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Abstract. The upcoming safety standard ISO/WD 26262 that has been
derived from the more general IEC 61508 and adapted for the automo-
tive industry, introduces the concept of a safety case, a scheme that has
already been successfully applied in other sectors of industry such as
nuclear, defense, aerospace, and railway. A safety case communicates a
clear, comprehensive and defensible argument that a system is accept-
ably safe in its operating context. Although, the standard prescribes that
there should be a safety argument, it does not establish detailed guide-
lines on how such an argument should be organized and implemented,
or which artifacts should be provided.

In this paper, we introduce a methodology and a tool chain for es-
tablishing a safety argument, plus the evidence to prove the argument,
as a concrete reference realization of the ISO/WD 26262 for automotive
systems. We use the Goal-Structuring-Notation to decompose and re-
fine safety claims of an emergency braking system (EBS) for trucks into
sub-claims until they can be proven by evidence. The evidence comes
from tracing the safety requirements of the system into their respective
development artifacts in which they are realized.

1 Introduction

Safety critical systems have to fulfill safety requirements in addition to func-
tional requirements. Safety requirements describe the characteristics that a sys-
tem must have in order to be safe [12]. This involves the identification of all
hazards that can take place, and that may harm people or the environment.
Safety-related issues are often captured in standards describing products and
processes to be considered throughout the life-cycle of a safety critical system.
The upcoming safety standard ISO/WD 26262 [2] is an implementation of the
more general IEC 61508 standard that addresses safety issues in the automo-
tive industry. The objective of the automotive standard is to take the specific
constraints of automotive embedded systems and their development processes
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into account. Domain-dependent challenges are, for instance, the task distri-
bution of OEMs and suppliers, the degree of iterative development, and the
high importance of the application of the embedded system to the target ve-
hicle. The short development cycles and large number of produced units are
further specifics which disallow the straight-forward application of safety stan-
dards from other domains of transportation. The current working draft is divided
into a number of volumes considering e.g. determination of safety integrity levels,
and requirements to systems development, software development, and support-
ing processes. Besides many other requirements the standard prescribes that a
safety case should be created for every system that has safety-related features.
It states that part of the system documentation should provide evidence for the
fulfillment of safety requirements, thus guaranteeing functional safety. However,
the standard does not provide any details about which artifacts should be pro-
duced in order to prove functional safety, nor does it say how such a proof may
be devised.

In this paper, we develop a generic safety case that may act as a reference
realization for the automotive industry. In section 2, we describe how a safety case
may be constructed based on the Goal-Structuring-Notation (GSN). Section 3
shows that constructing a safety argument is, to a large extent, a traceability
effort and dealing with the construction of trace tables. Section 4 presents the
case study, a safety critical system, for which we have devised part of a safety
argument. Here, we concentrate on the traceability part. Section 5 summarizes
and concludes the paper.

2 The Safety Case

Part of the certification process in the automotive domain is the assessment of
a system through an inspection agency. To convince inspectors that a system
is safe, a safety case should be created. The safety case communicates a clear,
comprehensive and defensible argument that a system is acceptably safe in its
operating context [7]. The argument should make clear that it is reasonable to
assume the system can be operated safely. It is typically based on engineering
judgment rather than strict formal logic [12], and it provides evidence that the
risks (hazards) associated with the operation of the system have been considered
carefully, and that steps have been taken to deal with the hazards appropriately.

The safety argument (SA) must identify all matters significant to the safety of
the system and demonstrate how these issues have been addressed. A convenient
way to define a safety argument is through the Goal-Structuring-Notation de-
vised by Kelly [7] which is based on earlier work by Toulmin on the construction
of arguments [13]. An argument consists of claims whose truth should be
proven. The facts used to prove the claims are referred to as data, and the
justification for why data prove a claim is described by warrants. If it is possible
to dispute a warrant, backing can be used to show why the warrant is valid.
The structure of this argument is depicted in Fig. 1 as far as it is relevant for
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Fig. 1. Structure of Toulmin’s Argument [13]

Fig. 2. Example GSN tree, decomposition of the goal “the product is safe”

the safety case. Further concepts being introduced by Toulmin like qualifiers or
rebuttals do not contribute to the construction of a safety case. Qualifiers are
ordinary language terms like “few”, “rarely”, or “some” which are used to express
the likelihood of a warrant or backing. For safety analysis, formal methods are
available to capture this aspect of a safety analysis. Rebuttals deal with the
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potential counter-arguments arising in an ongoing discussion. However, a safety
case is the result of an intense discussion during which all counter-arguments
must have been evaluated and resolved such that a safety case can be accepted.
So, rebuttals are not relevant for a safety case.

The main elements of the GSN are goals and solutions. Goals correspond to
Toulmin’s claims whereas solutions relate to Toulmin’s data, also termed evi-
dence. For constructing a safety case, we have to determine which evidence is
required for a particular safety argument, and why the evidence supports the
claim. According to the GSN, the safety case starts with a top-level claim, or a
goal, such as “the system is safe” or “safety requirements have been realized.”
The top-level claim is then decomposed into sub-ordinate claims down to a level
that a sub-claim can be proven by evidence. The concepts of the GSN are dis-
played in the example in Fig. 2. Claims and sub-claims, or goals, are represented
as rectangular boxes and evidence, or solutions, as circles. A strategy-node, rep-
resented as rhomboid, contains the explanation why a goal has been decomposed.
The argument can be constructed by going through the following steps [3,7]:

1. Identification of the goals to be supported.
2. Definition of the basis on which the goals are stated.
3. Identification of the strategy to support the goals.
4. Definition of the basis on which the strategies are stated.
5. Elaboration of the strategy including the identification of new goals and

starting from step 1, or moving to step 6.
6. Identification of a basic solution that can be proven.

It is difficult to propose a standard safety case structure that may be valid for
most systems. However, some of the argumentation will be the same for many
systems, such as “all safety requirements have been realized,” or the like. Such
argumentation structures, or so-called safety case patterns [6,15], may be reused
in several safety cases for different systems. By using such patterns, safety cases
can be devised much faster. Similarly, safety case anti-pattern can be used to
express weak and flawed safety arguments [7,14].

A particular GSN decomposition proposed by the EU project EASIS [3] orga-
nizes the argumentation into a product branch and a process branch, claiming
that “a system is safe” if “the process is safe” and “the product is safe.” The
safety of the process can be assured through application of certified development
standards, such as the IEC 61508 [4] or the V-model [11]. Here, questions should
be asked about how the product is developed, such as “did we perform hazard
analysis?”, “do we have a hazard checklist?”, “did we perform a preliminary
hazard identification?”, “did we implement the results of the preliminary hazard
identification?”, and so on [3].

On the product side, we can decompose the claim “the product is safe” into the
sub-goal “the safety requirements are traceable” which turns the satisfaction of
our safety case into a traceability problem. We can argue, that if all safety related
aspects of our system can be traced to their origin and to their realization, the
system is safe, given the process is safe (proof of the process branch). Traceability
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is a prerequisite for assessment and validation of the safety goals, which we refer
to as “proof of safety requirements.” We can then decompose the traceability
goal further into “proof of safety requirements”, “origin of safety requirements
documented”, and “safety requirements realized.” This extended organization of
the safety case is depicted in Fig. 2 and, through its general nature, it can be
used as a pattern for all systems.

3 Traceability of Safety Requirements

In the previous section, we argued that part of the proof of a safety case can be
achieved through tracing all safety requirements to the respective development
documents. This is fully in line with the ISO/WD 26262 [2] since it demands that
“the origin, realization and proof for a requirement are clearly described in the
documentation” of a system. A requirement is a condition or an ability that the
system should fulfill. The origin of a requirement is a rationale why this require-
ment has been elicited for the system. The realization demonstrates how/where
the requirement is implemented in the final system. A proof for a requirement
means that it should be demonstrated that the requirement has an origin and
that it is implemented, in other words, that the requirement is traceable across
all development documents in both directions, forwards and backwards. The
documents comprise the hazards possible, the safety goals, the safety require-
ments, design elements, and implementation elements, plus associated review
documents.

As shown in Fig. 2, the “product is safe”-branch is decomposed into a trace-
ability sub-goal that is split into various traceability claims, i.e., “origin of safety
requirements documented”, “safety requirements realized”, and “proof of safety
requirements.” This last goal is decomposed into two sub-goals, “safety require-
ments validated” and “safety requirements satisfied” which can be traced to the
respective documents that deal with those issues.

The origin of a safety requirement can be demonstrated by backward trace-
ability. Safety requirements are derived from hazards and safety goals. Every
safety requirement should be linked to at least one safety goal, expressed through
∀srSR −→ ∃sgSG, and every safety goal should be linked to a hazard, expressed
through ∀sgSG −→ ∃hH . But also forward traceability is important, so that
for every hazard, there is a safety goal (∀hH −→ ∃sgSG), and for every safety
goal, there should be an associated safety requirement (∀sgSG −→ ∃srSR).
Consequently, we can extend our safety case as depicted in Fig. 3.

For the lowest-level goals, we can then come up with solutions in the form of
trace tables. These are now product-specific. Once all trace relations have been
established in a development project we can claim that the system is acceptably
safe with respect to those safety goals, e.g. with respect to “origin of safety
requirements is documented.” We have to do this for all safety goals defined,
and we demonstrate how this may be done for a specific case using specific tools
in the next section.
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Fig. 3. Further decomposition of the goal “origin of safety requirement is documented”

4 Case Study

We have devised a partial safety case for an emergency brake system (EBS). This
innovative assistance functionality becomes part of modern vehicles and lorries.
DaimlerChrysler, for instance, markets that type of application as Active Brake
Assist. An emergency brake system warns the driver of a likely crash, and, if
the driver does not react upon the warning, initiates and emergency braking. It
is a distributed system incorporating the braking system, a distance sensor, the
hifi-system, a control system, as well as the driver’s interface. The individual
subsystems are usually interconnected through a vehicle’s CAN bus.

In order to devise the traceability part of the safety case, first, we have to take
a look at the development processes and tools deployed. The safety requirements
(SR) for this system are coming from a preliminary hazard analysis (PHA), or
from a hazards and operability analysis (HAZOP) [10]. Once all the potential
hazards have been identified, they are associated with safety goals (SG). Safety
goals are comparable to top level functional requirements. The requirements
are decomposed into sub-system requirements, and eventually, into component
requirements. For the execution of the safety analysis the system boundaries
have to be determined. This design decision is typically a compromise between
controllability and complexity. An emergency brake system is a safety application
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Fig. 4. Classes of development artifacts and their (forward) traceability relations that
we implemented for the EBS case study

and an add-on to an already available braking system. The system boundaries
of that embedded system therefore are mostly established by electronic signals.
Potential hazards due to brake wear for instances will have to be signaled by the
brake and these signals must be taken into account by the safety analysis.

All requirements are managed within Telelogic’s DOORS, a widely used re-
quirements management tool (http://www.telelogic.com). They are associated
with different levels such as safety requirement, safety concept, system require-
ment, component specification, etc, and the tool maintains also traces between
those levels. These traces are shown in Fig. 4.

Apart from DOORS for the requirements management, various other tools
should be used throughout the other development phases in order to comply to
standard’s requirements. A typical tool chain could consist of:

– Matlab’s Simulink and Stateflow (http://www.matlab.com) are used for sys-
tem and component design,

– DSpace’s TargetLink (http://www.dspace.com) is used for the implementa-
tion and automatic code generation out of the Matlab models.

– Tessy (by Hitex) is used for automated unit testing,
– the Classification Tree Editor (CTE by Hitex) is used to support input

domain-based testing,
– Time Partition Testing is employed for generating test cases with continuous

input data streams [8,9],
– DSpace’s MTest generates test cases automatically based on the Simulink

and TargetLink models (http://www.dspace.com),
– QA-C/Misra can be used to analyze the resulting C-code

(http://www.qasystems.de),
– PolySpace is a tool that can detect run-time errors during compile time

(http://www.polyspace.de), and
– Mercury’s Quality Center is a global suite of tools for ensuring software

quality (http://www.mercury.com).
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Fig. 6. Information model for the requirements engineering phase

4.1 ToolNet

The tools in the previous list are dealing with different types of work products,
and the trace tables that we have to devise for the safety case have to refer to the
artifacts stored in these various tools. In other words, in order to realize a full
tracing between the different work products, we have to gain access to the tools’
various data representations. This is done through another tool, called ToolNet
[1] which enables us to create traceability links between various development ar-
tifacts independent from the type of tool through which they have been created.
ToolNet is based on a bus-architecture, the so-called information backbone that
connects each tool via an adapter [1] (Fig. 5). Every single development object
recognized by ToolNet is assigned a unique ID (object reference) which is based
on its data source (a tool or part of a tool). The development objects must be
defined unambiguously, according to a product-specific information model [5]. It
describes the available and traceable development objects such as hazard, safety
concept, safety requirement, etc. An example information model for our project
is displayed in Fig. 6. The development object models and the ToolNet structure
permit the tools to interact with each other through services implemented in
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Fig. 7. Product-specific safety case for the emergency braking control system

Fig. 8. Evaluation of an OCL constraint in ToolNet

their respective adapters. A user can select a specific development object from
one tool, e.g., a requirement within DOORS, and associate it with another
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Fig. 9. ToolNet trace table highlighting a trace between a safety requirement and safety
concept

development object, e.g., from Matlab/Simulink, and eventually link that to an
implementation and a number of test cases. In that way, engineers can build up
a network of associations between the many different development objects, and
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thus, construct a trace table for an entire project. The tracing data is stored
within ToolNet.

4.2 Traceability of the EBS-System

When we created the sample safety case for the emergency braking system, we
could, to a large extent, reuse the structure of our generic safety case described
in Sect. 2. The only difference is that we had to apply our claim “safety require-
ments are traceable” to all subsystems of the EBS, the hifi-system, the breaking
system, the distance sensor and the control system. We could, therefore, extend
the safety case displayed in Fig. 2 with a corresponding structure for each of the
four sub-systems, leading to four separate sub-goals of the super-ordinate goal
“the system requirements are traceable.” This extended product-specific safety
case is displayed in Fig. 7. We show the extended safety case for the control
system only. Figure 4 shows the forward traceability links between the various
types of artifacts that we implemented for the EBS system. Each artifact within
the various tools had to be assigned to one of these classes. We implemented
that through adding a type attribute to the artifacts. For future projects, we
propose to create an individual DOORS module for each of the artifact types in
order to facilitate their management. After we had established all traceability
links, the final step was the evaluation of our coverage criterion, that is, can
all development artifacts be linked to artifacts in the respective other classes of
artifacts, and can they be linked to an implementation? In other words, we had
to verify the relations stated in our (forward) traceability claims (Figure 7).

4.3 Verification of the Traceability Links

The aim of a safety argument, following the goal structuring notation, is to
associate goals with solutions. A goal is a claim corresponding to a required
safety property of a system, and a solution is evidence supporting this claim.
By associating every claim with a solution, we demonstrate that a system fulfills
its safety requirements. Initially, we will have no associations stored in the trace
tables, but, eventually, throughout the system development, the trace tables will
be filled. ToolNet can be used to depict the information contained in the trace
tables. An example is shown in Fig. 9.

Assessing to which extent the claims are proven by evidence in a large system
such as the EBS control system, can be daunting. Identifying missing links man-
ually is very tedious and time consuming, and the task must be repeated every
time the system requirements are amended. This is why we are currently devis-
ing an automatic solution generator that can compile the various trace tables
based on the development data found in ToolNet, and then make a traceability
analysis. It works based on evaluating OCL constraints expressing the traceabil-
ity relations. The outcome of such an analysis is twofold. First, we can highlight
missing links in the desktop view of ToolNet for the developers (displayed in
Fig. 8), and, second, we can generate reports about the safety status of an entire
system, i.e., for management or, eventually, the certification authority.
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5 Summary, Conclusions and Future Work

The upcoming safety standard ISO/WD 26262 for the automotive industry, in-
troduces the concept of a safety case, which communicates a clear, comprehensive
and defensible argument that a system is acceptably safe. In the future, it will
be required by safety inspectors in order to assess how and to which extent all
safety-related issues have been addressed and treated by the vendor of a safety-
critical system in the automotive domain.

In this paper, we demonstrated how a safety case can be constructed based on
the goal structuring notation that proposes to create a defensible argument out of
goals that are decomposed recursively into subgoals until a subgoal can be proven
by evidence. The evidence is provided by documents addressing the safety issues.
The standard prescribes that part of the safety case should demonstrate that the
origin, realization and proof for every requirement is clearly documented. In other
words, all requirements should be traceable to their respective implementations
(forward and backward).

We developed a generic safety case that could be applied to emergency braking
systems like the Active Brake Assist for lorries of the brand Mercedes-Benz.
This safety case may act as a template, or a reference realization for other
systems in the automotive domain. The greatest challenge was to incorporate
the traceability features of our safety case into the existing development process
that employs a number of different tools. We solved that through adding trace
information to ToolNet, a framework that integrates many different software
engineering tools. Within ToolNet, we can now navigate along the traceability
paths and assess which safety requirements have been treated sufficiently.

Current work is now focused on the development of an automatic solution
generator that will compile the trace tables required for the safety argument
automatically. In the future, this generator can be used to provide the current
safety status of a project on the punch of a button, i.e., for project management,
display a colored safety argument, with green and red indicating the safety status
of system parts, and, eventually, compile the safety reports for the inspection
agency. Further experience will also have to show whether the purely positivistic
approach presented here must be extended to deal with context information
and the explication of arguments. In particular the contribution of traceability
information to context and arguments must be studied.
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