IEEE Computer Society, Los Alamitos (1998) 

[26] Oquendo, F., Warboys, B., Morrison, R., Dindeleux, R., Gallo, F., Garavel, H., 
Occhipinti, C.: ArchWare: Architecting Evolvable Software. In: Oquendo, F., Warboys, 
B.C., Morrison, R. (eds.) EWSA 2004. LNCS, vol. 3047, Springer, Heidelberg (2004) 

[27] Oquendo, F.: π-ADL: an architecture description language based on the higher-order 
typed π-calculus for specifying dynamic and mobile software architectures. ACM 
Software Engineering Notes 29(3) (2004) 

[28] Oquendo, F.: pi-ARL: An Architecture Refinement Language for Formally Modelling the 
Stepwise Refinement of Software Architectures. ACM Software Engineering Notes 29(5) 
(September 2004) 

[29] Schmerl, B., Garlan, D.: Exploiting architectural design knowledge to support self-
repairing systems. In: SEKE ’02. Proceedings of the 14th international Conference on 
Software Engineering and Knowledge Engineering, Ischia, Italy, July 15-19, 2002, 
vol. 27, pp. 241–248. ACM Press, New York (2002) 

[30] Stemple, D., Fegaras, L., Stanton, R.B., Sheard, T., Philbrow, P., Cooper, R.L., Atkinson, 
M.P., Morrison, R., Kirby, G.N.C., Connor, R.C.H., Alagic, S.: Type-safe linguistic 
reflection: a generator technology. In: Atkinson, M.P., Welland, R. (eds.) Fully Integrated 
Data Environments, pp. 158–188. Springer, Heidelberg (1999) 

[31] Stolen, K., Broy, M.: Specification and Development of Interactive Systems. Springer, 
Heidelberg (2001) 

[32] Warboys, B.C., Kawalek, P., Robertson, I., Greenwood, R.M.: Business Information 
Systems: A Process Approach. McGraw-Hill, New York (1999) 

[33] Warboys, B.C., Balasubramaniam, D., Greenwood, R.M., Kirby, G.N.C., Mayes, K., 
Morrison, R., Munro, D.S.: Collaboration and Composition: Issues for a Second 
Generation Process Language. In: Nierstrasz, O., Lemoine, M. (eds.) Software 
Engineering - ESEC/FSE ’99. LNCS, vol. 1687, pp. 75–91. Springer, Heidelberg (1999) 

[34] Warboys, B.C., Greenwood, R.M., Robertson, I., Morrison, R., Balasubramaniam, D., 
Kirby, G.N.C., Mickan, K.: The ArchWare Tower: The Implementation of an Active 
Software Engineering Environment using a π-calculus based Architecture Description 
Language. In: Morrison, R., Oquendo, F. (eds.) EWSA 2005. LNCS, vol. 3527, pp. 30–
40. Springer, Heidelberg (2005) 

[35] Zhang, J., Cheng, B.H.: Model-based development of dynamically adaptive software. In: 
ICSE ’06. Proc. of the 28th international Conference on Software Engineering, Shanghai, 
China, May 20-28, 2006, pp. 371–380. ACM Press, New York (2006) 

 


	An Active Architecture Approach to Dynamic Systems Co-evolution
	Introduction
	Active Software Architecture
	The Archware ADL
	Dynamic Co-evolution
	Co-evolving Active Architecture
	Decomposition and Hyper-code
	Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




