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Preface

These are the proceedings of the 11th International Workshop on Cooperative
Information Agents (CIA 2007), held at the Delft University of Technology, The
Netherlands, September 19–21, 2007.

In today’s world of ubiquitously connected heterogeneous information systems
and computing devices, the intelligent coordination and provision of relevant
added-value information at any time, anywhere is of key importance to a vari-
ety of applications. This challenge is envisioned to be coped with by means of
appropriate intelligent and cooperative information agents.

An information agent is a computational software entity that has access to
one or multiple heterogeneous and geographically dispersed data and informa-
tion sources. It pro-actively searches for and maintains information on behalf of
its human users, or other agents preferably just in time. In other words, it is
managing and overcoming the difficulties associated with information overload
in open, pervasive information and service landscapes.

Each component of a modern cooperative information system is represented
by an appropriate intelligent information agent capable of resolving system and
semantic heterogeneities in a given context on demand. Cooperative informa-
tion agents are supposed to accomplish both individual and shared joint goals
depending on the actual user preferences in line with given or deduced limits of
time, budget and resources available. One major challenge of developing agent-
based intelligent information systems in open environments like the Internet
and the Web is to balance the autonomy of networked data, information, and
knowledge sources with the potential payoffs of leveraging them by the use of
cooperative and intelligent information agents.

The objective of the international workshop series on cooperative information
agents (CIA), since its establishment in 1997, is to provide a small but very dis-
tinguished interdisciplinary forum for researchers, programmers, and managers
to become informed about, present, and discuss the latest high-quality results in
research and development of agent-based intelligent and cooperative information
systems and applications for the Internet and the Web. Each event of the series
offers regular and invited talks of excellence that are given by renown experts
in the field, a selected set of system demonstrations, and honors innovative re-
search and development of information agents by means of best a paper award
and system innovation award giving. The proceedings of the series are regularly
published as volumes of the Lecture Notes in Artificial Intelligence (LNAI) series
of Springer.

In keeping with its tradition, this year’s workshop featured a sequence of
regular and invited talks of excellence given by leading researchers covering a
broad area of topics of interest. CIA 2007 featured 4 invited and 20 regular papers
selected from 38 submissions. The result of the peer-review of all contributions



VI Preface

is included in this volume that is, we believe, again rich in interesting, inspiring,
and advanced work on the research and development of intelligent information
agents worldwide. All workshop proceedings have been published by Springer as
Lecture Notes in Artificial Intelligence volumes: 1202 (1997), 1435 (1998), 1652
(1999), 1860 (2000), 2182 (2001), 2446 (2002), 2782 (2003), 3191 (2004), 3550
(2005), 4149 (2006).

This year the CIA System Innovation Award and the CIA Best Paper Award
were sponsored by Whitestein Technologies AG, Switzerland, and the CIA work-
shop series, respectively. There was also some financial support available to a
limited number of students as (co-)authors of accepted papers to present their
work at the CIA 2007 workshop; these grants were sponsored by the IEEE FIPA
standard committee, and the Belgian-Dutch Association for Distributed AI (BN-
VKI).

The CIA 2007 workshop was organized in cooperation with the Association
for Computing Machinery (ACM), in particular the ACM special interest groups
SIG-Web, SIG-KDD, SIG-CHI and SIG-Art. We are very grateful and indebted
to our sponsors for their financial support, which made this event in its conve-
nient form only possible. The sponsors of CIA 2007 were:

ICT Research Center, TU Delft, The Netherlands
Whitestein Technologies, Switzerland

IEEE Computer Society Standards Organisation Committee on Intelligent and
Physical Agents (FIPA)

Belgian-Dutch Association for Distributed AI (BNVKI)
Dutch research school for Information and Knowledge Systems (SIKS)

We are particularly thankful to the authors and invited speakers for contributing
their latest results in relevant areas to this workshop, as well as to all members of
the Program Committee, and the external reviewers for their critical reviews of
submissions. Finally, a particularly cordial thanks goes to the local organization
team from TU Delft for providing us with a traditionally comfortable and all-
inclusive location, and a very nice social program in the beautiful, typically
Dutch city of Delft.

September 2007 Matthias Klusch
Koen Hindriks

Mike Papazoglou
Leon Sterling
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Managing Sensors and Information Sources Using
Semantic Matchmaking and Argumentation

Alun Preece

University of Aberdeen, Computing Science, Aberdeen, UK
apreece@csd.abdn.ac.uk

Abstract. Effective deployment and utilisation of limited and constrained in-
telligence resources — including sensors and other sources — is seen as a key
issue in modern multinational coalition operations. In this talk, I will examine
the application of semantic matchmaking and argumentation technologies to the
management of these resources. I will show how ontologies and reasoning can be
used to assign sensors and sources to meet the needs of missions, and show how
argumentation can support the process of gathering and reasoning about uncertain
evidence obtained from sensor probes.

1 Introduction

Effective deployment and utilisation of limited and constrained intelligence, surveil-
lance and reconnaisance (ISR) resources is seen as a key issue in modern network-
centric joint-forces operations. For example, the 2004 report JP 2-01 Joint and National
Intelligence Support to Military Operations states the problem in the following terms:
“ISR resources are typically in high demand and requirements usually exceed platform
capabilities and inventory. . . . The foremost challenge of collection management is to
maximize the effectiveness of limited collection resources within the time constraints
imposed by operational requirements.”1

Our work focusses upon the application of Virtual Organisation technologies to man-
age coalition resources. In the past we have shown an agent-based VOs can manage the
deployment and utilisation of network resources in a variety of domains, including e-
business, e-science, and e-response [1,4]. Two distinguishing features of our work are
(1) the use of semantically-rich representations of user requirements and resource ca-
pabilities, to support matchmaking using ontologies and reasoning, and (2) the use of
argumentation to support negotiation over scarce resources, decisions about which re-
sources to use, and the combining of evidence from information-providing resources
(e.g. sensors).

In this talk, I will examine the application of (1) and (2) to the management of ISR
resources in the context of coalition operations. The first part of the talk describes an
ontology-based approach to the problem of assigning sensors and sources to meet the
needs of missions. The second part then looks at how argumentation and subjective
logic can facilitate the process of gathering uncertain evidence through a series of sen-

1 http://www.dtic.mil/doctrine/jel/new pubs/jp2 01print.pdf, pages III–10–11, accessed April
27, 2007.

M. Klusch et al. (Eds.): CIA 2007, LNAI 4676, pp. 1–4, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



2 A. Preece

sor probes, and combining that evidence into a set of arguments in support of, and in
opposition to, a particular decision.

2 Semantic Matchmaking of Sensors and Missions

The assignment of ISR assets to multiple competing missions can be seen as a pro-
cess comprising two main steps: (1) assessing the fitness for purpose of alternative
ISR means to accomplish a mission, and (2) allocating available assets to the missions.
Our work draws upon current military doctrine, specifically the Missions and Means
Framework (MMF) [5] which provides a model for explicitly specifying a mission and
quantitatively evaluating the utility of alternative warfighting solutions: the means.

Figure 1 shows how missions map to ISR means. Starting from the top left the di-
agram sketches the analysis of a mission as a top-down process that breaks a mission
into a collection of operations (e.g. search-and-rescue), each of which is broken down
further into a collection of distinct tasks having specific capability requirements (e.g.
wide-area surveillance). On the right hand side, the diagram depicts the analysis of
capabilities as a bottom-up process that builds up from elementary components (e.g.
electro-optincal/infrered (EO/IR) camera) into systems (e.g. camera turret), and from
systems up into platforms equipped with or carrying those systems (e.g. an unmanned
aerial vehicle (UAV)).

Fig. 1. Overview of the Mission and Means Framework (MMF)

In particular, we propose the use of ontologies to support the following activities:

– specifying the requirements of a mission;
– specifying the capabilities provided by ISR assets (sensors, platforms and other

sources of intelligence, such as human beings);
– comparing — be a process of automated reasoning —the specification of a mission

against the specification of available assets to either decide whether there is a so-
lution (a single asset or combination of assets) that satisfies the requirements of a
mission, or alternatively providing a ranking of solutions according to their relative
degree of utility to the mission.
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Although one can envisage a single ontology supporting the entire sensor-mission
matchmaking process, actually we adhere to the Semantic Web vision of multiple inter-
linking ontologies covering different aspects of the domain. First, we provide an ontol-
ogy based on the MMF, which is basically a collection of concepts and properties that
are essential to reason about the process of analyzing a mission and attaching the means
required to accomplish it (mission, task, capability, or asset). Then we provide a second
ontology that refines some of the generic concepts in the MMF ontology so as to rep-
resent the ISR-specific concepts that constitute our particular application domain. This
second ontology comprises several areas frequently organized as taxonomies, such as a
classification of sensors (acoustic, optical, chemical, radar) and information sources, a
classification of platforms (air, sea, ground and underwater platforms), a classification
of mission types, or a classification of capabilities. As noted in the previous section,
there are existing ontologies covering at least part of each of these domains.

Fig. 2. Main ontological concepts and their relationships

Figure 2 shows a high level view of the main concepts and relationships that support
our semantic matchmaking approach. On the left hand side, we find the concepts related
to the mission: a mission comprises several tasks that need to be accomplished. On the
right hand side we find the concepts related to the means: a sensor is a system that can
be carried by or constitutes part of a platform; inversely, a platform can accommodate or
have one or more systems, and both platforms and systems are assets; an asset provides
one or more capabilities; a capability can entail a number of more elementary capabili-
ties, and is required to perform certain type of tasks and inversely, a task is enabled by
a number of capabilities.

The talk will give further details of the ontology and its application.

3 Arguing About Evidence in Partially Observable Domains

In this talk, we also show how argumentation can be used to manage the process of
gathering and reasoning about evidence from sensors and sources [2]. Because such
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sources are fallible, and the military domain typically involves environments that are
only partially observable, we needed to devise a novel framework for argumentation
in domains containing uncertainty [3]. The concept of argument schemes is built into
the framework, allowing for a rich set of primitives to be utilised in the argumentation
process. We have also attempted to cater for other important concepts in argument such
as accrual of arguments, defaults, and burden of proof. While the lowest levels of the
framework are general enough to be applied to almost any area in which argument is
used, the higher levels are aimed at evidential reasoning, incorporating abstract models
of sensors and the notion of obtaining information from the environment.

Acknowledgments. This research was sponsored by the US Army Research Labora-
tory and the UK Ministry of Defence and was accomplished under Agreement Number
W911NF-06-3-0001. The views and conclusions contained in this document are those
of the author(s) and should not be interpreted as representing the official policies, either
expressed or implied, of the US Army Research Laboratory, the US Government, the
UK Ministry of Defence or the UK Government. The US and UK Governments are au-
thorized to reproduce and distribute reprints for Government purposes notwithstanding
any copyright notation hereon.

Contributions to this talk from colleagues in the International Technology Alliance
project, especially Mario Gomez and Nir Oren, are gratefully acknowledged.
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Towards a Delegation Framework for Aerial

Robotic Mission Scenarios

P. Doherty1 and John-Jules Ch. Meyer2

1 Dept of Computer and Information Science,
Linköping University, Sweden

patdo@ida.liu.se
2 Dept of Information and Computing Sciences,

Utrecht University, The Netherlands
jj@cs.uu.nl

Abstract. The concept of delegation is central to an understanding
of the interactions between agents in cooperative agent problem-solving
contexts. In fact, the concept of delegation offers a means for studying the
formal connections between mixed-initiative problem-solving, adjustable
autonomy and cooperative agent goal achievement. In this paper, we
present an exploratory study of the delegation concept grounded in the
context of a relatively complex multi-platform Unmanned Aerial Vehicle
(UAV) catastrophe assistance scenario, where UAVs must cooperatively
scan a geographic region for injured persons. We first present the sce-
nario as a case study, showing how it is instantiated with actual UAV
platforms and what a real mission implies in terms of pragmatics. We
then take a step back and present a formal theory of delegation based
on the use of 2APL and KARO. We then return to the scenario and use
the new theory of delegation to formally specify many of the commu-
nicative interactions related to delegation used in achieving the goal of
cooperative UAV scanning. The development of theory and its empirical
evaluation is integrated from the start in order to ensure that the gap
between this evolving theory of delegation and its actual use remains
closely synchronized as the research progresses. The results presented
here may be considered a first iteration of the theory and ideas.

1 Background

The use of Unmanned Aerial Vehicles (UAVs) which can operate autonomously
in dynamic and complex operational environments is becoming increasingly more
common. While the application domains in which they are currently used are
still predominantly military in nature, we can expect to see widespread usage in
the civil and commercial sectors in the future as guidelines and regulations are
developed by aeronautics authorities for insertion of UAVs in civil airspace.

One particularly important application domain where UAVs could be of great
help in the future is in the area of catastrophe assistance. Such scenarios include
natural disasters such as earthquakes or tsunamis or man-made disasters caused
by terrorist activity. In such cases, civil authorities often require a means of

M. Klusch et al. (Eds.): CIA 2007, LNAI 4676, pp. 5–26, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



6 P. Doherty and J.-J.Ch. Meyer

acquiring an awareness of any situation at hand in real-time and the ability to
monitor the progression of events in catastrophe situations. Unmanned aerial
vehicles offer an ideal platform for acquiring the necessary situation awareness
to proceed with rescue and relief in many such situations. It is also often the
case that there is no alternative in acquiring the necessary information because
one would like to avoid placing emergency services personal in the line of danger
as much as possible.

For a number of years, The Autonomous Unmanned Aerial Vehicle Technolo-
gies Lab (AutUAVTech Lab) at Linköping University, Sweden, has pursued a
long term research endeavour related to the development of future aviation sys-
tems in the form of autonomous unmanned aerial vehicles [7,8]. The focus has
been on both high autonomy (AI related functionality), low level autonomy (tra-
ditional control and avionics systems), and their integration in distributed soft-
ware architectural frameworks [9] which support robust autonomous operation
in complex operational environments such as those one would face in catastrophe
situations.

More recently, our research has moved from single platform scenarios to multi-
platform scenarios where a combination of UAV platforms with different capa-
bilities are used together with human operators in a mixed-initiative context
with adjustable platform autonomy. The application domain we have chosen to
pursue is emergency services assistance. Such scenarios require a great deal of
cooperation among the UAV platforms and between the UAV platforms and
human operators. We require a principled means of developing such coopera-
tive frameworks and believe that formal specification is a requirement that will
help control this complexity and also ensure the development of safe and robust
multi-platform system interaction frameworks.

One of the key conceptual ideas that tie together mixed initiative problem
solving, adjustable autonomy and cooperative behavior is that of delegation.
In the first iteration of formal specifications we have chosen to focus on the
development of a formal theory of delegation and to test it empirically in the
context of one or more parts of a complex emergency services rescue scenario.The
methodology we are using to develop the required technology is to iterate on
formal specification and empirical evaluation in parallel in order to ensure that
the gap between theory and practice does not become insurmountable.

For a number of years, the Intelligent Systems Group at Utrecht Univer-
sity, Holland, has pursued a long term research project with the goal of de-
veloping formal specifications of multi-agent systems and the development of
2APL/3APL [12,6], an agent programming language with a formal semantics.
Recently, the two research groups have begun a collaborative endeavor which
focuses on the development of formal specifications of cooperative behavior and
instantiation of such a framework in the UAV domain. One of the starting points
is a formal specification of delegation and its instantiation in an emergency ser-
vices scenario.

As a basis for a formal theory of delegation, our starting point is recent work
by Castelfranchi and Falcone [4,10]. This is a general human-inspired theory of
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(several forms of) delegation. It appears that this offers a very good starting
point for our purposes. In particular their notions of strong or strict delegation
with open and closed variants are appropriate in our setting.

We also require a formal logical framework to tighten up some of the insights
provided by Castelfranchi and Falcone and to extend and provide new addi-
tions required for our robotics-inspired theory of delegation. For this we have
chosen the KARO formalism [13] which is an amalgam of dynamic logic and
epistemic/doxastic logic.

The UAV platforms currently used in our experimentation are rotor-based sys-
tems which have been extended with an avionics system for low-level autonomy
and a complex CORBA-based distributed software architecture for high-level
autonomy and integration with avionics. In order to integrate cooperative func-
tionality with the existing system, we have chosen to use JADE [2] as a basis for
this and ACL as the communication language between UAVs. The delegation
framework will be embedded in this extension.

1.1 Paper Structure

The article will be structured as follows. In section 2, a catastrophe assistance
scenario will be described which involves the use of 2 or more UAVs. In section 3,
we briefly describe the actual UAV platforms used in our flight tests. In section 4,
we describe the existing software architecture used with our platforms and a
new addition which wraps a JADE layer around the legacy system. In section 7,
the concept of strong delegation is introduced and formalized using the KARO
formalism and 2APL. In section 8, we return to the scenario and use the new
theory of delegation to formally specify many of the communicative interactions
related to delegation used in the cooperative UAV scanning scenario. Section 9
offers some conclusions.

This article should be viewed as tentative and as a first iteration of work
that will be energetically pursued in the future. It is exploratory in nature and
although we do hope that much of the work reported will remain intact, it may
be subject to some change and modification in the future.

2 An Emergency Service Scenario

On December 26, 2004, a devastating earthquake of high magnitude occured off
the west coast off Sumatra. This resulted in a tsunami which hit the coasts of
India, Sri Lanka, Thailand, Indonesia and many other islands. Both the earth-
quake and the tsunami caused great devastation. During the initial stages of the
catastrophe, there was a great deal of confusion and chaos in setting into motion
rescue operations in such wide geographic areas. The problem was exacerbated
by shortage of manpower, supplies and machinery. Highest priorities in the ini-
tial stages of the disaster were search for survivors in many isolated areas where
road systems had become inaccessible and providing relief in the form of delivery
of food, water and medical supplies.
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Let’s assume for a particular geographic area, one had a shortage of trained he-
licopter and fixed-wing pilots and/or a shortage of helicopters and other aircraft.
Let’s also assume that one did have access to a fleet of autonomous unmanned
helicopter systems with ground operation facilities. How could such a resource
be used in the real-life scenario described?

A pre-requisite for the successful operation of this fleet would be the existence
of a multi-agent (UAV platforms, ground operators, etc.) software infrastructure
for assisting emergency services in such a catastrophe situation. At the very least,
one would require the system to allow mixed initiative interaction with multiple
platforms and ground operators in a robust, safe and dependable manner. As
far as the individual platforms are concerned, one would require a number of
different capabilities, not necessarily shared by each individual platform, but by
the fleet in total. These capabilities would include:

∗ the ability to scan and search for salient entities such as injured humans,
building structures or vehicles;

∗ the ability to monitor or surveil these salient points of interest and contin-
ually collect and communicate information back to ground operators and
other platforms to keep them situationally aware of current conditions;

∗ the ability to deliver supplies or resources to these salient points of interest if
required. For example, identified injured persons should immediately receive
a relief package containing food, medical and water supplies.

Although quite an ambitious set of capabilities, several of them have already been
achieved to some extent using our experimental helicopter platforms, although
one has a long way to go in terms of an integrated, safe and robust system of
systems.

Realistically, each of the capabilities listed above would have to be used in a
cooperative manner among the UAV platforms in use. This would imply a high-
level communication infrastructure among the platforms and between the plat-
forms and ground operators. The speech-act based FIPA ACL language would
be one candidate for such a communication infrastructure. At some level of ab-
straction, each of the UAV platforms and ground operators should be viewed
as agents in a multi-agent system. A suitable candidate for such an abstraction
would be JADE (Java Agent DEvelopment framework) or some such similar
framework.

As will become clear shortly, delegation of tasks among the platforms and
ground operators will be essential in pulling off such complex multi-agent coop-
erative scenarios. To be more specific in terms of the scenario, we can assume
there are two separate legs or parts to the emergency relief scenario in the context
sketched previously.

Leg I. In the first part of the scenario, it is essential that for specific geographic
areas, the UAV platforms should cooperatively scan large regions in an at-
tempt to identify injured persons. The result of such a cooperative scan
would be a saliency map pinpointing potential victims, their geographical
coordinates and sensory output such as high resolution photos and thermal
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images of potential victims. The resulting saliency map would be generated
as the output of such a cooperative UAV mission and could be used directly
by emergency services or passed on to other UAVs as a basis for additional
tasks.

Leg II. In the second part of the scenario, the saliency map generated in Leg
I would be used as a basis for generating a logistics plan for several of the
UAVS with the appropriate capabilities to deliver food, water and medical
supplies to the injured identified in Leg I. This of course would also be done
in a cooperative manner among the platforms.

It is worth remarking that Leg I has actually been done using two of our ex-
perimental UAV platforms and Leg II has been executed in simulation. In these
cases, a fully integrated delegation based cooperative framework was not yet
in place, but the experiments have provided much data as to what would be
required. This is in fact very much part of what this paper is about.

3 The Physical UAV Platform

The AutUAVTech Lab has developed a number of UAV platforms which include
both fixed-wing and rotor-based systems. These include both micro- and mini-
sized platforms. For the purposes of this paper, it is instructive to focus on one
of the more complex rotor-based platforms that has been extended with a JADE
level and has been used in our initial multi-UAV platform experimentation.

The WITAS1 UAV platform [9] is a slightly modified Yamaha RMAX he-
licopter (Fig. 1). It has a total length of 3.6 m (including main rotor) and is
powered by a 21 hp two-stroke engine with a maximum takeoff weight of 95
kg. The helicopter has a built-in attitude sensor (YAS) and an attitude control
system (YACS).

The hardware platform (box on the left side of the RMAX in Fig. 1) which has
been developed and integrated with the WITAS RMAX contains three PC104
embedded computers. The primary flight control (PFC) system runs on a PIII
(700Mhz), and includes a wireless Ethernet bridge, a RTK GPS receiver, and
several additional sensors including a barometric altitude sensor. The PFC is
connected to the YAS (attitude sensors) and YACS (attitude controller), an im-
age processing computer and a computer for deliberative capabilities. The image
processing (IPC) system runs on the second PC104 embedded computer (PIII
700MHz), and includes a thermal camera and a color CCD camera mounted
on a pan/tilt unit, a video transmitter and a recorder (miniDV). The delibera-
tive/reactive (D/R, DRC) system runs on the third PC104 embedded computer
(Pentium-M 1.4GHz) and executes all high-end autonomous functionality. Net-
work communication between computers is physically realized with serial line
RS232C and Ethernet. Ethernet is mainly used for CORBA applications (see
below), remote login and file transfer, while serial lines are used for hard real-
time networking.
1 WITAS is an acronym for the Wallenberg Information Technology and Autonomous

Systems Lab which hosted a long term UAV research project (1997-2005).
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Fig. 1. The WITAS RMAX Helicopter

4 The Software Architecture

A hybrid deliberative/reactive software architecture has been developed for the
UAV. Conceptually, it is a layered, hierarchical system with deliberative, reactive
and control components. Fig. 2 presents the functional layer structure of the
architecture and emphasizes its reactive-concentric nature.

Fig. 2. Functional structure of the architecture

The Control Kernel is a mixed continuous/discrete system and realizes all
flight control modes such as hovering, trajectory following, take-off and land-
ing. Its components contain continuous control laws and mode switching is re-
alized using event-driven hierarchical concurrent state machines (HCSMs). An
extended version of HCSMs is presented in [14]. HCSMs can be represented as
state transition diagrams and are similar to statecharts [11].

The high-level part of the system has reduced timing requirements and is re-
sponsible for coordinating the execution of reactive Task Procedures (TPs) at
the reactive layer and for implementation of high-level deliberative capabilities.
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A TP is a high-level procedural execution component which provides a com-
putational mechanism for achieving different robotic behaviors by using both
deliberative and control components from the control and deliberative layers in
a highly distributed and concurrent manner. The control and sensing compo-
nents of the system are accessible for TPs through a Helicopter Server which
in turn uses an interface provided by the Control Kernel. A TP can initiate
one of the autonomous control flight modes available in the UAV (e.g. take off,
vision-based landing, hovering, dynamic path following or reactive flight modes
for interception and tracking). Additionally, TPs can control the payload of the
UAV platform which currently consists of video and thermal cameras mounted
on a pan-tilt unit in addition to a stereo camera system. TPs can receive data
delivered by the PFC and IPC computers i.e. helicopter state and camera system
state (including image processing results), respectively.

The software implementation of the High-Level system is based on CORBA
(Common Object Request Broker Architecture), which is often used as middle-
ware for object-based distributed systems. It enables different objects or compo-
nents to communicate with each other regardless of the programming languages
in which they are written, their location on different processors, or the operating
systems they are running in. A component can act as a client, a server, or as
both. The functional interfaces to components are specified via the use of IDL
(Interface Definition Language). The majority of the functionalities which are
part of the architecture can be viewed as CORBA objects or collections of ob-
jects, where the communication infrastructure is provided by CORBA facilities
and other services such as real-time and standard event channels.
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Fig. 3. Some deliberative, reactive and control services

This architectural choice provides us with an ideal development environment
and versatile run-time system with built-in scalability, modularity, software re-
locatability on various hardware configurations, performance (real-time event
channels and schedulers), and support for plug-and-play software modules. Fig. 3
presents some (not all) of the high-level services used in the WITAS UAV system.
Those services run on the D/R computer and interact with the control system
through the Helicopter Server. The Helicopter Server on one side uses CORBA
to be accessible by TPs or other components of the system; on the other side it
communicates through shared memory with the HCSM based interface running
in the real-time part of the DRC software.
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Many of the D/R services should be accessible as services to FIPA compliant
agents which can be delegated and used by other FIPA compliant agents to
achieve mission goals cooperatively. In order to do this, the existing architecture
has been extended with an additional conceptual layer.

5 JADE Extension to the Existing Architecture

The CORBA-based distributed architecture described in section 4 has recently
been extended with what is conceptually an additional outer layer in order to
leverage the functionality of JADE [2]. “JADE (Java Agent Development Frame-
work) is a software environment to build agent systems for the management of
networked information resources in compliance with the FIPA specifications for
interoperable multi-agent systems.” [1]. Since both the 2APL platform and 2APL
agents are FIPA compliant and the format of the messages that are communi-
cated between 2APL agents is based on FIPA standards which use speech acts as
the communicative paradigm, the choice of JADE provides an excellent founda-
tion for developing and integrating our delegation framework with our existing
UAV platforms and 2APL.

The new outer layer is two-tiered and consists of a collections of FIPA com-
pliant agents that have a number of services associated with them. The lower
tier of the outer layer consists of an ACL/CORBA Gateway agent. The Gateway
agent serves as an intermediary between the CORBA legacy architecture, which
contains a number of services implemented as CORBA servers or objects. The
FIPA compliant agents in the upper tier of the outer layer serve as intermediaries
between the physical platform on which they reside and other physical platforms
or external FIPA compliant agents. Other physical platforms may include not
only UAV platforms, but ground operator stations and other robotic platforms.

For the purposes of our scenario, the ACL/CORBA Gateway agent associated
with our RMAX platforms has at least the following services:

∗ TakeOff() – An agent may request that a specific platform takes off au-
tonomously.

∗ Land() – An agent may request that a specific platform lands autonomously
∗ FlyTo() – An agent may request that a specific platform flies to a designated

waypoint.

The Gateway agent for an RMAX or other UAV platform may or may not have
some of the following services which are associated with cooperative scanning:

∗ CoopScan() – An agent with this service has the capability of coordinating
a cooperative scanning mission among different UAV platforms.

∗ Scan() – An agent with this service has the capability of participating in a
(cooperative) scanning mission upon request.

∗ CScan() – An agent with this service can actually determine the specific flight
plans for UAV platforms participating in a cooperative scanning mission.

∗ FlyScan() – An agent with this service has the ability to fly a specific flight
plan generated by an agent with the CScan capability.
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∗ GetScan() – An agent with this service can access an agent with a CScan
service and request its output for specific UAV platforms participating in
the cooperative scanning mission.

Each of these services is also parameterized. The degree of instantiation of pa-
rameters for a specific service will in fact reflect a degree of delegation also. The
fewer parameters provided, the more open the delegation of a service is.

The upper tier consists of

∗ an Interface Agent – The interface agent is the official communication inter-
face used by all external platforms or agents to communicate with a specific
UAV platform. It is through this agent that all delegation and information
requests made.

∗ a Resource Agent – The Resource agent is an internal information agent that
is capable of responding to queries pertaining to both the static and dynamic
resources associated with a particular UAV platform. This would include
physical sensors, high-level services such as planners, low-level services such
as flight mode capabilities, fuel and battery levels, etc. The agent always has
an up-to-date dynamic description of available and locked resources, etc., in
addition to static resource descriptions. Static resource descriptions provide
information about potential resource capabilities while dynamic resource de-
scriptions provide information about actual resource capabilities.

∗ and additional virtual service agents specific to composite service function-
ality associated with specific UAV platforms.

An example of a virtual service agent used in our scenario would be a Coop-
Scanning Agent. Any platform containing such an agent has the ability to put
together a cooperative scanning mission. A CoopScan service is associated with
such an agent and is registered in the JADE platform Directory Facilitator which
provides yellow page lookup of specific services and specific agents that can pro-
vide these services.

6 Leg I: Cooperative Scanning

In the remainder of the paper, we will focus on Leg I of this ambitious mission
scenario and use it as a vehicle for describing how a theory of delegation would
be used.

6.1 The Generic Setup

Let’s assume that at any one time, k different UAV platforms may be in the
general vicinity of an area that needs to be scanned and n (n < k) platforms
have the potential to participate in a scan of the area. Of those n platforms
that have the potential in theory, only m (1 ≤ m ≤ n) platforms actually
can participate in an upcoming mission during a particular time window which
is assumed. The k − n platforms can not participate due to absence of static
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resources. They simply are not capble of participating in such missions. The
n − m platforms can not participate due to absence of dynamic resources. In
theory, they have the necessary static resources such as cameras, but lack one or
more of the necessary resources because they are being used or locked relative to
some other task. For instance, these platofrms may lack fuel or battery power, or
may be scheduled to participate in other missions which overlap with the time
window for the upcoming scan.

It is assumed that the region to be scanned can be specified as a convex
polygonal region. In order to put together a cooperative scanning mission, the
following must be the case:

∗ At least one platform must be in the vicinity with a CoopScan() service and
this service must be available for use during the specific mission time window
associated with a cooperative scan mission. This platform has the role of
coordinating the use of platforms involved in a cooperative scan mission.

∗ At least one platform must be in the vicinity with a CScan() service and this
service must be available for use during the specific mission time window
associated with a cooperative scan mission. The platform with the CoopScan
service will use this platform for actually determining the sub-scan paths
that each of the participating platforms will fly in order to jointly scan a
polygonal region together.

∗ At least one platform must be in the vicinity with a Scan() service and this
service must be available for use during the specific mission time window
associated with a cooperative scan mission. Hopefully there is more than
one platform offering this service since such platforms will do the real scan-
ning work. The platform with the CoopScan service will coordinate activity
between these platforms and the platform containing the CScan service.

∗ Each of the platforms with a Scan service, also has a FlyScan() service. This
service is used to actually fly the sub-scan path associated with this platform
and generated for the platform by the platform with the CScan() service.

6.2 Basic Communication and Delegation Processes

The communication and delegation processes involved in a cooperative mission
scenario using RMAX platforms with the specifications described previously
should serve as a case study for developing the delegation framework we have
in mind. In the ideal situation, we can first use the delegation framework as
a descriptive tool for these interactions and study how well it fits an actual
mission scenario. After some refinement via the use of different case studies, we
should expect the delegation framework to function in a prescriptive manner as
a means for formally specifying the right way to delegate tasks and reason about
them in future missions. The long term goal is to provide a formal specification
framework for delegation in cooperative mission scenarios.

Let us analyze the current scenario in this context. In broad outline, the
following communication and delegation processes are involved:
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1. A ground operator (GOP) station receives a request for a convex polygonal
region R1 to be scanned during a temporal interval I1 bounded below by
time t1 and above by time t2, I1 = [t1, t2]. The mission goal is to provide a
scan of this region within the specified interval.

2. The GOP Agent (Delegator) would request a call for proposals (cfp) to any
agent that could provide a CoopScan service within the mission time window
I1. This is an open form of delegation with some constraints.

3. Suppose a delegation agreement is made between the GOP Agent and the
Coop1 Agent , who has the CoopScan service available within the mission
time window I1 and can commit to offering it for use and does so after
checking it has the appropriate static and dynamic resources.

4. At this point, the main task has been openly delegated and the GOP agent
may also choose to monitor the task execution process or not. The GOP
may choose to constrain how the scan is done to a greater or lesser extent by
providing additional constraints at this time. For example, it may limit the
types of platforms used, or for those that are used, may provide max/min
altitudes and velocities. If it does not do this, then the Coop1 Agent will
have a more open delegation and consequently, more autonomy.

5. One has a number of choices as to when a delegation agreement has been
made between the GOP Agent and the Coop1 Agent. For instance, is the
agreement made based only on the fact that the Coop1 Agent has the Coop-
Scan service available within the mission time window I1, or should the
agreement only be made after the Coop1 Agent mediates a complete mis-
sion as described in the steps below?

6. The Coop1 Agent must now put together a cooperative scanning mission
and make sure it is completed within the mission time window I1.

7. The Coop1 Agent now requests a cfp for any agents having a CScan service
that is accessible during I1 and chooses such an agent. Let’s call this agent
the CScan1 Agent. A delegation agreement is made between Coop1 Agent
and CScan1 Agent.

8. The Coop1 Agent now requests a cfp for any agents having a Scan service
that is accessible during I1. Let’s suppose that two RMAX agents, RMAX1
Agent and RMAX2 Agent can provide the scanning service in some parts
of region R1 during I1. Two new delegation agreements are set up between
Coop1 Agent and RMAX1 Agent and RMAX2 Agent, respectively.

9. The Coop1 Agent now provides the CScan1 Agent with the appropriate
information about the participating platforms RMAX1, and RMAX2, in the
form of camera apertures, and max and min velocities, etc. It then requests
that the CScan1 Agent do its job of computing subregion-scan plans for
region R1.

10. Note that there are several recursive delegation agreements which are active
and time is also progressing. There are any number of ways where these
delegations could fail due to contingencies or temporal constraint violations.
Let’s assume that the CScan1 Agent is successful though and has generated
subplans for each of RMAX1 and RMAX2.



16 P. Doherty and J.-J.Ch. Meyer

11. Under the assumption that the respective delegation agreements between
Coop1 Agent and RMAX1 and RMAX2 Agents concerning the Scan service
have not been violated, the Coop1 Agent initiates new delegation agreements
with RMAX1 and RMAX2 relative to the FlyTo service to fly to the initial
starting points for the cooperative scan.

12. Upon completion of these tasks, repectively, the Coop1 Agent will initiate
two new delegation agreements respectively relative to the FlyScan services
of RMAX1 and RMAX2. It is during this agreement that the flight plans
generated by the CScan1 Agent are passed on to RMAX1 and RMAX2.
This is also a form of open delegation because only the waypoint sequences,
max and min velocities and max and min altitudes are sent to RMAX1 and
RMAX2 along with a scan pattern type. It is up to RMAX1 and RMAX2 to
fly these patterns appropriately using their respective motion planners and
obstacle avoidance capabilities.

13. Upon completion of these tasks, the appropriate sensor data or saliency maps
regarding injured persons is provided to the Coop1 Agent, who may then
provide it to the original GOP Agent as part of the initial delegation agree-
ment. After this, the cooperative scan mission is considered accomplished.

Many of the details of these processes have been left out and there are many
forms and degrees of open and closed delegation going on here. In particular,
the degree of parameterization of services reflects a wide spectrum of degrees
of open delegation. The more parameters provided the less autonomy the del-
egated agent has in achieving the task. Another issue of extreme importance
is providing a means of adapting to failures in tasks and consequently, delega-
tion agreements. In real-life scenarios such as those considered here, there are
always many chances that tasks may not succeed or may only partially suc-
ceed. One requires mechanisms to cancel delegation of activities and also repair
them through new delegation agreements if possible. An additional factor which
makes this type of mission extremely complex is taking into account both static
and dynamic resources required in addition to temporal and other constraints
which may be violated due to contingencies out of control of the participating
platforms.

In section 7, we will introduce our first attempt at formalizing a notion of
strong delegation and then relate it to the case study just described in some
detail.

7 Strong Delegation

In this section we briefly review Falcone & Castelfranchi’s notion of strong/strict
delegation [4,10].

Falcone & Castelfranchi’s approach to delegation builds on a BDI model of
agents, that is, agents having beliefs, goals, intentions, plans. Falcone & Castel-
franchi do not give a formal semantics of their operators, but in order to get
a better understanding we will use KARO logic ([13]) as the underlying frame-
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work. This will aid us to consider how to program a multi-agent system with
delegation capability.

7.1 KARO Logic

The KARO formalism is an amalgam of dynamic logic and epistemic / doxas-
tic logic, augmented with several additional (modal) operators in order to deal
with the motivational aspects of agents. KARO has operators for belief (BelA),
expressing that “agent A believes that”2, and action ([A : α], “after A’s per-
formance of α it holds that”). The belief operator BelA is assumed to satisfy
the usual (positive and negative) introspection properties BelAφ → BelABelAφ
and ¬BelAφ → BelA¬BelAφ (cf. [13,15]). Furthermore, there are additional
operators for ability (AbleA), desires (DesA) and commitment (ComA):

∗ AbleAα expressing that agent A is able (has the capability) to perform action
α

∗ DesAφ expressing that agent A desires (a state described by formula) φ
∗ ComA(α) expressing that A is committed to action (‘plan’) α (i.e. “having

put it onto its agenda”). (This operator is very close to Cohen & Levesque’s
notion of INTEND2 (“intention to do”) [5]).

Furthermore, the following syntactic abbreviations serving as auxiliary oper-
ators are used:

∗ (dual) 〈A : α〉ϕ = ¬[A : α]¬ϕ, expressing that the agent has the opportunity
to perform α resulting in a state where ϕ holds.

∗ (opportunity) OppAα = 〈A : α〉tt, i.e., an agent has the opportunity to do
an action iff there is a successor state.

∗ (practical possibility) PracPossA(α, ϕ) = AbleAα ∧ OppAα ∧ 〈A : α〉ϕ, i.e.,
an agent has the practical possibility to do an action with result ϕ iff it
is both able and has the opportunity to do that action and the result of
actually doing that action leads to a state where ϕ holds;

∗ (can) CanA(α, ϕ) = BelAPracPossA(α, ϕ), i.e., an agent can do an action
with a certain result iff it believes (it is ‘aware’) it has the practical possibilty
to do so;

∗ (realisability) �Aϕ = ∃a1, . . . , anPracPossA(a1; . . . ; an, ϕ) , i.e., a state
property ϕ is realisable by agent A iff there is a finite sequence of atomic
actions of which the agent has the practical possibility to perform it with the
result ϕ, i.e., if there is a ‘plan’ consisting of (a sequence of) atomic actions
of which the agent has the practical possibility to do them with ϕ as a result.

∗ (goal) GoalAϕ = ¬ϕ ∧ DesAϕ ∧ �Aϕ, i.e., a goal is a formula that is not
(yet) satisfied, but desired and realisable.

∗ (intend) IntA(α, ϕ) = CanA(α, ϕ) ∧ BelAGoalAϕ, i.e., an agent (possibly)
intends an action with a certain result iff the agent can do the action with
that result and it moreover believes that this result is one of its goals.

2 In fact, we use a slightly simplified form of KARO which originally also contains a
separate notion of knowledge.
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In order to formalize Falcone & Castelfranchi’s notion of delegation we also
need three additional operators:3

∗ Dep(A, B, τ), expressing that A is dependent on B for the performance of
task τ

∗ MBABφ, expressing that φ is mutual (or common) belief amongst agents A
and B

∗ SC(B, A, τ), expressing that B is socially committed to A to achieve τ for
A, or that there is a contract between A and B concerning task τ .

We will not provide the formal semantics of this logic here, but refer to [13]
for details.4

7.2 Falcone and Castelfranchi’s Notion of Strong Delegation

First, we define the notion of a task as a pair consisting of a goal and a plan for
that goal, or rather, a plan and the goal associated with that plan. Paraphrasing
Falcone & Castelfranchi into KARO terms we consider a notion of strong/strict
delegation represented by a speech act S-Delegate(A, B, τ) of A delegating a
task τ = (α, φ) to B, specified as follows:

S-Delegate(A, B, τ), where τ = (α, φ)
Preconditions:

(1) GoalA(φ)
(2) BelACanB(τ) (Note that this implies BelABelB(CanB(τ)))
(3) BelA(Dep(A, B, α))

Postconditions:

(1) GoalB(φ) and BelBGoalB(φ)
(2) ComB(α).
(3) BelBGoalA(φ)
(4) CanB(τ) (and hence BelBCanB(τ), and by (1) also IntB(τ))
(5) MBAB(“the statements above” ∧ SC(B, A, τ))

3 Here we deviate slightly from Falcone & Castelfranchi’s presentation: instead of
a dependency operator they employ a preference operator. However, the informal
reading of this is based on a dependency relation, cf. [10], footnote 7). We take this
relation as primitive here.

4 Of course, this semantics should be extended to cater for e.g. the dependence and
social commitment operators. The easiest way to do this is to use semantical func-
tions associated with these operators yielding the extensions of the dependency and
social commitment relation, respectively, per world (or, more appropriately in the
KARO framework, per model-state pair). The mutual belief operator can be given
semantics along the usual lines of common knowledge/belief operators such as given
e.g. in [15,16].
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Informally speaking this expresses the following: the preconditions of the S-
delegation act of A delegating task τ to B are that (1) φ is a goal of delegator
A (2) A believes that B can (is able to) perform the task τ (which implies that
A believes that B himself believes that he can do the task!) (3) A believes that
with respect to the task τ he is dependent on B.

The postconditions of the delegation act mean: (1) B has φ as his goal and is
aware of this (2) he is committed to the task (3) B believes that A has the goal φ
(4) B can do the task τ (and hence believes it can do it, and furthermore it holds
that B intends to do the task, which was a separate condition in F&C’s set-up),
and (5) there is a mutual belief between A and B that all preconditions and
other postconditions mentioned hold, as well as that there is a contract between
A and B, i.e. B is socially committed to A to achieve τ for A. In this situation
we will call agent A the delegator and B the contractor.

Typically a social commitment (contract) between two agents induces obli-
gations to the partners involved, depending on how the task is specified in the
delegation action. This dimension has to be added in order to consider how
the contract affects the autonomy of the agents, in particular the contractor’s
autonomy. We consider a few relevant forms of delegation specification below.

7.3 Closed vs. Open Delegation

Falco & Castelfranchi furthermore discuss the following variants of task specifi-
cation:

∗ closed delegation: the task is completely specified: both goal and plan should
be adhered to.

∗ open delegation: the task is not completely specified: either only the goal
has to be adhered to while the plan may be chosen by the contractor, or
the specified plan contains ‘abstract’ actions that need further elaboration
(a ‘sub-plan’) to be dealt with by the contractor.

So in open delegation the contractor may have some freedom to perform the
delegated task, and thus it provides a large degree of flexibility in multi-agent
planning, and allows for truly distributed planning. We will see its usefulness in
our scenario shortly.

The specification of the delegation act in the previous subsection was in fact
based on closed delegation. In case of open delegation α in the postconditions
can be replaced by an α′, and τ by τ ′ = (α′, φ). Note that the third clause,
viz. CanB(τ ′), now implies that α′ is indeed believed to be an alternative for
achieving φ, since it implies that BelB[α′]φ.)

7.4 Strong Delegation in Agent Programming

When devising a system like the one we have in mind for our scenario, we
need programming concepts that support delegation and in particular the open
variant of delegation. In the setting of an agent programming language such as
2APL [6], we may use plan generation rules to establish a contract between two
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agents. Very briefly, a 2APL agent had a belief base, a goal base, a plan base,
a set of capabilities (basic actions it can perform), and sets of rules to change
its bases: PG rules, PR rules and PC rules. PG-rules have the form γ ← β | π,
meaning that if the agent has goal γ and belief β then it may generate plan π
and put it in its plan base. PR rules can be used to repair plans if execution of
the plan fails: they are of the form π ← β | π′, meaning that if π is the current
plan (which is failing), and the agent believes β then it may revise π into π′.
PC-rules are rules for defining macros and recursive computations. (We will not
specify them here).

The act of strong delegation can now be programmed in 2APL by providing
the delegator with a rule

φ ← CanB(τ) ∧ Dep(A, B, τ) | SDelegate(A, B, τ)

(where τ = (α, φ), which means that the delegation act may be generated by
delegator A exactly when the preconditions that we described earlier are met.
The action SDelegate(A, B, τ) is a communication action requesting to adapt
the goal and belief bases of B according to the KARO specification given earlier,
and should thus, when successful (depending under additional assumptions such
as that there is a some authority or trust relation between A and B), result
in a state where contractor B has φ in its goal base, GoalA(φ), CanB(τ) and
MB(‘contract′) in its belief base, and plan α in its plan base. That is to say,
in the case of a closed delegation specification. If the specification is an open
delegation, it instead will have an alternative plan α in its plan base and a belief
CanB(α′, φ) in its belief base. It is very important to note that in the case of
such a concrete setting of an agent programmed in a language such as 2APL, we
may provide the Can-predicate with a more concrete interpretation: CanB(α, φ)
is true if (either φ is in its goal base and α is in its plan base already, or) B has
a PG-rule of the form φ ← β | α′ for some β that follows from B’s belief base,
and the agent has the resources available for executing plan α. This would be a
concrete interpretation of the condition that the agent has the ability as well as
the opportunity to execute the plan!

7.5 Further Issues

Regarding delegation of tasks to contractors in the framework described so far,
there are a number of further issues that are interesting and also necessary for
putting it to practice. The first has to do with transfer of delegation: are agents
always allowed to transfer delegation further on to other agents? The answer
is dependent on the application, and this should be specified as a parameter in
the delegation speech act (and resulting contract). Another important question
is what happens if the delegated task fails. Is the contractor allowed to repair
the task (by plan repair, in 2APL: using PR-rules) on its own, or must this be
reported back (and ask permission to repair the plan) to the delegator first?
This has to do to what degree the delegation is specified as open. If it is open in
the sense that the contractor gets a goal and may devise a plan himself, then it
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stands to reason that he may also repair/revise the plan if it fails. If one wants
that the contractor reports back and asks for PR permission, this can be handled
in 2APL by a PR rule of the form

π ← β | send(A, request, permission to repair(π))

that is triggered by an event signaling the failure of plan π. Delegator A will
have a rule for handling this message, and the contractor B will need a (PC-)rule
that handles the reply from the delegator, resulting in the contractor proceeding
with the plan repair if the permission has been granted. Thus, in this case all
plan repair rules are split into two rules, one to ask permission and the other to
perform the plan repair in case permission is granted.

8 Integrating Delegation Theory with UAV Systems

We now consider how the UAV cooperative scanning mission described in some
detail in section 6, could be specified more succinctly using the theory of strong
delegation presented in section 7.

8.1 Strong Delegation and the Cooperative Scanning Scenario

The ground operation agent, GOP has responsibility for scanning region R1

for injured persons and this mission should be completed during the interval
I1 = [10:00, 10:45]. So, GoalGOP (Scan(R1, constraints1)), where constraints1 is a
property list containing the following parameters:

T imeInterval, PatternType, EntityIdent, MaxAlt, MinAlt,
MaxV elocity, MinV elocity

Here is an example of an instantiated list for this mission:

(T imeInterval : [10 : 00, 10 : 45], PatternType : Rectangular(width : 5m),
EntityIdent : (humanbodies), Platform : (Rotor), MaxAlt : 300m, MinAlt :
150m, Maxvelocity : 8m/s, MinV elocity : 4m/s)

In this case the temporal duration of the mission is specified, the type of
pattern that should be flown is specified as rectangular, the type of entities
one should try to identify and classify is stated as human bodies, the type of
platform that may participate is restricted to rotor-based and both the altitude
and velocity constraints are specified.

GOP first does a yellow page lookup for agents that have services for coordi-
nating scanning missions (in the case of FIPA agents, the directory facilitator is
used). Suppose the agent, Coop1 is found to have this capability via its registered
service, CoopScan(region, constraints). Let

τ1 = (α1, φ1) = (CoopScan(R1, constraints1), Scan(R1, constraints1)).

Then,

BelGOP CanCoop1(τ1) and BelGOP (Dep(GOP, Coop1, α1))
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At this point, GOP will send a speech act to acquire a delegation agreement
with Coop1: S-Delegate(GOP, Coop1, τ1). If the contract is successful then, upon
acknowledgment, the following holds:

GoalCoop1(φ1) and BelCoop1GoalCoop1(φ1) and ComCoop1(α1) and
CanCoop1(τ1) and MBGOP,Coop1(SC(Coop1, GOP))

in addition to a number of other mutual beliefs and implications as specified in
section 7. These interactions basically cover steps 1-5 in section 6.2.

Coop1 now has to acquire agreements with at least one platform with CScan-
ning capability and one or more platforms with Scanning capability. This is
again done via a yellow page lookup. Suppose Coop1 finds that agent CScan1 has
CScanning capability via its registered service, CScanExec(region, constraints)
service. Let

τ2 = (α2, φ2) = (CScanExec(R1, constraintscs1), CScan(R1, constraintscs1).

At this point, Coop1 will send a speech act to acquire a delegation agreement
with CScan1 with similar types of pre- and postconditions:

7. S-Delegate(Coop1, CScan1, τ2).

Note that at this point, Coop1 has not yet provided an instantiation of the
constraints, constraintscs1 that CScan1 requires to execute its single action plan
CScanExec(). It first has to negotiate a delegation agreement with the actual
platforms that will participate in the cooperative scanning mission.5

Coop1 again initiates a yellow page lookup. Suppose Coop1 finds that agents
RMAX1 and RMAX2 meet the constraints specified in constraints1, and that they
have scanning capability via the registered service,
FlyScan(region, constraints). Let

τ3 = (α3, φ3) = (FlyScan(R1, constraintsrm1), Scan(R1, constraintsrm1))

and

τ4 = (α4, φ4) = (FlyScan(R1, constraintsrm2), Scan(R1, constraintsrm2))

8. At this point, Coop1 will send speech acts to each platform to acquire dele-
gation agreements:
a. S-Delegate(Coop1, RMAX1, τ3),
b. S-Delegate(Coop1, RMAX2, τ4).

Note that at this point, delegation agreements are setup for RMAX1 and RMAX2
as participants in the scanning mission, but these agents do not yet know the
specific region they will scan, just that it will be in region R1. In the same
vein, Coop1 does not yet have the constraints, constraintsrm1 and constraintsrm2

associated with RMAX1 and RMAX2, so only partially instantiated lists are used
as a result of this delegation agreement.

5 This is similar in vein to a constraint programming approach to agent coordination,
such as the one using the GrAPL language studied in [3].
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9.–10. As a result of 8, Coop1 can now provide the constraints, constraintsrm1

and constraintsrm2 to CScan1 by incorporating the necessary parameters into
the constraint list constraintscs1 required by the CScan1 in order to execute
the CScanExec() single action plan with these two platoforms as input.
These constraints include the camera apertures for each of the RMAXs, the
max velocities allowed and the current positions, respectively.

11. Coop1 now has to acquire delegation agreements with RMAX1 and RMAX2
to fly to specific waypoint coordinates (assigned in the respective constraint
lists), so they are positioned appropriately when the scanning mission is
initiated. The following speech acts are sent by Coop1 to ensure this:
11a. S-Delegate(Coop1, RMAX1, τ5), where τ5 = (α5, φ5) and the goal, φ5 =

FlyTo(constraintsrm11) and the plan,
α5 = FlyTo(constraintsrm11) .

11b. S-Delegate(Coop1, RMAX2, τ6), where τ6 = (α6, φ6) and the goal, φ6 =
FlyTo(constraintsrm21) and the plan,
α6 = FlyTo(constraintsrm21)

If there is a green light for the mission to continue, the RMAX’s are positioned
and ready to fly, then one final delegation agreement is made between Coop1 and
the RMAX platforms regarding the actual execution of the individual scanning
patterns generated by CScan1 (and assigned in the respective constraint lists).
The following speech acts are sent by Coop1 to ensure this:

12. The Coop1 Agent is now ready to delegate the specific FlyScan goals with
specific coordinates generated by the CScan Agent to each of the RMAXs:
12a. S-Delegate(Coop1, RMAX1, τ7), where τ7 = (α7, φ7) and the goal, φ7 =

Scan(R2, constraintsrm12) and the plan,
α7 = FlyScan(R2, constraintsrm12) .

12b. S-Delegate(Coop1, RMAX2, τ8), where τ8 = (α8, φ8) and the goal, φ8 =
Scan(R3, constraintsrm22) and the plan,
α8 = FlyScan(R3, constraintsrm22)

The final result of this mission would be the generation of a saliency map
based on the scans of both the RMAX’s.

8.2 Open and Closed Delegation

As an example of the distinction between open and closed delegation and the
rich spectrum of choices in between, we now consider the GOP’s choices as to
how to delegate a scanning goal to Coop1. Each alternative below gravitates
towards a more progressively open delegation.

Recall, the strong delegation example at the beginning of section 8:

Option A: S-Delegate(GOP, Coop1, τ1), where τ1 = (α1, φ1) and φ1 = Scan(R1,
constraints1) and α1 = CoopScan(R1, constraints1),
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where the the constraints, constraints1 used in τ1 are completely instantiated:
(T imeInterval : [10 : 00, 10 : 45], PatternType : Rectangular(width : 5m),

EntityIdent : (humanbodies), Platform : (Rotor), MaxAlt : 300m, MinAlt :
150m, Maxvelocity : 8m/s, MinV elocity : 4m/s)

GOP also asserts that the single action plan Coop1 should use to achieve
the scanning goal is CoopScan(region, constraints) with its arguments com-
pletely specified. From the perspective of GOP this is a completely closed del-
egation. Both the goal and the means of achieving it are completely specified.
Coop1 appears to have limited flexibility and thus little autonomy as regards the
achievement of the goal. Note though, that from another perspective, there is no
guarantee that the single plan action is deterministic or without internal choice.
In fact, we know that there is a great deal of recursive delegation occurring in
this single action plan.

The second option is no longer closed delegation, but is closer to closed dele-
gation than open delegation:

Option B: S-Delegate(GOP, Coop1, τB), where τB = (αB , φB) and φB =
Scan(R1, constraintsB) and αB = CoopScan(R1, constraintsB),

where constraintsB is a semi-instantiated list:

(T imeInterval : [10:00, ??], PatternType :??, EntityIdent : (humanbodies),
Platform : (??), MaxAlt :??, MinAlt : 150m, Maxvelocity : 8m/s,
MinV elocity : 4m/s)

In this case, there are no constraints as to when the mission can end, the
scan pattern type may be chosen arbitrarily, any type of platform can be used,
and there is no constraint on maximum altitude. The semi-instantiated list of
constraints implies more choice for Coop1 and consequently more autonomy for
Coop1 in how it achieves the goal.

The 3rd and final option is a form of highly open delegation:

Option C: S-Delegate(GOP, Coop1, τC), where τC = (αC , φC) and φC =
Scan(R1, constraintsC) and αC = ∅.

In this case, it is completely up to Coop1 how it will achieve the scanning goal
and the constraints may be more or less specified. Minimally specified constraints
of course results in the most open form of delegation possible in this context.

9 Conclusion

We introduced a realistic UAV case study as a vehicle for exploring the type and
nature of cooperative missions one would come across when developing complex
autonomous UAV systems and higher-order deliberative capability for such sys-
tems. In parallel, we have developed and proposed a theory of delegation formal-
ized using KARO and 2APL. We then analyzed the communicative interactions
pertaining to delegation from the case study, using the new theory of delega-
tion. There is a very good correspondence between the real-life requirements of
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the cooperative UAV scanning mission and the theoretical constructs proposed.
This leads us to believe we are on the right track in terms of linking theory
with application. The JADE layer extension described has been implemented
and tested in a multi-platform cooperative scanning mission successfully flown
at an emergency services testing facility in Revinge in southern Sweden. Use of
the S-delegation speech acts were part of the mission and provided us with a
succinct framework for executing such missions. Although the full KARO/2APL
reasoning and programming system is not yet part of the deployed UAV system
architecture, our initial experimentation provides convincing evidence that we
are on the right track in this respect also.

Future work will include integration of the KARO/2APL reasoning system
with the existing JADE layer of the UAV software architecture and additional
experimentation with other cooperative missions. We will also focus on integra-
tion with task planner and execution monitor pairs in order to deal with failures
in cooperative plans due to unforeseen contingencies and their dynamic repair.
The delegation theory will be extended accordingly.
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Abstract. The process of reaching an agreement in a bilateral negotiation to a 
large extent determines that agreement. The tactics of proposing an offer and 
the perception of offers made by the other party determine how both parties en-
gage each other and, as a consequence, the kind of agreement they will  
establish. It thus is important to gain a better understanding of the tactics and 
potential other factors that play a role in shaping that process. A negotiation, 
however, is typically judged by the efficiency of the outcome. The process of 
reaching an outcome has received less attention in literature and the analysis of 
the negotiation process is typically not as rigorous nor is it based on formal 
tools. Here we present an outline of a formal toolbox to analyze and study the 
dynamics of negotiation based on an analysis of the types of moves parties to a 
negotiation can make while exchanging offers. This toolbox can be used to 
study both the performance of human negotiators as well as automated negotia-
tion systems. 

1   Introduction 

Negotiation is an interpersonal decision-making process necessary whenever we can-
not achieve our objectives single-handedly [10]. Parties to a negotiation need each 
other to obtain an outcome which is beneficial to both and is an improvement over the 
current state of affairs for either party. Both parties need to believe this is the case 
before they will engage in a negotiation. Although by engaging in a negotiation one 
party signals to the other party that there is potential for such gain on its side, it may 
still leave the other party with little more knowledge than that this is so. Research 
shows that the more one knows about the other party the more effective the exchange 
of information and offers [9]. Furthermore, humans usually do have some understand-
ing of the domain of negotiation to guide their actions, and, as has been argued, a 
machine provided with domain knowledge may also benefit from such domain knowl-
edge [3]. 

It is well-known that many factors influence the performance and outcome of hu-
mans in a negotiation, ranging from the general mindset towards negotiation to par-
ticular emotions and perception of fairness. As emphasized in socio-psychological 
and business management literature on negotiation, viewing negotiation as a joint 
problem-solving task is a more productive mindset than viewing negotiation as a 
competition in which one party wins and the other looses [4, 9, 10]. Whereas the latter 



28 K. Hindriks, C.M. Jonker, and D. Tykhonov 

mindset typically induces hard-bargaining tactics and rules out disclosure of relevant 
information to an opponent, the former leads to joint exploration of possible agree-
ments and induces both parties to team up and search for trade-offs to find a win-win 
outcome. Different mindsets lead to different negotiation strategies. A similar distinc-
tion between hard- and soft-bargaining tactics has also been discussed in the auto-
mated negotiation system literature where the distinction has been referred to as either 
a boulware or a conceder tactics [2]. 

Emotions and perception of fairness may also determine the outcome of a negotia-
tion. People may have strong feelings about the “rightness” of a proposed agreement. 
Such feelings may not always be productive to reach a jointly beneficial and efficient 
agreement. It has been suggested in the literature to take such emotions into account 
but at the same time to try to control them during negotiation and rationally assess the 
benefits of any proposals on the table [4, 10]. 

Apart from the factors mentioned above that influence the dynamics of negotiation, 
many other psychological biases have been identified in the literature that influence 
the outcome of a negotiation, including among others partisan perceptions, overconfi-
dence, endowment effects, and reactive devaluation [8, 10]. 

In order to gain a better understanding of the negotiation dynamics and the factors 
that influence the negotiation process it is crucial to not only mathematically evaluate 
the efficiency of negotiation outcomes but also to look at the pattern of offer ex-
changes, what Raiffa [8] calls the negotiation dance. In the remainder we present part 
of a formal toolbox to analyze patterns in offer exchanges and present some initial 
findings in the literature. 

2   Towards a Formal Toolbox for Negotiation Dynamics Analysis 

The insights of which factors influence the negotiation process as well as outcome as 
described in the previous section were gained by means of experiments performed 
e.g. by psychologists, and social scientists. More recently, the development of auto-
mated negotiation software has provided a basis to experiment and collect data about 
the negotiation process through human-computer interaction [1, 7]. Here we introduce 
part of a toolbox that allows formal analysis of the negotiation dynamics in experi-
ments with humans as well as with machines. 

Our interest is in analyzing, classifying and in precisely characterizing aspects of 
the negotiation dynamics that influence the final agreement of a negotiation. The main 
interest thus is in proposing concepts and metrics that relate these factors to specific 
aspects of the negotiation dynamics and to thus also gain a better understanding of the 
final outcome of a negotiation. 

The key concept in the analysis toolbox that we propose is that of various catego-
ries or classes of negotiation actions, including in particular the offers made by each 
party. A proposed offer can be classified based on the utility it provides to the propos-
ing party (“Self”) as well as to the other party (“Other”). The possible classifications 
are visualized in Figure 1. 
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Fig. 1. Visualization of step classes in common outcome space 

We distinguish six negotiation step classes, which are formally defined below. Be-
fore formally defining the concepts below, some additional notation is introduced. 
US(b) denotes the utility of “Self” with respect to bid b. Similarly, UO(b) denotes the 
utility of “Other” with respect to b. We use ∆a(b, b’) = Ua(b’)-Ua(b), a∈{S,O}, to 
denote the utility difference of two bids b and b’ in the utility space of agent a. We 
also write ∆a(s) to denote ∆a(b, b’) for a step s = b→b’. Here we present a precise 
definition of the classes of negotiation steps proposed in [1] extended as discussed 
above. These step categories define the core of the step-wise analysis method [5]. 

 
Definition of Step Classes: 

Let s=bS→b’S be a step in the bidding by Self (the definition for Other is completely 
symmetric). Then the negotiation step s taken by Self is classified as a: 

• Fortunate Step, denoted by (S+, O+), iff: 
 ∆S(s)>0, and ∆O(s)>0. 

• Selfish Step, denoted by (S+, O≤), iff: 
  ∆S(s)>0, and ∆O(s)≤0. 

• Concession Step, denoted by (S-, O≥), iff: 
 ∆S(s)<0, and ∆O(s)≥0. 

• Unfortunate Step, denoted by (S≤, O-), iff: 
 ∆S(s)≤0, and ∆O(s)<0. 

• Nice Step, denoted by (S=, O+), iff: 
  ∆S(s)=0, and ∆O(s)>0. 

• Silent Step, denoted by (S=, O=), iff: 
 ∆S(s)=0, and ∆O(s)=0. 
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Observe that the proposed classification is exhaustive, and all step classes are dis-
joint. These step classes can be used to define additional concepts to analyze the ne-
gotiation dance in a particular negotiation. For illustrative purposes, we present just a 
few additional concepts. For a more extensive overview we refer the reader to [5]. 

A trace t is a series of negotiation steps as defined above, i.e., transitions b→b’ 
with b, b’ offers. For a given trace the percentage of steps in a particular step class is 
defined as usual. 

 
Definition. % per Class 

The percentage %c(t) of class c steps in a trace t is defined by: %c(t) = #tc / #t. 
 

Negotiation strategies can be designed with specific aims in mind that should be ob-
servable as patterns in the negotiation dance. For example, the success of a strategy 
that is supposed to learn its opponent’s preferences can be verified by checking 
whether the frequency and/or size of unfortunate steps over a negotiation trace de-
creases. Such patterns can be seen as a measure of adaptability of a party to its oppo-
nent. Another useful measure of the sensitivity to the opponent’s preferences can be 
defined by comparing the percentage of fortunate, nice and concession steps that 
increase the opponent’s utility to the percentage of selfish, unfortunate and silent 
steps that decrease it. Intuitively, an agent that only performs steps that increase its 
opponent’s utility can be said to be (very) sensitive to the needs of its opponent. 

 

Definition. Sensitivity to Opponent Preferences 

The measure for sensitivity of agent a to its opponent’s preferences is defined for a 
given trace t by: 
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In case no selfish, unfortunate or silent steps are made we stipulate that sensitiv-
ity(a,t)=∞. If sensitivitya(t)<1, then an agent is more or less insensitive to opponent 
preferences; if sensitivitya(t)>1, then an agent is more or less sensitive to the oppo-
nent’s preferences, with complete sensitivity for sensitivity(a,t)=∞. Typically, this 
sensitivity measure varies with different domains and different opponents and aver-
ages over more than one trace need to be computed. Note that the notion of sensitivity 
is asymmetric: one agent may be sensitive to the other’s preferences, but not vice-
versa. 

3   Experimental Results 

In this section, we present some experimental findings to illustrate the usefulness of 
our analysis toolbox. 

Bosse and Jonker [1] performed two experiments with human subjects. The nego-
tiation dances produced were analyzed with the step analysis method, although silent 
steps and nice steps were not considered as special cases of the concession step.  
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In the first experiment eighteen subjects participated and consisted of AI students 
in The Netherlands (12 males and 6 females). Their age varied between 19 and 27 
years. The participants had to negotiate against each other (refered to as HH negotia-
tions) and were motivated by the challenge to obtain the highest utility. Furthermore, 
they were challenged to outperform the computer in the corresponding Computer-
Computer negotiation process (CC) they were also allowed to perform. The computer 
agent used the ABMP negotiation strategy, see [6].  In the HH process, one person is 
assigned the role of the buyer, and the other one is assigned the role of the seller. In 
the CC process, a computer buyer negotiates with a computer seller, both using the 
profile of the corresponding human negotiator. By keeping the negotiation profile 
stable over the two processes, it is guaranteed that the utility spaces remains the same, 
and that the resulting traces are thus comparable. 

In the second experiment 76 subjects (43 males and 33 females) participated. The 
experiment took place during an introductory course for family members of AI stu-
dents. Most of the participants (about 75%) were parents of the students, their age 
varying between 45 and 55 years. The other 25% were brothers and sisters of the 
students, their age varying between 17 and 24 years. Almost all of the participants did 
not have any background in AI. Education and occupation were a fair representation 
of the general population in The Netherlands. 

The participants formed 38 teams of two persons, and each team was assigned to a 
computer. Each team was told that they could negotiate as a team against the com-
puter. This deviation was necessary for that occasion, due to a lack of available com-
puters. Each group participated in two negotiation processes: a Human-Computer 
(HC) process and a CC process. In the HC process, all teams played the buyer role, 
and use their own personal profile. Computer roles used the ABMP strategy of [6]. In 
the CC process, a computer buyer uses the profile of the human team. By keeping the 
negotiation profile stable over the two processes, it is guaranteed that the utility 
spaces remain the same, and that the resulting traces are thus comparable. 

One trend observed in both experiments, is that the Nash distance and the EPP dis-
tance (both measures for fairness of the negotiation) were significantly shorter in the 
CC traces than in the HH traces, see Table 1, and Table 3 shows that they were 
shorter in the CC traces than in the HC traces. Furthermore, these distances seem to 
be shorter in the HH traces than in the HC traces. Thus, the CC negotiations turned 
out to have the “fairest” outcome, followed by the HH traces. The outcomes of the 
HC traces were the least balanced. This can be seen in the first two cells in Table 3, 
where the mean (human) buyer utility (0.89) was much higher than the mean (com-
puter) seller utility (0.72). This is an important finding, because when the same nego-
tiation spaces are explored by two computer negotiators, the buyer utility hardly drops 
(0.87), whilst the seller utility increases significantly (0.83).  

Table 1. Performance in Experiment 1 

 Buyer 
Utility 

Seller 
Utility 

Pareto 
Distance 

Nash 
Distance 

EPP 
Distance 

Number 
of rounds 

HH traces 0.87 0.80 0.05 0.22 0.16 7.00 
CC traces 0.88 0.89 0.03 0.12 0.06 8.00 

t-value 0.376 2.807 -0.786 -3.988 -3.463 1.540 
p-value 0.717 0.023 0.455 0.004 0.009 0.146 
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Table 2. Steps made in Experiment 1 

 Fortunate 
(S+ O+) 

Concession 
(S- O+) 

Selfish 
(S+ O-) 

Unfortunate 
(S- O-) 

HH, 
buyer 

3 
(6.52%) 

36 
(78.26%) 

2 
(4.35%) 

5 
(10.87%) 

HH, 
seller 

5 
(11.36%) 

32 
(72.73%) 

4 
(9.09%) 

3 
(6.82%) 

CC, 
buyer 

0 
(0%) 

58 
(89.23%) 

0 
(0 %) 

7 
(10.77 %) 

CC, 
seller 

0 
(0 %) 

48 
(82.76%) 

0 
(0 %) 

10 
(17.24 %) 

Table 3. Performance in Experiment 2 

 Buyer 
Utility 

Seller 
Utility 

Pareto 
Distance 

Nash 
Distance 

EPP 
Distance 

Number of 
rounds 

HC 
traces 0.89 0.72 0.05 0.30 0.23 8.84 

CC traces 0.87 0.83 0.06 0.17 0.10 8.91 
t-value -1.729 3.684 0.309 -5.161 -6.228 0.066 
p-value 0.092 0.001 0.759 0.000 0.000 0.948 

Table 4. Steps made in Experiment 2 

 Fortunate 
(S+ O+) 

Concession 
(S- O+) 

Selfish 
(S+ O-) 

Unfortunate 
(S- O-) 

HC, buyer 23 
(7.62%) 

232 
(76.82%) 

17 
(5.63%) 

30 
(9.93%) 

HC, seller 2 
(0.68%) 

251 
(85.37%) 

0 
(0 %) 

41 
(13.95%) 

CC, buyer 0 
(0 %) 

287 
(94.41 %) 

0 
(0 %) 

17 
(5.59 %) 

CC, seller 0 
(0 %) 

267 
(90.51 %) 

0 
(0 %) 

28 
(9.49 %) 

Apparently the ABMP strategy used by the computer seller is not robust to being 
exploited by a human buyer. This observation is supported by the data in 
Tables 2 and 4. In both situations, the computers made more unfortunate steps than 
the humans. In addition, the computer sellers made more unfortunate steps than the 
computer buyers.  

A last important finding concerns the diverse bidding behaviour by humans. As 
shown in Table 2, human negotiators sometimes make steps that improve the utility 
for both parties. Of course, doing this has the risk of making selfish steps. In its cur-
rent state, the ABMP agent hardly makes these kinds of steps. Nevertheless, in some 
cases the unpredictable human behavior actually resulted in better results.  

The extended step-wise analysis technique has been applied to a number of nego-
tiation strategies for software agents [5]. A tournament with the strategies was set up 
and run.  The following strategies have been studied: The ABMP strategy [6], a con-
cession oriented strategy, which computes bids to offer next without taking domain or 
opponent knowledge into account, the Trade-off strategy is based on similarity crite-
ria [3], and exploits domain knowledge to stay close to the Pareto Frontier. The 
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Random Walker strategy serves as a “baseline” strategy. It randomly jumps through 
the negotiation space, and can be run with or without a break-off point.  

A full analysis was made of the type of steps made on AMPO vs City domain [9]. 
Here we show some examples of negotiation dances typical for the negotiation strate-
gies we selected for the tournament (see figure 2).  

 

 
         (a)          (b) 

 
         (c)           (d) 

Fig. 2. Dynamics of negotiation process for: a) Random Walker (City) vs Trade-Off strategy 
(AMPO), b) Trade-Off (City) vs Trade-Off strategy (AMPO), c) Trade-Off (City) vs ABMP 
strategy (AMPO), d) Random Walker (City) vs ABMP strategy (AMPO) 

The Trade-off strategy uses bids sent by its opponent to estimate what is the best 
possible trade-off between issues using similarity criteria. It assumes rationality of the 
opponent’s strategy, which means that values of the issues in the opponent’s bid rep-
resent its preferences. The Random-Walker strategy (fig. 2a), however, does not 
match this assumption and, as a result, the Trade-Off is rather strongly affected by it 
and performs multiple unfortunate steps.  

Figure 1b shows that the Trade-Off strategy performs well against itself because 
both opponent’s use the same assumption of rationality of the negotiation strategies. 
In addition, good predictability1 of the issues produces only few unfortunate steps. 
Here unfortunate step is a result of a mismatch in the weights of the similarity func-
tions and actual weights of the opponent’s issues cause wrong trade-offs between 
issues and results in unfortunate steps. 

ABMP strategy has very similar negotiation paths in all experiment due to its con-
cession strategy and high dimensionality (10 issues) of the negotiation space. ABMP 
                                                           
1 Here predictability of issue means that a distance function on the values of this issue can be 

easily defined using common sense knowledge. I.e., price issue has good predictability ($10 is 
most likely to be closer to $20 than to $30) and color has poor predictability. 
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strategy always concedes on every issue that prevents it from making unfortunate 
steps in case of strong mismatch in issues weights between opponents. From the other 
side, such concession algorithm does not allow trade-offs between issues and thus 
brings the bids further from the Pareto-frontier (see fig. 1c). This effect has an impact 
on the Trade-off strategy causing multiple unfortunate steps. 

ABMP is not affected by the opponent’s strategy because of its concession algo-
rithm. However, it is essential for a negotiation strategy efficiency to be able to make 
trade-offs between issues that are unequally important for the opponents. Thus, such 
concession strategy pushes bids away from the Pareto-frontier. 

4   Conclusion 

It is important to gain a better understanding of the negotiation dance, the exchange of 
offers between parties, in a more formal way. In order to do so a toolbox for analyz-
ing this exchange needs to be developed. Such a toolbox, elements of which were 
outlined in this extended abstract, may provide a basis for relating and explaining the 
moves of negotiating parties to five key factors that shape the outcome of a bilateral 
negotiation with incomplete information: (i) knowledge about the negotiation domain 
(e.g. the market value of a product or service), (ii) one’s own and one’s opponent’s 
preferences, (iii) process attributes (e.g. deadlines), (iv) the negotiation strategies, and 
(v) the negotiation protocol. 

Many challenges remain for developing the toolbox envisaged. One important ex-
tension of the toolbox is to introduce benchmark problems for bilateral negotiation 
that can be used to evaluate automated negotiation systems. Additional experimental 
data is required to refine the concepts and to develop new concepts that need to be 
included in the toolbox. Also such data may provide insights into relating experimen-
tal results to the key factors identified above. 
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Abstract. In this paper we compare state-of-the-art multi-agent rein-
forcement learning algorithms in a wide variety of games. We consider
two types of algorithms: value iteration and policy iteration. Four charac-
teristics are studied: initial conditions, parameter settings, convergence
speed, and local versus global convergence. Global convergence is still
difficult to achieve in practice, despite existing theoretical guarantees.
Multiple visualizations are included to provide a comprehensive insight
into the learning dynamics.

1 Introduction

This article surveys the dynamics and performance of state-of-the-art value itera-
tion and policy iteration reinforcement learning algorithms in multi-agent games.
In particular this work studies initial conditions, parameter settings, convergence
speed, and local versus global convergence in a wide variety of cooperative and
competitive games.

Single-agent reinforcement learning (RL) has been studied extensively in the
past [3,13]. It guarantees convergence to the optimal policy assuming sufficient
learning cycles and a stationary environment.

Learning and adaptation in a multi-agent context recently has gained
a great deal of interest in the Artificial Intelligence research community
[1,6,10,11,12,16,4,17,20]. Accomplishing a certain task in highly uncertain en-
vironments, in which multiple agents operate, calls for multi-agent learning
techniques. These agents involved are not only situated in a non-stationary
environment but also need to deal with incomplete information and commu-
nication limits. In such non-stationary environments the Markov property does
not hold which makes all proofs of convergence inapplicable when considering
algorithms from single-agent learning based on the Markov assumption.

Reinforcement learning techniques are subdivided in value iteration and policy
iteration. Q-learning and learning automata are examples of each class respec-
tively. Value-based learners estimate a state-action value function that deter-
mines the utility of performing a given action in a given state [13]. Once the
outcome is established the value function is used to derive a policy that de-
scribes the behavior of the agent. Contrary to the value based approach, policy
iterators as learning automata learn directly in the policy space.
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The remainder of this paper is organized as follows. Section 2 introduces the
state-of-the-art learning algorithms. Section 3 explains the wide variety of games
on which the algortihms are tested and concisely explains concepts such as Nash
equilibrium and Pareto optimality. We continue in Section 4 with an elaboration
on the performance criteria and the method of visualizing the learning dynamics.
Section 5 covers the obtained results. A discussion and future research opportu-
nities follow in Section 6. Section 7 concludes the article.

2 State-of-the-Art Learning Algorithms

In this section we shortly describe two different multi-agent reinforcement learn-
ing algorithms, viz. value based learners and policy based learners.

The value iteration reinforcement learning algorithms considered are
Q-learning and two recent adaptations, i.e., Lenient Q-learning and
FMQ-learning [4,7,8]. The policy iteration algorithms considered are Learning
Automata and a number of its variants [6,15]. In particular finite action-set learn-
ing automata (FALA) and parameterized learning automata (PLA) are studied.

2.1 Value-Based Learners

We start by explaining independent Q-learning, because this is the basis of state-
of-the-art value-based algorithms.

Q-Learning. Q-learning was initially introduced for single-agent environments.
Each learning step refines a utility-estimation function (the value function) for
state-action pairs and generates a new policy from the estimated values to draw
the next action to execute. The algorithm bootstraps its estimate for the state-
action value Qt+1(s, a) at time t + 1 upon its estimate for Qt(s

′
, a

′
) with s

′
the

state where the learner arrives after taking action a in state s:

Qt+1(s, a) ← (1 − α)Qt(s, a) + α(r + γ maxa′Qt(s
′
, a

′
)) (1)

with α the usual step size parameter, γ a discount factor and r the immediate
reinforcement.

In the single agent case this algorithm is able to learn optimal behavior in
stationary environments [19]. The choice of the action selection mechanism is of
utmost importance: it generates actions given the estimated state-action values.
An ε-greedy action selection assigns the best action with probability (1 − ε) and
some random action with probability ε.

With the Boltzmann distributed exploration mechanism, an action is selected
with a probability given by:

pj =
eQi(sj)·τ−1

∑

k

eQi(sk)·τ−1

where an initially high temperature τ promotes exploration and decreasing tem-
perature over time leads to strong exploitation in the final phase.
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iteration t
T 10 -10 - - -
M 0 7 0 6 0
B 5 0 0 - -

iteration t + 1
T 10 -10 - - -
M - - - - -
B 5 0 0 - -

Fig. 1. Lenient Q-learning reward register for L = 5, example from CG. Q-value of
M is updated with ri = 7, maximum of five rewards (left). The next step clears the
register (right).

Convergence guarantees are usually lost in multi-agent environments, since
other agents’ actions can make the environment appear as non-stationary from
the viewpoint of a single agent. Still it is possible and sometimes even useful, as
we will show later on, to use Q-learning in a multi-agent environment. Agents
are called independent when it assumed that they can neither observe the other
agents actions nor the rewards they received for them; the agents only act upon
the experience collected by experimenting with the environment.

Lenient Q-Learning. In a cooperative multi-agent learning environment it is
a good idea to forgive mistakes, especially in the initial learning period. Con-
sider the example of learning in soccer as in [7]. In the initial phase of learning
both agents lack the skill for good actions, so even a perfect forward pass may
frequently be not rewarded. This leads to the agents converging to actions that
work well with a variety of opponents’ strategies but it often results in subopti-
mal behavior.

In order to handle this problem lenient Q-learning collects L rewards for an
action before it updates the estimation based on the maximum. Lower rewards
are discarded and only the highest reward is used for the update which implies
that only 1

L · iterations learning steps are executed. Figure 1 depicts the update
schematically.

For a detailed description of this algorithm we refer to [7,8].

FMQ-Learning. The FMQ - learner keeps track of the highest reward for each
action and its frequency so far [4]. It is used to alter the policy generation which
is not based on the Q-values anymore, but on the function ev(Qi(sj)). Let F be
the parameter that describes the persistence to seek the maximal encountered
reward r∗i (sj) that was observed with frequency fi(sj) so far.

ev(Qi(sj)) = Qi(sj) + F · f(sj) · r∗i (sj)

The higher F the more the algorithm will alter the policy. This variation works
best in combination with another FMQ learner; the ideas is that policies quickly
agree on an optimum even if it is surrounded by penalties as it is in the climbing
game. If F is large it enforces a quick decision for one action.

2.2 Policy-Based Learners

Rather than building estimated values for states or state-action pairs, policy-
based reinforcement learners directly search the policy space for the optimal
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policy. The two policy-based learners that are considerd in this study are both
learning automata algorithms, i.e. finite action-set learning automata (FALA)
and parameterized learning automata (PLA). Both are model free, stateless and
independent learners. While these restrictions are not negligible, they allow for
simple algorithms that can be discussed analytically. Convergence for learning
automata in single and specific multi-agent cases, such as games, has been proved
in [5].

Finite Action-Set Learning Automata. The class of finite action-set learn-
ing automata (FALA) considers only automata that optimize their policies over
a finite action-set A = {1, . . . , k} with k some finite integer. One optimization
step, called epoch from here on, is divided into two steps: action selection and
policy update. At the beginning of an epoch t the automaton draws a random
action a(t) according to the probability distribution π(t), called policy. Based
on the action a(t) the environment responds with a reinforcement signal r(t),
called reward. Hereafter the automaton uses the reward r(t) to update π(t) to
the new policy π(t + 1).

The update rule for FALA is given below.

If i = a(t) then

πi(t + 1) = πi(t) + αr(t)(1 − πi(t))
− β(1 − r(t))πi(t)

otherwise

πi(t + 1) = πi(t) − αr(t)πi(t)

+ β(1 − r(t))[(k − 1)−1 − pi(t)]

(2)

Here α and β are in [0, 1] are the reward and penalty parameters respectively.
Depending on α and β, the update scheme is referred to as linear reward-penalty
(LR−P ) if α = β, for β = 0 it is called linear reward-inaction (LR−I), and if β is
chosen to be small compared to α it is called linear reward-ε-penalty (LR−εP ).

Assuming that r is continuous (called S-model [5]) and in the range [0, 1],
(2) does indeed give a probability distribution satisfying the following two con-

straints:
k∑

i=1

πi(t + 1) = 1 and ∀i πi(t + 1) ∈ [0, 1].

Parameterized Learning Automata. A learning automaton following the
update rule given in (2) is only guaranteed to converge locally [15]. In order to
find the global optima the learning algorithm has to be refined.

One solution to this problem is adding a randomization term to the learning
rule. Superimposing noise directly on the probability distribution would violate
the constraints. Therefore the algorithm presented in [14] uses a probability
generating function g mapping an internal state vector u to a valid probability
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distribution π. This class of algorithms is called parameterized learning automata
(PLA). The update rule from [14] for PLA simplifies to

ui (t + 1) = ui (t) + αr (t)
δ ln g

δui
(u (t) , a (t))

+ αh′ (ui (t)) +
√

αsi (t)
(3)

where

h (x) =

{−K (x − L)2n x ≥ L
0 |x| ≤ L

−K (x + L)2n
x ≤ −L

(4)

and h′(x) = δh(x)
δx . Furthermore α is a positive learning parameter and si (k) is

a set of IID random variables drawn from a normal distribution with zero mean
and variance σ2.

The difference u (k − 1) − u (k) is composed of three terms, a gradient, a
bound, and a random term. The gradient term includes the probability gener-
ating function given by

g (u, i) =
exp ui∑k

j=1 exp uj

(5)

According to π an action a(t) is selected at every epoch t. The second term uses
function h to ensure that the state vector remains within the bound |u| ≤ L.
Constants L, K, and n are all positive; L and K are real values whereas n is an
integer. The last term superimposes noise to prevent the algorithm from getting
stuck in local optima.

Next, Definition (5) is used to work out the gradient in (3):

δ ln g

δui
(u (t) , a (t)) =

δ

δui
ln

(
expua(t) (t)

∑k
j=1 exp uj (t)

)

=
δ

δui

⎛

⎝ua(t) (t) − ln

⎛

⎝
k∑

j=1

exp uj (t)

⎞

⎠

⎞

⎠

=
δua(t)

δui
− exp ui (t)

∑k
j=1 exp uj (t)

=
δua(t)

δui
− πi (t)

=
{

1 − πi (t) if i = a (t)
− πi (t) otherwise

This results in the following update rule, similar to the form seen in (2) for the
(LR−I) scheme:
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If i = a(t) then

ui(t + 1) = ui(t) + αr(t)(1 − πi(t))
+ αh′ +

√
αsi(t)

otherwise

ui(t + 1) = ui(t) − αr(t)πi(t)
+ αh′ +

√
αsi(t)

(6)

3 Testbed of Games

This section provides background information on multi-agent games used as a
benchmark for multi-agent reinforcement learning. Starting with a brief intro-
duction to games, Section 3.1 concisely explains solution concepts, namely Nash
equilibrium, Pareto efficiency, and maximum social welfare. Examples of various
games for two and more players are provided through Sections 3.2 to 3.4.

3.1 Games

Normal form games are stateless games that make the assumption that players
act simultaneously. Each player i participating in the game has a set of actions
Ai available. When all agents have played an action they receive a numerical
reward ri.

Since normal form games are stateless, the behavior of player i can be de-
scribed by a single probability distribution πi over its action-set Ai. This distri-
bution is called a strategy or policy. If πi

j = 1 for any j ∈ Ai then player i follows
a pure strategy otherwise a mixed strategy. Furthermore let Ri(π1, . . . , πn) be the
expectation of payoff ri for agent i given the strategies π1, . . . , πn.

Based on the notion of the expected payoff R and the strategy profile π =
(π1, . . . , πn) this section gives a formal definition of Nash equilibrium, Pareto
efficiency and maximum social welfare profiles.

Definition 1: Nash equilibrium
A strategy profile π = (π1, . . . , πn) is a Nash equilibrium if for all players i the
following condition holds.

Ri(π) ≥ Ri(π1, . . . , πi−1, π̃i, πi+1, . . . , πn) ∀π̃i

Hence no player can improve its payoff by exclusively changing its strategy to
some π̃ given fixed strategies for all other agents.

Definition 2: Pareto efficiency
A strategy profile π is Pareto efficient (or Pareto optimal) if there is no π̃ �= π
such that

Ri(π̃) ≥ Ri(π) ∀i
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and for some i

Ri(π̃) > Ri(π).

Thus a Pareto efficient solution implies that no player can improve its expected
payoff without making at least one other player worse off.

Definition 3: Maximum social welfare profile
The social welfare of an interactive situation is defined by the sum of individual
rewards. Hence, the maximum social welfare can be denoted by:

max
π

ω (π) = max
π

n∑

i=1

Ri (π)

Furthermore, the strategy profile π∗ with

π∗ = arg max
π

ω (π)

is called a maximum social welfare profile. In cooperative games Pareto efficient
solutions and maximum social welfare profiles are of major interest, whereas in
competitive situations Nash equilibria are studied.

The next subsections introduce seven normal form games.

3.2 2 x 2 Matrix Games

Normal form games with two players each choosing from two actions are called
2 x 2 matrix games. The family of 2 x 2 games can be subdivided into three
categories according to there payoff matrices [9]: (a) games with one pure equi-
librium, (b) games with one mixed equilibrium and (c) games with two pure
equilibria and one mixed equilibrium. This subsection presents one example for
each class.

The Prisoners’ Dilemma (PD) is a well studied category (a) game in which
the players may confess (C) or deny (D) [2]. The payoff matrix of the PD game
is given below. The single pure Nash equilibrium is located in the bottom-right
corner, corresponding to both players playing action C.

D C
D 3,3 0,5
C 5,0 1,1

Matching Pennies (MP) is a 2 x 2 game belonging to category (b) and defined
by the following payoff matrix:

H T
H 1,-1 -1, 1
T -1, 1 1,-1
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Both players chose simultaneously for one side of a penny, either they play Head
(H) or Tail (T ). If both pennies show the same face player 1 keeps the coins;
for a mismatch player 2 gets rewarded. The mixed equilibrium is reached if both
players play strategies (0.5, 0.5) which means that a player selects action H and
T each with probability 0.5.

Category (c) is covered by the next example, the Bach or Stravinsky (BoS)
game, also referred to as the Battle of the Sexes. In this strategic situation the
players want to visit a concert together. They can chose between Bach (B) or
Stravinsky (S) but no communication is allowed. Player 1 prefers B whereas
player 2 has a preference for S. Strategies corresponding to the joint action
pairs (B, B) and (S, S) form pure equilibria; the mixed equilibrium is defined by
the strategies (2

3 , 1
3 ) and (1

3 , 2
3 ) for player 1 and 2 respectively. Miscoordination

results in a zero payoff for both. The payoff matrix of the BoS game is given
below.

B S
B 2,1 0,0
S 0,0 1,2

3.3 Penalty and Climbing Game

Games with more than one equilibrium are studied to investigate convergence to
local or global optima. The BoS game contains multiple pure equilibria, however
it is not possible to point out the best due to a conflicting interest. The mixed
equilibrium is a fair solution but not in the least optimal with respect to social
welfare. Therefore games with equal payoff for both players are studied; these
games are called symmetric games. The penalty game and the climbing game
are examples of symmetric games. Payoff matrices for both games are given in
Figure 2.

In the penalty game players have to coordinate their actions in order to yield
high payoffs (joint actions (1, 1) and (3, 3)). Miscoordination leads to punishment
by negative rewards. Furthermore the joint action (2, 2) is also an equilibrium
but not Pareto efficient.

Two equilibria can be found in the climbing game. Joint actions corresponding
to positive non-zero payoffs are points of attraction, where the joint actions (1, 1)
and (2, 2) form equilibria. Once again the Pareto optimal Nash equilibrium is
surrounded by negative rewards to punish miscoordination. Learners have to
virtually climb up to reach the maximum reward.

⎡

⎣
10 0 −10
0 2 0

−10 0 10

⎤

⎦

⎡

⎣
11 −10 0

−10 7 6
0 0 5

⎤

⎦

Fig. 2. Payoff matrices for the penalty (left) and the climbing game (right)
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3.4 Guessing and Dispersion Game

So far the introduced games cover interactions between two players. Since MAS
with only two agents are barely seen in practice this subsection defines symmetric
games with n players and n actions where n can be any finite integer.

The guessing game is well suited for generalization up to n players. Each player
i selects an action ai from the same action set A = {1, . . . , n} synchronously.
If all players ’guess’ the same action the reward will be maximal; if a player
exclusively chooses for an action his reward will be minimal. This game is called
a coordination game; all players have to coordinate, to ’guess’, the same action
in order to achieve the maximum payoff.

Closely related is the dispersion game also called anti-coordination game. The
goal in this particular game is to disperse over the entire action set as much as
possible. Just like in the previous game an action set of size n is assumed; which
means the maximal dispersion outcome (MDO) is reached if all players choose
for sole actions.

Since these two games can be easily scaled up to more than just two players
it is more convenient to use a payoff function instead of matrices. Based on the
sum of players selecting the same actions these functions are given in (7) and
(8) for the guessing game and the dispersion game respectively.

The number of players selecting action j is defined as

S(j) =
n∑

i=1

id(ai, j)

where

id(i, j) =
{

1 if i = j
0 otherwise

.

Thus the payoff function of the guessing game can be denoted by

ri =
S(ai)

n
. (7)

For the dispersion game the following payoff function applies:

ri =
{

1 if S(ai) = 1
0 otherwise

(8)

The payoff differs between the case where one player occupies an action slot
alonw (payoff equals 1) and the situation where at least two players have selected
the same action (payoff equals 0). Note that the reward ri ∈ [0, 1] for all agents
i = 1, . . . , n.

4 Methodology

In order to explore the performance of a team of learners to its full extent it must
be studied under various initial conditions and parameter profiles. The following
four subsections present the different means that we will use to approach the
given task in Section 5.
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4.1 Policy Trajectory Plot

A rather simple way of displaying evolving policies are trajectory plots. In a 2 x
2 game π1

2 = 1−π1
1 and π2

2 = 1−π2
1 . Therefore the strategy profile π =

(
π1, π2

)

can be reduced to the pair
(
π1

1 , π
2
1

)
without losing information. The trajectory

of this pair is recorded during one single or multiple runs and plotted in a 2D
space. To indicate the direction of convergence grayscales are used for trajectory
plots in Section 5. With increasing number of epochs t the brightness of the
trajectory changes from light to dark.

For the penalty and the climbing game the cardinality of the action-sets equals
3 for both agents. Therefore using the same transformation as above the strategy
profile can only be reduced to a 4-tuple and is not displayable in the 2D space.
However, the policy trajectories π1(t) and π2(t) can be plotted separately using
two simplex plots. The three vertices of a simplex correspond to the pure policies
(1, 0, 0), (0, 1, 0) and (0, 0, 1).

4.2 Directional Field Plot

A second visual method to analyze learning dynamics are directional field plots.
Again a reduced strategy profile (see Subsection 4.1) is used for analyzing 2 x 2
games. A team of learners start at regular grid points over [0, 1]2:

(
π1

1 (t0) , π2
1 (t0)

)
∈ [0, 1] × [0, 1]

The velocity field of this team can then be denoted by

d (v, u)
dt

=

(
π1

1 (t0 + Δt) − π1
1 (t0) , π2

1 (t0 + Δt) − π2
1 (t0)

)

Δt

where Δt is the number of epochs conducted at every grid point and v and u
denote the respective strategies of both players. The velocities are displayed by
arrows pointing in the direction of d(v,u)

dt . The length of the arrows indicates the
absolute value ‖ d(v,u)

dt ‖.

4.3 Convergence

While 2 x 2 games can easily be studied by graphical analysis, higher dimensional
games like the penalty and the climbing game require analytical means. The
third method studies convergence in respect to spatial and temporal measures.
To measure spatial convergence a metric over the space of strategy profile needs
to be defined. Let

d (π, γ) = max
i

max
j

|πi
j − γi

j | (9)

be the distance of two strategy profiles π and γ. Then a strategy profile π has
converged to an optimal π∗ if the distance d(π, π∗) is less than the threshold ε
at any point in time from epoch T on.

Definition 4: A strategy profile π is called ε-converged to π∗ in T epochs if the
following condition holds:

d (π(t), π∗) < ε ∀t, t ≥ T (10)
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Note that (9) is used in favor of other metrics since it applies to multi-agent
situations without losing the intuitive explanation of threshold ε in (10): If a
strategy profile is ε-converged each single action probability diverges at most ε
from its desired value for all agents.

By means of ε-convergence, Section 5 studies the convergence to Nash equilibria
and Pareto optimal solutions. Multiple runs are conducted in order to estimate the
percentage-wise convergence to different points of attraction and the convergence
time T . The experiments are repeated to determine confidence intervals.

4.4 Cumulative Reward Plot

The coordination and anti-coordination games (see Subsection 3.4) are cooper-
ative and therefore the maximum social welfare can be used as a performance
threshold. Both payoff functions (7) and (8) for the coordination games yield the
same maximum social welfare of value n. If the cumulative reward

∑n
i=1 ri(t) = n

a maximum social welfare profile is being played in t. Section 5 shows cumulative
reward plots to indicate if agents successfully converge to these desired profiles.

5 Results

In this section we present the results obtained with the value-iteration learners
and the policy-iteration learners in all three type of games. We summarize all
learning performances and for some of the most interesting cases we provide
visualizations of the learning dynamics. Concerning Learning Automata, the
emphasis is placed on FALA, including various update schemes; the explanations
only relate to PLA if the results differ significantly.

Not only successful settings are shown, but also conditions and parameters
under which the algorithms may fail to converge optimally. Furthermore, a va-
riety of visualizations allow the reader to receive an intuitive impression of the
learning dynamics.

5.1 Simple Games: 2 × 2

Policy-Iteration Learners. Table 1 summarizes the learning performance of
FALA in 2 x 2 games. The confidence intervals for mean estimates are obtained
by gathering 101 samples each averaging 20 runs of a particular game with
Tmax = 5 000 epochs. Thus T -values in the table approaching Tmax indicate
that the learners have not converged (see (10)).

The LR−I update scheme converges in the PD and BoS game to the pure
equilibria but fails to find the mixed one in the MP game. Results for the LR−P

confirm the finding that the basin of attraction coincides with the equilibrium
in the MP game and is located near the mixed one in the BoS game. However,
high values for T indicate that both situations are unstable. Thus it cannot be
guaranteed that a team of learners stays in a equilibrium once it is reached. Due
to the penalty term the action selection persists stochastic, and the team may
jump out of the ε-convergence region once in a while.
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Table 1. Convergence performance of FALA in 2 x 2 games. 95% confidence intervals
for mean estimates of of ε-convergence percentage with ε = 0.1 and mean convergence
time T .

FALA LR−I α = 0.01, β = 0

Nash eq. Convergence % T
PD (0, 0) 99.4% ± 0.3% 1468.8 ± 31.3
MP

( 1
2 , 1

2

)
2.4% ± 0.7% 4408.7 ± 44.2

BoS
(0, 0) 49.2% ± 2.3%

559.5 ± 17.3(1, 1) 50.8% ± 2.3%( 2
3 , 1

3

)
0.0% ± 0.0%

FALA LR−P α = β = 0.01

Nash eq. Convergence % T
PD (0, 0) 0.0% ± 0.0% 3895.0 ± 35.9
MP

( 1
2 , 1

2

)
99.1% ± 0.4% 4821.1 ± 4.1

BoS
(0, 0) 0.0% ± 0.0%

4550.4 ± 11.2(1, 1) 0.0% ± 0.0%( 2
3 , 1

3

)
19.8% ± 1.7%

FALA LR−εP α = 0.01, β = 0.001

Nash eq. Convergence % T
PD (0, 0) 0.0% ± 0.0% 942.2 ± 19.7

MP
( 1

2 , 1
2

)
62.0% ± 2.3% 4813.0 ± 3.9

BoS
(0, 0) 47.5% ± 1.9%

652.6 ± 22.8(1, 1) 48.4% ± 1.9%( 2
3 , 1

3

)
0.0% ± 0.0%

FALA LR−εP α = 0.01, β = 0.0001

Nash eq. Convergence % T
PD (0, 0) 100.0% ± 0.0% 1301.9 ± 24.9

MP
( 1

2 , 1
2

)
7.1% ± 1.2% 4909.2 ± 2.5

BoS
(0, 0) 50.3% ± 2.2%

559.7 ± 15.4(1, 1) 49.7% ± 2.2%( 2
3 , 1

3

)
0.0% ± 0.0%

The LR−εP is a trade-off between the previous schemes. Depending on the
ratio of reward factor α and penalty factor β, convergence to pure equilib-
ria or near mixed ones is reached. For the parameter setting α = 0.01, β =
0.001 the learners do not ε-converge to the equilibrium in the PD, though the
T is comparable small to Tmax. Considering the corresponding field plot (see
Figure 3) it becomes clear that the team does converge but to a point near
(0.2, 0.2) which is outside the ε-convergence region.

It is worth noting that all results obtained for LR−I and LR−εP in Figure 3
and Table 1 can be reproduced using PLA with appropriate learning rates and
zero temperature for LR−I and small values of σ for LR−εP .

These findings are convincingly illustrated by the dynamics of the learning
algorithms in Figure 3. All field plots are rendered using small learning rates
and parameters Δt = 10, r = 100 as explained in Subsection 4.2. The plots
help to localize basins of attraction and show when these coincide with Nash
equilibria. We do not show the dynamics of the PD game.

Value-Iteration Learners. Table 2 summarizes the convergence behavior of
the studied Q-learning algorithms in simple games. Confidence intervals are com-
puted from 101 samples that average over 20 runs each. Q-values are initialized
to corresponding policies that follow a uniform distribution over the policy space.

Table 2 shows convergence of FMQ and lenient Q to the Nash equilibrium in
the PD game. Both learners converge to the Pareto optimal strategy (D, D) for
all runs that do not converge to the Nash equilibrium (FMQ 25.4% and lenient
Q-learner 14.6%). (D, D) is also the maximum social welfare profile.

The MP game yields one mixed NE where both players mix both actions
equally. Figure 4 visualizes the learning behavior of the three learners in the MP.

The Battle of Sexes game yields two pure and one mixed equilibrium.
Figure 5 shows the learning dynamics of the three learners in this game. All
learners converge to the pure Nash equilibrium under τ = 0.1, but not if the
temperature is increased to τ = 0.5.
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Fig. 3. Overview of directional field plots for FALA in MP (top) and BoS (bottom).
Columns correspond to different update schemes; left column: α = 0.01, β = 0 (LR−I),
center column: α = β = 0.01 (LR−P ) and right column: α = 0.01, β = 0.001 (LR−εP ).

Table 2. ε-near convergence with ε = 0.1 to equilibria in 2x2 games analyzed after
I = 2000 iterations. All learners use α = 0.01, τ = 0.1 for PD and BoS, τ = 0.5 for
PM. Equilibria are given as (π1(a11), π2(a21)). Indicated are 95% confidence intervals
for convergence percent and mean convergence time.

Q-learner
NE Convergence T̄

PD (0, 0) 99.4% ± 0.4% 1080.1 ± 8.0
MP

( 1
2 , 1

2

)
92.0% ± 1.3% 1862.9 ± 3.2

BoS
(0, 0) 50.0% ± 2.4%

129.2 ± 2.2(1, 1) 50.0% ± 2.4%( 2
3 , 1

3

)
0.0% ± 0.0%

FMQ-learner F = 3
NE Convergence T̄

PD (0, 0) 74.6% ± 1.9% 5.2 ± 0.6
MP

( 1
2 , 1

2

)
78.7% ± 1.8% 1893.3 ± 2.4

BoS
(0, 0) 50.6% ± 2.2%

2.5 ± 0.2(1, 1) 49.4% ± 2.2%( 2
3 , 1

3

)
0.0% ± 0.0%

Lenient Q-learner L = 3
NE Convergence T̄

PD (0, 0) 85.4% ± 1.4% 186.3 ± 6.9
MP ( 1

2 , 1
2 ) 81.9% ± 1.6% 1547.9 ± 8.8

BoS
(0, 0) 48.3% ± 2.1%

128.0 ± 4.7(1, 1) 51.7% ± 2.1%( 2
3 , 1

3

)
0.0% ± 0.0%

5.2 Penalty and Climbing Games

Policy-Iteration Learners. The results for the penalty and the climbing game
are summarized by Table 3. The LR−P has not converged to pure policies in these
games and is therefore omitted in the overview. Suboptimal convergence for all



Multi-agent Learning Dynamics: A Survey 49

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

π
1
(s

1
)

π
2
(s

1
)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

π
1
(s

1
)

π
2
(s

1
)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

π
1
(s

1
)

π
2
(s

1
)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

π
1
(s

1
)

π
2
(s

1
)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

π
1
(s

1
)

π
2
(s

1
)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

π
1
(s

1
)

π
2
(s

1
)

Fig. 4. Directional field plots (top row, I = 10) and trajectories (bottom row, I =
600) in the MP for the Q-learner (left), FMQ (F = 3, center) and lenient Q-learner
(L = 3, right) under α = 0.01 and τ = 1
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Fig. 5. Directional field plots (I = 20, top row) and example trajectories (bottom row)
for Q-learner (left), FMQ (F = 3, center) and lenient Q-learning (L = 3, right) in BoS
under τ = 0.5 and τ = 0.01
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Table 3. Learning performance in the penalty game (PG) and the climbing game
(CG). 95% confidence intervals for mean estimates of ε-convergence percentage with
ε = 0.1 to different joint actions and convergence time T .

FALA LR−I α = 0.01, β = 0

Joint action R Convergence % T

PG
(1, 1) 10 46.1% ± 2.3%

1176.7±(2, 2) 2 5.3% ± 1.1%
(3, 3) 10 47.6% ± 2.3% 36.7

CG

(1, 1) 11 36.9% ± 1.9%

2623.0±(2, 2) 7 15.7% ± 1.6%
(2, 3) 6 10.7% ± 1.3%
(3, 3) 5 4.8% ± 1.0% 58.3

FALA LR−I α = 0.01, β = 0.001

Joint action R Convergence % T

PG
(1, 1) 10 49.3% ± 2.2%

1247.5±(2, 2) 2 0.0% ± 0.0%
(3, 3) 10 49.9% ± 2.3% 37.1

CG

(1, 1) 11 34.5% ± 2.0%

3347.1±(2, 2) 7 0.3% ± 0.2%
(2, 3) 6 0.0% ± 0.0%
(3, 3) 5 0.0% ± 0.0% 73.8

FALA LR−I α = 0.01, β = 0.0001

Joint action R Convergence % T

PG
(1, 1) 10 49.0% ± 2.2%

1160.6±(2, 2) 2 3.2% ± 0.8%
(3, 3) 10 46.4% ± 2.1% 37.9

CG

(1, 1) 11 39.7% ± 2.3%

2735.8±(2, 2) 7 15.1% ± 1.5%
(2, 3) 6 6.2% ± 1.0%
(3, 3) 5 2.0% ± 0.7% 79.1

PLA α = 1, σ = 0.05, L = 1.8, K = 0.5, n = 1

Joint action R Convergence % T

PG
(1, 1) 10 41.5% ± 2.0%

4927.5±(2, 2) 2 0.5% ± 0.3%
(3, 3) 10 41.1% ± 2.1% 3.4

CG

(1, 1) 11 52.0% ± 1.9%

4943.8±(2, 2) 7 10.7% ± 1.2%
(2, 3) 6 6.5% ± 1.0%
(3, 3) 5 3.8% ± 0.8% 3.5

other learners are rare in the penalty game, whereas the climbing game is quite
challenging. For the first time parameterized learning automata significantly
outperform standard FALA. The bound L is chosen small to keep exploration
on a constant level whereas the learning rate is set to a high value to approach
decisively high payoff situations.

The simplex plots in Figure 6 show example runs for FALA and PLA under
two initial conditions. The first condition studies the learning dynamics starting
from a strategy profile near ((0, 0, 1) , (0, 0, 1)) corresponding to common payoff
5. From this point the learners virtually have to climb up in order to reach the
optimal solution, which is in this case a Pareto optimal Nash equilibrium and
a maximum social welfare profile. The second initial condition is near another
Nash equilibrium yielding a payoff equal to 7. This point challenges the learners
as well; in order to improve the common payoff both agents simultaneously have
to switch to action 1. If only one agent switches the reward reduces to 6, 0 or −10.

Value-Iteration Learners. The results for regular Q-learning and FMQ learn-
ing from [4] as well as the results for lenient Q-learning from [8] are confirmed.
Table 4 compares the algorithms’ performances in both games. All results of this
subsection refer to the games with penalties c = p = 10. Confidence intervals
are calculated from 101 samples that average over 20 runs.

Experiments in penalty games make use of an iteration dependent tempera-
ture and a learning rate of α = 0.9. The experiments use a decay factor s = 0.006
and an initial temperature τ0 = 500.

τ t ← (τ0 − 1) · e−s·t + 1 (11)
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Fig. 6. Simplex plots for FALA (top) and PLA (bottom) in the climbing game shown
with two initial conditions each. Convergence after t = 200 epochs with α = 0.1,
β = 0.01 (LR−εP ) for FALA and α = 0.3, σ = 0.2, L = 4, K = n = 1 for PLA.

Table 4. Average ε-near convergence over 2020 runs (ε = 0.1) to the maximum social
welfare policy for all learners in the CG and PG with penalties c = p = 10. All learners
under α = 0.9 and decreasing τ , F = 10 and L = 10 for CG and L = 5 for PG.

Learner CG PG

Q 21.8% 79.6%
FMQ 98.9% 100.0%

Lenient Q 99.9% 99.3%

Table 5 lists the confidence intervals of ε-near convergence with ε = 0.1 to
pure strategy profiles in percentages.

The strategy profile π∗ corresponding to (T, L) is a Pareto efficient Nash
equilibrium. Furthermore, it is the maximal social welfare profile and as such the
desired point of convergence for cooperative players. It also yields the highest
individual payoff, so it is as well the best strategy profile for independent learners.

The climbing game cannot be solved satisfactorily by the regular Q-learner.
It can be observed, that Q-learning converges to π∗ in about 21.8%. Both adap-
tations outperform this by far, FMQ with F = 10 achieves 98.9% while lenient
Q-learning with L = 10 achieves 99.9%.

Example trajectories of the FMQ-learner are visualized in Figure 7.

5.3 Scaling: Dispersion and Guessing Games

Policy-Iteration Learners. The following scaling experiments are conducted
to give an intuition about how well learning automata scale with respect to the
number of agents in coordination and anti-coordination games. Therefore the
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Table 5. 95% Confidence intervals for ε-near convergence with ε = 0.1 in CG to pure
strategy profiles in percent. Analyzed after I = 2000 iterations with α = 0.9 and
decreasing τ . Q-learner (top, 43.1% not converged to any pure strategy profile), FMQ-
learner (middle, F = 10, 0.1% n.c.) and lenient Q-learner (bottom, L = 10, 0.1% n.c.).
Player 1 chooses T, M or B and player two chooses L, C or R. The maximal social
welfare profile is (T, L).

Q-learner
L C R

T 21.8 ± 1.9 0 ± 0 0 ± 0
M 0 ± 0 0.2 ± 0.2 6.0 ± 1.1
B 0 ± 0 0 ± 0 28.9 ± 1.9

FMQ-learner F = 10
L C R

T 98.9 ± 0.4 0 ± 0 0 ± 0
M 0 ± 0 0.6 ± 0.3 0.1 ± 0.1
B 0 ± 0 0 ± 0 0.3 ± 0.3

Lenient Q-learner L = 10
L C R

T 99.9 ± 0.2 0 ± 0 0 ± 0
M 0 ± 0 0 ± 0 0 ± 0
B 0 ± 0 0 ± 0 0 ± 0

1

12 2

(1, 0, 0) (0, 1, 0)

(0, 0, 1)

(1, 0, 0) (0, 1, 0)

(0, 0, 1)

Player 1 Player 2

Fig. 7. Two example trajectories for both FMQ-learners with F = 3 in the CG show
convergence to the global optimum (T, L) starting close to (B, L) in (1) and (M, C) in
(2). Initial high exploration causes large policy shifts while eventual exploitation allows
convergence.

emphasis lies not on statistical sampling but rather on an intuitive understanding
of example runs.

Figure 8 shows the cumulative reward plot for FALA using the LR−εP update
scheme in the dispersion game as well as PLA in the guessing game. In both
cases the learners converge to a maximum social welfare profile. Note that the
dispersion game has n! distinct maximum social welfare profiles whereas the
guessing game has only n. Convergence time T (see (10)) for the two example
runs are T ≈ 600 and T ≈ 6000 respectively.

For the dispersion game the same facts apply. The payoff function (8) sharply
rewards only the case in which an agent has exclusively selected an action. Again
the agent has to be decisive in order to learn this action quickly. Furthermore
randomness is required to escape from a zero reward situation where no exclusive
action slot has been found yet.
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Fig. 8. Cumulative reward plot for FALA in the dispersion game (left) and for PLA
in the guessing game (right) with both 100 agents. Learning parameters are α = 0.1,
β = 0.01 (LR−εP ) and α = 1, σ = 0.005, L = 10, K = n = 1 for FALA and PLA
respectively.
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Fig. 9. Social welfare percentage over iterations in the GG for different learners (n =
100, α = 1 and τ = 0.01; averaged over 10 runs). All learners except the lenient
Q-learner converged to the suboptimal solution with two equally sized groups once.

Value-Iteration Learners. The GG with n players has n maximal social wel-
fare profiles while the DG has n! maximal social welfare profiles. As n! is much
larger than n the DG can be solved much faster than the GG.

In the GG all agents try to group as quickly as possible. Convergence to sub-
optimal solutions, e.g. two groups with equally many agents, are not uncommon.
Figure 9 shows the speed of convergence for different learners in the guessing
game. An increase of the FMQ persistence F shifts the grouping process to an
earlier iteration. However, there is a point of diminishing returns. Furthermore,
increasing F does not seem to increase the qualitative convergence while lenient
Q-learning slows down the learning process but converges to a maximal social
welfare equilibrium.
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Fig. 10. Social welfare percentage over iterations in the DG (averages of 10 runs).
Q-learner under α = 0.1, different action selection methods (left, n = 1000), different
numbers of agents: Q-learner with ε-greedy (center, ε = 0) and FMQ with Boltzmann
distribution (right, F = 10, τ = 0.01).

Figure 10 (left) visualizes the impact of the exploration method. Furthermore,
scalability of the Q-learner with an ε-greedy action selection is compared to the
FMQ heuristic with a Boltzmann action selection. An equilibrium can be found
within reasonable numbers of iterations using the ε-greedy action selection. This
action selection method actually allows to scale up to thousand agents without
significant deterioration of the performance over the iterations, the lines for
n = 100 and n = 1000 almost coincide in the corresponding plot. FMQ also
scales well but has a stronger dependency of the maximal convergence on the
number of agents. However, a performance of above 90% is achieved within the
first 50 iterations even for n = 1000.

6 Discussion and Future Work

The obtained results demonstrate the learning performance of all algorithms
considered. Graphical tools help to understand the learning dynamics of the
algorithms. Adequate parameter settings for convergence to equilibria have been
shown. Overall, it can be observed that all results are quite sensitive to the
parameter settings.

In general, low temperatures and accompanying high exploitation lead to con-
vergence to pure strategy profiles while higher temperatures that impose more
exploration allow convergence to mixed equilibria. Furthermore, higher conver-
gence to mixed equilibria is achieved by smaller learning rates. In contrast, high
learning rates can be applied to overcome penalties in cooperative coordination
games. FMQ-learning with high persistence F drives the learning process to
pure strategy profiles within few iterations if the temperature is low. Lenient
Q-learning finds mixed solutions but requires many iterations to converge. Con-
trary, FALA are more robust with respect to parameter changes. Scaling down
the learning rate generally results in better convergence performance although
increasing the required number of iterations. The LR−εP scheme gives a good
trade-off between the two extremes LR−I and LR−P . It unites the ability to find
mixed policies with high percentage of global convergence. This result is also
confirmed by the various visualizations used in this work.
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An second observation from our research is that formal criteria may fail under
practical conditions. Thus empirical results as conducted in this work are essen-
tial. The PLA superimpose noise on the learning update in order to overcome
convergence to suboptimal solutions and for this theoretical guarantees can be
found [5]. However, for a challenging task, such as the climbing game, we could
not reach it in an experimental setting. Although this may be caused by the
limited number of epochs, the central issue is clearly the high dimensional pa-
rameter space. The PLA update rule comprises five parameters that all have to
be tuned to fit the environment.

Scaling experiments in the Dispersion Game reveal high performance of the
Q-learner with an ε-greedy action selection and FMQ with a Boltzmann action
selection under low temperatures. High exploitation imposed by these action
selection methods is required to facilitate a quick dispersion over the actions. For
the same reason, a high learning rate is needed for the LA algorithms that also
indicate good scaling potential. The Guessing Game requires quick grouping but
also more exploration to avoid suboptimal solutions with several, approximately
equally sized groups. This implies that a trade-off needs to be chosen between
fast convergence and optimal convergence. However, it should be noted that this
work presents only example runs for the two coordination games and therefore
cannot give any general conclusion on scaling. In future investigations we would
like to test the scalability of FALA and PLA more extensively.

7 Conclusion

This research has experimentally studied the learning performance of state-of-
the-art value-based and policy-based iterators in multi-agent games. In particular
Q-learning, Lenient Q-learning, FMQ, FALA, and PLA are surveyed. A variety
of competitive and cooperative games have served as a testbed to analyze their
learning performance. Furthermore, various visualization methods are used and
interconnected to reveal the complex learning dynamics of LA in games.

From the performances of independent reinforcement learners we may conclude
that the learners are highly dependent on the correct parameter tuning. For the
value-based methods, high temperatures enhance exploration and enable the con-
vergence to mixed equilibria, while small temperatures enforce exploitation and
increase the probability of convergence to pure strategy profiles. Stability of the
learning process can be supported by small learning rates and a temperature that
decreases over time. In the context of penalty games, the adaptations FMQ and le-
nientQ-learning outperform the regularQ-learner significantly and converge to the
global optimum.For thepolicy-basedmethods, results show that theLR−εP scheme
maintains a good trade-off between convergence performance and robustsness.
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Abstract. Recent advances in peer to peer (P2P) search algorithms have pre-
sented viable structured and unstructured approaches for full-text search. We
posit that these existing approaches are each best suited for different types of
queries. We present PHIRST, the first system to facilitate effective full-text search
within P2P networks. PHIRST works by effectively leveraging between the rela-
tive strengths of these approaches. Similar to structured approaches, agents first
publish terms within their stored documents. However, frequent terms are quickly
identified and not exhaustively stored, resulting in a significantly reduction in
the system’s storage requirements. During query lookup, agents use unstructured
searches to compensate for the lack of fully published terms. Additionally, they
explicitly weigh between the costs involved with structured and unstructured ap-
proaches, allowing for a significant reduction in query costs. We evaluated the
effectiveness of our approach using both real-world and artificial queries. We
found that in most situations our approach yields near perfect recall. We discuss
the limitations of our system, as well as possible compensatory strategies.

1 Introduction

Full-text searching, or the ability to locate documents based on terms found within
documents, is arguably one of the most essential tasks in any distributed network [5].
Search engines such as Google [16] have demonstrated the effectiveness of centralized
search. However, classic solutions also demonstrate the challenge of large-scale search.
For example, a search on Google for the word, “a”, currently returns over 10 billion
pages [16].

In this paper, we address the challenge of implementing full-text searches within
peer-to-peer (P2P) networks. Our motivation is to demonstrate the feasibility of im-
plementing a P2P network comprised of resource limited machines, such as handheld
devices. Thus, any solution must be keenly aware of the following constraints: Cost -
Many networks, such as cellular networks, have cost associated with each message. One
key goal of the system is to keep communication costs low. Hardware limitations - we
assume each device is limited in the amount of storage it has. Any proposed solution
must take this limitation into consideration. Distributed - any proposed solution must
be distributed equitably. As we assume a network of agents with similar hardware com-
position, no one agent can be required to have storage or communication requirements
grossly beyond that of other machines.

M. Klusch et al. (Eds.): CIA 2007, LNAI 4676, pp. 57–71, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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To date, three basic approaches have been proposed for full-text searches within P2P
networks [15]. Structured approaches are based on classic Information Retrieval theory
[2], and use inverted lists to quickly find query terms. However, they rely on expensive
publishing and query lookup stages. A second approach creates super-peers, or nodes
that are able to locally interact with a large subset of agents. While this approach does
significantly reduce publishing costs, it violates the distributed requirement in our sys-
tem. Finally, unstructured approaches involve no publishing, but are not successful in
locating hard to find items [15].

In this paper we present PHIRST, a system for Peer-to-Peer Hybrid Restricted
Search for Text. PHIRST is a hybrid approach that leverages the advantages of struc-
tured and unstructured search algorithms. Similar to structured approaches, agents pub-
lish terms within their documents as they join or add documents to the P2P network.
This information is necessary to successfully locate hard-to-find items. Unstructured
search is used to effectively find common terms without expensive lookups of inverted
lists. Another key feature in PHIRST is its ability to restrict the number of peer ad-
dresses stored within inverted lists. Not only does this insure that the hardware limi-
tations of agent nodes are not exceeded, it also better distributes the system’s storage.
We also present a full-text query algorithm where nodes explicitly reason based on es-
timated search costs about which search approach to use, reducing query costs as well.

To validate the effectiveness of PHIRST, we used a real web corpus [11]. We found
that the hybrid approach we present used significantly less storage to store all in-
verted lists than previous approaches where all terms were published [5,15]. Next, we
used artificial and real queries to evaluate the system. The artificial queries demon-
strated the strengths and limitations of our system. The unstructured component of
PHIRST was extremely successful in finding frequent terms, and the structured com-
ponent was equally successful in finding any term pairs where at least one term was
not frequent. In both of these cases, the recall of our system was always 100%. The
system’s performance did have less than 100% recall when terms of 2 or more words
of medium frequency were constructed. We present several compensatory strategies
for addressing this limitation in the system. Finally, to evaluate the practical impact of
this potential drawback, we studied real queries taken from IMDB’s movie database
(www.imdb.com) and found PHIRST was in fact effective in answering these queries.

2 Related Work

Classical Information Retrieval (IR) systems use a centralized server to store inverted
lists of every document within the system [2]. These lists are “inverted” in that the
server stores lists of the location for each term, and not the term itself. Inverted lists can
store other information, such as the term’s location in the document, the number of oc-
currences for that term, etc. Search results are then returned by intersecting the inverted
lists for all terms in the query. These results are then typically ranked using heuristics
such as TF/IDF [3]. For example, if searching for the terms, “family movie”, one would
first lookup the inverted list of “family”, intersect that file with that of “movie”, and
then order the results before sending them back to the user.
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The goal of a P2P system is to provide results of equal quality without needing a
centralized server with the inverted lists. Potentially, the distributed solution may have
advantages such as no single point of failure, lower maintenance costs, and more up-to-
date data. Toward this goal a variety of distributed mechanisms have been proposed.

Structures such as Distributed Hash Tables (DHTs) are one way to distribute the
process of storing inverted lists. Many DHT frameworks have been presented, such as
Bamboo [13], Chord [9], and Tapesty [14]. A DHT could then be used for IR in two
stages: publishing and query lookups. As agents join the network, they need to update
the system’s inverted lists with their terms. This is done through every agent sending a
“publish” message to the DHT with the unique terms it contains. In DHT systems, these
messages are routed to the peer with the inverted list in LogN hops, with N being the
total number of agents in the network [9,13]. During query lookups, an agent must first
identify which peer(s) store the inverted lists for the desired term(s). Again, this lookup
can be done in LogN hops [9,13]. Then, the agent must retrieve these lists and intersect
them to find which peer(s) contain all of the terms.

Li et al. [5] present formidable challenges in implementing both the publishing and
lookup phases of this approach in large distributed networks. Assuming a word exists in
all documents, its inverted list will contain N entries. Thus, the storage requirements for
these inverted lists are likely to exceed the hardware abilities of agents in these systems.
Furthermore, sending large lists will incur a large communication cost, even potentially
exceeding the bandwidth limitation of the network. Because of these difficulties, they
concluded that naive implementations of P2P full-text search are simply not feasible.

Several recent developments have been suggested to make a full text distributed sys-
tem viable. One suggestion is to process the structured search starting with the node
storing the term with the fewest peer entries in its inverted list. That node then forwards
its list to the node with the next longest list, where the terms are locally intersected
before being forwarded. This approach can offer significant cost savings by insuring
that no agent can send an inverted list longer than the one stored by the least common
term [15]. Reynolds and Vahdat also suggest encoding inverted lists as Bloom filters to
reduce their size [12]. These filters can also be cached to reduce the frequency these
files must be sent. Finally, they suggest using incremental results, where only a partial
set of results are returned allowing search operations to halt after finding a fixed number
of results, making search costs proportional to the number of documents returned.

Unstructured search protocols provide an alternative that is used within Gnutella
and other P2P networks [1]. These protocols have no publishing requirements. To find
a document, the searching query sends its query around the network, until a prede-
fined number of results have been found, or a predefined TTL (Time To Live) has been
reached. Assuming the search terms are in fact popular, this approach will be successful
after searching a fraction of the network. Various optimizations have again been sug-
gested within this approach. It has been found that random walks are more effective
than simply flooding the network with the query [8]. Furthermore, one can initiate mul-
tiple simultaneous “walks” to find items more quickly, or use state-keeping to prevent
“walkers” from revisiting the same nodes [8]. Despite these optimizations, unstructured
searches have been found to be unsuccessful in finding rare terms [1].
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In super-peer networks, certain agents store an inverted list for all peer documents
for which it assumes responsibility. Instead of publishing copies over a distributed DHT
network, agents send copies of their lists to their assigned super-peers. As agents are
assumed to have direct communication with its super-peers, only one hop is needed to
publish a message, instead of the LogN paths within DHT systems. During query pro-
cessing, an agent forwards its request to its super-peer, who then takes the intersection
between the inverted lists of all super-peers. However, this approach requires that cer-
tain nodes have higher bandwidth and storage capabilities [15] – something we could
not assume within our system.

Hybrid architectures involve using elements from multiple approaches. Loo et al.
[6,7] propose a hybrid approach where a DHT is used within super-peers to locate
infrequent files, and unstructured query flooding is used to find common files. This
approach is most similar to ours in that we also use a DHT to find infrequent terms and
unstructured search for frequent terms. However, several key differences exist. First,
their approach was a hybrid approach between Gnutella ultrapeers (super-peers) and
unstructured flooding. We present a hybrid approach that can generically use any form
of structured or unstructured approaches, such as random walks instead of unstructured
flooding or global DHT’s instead of a super-peer system. Second, in determining if
a file was common or not, they needed to rely on locally available information from
super-peers, and used a variety of heuristics to attempt to extrapolate this information
for the global network [6]. As we build PHIRST based on a global DHT, we are able to
identify rare-items based on complete information. Possibly most significantly, Loo et
al. [7] only published the files’ names, and not their content. As they considered full text
search to be infeasible for the reasons previously presented [5], their system was limited
to performing searches based on the data’s file name, and not the text within that data.
As our next section details, we present a publishing algorithm that actually becomes
cheaper to use as subsequent nodes are added. Thus, PHIRST is the first system to
facilitate effective full-text search even within large P2P networks.

3 PHIRST Overview

First, we present an overview of the PHIRST system and how its publishing and query
algorithms interconnect. While this section describes how information is published
within the Chord DHT [9], PHIRST’s publishing algorithm is generally presented in
section 4 so it may be used within other DHT’s as well. Similarly, section 5 presents a
query algorithm (algorithm 2) which generally selects the best search algorithm based
on the estimated cost of performing the search algorithms at the user’s disposal. The
selection algorithm is generically written such that new search algorithms can be in-
troduced without affecting the algorithm’s structure. Only later, in algorithm 3 do we
present how these costs are calculated specific to the DHT and unstructured search al-
gorithms we used.

In order to facilitate structured full-text search for even infrequent words, search
keys must be stored within structured network overlays such as Chord. Briefly, Chord
uses consistent hash functions to create an m-bit identifier. These identifiers form a
circle modulo 2m. The node responsible for storing any given key is found by using a
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preselected hash function, such as SHA-1, to compute the hash value of that key. Chord
then routes the key to the agent whose Chord identifier is equal to or is the successor
(the next existent node) of that value [9]. For example, Figure 1 is a simple example
with an identifier space of 8, and 3 nodes. Assuming the key hashes to a value of 6, that
key needs to be stored on the next node within the circular space, or node 0. Assuming
the key hashes to 1, it is stored on node 1.

Fig. 1. An example of a Chord ring with m=3. Figure based on Chord paper [9].

The hashing quality within the Chord algorithm has several important qualities. First,
it creates important performance guarantees, such as LogN average search length. Fur-
thermore, nodes can be easily added (joins) or removed (disjoins) by inserting them
into the circular space, and re-indexing only a fraction of the pointers within the sys-
tem. Finally, the persistent hashing function used by Chord has the quality that no agent
will get more than O(LogN) keys than the average [9]. We refer the reader to the Chord
paper for further details [9].

However, the DHT’s performance guarantees only balancing the number of keys
stored per node, but not the number of addresses stored in the inverted lists for each key.
For example, Table 1, gives an example of the inverted lists for five words. Common
words, such as “a” and “the” within the table, will produce much long inverted lists,
than uncommon words such as “aardvark” and “zygote”. Due to space restrictions we
will only present up to the first 7 inverted entries for each word, out of a potential
length of N rows. Balancing guarantees only apply to the number of words (out of N),
but not the size of each inverted list (the length of that row). Because word distribution
within documents typically follow Zipf’s law, some of the words within documents
occur very frequently while many others occur rarely [4]. In an extreme example, one
node may be responsible for storing extremely common words such as “the” and “a”,
while other nodes are assigned only rare terms. Thus, one key contribution of this paper
is a publishing algorithm that can equitable distribute these entries by allowing agents
to cap the number of inverted list entries they will store.
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Table 1. Example of several words (keys within the DHT), and their inverted lists

Word (key) Address1 Address2 Address3 Address4 Address5 Address6 Address7
a 111-1111 111-1112 111-1113 111-1114 111-1115 111-1116 111-1117

aardvark 111-4323
the 111-1111 111-1112 111-1113 111-1114 111-1115 111-1116 111-1117
zoo 123-4214 123-9714 333-9714

zygote 548-4342

Once the publishing stage has been begun, a distributed database exists to search the
network for full-text queries. We define the search task as finding a number of results,
T, that match all query terms within the documents’ text. Capping a query at T results is
needed within unstructured searches, as there is no global mechanism for knowing the
total number of matches [15]. Finding only a limited number of results has also been
previously suggested within structured searches to reduce communication costs [12].
The second key contribution of this paper is a novel querying algorithm that leverages
between structured and unstructured searches to effectively find matches despite the
limit in the amount of data each peer stores.

4 The Publishing Algorithm

Every time an agent joins the network, or an existing agent wishes to add a new docu-
ment, it must publish the words in its document(s) as described in Algorithm 4. First,
the agent generates a set of max terms it wishes to add (line 1). Similar to other studies
[15] we assume that the agent preprocesses its document to remove extraneous informa-
tion such as HTML tags and duplicate instances of terms. Stemming, or reducing each
word to its root form, is also done as it has been observed to improve the accuracy of the
search [15]. Furthermore, as we detail in the Experimental Results section (section 6),
stemming also further reduces the amount of information needed to be published and
stored. The publishing agent, IDSource, then sends every unique term, Termi, to be
stored in an inverted list on peer IDDEST (lines 3-4). The keys being stored are these
words that are sent, with each word either creating a new inverted list, or being added
to an existing file. In addition to these terms, the agent also updates a counter of the
total number of documents contained between all agents within the system (line 4). For
simplicity, let us assume this global counter is stored on the first agent, ID1. We will
see that this value is needed by the query algorithm described below.

PHIRST’s publishing algorithm enforces an equitable term distribution by only stor-
ing inverted lists until a length of d. For every term node, Termi out of a total of
received terms, IDDEST is requested to store it must decide if it should fulfill that
request. As lines 6 and 7 of the algorithm detail, assuming agent IDDEST currently
has fewer than d entries for Termi, it adds the value IDSource to its list (or creates an
inverted list if this is the first occurrence). Either way, nodes log that a certain number
of COUNTER instances of that term exist (lines 8). This information is used by the
query algorithm to determine the global frequency of this term. Because we limit each
node to only storing d out of a possible N terms, the storage requirements of the system
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Algorithm 1. Publishing Algorithm(Document Doc)
1: Terms ⇐ Preprocessed words in Doc
2: for i = Term1 to Termmax do
3: PUBLISH(Termi, IDSource, IDDEST )
4: PUBLISH(DOC-COUNTER+1, ID1)
5: for i = Term1 to Termreceived do
6: if SIZE(IDDEST , Termi) < d then
7: ADD-Term(Termi, IDSource)
8: UPDATE-Counter(Termi, COUNTER)

are reduced to d*N from N*N . As we set d << N, we found this savings to be quite
significant.

Theoretically, additional information about each term may be published, such as
the position that term occurred or how many instances of that term existed within the
document and aggregate this and similar information into a rating for the term it is about
to publish. This information may be especially important when more than d instances of
that term exist. The receiving agent, IDDEST , could then decide which d term instances
to store by continuously sorting scores of the terms it has, and maintaining only those
with the top d highest rating. In a similar vein, if more than d instances of Termi exist,
it may be advantageous to store the d most recent documents, especially if turnover
exists within nodes.

The performance guarantees of DHT’s such as Chord insure the publishing algorithm
runs with fairly low cost. Because each node, IDSource, needs LogN hops to find the
agent, IDDEST , responsible for storing that term’s inverted list, the total number of
messages needed to publish a document is of order O(max ∗ logN) where max is the
number of terms in that document. Note that the publishing algorithm described here
sends all terms, even those which in fact do not need publishing because they already
contained d terms.

5 The Search Algorithm

The search algorithm is called once any agent wishes to conduct a distributed full-text
search. As Algorithm 2 describes, this process operates in two stages. First, we re-
trieve the global frequencies of all search terms (line 1) and sort all terms from least to
most frequent (line 2). This value can be calculated through looking up the frequency
of that term (COUNTER), and dividing this number by the total number of docu-
ments (DOC − COUNTER). Finding these values requires one lookup of the value
of DOC − COUNTER (assumed to be stored on agent ID1 in the publishing algo-
rithm), as well as a lookup for the frequencies of each term from the agent storing term
Termi. Referring back to algorithm 4 note that the peer storing Termi has a counter
with this value even if more than d instances of this term occurred.

Once the frequency of all terms are known, the algorithm then reasons about which
algorithm to select. This process iteratively calls the tradeoff function which we de-
fine below (algorithm 3). If unstructured search is deemed less costly, all terms are
immediately searched for simultaneously (lines 7–10). This type of search can either
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Algorithm 2. Hybrid Search Algorithm(String Query1 . . . Querymax)
1: space ⇐ ∞ {Used for initialization to all P2P nodes}
2: Retrieve Frequencies of Query1 . . . Querymax

3: Term ⇐ Sorted Query Terms Least to most Frequent {Term is an array}
4: for i = Term1 to Termmax do
5: Frequency ⇐ Product of Frequencies(Termi . . . T ermmax)
6: Tradeoff ⇐ Calculate-Tradeoff(space, Termi . . . T ermmax, Frequency)
7: if Tradeoff > 0 then
8: while Found < T AND NOT Exhausted(space) do
9: Search-Unstruct(space, Termi . . . T ermmax)

10: Break
11: else
12: space ⇐ List(Termi) ∩ space
13: if i=Termmax then
14: if space > T then
15: return first T list entries
16: else
17: return all list entries

terminate because T matches have been found or the search space has been exhaus-
tively searched. If structured search is deemed less costly, that term’s inverted list is
requested, and the search space is intersected with that of the new term (line 12). As-
suming we have reached the last term (lines 12-17) we return the first T matches found
after all terms were successfully intersected. Once the structured search identifies that
fewer matches than T matches were found (line 15) it returns all list entries (line 17).

This algorithm has several key features. First, the search process is begun starting
with the least frequent term. This is done following previous approaches [15] to save
on communication costs. We denote the inverted list length of the least common search
term as length(Term1) where length is a function that returns the size of an inverted
list and Term1 is the first term after the terms are sorted based on frequency. Each
successive peer receives the previously intersected list, and locally intersects this infor-
mation with that of its term (line 13). The result of this process is that intersected lists
become progressively smaller (or at worse case stay the same size) with the maximum
information any peer can send being bounded by length(Term1). Second, one might
question why agents do not immediately return the entire inverted list of the terms they
store, instead of first returning the term’s frequency. This is done because the informa-
tion gained from this frequency information, such as bounding search costs to the size
of the least frequent term, far outweighs the search costs involved with processing the
query in two stages. Finally, as the search goal is to return T results, the last node within
a structured search does not need to return its entire inverted list. Instead, it only needs
to send the first T results (or failure or NULL as in line 17 if under T results exist).
Because of this, the maximal search cost will be of order (max-1) * length(Term1) +
T where max is the number of terms in the search query.

Arguably the most important feature of this algorithm is its ability to switch be-
tween using structured and unstructured searches midway through processing the query
terms. Even if structured search is used for the first term(s), the algorithm iteratively
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calls the tradeoff algorithm (algorithm 3) after each term. Once the algorithm notes that
unstructured search is cheaper, it immediately uses this approach to find all remaining
terms. For example, assume a multi-word query contains several common and uncom-
mon words. The algorithm may first take the intersection of the inverted lists for all
infrequent words to create a list f . The algorithm may then switch to use unstructured
search within f to find the remaining common words.

Similarly, note that this approach lacks a TTL (Time To Live) for its unstructured
search. We assume unstructured searches are to be used only when the expected cost
of using an unstructured search is low (see algorithm 3 below). We expect this to occur
when the unstructured search will terminate quickly, such as when: (i) the search terms
are very common from the onset or (ii) unstructured search is used to find the remaining
common terms after structured search generated an inverted list of f terms.

We now turn to the search specific mechanism needed to identify which search types
will have the higher expected cost. This tradeoff depends on T, or the number of search
terms wanted, the costs specific to using the different types of searches, and d or the
maximal number of inverted list entries published for each term. Algorithm 3 details
this process as follows:

Algorithm 3. Calculate-Tradeoff(Space, Termi . . . T ermnum, Frequency)
1: Expect-Visit ⇐ T / Frequency {Number of nodes Unstructured search will likely visit}
2: COSTS ⇐ CU *(Expect-Visit) - CS *(Sending(query-terms))
3: if COSTS > 0 then
4: RETURN 1 {pure unstructured search}
5: else if COSTS < 0 AND Size(Termi) < d then
6: RETURN -1 {pure structured search for this term}
7: else
8: space ⇐ List(Termi) ∩ space
9: RETURN 1 {Use unstructured afterwards because of lack of more values}

First, the algorithm calculates the expected cost of conducting an unstructured
search. The expected number of documents that will be visited in an unstructured search
before finding T results is: T / term-frequency (line 1). For example, if we wish to find
20 results, and the frequency of the term(s) is 0.5, this search is expected to visit 40
documents before terminating. We can compare this value to that of using a structured
search, whose cost is also known, and is proportional to the length of the inverted lists
that need to be sent. We assume there is some cost, CU associated with conducting an
unstructured search on one peer. We also assume that some cost CS is associated with
sending one entry from the inverted list (line 2). Because the cost of unstructured search
is CU * T / Frequency, and the cost of structured search is bounded by CS * ((max-1)
* length(Termi) + T), the algorithm can compare the expected cost of both searches
before deciding how to proceed (lines 3-6).

For many cases, a clear choice exists for which search algorithm to use. Let us
assume that CU = CS = 1, and assume that all documents have been indexed, or
d=DOC −COUNTER. When searching for common words, the cost of using the un-
structured search is likely to be approximately T. Processing the same query with struc-
tured search will be approximately the number of documents (DOC − COUNTER)
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or a number much larger than T. Conversely, for infrequent terms, say with one term
occurring only T times, the cost of an unstructured search will be DOC−COUNTER
or a number much larger than T, while the structured search will only cost a maximum
of T * max-1 + T. Finally, structured search is also the clear choice for queries involv-
ing one term. Note that in these cases, no inverted lists need to be sent (max-1=0), and
only the first T terms are returned. The cost of using unstructured search will be greater
than this amount (except for the trivial case where the frequency of the term is 1.0).

There are two reasons why the most challenging cases involve queries with terms
of medium frequency. In these cases, the cost of using both the structured and unstruc-
tured searches are likely to be similar. However, the expected frequency of terms is not
necessarily equal to their actual frequency. For example, while the words “new” and
“york” may be relatively rare, the frequency of “new york” is likely to be higher than
the product of both individual terms. As a result, the PHIRST approach is most likely
to deviate from the optimal choice in these types of cases.

A second challenge results from the fact that we only published up to d instances
of a given term. In cases where inverted lists were published without limitation, e.g.
d equals N (DOC − COUNTER), the second algorithm contains only two possible
outcomes – either the expected cost is larger for using structured search, or it is not.
However, our assumption is that hardware limitations prevent storing this number of
terms, and d must be set much lower than N. As a result, situations will arise where we
would like to use inverted lists, but as these files have incomplete indices, this approach
will fail in finding results in position d+ε. While other options may be possible, in these
cases our algorithm (in lines 7-9) takes the d terms from the inverted lists, and conducts
an unstructured search for all remaining terms. In general, we found this approach will
be effective so long as the T < d, or the relationship, T < d << N exists. We further
explore the impact of this limitation in the next section.

6 Experimental Results

In this section we present experimental results used to validate the effectiveness of
the algorithms in this paper. As our research goal was to check if PHIRST is appro-
priate for medium sized newsgroups, we chose a corpus of 2000 real movie websites
to conduct our experiments [11]. The results from the publishing experiments demon-
strate that PHIRST actually becomes more feasible as more documents and agents are
added to the network. We also created two types of query experiments. In one group
we created artificial queries based on the frequency of words. This experiment demon-
strated the theoretical strengths and weaknesses of PHIRST. We also studied real movie
queries based on the Internet Movie Database (www.imdb.com). These experiments
demonstrated that any weakness in PHIRST is likely to be insignificant in handling real
queries.

6.1 Publishing Experiments

Recall that the publishing algorithm is based on storing a maximum of d entries in
a given term’s inverted list. We simulated the publishing process to study how this
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parameter affected the average number of stored inverted entries with and without term
stemming. Figure 2 displays the average number of inverted terms (Y-axis) in groups of
50, 250, 500, 1000 and 2000 agents (X-axis). We assumed that every agent published
1 document taken from the movie corpus [11]. In the left graph, we used the Paice
stemming algorithm [10] on each term before storing it. The right graph published each
term without stemming. In both graphs we also ran the publishing algorithm with d=25
and 75.

Fig. 2. Comparing publishing requirements of full publishing versus publishing limited to d=75

Several interesting results can be seen from this graph. First, on average stemming
saved approximately 50 words per document. This is because stemming lumps similar
words, reducing the number of unique words occurring per document. Second, note the
publishing algorithm has progressively larger storage savings as the number of nodes
grows. Assuming d=N, all terms will be stored, and no publishing gain will be realized
by using the PHIRST approach. However, assuming d is kept fixed, the more documents
that are added, the gap between d and N grows. This results in progressively more
words exceeding the d threshold, and no longer needing to be stored. As a result, the
publishing algorithm becomes more scalable the more nodes that are added, making
full text search feasible even in very large P2P networks.

Table 2. Average number of inverted list entries if 1 document published for every 2 agents.

Number of Nodes 50 250 500 1000 2000
Fully Published 150.43 151.51 153.13 153.1265 157.8343

d=25 138.84 93.106 72.17 53.97 40.605
d=75 150.43 127.14 105.72 84.38 67.035

Finally, in this experiment we assumed each node had 1 document to publish. We
also ran this approach with more dense (e.g. 2 documents per node) or more sparse
(e.g. 1 document every 2 nodes) network assumptions. As one would expect, the number
of terms each node stores is proportional to the total number of nodes. For example,
Table 2 shows the sparse assumption of 1 document published for every two nodes.
These values are identical to those in Figure 2 * 0.5.
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Fig. 3. Distribution of words by rank order within a movie corpus

We also found a Zipfian distribution of terms with a long tail of infrequent terms (see
Figure 3). Similar distributions have been found in P2P systems for items such as file
frequency [6,7] and term frequency [4]. The storage saving results we found were from
words with frequencies greater than d, or those terms towards the head of this distribution.

6.2 Query Experiments

We first conducted query experiments based on artificial queries chosen based on term
frequency. Figure 3 displays the rank order of all words within the 2000 word corpus.
We considered words of high frequency if they appeared in 30% or more of the docu-
ments. There were 200 words in this category. Note that high frequency words are not
just “stop” words like “the”, “and”, or “a”, but can be specific to the corpus. For exam-
ple, these words included movie specific terms such as “character”, “play”, and “plot”.
At the other extreme, we define low frequency words as those appearing 50 times or
less (frequency 2.5% or less). The large majority of terms were within this category due
to the long tail of the term distribution. Finally, we assume medium frequency words
are those between these extremes.

We created paired terms (2 terms) of all permutations of these categories. This in-
volves words both with high frequency (HH), both of low frequency (LL), both of
medium frequency (MM), low high combinations (LH), low medium combinations
(LM), and medium high combinations (MH). Note that the order of the words does
not impact the query algorithm as terms are first sorted by the query algorithm based on
their frequency. For example, the low medium category (LM) is consequently equiva-
lent to the medium low one (ML).

Next, we generated 1000 artificial queries from each category. We studied how many
results were returned from each of 4 search algorithms. The Structured Search (SS)
method published all terms and sent these indices between agents as necessary during
queries. The Unstructured Search (US) used no publishing and used a random walk
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Table 3. Comparing cost levels of SS, US, TTL, and PHIRST methods in LL, LM, LH, MM,
MH, and HH artificial queries

SS US TTL=100 PHIRST
LL 1466 2000000 100000 1466
LM 2206 2000000 100000 2142
LH 3177 1987754 100000 2010
MM 20732 1865474 99953 13256
MH 60188 234211 95624 18075
HH 871986 19746 20077 19995

approach to find query results. The TTL=100 method used an unstructured search, but
terminated after visiting 100 agents. Finally, the hybrid PHIRST approach implemented
the publishing and query algorithms described in this paper. In these experiments we
used a value of d=75 in the PHIRST method.

Table 3 displays the average number of nodes visited (in the case of unstructured
search) and / or the inverted list entries sent (for structured search) in finding 20 matches
from each query (T=20). For simplicity, we assume that the costs of visiting nodes
through unstructured search, and sending inverted list entries are equal, or CU = CS .
As expected, we find that Structured Search (SS) is most expensive in finding com-
mon terms; where Unstructured Search (US) is most effective. Conversely, SS is most
effective in finding rare terms. The hybrid PHIRST approach operates similarly to SS
in finding rare terms (LL) and US in finding common items (HH). Note that in mid-
dle categories (for example MH) this approach sent the least amount of information.
PHIRST saves costs by only sending a maximum of d entries even when structured
search is deemed necessary. Furthermore, this approach switches between the SS and
US methods as needed, saving additional costs.

The results in Table 4 display the number of query results returned from each search
algorithm. This result underlies the potential strengths and weakness within the
PHIRST method. Despite the lower costs of PHIRST, this approach was overall equally
effective in returning the query results. When word combinations were frequent, the
unstructured search component of the PHIRST method still found these results (thus
MH was still successful). At the other extreme, assuming the word frequency of any
term was less than d, at least one term was fully indexed. In these cases, complete recall
was also guaranteed if structured search is used on the indexed term(s) followed by un-
structured search to find all remaining terms. In these experiments, all terms taken from
the L category were in less than d documents (e.g. L values had 50 or fewer instances
while d=75), resulting in full recall for all of these categories (LL, LM, and LH) as well.
As predicted in section 5, the query algorithm did have slight trouble in finding series
of terms of medium frequency. Note that the PHIRST method did return slightly fewer
results in the MM case (870 versus 874).

We found that this limitation was negligible in answering real world queries once d
was significantly higher than T. To verify this claim we used the 1000 most popular real
movie keywords taken from the Internet Movie Database Internet Movie Database1

1 (http://www.imdb.com/Search/keywords).
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Table 4. Comparing recall levels of SS, US, TTL, and PHIRST methods in LL, LM, LH, MM,
MH, and HH artificial queries

SS US TTL=100 PHIRST
LL 3 3 0 3
LM 68 68 2 68
LH 1167 1167 47 1167
MM 874 874 93 870
MH 4626 4626 1180 4626
HH 5000 5000 4997 5000

Table 5. Comparing recall levels of SS, US, TTL, and PHIRST methods with regard to different
numbers of results (T)

SS US TTL=100 PHIRST
T=5 4592 4592 2138 4587
T=20 15598 15598 3712 15252
T=50 30347 30347 4534 28154

T=2000 105649 105649 5254 35087

Table 6. Comparing cost levels of SS, US, TTL, and PHIRST methods with regard to different
numbers of results (T)

SS US TTL=100 PHIRST
T=5 57680 591841 86578 12006
T=20 68696 1181515 97735 24976
T=50 83435 1567039 99269 38744

T=2000 158737 2000000 100000 68610

taken from October 25, 2006. These queries were typically between 1 and 4 words
(mean 1.94).

Table 5 compares the number of results found from these queries with SS, US, and
TTL=100 methods, and the PHIRST method with d=75 with variable values for T.
Note that the PHIRST algorithm found nearly all results (99.89%) when only 5 results
were requested (T=5). PHIRST held up fairly well even when 20 matches (T=20) were
required with 97.78% of all matches found. The recall of the PHIRST approach dropped
with T (92.77% at T=50, and only 33.23% at T=N). This confirms the claim that in real
queries the recall of the PHIRST approach will be nearly 100% for T << d (e.g., T=5),
but performed poorly once T >> d (e.g., T=N).

Table 6 displays the search costs for finding these real queries for the 4 algorithms
described in this paper assuming CS = CU = 1, and each agent stored only one docu-
ment. We again found the PHIRST approach had significantly lower search costs that
all three of the other approaches. Again, observe that the advantage to the PHIRST ap-
proach is most effective when d>>T. If T=5, the PHIRST approach has nearly 1/5 the
cost of the next best method (SS) (with a high recall of 99.89%). If T=20, its cost is
still nearly 1/3 that of the next best method (SS) (recall still high at 97.78%). If T=N,
the cost advantage of the PHIRST approach is under 1/2 from the next best method
(TTL=100) (recall only 33.23%).
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7 Conclusion

In this work we present PHIRST, a hybrid P2P search approach that leverages the
strengths of structured and unstructured search. We present a P2P publishing algorithm
that insures that no agent can hold more than d entries in its inverted list of a given
term. This ensures that no one agent is required to hold disproportional amounts of
data. PHIRST is highly scalable in that every agent typically stores fewer entries as
the number of agents grows. This allows us to partially index all words in the corpus
while keeping storage costs low. We also present a querying algorithm that selects the
best search approach based on global frequencies of all words in the corpus. This al-
lows us to choose the best method based on estimated cost. PHIRST uses unstructured
search to compensate for the lack of published inverted list terms and structured search
to location rare terms.
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Abstract. In this paper we propose a multi-agent architecture, made of co-
operative information agents, where agents can share with one another their 
knowledge of the environment and expertise in planning for achieving goals. In 
particular we consider how through communication such agents can 
incrementally learn partial and full plans. Such information exchange is 
particularly useful in the case of situated agents which have diverse abilities and 
expertise and which have partial views of their environments. It is also useful in 
the case of agent systems where agents collaborate towards achieving joint or 
individual goals.  We describe an agent model based on abductive logic 
programming and give detailed protocols and policies of communication. We 
then define formally what it means for such information exchanges to be 
effective, and prove results regarding termination and effectiveness of dialogues 
based on the formalized policies. 

1   Introduction 

Intelligent information agents are finding their way in many diverse applications, 
from the more traditional technologies such as industrial processes and monitoring to 
the more recent, such as web technologies and ambient intelligence. There are several 
features that are common to many such complex applications. The environment is 
dynamic and complex. It is unlikely that any one entity (artificial agent/human) has 
complete knowledge about the environment. Moreover, agents are expected to 
monitor the environment and events, and react and adapt  to changes as well as pursue 
goals. Because of the complexity and the distributed nature of the environment, no 
one entity may have complete pre-specified knowledge or expertise about what to do 
in all circumstances. But, collectively, with information co-operation, the agents may 
be able to cope. Agents need to learn on the fly.  

In this paper we consider how agents can learn new plans and information about 
the environment through communication and cooperation with each other. The same 
techniques can also be used for agent-human communication and co-operative 
information gathering.  Our definition of a plan for a goal is a partially ordered set of 
actions that, if executed in such a way that respects the partial order it would achieve 
the goal. As a concrete scenario one can consider an architecture for cooperative 
information systems to deal with the information space in the internet and large scale 
intranet computing environments [20]. In such an architecture agents can model 
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information mediators and brokers, each of which has its own goals and its own 
expertise, and they cooperate by sharing their expertise. Plan in this context will be 
“query plans” [7, 10] constructed by the mediator agents with help from each other 
and from the brokers. 

Our work differs substantially from the mainstream of multi-agent planning  
[see for example 22], which focuses on coordination, goal refinement, filtering and 
task allocation. We focus, instead, on cooperative planning through information 
sharing by communication. We consider a system composed of situated agents that 
are capable of communication with each other. The agents jointly or individually 
pursue their goals and recognise and adapt to changes in their environments. They can 
plan how to attempt to achieve their goals and execute actions. They can also exhibit 
reactive behaviour. Such reactive behaviour includes responding to messages they 
receive from other agents, observing and recording changes in their environments, 
and reacting to such changes by executing actions or modifying their plans. An agent 
model that incorporates these activities and capabilities is called the KGP model and 
has been described in [4, 11]. We describe an extended model called KGP+ which 
takes inspiration from and augments both the KGP model, and the abductive logic-
based agent model of [13]. However, the policies and the formal results we give in 
this paper can be seen in the abstract, parametric on the concrete agent model used, 
and, in particular, the planning facility within the agent model. To give a concrete 
description and facilitate a future implementation we present KGP+ as an extension of 
the KGP model. 

In addition to the functionalities of KGP agents, KGP+ agents can share informat-
ion about plans and knowledge about their environments. They also have self-
updating functionalities to update their knowledge bases, for example to update their 
plan libraries when they learn new information through communication. 

We describe a language for communication, public protocols and private 
interaction policies aimed at gathering information. Other work, for example [18, 19], 
uses an abductive agent approach similar to ours. But these assume that agents 
already have plans for achieving their goals to start with, and communicate with other 
agents only to try to obtain resources that are needed in their plans. We do not assume 
that each agent already has a plan for its goals. Instead we explore how communi-
cation can be directed towards acquiring information, to help agents plan for their 
goals. We concentrate on agents asking for and passing on information to each other 
about environments, about how to achieve goals, and about how to break down a 
(macro) action into manageable (atomic) actions. These allow KGP+ agents to 
incrementally build plan libraries through multiple dialogues with different agents. 
This is particularly useful in a system of heterogeneous agents where agents have 
different expertise and abilities, and where they are situated in dynamic diverse 
environments where each agent may have only a partial view of the environment.  
Since the KGP+ agent model and the interaction policies are specified formally they 
lend themselves well to formal verification and analysis. We prove results for 
termination and effectiveness of dialogues.  

The paper is structured as follows. Section 2 gives the background on abductive 
logic programming and KGP agents, and preliminary definitions. Section 3 describes 
the KGP+ agents and Section 4 details the formal results. Section 5 extends the 
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framework described in section 3 for further functionality and Section 6 summarises 
the related work and concludes. 

2   Background and Preliminaries 

2.1   Abductive Logic Programming 

An abductive logic program (ALP) [12] is a tuple <P, Ab, IC> where P is a logic 
program, consisting of clauses of the form   Head if Body,  where Head is an atom, 
and Body is a conjunction of literals. All variables in Head and Body are assumed 
universally quantified over the whole clause. Ab is a set of abducible predicates. IC is 
a set of integrity constraints of the form L1, …,Ln→ H1,…,Hm, where the Li are literals, 
the Hi are atoms, possibly false, and the “,” on both sides of → denotes “and”1. All 
variables occurring only in the Hi are assumed existentially quantified on the right 
side of →, and all others are assumed universally quantified over the whole integrity 
constraint.  

Given an ALP and a query Q (conjunction of literals signifying goals or 
observations), the purpose of abduction is to find a set of atoms in the abducible 
predicates that, in conjunction with P, entails Q, while satisfying the IC, wrt. some 
notion of entailment and satisfaction. Such a set of abducibles is an abductive answer 
to Q wrt the ALP. The notions of ALP and abductive answer have been extended to 
incorporate constraints [9, 16], for example temporal constraints. 

2.2   The KGP Agent Model 

KGP agents [11] have knowledge, goals and plans. They can decide and plan for 
goals, execute actions and make observations. The KGP model has a knowledge base 
composed of various modules, including  KBplan, for planning, KBre, for reactivity, 
and KB0, for storing dynamic information about the agent’s action executions and 
observations in the environment. It is assumed that KB0 is included in all the other 
knowledge modules. KBplan and KBre are abductive logic programs. The knowledge 
base modules are accessed by a collection of Capabilities, including Planning and 
Reactivity. These two, respectively, allow agents to plan for their goals and react to 
observations, which include messages received from other agents, and properties 
observed in the environment and in respect to other agents.  

Capabilities are utilised in a set of Transitions that describe how the state of the 
agent changes. The transitions include Passive and Active Observation Introduction 
and Action Execution. Actions are timed action operators, such as open-door(t).2 KGP 
agents have three types of actions, physical, sensing and communicative. Passive and 
Active Observation Introduction  Transitions record observations. These can be 
passive, just opening the senses to see what arrives, or they can be active, actively 
seeking some information from the environment. The Planning and Reactivity 
Capabilities have been specified in abductive logic programming and have been 
                                                           
1 We differ slightly here from the standard syntax of IC in ALP, in order to simplify the syntax 

without losing generality. 
2 For simplicity, sometimes we call action operators, without the times, actions as well. 
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implemented by an abductive proof procedure called CIFF [9], which combines 
abductive reasoning with constraint satisfaction. 

As an illustration, and because we will use it later in the paper and it also helps 
with understanding abduction, we give a specification of the Planning Capability, 
denoted as |=T

plan as follows:   

KBplan, G |=T
plan (As, TCs). 

This specification is a modified version of the one in the KGP model: here, for our 
purposes, we have assumed that agents plan fully for one goal at a  time.  The 
specification means that given an agent’s KBplan, and a goal G, at time T, (As, TCs) is 
a plan for G wrt KBplan, where As is a set of timed action operators and TCs is a set of 
temporal constraints. G is a positive or negative property. Abductive planning is 
described in [16]. (As, TCs) is such that: 

1. TCs specifies a partial order on the actions in As,  
2. TCs allows all actions in As to be executed in the future of T, and  
3. according to KBplan, the execution of the actions in As, respecting the temporal 

constraints in TCs, is expected to ensure that G holds after the actions.  

(Of course in an unpredictable environment other events can prevent the success of plans. 
This is one reason why the model contains the Passive and Active Observation Introduction 
Transitions to check, if necessary, whether or not the agent’s actions have succeeded.)  

For example KBplan, web-connection(T1) |=T
plan ([turn-machine-on(T2), enable-

broadband(T3), launch-web-server(T4)], [T2<T4, T3<T4, T4<T1]) denotes that one 
way to establish a web connection is to turn the machine on and enable broadband, in 
whatever order, and then to launch a web browser. 

We assume the notation  KBplan, G |=T
plan ⊥ denotes that the agent’s KBplan provides 

no plan for G, and the notation KBplan, G |=T
plan ∅ denotes that G already holds 

according to KBplan (which includes information about the environment in KB0). 
The exact contents of KBplan is not crucial to the rest of the paper. But to give a 

concrete context briefly, KBplan is an abductive theory <Pplan, Abplan, ICplan>, based on 
the event calculus (EC) [14]. It allows to write meta-logic programs which “talk” 
about object-level concepts of  fluents, events (that we interpret as action operations), 
and time points. EC allows to represent a wide variety of phenomena, including 
operations with indirect effects, non-deterministic operations, and concurrent 
operations [21]. Pplan consists of two parts: domain-independent and domain-
dependent rules. The  basic domain-independent rules are: 

holds_at(F, T2) if happens(O,T1), initiates(O, T1, F), T1<T2, not clipped(T1, F, T2) 
holds_at(not(F),T2) if happens(O,T1), terminates(O,T1,F), T1<T2, not declipped(T1,F,T2)  
holds_at(F, T) if initially(F), 0≤T, not clipped(0,  F, T)  
holds_at(not(F), T) if initially(not( F)), 0≤T, not declipped(0, F, T)  
clipped(T1, F, T2) if happens(O,T), terminates(O, T, F), T1≤T<T2  
declipped(T1, F, T2) if happens(O,T), initiates(O, T, F), T1≤T<T2 

These rules, in effect, state that a property (fluent) F holds at a time if an earlier 
actions has initiated it or it holds initially, and it has not been terminated since; 
analogously for negated properties not(F). The domain-dependent rules define  
initiates, terminates, initially, and precondition, e.g. 
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initiates(go(X,L1,L2),T, at(X,L2)) if holds_at(mobile(X),T) 
terminates(go(X,L1,L2),T, at(X,L1)) if holds_at(mobile(X),T), L1≠L2 
initially(at(bob,(1,1)))   initially(mobile(bob)) 

Roughly speaking, the predicates initiates, terminates represent the cause-effects links 
between actions and fluents in the modeled world. The above indicate that the action of 
going from one location L1 to some other location L2 initiates the agent (robot) X being at 
location L2, and terminates X being at location L1, provided that X is mobile. Moreover, 
some agent bob is initially at location (1,1) and mobile. The conditions of the rules 
defining initiates and terminates can be seen as preconditions for the effects of the 
operator go to take place. Preconditions for the executability of operators are specified by 
means of a set of rules defining the predicate precondition, e.g. 

precondition(go(X,L1,L2), at(X,L1))       precondition(go(X,L1,L2), adjacent(L1,L2)) 
precondition(go(X,L1,L2), free(L2)) 

namely the preconditions of the operator go(X,L1,L2) are that X is at the initial 
location L1, L1 is adjacent to L2 and location L2, X is moving to, is free. 

There are additional domain-independent (bridge) rules allowing agents to draw 
conclusions from the contents of KB0, which represents the “narrative” part of the 
agent's knowledge, i.e. the direct information the agent has about the changing 
environment. These rules contain  

holds_at(F, T2) if observed(F, T1), T1≤T2, not clipped(T1, F, T2)  
happens(O, T) if executed(O, T) 

The first deals with the case where an agent makes observations in the environment 
(via the Passive or Active Observation Transitions). A clause observed(F, T), 
recorded in KB0, indicates that the agent has observed property F holding at time T. 
The second deals with the case of observing that an action has been executed. We do 
not give the rest of the bridge rules here. In addition to these, Pplan  also contains rules 
such as  

happens(O, T) if  assume_happens(O,T) 

that facilitate planning through abduction. The abducibles, Abplan, in Pplan, include the 
predicate assume_happens. ICplan, the set of core integrity constraints of Pplan, is the 
following set  

holds_at(F,T), holds_at(not(F),T) → false 
assume_happens(O,T), precondition(O,P) → holds_at(P,T) 
assume_happens(O, T), not executed(O, T), time_now(T') → T > T' 

The integrity constraints in ICplan prevent plans which are unfeasible. The first 
integrity constraint makes sure that no plan is generated with inconsistent 
consequences. The second integrity constraint makes sure that, if a plan requires an 
action at a certain time point, its preconditions are also planned for to hold at that time 
point. The last integrity constraint makes sure that each action introduced in a plan 
which has not been executed yet, is indeed executable in the future. ICplan  can also 
contain domain-dependent integrity constraints. 
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Example 1: If we add initially(free(L)), namely that all locations are initially free, and 
appropriate clauses for the property adjacent to the above, the following can be 
generated as a plan for bob to be at location (3,2): ((go(bob(1,1), (1,2), T1), 
go(bob(1,2), (2,2), T2), go(bob(2,2), (3,2), T3)), (T1<T2, T2<T3)). However, if while 
planning it is observed that location (2, 2) is not free then a different plan will be 
generated, for example : ((go(bob(1,1), (2,1), T1), go(bob(2,1), (3,1), T2), 
go(bob(3,1), (3,2), T3)), (T1<T2, T2<T3)). 

The Planning Capability extracts the plans from the abductive answers that are 
returned for the goal wrt Pplan which consist of instances of the predicate 
“assume_happens” together with temporal constraints. Notice that the Planning 
Capability ensures that the plan that is generated is feasible and consistent, in the 
sense that it satisfies all the integrity constraints in Pplan. This property remains 
unchanged in KGP+ agents who accumulate planning knowledge “on the fly”. 

The KGP model also provides a goal selection operator, which, for the purposes of 
this paper,  we represent as a predicate sg(G, T) to indicate that at time T goal G is 
selected (to be planned for).  If G is selected at time T, then according to the agent’s 
KB, G does not hold already. The KGP+ agent model, described in Section 3,  
extends the KGP model to provide the features that are required for cooperative 
planning and information gathering. We end this section by giving a collection of 
preliminary definitions required in the rest of the paper. 

Definition. An agent system is a finite set AS of ground terms, each representing the 
name of a KGP+ agent. AS contains at least 2 terms. Agents in an agent system can 
communicate with each other, and we assume that they share an ontology for 
communication. This ontology is given below. 

Definition. The Communication Language, L, for KGP+ agents consists of utterances 
of the form tell(X, Y, Content, T, Id), where X and Y are, respectively, the sender and 
the receiver agents, T is the time of the utterance, Id is a unique dialogue identifier, 
and Content is one of the following: 

1. enquire-plan(Goal, Constraints) 
2. inform-plan(Goal, Constraints, Plan) 
3. inform-plan(Goal, Constraints, no-more) 
4. inform(Goal) 
5. end 

In the above Goal is a property, for example web-connection or at(bob(3,2)), 
Constraints is a set of atoms, and Plan is a tuple (As, TCs), where As is a set of timed 
action operators and TCs is a set of temporal constraints.   

The utterance with content (1) enquires if the receiver knows of a plan for Goal 
that avoids all elements in the set Constraints. For example the content enquire-
plan(at(bob(3,2)), (at(bob(2,2)), at(bob(2,3))) is an enquiry for a plan to get bob to 
location (3,2) whilst avoiding it visiting locations (2,2) and (2,3). The utterance with 
content (2) is used to inform that Plan is a plan, satisfying the Constraints, for 
achieving Goal. Content (3) is used to inform that the sender has no  (more) such 
plans, and content (4) is used to inform that Goal already holds. Content (5) is used to 
end the (current) dialogue. 
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A dialogue will be defined formally later in the paper. Below is an informal 
example of one: 

Example 2: 
• Agent a asks agent b if it knows how to achieve a goal G. 
• Agent b answers with a plan P1 for G. The plan requires a resource R, which a 

does not have. 
• So a  asks b if it knows of another plan for G not requiring resource R. 
• Agent b answers with another plan P2 for G which does not require resource R. 

But P2 requires execution of an action A, and a does not have enough information 
about how to execute A. 

• So a asks another agent c for information about how to execute action A. 
• Agent c provides a with information about action A, in effect breaking down action 

A, via a plan, to “smaller” actions that a knows about. 
• Agent a, who has now learned how to achieve goal G, by combining the 

information it has learned from agents b and c, ends the dialogues. 

Definition. Given language L we define F(L), the set of all final utterances. These are 
all utterances with content  of the form 3, 4 or 5. 

3   KGP+ Agents 

KGP+ agents share the Capabilities of KGP agents, have knowledge bases, goals, 
plans, and can perform actions and react to communications they receive from other 
agents. But there are differences between KGP and KGP+ agents, detailed below. To 
motivate the design we give an informal overview. 

Overview: Agent a has to achieve a goal G, and does not have enough information 
about doing so. Agent a seeks information from other agents. It first chooses an agent  
to contact. For this it uses information it maintains in a knowledge base (KBsys below) 
about other agents. This knowledge base is based on the history of past communi-
cations and allows a to avoid agents it already knows have no useful knowledge about 
G. Having chosen an agent, a sends a request for information, and through a dialogue, 
it refines its request incrementally, taking into account its abilities in executing 
actions, until it either gets useful information or determines that that agent cannot help 
any further. In both cases it will record whatever new useful information it has 
learned, and in the latter case, it continues to consult other agents, if any remain, in an 
attempt to fill in any remaining gaps in the required information. Below we detail the 
architecture that makes this type of scenario possible. 

3.1   Actions 

In addition to the 3 types of actions of KGP agents, KGP+ agents have a 4th type of 
updating their own knowledge bases. This action is represented as update(Name-of-
KB, Info).  The execution of this action not only leads to the insertion of a record of 
its execution in KB0, but also updates the knowledge base named in the action by the 
information represented in Info. This action is used by KGP+ agents to update their 
knowledge bases when they learn new information from other agents. 
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3.2   Selection Operators 

In addition to the goal selection operator sg, KGP+ agents have a plan selection 
operator, sp( G, C, T, P), that selects one answer to the planning problem available via 
the Planning Capability. More formally sp has the following property for each agent a: 

sp(G, C, T, P), neg(C, C’)  → KBa
plan+C’, G |=T

plan P, 

where G is a goal, C is a set of atoms, T is a time point, P is  a plan, and neg(C, C’) 
generates a set C’ of denials3, one denial for each element in C, namely a denial 
A→false for each A in C. Thus P is a plan for G that takes into account the 
information in KBa

plan and the additional integrity constraints in C’. 

3.3   Knowledge Base 

The knowledge base of a KGP+ agent is similar to that of KGP agents, but with three 
main differences: the contents of the KBplan and KBre of a KGP+ agent are different 
and a KGP+ agent has an additional knowledge base module, KBsys. The KBsys of an 
agent contains information about the other agents in its agent system,  with whom the 
agent can communicate, and its accumulated knowledge of what they know (or do not 
know) as judged by its communications with them.  

3.3.1   KBplan 
In addition to the EC theory given in Section 2, the  KBplan of KGP+ agents includes a plan 
library which is incrementally augmented through information cooperation. Moreover 
their KBplan also contains information about their own abilities in executing actions. 

The KBplan of an agent a, represented as  KBa
plan, is an ALP <P,Ab,IC>, where P 

contains clauses of the form able(a, A)   to mean that a has the ability of performing 
action represented by action operator A. All KGP+ agents have the ability of updating 
their own knowledge bases. So P in KBa

plan includes a clause 

able(a, update(Name-of-KB, Information)).  

Plan libraries in P contain domain-dependent clauses of the form 

C1    holds_at(G, T) if perform(A1, T1),….,perform(An, Tn), Constraints(T, T1,…,Tn)
4. 

The Ai are action operators, and Constraints is a (possibly empty) conjunction of 
temporal constraints, involving T, T1, …, Tn. P also contains the following domain-
independent clause  

C2    perform(A, T) if able(a, A), happens(A, T). 

Clause C1 indicates that performing actions Ai, i=1,..n, respecting the temporal 
constraints, leads to G holding. C2 indicates that performing action A amounts to 
doing A, provided agent a is able to do it. Ab, the set of abducible predicates  in 

                                                           
3 A denial is an integrity constraint of the form L1, …,Ln→ false. 
4 To allow conditional plans, this syntax can be augmented with an additional conjunction of 

conditions to be checked in the environment or via the agent’s knowledge base before 
selecting the plan from the library. 
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KBa
plan, contains the predicate assume_happens (as before). All KGP+ agents are 

equipped with the domain-independent parts of P in their KBplan, but they may differ 
in the contents of their domain-dependent parts. Thus they may have different abilities 
in action execution and different expertise in their planning knowledge. 

3.3.2   KB0  
Similarly to the KGP model, the KB0 of KGP+ agents records information about the 
agent’s action executions and observations. For ease of notation, we assume that 
when an agent a executes a communication action tell(a, X, Content, T, ID), it is 
recorded in its KB0 as tell(a, X, Content, T, ID). Similarly when it receives a 
communication tell(X, a, Content, T, ID) it is recorded in its KB0 as tell(X, a, 
Content, T, ID).5 

3.3.3   KBsys  
The KBsys of a KGP+ agent a, denoted KBa

sys, contains information about the agents 
with whom a can communicate. It contains  ground clauses of the form  agent(X),  for 
all such agents X, apart from a, itself, which are in its agent system(s). It also contains 
the two clauses  

asked(X, G) if tell(a, X, enquire-plan(G, C), T, Id)  

has-no-useful-information(X, G) if tell(X, a, enquire-plan(G,C),T, Id) 

The first represents that a has already asked X for information about achieving G. The 
second represents that X does not have information about achieving G that is useful to 
a, because X, itself, has asked a how it could achieve G. Agents use the information in 
their KBsys to decide which agent to communicate with when they need information. 
This knowledge base will also record any further available information that allows 
selection of agents to seek cooperation from, such as information about their 
expertise, reliability and response times. 

3.3.4   KBre 
The KBre of KGP+ agents is an ALP <P, Ab, IC>. KBre has reactive rules similar to 
those of KGP agents, which we have not given as they do not have an impact on the 
paper. But in addition KBre of KGP+ agents contains their individual communication 
policies for information gathering. Here we focus on these policies.  The policies are 
designed to be compliant with the following protocol of interaction between any 2 
agents a and b: 

 
a: enquire-plan                 b: inform-plan  a: end 

 b: inform                  a: end 

 b: no-more 

The IC component of KBre contains policies of the form         Ui, C → Ui+1, KBupdate 

                                                           
5 Strictly speaking, the first should be represented as executed(tell(a, X, Content, ID), T), and 

the latter as observed(tell(X, a, Content, ID), T).  
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where Ui and Ui+1 are utterances, C is a (possibly empty) conjunction of conditions 
other than utterances and KBupdate, which may be missing from the policy, refers to 
an action of updating a knowledge base module.  

These policies are used in the following way. If the agent receives an utterance Ui 
and conditions C are satisfied wrt the agent’s KB, Capabilities and selection 
operators, then the agent will generate the utterance Ui+1, and execute the action 
specified in KBupdate. An operational model for similar policies is given in [18]. In 
the KGP model the conditions C only refer to the knowledge base of the agent. We 
allow a richer language for the policies, whereby C can also refer to the selection 
operators of the agents. Also in the KGP the KBupdate component does not exist. 

The set Ab of abducibles in KBre consists of assume_happens and tell6. The 
communication policies of a KGP+ agent a, in IC, are as follows. We first give the 
policies and then give an explanation for each one. The policies impose that a 
response has to be made within 1 time unit of receiving an utterance. This is arbitrary; 
any finite time lapse will do as far as our formal results in Section 4 are concerned.  

Policies for answering requests for information from other agents: 

I1: tell(X, a, enquire-plan(G, C), T, Id), sp(G, C, T, P), P≠⊥, P≠∅  → tell(a, X, 
inform-plan(G, C, P), T+1, Id) 

I2: tell(X, a, enquire-plan(G, C), T, Id), sp(G, C, T, P), P=⊥   → tell(a, X, inform-
plan(G, C, no-more), T+1, Id) 

I3: tell(X, a, enquire-plan(G, C), T, Id), sp(G, C, T, P), P=∅   → tell(a, X, 
inform(G), T+1, Id) 

Policies for responding to offers of information from others: 

I4: tell(X, a, inform-plan(G, C, no-more), T, Id), agent(Y), not asked(Y, G), not has-
no-useful-information(Y, G), newId(NId) → tell(a,Y,enquire-plan(G, C), T+1, 
NId) 

I5: tell(X, a, inform-plan(G, C, P), T, Id), P ≠ no-more, unable(a, P, P1), add(C, P1, 
C’) → tell(a, X, enquire-plan(G, C’), T+1, Id) 

I6: tell(X, a, inform-plan(G, C, P), T, Id), P ≠ no-more, all-able(a, P) → tell(a, X, 
end, T+1, Id), do(update(KBa

plan, (G,P)), T+1) 
I7: tell(X, a, inform(G), T, Id), → tell(a, X, end, T+1, Id), do(update(KB0, 

observed(G, T)), T+1) 

Policies for requesting information 

I8: sg(G, T),  KBa
plan, G |=T

plan⊥, agent(X), not asked(X,G), not has-no-useful-
information(X, G), newId(NId)    → tell(a, X, enquire-plan(G, []), T, NId) 

(I1), (I2) and (I3) deal with a request from X for a plan for G that avoids the elements in 
C. (I1) states that if a has a plan that it can choose (so its Planning Capability entails at 
least one suitable plan) then a informs X of this chosen plan. (I2) states that if a has no 
knowledge of such a plan, then a informs X that it has no (more) suitable plans for G. 
(I3) states that if a knows that G already holds then it can inform X about this. 

                                                           
6 We can use the notation happens(tell(X,Y,Content, Id), T) so that we have one uniform 

abducible in all KB modules, namely assume_happens. But we prefer not to do this for ease 
of reading the policies. 
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(I4) states that if an enquiry to agent X has failed to inform a of a (suitable) plan for G 
then a asks another agent, if any is left amongst the ones it knows about, whom it has 
not already asked about G and who may have useful information about achieving G. 
The predicate newId is for housekeeping purposes; it generates a new identifier for the 
utterance (in effect to start a new dialogue – defined later). 

(I5) states that if X informs a of a plan for G but there are some actions in the plan 
that a is not able to perform, then a asks X for another plan that excludes these 
actions. add(C, P1, C’) is defined so that C’=C∪{assume_happens(A): A in P1}. 

(I6) states that if X informs a of a plan for G and a is able to perform all its actions 
(all-able(a, P)), a ends the dialogue and updates its  plan library in KBa

plan with the 
new plan. (I7) states that if X informs a that G already holds then a ends the dialogue 
and records this new information, as an observation in its KB0. (I8) states that if a has 
a goal G for which it cannot generate a plan, then a enquires if another agent has a 
plan for G. The choice of the agent is done as in (I4).  The P component of KBre has 
definitions for the auxiliary predicates used above in (I1) – (I8) including all-able and 
unable. These definitions are straight-forward and we do not give them here. 

Let POL represent the policies (I1)-(I8) above, and all the related auxiliary definitions 
in P in KBre. Below we give a simple example to illustrate the use of the policies. 

3.4   An Example 

Let a, b, c be KGP+ agents in an agent system AS. Suppose a has a goal of obtaining 
web-connection, but a and b have no knowledge about achieving this goal. But let  
KBc

plan contain the following clauses: 

holds_at(web-connection,T) if perform(enable-broadband, T1), perform(open-
browser, T2), T1<T2, T2=T 

holds_at(web-connection,T) if perform(enable-ISP, T1), perform(dial-up-ISP,T2), 
perform(open-browser, T3), T1<T2, T2<T3, T3=T, 

i.e. c knows of two ways of achieving web-connection, one through broadband and 
one through ISP dialing. Then the following “sequence of dialogues” (to be defined 
formally later) can occur between a, b, c: 

tell(a, b, enquire-plan(web-connection, []), 10, id1) : a asks b for information about 
achieving web-connection 

tell(b,a,inform-plan(web-connection,[], no-more), 11, id1): b has no information 
about this 

tell(a, c, enquire-plan(web-connection, []), 12, id2): a asks c for the same information 
(with a different dialogue identifier) 

tell(c,a,inform-plan(web-connection,[],([enable-broadband(T1), open-browser(T2)], 
[T1 <T2, T2=T])),  13, id2): c answers with a plan consisting of first enabling 
broadband and then opening browser 
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tell(a, c, enquire-plan(web-connection, [enable-broadband]), 14,  id2): a does not have 
the ability to enable broadband, so a asks c for a different plan without this 
requirement 

tell(c, a, inform-plan(web-connection,  [enable-broadband], ([enable-ISP(T1), dial-up-
ISP(T2),  open-browser, T3)], [T1<T2, T2<T3, T3=T])),  14, id2): c provides another 
plan that avoids having to enable broadband.  

tell(a, c, end, 15, id2): This new plan is good for a, so a ends the dialogue with c. 

After this sequence KBa
plan will have the new information: 

holds_at(web-connection,T) if perform(enable-ISP, T1), perform(dial-up-ISP,T2), 
perform(open-browser, T3), T1<T2, T2<T3, T3=T, 

and KBa
sys will imply the new information  

asked(b, web-connection)  and  asked(c, web-connection). 

KBb
sys and KBc

sys  will both imply the new information 

has-no-useful-information(a, web-connection). 

Note that integrity constraints (I4) and (I8) in POL allow parallel “dialogues” 
(conversations) amongst agents. So an agent can hold dialogues with several agents at 
the same time as it attempts to accumulate information about how to achieve its 
goal(s). If this parallelism is not desired then the conditions in (I4) and (I8) can be 
modified to allow the selection of one (suitable) agent to communicate with at a time. 
The choice can be arbitrary or it can be based on the past history of communications 
providing information about the “helpfulness/usefulness” of other agents. We do not 
address this any further in this paper. 

4   Formal Results 

In this Section we give a set of formal definitions and use them to prove formal 
properties of communications amongst KGP+ agents. We show that “dialogues” and 
“sequences of dialogues” amongst KGP+ agents are finite (Properties 4.2, 4.3) and 
effective in allowing agents to share their planning expertise and knowledge about the 
environment (Theorems 4.1, 4.2, 4.3, 4.4, 4.5).  

Let AS be an agent system. In the results below we assume that the Planning 
Capability of all agents in AS can produce only a finite number of alternative plans 
for any goal, and each in finite time. 

Definition. A dialogue D generated by POL between 2 KGP+ agents X and Y in a 
system of agents AS is an ordered list of utterances [U1, U2, U3,  …] such that: 

1. for each Ui  either X is the sender and Y, the receiver, or Y is the sender and X, the 
receiver,  

2. if Ui is uttered by X then Ui+1, if it exists, is uttered by Y and vice versa, 
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3. for every pair Ui, Ui+1, i≥1, Ui+1 can be sent by Z, Z=X or Z=Y, only if there is a 
policy Ui, C→ Ui+1, KBupdate in POL, Ui is received by Z and the condition C is 
satisfied by Z, and 

4. all the Ui share the same dialogue identifier ID. 

Definition. D’=[ U1, U2, …, Un, Un+1, …, Un+m], m≥1, is an extension of a dialogue 
D=[U1, U2, …, Un] if and only if D’ is a dialogue. 

Definition. A dialogue D=[U1, U2, …, Un] is terminated if and only if Un is in F(L), 
i.e. Un is a final utterance. 

Property 4.1. A dialogue [U1, U2, …, Un] has no extension if it is terminated.  

Proof (sketch). POL allows no continuation of a dialogue after a message has been 
sent that is a final utterance. 

Definition. A plan request dialogue initiated by an agent a with respect to G 
generated by POL is a dialogue  [U1, U2, …] generated by POL between a and some 
other agent such that U1’s sender is a, and U1’s content is of the form enquire-plan(G, 
C). Below we may call such a dialogue simply a plan request dialogue, or a plan 
request dialogue initiated by a, for brevity, if the rest of the details are irrelevant or 
understood. 

Property 4.2. Every plan request dialogue has: 

 i) a finite number of utterances, and 
ii) a finite number of extensions. 

Proof (sketch). The proof follows because of Property 4.1 and because, thanks to 
POL, no agent will reply with the same plan for the same goal to another agent more 
than once. 

Definition. A plan request dialogue D=[U1, U2, …, Un] initiated by an agent a 
generated by POL is successful if and only if Un is an utterance by a with content end. 
D is a failed dialogue if Un is an utterance by the other agent and its content is of the 
form inform-plan(Goal, Constraints, no-more).  

The following set of results show the effectiveness of POL in allowing the sharing of 
information. After a successful plan request dialogue wrt G, the enquiring agent either 
knows G holds already or knows a suitable plan for achieving it, i.e. 

Theorem 4.1. If D is a successful plan request dialogue wrt G initiated by X and T is 
the time of the last utterance in D, then there exists a plan P such that KBX

plan, G|=T+1P 
and  P≠⊥ and all-able(X, P).   

Proof (sketch). The last utterance of a successful dialogue can be generated by only 
two policies in POL, namely I6 and I7. The result holds via this observation and the 
definition of the Planning Capability.                                                                            � 

Given two agents X and Y in AS, if Y has a plan for a goal G with actions all within 
X’s abilities then every terminated plan request dialogue between X and Y, initiated 
by X wrt G is successful, i.e.: 
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Theorem 4.2. Let D be a terminated plan request dialogue wrt G between agents X 
and Y. Let T be the time of the first utterance in D. Then D is successful if  

KBY
plan, G|=plan

TP and  P≠⊥ and P≠∅  and all-able(X, P). 

Proof (sketch). Policies I5 and I6 together with the definition of the Planning 
Capability and Property 4.2 ensure this theorem.                                                          � 

The dynamic nature of the agent system allows us to prove a more interesting result. 
During a dialogue the knowledge of agents may change, as agents can make 
observations in their environments  or can be occupied in multiple dialogues from 
which they learn new plans. Thus we can prove the following: 

Theorem 4.3. Let D be a terminated plan request dialogue wrt G between agents X 
and Y. Let T1 be the time of the first utterance in D and Tn the time of the last 
utterance. Then D is successful if  either (i) for some T, T≥T1, T<Tn-2, KBY

plan, 
G|=plan

TP and  P≠⊥ and P≠∅  and all-able(X, P), or (ii) for some T, T<Tn-2, 
observed(G, T) is in KB0y

T, and for no T’,  T’>T, T’≤Tn-2,  is clipped(G, T, Tn-2) 
entailed by KBY

plan, where KB0y
T represents the KB0 of agent Y at time T. 

So far we have focused on single dialogues. But POL allows the sharing of 
information amongst any number of agents. To show this we define “sequences of 
dialogues”. 

Definition. A sequence of plan request dialogues initiated by agent X with respect to 
goal G generated by POL between KGP+ agents in a system of agents AS is an 
ordered list of dialogues  [D1, D2, D3,…] such that all the following hold: 

1. Each Di is a plan request dialogue initiated by X with respect to goal G. 
2.  Each Di is between X and another agent in AS. 
3. For all Di, Dj, i≠j, if Di is a dialogue between X and Y, and Dj is a dialogue 

between X and Z, then Z≠Y. 
4. Each Di is a terminated dialogue. 
5. For each Di, i≥1, Di+1 exists only if Di is a failed dialogue. 
6. For each Di, Di+1, i≥1, the time of the last utterance of  Di is before the time of the 

first utterance of Di+1. 
7. For each Di, Di+1, i≥1, there is a policy Ui, C → Ui+1, KBupdate in POL, such that 

the last utterance in Di is Ui and received by X and C is satisfied by X. 

In the sequel by “a sequence of plan request dialogues  initiated by X” we mean “a 
sequence of plan request dialogues initiated by agent X with respect to a goal G 
generated by POL”. 

Property 4.3. Every sequence of plan request dialogues  generated by POL is finite.  

Definition. A sequence of plan request dialogues [D1, D2, …, Dn]  initiated by X is 
successful if Dn is a successful dialogue. 

Theorem 4.4. If [D1, D2, …, Dn] is a successful sequence of plan request dialogues 
initiated by X wrt G, and T is the time of the last utterance in Dn,  then  

KBX
plan, G|=T+1P and  P≠⊥ and all-able(X, P). 
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Proof (sketch). This follows fro  m the definition of the successful sequence, the 
definition of the Planning Capability and policies I6 and I7. 

Definition. A sequence of plan request dialogues [D1, D2, …, Dn]  is terminated if 
[D1, D2, …, Dn, Dn+1] is not a sequence of plan request dialogues for any Dn+1. 

If at least one agent in agent system AS has a plan for a goal G of X with actions 
all within X’s abilities then every terminated sequence of plan request dialogues 
initiated by X wrt G is successful, i.e.: 

Theorem 4.5. Let SD=[D1, D2, …, Dn]   be a terminated sequence of plan request 
dialogues initiated by X wrt G, and let T be the time of the first utterance of D1. SD is 
successful if there is an agent Y in AS and a plan P such that 

KBY
plan, G |=T

plan P, P≠⊥ and P≠∅  and  all-able(X, P). 

5   Extension 

In this Section we describe how the framework presented so far can be extended to 
deal with cases where no one agent in the agent system may have a complete suitable 
plan for a goal for some agent, but collectively, by incrementally assimilating their 
knowledge in an appropriate way such a plan may be found. The extension deals with 
further heterogeneity amongst agents, whereby, in effect, because of their different 
environments and abilities, some actions are considered atomic by some agents and 
macro-actions by others. In such situations an agent can combine the information it 
obtains from different agents into one plan with actions it is able to execute. The 
framework we have described so far is can accommodate this extension, as follows. 

The KBplan of each agent a is extended by adding to its domain-independent part 
the clause  

perform(A, T) if not able(a, A), holds_at(macro(A), T), 

namely that the agent can perform an action even though it is not able to perform it 
atomically, provided it  can break it down to manageable actions. 

We add to the domain-dependent part of KBplan clauses of the form 

holds_at(macro(A),T) if perform(A1,T1),….,perform(An, Tn), Constraints(T,T1,…,Tn). 

Such clauses, in effect, provide libraries for breaking down macro actions to smaller 
sub-actions. Constraints(T, T1, …, Tn) represents a (possibly empty) set of temporal 
constraints on the times T, T1, …, Tn of the actions. 

KBre of each agent a is modified simply by  modifying (I5) as follows: 

tell(X, a, inform-plan(G, C, P), T, Id), P ≠ no-more, unable(a, P, P1), add(C, P1, C’) 
→ tell(a, X, enquire-plan(G, C’), T+1, Id), do(update(KBa

plan, (G,P)), T+1). 

This allows agents to record “partial” plans that they learn, because through further 
communications they may learn a breakdown of the actions they are as yet unable to 
perform.   
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6   Conclusion 

In this paper we propose an agent model based on abductive logic programming and 
equipped  for communication for exchange of information about environments, 
actions and plans for achieving goals. To our knowledge this work is novel. It is, 
however, related to a number of other areas. Several papers [1, 2, 5, 6, 15] have 
considered self-updating logic programs, and others [3, 8, 17, 18, 19] have discussed 
agent interactions in the context of resource negotiation. But none of these address the 
plan information cooperation theme of this paper.  

A large body of literature exists on multiagent planning; [22], for example provides 
an introduction and survey. These works, however, address other issues, such as 
filtering plans which are incompatible with goals of another agent, and partial global 
planning (PGP), where tasks are contracted based on some organizational structure, 
particularly useful in domains of distributed sensor networks, and resource usage 
optimization. 

Our work provides rich scope for further extensions, for example agents asking for 
plans that satisfy certain temporal constraints, or agents asking each other why a 
particular plan has failed, in the anticipation of receiving environmental or plan repair 
information.  
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Abstract. In this paper we study Distributed Data Mining from a Distributed 
Artificial Intelligence perspective. Very often, databases are very large to be 
mined. Then Distributed Data Mining can be used for discovering knowledge 
(rule sets) generated from parts of the entire training data set. This process 
requires cooperation and coordination between the processors because incon-
sistent, incomplete and useless knowledge can be generated, since each processor 
uses partial data. Cooperation and coordination are important issues in Distributed 
Artificial Intelligence and can be accomplished with different techniques: 
planning (centralized, partially distributed and distributed), negotiation, reaction, 
etc. In this work we discuss a coordination protocol for cooperative learning 
agents of a MAS developed previously, comparing it conceptually with other 
learning systems. This cooperative process is hierarchical and works under the 
coordination of a manager agent. The proposed model aims to select the best rules 
for integration into the global model without, however, decreasing its accuracy 
rate. We have also done experiments comparing accuracy and complexity of the 
knowledge generated by the cooperative agents.   

Keywords: Distributed Data Mining, Distributed Artificial Intelligence, 
Cooperative Agents, Learning Agents. 

1   Introduction 

Data Mining [1] [3] permits efficient discovery of valid, non-obvious information in 
large collections of data, and it is used in information management and decision 
making, enabling an increase in business opportunities. 

Despite the augmentation of computer processing power, much attention is given to 
speeding up the data mining process. Basically, speeding up approaches can be either (i) 
data-oriented or (ii) algorithm-oriented. In (i) the dataset is processed and the learning 
instances space is reduced by discretization, attribute selection or sampling. In (ii) new 
search strategies are studied or data are mined in a distributed or parallel fashion. 
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According to Freitas and Lavigton [12], Distributed Data Mining (DDM) [4] [5] 
consists of partitioning the data being mined among multiple processors, applying the 
same or different data mining algorithms to each local subset and then combining the 
local knowledge discovered by the algorithms into a global knowledge. The authors 
also discuss that such global knowledge is usually different (less accurate as the 
number of subsets increases) from the knowledge discovered by applying the mining 
algorithm on the entire dataset formed from the union of the individual local datasets. 
Unfortunately, subsets are often too large to be merged into a single dataset and then, 
some distributed learning approach must be used. 

DDM can deal with public datasets available on the Internet, corporate databases 
within an Intranet, environments for mobile computation, collections of distributed 
sensor data for monitoring, etc. Distributed Data Mining offers better scalability, 
possibility of increase in data security and better response time when compared with a 
centralized model. 

Techniques from Distributed Artificial Intelligence [6] [7], related to Multi-Agent 
Systems (MAS), can be applied to Distributed Data Mining with the objective of 
reducing the necessary complexity of the training task while ensuring high quality 
results. 

Multi-Agent Systems [8] [9] are ideal for the representation of problems which 
include several problem solving methods, multiple points of view and multiple 
entities. In such domains, Multi-Agent systems offer the advantages of concurrent and 
distributed problem solving, along with the advantages of sophisticated schemes of 
interaction. Examples of interaction include cooperative work towards the 
achievement of a shared goal. 

This paper discuss about the use of Multi-Agent Systems [10] [11] in Distributed 
Data Mining technique taking as example a previous work developed for knowledge 
integration [26]. Model integration consists in the amalgamation of local models into 
a global, consistent one. Agents perform learning tasks on subsets of data and, after-
wards, results are combined into a unique model. In order to achieve that, agents co-
operate so that the process of knowledge discovery can be accelerated. The proposed 
model previously aims to select the best rules for integration into the global model 
without, however, causing a decrease in its accuracy rate. 

This paper is organized as follows: section 2 discusses the relationship between 
Distributed Data Mining and Distributed Artificial Intelligence. The knowledge 
integration protocol approach is discussed in section 3 and its results are displayed 
and discussed in section 4. In section 5 we include some related work and conclusions 
are exposed in section 6. 

2   Distributed Data Mining and Distributed Artificial Intelligence  

Distributed Data Mining (DDM) resulted from the evolution of Data Mining as it 
incorporated concepts from the field of Distributed Systems. DDM deals with data 
which is remotely distributed in different, interconnected locations. 
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According to Freitas [12], distributed mining is a 3-phase process: 

 Split the data to be mined into p subsets, where p is the number of processors 
available, and send each subset to a distinct processor; 

 Each processor must apply a mining algorithm to the local dataset. Processors may 
run the same mining algorithm or different ones; 

 Merge the local knowledge discovered by each mining algorithm into a consistent, 
global knowledge. 

DDM systems handle different components: mining algorithms, subsystems of 
communication, resource management, task planning, user interfaces and others. They 
provide efficient access to data and distributed computational resources, while they 
still permit monitoring the mining procedure and properly presenting results to users. 
A successful DDM system must be flexible enough to fit a variety of situations. It 
must also dynamically identify the best mining strategy according to the resources at 
hand and provide a straightforward manner of updating its components. 

Client-server and agent-based architectures are examples of solutions which have 
been proposed in the literature. All agent-based DDM systems contain one or more 
agents in charge of each dataset. Such agents are responsible for analyzing local data 
and deliberately communicate with others during the mining stage, exchanging local 
knowledge until a global, coherent knowledge is reached. Due to the complexities 
involved in maintaining complete control over remote resources, many agent-based 
systems utilize a supervisor agent, called facilitator, which controls the behavior of 
local agents. Java Agents for Meta-learning (JAM) [13] and the BODHI system [14] 
follow this approach. 

As previously mentioned, some of the techniques proposed in Distributed Artificial 
Intelligence, such as Multi-Agent systems, can be applied to Distributed Data Mining 
as to reduce the complexity needed for training while ensuring high quality results. 

Distributed Artificial Intelligence (DAI) is the union of Artificial Intelligence (AI) and 
techniques from Distributed Systems. A definition for DAI which is more suitable to the 
concept of agency is given by Jennings [15], who declared that the object of investigation 
for DAI lies on knowledge models and techniques for communication and reasoning, 
necessary for computational agents to be able to integrate societies composed of 
computers and people. Jennings also splits DAI into two main research areas: 

Distributed Problem Solving (DPS) – divides the solution of a particular problem 
amongst a number a modules which cooperate by sharing knowledge about the 
problem and the solutions involved.  

Multi-Agent Systems (MAS) – studies the behavior of a set of (possibly pre-existing) 
autonomous agents whose shared goal is the solution of an arbitrary problem. 

A Multi-Agent System, according to works by Jennings, Sycara and Wooldridge 
[16] and Wooldridge [17], is a computer program with problem solvers located in 
interactive environments, which are capable of flexible, autonomous, socially 
organized actions which can, although not necessarily, be directed towards 
predetermined goals or targets. Multi-Agent systems are ideal for the representation 
of problems which include several problem solving methods, multiple points of view 
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and multiple entities. In such domains, Multi-Agent Systems offer the advantages of 
concurrent and distributed problem solving, along with the advantages of 
sophisticated schemes of interaction. Examples of interaction include cooperation 
towards the achievement of a shared goal, coordination when organizing activities for 
problem solving, avoidance of harmful interactions and exploitation of beneficial 
opportunities, and negotiation of constraints in sub-problems, so that a satisfactory 
performance be achieved. On the flexibility of these social interactions lies the 
distinction between Multi-Agent systems and traditional programs, providing power 
and attractiveness to the paradigm of agents. 

There are a number of application domains where Multi-Agent-based problem 
solving is appropriate, such as: manufacture, automated control, telecommunications, 
public transport, information management, e-commerce and games. 

3   A Multi-agent System for Distributed Data Mining 

This section discuss a Distributed Data Mining technique based on a Multi-Agent 
environment, called SMAMDD (Multi-Agent System for Distributed Data Mining) 
presented previously in [26]. In this work, a group of agents is responsible for 
applying a machine learning algorithm to subsets of data. 

Basically, the process involves the following steps: (1) preparation of data, (2) 
generation of individual models, where each agent applies the same machine learning 
algorithm to different subsets of data for acquiring rules, (3) cooperation with the 
exchange of messages, and (4) construction of an integrated model, based on results 
obtained from the agents’ cooperative work. 

The agents cooperate by exchanging messages about the rules generated by each 
other, searching for the best rules for each subset of data.  The assessment of rules in 
each agent is based on accuracy, coverage and intersection factors. The proposed 
model aims to select the best rules to integrate the global model, attempting to 
increase quality and coverage while reducing intersection of rules. 

3.1   The SMAMDD Architecture 

In the distributed learning system proposed, the agents use the same machine learning 
algorithm in all the subsets of data to be mined. Afterwards, the individual models are 
merged so that a global model is produced. In this approach, each agent is responsible 
for a subset of data whose size is reduced, focusing on improving the performance of 
the algorithm and considering also the physical distribution of data. Thus, each 
dataset is managed by an autonomous agent whose learning skills make it capable of 
generating a set of classification rules of type if-then. Each agent’s competence is 
implemented with the environment WEKA (Waikato Environment for Knowledge 
Analysis), using the machine learning algorithm RIPPER [18]. The agents also make 
use of a validation dataset. Training and validation percentages can be parameterized 
and their default values are 90 and 10%, respectively. 0 presents the general 
architecture of the system. 
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Fig. 1. System architecture: Analysers and Manager communicating. Communication can occur 
through the Manager or not. 

In order to compare rules and rulesets, some measurements are made on the 
validation dataset. Support, Error, Confidence and Quality are specific measures to a 
rule depicted formally as the following way to a rule R predicting class Class:  

 Support: number of examples covered by R; 
 Error: number of examples covered by R but with class != Class; 
 Confidence = 1 – (Error / Support); 
 Quality = Support * Confidence; 

Coverage and Intersection are specific measures to a ruleset depicted formally as 
the following way to a ruleset RS = {R1

E1, R2
E2, … , Rr

Er}, where Ei is the set of 
examples covered by rule Ri: 

 Coverage = |E1| + |E2| + … + |Er|; 
 Intersection = |E’ ∩ E1| + |E’ ∩ E2| + ... + |E’ ∩ E3|, to a Rule RE’. 

The two last measures are computed ignoring the default rule1. Otherwise the 
coverage of a ruleset RS’ is always |DB| for any dataset DB. 

Support and confidence factors are assigned to each rule, yielding the rule quality 
factor. In this work, the quality factor is being proposed as an evaluation metric for rules. 
Each Analyzer Agent will still maintain intersection and coverage factors, representing the 
intersection level among rules and the amount of examples covered by rules in the agent, 
respectively. At the end of the process, rules are maintained in the following format: 

rule(Premises, Class,  
                  [Support, Error, Confidence, Coverage, Intersection, Quality, 

self_rule]). 

The term self_rule indicates whether the rule has been generated in the agent or 
incorporated from another, in which case it is named external_rule. There is no need  
 
                                                           
1 A default rule has not conditions and covers all the examples not covered previously by the 

other rules. 
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Table 1. (a) Exchange of messages among the agents. (b) Description of Messages. 

(a) 

Message ID Sender Receiver 
load Analyzer Self 
manageEvaluation Manager Self 
waitRulesToTest Analyzeri Analyzerj 
testRules Manager Analyzer 
evaluateRules Manager Analyzer 
startEvaluation Analyzer Self 
test Analyseri Analyserj 
add Analyzeri Self or Analyzerj 
remove Analyzeri Self or Analyzerj 
evaluate Analyser Self 
finishEvaluation Analyser Manager 
calculateRightnessTax Manager Self 
calculateRightnessTax Manager Analyser 
getRules Manager Analyseri 
generateReport Manager Self 

(b) 

Message ID Action 
load Generate rules 
manageEvaluation Start the process to coordinate cooperation 
waitRulesToTest Await delivery of rules 
testRules Start the process of analysis of external rules. For each rule, 

calculate the following factors: support, confidence, quality, 
intersection and coverage. Such factors allow the generation 
of a StateValue for each rule in the agent. Each StateValue 
is stored in NewState and sent to the source agent in a 
message of type response_test[NewState:Rule]). The 
procedure testRules continues until all rules in the agent are 
tested. 

evaluateRules Request that the process of analysis of self rules not yet 
analyzed be started 

startEvaluation Start the analysis of local rules 
test Calculate confidence, error, support, rule quality and 

intersection and coverage for the rule received. 
add Add a rule to the set of selected rules 
remove Delete a rule from the set of selected rules 
evaluate Calculate confidence, coverage and intersection for the 

set of rules 
finishEvaluation Return to the process manageEvaluation to verify 

whether there exists another rule in the agent yet to be 
tested or if another agent can start the evaluation of its 
rules. 

calculateRightnessTax Request accuracy rate for remaining local rules 
getRules Request the agent’s rules with best accuracy rate 
generateReport Calculate final accuracy rates, quantity and complexity 

of rules, and present them to the user 
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to test rules with the parameter value external_rule. After rules are generated and the 
factors mentioned are found, the process of cooperation for discovery of best rules 
starts. This cooperative process occurs by means of exchange of messages and is 
hierarchically coordinated due to the existence of a manager agent. 

Agents hold restricted previous knowledge about each other, namely agent’s 
competences and information for communication. An interface for communication 
with users is also embedded in the Manager agent. In addition to that, it is responsible 
for coordinating the process of interaction among agents. 

The interaction process arises from the need to test the rules generated by an 
arbitrary agent against the validation set of others, where rule quality on their datasets 
and intersection and coverage factors obtained with the insertion of rules in their 
datasets are verified. Such factors are used to quantify the degree of agent satisfaction, 
represented by the scalar state_value, obtained with Equation 1. 

))033,0()17,0(cov)33,0((_ ×+×+×= onintersectieragequalityvaluestate                                 (1) 

Based on weights assigned to each factor in the formula above, the algorithm 
searches for rules with high quality and coverage factors and whose intersection 
factor is minimal. Weights used in this work have been determined after experiments 
in an attempt to obtain the highest accuracy level. Future work may approach a deeper 
study on values to be defined for each factor. 

Thus, one must find the agent which holds the highest degree of satisfaction 
(state_value) for a given rule. For any given rule, the agent whose state_value is the 
highest must incorporate that rule into its rules set; it must also inform the agent 
where it came from as well as the other agents which also hold it to exclude it from 
their rules set. After all rules in all agents have been analyzed, they must be tested 
against each agent’s validation set (10%). The agent’s rules whose accuracy against 
its validation set is the highest will integrate the global model. In addition to the rules 
obtained at the end of that process, the accuracy of rules against the test set, the 
number of rules generated and their average complexity are calculated. 

3.2   Cooperation Model 

As seen in the previous section, there are N analyzer agents and one manager agent in 
SMAMDD. Their main components are: an individual knowledge base and a 
communication module which permits the exchange of asynchronous messages with 
each other. The Manager agent possesses also a module which eases the coordination 
tasks amongst the analyzer agents. 

The human operator uses a graphical interface to start the system and visualize 
intermediate results generated by agents, as shown in 0. 0 partially illustrates the 
exchange of messages among agents in the form of a UML 2.0 diagram. Both 
messages and respective actions executed by each agent along the process of 
interaction are detailed in Tables 1a and 1b. Whenever an analyzer agent receives a 
start message it generates its ruleset based on local data running a rule-based 
algorithm. Then the manager chooses one analyzer A1 to start evaluating the local 
rules (evaluateRules) and warns any other analyzer on it (waitRulesToTest). Then, A1 

chooses a rule ri and asks the other analyzers for evaluation of ri (test). The agent 
answering with the higher stateValue receives a confirmation to keep the rule (add) 
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Fig. 2. Sequence Diagram for cooperation among agents 
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and the other agents must remove the rule from the local ruleset (remove). Agent A1 
continues the process sequentially with the next rules. When the evaluation of A1 is 
over, it warns the manager (finishedEvaluation). Afterwards, manager starts a new 
evaluation process with A2, A3 and so on.  

4   Results 

In this section we complete the initial results presented in [26] with results regarding 
the complexity of the knowledge discovered with SMAMDD. With the intention of 
evaluating the work proposed, the following public datasets from the UCI Repository 
[1] have been utilized: Breast, Cancer, Vote, Zoo, Lymph, Soybean, Balance-scale, 
Audiology, Splice, Kr-ys-kp and Mushroom. Some combination techniques are not 
commonly used for learning in distributed data sets but are useful to improve the 
performance of the base classifiers on a centralized training data set. Such techniques 
generally use some heuristic for selecting instances or partitioning data. Since in 
distributed data mining we do not have control on the data organization and distribut-
ion, the performance of these methods are not foreseen. However, studies show that 
the combination of classifiers generated from several samples of a centralized data set 
can significantly improve the accuracy of the predictions [23] [24] [25]. We briefly 
discuss in the next paragraphs two well-known approaches (bagging and boosting) 
used in the experiments. 

4.1   Bagging 

Quite often, training sets are not good enough to describe a given problem. In this 
case, the available data represent a partial view of the entire problem. Consequently, a 
learning algorithm will not be able to generate a good classifier because it is based on 
a local model. Breiman [23] discusses a procedure able to improve the performance of 
any algorithm by combining several classifiers: bagging. Bagging solves the problem 
of local models by selecting equal sized samples of training subsets and generating 
classifiers for such subsets based on a learning algorithm. Each training subset is 
made up of instances selected randomly but with replacement. This means a given 
instance may repeatedly appear or not at all in any training subset. Finally, the 
classification of a test instance is given by a vote strategy [23]. According to Breiman, 
bagging works very well for unstable learning algorithms like decision trees or neural 
networks. In such methods small changes into the training set will produce very 
different classifiers. However, bagging is not so efficient for stable algorithms as 
nearest neighbor. Spite of this, Ting and Witten contested such ideas showing that 
Bagging can generate also good results for stable algorithms like Naïve Bayes in large 
databases [25]. 

4.2   Boosting 

We have said in the former paragraph that bagging generally works for unstable 
learning algorithms. This happens because learning algorithms generate very different 
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models that are possibly complementary, even for similar inputs. Thus, the more 
different the data models, the larger the covered space of training instances is. 
However, with bagging, we do not guarantee complementary models because the 
instances are selected randomly. Boosting exploits this problem by providing a hill-
climbing-like algorithm, guaranteeing the models to be as complementary as possible 
[25] [24]. There are many versions of boosting and here we discuss the general idea. 
To guide the generation of models, instances are initially weighed with an initial 
value. The weights are used for the classifier error estimation. The error is given by 
the sum of the weights of the misclassified instances divided by the sum of the weight 
of all instances. The weighing strategy forces the algorithm to pay more attention to 
misclassified instances (high weight). First, an equal error is assigned to all training 
instances. Then the learning algorithm generates the classifier and weights in all 
training instances are updated, increasing the weights of misclassified instances and 
decreasing the weights of well-classified instances. The global error of the classifier is 
also computed and stored. The process is repeated interactively until the generation of 
a small error. This procedure generates the classifiers and the weight of the training 
instances, where the weights represent the frequency the instances have been 
misclassified by the classifiers. To classify a new instance, the decision of a classifier 
is taken into account by assigning the weight of the classifier to the predicted class. 
Finally, the class with the largest weight (sum of the weights) is returned. 

4.3   Empirical Results 

Datasets were randomly split into n subsets each for cross-validation, yielding a total 
of 10 steps, iteratively, for each dataset. In SMAMDD, every partition is divided into 
training and validation, where the former constitutes 90 and the latter 10%. 
SMAMDD generates rules using only the Ripper algorithm. At the end of each step, 
accuracy rates, quantity of rules and complexity of rules are calculated. Table 2 
presents some statistics about the datasets used in the experiments. 

Table 3 presents the accuracy rates obtained by the SMAMDD and the techniques 
Bagging, Boosting and the RIPPER algorithm. The best results are displayed in bold.  

Table 2. Statistics on datasets 

Index Dataset Attributes Classes Examples 
1 Breast C. 9 2 286 
2 Vote 16 2 435 
3 Zoo 17 7 101 
4 Lymph 18 4 148 
5 Soybean 35 19 683 
6 Balance 4 3 625 
7 Audiology 69 24 226 
8 Splice 61 3 3190 
9 Kr-vs-kp 36 2 3196 

10 Mushroom 22 2 8124 
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Table 3. Average accuracy rates2 

Datasets SMAMDD Ripper Bagging Boosting 
Breast C. 80,23 ±4,4 71,74 ±3,8 71,39 ±3,3 72,55 ±4,8 
Vote 97,56 ±1,83 94,88 ±2,50 95,41 ±1,12 93,99 ±1,39 
Zôo 91,29 ±6,28 88,71 ±4,87 89,03 ±5,09 94,84 ±4,36 
Lymph 84,22 ±11,01 74,67 ±5,36 80,44 ±7,16 83,78 ±2,78 
Soybean 95,36 ±2,14 91,12 ±2,17 92,19 ±1,89 92,24 ±1,72 
Balance 85,37 ±4,53 73,62 ±4,45 79,41 ±3,56 79,15 ±4,15 
Audiology 81,32 ±6,44 73,97 ±5,53 73,23 ±7,03 75,59 ±7,54 
Splice 98,12 ±1,85 93,31 ±0,74 95,08 ±0,66 94,67 ±0,23 
Kr-vs-kp 97,04 ±2,51 98,99 ±0,32 99,21 ±0,24 99,37 ±0,41 
Mushroom 100,00 ±0,00 99,93 ±0,16 100,00 ±0,00 99,93 ±0,16 

Results from Table 3 are quite encouraging, as the SMAMDD system has achieved 
high accuracy rates in the majority of the datasets. The best results were obtained with 
the Balance-scale dataset, where the number of attributes is reduced. 

By comparison with the boosting technique, the SMAMDD system experienced a 
reasonably lower accuracy performance in the Zoo dataset only. We believe that such per-
formance loss was due to a reduced number of examples combined with a proportionally 
large number of attributes. Such characteristic often affects significantly the performance 
of non-stable algorithms such as RIPPER, producing quite different models for each 
subset. Consequently, concepts discovered locally rarely improve the satisfaction of 
neighbors and are doomed to remain limited to their original agents, having a negative 
impact on the agents’ cooperative potential. 

Even having obtained an accuracy performance higher than those of the other 
algorithms, the SMAMDD produced a high standard deviation in the dataset Lymph. 
Such distortion is due again to the large number of attributes in comparison with the 
number of examples. 

It can be observed that some datasets presented a high standard deviation, 
revealing the instability of the algorithm upon the proportion of number of attributes 
to number of examples. With these results, it can be noticed that the SMAMDD 
system presents better accuracy performances when the number of attributes is small 
in comparison with the number of examples, i.e., the tuples space is densely populated 
(large volumes of data). 

Table 4 compares the amount of rules generated by the SMAMDD system in 
comparison with the techniques bagging and boosting and the RIPPER algorithm. 

From the statistics presented in Table 4, it can be noticed that the system 
SMAMDD has an inclination of producing a more complex model (high number of 
rules) when compared to the other techniques. It is also noticeable that the increase in 
the size of datasets, in general, causes a considerable increase in the number of rules 
along with higher standard deviations. 

Table 5 presents the complexity of rules generated by the SMAMDD system, by 
the techniques bagging and boosting and by the RIPPER algorithm. The complexity 

                                                           
2 Extracted from [Error! Reference source not found.]. 
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of a rule is proportional to the number of conditions it has. Simple rules (few 
conditions) are preferable in relation to complex rules. 

According to the statistics presented in Table 5, the complexity of the rules 
generated by the SMAMDD system is similar to those obtained with the other 
techniques. Even the largest datasets have not resulted in more complex models, 
demonstrating that number of attributes and volume of data have both been unable to 
significantly affect the complexity of rules. 

Table 4. Average number of rules 

Datasets SMAMDD Ripper Bagging Boosting 
Breast C. 3,9 ±1,20 2,7 ±1,03 4,3 ±0,90 2,3 ±1,40 
Vote 3,2 ±1,03 3,2 ±1,03 2,7 ±0,48 4,0 ±2,36 
Zoo 5,7 ±0,48 5,7 ±0,48 6,4 ±0,84 6,2 ±1,40 
Lymph 5,2 ±2,30 5,2 ±1,87 5,4 ±1,26 5,0 ±2,11 
Soybean 49,3 ±18,86 25,1 ±1,29 26 ±2,54 22,1 ±7,11 
Balance 17,2 ±7,61 11,6 ±3,24 12,4 ±3,75 10,1 ±3,97 
Audiology 17,7 ±5,19 13,3 ±1,64 13,6 ±1,17 16,10 ±3,25 
Splice 29,67 ±10,07 13,67 ±5,51 17,67 ±4,51 29,0 ±3,46 
Kr-vs-kp 38,5 ±7,94 14,5 ±1,38 14,5 ±2,26 10,0 ±4,82 
Mushroom 12,8 ±2,68 8,6 ±0,55 8,8 ±0,84 8,6 ±0,55 

Table 5. Average complexity of rules 

Datasets SMAMDD Ripper Bagging Boosting 
Breast C. 1,84 ±0,14 1,10 ±0,16 1,49 ±0,12 1,41 ±0,16 
Vote 1,31 ±0,60 1,31 ±0,60 1,22 ±0,56 1,36 ±0,65 
Zoo 1,08 ±0,17 1,08 ±0,17 1,00 ±0,16 1,03 ±0,14 
Lymph 1,24 ±0,24 1,18 ±0,23 1,44 ±0,23 1,27 ±0,55 
Soybean 1,86 ±0,21 1,59 ±0,06 1,72 ±0,07 1,89 ±0,32 
Balance 1,76 ±0,16 1,71 ±0,20 1,85 ±0,19 1,84 ±0,42 
Audiology 1,61 ±0,11 1,50 ±0,12 1,57 ±0,14 1,66 ±0,21 
Splice 3,95 ±0,16 3,52 ±0,44 3,36 ±0,37 3,75 ±0,31 
Kr-vs-kp 3,39 ±0,24 2,78 ±0,10 2,89 ±0,24 3,53 ±1,86 
Mushroom 1,51 ±0,11 1,37 ±0,10 1,36 ±0,10 1,41 ±0,11 

5   Discussion and Related Work 

From the collection of agent-based DDM systems which have been developed, BODHI, 
PADMA, JAM and Papyrus figure in the list of the most prominent and representative. 
BODHI [14], a Java implementation, was designed as a framework for collective DM 
tasks upon sites with heterogeneous data. Its mining process is distributed among local 
and mobile agents, the latter of which move along stations on demand. A central agent 
is responsible for both starting and coordinating data mining tasks. PADMA [20] deals 
with DDM problems where sites contain homogeneous data only. Partial cluster models 
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are generated locally by agents in distinct sites. All local models are amalgamated into a 
central one which runs a second level clustering algorithm to create a global model. 
JAM [13] is a Java-based Multi-Agent system which was designed to be used for meta-
learning in DDM. Different classification algorithms such as RIPPER, CART, ID3, 
C4.5, Baves and WEPBLS can be applied on heterogeneous datasets by JAM agents, 
which either reside in a site or are imported from others. Agents build up classification 
models using different techniques. Models are properly combined to classify new data. 
Papyrus [21] is a Java-based system for DDM over clusters from sites with 
heterogeneous data and meta-clusters. 

In [22], an agent-based DDM system where agents possess individual models, 
which are built up into a global one by means of cooperative negotiation, is proposed. 
Only rules with confidence greater than a predetermined threshold are selected along 
the generation stage; the negotiation process starts just afterwards. 

The SMAMDD system proposed has been designed to perform classification. An 
important characteristic of the system is the degree of independence, for it does not 
require configuration parameters and thresholds as do most of the ones 
aforementioned. Moreover, local models are completely analyzed, as opposed to 
being pruned as in [22]. Although it demands more processing time, the risk of 
removing a concept important for the global model is reduced. 

6   Conclusion 

Distributed Data Mining and Distributed Artificial Intelligence have many shared and 
complementary issues involving the generation of global points-of-view based on local 
ones. Coordination, collaboration, cooperation and specific evaluation measures are 
important challenges in both the areas. This paper has discussed some works that use 
such concepts in different ways for the accomplishment of different tasks. SMAMDD, 
for instance, performs model integration and yields results comparable to the ones 
obtained with other machine learning techniques; besides, it exhibited superior 
performance in some cases. The system permits discovering knowledge in subsets of 
data, located in a larger database. High quality accuracy rates were obtained in the tests 
presented, corroborating the proposal and demonstrating its efficiency. 

Although promising, the use of Distributed Artificial Intelligence in Distributed 
Data Mining and vice-versa is a quite recent area. Particularly, some questions have 
yet to be better studied in future work: consolidation of the techniques developed with 
evaluations in databases with different characteristics and from different domains; the 
use of distinct classification algorithms in the generation of local models and studies 
concerning alternative knowledge quality evaluation metrics are yet to be done. An 
important issue consists in developing new strategies which permit reducing the 
number of interactions. Techniques of game theory and coalition formation can be 
useful for the detection of groups and hierarchies between learning agents. Such 
information can often improve the coordination, reducing the number of messages, 
the amount of processing and the general quality of the interaction.  
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Abstract. In this paper we investigate methods for analyzing the
expected value of adding information in distributed task scheduling prob-
lems. As scheduling problems are NP-complete, no polynomial algo-
rithms exist for evaluating the impact a certain constraint, or relaxing
the same constraint, will have on the global problem. We present a gen-
eral approach where local agents can estimate their problem tightness,
or how constrained their local subproblem is. This allows these agents to
immediately identify many problems which are not constrained, and will
not benefit from sending or receiving further information. Next, agents
use traditional machine learning methods based on their specific local
problem attributes to attempt to identify which of the constrained prob-
lems will most benefit from human attention. We evaluated this ap-
proach within a distributed cTAEMS scheduling domain and found this
approach was overall quite effective.

1 Introduction

Effectively harnessing the relative strengths of mixed human agent groups can
be critical for performing a variety of complex scheduling tasks. The importance
of effective coordination has been demonstrated in scheduling and planning do-
mains such as hazardous cleanup, emergency first-response, and military conflicts
[12]. Agents can quickly compute possible group compositions and assess group
behavior even in dynamic and time sensitive environments [5,11,14]. This ability
can be invaluable in focusing a person’s attention to the most critical decisions
in these environments [12].

We present the challenge of how agents can best coordinate their support de-
cisions with people as the “Coordination Autonomy” (CA) problem. While using
computer agents in these tasks can be beneficial, they are subject to several key
limitations. First, we assume agents have only a partial view of the global con-
straints and the utility that could potentially be achieved through fulfilling these
tasks. Because of this, it is impossible for agents to compute the group’s utility
exclusively based on their local information [5,11]. Second, we also assume there
is cost associated with sending or receiving constraint information. These costs
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may stem from agent communication costs, or costs associated with interrupting
the human operator [12]. As has been previously observed, coordinating deci-
sions involving incomplete information and communication costs significantly
increases the problem’s complexity [9].

In the CA system under consideration, human operators are assumed to have
access to more complete knowledge about task uncertainty because they have
updated information or expert knowledge. This information can be critical in
improving the group’s utility by relaxing agents’ rigid constraint information
[12]. Specifically, we focus on how this information may affect decisions where
uncertainty exists in task quality and duration. For example, a human operator
in an emergency response environment may have updated information about
domain weather conditions, or acquired knowledge from years of experience.
Without this information, agents must plan for the worse-case scenario, e.g., that
tasks with uncertainty in quality will yield the lesser utility amount, and tasks
with uncertainty in duration will take the longest time. However, the user may
know what task outcomes will actually be, allowing for more or higher quality
tasks to be scheduled. On the one hand, this information can be invaluable
in increasing the group’s productivity. On the other hand, a person’s time is
valuable, and thus the person should only be consulted if the agent believes that
the current scheduling problem is such that additional information will help.

Effectively measuring the expected value from a teammates’ information is
critical to the success of these types of systems [12]. Similar issues have arisen in
the Information Gain measure that has been put forward by the machine learn-
ing community [6]. Information gain is typically used to learn the effectiveness
of a certain attribute in classifying data, or how much additional information is
gained by partitioning examples according to a given attribute. Thus, one ap-
proach may be to query the system with and without a given piece of information
and build the CA application based on the resulting Information Gain.

However, there are several reasons why basic machine learning measures such
as Information Gain cannot be applied to this type of problem. First, we assume
there is a cost involved with agents exchanging constraint information. As a
result, the cost in computing the Information Gain for a given problem may
outweigh its benefit. Second, since there are a potentially large number of tasks
to schedule, the size of the learning space will be very large. Sending “what
if” queries for each task to a local scheduler can become resource intensive,
leading to delays. Finally, sending too much constraint information can result
in a lower group quality: we have previously found that in highly constrained
problems, sending additional information can prevent agents from finding the
optimal solution [8].

Towards addressing this problem, this paper presents an approach where
agents can estimate the value of information without the resource intensive
queries used in other works [12]. Our first contribution is a general, non domain-
specific constraint “tightness” measure in which agents can locally measure how
constrained a task is. A constraint tightness of less than one indicates that a
task is underconstrained and will not benefit from any additional information.
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This allows agents to locally and immediately identify that the expected utility
from added information in such cases will be zero. A tightness measure of greater
than one indicates that the problem may be affected by other constraints, and
thus information may be of importance. However, we found the problem of de-
termining how constrained the problem is exclusively from local information to
be quite challenging. In addressing this challenge, we present a solution where
agents can offline apply machine learning techniques to identify which of the
remaining tasks are likely to have the highest expected utility from information.

Our next section provides the background and motivation for this work. In
Section 3 we briefly describe the cTAEMS language used in quantifying the
distributed scheduling tasks we studied. In Section 4 we present the domain in-
dependent constraint “tightness” measure for locally assessing what the utility
of added information will be. Section 5 present how we quantified this value
of information through machine learning regression and decision tree models.
Section 6 provides experimental results. In Section 7, we provide a discussion
about the general applicability of these results, as well as provide several direc-
tions for future research. Section 8 concludes.

2 Related Work

The goal of this paper is to quantify the expected utility to be gained from added
information in distributed scheduling problems. This information can then be
used to help agents decide what constraints should be forwarded to a human
user for further information. Thus, this paper is linked to previous research in
the field of agent-human interactions, as well as previous distributed scheduling
research.

The adjustable autonomy challenge as described by Scerri et al. [13] refers
to how agents can vary their level of autonomy, particularly in dealing with
other types of entities such as people. They proposed a framework where agents
can explicitly reason about the potential costs and gains from interacting with
other agents and people to coordinate decisions. A key issue to applying their
model within new domains is effectively quantifying the utility of information
the entities can provide – a challenge we address in this paper.

Distributed scheduling problems belong to a more general category of
distributed constraint optimization problems (DCOP) [11], and a variety of
algorithms have been proposed for solving these problems [5,11,14]. In these
problems, inter-agent constraints must be coordinated to find the solution that
satisfies as many of these constraints as possible. However, these problem are
known to be NP-complete, even if agents freely share all information at their dis-
posal [5,9]. As such, no polynomial algorithms exist for checking how a scheduling
problem’s utility is affected by a given piece of information.

This paper presents a process through which agents are able to successfully
quantify inter-agent interactions, such as the expected utility of sending or re-
ceiving information, exclusively with the local agent’s information. Previous ap-
proaches have considered all possible group interactions, potentially creating a
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need to generate very large numbers of “what if” queries to obtain this informa-
tion [9,12]. Our approach is significant in that agents locally estimate the utility
of additional information without additional data, allowing them to reason about
a limited number of interactions. This reduction allows for tractable solutions
in estimating the value of information without using any queries during task
execution.

In creating our approach, we draw upon previous studies that found that
different categories of problem complexity exist, even within NP-complete prob-
lems [2,7]. Many instances of NP-complete problems can still be quickly solved,
while other similar instances of problems from the same domain cannot. These
studies have introduced the concept of a phase transition to differentiate classes
of “easy” and “hard” instances of a problem [7]. Based on that body of work, we
attempt to locally identify tasks which are underconstrained, or represent “easy”
interactions that can be locally solved without any additional information, as
well as the “hard” interactions that can potentially benefit from additional in-
formation.

However, finding such phase transitions within real-world domains is far from
trivial due to the varied types of possible agent interactions [1,9]. In the theo-
retical graph coloring problems previously studied, phase transitions were found
that were associated with the ratio of constraint clauses per variable [7]. Unfortu-
nately, these graph coloring problems are relatively simple in that all constraints
typically have equal weighting and every agent has equal numbers of constraints
(edges). Thus, discovering phase transitions in experiments can be accomplished
only through variation of a single parameter – the ratio of graph edges to nodes.
In contrast, as we now describe, many real-world domains, such as the cTAEMS
scheduling domain we have focused on, are far more complex. Novel measures
are needed to quantify inter-agent actions in this and similar domains.

3 Domain Background and Description

cTAEMS is a robust, task independent language used by many researchers for
studying multiagent task scheduling problems [12] based on the TAEMS lan-
guage standard [4]. The cTAEMS language is composed of methods, tasks and
subtasks that define a coordination problem in a Hierarchical Task Network
(HTN) structure. Methods represent the most basic action an agent can per-
form and have associated with them a list of one or more potential outcomes.
This outcome list describes what the quality (Q), duration (D) and cost (C)
distributions will be for each possible result associated with the execution of
that method. Tasks represent a higher level abstraction and describe the pos-
sible interrelationship between actions through what is referred to as a quality
accumulation function (QAF), that indicates how the expected quality of sub-
tasks will contribute to the overall quality of a (group) task. QAF’s are of three
forms: min, max or sum. In a min QAF, the total added quality is taken to be
the minimum of all subtasks – it could be thought of as a logical AND rela-
tion between tasks. In a max QAF, the quality is the maximum value (or the
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logical OR), whereas in a sum QAF the quality is the sum of the expected quality
of all subtasks. These subtasks can then be further subdivided into additional
levels of subtask children, each potentially with their own QAF relationship.
Finally, hard constraints between tasks or methods can be modeled in terms of
what are referred to as non-local effects (NLE’s) constraints between tasks, using
the primitives enable or disable. Soft constraints are modeled through facilitates
or hinders relationships. For example, assuming one task must occur before an-
other, one could represent this constraint in terms of an enables relation between
those two tasks. Assuming two tasks (or subtasks) cannot both be performed
can be modeled in terms of a disables relation between the two tasks. System dy-
namics are modeled through probabilistic values for quality and duration within
the HTN’s tasks and subtasks. For example, a given task could have a duration
of 10 with 50% probability, a duration of 4 with 25% probability, and a duration
of 20 with 25% probability.

The CA system we propose takes as its input the system’s distributed con-
straints, formulated in cTAEMS, and outputs the constraints a person should
focus on. For example, Figure 1 is an example of a scheduling problem instance,
described in cTAEMS. In this example, three agents, A, B, and C must coor-
dinate their actions to find the optimal schedule for a global task T. Task T
has three subtasks (A, B, and C) and these tasks are joined by a sum relation-
ship. There are enable relationships between these tasks and thus they must be

Fig. 1. A sample cTAEMS Scheduling Problem (global view middle) with 3 agents (3
subjective views on bottom)
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executed sequentially. In this example, an optimal schedule would be for A to
schedule method A1, B to schedule B2, and C to schedule C1. However, assum-
ing only 70 time units exist for all three tasks, there is insufficient time for A to
schedule A1, for B to schedule method B1, and for C to schedule C1. As such,
one of the agents must sacrifice scheduling its method with the highest quality
so the group’s quality will be maximized. The group will lose 15 units of quality
if A does not schedule A1, 10 units of quality if B does not schedule B1, and 20
units of quality if C does not schedule C1. Thus, B chooses B2 so the A1 and
C1 can be scheduled.

Changing the cTAEMS structure, even slightly, can greatly affect the inter-
agent constraints. We particularly focus on the impact uncertainty in task quality
and duration will have on decisions. If a given task has a distribution of possi-
ble durations, agents supporting the automated scheduling process assume the
worst-case scenario must be planned for (e.g. we must assume the task will have
the smallest possible quality, or the task will take the longest possible time).
Adding more precise information, such as eliminating certain duration possibil-
ities, or identifying which outcome will definitely occur, can also greatly impact
inter-agent constraints. For example, if a human operator could provide infor-
mation that task B1 will take less than 15 units of time (instead of the current
20) this task could be scheduled and the group’s utility will be raised. As a re-
sult, the CA system should identify task B1 as being the first task worthy of the
person’s attention. Novel mechanisms are required to generally find which types
of constraints are most worthy of further information.

4 Locally Quantifying Scheduling Constraints

While we used the cTAEMS language to quantify scheduling constraints, the so-
lution we are developing is meant to be as general as possible. Towards this goal,
we have developed a tightness measure which we use to identify which subtasks
are not constrained, and therefore cannot possibly benefit from any additional in-
formation. Our hypothesis is that general types of interactions can be quantified,
similar to the phase shifts found within simpler graph coloring optimization prob-
lems previously studied [2,7]. However, novel measures of interaction difficulty are
needed to help quantify interactions so phase shifts can be discovered.

Towards this goal, we present a “tightness” measure to quantify how much
overlap exists between constraints. In referring to these constraints, let G =
{A1, A2 . . . , AN} be a group of N agents trying to maximize their group’s col-
lective scheduling utility. Each agent has a set of m tasks, T = {T1, . . . , Tm} that
can be performed by that agent. Each Task, Ti, has a time Window within which
the task can be performed, a Quality as the utility that the task will add to the
group upon its successful completion, and a Duration as the length of time the
task requires to be completed. We assume that task quality and duration often
have uncertainty, while task windows are typically based on the problem’s struc-
ture. We model Wi as the fixed Window length for task Ti, {Qi1, Qi2, . . . , Qij}
as the possible quality outcomes for Ti, and {Ri1, Ri2, . . . , Rij} as the possible
duration lengths of Ti.
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Based on these definitions, we model an agent’s quality tightness as:

Tightness-Quality(Ti) = Qualitymax(Ti)
Quality(Window(Ti))

where Qualitymax(Ti) returns the maximal quality from {Qi1, Qi2, . . . , Qij}, and
Quality(Window(Ti)) returns the maximal expected quality of all other sub-
tasks that share the task window of (Ti). Note that if quality uncertainty exists
in these other tasks, we again assume the worse case, and the lowest quality
value must be considered in computing the value of Quality(Window(Ti)) . The
measure of Tightness-Quality(Ti) can then be used to quantify what potential
overlap exist between Ti and other local constraints within Ti’s task window.
For example, assume TA can be fulfilled by methods A1 and A2 with A1 having
a quality distribution between 10 and 20, and A2 having a quality distribu-
tion of 15 and 25. It is possible that asking the user for input about the actual
quality of A1 is worthwhile as these quality distributions overlap and A1 may
have a higher quality than A2 (say 20 for A1 and 15 for A2). In this example,
Tightness-Quality(A1) = 1.33 indicating the quality distributions of these tasks
overlap and information may be beneficial. However, a tightness under one would
indicate no possible quality overlap, and thus no possible gain from information.

Similarly, we model an agent’s duration tightness as:

Tightness-Duration(Ti) = Durationmax(Ti)
Duration(Window(Ti))

where Durationmax(Ti) returns the maximal duration from {Ri1, Ri2, . . . , Rij},
and Duration(Window(Ti)) refers to the time allotted for completing task Ti.
Note that within the cTAEMS problems we studied, no uncertainty existed
within the time window for the tasks sharing a given window (Window(Ti))
so uncertainty in this value need not be considered.

As was the case within the quality tightness measure, a value of more than
one indicates an overlap between Ti and other task constraints, while a value
less than one indicates no possible overlap. For example, assume task TA may
last for either 10, 20, or 40 time units to be completed within a time win-
dow, Window(TA) of 25 units. According to the tightness definition, tightness
Tightness(TA) is 40/25 of 1.6. Without any additional information, we must as-
sume that this subtask task will take the maximal time, potentially preventing
that agent from performing other tasks. However, assuming information can be
provided regarding the task’s duration, say that TA will only last for 10 or 20
units, the value of Tightness(TA) drops below 1.

The tightness measures we present have two important properties: First, they
are locally measurable. Agents can measure its quality or duration tightness
without any additional input from other task agents or the human operators
within the group. Second, they can effectively quantify the impact making a
local decision will have. By definition, a tightness of 1.0 or less means that the
problem is not constrained, as no task option overlaps with others options sharing
that task. In such cases, agents will not obtain additional utility from more
information, and the agent should not prompt the human operator for additional
data. After this measure exceeds 1.0, a phase shift occurs when information may
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be helpful. However, further solutions are still needed to quantify how much the
group’s utility is expected to increase if this constraint is relaxed.

5 Learning the Value of Information

As the tightness measure only addresses which tasks will definitely not benefit
from additional information, the next step in our approach is a machine learning
model to suggest which tasks will show an increase in utility as a result of addi-
tional information. In addressing this challenge, we built two machine learning
models: a regression based model where agents predict a numeric value for added
information from the human operator, and a classification model where agents
classify a given task as potentially benefitting or not benefiting from additional
information. Alternatively, within the classification model, qualitative categories
can be created, such as High, Low, and Zero impact categories instead of binary
Yes and No categories.

The human-agent interface within the Coordination Autonomy (CA) appli-
cation we propose will be affected by the learning model chosen. Within the
regression model, the CA front-end will present the human operator a numeric
field for the expected value of information that can potentially be added through
the user’s attention. Assuming a classification model is trained, we propose that
the CA’s front-end color code various tasks to represent how much information
can potentially help the group. For example, referring back to Figure 1, subtasks
would be colored green if information was categorized as less important while
subtasks of high importance would be colored red. We believe this interface can
most effectively focus the user’s attention.

The procedure we adopted for training the machine learning model is out-
lined in algorithm 1. We used a problem generator created by Global Infotech
Inc. (GITI) for the purpose of generating cTAEMs problems within the frame-
work of the COORDINATORS DARPA program1. We created two sets of 50
problems (the value for X in the algorithm) where cTAEMS parameters (such as
the number of tasks to be scheduled, the hierarchical structure of the tasks, the
number of agents able to perform each task, the number of NLE relationships be-
tween tasks, task duration, and average task quality) were randomly generated.
In the first set of problems, we generated problems with uncertainty in quality
distributions, while keeping other parameters deterministic. In the second set
of problems, we created problems with uncertain durations, while keeping other
parameters constant. Note that these 100 total problems represent a small frac-
tion of the total number of the thousands of problem permutations the GITI
scenario generator could create. Additionally, each of these base problems had
many possible permutations – these 100 total cTAEMS problems contained over
5000 subtasks where constraint information could be added.

The goal for creating these test cases was to study how user information
about quality and duration uncertainty affected the group’s utility. We used a
previously tested cTAEMS centralized scheduler [8] to first compute the group’s
1 http://www.darpa.mil/ipto/programs/coordinators/
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utility under the assumption that uncertainty in problems would result in the
lowest probabilistic outcome. Thus, in the first set of problems, we assumed tasks
would have the lowest quality, and in the second problem set the tasks would take
the maximal time (line 3). We then computed what the group’s utility would
be if we could relax that assumption, and the user could provide information
that task would have the highest possible quality, or take the shortest time (line
4). Next, we stored this information into a table along with a vector of the
problem’s specific parameters (e.g. problem parameters such as tightness, local
NLE’s, maximal duration, quality, etc.) and entered this information into the
table, Table (line 5). This problem information would then be used for offline
training of the machine learning model.

In computing the value of added information, we adopted a highly optimistic
approach for the value of Utility(Problemk,j) that makes several assumptions:
a) the person being contacted actually has information about the subtask j,
b) the person will have information that will help the group in the maximal
possible way by informing the agents that the task will have the highest quality
or take the shortest duration, and c) this information can be provided without
cost. Despite this oversimplification, the approach was useful for identifying the
maximal upper bound for the potential utility that could be gained through
added information.

Algorithm 1. Training the Information Model(Problem Set of Size X)

1: for k = 1 to X do
2: Without ⇐ Utility(Problemk)
3: for j = 1 to Num(Subtasks(Problemk)) do
4: With ⇐ Utility(Problemk,j)
5: Table[k][j] ⇐ (With) - (Without)
6: end for
7: end for

Interestingly, we found that only a small percentage of subtasks had any ben-
efit from adding this type of constraint information. While each problem, k,
contained at least one subtask that did benefit from added information, only
1022 subtasks, or roughly 20% of the total entries within the training data, ben-
efited from any additional information. Thus, finding these subtasks is akin to
“finding a needle in a haystack”. Clearly, naive methods that query every sub-
tasks are not appropriate, especially if there is a cost associated with generating
queries or if the human is not able or willing, for whatever reason, to provide
information.

6 Experimental Results

We found strong support for the usefulness of the quality and duration tightness
measures in identifying the cases where information definitely did not help. Of
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the 2490 cases where a tightness value was less than 1, only 38 (1.5%) cases ben-
efited from additional information. Next, we used the Weka machine learning
package [10] to train and evaluate what the value of information would be in
the remaining cases. We present the results from training and evaluating three
decision tree models: a regression model based on the M5P algorithm and C45
decision trees (J48 within the Weka implementation) to create classifier mod-
els based on 2 information categories (Yes / No impact of information) and a
3 category information classification task (High, Low, and Zero impact). Note
that while we present results from decision trees learning approaches, other pos-
sibilities exist. We did, in fact, train models based on Bayes Networks, Neural
Networks, and SVM models and found the results to be nearly identical with
those we present. In all cases, we performed 10-fold cross validation to evaluate
the results.

First, we trained and evaluated the regression based model. The results from
this experiment are found in Table 1. The first two rows present the results from
the problem set with quality uncertainty, and the last two rows present the results
from the corresponding problem set with duration uncertainty. Note that this
model yielded an average correlation of 0.56 and 0.46. In comparison, we present
the Naive approach which assumes all instances belong to the majority class, and
information adds zero quality. While these results are certainly significant (0.56
and 0.46 being much larger than the Null hypothesis of 0.05), they do leave room
for improvement as even with the tightness measure these results are far from
the optimal correlation of 1.0.

Table 1. Comparing the accuracy and Mean Absolute error in regression trained model

Learned Model Naive (Majority)

Quality Correlation 0.56 -0.06

Quality Mean Absolute Error 1.27 2.61

Duration Correlation 0.46 -0.04

Duration Mean Absolute Error 1.67 2.00

Next, we trained a two category classification model (Yes/No categories) to
find instances where information does or does not help. Table 2 presents the
results. Note that the larger class (information did not help) represents over
80% of the subtasks in both problem sets, and thus even naively categorizing all
subtasks within this category results in a relatively high accuracy of the model.
However, as the goal is to effectively find all subtasks where information will
help, this approach will find none of the desired instances. In both problem sets,
the trained model had better accuracy than the naive baseline (both slightly over
84%) while still finding many of the instances where added information would
help (55.20% of the instances in the quality set, 19.03% in the duration set).

Finally, we studied the three category classification task. Here, we divided the
training data into a High category where information helped 10 or more units,
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Table 2. Comparing the overall accuracy and number of high information instances
found within a 2 category decision tree model

Learned Model Naive (Majority)

Accuracy (Quality) 85.04% 81.95%

Instances Found (Quality) 55.20% 0%

Accuracy (Duration) 84.13% 83.45%

Instances Found (Duration) 19.03% 0%

Table 3. Comparing the accuracy and number of high information instances found in
a 3 category decision tree model with quality uncertainty

Classified as High Classified as Low Classified As Zero Recall Ave. Accuracy

High 22 22 24 0.32 82.53%

Low 15 100 170 0.35 82.53%

Zero 18 86 1465 0.93 82.53%

Table 4. Comparing the accuracy and number of high information instances found in
a 3 category decision tree model with duration uncertainty

Classified as High Classified as Low Classified As Zero Recall Ave. Accuracy

High 13 14 19 0.28 82.54%

Low 9 83 277 0.23 82.54%

Zero 10 109 1974 0.94 82.54%

a Low category where information helped less than 10 units, and a Zero cate-
gory where information did not help. The results of this experiments from the
quality set are found in Table 3, and those from the duration experiments are
in Table 4.

Within these tables, we present the classification confusion matrix, often pre-
sented in multi-category classification problems. We plot the number of instances
found within a given category (the diagonal of table) as well as the number of in-
stances misclassified per category. Not all misclassification errors are necessarily
equally important. For example, misclassifying a High problem or Low, or a Low
problem as High is likely to be less problematic that classifying a High problem
as Zero. For example, within the quality experiments, only 22 of 66 High in-
stances were classified as High, but another 22 of these instances were classified
as Low. This distinction can be quite significant. The recall of the High category
alone (High classified as High) is only 0.33, however, if we view classifying High
either as High or Low as being acceptable, the recall jumps to 0.67.

As the machine learning models never achieved a recall near 100%, we consid-
ered creating models which were biased towards categorizing a task as benefitting
from information. While this bias will result in a higher recall of this category,
it will come at a cost of false positives that will lower the overall accuracy of
the model. This type of approach would likely be useful if the human user is
able to be prompted Q times to add information, when Q is greater than the
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actual number of tasks that can benefit from added information. Alternatively,
this approach will also be useful if the known cost from interrupting the user
is relatively low. For example, if the cost of prompting the user is 1 unit, we
should be willing to ask several queries for information so additional High in-
stances (each worth 10 units) can be found. To train this model, we followed the
previous developed MetaCost approach [3] and refer the reader to their work for
additional details in how the cost bias is created.

We did find that the MetaCost approach was extremely effective in increasing
the recall of the desired system categories, albeit at a cost of false positives that
reduced the overall accuracy. To explore this point, we used the MetaCost func-
tion to apply different weights for falsely classifying a subtask where information
was useful (Yes) as belonging to the non-useful category (No). The base weights,
or unbiased classification, will have equal weighting for these categories (1 to 1
weight). We found that as we increased these weights, we obtained progressively
higher recall from the desired Yes category, but at an expense in overall reduc-
tion of model accuracy. We present the results of this approach from the quality
experiment in a two category classification model in Table 5. For example, a
5 to 1 bias towards the Yes category found 566 of the 607 instances (or 0.93
recall). However it had a higher rate of false positives (0.32) and lower accuracy
(72.61%) from the baseline (1 to 1 weights). We also applied this approach to
the two category duration problem set, as well as the quality and duration 3 cat-
egory classification models. As expected, in all cases the cost bias was effective
in increasing the recall of the categories where information helped, albeit at a
cost of more false positives.

Table 5. Exploring the tradeoff between higher recall of desired results (Yes instances
found), and false positives and negatives within a 2 category decision tree model with
quality uncertainty

Weight Total Accuracy Found Not Found Recall False Reject False Accept

1 to 1 85.04% 335 272 0.55 0.45 0.08

2 to 1 82.46% 435 172 0.72 0.28 0.15

5 to 1 72.61% 566 41 0.93 0.07 0.32

10 to 1 70.95% 584 23 0.96 0.04 0.35

7 Discussion and Future Directions

In general, we found that the tightness measure was extremely effective in finding
which subtasks would not benefit from adding information. By locally filtering
out which tasks were not constrained we were able to focus on determining
whether adding information would help in the remaining subtasks. However,
several key directions are possible to expand upon this work.

First, we found decision trees were overall very effective in quantifying the
expected impact of adding information, and thus were helpful in recommending
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if the user should be contacted for additional information. In contrast, previ-
ous work on adjustable autonomy [13] found decision trees were ineffective in
enabling agents to make autonomous decisions. It seems that the difference of re-
sults stems from the very different tasks considered. The previous work used the
learned policy from decision trees to enable agents to act independently of peo-
ple within their group. As a result, their scheduler system made several critical
errors (such as canceling group meetings and volunteering people against their
will for group activities) by overgeneralizing decision tree rules. In contrast, our
support system never tries to make autonomous decisions, and instead took the
support role of recommending what constraint(s) a person should focus on. This
distinction may suggest the need to create different types of learning models for
different agent-human tasks. We hope to further explore this point in the future.

Also, further work is necessary to identify general attributes where informa-
tion definitively does add utility. Our hypothesis is that local information is
sufficient for guaranteeing that a given problem is not constrained, and thus
information will not help. However, the disadvantage to the exclusively local
approach we present is that agents are less able to consider the full extent of all
constraints within the problem. Because of this, we believe this approach was
less affective in finding the cases where information would definitely help.

We have begun to study several of these directions in parallel to the work we
present here. Along these lines we have studied how the tightness measure can
guide agents if they should communicate all of their constraints to a centralized
Constraint Optimization Problem (COP) solver [8]. The COP solver would then
attempt to centrally solve the constraint problem after receiving all constraints
from all agents. To address what agents should communicate, each agent viewed
all of its constraints as belonging to only one task window, with all subtasks
falling within this window. We found that the resulting tightness measure created
three classic clusters of constraint interactions: under-constrained, constrained,
and over-constrained with a clear communication policy emerging based on this
measure. Under-constrained problems had low tightness and could locally be
solved without sending any constraints to the COP solver. Constrained problems
had a medium tightness value, and most benefited from having every agent send
all of its constraints. Problems with the highest tightness value were the most
constrained. In fact, these problems had so many constraints that agents sending
all constraints flooded the COP solver, which was not able to find the optimal
solution. In these problems, agents were again best selecting communication
approaches that sent fewer constraints.

Finally, it is important to note that these research directions are comple-
mentary. We foresee applications where different tightness measures are applied
to filter and predict different characteristics. Say, for example, a domain exists
where agents could send constraint information freely. As we have previously
found, sending too much information can prevent centralized problem solvers
from finding the optimal solution [8]. One solution might be to apply the lo-
cal tightness measure we present here to filter cases where information defi-
nitely will not help, and then have agents send all remaining constraints. This
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more limited set of constraints might be most manageable than the original set.
We are hopeful that this work will lead to additional advances in this challenging
field.

8 Conclusion

In this paper we presented an approach to quantifying the expected utility
change from adding information to agents within distributed scheduling prob-
lems. Agents exclusively used local information about their constraints to predict
whether adding information will help the group increase its utility. The signif-
icance of this work is its ability to enable agents to find which constraints will
most benefit from additional human information, without using resource inten-
sive queries required in other approaches [12]. Towards achieving this goal, we
defined and used a general tightness measure and domain specific information
from the cTAEMS distributed scheduling domain to train a regression based
learning model for numerically quantifying the value of this information, as well
as classifier models to identify if a given subtask should be categorized as benefit-
ing from information or not. In general, we found that the non problem-specific
tightness measures was extremely effective in finding where addition information
about constraints would not be helpful. Domain specific cTAEMS information
was moderately useful in identifying where information would be helpful. Fi-
nally, we presented several possible future direction of study in this challenging
problem.
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Abstract. Traffic management nowadays is one of the key challenges for
cities. One drawback of traditional approaches for traffic management is
that they do not consider the different valuations of waiting-time reduc-
tion of the drivers. These valuations can differ from driver to driver, e.g.,
drivers who are late for their job interview have a higher valuation of re-
duced waiting time than individuals driving home from work routinely.
This also applies to trucks with urgent load, e.g., as part of a just-in-time
production chain. To overcome this problem, we propose a new mecha-
nism for traffic control at intersections called Initial Time-Slot Auction
that is valuation-aware. It relies on agent-based driver-assistance systems
to allocate the right to cross an intersection. Our evaluation shows that
it does yield a significantly higher overall satisfaction.

1 Introduction

Traffic control is a key problem cities currently have to deal with [1]. Drivers
are dissatisfied with high waiting times at intersections. One characteristic of
traditional approaches for traffic control at intersections is that they do not
consider the valuations of waiting-time reduction of the drivers. These valuations
are not at all equal among drivers. For instance, drivers who do not want to miss
their flight or truck drivers who must stick to their time schedule have higher
valuations of such reductions than individuals driving home from work routinely.
Traditional traffic-control mechanisms do not take these valuations into account.
Existing mechanisms do not even let drivers inform other vehicles or the traffic-
control unit about their valuations.

To increase overall satisfaction of motorists, this article investigates new mech-
anisms for traffic control which take the valuations of waiting time of the drivers
into account. We call such mechanisms “valuation-aware” in the following. Such
mechanisms require interaction among vehicles and the infrastructure to ex-
change valuations. In this respect, they can benefit from ongoing advances in
vehicle technology.

However, designing such valuation-aware mechanisms is challenging. This is
because the traffic scenario imposes several constraints that are different from
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the ones in conventional settings. The situation at an intersection is highly dy-
namic. Vehicles can arrive at any time. With the arrival of a new vehicle, the
optimal order of vehicles crossing the intersection may change. In contrast to
scheduling in communication networks, vehicles are physical objects with phys-
ical characteristics, e.g., they need to accelerate/decelerate, and their speed is
limited. Vehicles queuing from the same direction cannot change their order, i.e.,
no overtaking.

The mechanisms envisioned must be superior to existing mechanisms, i.e.,
yield a higher overall satisfaction (effectiveness). Next, mechanisms inducing
drivers to reveal their valuations truthfully may be desirable (incentive compat-
ibility). Further, there should be an upper bound of the waiting time, for all
drivers (avoidance of starvation).

This paper proposes and evaluates an approach for valuation-aware traffic
control at intersections. More specifically, we make the following contributions:
We first identify desiderata any valuation-aware traffic-control mechanism should
fulfill. We then propose our new mechanism called Initial Time-Slot Auction
(ITSA). It auctions the right to cross the intersection for a certain period of time
to arriving vehicles. We call this right time slot in the following. ITSA allocates
a time slot to the vehicle with the highest bid. We describe the mechanism in
detail, discuss design alternatives and possible extensions of the basic variant,
and say to which extent they fulfill the desiderata. We have implemented two
variants in full and compare them to a FIFO mechanism [2,3], a state-of-the-
art agent-based traffic-control mechanism from the scientific literature, using
simulations. A core result of our work is that ITSA yields a significant reduction
of valuation-weighted waiting time.

This article is part of a long-term effort that strives to design valuation-aware
traffic-control mechanisms that are applicable in the real world, and this article
is a first stab at the problem. For instance, we currently limit ourselves to single
intersections (the fact that a vehicle typically has to cross several intersections
to reach its destination is future work), and we leave aside robustness and legacy
issues, i.e., “old” vehicles that are not equipped to interact with valuation-aware
traffic-control mechanisms. Nevertheless, this current work has yielded valuable
insights into the general problem domain and has demonstrated the potential of
our approach.

Paper outline: We discuss related work in Sect. 2. Section 3 describes fun-
damentals of valuation-aware traffic control. In Sect. 4, we propose our new
valuation-aware mechanism for traffic control and its variants. Section 5 fea-
tures an evaluation, Sect. 6 concludes.

2 Related Work

This section describes related work where agents have been used for traffic man-
agement at intersections and related valuation-aware approaches. Related work
regarding other aspects, e.g., auctions, is cited elsewhere in the paper.

There already exist various approaches for agent-based traffic management.
We only discuss a small subset that we deem most relevant for our work. [2,3]
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propose an agent-based reservation system for intersection-traffic control. It al-
lows vehicles to reserve a time slot in advance for crossing an intersection. The
system proposed is a reservation system, but not a platform where agents can
trade time slots, and it is not valuation-aware. An extension of the reservation
system [4] gives priority to emergency vehicles, e.g., ambulance or police cars.
[5] describes an approach where trams or buses communicate their arrival to
traffic lights. In both cases, only a small subset of vehicles is privileged, but the
valuations of all other vehicles are ignored. [6] presents an agent-based system
for urban traffic control. The authors introduce infrastructure agents that collect
data and intersection agents which adapt their traffic-control policy to the data
received. The model does not include agents that assist the drivers. They also do
not take the different valuations of waiting-time reduction into account. ITSA is
not the very first valuation-aware traffic control mechanism – [7,8] have recently
proposed a mechanism called Time-Slot Exchange (TSE ). However, TSE only
allows vehicle agents already holding a time slot to negotiate time slots with
other vehicle agents. ITSA in turn lets the intersection agent assign time slots
to vehicle agents which do not have any time slot so far. Further, TSE imposes
strong restrictions, and only few negotiations between vehicles are successful.
This clearly limits the impact of TSE. This is not the case with ITSA – it yields
a significant improvement, compared to TSE.

3 Fundamentals

In this section we describe our traffic scenario, measures to compare valuation-
aware mechanisms for traffic control, desiderata for those mechanisms, and the
components of agent-based traffic management.

Traffic Scenario. In this paper we focus on individual intersections of roads. An
intersection consists of several intersection lanes. Depending on the intersection
lane they have chosen, vehicles can only leave the intersection in one direction. An
intersection lane can intersect other intersection lanes. The intersection points
are potential spots of conflict. No two vehicles are allowed to pass such a spot at
the same time. The considerations in this paper are not limited to the intersection
area itself, but take the neighborhood of the intersection into account as well.

Definition 1. The neighborhood of an intersection consists of the lanes of the
intersection area, the incoming and the outgoing lanes.

Measures. We use the following measures to evaluate valuation-aware mecha-
nisms.

Definition 2. The travel time T j
t of a Vehicle j is the time from its first ap-

pearance in the neighborhood until it leaves the neighborhood. The minimal travel
time minT j

t of j is the travel time if j was the only vehicle at the intersection,
observed the speed limit and any constraints from the physical world, but ignored
all rules concerning the right of way (i.e., crosses red lights, does not stop at stop
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signs etc.). The waiting time T j
w of j is the difference of the travel time T j

t and
the minimal travel time minT j

t .

Because the minimal travel time is a lower bound of the travel time, the waiting
time is always nonnegative.

Any new mechanism should be superior to existing ones. A useful measure to
compare different intersection-control mechanisms is the average waiting time.

Definition 3. The average waiting time is Tw =
∑

j∈V T j
w

|V | , where V is the set
of all vehicles.

The average waiting time does not allow to evaluate valuation-aware mecha-
nisms. Therefore, a more meaningful measure in our context is the waiting time
weighted by the valuations of waiting-time reduction of the drivers.

Definition 4. The valuation vj(t) of Driver j is the price j is willing to pay if
he waits t seconds less.

While other valuation functions might be realistic as well, we limit ourselves to
linear valuation functions in this study. Thus, we denote the price per second
with vj . The valuation may be different for each vehicle, and we assume that it
does not change over time.

Definition 5. The weighted waiting time of Vehicle j is vT j
w = vj · T j

w.

We use the weighted waiting times of all vehicles to compute the average weighted
waiting time.

Definition 6. The average weighted waiting time is vTw =
∑

j∈V vj ·T j
w

|V | , where
V is the set of all vehicles.

Traffic planners have goals different from the ones of individual drivers. This is
because they have to consider the common welfare while drivers only consider
their own benefit. This conflict also occurs in our scenario. Drivers aim at max-
imizing their utility. In the following, we define the utility of a vehicle agent for
our particular scenario.

Definition 7. Let bj denote the budget of the driver of Vehicle j. His utility uj

is uj = bj − vj · T j
w.

In other words, the utility of drivers is the difference between their budget and
their waiting time weighted by their valuations of waiting-time reduction. Al-
though the utility uj of the driver of Vehicle j can be negative, e.g., if the budget
is zero and the driver has to wait 10 seconds, he cannot exceed his budget bj .

Example 1. Let l and h denote two vehicles. The driver of l is not in a hurry. His
valuation is low, e.g., vl = 0.01. If he had to wait 10 seconds longer, his weighted
waiting time would increase only by vl ·10 = 0.01 ·10 = 0.1. The driver of Vehicle
h in contrast must meet a deadline. His valuation of waiting-time reduction is
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high, e.g., vh = 1.00. If his waiting time was reduced by 10 seconds, his weighted
waiting time would be reduced by vh ·10 = 1.00 ·10 = 10. If the driver of Vehicle
l was offered to wait 10 seconds longer for one currency unit he would accept the
offer. This is because his utility would increase: ul

new = bl
old+1−vl·(T l

w,old+10) =
ul

old +1−0.01 ·10 = ul
old +0.9 > ul

old. On the other hand, the driver of Vehicle h
would readily offer one currency unit to wait 10 seconds less because this would
increase his utility: uh

new = bh
old − 1 − vh · (T h

w,old − 10) = uh
old − 1 + 1.00 · 10 =

uh
old + 9 > uh

old. Of course, this is only possible if the budget bh exceeds one
currency unit.

In our context, it is not relevant if the budget of a driver is real money, or if it
is any private currency issued and distributed by the traffic authority.

Definition 8. The total entry budget Be is the sum of the budgets of all drivers
when they enter the neighborhood: Be :=

∑
j∈V bj

e. V denotes the set of all
vehicles. The total leaving budget Bl is the sum of the budgets of all drivers
when they leave the neighborhood: Bl :=

∑
j∈V bj

l .

Desiderata for Valuation-Aware Traffic-Control Mechanisms. Mecha-
nisms for traffic control at intersections give the right to cross the intersection to
arriving vehicles for a certain period of time. Sometimes this right is only given
if the vehicles have fulfilled some preconditions, e.g., having stopped at a stop
sign. Traditional mechanisms differ regarding the scheduling algorithm, depend-
ing on time, on the direction of arrival and on the direction of departure. The
valuation-aware mechanisms envisioned should encourage drivers to reveal their
valuations. If the best strategy of drivers is to reveal their valuations truthfully,
provided that this holds for all other drivers as well, the mechanism is incen-
tive compatible [9]. Incentive compatibility is desirable. It tends to provide more
efficient solutions.

Next, the mechanisms should meet the objectives effectiveness, avoidance of
starvation, and zero-sum. We say that an intersection-control mechanism is effec-
tive if the average weighted waiting time vTw is lower than with FIFO. Clearly,
effectiveness means higher overall satisfaction of the drivers. Avoidance of star-
vation means that a vehicle is guaranteed an upper bound of the waiting time.
Such an upper bound should be traffic-dependent: If all roads are heavily con-
gested, this upper bound should naturally be higher than in a situation with
only few vehicles.

An intersection-control mechanism is zero-sum if the total budget of vehicles
entering the neighborhood is equal to the total budget of vehicles leaving. We
believe that users would not like to see an increase of mobility costs and therefore
have a preference for zero-sum.

Finally, there are two further conflicting requirements on traffic-control mech-
anisms at intersections, early allocation and late allocation. Early allocation
means that the time slots should be allocated as early as possible. The reason
is that a vehicle obtaining a time slot early does not have to stop and wait be-
fore entering the intersection. Instead, it can slow down and adapt its speed in
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Fig. 1. Agent-based traffic control

advance so that it reaches the intersection exactly on time and can cross it with-
out any stops. This makes driving more comfortable and is expected to reduce
energy consumption. But time slots should also be allocated as late as possible
(late allocation), to give vehicles with high valuations that arrive late a chance
to acquire an early time slot. Clearly, these two requirements are in conflict.
Choosing their weights depends on the preferences of the traffic planners and on
the actual design of the mechanism.

Agent-Based Traffic Control. To take the different driver valuations of
waiting-time reduction into account, vehicles and intersection control have to
interact. But drivers should not interact with the intersection control while driv-
ing. Intelligent and autonomous driver-assistance systems make such distractions
unnecessary. Agent technology is promising in this context: The autonomy prop-
erty of agents [10] avoids unnecessary human interaction. We assume that every
vehicle will be equipped with a platform with a standardized interface that
allows for the installation of agent-based driver-assistance systems. Assuming
the existence of such a generic platform within vehicles is in line with current
developments in the real world. For instance, think of the so-called on-board
units used by the German toll collect system for heavy trucks (http://www.toll-
collect.de). To facilitate valuation-aware traffic control, intersections will have to
be equipped with traffic-control units as well. These units implement the differ-
ent mechanisms and use agent technology to interact with the driver-assistance
systems of the vehicles.

An agent-based driver-assistance system hosts a vehicle agent (see Fig. 1).
It can instruct the driver when to cross the intersection, and at which speed.
The vehicle agent can communicate with other vehicle agents and with the in-
tersection agent which represents the traffic-control unit of an intersection. The
driver configures the driver-assistance system in advance to avoid distraction
while driving.

Note that the traffic-control mechanisms proposed in this article are orthogo-
nal to the extent of interference of the driver-assistance system with the driving
behavior. The system could either merely instruct the driver, or, as it is the case
with adaptive cruise-control systems (ACC, [11]), take control of the vehicle in
certain situations. Our mechanisms would work with both alternatives.
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4 Mechanisms

We first describe a generic procedure for agent-based traffic control at intersec-
tions. This will allow for a more structured presentation of our actual mech-
anisms. We then describe the FIFO mechanism. This mechanism, which has
been proposed and evaluated in [2,3], will serve as a reference point for our new
valuation-aware mechanism ITSA and its variants, which we describe subse-
quently. For all mechanisms we discuss to which extent they meet the desiderata
incentive compatibility, avoidance of starvation, zero-sum and early and late
allocation. We evaluate effectiveness in Sect. 5.

4.1 General Procedure

The following general procedure describes all agent-based mechanisms for traffic
control at intersections which we currently have in mind:

(1) Vehicle and intersection agents make contact.
Vehicle agents have to obtain information which intersection is equipped with
an intersection agent, and the intersection agent has to obtain information
on vehicles that will arrive at the intersection.

(2) The vehicle agent acquires an initial time slot to cross the intersection (initial
time-slot acquisition).

(3) If the vehicle agent is dissatisfied with the time slot acquired it can try to
acquire a better one (subsequent time-slot acquisition) from other vehicle
agents. It may try to do so repeatedly using different mechanisms.

(4) Finally, the vehicle crosses the intersection using its time slot.

The difference between Step 2 and 3 is that vehicles do not yet have a time
slot before Step 2. They receive an initial time slot in this step. In Step 3 the
vehicles already have received a time slot which they can now trade.

Some mechanisms do not need Step 3, e.g., those that do not allow vehicles
to trade their time slots. But Step 3 is beneficial in general. Otherwise, Step 2
would have to reconcile the conflicting goals of early and late allocation. With
Step 3 in turn, agents of vehicles arriving late can interact with vehicle agents
which hold an earlier time slot.

While Step 3 is optional, Steps 1, 2 and 4 are part of all mechanisms described
in the following.

4.2 FIFO

This subsection briefly reviews the agent-based reservation mechanism FIFO
described in [2,3,4]. It allows vehicle agents to request time slots from an inter-
section agent (Step 2). It schedules the time slots in the order of request.

All vehicle agents entering the neighborhood of the intersection request a time
slot from the intersection agent. If several vehicle agents ask for the same time
slot, the one which requested the time slot first will obtain it.
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To make a reservation, the intersection agent looks for free time slots. The
intersection agent checks if the current request does not conflict with time slots
reserved previously. A conflict occurs if the requested intersection lane or an
intersection lane crossing the requested intersection lane is already reserved. If
the desired time slot cannot be assigned, the intersection agent offers the earliest
non-conflicting time slot after the desired one to the requesting vehicle agent.

Because FIFO is not valuation-aware, the notion of incentive compatibility
does not apply. FIFO avoids starvation because it ensures an upper bound of
waiting time. Vehicle agents do not pay any money, thus FIFO is zero-sum. Late
allocation is not beneficial with FIFO since the order of arrival determines the
assignment of time slots. Thus, FIFO should implement early allocation.

So far, we do not know any valuation-aware mechanism for intersection con-
trol, (except for [7,8] which are very recent). To evaluate the mechanisms to
be described in the following, we compare them to a mechanism which is not
valuation-aware. Since [2] has shown that FIFO outperforms traffic lights re-
garding average waiting time, it will be our reference point for the evaluation.
We think that valuation-aware mechanisms from other domains, e.g., data rout-
ing, are not appropriate: They typically do not take physical constraints into
account, like no overtaking.

Even though FIFO is not valuation-aware, it can be combined with other
mechanisms for Step 3 of the general procedure, and such combinations could
be valuation-aware. Some of these combinations are discussed in [7,8].

4.3 Initial Time-Slot Auction

In the following we propose a new mechanism which is valuation-aware. It auc-
tions the time slots to the arriving vehicles. We call it Initial Time-Slot Auction
(ITSA). This is because the auction is part of Step 2.

Basic Variant. Vehicle agents register at the intersection when entering its
neighborhood. The intersection agent initiates a second-price sealed-bid auc-
tion [12] of the next available time slot. I.e., the bidder with the highest bid wins
but pays only the second highest bid. Not all of the arriving vehicles can take
part in the auction. Some of the vehicles already have acquired an earlier time
slot. They may not take part. Further, vehicles can only take part if the vehicles
driving in front already have acquired a time slot. Otherwise they cannot be sure
that the vehicle in front will acquire an earlier time slot. Thus, only one vehicle
per direction can bid for a time slot. We refer to them as candidates.

Example 2. Figure 3 shows an intersection where some vehicles already have
acquired a time slot, some can acquire a time slot and some currently cannot
acquire a time slot.

To implement the auction, we use the FIPA Contract Net Protocol [13] (see
Fig. 2) and its terminology in the following. The intersection agent asks the
candidates for proposals. It chooses the proposal with the highest offer and sends
an accept-proposal to the sender of the proposal chosen and a reject-proposal to
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Fig. 2. FIPA Contract Net Protocol (corrected figure from [13])

all others. The vehicle agent receiving an accept-proposal (including the second
highest bid, i.e., the amount of money to be paid) confirms the transaction using
inform or reports a failure otherwise. For instance, if the auction of a time slot
takes too long, it is possible that the winner vehicle cannot use its time slot any
more because the begin is already in the past. In this case, the vehicle agent
would report a failure. If the winning vehicle agent confirms the transaction, it
must pay an amount corresponding to the second highest bid reported. So its
budget is reduced by this amount.

The basic variant is incentive compatible. This is because we use a second-
price sealed-bid auction [9,12]. It does not guarantee an upper bound of the
waiting time and – at least without any extensions – does not avoid starvation.

Example 3. An example of an extension to avoid starvation is that the auction
is suspended after the waiting time of a vehicle exceeds an upper bound. After
the vehicle has crossed the intersection, the auction is resumed.

However, such constraints typically influence the bidding behavior, and an anal-
ysis of the interplay with incentive compatibility would be necessary. In Sect. 5,
we examine whether starvation actually occurs in practice.
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Because the basic variant does not specify when to allocate the time slots,
both early or late allocation can be implemented.

Finally, if an intersection agent keeps the money earned with auctions, the
mechanism is not zero-sum. Note that we can achieve zero-sum in a straight-
forward way, by returning the money to the drivers. Several variants of doing
so are conceivable: The money returned could be equally distributed among
all vehicles crossing the intersection, or it could be proportional to the waiting
times. However, the problem with returning money is that this tends to influ-
ence the bidding behavior, too. Thus, an analysis of the interplay with incentive
compatibility would be necessary as well.

Variant with Subsidies. The basic variant has the following characteristic
which might yield suboptimal outcomes: The vehicles behind a vehicle without
a time slot cannot influence the outcome of the auction.

Example 4. Let l and h denote two vehicles arriving from the same direction.
The valuation of the driver of the first Vehicle l is very low. The valuation of
the driver of the subsequent Vehicle h is extremely high. In all auctions where l
is a candidate it only sends low offers. Thus, h is stuck behind l even though its
valuation is high.

Vehicles waiting behind a vehicle without a time slot do not have to be inactive.
They can try to improve their situation by subsidizing the candidate of their
direction. The candidate with the highest accumulated bid wins the auction. If
their candidate wins the auction, the subsidizing vehicles will be able to take
part in a subsequent auction earlier. Instead of sending a call for proposals only
to candidates the intersection agent sends it to the vehicles behind candidates
as well, together with the information that their offer would only be a subsidy
for the candidate of their direction. Once a candidate is chosen, the vehicles of
its direction receive an accept-proposal (see also Fig. 3).

Compared to the basic variant, only one desideratum is different: Incentive
compatibility is not guaranteed. A driver might hope that drivers waiting behind
him subsidize him. He could be tempted to offer less than his true valuation.
In our evaluation, we assume that drivers do reveal their true valuations. Even
though this might be too optimistic, we do so to quantify the potential of this
variant. Note that it is not clear who would offer less, after all. The drivers
of vehicles waiting behind could offer less as well, because it is still unclear if
they will actually benefit from subsidizing vehicles in front. As future work, we
will investigate if sealed-bid combinatorial auctions are a better solution to this
problem.

Both variants of ITSA take valuations of waiting-time reduction into account
in the initial time-slot-acquisition phase already (Step 2). Nevertheless, they
could also be combined with mechanisms of Step 3. Vehicles arriving late can
acquire time slots which have been auctioned off before their arrival.
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Fig. 3. Auction with subsidizing vehicles Fig. 4. Intersection layout

5 Evaluation

To evaluate the benefits of the proposed mechanisms we use simulations. This is
in line with other research on traffic management at intersections, e.g., [2,14,15].
We have developed a simulation framework of our own, using a space-continuous
and time-discrete simulation model. This simulation framework allows simulating
drivers, driver-assistance systems and vehicles at intersections. We have used
the Java Agent DEvelopment Framework (JADE, http://jade.tilab.com) for the
implementation of the multi-agent system. Agent-based simulation frameworks
are not applicable because we do not use agents for simulation. Instead, we
simulate the traffic environment for agent-based driver-assistance systems.

5.1 Settings

Our simulations have the following characteristics. We investigate a symmetric
intersection consisting of four directions. Each direction has two incoming (right
and left) and two outgoing (right and left) lanes. For each direction the right
incoming lane allows to turn right and to go straight (both into the right outgoing
lanes). The left incoming lane allows to turn left and to go straight (both into
the left outgoing lanes) (see Fig. 4).

On every lane the maximum speed is 50km/h, the speed limit within German
cities. The length of incoming and outgoing lanes is 230m. There is a virtual
traffic sign 200m before the intersection indicating that vehicle agents can request
time slots from the intersection agent. The radius of the intersection is 20m.
Thus, a vehicle crossing the intersection in straight direction drives 230 + 20 +
20 + 230 = 500m in total. Vehicles can accelerate with at most 3m/s2 and
decelerate with at most 8m/s2.

Each simulation run simulates 40 minutes. We ignore the vehicles leaving the
neighborhood during the first 10 minutes to avoid biased results (initial phase).
We use the vehicles leaving during the next 30 minutes (observation phase) to
compute the average waiting time Tw and the average weighted waiting time
vTw. Vehicles arrive with interarrival times exponentially distributed with mean
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1
λ = 36s from every incoming lane. This means that 100 vehicles arrive per hour
on average on each incoming lane. The exponential distribution is common in
queuing theory and in stochastic scheduling for arrival processes [16]. A vehicle
can choose two different directions where to go, as mentioned before. The two
possible directions are chosen randomly with probability p = 0.5. The driver
valuations of waiting-time reduction are modeled as an exponential distribution
with mean 1

λ = 0.01. Since valuation-aware traffic-control mechanisms do not yet
exist in the real world, we could not rely on any empirical data when specifying
this parameter.

Clearly, if the volume of traffic exceeds the capacity of the intersection, drivers
will be unsatisfied with any traffic-control mechanism. With the numbers given so
far, the volume of traffic is in line with the capacity of the intersection: We allow
only one vehicle to cross the intersection at the same time. Thus, its capacity
is 3600s/4s = 900 vehicles per hour. This is because the crossing time is 4s for
every vehicle independent of the direction. Our average traffic volume in turn is
800 vehicles per hour.

5.2 Mechanisms Evaluated

We have implemented two mechanisms, ITSA without subsidies (ITSA−) and
ITSA with subsidies (ITSA+) in Step 2. Both mechanisms do not include any
further activities in Step 3. We compare both ITSA− and ITSA+ to FIFO with-
out any further activity in Step 3.

In our setup, the allocation of a time slot with both ITSA− and ITSA+ takes
place 12 seconds in advance. I.e., a time slot is auctioned 12 seconds before
it begins, three times the duration of a slot. For each auction candidates and
subsidizing vehicles compute their offer by multiplying their true valuation per
second v with the duration of a time slot T = 4s. This duration is the maximum
time a vehicle needs to cross the evaluated intersection. Because budgets do not
influence effectiveness, all vehicles in our experiments have budgets that are high
enough to pay their valuations. In other words, vehicles can always afford to pay
their bid.

The performance of a mechanism does not only depend on the average number
of vehicles arriving at an intersection, but also on the distribution of arrival
times. Therefore, a comparison of mechanisms is meaningful only if we compare
equally initialized simulation runs. This means that every vehicle has the same
type, start time and route in all simulation runs compared. We use 25 randomly
chosen numbers as seeds for the runs, to compare the i-th run of FIFO to the
ones of ITSA− and of ITSA+.

5.3 Results

We compare the differences of average waiting time Tw and of average weighted
waiting time vTw of equally initialized simulation runs between FIFO and ITSA−

and between FIFO and ITSA+. For all 25 simulation runs we compute the mean,
standard deviation σ, and the 99% confidence interval (CI) of the differences.
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Table 1. FIFO vs. ITSA−

mean σ 99% CI

ΔTw -0.045 0.296 [-0.210, +0.121]
ΔTw

T
(F IF O)
w

-0.005 0.024 [-0.019, 0.008]

ΔvTw 0.048 0.024 [0.034, 0.062]
ΔvTw

vT
(F IF O)
w

0.306 0.077 [0.263, 0.349]

Table 2. FIFO vs. ITSA+

mean σ 99% CI

ΔTw -0.232 0.245 [-0.369, -0.095]
ΔTw

T
(F IF O)
w

-0.018 0.018 [-0.028, -0.008]

ΔvTw 0.067 0.025 [0.053, 0.081]
ΔvTw

vT
(F IF O)
w

0.430 0.044 [0.406, 0.455]

T
(FIFO)
w is the waiting time with FIFO, T

(ITSA−)
w and T

(ITSA+)
w are the ones

with ITSA− and ITSA+. When comparing FIFO and ITSA−, the absolute dif-
ference of average waiting times is ΔTw = T

(FIFO)
w − T

(ITSA−)
w , and the one of

average weighted waiting times is ΔvTw = vT
(FIFO)
w − vT

(ITSA−)
w . The relative

difference of average waiting time is ΔTw/T
(FIFO)
w , and of the weighted one

is ΔvTw/vT
(FIFO)
w . When comparing FIFO and ITSA+, the notation and the

formulae are analogous.

FIFO vs. ITSA−. Table 1 lists both the absolute and the relative differences
of the average waiting time Tw and the average weighted waiting time vTw for
FIFO and ITSA−. ITSA− reduces the average weighted waiting time vTw by
0.048 units, i.e., by 30.6% on average. The 99% confidence interval shows that
these results are reliable. The relative difference is between 26.3% and 34.9% in
99% of all cases. ITSA− increases the average waiting time only slightly by 0.5%
on average, compared to FIFO. Thus, ITSA− is effective regarding this waiting
time. At the same time, it leaves the average waiting time nearly unchanged.

FIFO vs. ITSA+. Table 2 lists the absolute and the relative differences of
the average waiting time and the average weighted waiting time for FIFO and
ITSA+. ITSA+ reduces the average weighted waiting time vTw by 0.067 units,
i.e., by 43.0% on average. The 99% confidence interval tells us that these results
are very reliable. The relative difference is between 40.6% and 45.5% in 99% of
all cases. ITSA+ increases the average waiting time Tw only slightly, by 1.8% on
average, compared to FIFO. In other words, ITSA+ is very effective regarding
average weighted waiting time, and the average waiting time remains nearly
unchanged as well.

Avoidance of Starvation. To evaluate the influence of an auction on vehicles
with low valuations, we compare the average waiting time Tw;10% of the 10% of
the vehicles with the lowest valuation. Table 3 lists both the absolute and the
relative difference of the average waiting time Tw;10% for FIFO vs. ITSA− and
for FIFO vs. ITSA+. ITSA− increases this waiting time by factor 2.518, ITSA+

by factor 1.970. These increases are not surprising because an auction affects the
participants with low valuations negatively. Even though both mechanisms do
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Table 3. Characteristics of the 10% of the vehicles with the lowest valuation

FIFO vs. ITSA− FIFO vs. ITSA+

ΔTw;10% -23.402 -14.454
ΔTw;10%

ΔT
(F IF O)
w;10%

-1.518 -0.970

not guarantee avoidance of starvation, we think that their negative effects are
limited. We will examine the extensions described earlier to avoid starvation as
future work, to foster social acceptance of our mechanisms.

Subsumption. The results so far are promising. The variants evaluated reduce
average weighted waiting time significantly, without increasing average waiting
time by much. Compared to ITSA−, ITSA+ reduces average weighted waiting
time by an additional 12.4%, while loosing incentive compatibility. To decide if
this additional gain is worthwhile, we plan to carry out experiments with real
users, as motivated earlier. ITSA+ also improves the average waiting time Tw;10%

of the 10% of the vehicles with the lowest valuation. Tw;10% increases much
less than with ITSA−. Our experiments also show that an auction mechanism
which considers all vehicles at an intersection and not only the candidates can
outperform variants which do not do so.

6 Conclusion

Traditional approaches for traffic management do not consider the different
driver valuations of waiting-time reduction. But valuation-aware traffic control
is expected to increase overall satisfaction significantly. In this article we have
proposed a new mechanism for traffic control at intersections which takes the
different valuations of waiting-time reduction into account, Initial Time-Slot
Auction (ITSA). We have proposed and discussed refinements of this mecha-
nism which avoid starvation and allow other vehicles to subsidize vehicles in
front.

As part of our evaluation, we have compared our new mechanism to the state-
of-the-art FIFO mechanism. We have seen that all evaluated variants reduce
average weighted waiting time significantly, without influencing average waiting
time a lot.

An important conclusion from this study is that a valuation-aware traffic-
control mechanism at intersections should include as many vehicles as possible.
The refinements proposed here head for this direction.

As future work, one issue which we will investigate is vehicles crossing a
sequence of intersections. In such a setting, vehicle agents will have to plan
its expenses, and intersection agents may cooperate.
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Abstract. This paper presents a design of high-performance agent-
based intrusion detection system designed for deployment on high-speed
network links. To match the speed requirements, wire-speed data acqui-
sition layer is based on hardware-accelerated NetFlow like probe, which
provides overview of current network traffic. The data is then processed
by detection agents that use heterogenous anomaly detection methods.
These methods are correlated by means of trust and reputation models,
and the conclusions regarding the maliciousness of individual network
flows is presented to the operator via one or more analysis agents, that
automatically gather supplementary information about the potentially
malicious traffic from remote data sources such as DNS, whois or router
configurations. Presented system is designed to help the network op-
erators efficiently identify malicious flows by automating most of the
surveillance process.

1 Introduction

With the increasing number of Internet users, provided services and current
generation of online multimedia services, the speed of most Internet links has
increased significantly. This increase rendered many past methods for intrusion
detection obsolete, and current backbone networks lack efficient technology for
real-time detection of malicious traffic. While it may be technically possible
to perform traffic analysis by means of existing signature matching techniques
running on dedicated high-performance hardware, the high rate of false positive,
and high cost of associated human supervision makes systematic surveillance
uneconomical.

To address the above situation, and to enable the operators of backbone and
large enterprise networks to analyze current threats in near real-time, we present
a design of an autonomous system able to detect malicious traffic on high-speed
networks and to alert the operators efficiently. While the system reasoning is
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based on intelligent agents and multi-agent methods, the network traffic data
acquisition and preprocessing in both dedicated adaptive hardware and special-
ized software is essential for project success. This is due to the fact that the
traditional agent techniques are not well suited for efficient low-level traffic pro-
cessing.

In the work presented in this paper, we aggregate the network data to cap-
ture the information about network flows, unidirectional components of TCP
connections (or UDP, ICMP equivalent) identified by shared source and destina-
tion addresses and ports, together with the protocol, and delimited by the time
frame used for data acquisition (see Section 3.1). This information provides no
hint about the content of the transmitted data, but by detecting the anoma-
lies in the list of flows acquired over the monitoring period, we can detect the
anomalies and possible attacks, albeit with limited effectiveness.

2 Related Work

In order to detect an attack from the flow information on the backbone level,
especially without any feedback from the affected hosts, we have to analyze the
patterns in the traffic data, compare them with normal behavior and conclude
whether the irregularity corresponds to a known attack profile or not. This ap-
proach to Network Intrusion Detection, typically based on the flow information
captured by network flow monitor is currently an important field of research into
anomaly based intrusion detection. Numerous existing systems, based on traffic
volume analysis modeled by Principal Component Analysis (PCA) methods [1],
models of entropy of IP header fields for relevant subsets of traffic [2,3], or just
count of the flows corresponding to the selected criteria [4] offer each a particular
valid perspective on the network traffic.

The MINDS system [4] represents the flow by basic NetFlow aggregation
features (srcIP, srcPrt, dstIP, dstPrt, protocol) and complements them by the
number of the flows from the same srcIP, to the same dstIP and their combina-
tions with dstPrt and srcPrt respectively. These properties are assessed both in
time and number of connections defined windows, to account for slow scanning.
The system proposed by Xu et al. [2] for traffic analysis on backbone links also
uses the NetFlow based identity 5-tuple. The context of the single connection is
defined by the normalized entropy of srcPrt, dstPrt and dstIP dimensions of the
set of all connections from the srcIP of the flow in the current time frame. An-
other perspective anomaly detection mechanism can be based on the observation
of traffic volumes in high-speed network. Lakhina et al. [5] uses statistical mod-
eling to identify the anomalous origin-destination-aggregated flows. The method
is based on Principal Component Analysis. In another work of the same authors
[3], the PCA method is used to model the normal and residual entropy, to re-
move the systematic elements of the data before clustering. The clustering then
emphasizes the anomalous characteristics of the traffic.

The above listed systems are appropriate for direct deployment on backbone
network, with a specific limitations of MINDS that was designed to protect
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a large, open network common in university environment. Besides the above-
mentioned sample of backbone anomaly detection mechanisms, there are nu-
merous research and commercial systems designed to protect local networks. A
typical representative of recently developed system is a SABER [6], which ad-
dresses not only threat detection, but attempts to actively protect the system
by automatically generated patches. Technical perspective on many existing IDS
systems, including SNORT [7] and other signature matching techniques that de-
tect intrusions by detecting patterns specific to known attacks in network traffic,
can be found in [8]. A good, even if slightly outdated review of classic research
and systems in the domain is provided by [9].

3 Architecture

In our approach, we have decided not to develop a novel detection method,
by rather to integrate several methods [1,2,3,4] with an extended trust mod-
els of a specialized agent. This combination allows us to correlate the results
of the used methods and to combine them to improve their effectiveness. Most
anomaly detection methods today are not fit for commercial deployment due
to the high ratio of false positives (legitimate traffic classified as malicious) or
false negatives (malicious traffic classified as legitimate). While their current
level of performance is a valid scientific achievement, the costs associated with
supervision of such systems are prohibitive for most organizations. Therefore,
our main research goal is to combine the efficient low-level methods for traffic
observation, with multi-agent detection process to detect the attacks with com-
paratively lower error rate see Table 2, and to provide the operator with efficient
incident analysis layer presented in Section 3.3. This layer supports operator’s
decisions about detected anomalies by providing additional information from re-
lated data sources. The layer is also responsible for visualization of the anomalies
and the detection layer status.

The architecture consists of several layers with varying requirements on on-line
processing characteristics, level of reasoning and responsiveness. While the low-
level layers need to be optimized to match the high wire-speed during the network
traffic acquisition and preprocessing, the higher layers will use the preprocessed
data to infer the conclusions regarding the degree of anomaly and consecutively
also the maliciousness of the particular flow or a group of flows. Therefore,
while the computation in the higher layers must be still reasonably efficient,
the preprocessing by the lower layers allows us to deploy more sophisticated
algorithms. System can be split into these layers, as shown in Figure 1:

• Traffic Acquisition and Preprocessing Layer: The components in this
layer acquire the data from the network using the hardware accelerated NetFlow
probes [10] and perform their preprocessing. This approach provides the real-
time overview of all active unidirectional connections on the observed link. In
order to speed-up the analysis of the data, the preprocessing layer will aggregate
meaningful global and per-flow (or group of) characteristics and statistics.
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• Cooperative Threat Detection Layer: This layer will principally consist
of specialized, heterogeneous agents that would seek to identify the anomalies
in the preprocessed traffic data by means of their extended trust models [11].
Their collective decision regarding the degree of maliciousness of a flow with
certain characteristics shall use a reputation mechanism. The agents will run
inside the A-globe agent platform [12] and will use its advanced features like
agent migration and cloning to adapt the system to the traffic and relevant
threats.

• Operator and Analyst Interface Layer: This layer is responsible for in-
teraction with operator. The main component is the intelligent agent called My-
croft that will help the operator to analyze the output of the detection layer, by
putting the anomaly information in context of other relevant information. When
the detection layer detects suspicious behavior on the network it is reported to
Mycroft. Mycroft opens the new case and retrieves relevant information from
available data sources. Network operator can explore and evaluate the reported
case subsequently. Another part of this layer is a set of lightweight, special-
ized visualization agents that will allow the operator to follow only the selected
characteristics of the system.

Agent AgentAgent

Traffic Acquisition and
Preprocessing Layer

Detection Layer
Cooperative Threat

Interface Layer
Operator and Analyst

Conclusions Conclusions

FlowMon probe FlowMon probe FlowMon probe

Collector Preprocessing

User Interface

Anomalies Anomalies

Suspicious Behaviour

Preprocessed Data

NetFlow Data

Mycroft Agent

Fig. 1. System overview, with network probes, acquisition and preprocessing layer at
the bottom, agent platform for anomalies detection in the middle and visualization on
the top

3.1 Traffic Acquisition and Preprocessing Layer

The traffic acquisition and preprocessing layer is responsible for acquiring net-
work traffic, preprocessing data and providing traffic characteristics to upper sys-
tem layers. We use the flow characteristics, based on information from packet’s
headers.

In general, flows are a set of packets which share a common property. The
simplest type of flow is a 5-tuple, with all its packets having the same source and
destination IP addresses, port numbers and protocol. Flows are unidirectional
and all their packets travel in the same direction. For the flow monitoring we
use NetFlow protocol developed by Cisco Systems [13].
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The amount of traffic in nowadays high-speed networks increases continuously
and traffic characteristics change heavily in time (network throughput fluctua-
tion due to time of day, server backups, DoS attacks, scanning attacks, etc.).
Performance of network probes must be independent of such states and behave
reliably in all possible cases. The quality of provided data significantly effects
the upper layers and chances to detect traffic anomalies.

Therefore we use hardware accelerated NetFlow probes (see Figure 2). Flow-
Mon probe is a passive network monitoring device based on the COMBO hard-
ware [10], which provides high performance and accuracy. The FlowMon probe is
preferred due to implemented features which contains packet/flow sampling, sev-
eral sampling types, active/inactive timeouts, flow filtering, data anonymization,
NetFlow protocol version 5 and 9 support. The FlowMon probe handles 1 Gb/s
traffic at line rate in both directions and exports acquired NetFlow data to dif-
ferent collectors. Detailed evaluation of these crucial capabilities is described in
Section 4.

Fig. 2. FlowMon - COMBO6X PCI-X 64/66MHz hardware accelerated card [14]

The collector stores incoming packets with NetFlow data from FlowMon
probes into database. The collector provides interface to graphical and text repre-
sentation of network traffic, flow filtration, aggregation and statistics evaluation,
using source and destination IP addresses, ports and protocol.

To process acquired IP flows by upper system layers the preprocessing must
be performed on several levels and in different manners. Packets can be sam-
pled (random, deterministic or adaptive sampling) on input and the sampling
information is added to NetFlow data. On the collector side the same flows are
aggregated to reduce the amount of data without information loss and several
statistic characteristics (average traffic values, entropy of flows) are computed.
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Even after their deployment in monitored network, the probes can be repro-
grammed to acquire new traffic characteristics. The system is fully reconfigurable
and the probes can adapt their features and behavior to reflect the changes in
the agent layer. As we can see in Section 4, presented solution can acquire un-
sampled flow data from even very fast links. The proposed traffic acquisition and
preprocessing layer is able to provide real-time traffic characteristics to detect
anomalies by upper system layers.

3.2 Cooperative Threat Detection Layer

Cooperative threat detection is based on the principles of trust modeling [15]
that are an integral part of agent research. However, there are three important
features [11] that must be added to trust modeling to cover our domain-specific
requirements:

• Uncertain Identity Modeling: Baseline trust models evaluate the behavior
of individual agents, whose identity is guaranteed (to an extent) by the multi-
agent platform or similar computational environment. In the network domain,
we have to evaluate the trustfulness of network flows, and while they can be
distinguished as unique identities, this distinction is unpractical from the intru-
sion detection perspective. We represent the connections in a metric space, and
use the associated distance function to assess the similarity of the flow repre-
sentations in this space. All detection agents use the same NetFlow 5-tuple to
construct the identity representations, but may obtain different results regarding
the similarity due to the use of different distance functions. For example, one
agent can emphasize the similarity of srcIP address (and likely host), while the
others may concentrate on ports that are more application specific. This vari-
ability makes the agent perspective on the system multi-faceted, and the attacks
are less likely to avoid multiple agents.

• Context Modeling: Merely representing the flow identities in the metric
space and evaluating their trustfulness gives unsatisfactory results, as it ignores
the most important information from the NetFlow data – the information about
the other, similar flows in the current traffic sample. This information constitutes
the context of the trusting decision [16], and together with the identity defines the
Identity-Context metric space, where the detection agents assess the trustfulness
of flow representations. Each of the agents uses its own particular context space,
typically based on the existing anomaly detection methods. For instance, we can
complement the information about the flow by the number of flows from the
same srcIP and same dstPrt, or with an entropy of dstIP addresses computed
over all flows with the same srcIP. The use of this information is twofold; each
agent uses it to place the flow representations in the Identity-Context space of its
trust model, and in the same time to provide the information about the degree
of flow anomaly to other trusting agents.

• Implicit Feedback Mechanism: The principal input of classic trust mod-
els is a result of past cooperations with the partner: quality of service, degree
of success, on-time delivery and other domain specific parameters. In our case,



140 M. Rehák et al.

the system is deployed on backbone network and it is very difficult to obtain
the feedback that can be associated with the current traffic on the network;
cooperative IDS (like dshield.org) typically provide unsynchronized feedback,
and not all the threats are Internet-wide. Obtaining the feedback from the con-
nected operators or organizations is even more difficult: while the IETF has
several working groups focusing on incident response interoperability, the bulk
of the work is not suitable for real-time data processing, and concentrates on
human-to-human interaction. Therefore, we use the information regarding the
flow anomaly as assessed by the other agents to replace the direct feedback,
therefore connecting the anomaly detection between diverse agents.

Trusting
Agent

Centroid Update

Trust Update

Flows

Preproc. Results

Anomaly communication

Conclusions (malicious/legitimate)

Other
Agents

Fig. 3. Overview of detection (trusting) agent operations

While processing the information about the network flows (see Fig. 3), each
trusting agent receives an identical copy of network flows list and associated
pre-extracted statistics. Then, it uses its specific preprocessing to determine the
anomaly of each flow (in most cases working only with already extracted statis-
tics) and to communicate the list of anomalies to other agents. In its turn, the
agent also receives the anomalies from the others, and starts the flow processing
by its internal trust model. As we have implicitly suggested above, the trust-
fulness is not associated to individual flows, but rather to selected objects in
the Identity-Context space. Individual flow is therefore represented by its iden-
tity (i.e. NetFlow 5-tuple) and the associated context is retrieved to determine
its position in the Context subspace. Then, we retrieve the positions of nearby
centroids from the current trust models and update their trustworthiness with
an aggregated degree of flow anomaly as determined by the other agents. When
there is no appropriate cluster in the vicinity of the observed flow, a new cluster
is created. The details of the approach are presented in [11].

Performance of an isolated detection agent would be the same as a perfor-
mance of the anomaly detection method it is based on. As we have suggested
above, the agents base their evaluation of trustfulness not only on their local re-
sults, but also on the anomaly opinions of other agents (see Fig. 4). We argue that
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Fig. 4. Overview of collaboration between detection agents

this cross-correlation will help to filter-out most false positives on the level of in-
dividual agents, reducing the number of incidents to evaluate with other agents.
In the second phase of evaluation, each agent selects the flows it considers as
malicious and shares these flows with other agents. Agents then use a simple
voting protocol to reach a collective conclusion regarding the estimated mali-
ciousness of anomalous flows, further reducing the number of incidents reported.
Collectively accepted flows are then sent to analyst interface layer for further
filtering based on user preferences, and possibly assisted analysis by analyst.

The decision whether a given flow is trusted or untrusted depends on the
typical degree of anomaly in the observed network traffic. This parameter varies
widely with network type – the number of anomalies is typically low on corporate
or government networks, but is significantly higher on public Internet backbone
links, or in the university settings. To avoid the problems with manual tuning of
the system, we use a fuzzy-inference process integrated with the trust model to
decide whether the given flow is malicious, by computing its inference with Low
and High trust values. These values are determined similarly to the trustfulness
of individual flow representations, but are represented as two fuzzy intervals [17].

3.3 Operator and Analyst Interface Layer

The Cooperative Threat Detection Layer is coordinated by a super-agent My-
croft. Mycroft is again a multi-agent system. This system is constructed for
context based inference over information synthesized from various data sources.
The name of this system refers to the so called Mycroft problem well known from
Doyle’s Mycroft Holmes - a Sherlock Holmes’ brother. Every detected suspicious
behavior on the network is reported to the agent Mycroft by the detection layer.
Mycroft opens the new case subsequently and retrieves relevant information from
data sources to which it is connected. Then the network operator can explore
and evaluate the reported case together with contextual information retrieved
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from connected data sources. Using of this intelligent multi-agent system brings
the advantage of wide adaptation:

– adaptation to the guarded network (Where is the detection performed),
– adaptation to the detection layer status (How is the detection performed),
– adaptation to suspicious behavior on the network (What is the subject of

detection),
– adaptation to the given network operator (Who supervises detection),
– adaptation to the purpose of interaction with operator (Why are detection

results reported).

All these adaptations are possible thanks to the following construction: Indi-
viduals are classified into categories to express their properties. The individual
can be any object relevant to the suspicion detection or any elementary rela-
tion between such objects relevant to the suspicion detection. Individuals are
classified into categories with a measure from the interval < −1, 1 >. Value -1
stands for ”certainly not in given category”, value 1 stands for ”certainly is in
given category” and value 0 stands for ”cannot decide”. This classification is
called the elementary fact and is realized always in some context. The context
is nothing else than a set of elementary facts. All the information retrieved from
data sources is disassembled into elementary facts. This approach allows data
utilization in a way that fits actual situation. Presented construction is a straight
extension of the so called diamond of focus presented in [18] for the first time.
Formal definition of systems referred to as Knowledge and Information Robots
is provided in [19]. Multi-agent system Mycroft is one of the representatives of
Knowledge and Information Robots class.

• Adaptation to the Guarded Network: Mycroft uses available data sources
to support network operator’s evaluations and decisions. The system can be
taught using quite formalized natural language what kind of information given
data source contains, how to combine this information with all other information
that Mycroft already knowns or is capable to acquire and how to access this data
source. Mentioned teaching is to all intents and purposes done without program-
ming. Summary of typical data sources is listed in Table 1. Communication with
data sources is realized by the set of adapters for various types of data sources.
This use-case saves operator’s time and work in the decision making process.

• Adaptation to the Detection Layer Status: Multi-agent system can adapt
to changes in the detection layer. It monitors the current status of the detection
layer and of each agent present in the detection layer. It is also able to commu-
nicate with each agent. If the settings of detection layer change, the multi-agent
system Mycroft can deal with it using rules or can be simply retaught to be
ready for cooperation with new detection layer configuration. Interaction with
the detection layer is shown in Figure 5.

• Adaptation to Suspicious Behavior on the Network: Multi-agent sys-
tem can adapt to various types of suspicious behavior on the network. When
suspicious behavior on the network is reported by the detection layer, Mycroft
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Table 1. Table of data sources: first column contains data source description, sec-
ond column contains importance for network operator (1 – most important, 3 – less
important)

Topology User information
Routing tables of network hardware 1 Users allowed to log on target com-

puters
1

Trace route utility 2 Users currently present in room
with computer

2

Active network hardware configura-
tion files

1 Users currently logged on target
computer

1

SNMP information 2
Routing tables of computers 3

Profiles of typical user behavior 3

Rules and policy Available services
Firewall configuration 1 Port scan utility 2

NAT configuration 1 OS detection utility 3

Address resolution Administrative information
DNS configuration 1 Computer configuration 1

DHCP address assignment 2 Ports vs. typical services database 2

ARP tables 2 Physical location of device 1

WHO IS service 2 Known attacks database 2

NetFeeding Individual anomaly
detection

Cooperative
Conlusion

Intrusion
Report

   Mycroft

A

A

B

B

C

C
D

User

Fig. 5. Mycroft – detection layer interaction, Mycroft observes detection layer behav-
ior A - NetFlow data and statistics, B - Each Agent’s individual anomaly detection,
C - Agent’s negotiation and conclusions, D - Intrusion detection reports

asks connected data sources to get relevant information for given type of sus-
picious behavior. A pattern matching based transmutation is used to select the
relevant information.

Using additional knowledge provided by these data sources Mycroft can per-
form basic evaluations of the traffic situation and present this evaluations to
the network operator concurrently with the detection report. In some basic
cases, using pre-learned transmutation patterns, system can even evaluate this
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Fig. 6. Flow data visualization example. Oval nodes in graph represent network devices
identified by IP addresses. Arrows show direction of the flows.

suspicion as false positive and drop it. Again this is possible by the means of the
knowledge provided by suitable data sources.

If a new type of suspicious behavior on the network reveals, the system can
deal with it using rules or can be retaught. There is no need of reprogramming.

• Adaptation to Purpose of Interaction with the Operator: There are
various types of purposes of interaction with the operator (decision making re-
quest, notification, warning, etc.). Multi-agent system can adapt to these types
of purposes and provide suitable interaction with the network operator.

• Adaptation to Given Operator: It means that multi-agent system is able
to follow operator’s procedures, habits and preferences. It learns during rou-
tine work. When operator is not satisfied he can ask the system for different
presentation of given information.

Mycroft uses suitable visualization to support visual analytics and decision-
making process. It makes the interaction between operator and the whole system
efficient and helps operator to explore visual patterns while exploring the data.
The visualization and interaction with operator approach is very close to Human-
Centered Computing approach [20].

Mycroft uses various types of graphs as visual representation of network traffic
situations (see Figure 6) with dynamic user control techniques:

– level of detail selection,
– filtering,
– detail on demand showing.

Level of detail selection allows network operator to explore given data on
the level of subnets, particular IP addresses, ports or on the detailed level of
individual flows. Filtering allows operator to filter out unimportant information.
The operator can focus just on particular subnet or port and on the flows with



High-Performance Agent System for Intrusion Detection 145

given properties. Operator can also use detail on demand focus to get additional
relevant information from available data sources.

4 System Evaluation and Performance

The performance is becoming a key concern of Network Intrusion Detection
Systems (NIDS) in high-speed networks. The results of traffic acquisition and
processing vary depending on the amount of acquired data. Numerous existing
NIDS are based on commodity hardware with open-source software and very
limited hardware acceleration.

The Figure 7 shows flow statistics for various IP packet’s sizes transmitted
on Ethernet at a rate of a gigabit per second. The tests were performed with
the Spirent AX/4000 broadband test system [21]. The test system generated 5
flows with 500000 packets per flow for each packet size. The results of FlowMon
probe correspond to the maximal theoretical throughput on gigabit Ethernet
network. On the other hand the results of software NetFlow probe (nProbe [22])
are misrepresented for small IP packets. The nProbe was used on Linux OS with
Intel PCI-X network interface card and default kernel configuration.
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Fig. 7. Flow statistics acquired by SW and HW accelerated probe

Existing flow monitoring systems are mostly based on exporting flow data
from routers. The routers are dedicated for routing the data in networks and
enabling the flow export has often negative impacts on overall router perfor-
mance especially during attacks. The exported flows are sampled or limited to
maximal number of exported flows per second e.g. 5000 flows/s. In comparison
with FlowMon probe, user defined extensions can’t be added to the routers and
the adaptability is very limited.
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In our work we are focusing on the impact of packet sampling on anomaly
detection. The articles [23,24] study whether existing sampling techniques dis-
tort traffic features that are critical for effective anomaly detection. They show
that packet sampling methods (random packet sampling, random flow sampling,
smart sampling, and sample-and hold sampling) introduce fundamental bias that
degrades the performance of the anomaly detection algorithms. To avoid such
a misbehavior the FlowMon probe provides non-sampled data, without packet
loss at a line rate.

Table 2. Multi-agent system performance overview. The system process backbone link
traffic with average load of 800 Mb/s.

Processed DataLayer
Input Output

Operator Security Incidents
- incidents at a certain pri-
ority levels

Incident Handling
- resolving up to 10 high pri-
ority incidents per hour

Operator and Analyst
Interface Layer

Network Anomalies
- detected threats with addi-
tional network information

Detected Incidents
- priority-based incidents up
to 100 incidents/minute

Cooperative Threat De-
tection Layer

Network Traffic Statistics
- aggregated flow statistics
up to 100000 flows/minute

Detected Threats
- network traffic anomalies
up to 10000 threats/minute

Traffic Acquisition and
Preprocessing Layer

Network Traffic
- packets 125000 packets/s

Flow Statistics
- flows 3800 flows/s

The Table 2 shows the performance of multi-agent system. The observed net-
work traffic is processed by several layers to handle high amount of data in
current networks. Each layer has specific physical and performance limits e.g.
number of incidents which can be handled by human operator. To overcome such
limitations, the system is fully scalable and all layers can be distributed. The
multi-agent system adapts the detection behavior to reduce the number of false
positives and negatives so the final number of incidents fits the limits of human
operator.

5 Conclusions and Future Work

Our work presents a design of multi-agent system for network intrusion detection
that is optimized for deployment on backbone networks. The designed system
addresses two main limitations of existing intrusion detection systems – efficiency
and effectiveness. Deployment on high-speed links implies the need to process
the important quantity of data in near real-time, in order to prevent the spread
of novel threats. Therefore, the individual agents do not acquire the data from
the network directly, but receive the data already preprocessed, with the level of
detail that is appropriate for anomaly-based intrusion detection. Each detection
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agent in the system is based on existing anomaly detection technique, which
defines its perception of network flow identities in its trust model. Its private
view of the data is complemented by the opinions of other agents regarding the
anomaly of flows in the current traffic, therefore collaboratively improving the
effectiveness of anomaly detection process. When the agents reach a conclusion
regarding the untrustfulness of a particular subset of flows, they submit this ob-
servation to user-interface agent that automatically retrieves context information
(DNS records, history, etc.) to allow rapid analysis by human supervisors.

At the time of this writing, the first preliminary version of the complete sys-
tem is being integrated and the whole system is still under active development.
Therefore, we don’t present any definitive experimental results regarding its ef-
fectiveness of the complete system, but only the performance evaluations of criti-
cal components at the current integration stage. The data used for system testing
are acquired on Masaryk University network, connected to the Czech national
educational network (CESNET). In our future work, we will provide detailed
experimental evaluation of system deployment, and also analyze its performance
in countering a wide selection of currently observed malicious traffic.
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Abstract. Physically based rendering is the process of generating a 2D
image from the abstract description of a 3D Scene. Despite the develop-
ment of various new techniques and algorithms, the computational re-
quirements of generating photorealistic images still do not allow to render
in real time. Moreover, the configuration of good render quality param-
eters is very difficult and often too complex to be done by non-expert
users. This paper describes a novel approach called MAgarRO (standing
for “Multi-Agent AppRoach to Rendering Optimization”) which utilizes
principles and techniques known from the field of multi-agent systems
to optimize the rendering process. Experimental results are presented
which show the benefits of MAgarRO -based rendering optimization.

Keywords: MultiAgent, Rendering, Global Illumination, Optimization.

1 Introduction

The process of constructing an image from a 3D model comprises several phases
such as modelling, setting materials and textures, placing the virtual light
sources, and finally rendering. Rendering algorithms take a description of geom-
etry, materials, textures, light sources and virtual cameras as input and produce
an image or a sequence of images (in the case of an animation) as output. There
are different rendering algorithms – ranging from simple and fast to more com-
plex and accurate ones – which simulate the light behavior in a precise way. Such
methods are normally classified in two main categories, namely, local and global
illumination algorithms. High-quality photorealistic rendering of complex scenes
is one of the key goals and challenges of computer graphics. Unfortunately this
process is computationally intensive and may require a huge amount of time in
some cases (especially when global illumination algorithms are used), and the
generation of a single high quality image may take several hours up to several
days, even on fast computers. As pointed out by Kajiya [1], all rendering algo-
rithms aim to model the light behavior over various types of surfaces and try to
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solve the so-called rendering equation (which forms the mathematical basis for
all rendering algorithms). Because of the huge amount of time it requires, the
rendering phase is often considered to be a crucial bottleneck in photorealistic
projects. In addition, the selection of the input parameters and variable values of
the scene (number of samples per light, depth limit in ray tracing, etc.) is very
complex. Typically a user of a 3D rendering engine tends to “over-optimize”,
that is, to choose values that increase the required rendering time considerably
without affecting the perceptual quality of the resulting image.

This paper describes a novel optimization approach called MAgarRO based
on principles, techniques and concepts known from the area of multi-agent sys-
tems. Specifically, MAgarRO is based on design principles of the FIPA standards
(http://www.fipa.org), employs adaptation and auctioning, and utilizes expert
knowledge. The key advantages of this approach are robustness, flexibility, scala-
bility, decentralized control (autonomy of the involved agents), and the capacity
to optimize locally.

The paper is structured as follows. The following section overviews the state
of the art and the current main research lines in rendering optimization. Thereby
the focus is on the most promising issues related to parallel and distributed ren-
dering. This section also surveys approaches which aim at applying Artificial
Intelligence methods to rendering optimization and, more specifically, it points
to related work on rendering based on multi-agent technology. The next sec-
tion describes MAgarRO in detail. Then, in the next section empirical results
are shown that have been obtained for different numbers of agents and input
variables. The final section offers a careful discussion and concluding remarks.

2 Related Work

There are a lot of rendering methods and algorithms with different characteris-
tics and properties (e.g., [13,1,12]). Common to these algorithms is that different
levels of realism of the rendering are always related in one way or another to
the complexity and computation time required. Consequently, a key problem in
realistic computer graphics is the time required for rendering due to the compu-
tational complexity of the related algorithms. Chalmers et al. [3] expose various
research lines in the rendering optimization issues.

Optimization via Hardware. Some researchers use programmable GPUs
(Graphics Processing Units) as massively parallel, powerful streaming processors
than run specialized portions of code of a raytracer [6]. Other approaches are
based on special-purpose hardware architectures which are designed to achieve
maximum performance in a specific task [14]. These hardware-based approaches
are very effective and even the costs are low if manufactured in large scale.
The main problem is the lack of generality: the algorithms need to be designed
specifically for each hardware architecture. Against that, MAgarRO works at a
very high level of abstraction and runs on almost any existing rendering engine
without changes.
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Optimization using parallel/distributed computing. If the rendering task
is divided into a number of smaller tasks (each of which solved on a separate
processor), the time required to solve the full task may be reduced significantly.
In order to have all processing elements fully utilized, a task scheduling strategy
must be chosen. This task constitutes the elemental unit of computation of the
parallel implementation approach [3], and its output is the application of the
algorithm to a specified data item. There are many related approaches such
as [4] which use Grid systems for rendering over the Internet. Compared to
these parallel-computing approaches, MAgarRO uses dynamical in combination
with non-centralized load balancing, and this makes MAgarRO more efficient
especially when the number of nodes (thus the coordination overhead) increases.

Knowledge about the cost distribution across the scene (i.e., across the
different parts of a partitioned scene) can significantly aid the allocation of re-
sources when using a distributed approach to rendering. In fact, an estimated
cost distribution is crucial in commercial rendering applications which other-
wise could not be realized due to their enormous complexity. There are many
approaches based on knowledge about cost distribution; a good example is [8].

Distributed Multi-Agent Optimization. The inherent distribution of multi-
agent systems and their properties of intelligent interaction allow for an alter-
native view of rendering optimization. The work presented by Rangel-Kuoppa
et al. [7] uses a JADE-based implementation of a multi-agent platform to dis-
tribute interactive rendering tasks (rasterization) across a network. The distri-
bution of the tasks is realized in a centralized client-server style (the agents
send the results of the rasterization of objects to a centralized server). Although
this work employs the multi-agent metaphor, essentially it does not make use of
multi-agent technology itself. In fact, the use of the JADE framework is only for
the purpose of realizing communication between nodes, but this communication
is not knowledge-driven and no “agent-typical” mechanism such as learning and
negotiation is used.

The work on stroke-based rendering (a special method of Non Realistic Ren-
dering) proposed by Schlechtweg et al. [9] makes use of a multi-agent system
for rendering artistic styles such as stippling and hatching. The environment of
the agents consists of a source image and a collection of buffers. Each agent
represents one stroke and executes his painting function in the environment.

2.1 Comparison to MAgarRO

MAgarRO, the multi-agent approach to rendering proposed in this paper, sig-
nificantly differs from all related work on rendering in its unique combination of
the following key features:

– Decentralized control. MAgarRO realizes rendering in a decentralized
way through a group of agents coordinated by a master, where the group
can be formed dynamically and most services can be easily replicated. (As
regards decentralized control, MAgarRO follows the principle of volunteer
computing [2].)
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– Higher level of abstraction. While other approaches typically realize par-
allel optimization at a low level of abstraction that is specific to a particular
rendering method, MAgarRO works with any rendering method. All that is
required by MAgarRO are the input parameters of the render engine to be
used.

– Use of expert knowledge. MAgarRO employs Fuzzy Set Rules and their
descriptive power [11] in order to enable easy modelling of expert knowledge
about rendering and the rendering process.

– Local optimization. Each agent involved in rendering can employ different
models of expert knowledge. In this way, and by using a fine-grained decom-
position approach, MAgarRO allows for local optimization of each rendering
(sub-)task.

In combining these features, MAgarRO exploits and integrates some ideas from
related approaches to parallel rendering. For instance, MAgarRO ’s cost pre-
diction map (called Importance Map and described below) combines prediction
principles described in [5,9] with elements of Volunteer Computing as proposed
in [2] and demand driven auctioning known from agent-based task allocation.

3 The MAgarRO Approach

MAgarRO is a system which gets a 3D Scene as input and produces a resulting
2D image. From the point of view of the user the system works in the same way
as local render engines do, but the rendering in fact is made by different agents
spread over the Internet.

MAgarRO uses the ICE middleware (http://www.zeroc.com). The location
service IceGrid is used to indicate in which computers the services reside.
Glacier2 is used to solve the difficulties related with hostile network environ-
ments, making available agents connected through a router and a firewall.

The overall architecture of MAgarRO is based on the design principles of
the FIPA standard. In figure 1 the general class diagram for the architecture is
shown. There are some top-level general services (Start Service, Agent Manage-
ment System, Directory Facilitator and Agent Communication Channel) avail-
able to all involved agents. On start-up, an agent is provided with a root service
that describes or points to all the services available in the environment.

3.1 Architectural Overview

In MAgarRO a StartService offering two operations is available: an operation
called getServiceRoot to obtain directly a description of all basic services, and
another operation called supplyBasicService that enables the registration of a
new basic service in the system. In accordance with FIPA, a basic service is
defined by a unique Service Identifier (string in our case), at least one list of
Transport Addresses and a description of Service Type.

The Agent Management System (AMS) is a general service that manages the
events that occurs on the platform. This service also includes a naming service
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Fig. 1. MAgarRO general Class diagram

for White Pages which allow agents to find one another. The basic functionality
of the AMS is to register, to modify a subscription, to unregister agents, and to
search for agents.

A basic service called Directory Facilitator (DF) provides Yellow Pages for
the agents. As suggested by the FIPA standard, the operations of this service
are related to the services provided by an agent, the interaction protocols, the
ontologies, the content languages used, the maximum live time of registration
and visibility of the agent description in DF.

Finally, MAgarRO includes a basic service called Agent Communication Chan-
nel that receives and sends messages between agents. In MAgarRO only the
receive functionality is employed, because the send operation is implemented as
part of the agents. In accordance to FIPA standard, the data structure of each
message is composed of two parts: the content of the message and the envelope
(with information about the receiver and the sender of the message). The Agent
Communication Language used in MAgarRO is based on XML and uses DTD
as specified in the FIPA standard.

Each agent must implement a basic set of standard operations to be able
to run in the MAgarRO environment. This operations are suspend, terminate,
resume and receive a message.

In addition to the basic FIPA services described above, MAgarRO includes
specific services related to Rendering Optimization. Specifically, a service called
Analyst studies the scene in order to enable the division of the rendering task.
A blackboard is used to represent some aspects of the common environment of
the agents. The environmental models processed by the agents are managed by
the Model Repository Service. Finally, a master service called (Master) handles
dynamic groups of agents who cooperate by fulfilling subtasks. The Figure 2
illustrates this.
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Fig. 2. General workflow and main architectural roles

Figure 2 also illustrates the basic workflow in MAgarRO (the circled numbers
in this figure represent the following steps). 1 – The first step is the subscription
of the agents to the system. This subscription can be done at any moment; the
available agents are managed dynamically. When the system receives a new file to
be rendered, it is delivered to the Analyst service. 2 – The Analyst analyzes the
scene, making some partitions of the work and extracting a set of tasks. 3 – The
Master is notified about the new scene which is sent to the Model Repository. 4
– Some of the agents available at this moment are managed by the Master and
notified about the new scene. 5 – Each agent obtains the 3D model from the
repository and an auction is started. 6 – The (sub-)tasks are executed by the
agents and the results are sent to the Master. 7 – The final result is composed
by the Master using the output of the tasks previously done. 8 – The Master
sends the rendered image to the user. Key issues of this workflow are described
in the following.

3.2 Agent Subscription

As shown in Figure 1, a Render Agent is a specialization of a standard Agent,
so all the functionality and requirements related with FIPA are inherited in
his implementation. There are two actions that could be done by an agent: to
add a subscription or to unsubscribe from a group of rendering agents. These
operations are related to a Master agent. The subscribe operation requires two
parameters: the name of the agent and the proxy that represents the agent as
a client. Using this proxy the Master could execute remote operations on the
agent side. An agent can drop the association with a specific master by means
of an unsubscribe operation.
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The first time an agent subscribes to the system, he runs a benchmark to
obtain an initial estimation of his computing capabilities. This initial value is
adapted during rending in order to obtain a more accurate prediction.

3.3 Analysis of the Scene Based on Importance Maps

MAgarRO employs the idea to estimate the complexity of the different tasks in
order to achieve load-balanced partitining. Complexity analysis is done by the
Analyst agent prior to (and independent of) all other rendering steps.

Fig. 3. Importance maps. Left: Blind partitioning (First Level). Center: Join zones
with similar complexity (Second Level). Right: Balancing complexity/size ratio (Third
Level).

The main objective in this partitioning process is to obtain tasks with similar
complexity to avoid the delay in the final time caused by too complex tasks. This
analysis may be done in a fast way independently of the final render process.

At the beginning, the Analyst makes a fast rasterization of the scene using an
importance function to obtain a grey scale image. In this image (called Impor-
tance Map) the dark zones represents less complex areas and the white zones the
more complex areas. In our current implementation a simple function is used (it
only takes in account the recursion levels in mirror and transparent surfaces). As
it is shown in Figure 3, the glass is more complex than the dragon because it has
a higher number of ray interactions. The table is less complex because it does not
have any of these properties. More advanced importance functions could be used
in this grey scale image generation, using perception-based rendering algorithms
(based on visual attention processes) to construct the importance map [10].

Once the importance map is generated, a partition is constructed to obtain a
final set of tasks. These partitions are formed hierarchically at different levels,
where at each level the partitioning results obtained at the previous level are
used. At the first level, the partition is made taking care of the minimum size
and the maximum complexity of each zone. With these two parameters, the
Analyst makes a recursive division of the zones (see Figure 3). At the second
level, neighbor zones with similar complexity are joined. Finally, at the third level
the Analyst tries to obtain a balanced division where each zone has nearly the
same complexity/size ratio. The idea behind this division is to obtain tasks that
all require roughly the same rendering time. As shown below in the experimental
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results, the quality of this partitioning is highly correlated to the final rendering
time.

3.4 Rendering Process

Once the scene is available in the Model Repository, the Master assigns agents
to the individual tasks identified by the Analyst. These agents, in turn, apply in
parallel a technique called profiling in order to get a more accurate estimation
of the complexity of each task.1 Specifically, the agents make a low resolution
render (around 5% of the final number of rays) of each task and announce on
the Blackboard the estimated time required to do the final rendering on the
blackboard.

Blackboard service. The blackboard used by the agents to share their knowl-
edge about the rendering task is implemented as a service offering a set of read
and write operations. The basic blackboard data structure (as shown in Figure 2)
has 7 fields labelled as follows. IdWork is a unique identifier for each scene, Id-
Zone is a unique identifier for each task of each work, Size is the number of pixels
of each task (width x height), Complexity is the estimated complexity of this
task, calculated by means of the importance map, Test is the Estimated Time
calculated through profiling by the agents, Treal is the actual time required to
finish a task, and Agent is the name of the agent who is responsible for rendering
this task.

Adaptation. As said above, the estimated time is represented in the same way
by all agents. More precisely, each agent has an internal variable that represents
his relative computational power (Vcp). For example, assume that V cp = 1 is
chosen as a reference value. If a task TA requires 5 minutes to be done by a
particular agent A who has Vcp = 0.5, he annotates on the blackboard that the
time required to complete TA is 10 minutes (i.e., the agent takes into account
that he runs on a relatively fast machine). On the other hand, if another agent
B running on a slow machine (Vcp = 2) announces that she needs 2 minutes to
complete task TB, then agent A can infer from this information that it would
take him 30 seconds to complete TB on his machine.

During run time, each agent adapts the value of his variable Vcp to obtain a
more accurate estimation of the required processing time as follows. Whenever
there is a difference between the estimated time Test and the actual completion
time T of a task, then an agent updates his internal variable Vcp according to

Vcp = (1 − k) × Vcp + k × (T − Test) (1)

where k a constant. Small values of k assure a smooth adaptation. (k is set to 0.1
in the experiments reported below.) This mechanisms should be improved with

1 Profiling is a technique which traces a small number of rays in a global illumination
solution and uses the time taken to compute this few rays to predict the overall
computation time.
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a more complex learning method that takes in account the historical behavior
and the intrinsic characteristics of the task (type of scene, rendering method,
etc...).

Auctioning. At every moment during execution, all agents who are idle take
part in an auction for available tasks. It is assumed that the agents try to obtain
more complex tasks first. If two or more agents bid for the same task, the Master
assigns it on the basis of the so called credits of these agents. The credit of an
agent represents his the success and failure w.r.t. previous tasks: an agent is said
to have success w.r.t. a task if he completes it in no more time than Test, and
otherwise he is said to fail w.r.t. this task. The amount added to, or subtracted
from, an agent’s credit is proportional to the time difference w.r.t. Test.

Using Expert Knowledge. When a task is assigned to an agent, a fuzzy rule
set is used in order to model the expert knowledge and optimize the rendering
parameters for this task. Fuzzy rule sets are known to be well suited for expert
knowledge modeling due to their descriptive power and easy exensibility. The
output parameters (i.e., the consequent part of the rules) are configured so that
the time required to complete rendering is reduced and the loss of quality is
minimized. Each agent may model (or capture) different expert knowledge with
a different set of fuzzy rules. In the following, the rule set we used for Pathtracing
rendering is described. The output parameters of the rules are:

– Recursion Level [Rl], defined over the linguistic variables [15] {VS, S, N,
B, VB}2. This parameter defines the global recursion level in raytracing
(number of light bounces).

– Light Samples [Ls], defined over the linguistic variables {VS, S, N, B, VB}.
This parameter defines the number of samples per light in the scene. The
biggest, the more quality in the scene and the higher rendering time.

– Interpolation Band Size [Ibs], defined over the linguistic variables {VS,
S, N, B, VB}. This parameter defines the size of the interpolation band in
pixels, and it is used in the final composition of the image (as we will see in
the next section).

The previous parameters have a strong dependency with the rendering method
chosen (in this case Pathtracing). Against that, the following parameters, which
are the antecedents of the rules, can be used for other rendering methods as well.

– Complexity [C], defined over the linguistic variables {VS, S, N, B, VB}.
This parameter represents the complexity/size ratio of the task.

– Neighbor Difference [Nd], defined over the linguistic variables {VS, S,
N, B, VB}. This parameter represents the difference of complexity of the
current task in relation to its neighbor tasks.

2 The notation used for the linguistic variables is typical in some works with Fuzzy
Sets. This is the correspondence of the linguistic variables: VS is Very Small, S is
Small, N is Normal, B is Big and finally VB is Very Big.
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– Size [S], defined over the linguistic variables {S, N, B}. This parameter
represents the size of the task in pixels (calculated as width x height).

– Optimization Level [Op], defined over the linguistic variables {VS, S, N,
B, VB}. This parameter is selected by the user, and determines the level of
optimization (more or less aggressive with initial parameters indicated by
the user).

Fig. 4. Definition of the output variables

The definition of the fuzzy sets of input variables is done dynamically in that
the intervals of this sets are calculated in runtime. For example, in a highly
complex scene VS is higher than VB is in a simple scene. The partition of these
variables is made by linear distribution. The same occurs with other parameters
like Size and Neighbor difference. In the case of the Pathtracing method, the
rule set is defined as follows (only two of 28 rules are shown, all rules have been
designed by an expert in PathTracing):

– R1: If C is {B,VB} ∧ S is B,N ∧ Op is VB

then Ls is VS ∧ Rl is VS

– R22: If Nd is VB then Ibs is VB

The output variables have their own fuzzy sets; we use trapezoidal functions as
shown in Figure 4.

Fig. 5. Left: Without interpolation undesirable artefacts appear between neighboring
parts. Linear interpolation solves this problem (at a price of slightly higher rendering
costs). Right: Diagram of task decomposition and interpolation band situation.



A MultiAgent System for Physically Based Rendering Optimization 159

3.5 Final Result Composition

With the results generated by the different agents, the Master composes the final
image. A critical issue w.r.t. composition is that there may be slight differences
(e.g., in coloring) between the neighboring parts obtained from different agents;
these differences result from the random component which PathTracing contains
as a Monte Carlo based method. Figure 5 (Left) illustrates this problem. For that
reason, the Master smoothes the meeting faces of neighboring parts through a
linear interpolation mask. More precisely, as shown in Figure 5 (Right) smooth-
ing between neighboring parts is done in a zone called Interpolation Band.

In MAgarRO the size of the Interpolation Band is an output parameter of
the rule set. In particular, the parameter gets a higher value if the difference
between the quality of neighboring zones is important. To reduce rendering time,
this parameter should be kept as small as possible to avoid unnecessary “‘double
work”’ done by different agents. This is particularly important if the zone is very
complex, as this also implies high costs for rendering the interpolation band. (In
our applications the amount of time required by MAgarRO for interpolation was
between 2% and 5% of the overall rendering time).

4 Experimental Results

The results reported in this section have been generated with the implementation
of MAgarRO 3. Moreover, these results are based on the following computer and
parameter setting: eight identical computers were connected to run in parallel
(Pentium Intel Centrino 2 Ghz, 1GB RAM and Debian GNU/Linux); as a ren-
dering method Pathtracing (Yafray 0.0.9 render engine (http://www.yafray.org))
was used; eight oversampling levels; eight recursion levels in global configuration
of raytracing; and 1024 Light samples by default. The scene to be rendered con-
tains more than 100.000 faces, 5 levels of recursion in mirror surfaces and 6 levels
in transparent surfaces (the glass). With this configuration, rendering on a single
machine without any optimization took 121 minutes and 17 seconds (121:17 for
short, below the amount of time needed for rendering is sometimes expressed in
the format Minutes:Seconds).

Table 1 shows the time required using different partitioning levels. These times
ha have been obtained using the N (Normal) optimization level (Figure 6 Left).
Using a simple first-level partitioning, a good render time can be obtained with
just a few agents in comparison to third-level partitioning. The time required
in the third partitioning level is larger because more partitions in areas having
higher complexity (i.e., in the glasses) are needed. This higher partition level
requires the use of interpolation bands and as an effect some complex parts of
the image are rendered twice. For example, the rendering time with one agent is
105 minutes in the third level and 93 minutes in first level. However, when the
number of agents grow, the overall performance of the system increases because
3 Download at (http://code.google.com/p/masyro06/) under GPL Free Software Li-

cense.
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Table 1. Different partitioning with Normal optimization level

Agents 1st Level 2nd Level 3rd Level

1 92:46 82:36 105:02

2 47:21 41:13 52:41

4 26:23 23:33 26:32

8 26:25 23:31 16:52

Fig. 6. Left: First/second/third level of partitioning with the N (Normal) optimization
level. Right: Different optimization levels (all with third level of partitioning).

Table 2. Third level of partitioning with different Number of Agents and level of
optimization

Agents VS S N B VB

1 125:02 110:50 105:02 85:50 85:06

2 62:36 55:54 52:41 42:55 42:40

4 31:10 27:11 26:32 22:50 22:40

8 23:43 20:54 16:52 16:18 15:58

the differences in the complexity of the tasks are relatively small. In first- and
second-level partitioning, there are complex tasks that slow down the whole
rendering process even if the number of agents is increased (the time required
with four or eight agents is essentially the same). On the other hand, the third
partitioning level works better with a higher number of agents.

Table 2 shows the time required to render the scene using different levels
of optimization but always third-level partitioning (Figure 6 Right). By simply
using a Small level of optimization results are obtained that are better than the
results for rendering without optimization. The time required with Very Small
optimization is exceeds the time to render the original scene. This is because
additional time is required for communication and composition.

Excellent results are also obtained when only four agents are used. For in-
stance, in the case of Normal level optimization, the time required to render
the scene is just about 26 minutes (whereas the original rendering time is 120
minutes). Figure 7 shows the results of rendering obtained for different configu-
rations.
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Fig. 7. Result of the rendering using different optimization levels. (a) No optimization
and render in one machine. (b) Very Small (c) Small (d) Normal (e) Very Big (f)
Difference between (a) and (e) (the lighter colour, the smaller difference).

As a final remark, note that optimization may result in different quality levels
for different areas of the overall scene. This is because more aggressive optimiza-
tion levels (i.e., Big or Very Big) may result in a loss of details. For example, in
Figure 7.e, the reflections on the glass are not so detailed as in Figure 7.a.

The difference between the optimal render and the most aggresive optimiza-
tion level (Figure 7.f) is minimal4.

5 Discussion and Conclusion

The media industry is demanding high fidelity images for their 3D scenes. The
computational requirements of full global illumination are such that it is practi-
cally impossible to achieve this kind of rendering in reasonable time on a single
computer. MAgarRO has been developed in response to this challenge.

The experimental results show that MAgarRO achieves excellent optimization
results. The use of the importance map assures an initial time estimation that
minimizes the latency of the latest task. In particular, as a result of optimization
MAgarRO achieves overall rendering times that are below the time required
by one CPU divided by the number of agents. Most important, MAgarRO is a
novel multi-agent rendering approach that offers several desirable features which
together make it unique and of highest practical value. In particular:

– It is FIPA-compliant.
– Due to the use of ICE Grid middleware layer, MAgarRO can be used in

heterogeneous hardware platforms and under different operating systems
4 In this example, the difference between the optimal render (Figure 7.a) and the image

obtained with the Very Big optimization level (see Figure 7.e) is 4.6% including the
implicit noise typical to monte carlo methods (around 1.2% in this example).
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(including GNU/Linux, MacOSX, Windows, etc.) without any changes in
the implementation.

– It enables importance-driven rendering through its use of importance maps.
– It employs effective auctioning and parameter adaptation, and it allows the

application of expert knowledge in form of flexible fuzzy rules.
– It applies the principles of decentralized control and local optimization, and

thus is scalable and very robust e.g. against hardware failures. The services
are easily replicable, thus possible bottlenecks in the final deploy can be
minimized.

– In presence of failures (e.g. an agent does not complete an assigned task or
obtain a wrong result), it is easy to apply the typical techniques of volunteer
computing systems [2].

MAgarRO is pioneering in its application of multi-agent principles to 3D re-
alistic rendering optimization. This opens several interesting research avenues.
Specifically, we think it is very promising to extend MAgarRO toward more so-
phisticated adaptation and machine learning techniques. The open technology
used in the development of MAgarRO allow the agents to reside and run on dif-
ferent machines around the world. Such a Grid version is a very effective answer
to the challenge of handling the enormous complexity of real-world rendering
applications.

In our current work, we concentrate on two research lines. First, the combi-
nation of different rendering techniques within the MAgarRO framework. Due
to the high abstraction level of MAgarRO , in princple different render engines
can be combined to jointly generate an image, using complex techniques only if
needed. Second, we are exploring the possibilities to equip MAgarRO with agent-
agent real-time coordination schemes that are more flexible than auctioning.
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Abstract. Recent years of empirical research have collected enough evidences 
that for efficient markets the process of lower-wealth accumulation by capital 
investment is approximated by log-normal and high-wealth range by Pareto 
wealth distribution. This research aims to construct a simple neural network 
(NN) based multiagent system of heterogeneous agents’ targeted to get on the 
efficiency frontier by combining investments to the real life index funds and 
nonrisky financial assets, diversifying the risk and maximizing the profits. Each 
agent is represented by the different stock trading strategy according to his 
portfolio, saving and risk aversion preferences. The goal is, following empirical 
evidences from the real investment markets, to find enough proofs that  
NN-based multiagent system, in principle, has the same fundamental properties 
of real investment markets described by the log-normal, Pareto wealth and Levy 
stock returns distributions and can be used further to simulate even more 
complex social phenomena.   

Keywords: Social Agents, Neural Networks, Investment Strategies. 

1   Introduction 

One of the most fruitful trends in empirical macroeconomics over the last fifteen 
years has been the effort to construct rigorous micro foundations for macroeconomic 
models. Broadly speaking the goal was to find empirically sensible models for the 
behavior of individual agents (people, firms, banks), which can then be aggregated to 
derive implications about macroeconomic dynamics. Separately, but in the similar 
spirit, researches at the Santa Fe Institute, the CESD, and elsewhere have been 
exploring “agent-based” models that examine the complex behavior that can 
sometimes emerge from the interactions between collections of simple agents [1].   

One of the questions is how to describe outliers, phenomena that lie outside of 
patterns of statistical regularity. Collaborative work joining economists and physicist 
has begun to lead to modest progress in answering questions of interest to both 
economists and physicists. Following statistical physics, it is becoming clear that 
almost any system comprised of the large number of interacting units has the potential 
of displaying power-law behavior. Since economic systems are comprised of a large 
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number of interacting units, it is perhaps not unreasonable to examine economic 
phenomena within the conceptual framework of scaling and universality [2].  

Recent attempts to make models that reproduce the empirical scaling relationships 
suggest that significant progress on understanding firm growth may be well 
underway, leading to the hope of ultimately developing a clear and coherent “theory 
of the firm”. One utility of the recent empirical work is that now any acceptable 
theory must respect the fact that power laws hold over typically six orders of 
magnitude. As Axtell put the matter rather graphically: “the power-law distribution is 
an unambiguous target that any empirically accurate theory of the firm must hit [1]. If 
one takes seriously power laws that appear to characterize financial and economic 
fluctuations, then he will have to face question what sort of understanding could 
eventually develop out of it.  

Recently, it has come to be appreciated that many such systems consisting of a 
large number of interacting subunits obey universal laws that are independent of the 
microscopic details. The finding, in physical systems, of universal properties that do 
not depend on the specific form of the interactions gives rise to the intriguing 
hypothesis that universal laws or results may also be present in economic and social 
systems. If so, then our simplified social model of interacting agents should exhibit 
the same laws too.  

Recent extensive analysis of short-term returns has shown that price differences, 
log-returns, and rates of return are described extremely well by a truncated Levy 
distribution [1]. In this respect, proposed research is potentially significant, since it 
provides a simulation framework within which empirical laws like power-law and 
Levy distribution can be observed and studied within the parameters space of the 
simulated model. Specifically, the model fulfils these requirements for such a basic 
microscopic model of the stock market. It is founded on the basic realistic features of 
the stock market, and reflects the view that market participants (agents) have of the 
functioning of the market, as well as the main determinants of their trading 
behavior[3]. 

Following rationality assumption, our agent is a subjective expected utility 
maximizer. We hold this assumption true than designing our model. The level of 
savings, the portfolio and risk aversion that agents choose may be affected by these 
individual factors. One way to think of this is to think of agents who have the same 
objective but different expectations, and, therefore, hold different portfolios. This will 
cause wealth to flow between the agents over time [1].  

When agents have identical discount factors, those who survive best in terms of 
owned assets are those whose forecasts are closest in relative entropy to the truth. The 
agent with rational expectations survives, and most of agents who do not have rational 
expectations vanish in terms of possessed economic wealth. In the economy in which 
agents have heterogeneous beliefs or heterogeneous learning rules, structure on long-
run prices arises from the forces of market selection. It has long been assumed that 
those with better beliefs will make better decisions, driving out those with worse 
beliefs, and thus determining long run assets prices and their own welfare.  

Bearing in mind financial implications for rational agents, a number of theoretical 
and empirical studies have suggested that efficient market hypothesis is true at least in 
a weak form [4]. A natural outcome of a belief in efficient market is to employ some 
type of passive strategy in owning and managing common stocks. If the market is 
totally efficient, no active strategy should be able to beat the market in a risk-adjusted 
basis [4]. Passive strategies do not seek to outperform the market but simply to do as 
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well as the market. The emphasis is on minimizing transaction costs and time spent in 
managing the portfolio because any expected benefits from active trading or analysis 
are likely to be less than the costs1. 

The discussion above shows us that there are different approaches, often 
contradictory to each other, which are employed by investors as different investment 
strategies. In our approach, we hold that a very effective way to employ a passive 
strategy with common stocks is to invest in an indexed portfolio2. An increasing 
amount of mutual fund and pensions fund assets can be described as passive equity 
investments. Using index funds3, these asset pools are designed to duplicate as 
precisely as possible the performance of some market index.  

In our model, we give to investors even more freedom as they are free to choose 
their portfolios composed from different index funds. In this way, they achieve higher 
diversification and individual stocks related risk aversion, which is based on the 
weighted performance of the portfolio of indices. Therefore, the proposed approach is 
semi-passive as our agents invest to the whole market having ability to switch from 
one index fund to another if better profit opportunities are forecasted.  

Regarding the methodical aspect of our novel technique (see next sections), 
reinforcement learning seems to be close match as it is a sub-area of machine learning 
concerned with how an agent ought to take actions in an environment so as to 
maximize some notion of long-term reward. Reinforcement learning algorithms 
attempt to find a policy that maps states of the world to the actions the agent ought to 
take in those states.  

This is exactly what our supervised learning approach based on NN learning and 
simulating is aimed to do, but it differs essentially from the reinforcement learning 
algorithms (like Q-learning) in a way how correct input/output pairs are presented and 
sub-optimal actions are explicitly corrected.  

The paper is organized as follows. Section 2, below, introduces with research 
framework, i.e. here we formulate the major assumptions and model setup for the 
multiagent system of agents‘. Section 3 introduces with the experimental setup. 
Section 4 offers an overview of operational procedures, i.e. how agent operates in the 
investment environment. Section 5 summarizes the findings and discusses the further 
implications towards the more complicated system of interacting social agents giving 
future direction for the related research.  
                                                           
 1 Evidence to support this view comes from a study by Odean and Barber, who examined 

60000 investors. They found the average investor earned 15.3 percent over the period 1991-
1996 whereas the most active traders (turning over about 10 percent of their holdings each 
month) averaged only 10 percent [4]. An investor can simply follow a buy-and-hold strategy 
for whatever portfolio of stocks is owned. 

 2 Index funds arose in response to the large body of evidence concerning the efficiency of the 
market, and they have grown as evidence of inability of mutual funds to consistently, or even 
very often, outperform the market continues to accumulate. The available evidence indicates 
that many investment companies have failed to match the performance of broad market 
indexes. For example, for the period 1986-1995, 78 percent of general equity mutual funds 
were outperformed by the S&P500 Index, and 68 percent of international stock funds were 
outperformed by their comparative index. 

 3 The largest selection of index funds in the industry are offered by Vanguard Group of 
Investment Companies, e.g. Index Trust 500 Portfolio (had over $100 billion in assets in 
2001, placing it in the top two mutual funds in terms of assets in US), Extended Market 
Portfolio, Total Stock Market Portfolio, the Value Portfolio etc.  
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2   Research Framework 

In our model, each investor is represented as an agent, where the total number of 
agents varies from 100 to 1000. We assume that the whole market is sufficiently big, 
i.e. the total number of agents’ N>>1000, where our subsystem of agents composes 
just a small fraction in the whole market. Therefore, it doesn’t significantly influence 
the overall market behavior. In fact, at this stage we want to create large enough 
subsystem of investing artificial agents, but we don’t want it to disturb the real market 
behavior and be accounted for the feedback estimates.  

The empirical study described below seeks to create self-organizing system of 
investing agents. Following well-established definition [9], investors simulated as 
NN-based economic agents have properties of distributed/concurrent systems 
resembling computational information processing entities, i.e. computational agents4. 
We are modeling a reactive system that cannot adequately be described by the 
relational or functional view. Our modeled system of economic agents maintains one-
way interaction with environment (financial market), and therefore must be described 
and specified in terms of their on-going behavior. This is because each individual 
module in a concurrent system is a reactive subsystem, interacting with its own 
environment which consists of other modules [11].  

Agents technically are modeled using multilayer perceptron [MLP] backpropagation5 
neural networks [NN] having fast Levenberg-Marquardt [LM] learning algorithm6, 
using Matlab NN Toolbox and Simulink simulation environment. All real market data is 
preprocessed (missing values eliminated, data sets time adjusted etc), but not detrended 
(using e.g. nonlinear detrending techniques like Hodrick-Prescot [HP]) as we want all 
periodic and nonperiodic fluctuation be present for NNs to learn. As a standard 
procedure, each NN goes through the initial training and validation stage. Only then 
they are ready for the simulation stage, i.e. forecasting. NN learns to forecast the market 
behavior (index fluctuations, trade volume, market timing moments7, specific patterns 
described by technical analyses etc).  

In fact, each investment asset is analyzed by the separate NN. Meaning that an 
agent is a modular entity composed by a number of different NNs, where different 
NNs are dealing with different market data analyses and forecasting, and one more  
 

                                                           
 4 An agent is a computer system that is situated in some environment, and that is capabale of 

autonomous action in this environment in order to meet its design objectives [10]. 
 5 Properly traines backpropagation networks tend to give reasonable answers when presented 

with inputs that they have never seen. Typically, a new input leads to an output similar to the 
correct output for input vectors used in training that are similar to the new input being 
presented. A network can be trained for function approximation (nonlinear regression), 
pattern association, or pattern classification. The training process requires a set of examples 
of proper network behavior - network inputs p and target outputs t. During training the 
weights and biases of the network are iteratively adjusted to minimize the mean square error 
mse - the average squared error between the network outputs a and the target outputs t. 

 6 Like the quasi-Newton methods, the Levenberg-Marquardt algorithm was designed to 
approach second-order training speed without having to compute the Hessian matrix. 

 7 Some of our agents attempt to earn excess returns by varying the percentage of portfolio 
assets in equity securities. One has to observe a chart of stock prices over time to appreciate 
the profit potential of being in the index fund at the right times and being out of the index 
fund at the bad times. 
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Fig. 1. Agent’s kernel, major methods and procedures employed  

NN is responsible for the formation of portfolio and operational decisions (see Fig. 3). 
Whereas, management of agent’s actions and capital in the market is further 
conducted by the algorithmic shell of procedures (see Fig. 1 and 4).  

As a result, for the strategy S7 we need two learning phases. Why not take 1 NN 
divided over several layers and components, where the layers and components take 
care of the frontline, and the end-layers take care of the combination? The answer: we 
would loose application-free flexibility, modularity and functionality as it would 
create cumbersome neural network with a very poor performance. However, we also 
shed light on the fact that proposed modular structure gives us very promising 
opportunities to implement information exchange between net of agents in the next 
research stage. We will only need to add another NN for the information interchange 
and interpretation. In this way, we simulate intelligence following numerous 
examples from the natural nets of neural networks reported from the neuroscience [8]. 

Hence, profitable decision making is not solely based on the 1-st level NN 
performance alone, see Fig.1. Therefore, an agent has the 2-nd NN level too, which is 
designed for portfolio weights estimations and for assistance to the procedural shell, 
which maintains market interventions in operational sense, feedback, and agent’s 
capital estimates.  

As it is shown in Fig. 1, our agent in consequent stages is learning and later 
simulating some procedures based on NN and algorithmic methods, which are single 
out in the Table 1. Consistency of applied methods plays a key role. The logic is 
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based on a very natural perception of how real agents make decisions. First, they learn 
how to discriminate the environment. Afterwards, they make some forecasting and, 
according to the projected future, they try to recognize the future states of the 
environment for making appropriate decisions to meet those coming perspectives 
(strategic decisions).  

 
Table 1. Applied methods and involved procedures in consecutive time steps  

Time 
Stages 

1 2 3 4 5 

Methods  Discriminati
on of trends* 

NN1 
learning 

 

NN1 
simulating 
NN2 learning 

NN2 
simulating 

Oper. algorithms 

Procedures Classification Forecasting Recognition; 
Learning the   
Eff. Frontier 

Optimal 
Portfolio 
Formation 

Management of 
Assets 

* we employ a set of technical indicators (see Table 3) and with the use of different algorithmic 
approaches recognize and discriminate different investment triggers present in the time series; 
combinations of those triggers compose investment strategies, which are used by agents’ for 
investing decisions.  

 
Modularity of an agent efficiently helps to represent investors as having the same 

goal (to minimize forecasting error and gain the maximum of investment capital 
having lowest risk by placing timely bids/asks8 in the market represented by the real 
SE data) but with different expectations (different strategies how to achieve it).  

At this stage, we are not using any kind of genetic algorithms for selection of the 
best agents, nor social field approaches for information and energy [Plikynas, Kyoto] 
distribution. We simplify our research to the simplest framework. So we could start 
from the scratch and further develop the system for more sophisticated tasks.  

The market is represented here using real data set from two index funds, namely, 
Index Trust 500 Portfolio, Extended Market Portfolio, and US Treasury Bond (value, 
open/close values, trade volumes, volatility etc). Each agent, according to his 
investment strategy9 (see below), is optimized (trained by the NN, see above) for the 
best possible forecasting of index fund movements in order to place profitable and 
risk adjusted decisions. His primary goal is to find optimal risk-profit on the efficient 
frontier according to Markowitz theory [5]. 

Let’s talk about agents’ investment strategies now. Having formed capital market 
expectations (i.e. than NN-based agent, according to historical data, generates his own 
forecasting), we next construct the portfolio based on the CAPM policy statements10.  
 
                                                           
 8 Transaction costs (ranging 0.1-1% of stock value) as a cost function is regulating an agent 

from too frequent market interventions.  
 9

 Heterogeneity of investing strategies is achieved having different NN topology, learning 
algorithms, other NN parameters and wrapped software parameters etc. 

10
 Investment policy statement according to CAPM (Capital Asset Pricing Model derived by 
Sharpe, Lintner and Mossin) is concerned with the equilibrium relationship between the risk 
and the expected return on risky assets. Included here are such issues as asset allocation, 
portfolio optimization, and security (or fund) selection. 
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Because of the complexity of the real world, following CAPM, additional assumptions 
are made to make agents more alike: 1. All agents have identical probability 
distributions for future rates of return; they have homogeneous expectations with respect 
to the three inputs of the portfolio model, i.e. expected returns, the variance of returns, 
and the correlation matrix. Therefore, given a set of index values and a risk-free rate, all 
agents use the same information to generate an efficient frontier; 2. All agents have the 
same one-period time horizon; 3. There are no or small transaction costs; 4. There are 
no personal income taxes – agents are indifferent between capital gains and dividends.  

The procedure of building of a portfolio of financial assets is following certain steps. 
Specifically it identifies optimal risk-return combinations available from the set of index 
funds and nonrisky assets. We employ Markowitz efficient frontier analysis. Each agent 
is assumed to diversify his portfolio according to the Markowitz model, choosing a 
location on the efficient frontier that matches his return-risk preferences. This step uses 
the expected returns, variances and covariance for chosen portfolio of financial assets.  

Markowitz portfolio theory is normative, meaning that it tells agents how they 
should act to diversify optimally. Markowitz approach to portfolio selection is that an 
agent should evaluate portfolios on the basis of their expected returns and risk as 
measured by the standard deviation [5].  

Approximately half of the riskness of the average stock can be eliminated by 
holding a well-diversified portfolio. This means that part of the risk of the average 
stock can be eliminated and part cannot. In our case, though, agents are investing not 
to the stocks but to the indexes themselves. It means that we are not dealing with the 
stocks related risk but with the whole market’s systemic risk. To reduce it we further 
diversifying risk associated with different markets (represented by different indexes). 

In the proposed model, each agent is forming his portfolio composed from the 
three investment options (two index funds and Treasury bond, see above). 

Each agent enters investment market with the same initial capital K0, which is 
further allocated according to individual investment preferences. In short, each agent 
has to perform (i) stock portfolio selection in order to diversify his investment risk, 
which is equally important as return maximization [5]; (ii) to distribute available 
capital so as to get on the efficiency frontier line (maximum return for the chosen risk 
level, or minimum risk level for the chosen return rate). Agent utilizes optimization 
procedure; (iii) to choose the final portfolio (i.e. determine the proper portfolio 
weights), consisting of the risk-free asset and the optimal portfolio of risky assets, 
based on an investor’s (agent’s) preferences. 

The first step is a priori determined in the model, i.e. there are only three different 
investment options: two investment funds and the nonrisky asset investment (see 
above). Agent’s portfolio rate of return Rt

p for the time moment t 

Rt
p=xt

1*R
t
A+xt

2*R
t
B+xt

3*R
t
C,    (1) 

Rt
A,B,C=(Kt

A,B,C-Kt-1
A,B,C)/Kt-1

A,B,C,  

∑Kt
A,B,C=K0, than t=0; Kt-K0<>0 than t≠0, 

∑xi=1. 

here multipliers xt
1,2,3 represent weighting coefficients; Rt

A,B,C – rate of return of the A, 
B or C investment assets; Kt

A,B,C and Kt-1

A,B,C – total financial capital in two subsequent 
time periods for the appropriate investment asset. Agents can redistribute their 
portfolio as market intervention timing is another factor in the model.  
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Portfolio rate of return, as investment factor, is only one side of the Markowitz 
optimal portfolio selection. The other side is dealing with the associated risk 
measured by the mean square error. For three assets portfolio 
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Let denote 2 ( )i tσ as investment return dispersion of the assets A (i=1), B (i=2) or C 

(i=3) respectively and ( )ij tσ as covariance between returns of those assets, then  

3 3 3 3
2 2 2
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( ) ( ) ( ) 2 ( ) ( ) ( ), 1p i i i j ij i
i i j i

t x t t x t x t t xσ σ σ
= = > =
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In fact, Eq. (3) can be further reduced having in mind that we can choose nonrisky 
C asset in such a way as to diminish associated risk with it to the minimum (e.g. 
investing to the treasury bonds with low rate of returns, but almost zero dispersion) 

2 2 2 2 2( ) ( ) ( ) ( ) ( ) 2 ( ) ( ) ( )p A A B B A B ABt x t t x t t x t x t tσ σ σ σ= + + .  (4) 

All resulting portfolios are restricted in the area of the shape depicted in Fig. 2. The 
area contains investment portfolios with all possible return-risk combinations. The 
best choices, though, are on the efficient frontier (see e.g. AC curve in Fig. 2) because 
it gives for the chosen return level the minimum associated risk. 

 

Fig. 2. Distribution of risk-returns (for two and three assets) portfolios due to various asset 
returns mutual correlations 

In terms of wealth, initially homogenous agents are gradually collecting different 
wealth depending on chance and performance of the investment strategies they 
employ. To our knowledge, there are no experiments in the field that focuses on the 
intelligent agents, simulating empirically tested distributions of wealth or stock 
returns.   

Pareto discovered that at the high-wealth range, wealth (and also income) are 
distributed according to a power-law distribution. The parameters of this distribution 
may change across societies, but regardless of the social or political conditions, 
taxation, and so on, Pareto claimed that the wealth distribution obeys this general 
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distribution law, which became known as the Pareto distribution or Pareto law. The 
Pareto distribution is given by the following probability density function 

(1 )
0( )P W CW for W Wα− += ≥ ,  (5) 

where W stands for wealth, P(W) is the density function, W0 is the lower of the high-
wealth range, C is a normalization constant, and α is known as the Pareto constant. 
Pareto finding has been shown in numerous studies to provide an excellent fit to the 
empirical wealth distribution in various countries [1].  

Pareto distribution is related with wealth distribution, which is acquired by 
cumulative process of price differences. Meanwhile, distribution of stock returns, 
especially when calculated for short time intervals, are not fitted well by the normal 
distribution. Rather, the distributions of stock returns are leptokurtic or “fat tailed”. 
Mandelbrot [6] has suggested that log-returns are distributed according to the 
symmetrical Levy probability distribution defined by 

0

1
( ) exp( ) cos( )L

L
L x tq qx dqαγ

α γ
π

∞
≡ − Δ∫ ,  (6) 

where ( )
L

L xγ
α  is the Levy probability density function at x; αL is the chatacteristic 

exponent of the distribution; γΔt is a general scale factor; γ is the scale factor for Δt=1, 
and q is an integration variable [2]. Recent analysis of returns has shown that price 
differences, log-returns, and rates of return are described extremely well by a 
truncated Levy distribution [6]. 

3   Experimental Setup 

For each investment asset we construct appropriate neural network [NN]. In our case, 
it gives three (or two NN in the case of one nonrisky asset) MLP backpropagation 
NN, which are but a part of the same agent. We teach each of these NN on the 
historical data and prepare for optimal forecasting of movements of appropriate index 
fund (we use MSE and R-square as performance criteria). 

The inputs from the forth NN (which still is a part of the same agent) are connected 
to the outputs of the former three (or two) NN. In this way we are building an optimal 
investment portfolio, i.e. determine the proper portfolio weights depicted from the 
fourth NN’s input weight matrix [7].  

For the effective implementation of portfolio management each agent has to be 
enrolled in the operational framework, which we are going to discuss below. First of 
all, functionality of an agent is described by the major decision concerning his targets 
in terms of profit and risk. In this sense, proposed model is tailored to depict major 
possible strategies explicitly applied in the real markets, see Table 2. 

The initial experimental setup is designed so as to represent each trading strategy 
by allocating equal number of agents following them. Agents are with slightly 
different modifications inside each group, but they can’t jump from one strategy to 
another. Investment strategies are given beforehand. Each agent randomly picks one 
strategy which forms six groups of agents with different investment strategies.    
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Table 2. Major algorithmic investing strategies simulated by different groups of agents  

# Strategy Functionality Remarks 
S1 “Buy and 

hold”  
Naïve or conservative approach, where initial 
portfolio is randomly selected and kept fixed, i.e. 
keeping up with the portfolio initial 
diversification. Agent gets  his return-risk which 
is directly related with market’s tendencies.

The idea is that the market 
itself knows best, therefore, 
there is no need to intervene; 
just follow the aggregated 
trend. Minimum transaction 
costs are involved. 

S2 “Bull” trading Whenever appears growing trend in the 
subsequent periods of 50 or 200 business days, 
proportional investing intervention takes place, 
and vice versa than decreasing tendency shows 
up.  Frequent changes in portfolio risk-profit 
diversification are observed. Agent wants to keep 
with growing “bull” assets having returns as high 
as possible in expense of risk and transaction 
costs.  

The idea: to keep up with the 
growing trend. Dynamic 
approach. Maximum 
transaction costs are involved. 

S3 Support&Resist
ance trading  

An agent is looking for the high volume trends 
either of selling or buying, which are influenced 
by the demand and supply. This is so called price 
search of support or resistance level, i.e. if price 
is high, but trade volume is very low – sell the 
asset, and vice versa if price is low and volume is 
high – buy the asset.   

The threshold values of high 
and low volume of market 
trade and “firing” ratios of 
current price vs. market trend 
price have to be defined in 
advance.  

S4 Contrary 
trading  

The idea is to trade contrary to most investors, 
who supposedly almost always lose – in other 
words to go against the crowd. Under this 
scenario, when index fund liquidity is low (high 
price and low trade volume) contrarians would 
consider this is a good time to buy and otherwise 
when liquidity is high.  

This is an old idea on Wall 
Street, and over the years 
technicians have developed 
several measures designed to 
capitalize on this concept. 

S5 Risk averse 
trading 

The agent is extremely risk averse in expense of 
his profits. It holds with low risk index if it meats 
certain dispersion criteria, otherwise, it invests to 
nonrisky assets. 

Diversification is taking place 
only if indexes exhibit low 
volatility fluctuations.  

S6 Filter rule A well known technical trading rule is the so-
called filter rule, which specifies a breakpoint for
a market average, and trades are made when the 
index fund price change is greater than this filter. 
For example, buy an asset if the price moves up 
10% from some established base, such as 
previous low (or moving average), hold it until it 
declines 5% from its new high, and then sell it.  

There are two algorithms 
applied, where one gives 
“green” light for investing 
and another “red” light for 
withdrawal of capital.  

S7 NN portfolio 
optimization 
method 

This strategy is solely based on NN1-3  

performance, where optimal portfolio weights are 
estimated using NN3 input weights, see Fig. 4. 
Portfolio return-risk is recalculated using a 
trendline for every 20 business day period. 

We apply a system composed 
by the first and second level 
NN, which learn/simulate, 
classify/ recognize and 
optimize the agent’s 
performance 

 
  Note: the model uses daily and weekly time series, all inputs are normalized 

 
Consequently, we were looking if a model can be found that could relate the 

domain space (real investment market data) with solutions space (simulated agents’ 
investment decisions). We have proposed a modular approach for simulation of 
complex strategies existing in the investment markets. The major brick of it is 
composed by MLP (multilayer perceptron) error backpropagation NN (neural 
network), which is aimed to give (i) forecasting of index values, (ii) make market  
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timing decisions, (iii) generate decisions for the technical investment,  (iv) make 
volatility estimates as depicted in Fig. 3.   

In more formal terms, let us assume that the financial problem domain Ω(Ωin; Ωout) 
is characterized by 1) sub domain Ωin, which consists of the set of input data space 
vectors {Ii

n} (where n denotes the input space dimensionality and i=[1,.. k] indicates 
the input data vector); 2) sub domain Ωout, which consists of the set of output data 
space vectors {Oi

m} with appropriate output dimensionality m.   

 

 

Fig. 3. Investment market data (autoregression time series) and technical preprocessed data 
projected as inputs to the forecasting MLP NN 

NN is used for mapping a given input space onto the desirable output space (NN 
decisions). Our goal consists of investigating the mapping function Φ  

 Φ({Iin})→{Oim}   (7) 

A multilayer perceptron (MLP) network serves as a universal approximator, which 
learns how to relate the set of the input space vectors {Iin} to the set of output 
(solutions) space vectors {Oim}.  The transformation function Φ is then characterized 
by the MLP structural parameters like weights’ matrix W, biases B, number of 
neurons N, topology structure T, learning parameters L 

 Φ=Φ(W, B, N, T, L)  (8) 

This is supervised learning. MLP gains experience by learning how to relate the 
input space vectors {Iin} to the known output vectors {Oim}. Now we parameterize  
Eq. (7) 

 Φ W, B, N, T, L ({Iin})→{Oim}  (9) 
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Eq. (9) gives us needed relations in terms of agent’s capability to recognize 
markets behavior and also strategic data like market timing, technical data and 
volatility (see Fig. 3 and Table 2), which are later employed for portfolio management 
operations. For the effective implementation of MLP networks, we have to investigate 
the major NN structural parameters like W, B, N, T and L in a decomposition manner 
[7]. Whereas, the output vectors {Oim} are described by a set of technical indicators, 
see Table 3.  

We have to bare in mind that regarding portfolio setup of three assets (composed of 
two SE based index funds and one nonrisky asset like Treasury bond), the scheme 
depicted above applies for each risky asset separately composing the system of two 
neural networks.  

4   Management of Agents’ Operational Procedures 

This section discusses research issues related with how investment strategies {Si} are 
going to be implemented modus operandi in operational terms. As we see from the 
Table 3 above, only the first strategy S1 doesn’t requires dynamic management of  
the portfolio (agent’s risk-profit performance depends on initially selected portfolio in 
the beginning of simulation). This is so called naïve investment approach, where 
portfolio selection is taking place only once without any regard to the changing 
market infrastructure. We have chosen it as a benchmark to compare performance of 
the simplest “buy and hold” strategy against other dynamic strategies S2-7. 

The other strategies, though, are more sophisticated as they are not hard wired to 
the initial portfolio and reflect dynamic approach to the changing investment 
environment. Following previous discussion, we are going to investigate how 
remaining six strategies are classified in our multiagent model. First of all, see Fig. 1, 
all six strategies are wrapped in the same principal simulating scheme, which is 
further detailed in Fig. 4.  But there are major differences concerning operational and 
portfolio management:  

1. Strategies S2-6 operate using forecasted information from different assets. For 
operations management they use market intervention signals (see Table 3) and are not 
bound to optimize their portfolio according to the Markowitz portfolio optimization 
theory. So these are mostly short-term opportunistic-speculative investors, which 
follow well known (on Wall Street) investment scenarios based on technical 
indicators. 

2. Strategy S7 is also short-term and opportunistic, but it follows portfolio 
optimization theory using a novel nonlinear portfolio optimization technique, which is 
sustained by NN3. Operational and portfolio management issues are solely controlled 
by the second level NN3, which learns how to optimize the portfolio and get portfolio 
weights out from the input weights. 

Our main purpose by doing so is to construct heterogeneous investment market 
where we could compare performance of different investment strategies (represented 
by appropriate agents) against the newly constructed holistic investment method 
(investment strategy S7). We also expect to get Pareto wealth and Levy returns 
distribution [1,6].   

The most important notation about Fig. 4 is concerning a special way how 
proposed NN learning and simulating scheme automatically depicts the portfolio 
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weights in nonlinear manner just by getting the input weights from the NN3, where 
each NN3 input neuron is connected with only one input node [7].   

In fact, our NN-based system is not dealing with the classification task (see Fig. 1), 
which is left outside the NN scope. We shifted classification of initial data to the 
preprocessing stage than a set of known technical indicators (see Table 3) and 
procedures are applied in order to find market intervention signals and investment 
timing. We have based our technical analysis approach on a number of theoretical and 
empirical studies [4], which have suggested that technical analysis remains popular 
with many investors. So we had to follow the reality on the hand and design the 
appropriate model.  

 

 

Fig. 4. Agent’s two NN layers scheme, where the first layer learns and classifies, the second – 
makes investment decisions 

 
In this paper, we have proposed novel ways in which each investing strategy can 

be facilitated by a set of appropriate technical indicators and procedures, which once 
satisfied give incentives for the market interventions, see Table 3. We have chosen 
aggregate indicators instead of charts analysis because we are interested in longer 
term portfolio investments, which are better described by aggregated measures. For 
instance, the most basic measure of an index direction is the trend line Tr, which 
simply shows the direction the index is moving.  
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Table 3. Estimation of technical indicators for classification and recognition of investing 
scenarios (i.e. agents’ investment strategies, see Table 2)  

Technical Indicators Inv. 
Strat. 

Interv. 
Signals Tr WEMA Vo F σ T 

S1  - - - - - - 

Buy a50>0.001 OR  
It>WEMA50 

AND  α=0.05 

AND  

Vt>V  

- - T>10 

Hold* 0.0001< 
a50<0.001 

- - - - T<10 

S2 

Sell a50<0.0001 OR  
It<WEMA50 

AND  α=0.05 

AND  

Vt<V  

- - T>10 

Buy Tr >1.05* It - AND 1.1*Vt<V  - - T>20 

Hold - - - - - T<20 

S3 

Sell Tr <0.95* It - AND 1.1*Vt>V  - - T>20 

Buy Tr <0.90* 
It 

- AND 

1.1*Vt>V  
- - T>20 

Hold - - - - - T<20 

S4 

Sell Tr >1.1* It - AND 

1.1*Vt<V  
- - T>20 

Buy - AND 
It>WEMA200 

AND  α>0.01

- - σt<σk T>50 

Hold - - - - σt<σ0 T<50 

S5 

Sell - OR 
It<WEMA200 

OR  α<0.01 

- - σt>σ0 T>50 

Buy - - - It>1.1* It-1 - T>10 

Hold - - - Treasury 
bonds 

- T<10 

S6 

Sell - - - It+n<0.95*I
t+n-1 

- T>10 

 * - “Holding” scenario is always applied (for all trading strategies) if appropriate technical indicators don’t 
give signals of buying or selling. 

  Tr – index fund primary trendline; it is represented by linear approximation I=at+b, where I – normalized 
[0,1] index value, a - stands for the slope coefficient (a>0); t – is measured in business days, x=50 (Tr50) 
and x=200 (Tr200); or we could use the secondary trendline represented by the nonlinear polynomial, HP or 
other approximation.  

  WEMA – normalized weighted exponential moving average, over 50 (WEMA50) and 200 (WEMA200) 

business days;  Vo – normalized volume of trade (V - the average volume of trade for consecutive 200 
business days), F - filter rule, σ - dispersion (σk<σ0<σt, where threshold values of σk and σ0 are defined in 
advance), T- market timing (for the most of the cases this is market intervention frequency). 

The leading experts in the field [4] have published a number of papers providing 
support for two basic technical indicators, moving average and support and resistance. 
Following their advice, we have employed weighted exponential moving average 
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WEMA, where a comparison of a current market price to the moving average 
produces a buy or sell signal. The general buy signal is generated when actual prices It 
rise through the moving average on high volume, with the opposite applying to a sell 
signal11.  We also included volume Vo, which is an accepted part of technical analysis 
too12. Besides, we have included one example from trading rules, i.e. filtering rule F 
“buy a stock if the price moves up 10 percent from some established base, such as a 
previous low, hold it until it declines 10 percent from its new high, and then sell it”. 
We also have included the estimates of dispersion σ, which is very important for 
some investing strategies mostly executed by risk averse institutional market players, 
see Table 3. Market timing T is of high importance too as different players have 
different attitudes concerning time scale and transaction costs.  

In fact, the initial pool of agents will be equally divided among six groups, which 
are described in Table 3 and follow correspondent trading strategies. Among each 
group, though, we can randomly select slightly different values of technical indicators 
having nonidentical but justifiable (in the certain limits) variance in the investing 
behavior. This gives better exploration of feature space and better represents the real 
market. 

5   Results and Discussion 

Hence, our main concern is related with the simulation of the heterogeneous 
investment market, where a big number of different agents (represented by a set of 
well known investment strategies) play short-term opportunistic games of optimal 
capital allocation in the stock market. In the model, agents are using forecasting for 
prediction of short and long-term trends. It gives incentives to adjust appropriately 
their portfolios by doing market interventions whenever technical indicators are 
signaling the presents of algorithmically described “firing” (buying or selling) 
moments.  

The ultimate long-term goal for each agent differs, but in general each of them is 
looking for the initial capital maximization. We have to admit, though, that it is 
almost impossible to model the complexity we face in the real markets, where 
investors behave irrationally following rumors, subjective judgments and believes. 
Therefore, we have enriched the model with some heuristics based on the nonlinear 
properties and generalization features of neural networks, which, as numerous studies 
have shown [7,8], have systematically outperformed the traditional regression 
methods so popular in finance.  

The modular structure of the system of specialized NN gives us an edge over the 
straightforward algorithmic approaches as it performs better forecasting, it is more 
flexible, and, being nondeterministic, mimics the complexity in its own terms. This 
 

                                                           
11

 A variation of the moving average popular on some Web sites is the moving average 
convergence-divergence, or MACD. This involves a longer moving average (such as the 200 
day) and a shorter moving average  (such as the 50 day). As a stock price rises, a bullish 
signal is generated if the short-term average consistently is greater than the long-term 
average. A warning signal is generated when the short-term average falls below the long-
term average. 

12 High trading volume, other things being equal, is generally regarded as a bullish sign. Heavy 
volume combined with rising prises is even more bullish. 
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Fig. 5. Comparison of Pareto wealth distribution for investment strategies S1-7 

 
paper provides insights and an overview for creating a society of artificial investing 
agents, where each agent can classify, recognize, learn and forecast in order to make 
best use of available information. It is impossible to cover the full range of our 
empirical work here, but to give a flavour of it a few details of current research are 
included. Below we plotted some charts of obtained Pareto distribution of wealth for 
different agent strategies S1-7, see Fig. 5.  

The experimental setup below includes 500 NN-based agents for each strategy 
simulation, 10000 initial capital allocated for each agent, trading costs per transaction 
0.5%. Values for technical indicators were depicted as it is shown in the Table 3. 
Though, we have to admit that parameter space for the investment strategies S1-6 has to 
be explored and estimated much more thoroughly as it gives huge difference for the 
final results. Besides, for the prospective experimentation we have to enlarge the total 
number of agents, which would give much better estimates of agents’ distribution 
density in accumulated wealth terms.     

Unfortunately, the limited space available doesn’t allow us to deliver more 
empirical results here. In short, S7 gives Pareto wealth distribution, which is very 
close to S1 performance (see Fig. 5), meaning that NN trading strategy works as good 
as buy-and-hold approach, which has no transaction cost involved. Therefore, NN in 
equal terms is very competitive, well represents the real market situation and fits for 
financial market simulation. Meanwhile, strategies S2 (“Bull” trading) and S6 (Filter 
trading) are not well fitted with Pareto empirical law. In case of Bull trading strategy,  
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the lost market position and high dispersion of results are mostly related with (i) 
frequent market interventions, i.e. very high transaction costs, (ii) not stable or 
overreacted activity. Meanwhile, filtering rule is failing mostly because of biases 
associated with filtering rule thresholds. These results indicate that sound statistical 
estimations are still needed for much wider experimentation setup having richer 
parameter space.  

We are at pains to emphasize that our findings represent an initial first ‘take’ on 
simulation of Pareto wealth and Levy stock returns distribution using NN-based 
multiagent system of heterogeneous investors. This work, though, gives some clear 
outlines and their explanatory sources. Moreover, we have spent a considerable 
amount of this paper examining the methodological novelty of our work. Subsequent 
papers will focus more on the empirical aspects of our research once we have 
established the methodological importance of our work.  

Future research will focus on experimenting with more representative investment 
portfolios as well as search for better fitted algorithmic parameters. Proposed NN 
modularity approach let us envisage a system of networking social agents, which will 
interact among each other creating behavioral patterns and social phenomena in 
general.  
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Abstract. The increasing popularity of the “business ecosystem” con-
cept in (business) strategy reflects that it is seen as one way to cope
with increasingly dynamic and complex business environments. Never-
theless, the lack of a convincing model of a business ecosystem has led
to the development of software which only give organisations a partial
aid whilst neglecting their need for adaptation. Research in Multi-Agent
Systems has proved to be suitable for modelling interactions among dis-
parate sort of entities such as organisations. On the other hand, natural
ecosystems continue to adapt themselves to changes in their dynamic and
complex environments. In this paper, we present the Dynamic Agent-
based Ecosystem Model. It combines ideas from natural ecosystems and
multi-agent systems for business interactions.

1 Introduction

Increasing technological complexity means that market demands are often best
satisfied through networks of collaborating organisations. Indeed, to achieve a
sustainable growth and improve competitiveness in increasingly complex and dy-
namic environments, many businesses actively seek partnerships and alliances.
Moreover, the volatility of many contemporary markets mean that such part-
nerships form opportunistically and are short-lived. To flourish in such envi-
ronments, businesses must continually adapt and evolve. This requires that a
business engage in an ongoing dialogue with its environment and with others
with which it shares this environment.

The notion of a “business ecosystem” is a strategic planning concept, intro-
duced by Moore [1,2], that supports the perspective stated above. Moore defined
a “business ecosystem” as a collection of companies which co-evolve, develop-
ing capabilities in response to new, wide-ranging innovations; companies both
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cooperate and compete, as appropriate, as they vie for survival and dominance.
Moreover, Moore remarks that a business ecosystem is obtained when a set of
randomly interacting companies develops into a more structured community;
and it typically supports competition at a higher level, i.e., competition among
business ecosystems.

Natural ecosystems do indeed offer a clarifying metaphor: they encompass
species competing for the same resources and interacting to create complex net-
works, such as food webs, and capable to adapt to different situations. A natural
ecosystem has been characterised as a complex adaptive system (CAS) [3] be-
cause it comprises sets of individuals exhibiting “emergent” behaviours not ap-
prehended by any one individual. Such systems continuously adapt to changes
in their extremely dynamic environment. Four essential properties describe a
natural ecosystem (cf. CAS): aggregation, diversity, flow, and non-linearity [3].
These properties have been studied by two comunities: biology (e.g. [4,5]) and
multi-agent systems (e.g. [6,7]) and are widely accepted.

A business environment (cf. markets) has also been characterised as a CAS,
yet there remains the lack of a convincing model through which to explore the
metaphor of a business ecosystem. In this paper, we present the Dynamic Agent-
based Ecosystem Model (DAEM): a synthesis of ideas from natural ecosystems
and multi-agent systems which provides a framework to leverage the strategic
concept of a business ecosystem. We approach business ecosystems from a holis-
tic point of view, in particular, by studying the propagating influence of local
relationships on the ecosystem as a whole. That is, we subscribe to the view that
interactions are fundamental to the creation of ecosystems [8] and the develop-
ment of adaptive behaviours [9]. Thus, here we abstract from the details of a
particular trade or transaction between two organisations and instead develop
a model which assumes the presence of only three elements in a business inter-
action, namely: services being offered; services being consumed and evaluated;
and feedback of service evaluations.

We present the fundamentals of our approach in Sect. 2 in an incremental
way: We begin with a clarification of what is meant by the notion of service in
the model and how we characterise an agent; We introduce notions of environ-
ment and interactions, especially random interactions to support opportunism,
which motivate extensions of our model of an agent; We then add appropriate
capabilities which allow our agents to forage for services and customers as they
move around their environment interacting; We conclude the exposition of the
model by showing that it naturally admits supply networks; We then present
related work in Sect. 3; We close the paper with a few remarks.

2 Dynamic Agent-Based Ecosystem Model (DAEM)

We begin with a brief overview of DAEM where we mainly focus on a supply
chain domain. We then proceed to incrementally add more details to it.

In DAEM, an agent represents an organisation and function as both a supplier
of one service and a customer (cf. consumer) of another. Thus, an agent offers
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his services to potential customers and analyses service offers from potential
suppliers. Service offers are evaluated to determine who is more convenient to
buy from, and therefore, to flag him as a preferred supplier. Service evaluations
are sent back to the potential suppliers for them to know how good their services
are evaluated and whether they are considered as preferred suppliers. Likewise,
suppliers determine who their preferred customers are according to the received
evaluations. These evaluations depend on past experience and the service added
value each particular agent prefers, such as price, response time, warranty, etc.
An agent knowing he is the preferred supplier of his preferred customer will seek
to have more frequent interactions with him; and vice versa. Preferred supplier
and preferred customer together become partners and constitute a link in a
supply chain.

Competition is essential to a business ecosystem [1]. Evaluation and feedback
mechanisms encourage competition among agents who provide the same service,
i.e. intra-class competition. Service evaluations are relative to the highest eval-
uation recently made, i.e. the highest evaluation is used to assess other service
offers. Therefore, a relative evaluation functions as a measure for the minimum
relative improvement required in a service offer for an agent to become a pre-
ferred supplier. Service improvements are considered out-of-scope for the current
paper; we simply note that improvements occur and they are noticed when new
evaluations are made. Improvements in services cause changes in partner prefer-
ences, for instance, by raising standards and thus expectations; and in turn they
trigger more changes across all agents.

Supply chains arise when a service provided by an agent is preferred by another
agent whose service is preferred by another and so on. Supply chains resemble
food chains in nature. When an agent offers and requires more than one service,
supply networks are formed. These resemble food webs in nature. The whole
collection of agents offering and requiring different services forms the multi-
agent business ecosystem. Adaptation globally emerges when agent preferences
change and agents change their interactions accordingly, i.e. ecosystem nodes
are replaced but the ecosystem itself remains.

2.1 Services and Agents

We begin our more detailed account by clarifying services and agents. For conve-
nience, we write

∏M
j=1 aj to signify an ordered list. Similarly, we use

∏N
i=1 (ai, bi,

. . . , ci)i to signify a table containing the i-th tuple as the i-th row. Additionally,
we use subscripts to distinguish multiple uses of terms.

Definition 1. A service is a pair (sv, adv) where sv is a service description and
adv is its added value. The service description specifies the basic details of the
service, i.e. what the service is about. The added value specifies aspects such as
price, response time, warranty policy, etc.

The internal structure of both service description and added value are not dis-
cussed here. We simply assume that an agent is able to use them to make evalu-
ations and decisions. Additionally, we assume that the added value can vary for
the same service description, e.g., according to the agent offering the service.
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Definition 2. The tuple (aid, isv, osv, A, ms, mls, mlc) is used to describe an
agent ag and related interactions as follows:

– aid is the agent’s unique identifier,
– isv is a service description specifying what service is required,
– osv is a service description specifying what service this agent can offer, where

osv �= isv,
– A = {sendof, sendev} is a set of actions available to the agent:

• sendof(aid, aidc, osv, adv) signifies that agent aid offers service (osv,
adv) to agent aidc,

• sendev(aid, aids, svs, advs, evs) signifies that agent aid informs supplier
agent aids that the evaluation of the service (svs, advs) is evs.

– (aid, adv, ev)aidi is an interaction tuple recording an interaction that took
place with agent aidi, specifying his identifier aidi, added value adv of ser-
vice offered or received and the received or given evaluation, accordingly.
Typically, we abuse notation for compactness when referring to agent aidi

by simply writing agent i, e.g. (aid, adv, ev)i.
– ms is the interaction memory size, i.e. the number of recent interactions in

memory,
– mls =

∏ms
r=0(aid, adv, ev)r is a table containing the last ms interactions this

agent had with supplier agents for the corresponding service described by
isv.

– mlc =
∏ms

r=0(aid, adv, ev)r is a table containing the last ms interactions this
agent had with customer agents for the corresponding service described by
osv.

An agent identifier aid is unique to an agent. Actions sendof and sendev are
used to send service offers and evaluation, respectively. For example, when agent
i sends an offer to agent j, denoted sendof(aidi, aidj , osvi, advi), agent j imme-
diately verifies whether the description of the offered service corresponds to its
required service isvj . In such case, agent j evaluates it according to the given
added value advi and returns a positive evaluation ev, denoted sendev(aidj, aidi,
svi, advi, evi), where svi = osvi = isvj . Otherwise, a negative value will be sent
meaning that agent j does not require (or is not interested on) that service as
a supply. The evaluation evi sent back to the supplier is relative to the highest
evaluation agent j has given in the last ms interactions. That is, the maximum
evaluation ev found in mls. Likewise, agents store in mlc the last ms evalua-
tions received from customers. The limited memory agents have gives them the
forgetting mechanism which has been proposed as a principle for engineering
multi-agent systems as natural systems [7].

The value of evi sent to a supplier agent i depends on the particular service
evaluation and agent j’s past recent experience; it is calculated as follows:

evi =
{

1 if eval(svi, advi) >= evmax
eval(svi,advi)

evmax
otherwise

. (1)

Where (aid, adv, evmax) ∈ mlsj.
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Function eval evaluates services according to agent’s preferences. Thus, a
service from the same supplier can be evaluated differently by two separate cus-
tomers. Evaluation ev received through other agent’s action sendev and stored
in mlc is always within the range [0, 1] because it is a relative evaluation. In
contrast, evaluations in mls have an open range [0, ∞) because they directly
come from function eval; they are not relativised. In summary, relative evalua-
tions reflect the relative difference in the perceived quality of a service offered
by different suppliers.

For instance, consider an agent i who grants x as the evaluation of a service
offered by agent j. Say x turns out to be the highest evaluation i has recently
made, i.e. evmax = x. Then j receives a relative evaluation of ev = 1 after (1) and
now j knows he is the preferred supplier for i. Now, consider a similar situation
with agent h. He sends a service offer to i who concedes y as the corresponding
evaluation. Say y turns out to be greater than evmax, i.e. y > x. Then evmax new
value is y and h receives ev = 1 as well as the relative evaluation. Likewise, h
now knows he is i’s preferred supplier. However, when j returns to interact again
with i and the latter compares his service with the new value of evmax = y, j
will obtain a relative evaluation of ev = x/y where x/y < 1 as mentioned above.
Finally, at this point j will know he has be replaced as a preferred supplier.

For an ecosystem to develop, it is necessary to have a diverse set of individu-
als [3,7,10,11]. This diversity is allowed to exist in our model, but it depends on
the specific case one is modelling. Here, diversity is not seen as species or classes
of agents, but rather as the market they are targeting by the services they of-
fer. That is, one might say that agents offering the same service osv belong to
the same “class”. And as markets dictate, agents offering the same service be-
come competitors whereas an agent requiring what other agent offers effectively
becomes his partner (in the context of a supply chain).

Interactions are important because they are a factor to form ecosystems [8]
and to develop adaptive behaviours [9]. These interactions consist of offering
services, evaluating them, and reporting on such evaluations. Moreover, these
interactions encourage competition specially because of service relative evalua-
tions. Competition is necessary for a business ecosystem to function [1]. And it
allows agents to have an idea of how much improvement they need to achieve in
order to be a top supplier and survive in their environment. This improvement
can be seen as individual adaptation which is out of the scope of the model
presented here. However, its effect can be noticed through differences in service
evaluations once adaptation is achieved.

2.2 Environment and Random Interactions

An environment is a fundamental element of both business and natural ecosys-
tems. Roughly, an environment is defined as a provider of conditions under which
an agent exists [12]. For our purposes, it is a virtually observable surface where
inhabitants wander across and encounter others in order to interact. It is a
common environment [13]. Its importance arises because it supports capabilities
such as a sense of positioning and displacement, proximity-based interactions,
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and surrounding awareness. These capabilities permit an agent to orient him-
self and follow energy flows or a (notional) gradient on the environment [7,11].
Moreover, it allows spatial diversity and the creation of niches [11] where only
some services can be found. An environment also permits the most important
species, i.e. keystone species [8], to cluster food webs around themselves, which
at the same time comply with the view business ecosystem [1,2].

Definition 3. An environment env is a toroidal grid1 characterised using the
tuple (es, Ads, itr) where

– es is the environment size, i.e. es×es, where each side goes from 0 to (es−1),
– (eid, epos, eisv, eosv)i is an agent description tuple specifying agent i’s iden-

tifier eid, position epos = (x, y) on the environment, and services descriptions
eisv and eosv,

– Let Ag denotes the set of all existing agents. Ads =
∏|Ag|

i=0 (eid, epos, eisv,
eosv)i is a table where all agent positions and services are described. The
number of description tuples depends on the number of existing agents |Ag|.

– itr specifies an agent interaction radius, where itr >= 1.

The environment size es depends on the number of agents |Ag| inhabiting it.
And it must be sufficiently large for agents to avoid to come across one another
too frequently if they move entirely randomly on it. Ads is a table containing
descriptive information for each agent on the environment. Such information in-
cludes agent identifier eid, current position epos on the environment, and two
service descriptions eisv and eosv. The interaction radius, itr, identifies the
maximum distance at which two agents may interact in this particular environ-
ment. From Def. 2 and Def. 3, we observe that are elements in common, namely,
aid, isv, osv and eid, eisv, eosv, respectively. Elements from the environment can
be viewed as reflections from the agent elements onto the environment itself, i.e.
agent elements are exposed. In this way, agents can be detected by others and
can detect others on the environment as well, i.e. we are creating a common
environment [13].

Definition 4. Reflection is an environment property which denotes that some
values are exposed from the agent onto the environment in such a way that if a
change occurs to the original one, it will be immediately updated on the reflected
part. We represent reflection as relation ρ and say that the first argument is
reflected on the second one.

Agent identifier aid and agent services isv and osv are reflected on the environ-
ment as eid, eisv, eosv, respectively. Thus, we have the following reflections—
using an infix notation—between agents and the environment (read ← as “gets”):

aidi ρ eidi := eidi ← aidi. (2)
isvi ρ eisvi := eisvi ← isvi. (3)
osvi ρ eosvi := eosvi ← osvi. (4)

1 Consider an n × n grid (n ∈ N) in the plane: both x and y run from 0 to n, where
lines y = 0 and y = n overlap as well as lines x = 0 and x = n. This results in a
torus necessary to ensure that an agent can wander continuously, cf. Sect. 2.3.
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The last 3 equations apply for all agents i ∈ Ag such that (eid, epos, eisv,
eosv)i ∈ Ads, where Ads is part of the environment env and aidi, isvi, osvi are
associated with agent i.

We can now expand Def. 2 to make use of the environment (additional or
revised items in bold for the purpose of emphasising).

Definition 5. The tuple (aid, apos, isv, osv,A, ms, mls, mlc) is used to de-
scribe an agent ag and related interactions; where we extend Def. 2 as follows:

– apos = (x, y) is the agent’s current position on the environment,
– A = {sendof, sendev, walk} is the (revised) set of actions available to the

agent, where
• walk(ang) signifies that the agent changes its current position on the

environment in the direction specified by ang.
– (apos, aidi, svi, advi, evi) is an interaction tuple recording an interaction

that took place with agent i. It specifies agent i’s identifier aid, location
apos where this agent was when interaction took place, service (sv, adv)
that was offered to or by i and the received or given evaluation, accordingly.

– mls =
∏ms

r=0(apos, aid, sv, adv, ev)r is a table containing the last ms inter-
actions this agent had with supplier agents for service described by isv,

– mlc =
∏ms

r=0(apos, aid, sv, adv, ev)r is a table containing the last ms inter-
actions this agent had with customer agents for service described by osv.

Interaction tuple (aposj , aidi, advi, evi) now contains the element apos which
allows agent j to record into memories mls and mlc the location where j was
when an interaction took place on the environment with agent i. Agents need to
know their current location to have a sense of positioning on the environment.
apos denotes the agent current position and it is reflected from the environment
value epos; thus analogous to previous reflections for an agent i ∈ Ag we have

eposi ρ aposi := aposi ← eposi. (5)

To express that agents move on the environment, we have added action
walk(ang). This action transforms the environment every time it is performed
because. It re-locates the agent to a position adjacent to its current one towards
direction ang, giving the agent the sense of displacement. Thus, we represent
this transformation as

ω(i, eposi, ang) := eposi ← eposi + ang. (6)

Parameter ang is a direction-vector which, since the environment is a grid,
gives an unambiguous indicator of an agent’s next position. Because the environ-
ment is a toroidal grid and we allow multiple occupancy of a given node, there
are 8 possible directions to move towards from any position. But the direction
depends on the final destination dpos the agent would decide to move to. Then
we first define dpos as follows:

dpos = (�rand() · es�, �rand() · es�). (7)
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Where rand() is a function returning a random number within the range [0, 1].
Thus ang is defined as

ang =

⎛

⎝

⎧
⎨

⎩

−1 if |p − x| > es/2
1 if |p − x| < es/2
0 otherwise

⎫
⎬

⎭ ,

⎧
⎨

⎩

−1 if |q − y| > es/2
1 if |q − y| < es/2
0 otherwise

⎫
⎬

⎭

⎞

⎠ . (8)

Having defined dpos and ang, the new agent position epos, according to (6),
then is simply

eposi ← eposi + ang =
(
(x + u + es) mod es, (y + v + es) mod es

)
. (9)

For instance, if an agent i is located at epos = (0, 6) on an environment of
size es = 100, and walks (walk(ang)) with e.g ang = (−1, 1) randomly selected,
then the new position will be epos = (99, 7) because of the toroidal grid. Then
the new position will be immediately reflected on the agent because of (5).

Agents can now walk randomly on the environment and because of that, agent
interactions have a tendency to occur randomly as well. A business ecosystem
starts its interactions randomly and as time elapses it gains structure as the
system develops [1]. To acquire such structure every two agents have to come
close enough to each other for interacting. Thus, to identify what determines
“close enough” for interacting, an interaction radius itr is used to delimit a
circle of influence around each agent.

Definition 6. An agent j senses the proximity of another agent i within a
distance itr by receiving a proximity table T containing agent i’s identifier,
position and service descriptions:

T = {∀|eposj−eposi| <
= itr i | (eid, epos, eisv, eosv)i}. (10)

Where |eposj − eposi| is an Euclidean distance.

The proximity table T is transient: it is updated with every change regarding
agent positioning occurring on the environment. It is used by agents to decide
with whom to interact, according to services offered and required by agents in
their surrounding. In other words, receiving a proximity table T is the mecha-
nism all agents have for starting interactions with potential customers nearby.
Moreover, the environment limits agent action sendof in such a way that it is
only enabled under the condition that agent i’s details are in agent j’s proximity
table. It is important to remark that whenever a potential customer is in T ,
agents offer their services whether that customer is the preferred one or not.
However, service evaluations are sent back regardless the supplier agent being
in customer agent’s proximity table.

The environment plays an important role in adaptation because the latter’s
properties are based on the existence of a geographical space (cf. a surface): ag-
gregation or agent spatial clustering occur [11]; spatial diversity influence the
creation of service niches [11]; flows allow agent to orient themselves [7,14];
and non-linearity occurs when the combination of interactions and environment
changes makes difficult for the system to go to a previous state, i.e. it creates
history [14,15].
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2.3 Foraging for Services

Moore mentions in [1] that a business ecosystem is obtained when a set of ran-
domly interacting companies develops into a more structured community. Up to
this point, in our model agents can offer their services to whoever they randomly
encounter on the environment, and make evaluations accordingly. However, they
can hardly increment the interaction frequency with their preferred supplier and
preferred customer. Thus, a structured community such as a supply chain cannot
surface. Therefore, we look again into nature in order to get more ideas.

In natural ecosystems, individuals move across their environment in their
search for food by following trails of potential preys. In order to do this, they
perceive their environment beyond their reach by using various “senses”, e.g.
sight, smell, etc. That is, individuals use a notion of gradient on the environment
to guide their exploratory behaviour [7,14]. By adding these capabilities to our
agents we provide them with mechanisms to guide their exploratory behaviour
as well towards where it seems to be services of their interest. In particular,
agents might (i) “see” beyond their interaction space to identify others and
their services; and (ii) “follow a trail” left by other on the environment. We now
extend Def. 3 to equip our agents with “senses”.

Definition 7. An environment env is a toroidal grid described using the tuple
(es, Ads, Mks, R) where the new elements are defined as follows:

– (epos, eisv, eosv, ods) is a mark description tuple specifying that an agent
left a mark at position epos = (x, y), with service descriptions eisv and
eosv, and the mark has an odour strength ods,

– Mks =
∏|Ads|·odsmax

m=0 (epos, eisv, eosv, ods)m is a table where all marks are
described. The number of mark description tuples depends on the number of
existing agents exposed on the environment |Ads| and the maximum value
ods can take. Duplicates can exist.

– {itr, sgr, smr} ∈ R is the perceptions radii set where itr is the interaction
radius, sgr is the sight radius, and smr is the smell radius; where smr >
sgr > itr >= 1.

Table Mks contains information about all marks on the environment. Notice
that this information does not include any agent identifier, but only the position
epos where an agent passed by, service descriptions eosv and eisv he offers and
requires, accordingly, and an odour strength ods. The latter is a diminishing
value specifying how long ago the agent was there, i.e. the greater the odour,
the shorter time has elapsed since the agent was there. This value helps agents
to find a foraging direction by simply following the mark with the greater odour
strength. The sight radius sgr allows an agent to identify others within a greater
space than itr allows, but not to make any sort of contact. The agent would need
to approach closer in order to know the added value those agents can offer or
be interested in. The smell radius smr permits an agent to perceive beyond sgr
permits. It allows agents to sense marks left on the environment and follow such
smells in case the agent gets interested in services described by the marks. The
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smell radius and marks do not allow an agent to identify others, but only to give
him a hint of where to look for.

Whilst mark locations depend on where agents are positioned, the agents do
not decide whether or not to leave a mark. It is a property of the environment:
all agents leave marks. We represent it as environment property κ(Ads, Mks)
signifying that agent information contained in Ads is projected as new marks in
Mks and left on the environment:

κ(Ads, Mks) := Mks ←
|Ads|∏

i=0

(epos, eisv, eosv, odsmax)i. (11)

Where epos, eisv, and eosv come from tuples in Ads; odsmax is the maximum
odour strength.

Moreover, mark odours vanish as time elapses until the mark disappears. This
implies another transformation to reduce the odour strength from existing marks
on the environment. We represent this as environment function τ(Mks) saying
that existing marks vanish as time elapses

τ(Mks) := Mks ← TMks where
{∀ m ∈ Mks | TMks ← (epos, eisv, eosv, ods − 1)m} (12)
{∀ t ∈ TMks | TMks ← TMks \ (epos, eisv, eosv, 0)t}.

Thus, the total number of marks on the environment at any time is |Ads|·odsmax

as specified in Def. 7. Now, we add “senses” to our agents:

Definition 8. An agent j sees another agent i beyond a distance itr and up
to sgr by receiving a sight table G containing agent i’s identifier, position and
service descriptions:

G = {∀itr < |eposj−eposi| <
= sgr i | (eid, epos, eisv, eosv)i}. (13)

The sight table G is transient: it is updated with every change regarding agent
positioning occurring on the environment, i.e. transformation ω. All agents de-
scribed in such table cannot receive service offers until they come to at most a
distance of itr. Table G can be used by agents to analyse service descriptions
that other agents offer and require. But mainly, for identifying agents at a dis-
tance, i.e. it can be used to decide whether to approach an agent or not due to he
being a preferred supplier according to recent interactions. Receiving the sight
table G is the mechanism all agents have for identifying agents at a distance and
decide whether to come closer or not for interacting.

Definition 9. An agent j smells mark m beyond a distance sgr and up to smr
by receiving a smell table L containing mark m’s position, service descriptions
and odour strength:

L = {∀sgr < |eposj−eposm| <
= smr m | (epos, eisv, eosv, ods)m}. (14)
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Likewise, the smell table L is transient: it is updated every time a transformation
κ and τ occurs on the environment. Marks perceived through the table only
contain service descriptions. For identifying agents, it is necessary to come to at
most a distance sgr. The list is used to track down other agents according to the
services they offer and require. Receiving a smell table L is the mechanism all
agents have for perceiving a notional gradient on the environment and guide their
exploratory behaviour towards where it seems to be something of their interest.
Seeing agents and smelling services permit agents to perceive their environment
and orient themselves on it. Thus, we have already set the elements for allowing
agent to have more control on their exploratory behaviour, i.e. to forage for
services on the environment. Foraging requires an objective to follow which can
easily be the preferred customer and preferred supplier regarding to the service
evaluations received and sent, accordingly. Therefore, extending Def. 5 we have

Definition 10. We use the tuple (aid, apos, svp, isv, osv, A, ms, mls, mlc) to
characterise and agent ag and its interactions; where svp is a pointer to the
service description the agent is currently foraging for. Agents have two main ob-
jectives when foraging: to find the preferred customer and the preferred supplier.
The preferred supplier is that with the highest evaluation ev according to mls.
The preferred customer is that who sent the highest evaluation ev according
to mlc. And according to that, destination point dpos on the environment is
selected.

Agents have two foraging behaviours: (i) directed and (ii) semi-random. The
directed foraging behaviour starts when, e.g. svp → isv, agent j tries to reach
the location where the interaction with the preferred supplier took place. If that
agent is seen, then agent j will simply follow him until interacting either with
him or with a better supplier found in the way. Then, svp will switch to the
other service, i.e. svp → osv, and the process starts over. However, when agent j
arrives at the final position and the supplier agent is not found there or at sight,
then the semi-random foraging behaviour (ii) is activated. At this point, agent
j tries to smell the service svp he is foraging for and to track down its source. If
the preferred supplier is not found at sight, svp will switch to the other service,
i.e. svp → osv. Otherwise, the directed behaviour is re-activated. However, if
isv is not smelled, agent j will forage randomly on the environment until isv is
smelled.

Agents forage for services required and offered by those who have given the
best evaluation and have provided the best service, accordingly. Agents interact
with whoever come across their way whilst foraging. When an agent i is the
preferred supplier for agent j and at the same time j has given the highest
evaluation i has received, they will forage for each other. If no other agent with
a better service comes across, i and j will eventually reduce the distance between
them, and creating and strengthening in this way a link in a supply chain. Thus,
a supply chain is a collection of links going from the supplier in the bottom
up to the final customer in the top. Because this links are formed by preferred
suppliers and preferred customers, they will either pull competitors closer whilst
they keep trying to form part of the supply chain, or create a separate, similar,
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competing supply chain. This depends on how close they are on the environment.
Thus, this behaviour resembles what occurs in business ecosystems [1,2].

2.4 From Supply Chains to Supply Webs

In previous sections, we have presented how agents interact by offering services
and sending back an evaluation feedback; agents move across an environment
whilst they forage for services and form part of a supply chain. However, in
business ecosystems, companies typically participate in more than one supply
chain. They consume services from more than one supplier and at the same
time they have more than one service to offer. This situation resembles food
webs in natural ecosystems where one species acquires nutrients from more than
one (other) species. Conversely, more than one species typically depends on a
single species. The more species depending on one particular species, the more
important that species becomes for the survival of the entire ecosystem. This
species is called keystone [5]. Analogous situations arise in business domains,
where an organisation is well positioned in the market in such a way that it sets
the rules and standards for others to adopt [1]. To introduce this feature into
our model, we augment Def. 10

Definition 11. The tuple (aid, apos, S, A, M) is used to characterise an agent
ag; where

– {svp, ISV, OSV } ∈ S is the service description set, where
• svp is a pointer to the service description the agent is currently foraging

for,
• ISV =

∏g
i=1 isvi is a list with all the services this agent requires,

• OSV =
∏h

i=1 osvi is a list with all the services this agent offers,
– M = {ms, MLS, MLC} is the memory set, where

• ms is the interaction memory size,
• MLS =

∏g
i=1 mlsi is a list with all the interaction memories correspond-

ing one-to-one to service isvg ∈ ISV ,
• MLC =

∏h
i=1 mlci is a list with all the interaction memories correspond-

ing one-to-one to service osvh ∈ OSV .

Set S holds lists OSV and ISV which describe services the agent offers and
requires, respectively. svp still functions as a pointer to the service the agent is
currently foraging for. But now it switches from an element in ISV to one in
OSV and then back to another element in ISV and so on. This extension adds
more dynamism to the ecosystem because agents can not only participate as a
link in a supply chain but as a node in a supply web, resembling food webs in
natural ecosystems. In addition, set M contains lists MLS and MLC. These
describe the last ms interaction the agent has had with suppliers and customers
for the different services the agent requires and offers, respectively. There is a
one-to-one relation from a service to an interaction memory: isv−mls, osv−mlc.

Definition 12. An environment env is a toroidal grid expressed through the
tuple (es, Ads, Mks, R) where the extended elements are defined as follows
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– (eid, epos, EISV, EOSV )i is an agent description tuple specifying agent i’s
identifier eid, position epos = (x, y) on the environment, and lists of services
descriptions EISV and EOSV ,

– Ads =
∏|Ag|

i=0 (eid, epos, EISV, EOSV )i is a table where all agent positions
and services are described. The number of description tuples depends on the
number of existing agents |Ag|.

– (epos, EISV, EISV, ods) is a mark description tuple specifying that an agent
left a mark at position epos = (x, y), with service description lists EISV
and EOSV , and the mark has an odour strength ods,

– Mks =
∏|Ads|·odsmax

m=0 (epos, EISV, EOSV, ods)m is a table where all marks
are described. The number of mark description tuples depends on the number
of existing agents exposed on the environment |Ads| and the maximum value
ods can take. Duplicates can exist.

Since extensions have been made to the number of services an agent offers and
requires, corresponding extensions have to be made to their reflections onto the
environment, i.e. extensions to (3) and (4). Thus, ∀ i ∈ Ag we have

ISV ρ EISV := EISV ← ISV. (15)
OSV ρ EOSV := EOSV ← OSV. (16)

Because Ads and Mks have been extended according to Def. 12, perception
tables T , G, and L are affected accordingly.

Agents now can forage for more services and give preference to the best sup-
pliers found for each service. Moreover, they also can give preference to several
customers giving them the best evaluations for each service. Since agents now
participate in more than one supply chain, they became nodes in supply webs.
Agent foraging for more services will pull, in the long run, more than one supply
chain to it and increase competition. If an agent improves its service, offers a
new services or stops offering a service, it will be noticed in service evaluations
and preferences will change. Replacing a supplier for a better one or preferring
one customer over another. All these changes in interactions affect directly the
agents, i.e the individual level. However, at system level supply webs are ex-
pected to remain and adapt to changes occurring at the individual level. When
the system develops forward like this, and makes it difficult to assign states to
the system because there is no way to make the whole system go back; it is called
transformational evolution [5]. Moreover, it complies with the non-linearity adap-
tation property [14].

3 Related Work

The concept of business ecosystem has been around for more than a decade
and naturally there has been much research in connection with it. Indeed to
do justice to the wealth of material available would require many volumes and
certainly occupy much more space than remains available to us. Accordingly, we
confine our attention to three works of particular relevance.
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(i) The New and Emergent World models Through Individual, Evolutionary,
and Social learning (NEW TIES) [16] is also inspired by nature but they pur-
sue a more generic goal: to develop autonomously created societies, cf. business
ecosystems, within virtual environments. They primarily focus on the emergence
of generic societies through evolutionary learning, agent cooperation, and agent
interactions whereas our purpose is, more specifically, to help businesses to sur-
vive in their dynamically changing environment.

(ii) The Digital Business Ecosystem (DBE) [17] mainly makes extensive use of
evolutionary processes, i.e. using genetic algorithms to find the optimal compo-
sition of suppliers for a specific service request. However, they focus on one-shot
requests where supplier compositions only last until the service is fulfilled. Their
main objective is optimisation of one-shot service requests whereas we focus on
the uninterrupted search of long-lasting partnerships.

And (iii) the Open Negotiation Environment (ONE) [18] study adaptation and
spontaneous composition of disparate services by means of Dynamic Electronic
Institutions. They basically focus on short-term associations (cf. temporary elec-
tronic institutions) whose members align their norms and objectives “on the fly”
whereas we concentrate on the opportunistic discovery of potential long-lasting
partnerships such as those in a supply chain.

4 Concluding Remarks

We have focused above on an incremental exposition of the theoretical aspects
of DAEM. However, it is worth noting (i) how the model can be used, (ii) how
it can be applied, and (iii) what is the expected impact:

(i) We are currently developing a DAEM prototype. With it, we will go
through an iterative cycle to identify a set of conditions/parameters under which
a business ecosystem can be maintained. For example, the environment size;
amount of service offers required for the agents to gain global structure; num-
ber of agents necessary to maintain a stable system; etc. None of the projects
mentioned in Sect. 3, focus on this aspect.

(ii) Using such conditions/parameters it would be possible to feed the model
with existing business ecosystem information in order to discover new and (pos-
sibly) profitable interactions for organisations. This would help them to survive
in their business ecosystem.

Finally, (iii) findings can both enhance the theoretical underpinnings of
DAEM and provide valuable input into new theoretical models of complex busi-
ness ecosystems.

The above are matters for future work. Thus, in conclusion, we have pre-
sented the Dynamic Agent-based Ecosystem Model: a synthesis of ideas from
natural ecosystems and multi-agent systems. We believe this to be a novel and
promising framework for modelling business ecosystems, especially at the level
of interactions so fundamental to their creation and development.
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Abstract. We introduce the Consensual N-Player Prisoner’s Dilemma
as a large-scale dilemma. We then present a framework for cooperative
consensus formation in large-scale MAS under the N-Person Prisoner’s
Dilemma. Forming consensus is performed by demonstrating the appli-
cability of a low-complexity physics-oriented approach to a large-scale
ad hoc network problem. The framework is based on modeling coop-
erative MAS by a physics percolation theory. According to the model,
agent-systems inherit physical properties, and therefore the evolution of
the computational systems is similar to the evolution of physical sys-
tems. Specifically, we focus on the percolation theory, the emergence of
self-organized criticality, and the exploitation of phase transitions. We
provide a detailed low-ordered algorithm to be used by a single agent
and implement this algorithm in our simulations. Via these approaches
we demonstrate effective message delivery in a large-scale ad hoc network
that consists of thousands of agents.

1 Introduction

The N-Person Prisoner’s Dilemma, NPD, is an evolvement of the prisoner’s
dilemma. More than two players are involved in NPD, and therefore a group co-
operation issue arises (Akiyama & Kaneko 2002) (Lindgren & Johansson 2001).
In this paper we scale up the number of players to thousands, and thus con-
sider large-scale problems. As in the case of the prisoner’s dilemma, NPD offers
each player two choices. The first choice is to cooperate and the second is to
defect. While having no information about other players, the dominant strat-
egy for the dilemma is to defect. Following the same strategy, the equilibrium
is for all players to defect. As in the prisoner’s dilemma, this equilibrium is a
Pareto-suboptimal solution since cooperation between all agents leads to a better
solution.

Consensus is a cooperative decision-making process that seeks general agree-
ment over one solution. According to traditional game theory, consensus for-
mation techniques such as voting require central control or coordination via
communication among all agents (Ephrati 1993). The famous prisoner’s dilemma
is one example of a well-studied process of the benefits that arise from reach-
ing consensus and from adopting the general decision. We define a Consensual
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N-Person Prisoner’s Dilemma, Con-NPD, as a generalized form of NPD and
present an example for emergent consensus in a large-scale environment.

In large agent communities, maintaining centralized control or direct con-
nection between all agents is too costly. Therefore, when the number of agents
increases, the complexity of most of the cooperation methods becomes unbear-
able. To resolve the scale-up computational explosion of cooperation mechanisms
in a large multiagent system we present a different approach. We apply a model
based on methods from percolation theory to model large-scale agent communi-
ties. The physics-oriented methods are used to construct a beneficial cooperative
consensus formation algorithm to be used by the single agent within the system.
We show via simulations that using the physics-oriented approach enables effec-
tive emergence of consensus formation in very large agent-systems.

Many problems arise in large-scale MAS research. In this paper we concentrate
on investigating the consensus emergence in large-scale MAS. More specifically,
we consider cases in which cooperative autonomous agents form a large-scale
ad hoc network. We describe a model that allows for the dynamic consensus
emergence and is appropriate for a large-scale MAS and test it. The latter is
performed by simulating a dynamic agent-system that follows our suggested
mechanisms and consists of thousands of agents.

The main contributions of this paper are the following. We introduce the
Con-NPD for the first time and show how it relates to consensus problems in
large-scale MAS. We use percolation theory for emergence of consensus in large
autonomous agent communities. Our approach is fully distributed and results in
very low complexity. By exploiting phase transition phenomena that are typical
of percolation systems we show how agents can predict the utility of the solution
and how they should choose their strategy. The framework we present provides
a solution to problems that were not addressed previously in large-scale MAS,
and may be the basis for future solutions for a larger class of problem domains.
We show here applicability to one domain. A demonstration of the presented
configuration approaches was presented (Yadgar 2007); however, more research
is necessary to determine applicability to additional domains.

1.1 Assumptions

We assume that the agents with which we deal have the ability to perceive the
virtual displacement in the problem-space, can change their virtual displacement
gradually, and can perceive the properties of other adjacent agents. This may be
done by sensors integrated into the agents. This assumption is necessary since
one agent is expected to propagate from state to state within the problem-space
according to the properties of the surrounding agents. To enable such propa-
gation, some knowledge regarding neighbors is necessary. We assume that each
agent has a performance capability that can be measured using standard mea-
surement units. The standard measurement will be used as a quantitative way of
measuring the agents’ success in becoming part of the consensus while fulfilling
their goals. In addition, we assume that a scaling method is used to represent
the displacements of the agents in the problem-space and to evaluate the mutual
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distances between goals and agents within this space. This assumption is neces-
sary since virtual and physical distances are a significant factor in the model we
present.

1.2 Percolation and Physics Notation

Our model relies on the percolation theory (Grimmett 1999), specifically on
the site-percolation model. According to the percolation model a geometrical
construction of sites and bonds between them is referred to as a lattice. A lattice
may be considered a graph of vertices and edges, respectively. An edge may
exist only between two sites considered as closest neighbors; that is, the distance
between them is smaller than a predefined range. The percolation model may
be characterized as two types, the bond and the site. In a bond percolation
model a probability p represents the probability for an edge to be open. In a site
percolation model a probability p represents the probability for a vertex to be
open. An open edge or vertex means that current, such as water or electricity,
can pass along that edge or vertex. Site percolation is more general since every
bond percolation may be reformatted to a site percolation while not all site
percolation can be represented by bond percolation. In this paper we focus on
the site percolation model.

We say that two occupied vertices belong to the same cluster if there is a
path of edges leading from one vertex to the other. As we increase p we may see
that the number of clusters is reduced while the average cluster size is increased.
Percolation theory focuses on the behavior of an infinite lattice and studies the
condition for existence of an infinite cluster. Such a cluster spans from one side
of the lattice to the other, and current can pass from one side of the lattice to
the other. Studies show that the probability for the existence of such a cluster
is either zero or one, whereas for small p the probability is zero and for large p
the probability is one. Given that, there is a critical probability pc such that if
p > pc almost surely, there is an infinite cluster for that lattice, while for p < pc

almost surely, there is no infinite cluster. We refer to the probabilities below pc

as the subcritical phase, to the probabilities above pc as the supercritical phase,
and to pc as the phase transition.

Large-scale randomdistribution ofnodes has a verydistinguished self-similarity
property (Willinger et al. 1996). Benefiting from our physics metaphor, we may
use scale-invariant statistical field theory to deduce that phase transition is not
dependent on the scale of the system as long as the system is big enough. The same
theory proves that the important property is the particle density rather than the
scale. That is, if we increase the size of the area and the number of agents by the
same factor we will witness the same global utility. This means that if we keep
the same agent density, it takes the same evolution time for the model to reach
the same utility regardless of the scale of the problem.

Moreover, following scale invariance laws, if an agent senses other agents in
a big enough area it may use the same conclusions about the whole system. In
that case, an agent may find the probability to achieve consensus and act upon
that knowledge. If it finds that a consensus could emerge, it would act to achieve
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it. If it finds that a consensus could not emerge, it could save its resources by
not trying to cooperate in vain. In our study we validated these deductions when
applying our model to the large-scale ad hoc network example.

Using a lattice and playing the prisoner’s dilemma against all neighboring
agents is not a new concept. Feldman and Nagel (Feldman & Nagel 1993) and
Outkin (Outkin 2003) arrange agents on a lattice, apply a cellular automaton
mechanism, and let them play with their neighbors. Our framework is different
since we use physics metaphors and insights from percolation and scale-invariant
statistical field theories to motivate agents and deduce the performance of the
system.

Krishnamachari et al. (Krishnamachari et al. 2001) use random graph theo-
ries and a fixed radius model to discuss a similar phase transition phenomenon in
ad hoc networks; however, they do not suggest ways to leverage this phenomenon
and ways to enhance it. In this paper we demonstrate how to use the phase tran-
sition phenomenon to predict the likelihood for consensus emergence and suggest
a novel algorithm to achieve this phase transition with fewer resources.

In the next sections we define the Con-NPD and present the large-scale ad
hoc network as an example to that dilemma. We then detail the algorithm for the
autonomous agent and demonstrate our solution with simulations. We conclude
with a detailed discussion of our results and the conclusions arising from this
framework.

1.3 Emergent Behavior and Self-organization

Emergent behavior and self-organization are well-studied fields. Camazine et al.
(Camazine et al. 2001) define self-organization as a process in which a pattern
at the global level of a system emerges solely from numerous interactions among
the lower-level components of the system. Much of the work that has been done
in these fields is inspired by biology and animal behavior such as ants, bacteria,
and other insects (Vitorino & Ajith 2005). In their paper, Conradt and Roper
(Conradt & Roper 2005) study consensus decision making in animals. They ex-
plain the motivation of social species for jointly made decisions by their need
to stay together and review empirical and theoretical studies of consensus deci-
sion making in animals. They conclude that consensus decision making is com-
mon in nonhuman animals, and that cooperation between group members in the
decision-making process is likely to be the norm, even when the decision involves
significant conflict of interest. Understanding the motivations and the behavior
of social species is very important but could take a long time to converge. We,
on the other hand, present a general dilemma in which the equilibrium strategy
is for agents not to cooperate; however, this equilibrium is a Pareto-suboptimal
solution since cooperation between all agents leads to a better solution. We use
percolation theory rather than biological theories. We apply our solution to an ad
hoc network formation problem, demonstrate how fast a consensus can emerge,
and draw guidelines to deduce the likelihood for a consensus to form.
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2 Consensual N-Person Prisoner’s Dilemma

We focus on a specific set of problems of consensus decision making. We consider
the problems in which it is beneficial to become a part of a consensus, but
partial information disrupts distinguishing between vast majority and very small
minority groups.

Definition 1. Consensus group
Let A be a set of agents and S a set of solutions to the problem P.

A group C ⊆ A is said to be a consensus group if for each c ∈ C there is a
solution function f(c) → s where s ∈ S and |A| − |C| = ε such that ε → 0.

In an agent community, a consensus group is a subset of that community such
that every member in that group agrees with all members of the group on the
solution to the problem, and the size of the group is very close to the size of the
whole community.

Let us consider the following case of a large-scale version of the prisoner’s
dilemma, in which the authorities tend to accept the vast majority opinion.
King Solomon and the Bees is a variant to the King Solomon and the Bee tale
by H. N. Bialik.

One day while King Solomon was napping under his fig tree, a group of bees
passed the guards and stung his nose. Jumping up with pain, he knew that his
nose was stung by one or more bees. Angrily, he summoned all the bees in his
garden to find and punish those who were responsible for the crime. Knowing
that the bees knew which ones were responsible, he cried, “I’ll give each one of
you two choices, to keep silent or to tell me who are responsible for this.” Since
King Solomon liked honey and did not want the bees to stop producing it, he
decided not to severely punish the entire bee community. Being fair and just, he
added, “and here is the way I will punish the guilty ones.”

Table 1. Consensual N-Person Prisoner’s Dilemma

Consensus Consensus No
Stays Silent Betrays Consensus

Bee Stays Silent 0.5 10 10

Bee Betrays Free 2 Free

Following Table 1, a bee serves six months in prison if she and the general
community keep silent. She serves two years in prison if she and the general
community betray each other. She is sent free if she betrays and there is no
general behavior for the rest of the community, and finally, she serves ten years
in prison if she chooses to be silent and there is not common behavior among
the other bees.

The intelligent bee will have to carefully consider her best move and take
into account the other bees’ reactions. If the vast majority stays silent, her best
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move is to betray and gain freedom. If the vast majority betrays, her best move
also would be to betray since she will serve two years instead of ten in prison.
Finally, if there is no consensus among the bees, betraying is also the best move
that will grant her freedom. Following the same strategy, all bees arrive at the
same conclusion to betray and therefore will serve two years in prison. However,
had the bees cooperated they could have achieved a better result and served
only six months in prison. Moreover, even if the bees know that cooperation is
beneficial they will still need to find out how to form a consensus in a large-scale
community since traditional mechanisms are not applicable.

In the next section we present the large-scale ad hoc network problem as an
example to the Con-NPD.

3 Large-Scale Ad Hoc Network Problem

In a large-scale disaster such as an earthquake or a flood, one of the first things
to collapse is the communication infrastructure. Communication is an essential
means for rescue operations, and survivability of victims of such disasters de-
creases sharply with every minute that passes. Therefore, rapidly reviving the
communication infrastructure in a large-scale disaster zone is crucial to saving
many lives.

Nodes of an ad hoc network should support both local and global require-
ments. The local requirement is to allow nearby users of phones, computers, and
PDAs to receive service, while the global requirement is to maintain network
connectivity. Agencies responsible for establishing such networks wish to bal-
ance between the need to service as many users as possible and the maintenance
of network connectivity. Formally, this balance could be defined by the agencies
as a utility function of the system. These agencies wish to maximize the utility
of the system under the limitation of a given budget.

Reflecting recent technology advances, we propose to use thousands of small,
short-range, inaccurate, low-cost, nodes to support the requirements. Following
the spatial behavior of the network we show a phase transition in the utility of
the system as a function of the number of nodes. That is, (i) for a few nodes, there
is no applicable deployment while (ii) for many nodes any random deployment
achieves the maximum utility, and (iii) the transition between zero utility and
maximum utility is sharp.

Considering the phase transition phenomenon, we show how to determine the
number of agents needed to maintain such ad hoc networks and demonstrate
an algorithm to drastically reduce the number of nodes required for the phase
transition. We propose to apply intelligent behavior to every node. This behav-
ior considers very limited partial information obtained by the node. To reduce
resource consumption, a node does not use communication with other nodes
for implicit cooperation but only for acquiring the locations of its neighboring
nodes.

We may consider the balancing between local and global requirements as
a Consensual N-Person Prisoner’s Dilemma if we use autonomous agents as
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network nodes. In the ad hoc network problem each node has two options: to
stay in its original location and thus be at the optimal location to communicate
with its users or to spend resources to improve network connectivity. These two
options are equivalent to defect and cooperate, respectively, as described in the
previous section. Spending resources to communicate with neighboring agents
might not be beneficial since these neighbors might not be connected to the rest
of the nodes.

Following Definition 1 we say that consensus in the ad hoc network domain
problem is a conclusion of the vast majority of the agents to cooperate and con-
sensus group is the group of those agents. We suggest using the phase transition
phenomenon to infer whether a consensus group is likely to exist. The strategy
of a single agent would be then to cooperate only if there is such likelihood and
otherwise to defect.

4 Physics-Oriented Agent

Using only partial information, each agent is motivated to increase the global
utility while following its own utility function. To do that we built a utility
function for an agent that is combined out of two elements, the local motivating
the agent to defect and the global motivating the agent to cooperate. Based on
our previous work (Shehory et al. 1999) and (Yadgar et al. 2003), we represent
the global considerations by a potential field that drives the agent toward other
agents but rejects it from them if it is too close to them. The influence of an
adjunct agent to the potential is represented in a grid around the agent, and
the size of the grid depends on an awareness range defined for the agent. The
potential contribution of each adjunct agent may reach up to an interaction
range and its value is between -1 and 1 while negative potential values represent
attraction and positive values represent rejection.

To represent the local motivations we used an exponentially decaying function.
This function depends on the distance of the agent from its origin and aims to
motivate the agent to remain in its original location. We used the same grid that
was used to represent the potential field to incorporate the local considerations.
The contribution of the local consideration to every cell in the grid may vary
between 1, for maximum contribution, and 0, for minimum contribution.

To model the overall agent utility we prefer to use a model that does not
require long-range interactions. In such a model we may take into account only
local interaction and reduce the computational complexity. Since we want the
local consideration to be dominant we represent the utility as a multiplication
between the local and the global motivations. We use the grid to represent the
range of possibilities to gain utility if the agent were in a certain location on the
grid. We find the best places that result in the highest utility value and randomly
choose one of them. The agent then moves in the direction of this cell.

As we stated above, the density of agents is the dominant property. Therefore,
if the density is too high we may reduce the awareness range such that for any
number of agents the awareness area will include approximately the same number
of agents.
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To describe the algorithm that follows the above guidelines we first present
our notation. Then we follow the steps that each agent should autonomously
repeat every second.

Notation:

– a : current agent
– < a.x, a.y > : current location of the agent
– < a.o.x, a.o.y > : original location of the agent
– < a.x + i, a.y + j, R > : circular area defined by its center and radius
– RA : range of awareness
– RI : range of interaction
– V : potential
– Cc,Cd : cooperate and defect coefficients

Algorithm:

first = true // Forming a grid of possible
for (i=-R_A;i<R_A;i++) { // utilities around the agent:
for (j=-R_A;j<R_A;j++) { // Looking for neighboring
d_2 = i^2+j^2 // agents within the
if (d <= R_A_2) { // awareness perimeter
SA = agents in <a.x+i,a.y+j,R_I>
V = 0 // Computing the contribution
for each sa in SA { // of the global considerations

dsa_2=(a.x+i-sa.x)^2+(a.y+j-sa.y)^2
V -= 2*dsa_2/R_I_2-1

}
cooperate = -C_c * V

D_o_2 = a.o.x^2+a.o.y^2 // Computing the contribution
defect = exp(-C_d*D_o_2) // of the local considerations

u = cooperate*defect // Integrating global and local
// contributions

if (first || u > maxU) { // Remembering the location
first = false // of the best utility
maxU = u
maxUset.clear();

}
if (u == maxU)

maxUset.add(<a.x+i,a.y+j>)
}

}
}
k = (int)(random()*maxUset.size()) // Moving towards
move 1 unit in direction maxUset.get(k) // the best utility
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Since the number of sensed agents is approximately constant and since the
awareness range may be reduced if the agent density is high but not increased
if it is low, the time complexity of this algorithm is O(1).

5 Simulation and Results

To examine our model and show its applicability to real problems, we performed
a set of simulations. Via these we demonstrate effective consensus emergence in
a dynamic MAS that consists of thousands of agents. The problem domain for
which the simulations were performed is as follows. We simulate a large-scale
disaster zone in which thousands of sites each demand means to communicate
with any other site. Such problems in real environments are commonly solved
by dictating a central decision and using a few stationary, well-equipped com-
munication nodes. We simulate by using many low-cost mobile nodes instead to
provide a communication service such that the nodes will move around to form
a network but stay close enough to the users to provide better reception.
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Fig. 1. Bringing phase transition forward

We consider a large-scale area in the size of 1,000,000 x 1,000,000 meters. We
assume that users are randomly spread across the simulated zone, and nodes
are in the best places to gain reception. Each node has an interaction range of
20,000 meters and an awareness range of 100,000 meters. That is, each node
may interact with other nodes residing within its interaction area that covers
0.13% of the overall area. Each node may also be aware of the location of other
nodes residing within its awareness area that covers 3.14% of the overall area.
While in their positions, nodes may not have the capability to interact with other
nodes since they might be out of each other’s interaction range. We consider this
deployment as the best for reception and hence the best deployment to service
local requirements.
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Fig. 2. Evolution of deployment of 2000, 3000, and 4000 agents

To study the emergence of a network in such an environment we started by
looking for the probability that two nodes would be able to communicate. In an
examined scenario we randomly placed N nodes in our tested large-scale area. In
this initial study, nodes stayed stationary. We refer to this as a naive deployment
and compare the deployment achieved by applying the percolation theory to it.
For the naive deployment we examined 8,000 different scenarios such that in each
scenario we used a different number of nodes and we varied the number of nodes
from 1000 to 9000. For each scenario we connected each node to its adjacent
nodes if they were inside its interaction range. Following that procedure a set of
separate clusters was formed. Each cluster represents a group of nodes that may
exchange messages.

We used the following metrics to evaluate connectivity: we randomly picked
two nodes and marked a success if the two belonged to the same cluster and a
failure if not. We repeated choosing pairs of nodes for a large number of pairs
(ten times the number of nodes) and calculated the percentage of successfully
delivered messages. We decided not to check all the possible pairs, which would
be computationally expensive. Checking all the possible pairs has the time com-
plexity of O(N2) while our procedure has the time complexity of O(N); N is the
size of the cluster. Since we randomly picked up a large number of pairs (>> N)
our pair population is a good representation of the whole possible population.
We tested each scenario 20 times. Each time, we randomly redeployed the same
number of nodes and reported the average value.

As we anticipated, we discovered a phase transition point (see Figure 1). We
saw that while randomly spreading less than 3200 nodes, only 10% of the mes-
sages arrived at their destination, while to have 90% of the messages successfuly
arrive at their destinations we need 4300 nodes.

We then attached to each node a Physics-Oriented Agent that was allowed,
autonomously, to move according to the detailed algorithm. In our settings we
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assigned cooperate coefficient Cc to be 1E-7, and a defect coefficient Dd to be
0.5. While varying the number of agents from 2000 to 4000 in 100-agent steps,
we examined 21 scenarios. To evaluate the results, our metrics were the average
and the maximum values of each scenario. When calculating averages over a
simulation run, we omitted the results of the first 100 cycles. This omission
prevents the averages from being affected by the initial conditions. We tested
each scenario ten times and report the average of the two metrics.

In Figure 2 we present an example of three scenarios of consensus evolution.
The figure describes the global utility as a function of the evolution cycle for
large-scale systems of 2000, 3000, and 4000 agents. One may see that all sce-
narios converge to a very close utility oscillation. For the 2000 agents formation
the algorithm improved the global utility from 0.6% to 4.7%. However, this im-
provement is not sufficient to establish a network. The Physics-Oriented Agent
bounced the global utility in the 3000 agents scenerio from 2.9% to 87.4% and
by that enabled the existence of a network. In the case of 4000 agents, the naive
approach formed a network; however, the Physics-Oriented Agent improved the
utility from 79% to 97.2%, thus resulting in a much more reliable network.

Analyzing Figure 2 we may also notice that the converged value is not the
maximal value and that the maximum value for scenarios with a low number of
agents is achieved at a very early stage. There may be formations that produce
higher utility but are less stable and robust. This explanation is supported by our
findings showing that the average degree of a node in those scenarios increases
as the network evolves and converges when the utility converges.

The maximum utility formation may be useful if the deployment is simulated
or if the agents have backtracking capabilities. In these cases, a decision must
be made about whether to have a more robust network or a better-performing
network. We will show next that adding a small number of agents may compen-
sate for the difference between the utility gained by the network at the stable
state and its maximum value.

Figure 1 presents the global utility as a function of the number of agents for
the naive model and for the Physics-Oriented Agent model. As shown, following
the naive approach we will need at least 4300 nodes to establish a network with
a utility that is over 90%. To achieve the same utility while using the proposed
Physics-Oriented Agent model we will need only 2700 nodes. This reduction of
about 40% can be used to establish a more efficient network. We can also notice
that the maximum utility value curve is a little ahead of the average. This means
that we may backtrack to the formation that resulted in the maximum utility
if the utility converged value is lower, or we may compensate by adding more
agents to have the utility of that maximum value.

Through the scale invariance feature of the system, an agent may sense other
agents in its awareness range and deduce about the prospects for a network to
emerge. If the density of the agents in its awareness area is equal to or greater
than the global density of the agents right after phase transition, a network
would emerge. If the density of the agents in its awareness area is equal to or
smaller than the global density of the agents right before phase transition, a
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Fig. 3. Emergence of an ad hoc network of 3000 nodes over Indonesia: after 0 (naive),
1, 10 and 238 cycles

network would not emerge. More specifically, in our settings, if the local density
is larger than 2700/1, 000, 0002, that is if there are more than 84 agents in an
awareness range of 100,000 meters, a network would emerge. If the local density
is smaller than 2300/1, 000, 0002, that is, if there are fewer than 73 agents in an
awareness range of 100,000 meters, a network would not emerge. An agent may
then act upon that knowledge and save energy and resources if it concludes that
there is no chance for a network to emerge, or follow the algorithm described
above to form a network if it concludes that a network would emerge.

Figure 3 illustrates the emergence of an ad hoc network over Indonesia. This
network combines 3000 nodes following the Physics-Oriented Agent model. In the
first image we see the naive solution that did not produce a reliable network since
its utility is only 9%. The naive distribution is also referred to as distribution
in evolution cycle 0. After one cycle the model formed a network that produced
a utility of 16%. After only ten evolution cycles a relible network emerged and
gained a utility of 93%. Keeping the network evolving results in a more effective
solution with a utility of 99% after 238 cycles.

6 Conclusion

We introduced the Consensual N-Person Prisoner’s Dilemma and showed how
it relates to consensus problems in a large-scale multiagent system. Achieving
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consensus in a large-scale MAS environment is a hard problem. Based on the
percolation theory we presented a novel approach for emergence of consensus
in large autonomous agent communities. Our presented approach is fully dis-
tributed and results in very low complexity on the part of a single agent that
has the order of O(1). Following our model, each agent may also predict the
prospects for network emergence and act efficiently upon this knowledge. We
showed that by applying our model we can achieve an early phase transition and
exploit that to dramatically improve the system’s utility and resource usage.
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Abstract. Past years have witnessed a growing interest in automated
negotiation as a coordination mechanism for interacting agents. This
paper presents a generic, problem- and domain-independent frame-
work for argumentation-based negotiation that covers both essential
agent-internal and external components relevant to automated negotia-
tion. This framework, called Negotiation Situation Specification Scheme
(N3S), is both suited as a guideline for implementing negotiation sce-
narios as well as integrating available approaches that address selective
aspects of negotiation. In particular, N3S contributes to the state of the
art in automated negotiation by identifying and relating basic argument
types and negotiation stages in a structured and formal way.

1 Introduction

Agents are autonomous entities that are situated in an environment and capable
of flexible action [30,31]. Agents typically have conflicting interests, incompat-
ible goals and limited capabilities, and so there is a need for principles and
mechanisms that enable agents to coordinate themselves. In the multi-agent
area various such principles and mechanisms have been proposed, including par-
tial global planning [3], contracting [1,29], commitments and conventions [6],
GPGP/TAEMS [10], auctioning, voting, and many others. Recent years have
witnessed a growing interest in automated negotiation as a coordination mech-
anism especially for complex applications [11,14,19].

Negotiation is a communication-based, knowledge-intensive process during
which agents try to come to mutually acceptable agreements by exchanging
appropriate arguments that influence – convince, persuade, etc. – the respec-
tive other agents [13,21]. Many approaches to automated negotiation have
been described in the literature. In [20] these approaches are divided into
three groups: the more traditional game-theoretic and heuristics-based ap-
proaches, and argumentation-based approaches. Compared to each other, the
argumentation-based approaches are better suited for applications in which
agents have incomplete or inconsistent information about each other and the

M. Klusch et al. (Eds.): CIA 2007, LNAI 4676, pp. 209–223, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



210 M.M. Geipel and G. Weiss

environment in which they act. Argumentation-based negotiation (ABN), how-
ever, has many facets and is a quite complex mechanism. As a consequence,
and as has been already argued in [20], there is a strong need for a framework
that identifies the essential components that are needed to conduct automated
negotiation. This paper presents a generic argumentation framework, called Ne-
gotiation Situation Specification Scheme (N3S), that we developed in response
to this need. N3S, which in part is inspired by the real-world negotiation method
proposed in [5], covers negotiation both from an agent-internal perspective and
an external perspective. While the former perspective focuses on the individual
agents’ cognitive and societal abilities needed for negotiation, the latter perspec-
tive concentrates on the communication and argumentation processes in which
the agents are involved during negotiation. Specifically, N3S addresses the open
issue of structuring the overall negotiation and argumentation process by iden-
tifying argument types and relating them to different negotiation stages.

The paper is structured as follows. Section 2 describes selected related work.
Sections 3 and 4 introduce the basic agent-internal elements and the external
perspective of N3S, respectively. Section 5 illustrates the overall flow of argu-
mentation induced by N3S. Finally, Section 6 summarizes the key features of
N3S, compares N3S to related approaches, and shows important research issues
raised by N3S.

2 Related Work

Several frameworks for ABN have been proposed in the literature. Four of the
most prominent representatives of these frameworks are overviewed below; others
are, for instance, described in [15,16,26,27].

The interest-based negotiation framework [17] builds on the observation that
in human negotation an agreement is often easier to achieve through argumen-
tation about interests (i.e., desires and goals adopted to fulfill the desires) rather
than positions – while positions may be fully incompatible, some of the interests
underlying incompatible positions may even be fully shared by the negotiating
parties. As a consequence, the concept of conflicts is essential to this framework,
and different conflicts (namely, conflicts w.r.t. resources, goals, desires and be-
liefs) and conflict resolution methods (namely, concession making, exploration
of alternative offers/goals, and persuasion) are distinguished. Specifically, three
types of arguments are identified, including arguments for beliefs, arguments for
desires, and arguments for plans. Other key elements of the framework are a com-
munication language and protocol and a methodology for negotiation strategy
design.

The trust/persuasion-based negotiation framework [22] concentrates on the
reduction of multiple sources of uncertainty a negotiating agent typically is con-
fronted with. Specifically, the framework includes two main components. First,
an interaction-based trust model, called CREDIT, that allows to reduce uncer-
tainty regarding the reliability and honesty of negotiation partners. CREDIT
aims to assess the trustworthiness of other agents by taking into account own
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experience from direct interactions and experience gathered by other agents.
Second, a model of persuasive negotiation (i.e., negotiation based on rewards
that are either given or asked from one agent to another) that allows to reduce
uncertainty regarding the preferences and action sets of negotiation partners
during bargaining. This model is complemented by a protocol for persuasive
argumentation and a strategic reasoning mechanism for generating persuasive
arguments. The framework distinguishes two broad classes of illocutions to be
used in persuasive negotiation, namely, negotiation illocutions (propose and ac-
cept) and persuasive illocutions (reward and ask reward).

The logic-based negotiation framework proposed in [9] distinguishes six argu-
ment types known from human negotiation: threats to produce goal adoption
or abandonment; promises of future reward; appeal to past reward; appeal to
precedents as counterexamples; appeal to prevailing practice; and appeal to self-
interest. In the case multiple arguments are available to an agent, he applies
them successively in a predefined order (which appears to be plausible but not
necessarily optimal). The framework emphasizes agent-internal elements, and
does not provide explicit communication protocols.

The formal framework suggested in [28] is intended to cover negotiation sce-
narios in which an agent tries to convince another agent to execute a particular
task on his behalf. Negotiation, considered as a sequence of offers and counter
offers containing values for the issues under negotiation, is achieved through
the exchange of illocutions in a shared communication language. Two types of
negotiation-relevant illocutionary acts are distinguished: acts used to make of-
fers (offer, request, accept, reject, withdraw), and acts used for argumentative
persuasion (appeal, threaten, reward). The framework allows to specify attack
and support relationships among arguments as well as authority relationships
between agents. Based on these relationships, arguments are evaluated and gen-
erated.

While the available ABN frameworks provide guidance regarding the types
of arguments and illocutions needed during negotiation, they do not structure
the overall argumentation process per se and it remains unclear whether and
how the different arguments and illocutions correspond to specific phases of
negotiation. Such a correspondence, however, is essential to the realization of
complex automated negotiation scenarios.

3 Agent-Internal Elements of N3S

N3S distinguishes five agent-internal elements relevant for automated negotia-
tion: options, constraints, interests, utilities and arguments. These are described
below. In the following, let A = {a1, . . . , an} denote the set of agents participat-
ing in the negotiation process.

3.1 Options

N3S assumes that each agent a has his own set of options which he deems feasible.
This set is denoted by O

(a)
feasible ⊆ O where O is the set of all possible options.
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According to N3S, an option defines a world state, no matter which modeling
perspective is applied. In the case of a task-oriented perspective of the world,
each option o ∈ O

(a)
feasible defines an ordered set of task allocations, that is, a

collection of tasks T = 〈T1, . . . , Tn〉 where ∀i Ti is the task assigned to ai ∈ A.

Example 1. Two agents, a1 and a2, negotiate the assignment of the tasks “collect
data from database” (Tcollect)and “analyze data” (Tanalyze). An option of a1

may be to take care of data collection while a2 takes care of data analysis, i.e.,
〈{Tanalyse}, {Treport}〉.

In value-oriented domains, each option o ∈ O
(a)
feasible defines a set of values of

parameters describing the world or a part of it.

Example 2. An agent ab wants to buy a car from a sales agent as, where one
of his buying options specifies the following car attribute values (“AC” stands
for “Air Conditioning”): (price ≤ 50000, brand ∈ {Mercedes, BMW}, hasAC =
true, topSpeed ≥ 200) (assuming prices in e and speed in km/h throughout
this paper).

An important subclass of options distinguished by N3S are non-negotiated op-
tions, that is, options that can be achieved by an agent a even without agreement
of any of the agents in A \ a. Note that each non-negotiated option, o

(a)
nn , of an

agent a is feasible by definition, that is, o
(a)
nn ∈ O

(a)
feasible. In this paper, O

(a)
nn de-

notes the set of all non-negotiated options of agent a. (The utility of the best o
(a)
nn

defines the acceptance bottom line for the agent (see 4.2), and non-negotiated
options play an important role in the argumentation process (see 3.4)).

Example 3. Consider the car dealer scenario from Example 2. If as is not the
only sales agent out there, ab can also buy a car from another sales agent as2.
The options as2 proposes to ab are ab’s non-negotiated options in his negotiation
with as.

Negotiation is a chance for the agent to ameliorate his situation by cooperation,
but not every negotiation necessarily generates acceptable options. If agents
agree upon an option, they commit themselves to achieving a specific world
state. In the sequel, o∗ denotes the option upon which the agents finally agree.
A negotiation is said to fail, if o∗ = ε (i.e., o∗ is empty).

3.2 Constraints

A constraint defines an option or a set of options which an agent considers as
impossible to realize (under current circumstances) and thus as not negotiable.
More specifically, because options define world states, a constraint defines world
states which an agent does consider as not feasible. N3S assumes that each agent
a has his own set of constraints C(a) ⊆ C where C denotes the set of all possible
constraints. The union of all individual constraint sets C =

⋃
a∈A C(a) rules

out the options that are out of question for mutual acceptance. The constraint
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set C is not necessarily congruent with the set of constraints Creal that reality
imposes. In the case that the agents settle on an option o∗ ∈ (Creal \ C), the
outcome of the negotiation is void and from that it follows that o∗ = ε.

Example 4. The constraints for the sales agent as from Example 2 may include
that she does not sell BMWs going faster than 250 km/h: (¬((brand = BMW) ∧
(topSpeed > 250))) ∈ C(as). The constraints for the buyer ab may include that
he cannot pay more than 60K: (¬(price > 60000)) ∈ C(ab).

3.3 Interests and Utilities

It is up to an agent to decide whether to accept or reject an option proposed by
another agent. To make this decision in a rational way, N3S suggests to take into
account the utility of an option (hence of the world state it defines). Thereby,
N3S assumes that interests, especially conflicting ones, are central to calculate
the utility of options and, with that, to decide on acceptance and rejection: the
better the interests are addressed by an option, the higher is the utility of the
option. In particular, N3S exploits interests to calculate the utility of an option
in two steps, namely, in a first step from option to interest and in a second
step from interest to utility. This crucial separation splits the debatable part of
an agent’s reasoning from the undebatable part. Clearly the mapping from an
option to an interest follows rational principles (in the case of rational agents),
while the mapping from interest to utility does not. For instance, while it is
possible to argue rationally whether air conditioning (part of the option) adds
to comfort (interest), it is not possible to argue rationally how much comfort it
adds to an agent’s personal utility. In other words, an agent’s utility function is
private, but an agent’s mapping from options to interests is not. (An agent, as a
rational entity, may not only keep track of his own mind state, but may also try
to model the mind states – including the interests – of his negotiation partners.)

Formally, there is a mapping from the option o ∈ O to the degree of the
interest i ∈ I in o: O × I �→ R. This mapping is called interest-satisfaction-
mapping (ISM). Let Ia1 be the set of interests of agent a1. As this set is finite,
ISM can be formulated as follows: O �→ R|Ia|. The result of this formulation is a
vector called interest-satisfaction-vector is. With that, the utility function can
be written as u : R|Ia| �→ R.

Example 5. Consider the car dealer scenario from Example 2 and assume that
ab is interested in some comfort icomfort ∈ Iab

. The availability of air condition-
ing (AC) fulfills this interest, while not having AC leaves icomfort unaddressed.
hasAC ⇒ icomfort would then be part of the ISM. A utility function could,
for example, calculate the utility of an option as the weighted average of the
degrees of interest fulfillments: u(o) =

∑
i∈I ωiISM(o, i). If the existence of an

AC makes up 50 percent of a car’s utility for the agent, ωicomfort
would be 0.5

in that case.
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Fig. 1. The taxonomy of arguments (see the text for formal definitions)

3.4 Arguments and Argument Taxonomy

A rational agent always aims to maximize the utility he gets from negotiation.
This means he will try to get the best of his options to which the other agent’s
will agree. According to N3S, argumentation is used to set the stage for a final
agreement (negotiation stages distinguished by N3S are described in 4.3). Specif-
ically, N3S allows to distinguish different types of arguments, depending on the
way in which they aim to influence the opposing agents’ “mind”. These types,
which are summarized in Figure 1, are described below.

Constraint-Arguments. Constraint-Arguments, referred to as c-arguments,
aim at influencing the other agents’ constraint sets. The idea is to widen O

(a)
feasible

where a is the opponent or to narrow O
(a)
feasible where a is the agent itself. Note

that for an effective negotiation it should be in the interest of all parties to
achieve a view of the constraint set which is as coherent as possible.

Example 6. In the car dealer scenario from Example 2, a c-argument could be
“I’m sorry Sir, but we don’t sell BMWs that go faster than 250”:

(¬(brand = BMW ∧ speed > 250)) ∈ C.

Thread-Arguments. Threads target the agents’ non-negotiated options reper-
toire. Arguments of this type that aim to decrease the utility of the other agent’s
O

(a)
nn are called active threads. Moreover, active threads are called aggressive if the

agent announces personal involvement in downgrading the other agent’s O
(a)
nn .

Non-negotiated-option arguments, shortly referred to as n-arguments, that aim
to increase the utility of the agent’s own O

(a)
nn are passive threads from the per-

spective of the opponents. A rational agent a should be aware of the fact that
passive threads only make sense if his O

(a)
nn is better that the other agents expect

it to be. (From an ethical point of view, threads are legitimate as long as they
are not aggressive.)

Example 7. In the car dealer scenario from Example 2, a passive thread is to tell
the sales agent that one got an offer for a Mercedes with AC and a top speed of
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300 km/h for 51,000 e from another car dealer: (51000, Mercedes, true, 300) ∈
O

(ac)
nn .

Disclosure-Argument. These arguments, referred to as d-arguments, do not
change the option spaces. They rather support the other agents in their joint
problem solving by disclosing own interests i and by mapping them to a utility
measure.

Example 8. A customer could reveal to the sales agent that she is interested in
comfort in the car: (icomfort ∈ Ia, hasAC ⇒ icomfort). The first part states that
she is interested in comfort, and the second part states that AC needs to be true
to fulfill the interest.

Utility-Arguments. Utility-Arguments, or u-arguments for short, aim at in-
fluencing the other agent’s utility function. The idea is to widen O

(a)
agreeable where

a is the opponent (active utility-argument) or to narrow O
(a)
agreeable where a is

the agent itself (passive utility-argument).

Example 9. Consider Example 8. The sales agent could argue that an AC
does not necessarily lead to higher comfort. If the customer intends to use
the car in Greenland, she won’t need an AC to keep the car cold: (¬AC →
(Temperature(car) = Temperature(country)), Temperature(country) <
23, Temperature(car) < 23 → comfort). So, the sales agent is saying that with-
out an AC the car will have the same temperature as the country and this
temperature is blow 23 degrees.

4 External Elements of N3S

4.1 Communication

N3S suggests that negotiation essentially is the communication of suggestions
(including both options and arguments). Communication starts by suggesting
to negotiate, and is continued by the agents through rejecting and accepting
suggestions. Communication ends if all agents accept the same suggestion or if
one or several agents decide to not longer participate in the negotiation process.
Figure 2 depicts the general scheme.

Starting and Terminating a Negotiation. Negotiation is a conversation
that has a well defined beginning and ending. Before the real negotiation takes
place, it has to be clear which agents participate and what the option space
is. Thus one agent will suggest a negotiation be sending a message with the
following information:

1. a specification of the option space (what is negotiated?);
2. a list of known participating agents (who negotiates?);
3. a unique identifier of the (intended) negotiation.
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Fig. 2. The logic of suggesting, rejecting and accepting

The option space may be defined by an ontology accessible to each participating
agent in order to ensure an efficient negotiation. (Note that N3S does not pre-
scribe the provision of an ontology by the user. Rather, it would be possible as
well that agents themselves choose or “meta-negotiate” the ontology they want
to use).

Negotiation starts if all participating agents accept the offer to run a negoti-
ation. An ongoing negotiation ends if one or several partners refuse to continue
the negotiation process or if all partners agree on (accept) the same suggestion.

Making Proposals. An option is always suggested by an agent. N3S requires
that each of the participating agents has the choice between sending a reject
or an accept message once an option has been suggested. In the case of the
acceptance of an option by all agents, the negotiation ends.

Providing Arguments. N3S assumes that arguments, just like options, are
subject to the suggest-accept-reject scheme. This makes sense because the par-
ticipating agents can now track whether their negotiation partners accept an ar-
gument. In particular, it allows them to adjust their own reasoning and to model
the reasoning of the other agents. As another means for increasing negotiation
efficiency, a negotiation protocol could be applied that allows to propose only
arguments that are (logically) consistent with previously accepted arguments.

4.2 Option Spaces

N3S structures the option space from the perspective of rationally acting agents.
An obvious option class being relevant to rational agents is the class of options
deemed feasible by all agents:

Ofeasible =
⋂

a∈A

O
(a)
feasible (1)

To be considered as feasible by all agents, however, is not sufficient for an option
to be accepted. A rational agent can not be expected to agree upon an option
if he fares better in not agreeing to anything. If no agreement is reached, each
agent has to fall back to his best non-negotiated option which is given by:

argmax(util(a)(onn ∈ O(a)
nn )) (2)
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Table 1. Option hierarchy induced by N3S

(Sub-)Space Description
O includes every possible option

O
(a)
feasible ⊆ O includes all options that agent a judges to

be possible in respect to C(a)

Ofeasible =
⋂

a∈A O
(a)
feasible includes all options that are perceived as

possible by all agents in A

O
(a)
agreeable ⊆ O

(a)
feasible all options that are agreeable for agent a

Oagreeable =
⋂

a∈A O
(a)
agreeable all options agreeable to all agents in A

So, every option o which (i) has a higher utility than the best of his non-
negotiated options and (ii) is feasible is in the set of agreeable options:

∀o[(util(o) � max(util(a)(onn ∈ O(a)
nn )) ∧ o ∈ O

(a)
feasible) => o ∈ O

(a)
agreeable] (3)

The set of options agreeable to all agents in A is defined as the intersection of
all agents’ individual agreeable option sets:

Oagreeable =
⋂

a∈A

O
(a)
agreeable (4)

From (1), (3) and (4) it follows that

Oagreeable ⊆ Ofeasible (5)

Table 1 summarizes the above considerations.

Example 10. Consider the care dealer situation introduced in Example (2).
As we already saw in Example (4), the constraints for the customer ab in-
clude that he cannot pay more than 60K: ¬(price > 60000) ∈ C(ab). Thus
an option (61000, BMW, true, 200) would be in O but not in O

(a)
feasible. Against

that, (59000, BMW, true, 200) would be feasible. However, if ab also got the
offer (58000, BMW, true, 200) from another sales agent, (59000, BMW, true, 200)
might not be in O

(a)
agreeable. Depending on his ISM and his utility function

(59000, BMW, true, 300) could again be in O
(a)
agreeable, if the difference in speed

(300 km/h instead of 200 km/h) is worth the additional 1,000 e to ab.

4.3 Stages of the Negotiation Process

Based on the option space hierarchy, N3S distinguishes different stages of the
negotiation process and allows to assign specific negotiation strategies to these
stages. These stages are described below. The stage transition diagram is shown
in Figure 3.
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Fig. 3. The transition diagram for the N3S negotiation stages

Pre or post Negotiation (0). Before or after a negotiation process the op-
tion space of an agent does only consist of the non-negotiated options. These
non-negotiated options may well include options that were made possible by
preceding or still ongoing negotiations. An obvious negotiation strategy for a ra-
tional agent in this stage is to broaden his option portfolio. Thus an agent should
check whether there is a prospect of making new options available through ne-
gotiation. A way to achieve this is to start a negotiation process in order get
information about the options of other agents. Initiation of a negotiation pro-
cess will lead to one of the tree following stages. The goal is to reach stage III
which is the only stage at which each participating agent has an incentive to
agree.

Negotiation without available options (I). In this stage, at least two agents
are engaged in negotiation, but Ofeasible = ∅. A strategy to identify options in
this stage is to argue about the other agents’ constraints C(a). Thus c-arguments
will dominate the conversation.

Negotiation without incentive to agree (II). In this stage, at least two
agents are engaged in negotiation and there are feasible options (i.e., Ofeasible �=
∅), but for at least one agent none of these options seems to have a higher
utility than his best non-negotiated option (i.e., Oagreeable = ∅). There are two
strategies to open up Oagreeable: to influence and change the utility functions
of the other agents through u-arguments; and to attack the other agents’ O

(a)
nn

through n-arguments.

Negotiation with incentive to agree (III). In this stage, at least two agents
are engaged in negotiation and Oagreeable �= ∅, and thus it is rational for both par-
ties to successfully finish the negotiation. A negotiation protocol like the mono-
tonic concession protocol presented in [31] to clarify specific terms of agreement
and to find a fair option for all parties. Besides this, there is still the possibility
to strengthen one’s position with n-arguments and u-arguments. Note that it is
well possible to fall back to stage II by using (e.g.) passive threads.
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5 Putting the Pieces Together – A Sample Flow of
Arguments

The examples provided in the preceding sections illustrate specific aspects of
N3S. In this section, an example is given that illustrates the interdigitation of
agent-internal and external elements of N3S. The emphasis of this example is on
the overall flow of argumentation. (For the sake of clarity, the used formalism
is kept as simple as possible and utilities – functions and u-arguments – are not
considered. Note that there is no commonly accepted benchmark negotiation
problem in the field; we think the problem introduced below may be a good
benchmark candidate for both theoretical and practical analysis).

5.1 The “Polygon Negotiation Problem”

Basic Setting. Assume there are two agents (a1, a2) and a polygon P of order
n (y = c0x

0 +c1x
1 + · · ·+cnxn). Coefficients are in the range [−1, 1] and initially

set to zero: c0 = c1 = · · · = cn = 0. If the agents do not find an agreement, the
initial values are kept. Each agent wants to maximize P at certain positions x;
thus, these positions represent their interests. If a1 is interested in maximizing
P at x = 0.5, this is written as “max(P (0.5)) ∈ Ia1”. Moreover, assume each
agent has only one interest (hence, reasoning about utilities is not necessary)
and possesses the capability to manipulate at least one coefficient. If a1 can set
the coefficients c0 and c3, this is written as “canSet(a1, {c0, c3})”.

Instantiation. The following information determines the initial conditions:

P of order n = 3
max(P (1.0)) ∈ Ia1 ⇒ ua1 = c0 + c1 + c2 + c3

max(P (−1.0)) ∈ Ia2 ⇒ ua2 = c0 − c1 + c2 − c3

canSet(a1, {c3})
canSet(a2, {c0})

5.2 Sample Flow of Argumentation

Table 2 shows a possible sequence of arguments exchanged by the two agents
involved in the Polygon Negotiation Problem. According to this sequence, agent
a2 starts right away with a proposal (1). As a1 can not change c1 and c2 and
thus he rejects the proposal (2a) and supplies a reason with a c-argument (2b).
a2 replies with a d-argument (3) informing a1 about her capabilities. a1 does the
same (4). These two disclosures lead from stage I, in which no feasible options are
known, to stage II. In this stage the agents can make feasible proposals (which,
however, may be not acceptable for the respective other agent). a2 brings forth
a new and feasible proposal (5), but a1 rejects for a good reason (6a), reveals
his interests (6b), and tells a2 that rejection is a non negotiated option for him
(6c). At that point it is clear to a2 that, from a1’s point of view, rejecting yields
a utility of 0.0. In (7) stage III is entered, as the proposal of a2 is acceptable
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Table 2. An argumentation sequence in the Polygon Negotiation Problem

1 a2 propose set(a1, {c1 = −1.0, c2 = 1.0, c3 = −1.0}),
set(a2, {c0 = 1.0})

2a a1 reject set(a1, {c1 = −1.0, c2 = 1.0, c3 = −1.0}),
set(a2, {c0 = 1.0})

2b c-argument ¬canSet(a1, {c2, c1})
3 a2 d-argument canSet(a2, {c0})
4 a1 d-argument canSet(a1, {c3})
5 a2 propose set(a1, {c3 = −1.0}), set(a2, {c0 = 1.0})
6a a1 reject set(a1, {c3 = −1.0}), set(a2, {c0 = 1.0})
6b d-argument max(P (1.0)) ∈ Ia1

6c t-argument {c0 = 0.0, c1 = 0.0, c2 = 0.0, c3 = 0.0} ∈ O
(a1)
nn

7 a2 propose set(a1, {c3 = −0.5}), set(a2, {c0 = 1.0})
8a a1 reject set(a1, {c3 = −0.5}), set(a2, {c0 = 1.0})
8b propose set(a2, {c0 = 1.0})
9 a2 accept set(a2, {c0 = 1.0})

(for a1 it yields a utility greater than 0.0). Thus there is an incentive for a1 to
agree. However, instead of agreeing immediately, a1 tries to get more: he rejects
again (8) and makes a counter proposal (8b). At this point a2 accepts (9) and
thus the negotiation ended successfully with a joint agreement.

6 Discussion and Conclusions

N3S has the following main characteristics:

– it is generic negotiation framework that is problem- and domain-
independent, covers both agent-internal and external elements of negotia-
tion, and is applicable to a broad range of negotiation scenarios;

– it introduces the concept of option and option hierarchy as a key ingredient
of rational negotiation;

– it provides a practical taxonomy of arguments that supports an agent in
arguing in a systematic way; and

– it effectively structures the negotiation process into distinct stages.

Together these characteristics make N3S unique and distinct from other ABN
frameworks (see Section 2). Based on these characteristics, a particular strength
of N3S is its potential to serve both as a “technical ” guideline for implement-
ing automated negotiation processes and a “conceptual” guideline for unifying
and integrating available approaches addressing selected aspects of negotiation.
Examples of such aspects are society protocols for agent interaction [7], nested
argumentation [12], argumentation based on strategic reasoning [2], commitment
based argumentation [8], trust-based negotiation [22], and learning of argumen-
tation strategies [4]. The integration of all these approaches, or of components
of them, into a coherent whole is, in our opinion, the research and application
challenge in the field.
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The key contribution of N3S to the state of the art lies in the identification of
both arguments types and negotiation stages. Specifically, to our knowledge no
other currently available ABN framework, including those mentioned in Section
2, relates argument types and negotiation stages in a structured way as N3S does.
By relating argument types and negotiation stages, N3S opens new possibilities
in enabling rational agents to argue efficiently. We already addressed facets of
this issue in our approaches to practical and social reasoning (e.g., [24,25]), and
our current research aims to explore the relationships and possible synergies
between N3S and these approaches as well as related ones (e.g., [2,18,23]).

An important question raised by N3S is how its argument taxonomy, which
essentially is “option-centered”, compares to the argument taxonomies proposed
within the related frameworks. Another relevant research topic raised by N3S is
how the negotiation stages of N3S are related to the types of conflicts among
agents identified in other frameworks (e.g., [17]). Last but not least, it is cur-
rently an open issue how the N3S negotiation strategies (see 4.3) are related to
negotiation strategies, tactics and heuristics proposed elsewhere (see, e.g., the
various papers on strategic aspects of negotiation in [11]).
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19. Rahwan, I., Moräıtis, P., Reed, C. (eds.): ArgMAS 2004. LNCS (LNAI), vol. 3366.
Springer, Heidelberg (2005)

20. Rahwan, I., Ramchurn, S., Jennings, N., McBurney, P., Parsons, S., Sonenberg, L.:
Argumentation-based negotiation. Knowledge Engineering Review 18(4), 343–375
(2004)

21. Raiffa, H.: The Art and Science of Negotiation. Harvard University Press, Cam-
bridge, Mass (1982)

22. Ramchurn, S.D.: Multiagent negotiation using trust and persuasion. PhD thesis,
Faculty of Engineering and Applied Science, University of Southampton, UK (2005)

23. Roth, B., Riveret, R., Rotolo, A., Governatori, G.: Strategic argumentation: a game
theoretical investigation. In: Proceedings of the 11th International Conference on
Artificial Intelligence and Law (ICAIL 2007) (2007)

24. Rovatsos, M., Rahwan, I., Fischer, F., Weiß, G.: Practical strategic reasoning and
adaptation in rational argument-based negotiation. In: Parsons, S., Maudet, N.,
Moraitis, P., Rahwan, I. (eds.) ArgMAS 2005. LNCS (LNAI), vol. 4049, pp. 122–
137. Springer, Heidelberg (2006)

http://homepages.inf.ed.ac.uk/irahwan/argmas/argmas06/
http://homepages.inf.ed.ac.uk/irahwan/argmas/argmas06/
http://homepages.inf.ed.ac.uk/irahwan/argmas/argmas06/


A Generic Framework for Argumentation-Based Negotiation 223

25. Rovatsos, M., Weiß, G., Wolf, M.: An approach to the analysis and design of multi-
agent systems based on interaction frames. In: Alonso, E., Kudenko, D., Kazakov,
D. (eds.) Proceedings of the First International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2002). LNCS (LNAI), vol. 2636, Springer, Hei-
delberg (2003)

26. Sadri, F., Toni, F., Torroni, P.: Abductive logic programming architecture for ne-
gotiating agents. In: Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002.
LNCS (LNAI), vol. 2424, pp. 419–431. Springer, Heidelberg (2002)

27. Saha, S., Sen, S.: A Bayes net approach to argumentation based negotiation. In:
Rahwan, et al. (eds.) [19] RMR05a, pp. 208–222.

28. Sierra, C., Jennings, N.R., Noriega, P., Parsons, S.: A framework for
argumentation-based negotiation. In: Singh, M.P., Rao, A., Wooldridge, M.J. (eds.)
ATAL 1997. LNCS, vol. 1365, pp. 177–192. Springer, Heidelberg (1998)

29. Smith, R.G.: The contract-net protocol: High-level communication and control in
a distributed problem solver. IEEE Transactions on Computers 29(12), 1104–1113
(1980)

30. Weiß, G.: Multiagent Systems. A Modern Approach to Distributed Artificial Intel-
ligence. The MIT Press, Cambridge, MA (1999)

31. Wooldridge, M.J.: An Introduction to MultiAgent Systems. John Wiley and Sons
Ltd, Chichester (2002)



The Effect of Mediated Partnerships in

Two-Sided Economic Search

Philip Hendrix and David Sarne

School of Engineering and Applied Sciences
Harvard University

Cambridge, MA 02138 USA
{phendrix,sarned}@eecs.hrvard.edu

Abstract. In this paper we investigate the effect of mediated partner-
ships over agents’ equilibrium strategies in two-sided economic search.
A mediated partnership is formed when an agent acts as a mediator, es-
tablishing a partnership between a pair of agents it encountered along
its search, thereby reducing the other agents’ amount of search. Surpris-
ingly, this reduction in market friction induced by mediated partnerships
does not always improve market efficiency. Use of mediated partnerships
changes the equilibrium strategies used by agents in two-sided search
models and introduces substantial computational complexity. This com-
putational complexity is overcome with an innovative algorithm that
facilitates equilibrium calculation.

1 Introduction

Two-sided economic search concerns distributed problems in which self-interested
agents search for appropriate partners to form mutually acceptable pairwise part-
nerships [10,4,1,6,3]. The concept of economic search differs from search in AI.
AI search typically involves an agent finding a sequence of actions that take it
from an initial state to a goal state, while economic search refers to the identifi-
cation of the best agent for a partnership. Since the agents are self-interested, the
analysis of two-sided economic search models is inherently equilibrium-based.

The goal of each agent in two-sided economic search is to find a partner
that is optimally beneficial. Each agent is associated with a specific type that
captures the benefit of partnering with it1. During each stage of search, agents
randomly interact pairwise and learn each others’ type. A partnership between
two interacting agents will be formed if they both commit to it. The process of
initiating and maintaining an interaction with another agent is associated with
a cost (i.e., search cost) incurred by both agents. Therefore, a key challenge for
each agent in such an environment is to identify the set of agent types with
whom it is willing to partner.

1 This concept of “type” is different than the concept of “type” used in many AI
domains where an agent’s type is derived from utility gained through different op-
portunities.

M. Klusch et al. (Eds.): CIA 2007, LNAI 4676, pp. 224–240, 2007.
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This paper extends the traditional two-sided economic search model to me-
diated partnerships. A mediated partnership is formed when an agent acts as a
mediator, using its memory of past interactions with two other agents to form
a partnership between them. Specifically, we base our model on the traditional
two-sided search model where utilities are non-transferable, an agent’s utility is
fully correlated with its partner’s type, agents incur a search cost for each round
of search, and agents’ true types are revealed once paired [10,6].

Multi-Agent System (MAS) environments in which agents must interact with
each other to evaluate potential partners and form viable partnerships are of in-
terest because of their potential economic and strategic importance. An example
of such a system is the dual backup application [13] in which agents representing
different servers seek to form partnerships for purposes of mutual offsite backup.
Unlike tradition two-sided search models, when considering the process in a
MAS, one must take into consideration the unique capabilities of autonomous
agents for enhancing the search process. One important capability of this kind is
an agent’s ability to maintain a full recollection of past interactions with other
agents and utilize this ability to act as a mediator for forming partnerships as
described in this paper.

The contributions of the paper are threefold. First, it introduces and models
a new distributed two-sided search enhanced with mediated partnerships. Sec-
ond, the introduction of mediated partnership capabilities to two-sided economic
search potentially creates an equilibrium which differs from that obtained in the
traditional two-sided search model, and consequently can change individual and
collective agent performance. The paper shows that the new model prevents a
direct calculation of this new equilibrium. A new algorithm is introduced to find
the new equilibrium. Finally, it is shown that although the memory and match-
making extensions generally reduce market frictions and increase the overall ef-
ficiency of forming partnerships, in some rare cases overall system performance
is decreased. This latter result is specifically important for market makers and
multi-agent designers.

In Section 2 we formally introduce the two-sided search model with memory
and mediated partnering. Section 3 gives an equilibrium analysis and discusses
its cluster based partnering structure. We then describe a set of equations in
Section 4 for the two-sided search model with mediated partnering for scenarios
where agents form exactly into two-clusters. This analysis enables us to introduce
examples in Section 5 showing the effect that memory can have on the traditional
two-sided search model. Section 6 outlines an algorithmic based approach for
determining agents’ equilibrium strategies followed by experimental results that
demonstrate its phenomenal efficiency. We conclude with reviewing related work
(Section 7) and a discussion (Section 8).

2 The Model

We base our model on the traditional two-sided search model [10,6]. In its most
basic form the two-sided search model considers an environment populated with
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an infinite number of self-interested fully rational agents2. Each agent Ai has
a type, defined over the continuum [t, t], that captures special properties that
characterize it. This type determines the utility that any other agent Aj gains if
partnered with agent Ai. For simplicity, we assume that the expected utility
gained by partnering with an agent of type t (t ∈ [t, t]) is equal to t (i.e.,
U(t) = t). An agent can be of only one type, although many agents may be
of the same type.

At the beginning of search, agents have no prior information concerning the
type of specific agents in its environment. Agents randomly initiate pairwise in-
teractions (i.e., search) with other agents to learn their type. The model assumes
non-transferable utilities, thus no bargaining takes place as part of the interac-
tion. Upon interaction, both agents reveal their type and the set of agent types
with which it is willing to form a partnership. This set of acceptable types is
called the acceptance set. A partnership is formed only if both agents are willing
to commit to it (i.e., if each agent has the other agent’s type in its acceptance
set). Otherwise both agents resume their search in the same manner.

The process of initiating and maintaining an interaction is associated with
a cost (i.e., search cost) incurred by both agents. This cost is equivalent to
a reduction c in each agent’s overall utility. Therefore, an agent chooses its
acceptance set based on the expected utility gained from partnering and the
cost of continued search3.

While agents have no prior information concerning the types of a specific
agent at the beginning of search, they are assumed to be acquainted with the
general distribution of types in their environment, described by the probability
distribution function f(x) and cumulative distribution function F (x). The nature
of the two-sided search suggests that the agents are satisfied with a single partner,
thus once a partnership is formed the two agents forming it terminate their search
process and leave the environment. The two-sided search model assumes that the
pair is replaced with two identical agents (i.e, having the same types) that start
the search from scratch4.

Our model extends the interaction protocol of two-sided search by utilizing
information gleaned from previous interactions with potential partners. If a di-
rect partnership is not formed, then instead of simply resuming search, as in
the traditional two-sided search model, each agent records in memory the type
and acceptance set of the other. Moreover, each agent seeks to act as a mediator
(match maker) for the other by searching its memory, seeking a suitable part-
ner for the other from its records of other agents already encountered. If such
a mediator agent finds a partner for its newly rejected potential partner among
2 The infinite number of agents assumption is common in two-sided search models (see

[5,17]). In many domains (e.g., eCommerce) this is derived from high entrance and
exit rates, thus the probability of running into the same agent in a random pairing
is negligible.

3 In the absence of search costs, the unique competitive equilibrium has assortative
joining, i.e., joined partners are identical (in type) [2].

4 This assumption is commonly used in two-sided search literature in order to maintain
the fixed distribution function f(x) [3,1].
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the agents it has previously encountered, then a partnership is arranged for the
newly rejected agent and the remembered agent, if neither has already entered
a partnership. We call this process mediated partnering.

The model assumes that the information the agents exchange in their interac-
tions is true, that it is not subject to change, and that the penalty for rejecting
an agent of a type in the acceptance set is significantly greater than any utility
that can be achieved. Thus, mediated partnering always takes place unless one
of the agents has already partnered. We further assume that a mediated part-
nering is costless because it does not require any additional exploration or data
exchange, except for checking that both agents are still in the market.

3 Analysis

The analysis of the classical two-sided search model suggests a “complete seg-
regation” solution in equilibrium [4,6,10]. Agents form clusters, based on their
type, in which every agent in a cluster is always willing to partner with any other
agent in the cluster. Consequently, the agents’ acceptance (partnering) strategy
is reservation-value based. The reservation value of an agent corresponds to the
lowest type that it is willing to accept. This reservation value is different from
the reservation price commonly found in e-commerce models associated with a
buyer or a seller that is not involved in a search and denotes the buyer’s or
seller’s true evaluation for the opportunity. The agent accepts all agents with
types greater than or equal to its reservation value. Furthermore, the agents’
search strategy is stationary (i.e. an agent will not change its reservation value).

In the traditional two-sided search model agents’ reservation values in equi-
librium can be found using backward induction. Consider the agent At of the
highest type, t, that needs to set its optimal reservation value. Obviously this
agent’s optimal reservation value will not be affected by the reservation value
used by other agents, since all other agents will always accept type t (having no
better type to strive for). Therefore, the expected utility of agent At, denoted
VAt

(x), as a function of its reservation value x can be expressed as

VAt
(x) = −c +

∫ t

y=x

yf(y)dy + F (x)VAt(x) (1)

︸ ︷︷ ︸
Expected value of
partnering with

paired agent

︸ ︷︷ ︸
Expected value of
continued search
(no partnering)

�
���

Cost of meeting
another agent

We use x∗
t

to denote the reservation value that maximizes VAt
(x). Now con-

sider an agent of type t − ε. If this agent is accepted by agents of type t, then
it necessarily uses the same Equation 1 to set its own reservation value (substi-
tuting Vt(x) by Vt−ε(x)). Thus, the optimal reservation value for this agent is
the same as for the highest type agent (i.e., x∗

t
= x∗

t−ε
). The same logic holds

for all other agents of types belonging to the interval [x∗
t
, t]. Since none of the

agents of types [x∗
t
, t] accepts any other agents of types in the interval [t, x∗

t
) then
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Fig. 1. Illustration of three clusters and the reservation value for the top cluster A

the process can be replicated, resulting with additional clusters. The complete
segregation scenario is illustrated in Figure 1.

The integration of mediated partnerships with the traditional two-sided search
model introduces several new dynamics that must be added to the above anal-
ysis. The information the agents supply to each other is binding, therefore their
acceptance strategy is reservation-value based. We begin by formulating the ex-
pected utility V(t,M)(x) of an agent of type t having a memory M when using a
reservation value x, which can be formulated as

V(t,M)(x)=−c+

∫ t

y=x

yf(y)dy+

∫ x

z=0

(∫ t

y=x

yG(M,z)(y)dy+

(
1−

∫ t

y=x

G(M,z)(y)dy

)
V(t,M∪z)(x)

)
f(z)dz

(2)︸ ︷︷ ︸
Expected value of
partnering with

paired agent

︸ ︷︷ ︸
Expected value of
being partnered by
mediated partnering

︸ ︷︷ ︸
Expected value of
continued search

with updated memory

���
Cost of
search

where GM,z(y) is the probability of forming a mediated partnership with an
agent of type y, initiated by the currently met agent or a perviously met agent.
Notice that Equation 2 is an extensive modification of Equation 1 used for the
traditional two-sided search.

Using similar logic as above, we obtain that all agents of types [x∗
t
, t] use the

same optimal reservation value x∗
t
. For all agents of these types, the probability

GM,z(y) receives a similar value. Thus clusters are formed in the same way as
before, and each agent will only partner with other agents having a type in its
own cluster.

The probability GM,z(y) is affected by the division of other agents into clus-
ters. Agents of types that belong to small clusters are associated with longer
searches and consequently are more likely to have a relevant agent in their mem-
ory upon being met. Therefore, unlike in the traditional model, each cluster in
the new model depends on the number and the size of the other clusters. Hence,
a backward induction solution as the one often suggested for the traditional
two-sided search [10] is not applicable in our case.

4 Two Cluster Solution

Solving a set of expected utility Equations like the one given in equation 2 is
impractical for the general case. In the general case, the probability of being
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Agent partnered with paired agent;
or was partnered through paired agent’s memory

�
Agent partnered with paired agent;
or was partnered through
its own or paired agent’s memory


Agent did not partner with paired
agent; paired agent partnered with

another agent through memory

�
Agent did not partner with paired agent;

paired agent also not partnered

�
Agent
did not
partner with paired agent;
paired agent was partnered
through memory

�
Agent did not partner with

paired agent or through memory;
paired agent also not partnered

Fig. 2. Finite state machine for the two-cluster case of the two-sided search model with
reputation

partnered through mediated partnerships changes from one search round to an-
other (based on the probability that other agents are still in the market). The
extraction of the probability GM,z(y) requires understanding all the possible
states the agent can be in and the transitions between them. In a finite state
machine for an agent Ai, a state encapsulates information about which agents
Ai holds in memory, and to which clusters they belong. The number of states
require for an agent operating in an environment with N clusters is 2N−1 + 1,
representing the combinations of having memory for the N − 1 other clusters,
and the end state where the agent has partnered and left the game5. The proba-
bility of transitioning from one state to another changes as the length of time the
agents are kept in memory increases, because agents are likely to be partnered
with other agents over time.

Fortunately, solving the problem analytically for environments where only
two clusters are formed in equilibrium is possible. We will illustrate the two-
cluster solution to show the dynamics of the system. In the two-cluster model
the agent can have a memory of one agent in the other cluster. The agent can
never have more than one agent in its memory, because having two un-partnered
agents belonging to the same cluster would result in a partnering. Additionally,
an agent will be in another agent’s memory for at most one round of the search
process. This derives from the fact that unless this agent is matched directly, it
will be matched with whomever the agent storing it in memory is paired with
the following search round (unless the storing agent is matched with its own
kind, and leaves the market).

The finite state machine in Figure 2 explains the transitions of an agent in
the two cluster solution using mediated partnering. In the two-cluster model, the
finite state machine for an agent has three states: S∅ for the state where there
is no agent in memory, SM for the state where there is an agent of the other
cluster in memory, and SPartnered for the state where the agent has joined with
another agent of its own cluster and left the market.

Throughout the paper we will use the notation Pc to represent the probability
of an agent randomly pairing with an agent in its own cluster, Pc to represent

5 Due to the unique cluster-base structure of the equilibrium, the agent will never have
two agents from the same cluster in its memory, since these can always be matched.
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the probability of an agent randomly pairing with an agent of the other cluster,
PS∅ to represent the probability of a randomly encountered agent of the same
cluster being in state S∅, and PSM to represent the probability of a randomly
encountered agent of the same cluster being in state SM . Similarly, we use PS∅

and PSM to represent the probability of a randomly encountered agent of the
other cluster to be in states S∅ and SM , respectively. Additionally we will use
the term As to refer to a specific agent and Ap to refer to As’s paired agent.

Cluster A

Cluster B

� Spartnered

� SM

� SM

�SPartnered

�SPartnered

Fig. 3. Examples of how chains can form in a two cluster environment from the per-
spective of an agent in Cluster A with no memory. This agent with no memory is
outlined with a bold circle. Arrows between agents signify a memory link. Arrows to
states show that the agent in bold will transfer to that state with probability 1.

The pairing of agents with memory can lead to having chains of pairs of agents
in which none of the pairs can directly join, however each agent in the sequence
(except for the first and the last) has a memory link to another unjoined agent
with whom its paired agent can join (see illustration in Figure 3). We use Ls

to denote the number of memory links in a sequence originating from the agent
As. Similarly, we use Lp to denote the number of memory links in a sequence
originating from the paired agent Ap. The probability for having exactly k links
in a sequence originating from an agent that has memory can be calculated using

P (Ls = k) =

⎧
⎪⎨

⎪⎩

Pc if k = 0

Pc(PS∅ + PSM P (Ls = 0)) if k = 1

PcPSM P (Ls = k − 1) if k > 1

(3)

P (Lp = k) =

⎧
⎪⎨

⎪⎩

Pc if k = 0

Pc(PS∅ + PSM P (Lp = 0)) if k = 1

PcPSM P (Lp = k − 1) if k > 1

(4)

The probability of an agent being partnered, or staying in the market follows
from the Padovan [18] sequence defined as

Padovan(i) =

{
1 if i ∈ {0, 1, 2}
Padovan(i − 2) + Padovan(i − 3) if i ∈ Z, i > 2

(5)

In addition, we use Ppartner(Lp, Ls) to denote the probability of being part-
nered when having Lp and Ls memory links sequences originating from the
agent and from his partner, respectively. The value of Ppartner(Lp, Ls) can be
calculated using
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Ppartner(Lp, Ls) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if Lp = 0, Ls = 0

1 if Lp = 0, Ls = 1

1 if Lp = 1, Ls = 0

0.5 if Lp = 1, Ls = 1

1 − Padovan(Ls−2)
Padovan(1+Ls) = Padovan(Ls−1)

Padovan(1+Ls) if Lp = 0, Ls > 1

1 − Padovan(Lp−2)
Padovan(1+Lp) =

Padovan(Lp−1)
Padovan(1+Lp) if Lp > 1, Ls = 0

1 − Padovan(Lp−2)Padovan(Ls−2)
Padovan(1+Lp+Ls) if Lp > 1, Ls > 1

(6)

Agent As will transition from state S∅ back to state S∅ if it cannot partner
with agent Ap or an agent from Ap’s memory, and the agent in Ap’s memory
is able to perform a mediated partnership to partner Ap. This probability is
defined as

PS∅→S∅ = (1 − Pc)PSM

∞∑

i=0

P (Lp = i)(1 − Ppartner(i, 0))Ppartner(0, i) (7)

Agent As will transition from S∅ to the memory state SM if it cannot partner
with Ap, and neither As or Ap can be partnered through a mediated partnership.
This transition probability is defined as

PS∅→SM = (1 − Pc)

(
PS∅ + PSM

∞∑

i=0

P (Lp = i)(1 − Ppartner(i, 0))(1 − Ppartner(0, i))

)

(8)

Agent As will transition from S∅ to Spartnered if it can partner with Ap, or if
it can be partnered with an agent from Ap’s memory. This transition probability
is defined as

PS∅→Spartnered = Pc + (1 − Pc)PSM

∞∑

i=0

P (Lp = i)Ppartner(i, 0) (9)

Agent As will transtion from SM to S∅ if it cannot partner with Ap or an
agent from Ap’s memory, but either As or the agent in Ap’s memory is able to
perform a mediated partnering and join Ap. This probability is defined as

PSM →S∅ = (1 − Pc) (A + B) (10)

where

A = PS∅

∞∑

i=0

P (Ls = i)(1 − Ppartner(0, i))Ppartner(i, 0)

B = PSM

∞∑

i=0

∞∑

j=0

P (Ls = i)P (Lp = j)(1 − Ppartner(j, i))Ppartner(i, j))
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Agent As will transition from SM back to SM if it cannot partner with Ap,
and neither As or Ap can be partnered through a mediated partnership. This
transition probability is defined as

PSM →SM = (1 − Pc)(C + D) (11)

where

C = PS∅

∞∑

i=0

P (Ls = i)(1 − Ppartner(0, i))(1 − Ppartner(i, 0))

D = PSM

∞∑

i=0

∞∑

j=0

P (Ls = i)P (Lp = j)(1 − Ppartner(Lp = j, Ls = i))(1 − Ppartner(i, j))

Finally, agent As will transition from SM to Spartnered if it can partner with
Ap, or if it can be partnered through a mediated partnership initiated by either
Ap or the agent in As’s memory. This transition probability is defined as

PSM →Spartnered = Pc + (1 − Pc)(E + F ) (12)

where

E = PS∅

∞∑

i=0

P (Ls = i)Ppartner(0, i)

F = PSM

∞∑

i=0

∞∑

j=0

P (Ls = i)P (Lp = j)Ppartner(j, i)

The probabilities of an agent being in a specific state can be calculated using
the above transition probabilities as follows:

PS∅ = PS∅PS∅→S∅ + PSM PSM →S∅

PSM = PS∅PS∅→SM + PSM PSM →SM

Consequently, the expected utilities for an agent in the different states it may
be in are defined as

VS∅ = −c + PS∅→SM VSM + PS∅→SpartneredVSpartnered

VSM = −c + PSM →S∅VS∅ + PSM →SpartneredVSpartnered

VSpartnered = E[cluster]

The above set of equations is solvable for any interval of agent types and any
search cost. The expected performance of the agent is V∅, as this is its state upon
entering the market. An equilibrium division into two-clusters is a clustering that
results with (a) the expected utility for agents of type t (and all other agents
in their cluster) using a reservation value x is equal to x; and (b) the expected
utility of all the agents in the second cluster is less than t.
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5 The Mediated Partnering Effect

The integration of mediated partnering with the two-sided search model is meant
to help market designers further reduce market friction and increase average
overall agent utility. Market friction is the reason agents do not have complete
information. In the two-sided search model, market friction is the search cost. If
search cost is eliminated completely, then the unique competitive equilibrium has
assortative joining, meaning that agents only select partners of their own type
[2]. In the latter case, the overall social utility is maximized. The overall social
utility can always be decomposed to the aggregate utility each individual agent
gains through partnership and the accumulated cost along the agents’ search.
The first component is fixed, since the agents partner amongst themselves. The
second component, is a parameter of the search cost and the division of agents
into clusters (which affects the extent of agent search and thus the accumulated
search cost). Similarly, when the search cost is significantly large, each agent is
willing to accept all other agents, thus an immediate partnership is formed upon
executing the first search round. By introducing the mediated partnering mech-
anism, we seemingly accelerate the agents’ search process without adding any
additional cost. Instead of having the ability to form partnerships based on single
random interactions, each agent is now subject to additional mediated, targeted
opportunities along its search. This reduces market frictions and according to
economic theory should improve agents’ performance (since less effort needs to
be invested in costly search).

Intuitively, the method appears to improve performance since it reduces mar-
ket frictions, thus market makers and agent designers may attempt to use it
unquestionably. Nevertheless, as we demonstrate in the following paragraph,
reducing market inefficiencies does not necessarily improve overall market per-
formance. Using the analysis given in the former section we produce three con-
trasting examples to illustrate the effect that mediated partnering has over the
system’s overall performance. The first example uses a uniform distribution with
agents having 128 distinct types ranging from 0 (inclusive) to 128 (exclusive),
and with a cost of 32. The average performance (which is an indicator for the
overall market performance) in this case when using mediated partnering is 20.
This is an improvement in comparison to the average performance achieved in
the traditional two-sided search model, with an average performance of 18.6.
This effect of improvement is the most common result found when applying
mediated partnering in a two-sided search model.

The second example is obtained using a search cost of 0.25 and a probability
distribution with 0.75 of the agents having types uniformly distributed between
64 and 128, and the remaining 0.25 of the agents having types uniformly dis-
tributed between 0 and 64. The overall performance is 83.5 in the classical model,
and reduced to 79.7 with the use of the new technique. Here, the reduction of
market friction benefits some agents, but also hinders other agents. The agents
that are hindered are those agents that initially were at the base of a cluster,
but with the addition of mediated partnering fall into a lower cluster. These
agents make up a small proportion of the distribution, but are significantly and
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negatively impacted by the use of mediated partnerships in such a manner that
their reduced performance reduces the overall performance. Last, we consider the
trivial case where the search cost c is zero (where all agents are accepting only
agents of their own type) and the case where the search cost is prohibitively large
(where only one cluster is formed). Here, the mediated partnering does not affect
the system (nor any individual agent’s) performance at all. The implications of
the above are discussed towards the end of the paper.

6 Algorithmic Based Approach

Determining the number of clusters and cluster boundaries analytically for the
general case is not feasible for two-sided search with mediated partnering. Fortu-
nately, in most environments, the agent types are discrete rather than continuous
(e.g., the number of available Gigabytes a server can offer to its partner in the
dual backup application). Therefore, theoretically we could have tried all pos-
sible clustering combinations, and determined the equilibrium sets. Whether a
set of clusters is in equilibrium will be based on the following rule: the expected
utility of the agents in a cluster (i...j) (i.e., the agents that use type i as their
reservation value) should not exceed i and should not be smaller than i−1 (oth-
erwise, each single agent of types (i...j) would have an incentive to deviate from
accepting all agents of type i and greater to a strategy of accepting all agents of
types i − 1 and greater or i + 1 and greater, respectively). The expected utility
of agents in the different clusters, in this case, can be extracted using simulation
of the two-sided mediated partnership-based search in a specific environment
given.

The main disadvantage of the above method, is the exponential number of
simulation runs. We use R(N) to denote the number of possible clusters division
when having N unique agent types. R(N) can be calculated as follows

R(N) = 1 +
N−1∑

i=1

R(i)

This is simply by analyzing the first (highest cluster) - it can either cover all
types (i.e., 1) or can cover i ∈ {i = 1, ..., N − 1} subsequent types, in which case
this should be multiplied by the number of clusters that can be formed with the
remaining types (R(N − i)). Now we prove that R(N) = 2N−1

Proof by induction. Base case: when N = 1, R(1) = 1. Inductive case: assume
for N = k, R(k) = 2k−1. We want to show that R(k + 1) = 2k.

R(k + 1) = 1 +
∑k

i=1 R(i) = 1 +
∑k−1

i=1 R(i) + R(k) = 2R(k) = 2k

By showing the base case and the inductive case we have shown that R(N) =
2N−1 Q.E.D.

We have developed a more sophisticated algorithmic-based solution for the
purpose of extracting the equilibrium set of clusters using simulation (see pseu-
docode below). According to our algorithm, all agents are first (step 1) initial-
ized to accept only their own type (i.e., each type forms its own cluster). This
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is done using the method generateClusters(clusters, lower, upper), which sets
the reservation value of each cluster in the interval [lower, upper] to itself. The
method runSimulation simulates an environment clustered according to the di-
vision given in the variable clusters and returns the expected utility of the agents
in each cluster. Then, for the cluster with the highest type that is not satisfied6

(step 4), decreases its lower bound to accept the next lowest type (step 5), and
initializes all agents below this type to accept only their own type (using gener-
ateClusters in step 6). The process repeats until all clusters are satisfied or there
exists a single cluster that covers the entire range of types.

Algorithm 1. CLUSTER(A, T, c) — Calculate optimal equilibrium clustering

Input: The set of all agents A, a vector of all distinct types T , the
search cost c.
Output: A Vector of clusters ordered from the cluster with the
highest reservation value to the lowest.

(1) generateClusters(clusters, T[0], T[T.length-1]);
(2) runSimulation(A, clusters, c);
(3) while (! satisfied( clusters ))
(4) Cluster s = satisfied( clusters );
(5) s.lowest−−;
(6) generateClusters(clusters, T[0], s.lowest-1);
(7) runSimulation(A, clusters, c)
(8) return clusters

Theorem 1. The clustering algorithm will always terminate in finite time and
always result with an equilibrium (if at least one exists).

Proof:
First we will show that given a newly updated reservation value r for a cluster,
the expected performance of agents in clusters defined with reservation values
greater than r is an upper bound to the equilibrium performance.

Let us denote agents with types greater than or equal to r as At≥r, and agents
with types less than r as At<r. After r is updated, all clusters with types below
r are set so that their reservation value is equal to the maximum acceptance
value, meaning agents of only one type are in each cluster. The probability of
an agent At≥r meeting an agent At<r with memory is

∫ i<r

i=t P (i)PM,i∗ , where
i∗ is the reservation value of an agent with type i and PM,i∗ is the probability
that an agent in a cluster with a reservation value of i∗ will have memory. If any
cluster with reservation value i, i < r, is expanded to accept agents in [i − 1, i]
then the probability of an agent with type i having memory is reduced such that
PM,i−1 < PM,i. This is because the probability of an agent with type i directly
pairing with an agent of its own cluster is increased by P (i−1), thereby increasing
the probability that an agent with type i will meet an agent in its own cluster,
leave the market, and be replaced with a new agent with no memory. Therefore,
6 A cluster is satisfied if the expected value of the agents in the cluster falls below the

reservation value but above the next lowest type of the reservation value.
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Table 1. The three tables depict the number of iterations for a given number of distinct
types and a cost for the uniform distribution. Sketches of each distribution have been
placed above their corresponding table.

Num Iterations - Unif Distribution
Number of Types
16 32 48 64 80 96

C
o
st

0.25 0 0 0 32 40 370
0.5 0 0 24 42 366 72
1 0 16 32 48 196 603
2 8 21 38 84 272 242
4 10 25 42 85 158 274
8 12 47 49 114 128 166
16 13 48 45 61 108 123
32 14 30 46 62 78 94

P = 1.0

Num Iterations - 25-75 Skew
Number of Types
16 32 48 64 80 96

C
o
st

0.25 0 0 12 16 46 100
0.5 0 8 28 24 57 3248
1 0 18 58 52 188 349
2 4 24 38 62 352 98
4 10 28 53 194 92 104
8 12 31 44 69 105 238
16 13 29 60 61 77 93
32 14 30 46 62 78 94

P = 0.25

P = 0.75

Num Iterations - 75-25 Skew
Number of Types
16 32 48 64 80 96

C
o
st

0.25 0 0 12 16 46 669
0.5 0 8 28 352 367 1106
1 0 18 65 271 340 456
2 4 66 91 173 332 339
4 19 26 81 229 239 398
8 18 32 93 125 199 322
16 15 34 49 78 95 141
32 14 30 46 62 78 94

P = 0.75

P = 0.25

Table 2. Comparison of the number of iterations to reach an equilibrium in three dif-
ferent two-sided search environments to the theoretical number of possible clusterings

Iteration Comparison
Uniform 25-75 Skew 75-25 Skew Theoretical

#
o
f
T

y
p
es

16 0-14 0-14 0-19 3.28 × 104

32 0-48 0-31 0-66 2.15 × 109

48 0-49 12-60 12-93 1.41 × 1014

64 32-114 16-194 16-352 9.22 × 1018

80 40-272 46-352 46-367 6.04 × 1023

96 72-370 93-3248 94-1106 3.96 × 1028

the probability of an agent At≥r meeting an agent At<r with a memory with
whom it can partner is reduced.

Therefore, if a cluster is not satisfied (the expected value of agents in the
cluster falls below the next lowest type of the reservation value) the clustering
of agents in At<r in an attempt to increase the average agent performance in
this cluster will not succeed. Similarly, combinations of clusters with reservation
values greater than r cannot be modified and continue to be satisfied since these
combinations were eliminated in former algorithm rounds. This leaves only the
reservation value to be reduced to satisfy the cluster. Q.E.D.

We executed the algorithm varying the number of agent types and the distribu-
tion of types in the environment, measuring the number of simulations required
before reaching a clustering in equilibrium. The results are shown in Table 1.
Here, the search cost was varied between 0.25 and 32, and the number of dis-
tinct types varied between 16 and 96. The smallest type used was 0, and the
largest 128.

We used three arbitrary distributions for illustration purposes, and found no
significant differences as the number of iterations, search cost and number of
distinct types were varied.
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The number of iterations required for all scenarios tested was well below the
theoretical 2N−1 maximum combinations, where N is the number of distinct
types. As reflected in Table 2, the number of simulation runs required for ex-
tracting the equilibrium using the proposed algorithm is significantly smaller in
magnitude.

7 Related Work

The two-sided search process is practically pairwise partnership formation appli-
cation and can be related to the broader coalition formation domain [16,15,20,21].
Nevertheless, coalition formation literature commonly assumes that agents can
scan as many agents as needed (with no associated cost) or can make use of a
central matcher or middle agents [7].

The analysis of two-sided search models is mostly found in economic search
theory. These models can be distinguished according to several assumptions
made. The first, is the payoff for each agent associated with a given partnership.
While some of these models assume that the utility is a function of the other
agent’s type exclusively [10,4], others assume a function defined over both types
[1]. The second is the way according to which the search friction (cost) is mod-
eled. This can be either the discounting of future flow of gains [4] or additive
explicit search costs [10,6,1]. Lastly, the models are distinguished by the nature
of the utility earned by each of the agents (transferable [1] and non-transferable
[4,6]). Our model was developed for autonomous software agents, operating in
dynamic fast-paced environments. Therefore it assumes non-transferable utili-
ties, explicit search costs and a payoff that depends on the other agent’s type
exclusively. For this model, it has been shown that in equilibrium, the agents
perform a complete segregation7 [10].

None of the above two-sided search models have made use of information
agents collect throughout their search. The concept of matchmakers does arise
occasionally in this literature, however always in the form of centralized rather
than a distributed mechanism [3]. Mechanisms that made use of formerly col-
lected “reputation” information can be found in MAS literature.

Reputation literature in AI focuses on reputation models in which agents clas-
sify the potential worth of agents through many rounds of direct and indirect
interaction [19,9]. Agents in these models usually form pairs, complete a task,
and then at a later time period have the option of partnering with the same
agent again. An agent generally judges the expected utility of joining with an-
other agent using statistical models and information gathered from many agents
[9,22,11,19]. However, none of these works suggested a two-sided search model
in a costly environment or presented results based on equilibrium agent strate-
gies. Our model’s use of mediated partnerships is similar to a form of reputation
known as witness reputation. Witness reputation is information reported by an
agent about its direct interactions with another agent [12]. In general, reputation

7 Complete segregation can also be found in many other model variants [1,3,6].
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information is noisy (potentially deceitful) and is generated from a history of in-
teractions. The form of witness reputation we used assumes that agents gather
exact information from only one interaction and that agents do not deceive when
revealing their type or attempting to form mediated partnerships.

Very little work has been done in the AI reputation literature with measur-
ing the cost of reputation data or finding beneficial agents [8]. Instead, most
work only associates a reward for completing tasks in marketplace environments
[19,14,22] or social networks [11]. Our work does not associate a cost directly
with reputation data, but rather the cost of search. Other research [14] looks into
the truthfulness of reputation data and provides models for judging the validity
of reputation information.

8 Discussion, Conclusions and Future Work

The introduction of mediated partnering to two-sided search is an important
extension whenever applying two-sided search in MAS. In contrast to the tra-
ditional two-sided search model, where formerly collected data has no value,
mediated partnering allows a non-direct partnering based on agents’ former ex-
periences in the market. This approach fits well with autonomous agents that
can easily support extensive memory storage and immediate costless interaction
with formerly encountered agents. The proposed extension to the agents’ search
has not appeared in either economic search theory or MAS research, despite
the fact that similar mechanisms in which agents use formerly collected data to
improve system performance have been suggested (e.g., reputation systems and
witness reputation).

As illustrate throughout our analysis, the integration of mediated partner-
ing to two-sided search is not straightforward, and should be done with great
caution. Despite the many advantages of witness reputation, in some settings
it worsens overall performance (measured as aggregated social welfare). This is
both surprising and important. It is surprising because we would have expected
that reducing friction would improve efficiency and important because system
designers should be careful not to automatically allow this option, but rather
first calculate how reducing market friction can affect the performance of the
system.

One important issue that ought to be discussed is the agents’ incentive to use
the proposed model. Here we distinguish between two aspects of the mediated
partnering. The first is the agent’s willingness to reveal its acceptance rule to
the other agents it meets along its search. The agent will always benefit from re-
vealing its acceptance rule since it enables the agent to be exposed to additional
targeted partnering opportunities with no cost. The second is the incentive of
agents to initiate the mediated partnering. Indeed, the agent is indifference be-
tween initiating the mediated partnering and simply resuming its search (since
there is no direct benefit from doing this). However, an incentive can be easily
created externally by enforcing the mediated partnering protocol by the market
maker / agent designer, paying some of the market surplus to the agent in order
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to initiate mediated partnering or simply fining those agents that deviate from
this protocol.

While the new model is commonly favorable, it adds a significant computa-
tional complexity to the equilibrium analysis. This prevents an analytic solution
and requires approximation through appropriate algorithms and heuristics that
embed simulation. The algorithm we present for this purpose in Section 6 sug-
gests exceptional performance improvement within any range of agent types.

Finally, the attempt to integrate “search theory” techniques with day-to-day
applications brings up the question of applicability. Justification and legitimacy
considerations for this integration were discussed in the literature we referred to
throughout the paper. This paper is not focused on re-arguing applicability, but
rather on the improvement of the core two-sided search model.

This research is a first and important step towards developing far more ad-
vanced information sharing mechanisms for enhancing two-sided search applica-
tions in MAS environments. Extensions are numerous: from gossip (sharing all
information available to the agent) to information bargaining (trading with the
collected information with other agents).
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Abstract. Coalitions are often required for multi-agent collaboration. In this 
research, we consider tasks that can only be completed with the combined 
efforts of multiple agents using approaches which are both cooperative and 
competitive. Often agents forming coalitions determine optimal coalitions by 
looking at all possibilities.  This requires an exponential algorithm and is not 
feasible when the number of agents and tasks is large. We propose agents use a 
two step process of first determining the task, and secondly, the agents that will 
be solicited to help complete the task.  We describe polynomial time heuristics 
for each decision. We measure four different agent types using the described 
heuristics. We explore diminishing choices and performance under various 
parameters. 

Keywords: Coalition Formation, Multiagent Systems, Coordination and 
Collaboration. 

1   Introduction 

Recently there has been considerable research in the area of multi-agent coalitions  
[1, 2, 5, 7, 9, 10]. A coalition is a set of agents that work together to achieve a 
mutually beneficial goal [4].   

In the request for proposal (RFP) domain [6], a collection of agents is challenged 
to complete specific tasks, each of which can be divided into subtasks.  In this 
format, the task requirements and utility are specified and requests for proposals 
from agents are sought.  In the model considered here, no single agent possesses all 
the skills necessary to complete a task, and so coalitions must be formed.  The 
agents attempt to form coalitions that will be able to complete tasks in a way which 
maximizes the payoff received. In addition to considering cooperative and 
competitive strategies, a blend of the two is also considered. Coopetitive is a phrase 
coined by business professors [3] to emphasize the need to consider both 
competitive and cooperative strategies as agents which are solely competitive not be 
able to secure the partners required for coalition formation. Agents use heuristics to 
facilitate accepting less than optimal personal benefit if the global utility is 
increased – hence the term, coopetitive.   
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1.1   Skilled Request for Proposal Domain  

We use the term Skilled Request For Proposal (SRFP) to denote a domain in which 
both skills and levels of skill are important. Initially, a requester provides a set of 
tasks to be completed along with a fixed payoff.  Task i is divided into a list of 
subtasks Ti = (ti1…tim).  In order to simplify the analysis, each task in the system has 
the same number of subtasks.  A subtask tij is associated with a skill-level pair (tsij,tlij) 
where a task skill, ts, represents a skill taken from a skill set S, and tl represents a 
specific level of skill, tl ∈ {1…LevelMax}. A set of service agents A exists such that 
each agent k has an associated fee, fk, and agent skill-level pair (ask,alk).      

A coalition Ci =<Ti,Ci,Pi> consists of a task vector for task i, consisting of each of 
the subtasks required to perform the task,  a vector of agents comprising the coalition 
for the task, and a payment vector indicating the payoff for each agent of the 
coalition.  Since the system is pareto optimal, all task payoff is distributed.  The actual 
cost  fij is associated with agent i performing the jth subtask. A rational agent will not 
consent to performing a subtask for less than its cost. 

To facilitate the discussion, we introduce some terminology.  The task Ti = 
(ti1…tim) is satisfied by the coalition consisting of agents Ci=(Ci1 … Cid …Cim)  (Cid∈ 
A) if  each agent d of the coalition (Cid)  has associated skill-level pair (asid,alid) such 
that asid = tsid and alid ≥ tlid.  The difference alid - tlid is termed the underutilization of the 
dth agent in performing task i. We term a task viable if there are available agents to 
satisfy the requirements of the task.  We say an agent supports a task if the agent can 
perform an (as of yet) unassigned subtask.  A level equal to or greater than the 
required level is termed an acceptable level. The level of skill which is actually 
required (due to possibly missing skill-level pairs) to perform a subtask is called the 
effective level.  

For a particular skill, the base fees are a non-decreasing function of level and are 
publicly known. In our domain, the set of fees for a given skill-level pair is taken 
from a normal distribution with known mean and standard deviation.     

2   Previous Work 

Lau and Zhang [8] explore the complexity of exhaustive methods for coalition 
formation relying on comparisons to the multi-dimensional knapsack problem.  In 
their model, each agent is group rational - the goal is to maximize system profit.  
The auction protocol proposed by [6] is conducted by a central manager. Agents are 
randomly ordered at the beginning of each round r = {0,1,2…} so that no agent is 
disadvantaged due to its position in the proposing order.  In each round, the agents 
are asked (in turn) to respond to previous proposals or initiate a proposal of their 
own. For each satisfied proposal, the task and the associated agents are removed 
from the auction.  At the end of a round, any unsatisfied proposals are discarded. 
Thus, an agent is only allowed to propose to agents that follow it in the current 
agent ordering.  
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In the domain proposed by [6], each subtask is completely unique from all other 
subtasks encountered.  A Boolean function Φ(Ak, tij) determines whether agent Ak can 
perform subtask tij.  An agent has a 40% chance of having the skills required to 
complete a “normal task” and a 15% chance of having the skills to complete a 
“specialized task”.  This skill structure is limited in its ability to model realistic skill 
requirements as there is only a rough concept of supply and demand on an individual 
skill basis.  We improve the model by paying more for a highly skilled agent doing a 
less demanding task.  Kraus, et.al., [6] consider incomplete information as agent costs 
are unknown, but because averages are known, incomplete information provides 
merely random changes in the overall behavior, increasing the variance but not 
changing the cumulative behavior. Compromise is introduced in [5] to increase the 
speed at which coalitions can be formed. 

Scully, Madden, and Lyons [11] use a skill vector that uses a variety of skill 
metrics. We propose a combined skill-level pair.  Blankenburg, Klusch, and Shehory 
[2] introduce the idea forming coalitions when there is fuzzy knowledge. An agent’s 
evaluation of the coalition is uncertain, and agents can be (fuzzy) members of 
multiple coalitions to various degrees. 

3   Auctioning Protocol 

We employ a protocol similar to [6] which is used as a simplification of a parallel 
model. For simplicity of analysis, tasks and agents are not allowed to leave the 
auction. We use a reverse English auction in which the bidders compete to provide a 
service. Each agent has knowledge of a set of tasks Τ = {T1,…,Tn}. Each task has a 
value V (Ti) that will be paid when the task is complete.  The auctioneer posts all 
tasks and associated values.  The auction consists of rounds until no remaining task is 
viable or the time expires. 

One by one, each agent can either propose (termed the proposer) a coalition or 
accept a proposal (termed a joiner).  A proposal specifies the task to be done and the 
set of agents to complete the task.  After agent k has decided whether to propose a 
coalition or accept a previous proposal, the turn passes to the next agent.  All agents 
accept or reject the proposal only when it is their turn in the round.  

An important feature of this mechanism is that an agent is motivated to make 
reasonable proposals. An agent who makes a proposal cannot be involved in other 
proposals until every agent has had a turn, during which time successful agents and 
tasks are removed from the system. Over time, the possible tasks that can be 
completed diminish even if the original choice for tasks is large. Thus, agents are 
motivated to accept less that optimal personal benefit. In Figure 1, the test was run 
with 75 agents and 50 tasks, each task requiring three agents.  Thus, there were twice 
as many tasks as could be performed.  The figure shows the number of eligible tasks 
for a single representative agent with high skill level.  Originally, the agent can 
support 28 of the 50 tasks (56%).  However, as the agent pool shrinks, the agent can 
support only 11 of the 27 remaining tasks (41%).   
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Fig. 1. Data for sample agent showing how resources diminish over time 

When an agent i decides between accepting one of the current offers or making an 
offer of its own, it has no knowledge of proposed coalitions which do not involve i 
nor does it know how many agents have accepted or rejected the current proposals.  
This lack of current information reflects the state of information in a parallel proposal 
environment in which acceptances happen simultaneously.  Since agents and tasks are 
removed from the auction when the initiating agent has a turn in the following round, 
the information is updated with predictable delay.  For the current offers, the task and 
the net gain (given the proposed coalition) is known.   

Division of the profit is an important issue.  When a task is completed, each agent 
k is paid its fee fk plus a portion of the net gain of the coalition. The net gain is the 
amount remaining after the agents are paid their advertised fees. Net gain is divided 
among the agents.  Historically, the portion paid to each agent is divided equally, 
proportionally according to the agent’s individual cost, or differentially, based on 
demand for a particular skill. The Shapley value [12] is a popular method for 
distributing cost, but is inappropriate in this setting as it requires that the value of 
every possible combination of agents be known.  In our model, we divide the net gain 
proportionally.   

4   Agent Algorithms 

In many coalition formation algorithms, the best coalition structure is calculated by 
considering all possible coalitions to complete each task, an exponential algorithm.  
Because this quickly becomes unreasonable for even moderately sized problems, we 
divide the problem into two components: task selection and coalition selection, and 
propose the following polynomial time heuristics for each component. In the first 
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component, the agent selects a task to complete. In the second component, the agent 
selects the set of agents for the coalition to complete the task.  

4.1   Task Selection Heuristics 

Local Profit Task Selection: An agent selects a task that will maximize its own 
profit.  For each task, the agent first computes the expected net gain by subtracting the 
average fee of the effective level of each required skill.  Tasks are ranked by 
comparing the agent’s individual utility in each possible task.   

Global Profit Task Selection: An agent selects a task that will maximize global 
profit. For each task, the agent computes the expected net gain by subtracting the 
average fee of the effective level of required skill.  The task with the maximum net 
gain is selected.   

Best Fit Task Selection: An agent picks the task for which the sum of the agent 
underutilization is minimized.  The motivation is that when the resources are used 
wisely, future coalitions will be less likely to face resource constraints. Ties are 
broken using maximum local profit.  

Coopetitive Selection: Select the best fit task as long as it is within a given percent of 
the maximum local profit.   

4.2   Coalition Selection Heuristics  

For each subtask, select the supporting agent with the smallest underutilization or fees – 
to agree with the motivation used in task selection.  

4.3   Acceptance Policy 

To decide between (a) accepting one of the various proposals and (b) initiating a new 
proposal, our agents compare existing proposals with the proposal they would make 
and select the proposal most closely fitting their criteria.   

Accepting the best proposal may give the agent a better chance of joining a 
coalition, particularly when the number of subtasks per task is small, as an agent 
knows that at least two agents (itself and the initiator) accept the proposal. Since agent 
i has no information about proposals not involving i and no knowledge of how many 
agents have accepted the current proposal, the advantage of accepting a current 
proposal over initiating a proposal is not as great as one might think.     

To maximize expected utility, the compromising heuristic assumes that the 
increased chance of a contending proposal being satisfied is worth some decreased 
utility. [Note, compromising applies to acceptance while coopetition applies to task 
selection.] If the contending proposal is within C% of the ideal proposal (based on the 
criteria the agent values), the contending proposal is accepted. Otherwise, the  
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proposal is rejected. Several different values for the compromising ratio, C, are 
evaluated in our experiments.   

5   Results 

Results represent the average of tests run 5000 times. Each subtask has a randomly 
generated agent skill-level pair.  For each skill, the base fee is level*5. Actual fees are 
assigned using a normal distribution with a median value of the base fee and a 
standard deviation of 2.5 (half the fee difference from one skill level to the next).  
Payoffs of the tasks are assigned as a random percentage (100-200%) of the expected 
cost of completing the task. 

5.1   Compromising Ratio 

To determine the compromising ratio, we conduct the following experiment. The 
number of tasks is fixed at 30 with 3 subtasks each.  The number of agents in the 
various tests ranges from 45 to 270.  Using an equal distribution of each agent type, 
we track the individual profit and the number of tasks completed by each agent type.    

Figure 2 shows the profit ratio for the Local Profit agent under a variety of 
compromising ratios and loads.  The other agent types use a compromising ratio of .7. 
The profit ratio is the profit achieved divided by the ideal profit.  However, the ideal 
profit is not achievable for all agents due to high demand for inexpensive resources 
and the fact there are more agents than subtasks. A profit ratio of one is only 
achievable for infinite agents and infinite tasks. Thus, the individual profit ratio 
depends on the scarcity of tasks. As the compromising ratio is increased, profits 
actually decrease. This same pattern is seen in other agent types as well.  One would 
expect that, when the numbers of agents and tasks are compatible, profits would rise 
as the agent becomes more demanding, but the number of tasks completed by all 
Local Profit agents decreases. See Figure 4. As the compromising ratio increases, 
agents with differing goals are unable to find the common ground necessary for an 
agreement. The profit ratio (profit/ideal profit) for scheduled agents does increase 
significantly as shown in Figure 3. The affect is most pronounced for the Local Profit 
agents, but even agents who do not change their compromising ratio slightly increase 
the profit ratio. It is interesting that even in an agent rich environment (where 
demanding agents could just be ignored) the number of tasks completed decreases 
when only the Local Profit agents become more demanding. Agent performance is 
affected by the mixture of agents.  Demanding Local Profit agents reject the proposals 
of others, and the others have no mechanism to learn from their failure.  These results 
are also colored by the fact that the majority of the proposals an agent receives have a 
high profit ratio.  The agent types are all prone to pick high profit coalitions - as even 
Best Fit generally increases profits.  While Local Profit agents are "blind" about 
whether they belong in a coalition, they are not blind in selecting other agents for the 
coalition. 
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Fig. 2. Local Profit Agent performance under various compromising ratios and loads 

We fix the compromising ratio at .90 for all agent types in the following tests as it 
represents a middle ground between achieving individual performance and system 
performance.   

5.2   Context 

We conduct tests to see which agents choose to work together. In Figure 5, the results 
represent the averages of 5000 tests in a balanced environment (the number of agents 
available is equal to the number of agents required by the tasks). There are an equal 
number of agents of each of the four types.  Each coalition consists of three agents – 
one proposer and two joiners.  For each coalition, we tally the number of times each 
pair of types of proposer/joiner occurs. The y axis is the number of pairings 
normalized by dividing by the number that would occur in an unbiased pairing.   Note 
that Local Profit and Global Profit are less likely to accept proposals by Coopetitive 
or Best Fit agents. Coopetitive and Best Fit agents are more likely to accept regardless 
of the proposer. 
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Fig. 3. Average profit ratio of the scheduled Local Profit agents 
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Fig. 4. Average tasks completed per agent in task rich environment 

We see that Local and Global Profit Agents function primarily as proposers  
(Figure 5). It is interesting, that there is no propensity for Local Profit or Global Profit 
agents to propose to themselves, but that both Coopetitive and Best Fit agents have 
success in proposing to agents of their same type. Notice that Local Profit Agents not 
only excel at proposing, but for every agent type, the team joined is most likely 
proposed by a Local Profit Agent.  A likely joiner for a coalition proposed by a Local 
Profit agent is a Coopetitive Agent, yet a Local Profit Agent is less likely to accept a 
proposal by a Coopetitive Agent.   
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Fig. 5. Agents working together. X axis is proposers. Y is ratio number of joiners divided by 
expected number of occurrences. 
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Fig. 6. Agents working together in an agent rich environment (number of agents is three times 
that required by tasks).  X axis is proposers.  Y is ratio number of joiners divided by expected 
number of occurrences. 

We repeat the tests changing the ratio of tasks to agents. Task rich environments 
have three times the number of doable tasks. Agent rich environments have three 
times the number of needed agents. There are significant load-based differences. 
Recall that Coopetitive agents are sometimes looking at fit and sometimes looking at 
profit. Coopetitive agents function better as proposers to Local Profit agents in 
balanced or task rich environments. This occurs for two reasons.  First, since there are 
more choices of tasks, they tend to pick tasks having better profit (as profit is used to 
discriminate between tasks having equal underutilization).  Second, more tasks give a 
Coopetitive agent a better sense of profit-potential (which is used to determine 
whether a best fit solution is acceptable).  Both of these facts mean that Coopetitive 
agents are more sensitive to profit – which makes them more acceptable to Local 
Profit and Global Profit agents. Notice how much better Global Profit agents do as 
proposers in a task rich environment.   

In Figure 7, we examine the likelihood that a Local Profit agent serves as a 
proposer or joiner as the proportion of each type of agent is varied separately in a task 
rich environment. Proposing success appears to be negatively correlated to increasing 
percent of agents like itself.  While space does not permit inclusion of other charts, it 
is interesting to know that Global profit agents are similarly negatively impacted by 
increasing percent of Global Profit agents.  However, both Coopetitive and Best Fit 
agents are stable with increasing percentages of their own type and negatively 
correlated to increasing percentages of agents of other types. Note that both Local 
Profit and Global Profit agents primarily function as proposers. 

The role of Global Profit agents as proposers is more pronounced in a balanced 
environment.  Agents with a wider range of acceptable coalitions function better as 
joiners as they are easier to satisfy. Similarly, those with a restricted definition of 
acceptability function better at proposing as they are less likely to be satisfied by  
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the proposals of others. However, the roles are affected by the ratio of agents to 
work. Global Profit agents, for example, function much better in a task rich 
environment. 

5.3   Individual Agents 

Each agent type has a different objective.  The Local Profit agent desires to increase 
its individual profit. The Global Profit agent desires to maximize the profit of all 
agents in the system. The Best Fit agent desires to maximize the throughput of the 
system. The Coopetitive agent desires to increase the throughput of the system as long 
as it is still benefiting the individual agent. We see different rankings of the 
algorithms depending on the set of peers. 

We explore the impact each agent type has on the system.  We set up tests that 
gradually increase the percent of a single agent type until it is the only agent type left 
in the system.  The other agents’ types in the system exist in equal proportions. 
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Fig. 7. Likelihood that a Local Profit agent proposes (or joins) given varying proportion of one 
agent type (while other agent types are equal) 

Figure 8 shows the individual profit ratio for the specific agent type as its percent 
in the system increases. It can be seen that the Local Profit agent does very well when 
less than 70% of the agents are Local Profit agents. As its percentage in the system 
increases, the profit for the agent type decreases. The primary cause of this decrease is 
that there are fewer tasks completed. When there are few Local Profit agents in the 
system, Local Profit agents do well. They make proposals that the other agents (with 
different goals) find acceptable – at least within 90% of the desired goal.  The greedy, 
Local Profit agent is able to capitalize on the generosity of the other agents in not 
requiring 100% of the utility to be achieved.  When the percent of Local Profit agents 
increases, the tasks that are proposed maximize what the majority of the agents are 
looking for – high individual profits. Yet, fewer proposals are accepted. Why?  The 
answer lies in the fact that the Local Profit agents are objective in picking which task 
to select and which agents to ask to participate. The only blindness is in deciding that 
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the agent itself belongs in the coalition.  In other words, the agent says, “Given that I 
am going to perform a task, which task is best?”  Once the task has been selected, the 
agent asks, “Given that I am going to participate in the task, which agents should 
work with me?”  Thus, the logic always presupposes that the agent should participate.  
The agent never considers that it may not be a good match for the task.  Thus, when 
the majority of the agents are greedy (each seeking the ideal in the task and other 
members of the coalition), they reject each other’s proposals as not meeting their 
expectations.  They are saying, “I may not be perfect but I expect you to be.”  The 
only coalitions that can be accepted are the ones proposed by agents ideally matched 
to the task (ideal skill level and/or cost). 
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Fig. 8. Individual Profit ratio. The vertical line indicates equal numbers of each agent type. 

Agents that deliberately go after individual profit are most successful at achieving 
it until the agents compete with too many other agents with the same selfish goal. The 
Best Fit agents have the opposite effect. As the percentage of Best Fit agents increase, 
the number of tasks completed and the individual profit for the Best Fit agents 
increase as well. The number of tasks that are completed is maximized by Best Fit 
agents having a high compromising ratio. Unlike Local Profit agents, Best Fit agents 
are not oblivious about their own fit. While Local Profit agents subtract their fixed fee 
from every possible profit (making their fee irrelevant in their decision as it represents 
a linear transformation of the rewards), Best Fit agents are attracted to tasks for which 
they are a good match (in terms of level) and every Best Fit agent sees the match the 
same way. More proposals by Best Fit agents results in better conservation of 
resources and, hence, more tasks completed. In addition, profit goes up as cheaper 
agents within the same level are preferred. (Cheaper agents maximize local profit in 
proposals having the same under-utilization.) Thus, a proposal always includes the 
cheapest agent within a needed skill level. 
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The profit of Coopetitive agents increases slightly with percent of Coopetitive 
agents, but is fairly steady. With less than 50% of the same agent type, the 
Coopetitive agent has a higher individual profit than the Best Fit agent. The 
throughput of the Coopetitive agent is fairly steady as well.  As the percentage of 
Coopetitive agents increases, the average number of tasks completed stays about the 
same.  

Consider the vertical line of Figure 8. At 25% of the primary agent, all agents are 
equally represented in the auction.  Thus, when agents are equally represented, we see 
that Local Profit agents do the best in individual profit followed by Global Profit, 
Coopetitive, and Best Fit 

Figure 9 shows the global profit ratio of the system, calculated as the total profit of 
all agents divided by maximum possible profit of all agents (using a hill-climbing 
algorithm).  The objective of Global Profit agents is to maximize the global profit and 
in doing so increase the throughput of the system.  Global Profit Agents do well when 
their numbers are few, but tend to hurt overall performance as they become the 
majority. Why does an agent whose goal is to try to maximize global profit do worse 
than others, even when all agents in the system have the same goal?  Like the Local 
Profit agent, a Global Profit Agent is oblivious to how well it matches the proposed 
task.  Since it subtracts its fixed fee from every possible task, the appropriateness of 
the agent to do the task is not considered; it finds only the best task to be done not the 
best task for it to do.  Thus, the proposals made by Global or Local Profit agents are 
often less than ideal. 
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Fig. 9. Global Profit Ratio 

The achieved global profit is dependent on the number of tasks that are completed.  
The Best Fit agent maximizes the global profit as its percentage increases past 25%.  
Both Local and Global profit agents are similar in performance.  As their percentage 
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increases, the global profit decreases. The Coopetitive agent does a little better than 
the Local and Global profit agents, but not nearly as well as the Best Fit agent.  This 
is a bit surprising as Coopetitive Agents act just like Best Fit agents as long as profits 
are not reduced too much.   

6   Conclusions and Future Work 

Agent types differ in their measure of utility, making it difficult to find common 
ground without the ability to compromise.  Some agents appear to other agents to be 
non-cooperative simply because their utility function is so different. Because agents 
do not know the types of other agents, a “non-cooperative class” of agents hurts 
global profit as repeated attempts are made to form coalitions that fail.  

As expected, agents perform differently depending on the environment: task rich, 
balanced agents and tasks, and agent rich.  Some agent types are very good in 
selecting between many tasks, but are not as impressive when there are only a few 
choices.  In any environment, the choices diminish rapidly over time so those that do 
not join coalitions early are negatively impacted.  This has the surprising effect that 
being more selective actually hurts performance. 

Agents interested in Global profit or Local Profit function well as proposers.  Best 
Fit agents or Coopetitive agents both do much better as joiners than proposers. It 
appears that a coalition that maximizes profit is more likely to achieve good skill 
utilization than the converse.  Coopetitive agents and Best Fit agents have the most 
success in proposing to themselves, but Local and Global Profit agents have better 
success in proposing to other types of agents. 

While agent types are somewhat affected by changing the percentage of one other 
agent type in the system, the effects are most pronounced when it is the agent whose 
percentage in the system is being changed.  In the case of Local Profit agents, they 
actually are negatively impacted by increasing numbers of Local Profit agents. 

Because agents are fairly similar in what they value, agents can succeed just by 
accepting other offers.  In future work, we will introduce side payments to motivate 
an agent to select a task when other agents receive no special motivation. 
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Abstract. Coordination systems have been used in a variety of different applica-
tions but have never performed well in large scale, faulty settings. The sheer scale
and level of complexity of today’s applications is enough to make the current
ways of thinking about distributed systems (e.g. deterministic decisions about
data organization) obsolete. All the same, computer scientists are searching for
new approaches and are paying more attention to stochastic approaches that pro-
vide good solutions “most of the time”. The trade-off here is that by loosening
certain requirements the system ends up performing better in other fronts such as
adaptiveness to failures. Adaptation is a key component to fault-tolerance and tu-
ple distribution is the center of the fault-tolerance problem in tuple-space systems.
Hence, this paper shows how the tuple distribution in LINDA-like systems can be
solved by using an adaptive self-organized approach à la Swarm Intelligence. The
results discussed in this paper demonstrate that efficient and adaptive solutions to
this problem can be achieved using simple and inexpensive approaches.

1 Introduction

We could start this paper discussing the era of uncertainty in computer systems. But
by now, most computer science researchers have realized that the sheer scale of current
systems and applications is “forcing” them to look away from standard approaches to
deal with these systems and concentrate their efforts in the search for solutions inspired
from other areas such as biology and chemistry. Why have not they done this before?
It is quite simple: (i) computer scientists are used to having total control over their
systems’ workings, and (ii) the scale of the problems they face does not require uncon-
ventional solutions. The consequence is that antiquate ways of thinking flood today’s
applications leading to solutions that are complex and brittle. It is outside the scope of
this paper to discuss in length who is to blame for this scenario. In fact, no one may be
to blame since it would have been hard to foresee such an increase in computer usage
let alone people’s dependency on computer systems.
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Nevertheless, the aforementioned issues could be improved if we better understand
that uncertainty is not a synonym for “incorrectness”. We all live in a world where the
causality of events makes non-determinism/uncertainty a norm. Although far from the
level of complexity of the real world, computer applications exhibit complexity that is
hard to deal with even by today’s most powerful computers. For a sample of challenging
problems we are facing, see the grand challenges listed by the Computing Research As-
sociation (CRA) [16] and by the UK Computing Research Committee (UKCRC) [19].

Coordination systems are constantly being pointed as a mechanism to deal with
some of the complex issues of large-scale systems. The so-called separation between
computation and coordination [8] enables a better understanding of the complexity of
distributed applications. Yet, even this abstraction has had difficulties in overcoming
hurdles such as fault-tolerance present in large-scale applications. A new path in dealing
with complexity in coordination systems has been labeled emergent coordination [13].
Examples of this approach include mechanisms proposed in models such as Swarm-
Linda [12] and TOTA [11]. This paper explores one mechanism proposed in Swarm-
Linda that refers to the organization of data (tuples) in distributed environments using
solutions borrowed from natural forming multi-agent swarms, more specifically based
on ant’s brood sorting behavior [7].

In tuple-space coordination systems, the coordination itself takes place via gener-
ative communication using tuples. Tuples are stored and retrieved from distributed
tuple spaces. As such, the location of these tuples is very important to performance—
if tuples are maintained near the processes requiring them, the coordination can take
place more efficiently. Standard systems base this organization on hash functions that
are quite efficient but inappropriate to large distributed applications because they are
rather difficult to adapt to dynamic scenarios; particularly to scenarios where distributed
nodes/locations can fail. In this paper we devised a mechanism to implement the al-
gorithm suggested in the original SwarmLinda. We evaluated the performance of our
approach using a metric based on the spatial entropy of the system. We argued that this
approach is more appropriate to faulty systems because it does not statically depend
on the existence of any particular node (as in hashing). In fact, the organization pattern
of tuples emerges from the configuration of nodes, tuple templates, and connectivity
of nodes. This emergent pattern adapts to variations in environments including node
failure.

2 SwarmLinda

The LINDA coordination model is based on the associative memory communication
paradigm. LINDA provides processes with primitives enabling them to store and retrieve
tuples from tuple spaces. Processes use the primitive out to store tuples. They retrieve
tuples using the primitives in and rd; these primitives take a template (a definition of
a tuple) and use associative matching to retrieve the desired tuple—while in removes a
matching tuple, rd takes a copy of the tuple. Both in and rd are blocking primitives,
that is, if a matching tuple is not found in the tuple space, the process executing the
primitive blocks until a matching tuple can be retrieved.
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SwarmLinda uses several adaptations of algorithms taken from the abstraction of
natural multi-agent systems [1,14]. Over the past few years, new models originating
from biology have been studied in the field of computer science [1,9]. In these mod-
els, actors sacrifice individual goals (if any) for the benefit of the collective. They act
extremely decentralized, carrying out work by making purely local decisions and by
taking actions that require few computations, thus improving scalability. These mod-
els have self-organization as one of their main characteristic. Self-organization can be
defined as a process where the entropy of a system (normally an open system) de-
creases without the system being guided or managed by external forces. It is a phe-
nomenon quite ubiquitous in nature, in particular in natural forming swarms. These
systems exhibit a behavior that seems to surpass the sum of all the individuals’
abilities [1,14].

To bring the aforementioned ideas into SwarmLinda, we interpret the “world” of
nodes as a graph in which ants search for food (similar tuples), leaving trails to success-
ful searches. Adopting this approach, one can produce a self-organized pattern in which
tuples are non-deterministically stored in specific nodes according to their characteris-
tics (e.g. size, template).

The above is just an illustration. A more realistic SwarmLinda should consider a few
principles that can be observed in most swarm systems [14]:

Simplicity: Swarm individuals are simple creatures, doing no deep reasoning and im-
plementing a small set of simple rules. These rules lead to the emergence of com-
plex behaviors.

Dynamism: Natural swarms adapt to dynamically changing environments. In open
distributed LINDA systems, the configuration of running applications and services
changes over time.

Locality: Swarm individuals observe their direct neighborhood and make decisions
based on their local view.

LINDA systems do not define the idea of ants or food. The description of Swarm-
Linda is based on the following abstractions: the individuals are active entities that are
able to observe their neighborhood, move in the environment, and change the state of
the environment in which they are located; the environment is the context in which indi-
viduals work and observe; the state is an aspect of the environment that can be observed
and changed by individuals.

We aim at optimizing the distribution and retrieval of tuples by dynamically de-
termining storage locations for them based on the template of that particular tuple.
It should be noted that we do not want to program the clustering but rather make it
emerge from the algorithms implemented through the mechanism of self-organization.
Note that according to Camazine [2], self-organization refers to the various mecha-
nisms by which patterns, structures and order emerge spontaneously within the system.
In the case of this paper, the clustering of tuples is the pattern that emerges in the
system.

SwarmLinda describes four algorithms [18]: tuple distribution, tuple retrieval, tuple
movement, and balancing template. In this paper we work on issues related to tuple
distribution.



258 M. Casadei et al.

2.1 Tuple Distribution

The process of tuple distribution or tuple sorting is one of the most important tasks
to be performed in the optimization of coordination systems. It relates primarily to
the primitive out as this is LINDA’s way of allowing a process to store information.
Tuple distribution in SwarmLinda stores tuples based on their type (template), so that
similar tuples stay close to each other. To achieve this abstraction we see the network
of SwarmLinda nodes as the terrain in which out-ants roam. These ants have to decide
at each hop in the network, whether or not the storage of the tuple should take place.
The decision is made stochastically but biased by the amount of similar tuples around
the ant’s current location.

For the above to work, there should be a guarantee that the tuple will eventually be
stored. This is achieved by having an aging mechanism associated with the out-ant.
For every unsuccessful step the ant takes, the probability of storing the tuple in the next
step increases is guaranteed to eventually reach 1 (one).

The similarity function is another important mechanism. Note that it may be to re-
strictive to have a monotonic scheme for the similarity of two tuples. Ideally we would
like to have a function that says how similar the two tuples are and not only if they are
exactly of the same template. Later in Section 4, we describe the similarity mechanism
used in our experiments.

Now compare the above with a standard approach based on hashing. As a tuple needs
to be stored, a hash function is used to determine the node where to place the tuple. This
approach, although efficient in closed systems, is inappropriate to dynamic open cases
because:

1. The modification of the hash function to include new nodes is not trivial.
2. The clustering of tuples is quite excessive. All the tuples of the same kind will

(deterministically) be placed on the same node.
3. Due to Item 2, the system is less fault tolerant. The failure of a node can be disas-

trous for applications requiring the tuple kind(s) stored in that node.

Our approach is based on the brood sorting algorithm. We demonstrate that it is
possible to achieve good entropy for the system (level of organization of tuples) without
resorting to static solutions such as hashing. The approach proposed here adapts to
changes in the network, including failures.

3 A Maude Library for Simulation

We developed in [4] a framework using the MAUDE term rewriting language to speed
up the process of modeling and simulating stochastic systems specially the ones with
a high degree of distribution and interaction, such as complex systems. We here briefly
describe some features of this framework.

MAUDE is a high-performance reflective language supporting both equational and
rewriting logic, for specifying a wide range of applications [5]. Other than specify-
ing algorithmic aspects through algebraic data types, MAUDE can be used to provide
rewriting laws—i.e. transition rules—that are typically used to implement a concur-
rent rewriting semantics, and are then able to deal with aspects related to interaction
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and system evolution. In the course of finding a general simulation tool for stochastic
systems, we found MAUDE a particularly appealing framework for it allows the di-
rect modeling of a system structure and dynamics, as well as the prototyping of new
domain-dependent languages to have more expressiveness and compact specifications.

Inspired by the work of Priami on the stochastic π-Calculus [15], we realized in
MAUDE a general simulation framework for stochastic systems which does not mandate
a specification language as e.g. π-Calculus, but is rather open to any language equipped
with a stochastic transition system semantics. In this tool a system is modeled as a LTS
(labeled transition system) where transitions are of the kind S

r:a−−→ S′, meaning that
the system in state S can move to state S′ by action a, where r is the (global) rate
of action a in state S. The rate of an action in a given state can be understood as the
number of times action a could occur in a time-unit (if the system would rest in state
S), namely, its occurrence frequency. This idea generalizes the activity mechanism of
stochastic π-Calculus, where each channel is given a fixed local rate, and the global rate
of an interaction is computed as the channel rate multiplied by the number of processes
willing to send or receive a message. Our model is hence a generalization, in that the
way the global rate is computed can be customized, and ultimately depends on the
application at hand—e.g. the global rate can be fixed, or can depend on the number of
system sub-processes willing to execute the action.

Given a transition system of this kind and an initial state, a simulation is simply
executed by: (i) checking the available actions and their rate for each cycle of the sim-
ulation framework; (ii) picking one of the actions probabilistically (the higher the rate,
the more likely the action should occur); (iii) accordingly changing the system state;
and finally (iv) advancing the time counter according to an exponential distribution, so
that the average frequency is the sum of the action rates.

4 A Solution for Tuples Distribution

Tuple distribution that can work well when failures are commonplace is still an open
issue in the implementation of large scale distributed tuple spaces [12]. Several ap-
proaches for distributing tuple spaces have been proposed [17,6,20], but none of them
has proven useful (without modifications) in the implementation of failure-tolerant dis-
tributed tuple spaces [12].

In order to find a solution to this problem, we took inspiration from self-organization,
in particular from swarm intelligence. In the past years, many models deriving from
biology and natural multi-agent systems—such as ant colonies and swarms—have been
studied and applied in the field of computer science [10]. The solution to the distribution
problem adopted in SwarmLinda is dynamic and based on the concept of brood sorting
as proposed by Deneubourg et al. [7].

We consider a network of distributed tuple spaces, in which new tuples can be in-
serted using the LINDA primitive out. Tuples are of the form N(X1, X2, ..., Xn),
where N represents the tuple name and X1, X2, ..., Xn represent the tuple arguments.
A good solution to the distribution problem must guarantee the formation of clusters
of tuples in the network. More precisely, tuples belonging to the same template should
be stored in the same tuple space or in neighboring tuple spaces. Furthermore, tuples
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with a similar template should be stored in near tuple spaces. Note that this should all
be achieved in a dynamically .

In order to decide how similar a tuple and a template are, we need a similarity func-
tion defined as similarity(tu,te), where tu and te are input arguments: tu
represents a tuple and te represents a tuple template. The values returned by this func-
tion are floating point values between 0 and 1:

– 0 means that tuple tu does not match template te at all; complete dissimilarity.
– 1 means that tuple tu matches template te; complete similarity.
– Other values mean that tu does not match perfectly te but, nonetheless, they are

not completely dissimilar.

In the following, we provide a description of the process involved in the distribution
mechanism, when an out operation occurs in a network of distributed tuple space. For
the sake of simplicity, we assume only one tuple space for each node of a network.

Upon the execution of an out(tu) primitive, the network, starting from the tu-
ple space in which the operation is requested, is visited in order to decide where to
store tuple tu. According to brood sorting, the out primitive can be viewed as an ant,
wandering in the network searching the right tuple space to drop tuple tu, that is, the
carried food. The SwarmLinda solution to the distribution problem is composed of the
following phases:

1. Decision Phase. Decide whether to store tu in the current tuple space or not.
2. Movement Phase. If the decision taken in the previous phase is not to store tu in

the current tuple space, choose the next tuple space and repeat the process starting
from 1.

4.1 Decision Phase

During the decision phase, the out-ant primitive has to decide whether to store the
carried tuple tu-food in the current tuple space. This phase involves the following steps:

1. Using the similarity function, calculate the concentration F of tuples having a tem-
plate similar to tu.

2. Calculate the probability PD to drop tu in the current tuple space.

The concentration F is calculated considering all the templates for which tuples are
stored in the tuple space. F is given by:

F =
∑

m
i=1(qi × similarity(tu, Ti)) (1)

where m is the number of templates in the current tuple space, qi is the total number
of tuples matching template Ti. Note that 0 ≤ F ≤ Q, where Q is the total number of
tuples within the current tuple space (for all templates).

According to the original brood sorting algorithm used in SwarmLinda [7], the prob-
ability PD to drop tu in the current tuple space is given by:

PD =
(

F

F + K

)2

(2)
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Differing from the original idea in brood sorting, here the value of K is not a con-
stant; K represents the number of steps remaining for the out(tu) primitive, namely,
the number of tuple spaces that an out-ant can visit. When an out operation is initially
requested on a tuple space, the value of K is set to Step, that is, the maximum number
of tuple spaces each out-ant can visit. In the experiments in this paper, we assume
Step as a parameter specific for the network topology we are using.

Each time a new tuple space is visited by an out-ant without storing the carried tuple
tu, K is decreased by 1. When K reaches 0, PD becomes 1 and tu is automatically
stored in the current tuple space independently of the value of F . K is adopted to
implement an aging mechanism to avoid having an out-ant wandering forever without
being able to store the carried tuple tu. If K > 0 and the tuple tu is not stored in
the current tuple space, a new tuple space is chosen among the neighbors of the current
one. The following section provides a description of the process involved in the choice
of the next tuple space.

4.2 Movement Phase

The movement phase occurs when the tuple carried by an out is not stored in the
current tuple space. This phase has the goal of choosing, from the neighborhood of the
current tuple space, the best neighbor for the next hop of the out-ant. The best neighbor
is the tuple space with the highest concentration F for the carried tuple tu. According
to self-organization principles, the choice of the next tuple space is local and based only
on the neighborhood of the current tuple space.

If we denote by n the total number of neighbors in the neighborhood of the current
tuple space, and Fj the concentration of tuples similar to tu in neighbor j (obtained
using Equation 1), we can then say that the total number of tuples similar to tu in the
neighborhood is given by:

Tottu =
∑

n
j=1Fj (3)

The probability Pj of having an out-ant move to neighbor j, is calculated by:

Pj =
Fj

Tottu
(4)

Adopting this equation for each neighbor, we obtain:
∑

n
j=1Pj = 1 (5)

The higher the value of Pj for a neighbor j, the higher the probability for that neighbor
to be chosen as the next hop of the out-ant. After a new tuple space is chosen, the whole
process is repeated starting from the decision phase (as described in Section 4.1).

4.3 A Case Study

In order to provide an example of the SwarmLinda distribution mechanism, we adopt
the case study presented in Figure 1. The figure shows a network of four tuple spaces
TS1, TS2, TS3, TS4: in TS1 the insertion of a new tuple a(1) is being executed. As
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reported in the figure, the tuple spaces contain tuples of four different templates: a(X),
b(X), c(X) and d(X).

For didactical purposes, we assume Step = 1, and we use a very simple similarity
function, given by:

similarity(tu, T ) =

{
1 if tuple tu matches template T ,

0 otherwise.

Using the SwarmLinda distribution mechanism, the first step is the execution of the
decision phase on tuple space TS1. Tuple space TS1 is characterized by the following
concentration values:

qa(X) = 6, qb(X) = 3, qc(X) = 2, qd(X) = 0

where qa(X) is the concentration of tuples matching template a(X) and so on. Given
these values, the concentration F1 (of tuples similar to a(1)) is calculated using Equa-
tion 1:

F1 = similarity(a(1), a(X)) × qa(X)

+ similarity(a(1), b(X)) × qb(X)

+ similarity(a(1), c(X)) × qc(X)

+ similarity(a(1), d(X)) × qd(X)

and, replacing the symbols with the values we get:

F1 = 1 × 6 + 0 × 3 + 0 × 2 + 0 × 0 = 6

Then, according to Equation 2, the probability PD to drop a(1) in TS1 is:

PD =
(

F1

F1 + K

)2

=
(

6
6 + 1

)2

≈ 0.734

Supposing that a(1) is not stored in TS1, we have to choose the next tuple space
among the neighbors of TS1. The neighborhood of TS1 is composed of two tuple

Fig. 1. Case study: a network composed of four tuple spaces
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spaces: TS2 and TS4. If we assume F2 = 2 and F4 = 8, the probabilities to move in
TS2 or TS4 are:

P2 =
F2

F2 + F4
=

2
10

= 0.2

P4 =
F4

F2 + F4
=

8
10

= 0.8

Before moving in the next tuple space, the value of K is decreased by 1: in this case
the new value of K is 0. Since K = 0, a(1) will be stored in the next tuple space,
independently of the chosen tuple space.

5 Experimental Results

The results described in this section are based on an executable specification of Swarm-
Linda developed in the stochastic simulation framework presented in Section 3. As
previously explained, our stochastic simulation framework enables a rapid prototyp-
ing and modeling of many complex systems, like SwarmLinda and the Collective Sort
problem presented in [4,3]. The next section briefly describes the executable specifica-
tion of SwarmLinda. Then, before showing the results, we report a description of the
methodology adopted for running the simulations. In particular, these simulations were
performed on two different instances characterized by different network topologies.

5.1 Methodology

We want our distribution mechanism to achieve a reasonable distribution of tuples. Tu-
ples having the same template should be clustered together in a group of nearby tuple
spaces. The concept of spatial entropy is an appropriate metric to describe the degree
of order in a network. Denoting by qij the amount of tuples matching template i within
tuple space j, nj the total number of tuples within tuple space j, and k the number of
templates, the entropy associated with tuple template i within tuple space j is

Hij =
qij

nj
log2

nj

qij
(6)

and it is easy to notice that 0 ≤ Hij ≤ 1
k log2 k. We want to express now the entropy

associated with a single tuple space

Hj =
∑k

i=1 Hij

log2 k
(7)

where the division by log2 k is introduced in order to obtain 0 ≤ Hj ≤ 1. If we have t
tuple spaces, then the spatial entropy of a network is

H =
1
t

t∑

j=1

Hj (8)
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where the division by t is used to normalize H , so that 0 ≤ H ≤ 1. The lower the value
of H , the higher the degree of order in the network considered. For each simulated
network, we performed series of 20 simulation, using each time different values for the
Step parameter (representing the maximum number of steps a tuple can take). One run
of the simulator consists of the insertion of tuples in the network of tuple spaces—via
out primitive—until there are no pending out to be executed in the entire network.

After the execution of a series of 20 simulation for a given network, the value of the
spatial entropy H of the network is calculated as the average of the single values of
H resulting from each simulation; we call this value average spatial entropy (Havg).
For each network topology presented in the next section, we considered only tuples
of four different templates: a(X), b(X), c(X), and d(X). Therefore, the possible val-
ues returned by the similarity functions are: (i) 0.6, if a tuple matches the considered
template, (ii) 0, otherwise.

The following section presents the results obtained by simulating two different in-
stances of network.

– Collective sort instance: a network of 4 tuple spaces completely connected, that is
equal to the collective sort case discussed in [4] and [3].

– Star instance: a network of 6 tuple spaces characterized by a star-like topology.
Note that this is used because it contrasts with the collective sort instance. In the
collective sort we have nodes forming a clique. The star contrasts the results with
networks that are not fully connected.

Despite the simplicity of the networks, they let us see the behavior of the proposed
scheme in quite distinct scenarios. Note that the parameters (such as the Step parameter)
are set to reflect the size of the network.

5.2 Star Instance

The network topology for the star instance is reported in Figure 2. As depicted in the
figure, we verified the performance of our SwarmLinda distribution mechanism simu-
lating the insertion of 15 tuples of each template. The insertion of the tuples takes place
in each of the tuple spaces in the network. Consequently, at the end of a simulation, we
have 90 tuple for each template stored the network.

A first set of simulations were run considering the network initially empty. We con-
sidered different values of the Step parameter in the range [0−40], performing for each
value a series of 20 simulation. In particular, the situation with Step = 0 corresponds
to the case in which our distribution mechanism is turned off. Indeed, since no steps are
allowed, the tuple carried by each out is stored in the tuple space in which the out
operation is initially requested.

The results related to this first set of simulations are reported in Figure 3 (a). The
figure shows the trend of Havg considering different values for the Step parameter.
As expected, using Step = 0, we obtained a value of Havg equals to 1, since our
distribution mechanism is not used. In other words, we are in a deterministic situation,
since each tuple is stored in the tuple space in which the corresponding out occurs.
Increasing the value of Step causes Havg to decrease. In particular, with Step = 16,
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Fig. 2. Star instance. This network was used in two different experiment: with seeding and without
seeding. The picture depicts the seeds in 4 of the nodes but the network is assumed empty when
we perform the no-seeding experiments.
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Fig. 3. Charts showing the results for the Star instance

Havg reaches the value 0.2, that is the lowest value for this set of simulations. Further
increasing the value of Step has minimum effect to Havg .

The SwarmLinda distribution mechanism works dynamically—each out has to de-
cide the location to store the carried tuple tu in a tuple space with high concentration of
tuples similar to tu without any previous knowledge about the status of the network of
tuple spaces. For this reason, even though Havg = 0.2 does not correspond to complete
clustering, nonetheless it represents a good result. Moreover, it is important to find a
good balance between the value of the Step parameter and the value of Havg we want
to achieve. Indeed, a too high value of Step can eventually leads to a high network
traffic. Hence, when we choose a Step value, it is important considering not only the
performance in terms of Havg , but also the cost in terms of network traffic eventually
generated. Another point to be made is that complete clustering may actually not be
desirable given that it makes the system less tolerant to failures. Excessive dependency
to a given node lead to the infamous single-point-of-failure problem.

The other experiment we performed measures the behavior of the tuple distribution
mechanism when faced with a network where clustering is already present. In Figure 2
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Fig. 4. Collective sort instance. Again here the network shows nodes with seeds but these are only
considered in the experiments that consider the existence of seeds.

this consists of the configuration where the clusters depicted are considered in the ex-
ecution. To perform this new set of simulations, we used the same number of tuples
adopted for the previous case, but instead of considering the network initially empty, we
considered an initial network configuration with clusters already formed. In particular,
for each cluster of tuples belonging to a given template, we considered a concentration
equals to 15% of the total number of tuples expected for that template. In the following,
we refer to an initial cluster by the term seed. Figure 3 (a) also shows a comparison of
the trend of Havg obtained considering the presence of seeds against the results without
seeds. The results are characterized by a better value of Havg . This is expected since
the network already had some level of organization before the tuple distribution was
executed.

Finally, we performed an analysis of the sensitivity of the tuple distribution in rela-
tion to the seed concentration when Step = 16. A series of 20 simulations for differ-
ent initial seed concentrations in the range [0% − 80%] were performed. The results
related to this case are shown in Figure 3 (b). As expected, the higher the value of seed
concentration, the lower the value of Havg .

5.3 Collective Sort Instance

The network topology for the collective sort instance is shown in Figure 4. This instance
corresponds to the same case already studied in [4] and [3], even though the approach
adopted here to address the distribution problem is different.

It is worth comparing the two solutions that, although characterized by the same goal,
are based on different approaches. Indeed, in the case discussed here the clustering
process in realized dynamically as soon as an out operation is executed on a tuple
space. Conversely, the approach described in [4] and [3] is executed in background,
after the execution of an out operation is completed. This means that the tuple carried
by an out is initially stored in the tuple space in which the operation occurs. At the
same time, a set of software agents work in background with the task of moving tuples
from a tuple space to another: the global goal is to achieve the complete clustering of
the different tuple templates in the network.
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Fig. 5. Charts showing the results for the Collective Sort instance

We performed on the collective sort instance the same simulations executed previ-
ously on the star instance, using 100 tuples for each tuple template (Figure 4). Figure
5 (a) reports the trend of Havg considering the network initially empty (without seed).
Figure 5 (a), also shows the trend of Havg with seeds compared with the one result-
ing from the simulation without seeds already formed in the network. Finally, Figure 5
(b) shows the trend of Havg considering different seed concentrations, using the same
criterion described in Section 5.2. The results show the same trend of Havg , already
described in Section 5.2 for the star instance.

Now, we can compare the approach used here with the one presented in [4] and [3].
First of all, considering the two solutions from the viewpoint of the performance, we
can notice that, while the approach in [4] and [3] can achieve a perfect clustering of the
tuples (Havg = 0), the SwarmLinda solution can reach 0.2 as minimum value of Havg .
However, the SwarmLinda solution tries to store a tuple in the right tuple space upon
the execution of an out operation, whereas in the solution developed in [4] and [3]
realizes the clustering using software agents that work in background. Consequently,
this solution seems to have a higher computational price than the SwarmLinda solution
presented in this paper.

The previous discussion has only the goal of highlighting the differences between
the two solutions. For this reason, the two approaches do not have to be viewed as con-
flicting solutions, but as a different alternative, or even as complementary approaches.
Therefore, the choice of the solution to adopt depends on the particular application
domain.

6 Conclusion and Future Work

In this work, we focused on the tuple distribution problem in distributed tuple spaces,
designing a solution based on self organization. Then, the solution was tested using an
executable specification, developed on the stochastic simulation framework discussed in
[4]. We demonstrated the emergence of organization in two different network topolo-
gies: (i) a star-like network and (ii) a completely connected network (collective sort
instance).



268 M. Casadei et al.

The results demonstrate that our distribution mechanism—even though it cannot
achieve a perfect clustering of the different tuple templates—is capable of reaching a
low value of spatial entropy. This can be considered a good result, because the proposed
mechanism works dynamically, that is, for every out(tu) operation to be executed,
it tries to store the carried tuple tu in a tuple space with a high concentration of tuples
similar to tu. We have also pointed out that complete clustering may not be desirable in
dynamic networks given that processes become too dependent on certain nodes being
available all the time. In fact, this avoidance is what makes our approach more fault-
tolerant. Note that if the node with the majority of tuples fails, the few tuples in other
nodes will act as “seeds” for the formation of clusters in those locations.

With regard to the collective sort instance, we compared this results with the ones
resulting from the application of a different solution described in [4] and [3]. In partic-
ular, the solution proposed here seems to be more general and more suitable for a wider
range of network topologies. All the same, there are still issues to be dealt with:

– We want to perform further simulations using networks with an higher number of
tuple spaces, in order to see if the trend of the spatial entropy is maintained.

– We plan to test the proposed solution on other network topologies, in particular
on scale-free topologies. Mutatis mutandis, our solution applies to more general
networks including scale-free.

– In order to see how tuples aggregate around clusters, we are going to run simula-
tions on network instances with more tuple templates: in other words, we plan to
use not only templates totally different from each other, but also templates featuring
diverse degrees of similarity.

– Finally, an important issue is the over-clustering: since we want to avoid tuple
spaces containing clusters of tuples that are too large. We need to devise a dynamic
similarity function that takes into account the current number of tuples stored in a
tuple space.

The last point is particularly interesting to allow the application of SwarmLinda in
the domain of open networks. We believe self-organization will also play a role in the
control of over-clustering. We are starting to experiment with solutions inspired by bac-
teria molding as they appear to have the characteristics we desired. We aim at achieving
a balance in the system where clustering occurs but it is not excessive.
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Abstract. When two or more agents interacting, their behaviors are
not necessarily matching. Automated ways to overcome conflicts in the
behavior of agents can make the execution of interactions more reliable.
Such an alignment mechanism will reduce the necessary human inter-
vention. This paper shows how to describe a policy for alignment, which
an agent can apply when its behavior is in conflict with other agents.
An extension of Petri Nets is used to capture the intended interaction of
an agent in a formal way. Furthermore, a mechanism based on machine
learning is implemented, to enable an agent to choose an appropriate
alignment policy with collected problem information. Human interven-
tion can reinforce certain successful policies in a given context, and can
also contribute by adding completely new policies. Experiments have
been conducted to test the applicability of the alignment mechanism
and the main results are presented here.

1 Introduction

This paper presents a method for agents to mutually adjust their behaviors in an
automatic way. Behavioral alignment is implemented as a mechanism that allows
the agents to successfully complete an interaction. The method was implemented
and experiments have been conducted. These experiments have shown that auto-
mated procedures to overcome problems in agent-to-agent interactions can make
the whole multi-agent system execution more reliable, and have resulted in less
human intervention.

When two or more agents (human or software) interact as part of a business
process instance (BPI) [17], they can either follow an established protocol, or
use their own experience and judgment. In the first case, the agents should learn
or be instructed about the protocol beforehand. In the second case, there ei-
ther is no protocol, or it does not cover special circumstances that occur in this
particular instance. Furthermore, the agents have to use their own experience,
acquired in previous similar interaction. Before the interaction, the agents will
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build an intended behavior (their own course of action) and they will also as-
sume what the other agents are doing (expected behavior). Together these beliefs
form a description of an intended interaction, which is also called an interaction
belief [18].

When two agents are going to perform an interaction, and they have inconsis-
tent behaviors, the resulting interaction will not achieve its goal, especially when
the agents do not have mechanisms to change their behaviors. If both agents are
able to realize, after the interaction has started, that there is a conflict in their
beliefs about the interaction, they need to be able to change their behavior in
a collaborative manner that promises success in ending the whole interaction.
In successive steps of trial and error, they will be able to manage to finish the
interaction. If exactly the same agents are interacting again in the future, they
can use the final behavior (which they memorize) that led to success.

The process of collaboratively changing behaviors will be called alignment.
Two or more behaviors that have been aligned successfully are named matching
behaviors. If the agents do not manage to align their behavior on the fly, their
complete behaviors have to be compared externally. Because agents do not know
each other’s behaviors, a superior agent who can access both behaviors is the
most suitable to align these behaviors. This agent can be a software agent, but
can also be human. This procedure, if one of the agents is calling for a higher
level agent to align the behaviors, is called escape mode. A higher level agent
can also intervene in the interaction process a priori or during the interaction, to
align the agents’ intended behaviors. In both cases, the higher level agent adapts
the behavior of the agents [14]. A third possibility, which can often be found in
real life, is to align their behavior a priori of the interaction, by exchanging
each intended behavior and analyze and discuss beforehand. Analysis can reveal
potential deadlock and conflicts. The interacting agents can align their behaviors
before the interaction starts.

This paper only focuses on how agents can individually align their behav-
ior on-the-fly. A discussion about the other types of alignment can be found in
[11]. The paper is structured as follows. In the next section related work is dis-
cussed. Section 3 explains how the behavior of agents are modeled and executed.
Section 4 discusses how primitive and advanced operations allow for behavior
modifications. In section 5 a new mechanism for automatic behavior alignment
is presented. Section 6 unveils some of the conducted experiments, with their
result. Section 7 ends the paper with discussion and conclusions.

2 Related Work

There are two long-established agent-research areas that contributed to the ar-
chitecture of the communication and coordination mechanisms in MAS. These
are the agent communication language (ACL) research, and the interaction pro-
tocol (IP) research. However, there are scarce results in terms of how IPs a
and ACLs specifications could be coherently linked together. Most approaches
concentrate on one of these two sides, either limiting via IPs the agents’ au-
tonomy (agents obey central protocols), either leaving open the consequences of
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communication, leading to loss of coherence in the overall interactional process
executed by the agents. One of the promising approaches that tries to bridge
the communication specifications to the way agents adhere to previously created
committed commitments is proposed in [15], by using Conversation Patterns.
These are symbolic constructs that regulate agent-to-agent interaction, but they
are modified via machine learning. The question remains if these frames-based
models are appropriate for complex business processes, where the execution se-
mantics derived from the distributed structure of the frames that are derived
from the conversation patterns can become combinatorial complex.

Dignum [5] emphasizes the importance of the link between Petri net based
analysis techniques in the context of protocolized agent communication, and
their link to the description of dynamic properties of agent conversations. A
non-agent approach that tackles similar problems is the modeling and execution
of inter-organizational workflows [2]. However, this approach is based on a cen-
tral perspective, similar to the IP approach. The main advantage of the approach
is that it is possible to determine when a workflow is sound [3]. Another related
problem is how to dynamically change workflows, and it has been addressed by
Ellis et al. [6]. Ellis and Keddara [7] describe how a workflow can be dynamically
changed using another workflow, which defines the change. Recently, distributed
workflows expressed as agent behaviors have been investigated by Meyer and
Szirbik [11] who have developed a formal way to model agent behavior as ex-
ecuted in agent to agent interaction as Behavior Nets. Because these Behavior
Nets are an extension of Petri Nets, workflow techniques as proposed by Van
der Aalst and Ellis can also be applied to these Behavior Nets. Behavior Nets
are part of the agent modeling language TALL [17], which is currently under
development. As for the overlapping research themes in workflows and agents, a
thorough review of is presented in [19].

3 Modeling and Executing Agent Behavior

As mentioned before, agents’ behaviors as exhibited in agent to agent interac-
tions are modeled by Behavior Nets, as formally defined by Meyer and Szirbik
in [11], which is an extension of Petri Nets. Petri Nets are a class of modeling
tools, which originate from the work of Petri [13]. The advantage of Petri Nets is
that they have a well defined mathematical foundation, but also a clear graph-
ical notation [16]. Because of the graphical notation, Petri Nets are powerful
design tools, which can be used for communication between the people who are
engaged in the design process. On the other hand, because of the mathematical
foundation, mathematical models of the behavior of the system can be set up.
The mathematical formalism also allows for various analysis techniques of the
Petri Net. Moreover, as Petri Nets are commonly used for modeling business
processes (see for example [1]), applying Petri Nets for modeling agent behavior
makes the approach suitable for simulating and supporting business processes
with agents.
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Fig. 1. Example of a Behavior Net

An example of a Behavior Net can be seen in figure 1. The definition of
Behavior Nets is partially based on (and an extension of) Workflow nets [3],
Self-Adaptive Recovery Nets [8] and Colored Petri Nets [10]. The Behavior Net
as shown in figure 1 illustrates most of the Behavior Net constructs. The figure
depicts the behavior of a buyer, in a buyer-seller interaction, who will receive
a product, and either accepts the product and pays the money, or reject the
product and sends it back.

The modeled behavior of the agent can be executed directly, however, to
enable on-the-fly problem detection, change, and alignment of behaviors, an
extended version of the behavior is used. For this, a two-layered approach is
used, based on [9]. These two layers, and the relations between them, are shown
in figure 2. The top layer is the original agent behavior, where the bottom layer
is the extended behavior, for enabling the alignment mechanism. On both layers,
the behavioral descriptions are based on the Petri Net extension as described
above. In this way, when the behavior is executed in the compiled layer, it is
still possible to visualize the progress of this execution in the original modeled
behavior.

During run time, the state of the compiled layer will change, as tokens will
flow though the behavior. The state of the other layer will be updated according
to the state of the compiled layer, to make it possible to visualize the progress
of the execution in the original modeled behaviors. During align time (when the
agent is changing its own behavior on-the-fly due to a problem with executing
it in this particular interaction) the agent changes the behavior on the behavior
layer. The compiled layer has to be recreated by recompiling the behavior layer.
The compilation step will be further discussed in section 5.1.
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Fig. 2. Two layers to describe behavior

4 Modifying Agent Behavior On-the-Fly

Since we want to modify behaviors in a consistent and sound way, the manner in
which modifying operations are defined is important. For this purpose, two types
of operations on Behavior Nets can be defined. The primitive operations allow
for simple addition and deletion of nodes and arcs, whereas advanced operations
allow for more complex changes.

4.1 Primitive Operations

Based on [8], some primitive operations are identified for modifying Behavior
Net structures. In total, 16 primitive operations have been implemented in the
system, which are shown in table 1.

Table 1. The primitive operations

createPlace(x) deletePlace(x)
createMessagePlace(x) deleteMessagePlace(x)
createTransition(x) deleteTransition(x)
createArc(x1,x2) deleteArc(x1,x2)
setLabel(x,x′) setDatatype(x,d)

createGuard(x,g) deleteGuard(x,g)
createBinding(x,b) deleteBinding(x,b)
createToken(x,t) deleteToken(x,t)

These primitive operations can be used and are sufficient to build Behavior
Nets from scratch, and populate them with tokens. By using the deleteToken
operation, it is even possible to simulate the flow.

Guards are an addition to the basic Petri Nets. In Behavior Nets, they can be
added to and deleted from arcs, and their role is to provide certain conditions
that need to be fulfilled before a token can travel along that arc. A guard can put
constraints on values which are kept within the token. Guards are used to detect
exceptions, that potentially lead to behavior net modifications. Furthermore,
guards enable a straightforward implementation of the typical deterministic
OR-split, representing a choice.
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Fig. 3. Migration of old to new behavior

A second addition to the classical Petri Nets are bindings, which can be added
to transitions. The role of bindings is to modify the values kept by tokens. These
values can later on be used by the guards.

Applying a primitive operation does not guarantee preservation of soundness
of the behavior. The discussion of soundness is outside the scope of the paper,
but interested readers can find the definition of soundness in [3].

4.2 Advanced Sound Operations

In addition to the primitive operations, a set of advanced operations is defined,
based on the principles presented in [3,4]. These advanced operation can also
be used to modify the structure of a Behavior Net, but contrary to primitive
operations, they have the advantage of preserving the soundness of the initial
net. All these operations can be constructed by combining a set of primitive
operations. The defined and implemented advanced operations are:

– division and aggregation, which divides one transition into two sequential
transitions, or vice versa,

– parallelization and sequentialization, which puts two sequential tran-
sitions in parallel, or vice versa,

– specialization and generalization, which divides a transition into two
mutually exclusive specializations (an OR-split), or vice versa,

– iteration and noIteration, which replaces a transition with an iteration
over a transition, or vice versa,

– receiveMessage and notReceiveMessage, which adds or deletes an incom-
ing message place,

– sendMessage and notSendMessage, which adds or deletes an outgoing mes-
sage place.
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For modeling the change schemes the approach of Ellis et al. [7] is used. The
migration of the tokens of the old behavior to the new behavior can be exactly
defined by modeling the behavior change as a Petri Net. Figure 3 shows how the
migration for the operation parallelization can be modeled.

5 The Aligning Mechanism

In the previous section, operations have been defined how to alter Behavior
Nets. However, a mechanism is required to trigger when a Behavior Net should
be altered, and how. In this section, alignment policies will be introduced, as
well as a mechanism for agents to select such a policy. For selecting a policy,
certain information has to be collected about the conflict and its context.

5.1 Collecting Problem Information

As discussed previously, the modeled behavior itself is not executed, but the
compiled version of it. By compiling, extra nodes are added to the original be-
havior, for collecting information when there is a problem in the execution of the
behavior. This information can be used for selecting a proper alignment policy
(this will be discussed later in this section), which is the best for dealing with the
problem. Figure 4 shows what information can be collected by the extra nodes
added when the behavior is compiled.

The highlighted nodes are the nodes of the original behavior. The align
transition is the transition where all collected information is gathered, and (if

Fig. 4. Collecting problem information
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necessary) an alignment policy is chosen and executed. In this example, the
original behavior has only one transition act that expects one incoming message
m1. This transition act failed to execute, therefore all the gathered informa-
tion is about transition act, to make the align transition able to choose an
alignment policy which will successfully align the behavior around the transi-
tion act. Despite the simplicity of this example, it shows all the ways of how
information used for choosing an alignment policy is collected, as for more com-
plex Behavior Nets, the same kind of nodes are added. Problem information is
gathered in three different types of occurrences, as discussed next. In all three
cases, a time-out mechanism is used to identify the occurrence of non-moving
tokens. The information is collected separately for every transition, where prob-
lems arise.

I. When a token from a place is not moving (Place start in this example.)
Here, transition e1 will send information about this occurrence to the align
transition. It will send the following information:

– recToken, short for received token, to inform the align transition that there
is a non-moving token on that place in the behavior

– transition, the name of the transition for which the recToken is required
to enable it (act in the example)

– expMsg, the data type of the message expected by the transition (in this
example the data type the place m1 may contain)

II. When a known received message is not moving (Place m1 in this example.) In
this situation, transition e2 will send information about this occurrence to the
align transition. It will send the following information:

– recMsg, the data type of the received message (in this example the data
type which place m1 may contain, which of course equals the data type of
the message, because otherwise the message would not be in this place)

– expMsg, the data type of the expected message (also the data type place m1
may contain)

– transition, the name of the transition which is connected to the message
place (act in the example)

III. When an unknown message is received (The message place in this example.)
When this happens, transition e3 will send information about this occurrence
to the align transition. It will send the following information:

– recMsg, the data type of the received message

All the collected data is combined and used for the selection of an appropriate
policy. Furthermore, this data will be used as parameters for the operations
within the policy, as will be discussed next.
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5.2 Alignment Policies

An alignment policy is an ordered set of primitive or advanced operations. In
this approach, an agent has a set of policies in its knowledge-base from which
it can choose when problems arise with the execution of the behavior within an
interaction. Table 2 shows two example policies.

Table 2. Examples of alignment policies

Policy # Operations
1 parallelization(transition,seqTransition)
2 notReceiveMessage(transition,expMsg)

specialization(transition,Receive expMsg,
Receive recMsg)
receiveMessage(Receive expMsg,expMsg)
receiveMessage(Receive recMsg,recMsg)

Policy 1 puts two transitions in parallel. Policy 2 makes a specialization of a
transition, which expects a certain message, into two transitions, one that expects
the original expected message, and the other that expects the actual received
message. Instead of giving fixed names as parameters for the operations, variables
can be used. Also a combination of fixed names and variables is possible. When
the policy is actually executed, these variables will automatically be replaced by
the appropriate values for that situation. The advantage is that in this way a
more general policy can be defined, that is not only restricted to a given name
of the transition or message types. Table 3 shows the list of variables what can
be used when defining the parameters, and with what they will be replaced.

In the current state of research, policies are manually identified by the agent-
system designer. However, the agents can learn by repetitive experience when to
apply a certain policy, and select the appropriate policy automatically. One of

Table 3. Variables for defining parameters

Variable Will be replaced with
transition the name of the transition
seqTransition the name of the transition which is

sequential placed after transition
parTransition the name of the transition which is

parallel with transitions
specTransition the name of the transition which is

mutual exclusive to transition,
and originates from the same
specialization

expMsg the data type of the expected message
recMsg the data type of the received message
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the selection methods that was implemented is presented in the next section. An
early observation in the discovery of potentially usable policies has shown that
an agent does not need a large number of policies to solve most of the occurred
problems in behavior executions. An intuition is that there is rather small and
manageable number of alignment patterns.

5.3 Implementation

This subsection describes the implemention of the policy selection and alignment
mechanism used for experiments. In this system, an agent selects a policy using
a base of training examples which contain both the problem information and the
policy which was chosen at that time. A machine learning technique is used to
generalize over this data, and also to enable the agent to choose a policy based
on the previous experience. How an agent will choose an alignment policy (or
if it will choose one at all) depends on multiple factors. The factors used in the
implementation are: problem information, beliefs about the agents interacting
with, and the willingness to change its own behavior.

Problem information. Most of the time, a problem will occur when the agent is
not receiving the message it is expecting. It can also be the case that the agent
did not receive a message at all. If it did receive a message, but the wrong one,
the type of received message and other information about the problem are used
as attributes for selecting the proper alignment policy.

Beliefs about the agents interacting with. Beliefs about the other agents can be
of importance when choosing an alignment policy. For example, when one agent
completely trusts the other agents, it might be willing to make more changes in
its behavior than when it distrusts the other agents.

Willingness to change behavior. When an agent has very advanced and fine-
tuned behaviors, it is not considered good practice to radically change the be-
haviors because of a single exceptional interaction. On the other hand, when the
behavior of the agent is still very primitive, changing it more often could be a
good way to acquire new experience. In this way, when an agent gets “older”,
and the behaviors are based on more experience, the willingness to change its
behavior will decrease. This approach can be compared with the way humans
learn, or with the decrease of the learning rate over time when training a neural
network.

The process of alignment is shown in figure 5 as a finite state automaton. The
policy selection method (in this particular implementation the decision algorithm
based on machine learning) uses the collected problem information and values
from the belief base (like trust and willingness) to choose an alignment policy.
However, it can be the case that the agent cannot find an appropriate alignment
policy for this specific problem. In this case, the agent can trigger escape mode,
and ask a human to indicate a policy. After this policy has been chosen by the
person, the agent needs to memorize the number of the chosen policy as well as
the context. In this way, the agent has gained new experience when to apply a



280 G.G. Meyer and N.B. Szirbik

Fig. 5. The process of alignment

certain policy. More information about the concept of escape mode can be found
in [14]. After the alignment policy is chosen, either by the decision algorithm, or
by a human, this policy will be executed to adapt the Behavior Net.

The machine learning technique used in this implementation is based on ar-
tificial neural networks [12]. This is an obvious choice, given the simplicity and
robustness of these classification systems, and also given the availability of well
proved open-source implementations (in this system, the WEKA3 package is
used [20]). However, other learning or classification methods can also be used.
With neural networks not only the selected policy is returned, but also the acti-
vation levels of all policies. Therefore, the certainty of the choice can be known.
The activation level of the selected policy is compared with the activation level
of the runner-up (the second-best policy). The activation level of the best policy
should be factor x (with x > 1) higher than the runner-up, otherwise, the agent
will go into escape mode. In the implementation x = 2 has been used. This
ensures that the agent will not execute an alignment policy when suitability for
the current problem is questionable. When unsure, it will ask the human for
advice. An example of the training data used (two learning patterns) to train
the neural network is shown in table 4. The policy # row in the table represents
the output of the network, which has one output neuron for each known policy,
and the rest of the rows are representing the inputs. The neural network has to
be rebuilt and retrained when a new policy is added to the known pool.

Table 4. Example of training data

Training pattern # 1 2 ...
transition Receive money Receive money ...

seqTransition Send product ...
parTransition Send product ...
specTransition ...

recToken yes yes ...
recMsg product ...
expMsg money money ...
trust 1 1 ...

willingness 1 1 ...
policy # 1 2 ...



Agent Behavior Alignment: A Mechanism to Overcome Problems 281

6 Experiments and Results

Experiments have been conducted to test the applicability of the alignment
and policy choosing mechanism. This section provides an illustrative example
of such an experiment. In this experiment, as shown in figure 6, a buyer and
a seller already agreed on the product the buyer wants to buy, but as seen in
the figure, they have different views (formalized as behaviors) in what order
the delivery and the payment should occur. In this experiment, it is presumed
that the behavior of the buyer is very advanced, and thus he is not willing to
easily change his behavior. On the other hand, the seller is inexperienced and
his behavior is still primitive, hence we are looking at the problem how the seller
can align its behavior with the buyer, presuming that the seller trusts the buyer.

Fig. 6. Behaviors of buyer and seller

Within the experiment, when the interaction started, it immediately dead-
locked; the buyer was waiting for the product, and the seller was waiting for the
money. The seller collected the information in the way explained in section 5.1.
Besides the name of the transition, also seqTransition, parTransition and
specTransition (as explained in section 5.2) were looked up. The collected
problem information is shown in table 5 (a).

This information was used by the neural network of the seller to select the
appropriate alignment policy. Due to the previously trained neural network, via
repeated escapes to humans in previous experiments, this led to the execution
of policy 1 from table 2. The seller transformed its behavior by placing its two
transitions in parallel. The result is shown in figure 7 (a).

Still, the two behaviors were not aligned. The buyer rejected the product, and
sent it back. Consequently, the seller did not have the appropriate behavior to
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Table 5. Collected problem information

Information Value
transition Receive money
seqTransition Send product
parTransition
specTransition
recToken yes
recMsg
expMsg Money

Information Value
transition Receive money
seqTransition
parTransition Send product
specTransition
recToken yes
recMsg Product
expMsg Money

(a) First problem (b) Second problem

(a) First adaptation (b) Second adaptation

Fig. 7. Adapted behaviors of seller

handle this, as the seller was expecting the payment. After the buyer sent the
product back, the seller detected the problem and collected the data as shown
in table 5 (b).

The neural network for selecting an alignment policy was used again, and
due to previous training policy 2 of table 2 was chosen. The seller divided the
transition receive money in two mutual exclusive transitions: receive money and
receive product. This changed the behavior as shown in figure 7 (a) into the
behavior as shown in figure 7 (b). The behaviors of the buyer (figure 6 (a)) and
the behavior of the seller (figure 7 (b)) were now matching. Because the seller
already knew two suitable alignment policies, and also when to select them, the
interaction completed successfully, despite their initial conflicting behaviors.
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The conducted experiments, as the one discussed above, have shown promis-
ing results concerning the applicability of the proposed alignment mechanism.
The necessary human assistance by the use of the alignment mechanism has sig-
nificantly decreased as the agents are better able to solve conflicting behaviors
during the interaction. Human intervention reinforced certain successful policies
in a given context, and also contributed with completely new policies. The net
result, revealed during the experiments, is that the simulated business processes
become increasingly automated.

7 Discussion and Conclusions

Currently, there are several limitations with alignment policies, which need to
be studied in future research. Firstly, an alignment policy is limited to a certain
scope, only the transitions defined by the problem information can be used as
variables for the operations of the alignment policy when defining an alignment
policy. Ways to overcome this limitation have to be investigated. Secondly, the
problem data used for parameters of alignment policies can only contain one of
the transitions which are in parallel with the transition where the problem is.
It could however be the case that there are three transitions in parallel. Using
the variable parTransition in defining the alignment policy would give a non-
deterministic execution of the policy. This issue does not only affect the problem
data, but also the used neural network, as it is not suitable for having multiple
parallel transitions as input. For this reason, other machine learning techniques
like decision trees have to been investigated.

In conclusion, it is possible to describe a policy for alignment that can be
applied when the interaction beliefs of two or more interacting agents are not
matching. An extension of Petri Nets has been used to capture the intended
interaction of an agent in a formal way. Furthermore, a mechanism based on a
neural network that chooses an appropriate alignment policy with the collected
problem information was implemented. When this mechanism fails to choose an
alignment policy, a method based on human intervention was described, which
can teach the agent new ways of alignment. As the experiments have shown, this
approach enables agent behavior execution to be more reliable and necessitates
less human intervention in terms of alignment.
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Abstract. Coalition formation in social networks consisting of a graph of 
interdependent agents allows many choices of which task to select and with 
whom to partner in the social network. Nodes represent agents and arcs 
represent communication paths for requesting team formation. Teams are 
formed in which each agent must be connected to another agent in the team by 
an arc. Agents discover effective network structures by adaptation. Agents also 
use several strategies for selecting the task and determining when to abandon an 
incomplete coalition.  Coalitions are finalized in one-on-one negotiation, 
building a working coalition incrementally. 

Keywords: Agents, Coordination and collaboration, Swarm Intelligence and 
Emergent Behavior. 

1   Introduction 

Much of the work in the area of coalition formation has focused on forming optimal, 
stable coalitions.  These methods require complete information and require substantial 
computational time [2, 7].  In a dynamic environment, it may not be possible for an 
agent to maintain this complete view due to inaccurate information provided by faulty 
sensors or unreliable communications [10].   Our environment is different from many 
others in that teams must form a connected component in the social network.  Most 
coalition formation problems are specified to highlight the problems in deciding 
which agents should work together to form teams.  Our version of the problem adds 
the additional constraint of the structure of the agents that form a coalition. 

Coalition formation among agents in dynamic environments presents additional 
challenges compared to coalition formation in static environments.  The use of 
traditional coalition formation methods that compute a kernel to determine a 
coalition’s division of utility is NP-Hard [6] and centralized. Both the changing nature 
of the tasks in a dynamic environment and the restrictions of teammates imposed by 
the social network render traditional coalition formation methods unusable.  

Dynamic events in the environment change the nature of coalition formation.  
Tasks enter the system over time.  The utility of a task may decrease over time.  We 
study both the self-interested agent algorithm and how the structure of the graph 
affects performance.  Because the correct structure cannot be known a priori, we 
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allow agents to adapt the network structure (sometimes termed rewiring) in order to 
determine the desirability of certain structures. Agent capabilities include: joining an 
existing team, initiating a new team, waiting, or rewiring the connections. If team 
formation is successful, participating agents become active in the task, complete the 
task, and then rejoin the set of available agents.   

In previous work, sub-optimal coalitions have been studied in coalition formation 
with incomplete information and with limited computational resources [9, 10]. In an 
effort to reduce computational expense, agents can prune the list of possible coalition 
partners to those considered most trustworthy or beneficial. These groups of agents 
who come together based on trust developed over past interactions are called 
congregations or clans [5].  By considering fewer potential coalition partners, as in 
our model, agents using clans can more easily compute possible coalitions within the 
time constraints imposed by the environment with the value of coalitions formed 
being good enough, or satisficing [5, 10]. 

This research implements a multi-agent system that uses an Agent Organized 
Network to facilitate coalition formation.  The agents communicate tasks to 
neighboring agents to initiate the formation of a coalition to perform the task.  When 
deciding which agents to include in the coalition, the agent forming the coalition 
considers the agent’s skills. 

2   Agent-Organized Networks 

An Agent Organized Network (AON) is a set of inter-connected agents who 
collectively manage the structure of this network of agents by making individual 
decisions about which agent to connect to based on local information [3]. In our 
environment, nodes represent agents and links represent social structure. The 
neighbors of an agent are all agents connected to it via a network arc.  The arcs may 
represent a variety of physical constraints such as physical distance, limited 
communication, trust, or organizational hierarchy. Teams must be connected 
components in the social network. 

The initial set of network arcs are established by connecting each agent to any 
agent within distance d of its location.  For our tests we used d=100 in order to 
compare with other author’s work[3]. 

Tasks are introduced to all agents within a region of interest, and are executed by 
agents who are connected in the network.  A task is composed of a set of subtasks 
requiring specific skills.  In our system, the total number of possible skills is denoted 
SkillMax.  A task is specified by an array skillCt[1.. SkillMax] in which skillCt[i] 
indicates the number of agents possessing skill i that are required by the task.  Thus, 
in an environment with five possible skills, a task with skillCt = [1,2,0,0,3] requires 
six agents: one with skill 1, two with skill 2, and three with skill 5.   In our system, 
skills are generated with a uniform distribution.  We define the number of skills per 
task as TaskSkills, and the number of possible agent skills as AgentSkills (with 
AgentSkills=1 for our tests). 
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In order to compare our results directly with those of [3], we perform identical 
tests.  System parameters are summarized in Table 1. The length of the interval 
between task generations is GenInterval.  If GenInterval = 1, one task is generated 
every iteration.  If GenInterval = 5, one task is generated every five iterations.  For 
simplicity, the number of skills required per task is constant, and all tasks have the 
same utility. Tasks are announced for a time interval AnnouncePeriod, which depends 
on the number of skills required.  If the team for a task has not formed within 
AnnouncePeriod iterations, the task is removed from the system and counted as a 
failed task.  If a team fails to form during a time interval of length CommitTime, an 
agent will abandon the team.  If all members abandon the team, the task returns to the 
available list (if its AnnouncePeriod has not expired).  The duration of each task is 
specified as its TaskDuration. 

 

Table 1. System Parameters 

System Parameter Meaning Default Value 

Skill Max Number of different skills in system 10 

TaskSkills Number of skills per task 10 

AgentSkills Number of skills per agent 1 

GenInterval Iterations between task generation  10 
AnnouncePeriod Number of iterations task is schedulable 10 
CommitTime Maximum time an agent will stay in a 

partially formed team. 
10 

TaskDuration Iterations required to complete task. 10 
DegreeLimit Maximum degree of any node in system 20 
RewireFrequency Probability agent rewires in a given turn.  1/N (N=# agents) 

 

In forming teams, an agent may only communicate with its neighbors.  Once a 
neighbor joins the team for a task, its neighbors are allowed to join the team.  We will 
term the neighbors of a neighbor, FOAF (friend of a friend)[1]. Each agent has a 
single skill, a position on the grid, and a neighbor set.  Agents are in one of three 
states: committed, active, or uncommitted, as shown in Figure 1.  A committed agent 
has joined a partial team.  An active agent has joined a team that is now fully formed 
and is currently involved in completing the associated task for TaskDuration. An 
uncommitted agent is not associated with a team. 

Tasks require a team consisting of agents with a specific set of skills.  A task 
consists of a taskID, an associated team (if any), an AnnouncePeriod, and a 
TaskDuration.  A team consists of a taskID and a set of agents.  A complete team has 
a match between required skills for the task and agents of the team. A partial team 
requires additional agents as some skill requirements are not met.  Tasks are 
announced to agents within a fixed radius of the event.  To eliminate variability in the 
results, in these tests, all tasks are known by all agents. 
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Fig. 1. AON Agent State Diagram 

Arcs are initially assigned between nodes that are closer than a fixed parameter, but 
are changed during the process of rewiring.  The degree of a node is limited to control 
communication. An existing partial team can only be joined by an agent if one of its 
neighbors has already joined the team.  

The set of all uncommitted agents that are within d links of agent i and are 
connected to i via a chain of uncommitted agents is called a circle of radius d.  For 
our tests, d is 1. Agents know the skills of the agents within their circle, termed the 
circle skills.  A skill match is a measure of how closely the remaining skills for a task 
can be satisfied by the circle skills.  Skill match ratio is computed as the ratio of the 
needed skills that can be provided by the circle divided by the total number of 
remaining skills to be acquired.  The view of agents in the circle is limited by its 
radius; therefore, a skill match of less than one does not necessarily mean the team 
cannot be formed.  Since the availability of an agent changes over time, the skill 
match is a rough estimate of the ability of the team to successfully form.  As we 
increase the circle radius, we would hope to achieve a skill match of 1. Needed agents 
is the total number of agents that are missing from the partial team.  

At each iteration, an uncommitted agent can remain idle, join an existing partial 
team, rewire, or initiate a team for a task which is a member of its EligibleTasks set.  
The definition of best  varies depending on agent type. 

 
Selecting the best team to join: An agent selects an eligible task (if any) from tasks 
joined by its set of committed neighbors. 

 
Selecting the best task to initiate: Rather than joining an existing team, an agent 
may choose to start a new team. A task is viable for an agent if its AnnouncePeriod 
has not expired, it requires a skill the agent possesses, and the task is not completed.  
A task is termed unclaimed if no partial or full team exists which is associated with 
the viable task.  Only unclaimed tasks are considered for initiation.  
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Remaining idle: An agent may decide to remain idle as a strategy to remain available 
for tasks which do not yet involve one of the agent’s neighbors or future proposed 
tasks. 

 
Rewiring: The agent type controls adaptation method, which determines the 
conditions for rewiring, the frequency of rewiring, and the target of rewiring. 

3   Agent Types 

An agent type consists of three features: tasks selection method, task patience, and 
adaptation approach. 

 
Task Selection: There are two methods of picking activities: basic and strategic.  
Basic agents first decide if they want to rewire.  If they do not rewire, they then 
consider the tasks, in order of task generation. This has the effect of giving preference 
to proposing/joining older tasks. If a neighbor has joined the team for a task, the agent 
joins the team (if it has a necessary skill).  If a viable task is unclaimed, an agent will 
propose the task with probability proportional to the number of uncommitted 
neighbors.  Note, there is no clear choice between initiating a team and joining an 
existing team, but since older tasks are given preference and there are more joiners 
than proposers needed for a coalition, joining is more likely. 

Strategic agents first consider the set of tasks claimed by neighbors.  The task 
which has the greatest ratio of committed agents (assigned skills/total skills is highest) 
is selected.  This ratio is called the committed ratio.  If the committed ratio is greater 
than some agent-specified threshold, the team for the task is joined.  Thus, strategic 
agents give preference to joining an existing task over rewiring, proposing, or waiting. 
The agent will rewire based on the rewiring frequency.  Strategic agents will choose 
to wait based on the desirable waiting probability (which is normally computed from 
the total number of skills required for a task).  Agents that do not choose to rewire, 
wait, or join will propose the task for which the skill match ratio is the best as long as 
it exceeds some agent-specified threshold (.34 in our tests). 

 
Task Patience: CommitTime is equal to AnnouncePeriod in patient agents.  In 
impatient agents, an agent may abandon a task if certain success indicators are not 
present. For our tests, the task is abandoned when the count of uncommitted 
neighbors is less than the number of skills needed.  

 
Adaptation Approach: An agent has the ability to remove a link to a neighbor and 
create a link to a new target. This rewiring is intended to increase the performance of 
the system. We define system performance as the fraction of tasks completed. We 
define node performance as the fraction of successful teams joined over the number 
of teams attempted by a node.  We define system efficiency as the fraction of time 
agents spend actively executing tasks.  Agents executing tasks are termed working. 

Rewiring involves an agent selecting one of its adjacent edges to disconnect from 
its current target and reconnect to another target.  The edge is jointly owned by source 
and target, so either agent can initiate the rewiring, and no agent can refuse to be 
connected to a particular node (unless its maximum degree has been exceeded).  We 
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study three types of rewiring approaches: structural, performance, and diversity. 
Structural rewiring is motivated by findings in network topology [11].  Performance 
rewiring, defined in [3], is based on the desire to be connected to agents which have 
higher performance.  Diversity rewiring is based on the desire to be connected to an 
agent with a different skill than you possess. 

In performance adaptation, the adaptation trigger is based on local performance.  
Local performance is only valid when the number of teams joined is larger than a set 
number (five in our case).  Local performance is computed as the number of 
successful teams joined divided by the number of teams joined.   When an agent’s 
local performance is less than the average of its neighbors’ performance, rewiring is 
triggered: the agent removes the link to the worst performing neighbor and replaces it 
with a link to the best performing neighbor of the best performing neighbor.   

In structural adaptation, rewiring is independent of performance and occurs with 
probability 1/N where N is the number of agents. An agent randomly picks a link and 
replaces it with a link to a FOAF based on preferential attachment.  Preferential 
attachment means that the probability of a particular target is its degree divided by the 
total degree of all the neighbor’s neighbors.  

In diversity adaptation, rewiring is independent of performance and occurs with 
probability 1/N where N is the number of agents as in structural rewiring, but the only 
requirement for selecting a target is that the target must have a different skill than the agent. 

If we limit the degree of a node in the graph, we say the adaptation is bounded.  The 
idea behind bounded rewiring is to eliminate the communication bottleneck. On 
network creation, arcs to a node of degree DegreeLimit are ignored.  During adaptation, 
nodes with degree DegreeLimit are invisible to nodes seeking a new target. 

4   Results 

We conduct a variety of tests to evaluate both the activity selection and the adaptation 
approaches. To compare the methods, we repeat each test 50 times with 100 nodes 
and compute 95% confidence intervals.  Each test executes for 2000 cycles, with 
adaptation beginning at time 1000. Other parameters are varied as specified. In this 
way, we see the affects of adaptation.   

 
Table 2. Agent Types 

Agent 
Type 

Task 
Selection 

Task 
Patience 

Adaptation 
Approaches 

Performance Basic Patient Performance 

Structural Basic Patient Structural 

Structural Strategic Strategic Patient Structural 

Structural Strategic 
Impatient 

Strategic Impatient Structural 

Diversity Impatient Basic Impatient Diversity 

Diversity Strategic 
Impatient Strategic Impatient Diversity 



 Methods for Coalition Formation in Adaptation-Based Social Networks 291 

Since the total number of arcs in all methods is unchanged by rewiring, structural 
rewiring creates some nodes of high degree (hubs) connected to others of small 
degree.  Thus, equal degree nodes are sacrificed to achieve high degree nodes. 

In Figure 2, adaptation is disabled showing the differences in performance 
resulting from agent decisions in task selection and task patience.  Performance and 
Structural agents use Basic task selection and are Patient, resulting in the lowest 
performance at 0.24. The StructuralStrategic agent uses Strategic task selection and is 
Patient, resulting in performance of 0.29, with a 5% improvement over the Basic 
Patient agents.  The StructuralStrategicImpatient agent uses Strategic task selection 
and is Impatient, resulting in performance of 0.36, with a 7% improvement over the 
StructuralStrategic agent. Thus, task Impatience and Strategic task selection each 
individually provide improvements in performance.  They also complement each 
other, offering even better performance when used together. 
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Fig. 2. AON performance with no adaptation 

 

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  500  1000  1500  2000

pe
rf

or
m

an
ce

time

AON Performance
 

Performance agent (DegreeLimit = 5)
Performance agent (DegreeLimit = 10)
Performance agent (DegreeLimit = 20)

 

Fig. 3. The effect of limiting maximum agent degree on AON performance of Performance agents 
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Fig. 4. The effect of limiting maximum agent degree on AON performance of Structural agents 

Figure 3 shows the effect on performance when a degree limit is imposed on 
Performance agents in an AON network.  When the degree limit is 5, the performance 
is much lower, even before adaptation, as agents fail to have a network structure that 
allows for adequate social interaction to form teams as quickly, resulting in more 
failed teams.  By increasing the degree limit to 10, the performance increases from 
0.13 to 0.24, nearly doubling the performance.  This reflects the benefits of having 
better connectivity, resulting in a higher probability of a successful team. Diversity 
agents exhibit a similar pattern of response to limited degree. 

Figure 4 displays the effects of imposing a degree limit on Structural agents in an 
AON network.  Once again, when the degree limit is 5, the performance is relatively 
low and does not improve with rewiring.  When the degree limit is increased to 10, 
the performance before adaptation begins (at time step 1000) also increases from 0.13 
to 0.24.  After adaptation, the performance increases due to the hub network structure 
resulting from Structural adaptation.  When the degree limit is increased to 20, the 
performance before adaptation begins is 0.23, nearly the same performance level 
using a degree limit of 10.  After adaptation, the performance increases at a greater 
rate and achieves a higher level than when the degree limit is 10. 

The performance of the various methods is sensitive to the specific parameters. In 
one test, each agent is only committed to the task for 4 iterations (CommitTime=4).  
The task is advertised for 10 iterations (AnnouncePeriod=10), so it is possible that a 
task will succeed even if the initial partial team abandons it.  There are eight skills 
possible (SkillMax=8) and five skills per task (TaskSkillCount=5).  Two tasks are 
introduced per time step (GenInterval=0.5). StructuralStrategicImpatient and 
DiversityStrategicImpatient agents out-perform the other agents. StructuralStrategic 
and DiversityImpatient agents perform nearly equally due to a small maximum 
committed time being enforced for all methods.  The advantage usually enjoyed by 
the Strategic agent is decreased as all methods allow a task less time to succeed before 
attempting to move to other tasks. 
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When we consider only the improvement occurring because of adaptation, the 
agent types rank differently with respect to relative improvement than with respect to 
performance.  This indicates that agents with poor performance have more to gain 
from adaptation while those with better performance are unable to achieve the same 
level of improvement. 
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Fig. 5. AON performance with maximum time committed of 10 iterations 

 
Once a team for a task is joined, the agents that are task Patient (Performance, 

Structural, and StructuralStrat agents) stay with the task until it has expired (as 
CommitTime equals AnnouncePeriod). An Impatient agent has a significant advantage 
(Figure 5) because it has the choice of abandoning an unpromising task before the 
task expires, which allows other agents to complete the task and frees the agent to 
pursue more profitable activities.  Structural Strategic is still competitive as it is more 
selective in the initial choice of a task. 

Consider the set of test cases (Figure 6 and Figure 7) which differ only in the 
degree limit.  Agents are committed for a maximum of 10 iterations to a task 
(CommitTime=10).  The tasks are advertised for 10 iterations (AnnouncePeriod=10). 

In Figure 6, the node degree is limited to 10, allowing an increase of performance 
after adaptation is allowed at time step 1000.  Strategic and Impatient methods have a 
higher initial level of performance before adaptation is allowed, but methods using 
Structural adaptation show more improvement in performance than other adaptation 
methods.  The StructuralStratImpatient agent has the benefit of both a high initial 
performance level, a result of the combination of Strategic task selection and task 
Impatience.  The StructuralStratImpatient agent also shows significant improvement 
in performance with adaptation, resulting from the structural rewiring strategy, 
making it the best performing method of all. We have made significant improvements 
over the structural results of [3] by changing the task selection algorithm and the team 
commitment.  While strategic task selection requires increased knowledge, the team 
commitment limitation requires no special intelligence.  Note that while 
StructuralStratImpatient is smarter, it increases in performance at the same rate as the 
less effective Structural due to their shared use of Structural rewiring. 



294 L. Barton and V.H. Allan 

As expected, the performance of some agent types does not increase when 
adaptation is begun at time step 1000 as shown by the flat curves. Increasing the 
degree limit to 20, the performance levels (after adaptation) increase, especially for 
the structural rewiring methods.  Structural rewiring methods are able to achieve 
nodes of high degree, increasing the probability of being able to form a successful 
team, given the number of neighbors who possess the skills required. 

Each time the degree limit is increased, the structural rewiring methods experience 
an increase in the highest degree of a node in the network.  The other rewiring 
methods seek for neighbors with either greater performance or more a more diverse 
skill set. Therefore, they do not experience an increase in the highest node degree. 

Increasing the degree limit to 30 does not cause the performance to increase 
significantly.  When an agent has a sufficient number of neighbors, they will not 
continue to benefit from higher degree due to the number of skills per task (10 in 
these tests).  For example, if a node has 20 neighbors, and needs to fill a task with 10 
skills, it will never need to use more than half of its neighbors to successfully 
complete this task.  Also, while completing a task with a successfully formed team, 
the neighbors not included in the team may be unable to form an additional team 
successfully because of the resulting shortage of potential coalition partners when the 
hub node connecting them is not available.  This puts a performance limit on forming 
networks where high degree nodes exist. 
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Fig. 6. Performance with degree limit of 10 

We also experiment with the proportion of tasks to agents.  While holding the 
agent count constant, we increase the number of tasks introduced at each time step.  In 
these tests, there are 100 agents.  Tasks need 10 skills and there are 10 possible skills.  
Since tasks have duration 10 and task formation takes an average of three iterations, 
the system of agents cannot possibly complete more than 1.3 tasks per iteration.  
Thus, introducing two tasks per iteration gives the agents many tasks for selection 
(Figure 8).  
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Fig. 7. Performance with Degree Limit of 20 
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Fig. 8. Performance with two tasks per iteration 

Agents who use Strategic task selection do very well as they can pick the best 
tasks.  As before, agents using Structural adaptation also do well, as the resulting 
structure means that the skills are available to complete many tasks.  Performance 
agents perform poorly, likely because clusters of under-performing agents are not 
motivated to rewire because they are doing as well as their neighbors. 

Notice, however, that the performance is less than 0.12 (compared to earlier tests 
showing performance levels of nearly 0.6).  The performance necessarily decreases, 
as it is not possible to complete all the tasks and performance measures percent of 
tasks completed.  However, the performance is even lower than one might guess.  
This can be attributed to the fact that many competing tasks seduce more agents to 
join a team for a task, resulting in many partially formed teams with no waiting agents 
to complete them.   
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5   Previous Work  

Gaston and des Jardins [3] implement multiagent team formation in which tasks are 
globally known.  Gaston and des Jardins rewire based on performance and structural 
metrics.  Under performance adaptation, an agent whose performance is less than the 
performance of its neighbors is allowed to reconnect to the best of the neighbor’s 
neighbors.  Under structural adaptation, agents rewire to select a target from the set of 
neighbor’s neighbors.  The probability of connecting to an agent is proportional to a 
node’s degree.  Our results show the performance of Gaston and des Jardins’ 
performance and structural agents can be improved upon by making strategic task 
selections and by using task impatience. 

Soh and Tsatsoulis [9, 10] present their method of creating sub-optimal coalitions 
in a dynamic environment to deal with partial information and meet time constraints 
imposed by the real-time nature of the environment.  They apply their method in a 
distributed target-tracking environment where the agents are stationary.  Our method 
is based on their work, with an added challenge of forming coalitions among agents 
who navigate within a dynamic environment. 

Griffiths and Luck [4] discuss their method of coalition formation for clans whose 
cooperation is of medium-term duration.  They combine agent motivations and agent 
trust to determine when to create and terminate these clans.  They introduce a kinship 
motivation, where agents determine the probability of encountering tasks that require 
cooperation based on tasks recently encountered.   

Soh and Chen [8] define a collaboration utility between agent-based history of 
successful collaboration and measures the reliance of one agent on another in forming 
coalitions. While no discrete labeling of clan is used, the collaboration utility specifies 
a loose clan in which trusted agents are more likely to be recipients of proposals and 
are more likely to be accepted.   

6   Conclusion  

We have introduced Strategic task selection, task Impatience, and Diversity 
adaptation.  We have shown the benefits of using these agent strategies in an AON 
network. Agent performance is improved when using Strategic task selection versus 
Basic task selection.  Agent performance is also improved when using task 
Impatience versus task patience.  The best agent performance has been shown to 
result from using Strategic task selection, task Impatience, and Strategic rewiring, the 
rewiring method that provides the greatest increase in performance in AON networks.  
Future research should examine the possibility of using a variety of agent strategies 
within the same network to improve performance. 

Strategic agents have been shown to perform well under high task loads due to 
their ability to choose the task most likely to succeed.  Task Impatient agents have 
been shown to improve agent performance, but are affected more by high task loads. 

AON networks containing nodes of high degree show increased levels of 
performance.  However, high degree nodes also incur higher communication costs.  
We have shown that moderate maximum degree limitations do not significantly affect 
AON performance.  This allows implementations of real-world AON applications to 
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impose maximum degree limitations to decrease communication costs without 
experiencing degraded performance. 
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Abstract. We present a trust model extension that attempts to relax the assump-
tions that are currently taken by the majority of existing trust models: (i) proven
identity of agents, (ii) repetitive interactions and (iii) similar trusting situations.
The proposed approach formalizes the situation (context) and/or trusted agent
identity in a multi-dimensional Identity-Context feature space, and attaches the
trustworthiness evaluations to individual elements from this metric space, rather
than to fixed identity tags (e.g. AIDs, addresses). Trustworthiness of the individ-
ual elements of the I-C space can be evaluated using any trust model that supports
weighted aggregations and updates, allowing the integration of the mechanism
with most existing work. Trust models with the proposed extension are appropri-
ate for deployment in dynamic, ad-hoc and mobile environments, where the agent
platform can’t guarantee the identity of the agents and where the cryptography-
based identity management techniques may be too costly due to the unreliable
and costly communication.

1 Introduction

The purpose of our work is to extend the applicability of the agent trust modeling to-
wards open and unmanaged systems common in the ubiquitous computing environ-
ments. Instead of devising a novel trust model, we propose an algorithm that can be
combined with existing trust models [1,2,3,4] to extend their applicability.

Therefore, we need to address the underlying assumptions of the existing trust mod-
els, that assume that well-identified agents repetitively engage in similar interactions.
An example of a domain where the current trust models are adequate is a supply-chain
management, where the agents can be associated to companies or their entities that
maintain long-term relationships with repetitive deliveries. A counter-example is a wire-
less sensor network or a group of Unmanned Aerial Vehicles (UAVs) that are (i) hard
to identify and where (ii) the barriers of entry are quite low thanks to the inherent open-
ness of the system. Agents labeled as untrustworthy can therefore easily change their
identity and enter the system with a new, uncompromised one. Furthermore, possible
interactions are diverse and depend heavily on the context (e.g. sensor performance that
varies between day and night).

M. Klusch et al. (Eds.): CIA 2007, LNAI 4676, pp. 298–312, 2007.
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1.1 Assumptions of the Existing Trust Models

Most existing trust model are based on an assumption of the proven identity: it is as-
sumed that the agents can’t change their identity during their lifetime and that they can’t
have multiple identities at once. This assumption is acceptable in purely multi-agent
systems, where the agent platform manages and oversees the agents, but fails in case
of open systems (featuring mobile agents and ad-hoc networks), where the agents are
distributed across independent platforms and can join or leave the system at their own
will. Cryptography-based identification methods [5] can address the problem rather ef-
ficiently, but the need to verify the chain of identity to the mutually recognized authority
may pose severe problems in a ubiquitous computing context, where the resources and
network connectivity are scarce. In such environments, the delegation of the identity
management to a dedicated infrastructure is costly, possibly leaving the system design-
ers with a choice between secure inflexible system, or an unsecured, but more robust
open system. This contribution suggests how to complement the existing methods and
addresses this gap.

Identity problem is closely related with a “first time offender” problem. Current
trust models concentrate on managing ongoing relationships with repetitive interac-
tions. While the reputation (i.e. witness reputation, trust communication) and social
dimension [6] of certain models alleviate the situation, they can’t by any means protect
the open system against the agents that connect, build-up their trustworthiness and use
it to defect when the stakes are higher.

Last, but not least, existing trust models often neglect the problem of context (e.g.
situation) – they are mostly based on the assumption that the interactions with a given
provider are similar and that the previously acquired experience is relevant for future
interactions. We argue that the inability to take the context into account limits the prac-
tical use of current trust models in all domains where the agents perform diverse tasks in
a highly dynamic environment – this being a precise definition of the ideal environment
for deployment of intelligent social agents[7].

In Section 2, we will propose an extension of general trust models that will allow
them to consider the situational trust by means of context modeling and to efficiently
exploit the similarities between the various situations. In Section 3, we will extend the
context representation framework to include an identity of the trusted agent as well
and we provide an outline of the algorithm. Section 4 provides an evaluation of our
approach in a simulated logistics scenario, before the discussion of the related work
and conclusion in Sections 5 and 6.

2 Context Representation

In most existing trust models[3,8,9,10], the trustfulness of an agent X as evaluated by
agent A is a weighted aggregation of past observations of X’s performance, either direct
or indirect, that are available to A. In most models, recent experience, direct observa-
tions and coherent reputations provided by trusted agents [11,12] are emphasized, but
as these issues are orthogonal to the topic of this paper, we will not explicit them in our
notation.
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The goal of the formalism presented in this section is to provide an efficient mech-
anism for situation representation and to show how can be such mechanism integrated
with existing trust models. Therefore, we need to capture relevant aspects of the situa-
tion and to represent them as a context, a point ci in the context space C. The context
space is a Q-dimensional metric space with one dimension per each represented situ-
ation feature, and the metrics d(c1, c2) defined on C describes similarity1 between the
contexts c1 and c2 (or rather lack of similarity).

Please note that while the definition of the C dimensions and distance function are
necessarily domain dependent, the model that we propose only imposes minimal re-
quirements on their definition, most notably the properties of the metric space. When
these conditions are fulfilled, the algorithm we propose below can be applied.

Example: A trivial example of a trusting decision that is influenced by the context is a
territory surveillance by autonomous UAVs. We can consider the territory size as one di-
mension of the situation, and visibility (day/night/cloudy/clear) as another one (or even
as two features). We shall then find good individual metrics - here, a radius of the area
to cover (or its logarithm, to emphasize the ratios rather than absolute differences).To
represent the visibility, we may consider any standard metrics from the aviation domain
or any metrics that appropriate for intended goal.

The distance metrics allows us to integrate the context representation mechanism with
the existing trust models. Therefore, we define a set R of reference contexts ri, the
elements of the C to which we will associate the trustfulness values, e.g. trust model
instances. We shall note that while it is highly desirable to share a common C definition
between all the trusting agents in the system, the definition of the set R is up to each
trusting agent and will be probably even different for each partner evaluated by the
agent.

The price that we have to pay for context representation is that instead of maintaining
a single instance of the trust model structure (representing the general trust) per partner,
we shall maintain one instance per partner for each relevant reference context. On the
other hand, when we further generalize this approach in Section 3, we will apply the
same approach to identity representation as well, potentially decreasing the amount of
data to hold.

The following relations will present the formulas for trustfulness update and trustful-
ness aggregation before taking the trusting decision. We will denote as ΘA(X |ri) the

1 Any distance function d : C × C → R must respect following properties: non-negativity:

d(c1, c2) ≥ 0, (1)

symmetry:
d(c1, c2) = d(c2, c1), (2)

zero distance ⇔ identity:
d(c1, c2) = 0 ⇔ c1 = c2, (3)

triangle inequality:
d(c1, c3) ≤ d(c1, c2) + d(c2, c3). (4)
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trustfulness of agent X in the situation represented by reference context ri, assessed
by agent A. To obtain a weight decreasing with the distance, we introduce a domain-
dependent weight function wi = f(d(cd, ri)), where f is a non-increasing function
on [0, +∞). This function represents the decay of the observation usefulness with in-
creasing distance d of the particular reference context ri – obviously, it is most useful
when its distance d(cd, ri) from the reference context is zero. A convenient form of
such function can be for example wi = e−d(cd,ri).

In the following, we will use a shorthand definition for the aggregate weight of the p
past observations associated with each reference context ri, denoted W p

i .

W p
i =

∑

j<=p

wj
i (5)

Each new observation τA(X |co) is integrated into the apriori trustfulness evaluation
Θp

A(X |ri) associated with each ri (if wp
i + 1 > 0) using the following formula:

Θp+1
A (X |ri) = WeAg((Θp

A(X |ri), W
p
i , (τA(X |co), w

p+1
i )) (6)

The implementation of the WeAg() operator depends entirely on the trust model
used to represent Θp+1

A (X |ri). In a simple example, when the Θp
A(X |ri) is just a wi

weighted average of all p previous observations, we obtain:

Θp+1
A (X |ri) =

W p
i · Θp

A(X |ri) + wp+1
i · τA(X |co)

W p
i + wp+1

i

(7)

In order to take a trusting decision in a situation represented by context cd, we must
query the model. The result of the query, a shown in Eq. 8, is obtained as a weighted
combination of trustfulness associated with relevant (i.e. close) reference contexts from
R.

ΘA(X |cd) = WeAgri∈R(ΘA(X |ri), wi) (8)

In the simple weighted average case, we obtain:

ΘA(X |cd) =

∑
ri∈R wi · ΘA(X |ri)∑

ri∈R wi
(9)

The query process is illustrated in Fig. 1, where we aggregate the result from four
reference contexts in the vicinity, showing the role of the weight wi as obtained from
di = d(c, ri).

2.1 Reference Set

While the above relations are sufficient to explain the update and aggregation process
of the trustfulness information associated with the individual reference contexts, they
don’t address a critical issue of the model: positioning of the reference contexts in the
context space.

The method we propose above doesn’t require any particular shape of the reference
set. The requirements on the reference set maintenance method are relatively severe, as
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1 1)r|X(Θ;r

2 2)r|X(Θ;r
3 3)r|X(Θ;r
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)c|X(Θ;c

1 1
1d−e=w;d

2 2
2d−e=w;d

3 3
3d−e=w;d

4 4
4d−e=w;d

Fig. 1. Aggregation of the trustfulness of agent X in the situation represented by context c from
four reference contexts in the vicinity

we need to handle: (i) real-time reference context placement, without apriori knowledge
of the future data distribution, (ii) specificity of the reference contexts positions for each
modeled agent and general uncertainty of the distribution of interactions in the space C.

Our current solution is based on Leader-Follower clustering algorithm [13], pre-
sented in Fig. 2. The advantages of this particular clustering method are obvious - it
is a clustering method that allows on-line approach, without pre-specifying the num-
ber of expected clusters beforehand, as is the rule for most other clustering methods.
Furthermore, it requires only a single parameter as its input: the cutoff distance of the
new context from the closest centroid, when the new context will become a part of the
existing cluster. If the new point is farther away, it becomes a centroid of the new cluster.

The biggest disadvantage of this method is that it may easily under or over estimate
the number of clusters. In our case, this is not a big problem, as the overestimation re-
sults only in maintenance of two or more reference contexts instead of one. Therefore, it
is always better to slightly underestimate the cutoff distance, avoiding the data blurring.

3 Including Generalized Identity Management

To represent the uncertain identities, we will extend our context representation formal-
ism to cover the identity as well. Instead of representing the identity as a unique tag, we
will decompose the identity into relevant, measurable features, that will form an iden-
tity space I. The identity space is also a metric space, where the metrics describes lack
of similarity between two identities. Please note that the properties of the metrics apply
to the formal identities only – the fact that two elements of the space I are identical
(i.e. have 0 distance following 3) doesn’t necessarily imply that the respective agents
are identical as well – this only means that the features accessible to the model doesn’t
allow us to differentiate between these identities.
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class LFClustering:
def __init__(self, threshold):
self.centers = []
self.thresh = 0.5

def newSample(self, sample):
closest,dist = self.findClosestCenter(sample)
if closest != ’0’ and dist <= self.thresh:

closest.aggregate(sample, 1, 0.01)
else:

self.centers.append(sample)
def findClosestCenter(self, sample): ...

Fig. 2. L-F Clustering algorithm outlined in Python

The fact that two agents with presumably distinct identities can be considered iden-
tical by the model provides the protection against changes of identity. When the prop-
erties that define the I are set correctly, the new identity of the agent will fall close to
the original one, allowing the evaluating agent to re-use the previous trustfulness data.
For example, in sensor networks, we may use the power of the signal or other radio
properties of the partner node, combined with the type of services it provides. In the
UAV use-case, we may use visual properties of the craft (possibly type identification),
radar properties and typical flight patterns to distinguish between evaluated entities.

This approach is (to some extent) also effective against first time offenders. We as-
sume that to take down an open, distributed system working on p2p basis, the attack
will be based on similar principles and will consist of relatively large number of similar
nodes2. Due to the similarity of attacking nodes, the mechanism will treat them as a
single identity, or a small number of identities. This means that it will be able to react to
the novel threat in a same manner as a biological immune system, where the knowledge
gained on a single hostile entity influences the interactions with the other entities of
the same type, provided that an efficient reputation-sharing component is a part of the
underlying trust model.

Formally, it is preferable to consider the spaces I and C as two subspaces of the
identity-context space IC, where each vector ix belonging to this space contains all the
information associated with an observation or a decision.

For consistency, we will maintain the notation of the reference set R and refer-
ence identity-context ri, even if their dimension is increased to incorporate the identity
subspace dimensions as well.

Θp+1
A (ri) = WeAg((Θp

A(ri), W
p
i , (τA(ixo), w

p+1
i )) (10)

Θp+1
A (ri) =

W p
i · Θp

A(ri) + wp+1
i · τA(ixo)

W p
i + wp+1

i

(11)

2 In this model, we deliberatively ignore the attacks based on mobile code and environment
saturation, that we address in [14].
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When we query the model to obtain a situation-relevant trustfulness before taking a
trusting decision, the current context cd is determined and the trustfulness is obtained
as a weighted combination of trustfulness associated with reference contexts from R.

ΘA(ixd) = WeAgri∈R(ΘA(X |ri), wi) (12)

In the weighted average case, we obtain:

ΘA(ixd) =

∑
ri∈R wi · ΘA(X |ri)∑

ri∈R wi
(13)

Before the discussion regarding the implementation of the above-defined relation-
ships, we shall list the domain dependent functions that are used by the model in
Table 1.

Table 1. Domain dependent parameters of the model

Code Description
identityCx(ag,sit) Creates formal identity and context
distance(x,y) d(x, y), Distance between x, y ∈ IC

weight(d(rc,x)) wi, Weight function
clustsize Max distance for cluster attachment
treshold Min weight for trust update

The implementation of the system is straightforward, outlined in Fig. 3 and Fig. 4.
In Fig. 3, we can notice that the update of the trustfulness of individual reference
contexts ri (denoted rc) is performed in the same time as the update of the set R
(rclist) (either by appending the new reference context id) or by updating the po-
sition of the centroid of the cluster to which the new observation was assigned. There-
fore, the complexity of the algorithm was increased by a linear factor |R|(i.e. the size
of the rclist). We can also note that the context representation is integrated seam-
lessly, only by means of domain dependent functions identityCx(ag,sit) and
distance(rc,id). Therefore, removing the context representation altogether or
altering its resolution (by lowering/increasing the weight of the context-relative parts
of the distance function) will directly reduce the parameter |R|. Such operation can be
performed at runtime and can help the agents to manage the computational require-
ments of their trust model. On the other hand, we can easily use the model with crisp
identities, by imposing a trivial distance function in the identity subspace, using the
formula d(x, y) = 0 iff x = y, else d(x, y) = inf . Such definition will effectively
split the model into n independent models, where n is the number of evaluated agents3.
These “submodels” will then function exactly as the context-only mechanism variant
presented in Section 2.

3 When applying this approach in the environments with significant number of agents, it is
advantageous to replace the linear list rclist in Fig. 3 by appropriate partially indexed
indexed structure to iterate only over the contexts relative to a particular modeled agent.
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def newObservation(agent,situat,trustObs):
# get the identity
id = identityCx(ag,situat)
mindist = Infinity
closest = ’0’
for rc in rclist:

dist = distance(rc,id)
# clustering
if dist < mindist:

closest = rc
# update the trustfulness
wei = weight(dist)
if wei > treshold:

rc.trust.update(trustObs,wei)
# create new reference context if necessary
if mindist > clustsize:

rclist.append(id)
id.trust.update(trustObs,1)

else:
closest.updatePosition(id)

Fig. 3. Processing of the new observation outlined in Python (simplified)

def query(agent,situat):
id = identityCx(agent,situat)
result = Trustfulness()
for rc in rclist:

wei = weight(distance(rc,id))
if wei > treshold:

result.aggregate(rc.trust,wei)
return result

Fig. 4. Processing of the query by the model, (Python, simplified)

While the complexity of the trust model increases by incorporation of the proposed
mechanism, the Proposition 1 shows that the memory requirements will in most cases
actually decrease.

Proposition 1. Provided that (i) we use the identity representation mechanism as spec-
ified by Eq. 10 to Eq. 13, (ii) with the Leader-Follower clustering algorithm as outlined
in [13] and Fig. 2, the trust model with uncertain identities will be smaller (in terms of
required memory) than the corresponding model with crisp identities. We also assume
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that (iii) both models use the same (possibly none) mechanism for context management
and (iv) that the amount of memory used to represent the typical agent identifier in a
crisp model (e.g. address, AID,local name) the same or bigger than the size of a single
element of the I.

Proof. Using the fact that the size of the structure representing the ΘA is the same in
both cases (iii), as we use the same trust model, and that the size of the associated
identities is comparable as well (from (iv)), we only need to compare the number of
elements ΘA in the model. From (ii) and Fig. 2, we can see that we create at most a
single centroid per each new identity. Therefore, the size of the model with uncertain
identities must be smaller or equal to the crisp model.

The proposition is intuitive from information-theoretic perspective – the trust model
based on agent identities is the most detailed model possible, and will therefore consti-
tute an upper bound on the size of any generalizing model. With increasing size of the
clusters (and therefore their non-increasing number), the amount of data in the model
decreases.

4 Experimental Evaluation: Context Representation

In this section, we will present results of the benchmark performed in a simulated logis-
tics scenario. To evaluate our approach experimentally, we model the trust reasoning of
a humanitarian aid organization agent that acquires transportation services from several
local transporters after major disaster, and we will enhance it by use of context. We
will then compare the performance of the agents who use the baseline model with the
performance of the agents using the model enhanced with context representation part
as specified in Section 2.

4.1 Context Space Definition

To illustrate the abstract notions of metric space C, we introduce an example of such
space for our logistics scenario, where we model each trusting situation (observation or
decision) by three parameters: cargo type, cargo size and road quality. Cargo type de-
fines the product we transport: medical supplies, food or durable goods. Each cargo type
has specific handling requirements – medical supplies are the most sensitive to carry,
while the durables require less care. Size of the transport is simply a quantity to carry,
while the road quality represents the quality of the roads to use for transport. It is inter-
esting to note that type dimension is discrete, while the size and road quality are real-
valued, but different: one has an absolute scale (size), while the other will be close to 1.

The context space C is three dimensional, with one discrete dimension and two con-
tinuous ones. The next step is a definition of marginal distances dq for each dimension.
In the type domain, we place our products on a “sensitivity” scale: medical supplies re-
quire most attention: 5, with the food in the middle: 1 and the durables as least sensitive
ones, with 0.2 value4. Our type distance metrics is defined as follows, using the product
properties defined above:

4 Inverting the scale will not change the result thanks to the distance symmetry stated in Eq. 2.
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dtype(c1, c2) = |ln(type1) − ln(type2)| (14)

In the size domain, the metric shall describe the differences between two contracts
in terms of their relative size. We propose a measure

dsize(c1, c2) = |ln(size1) − ln(size2)| (15)

The logarithmic relation captures an intuitive notion of ratio: 10 tons difference between
two 20 and 30 ton transports is much more important than the same difference between
two shipments of thousands of tons.

We apply the same reasoning for the road quality:

droad(c1, c2) = |ln(qual1) − ln(qual2)| (16)

Then we combine the above metrics using a slightly modified (weighted) “Manhattan
distance”:

d(c1, c2) = α1d
type(c1, c2) + α2d

size(c1, c2) + α3d
road(c1, c2) (17)

4.2 Experimental Setup

In the task allocation problem solved by the agents in our humanitarian logistics sce-
nario, they choose one or more providers (transporters) for each contract and use their
trust models to reason about their trustfulness.

In the underlying simulation model, the transporters answer the call for proposals
with bid prices prb based on the nominal transportation cost and profit margins. The real
price, that includes the cost of the cargo lost during transportation, is derived after the
transport from the bid price and transporter real trustworthiness Θ. The Θ depends on
the same parameters as those that define the C dimensions. Real price prr is determined
as prr = prb

Θ , where

Θ = Θtype · atan′(price) · atan′(supply) (18)

The function atan′(x), used as a sigmoid approximation, is defined as a normalized
arctan: its range is (xinf , xsup) (both xinf , xsup are in the range set) and x coordinate
of its flection point is defined by parameter xcenter . xslope determines the first derivation
- speed of the growth on the domain.

atan′(x) =
1 − xinf

π
· arctan(

xcenter − x

xslope
) (19)

While the provider simulation is a very simple one, it is sufficiently versatile to model
the performance of market actors to obtain validation scenarios for our methods.

To evaluate the performance of the evaluated trust models, we introduce the mean
loss, defined as a difference between the real price prr and the bid price prb. In the
graphs, it is aggregated per all contracts awarded in a single time step. As it is impos-
sible to achieve the zero loss in our scenario, we introduce the optimal choice value,
defining the optimal performance of the trust model.
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To validate the model independence of the method presented (i.e. the fact that the re-
strictions placed on Θ modeling are not constraining), we have used two different trust
models in our evaluation. The first model, denoted RNT in the graphs, we represent the
trustfulness in each Θ(X |ri) as a time-weighted average of the last N relevant obser-
vations. This means that we store N real values in each reference context ri. The other
model, denoted FNT, is a slightly simplified representation described in [10], where
each Θ(X |ri) is a triangular, asymmetrical fuzzy number.

In Figures 5, 6 and 8, we compare the performance of the trust models without the
context representation (denoted FNT and RNT) with the same models enhanced with
context representation, denoted clusters RNT and clusters FNT that are extended with
the above mechanism.

4.3 Influence of Situation Modeling

In the first batch of experiments, we will investigate the influence of the context mod-
eling. We will therefore compare several trust models with and without the context
components in the scenarios with increasing level of situation influence on the provider
performance. The changes in the performance are modeled by changes of the coeffi-
cients in the Eq. 18 and 19.

In the first scenario (Fig. 5), the performance of all the providers is flat over the whole
space C - the outcome of the delegation/contracting is independent of the situation. We
may note that the general methods perform slightly better, as their learning process is
more efficient, but the differences remain minor.
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Fig. 5. Scenario with trustfulness independent of situation – all methods perform comparably

In the second scenario (Fig. 6), we have introduced a strong, but one dimensional sit-
uation dependence with one best provider per cargo type. We can see that in this case,
context-based methods easily outperform the general trust and reach the optimum rela-
tively fast. In Fig. 7, we can see that the depicted sub-market (defined by the contracts in
one part of the context space) is rapidly dominated by the most trustful provider, while
the others are restrained to the services where they perform better.
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Fig. 6. Scenario with trustfulness dependent on the cargo type only
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Fig. 7. Market shares example with trustfulness dependent on the cargo type only
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Fig. 8. Scenario with trustfulness dependent on all 3 parameters, with an adequate metrics

When we introduce a full 3D context dependence, we obtain the results shown in
Fig. 8 and Fig. 9. We can see that the task is more difficult due to the increased di-
mensionality, but the context modeling solves the problem. The slower learning pace is
clear when we compare the Fig. 9 with Fig. 7 – the market domination is slower.
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Fig. 9. Market shares with trustfulness dependent on all 3 parameters. Compare with Fig. 7.

5 Related Work

Besides the approach presented in this paper, there are many alternative approaches that
attempt to relax the assumptions of the baseline trust mechanism as mentioned in the
introduction. The FIRE model [9] presents two relevant techniques – role-based trust
and certified reputation – that improve the reasoning about evaluated partners lacking
interaction history. Role-based trust evaluates the partners on the basis of their social
role, taking into account the endorsements of the others, guarantees or group member-
ship. Evaluation of this trust component is performed using a set of rules applied on
belief base of the trusting agent. In REGRET, the neighborhood reputation [8,6] and
system reputation are proposed to achieve similar results, implemented by means of
rules or aggregated reputation of the members of the evaluated agent’s group.

Certified reputation, also proposed in [9], uses the ratings provided by the evaluated
agent to assess its trustfulness. These ratings are created by the agents that interacted
with the evaluated agent in the past, and are typically electronically signed. While this
mechanism is valuable it is inherently biased – evaluated agent is free to chose only the
ratings that are positive regarding its performance. Moreover, the electronic signature
by itself proves only the integrity of the message. Authenticity of the message can be
proved only if the evaluating agent can attach the signing key to a respectable (or at least
known) information source. Otherwise, nothing can prevent agents from collusion, or
creation of false evaluators and boosting of their ratings. Therefore, this technique is of
limited interest if the identity of the agents is not proven.

The problem of the identity is also prominent in [15], where the agents (robots) are
identified by their group membership, instead of the individual identity.

6 Conclusions and Future Work

In this paper, we have presented a mechanism that supports the use of existing trust
models in the open, unmanaged and dynamic environments, where the agents can enter
and leave the system at their own will, can change or disguise their identity easily and
where the conditions under which the system operates are frequently changing.
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We address the above particularities of the open environments by introduction of
an intelligent mechanism that decouples the trustfulness from the statement of iden-
tity (e.g AID, address or name) and attaches the trustfulness to the important points in
the Identity-Context metric space. It shall be noted that while their implementation is
joint, the identity management and context representation parts of the module can be
effectively split, using only half of the mechanism functionality. This is applicable fr
example in the supply chain solutions, where the identity of the actors is certain and
verifiable, but we still need to manage the context.

Besides the above-mentioned problem of securing open multiagent systems, trust
models extended with the presented mechanism can be used in a completely novel con-
texts. In our current research [14], we experiment with use of such models for network
intrusion detection and protection, in attempt to automatize the response to worm-type
attacks. In this deployment, we don’t evaluate individual hosts or applications, but rather
the actual connections and their characteristics, taking into account the relevant statis-
tics off the network traffic [16] as a context for the decision. The trustfulness of the
connections is deduced from the status of the protected hosts and other alarms.

Such deployment changes completely the place of the trust model in the agent archi-
tecture – instead of being an accessory, protective module, it forms a core part of the
business reasoning of the agent, under the assumption that rapid, automatic and intelli-
gent response to attacks delivered by distributed security system is the best option how
to address the worm threat. The underlying reasoning behind our approach is that the
epidemics-like attacks in the virtual ecosystem shall be addressed by the approaches
that are inspired by the real immune systems.
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Abstract. Trust learning is a crucial aspect of information exchange,
negotiation, and any other kind of social interaction among autonomous
agents in open systems. But most current probabilistic models for com-
putational trust learning lack the ability to take context into account
when trying to predict future behavior of interacting agents. Moreover,
they are not able to transfer knowledge gained in a specific context to
a related context. Humans, by contrast, have proven to be especially
skilled in perceiving traits like trustworthiness in such so-called initial
trust situations. The same restriction applies to most multiagent learn-
ing problems. In complex scenarios most algorithms do not scale well
to large state-spaces and need numerous interactions to learn. We argue
that trust related scenarios are best represented in a system of relations
to capture semantic knowledge. Following recent work on nonparametric
Bayesian models we propose a flexible and context sensitive way to model
and learn multidimensional trust values which is particularly well suited
to establish trust among strangers without prior relationship. To evaluate
our approach we extend a multiagent framework by allowing agents to
break an agreed interaction outcome retrospectively. The results suggest
that the inherent ability to discover clusters and relationships between
clusters that are best supported by the data allows to make predictions
about future behavior of agents especially when initial trust is involved.

Keywords: Trust in Multiagent Systems, Information Agents, Agent
Negotiation, Initial Trust, Relational Learning.

1 Introduction

The assessment of trust values is getting increasingly important in distributed in-
formation systems since contemporary developments such as the Semantic Web,
Service Oriented Architecture, Information Markets, Social Software, Pervasive
and Ubiquitous Computing and Grid Computing are targeted mainly at open
and dynamic systems with interacting autonomous entities. Such entities possi-
bly show a highly contingent behavior, and it is often not feasible to implement
effective mechanisms to enforce socially fair behavior as pursued in mechanism
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design or preference aggregation. Although computational trust has been fo-
cussed by research in Artificial Intelligence for several years (for an overview
see [1]), current approaches still lack certain features of human trustability as-
sessment which we consider to be of high importance for the computational
determination of trust values in open systems. E.g., recent studies in psychology
[2] have shown that people can robustly draw trait inferences like trustworthi-
ness from the mere facial appearance of unknown people after a split second.
Although seemingly neither the time span nor the available information allow
to make a well-founded judgement, the derived trust (or distrust) provides af-
ter all a foundation for immediate decision making, and a significant reduction
of social complexity especially under time pressure. Whereas the “quality” of
such so-called initial trust (i.e., trusting someone without having accumulated
enough experiences from relevant past behavior of the trustee) might be limited
in the described scenario, this example shows that humans are able to estimate
the trustability of others using information which are at a first glance unrelated
to the derived expectation. (e.g., the facial appearance, or any contextual in-
formation in general). In contrast, the vast majority of approaches to empirical
trust value learning in Artificial Intelligence lack this ability, as these approaches
strongly rest on well-defined past experiences with the trustee, from which it is
directly concluded that the trustee will behave in the future as he did in the
past, regardless of the concrete context (cf. Section 6 for related work). These
approaches come to their limits in cases where the trustor could not make such
experiences and thus has to rely on “second order” information such as the
context of the respective encounter instead. In order to make such initial trust
computationally feasible, we not only need to relate trust values to a specific
context, but we also need to provide a mechanism in order to take over contex-
tualized trust to a new, possibly somewhat different context.

In particular, the general requirements that we wish to meet are:

Context sensitivity and trust transfer: Contextual information that might
be related to the trust decision to be made needs to be incorporated. This
shall include attributes of the person one needs to trust, attributes of the ex-
ternal circumstances under which the trust decision is made, and actions and
promises the person has given to seek one’s confidence. Furthermore, specific
trust values gained in a certain context need to be transferrable to new, un-
known “trigger” situations.

Multi-dimensionality: Most trust models assign a single trust value per agent.
This ignores the fact that human trust decisions are made in relation to a
whole spectrum of aspects (e.g., what a person is likely to do, such as the
expected outcome of some information trading, even in the same context.
For instance a certain information supplier agent might be trustworthy in
terms of delivery date, but not in terms of information quality (e.g., preci-
sion, topicality, credibility...). Combining several trust related measures as in
our approach is considerably much more flexible. In contrast, most existing
approaches to trust still relate trust to “whole persons” only instead of their
contextualized behavior.
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At this, we focus on interaction-trust (i.e., (dis-)trust formed by agents during
the course of an interaction regarding their opponents’ behavior) in order to
tailor our model to the specifics of the probably most relevant application field
for empirical trustability assessment.

The remainder of this work is organized as follows: The next two Sections
describes the basic scenario underlying our approach. Section 4 introduces our
model for relational learning of initial trust, and Section 5 explores the general
capabilities of our model with example data. Section 6 presents an application
of initial trust learning in the context of simulated social interaction in order to
provide a concrete evaluation of our approach. Section 7 discusses related work,
and Section 8 outlines future research directions and concludes.

2 Modeling Interactions

Our scenario can be based on one of the most general frameworks for learning
interactions in multiagent systems namely general-sum stochastic games (see
[3]). A stochastic game can be represented as a tuple (A, C, Ac, R, T )1. A is the
set of agents, C is the set of stage games (sometimes denoted as states), Ac is
the set of actions available to each agent, R is the immediate reward function
and T is a stochastic transition function, specifying the probability of the next
stage game to be played.

It is in the nature of trust that we are dealing with incomplete and partially
observable information. We neither assume the knowledge of the reward func-
tion R of the opponent nor their current state C. In fully observable games with
perfect monitoring, incentives to betray can be estimated and trust becomes
irrelevant because agents can be punished effectively [4]. Furthermore trust de-
cisions require general sum games where joined gains can be exploited. Both
zero-sum (e.g., [5]) and common-payoff (e.g., [6]) games are not relevant because
either there are no joint gains or the agents’ interests do not conflict.

Building on that formal setting our goal is to predict trust values Oe associated
with the expectation of the next actions Ac given agent A and state C. We
neither are trying to learn a strategy or policy nor are we interested in finding
equilibria or proofing convergence. But we make contributions on how to scale
MAL to more complex scenarios and show how an opponent model can be learned
efficiently:

Predicting the next action of an opponent is an essential part of any model-
based approaches to MAL [7]. The best-known instance of a model-based
approach is fictitious play [8] where the opponent is assumed to be playing a
stationary strategy. The opponent’s past actions are observed, a mixed strategy
is calculated according to the frequency of each action and then the best response
is played, accordingly. This technique does not scale well to a large state-space
|C| as we experienced in our second experiment (Section 6): The same stage
game is on average not observed before 400 interactions. Thus, this kind of naive

1 Our notation differs slightly from the commonly used ones, where A denotes actions
and S states. Our notation should become clear in the next section.



316 A. Rettinger, M. Nickles, and V. Tresp

approach does not allow to make an informed decision before 400 interactions
and is obviously not suited for initial trust scenarios.

In our approach we make use of two techniques to face this issue. First, we
allow to model any context related to the next trust-decision in a rich rela-
tional representation. This includes non-binding arrangements among agents
also known as “cheap talk” [4] which take place before the actual interaction
Oe is carried out and which are denoted as Op. Second, we make use of tech-
niques from the mature field of Transfer Learning [9] to reuse knowledge from
previous interactions for potentially unknown future actions.

3 Modeling Interaction-Trust

The basic precondition for the emergence of trust are entities and social inter-
actions between those entities. Hence, we chose a scenario that is interaction-
centered as seen from the perspective of one agent who needs to trust (trustor)
in someone/something (trustee). As usual in agent trust scenarios, (dis-)trust
is related to the expected occurrence of some promised outcome (e.g., the com-
munication of correct and precise information as negotiated before with some
information trading agent, or the delivery of some other kind of product at the
agreed price). The basic interaction-trust scenario then consists of:

1. A set of agents A (trustees) that are willing to interact with the trustor,
each characterized by a set of observable attributes AttA. An agent can be
considered as a person or more general any instance that can be trusted, like
an information source, a company, a brand, or an authority.

2. A set of external conditions or state C with corresponding attributes AttC .
An apparent condition would be the type of service provided by the trustee,
for instance a specific merchandize or an information supply in case of infor-
mation trading agents. Moreover this implies all external facts comprising
this particular state like the trustor’s own resources or the current market
value of the merchandize in question.

3. A relation interacts(a, c) with a set of relationship attributes AttO captur-
ing all negotiable interaction issues depending on a specific agent a ∈ A
and specific conditions c ∈ C. In general those attributes can be directly
manipulated by the interacting agents and separated into two different sets:
(a) Promised outcome Op: Attributes AttO

p

of this set are (in general) ob-
servable before the trust-act is carried out.

A typical attribute of this category is for example the price for the
merchandize or the scope of the services offered, such as the amount
and precision of information in case of a negotiation among agents re-
garding the delivery of information. A promised outcome op ∈ Op is an
assignment of values to the corresponding attribute vector AttO

p

, which
can be negotiated by the trustor and trustee. In game theory this kind
of non-binding negotiations among agents before the actual interaction
takes place is known as “cheap talk” [4].
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(b) Effective outcome Oe: The set of attributes AttO
e

are not observable until
the trust-act has been carried out. Those attributes act as a feedback
or judgment for the trustee in respect to his expectations. AttO

e

can be
thought of as quality aspects of the merchandize, like the delivery time.
From a decision theoretic point of view those attributes are the objectives
or interests of the trustor and need to be optimized in a multi-criteria
optimization problem. From a MAL perspective AttO

e

depends on the
actions Ac carried out by the opponent.

This way of modeling interaction-trust scenarios allows us to capture almost
any context relevant for trust-based decision making.

Our goal is to learn the value function op → oe that allows to predict oe from
a given op offered by agent a under external conditions c. Moreover, it might be
possible to calculate the utility of the trustor for a given oe. Hence, the ultimate
objective is to find the utility function op → [0, 1]. If this function is known
the trustor knows what assignment to Op he should try to achieve (e.g., in a
negotiation) to maximize its payoff / reward.

4 Infinite Relational Trust Model

Relational models are an obvious formalization of requirements arising from the
relational nature of entities in social, biological, physical and many other fields.
The benefits of the relational model for multiagent learning include amongst
others:

1. Relational models exhibit flexible and sophisticated modeling capabilities.
For typical interaction scenarios in the real world there are more than two
types of players and the number of players in each single interaction is flex-
ible or unknown beforehand. In this case propositional models can hardly
describe the data and its behavior. Relational models represent correlations
both, between the features of an entity and between features of related en-
tities.

2. By transforming the data into a flat representation, also known as propo-
sitionalization, the structural information can get lost. Moreover, there is
no standard procedure for propositionalization. In [10] manifold proposi-
tionalization approaches and their disadvantages are analyzed. In general
propositionalization causes high computational costs , since the complex-
ity increases exponentially in parameters, attributes and relations. Another
problem of the propositionalization process is the generation of too many ir-
relevant features. The low quality of propositional features becomes increas-
ingly problematic in more complex interaction models. In contrast, relational
models do not need this preprocessing phase at all and do not generate re-
dundant information.

3. Relational models and its dynamics can be intuitively visualized by graph-
ical model. This makes complex models more comprehensible and easier to
analyze.
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Fig. 1. Infinite Relational Trust Model

Recently [11] and [12] independently introduced infinite relational models
(IRM), which express interactions via a potentially infinite number of hidden
variables associated with entities instead of difficult structure learning in PRM.
Those latent variables play a key role and comprise the inherent structure of
the data. As additional features of entities they can improve the accuracy of the
learned model.

Considering the properties of nonparametric probabilistic relational models
our approach intuitively follows from the interaction scenario that we want to
model:

Entity and relationship classes are the two basic building blocks of such a
model. In our scenario agents A and states C are both modeled as entities with
a corresponding relation interacts(A, C). As a visual representation we make
use of the DAPER model (cf. [13]). Figure 1 illustrates the DAPER model for
the interaction scenario. Entity classes A and C are depicted as rectangles and
the relationship class as a rhombus. Actual evidence Att is modeled as attribute
classes of entities and relationships (oval). Local distribution classes denoting
the parameters and hyperparameters of the probability distributions are shown
in small gray circles. The direction of arrows shows the statistical dependency
or the sampling process.

The most distinctive feature of our approach are the hidden variables Z (cir-
cles). They provide clustering capabilities of entities with a potentially infinite
number of clusters. Assuming for every entity class one hidden variable our model
contains ZA and ZC with ra and rc clusters, respectively.

4.1 Sampling and Inference

Given the model the essential goal is to infer the conditional distribution

P (ZC , ZC |AttA, AttC , AttO)
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of cluster assignments ZA and ZC given evidence about relationship attributes
AttO

p

and AttO
e

. This posterior distribution can be formed from the generative
models by

P (AttO
e

1 , ..., AttO
e

k , zA
1 , ..., zA

m, zC
1 , ..., zC

n ) =
k∏

l=1

P (AttO
e

l |zA
1 , ..., zA

m, zC
1 , ..., zC

n )
m∏

i=1

P (zA
i )

n∏

j=1

P (zC
j )

where we have k actions carried out by m agents and n states. Similar for-
mulas hold for the joint distributions of P (AttO

p

, ZA, ZC), P (AttA, ZA) and
P (AttC , ZC).

The prior on cluster assignments πA and πC is a Dirichlet distribution with
hyperparameters αA

0 and αC
0 respectively, where sampling of both ZA and ZC

can be induced by a Chinese Restaurant Process: Z|α0 ∼ CRP (α0). By the use
of the Chinese Restaurant Process the number of clusters can be determined
in an unsupervised fashion. Entities are assigned to (potentially new) clusters
corresponding to the size of the existing clusters. Entity attributes AttA and
AttC are samples from multinomial distributions with parameters θA ∼ GA

0 =
Dir(·|βA), θC ∼ GC

0 = Dir(·|βC) and are generated for each cluster in ZA and
ZC . The same applies for the relationship attributes AttO

p

and AttO
e

which
can be induced by a multinomial distribution with parameters γOp ∼ GOp

0 , and
γOe ∼ GOe

0 . However, γ needs to be generated for every combination of entity
attribute clusters, resulting in rA × rC parameter vectors.

Now inference can be carried out based on Gibbs sampling by estimating
P (Z|Att) ∝ P (Att|Z)P (Z). For instance the probability of agent i being as-
signed to cluster k is proportional to P (zA

i = k|ZA
j �=i, AttAi , θA, γOp

, γOe

, ZC) ∝
NkP (AttAi |θA

k , γOp

k,∗, γ
Oe

k,∗) where Nk is the number of agents already assigned to
cluster k and γk,∗ notes the relation parameters of agent cluster k and all state
clusters. Finally, standard statistical parameter estimation techniques can be
used for estimating γOe

kA,kC from given cluster assignments.
The parameters α0 and β affect the number of clusters and the certainty

of priors and can be tuned. However, we experienced that results were quite
robust without extensive tuning. Moreover, our experiments are rather targeted
at feasibility than absolute performance, so we fixed αA

0 , αC
0 = 10 and βA, βC =

20 in all our experiments.
For a detailed description of the algorithm we refer to [11]. We extended the

algorithm, as just described, to enable the handling of more than one relationship
attribute. Using an arbitrary number of relationships is essential to enable a rich
representation of the interaction context and multidimensional trust values.

4.2 Implications

The ultimate goal of the model is to group entities into clusters Z. A good set
of partitions allows to predict the value of attributes AttO

p

and AttO
e

by their
mere cluster assignments. Hereby, our model assumes that each entity belongs
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Fig. 2. Results on experiment 1: Synthetic data, setup 1 and 2. Top row graphs show
the classification error metric (CE), subjacent graphs show the related accuracy (AC).

to exactly one cluster. It simultaneously discovers clusters and the relationships
in-between clusters that are best supported by the data, ignoring irrelevant at-
tributes.

Although the value of attributes is determined entirely by the cluster assign-
ment of associated entities, there is no need for direct dependencies between
attributes or extensive structural learning. The cluster assessment of a entity is
influenced by all corresponding attributes and cluster assessments of related en-
tities. This way information can propagate through the whole network while the
infinite hidden variables Z act as “hubs”. As shown in [11] this allows for a col-
laborative filtering effect. Cross-attribute and cross-entity dependencies can be
learned which is not possible with a “flat” propositional approach that assumes
independent and identical distributed (i.i.d.) data.

At the same time the number of clusters needs not to be fixed in advance.
Thus, it can be guaranteed that the representational power is unrestricted.

5 Experiment 1: Synthetic Data

To explore the learning and modeling capabilities of our IRTM we generated
synthetic data and evaluated its ability to find clusters in this data. For this
purpose we constructed an interaction-trust scenario with the fixed number of
2 entity attributes per entity and 2 relationship attributes, one for Op and one
for Oe. The number of entities |A| and |C| was prespecified but varied in dif-
ferent runs, as well as the underlying clustersize ra and rc for Za and Zc. Each
entity was randomly assigned to a cluster and its attributes were sampled from
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a multinomial distribution with 4 possible outcomes and parameter vector θ
each. θ in turn, was once randomly generated for each cluster. Accordingly,
ra × rc Bernoulli-parameters γ for relationship attribute attO

p

and attO
e

were
constructed.

In Figure 2 and 3 two different error metrics measuring the performance of
IRTM averaged over 10 runs are shown. The top row graphs visualize the clas-
sification error metric (CE) for clusterings while the bottom row depicts the
accuracy (AC) of classifying attO

e

correctly. Both are supplemented by a 95%
confidence interval. CE reflects the correspondences between the estimated clus-
ter labels and the underlying cluster labels measuring the difference of both (cf.
[14]). A value of 0 relates to an exact match, 1 to maximum difference. In this
experiment AC is a binary classification task and denotes the ratio of classifying
attO

e

correctly. Results are averaged over both hidden variables Za and Zc.

5.1 Evaluation

We considered three different experimental setups:

1. We analyzed the performance for different numbers of entities with fixed
cluster sizes ra = rc = 4. The performance shown in Figure 2-1 expectedly
suffers for small numbers of entities |A| = |C| < 20. Nonetheless, this result
suggests that the IRTM is quite robust even with few training samples. This
makes it especially interesting for initial trust problems as discussed in the
next Section.

2. Correctly recovering different cluster sizes ra and rc while the number of
entities was fixed to |A| = |C| = 50 was the goal of setup 2. In Figure 2-2
we see that the IRTM underestimates the cluster sizes if ra = rc > 16. This
suggests that the number of combinations in such a simple scenario is not
enough and entities from different clusters tend to become alike. Still, the
AC is almost perfect. Besides that the number of entites per cluster (|A|/ra

and |C|/rc, respectively) gets so small that not all clusters are represented
in the training set.

3. Finally, missing and noisy data sets were used in two different ways for
training:
(a) Half of the relationship attribute Oe data was omitted while missing

values for Op was varied. The variance of all measures in figure 3-
3a increases with the increase of missing values. Still, the AC is good
although cluster correspondences deviate. This clearly shows that de-
pendencies across relationship-attributes have a significant effect on the
performance and can be exploited by IRTM. As mentioned before, stan-
dard techniques working with a “flat” vector-based attribute-value repre-
sentations cannot use such information. In contrast IRTM can propagate
information through the network.

(b) First, evidence for Oe was partially omitted. The AC in Figure 3-3b
expectedly drops because less training samples of the effective outcome
that is to be predicted are available. Still, clustering abilities are hardly
affected because other attributes can replace the missing information.
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Fig. 3. Results on experiment 1: Synthetic data, setup 3a-c. Top row graphs show the
classification error metric (CE), subjacent graphs show the related accuracy (AC).

(c) Second, in order to measure the influence of the entity attributes we
added noise to AttA and AttC . With the used parameter settings IRTM
did obviously (see Figure 3-3c) not suffer in predicting AC. However the
ability to infer the correct clusters was slightly hindered.

6 Experiment 2: Negotiation Data

Finding an agreement amongst a group of conflicting interests is one of the core
issues of distributed Artificial Intelligence. For instance auctions, information
markets, preference aggregation and judgement aggregation, game theory and
automated negotiations are all research areas that deal with those kind of prob-
lems. However most of the approaches neglect the fact that finding the best
agreeable solution is not sufficient if the execution of the negotiated outcome
can not be enforced by the interaction mechanism. Especially in open systems
where agents can enter and leave or change their identity at will, initial trust
plays an important role in this regard. The purpose of the IRTM is to make pre-
dictions about AttO

e

which can be utilized by the agent to adjust its negotiation
strategy or trading decisions.

In order to investigate this issue we extended the implementation of a multia-
gent negotiation framework by an additional trading step. As defined before, let
Op be the promised outcome the agents are negotiating over (e.g., the punctual
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delivery of information some information agents requested or offered to supply,
respectively). This outcome is without loss of generality specified by a set of dis-
crete attributes AttO

p

. Now given an assignment of values Op that two agents
have agreed on and promised to fulfill the agents enter an additional trading
step where each of them is free to change the assignments of values related to
their commitments. Doing so, the agent can decide whether to stick to a bargain
or break it at will. One interaction round in this negotiation framework consists
of three phases:

1. Negotiation: A strategy that calculates a possible outcome Op both parties
can agree on (e.g., an exchange of goods).

2. Trading: The decision made by every agent whether to stick to a bargain
or break it (possibly only partially). The outcomes regarding the agent’s
obligations are executed according to the agent’s decision.

3. Evaluation: The agents can review the effective actions AttO
e

of the opponent
by observing the received goods and draw conclusions for future interactions

This procedure is repeated over a specified number of rounds with different
types of agents.

6.1 Evaluation

Four different agent types were used as opponents in the negotiation game. Every
round the negotiation outcome Op and the effective outcome Oe was recorded.
To keep it simple, all agent types follow the same static negotiation strategy but
each one acts differently in the trading phase. The agent denoted Greedy always
maximizes its utility regardless of Op. Sneaky-agent only deviates from Op if
it increases its utility by a large margin, while Honest-agent always sticks to
Op. Finally, the agent named Unstable deviates only slightly from Op (by giving
away +/-1 amount) if its utility is increased hereby.

As the negotiation strategies were the same for all agent types the negotiation
outcome was modeled as attributes of C and not of Op. Furthermore no specific
attributes for A were available except for its identity. Besides the raw negotiation
outcome and the state of the own resources, features describing the risk of losing
utility and the chance of gaining utility were extracted and added to AttC . AttO

e

was set to be the binary classification task whether the utility would increase
less than negotiated or not. This way about 120 interactions were carried out per
agent type containing a total of 165 different negotiation outcomes alltogether.
1/3 of the data was randomly withhold and used for testing. Again, all results
are averaged over 10 runs.

The predictive performance was measured by calculating the area under the
ROC curve (AUC). We compare the results of IRTM to two content based ap-
proaches, namely a support vector machine (SVM) using a PolyKernel and a
Decision Tree (DecTree, ID3). The SVM and DecTree got an additional input
by assigning each agent in A an unique ID number. This way the relational
model did not have more information than a “flat” model. We also evaluated
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Fig. 4. Results on experiment 2: Negotiation data. Top left shows final clustering of
agent types. Bottom left visualizes P (Oe) for each pair of clusters (the darker the more
probable). Bar graph shows AUC for classifying P (Oe).

the clustering abilities by plotting the most frequent assignment of cluster by
the IRTM.

In the top left of Figure 4 one can see that in the end the four agent types
(rows) were clustered into three groups in ZA (columns). Interestingly, the as-
signment of Sneaky- and Honest-agent to the same cluster suggests that it is a
good strategy to act reliable and provide confidence most of the time in order
to convince an opponent of the own trustworthiness. But if it is clear that the
gain is really worth it one should betray the opponent’s trust.

The rectangles in the lower left corner of Figure 4 visualize P (Oe|ZA, ZC).
From the 165 different negotiation outcomes and external conditions 8 clusters
emerged in ZC . Each row indicates one condition-cluster ZC

i , each column an
agent-cluster ZA

i . Thus, each element stands for P (Oe) given the cluster assign-
ments. Brighter rectangles indicate a lower probability for a utility increase as
negotiated. As expected the first column (Greedy-agent cluster) is on average
brighter than the third column (Unstable-agent cluster) which in turn is brighter
than the middle column (Sneaky- and Honest-agent).

The overall performance, shown in the bar graph on the right of Figure 4,
demonstrates that IRTM has a slightly better performance in classifying P (Oe)
than the SVM and the DecTree.

The inherent clustering of the IRTM suggests that it is especially well suited
for initial trust situation when unknown but related agents and conditions are
observed. Actually, entities can be correctly assigned to a cluster without having
seen a single effective outcome related to this entity just by their attributes. To
check this assumption we gathered data from interactions with another Unstable
type agent and evaluated the performance for different numbers of training sam-
ples. In the top graph of Figure 5 the AUC is plotted for different numbers of
training samples. Especially for a small sample size ≤ 10 the performance of
IRTM is clearly better than those of the content based approach.
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Fig. 5. Results on experiment 2: Negotiation data. Graph shows AUC for different
number of samples in an initial trust setup.

7 Related Work

As already pointed out, connecting trust to the trusted agent alone without con-
sidering contextual and different aspects (dimensions) of trust is not sufficient
in many scenarios. Whereas much research on trust concede the importance of
context information, most of them do not actually use such information for the
calculation of trust degrees in a general and automatic way [15]. To our knowl-
edge using contextual information for initial trust assessment and the transfer
of trust between contexts is completely new.

Regarding its dimensionality, most work represent trust as a single discrete or
continuous variable associated with one specific agent. Modeling trust in multiple
dimensions is only considered by a few elaborate approaches such as [16]. We
leave it to the actual scenario how trust needs to be modeled in this respect.
In principle, IRTM can handle an arbitrary number of trust variables, each
associated with one aspect of the trustor’s expectations and represented with
any probability distribution needed.

Analogously, we argue that a fine grained modeling of relations between agents
and their environment is essential to capture the essence of trust, especially in
initial trust situations. There exist a few approaches that can take relationships
into account when modeling trust. But in most of this research such relation-
ships are either only considered as reputation or recommendations [17], or as
interactions between a group of agents (e.g., [18]). The manifold different kinds
of relations that exist between two agents in a specific situational context are
not modeled in detail. In addition, most learning techniques are “improvised”
for one specific scenario only.

Assessing initial trust values for unknown agents based on pre-specified mem-
bership to a certain group has been addressed by [19]. A group-based reputation
architecture is proposed here where new agents are assessed according to their
pre-specified membership to a certain group of agents. Likewise, the TRAVOS-
C system proposed by [15] includes rudimentary ideas from hierarchical Bayes
modeling by assigning parameter distributions to groups of agents but doesn’t
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come to the point to give a fully automated and intuitive way of how to build
clusters.

8 Conclusions and Future Work

In this work, we presented an Infinite Relational Trust Model (IRTM) for
interaction-trust and have shown how interactions can be modeled and learned
in theory and in two experimental setups. We believe that our model will be
especially useful for trust learning in initial trust situations, where the trustor
interacts with other agents without having recorded sufficiently enough rele-
vant past experiences in order to judge trustability using traditional methods.
E.g., this would typically be the case in short-lived communities of practice,
where information agents gather in a kind of ad-hoc manner in order to ex-
change knowledge, or in open information markets, where mutually more or less
unknown information sellers and buyers interact with each other.

IRTM is more powerful and flexible in representing intial trust and fine grained
contextual relations, adding a new level of semantics to trust learning. The ex-
perimental results suggest that IRTM shows a performance comparable to a
“flat” feature-based machine learning approach if trained with independent and
identical distributes (i.i.d.) data. We expect to see superior performance of IRTM
if no i.i.d. assumption is made and cross-attribute and cross-entity dependencies
can be exploited. However, our second experiment shows that in initial trust
situations the IRTM can outperform a traditional feature-based approach even
if the i.i.d. assumption is made. Besides that, IRTM can handle missing at-
tribute values and enables a clustering analysis which is not possible in existing
feature-based trust learning approaches.

Furthermore the experiments deliver preliminary insights into the effect of
different strategies on trustworthiness in negotiations. We plan on continuing our
work in this direction. Furthermore we intend to address issues like reputation
and recommendations which should naturally fit in our relational model.
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Abstract. In this paper, we propose a probabilistic framework targeting three
important issues in the computation of quality and trust in decentralized systems.
Specifically, our approach addresses the multi-dimensionality of quality and trust,
taking into account credibility of the collected data sources for more reliable
estimates, while also enabling the personalization of the computation. We use
graphical models to represent peers’ qualitative behaviors and exploit appropri-
ate probabilistic learning and inference algorithms to evaluate their quality and
trustworthiness based on related reports. Our implementation of the framework
introduces the most typical quality models, uses the Expectation-Maximization
algorithm to learn their parameters, and applies the Junction Tree algorithm to in-
ference on them for the estimation of quality and trust. The experimental results
validate the advantages of our approach: first, using an appropriate personalized
quality model, our computational framework can produce good estimates, even
with a sparse and incomplete recommendation data set; second, the output of
our solution has well-defined semantics and useful meanings for many purposes;
third, the framework is scalable in terms of performance, computation, and com-
munication cost. Furthermore, our solution can be shown as a generalization or
serve as the theoretical basis of many existing trust computational approaches.

1 Introduction

Quality and trust have become increasingly important factors in both our social life
and online commerce environments. In many e-business scenarios where competitive
providers offer various functionally equivalent services, quality is often the most deci-
sive criterion that helps to build trust among participants in the system and influences
their selection of most prospective partners. For example, between two file hosting ser-
vice providers, a user would aim for the one allowing the storage of larger files in
longer periods, offering higher download and upload speed under better pricing condi-
tions. Similarly, there are several other types of services that are highly differentiated
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by their quality of service (QoS) features such as Internet TV/radio stations, online mu-
sic stores or teleconferencing services. Therefore, appropriate mechanisms for accurate
evaluation of service quality have become highly necessary.

In large scale decentralized systems with no central trusted authorities, past perfor-
mance statistics are usually considered as indicative of future quality behaviors [19].
An autonomous agent (or peer) acting on behalf of its users often uses ratings or rec-
ommendations from other peers to estimate QoS and trustworthiness of its potential
partners before involving into costly transactions. Such scenarios necessitate appropri-
ate solutions to the following important issues:

The credibility of observation data: collected ratings from various sources can either
be trustworthy or biased depending on the inherent behaviors and motivation of the ones
sharing the feedback. Thus the understanding and evaluation of malicious reporting
behaviors need to be taken into consideration adequately [5, 7, 11].

The multi-dimensionality of quality and trust: QoS and trust are multi-faceted,
inter-dependent, and subject to many other factors. This issue further complicates our
estimations of service quality and peer behaviors, because we have to take into account
various dependencies among quality parameters and related factors, whose values can
only be observed indirectly via (manipulated) ratings. The incompleteness of the obser-
vation data set is an additional issue to be considered.

The subjectivity of quality and trust: the evaluation and perception of quality and
trust information strongly depend on the view or execution context of the evaluating
user. For example, according to its personalized preferences, a peer may estimate the
trustworthiness of another based on certain quality dimensions of the latter. Generally
peers have different interpretations on the meaning of a trust value, therefore the rec-
ommendation and/or propagation of such formulated quantity in large scale systems are
inappropriate. A more suitable approach is to enable a peer to do its own evaluation of
well-defined quality attributes of the others based on collected experience, from which
to personally evaluate the trustworthiness of its prospective partners.

The three above issues are inter-related and even inseparable for many application
scenarios. In this perspective, we believe that more generalized results are still missing
as most research efforts are either ad-hoc in nature or only focus on specialized as-
pects. Many trust computational models in the literature either rely on various heuristics
[1, 25] or produce trust values with ambiguous meanings based on the transitivity of
trust relationships [13, 26]. Other probabilistic-based trust evaluation approaches, e.g.,
[2,6,15,17,24], are still of limited applications since they do not appropriately take into
account the effects of contextual factors, the multi-dimensionality of trust, quality, and
the relationships among participating agents.

In this paper, we propose a probabilistic framework to support the subjective com-
putation and personalized use of trust and quality information. Our approach addresses
the above questions adequately by offering several advantages:

• Support personalized modeling of quality and trust: using graphical models, our
framework enables a peer to describe the quality and behaviors of the others flexi-
bly according to personalized preferences. To the best of our knowledge, this work
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is among the first ones taking into account natural dependencies among QoS pa-
rameters, related contextual factors, and inherent behaviors of peers for the reliable
estimation of trust and quality.

• Offer a general decentralized approach to evaluate quality and trust: our so-
lution facilitates the use of various probabilistic learning and inference algorithms
to evaluate quality and behaviors of peers. In our current implementation, we intro-
duce the Expectation-Maximization (EM) and the Junction Tree (JTA) algorithms
enabling a peer to estimate quality and behaviors of others locally and indepen-
dently. These algorithms produce reliable estimates without using ad hoc heuristics
as in many other approaches. As a side effect, our framework can be seen as the
generalization or theoretical basis of many representative trust computational mod-
els in the literature, e.g., [25, 6, 24, 17, 2, 23, 22, 15].

• Provide informative results with well-defined semantics: since we use proba-
bilistic graphical models to represent quality and trust, our computation produces
outputs with clear and useful meanings, for example, it evaluates the probability
that a peer is honest when reporting or the probability that a file hosting provider
offers its service with high download speed for a client with a certain type of In-
ternet connection and willing to pay a certain price. This output can be used by the
evaluating peer in many ways: (1) for its subjective trust evaluation, i.e., compute
its trust on another according to various preferences, given the estimated values of
different quality dimensions of the latter; (2) to choose the most appropriate service
for execution given many functionally equivalent ones offered by the different peers
in the system; and (3) to decide to go for interactions with other peers knowing their
reporting behaviors, e.g., sharing and asking for experiences from them.

• Have good performance and scalability: our implementation yields good perfor-
mance even with high level of malicious rating users in the system. It is also ap-
plicable and works well in case the collected multi-dimensional recommendations
data set is incomplete. Additionally, our analysis and empirical experimentations
have shown that the implemented framework is scalable in terms of performance,
computation and communication cost.

In the next section we will describe our general framework for the personalized mod-
eling and evaluation of trust and quality. Section 3 presents our implementation of this
framework for the learning and inference of quality and trust. Section 4 presents our
analytical and experimental results clarifying the advantages of our proposed approach.
Section 5 summarizes the related work and Section 6 concludes the paper.

2 General Framework Architecture

Our proposed framework (Fig. 1) has the following components to support the compu-
tation and personalized use of trust and quality information:

Modeling: since trust and quality are multi-faceted and subject to the personalized view
of a user, the modeling of trust and quality is of high importance. Such modeling en-
ables the personalization and reusability of our computational approach in many differ-
ent application scenarios, given that the user can obtain necessary domain knowledge to
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Fig. 1. The probabilistic quality and trust computational framework

formalize their problems appropriately. We propose the use of probabilistic graphical
models, e.g., Bayesian networks, for the following important reasons:

• Reality and generality: such an approach models the reality elegantly: on one
hand, the nature of quality and trust is probabilistic and dependent on various en-
vironmental settings; on the other hand, those dependencies can be easily obtained
in most application domains, e.g., as causal relationships among the factors, which
increase the reusability of our solution.

• Personalized support: user preferences and prior beliefs can be easily incorpo-
rated into a model, e.g., via the introduction of observed variables representing the
behavior of trusted friends and hidden variables representing the quality and trust-
worthiness of unknown partners.

• Tool availability: algorithms to learn and inference on graphical models are widely
available for our implementation and analysis of the obtained results.

Let us take the file hosting scenario as an example. With certain helps from the user, a
peer can identify most relevant QoS properties of such service (download, upload speed,
maximal number of concurrent downloads, etc.) as well as related environmental fac-
tors (Internet connection speed, subscription price) to build an appropriate quality/trust
model. These variables and dependencies among them can be easily obtained as causal
relationships among corresponding factors in the domain, or even from the service de-
scription published by the provider peer.

Learning: given the quality model of the target peer, the evaluating peer selects a suit-
able learning algorithm to estimate the quality and trustworthiness of its target based
on collected recommendations and own experience. Specifically, recommendations are
ratings by other peers/users on certain quality dimensions of the peer being evaluated,
e.g., the download and upload speed of its service. The selection of a learning algorithm
usually depends on the constructed model, properties of the observation data set, and
user preferences. For example, given an incomplete observation data set on a model
with many hidden variables, the EM algorithm is a potential candidate. If the model
is less complex and if the user prefer a full posterior distribution of the quality and
behavior of the target peer, a Bayesian-based learning approach is more suitable. Sub-
sequently, the computation of quality and trustworthiness of the target peer can be done
by (probabilistically) inferencing on this learned model.
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Decision making: the results of the learning process provide inputs for a user to eval-
uate his utility and choose the most appropriate actions, e.g., to select a file hosting
provider or not. The actions of an agent may also lead to a refinement of its model on
the others’ quality and behaviors.

3 Solution Implementation

We implemented the above probabilistic framework with the following components. For
the modeling step, we use directed acyclic graphical models, i.e., Bayesian networks,
since we believe that they are sufficiently expressive to represent the causal relationships
among various factors in our scenario, e.g., quality parameters, contextual variables, and
peer behaviors. We apply the EM algorithm to learn the conditional probabilities of the
constructed models and use the Junction Tree Algorithm (JTA) [10] to inference on
them for the estimation of peer quality and behaviors. The trust-based decision-making
step is not included in the current implementation, yet it can be incorporated easily.

3.1 Personalized Quality and Behavior Modeling

Depending on its personalized preferences and prior beliefs on the outside world, an
evaluating peer P0 can model its view on the quality of a target peer P accordingly. We
identify the following most typical models that a peer may use for various scenarios:

• The basic QoS model (Fig. 2a) is built on the assumption of the evaluating peer that
all recommending peers are honest in giving feedback. Thus, those values reported
by a peer are also its actual observations on the service quality. The nodes el, 1 ≤
l ≤ t represent those execution environmental (or contextual) factors influencing
those quality attributes qi, 1 ≤ i ≤ m of the service provided by peer P . This
model is most useful in case the judging peer only collects rating from its trusted
friends in the network.

• The simplified QoS model (Fig. 2b) extends the basic one to the case where P0 be-
lieves that the collected recommendations are possibly biased. The node b denotes
the reporting behavior of all recommenders, and vi denotes their reported values
on a quality attribute qi. This model only considers the overall distribution of all
peers’ behaviors and is useful in case there are few reports on quality of the target
peer P for the trust and quality evaluation step.

• The extended QoS model (Fig. 2c) extends the previous model to the case where
P0 believes that each reporter Pj may exhibit a different behavior bj , 1 ≤ j ≤ n.
The variable vij denotes a rating value by a peer Pj on a quality attribute qi of
P . This extensive model is used if the judging peer P0 also wants to evaluate the
individual trustworthiness of each peer Pj in terms of giving recommendations.

A rounded square surrounding a node in Fig. 2 represents similar variables with the
same dependencies with the others. Shaded nodes are variables whose values are ob-
servable and blank nodes are hidden (latent) variables to be learned from the collected
reports. The numbers t, n, m are respectively the number of contextual factors, report-
ing peers, and QoS attributes that will be used in later analysis. For brevity reason,
from now on we simply use the notation x to denote any node in a QoS model, πx to
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Fig. 2. a. The basic QoS model of a service/peer; b. The simplified QoS model; c. The extended
QoS model; d. Example personalized QoS model with some observed QoS properties qs

denote the list of all parent nodes of x, and y to denote a state value of x. The set of
conditional probability table (CPT) entries p(x|πx) of a QoS model is then referred to
as its set of parameters θ henceforth. Using such probabilistic graphical models enable
us to compute the probabilistic quality of a peer only by analyzing and traversing on
correponding graphs, thus widening the applicability of our approach.

A peer can include other prior beliefs and preferences to build its personalized QoS
model based on the three typical models above. For example, let us assume that P0

can collect correct observations on certain quality parameters qs of the target peer P ,
either via its own experience or via the ratings of its trusted friends in the network.
In that case P0 can model those nodes qs in the extended QoS model of P as visible
to reduce the number of latent variables (Fig. 2d). There may also be dependencies
among the different quality attributes qi and among the nodes el, which are not shown
for the clarity of presentation. The dynamic of various quality factors can be taken into
account by considering time as a contextual variable in the models. Furthermore, it
is possible to model the collusive groups in Pj by introducing further latent variables
in the simplified and extended QoS models, but the learning will then be much more
complicated. Consequently, in this paper we limit our analysis to the case where the
evaluating peer collects random feedback from the network such that the behaviors of
Pj can be assumed as approximately indepedent to each other.

A concrete modeling example for a file hosing service in our previous scenario is
given in Fig. 3a. In this figure, M, D, U respectively represent the maximal number
of concurrent downloads, the download and upload speed offered by the file hosting
provider being evaluated. The variables P, I denote the subscription price and the Inter-
net connection type of an observing peer having used this file hosting service. Actually
P, I define the context in which this observing peer perceives those quality attributes
M, D, U . Other variables M1, D1, U1 are correspondingly ratings of a specific peer P1

on different quality dimensions M, D, U , assuming that the behavior of P1 is b1. The
state space of each quality variable in a QoS graphical model can be modeled as bi-
nary (for good or bad quality conformance) or as discrete values representing different
ranges of values of a QoS variable or an environmental factor, depending on the nature
of the node and the viewpoint of the judging peer (see Fig. 3b).
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Fig. 3. a. The extended QoS model of a file hosting service with one reporting peer P1; b. Exam-
ple state spaces for quality and environmental nodes

The modeling of the behavior of a reporting peer also depends on the viewpoint of the
evaluating peer. For example, in Fig. 3a, a reasonable classification of behaviors is the
following. At the time of reporting, a peer can exhibit one of three possible behaviors:
honest , badmouthing , or advertising . An honest peer experiencing an upload speed
U = y reports the same value in its feedback, thus p(U1 = y|b1 = honest , U = y) =
1.0. An advertising peer mainly increases its observed quality values and a badmouthing
one decreases the quality it perceives, therefore p(U1 = low |b1 = badmouthing , U =
y) = 1.0, and p(U1 = high |b1 = advertising , U = y) = 1.0. Note that via this mod-
eling, a reporting peer can alternatively appear as honest, badmouthing, or advertising
with certain probability, e.g., the variable b1 may follow different probabilistic distribu-
tions. Consequently, certain parameters of a quality model can be defined according to
prior beliefs of the evaluating peer or based on domain-dependent constraints as part of
this modeling step. Other unknown parameters of a QoS model shall be learned from
the observation data set as will be explained later on.

3.2 Subjective Learning of Quality and Trust

Learning the model parameters. The first learning step in our framework is the es-
timation of unknown parameters θ of the QoS model of the peer P being evaluated.
Given a set of reports on different QoS properties of P , we formulate an observation
data set Rp = {rμ, 1 ≤ μ ≤ N} on the Bayesian network of the model. Each rμ has
a visible part vμ including values of those variables appearing in related reports and a
hidden part hμ representing unknown values. Variables in hμ may include hidden nodes
and unreported values on QoS variables or contextual factors.

Given an observation data set Rp on a model, there are two well-known approaches
for estimating the model parameters θ:

• Frequentist-based approach: methods of this category estimate the model param-
eters such that they approximately maximize the likelihood of the observation data
set Rp, using different techniques like Maximum Likelihood Estimation, gradient
methods, or Expectation-Maximization (EM) algorithm, etc. In this solution class,
the EM algorithm appears to be a potential candidate in our case since it works well
on a general QoS model whose log likelihood function is too complex to be opti-
mized directly. In addition, the EM algorithm can deal with incomplete data and is
shown to converge relatively rapidly to a (local) maximum of the log likelihood.
However, the disadvantages of an EM-based approach are its possibility to reach to
a sub-optimal result and its sensibility to the sparseness of observation data set.
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• Bayesian method: this approach considers parameters of the model as additional
unobserved variables and computes a full posterior distribution over all nodes con-
ditional upon observed data. The summation (or integration) over the unobserved
variables then gives us estimated posterior distributions of the model parameters,
which are more informative than the results of frequentist-based methods. Unfor-
tunately, this approach is expensive and may lead to large and intractable Bayesian
networks, especially if the original QoS model is complex and the observation data
set is incomplete.

In this paper, we study the use of the EM algorithm in our framework to learn the
quality and behavior of peers encoded as unknown variables in a QoS model. This
application of an EM algorithm in our implementation is mainly due to its genericity
and promising performance. The use of other learning methods in our framework, e.g.,
an approximate Bayesian learning algorithm, to compare with an EM-based approach
is part of our future work and thus beyond the scope of this paper.

An outline of the EM parameter learning on a general QoS graphical model with
discrete variables, i.e., any model in Fig. 2 or a derivation, is given in Algorithm 1. This
algorithm is run locally and independently by a peer in the system to evaluate the quality
and behaviors of other peers, after the evaluating peer has constructed an appropriate
QoS model of its targets.

Algorithm 1. QoSGraphicalModelEM(Rp = {rμ = 〈hμ, vμ〉, 1 ≤ μ ≤ N})

1: Initialize the unknown parameters p(x = y|πx = z);
2: /* y, z are possible state values of variables x and πx */
3: repeat
4: for each observation case rμ do
5: for each node x do
6: Compute p(x = y, πx = z|vμ, θ) and p(πx = z|vμ, θ);
7: end for
8: end for
9: Compute Exyz =

∑
μ p(x = y, πx = z|vμ, θ) and Exz =

∑
μ p(πx = z|vμ, θ);

10: for each node x do
11: p(x = y|πx = z) = Exyz/Exz ;
12: end for
13: Compute the log likelihood LL(θ) =

∑
μ logp(vμ|θ) with current θ;

14: until convergence in LL(θ) or after a maximal number of iterations;

The first line of Algorithm 1 initializes the unknown model parameters, i.e., the
unknown conditional probability table (CPT) entries of the corresponding Bayesian
network. Depending on its preferences, the evaluating peer initializes the conditional
probability of each quality node accordingly, e.g., either randomly or as its prior beliefs
on the service advertisement of the evaluated peer. Specifically, in case of the extended
and the simplified models, the evaluating peer can define the corresponding CPT entries
p(bj) (or p(b)) appropriately depending on its prior beliefs on the trustworthiness of Pj

(or on the overall hostility of the environment).
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Lines 4 − 9 of Algorithm 1 implement the Expectation step of the EM algorithm,
where we compute the expected counts Exyz and Exz of the events (x = y, πx = z)
and (πx = z), given the observation data set Rp and current parameters θ. We can
use any exact or approximate probabilistic inference algorithm in this step to compute
the posterior probabilities p(x = y, πx = z|vμ, θ) and p(πx = z|vμ, θ). Our current
implementation uses the Junction Tree Algorithm (JTA) [10] since it produces exact re-
sults, works for all QoS models, and is still scalable in our scenario (see Section 4). The
Maximization step of the EM algorithm is implemented in lines 10−12 of Algorithm 1,
therein we update the model parameters p(x|πx) such that they maximize the observa-
tion data’s likelihood, assuming that the expected counts computed in lines 4 − 9 are
correct. The two Expectation and Maximization steps are iterated till the convergence
of the log likelihood of the observation data, which gives us an estimation of all model
parameters p(x = y|πx = z).

Subjective Computation of Quality and Trust. After the parameter learning step,
the evaluating peer can compute the probability that a target provides a quality level
qi = y under its own execution context φ∗

qi
as follows: first, it sets the value of each

variable in the target’s QoS model with the values corresponding to its environmental
setting φ∗

qi
; second, it runs the JTA inference algorithm on the learned model to compute

the conditional distribution P (qi = y|φ∗
qi

). For brevity reason, we refer the interested
readers to [10] for a detailed description of the JTA algorithm and to the long version
of this paper [21] for an example use of this algorithm to inference on a QoS model.

Additionally, the evaluating peer can estimate its personalized trust on a potential
partner depending on its preferences and objectives conveniently. For example, the trust
level that the evaluating peer has on a potential partner can be modeled as the joint
distribution of some quality attributes of the latter, which can also be computed using
the JTA algorithm. More generally, the jugding peer P0 can formulate any decision
problem based on the learned QoS model according to its personalized objectives and
use inference techniques to derive a best decision appropriately. All these probabilistic
learning and inference procedures can be done automatically by analyzing the QoS
model, which falicitates the application of our framework in a wide range of scenarios.

4 Experimental Results

Computation cost. Since the most expensive step in our computational framework is
the learning of parameters of a QoS model, we focus on the evaluation of its scalability.
We can show that the complexity of each EM iteration of Algorithm 1 for the extended
model in Fig. 2c is O(Kn2), where K is the average number of reports by each of
n reporting peers Pj . For the simplified and the basic models, the computation cost
of each EM iteration is O(nK) (see [21], Section 4.1). Given the fact that the EM
algorithm converges fast in practice (one can also bound the number of EM iterations
appropriately) and we consider a limited number of recent reports K per peer, our EM
learning algorithm (Algorithm 1) is scalable in terms of computation cost.
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Communication cost. Suppose that we use a logarithmic routing overlay, e.g.,
Chord [20], for searching the feedback in the network, then the communication cost
required by the evaluating peer P0 for its learning process is O(Knlog|V |), where |V |
denotes the number of all peers in the system [21]. This cost mainly depends on the
number of direct reporting peers n. Thus one important question is to find out the num-
ber of direct reporting peers n that P0 needs to ask for feedback and the number of
reports K required for an acceptably accurate estimation of the quality of a peer P .

Experimental setting. We implement the presented computational framework using
the BNT toolbox [16] and test it extensively under various conditions. We perform our
experiments with the aforementioned file hosting scenario to study the accuracy of the
estimated values under various practical settings: (1) the evaluating peer uses different
ways to model the service quality of its target, e.g., using the basic, simplified, and ex-
tended QoS models; (2) there are different reporting behaviors; and (3) the recommen-
dation set is incomplete and sparse. On one hand, we set the conditional probabilities
of the QoS parameters of the service according to some (small) deviations from adver-
tised QoS values to simulate possible cheating behavior of a provider peer. On the other
hand, we generate the observation data set as samples on the visible variables of the
QoS model according to various reporting behaviors of the service users, i.e., the re-
ported quality values have different probabilities. We further hide a fraction of reported
values to create an incomplete recommendation data set. The EM algorithm is initial-
ized as follows: the conditional probability of each QoS parameter is set randomly and
behaviors of all reporting peers are unknown. From the model with parameters learned
by the EM algorithm, we estimate the distributions of the reporting behaviors of the
peers and the QoS features of the service. We deliberately use the above setting since
it is of the worst case scenario where the evaluating peer has no information of any
other peer and no trusted friends. The experiments in other cases where the evaluating
peer has different preferences and certain trusted friends are subject to our future work.
However, we believe that we can obtain even better results in those cases, since we will
have more evidence to learn on models with fewer hidden variables.

The accuracy of the approach is measured as the normalized square root error of the
quality and behavior estimations. The experimental settings and corresponding results
are summarized as in Table 1, where fc, fu represent the percentage of cheating and
uncertain reporting peers with varied behaviors. The column fi denotes the percentage
of missing data in the observation data set. Each experiment type consists of 20 experi-
ments, each of which is averaged over 20 run times. These experimentations give us the
following conclusions:

• Performance scalability: generally the number of direct reporting peers n does
not have any major influence in the performance of the algorithm (Fig. 4), but the
number of observation cases does (Fig. 5). A peer only needs to get the reports
from a certain number of other peers (chosen randomly) in the system to reduce
the total learning time and communication cost without sacrificing much in the
accuracy. Practically, in some other experiments, we only choose a set of n = 15
reporting peers randomly chosen in the network to reduce the total running time of
the learning algorithm.
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Table 1. Summary of experimental settings and results

Experiment goal n K fc(%) fu(%) fi(%) Results
Performance vs. number of raters 1 to 100 5 45 5 0 Fig. 4
Performance vs. number of reports 15 1 to 20 45 5 0 Fig. 5
Performance vs. effective attacks 15 5 0 to 95 0 0 Fig. 6
Performance vs. incomplete data 15 5 50 5 0 to 95 Fig. 7
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Fig. 4. Estimation errors vs. the number of raters

• The importance of modeling (Fig. 4, 5, 6, 7): the simplified QoS model yields
best estimation results given only a few (K = 3 to 5) reports per peer (Fig. 5). Us-
ing the extended QoS model requires more reports to be collected for the learning
step, otherwise its results are less accurate and more uncertain. This is reasonable
since the extended model is much more complex and has many hidden variables
to be learned. The result of the basic QoS model is the least accurate and more
vulnerable to malicious reports, since in this case the modeling peer trusts all raters
completely. This observation confirms the necessity of an approach which enables
the subjective modeling and evaluation of quality and trust. Depending on the avail-
ability of the reports from others, its prior beliefs on other peers and personalized
preferences, a peer can choose an appropriate model for its personal estimations of
quality and behaviors of prospective partners.

• The effectiveness of the EM algorithm: the performance of the EM algorithm is
tested extensively with respect to the following dimensions: (1) the average number
of reports K submitted by each peer Pj ; (2) the incompleteness of the observation
data set; (3) and the percentage of honest reporting peers among Pjs. Given enough
observation data, generally using the EM learning algorithm on the simplified and
the extended models can yield respectively good or acceptable estimation, even
with a reasonably high number of malicious users (Fig. 6) and with an incomplete
observation data set (Fig. 7).

Note that the above obtained performance is more useful in reality since many ap-
plications are not sensitive to the exact quality or behavior distributions but only their
relative values for making decisions.
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Fig. 5. Estimation errors vs. the number of reports per peer
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Fig. 6. Estimation errors vs. cheating behaviors
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Fig. 7. Estimation errors vs. percentage of missing data

5 Related Work

Our work is mostly related to current research efforts in building reputation-based trust
management systems, which can be mainly classified into two categories [4, 7, 11, 19]:

Social-control trust management systems: these approaches use reputation informa-
tion as a sanctioning tool to enforce trustful behaviors in the system, e.g., applications
are designed s.t. participants are motivated to fully cooperate for maximizing their util-
ities. Representative contributions in this field include [3, 4, 12, 14], as well as a huge
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number of work in economics literature. Although these solutions give solid theoretical
results with well-defined semantics, most of them are centralized and rely on many as-
sumptions, e.g., on the equal capabilities of agents, static and single-dimensional quality
of resources, etc., that limit their applications considerably.

Social-learning trust computational systems: solutions in this second class consider
agents’ reputation as indicative of their future behaviors, thus the trustworthiness of
an agent is usually computed based on recommendations from the others. Many ap-
proaches in this category are based on various heuristics [1, 25] or social network
analysis techniques [8, 13, 26]. However, most of them are either ad hoc in nature [1],
have high implementation overhead [13] or do not produce rigorous results with well-
defined semantics [25, 26]. Other probabilistic-based trust evaluation approaches, such
as [2,6,15,17,23,24] are still of limited applications since they do not appropriately take
into considerations the effects of contextual factors and preferences of users, the multi-
dimensionality of trust and quality, and the relationships among participating agents.

Our work belongs to the second category and can be shown as the generalization of
many existing approaches of this class, e.g., [2, 6, 9, 15, 17, 18, 22, 23, 24]. For example,
[6] is a special case of our solution if we suppose the reports and quality to be one-
dimensional and apply the EM algorithm on the simplified QoS model to find those
model parameters best fitting to the observation data set. [25] evaluates the quality and
trust value of a peer given its ratings by other peers and credibility of individual raters,
therefore it is similar to the learning on an extended QoS model in our framework. Yet,
our solution is well-supported by the probabilistic learning and inferencing techniques
and relies on no ad hoc heuristics. The approaches in [2, 15, 17, 24] are similar to our
computational framework under the assumption that user ratings and peer quality are
one-dimensional, binary-valued, and the learning of peers’ behaviors is done using a
Bayesian-based approach to inference on the extended model given the observation
data set. Comparing to our work, [22, 23] do not take into account the dependencies
among different quality dimensions of the peer as well as the relationships between the
observed and reported values of peers in the system with respect to their behaviors for
an accurate estimate of quality and trust. [9, 18] can be seen as special cases of our
general framework and therefore are subsumed by ours.

Our framework also serves as a good starting point to address some important is-
sues in decentralized reputation-based trust management. For example, it is possible to
model the social relationships among agents and agents’ communities. As a result, the
learning and reasoning on the model can give us an estimation of the quality and trust of
a target peer considering the relationship among peers in their communities. Such ap-
proach would combine the advantages of those trust computational solutions based on
social network analysis and on probabilistic estimation techniques, as suggested by [7].

6 Conclusion

We have proposed a general probabilistic framework to support the personalized
computation of quality and trust in decentralized systems, which can be shown as the
generalization of many related approaches. Our first implementation of the framework
using Bayesian network modeling, the EM and JTA algorithms have been shown to
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be scalable in terms of performance, run-time, and communication cost. Additionally,
it exhibits several advantages: it works well given few and incomplete feedback data
from the service users; it considers the dependencies among QoS attributes and var-
ious related factors to produce more accurate estimations; the computed results have
well-defined semantics and are useful for many application purposes. Currently, we are
interested in the modeling of peer communities and in studying the performance of
our approach under the sharing of the estimated quality and behaviors among mem-
bers of such social groups. We also plan to use the implemented framework to study
the emergence of trustful behaviors in decentralized networks where peers use different
models and learning algorithms to evaluate each other. Another issue is the unavail-
ability of real-life experimental reports constrains us in using only synthetic data in
our experimentation. Therefore, an important part of our future work is to find credible
information sources to empirically test our approach in various real-life scenarios.
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Abstract. Recognizing that trust states are mental states, this paper presents a 
formal analysis of the dynamics of trust in terms of the functional roles and 
representation relations for trust states. This formal analysis is done both in a 
logical framework and in a mathematical framework based on integral and 
differential equations. Furthermore, the paper presents formal specifications of 
a number of relevant dynamic properties of trust. The specifications provided 
were used to perform automated formal analysis of empirical and simulated 
data from two case studies, one involving two experiments with humans, and 
one involving simulation experiments in the context of an economic game.  

Keywords: Trust, dynamics, intelligent agents, human experiments. 

1   Introduction 

In the literature, a variety of definitions can be found for the notion of trust. The 
common factor in these definitions is that trust is a complex issue relating to belief in 
honesty, faithfulness, competence, and reliability of the trusted system actors, see e.g., 
[5, 6, 7, 13, 14, 19, 22, 23, 27]. Furthermore, the definitions indicate that trust depends 
on the context in which interaction occurs or on the observer’s point of view. The agent 
might for example trust that the statements made by another agent are true. Likewise, 
the agent might trust the commitment of another agent with respect to certain (joint) 
goals, or the agent might trust that another agent is capable of performing certain tasks.   

In [21] trust is analysed referring to observations which in turn lead to 
expectations: ‘observations that indicate that members of a system act according to 
and are secure in the expected futures constituted by the presence of each other for 
their symbolic representations.’ In [8] it is agreed that observations are important for 
trust, and trust is defined as: ‘trust is the outcome of observations leading to the belief 
that the actions of another may be relied upon, without explicit guarantee, to achieve a 
goal in a risky situation.’ Elofson [8] notes that trust can be developed over time as 
the outcome of a series of confirming observations. The evolution of trust over time, 
also called the dynamics of trust, is addressed in this paper. 

We conceive trust as an internal (mental) state property of an agent that may help 
him to conduct various kinds of complex behaviour. The cognitive concept trust 
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enables the agent to effectively cope with complex environments that are populated 
by self-interested agents. Trust is based on a number of factors, an important one 
being the agent’s own experiences with the subject of trust; e.g., another agent. Each 
event that can influence the degree of trust is interpreted by the agent to be either a 
trust-negative experience or a trust-positive experience. If the event is interpreted to 
be a trust-negative experience, the agent will lose its trust to some degree, if it is 
interpreted to be trust-positive, the agent will gain trust to some degree. The degree to 
which trust is changed depends on the characteristics of the agent. Agents equipped 
with a concept of trust perform a form of continual verification and validation of the 
subjects of trust over time. For example, a car is trusted, based on a multitude of 
experiences with that specific car, and with other cars in general. 

In this paper the dependence of trust on experiences obtained over time is the main 
focus, abstracting from other possible influences, which (as a form of idealisation) are 
assumed not present or constant. The dynamics of trust are formalised by sequences 
of mental states. The functional roles and the representation relations of trust states 
are formalised both in a logical and in a numerical mathematical way based on 
integral and differential equations. Properties of trust dynamics are formalised 
accordingly, incorporating logical and numerical aspects. Empirical and simulated 
data from two experiments with trust are formally analysed using an automated 
checker for such properties against traces [2]. The first experiment, called the scenario 
case study, studies dynamics of trust of humans when confronted with two different 
scenario’s. The other experiment, called the Trust & Tracing case study, is an agent-
based simulation of an economic game. 

Section 2 sketches the preliminaries for modelling trust dynamics using both 
mathematical and logical means. To properly catch the dynamics of trust as a 
cognitive phenomenon, Section 3 describes trust states as mental states for which the 
functional or causal roles and representation relations can be analysed and formally 
specified in logical terms. In Section 4 a continuous approach to trust dynamics is 
presented showing how functional role and representation relation specifications for 
trust states can be defined within Dynamical Systems Theory [25]. Section 5 presents 
a number of formally specified properties of trust used to analyse the case studies. 
The scenario case study is presented in Section 6; its formal analysis, based on 
properties formalised in Section 5, is presented in Section 7. The Trust & Tracing 
case study is presented in Section 8 and analysed in Section 9, using the properties 
from Section 5. Section 10 is a discussion. 

2   Preliminaries 

In this paper, trust is considered a mental agent concept that depends on experiences. 
This is modelled by a mathematical function that relates sequences of experiences to 
trust representations: a trust evolution function. As a computational alternative the 
iterative trust update function relates a current trust representation and a current 
experience to the next trust representation. To obtain a formal mathematical 
framework, the following four sets are introduced. A partially ordered set EV of 
experience values, a linearly ordered time frame TIME with initial time point 0, the set 
ES of experience sequences, i.e., functions from TIME to EV, and a partially ordered set 
TV of trust values. Examples of such sets EV and TV are the (closed) interval of real 
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numbers between -1 and 1, the set {-1, 0, 1}, or sets of qualitative labels, such as {very 
high, high, neutral, low, very low}. Within the sets EV and TV, subsets of positive and 
negative values are distinguished. A trust evolution function is a function te : ES x 
TIME → TV. A trust update function is a function tu : E x TV → TV. Throughout this 
paper we assume that the value of a trust evolution function te at time t only depends 
on the experiences in the past of t (future independence). 

A logical formalisation is based on the language TTL [2]; this is a language in the 
class of reified predicate logic-based temporal languages as distinguished in [11, 12]. In 
TTL, state atoms are atoms over the state ontology Ont, such as experience(v) and trust(w), 
which express the experience value v from sort EV and trust value w from sort TV in a 
state, and for relations for these sorts such as <, pos and neg. A state is a truth 
assignment (of truth values true and false) to the set of (ground) state atoms; STATES(Ont) 
denotes the set of all states over state ontology Ont. A trace for state ontology Ont is a 
function γ: TIME → STATES(Ont); they form the set TRACES(Ont). The expression state(γ, t) 
|= p denotes that state property holds in the state of γ at time t. Here |= is an infix 
predicate of the language. Based on such atoms formulae can be formed using the 
predicate logic connectives, including quantifiers (e.g., over time and traces). 

3   Trust States and Mental States 

Following literature on Philosophy of Mind, such as [20], a mental state can be 
characterised in two manners: 

• by the functional role it plays, defining the immediate predecessor and successor 
states in causal chains in which it is involved 

• by its representation relations, defining how the mental state relates to other states 
more distant in locality and time 

For each of these two aspects, trust states will be analysed by a simple example. 

The Shop Example 
Consider the following example, concerning agent A and a specific shop. The 
behaviour of agent A considered is as follows: 

• agent A can go to the shop or avoid it 
• when meeting somebody, agent A can tell that it is a bad shop or that it is a good shop 

The following types of events determine the behaviour of agent A 

negative events: 

• an experience that a product bought in this shop was of bad quality  
• somebody else tells A that it is a bad shop 
• passing the shop, A observes that there are no customers in the shop 

positive events: 

• an experience that a product bought in this shop was of good quality  
• somebody else tells A that it is a good shop 
• passing the shop, A observes that there are customers in the shop 
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Assume for the sake of simplicity that only the last two experiences count for the 
behaviour of A, and that the past pattern a considered are histories in which the last two 
experiences are negative events. The future pattern b considered are the futures in which 
the agent avoids the shop and, when meeting somebody tells that it is a bad shop. It is 
assumed that, viewed from an external perspective, past pattern a leads to future pattern b. 

Functional Role Specifications for a Trust State 
Functional roles are described from a backward perspective (relating the trust state to 
states that lead to it) and a forward perspective (relating the trust state to states to 
which it leads). The trust state property ‘very negative’ is used as an illustration. For 
the forward perspective a relatively simple specification can be made; for example: 

Functional role specification: forward 
If the agent has very negative trust about the shop, then it will avoid the shop and 
when meeting somebody, (s)he will speak negatively about the shop. 

state(γ, t) |= trust(very_negative) ⇒ ∃t1≥ t  [  t≤t1≤t+d & ∀t2  [ t1≤t2≤t1+d ⇒   
[state(γ, t2) |= preparation_for(avoiding_shop)  & 
          state(γ, t2) |= conditional_preparation_for(meets(A, B), speaks_bad_about_shop_to(A, B)) ] ] 

Here preparation for an action leads to performing the action (unless it is blocked), 
and conditional preparation for an action leads to preparation for the action as soon as 
the condition is observed. The backward perspective is inherently less simple, since 
trust is a type of mental state property that accumulates over longer time periods. This 
means that trust at a next point in time depends on present experiences but also on the 
present trust state. This gives it a recursive character. For example, 

Functional role specification: backward 
If the agent has negative or very negative trust about the shop, and it has a negative 
experience, then it will have very negative trust. 

[state(γ, t) |= trust(negative) ∨ trust(very_negative)  &  state(γ, t) |= observes(e) & neg(e) ]  ⇒ 
     ∃t1≥t  [  t≤t1≤t+d & ∀t2  [ t1≤t2≤t1+d ⇒  state(γ, t1) |= trust(very_negative) ] 

A numerical example with trust decay rate r is as follows: 
If the agent has trust level w about the shop, and it has an experience of level v, then it 
will have trust of level rw+(1-r)v. 

[ state(γ, t) |= trust(w)  &  state(γ, t) |= observes(experience(v))   ⇒ 
   ∃t1≥t  [  t≤t1≤t+d & ∀t2  [ t1≤t2≤t1+d ⇒  state(γ, t1) |= trust(rw+(1-r)v) ] 

Note that in mathematical terms a backward functional role specification corresponds 
to a trust update function, and can be used directly in a computational manner for 
simulation. 

Representation Relations for a Trust State 
Trust is an example of a mental state property that heavily relies on histories of 
experiences, as also is found in empirical work; e.g. [17]. By abstracting from these 
histories in the form of a trust state that accumulates the history of experiences, the 
future dynamics can be described on the basis of the present mental state in a simple 
manner. Here the past pattern can be characterised by a formula ϕ(γ, t): 

   ∃t1<t2≤t [state(γ, t1) |= observes(e1) & state(γ, t2) |= observes(e2) &  
 neg(e1) & neg(e2)  &∀t3  [ t1≤t3≤t  ⇒  ¬ ∃e3  [ pos(e3)  &  state(γ, t3) |= observes(e3) ] ] 
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Moreover, the future pattern can be characterised by a ψ(γ, t): 

∃t1≥ t   state(γ, t1) |= performs(avoiding_shop)  &  ∀ t2 ≥ t  [ state(γ, t2) |= observes(meeting(A, B))  ⇒   
∃t3 ≥ t2  state(γ, t3) |= performs(speaking_bad_about_shop_to(A, B))] 

This obtains the following temporal relational specifications for the representational 
content of the trust state 
Representation relation: forward 
 ∀γ, t    [  state(γ, t) |= trust(very_negative)     ⇔    ψ(γ, t)  ] 

Representation relation: backward 

 ∀γ, t  [  ϕ(γ, t)    ⇔   state(γ, t) |= trust(very_negative)  ]   

A numerical example with trust decay rate r involves summation over time as follows: 

If t0 is a time point and d a duration and t1 = t0+d and the agent has at time point t0 
trust level w(t0) and at time points t between t0 and t1 it has experiences of level v(t), 
then at t1 it will have trust of level w(t1) =  rdw(t0) + (1-r)∑0≤d1≤d-1  r

d1v(t0+d-d1). 

This property can be expressed in TTL as follows (here for any formula ϕ, the 
expression case(ϕ, v1, v2)  indicates the value v1 if ϕ is true, and  v2 otherwise): 

    [ state(γ, t0) |= trust(w0)  &    w1 = rd w0 + (1-r) Σk=0
d Σv:EV  case(state(γ, t0+k) |= experience(v), rd-kv, 0) 

    ⇒ state(γ, t0+d) |= trust(w1) ]   

In Section 4 an analysis of representation relations and functional role specifications 
for continuous trust values over continuous time in terms of the Dynamical Systems 
Theory [25] (based on integral and differential equations) will be presented.  

4   A Continuous Approach 

The notions functional role and representation relation can be analysed in a continuous 
form as well. This section considers a continuous mental state property for trust over 
continuous time. As an example, it is assumed that trust in the weather forecast depends 
on one’s experiences based on continuously monitoring the actual weather and 
comparing the observed weather with the predicted weather. For some of the patterns of 
behaviour, decisions may depend on your trust in the weather forecast. In particular, the 
decision to take an umbrella depends not only on the weather forecast, but also on your 
trust in the weather forecast. For example, when the weather forecast is not bad, but  
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your trust is low, you still will take an umbrella with you. It is assumed that for each 
point in time your experience with the weather forecast is a modelled by value (real 
number) between -1 (negative experience) and 1 (positive experience).  

As a first approach (for reasons of presentation leaving decay aside for a moment) 
the accumulation of experiences in trust may be described by averaging the 
accumulation of the shaded area of the graph of experiences values over time, shown 
in Figure 1. So, a trust state represents a kind of average of the experiences over time. 
More specifically, the trust value is taken to be the real number indicating the shaded 
area divided by the length of the time interval, where the parts below the time axis 
count as negative. Within an overall trace γ the relation between trust value tvγ(t) at a 
certain point in time t > 0 and the experience history can be modelled by the 
following backward representation relation for the trust state, expressed by an integral 
over time until t of the experience value evγ(t), i.e., 

tvγ(t) =  ∫0
t
 evγ(u) du / t 

where for a trace γ the functions tv, ev are defined by: 

tvγ(t) = v    iff   state(γ, t, internal) |= has_value(trust, v) 

evγ(t) = w    iff   state(γ, t, input) |= has_value(experience, w) 

This shows the cumulative character of a (backward) representation relation. A 
functional role specification has a more local character. Such a local relationship can 
be modelled by a differential equation, which can be found from the integral relation  

t  tvγ(t) =  ∫0
t
 evγ(u) du  

by differentiation and application of the product rule as follows: 

d/dt  t. tvγ(t) = d/dt  ∫0
t
 evγ(u) du 

(d/dt  t) . tvγ(t) + t. d/dt  tvγ(t) = evγ(t) 

tvγ(t) + t. d/dt  tvγ(t) = evγ(t)   

Therefore the following differential equation is obtained: 

dtvγ(t) / dt = [ evγ(t) - tvγ(t) ] / t 

In discretised form this provides: 

tvγ(t+ Δt) = tvγ(t) + [[ evγ(t) - tvγ(t) ] / t ]  Δt 

This shows the backward functional role specification for a trust state, which has the 
form of a trust update function and can be used for simulation (based on Euler’s 
method; also the more efficient higher-order Runge-Kutta methods are applicable). 

The example shows that, for continuous models, characterisations of representation 
relations and functional role specifications show up that are formulated in terms of 
integrals or differential equations. This provides an interesting connection of the 
higher-level cognitive concept trust to the Dynamical Systems Theory as advocated, 
for example, in [25]. In the above example, it is not realistic that experiences very far 
back in time count the same as recent experiences. In the accumulation of trust, 
experiences further back in time will have to count less than more recent experiences, 
based on a kind of inflation rate, or increasing memory vagueness. Therefore a more 
realistic model is obtained if it is assumed that the graph of experience values against 
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time is modified to fit it between two curves that are closer to zero further back in 
time. Trust then is the accumulation of the areas in the graph below, where the parts 
below the time axis count negative. 

The limiting curves can be based, for example, on an exponential function eat with 
a > 0 a real number related to the strength of the decay. The graph in Figure 1b depicts 
the resulting function  evγ(t) eat. Under these assumptions the representation relation 
between trust and experiences can be modelled by the integral 

tvγ(t) =  ∫0
t
 evγ(u) eau du . a / (eat - 1) 

where the factor a / (eat - 1) is a normalisation factor to normalise trust in the interval [-
1, 1]. As before, a functional role specification for the trust state in the form of the 
following differential equation can be obtained: 

dtvγ(t)/dt   = [ evγ(t) - tvγ(t) ] . a eat / (eat - 1) 

= [ evγ(t) - tvγ(t) ] . a  / (1 – e-at
) 

5   Properties of Trust 

In [18] a number of possible properties of trust evolution and trust update functions 
are defined in mathematical terms. For motivation and further explanation we refer to 
the reference mentioned. This paper contributes formalisation of the properties in 
logical terms. The following properties from [18] are considered (here e,f∈ES, 

γ∈TRACES, s,t,u ∈ TIME, v∈EV, w∈TV, and e|≤t denotes the restriction of sequence e to time 
points ≤ t). 

Future independence. Future independence expresses that trust only depends on past 
experiences, not on future experiences. This is a quite natural assumption that is 
assumed to hold for all trust evolution functions. In mathematical terms: 

e|≤t = f|≤t  & te(e, 0) = te(f, 0)     ⇒ te(e, t) = te(f, t)   

This property can be expressed logically in TTL [2] as follows: 
∀γ1, γ2, t   [ ∀w [ state(γ1, 0) |= trust(w) ⇔ state(γ2, 0) |= trust(w) ]  & 
∀t1≤t  ∀v [ state(γ1, t1) |= experience(v) ⇔ state(γ2, t1) |= experience(v) ] ] ⇒  

∀w [ state(γ1, t) |= trust(w) ⇔ state(γ2, t) |= trust(w) ] 

Note that as the property refers to two different histories (and compares them), it 
cannot be expressed in modal temporal logic: then only reference can be made to one 
history. 

Limited memory d. Limited memory expresses that trust only depends on past 
experiences in a certain time interval of duration d back in time from the present. In 
mathematical terms: 

e|≥t-d = f|≥t-d  ⇒ te(e, t) = te(f, t)   
This property can be expressed logically in TTL as follows: 

∀γ1, γ2, t   [ ∀t1≤t  [ t1≥t-d ⇒  
∀v [ state(γ1, t1) |= experience(v) ⇔ state(γ2, t1) |= experience(v) ] ] ⇒  

∀w [ state(γ1, t) |= trust(w) ⇔ state(γ2, t) |= trust(w) ] 

Trust Monotonicity. Monotonicity expresses that the more positive experiences are, 
the higher the trust. Mathematically: 

e ≤ f   &   te(e, 0) ≤ te(f, 0)      ⇒    te(e, t) ≤  te(f, t) 
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Note that this property again refers to two different histories; it can be expressed 
logically as follows: 

∀γ1, γ2, t     
[ ∀w1,w2 [ state(γ1, 0) |= trust(w1) & state(γ2, 0) |= trust(w2) ⇒ w1≤w2]  &  ∀t1≤t  ∀v1,v2  
[ state(γ1, t1) |= experience(v1) & state(γ2, t1) |= experience(v2) ⇒ v1≤v2]  ] ⇒  ∀w1,w2 [ state(γ1, t) |= 

trust(w1) &  state(γ2, t) |= trust(w2) ⇒ w1≤w2] 

The two different histories again imply that this property cannot be expressed in 
modal temporal logic. 

Positive trust extension. Positive (or negative) trust extension expresses that trust is 
increasing if only positive (negative) experiences are encountered, i.e., after a positive 
(negative) experience, trust will become at least as high (low) as it was. In 
mathematical terms: 

∀s,t  [∀u ∈ TIME [ s ≤ u < t  ⇒ eu  positive  ]   ⇒   te(e, s) ≤ te(e, t) 

This property can be expressed logically as follows 

∀s,t   [∀u ∀v [ s ≤ u < t  &  state(γ, u) |= experience(v)  ⇒  pos(v) ] ] 
⇒  ∀w1,w2 [ state(γ, s) |= trust(w1) & state(γ, t) |= trust(w2) ⇒ w1≤w2] 

Trust Flexibility: degree of trust gaining d. The property degree of trust gaining (or 
dropping) expresses, independent of the trust state, after how many positive (or 
negative) experiences trust will be positive (or negative). In mathematical terms: 

∀t   [∀k ∈ TIME [ t-d < k ≤ t  ⇒ ek negative ]  ⇒   te(e, t) negative 

This property can be expressed logically as follows 

∀t, d  [ state(γ, t) |= trust(w) & ∀t1  [ [t-d≤t1≤t  &  state(γ, t1) |= experience(v) ]  ⇒ pos(v) ]  ⇒  pos(w) ] 

Positive limit approximation. Positive limit approximation expresses that it is 
always possible to reach maximal trust, if a sufficiently long period with only positive 
experiences is encountered (the same for the negative case). Mathematically: 

If a t exists such that for all s > t it holds that es is maximal (in EV),  
then a  t' exists such that te(e, t) is maximal (in TV) for all t > t'. 

This property can be expressed logically as follows: 
   ∃t ∀t1≥t [ state(γ, t1) |= experience(v) ⇒ ¬ ∃v1 v1>v ] ⇒  ∃t' ∀t1≥t' [ state(γ, t1) |= trust(w) ⇒ ¬ ∃w1 w1>w ] 

This property can be relaxed a bit by specifying a margin such that trust should 
become that close to the maximal value. In [18] also the following properties of trust 
update functions are defined and related to properties of trust evolution functions. 
They are formalised logically as follows. 

Trust Update Monotonicity. A trust update function tu is monotonic if higher 
experience values and higher trust values lead to higher trust update values. In 
mathematical terms: 

ev1 ≤ ev2  &  tv1 ≤ tv2  ⇒  tu(ev1, tv1) ≤ tu(ev2, tv2) 

This property can be expressed logically as follows 

∀γ1, γ2, t ∀v1,v2, w1, w2 [state(γ1, t) |= experience(v1) ∧ trust(w1)& 
state(γ2, t) |= experience(v2) ∧ trust(w2) ⇒ v1≤v2 & w1≤w2]  ⇒   
∀w1,w2 [ state(γ1, t+1) |= trust(w1) & state(γ2, t+1) |= trust(w2) ⇒ w1≤w2] 

Positive and negative trust extension. This property states that positive (negative) 
experiences lead to higher (lower) trust values. In mathematical terms: 

 ev  positive  ⇒  tu(ev, tv) ≥ tv 
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This property can be expressed in logical terms as follows: 
∀v1,w1,w2 [ [ state(γ, t) |= experience(v1) ∧ trust(w1) &  state(γ, t+1) |= trust(w2) ] ⇒ w1≤w2] 

Strict positive (negative) monotonic progression. This property is a stronger 
version of the previous one and states that positive (negative) experiences lead to 
strictly higher (lower) trust values, as long as this is possible. In mathematical terms: 

ev positive and tv not maximal (in T)  ⇒  tu(ev, tv) > tv 

This property can be expressed logically as follows 

∀v1,w1,w2 [ [ state(γ, t) |= experience(v1) ∧ trust(w1) & ∃w3 w3>w1  &  state(γ, t+1) |= trust(w2) ]⇒ w1<w2] 

Negative or positive trust fixation of degree d.  After d negative events the agent 
will never trust anymore and its trust will remain the least possible. After d positive 
events the agent will forever trust (even when faced with negative events) and its trust 
will remain maximal. 

∀t, d  [ state(γ, t) |= trust(w) &  ∀t1 [ [t-d≤t1≤t  &  state(γ, t1) |= experience(v) ]  ⇒ pos(v) ]  ⇒   
∀t2≥t  [ state(γ, t) |= trust(w2) ⇒  ¬∃w  w>w2 ] 

6   The Scenario Case Study 

This section describes an experiment based on 294 subjects, taken from [17]. From 
the 294 subjects, 238 subjects (81%) completed the full questionnaire. The other 19% 
of the subjects were either not able to complete the questionnaire because of technical 
problems, decided to stop during the experiment, or did not respond to a question 
within a given time limit of 15 minutes between each two questions. Only the data 
obtained from subjects that fully completed the questionnaire have been used. In the  
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Fig. 2. Dynamics of trust in Photocopier (upper two), resp. Travel Agency (lower two) 
experiments, both for positive experiences first and negative experiences first 
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test the effect of experiences with an organisation or an object on the trust in that 
organisation or object is measured. The effect of the experiences on trust is measured 
by describing various experiences in small stories and instructing the subject to 
express his or her trust in the object or organisation after having gone through such 
experiences, using a five-points trust rating scale [17]. In this scale, trust value 3 
represents neutral trust, value 4 and 5 represent positive trust, and value 1 and 2 
represent negative trust. 

Each scenario consisted of an introduction and ten distinctive stories, five of which 
were positive (written and validated as to induce trust) and five of which were 
negative (written and validated as to induce distrust). For more details, see [17]. In 
Figure 2 the median of the trust values of the population for both the photocopier and 
the travel agency are plotted. It shows that indeed trust increases when the subject had 
a positive experience and that trust decreases upon a negative experience. There is a 
clear difference between plots starting with negative experiences and plots that start 
with positive experiences. To determine the significance of this difference, a 2-way 
between subjects ANOVA test was performed on the means of the positive and 
negative experiences within a single scenario. The ANOVA test takes both the 
experience (positive or negative) and the order in which experiences are presented 
(positive-first or negative-first) into account. The results show that both factors have 
an effect on trust in the object or organisation at a significance level beyond 0,001. 

7   Analysis of the Scenario Case Study 

The outcomes of the experiments as described in Section 6 and (in particular) the 
traces shown in Figure 2 have been compared to the most relevant dynamic properties 
from Section 5: 

Positive and negative trust extension. These properties are satisfied for all four 
types of human traces shown in Figure 2.  

Strict positive and negative monotonic progression. These properties failed 
according to the TTL checker [2] for all four human traces, probably due to the low 
number of possible trust values (if there are few trust values to choose from, people 
do not always choose a new trust value after a new experience).  

Trust Flexibility. The property succeeds for all four human traces, given the right 
value for d. For example, for the photocopier, 3 negative experiences in a row are 
sufficient to get a negative trust (no matter how positive trust was), and for the 
travelling agency 2 negative experiences are sufficient. For the positive side, in both 
cases only 1 positive experience is sufficient to get trust positive again, so the 
property ‘degree of trust gaining 1’ holds for both cases. An effect that does occur, 
however, in the photocopier context, is that after a series of negative experiences, the 
level of trust does not become as high as in the case of no negative experiences (see 
Figure 2). More refined properties than the ones above can be formulated to account 
for this relative form of trust fixation. Notice that in the travelling agency context this 
effect does not occur. 
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Positive limit approximation. This property assumes that the traces under 
investigation are of infinite length. Therefore, it makes no sense to check it against the 
traces of this case study. (For example, if for t one chooses the last time point of the 
trace, then the property is not very informative). However, analytically it can be 
shown that for the photocopier an upper limit of 5 and a lower limit of 2 are reached, 
whilst for the travel agency an upper limit of 4 and a lower limit of 2 are reached.  

Limited memory d. According to the TTL checker, this property succeeds for all four 
human traces, given the right value for d. This can be illustrated by considering the 
same example as for Trust Flexibility above: for the photocopier, 3 negative 
experiences in a row are sufficient to get a negative trust (no matter what the previous 
trust value was), and for the travelling agency 2 negative experiences are sufficient. 

8   Trust and Tracing Case Study 

The Trust and Tracing game [24] is a research tool designed to study human 
behaviour with respect to trust in commodity supply chains and networks in different 
institutional and cultural settings. The game played by human participants is used 
both as a tool for data gathering and as a tool to make participants feed back on their 
daily experiences. 

The focus of study is on trust in a business partner when acquiring or selling 
commodities with invisible quality. There are five roles: traders (producers, 
middlemen and retailers), consumers and a tracing agency. The real quality of a 
commodity is known by producers only. Sellers may deceive buyers with respect to 
quality, to gain profits. Buyers have either to rely on information provided by sellers 
(Trust) or to request a formal quality assessment at the Tracing Agency (Trace). This 
costs a tracing fee for the buyer if the product is what the seller stated (honest). The 
agency will punish untruthful sellers by a fine. Middleman and Retailers have an 
added value for the network by their ability to trace a product cheaper than a 
consumer can. 

Commodities usually flow from producers to middlemen, from middlemen to 
retailers and from retailers to consumers. Players receive ‘monopoly’ money upfront. 
Producers receive sealed envelopes representing lots of commodities. Each lot is of a 
certain commodity type (represented by the colour of the envelope) and of either low 
or high quality (represented by a ticket covered in the envelope). The envelopes may 
only be opened by the tracing agency, or at the end of the game to count points 
collected by the consumers. The player who has collected most points is the winner in 
the consumer category. In the other categories the player with maximal profit wins. 

Sessions played until 2005, see [16], provided insights, such as: participants who 
know and trust each other beforehand tend to start trading faster and trace less. The 
afterwards indignation about deceits that had not been found out during the game is 
higher in these groups than it is when participants do not know each other. The 
objective of [16] was to model the behaviour of sellers and buyers using the concept 
of trust. The model is inspired by [19] who define reliability trust as “trusting party’s 
probability estimate of success of the transaction”. This choice allows for considering 
economic aspects; agents may decide to trade with low-trust partners if loss in case of 
deceit is low. In the paper trust is defined as a subjective probability. This choice 
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allows trust to be related with risk. In the agent-based simulations of [16], the agent’s 
trust model is based on tracing results and the trust update schema proposed in [18]: 

trustt+1(δ+)=(1-δ+) trustt+δ+ if the experience is positive 

trustt+1(δ-)=(1-δ-) trustt         if the experience is negative 

where trustt represents trust after the t transactions. The value of trust=1 represents 
complete trust, trust=0 represents complete distrust, and trust=0.5 represents complete 
uncertainty. This model is an asymmetric trust update function, with either completely 
positive or completely negative experience. A negative experience, or losing 
something, may have stronger impact than a positive experience, or gaining the same 
thing. This is known as the endowment effect [1, 26]. δ+ and δ- are impact factors of 
positive and negative experiences respectively. They are related by an endowment 
coefficient e.   

δ+  = e δ- ,  0<e≤1 

This trust update function has the following properties: monotonicity, positive and 
negative trust extension, and strict positive and negative progression. 

For buyers, trading entails the trust-or-trace decision. In human interaction, this 
decision depends on human factors that are not sufficiently well understood to 
incorporate in a multi-agent system. To not completely disregard these intractable 
factors, the trust-or-trace decision is modelled as a random process instead of as a 
deterministic process. The agglomerate of all these intractable factors is called the 
confidence factor. The distribution involves experience-based trust in the seller, the 
value ratio of high versus low quality, the cost of tracing, and the buyer’s confidence 
factor. 

Tracing reveals the real quality of a commodity. The tracing agent executes the 
tracing and punishes cheaters as well as traders reselling bad commodities in good 
faith. The tracing agent only operates on request and requires some tracing fee. 
Several factors influence the tracing decision to be made after buying a commodity. 
The most important factors for the current research are the buyer’s trust in seller and 
his confidence. Trust is modelled as a subjective evaluation of the probability that the 
seller would not cheat on the buyer. Confidence reflects the preference of a particular 
player to trust rather than trace, represented as a value on the interval [0,1]. The other 
factors are: the satisfaction ratio of the commodity (tracing makes more sense for 
valuable products than for products with small satisfaction ratio), and the tracing costs 
which depend on the depth to be traced.  

Agent models were validated against the game sessions played by the humans (see 
[16] for details). Thus, computer simulations were performed for the same game 
setups with populations of 15 agents: 3 producers, 3 middlemen, 3 retailers, 6 
consumers. A set of validation game setups (combinations of free parameters of the 
agent models) was built to be able to compare output of the computer simulations and 
the results of the human games. The values of free parameters were selected 
uniformly from their definition intervals to confirm the models capability to 
reproduce desired input-output relationships and explore their sensitivities. Some of 
the highlights of the outcomes are as follows. 

Effects of confidence on tracing. The difference in output variables with respect to 
high and low levels of confidence is not significant for neutral risk-taking agents (i.e., 
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agents that evaluate the potential profit equally high as the risk of deception in their 
buying/selling decision function). For high-risk-taking agents (i.e., agents that prefer 
potential profit over the risk of deception) the amount of traces decreases for highly 
confident players and increases for lowly confident players. 

Effects of confidence on cheating. The number of cheats is high for highly confident 
players in games with dominating number of risk-neutral players. Surprisingly, the 
results show the opposite for risk-taking players: some dishonest sellers do not get 
traced and punished in highly risk-taking game configurations, so they are encouraged 
to continue their fraudulent practices. 

Effects of confidence on certification and guaranteeing. The number of guarantees 
is linked with agent’s confidence through the concept of the tracing trust. High 
confidence leads to a lower number of traces, meaning fewer deceptions are 
discovered and consequently a higher average tracing trust. High tracing trust 
decreases the seller’s risk and thus increases number of guarantees provided by the 
seller (a guarantee increase seller’s costs in case of deception). 

In all experiments, effects of risk-taking attitude are consistent: high risk-taking 
leads to more cheating, less certificates and increased willingness to give guarantees 
and to rely on them. Differences in risk-taking attitude outweigh changes in other 
parameters. This result corresponds with observations from human games. 

9   Analysis of Trust and Tracing Case Study 

The model as introduced in the previous section has been tested in a case study. 
According to [15], initial trust and honesty of the agents have the strongest influence 
on the evolution of trust throughout the game. Thus, the following 4 games with 
homogeneous agents were chosen from the validation set of the game setups to be 
played using the multi-agent simulation system: 

• Distrusting buyers and dishonest sellers 
• Distrusting buyers and honest sellers 
• Trusting buyers and dishonest sellers 
• Trusting buyers and honest sellers 

Distrusting buyers have a low initial value of trust (0.1) and develop trust when 
confronted with honest sellers. Vice versa, trusting buyers have a high initial trust 
value (1.0) and decrease it through tracing and discovering cheaters in games with 
dishonest sellers. One additional game was played having only one dishonest agent 
and in which the rest of the agents are all honest and trusting. Each game played is 
logged as set of traces generated by each of the agents. Each trace logs the trust and 
honesty values, and all experiences influencing these. In the logs the trust of an agent 
is represented by the predicate  

has_cheating_trust(AgentA,AgentB,trust_value).  

This expression means that AgentA has trust value of trust_value w.r.t. AgentB. The 
positive experience influencing the AgentA’s trust is recorded using predicate 
successful_trade(AgentA, AgentB). The predicate has_cheated(AgentA, AgentB) represents the 
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negative experience (a cheat has been discovered by the tracing agency) that AgentB 
cheated on AgentA. In a similar way agents log their honesty level that is updated in 
the same way as their level of trust. The predicate has_honesty(AgentA, honesty_value) 
represents the current value of honesty of AgentA. If the predicate potential_cheat(AgentA) 
holds, then the value of the honesty of AgentA decreases. If the predicate 
punishment(AgentA) holds, then the honesty value of AgentA increases. 

The game traces were checked against a number of trust properties proposed in 
Section 5. To this end, the properties of Section 5 have been slightly modified, to 
make them compatible with the predicates as mentioned above. For example, the 
properties have been parameterised with a variable for the trusting agent and a 
variable for the trusted agent, and have been checked for all combinations of agents. 
The results were as follows: 

Positive and negative trust extension. The TTL checker [2] showed that these 
properties hold for the trust model of the software agents in the Trust and Tracing 
game. This fact can be also confirmed analytically by the trust update function (see 
Section 8).  

Strict positive and negative monotonic progression. These properties were also 
confirmed by the TTL checker for all software agents. This is a consequence of the 
fact that the software agents update their trust using only strictly positive or negative 
experiences. 

Trust flexibility. The automated checks pointed out that this property holds only for a 
part of the traces for a given value of d. This effect can be explained by the 
differences in the initial value of trust in the agents across the different games. 
Furthermore, due to the randomness of the agent’s partner selection and the 
endowment effect (see Section 8) model and the time limits of the games the agents 
can have insufficient number of trades (experiences) to establish positive trust level . 

Positive limit approximation.  As explained in Section 7, it makes no sense to check 
this property against traces of finite length. However, analytically it can be shown that 
the trust update function converges to the maximum level of trust (1.0) while the 
agent perceives a continuous sequence of positive experiences.  

Limited memory d. According to the TTL checker this property does not hold for the 
software agents. After each new experience value and performed trust update, the 
agents still remember all the previous experiences. The history of the experiences is 
weighted, meaning that the older an experience gets the lower its weight in the current 
value of trust. In addition, the weight drops exponentially causing the agent to ignore 
old experiences rapidly. 

10   Discussion 

This paper focused on the dependence of trust on experiences over time, abstracting 
from other possible influences, which are assumed as an idealisation to be not present 
or constant. For trust states as mental states, following literature in Philosophy of 
Mind such as [20], functional role and representation relation specifications were 
formalised both in a logical way and in a numerical mathematical way according to a 
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Dynamical Systems Theory approach (based on integral and differential equations; cf. 
[25]). It is shown how a backward functional role specification in mathematical terms 
corresponds to a trust update function in the discrete case and a differential equation 
in the continuous case and is directly usable in a computational manner for 
simulation. Moreover, it is shown how a backward representation relation can be 
obtained (as a repeated application of the functional role specification) by a 
summation (discrete case) or integration (continuous case) of the (inflating) 
experiences over time. 

Trust may be influenced by experiences of different types. This paper models 
differences between experiences by mapping them into one overall set of distinct 
experience ‘values’. In addition, more explicit distinctions between different 
dimensions of experience could be made. Also other cognitive or emotional  
factors could be integrated, such as the concept of expectation. The work presented in 
[5, 8, 13, 14] addresses some of these other aspects of trust, which could be 
integrated. This is left for future work. 

In our work we focus on the dynamic properties of the trust models where trust is 
represented by a single variable. However, we acknowledge the fact that trust is a 
complex cognitive phenomenon [5] and might be represented by multiple factors or 
have a more complex relationship with decision making in humans and software 
agents. To apply our analytical method in such complex cases break down the trust 
model into single aspect. For each single aspect the proposed dynamic properties can 
be studied. As an example, this method was applied to the Trust and Tracing case 
study [14, 15], where different types of trust are used depending on the context of the 
decision making. The trust-or-trace decision is based on the cheating trust that 
estimates the subjective probability of truthful behaviour of the opponent while the 
partner selection decision is based on the negotiation trust, revealing the subjective 
probability of reaching an agreement with a given partner.  

The requirements imposed on models for trust dynamics may depend on individual 
characteristics of agents; therefore, a variety of models that capture these 
characteristics may be needed. The approach put forward here enables the explication 
of these characteristics. Formal specification of both qualitative and quantitative 
models is supported, based on trust evolution functions and trust update functions. 
Validation has taken place on the basis of extensive empirical and simulated data in 
different contexts. 

To formalise and analyse dynamic phenomena, often it is implicitly or explicitly 
claimed that temporal logic, e.g., linear time or branching time temporal logic, is 
useful; e.g., [3, 9, 10] Other literature claims that the Dynamical Systems Theory, 
based on differential equations is a suitable approach to dynamics of cognitive 
phenomena; cf. [25]. In this study it has been found that a number of basic properties 
for trust dynamics cannot be expressed in standard temporal logic, nor in the form of 
integral and differential equations. For example, the quite elementary property ‘trust 
monotonicity’ that expresses that better experiences lead to more trust is not 
expressible. The reason for this lack of expressivity is the impossibility to refer to and 
compare different histories. In the logical language TTL used here, traces are first 
class citizens; for example, variables and quantifiers can be used over them. In this 
way explicit reference can be made to histories, and they can be compared. 
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